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ABSTRACT OF THE DISSERTATION

Mechanics of Heart Tube Formation in the Early Chick Embryo

by

Victor D. Varner

Doctor of Philosophy in Biomedical Engineering

Washington University in St. Louis, 2011

Research Advisor: Professor Larry A. Taber

The heart is the first functioning organ to form in the embryo. For decades, biolo-

gists have worked to identify many of the genetic and molecular factors involved in

heart development, and over the years, these efforts have helped elucidate the vast

biochemical signaling networks, which drive cardiac specification and differentiation

in the embryo. Still, the biophysical mechanisms which link these molecular factors

to actual, physical changes in cardiac morphology remain unclear.

The aim of this thesis is to identify some of the mechanical forces which drive heart

tube assembly in the early chick embryo. A unique feature of this work is the combi-

nation of mathematical modeling with ex ovo culture experiments.

Head fold formation is the first step in this process. It sets the stage for early cardiac

development by folding the (initially flat) heart fields out-of-plane, enabling them

to form a tube along the ventral side of the embryo. Here, we show that head fold

formation is driven by forces that originate in the ectoderm, forces that are typically

associated with neurulation — the formation of the neural tube.
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The primitive heart tube itself then forms as these bilateral heart fields move toward

the midline and fuse to construct a straight, muscle-wrapped tube. We show that

the endoderm plays a crucial mechanical role during this process. Instead of just

serving as a passive, secretory substrate for the crawling mesodermal heart fields,

the endoderm actively contracts to pull the heart fields toward the midline. We then

investigate how this endodermal contraction is spatially distributed, and how different

distributions of contraction might affect the observed morphogenetic deformations

during heart tube formation.

Our methods can be readily generalized to other morphogenetic processes, enabling us

to investigate how physical forces are organized at the tissue-level to create biological

form.
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Chapter 1

Introduction

There is something in what it means to be human, which compels us to investigate

and wonder at the world around us. Some deeply seated curiosity, some impulse to

understand how and why nature is structured the way it is, which is at the heart of

the scientific pursuit. In particular, our minds are captured by questions that cast

back to the very beginnings of things — the origins of life, the planet, the universe

itself. Questions that harken back to that inchoate childhood curiosity — how did I

come to be in this world at all?

This impulse is patently clear in many of the central questions of developmental

biology: how is the complex body plan of the adult organism formed from a single

fertilized egg? How does such an intricate structure emerge from a relatively simple

one? And what physical mechanisms accomplish this dramatic event of biological

self-assembly?

1.1 Morphogenesis: the creation of biological form

One of the earliest scientific investigations that sought to address these questions was

that of Aristotle in 350 bce. He recorded detailed observations on the contents of

hens’ eggs at various intervals after the time of laying:

In the case of the domestic hen, the first signs of the embryo are seen
after three days and three nights. . .the heart is no bigger than just a
small blood-spot in the white. This spot beats and moves as though it

1



were alive; and from it, as it grows, two vein-like passages with blood in
them lead on a twisted course (Aristotle, 1970).

Since his day, generations of biologists have been captivated by this problem, and

have wondered (with Aristotle) how it is that biological form is established in the

developing embryo — a process known as morphogenesis.

For many of these early investigations, chick embryos proved a convenient model or-

ganism, due to their abundant supply and ease of incubation (Balfour, 1881; Lillie,

1952; Patten, 1971). They could be readily cultured ex ovo and were accessible to

physical manipulation, making them prime candidates for explanation and grafting

experiments (Patten, 1971). During this early era of embryology, many of the exper-

iments performed and much of the language used to describe them were decidedly

mechanical in nature (Foster and Balfour, 1883; Lillie, 1952; Bellairs, 1953; Stalsberg

and DeHaan, 1969; Patten, 1971).

After the landmark discovery of the structure of DNA by Watson and Crick in 1953

(Watson and Crick, 1953), however, and the subsequent molecular firestorm that

revolutionized the field of biology, much of this physical thinking about embryonic

development faded from view. In its place, an emerging understanding of the molec-

ular mechanisms and gene regulatory networks which pattern the early embryo and

drive the specification and differentiation of different cell types began to take focus.

Over time, researchers deduced that biochemical signaling cascades, the primary fea-

tures of which were conserved across nearly all of biology, interact in vastly complex

networks to drive regional gene expression in the embryo (Lodish, 2004).

This rich molecular understanding of development, however, overshadowed many of

the still unresolved physical questions about embryogenesis, and for the most part, the

field went in other directions. Directions that were hostile at times to such questions

entirely. In the 1990’s, for example, researchers were informed in a review of a research

proposal submitted to the National Institutes of Health that “the physics of how

embryos change shape is neither an important nor an interesting question”(Keller,

2002).

2



Figure 1.1: (1-3) Physical model of epithelium using brass bars and rubber bands. (4-10)
Shape of model resembles invaginating epithelium if one side is under more tension (i.e.,
has more stretched rubber bands). [From Lewis (1947).]
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1.2 Insights from physical modeling

This was certainly not always the case. For over a century, investigators have been

interested in and proposed numerous theories about the physical mechanisms of mor-

phogenesis. Still, only a few have been either formulated or tested quantitatively

(Koehl, 1990; Taber, 1995). Many of these early investigators used physical simu-

lacra of embryonic tissues to test their ideas by analogy (Weiss, 1939; Thompson,

1942; Lewis, 1947). Lewis (1947), for instance, constructed a physical model of an

epithelium using brass bars and rubber bands to test their hypotheses about the me-

chanical forces driving invagination (Fig. 1.1). These models can provide valuable

qualitative insight into the physics of a problem and can often suggest new ideas for

experiments, but care must be taken to collect further quantitative experimental data

in order to test the predictions of such a model.

Gathering this quantitative mechanical data in embryos, however, is a challenging

task (Koehl, 1990; Davidson et al., 2009; Wozniak and Chen, 2009). Still, experi-

mental ingenuity by pioneering investigators like Waddington, Selman and DeHaan

established a clear tradition for this kind of work in embryology (Waddington, 1939;

Selman, 1958; DeHaan, 1963; Stalsberg and DeHaan, 1968).

Prompted by a suggestion from Waddington, Selman (1958) measured the forces

generated during neurulation by positioning “two small iron dumb-bells1. . .on the

neural plate [of both newt and axolotl embryos] parallel to and against the neural

folds”(Fig. 1.2). The embryos were then placed in a magnetic field of known magni-

tude, and the forces required to resist neural tube closure could be calculated.

A decade later, Stalsberg and DeHaan (1968) used a combination of experiments

and mathematical modeling (rather presciently) to suggest a physical mechanism

for foregut formation. They quantified tissue displacements by attaching iron oxide

particles to the endoderm of early chick embryos. The embryos were then cultured ex

ovo and photographed at various timepoints (Fig. 1.3a). A simple 2D model was then

1Interestingly, these dumb-bells were collected by scouring though a small pile of iron shot pel-
lets. The majority of the these particles were spherical, but occasionally two spherical pellets were
connected by a thin cylindrical shaft to create a dumb-bell shape (Selman, 1958).

4



J. Embryol. exp. Morph. Vol. 6, Part 3

B

G. G. SELMAN

Figure 1.2: Iron dumb-bells placed along neural folds to measure forces of neurulation.
When placed in a magnetic field of known magnitude, the forces required to resist neurula-
tion could be calculated. [From Selman (1958).]
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(a)

(b)

(c)

Figure 1.3: (a) Sequential images of early chick embryo marked with iron oxide particles,
showing endodermal movements during foregut formation. (b) Schematics of midsagittal
sections of the endoderm during foregut formation. Points 1-4 represent material points
on the tissue. (c) Theoretical model for foregut formation. [From Stalsberg and DeHaan
(1968).]
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ODELLETAL. Mechanical Basis of Morphogenesis 451 

FIG. 9. Computer simulation of neural tube formation in amphib- 
ians. 

proceeds very far, all of the active cells have been me- 
chanically “set”; in a sense the “prepattern” for con- 
traction is established by mechanical signalling before 
the time of neural plate flattening. Thus, this “plate” 
structure (Fig. SC), even were it isolated from the rest 
of the cells, would nevertheless proceed to roll into a 
tube. Indeed, excised neural ectoderm at the plate stage 
will fold “as if” the cell shrinkage pattern already had 
been specified. In this situation, the apparent simul- 
taneity of response by participating cells (on the time 
scale of the tissue movements) is a consequence of the 
low Reynolds number regime, and there is no need to 
invoke cellular clocks as coordinating mechanisms. 

The neuralation model differs in an important re- 
spect from the gastrulation and ventral furrow simu- 
lations. In the latter two cases we could invoke spherical 
and cylindrical symmetry, respectively, to justify treat- 
ing only a cross section of the tissue. This is not the 
case in neurulation, however. Burnside (1973) has 
mapped the trajectories of cells in the neural ectoderm 

and found that there are major axial (anterior-poste- 
rior) as well as transversal movements which accom- 
pany neural plate formation. Moreover, Jacobson and 
Gordon (1976) have shown that the cells of the supra- 
notochordal region must repack longitudinally in order 
for the neural plate to achieve its characteristic keyhole 
shape. Therefore in the simulation of Fig. 9 cells are 
flowing through plane of the cross section, so that the 
“cells” shown in successive frames of the sequence may 
represent different cells: the cells which happen to be 
in that plane at that time. The simulation, thus, does 
not keep track of actual cells, but does account for the 
circumferential forces which produce folding. A com- 
plete study of neural plate formation and folding which 
includes the effects of cell rearrangement (cf. Section 
3.4.E) is in preparation (Jacobson et al., to appear). 

3.4. Other Applications of the Model 

The mechanical model developed above is capable of 
generating a number of geometrical structures other 
than buckling and invagination, depending on the geo- 
metric configuration of the cells, their viscoelastic pa- 
rameters and how the contractile machinery is distrib- 
uted within the cell. Below we briefly describe some of 
these configurations; a more complete discussion will 
be presented elsewhere. 

(A) Eva&nation and exogastrulation. As certain of 
the elastic parameters are varied a bifurcation occurs 
such that propagating apical contraction wave buckles 
the cell layer outward producing an evagination. Figure 
10 shows an example. 

(B) Epithelial thickening. Instead of propagating a 
buckling wave the cell layer can simply thicken up 
(placode formation) as in the neural plate simulation, 
each cell passing from a cuboidal to a columnar con- 
figuration. Because mechanical forces are “effectively” 
long range, this thickening up may appear almost si- 
multaneously over the sheet giving the appearance that 
each cell is independently programmed. 

Interestingly, it is possible to generate a stationary 
almost-periodic pattern of thick and thin regions anal- 
agous to that observed at the initiation of hair follicle 
formation (Ode11 et al., 1981b). 

(C) Contraction waves in a continuous medium. Time 
lapse films of the surface of amphibian blastulas ap- 
proaching gastrulation show that the blastula surface 
is frequently swept by undulating deformation waves 
which appear to spread outward from an initial focus. 
These dimples have the appearance of the initial stages 
of gastrulation; however, their amplitude is consider- 
ably smaller. Similarly, some fertilized eggs which have 
been treated so as to suppress cleavage, nevertheless, 

Figure 1.4: Computer simulation of amphibian neurulation. [From Odell et al. (1981).]

used to suggest mechanical forces that might be driving the observed tissue motion

(Fig. 1.3b,c).

This transition from physical (i.e., actual material) models to mathematical simula-

tions was hastened by the advent of computers (Keller, 2002) and is perhaps best

epitomized by the classic work of Odell et al. (1981). They developed a 2D model

for epithelial folding, where each cell is treated as a network of viscoelastic truss-

like elements that simulate active and passive cytoskeletal components. The authors

tested the idea that cell stretching might trigger cytoskeletal contraction, and their re-

sults demonstrated that such a mechanism could produce the shape changes observed

during both Drosophila gastrulation and amphibian neurulation (Fig. 1.4).
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Since then, groups of physical scientists and engineers have used a variety of math-

ematical frameworks to model the physics of developing tissues (reviewed in Taber,

1995; Davidson et al., 2010), including nonlinear elasticity (Taber, 2001), the Cellu-

lar Potts method (Graner and Glazier, 1992; Glazier and Graner, 1993), and vertex

modeling (Weliky and Oster, 1990). This work has helped identify some of the me-

chanical forces that drive cortical folding (Xu et al., 2010), cardiac c-looping (Voronov

et al., 2004; Ramasubramanian et al., 2006), convergent extension (Weliky et al., 1991;

Davidson et al., 2010), amphibian neurulation (Chen and Brodland, 2008), Drosophila

germband extension (Rauzi et al., 2008) and ventral furrow formation (Muñoz et al.,

2007), cell sorting (Krieg et al., 2008), and epithelial packing (Farhadifar et al., 2007).

Recent experimental work has suggested a possible regulatory role for mechanical

forces during development (Farge, 2003; Bertet et al., 2004; Desprat et al., 2008;

Fernandez-Gonzalez et al., 2009; Pouille et al., 2009; Filas et al., 2011), which has

garnered new attention to these modeling efforts amongst experimental biologists.

Moreover, new advances in timelapse microscopy have made dynamic studies of tissue

morphogenesis possible (Kiehart et al., 2000; Hutson et al., 2003; Blankenship et al.,

2006; Blanchard et al., 2009; Butler et al., 2009; Martin et al., 2010). The detail with

which these dramatic and beautifully orchestrated tissue deformations can now be

observed has made questions about the mechanical forces which may be driving them

seem almost inevitable.

This has triggered a resurgent interest in the mechanics of morphogenesis. The inher-

ently interdisciplinary nature of these problems has brought together new groups of

biologists, physical scientists, and engineers, who hope to combine experiments with

physical or computational modeling to shed some light on the physics of embryonic

development.

1.3 How the heart is shaped

As observed by Aristotle, the heart is first mechanically functioning organ to form in

the developing embryo. The physical forces that drive its formation, however, remain

poorly understood. Cardiac development in the chick (conveniently) parallels that in

8



Figure 1.5: Schematic of avian gastrulation. [From Gilbert (2000).]

humans, and the chick has become a well established model organism to study early

cardiogenesis (DeHaan, 1967).

Based largely on embryonic morphology, Hamburger and Hamilton (1951) have par-

titioned the 21-day incubation period of the chick into 46 different stages. During the

first day of development, the early embryo is initially organized as a flat sheet of cells

called the blastoderm (Patten, 1971). During gastrulation, the cardiac progenitor

cells ingress through the primitive streak and take up residence in the lateral plate

mesoderm (Fig. 1.5) (Rosenquist and DeHaan, 1966; Garcia-Martinez and Schoen-

wolf, 1993; Cui et al., 2009).

By Hamburger-Hamilton (HH) stage 8, the lateral mesoderm has split into splanchnic

and somatic layers, which enclose the growing pericardial coelom (Fig. 1.6a) (Linask,

2003). The cardiogenic mesoderm is confined to the splanchnic mesoderm, where

the epithelium begins to thicken (Fig. 1.6b-d) (Stalsberg and DeHaan, 1969; Kirby,

2007).

The heart fields then move toward the ventral midline, rotating as their lateral edges

come into contact behind the head fold (Fig. 1.7) (Stalsberg and DeHaan, 1969; Linask

and Lash, 1986; Kirby, 2007; Abu-Issa and Kirby, 2008; Cui et al., 2009). They fuse

in both anterior and posterior directions (Moreno-Rodriguez et al., 2006) to form a

relatively straight heart tube that remains open along its dorsal side. Extracelluar

matrix (or cardiac jelly), secreted by the primitive myocardium, is believed to inflate
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(a)

(b)

(c)

(d)

Figure 1.6: Transverse schematics of heart tube formation in the early chick embryo. [From
Kirby (2007).]
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(b) (c) (d) (e)

rotation

Stage 8 Stage 8+ Stage 9 Stage 10

heart fields

(f)(a)

AIP

AIP

AIP
AIP

Figure 1.7: (a) Schematic of fusing heart fields. [From Moreno-Rodriguez et al. (2006).] (b-
e) Formation of primitive heart tube. AIP=anterior intestinal portal (i.e., posterior opening
of the foregut). [From Kirby (2007).] (f) Schematic cross-section of stage 10 chick heart
((EN = endocardium; MY = myocardium; CJ = cardiac jelly; DM = dorsal mesocardium;
SPL = splanchnopleure.) [From Manasek et al. (1983).]

the elongating heart tube (de Jong et al., 1990), giving it a U-shaped transverse cross-

section (Fig. 1.6d). Initially, the tube is composed of three layers: an outer layer of

myocardium, a relatively thick middle layer of cardiac jelly, and an inner layer of

endocardium (Fig. 1.7f).

Although many of the genetic and molecular factors integral to this process have been

identified (Olson and Srivastava, 1996; Yutzey and Kirby, 2002; Buckingham et al.,

2005; Abu-Issa and Kirby, 2007), the biophysical mechanisms which drive heart tube

assembly remain poorly characterized (Taber, 2006).

1.4 Applications for tissue engineering

Understanding how embryonic tissues are constructed during normal development

crucially underpins the field of tissue engineering, which seeks to recapitulate this

process in vitro. Since the heart continuously functions as a mechanical pump while

it is still being formed in the embryo, researchers have long speculated that the me-

chanical loads experienced by the heart during development may play a regulatory

role in its morphogenesis (Bartman and Hove, 2005). This idea is supported by re-

cent work which shows that mechanical loading can regulate regional gene expression

during early Drosophila development (Farge, 2003; Desprat et al., 2008). Moreover,

emerging evidence has indicated a regulatory role for matrix elasticity during stem
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cell differentiation (Engler et al., 2006), and mechanical tension has been shown to

determine branching sites in engineered mammary epithelial tubules (Gjorevski and

Nelson, 2010a).

While it is interesting to contemplate the possible feedback between mechanics and

form during cardiogenesis, this only makes the challenge facing cardiac tissue engi-

neers all the more daunting, and underscores the importance of understanding the

physical forces which form the heart.

1.5 Advances presented in dissertation

Herein, we seek to characterize some of these mechanical forces – in particular, those

that drive the process of heart tube assembly.

Head fold formation sets the stage for early cardiac development by folding the (ini-

tially flat) heart fields out-of-plane, enabling them to form a tube along the ven-

tral side of the embryo. The primitive heart tube itself then forms as these heart

fields move toward the midline and fuse behind the head fold to construct a straight,

muscle-wrapped tube. In this work, we characterize some of the mechanical forces

that physically drive both of these processes.

A unique feature of this work is the combination of mathematical modeling with ex

ovo culture experiments. Mathematical models offer particular insight in studies of

morphogenesis, as growing embryonic tissues undergo complex finite deformations.

This results in highly nonlinear problems that (often) elude intuition and require

computational techniques. These models enable us to test whether a given set of

forces could plausibly generate the tissue deformations observed during development.

We use a continuum mechanical framework to model growing soft tissues. In chapter

2, we broadly outline our theoretical methods. This treatment is only introductory,

and the details of any particular model are included in later chapters.

In chapter 3, we present a method for measuring stress distributions in epithelia,

similar to the hole drilling method for determining residual stresses in traditional
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engineering materials. This technique can also be used to estimate the nonlinearity

of the constitutive response for the material.

In chapter 4, we identify some of the tissue-level forces that drive head fold mor-

phogenesis. Our results suggest that a group of forces, typically associated with

neurulation, work in tandem to collectively shape the forming head fold. This is the

first major 3D structure to arise in the early chick embryo, and, by bending the planar

blastoderm out-of-plane, its formation sets the stage for both heart tube and foregut

morphogenesis.

It is generally accepted that heart field motion toward the midline is primarily due

to active migration of the cardiogenic mesoderm over the underlying endoderm. In

chapter 5, however, we indicate a crucial mechanical role for the endoderm during

this process. Instead of just serving as a passive, secretory substrate for the crawling

mesoderm, the endoderm actively contracts to pull the heart fields toward the midline,

where they fuse to form the heart tube.

Then, in chapter 6, we investigate how this endodermal contraction is spatially dis-

tributed, and how different distributions of contraction might affect the observed

morphogenetic deformations. Moreover, we identify a gradient in the passive ma-

terial properties of the tissue around the AIP, which gives us new insight into how

tissue stiffness and contractility are spatially distributed as the heart tube forms.

Finally, in chapter 7, we consider future directions for this research, and comment

on some the exciting new interdisciplinary work that is seeking to connect physical

mechanisms of morphogenesis with the underlying genetics and cell biology.
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Chapter 2

Theoretical background

We use a continuum mechanical approach to model the deformations of embryonic

tissues. Here, only a very basic and introductory treatment of these ideas is pre-

sented. Interested readers should consult Taber (2004) or Holzapfel (2000) for a more

comprehensive presentation of the material.

A continuum mechanical framework considers only the macroscopic behavior of a

material. As such, any discrete microscopic material structures2 are lumped into

continuous field properties. The material is thus treated as a continuum of particles.

This approximation makes the problem of characterizing the deformation of a material

more tractable3, but assumes that the deformations of interest occur at length scales

sufficiently greater than that of the discrete microscopic material structure. Also,

unlike the Cellular Potts and vertex models used by others to model embryonic tissues,

this continuum approach does not (necessarily) make explicit assumptions about the

directions along which mechanical loads must be carried by the material, or which

constituent parts of the material must bear those loads.

In general soft biological materials undergo large strains and exhibit nonlinear, vis-

coelastic constitutive behavior. After unloading, that is, most tissues dissipate some

of the energy stored within them during deformation4. As a first approximation,

however, we can assume a pseudoelastic constitutive response for many soft biolog-

ical tissues (Fung et al., 1979). Under this assumption, different elastic mechanical

properties are used to characterize the material during loading and unloading.

2All matter after all is composed of atoms, which contain mostly empty space.
3Think atomistic simulation of an entire tissue, let alone an entire embryo.
4During mechanical tests of biological materials, this is evidenced by a hysteresis loop between

the loading and unloading force-deflection curves.
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Each problem in continuum mechanics is governed by three sets of equations:

• The kinematic (or strain-displacement) relations, which are purely geometrical

and analyze the deformation of a material.

• The equations of motion (i.e., Newton’s laws of motion).

• The constitutive relations, which relate the elastic deformation of a material to

the internal stresses (or forces).

2.1 Analysis of deformation

Consider an undeformed (or reference) body5 B that deforms into the body b, where

the point P (X, Y ) on B moves to the location p (x, y) on b, and the point Q maps to

q. (Fig. 2.1).

The position vectors6

R = Xiei

r = xiei

(2.1)

define points in the undeformed and deformed configurations, respectively, and there

is a one-to-one mapping between all points on B and b, such that

r = r (R)

R = R (r)
. (2.2)

The differential line element dR = dXiei on B deforms and rotates into dr = dxiei

on b. This transformation is defined by the second-order tensor F, which is defined

by

dr = F · dR (2.3)

5When possible, uppercase letters are used for quantities defined in the reference configuration,
and lowercase letters for quantities defined in the deformed configuration

6Unless otherwise noted, we employ the Einstein summation convention for repeated indices (e.g.,

aibi =
3∑

i=1

aibi = a1b1 + a2b2 + a3b3).
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Figure 2.1: Deformation of undeformed body B into deformed body b. [Modified from
Taber (2004).]

and termed the deformation gradient tensor. Using our definitions of the differential

line elements dR and dr, we can show that

dxi = FijdXj, (2.4)

and from our one-to-one mapping in Eq. (2.2) that

F = Fijeiej where Fij =
∂xi

∂Xj

. (2.5)

If we use the gradient operator in the undeformed configuration

∇ = ei
∂

∂Xi

, (2.6)

and, substituting with Eq. (2.1), consider

∇r =

(
ei

∂

∂Xi

)
(xjej) =

∂xj

∂Xi

eiej

=
∂xi

∂Xj

ejei

= FT ,

(2.7)
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we can take, in coordinate-free form,

F = (∇r)T . (2.8)

Note that, in general, F is not a symmetric tensor. In addition, since it both deforms

and rotates dR into dr, it still contains rigid body motion, and thus is not purely a

measure of deformation.

To remove rigid body rotation, we consider the squared lengths dS2 and ds2 of the

line elements dR and dr, respectively

dS2 = dR · dR
ds2 = dr · dr

. (2.9)

Substituting Eq. (2.3) into Eq. (2.9)2 yields

ds2 =
(
dR · FT

)
· (F · dR) = dR ·

(
FT · F

)
· dR. (2.10)

In this equation,

C = FT · F (2.11)

is defined as the right Cauchy-Green deformation tensor. By taking CT =
(
FT · F

)T
=

FT ·
(
FT

)T
= FT · F = C, we can show that C is a symmetric tensor.

Then, consider the difference in squared lengths

ds2 − dS2 = dR ·
(
FT · F

)
· dR− dR · dR

= dR · (C− I) · dR,
(2.12)

where I is the identity tensor.

The Lagrangian strain tensor E is defined as

ds2 − dS2 = 2 dR · E · dR. (2.13)
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Comparing this to Eq. (2.12, we then find that

E =
1

2
(C− I) =

1

2

(
FT · F− I

)
. (2.14)

If we take the displacement vector u = r−R between the point P in B and its image

in p in b (Fig. 2.1), using Eq. (2.8) we can further show that

FT = ∇r = ∇ (R + u) , (2.15)

where

∇R =

(
ei

∂

∂Xi

)
(Xjej) =

∂Xj

∂Xi

eiej = eiei = I. (2.16)

Thus,

FT = I + ∇u. (2.17)

Substituting this into Eq. (2.14) we can then calculate the strain-displacement relation

E =
1

2

(
FT · F− I

)
=

1

2

[
(I + ∇u) ·

(
IT + (∇u)T

)
− I

]
=

1

2

[
I + ∇u + (∇u)T + (∇u) · (∇u)T − I

]
E =

1

2

[
∇u + (∇u)T + (∇u) · (∇u)T

]
(2.18)

If small deformations are assumed, the final term in Eq. (2.18)4 can be neglected.

Here, however, we are interested in materials that undergo large (or finite) changes

in shape and must consider the full nonlinear form.

2.2 Analysis of stress

Mechanical stress is a normalized measure for loading and, in general, describes a

force vector acting over a unit area. For small deformations, changes in area become
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Figure 2.2: Deformation of differential area element dA in B into da in b. [From Taber
(2004).]

negligible, and whether we normalize forces with respect to the undeformed or de-

formed area is moot. When the deformations are large, however, distinctions about

the area over which forces are being normalized must be made.

Consider a differential area element dA within B that, under the influence of the

surface traction dP, deforms into the area element da (Fig. 2.2).

If we take
dA = N dA

da = n da
, (2.19)

where N and n are unit vectors normal to the differential areas dA and da, respec-

tively, we can define the true traction vector

T(n) =
dP

da
(2.20)

and the Cauchy stress formula

T(n) = n · σ, (2.21)

where σ is called the Cauchy (or true) stress tensor.

We can also define a (pseudo)force vector dP̃ that acts on dA (Fig. 2.3) , by the

relation

dP = F · dP̃ = dP̃ · FT . (2.22)

We call this a (pseudo)force, since it is fictitious (or non-physical). In actuality, it is

the force dP that acts over the deformed area da in the material.
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Figure 2.3: Force vector dP acting on deformed area da and (pseudo)force vector dP̃ acting
on undeformed area dA. [From Taber (2004).]

Then, similarly, using Eqns. (2.19)1 and (2.22), we can define the (pseudo)traction

vectors

T(N) =
dP

dA

T̃(N) =
dP̃

dA

, (2.23)

and, analogously, the first Piola-Kirchhoff stress tensor t and second Piola-Kirchhoff

stress tensor s
T(N) = N · t
T̃(N) = N · s

. (2.24)

Considering now Eqns. (2.19)–(2.24), we can show that

dP = da · σ = dA · t = dA · s · FT . (2.25)

The deformed and undeformed areas are related by the expression

da = J dA · F−1 (2.26)

where J = detF. Using this relation, then, we can take

σ = J−1F · t = J−1F · s · FT , (2.27)

which allows us to transform between any of the three different stress tensors.
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Figure 2.4: Forces acting on deformed body. [From Taber (2004).]

Now, if we consider a deformed body subjected to an assortment of body forces f (r, t)

and surface tractions T(n) (r, t) (Fig. 2.4), both the body and each of its individual

constituent parts must obey Newton’s laws of motion. Applying the conservation of

linear momentum, we get∫
a

T(n) da +

∫
v

f dv =
d

dt

∫
v

vρ dv (2.28)

where ρ is the mass density and v is the velocity of the center of mass of the differential

volume element dv.

Using Eq. (2.21) and then applying the divergence theorem (cite?), the first term in

this equation becomes ∫
a

T(n) da =

∫
a

n · σ da =

∫
v

∇̄ · σ dv, (2.29)

where ∇̄ is the gradient operator in the deformed configuration.

Substituting this back into Eq. (2.28) and assuming conservation of mass, we get∫
v

(
∇̄ · σ + f − ρ

dv

dt

)
dv = 0. (2.30)
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Since this must hold for arbitrary dv,

∇̄ · σ + f = ρ
dv

dt
. (2.31)

During morphogenesis, however, the deformations occur slowly enough that the in-

ertial terms in these equations can be neglected, as well as any gravitational effects.

The problem is thus a quasistatic one, and equilibrium can be enforced by

∇̄ · σ = 0. (2.32)

Similarly, using a Lagrangian description, the equilibrium equation takes the form

∇ · t = 0. (2.33)

2.3 Constitutive equations

Deformation and mechanical stress are linked by the constitutive properties of the

material, which are determined experimentally. If a material is assumed to be pseu-

doelastic, then any work done on the body is stored as strain energy. We can then

define the scalar strain-energy density function W per unit volume. Owing to ther-

modynamic considerations (Taber, 2004), the constitutive equation then takes the

form

s =
∂W

∂E
, (2.34)

and materials describable by this equation are termed hyperelastic. Using Eq. (2.27,

Eq. (2.34) can also be expressed in terms of the Cauchy and first Piola-Kirchhoff

stress tensors:

σ = J−1 F · ∂W

∂E
· FT

t =
∂W

∂E
· FT

. (2.35)
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We can alternatively express W in terms of F, and these two constitutive equations

then take the form:

σ = J−1 F · ∂W

∂FT

t =
∂W

∂FT

. (2.36)

Many soft tissues are assumed to be incompressible (i.e., J = detF = 1) (cite?).

In such cases, the normal stress components may only be solved up to a hydrostatic

pressure p, and we must include a−p I term in the Cauchy stress equation. Eq. (2.36)1

then becomes

σ = J−1 F · ∂W

∂FT
− p I, (2.37)

and using Eq. (2.27) and J = 1, the first and second Piola-Kirchhoff stress tensors

are given by

t = F−1 · σ =
∂W

∂E
· FT − p F−1 =

∂W

∂FT
− p F−1

s = F−1 · σ · F−T =
∂W

∂E
− p F−1 · F−T

. (2.38)

2.4 Growth

We use the Rodriguez et al. (1994) theory of finite volumetric growth to model the

mechanics of growing soft tissues. The total deformation gradient tensor F is decom-

posed into both a growth tensor G and an elastic deformation gradient tensor F∗

(Fig. 2.5) by

F = F∗ ·G. (2.39)

Similar to thermal expansion, the zero-stress state of each (infinitesimal) material

element changes as it grows uniformly according to G. Mechanical stress then depends

on only on F∗, which both enforces geometric compatibility between material elements

and governs how they deform under any applied loads.

23



3558 L. A. Taber

F = F*. G

cut load

b

Gσ = 0

σ = 0

σ ≠ 0

σ = σ (F*)

B*

F*

B

grow

BR

reassemble

residual
stress

Figure 1. Configurations for a growing body. B is the reference state; B∗ the current zero-stress
state; BR the current unloaded state; b the current loaded state; G the growth tensor; F∗ the elastic
deformation gradient tensor; F the total deformation gradient tensor.

More than 25 years ago, Skalak (1981) laid out the fundamental ideas that
underlie many of the modern continuum theories for soft-tissue growth. These
ideas have since been formalized mathematically by Tozeren & Skalak (1988)
for small deformation and by Rodriguez et al. (1994) for large deformation. The
present analysis is based on the latter theory. Here, we consider pseudoelastic
behaviour, including large strains and nonlinear material properties, with
viscoelastic effects neglected.

The basic theory is described briefly below. Further details can be found in
previous reports on the mechanics of growth and morphogenesis (Rodriguez
et al. 1994; Taber 2001). A new aspect of the present work is the form of the
morphomechanical laws.

(a) Kinematic and equilibrium equations

As suggested by Rodriguez et al. (1994), the kinematic description of growth is
perhaps best visualized by considering a series of virtual configurations (figure 1).
At the onset of development, we assume that the tissue is in a stress-free
reference configuration B. Suppose now that B is cut into a set of infinitesimal
elements, which then grow according to the growth tensor G. With G being
uniform in each element, the elements remain stress free, and this growth
yields the current zero-stress state B∗. Next, the elements are re-assembled
into the configuration BR. After growth, the elements generally are no longer

Phil. Trans. R. Soc. A (2009)
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Figure 2.5: Configurations for a growing body: reference state B; current zero-stress state
B∗; current unloaded state BR; current loaded state b. G represents the growth tensor;
F∗, the elastic deformation gradient tensor, and F, the total deformation gradient tensor.
[From Taber (2009).]

The strain energy density function W therefore depends on F∗ instead of F as it does

for a passive (or non-growing) material. Then, for an incompressible material (where

J∗ = 1) the Cauchy stress equation becomes

σ = F∗ · ∂W

∂F∗T
− p I. (2.40)
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Chapter 3

On measuring stress distributions

in epithelia

Summary

Many biological tissues are organized as epithelia (i.e., thin cell sheets). Herein, we

present a technique to estimate the stress distribution and local material properties

in an epithelial membrane. Circular holes are perforated through the tissue to deter-

mine the principal stretch ratios; experimentally measured changes in hole geometry

are used in combination with finite element modeling to evaluate the stresses and

constitutive response. The method is demonstratively applied to the embryonic chick

blastoderm, since mechanical stresses have been identified as potential regulators of

early development. Due to its small scale, other more traditional mechanical tests

have proven intractable for this tissue.

3.1 Introduction

Many biological tissues adaptively respond to changes in their mechanical environ-

ment. Although the mechanisms that drive this adaptation are not fully understood,

there is ample evidence suggesting a linkage between tissue growth and mechanical

stress (Taber, 1995). Epithelia (i.e., thin cell sheets) are commonplace in both de-

veloping and mature organisms. In fact, so indispensable is its role in biology that

the epithelium was likely the first true tissue type to arise during evolution (Davies,
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2005). Here, we present a technique for estimating anisotropic distributions of stress

in epithelia. Such a method is necessary to develop a clearer understanding of the

apparent relationship between growth and stress in these tissues.

Our technique is a variation of the hole-drilling method for measuring residual stress,

which was first proposed in the 1930s (Mathar, 1934; Rendler and Vigness, 1966).

Briefly, a circular drill is used to bore a small hole into the surface of a material.

The deformation around the hole is measured with strain gages and used, with the

material’s constitutive properties, to determine the stress field. Use of this method,

however, is generally limited to structures of Hookean material that undergo small

deformations. By contrast, biological tissues often undergo large strains and have been

shown to exhibit nonlinear constitutive behavior (Lanir and Fung, 1974; Humphrey

et al., 1990; Zamir and Taber, 2004a). An early method for investigating mechanical

stress in a soft biological tissue (namely, skin) was introduced by Karl Langer in 1862

(Langer, 1978a,b). He excised small circular plugs of tissue from the skin of cadavers

and assessed the shapes of the resulting wounds. If a wound opened and remained

circular, a state of isotropic tension was revealed. If a wound became elliptical, a line

of dominant (or anisotropic) tension was indicated, with its direction corresponding

to the major axis of the ellipse.7

In the present work, stress distributions in epithelia are estimated from measured

changes in hole geometry and computational modeling. In addition, our method offers

valuable insight regarding the local constitutive properties of the material. As an

experimental model we consider the case of the embryonic chick blastoderm, though

our theoretical findings are not limited to this situation alone. During embryonic

development, it is well established that mechanical forces give rise to the creation

and subsequent evolution of biological form (a process known as morphogenesis), and

recent work in our lab has suggested a mechano-regulatory role for the stresses that

develop during epithelial morphogenesis (Taber, 2008).

7Interestingly, these experiments were the product of an early clinical investigation. A patient
intent on suicide had presented with elliptically-shaped chest wounds. It was unclear, however,
whether these lesions were the doings of a circular awl as the patient contended, or, due to their
elliptical shape, a penknife blade. To settle the matter, surgical experiments on cadavers were
performed (Langer, 1978a).
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3.2 Methods

3.2.1 Theoretical framework

Rivlin and Thomas first studied the effects of a circular hole in a stretched, hy-

perelastic sheet (Rivlin and Thomas, 1951). They considered the behavior of an

isotropic, incompressible circular membrane with a single circular hole under applied

axisymmetric loads. Their work was later extended by accounting for the effects

of non-axisymmetric loading (Oden and Key, 1972) and material anisotropy (David

and Humphrey, 2004). Using the commercial finite element (FE) package COMSOL

Multiphysics (v3.4; COMSOL AB), we analyze two related problems, each with par-

ticular relevance for our epithelial perforation experiments. The first involves the

deformation of a membrane with two holes. Since our method uses hole geometry

to estimate stress, this model offers insight into how the spacing between the holes

can influence their geometry. The second problem considers the effects of anisotropic

stretch. In particular we are interested in the relationship between hole geometry and

the principal stretch ratios in the membrane.

Equibiaxially stretched membrane with two circular holes

Consider equibiaxial deformation of a thin, square, nearly incompressible sheet with

two holes that are circular in the unloaded configuration (Fig. 3.1a). (For isotropic

materials, perforating an equibiaxially pre-stretched membrane with circular holes is

equivalent to stretching a membrane that already contains circular holes (David and

Humphrey, 2004)). Displacements are prescribed along the boundaries of the sheet

to impose the equibiaxial stretch ratio λ. In general epithelia are thin structures, so

a state of plane stress is assumed. The deformation gradient tensor in the plane of

the membrane is given by

F =

[
1 + ∂u

∂X
∂u
∂Y

∂v
∂X

1 + ∂v
∂Y

]
, (3.1)

where u and v represent material point displacements in the X and Y directions,

respectively. The constitutive response for an isotropic membrane is assumed to be
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Figure 3.1: Model schematics for (a) an equibiaxially stretched membrane with two circular
holes and (b) the circular perforation of a biaxially stretched membrane. Dashed lines
indicate internal boundaries.
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describable with the exponential strain-energy density function

W =
C1

C2

[
eC2(IC−3) − 1

]
+ p

(
1− J − p

2κ

)
, (3.2)

where C1 is a material constant with units of stress, C2 is a non-dimensional material

constant, κ is the bulk modulus, J = detF, p is a penalty variable introduced for

nearly incompressible materials, and ĪC = J−2/3 trC is the modified first invariant

of the right Cauchy-Green deformation tensor, C = FT · F. Material nonlinearity

is varied by changing the magnitude of C2; as C2 → 0, the material approaches a

neo-Hookean response. To ensure near incompressibility we take κ > 106 ∗ C1. The

Cauchy stress tensor is given by the relation

σ = J−1F· ∂W

∂FT
. (3.3)

In the deformed membrane, the axes of the elliptical holes are described by the lengths

a and b, and D is the distance separating the two holes (Fig. 3.1a). The ratio D/a

characterizes the hole spacing, and b/a is a measure hole circularity.

Circular perforation of a biaxially pre-stretched membrane

An equivalent intact membrane is subjected to an arbitrary biaxial stretch, charac-

terized by the stretch ratios λX and λY (Fig. 3.1b). Displacements are prescribed

along the exterior boundaries of the membrane to impose the stretch. The constitu-

tive response is again defined by Eq. (3.2). An internal elliptically-shaped boundary

is specified within the undeformed membrane; the axes of this ellipse are given by

a0 and b0. The lengths of the axes are chosen so that, when the biaxial stretch is

imposed, the internal boundary deforms into a circle with diameter d. Thus,

a0 =
d

λX

, b0 =
d

λY

. (3.4)

After the stretch, the solver is stopped, and the governing equations inside the region

enclosed by the (now) circular boundary are inactivated. Boundary conditions along

the circle are then changed from internal to traction-free. The solver is resumed, and

the stress in the membrane causes the circular hole to deform into an ellipse defined
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by the axes a and b. (The inactive region, now unloaded, would recover its initial

geometry.)

3.2.2 Embryo preparation and perforation experiments

Fertilized White Leghorn chicken eggs were incubated in a humidified, forced draft

incubator at 38◦C for 24 to 26 hours to yield embryos at Hamburger and Hamilton

(HH) stage 6 (Hamburger and Hamilton, 1951). At this point the entire embryo is

organized as a flat layered sheet called the blastoderm. The procedure used to harvest

whole embryos has been described previously . Briefly, an annular filter paper ring

was placed over the embryo, and the surrounding membrane adhered to the paper.

The paper ring was then dissected from the egg, keeping the membrane and embryo

intact, thus preserving the stresses normally present in the tissue. The embryos were

laid ventral side up, placed atop a 3% agar gel, and covered with a thin layer of PBS.

A hollow, pulled glass micropipette, machined to an outer diameter of approximately

200 µm, was used to punch through the embryonic blastoderm at multiple locations.

Via capillary suction and the downward force of the pipette, circular plugs of the

tissue were excised (Fig. 3.2).

3.3 Results and Discussion

3.3.1 Effects of hole spacing

If hole geometry is used to estimate the stress in the membrane, we must make sure

the holes are spaced far enough apart so they do not influence one another’s shapes.

To determine a sufficient spacing distance, we employed our equibiaxial stretching

model (Section 3.2.1). Serial solutions to the model were generated by varying 1)

the distance between the holes, 2) the equibiaxial stretch ratio λ, and 3) the material

constant C2. The ratios D/a and b/a were evaluated in the deformed configuration

(i.e., after the imposed stretch), which enabled us to compare their magnitudes with

those measured in experiments. Asymmetric stress concentrations develop near the

holes, making them become non-circular. However, if the holes are to connote the
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(a) (b)

Figure 3.2: (a) Perforation experiment of HH stage 6 chick blastoderm. (b) Tip of machined
micropipette used to create holes. Scale bar = 500 µm.

imposed isotropic stress field in the membrane at-large, they should remain nearly

circular as the membrane deforms (i.e., b/a should be approximately equal to 1).

For two values of stretch, the circularity (b/a) is plotted as a function of hole spacing

(D/a) for various C2 (Fig. 3.3). As the distance between the holes increases, they

become more circular. Moreover, for each value of λ and C2, b/a is sufficiently close to

1 for D/a & 3. So, independent of the membrane constitutive properties and applied

in-plane stretch, this ratio (D/a = 3) can serve as a guide for determining the hole

spacing in our perforation experiments.

3.3.2 Effects of anisotropic stretch

For an isotropic membrane, experimental holes of elliptical shape are taken to indicate

regions of anisotropic stress or stretch in the membrane. Hole shape is characterized

by the axes of the best-fit ellipse, and the lengths of these axes are used to estimate

the principal stretch ratios. (Axis orientation is used to determine the principal

directions.) This relationship, however, is somewhat unclear. Is axis length a function
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(a)

(b)

Figure 3.3: Effects of hole spacing (D/a) on hole circularity (b/a) for (a) λ = 1.1 and (b)
λ = 1.3

of the stretch in the direction of the axis only? Or is it also influenced by the amount

of transverse stretch?

So, using our circular perforation model (Section 3.2.1), we assign different stretches

in the transverse Y -direction (λY = 1.0, 1.1, 1.2) to a series of membranes with C2 =

0.01 and λX = 1.3. In each case, a circular region of diameter d is removed from

the stretched membrane, and the dimensions of the resultant holes (a and b) are

used to determine the influence of transverse stretch on hole shape (Fig. 3.4). The

results show that the value of a is nearly identical for each of the imposed transverse

stretches. This suggests that, for C2 = 0.01, the axis length a is approximately

independent of the transverse stretch λY (i.e., a = a (λX , λY ) ≈ a (λX)). As material

nonlinearity increases, however, hole geometry becomes more dependent on transverse

stretch. For the values of C2 considered in this paper, however, our approximation still

holds. Thus, if we assume material isotropy and uniformity, a comparison between
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individual axis lengths should be sufficient to estimate relative differences in stretch.

The magnitude of the perpendicular axis length need not be taken into account.

Figure 3.4: Effects of transverse stretch (λY ) on hole shape for fixed λX , where X̄ = 2X/d
and Ȳ = 2Y/d.

Now, since a ≈ a (λX), we can examine the effects of material nonlinearity on this

relationship. The value of λY is arbitrary, so it is held constant at 1. We subject

a series of membranes to different pure uniaxial stretches in the X-direction. A

circular region of diameter d is (here again) deactivated in the deformed configuration.

The normalized (far-field) stress in the membrane (σXX/C1) is plotted as function

of the stretch ratio λX (Fig. 3.5a). The stress is relatively independent of C2 for

0.9 < λX < 1.1 (i.e., in the linear regime); however, for λX > 1.1, the stress increases

dramatically with C2. The elliptical axis (a), as normalized by the diameter of the

circular punch (d), is also plotted against the stretch ratio λX (Fig. 3.5b). It bears a

similar domain dependence on C2, but as the material becomes more nonlinear, a/d

decreases and the hole opens to a lesser extent. The same holds true for b/d as a

function of λY (Fig. 3.5c).

The dependence of hole geometry on C2 can be used to gather information about

the local constitutive properties of the material. If the circular plug of tissue excised

during the experiments (Fig. 3.5d) is recoverable, a, a0, b, b0, and d are all measurable
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quantities. The principal stretch ratios λX and λY can be determined from Eqs.

(3.4). For a single hole, plotting experimental a/d vs. λX produces a single point

on Fig. 3.5b, a point which can then be compared to the family of curves of varying

C2. For λX > 1.1, C2 can be estimated by finding the curve which passes through

the lone plotted point. This value of C2 then is based on experimental deformation

in the X-direction. If λX < 1.1, however, the point would be expected to lie along

the linear regime of the curves, where C2 is not unique and therefore unidentifiable.

An estimation of C2 based on deformation in the Y -direction is similarly found using

Fig. 3.5c and an experimental b/d vs. λY point. If the material is isotropic, the two

estimations for C2 should be identical. If they differ, our assumed W is invalid, and

a local material anisotropy is indicated in the material.

This method unfortunately does not offer a direct way of measuring C1. Thus, to

obtain a complete description of W for a material, C1 must be determined experi-

mentally by some other means, such as microindentation testing (Zamir and Taber,

2004a). If, however, the principal stretch ratios, C1, and C2 are all known, and mate-

rial isotropy has been established, then the quantitative stresses in the membrane can

be calculated using Eq. (6.20). For unknown C1, only σ/C1 is available. If Eq. (3.2)

is shown to be invalid, an alternative form of W must be used.

3.3.3 Illustrative Example

The perforation experiments show that the distribution of stress varies dramatically

across the HH stage 6 blastoderm (Fig. 3.2a); the same pipette punch (see Fig. 3.2b)

was used to create each wound in the membrane. Though we recognize that the blas-

toderm is not structured as a simple monolayered epithelium and that, in general,

each of the germ layers may possess different mechanical properties, our perforation

experiments still offer a description of tissue stress, albeit averaged across the thick-

ness of the blastoderm.

A comparison of the (inner) pipette diameter with each hole’s dimensions readily indi-

cates areas of biaxial tension (closed arrowhead) and compression (open arrowhead).

Capillary suction in the pipette often made recovery of the excised tissue plugs diffi-

cult. At times, however, the plug was left behind and could be used to estimate the
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Figure 3.5: Estimation of constitutive properties. (a) Effects of C2 on far-field normal stress
for pure uniaxial stretch in X-direction. (b,c) Dependence of hole shape on λX and λY ,
respectively, for varying C2. (d) Perforation experiment of early chick blastoderm (different
embryo from Fig. 3.2). The excised tissue is circumscribed by an ellipse with axes a0 and
b0. Scale bar = 100 µm.
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material properties of the blastoderm (see Fig. 3.5d, in a different embryo). Here, the

axes a0 and b0 were measured at 122 and 151 µm, respectively. The inner diameter

of the pipette (166 µm) was taken as d, and a and b had lengths of 265 and 204 µm,

respectively. These lengths are used to calculate a/d = 1.60, b/d = 1.23, λX = 1.36

and λY = 1.10, which are plotted on Figs. 3.5b&c. An estimation for C2 is indeter-

minate from Fig. 3.5c, as the experimental data point lies along the linear portion of

the curves. (The fact that the point is almost exactly superimposed on the curves,

however, helps validate our theoretical results.) On Fig. 3.5b, our experimental point

indicates a C2 value of approximately 0.5 (as confirmed by computational model, not

shown). Unfortunately, here material (an)isotropy could not be determined since a

second estimation for C2 was unavailable.

3.4 Conclusions

Our perforation technique uses experiments and computational modeling to estimate

the stress distribution and local constitutive properties in an epithelium. The princi-

pal stretch ratios in the tissue are determined via measured changes in hole geometry.

Though our theoretical results are limited to isotropic, incompressible materials, this

method can be used to verify material isotropy (even in cases of anisotropic stretch)

and provide a quantitative estimate of the stress field in the membrane.
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Chapter 4

Mechanics of head fold formation:

investigating tissue-level forces

during early development

Summary

During its earliest stages, the avian embryo is approximately planar. Through a

complex series of folds, this flat geometry is transformed into the intricate three-

dimensional structure of the developing organism. Formation of the head fold (HF)

is the first step in this cascading sequence of out-of-plane tissue folds. The HF es-

tablishes the anterior extent of the embryo and initiates heart, foregut, and brain

development. In this paper, we use a combination of computational modeling and

experiments to determine the physical forces that drive HF formation. Using chick

embryos cultured ex ovo, we measured the following: (1) changes in tissue morphol-

ogy in living embryos using optical coherence tomography (OCT), (2) morphogenetic

strains (deformations) through the tracking of tissue labels; and (3) regional tissue

stress estimates using changes in the geometry of circular wounds punched through

the blastoderm. To determine the physical mechanisms that generate the HF, we

created a three-dimensional computational model of the early embryo, consisting of

pseudoelastic plates representing the blastoderm and vitelline membrane. Based on

previous experimental findings, we simulated the following morphogenetic mecha-

nisms: (1) convergent extension in the neural plate (NP); (2) cell wedging along the

anterior NP border; and (3) autonomous in-plane deformations outside the NP. Our
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numerical predictions agree relatively well with the observed morphology, as well as

our measured stress and strain distributions. The model also predicts the abnormal

tissue geometries produced when development is mechanically perturbed. Taken to-

gether, the results suggest that the proposed morphogenetic mechanisms provide the

main tissue-level forces that drive HF formation.

4.1 Introduction

The early metazoan embryo is constructed primarily out of thin epithelia (Davies,

2005). During morphogenesis, these 2D epithelial sheets are shaped (through a series

of folds and in-plane deformations) into the complex 3D structures that make up the

embryonic body plan. Physical forces play an indispensable role in this process, and

recent work has shown that mechanical loads can influence gene expression patterns

during development (Farge, 2003; Desprat et al., 2008; Wozniak and Chen, 2009).

Still, while much work has been done to identify precursor cell populations and follow

their differentiation into specific tissues, relatively few investigators have quantified

the tissue deformations involved in early embryogenesis or identified the mechanical

forces that drive them (Hutson et al., 2003; Zamir et al., 2006; Rauzi et al., 2008;

Blanchard et al., 2009).

Here we address the mechanics of head fold (HF) formation in the early chick embryo

(Fig. 4.1). This crescent-shaped fold, conserved across amniotes and mammals, forms

at the anterior end of the neural plate (NP) and constitutes the first bounding body

fold. It initiates both foregut and heart development (Bellairs, 1953; Stalsberg and

DeHaan, 1969; Schoenwolf and Smith, 2000) and is the first major 3D structure to

form in the chick embryo. The biophysical mechanisms that drive HF formation

remain poorly understood.

In this paper, we combine computational modeling with data culled from experiments

on chick embryos to investigate the mechanical forces that shape the HF. Mathemat-

ical models offer particular insight here, allowing us to test whether a given set of

forces could plausibly generate the tissue deformations observed during morphogene-

sis. Our results indicate that a combination of the following morphogenetic processes

likely drive HF formation: (1) convergent extension within the NP, (2) coordinated,
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Figure 4.1: The head fold (HF) is the first major 3D structure to form in the chick
embryo. (A) Ventral schematic view of HH stage 7 embryo. The crescent-shaped HF forms
at the anterior end of the neural plate (NP). Prior to HF formation, the chick blastoderm is
approximately planar. (B) Sagittal view of midline section a-a’. The blastoderm is in local
contact with the vitelline membrane and doubled over into an “S”-shaped configuration.
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active cell wedging at the anterior NP border, and (3) epidermal shaping outside the

NP. Our approach can be readily generalized to other morphogenetic processes and

offers insight into how forces are organized at the tissue level to create biological form.

4.2 Materials and methods

4.2.1 Experimental methods

Embryo preparation and culture

Fertilized White Leghorn chicken eggs were incubated in a humidified, forced draft in-

cubator at 38◦C for 23 to 29 hours to yield embryos between Hamburger and Hamilton

(HH) stages 5 and 7 (Hamburger and Hamilton, 1951). Whole embryos were harvested

using the filter paper carrier method described in Voronov and Taber (2002). The

embryo and underlying vitelline membrane (VM) were kept intact, thereby preserving

the stresses normally present in the tissue. To remove the effects of surface tension,

each embryo was completely submerged under a thin layer of liquid culture media

and incubated at 38◦C in 95% O2 and 5% CO2 (Voronov and Taber, 2002).

Manipulation of embryos

Endoderm and mesoderm were removed from a group of HH stage 5 embryos (n=6)

to determine if the forces behind HF formation are ectodermal in origin. Small

amounts (∼1 nL) of 3-5% collagenase in PBS were injected between the ectoderm

and endo/mesoderm using pulled glass micropipettes and a pneumatic pump (PicoP-

ump PV830, World Precision Instruments). Embryos were incubated at 38◦C for 30

minutes, and the endo/mesoderm were removed using glass needles.

To perturb normal development, the VM was removed or the blastoderm was cut to

relieve tissue stresses. Each microsurgery was performed under a dissecting micro-

scope using needles fashioned from pulled glass micropipettes.
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Optical coherence tomography (OCT)

OCT was used to obtain 3D images of living embryos; its depth of field (∼2 mm)

and spatial resolution (∼10 µm) are well-suited for this purpose (Huang et al., 1991;

Fujimoto, 2003). Cross-sectional image stacks were reconstructed into 3D volumes

and optically sectioned using Volocity (Improvision, Waltham, MA). Time-lapse ex-

periments were conducted with the custom-built OCT system described previously

(Filas et al., 2007, 2008).

Tissue stress estimates

Machined glass micropipettes were used to excise circular plugs of tissue from HH

stage 4 (n=3) and stage 6 (n=9) embryos. Bright field images of each wounded

embryo were captured with a dissecting microscope (Leica MZ8) and attached video

camera. Approximately 30–45 seconds elapsed between wounding and image capture.

To rule out the possibility that our results were affected by a healing response, as

has been reported in embryos at nearly equivalent developmental stages (Clark et al.,

2009; Joshi et al., 2010), we stained F-actin using rhodamine phalloidin (Molecular

Probes). After wounding, embryos were incubated at room temperature for varying

periods of time and fixed in 4% paraformaldehyde. Each embryo was then incubated

overnight at 4◦C in a solution containing rhodamine phalloidin (Molecular Probes) di-

luted 1:40 in phosphate buffered saline (PBS) with 0.1% Triton X-100 (Sigma) and 1%

bovine serum albumin (BSA) (Sigma). A stack of fluorescent images for each stained

circular wound was generated using a Leica DMLB microscope with a computerized

z-motor (Improvision) and the software package Openlab 5.5.0 (Improvision). Image

stacks were then deconvolved using the Volume Deconvolution routine in Openlab.

These experiments confirmed that after 30–45 seconds an intact contractile ring had

not yet assembled around the wounds (Fig. 4.2).

As described in Chapter 3, wound geometry was used to characterize regional tissue

stress (force per unit area). For each wound, the Analyze Particles routine in ImageJ

(NIH) was used to determine the area, major axis (a), and minor axis (b) of the

best-fit ellipse. A state of tension (or compression) was indicated if the wound area
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A B C

Figure 4.2: F-actin distributions around punched circular wounds in the chick blastoderm
after (A) 45 sec, (B) 5 min, (C) 1 hr.

was greater (or smaller) than that of the punch (with diameter d). If the wound

remained circular (that is, if the anisotropy index b/a → 1), a state of isotropic stress

was identified; elliptical wounds, alternatively, indicated anisotropic stress.

Tissue labeling and tracking

Tissue deformations were quantified by tracking the motion of material point mark-

ers. Ectodermal cells were labeled using the lipophilic fluorescent dyes DiI and DiO

(Molecular Probes, Eugene, OR) which incorporate into the cell membrane. Embryos

at HH stage 5 (n=6) were placed dorsal side up in 35 mm culture dishes and covered

with PBS. Glass needles were used to remove the VM and thereby expose the ecto-

derm. Iron particles, soaked in saturated DiI (or DiO) at room temperature, were

then sprinkled across the embryo. After 10 minutes of 38◦C incubation, a strong

magnet was used to remove the particles, leaving fluorescently labeled cells behind.

Using this technique, hundreds of cells could be easily (and simultaneously) labeled.

We repeated this protocol on another embryo using CellTracker CM-DiI (Molecular

Probes) to ensure that only cells in the ectoderm were being labeled (Fig. 4.3A).

This fluorescent marker persists after processing for paraffin sections, so the embryo

was fixed in 4% paraformaldehyde, embedded in paraffin, and sliced into 10 µm

parasagittal sections.

42



S s

D

B
α

Cembryonic
midline

HF

Henson's
node

A

ectoderm

endoderm

mesoderm

Figure 4.3: Tissue deformation during head fold (HF) morphogenesis is quantified
using tracked tissue labels. (A) 10 µm parasagittal section of HH stage 6 embryo. The
ectoderm was labeled with fluorescent dye at HH stage 5, cultured ex ovo until the HF had
formed, and then fixed for paraffin sectioning. The fluorescent label was not present in any
endodermal or mesodermal cells, confirming that any cells labeled using this technique reside
in the ectoderm. Scale bar = 100 µm. (B,C) Fluorescently labeled embryo at HH stage 5
(B) and stage 6 (C). The motion of labeled cells was tracked in image coordinates

(
X̄, Ȳ

)
.

Representative label tracks are shown. An embryo coordinate system (X, Y ), oriented
transverse (X) and parallel (Y ) to the embryonic midline and centered at Henson’s node,
was used to compute Lagrangian strains (α = angle between Ȳ and Y axes). Scale bar =
500 µm. (D) Deformation of a 2D surface. The point P

(
X̄, Ȳ

)
on surface S deforms into

the point p (x̄, ȳ) on surface s.
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Initial bright field and fluorescent images of whole embryos were captured using a

Leica DMLB microscope and attached video camera (Retiga 1300). Embryos were

then cultured until the HF had formed at HH stage 6, approximately 2–4 hours later.

Subsequent time-lapse images were captured at approximately 30–45 minute intervals.

The motion of labeled cells was tracked using the Manual Tracking plugin in ImageJ

(Fig. 4.3B,C), and the positions of selected labels were recorded in image coordinates(
X̄, Ȳ

)
at each timepoint, where the origin of the X̄, Ȳ -system is the lower left corner

of the camera frame and X̄ and Ȳ are the horizontal and vertical coordinate axes,

respectively.

Strain analysis

Tissue marker coordinates were used to calculate morphogenetic strains. Briefly,

consider a planar surface S that deforms into the planar surface s (Fig. 4.3D), where

the point P
(
X̄, Ȳ

)
on S moves to the location p (x̄, ȳ) on s. There is a one-to-one

mapping between each point on S and s, giving x̄ = x̄
(
X̄, Ȳ

)
and ȳ = ȳ

(
X̄, Ȳ

)
.

Lagrangian strains characterize the deformation from S to s and are referred to basis

vectors in the reference configuration (i.e., S). In image coordinates
(
X̄, Ȳ

)
, they are

defined as

EX̄X̄ =
1

2

[(
∂x̄

∂X̄

)2

+

(
∂ȳ

∂X̄

)2

− 1

]

EȲ Ȳ =
1

2

[(
∂x̄

∂Ȳ

)2

+

(
∂ȳ

∂Ȳ

)2

− 1

]

EX̄Ȳ =
1

2

[
∂x̄

∂X̄

∂x̄

∂Ȳ
+

∂ȳ

∂X̄

∂ȳ

∂Ȳ

]
(4.1)

The first image in each time-lapse stack (corresponding to HH stage 5) was taken

as the reference configuration. As described by Filas et al. (2007), the MATLAB

routine gridfit was used to fit 2D surfaces through the set of marker coordinates to

generate x̄
(
X̄, Ȳ

)
and ȳ

(
X̄, Ȳ

)
, which give the strain components in image coor-

dinates by equation (4.1). The following equations (Taber, 2004) were then used

to transform these strains into components relative to an embryo coordinate system

(X, Y ) (Fig. 4.3B), which is oriented transverse (X) and parallel (Y ) to the embryonic
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midline:
EXX = EX̄X̄ cos2 α + EȲ Ȳ sin2 α + 2EX̄Ȳ cos α sin α

EY Y = EX̄X̄ sin2 α + EȲ Ȳ cos2 α− 2EX̄Ȳ cos α sin α

EXY = EX̄Ȳ

(
cos2 α− sin2 α

)
+ (EȲ Ȳ − EX̄X̄) cos α sin α

(4.2)

where α indicates the angle between the embryonic midline and the Ȳ axis.

Statistics

To analyze our wound geometry data, a two-level nested ANOVA with the Tukey

post-hoc test was implemented in a spreadsheet (Sokal and Rohlf, 1981; Zar, 2010).

Circular statistics were used to characterize wound orientation (Zar, 2010).

4.2.2 Computational Methods

Finite element model

To study the mechanical forces that drive HF formation, we constructed a nonlinear,

3D finite element (FE) model using COMSOL Multiphysics (Version 3.4, COMSOL

AB, Providence, RI). As shown later, contact between the embryonic blastoderm and

VM is an important factor. Hence, the model geometry consists of the blastoderm

and VM separated by a narrow interstitial space (Fig. 4.4), and a plane of symmetry

is specified along the midline. Frictionless contact between the blastoderm and VM

is assumed, with an augmented Lagrangian approach used to solve for the contact

pressure. Consistent with our OCT images of HF-stage embryos (see below), the NP

is twice as thick as the surrounding epithelium.

To model the mechanics of morphogenesis, we use the theory of Rodriguez et al. (1994)

to simulate finite volumetric growth. The main idea is that the total deformation

of a psuedoelastic body, described by the deformation gradient tensor F, can be

decomposed into a growth tensor G and an elastic deformation gradient tensor F∗

via the relation F = F∗ ·G. During growth, G changes the zero-stress configuration of

each material element, while F∗ generates stress and enforces geometric compatibility

between elements. This theory has been used to model a number of morphogenetic
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Figure 4.4: Computational model of head fold formation. The model geometry
consists of the blastoderm and vitelline membrane (VM) separated by a narrow interstitial
space. A plane of symmetry is specified along the embryonic midline, and frictionless
mechanical contact between the blastoderm and VM is assumed. The growth tensor G
drives morphogenesis in the model. Cell wedging along the anterior border of the neural
plate (NP), convergent extension of the NP, and epidermal shaping outside the NP were
simulated by specifying the growth components Gi(t) in each active region (schematics and
white arrows). See text for details.
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processes (Taber, 2001, 2008). An introductory treatment can found in section 3 of

Taber (1995).

To model anisotropic growth, two coordinate systems are defined (Fig. 4.4). The first

is the global embryo coordinate system (X, Y, Z), where the X and Y axes coincide

with the transverse and longitudinal embryonic axes, respectively. The second is a

local curvilinear coordinate system (N, T, Z), defined such that the N and T axes

are oriented normal and tangent, respectively, to the NP border (and thus to the

prospective HF). We assume that growth occurs along orthogonal directions defined

by the unit vectors e1, e2, and e3, which are rooted in the reference configuration

with (1, 2, 3) = (X, Y, Z) or (N, T, Z). The growth tensor thus has the form G =

G1e1e1 + G2e2e2 + G3e3e3, where the Gi are growth stretch ratios. As discussed

below, the components of G are specified functions of time in each active region of

the model.

Mechanical properties

Tissue stress depends on the elastic deformation F∗ through the material constitutive

relations. As a first approximation, embryonic tissues can be treated as pseudoelastic

materials (Zamir et al., 2003; Zamir and Taber, 2004b,a) with viscoelastic material

effects (e.g., stress relaxation) ignored. The blastoderm and VM are thus modeled

as isotropic sheets of nearly incompressible material, characterized by the modified

neo-Hookean strain-energy density function

W =
µ

2

(
Ī∗ − 3

)
+ p

(
1− J∗ − p

2κ

)
, (4.3)

where µ is the small-strain shear modulus, κ is the bulk modulus, J∗ = detF∗ is the

elastic dilatation ratio, p is a penalty variable introduced for nearly incompressible

materials, and Ī∗ = J∗−2/3 tr
(
F∗T · F∗) is a modified strain invariant. In terms of W ,

the Cauchy stress tensor is given by (Taber, 2004)

σ = J∗−1F∗ · ∂W

∂F∗T
. (4.4)
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Microindentation tests in our laboratory have suggested that the bending rigidity

(stiffness) of the NP (DNP ) is approximately twice that of the surrounding epithelium

(DS). For a concentrated load on a simply supported circular plate, the linear solution

gives the bending rigidity D ∼ Eh3, where E is the elastic modulus and h is the plate

thickness (Timoshenko and Woinowsky-Krieger, 1959). Inputting thickness values

for the NP and surrounding epithelium based on our OCT images, this solution

yields ES ≈ 2ENP , which gives µS ≈ 2µNP since µ is linearly related to E. Other

microindentation experiments have shown the VM to be approximately 3 times stiffer

than the NP, which (following a similar process) gives µV M ≈ 100µNP .

Simulation of morphogenetic processes

The growth tensor G drives morphogenesis in our model. The growth components

Gi(t) for each active region were selected by manual iteration. Parameter values

were rejected if the model did not qualitatively match the observed HF morphology,

as well as the measured stress and strain distributions in normal embryos. The

selected Gi(t) were further tested using data from mechanically perturbed embryos.

Our proposed mechanism for HF formation consists of three main morphogenetic

processes (Fig. 4.4):

• Active cell wedging: Actively generated, wedge-shaped cells have often been

implicated in epithelial invaginations (Ettensohn, 1985; Haigo et al., 2003). In

the chick embryo, Lawson et al. (2001) have reported cell wedging along the NP

border, a phenomenon that appears intrinsic to the NP border zone and thus

independent of any external loads (Moury and Schoenwolf, 1995). We model

this wedging along the anterior NP border by specifying GN < 1 along the

ventral side of the blastoderm and GN > 1 along the dorsal side, where N is

the direction normal to the border (Fig. 4.4). This changes a cuboidal element

into a wedge-shaped element. Cytoskeletal contraction has been linked to cell

wedging (Lee and Nagele, 1985; Gorfinkiel et al., 2009; Martin et al., 2009), and

moreover, microindentation data from our laboratory suggests the HF stiffens

as it forms. A concomitant material stiffening thus accompanies our simulated

wedging (i.e., µNP increases by a factor of 5).
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• Convergent extension: During neurulation the NP elongates longitudinally

and shortens transversely, a process known as convergent extension (Smith and

Schoenwolf, 1997; Colas and Schoenwolf, 2001; Ezin et al., 2009). This behavior

appears intrinsic to the NP itself and has been attributed to both cell interca-

lation (Schoenwolf and Alvarez, 1989; Ezin et al., 2009) and coordinated cell

division (Sausedo et al., 1997). The mitotic cycle of neuroepithelial cells at this

stage of development is approximately 8–12 hours in length (Schoenwolf, 1994).

Since HF formation occurs over a shorter time period (typically, 2–4 hours), we

assume cell intercalation is the dominant process and model convergent exten-

sion by specifying GX < 1 and GY = 1/GX in the NP (Fig. 4.4). No change in

material properties accompanies this growth, and the components of G specify

an isochoric deformation (i.e., no volume change), since we are concerned solely

with cell rearrangement.

• Epidermal shaping: The epidermal (or non-neuroepithelial) ectoderm under-

goes autonomous changes in shape during neurulation (Moury and Schoenwolf,

1995). In particular the epidermis anterior to the NP (and thus, the prospec-

tive HF) narrows transversely. We model this epidermal shaping by specifying

GT < 1 along the blastoderm anterior to the NP, where T indicates the direction

tangent to the NP border (Fig. 4.4).

Finally, our hole-punching experiments (see below) have shown that the blastoderm

is in a state of equibiaxial tension before the HF forms. We therefore apply initial

equibiaxial tensile stresses along the peripheral boundary of the blastoderm. The

magnitude of this tension is based on experimental estimates of the amount of stretch

in the tissue.

4.3 Results

4.3.1 Head fold geometry is distinctly three-dimensional

During the first day of development, the chick blastoderm is organized as a flat,

laminar disk (Patten, 1971). It is composed of three separate germ layers (endoderm,
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Figure 4.5: OCT reveals 3D head fold (HF) geometry in living embryos. (A,B)
3D OCT reconstructions of developing chick embryo at HH stage 5 (A) and stage 6 (B).
The imaging window is 2 mm square (VM = vitelline membrane; NP = neural plate). (C)
Optical midline sections (red lines in (A) and (B)) show the blastoderm doubling over on
itself and contacting the VM as the HF forms. Scale bar = 200 µm.

mesoderm, and ectoderm) and underlies the vitelline membrane (VM). During these

early stages, there are few visible landmarks to distinguish the embryonic body from

the surrounding extra-embryonic tissues (Lillie, 1952). At 24 hours of incubation,

however, a conspicuous crescent-shaped fold (the HF) forms at the anterior end of

the thickened neural plate, where the blastoderm transitions to a thinner epithelium

(Fig. 4.1).

Using our time-lapse OCT system, we generated three-dimensional images of the

developing HF in living embryos (Fig. 4.5A,B). Optical sections along the embryonic

midline show that, as the HF forms, the blastoderm bends locally at the NP border,

contacts the VM, and doubles over onto itself (Fig. 4.5C). The tissue is tucked into

an “S”-shaped configuration, with the HF lifted above the plane of the surrounding

blastoderm.

4.3.2 Isolated ectoderm creates a head fold

Our proposed mechanism for HF morphogenesis involves active forces generated in

the ectoderm. To establish whether ectoderm alone can produce a HF, we cultured

isolated ectoderm from HH stage 5 (pre-HF) embryos (Fig. 4.6). Within 2 hours,

these explants developed a HF (Fig. 4.6C), suggesting that the forces which create

this structure have an ectodermal origin.
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A CB HF

Figure 4.6: Forces that create the head fold (HF) are ectodermal in origin. The
ectoderm was isolated in a group of HH stage 5 embryos (n=6). (A) Representative embryo
before treatment, (B) immediately after dissection of endoderm and mesoderm, and (C)
after 2 hours incubation. Isolated ectodermal explants still developed a HF.

4.3.3 Tissue deformation is inhomogeneous and anisotropic

We used ectodermal cell displacements to characterize the kinematic behavior of the

blastoderm during HF formation. Fluorescent labels were tracked in the manner of

dynamic fate mapping studies (Redkar et al., 2001; Cui et al., 2009; Ezin et al., 2009).

Here, however, the goal was to quantify the global deformation of the tissue, rather

than determine the eventual fate of individual cells.

Tracking the motion of tissue labels, we computed 2D Lagrangian strain distributions

during HF formation (Fig. 4.7). During this process, most of the blastoderm remains

relatively flat, so 2D Lagrangian strains can be used to capture the salient kinematic

behavior outside the immediate HF region. The strain components EXX and EY Y

characterize relative length changes of line elements originally oriented parallel to the

X and Y axes, respectively; EXY is a measure of angle changes between line elements.

Strain distributions (measured for HH stage 6 relative to stage 5) were inhomoge-

neous and anisotropic, but remained relatively symmetric about the embryonic mid-

line (Fig. 4.7). Negative transverse strains were present near the HF, and the shear

distribution was primarily organized as a pair of bilateral peaks that spanned across

the lateral NP border. Meanwhile, the NP elongated longitudinally (EY Y > 0) and

shortened transversely (EXX < 0). At intermediate timepoints, the overall strain
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Figure 4.7: Measured morphogenetic strain distributions are inhomogeneous. La-
grangian strain contours were calculated for HH stage 6 relative to stage 5. (A) Transverse
(EXX) and (B) longitudinal (EY Y ) strains characterize the length changes of line elements
originally oriented along the X and Y axes, respectively. (C) The shear strains (EXY )
correspond to angle changes between line elements. Each distribution was non-uniform and
relatively symmetric about the embryonic midline. Contours from representative embryo
(n=5) are shown. The neural plate (NP) elongated longitudinally (EY Y > 0) and shortened
transversely (EXX) < 0, while the normal strains near the head fold (HF) were negative
(EXX < 0 and EY Y < 0) . A local peak in shear overlapped the lateral NP border.
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Figure 4.8: Evolving longitudinal strain distributions. Longitudinal Lagrangian
strains were calculated relative to HH stage 5 after (A) 75 min, (B) 120 min, and (C)
165 min of incubation. These strains characterize the length changes of line elements orig-
inally oriented along the Y-axis (in the stage 5 embryo). The overall strain patterns were
remarkably similar in time. Scale bar = 500 µm.

patterns were remarkably similar; only the component magnitudes varied in time

(Fig. 4.8).

4.3.4 Stress inhomogeneity and anisotropy develops as head

fold forms

We estimated the stress distribution in the blastoderm at different stages of develop-

ment by excising circular plugs of tissue and measuring the resultant hole geometry

immediately after wounding (Fig. 4.9). With a and b being the major and minor axes

of the ellipse fit to a given wound, we computed the wound area, anisotropy index

(b/a), and orientation (direction of the major axis). Wound geometry was compared

to that of the circular punching pipette of diameter d.

At stage 4, before either the HF had formed or NP had elongated, the wounds were

relatively circular, about 45% larger than the punching pipette, and similarly sized

both inside and outside the NP (black and red holes/bars in Fig. 4.9B,E,F). These

data indicate that the blastoderm is initially in a state of approximately uniform,

isotropic tension.
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Figure 4.9: Stress anisotropy develops as head fold (HF) forms. (A-D) Hole punch-
ing experiment of (A,B) HH stage 4 and (C,D) stage 6 embryo (NP = neural plate). (Note
that A and B are the same image, as are C and D.) Wound geometry was used to esti-
mate regional tissue stress. Best-fit ellipses were computed for each wound with major and
minor elliptical axes a and b, respectively. Wound area and anisotropy index (b/a) were
compared to that of the circular punching pipette with diameter d (D, inset). Scale bar
= 500 µm. At stage 4, red = outside NP and black = inside NP; at stage 6, blue = an-
terior to HF, yellow = lateral to HF, green = NP border, purple = middle NP. θ = angle
measured from transverse embryonic (or X) axis, φ = angle measured from normal to NP
border. (E,F) Quantitation of (E) wound area (normalized to the area of the pipette), and
(F) anisotropy index both inside and outside the NP, as indicated (black, n=3; red, n=3;
blue, n=9; yellow, n=7; green, n=9; purple, n=4). * = P < 0.05, ** = P < 0.01, *** =
P < 0.001 (nested ANOVA with Tukey post-hoc test). (G,H) Relative frequency circular
histograms of wound orientation (G) anterior to the HF and (H) along the NP border in
stage 6 embryos. The 95% confidence intervals for (G) θ and (H) φ were 10◦ ± 14◦ and
43◦ ± 11◦, respectively. At stage 4, the blastoderm is approximately in a state of isotropic,
uniform tension. During HF formation, however, the mechanical stresses become markedly
anisotropic and non-uniform, especially anterior to the HF and along the NP border.
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As the HF forms (at stage 6), the stresses in the blastoderm become markedly non-

uniform and anisotropic (other colors in Fig. 4.9D,E,F). Outside the NP, wound size

increased dramatically, indicating a significant rise in tension from that at stage 4.

Moreover, anterior to the NP (blue), this state of increased tension was anisotropic,

as revealed by the wounds becoming more elliptical (b/a smaller). Along the NP

border (green), the wounds were smaller (approximately 78% the size of the punching

pipette) and indicated the presence of compressive stresses. Here again, the elliptical

shape of the wounds connoted a definite anisotropy to the stresses in this region. In

the middle of the NP (purple), however, the wound size was similar to that at stage

4 (about 28% larger than the pipette area) and revealed a relatively constant, tensile

stress state.

We used wound orientation to characterize the direction of anisotropy. Anterior

to the NP, a dominant line of tension was oriented along the transverse embryonic

axis (Fig. 4.9D,G). Meanwhile, along the NP border, the anisotropy was oriented

oblique to the border, as indicated by the anterior slant of the wounds in this region

(Fig. 4.9D,H).

4.3.5 Model captures head fold geometry during normal de-

velopment

As discussed in section 4.2, our computational model consists of two flat plates,

corresponding to the blastoderm and VM, separated by a narrow interstitial space

(Fig. 4.4). The simulation includes three morphogenetic processes: (1) convergent ex-

tension of the NP, (2) cell wedging along the anterior NP border, and (3) autonomous

epidermal shaping anterior to the NP.

The magnitudes of the driving forces, i.e., the components of the growth tensor G,

were determined using data from normal embryos (Fig. 5.8). With these values,

the model produces a characteristic crescent-shaped HF (Fig. 4.11A), and a midline

section through the model shows the HF raised above the plane of the surrounding

blastoderm as observed in experiments (Fig. 4.11B).
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Figure 4.11: Model captures normal head fold (HF) morphology (A) The deformed
model geometry has a characteristically crescent-shaped HF. (B) A midline section of the
model (left) shows the HF lifted above the plane of surrounding material (red dashed line)
and captures the key geometrical features seen experimentally via OCT (right). The model,
however, was unable to completely reproduce the local curvature in the blastoderm just
posterior to the HF (red arrow). Gray (shadowed) section indicates the undeformed model
geometry. Scale bar = 200 µm. (C) Removing any one of our morphogenetic forces alters
the simulated HF geometry.
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Figure 4.12: Model robustness. The components of the growth tensor G were varied to
incrementally (and individually) phase out each of the morphogenetic forces in the model
and determine the resultant effect on predicted HF morphology. Midline sections were then
compared to (A) the original model. Percentages represent the percent reduction of the
components of G from normal values. Variations of up to 33% for (B) convergent extension,
(C) cell wedging, and (D) epidermal shaping did not drastically change the shape of the
HF. Scale bar = 200 µm.

All three morphogenetic processes, which occur simultaneously in the embryo, are

required (Fig. 4.11C). The model solution is fairly robust; variations of up to 33% in

the growth parameters do not drastically modify the deformed geometry (Fig. 4.12).

This solution, however, is not necessarily unique. Thus, to strengthen our confidence

in the model, we tested it using additional experimental data.

4.3.6 Model qualitatively matches measured strain distribu-

tions

Global changes in shape do not uniquely characterize the kinematics of a deforming

body, as multiple strain patterns can produce the same overall change in shape. So,

to further test the model, we compared strain distributions given by the model to our

experimental strain data (Fig. 4.13). For consistency with the experimental strains,

2D numerical strains were calculated by considering only displacements parallel to

the XY -plane. Both model and experimental strains are computed with respect to

the initially stretched configuration at stage 5.
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Figure 4.13: Numerical strain fields qualitatively match experiments. Transverse
(EXX), longitudinal (EY Y ), and shear (EXY ) strain contours were computed in the model
and compared with our experimental strain data (see Fig. 4.7). The strain fields are in
reasonable agreement. Both show EXX < 0 and EY Y > 0 in the neural plate (NP), and
EXX < 0 and EY Y < 0 anterior to the NP. The model also predicts continuous EXY across
the NP border and the local EXY peak near the border. (HF = head fold)

The strain fields are in reasonable agreement qualitatively (Fig. 4.13), as both show

transverse shortening (EXX < 0) and longitudinal elongation (EY Y > 0) in the NP,

as well as shortening in both directions anterior to the NP (EXX < 0 and EY Y < 0).

Moreover, the model predicts the continuous shear strains (EXY ) across the NP bor-

der, as well as the local peak near the border. The model, however, does not capture

all of the striking spatial patterns seen experimentally, namely the mediolateral EXX

gradient (Fig. 4.13).
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4.3.7 Model captures experimental anisotropy in tissue stress

We also compared the stresses in the model to the results from our hole punching

experiments. The eigenvalues and eigenvectors of the Cauchy stress tensor σ specify

the principal stresses (σ1, σ2) and principal stress directions, respectively, and provide

a coordinate-invariant description of the stress state at each material point. We

computed normalized principal Cauchy stresses (σ̄1,2 = σ1,2/µS) to identify regions of

tension and compression in the model. Because each hole was punched through the

full thickness of the blastoderm, all model stresses were averaged across the thickness

of the membrane.

Consistent with our hole punching experiments (Fig. 4.9B), an initial equibiaxial ten-

sion was specified along the boundary of the model blastoderm, yielding a normalized

isotropic pre-stress of 0.22 within the NP and 0.43 in the surrounding epithelium. Af-

ter the HF forms, principal stress distributions given by the model show qualitative

agreement with our hole punching data (Figs 4.14A,B). As in experiments, the model

predicts compressive stresses along the NP border and anterior NP, and captures the

strongly tensile stresses outside the NP.

We also used the computed principal stress distributions to simulate our hole punch-

ing protocol. At points corresponding to experimental wound locations, the principal

stresses were extracted from the HF model and imported into a relatively simple

plane-stress model, consisting of a materially identical square membrane. The im-

ported principal stresses were specified along the membrane edges, and a circular

hole was introduced at the center of the stretched membrane to simulate wounding.

The deformed wound geometry was compared to experiments, and principal stress

directions in the HF model were compared against experimental measures of wound

orientation. Further details for such a model can be found in chapter 3.

The sizes and shapes of the holes given by this method qualitatively match the wound

geometries from our hole punching experiments (Fig. 4.14B). For example, anterior to

the HF, the simulated wound indicates a state of anisotropic tension similar to that

seen experimentally (Fig. 4.14B). Moreover, the predicted dominant line of tension,

oriented along the transverse embryonic (or X) axis, also matched our experiments

(Fig. 4.14C). The model also captures the anisotropic compression observed along the
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Figure 4.14: Model predicts anisotropy in tissue stress. The principal stresses in the
model agree qualitatively with our hole punching experiments. (A) Normalized principal
Cauchy stress contours (σ̄1,2 = σ1,2/µS) given by the model indicate strongly tensile and
anisotropic stresses anterior to the head fold (HF), compressive stresses along the anterior
neural plate (NP) and NP border, and a nearly isotropic, tensile stress state in the posterior
NP. (B) Simulations of our hole punching experiments predict similar wound shapes (see
Fig. 4.9; blue = anterior to HF, yellow = lateral to HF, green = NP border, purple =
middle NP). The symbols + and − indicate tension and compression, respectively. (C,D)
Simulated wound orientation data (C) anterior to the HF and (D) along the NP border
was compared with experiments. The model predicts a dominant line of tension anterior
to the HF at θ = 0◦ (dashed black line in (C)), similar to the θ = 10◦ ± 14◦ observed
experimentally (blue bars). Along the NP border, the simulation gives φ = −3◦ (dashed
black line in (D)), whereas in experiments, φ = 43◦ ± 11◦ (green bars).
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NP border, though the hole is oriented nearly normal to the NP border, not oblique

as observed experimentally (Fig. 4.14D).

4.3.8 Model predicts abnormal morphology when develop-

ment is perturbed

Mechanical perturbations were used to test the predictive capabilities of the model.

Our OCT images (Fig. 4.5C) suggest that contact with the VM constrains the de-

formation of the blastoderm as it folds. To determine its role in shaping the HF,

we removed the VM from stage 5 embryos and followed their development for 2–3

hours of culture. Midline sections reveal abnormal HF geometry, with the fold being

less sharp and the HF no longer elevated above the plane of surrounding blastoderm

(Fig. 4.15A).

We simulated this experiment by removing the VM in the model, without changing

any of the other model parameters. The predicted morphology is similar to that seen

in our OCT images (Fig. 4.15E, middle row), though the V-shaped blastoderm is not

as symmetric in the model as in the actual embryo.

In a separate set of experiments, we altered the stress field in the tissue by cutting

through the lateral blastoderm (outside the NP) in embryos that had already formed

a HF (Fig. 4.15B-D). These linear cuts relieved the stress at these locations, and

the opening of the wounds indicated a state of tension consistent with our punch

experiments (Fig. 4.9D). OCT images showed that, immediately after cutting, the

HF began to unfurl (Fig. 4.15B,C). After an hour of incubation (Fig. 4.15D), the

HF had unfolded even further, indicating a vital morphogenetic role for the tension

outside the NP.

To model this experiment, a lateral incision was simulated by removing a thin, elliptic

cylindrical volume of material from the blastoderm (Fig. 4.11A). The simulation was

then run with none of the model parameters modified. The predicted shape of the

blastoderm is remarkably similar to that in the treated embryos, as the invagination

is V-shaped with the HF being much less prominent and remaining close to the plane

of the embryo (Fig. 4.15E, bottom row).
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Figure 4.15: Effect of mechanical perturbations on head fold (HF) morphology.
(A) Midline time-lapse OCT sections of embryo after removal of the vitelline membrane
(VM) at HH stage 5 (n=3). (B-D) Linear cuts in lateral blastoderm (n=4) reveal tensile
stress state. Midline OCT sections (B) before treatment (a-a’), (C) immediately after cut-
ting (b-b’), and (D) after 1 hour incubation (c-c’) show the HF progressively unfurling. (E)
Simulating each of these perturbations by eliminating the VM (middle row) and remov-
ing a thin, elliptical cylindrical volume of lateral blastoderm (bottom row, see Fig. 4.11A)
produced similarly abnormal tissue geometries. Scale bars = 200 µm.
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Taken together, these results show that our model captures the fundamental mechan-

ical behavior of the embryo during HF formation. The ability of the model to predict

the abnormal tissue geometries encountered during mechanical perturbations offers

further support for our proposed morphogenetic mechanisms.

4.4 Discussion

The mechanical forces that shape developing tissues have long intrigued embryolo-

gists. In fact, before the introduction of modern genetic and molecular techniques,

much of the language used to describe morphogenesis was decidedly mechanical in

nature (Bellairs, 1953; Stalsberg and DeHaan, 1968; Patten, 1971; Ettensohn, 1985).

Though this biophysical thinking about embryogenesis largely fell out of favor in

the 1970’s and 80’s, recent work has begun to connect our accumulated genetic and

molecular understanding of development with physical morphogenetic mechanisms

(Davidson, 2008; Lecuit, 2008; Wozniak and Chen, 2009; Zhou et al., 2009). New

progress on the mechanics of morphogenesis is being made in the study of Drosophila

dorsal closure (Blanchard et al., 2009; Gorfinkiel et al., 2009; Solon et al., 2009) and

germ band extension (Rauzi et al., 2008; Blanchard et al., 2009), avian gastrula-

tion (Zamir et al., 2006), amphibian neurulation (Chen and Brodland, 2008), cardiac

looping (Taber, 2006; Ramasubramanian et al., 2008), and vertebrate convergent ex-

tension (Zhou et al., 2009; Davidson et al., 2010).

Here, we propose a new hypothesis for the mechanics of HF formation. As discussed

below, our hypothesis is based on experimental studies going back more than a cen-

tury.

4.4.1 Need for a new hypothesis

The HF is a crucial, yet somewhat overlooked, event in morphogenesis. Besides its

role in initiating neurulation, the HF is closely linked to formation of the primi-

tive foregut and heart tube in both chicks (Bellairs and Osmond, 2005) and humans
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(Moore et al., 2000; Oostra et al., 2007). In particular, the HF creates the rudimen-

tary foregut pocket (Lillie, 1952; Bellairs, 1953; Schoenwolf and Smith, 2000) and

serves as the initial site of fusion for the precardiac epithelia (Stalsberg and DeHaan,

1969; Wei et al., 2001; Moreno-Rodriguez et al., 2006). The out-of-plane bending of

the blastoderm convects and rotates the heart fields into their proper ventral position,

enabling them to form a tube along the ventral aspect of the embryo (Drake and Ja-

cobson, 1988; de la Cruz and Sanchez-Gomez, 1998; Slack, 2006; Abu-Issa and Kirby,

2008). The importance of the HF to these processes was convincingly demonstrated

in the classic experiment by DeHaan (1959), where a simple incision through the HF

disrupted both heart field fusion and foregut formation.

HF formation was, in fact, one of the very first morphogenetic processes to draw

the attention of early embryologists. As early as 1881, in his seminal Treatise on

Comparative Embryology, Francis Balfour described the avian HF as a “tucking in”

of the blastoderm, a description which seemed to suggest a role for active folding of

the tissue (Balfour, 1881; Foster and Balfour, 1883). A few years later Shore and

Pickering (1889) explicitly challenged this idea, proposing instead that differential

growth drives HF morphogenesis. Specifically, they posited that the embryonic area

of the blastoderm grows faster than the surrounding extra-embryonic area; the blas-

toderm then buckles out of plane to form the HF as the embryonic area “[grows]

forwards. . .over the portion of the area pellucida which lies in front of it.” In their

view, this alternative hypothesis explained away the role for any active folding or

“tucking in” of the tissue. In addition, consistent with our own findings (Figs 4.5C,

4.15E), the authors speculated that mechanical contact with the VM plays a role in

shaping the HF.

In the mid-twentieth century, Stalsberg and DeHaan (1968), building on work by Bel-

lairs (1953), suggested a different buckling mechanism. They proposed that regression

of Henson’s node pulls the embryonic midline (i.e., Shore and Pickering’s embryonic

area) downward, causing the blastoderm to buckle and roll over the fixed anterior

border of the NP. This folding forms the HF and initiates foregut development.

Their buckling mechanism, however, is inconsistent with our experiment in which a

HF develops without a direct connection to Henson’s node (Fig. 4.16). We thus pro-

pose a new hypothesis for HF formation that includes many of the active ectodermal
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Figure 4.16: Testing the buckling mechanism of Stalsberg and DeHaan (1968).
A linear incision across the midline severs any connection to Henson’s node but does not
disrupt HF formation. Embryo at HH stage 5 (A) before treatment, (B) immediately after
cutting, (C) after 2 hours of culture, and (D) after 7 hours of culture.

processes which shape the neural tube. Specifically, we postulate that (1) active cell

wedging at the NP border, (2) convergent extension of the NP, and (3) epidermal

shaping anterior to the NP generate the mechanical forces that drive this process.

This hypothesis is motivated by the following experimental results.

First, Lawson et al. (2001) demonstrated that localized cell wedging accompanies the

epithelial bending (or kinking) that occurs along the NP border, and this behavior

appears intrinsic to the border zone itself (Moury and Schoenwolf, 1995). The cel-

lular mechanisms that drive this wedging, however, have yet to be determined, but

may include actomyosin contraction (Gorfinkiel et al., 2009; Martin et al., 2009), in-

terkinetic nuclear migration (Smith and Schoenwolf, 1988; Schenk et al., 2009), or

laminin-dependent basal constriction (Gutzman et al., 2008).

Second, it has also been well established that the NP elongates by convergent ex-

tension (Smith and Schoenwolf, 1997; Colas and Schoenwolf, 2001; Ezin et al., 2009).

External loads may play a role in this process, but that role appears to be a subsidiary

one, as convergent extension occurs within NP isolates (Moury and Schoenwolf, 1995)

and has been attributed to both cell intercalation (Schoenwolf and Alvarez, 1989; Ezin

et al., 2009) and coordinated cell division (Sausedo et al., 1997).

Third, the epidermal ectoderm anterior to the NP actively shortens in the transverse

direction (Moury and Schoenwolf, 1995). Though the cellular mechanisms behind this

epidermal shaping are still unclear, there is evidence that coordinated cell division
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plays a role. The orientation of these dividing cells (i.e., the direction along which

tissue growth occurs) may depend on mechanical stress (Sausedo et al., 1997).

4.4.2 Computational models help elucidate morphogenetic

forces

We have integrated computational modeling and in vitro experiments to determine

the tissue-level forces that drive HF formation. In highly nonlinear problems (like

this one), physical intuition can often be misleading, and models are a useful tool,

enabling us to quantitatively investigate whether a given hypothesis is consistent with

physical law.

Morphological and mechanical experiments can be used to test the model. However,

in problems of morphogenesis, it is important to note that matching global tissue

geometry does not guarantee a unique solution, and other types of experiments (e.g.,

stress, strain) can be used to test the model more rigorously.

To test our hypothesis for HF formation, we constructed a 3D computational model

that consists of two pseudoelastic plates, corresponding to the blastoderm and VM.

A continuum mechanics framework is used because we are concerned here with global

tissue deformations. The model geometry, material constants, and boundary condi-

tions are all based on experimental observations in normal chick embryos. We used

3D OCT reconstructions, morphogenetic strain distributions, and qualitative stress

estimates to test the model and identify reasonable values for the free parameters (i.e.,

the components of G), which determine the magnitude of the hypothesized driving

forces.

The model matches the HF geometry observed in living embryos using OCT (Figs

4.5,4.11). Though it captures the key geometrical features, the model does not,

however, reproduce the local curvature in the blastoderm just posterior to the HF

(arrow in Fig. 4.11B). One reason for this discrepancy may be our assumption of

uniform growth (i.e., convergent extension) in the NP, as there is some evidence that

the extent of cell rearrangement varies along the embryonic midline (Schoenwolf and

Alvarez, 1989). Alternatively, apical constriction of median hinge-point cells along
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the midline (Lee and Nagele, 1985; Colas and Schoenwolf, 2001) may further enhance

this local curvature.

The model also qualitatively matches our morphogenetic strain data (Fig. 4.13),

which, consistent with existing data on avian convergent extension, shows the NP

elongating longitudinally (EY Y > 0) and shortening transversely (EXX < 0) (Schoen-

wolf and Sheard, 1989; Smith and Schoenwolf, 1997; Colas and Schoenwolf, 2001; Ezin

et al., 2009). Moreover, in both the model and experiments, the negative transverse

strains (EXX) surrounding the HF are in agreement with previously reported evidence

of epidermal shaping (Moury and Schoenwolf, 1995), and the shear strains (EXY ),

akin to the reorientation movements described by Ezin et al. (2009), are the result

of NP growth being constrained by surrounding tissue. Interestingly, the difference

in material properties between the NP and surrounding tissue (that is, between µNP

and µS) is such that the shear strains are continuous across the NP border.

A lack of complete agreement between the strain distributions given by the model

and our experimental data could be attributed to either the model geometry or our

assumption of uniform growth. In the model, the thickness of the blastoderm is

uniform outside the NP; however, transverse OCT sections indicate that the blasto-

dermal thickness decreases toward the periphery of the embryo. This could contribute

to the laterally increasing EXX gradient observed in experiments (Fig. 4.13), since

the thinner (lateral) material would deform to a greater extent under the stresses

exerted by the narrowing NP. Alternatively, the effects of non-uniform growth could

also be a factor.

To our knowledge, this work constitutes the first study of mechanical stress in HF-

stage chick embryos. Before HF morphogenesis, the blastoderm is in a state of uni-

form, isotropic tension; as the HF forms, however, the stress distribution becomes

both inhomogeneous and anisotropic (Fig. 4.9). Our model effectively captures this

non-uniform stress field (Fig. 4.14), predicting both compressive and tensile stresses

in the NP, and large tensile stresses in the blastoderm surrounding it. In addition, the

model predicts the dominant line of tension observed anterior to the HF (Fig. 4.14C).

Lastly, to gauge the predictive capability of the model, we simulated two mechanical

perturbation experiments that disrupted the normal stress field: lateral cutting of the
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blastoderm and VM removal. Rather strikingly, the model reasonably captures the

abnormal tissue geometry in both cases (Fig. 4.15E).

4.4.3 Head fold is shaped by forces typically associated with

neurulation

These results suggest that our hypothesized morphogenetic mechanisms, which in-

clude those typically associated with neurulation, are the primary driving forces be-

hind HF formation. Given its central importance to both heart tube and foregut

formation, a more complete biophysical understanding of this crucial morphogenetic

event should give insight into how embryonic tissues are organized during early car-

diac development.

By characterizing the forces that shape the HF during normal development, future

work can be done to determine how molecular or genetic perturbations mechanically

disrupt this process. In mice, for example, inactivation of the Huntington’s disease

gene Hdh disrupts early embryonic patterning and completely blocks HF formation

(Duyao et al., 1995; Woda et al., 2005). How this aberrant patterning influences the

morphogenetic forces that shape the HF, however, remains unclear. Other results

provide further evidence of a link between head and heart development. In chicks,

Rho kinase (ROK) expression is enriched in the HF, and inhibition of ROK, which

is implicated in cytoskeletal organization, often generates embryos with cardia bi-

fida, particularly if the inhibitor is applied before the HF has formed (Wei et al.,

2001). Here again, the biophysical consequences of this perturbation are unknown

and warrant further attention.

The integrated use of quantitative modeling and experiments is well-suited to answer

these questions, and the approach presented here can be readily generalized to other

morphogenetic processes, offering us a chance to understand how physical forces are

organized at the tissue-level to create biological form.
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Chapter 5

Not just inductive: a critical

mechanical role for the endoderm

during heart tube assembly

Summary

The heart is the first functioning organ to form during development. During gas-

trulation, the cardiac progenitors reside in the lateral plate mesoderm but maintain

close contact with the underlying endoderm. In amniotes, these bilateral heart fields

are initially organized as a pair of flat epithelia that move toward the embryonic

midline and fuse above the anterior intestinal portal (AIP) to form the heart tube.

This medial motion is typically attributed to active mesodermal migration over the

underlying endoderm. In this view, the role of the endoderm is two-fold: to serve

as a mechanically passive substrate for the crawling mesoderm and to secrete vari-

ous growth factors necessary for cardiac specification and differentiation. Here, us-

ing computational modeling and experiments on chick embryos, we present evidence

supporting an active mechanical role for the endoderm during heart tube assembly.

Label-tracking experiments suggest that active endodermal shortening around the

AIP accounts for most of the heart field motion toward the midline. Results indicate

that this shortening is driven by cytoskeletal contraction, as exposure to the myosin-II

inhibitor blebbistatin arrested any shortening and also decreased both tissue stiffness

(measured by microindentation) and mechanical tension (measured by cutting ex-

periments). In addition, blebbistatin treatment often resulted in cardia bifida and
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abnormal foregut morphogenesis. Moreover, finite element simulations of our cutting

experiments suggest that the endoderm (not the mesoderm) is the primary contractile

tissue layer during this process. Taken together, these results indicate that contrac-

tion of the endoderm actively pulls the heart fields toward the embryonic midline,

where they fuse to form the heart tube.

5.1 Introduction

The heart is the first functioning organ to develop in the embryo. In avians, early

cardiac progenitor cells ingress through the anterior primitive streak during gastru-

lation and take up residence in the lateral plate mesoderm (Rosenquist and DeHaan,

1966; Garcia-Martinez and Schoenwolf, 1993; Cui et al., 2009). They remain in close

contact with the underlying endoderm (Linask and Lash, 1986; Schultheiss et al.,

1995) as they form paired coherent epithelia on either side of the embryonic midline

— the so-called primary heart fields (Abu-Issa and Kirby, 2007). These epithelia

(i.e., the cardiogenic mesoderm) then move toward the midline, fold out-of-plane,

and fuse above the anterior intestinal portal (AIP) to form the heart tube (Stalsberg

and DeHaan, 1969; Linask and Lash, 1986; Kirby, 2007; Abu-Issa and Kirby, 2008;

Cui et al., 2009).

Although the physical forces that drive this process remain poorly understood, it has

been generally accepted that heart field motion toward the midline is primarily due

to active migration (i.e., crawling) of the cardiogenic mesoderm over the underlying

endoderm (DeHaan, 1963; Rosenquist and DeHaan, 1966; Linask and Lash, 1986;

Trinh and Stainier, 2004). According to this view, the role of the endoderm during

cardiogenesis is considered to be two-fold: (1) to serve as a mechanical substrate

for the crawling mesoderm and (2) to secrete a host of soluble growth factors which

induce cardiac specification and differentiation in the adjacent cardiogenic mesoderm

(Schultheiss et al., 1995; Nascone and Mercola, 1995, 1996; Schultheiss et al., 1997;

Lough and Sugi, 2000; Alsan and Schultheiss, 2002).

Here, using computational modeling and experiments with chick embryos, we show

that the endoderm may also play a crucial mechanical role during cardiogenesis.

Our results suggest that the endoderm actively shortens around the AIP, pulling the
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overlying mesoderm toward the midline. Although relative motion between the germ

layers (likely associated with active migration) is evident, most of the mesodermal

motion is driven by active deformations in the endoderm. Our experiments indicate

that actomyosin contraction generates this endodermal shortening, as the myosin II

inhibitor blebbistatin arrests any shortening and (in most cases) results in cardia

bifida. Microindentation tests before and after the application of blebbistatin also

show a reduction in tissue stiffness, which is associated with contraction. Finally,

dissection experiments indicate a state of contraction-induced tension around the

AIP, and finite element simulations of these experiments identify the endoderm as

the dominant contractile tissue layer. Taken together, these results suggest that, in

addition to its inductive signaling role, the endoderm also plays a crucial mechanical

role during heart tube assembly.

5.2 Materials and methods

5.2.1 Experimental methods

Embryo preparation and culture

Fertilized White Leghorn chicken eggs were incubated in a humidified, forced draft in-

cubator at 38◦C for 24 to 35 hours to yield embryos between Hamburger and Hamilton

(HH) stages 5 and 9 (Hamburger and Hamilton, 1951). Whole embryos were harvested

from the eggs using a filter paper carrier method (Voronov and Taber, 2002). The

embryo and underlying vitelline membrane were kept intact, thereby preserving the

stresses normally present in the tissue. Each embryo was then placed ventral side

up in a 35 mm culture dish, and completely submerged under a thin layer of liquid

culture media and incubated at 38◦C in 95% O2 and 5% CO2. This method prevents

artifacts caused by fluid surface tension, which alter the mechanical stresses in the

embryo (Voronov and Taber, 2002).

In some experiments, embryos were cultured in 100 µM (–)-blebbistatin (Sigma, St.

Louis, MO) to broadly suppress any cytoskeletal contraction dependent on myosin II.
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The inhibitor could be washed out by rinsing the embryo several times in PBS and

then continuing the culture with new blebbistatin-free media.

Injection labeling and tracking

To measure tissue motion in both the endoderm and mesoderm around the AIP,

small groups of cells (in both germ layers) were labeled at HH stage 7+/8- with the

lipophilic fluorescent dye DiI (Molecular Probes, Eugene, OR) mixed in a 20% sucrose

solution. DiI injections were made using pulled glass micropipettes and a pneumatic

pump (PicoPump PV830, World Precision Instruments). To label cardiogenic meso-

derm, the tip of the injection pipette was first pierced through the superficial layer of

endoderm.

Embryos were then cultured as above. For normal embryos (n=5), bright field and

fluorescence time-lapse images were captured at approximately ∼2 hr intervals using

a Leica DMLB microscope and attached video camera (Retiga 1300). Since certain

wavelengths of light disrupt the activity of blebbistatin (Kolega, 2004), images of

blebbistatin-treated embryos (n=4) were captured just prior to wash-out to minimize

exposure of the embryo to light. All subsequent (i.e., post-blebbistatin) images were

captured at ∼2 hr intervals.

Label motion was tracked using the Manual Tracking plug-in in ImageJ. Labels were

confirmed to be mesodermal if they later incorporated into the beating heart tube.

Optical coherence tomography

A Thorlabs (Newton, NJ) optical coherence tomography (OCT) system with attached

Nikon FN1 microscope was used to obtain cross-sectional image stacks of living em-

bryos (n=2). Images were acquired every 5 µm across a 3 x 3 mm scanning window.

Image stacks were then reconstructed into three-dimensional volumes and optically

sectioned using Volocity (PerkinElmer, Waltham, MA).
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Microindentation and tissue stiffness

Intact embryos (n=4) were transferred to a bath of PBS at room temperature, and

tissue stiffness was measured using a custom-built microindentation device (Zamir

et al., 2003). Briefly, the microindenter was attached to the end of a calibrated

cantilever beam whose motion was driven by a piezoelectric motor. The measured

beam deflection was then used to calculate the tissue indentation depth and applied

force. As described previously, the measured force-deflection data were fit to a four-

parameter exponential function, the derivative of which was used to determine the

tangential tissue stiffness at 10 µm deflection (Zamir et al., 2003). Three consecutive

indentations were made at each tissue location to ensure a repeatable response. To

assess the effects of contraction, each embryo was then transferred to a 35 mm culture

dish and incubated in 100 µM (–)-blebbistatin in PBS for 1-2 hr at room temperature.

Performing this incubation step at room temperature ensured that the embryo did not

develop further during these experiments. Afterward, tissue stiffness was measured

again at the same locations.

Tissue microsurgery

To probe tissue stress, small linear incisions at the medial point of the AIP were

made using the Gastromaster microsurgical device (Xenotek Engineering) with white

tips. These experiments were performed in both a group of normal HH stage 8

embryos (n=5) and in another group of stage 8 embryos after incubation in 100 µM

(–)-blebbistatin in PBS for 1-2 hr at room temperature (n=5). As discussed below,

these linear incisions opened up to form triangularly shaped wounds (when viewed

ventrally). The extent of this opening was quantified using ImageJ. A line segment

was fit to each wound edge, and the angle between the lines was measured using the

Angle Tool.

Statistics

All data are reported as mean ± SD. To compare stiffness measurements before and

after treatment with blebbistatin, we used a paired t-test implemented in SigmaPlot
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(Systat Software Inc., Chicago, IL). Circular statistics and a two-sample Watson-

Williams test were used to analyze our wound opening-angle data (Zar, 2010).

5.2.2 Computational model

Model geometry

To help interpret our tissue cutting experiments, we constructed a nonlinear 2D fi-

nite element model of the endoderm and mesoderm around the AIP using COMSOL

Multiphysics (Version 3.5, COMSOL AB, Providence, RI). As a first approximation,

we consider an idealized 2D representation of the 3D tissue geometry around the AIP

(Fig. 5.1). OCT sections were used to visualize this geometry in living HH stage 8 em-

bryos (Fig. 5.1A,B). On each section, the endoderm (blue) and cardiogenic mesoderm

(red) were approximately resolved by visual inspection. The cardiogenic mesoderm

was shown to be a thickened epithelium in close contact with a thin superficial layer

of endoderm (Fig. 5.1A,B) — a result consistent with previous morphological studies

(Manasek, 1968; Patten, 1971; Drake et al., 1990; Kirby, 2007).

For our model geometry, we consider a simplified 2D slice through the cardiogenic

mesoderm and endoderm around the AIP (Fig. 5.1B-D). In this idealized represen-

tation, both tissue layers are modeled as concentric circular 2D rings of material in

plane stress. The inner curvature of the rings represents the contour of the AIP, and

we define a polar coordinate system (r, θ), whose origin is situated at the center of the

rings (Fig. 5.1D). As observed experimentally, the model mesoderm is thicker than

the adjacent endoderm. Roller boundary conditions are specified along the medial

and lateral edges of the model; the other edges are taken as traction free.

Theoretical framework

We use a continuum mechanical framework for large deformations, in combination

with the Rodriguez et al. (1994) theory of finite volumetric growth to model the

mechanics of morphogenesis. Briefly, the total deformation of a psuedoelastic body
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Figure 5.1: Geometry for computational model. (A) Bright field and OCT images
of HH stage 8+ embryo. OCT sections were taken through medial (green), mediolateral
(orange), and lateral (purple) locations around the AIP. On each section, endoderm (blue)
and cardiogenic mesoderm (red) were resolved by visual inspection. Arrows indicate orien-
tation of each OCT section within the embryo. Scale bars represent 300 µm (black) and
100 µm (white). (B) OCT sections in (A) arrayed in 3D space. We consider a 2D slice
through the tissue. Note that the thickness of the mesoderm is greater than that of the the
adjacent endoderm. (C) 2D projection of this slice overlayed with a schematic of HH stage
8+ embryo. (D) For our model geometry, we consider an idealized 2D representation of
the tissue, and both tissue layers are modeled as concentric circular rings of pseudoelastic
material. We assume bilateral symmetry relative to the embryonic midline, and the model
geometry includes only the yellow boxed region in (C). A polar coordinate system (r, θ) has
its origin at the center of the rings. See text for further details.

can be described by the deformation gradient tensor

F = I + (∇u)T , (5.1)

where I is the identity tensor, ∇ is the gradient operator in the undeformed configura-

tion, and u is the displacement vector between a material point P in the undeformed

configuration and its image p in the deformed configuration. The tensor F thereby

maps material points between the undeformed and deformed configurations of a body.

Contraction is simulated by negative growth, whereby F is decomposed into a con-

traction (or growth) tensor G and an elastic deformation gradient tensor F∗ by the

relation F = F∗ ·G (Rodriguez et al., 1994). The tensor G changes the zero-stress

configuration of each material element (akin to thermal contraction of a passive ma-

terial), and F∗ generates mechanical stress by both enforcing geometric compatibility

between material elements and accounting for the elastic response of the material to

any applied loads. This theory has been used to model several different morphogenetic

processes including head fold formation (Varner et al., 2010) and cardiac c-looping
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(Voronov et al., 2004; Ramasubramanian et al., 2006) in the chick embryo, cortical

folding in the developing ferret brain (Xu et al., 2010), and ventral furrow formation

in Drosophila (Muñoz et al., 2007, 2010).

Mechanical properties

Applied loads and mechanical deformations are coupled through the constitutive prop-

erties of the material. As a first approximation, we model both the endoderm and

mesoderm as isotropic, slightly compressible, modified neo-Hookean materials char-

acterized by the strain-energy density function

W =
µ

2

(
Ī∗ − 3

)
+

κ

2
(J∗ − 1)2 , (5.2)

where µ is the small-strain shear modulus, κ is the bulk modulus, J∗ = detF∗ is the

elastic volume ratio, and Ī∗ = J∗−2/3 tr (C∗) is a modified first invariant of the right

Cauchy-Green elastic deformation tensor C∗ = F∗T · F∗. Our assumption of slight

material compressibility yields numerical solutions that converge more readily than

when near incompressibility is enforced. Changing the bulk modulus (κ̄ = κ/µ =

1000) by an order of magnitude does not qualitatively alter our model results.

The Cauchy stress tensor σ depends on F∗ through the relation (Taber, 2004):

σ = J∗−1F∗ · ∂W

∂F∗T
. (5.3)

Stress components (σ̂ii) are normalized with respect to the passive small-strain shear

modulus µp (i.e., σ̂ii = σii/µp) and reported in the convected coordinate system (r̄, θ̄)

which is embedded in the material and deforms with it. In the undeformed configu-

ration, (r̄, θ̄) is coincident with (r, θ). Details on how to implement this theoretical

framework in COMSOL Multiphysics (Version 3.5) can be found in Taber (2008).

Simulating cytoskeletal contraction

Active contraction is specified in the model by varying the components of G. We

assume this contraction occurs only along the orthogonal directions er and eθ, so

77



G = Grerer + Gθeθeθ where Gr and Gθ are contraction ratios; Gi = 1 for passive

material and Gi < 1 specifies active contraction. As shown below, endodermal line

elements shorten around the AIP (i.e., in the circumferential or θ-direction). We

take Gr = 1 and Gθ < 1 to simulate active circumferential contraction in either the

endoderm or mesoderm. Also, since contracting tissues stiffen, a concomitant material

stiffening accompanies our specified contraction (i.e., µ increases as Gθ decreases).

Here, we take µ = µp/Gθ, where (as a first approximation) µp is assumed equivalent

in both the endoderm and mesoderm. More details for the model are provided below.

5.3 Results

Approximately 24 hours into the 21-day incubation period of the chick, the head

fold forms at the anterior end of the blastoderm (Varner et al., 2010) and initiates

formation of the foregut and anterior intestinal portal (AIP) (Bellairs, 1953; Stalsberg

and DeHaan, 1968; Varner et al., 2010). At this stage of development (i.e., HH stage

7), the cardiogenic mesoderm is organized as a pair of bilateral epithelia on either

side of the embryonic midline (Stalsberg and DeHaan, 1969; Moreno-Rodriguez et al.,

2006; Abu-Issa and Kirby, 2008). These heart fields then move to the midline and

fuse above the AIP to form the heart tube. During this period, the mesoderm remains

in close contact with the endoderm around the AIP (Fig. 5.1A) (Linask and Lash,

1986; Schultheiss et al., 1995).

5.3.1 Cardiogenic mesoderm and adjacent endoderm move

together toward midline

To dynamically measure the motion of the endoderm and mesoderm during heart

tube assembly, we injected fluorescent DiI labels into both germ layers before the

heart tube had formed (HH stage 7+/8-) (Fig. 5.2A,B). Overlapping labels were

placed in the lateral region of the AIP in both the endoderm and mesoderm, and a

single label was placed in the endoderm at the midline (Fig. 5.2A). Embryos were

then cultured, and labels were tracked in time as the heart tube formed (Fig. 5.2B-D

and see Movie 1 in the supplementary material).
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Figure 5.2: Tracking motion of endoderm and cardiogenic mesoderm around the
AIP during heart tube assembly. (A) Schematic of representative HH stage 7+ embryo
shown in (B). Overlapping mesodermal (red arrowhead) and endodermal (blue arrowhead)
fluorescent labels were injected in the lateral region of the AIP, while a single fluorescent
label was placed in the endoderm at the medial point of the AIP (blue arrowhead). Em-
bryos were cultured ex ovo and labels were tracked in time as the heart tube formed. The
distance of both lateral labels from the midline (dM and dE for the mesoderm and en-
doderm, respectively) was measured at each timepoint. The length L between the two
endodermal labels, and the separation distance dS between the (initially) adjacent labels
in the endoderm and mesoderm were also measured. (B-D) Representative embryo at 0,
3, and 9 hr of incubation. Red and blue tracks represent mesodermal and endodermal
label trajectories, respectively. Scale bar = 200 µm. (E) Distance of lateral labels from
the midline (mesoderm, red; endoderm, blue), and separation distance between the labels
(dashed black) plotted as functions of time (n=5). (F) Endodermal stretch ratio around
the AIP as a function of time (n=5). The distance between endodermal labels at 0 hr (L0)
is used as the reference length. Error bars indicate ± SD. During heart tube formation, the
endoderm and cardiogenic mesoderm move together toward the midline, as the endoderm
shortens around the AIP. AIP = anterior intestinal portal.
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As the AIP descended, the medial endodermal label did not move into the forming

foregut pocket. Instead it followed a posterior trajectory and maintained a similar

position relative to the regressing AIP (Fig. 5.2B-D, medial blue lines).

Both labels in the lateral region of the AIP, however, moved toward the embry-

onic midline (Fig. 5.2B-D, red and blue lateral lines), and of these two, the label

in the mesoderm (red) incorporated into the nascent heart tube. Both germ layers

approached the midline at nearly identical rates (Fig. 5.2E), and the tracked tra-

jectories of both labels were remarkably similar, suggesting that the motions of the

cardiogenic mesoderm and adjacent endoderm are correlated (Fig. 5.2D). Although

the initially overlapping labels moved apart as the heart tube formed (Fig. 5.2E),

likely due to active crawling of the mesoderm over the endoderm, the contribution

of this migration to the medial motion of the mesoderm was relatively minor. The

lateral mesoderm and endoderm essentially moved together toward the midline.

In addition, the endoderm shortened (i.e., narrowed) tangential to the AIP as the

heart tube formed, as the distance between the medial and lateral endodermal labels

decreased by greater than 60% (Fig. 5.2F). At HH stage 7+ (i.e., before heart field

fusion), no mesoderm is present in the medial AIP (Cui et al., 2009). Since the

mesoderm is not continuous across the embryonic midline, these results suggest that

the medial movement of both germ layers is driven by endodermal shortening around

the AIP.

5.3.2 Cytoskeletal contraction drives endodermal shortening

around AIP

To explore the role of cytoskeletal contraction in this process, we cultured head fold

stage embryos (HH stages 5-7) in 100 µM blebbistatin to broadly suppress the activity

of myosin II. In these embryos, heart field fusion was impaired and complete cardia

bifida often occurred (in 5 out of 6 embryos) (Fig. 5.3). In these cases the foregut

remained open ventrally, the AIP failed to descend, and by the end of the experiment,

two asynchronously beating heart tubes were observed on either side of the embryonic

midline (Fig. 5.3D). Proper heart field fusion thus requires actomyosin contraction,

and we speculated that this contraction drives the observed endodermal shortening.
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Figure 5.3: Inhibiting myosin-II dependent contraction impairs heart field fusion
and causes cardia bifida. Representative head fold stage embryo (n=6) cultured in 100
µM blebbistatin at (A) 0 hr, (B) 6 hr, (C) 15 hr, and (D) 27 hr of incubation. At the
end of the incubation period, two asynchronously beating heart tubes (HT) were observed
on either side of the embryonic midline. Scale bar = 500 µm.

To test this idea, we repeated our injection labeling experiments in the presence of

blebbistatin (Fig. 5.4). In these experiments only endodermal cells were labeled, as

we were primarily concerned with deformations in the endoderm. After culture in

100 µM blebbistatin, the labels in the medial and lateral regions of the AIP did not

move together as before. Instead the distance between them increased, indicating

tissue relaxation (Fig. 5.4B,E), and the AIP did not descend as in normal embryos

(compare Figs 5.2C and 5.4B). Blebbistatin was then washed out after 3 hours, and

culture was continued. After the wash-out, the labels began to approach one another

(Fig. 5.4C,D) and the distance between them shortened at a rate comparable to that

seen in normal embryos (Fig. 5.4E). Moreover, the AIP resumed its posterior descent.

During some experiments, mesodermal cells adjacent to the lateral endoderm were

also labeled. In these few cases, when treated with blebbistatin, the mesodermal

labels tracked with their endodermal counterparts. Only after wash-out did the two

overlapping labels separate.

This resumption of normal development and contractility indicates that the foregut

and heart defects observed during prolonged treatment with blebbistatin are likely

not the result of irreversible toxicity or rampant cell death. These results support
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Figure 5.4: Myosin-II dependent contraction drives endodermal shortening
around AIP. (A,B) Fluorescent labels were injected into the endoderm at medial and
lateral locations around the AIP (blue arrowheads); these labels were separated by a dis-
tance L. Representative embryo cultured in 100 mM blebbistatin after (A) 0 hr and (B) 3 hr
of incubation. At 3 hr of incubation, blebbistatin was washed out and culture was resumed.
(C,D) Same embryo after 6 hr and 10 hr of total incubation. (E) Plots of the endodermal
stretch ratio around the AIP as a function of time for both blebbistatin-treated (solid line,
n=4) and normal (dashed line, n=5) embryos. The distance between endodermal labels
at 0 hr (L0) is used as the reference length. Error bars indicate ± SD. The dashed curve
is identical to that shown in Fig. 5.2F. These results suggest that cytoskeletal contraction
drives endodermal shortening around the AIP. Scale bar = 200 µm.

our hypothesis that actomyosin contraction drives endodermal shortening around the

AIP.

Still, additional experiments were used to further confirm the presence of contraction.

Because actively contracting tissues stiffen, we performed microindentation tests in

embryos before and after blebbistatin exposure (Fig. 5.5). We indented medial, medi-

olateral, and lateral locations around the AIP in normal HH stage 8 embryos and

calculated force-displacement (FD) curves for each location to locally measure tissue

stiffness (i.e., endoderm, mesoderm, and the accompanying extracellular matrix taken

together) (Fig. 5.5A,B). These curves were nonlinear, so the tissue stiffness (i.e., the

tangential slope of each FD curve) depended on indentation depth. We therefore fit

an exponential regression curve to each set of experimental FD data, and calculated

the (tangential) tissue stiffness at 10 µm to characterize the local tissue response

(Fig. 5.5B,E). In control embryos, stiffness around the AIP decreased with distance

from the midline (Fig. 5.5E, solid bars).

Contraction was then suppressed by incubating each embryo in 100 µM blebbistatin

at room temperature for ∼1–2 hr, and the microindentation experiments were re-

peated. Tissue stiffness decreased at each location after incubation with blebbistatin

(Fig. 5.5E, compare Figs 5B and C). Although this result suggests that blebbistatin
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had suppressed active contraction in the AIP, changes in stiffness can be caused by

either changes in geometry or changes in material properties. Thus, to rule out the

possibility that the observed changes in stiffness were simply the result of morpho-

logical differences after contraction had been suppressed, we used OCT to image

HH stage 8 embryos before and after treatment in blebbistatin (Fig. 5.5D). Optical

sections of the tissue at each indentation location revealed only minor changes in

geometry after incubation in blebbistatin, confirming that the observed decreases in

stiffness were likely caused by changes in the local, contractile state of the tissue.

Somewhat suprisingly, however, a stiffness gradient around the AIP was still present

after incubation in blebbistatin (Fig. 5.5E).

5.3.3 Endoderm (not mesoderm) is the primary contractile

tissue layer

Active contraction tangential to the AIP would tend to generate tension in that direc-

tion. To estimate the mechanical stress in the tissue, we made a small linear incision

at the medial point of the AIP. In normal embryos, the resulting wounds immedi-

ately opened (with a mean opening angle of 59◦± 3◦), indicating a state of tension

(Fig. 5.6A-C). Measuring the immediate tissue behavior precluded the possibility that

an active healing response had affected our results. When similar cuts were made in

embryos after treatment in blebbistatin for ∼1 hr, the wounds still opened but to a

significantly lesser extent (with a mean opening angle of 33 ± 3◦) (Fig. 5.6D-F). These

results indicate that the observed tension tangential to the AIP is at least partly due

to actomyosin contraction.

To determine whether the mesoderm or endoderm is the dominant contractile tis-

sue layer during this process, we constructed a 2D nonlinear finite element model

of both germ layers around the AIP (see section 5.2.2 for details). Briefly, we con-

sider an idealized 2D representation of the tissue (Fig. 5.1). In this 2D slice, the

endoderm and mesoderm are modeled as concentric circular rings of pseudoelastic

material (Fig. 5.1D); the AIP corresponds to the inner curvature of the rings. We

also specify a polar coordinate system (r, θ) such that the r- and θ-directions run

parallel and perpendicular, respectively, to the radii of the rings.
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Figure 5.5: Microindentation tests indicate active cytoskeletal contraction around
AIP. (A) Microindentation tests were performed at medial (red), mediolateral (blue), and
lateral (green) locations around the AIP in HH stage 8+ embryos before and after incubation
in 100 µM blebbistatin. Arrows indicate indentation locations. (B,C) Force-displacement
curves for a representative embryo (B) before and (C) after treatment in blebbistatin. (D)
Representative OCT sections of tissue geometry at each indentation location both before
and after treatment with blebbistatin. Arrows indicate position of the indenter. Scale bar
= 100 µm. (E) Plot of tissue stiffness at 10 µm displacement before (filled bars) and after
(hatched bars) blebbistatin exposure. *, P < 0.05 and **, P < 0.01 (paired t-test, n=4).
Tissue stiffness decreased at each tissue location after incubation in blebbistatin. Because
actively contracting tissues stiffen, these results further suggest the presence of actomyosin
contraction around the AIP.
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Figure 5.6: Tension around AIP decreases when contraction is suppressed. (A-
C) Small linear incisions were made at the medial point of the AIP in normal HH stage 8
embryos (n=5). Dashed white lines indicate the contour of the AIP (A) before and (B) after
cutting. Opening of wound indicates tension along AIP. (C) Resulting wound geometry was
characterized by the opening angle α = 59◦ ± 3◦. (D-F) Similar incisions were made in
HH stage 8 embryos after incubation in 100 µM blebbistatin (n=4). Dashed white lines
indicate the contour of AIP (D) before and (E) after cutting. (F) Wound geometry was
characterized by the opening angle α′ = 33◦ ± 3◦. Wounds opened to a significantly lesser
extent than in control embryos (P < 0.001, two-sample Watson-Williams test), indicating
a reduction in tissue tension after blebbistatin exposure.
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Active contraction is specified in the model only along the θ-direction (i.e., by as-

signing Gθ < 1 with Gr = 1), since we observed endodermal shortening tangential

to the AIP (Fig. 5.2). Our cutting experiments are then simulated by modifying the

boundary conditions along the midline (i.e., switching a portion from roller to free) to

create a linear incision at the medial point of the AIP (dotted lines in Fig. 5.7C,G).

Contraction was specified in either the endoderm, mesoderm, or both layers, and the

simulated wound geometry was compared to that observed experimentally.

During our cutting experiments, the contour of the AIP curled posteriorly and in-

creased in curvature in the neighborhood of the cut (compare Figs 5.7A,A′). In our

model, when we specify contraction in the endoderm only and simulate an incision

at the midline (Fig. 5.7B-D), the cut opens as observed experimentally. In addition,

the model AIP curls posteriorly and qualitatively matches the deformed contour of

the AIP in our cutting experiments (compare white contour inside dashed red box in

Fig. 5.7A′ with Fig. 5.7D). The model, however, does not capture the nearly straight

wound edges observed experimentally. When contraction is simulated in the meso-

derm only, the model wound fails to open, and the shape of the AIP does not match

that seen in experiments (Fig. 5.7F-H).

Both of these models have the same overall shape before cutting is simulated. These

contrasting results are therefore due to differences in stress across the tissue. When

the endoderm contracts, the circumferential stresses (in the θ-direction) are com-

pressive in the mesoderm and tensile in the endoderm (Fig. 5.7E). If the mesoderm

contracts, however, the trend is reversed — the endoderm is in compression while the

mesoderm is in tension (Fig. 5.7I). In this second case, compressive stresses in the

endoderm drive wound closure.

These two models can be considered paradigmatic cases since all of the contraction

is specified in either one germ layer or the other. Intermediate models, which include

different ratios of contractility between the two layers, yield intermediate wound ge-

ometries between those shown in Figs 5.7D and H (Fig. 5.8).

Taken together, these results suggest that, during heart tube formation, the endoderm

is the dominant contractile tissue layer. This contraction generates tension in the

endoderm, which pulls the cardiogenic mesoderm toward the midline.
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Figure 5.7: Computational model indicates endoderm as primary contractile tis-
sue layer. (A,A) Deformed shape of the AIP (A) before and (A) after cutting (same as
Figure 6A,B). (B-D) When (B) contraction is specified in the endoderm only and (C) an
incision is simulated at the midline, (D) the cut opens as observed experimentally. The
model AIP curls posteriorly and qualitatively matches the deformed contour of the AIP in
our cutting experiments (compare white contour inside dashed red box in (A) with geom-
etry in (D)). (E) When the endoderm contracts, the (convected) circumferential Cauchy
stresses are compressive in the mesoderm and tensile in the endoderm (computed along
blue line in (C)). (F-H) When (F) contraction is simulated in the mesoderm only, (G) the
model cut (H) fails to open up, and the shape of the AIP is not curled posteriorly as in
experiments. (I) In this case, the endoderm is in compression while the mesoderm is in
tension (computed along red line in (G)). Agreement between the experiments and model
in (D), but not in (H), indicates that the endoderm (not the mesoderm) is the primary con-
tractile tissue layer. r̂ is the normalized radial distance across the rings, where 0 represents
the inner curvature. AIP = anterior intestinal portal.
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Figure 5.8: Varying ratio of contractility between model endoderm and meso-
derm. Cytoskeletal contraction is simulated in the model by specifying values for the
circumferential contraction ratio Gθ. If contraction is specified (A) in the endoderm only
(where Gθ,E = 0.6), the simulated cut opens and the contour of the AIP curls posteriorly. If
contraction, however, is specified (D) in the mesoderm only (where Gθ,M = 0.92), the model
wound fails to open. In this case, the contraction ratio Gθ,M is specified so that model has
an equivalent global geometry to that in (A) before cutting is simulated. When different
ratios of contractility are specified between the two germ layers (e.g., 67% Gθ,E and 33%
Gθ,M in (B), 33% Gθ,E and 67% Gθ,M in (C)), the models produce intermediate wound
geometries between those in the paradigmatic cases of (A) and (D). Here, 100% Gθ,E = 0.6;
0% Gθ,E = 1; 100% Gθ,M = 0.92; and 0% Gθ,M = 1. Plots of the normalized convected
Cauchy stress σ̂θ̄θ̄ show the endoderm progressively changes from a state of tension in (A)
to compression in (D). AIP = anterior intestinal portal.

5.4 Discussion

Morphogenesis is fundamentally a physical process, as mechanical forces deform devel-

oping tissues in a coordinated way to create biological form (Taber, 1995; Lecuit and

Lenne, 2007; Gjorevski and Nelson, 2010b; Davidson, 2011). In recent years, groups

of developmental biologists, physicists and engineers have been paying renewed at-

tention to the mechanics of morphogenesis — how forces are generated in the embryo

(Hutson et al., 2003; Rauzi et al., 2008; Martin et al., 2009; Martin, 2010; Wozniak

and Chen, 2009), how those forces are integrated into tissue-level deformations (Ra-

masubramanian et al., 2006; Chen and Brodland, 2008; Martin et al., 2010; Varner

et al., 2010; Brodland et al., 2010), and how they might regulate both cytoskeletal

dynamics (Bertet et al., 2004; Fernandez-Gonzalez et al., 2009; Pouille et al., 2009;

Zhou et al., 2010; Filas et al., 2011) and regional gene expression (Farge, 2003; De-

sprat et al., 2008). Here, we have characterized some of the mechanical forces that

drive heart tube assembly in the avian embryo.
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5.4.1 Physical forces that shape the heart tube are poorly

understood

Much work has been done to map the regions of the embryo that are destined to

form the heart (Rawles, 1943; Stalsberg and DeHaan, 1969; Redkar et al., 2001; Cui

et al., 2009), and many of the important genetic and molecular factors that drive

cardiac specification and differentiation have been identified (Olson and Srivastava,

1996; Yutzey and Kirby, 2002; Buckingham et al., 2005; Abu-Issa and Kirby, 2007).

The mechanical forces that physically drive formation of the primitive heart tube,

however, remain relatively uncharacterized (Taber, 2006).

Still, several investigators have speculated that a combination of forces likely drives

heart tube assembly (Stalsberg and DeHaan, 1969; Linask and Lash, 1986; Drake

and Jacobson, 1988; Meilhac and Buckingham, 2010). In particular, the mechanism

by which the bilateral fields of cardiogenic mesoderm move toward the midline and

fuse to form the heart tube has garnered the most experimental attention. Early

evidence in avian embryos suggested that this convergence is driven largely by active

crawling of the mesoderm over the underlying endoderm (DeHaan, 1963; Linask and

Lash, 1986, 1988a,b), and the possibility that other physical mechanisms also might

contribute to this process for the most part faded from view. A notable exception,

however, is the study by Wiens (1996), who speculated that cytoskeletal contraction

within the mesoderm itself might drive its convergence toward the midline. Our

results support this contraction idea, but suggest that the source of contraction is the

endoderm rather than the mesoderm.

5.4.2 Endoderm has generally been considered an inductive

substrate

Mounting evidence has established a clear signaling role for the endoderm during

early cardiogenesis (Nascone and Mercola, 1996; Lough and Sugi, 2000; Brand, 2003).

Removal of (or defects in) the endoderm can produce abnormal heart development

(Orts-Llorca, 1963; Rosenquist, 1970), and the endoderm is necessary for the initia-

tion and maintenance of several cardiac transcription factors (Alsan and Schultheiss,
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2002). Others have shown, however, that explants of cardiogenic mesoderm removed

post-gastrulation are still capable of expressing a host of cardiac-specific genes in the

absence of endoderm (Gannon and Bader, 1995; Du et al., 2003). Even so, the en-

doderm is at least transiently required to generate beating heart tissue (Gannon and

Bader, 1995). Furthermore, mesoderm not fated to contribute to the heart can be

induced to express cardiac marker genes by co-culture with endoderm normally adja-

cent to the cardiogenic mesoderm (Schultheiss et al., 1995). This endoderm expresses

the cardiac inducing factors BMP-2 (Schultheiss et al., 1997; Andrée et al., 1998) and

FGF-8 (Alsan and Schultheiss, 2002), as well as the Frizzled-related protein Crescent

(Marvin et al., 2001), which inhibits Wnt signaling – an antagonizer of cardiogenesis.

Such evidence has contributed to the generally accepted view that the role of the endo-

derm during heart tube formation is to serve as an inductive substrate for the actively

crawling mesoderm, secreting various growth factors that induce cardiac specification

and differentiation in the mesoderm as it migrates past.

5.4.3 Endoderm actively contracts to pull cardiogenic meso-

derm toward midline

In the present study, we have used a combination of computational modeling and ex

ovo experiments with chick embryos to show that the endoderm also plays a crucial

mechanical role during cardiogenesis. Our results suggest that the endoderm around

the AIP actively contracts and pulls the bilateral fields of cardiogenic mesoderm

toward the midline, enabling them to properly fuse and form the heart tube.

Dynamically tracking the motions of the mesoderm and endoderm during heart tube

assembly revealed that both layers move toward the midline together (Fig. 5.2). Al-

though relative movement between the two germ layers was observed (Fig. 5.2E),

possibly reflecting active migration, its contribution to the overall convergence of the

cardiogenic mesoderm was relatively minor. The motions of the endodermal labels

in these experiments are consistent with the pioneering work of Rosenquist (1966)

and Stalsberg and DeHaan (1968), who used tritiated thymidine labeling and iron

oxide particles, respectively, to track endodermal displacements. Although both of

these studies reported endodermal shortening around the AIP, neither dynamically

90



measured the concomitant motion of the cardiogenic mesoderm or investigated the

mechanical stresses present in the tissue. Even so, Stalsberg and DeHaan (1968)

proposed a simple mechanical model for foregut morphogenesis, contending that the

posterior descent of the AIP is driven by tension around the AIP — a tension that is

generated by elongation of the notochord and regression of Henson’s node.

Here, however, we have shown that myosin-II based cytoskeletal contraction drives

both endodermal shortening and AIP descension, and that inhibiting this contrac-

tion with blebbistatin can lead to cardia bifida and abnormal foregut morphogenesis

(Fig. 5.3). Notably, both elongation of the notochord and regression of Henson’s node

occur relatively normally in these embryos even with the observed heart and foregut

defects. We therefore suggest an alternative mechanism to that of Stalsberg and

DeHaan (1968). Rather than deformations caused by forces at a distance (i.e., noto-

chordal elongation, etc.), local contraction around the AIP itself drives endodermal

shortening and thereby both AIP descension and heart field convergence.

Wei et al. (2001) have reported cardia bifida in chick embryos treated with the Rho

kinase inhibitor Y27632, which also suppresses cytoskeletal contraction. They con-

cluded, however, that the observed heart and foregut defects were not due to a lack

of contractility, since treatment with the myosin light chain kinase (MLCK) inhibitor

ML-9 did not reproduce the observed abnormalities. Previous work in our labora-

tory, however, has shown that the similar but more specific MLCK inhibitor ML-7

(Bain et al., 2003) did not significantly reduce either myosin regulatory light chain

phosphorylation or tissue stiffness in looping chick hearts (Rémond et al., 2006). It

is thus possible that ML-9 did not completely suppress cytoskeletal contraction, and

that cardia bifida produced by treatment with Y27632 was (at least in part) due to

attenuated contraction.

To determine whether the cardiogenic mesoderm or the adjacent endoderm is the

dominant contractile layer during heart tube assembly, we constructed a 2D compu-

tational model of both germ layers around the AIP (Fig. 5.1). When a linear incision

is simulated at the midline, the deformed shape of the AIP matches our cutting ex-

periments only if contraction is included (predominantly) in the endoderm (Fig. 5.7).

The model predicts endodermal tension and mesodermal compression — a result
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consistent with previous work in our laboratory which reported mesodermal com-

pression in the fusing omphalomesenteric veins of HH stage 10 chick hearts (Voronov

et al., 2004). Furthermore, preliminary data from our laboratory has estimated a

small-strain shear modulus of 50–100 Pa for the tissue around the AIP (V.D.V., un-

published). Our model thus predicts peak stresses in the contracting endoderm that

are between 300–600 Pa, which are on the order of the contractile stresses gener-

ated within a coherent and collectively migrating cell sheet (Trepat et al., 2009). We

suggest therefore that active contraction around the AIP is primarily endodermal in

origin, not mesodermal as postulated by Wiens (1996).

Taken together, these results suggest an essential mechanical role for the endoderm

during heart tube assembly (Fig. 5.9). Instead of just serving as a passive, secretory

substrate for the crawling cardiogenic mesoderm (Fig. 5.9C), the endoderm around

the AIP actively contracts and pulls (i.e., convects) the heart fields toward the midline

(Fig. 5.9D), enabling them to fuse and form the heart tube. How this contraction

is spatially distributed, and how this distribution may contribute to the observed

morphogenetic movements remain open questions. In particular, it would be interest-

ing to determine whether the observed stiffness gradient around the AIP (Fig. 5.5E)

is due to spatial variations in tissue geometry, mechanical properties, actomyosin

contractility, or the amount of cross-linking within the extracellular matrix (ECM).

Other recent studies of avian embryogenesis have shown that cell displacements are

similarly convected by ECM (i.e., substrate) motion during the processes of primitive

streak formation (Zamir et al., 2008), gastrulation (Zamir et al., 2006), and axial

elongation (Bénazéraf et al., 2010). The interface between the cardiogenic mesoderm

and adjacent endoderm is textured with an abundant ECM containing fibronectin,

laminin, and collagen types I and IV (Linask and Lash, 1986; Drake et al., 1990;

Wiens, 1996). The two tissue layers are thus intimately coupled, with numerous in-

terdigitating cell processes extending through the layer of ECM (Linask and Lash,

1986). Contractile forces generated in the endoderm could thus be plausibly trans-

mitted to the overlying mesoderm, and we speculate that ECM deforms with the

contracting endoderm.

Both our label tracking experiments and model, however, are limited to two dimen-

sions and fail to accurately capture the out-of-plane folding that both tissue layers
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Figure 5.9: Endoderm actively contracts to pull the cardiogenic mesoderm to-
ward the midline. (A) Schematic of HH stage 7 embryo. The cardiogenic mesoderm
(red) is organized as a pair of bilateral epithelia that are separated on either side of the
embryonic midline and remain in close contact with the underlying endoderm (blue). (B)
Schematic of HH stage 8+ embryo. As the AIP descends, the cardiogenic mesoderm moves
toward the midline and fuses to begin forming the early heart tube. (C) Investigators
have suggested that the endoderm primarily serves as an inductive substrate for the ac-
tively crawling mesoderm (red arrows). (D) Our results suggest that the endoderm also
has a distinct mechanical role in early cardiogenesis — it actively contracts (blue arrows) to
pull the cardiogenic mesoderm toward the midline. Although relative motion (red arrows)
occurs between the endoderm and mesoderm during this process (likely due to collective
migration), this motion is much less than the convection caused by contraction. AIP =
anterior intestinal portal.
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undergo during this process. Although our results offer qualitative insight into the

mechanics of heart tube formation, further experimental and computational work is

needed to more fully characterize the 3D nature of this problem. Imaging technologies

such as OCT (Filas et al., 2007) or dynamic wide-field fluorescence imaging (Zamir

et al., 2006, 2008; Sato et al., 2010) are sure to prove useful tools in this regard.

It also remains to be seen whether endodermal contraction around the AIP proceeds

in the pulsatile, ratchet-like manner described during both Drosophila ventral furrow

formation (Martin et al., 2009) and dorsal closure (Solon et al., 2009). The endo-

derm shortens so dramatically (> 60%) as the AIP descends (Fig. 5.2F) that it seems

reasonable that the contracting cytoskeleton may need to stabilize or remodel at inter-

mediate configurations (akin to airway smooth muscle cells) to accomplish an active

shortening of this magnitude (Fredberg et al., 1997). These stabilized configurations

could explain the observed residual tension in the AIP after treatment in blebbistatin

(Fig. 5.6D-F). Remodeling of the ECM between the endoderm and mesoderm might

also contribute to such stabilizations.

In addition, it remains a possibility that, once they have moved to the midline, the

fusing cardiogenic mesoderm may (much like a zipper) provide a driving force behind

AIP descension (Moreno-Rodriguez et al., 2006). Recent work, however, has shown

that ectopic expression of Wnt3a can generate a cardia bifida phenotype without

any apparent defects in AIP descension or foregut morphogenesis (Yue et al., 2008).

Moreover, since the AIP begins its descent well before there is any mesoderm at the

midline, we speculate that even after heart field fusion, contraction continues to drive

the posterior descent of the AIP.

5.4.4 Role for endodermal contractility in cardia bifida mu-

tants?

Several gene mutants produce a cardia bifida phenotype (Meilhac and Buckingham,

2010), and it is unclear whether any are due to suppressed levels of endodermal con-

tractility. An intriguing possibility is the Gata4−/− mouse mutant, which has both

cardia bifida and abnormal foregut morphogenesis (Kuo et al., 1997; Molkentin et al.,

1997). GATA-4 is normally expressed in both the cardiogenic mesoderm and adjacent
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endoderm. In the intriguing mosaic experiments of Narita et al. (1997), however, wild-

type (Gata4+/+) endoderm alone was sufficient to rescue both the cardia bifida and

abnormal foregut phenotype in embryos that otherwise consisted only of Gata4−/−

cells. GATA-4 thus seems to be required in the endoderm, not the mesoderm, for

proper heart tube assembly (Narita et al., 1997; Watt et al., 2004). Since GATA-

4 has also been shown to regulate the expression of cytoskeletal proteins (Molkentin

et al., 1994), it may be involved in contractility and (consequently) endodermal short-

ening around the AIP. It would be interesting to investigate the role of actomyosin

contractility in the these mutants.

In zebrafish, other types of genetic perturbations produce both endodermal defects

and cardia bifida, such as one-eyed pinhead (Schier et al., 1997) and casanova (Alexan-

der et al., 1999). Intuiting a possible physical role for the endoderm here, however,

is decidedly more problematic, since it seems to play a somewhat different role. Sev-

eral recent studies have suggested that heart field convergence in zebrafish is in fact

largely driven by active crawling of cardiomyocytes toward the midline (Holtzman

et al., 2007), a process likely regulated by fibronectin (Trinh and Stainier, 2004;

Garavito-Aguilar et al., 2010). How deformations in the endoderm may contribute to

this process remains unclear. Other recent work in ascidian embryos, however, has

suggested a possible morphogenetic role for the endoderm during heart progenitor

convergence (Ragkousi et al., 2011).

In conclusion, we propose an active mechanical role for the endoderm during heart

tube formation. This work constitutes a new step toward characterizing some of the

mechanical forces that shape the vertebrate heart. How these forces are regulated by

(or in turn regulate) the various molecular and genetic factors involved in cardiogen-

esis remains an exciting avenue of research to explore, as we seek to connect genetic

and molecular mechanisms of development with the mechanics of morphogenesis.
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Chapter 6

On tissue stiffness and contractility

gradients during heart tube

formation

6.1 Introduction

The heart is the first mechanically functioning organ to form in the embryo. Similar

to other organ primordia (Lubarsky and Krasnow, 2003), the embryonic heart forms

as a simple tube — in this case, a straight muscle-wrapped tube situated along the

ventral side of the embryo (Stalsberg and DeHaan, 1969; Taber, 2006; Abu-Issa and

Kirby, 2007).

Given that avian heart development parallels that in humans (DeHaan, 1967), the

chick embryo is well suited to studies of early cardiogenesis. During gastrulation,

when the primary germ layers (endoderm, mesoderm, and ectoderm) are established,

the early chick embryo is organized as a flat sheet of cells. The cardiac progenitors

reside in the lateral plate mesoderm, where they form a pair of epithelia situated

on either side of the embryonic midline (Stalsberg and DeHaan, 1969; Abu-Issa and

Kirby, 2008). After the head fold has formed, the initial planar geometry of the em-

bryo is broken and the cardiogenic mesoderm folds out-of-plane and moves toward

the embryonic midline. Then, in one of the most dramatic events during early am-

niote development, the bilateral fields of cardiac progenitors fuse behind the anterior

intestinal portal (AIP) to form the primitive heart tube (Moreno-Rodriguez et al.,

2006; Cui et al., 2009). During this entire process, the mesoderm remains in close
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contact with the underlying endoderm (Linask and Lash, 1986; Schultheiss et al.,

1995).

In Chapter 5, we showed that in addition to its inductive signaling role, the endo-

derm around the AIP actively contracts and pulls the fields of cardiogenic mesoderm

toward the midline, enabling them to form the heart tube. How this contraction is

spatially distributed, and how different distributions of contraction might affect the

morphogenetic deformations around the AIP, however, are still open questions. More-

over, whether the measured stiffness gradient around the AIP, which decreases with

distance from the midline, is due to variations in material properties, contractility, or

differences in geometry still remains unresolved.

Here, we employ a growth theory for beams and use it to qualitatively investigate

the effects of spatial gradients in contractility and material properties around the

AIP. Considered in combination with label tracking and tissue cutting experiments

using whole chick embryos, these models suggest that the distribution of contraction

around the AIP is relatively uniform.

Moreover, microindentation experiments indicate that, even when contraction is broadly

suppressed using the myosin II inhibitor blebbistatin, a stiffness gradient is still

present around the AIP. Finite element simulations of these experiments suggest that

this residual stiffness gradient is caused by a spatial gradient in the passive mechanical

properties of the tissue, as opposed to local differences in tissue geometry.

These results offer insight into how embryonic tissues are spatially patterned dur-

ing the process of heart tube formation, and raise new questions about the cellular

mechanisms and signaling networks that drive this morphogenetic event. This work

highlights how variations in both contractility and mechanical properties can alter

the deformations observed during development, and our methods can be readily gen-

eralized to different morphogenetic processes.
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6.2 Experimental methods

6.2.1 Whole embryo harvesting and dissection

Fertilized White Leghorn chicken eggs were incubated in a humidified, forced draft

incubator at 38◦C for 28 to 34 hours to yield embryos between Hamburger and Hamil-

ton (HH) stages 7 and 8 (Hamburger and Hamilton, 1951). Whole embryos were har-

vested using a filter paper carrier method (Voronov and Taber, 2002), thus preserving

the mechanical stresses present in the tissue. Each embryo was soaked in a bath of

phosphate buffered saline (PBS) at room temperature to remove any adherent yolk

particles, and was then placed ventral side up in a 35 mm culture dish. The entire

embryo/filter paper assembly was then submerged under a thin layer of PBS.

6.2.2 Tissue cutting experiments

To qualitatively measure tissue stress, small linear incisions were made at different

locations around the AIP using the Gastromaster microsurgical device (Xenotek En-

gineering) with white tips. These experiments were performed at room temperature

with a group of normal HH stage 8 embryos in PBS (n=5). The extent of wound

opening was quantified using ImageJ. A line segment was fit to each wound edge, and

the angle between the lines was measured using the Angle Tool.

6.2.3 Optical coherence tomography

A Thorlabs (Newton, NJ) optical coherence tomography (OCT) system with attached

Nikon FN1 microscope was used to obtain cross-sectional image stacks of living HH

stage 8 embryos (n=2). Image slices were acquired every 5 µm across a 3 x 3 mm scan-

ning window and then reconstructed into 3D volumes using Volocity (PerkinElmer,

Waltham, MA).
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As described below, optical sections through different regions of the AIP were used to

create the tissue geometry used in finite element simulations of our microindentation

experiments.

6.2.4 Microindentation

Normal HH stage 8 embryos (n=5) were transferred (individually) to a large bath

of PBS at room temperature. Using a custom-built microindentation device (Zamir

et al., 2003), tissue stiffness was measured at different locations around the AIP. As

described previously, we used a microindenter, attached to a calibrated cantilever

beam, to calculate local force-deflection (FD) curves for the tissue (Zamir et al.,

2003; Nerurkar et al., 2006; Ramasubramanian et al., 2008; Filas et al., 2011). Three

consecutive indentations were made to ensure a repeatable response. The tangential

slope of the FD curve at 10 µm deflection was used as a local measure of tissue

stiffness.

Each embryo was then transferred to a 35 mm culture dish and incubated in 100 µM

(–)-blebbistatin in PBS for 1-2 hr at room temperature. Performing this incubation

step at room temperature ensured that the embryo did not develop further during

these experiments. Afterward, microindentation tests were repeated at each tissue

location to measure any changes in tissue stiffness.

Using another group of HH stage 8 embryos (n=3), we performed microindentation

tests using our OCT setup to visualize the tissue deformations near the indenter.

Owing to spatial constraints, the entire microindentation setup used to make stiff-

ness measurements could not be transferred to the OCT. Thus, using pulled glass

micropipettes, we fashioned microindenters of similar (cylindrical) geometry and at-

tached them to a hand-driven micromanipulator. The axis of the indenter was aligned

with the OCT imaging plane. Driven manually, it could then be used to indent the

tissue, while real-time OCT recordings were used to capture the resultant tissue de-

formations.
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Figure 6.1: Characterizing tissue deformations during microindentation using
OCT. (A) Sagittal (midline) OCT section through an HH stage 8 embryo. The long axis
of the cylindrical indenter is aligned with the imaging plane, and has just come into contact
with the tissue. (B) Subsequent OCT image showing deformed shape of the indented tissue.
(C) Image created by subtracting (A) from (B). (D,E) Inverted images of (A) and (B).
(F) Image created by subtracting (D) from (E). (G) Composite color image generated by
overlaying (C) (red) and (F) (blue) on top of (A).

During these experiments, the indenter was not attached to a calibrated cantilever

beam, so tissue stiffness was not measured. Instead, we were interested solely in the

deformed shape of the tissue.

6.2.5 Image processing

Within each stack of real-time OCT images, the contact frame (i.e., the frame which

captured the indenter first coming into contact with the tissue) was used as a reference

(Fig. 6.1A). Then, using the Image Calculator in ImageJ, this reference frame was

subtracted from subsequent images (e.g., Fig. 6.1B) in the recording, which showed

the tissue as it deformed under the indenter. This operation identified populations

of pixels which increased in intensity as the tissue deformed (Fig. 6.1C). These pix-

els represented regions where the deforming tissue had moved into space previously

occupied by only fluid (i.e. the leading edge of the deformation).
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In a similar way, repeating this operation using inverted OCT images (Fig. 6.1D-E)

identified pixels that decreased in intensity (Fig. 6.1F). That is, regions in space where

tissue had been replaced by fluid (i.e., the trailing edge of the deformation).

Both subtracted images were then overlaid on top of the originals to generate com-

posite (color) images, which indicated both the leading (red) and trailing (blue) edges

of the tissue deformation during microindentation (Fig. 6.1G).

6.2.6 Fluorescent labeling and tracking

To quantify endodermal deformations around the AIP during heart tube formation,

we tracked the motion of fluorescently labels cells during ex ovo culture. As described

in Chapter 4, we soaked iron particles in saturated DiI in ethanol and distributed them

across the tissue. After a brief incubation at 38◦C, the particles were removed with

a strong magnet, leaving fluorescently labeled cells behind.

Each embryo (n=3) was then submerged beneath a thin layer of liquid culture media

and incubated at 38◦C in 95% O2 and 5% CO2 (Voronov and Taber, 2002). Bright field

and fluorescence time-lapse images were captured at approximately 1–2 hr intervals

using a Leica DMLB microscope and attached video camera (Retiga 1300). The

motion of individual labels was then tracked using the Manual Tracking plug-in in

ImageJ.

6.2.7 Statistics

All data are reported as mean ± SD. To compare regional stiffness data around

the AIP, we used a one-way ANOVA with the Tukey post hoc test implemented in

SigmaPlot (Systat Software Inc., Chicago, IL). Circular statistics and a two-sample

Watson-Williams test were used to analyze and compare wound opening angles (Zar,

2010).
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Figure 6.2: Modeling the tissue around the AIP as a contractile beam on an
elastic foundation. (A) Bright field image of a HH stage 8 embryo. (B) Schematic of
embryo shown in (A). The endoderm around the AIP is modeled as a contractile beam,
and the mesoderm as an elastic foundation. Symmetry is assumed about the embryonic
midline. (C,D) (C) Undeformed and (D) deformed model geometry after contraction. (E)
The Young’s modulus E(x) is taken to be either uniform (solid line) or linearly decreasing
along the beam (dashed line). (F) Similarly, active contraction in the beam (εg(x) < 0) is
taken as either uniform (solid line) or linearly decreasing (dashed line).

6.3 Theoretical methods

6.3.1 Contracting beam on elastic foundation

As a first approximation, we model the endoderm and mesoderm around the AIP by

considering the relatively simple problem of a contractile beam on an elastic founda-

tion (Fig. 6.2). In Chapter 5, we presented evidence suggesting that the endoderm

(not the mesoderm) is the primary contractile tissue layer during heart tube for-

mation. The contractile beam thus represents the endoderm, and the mesoderm is

modeled as an elastic foundation represented by a series of springs.
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Here, we employ a linear growth theory for beams, since our model is used to qualita-

tively investigate the mechanical behavior of the tissue. Admittedly, the deformations

involved in heart tube assembly are large (or finite), and to quantitatively character-

ize the stresses that resident cells in the tissue experience, the fully nonlinear theory

must be brought to bear. But, when used as a first approximation, the linear the-

ory can still offer real qualitative insight into the behavior, and its relatively simpler

mathematics enable us to (at times!) generate closed-form solutions to the problem.

We consider a thin beam of length L with uniform rectangular cross-section subjected

to a combination of both axial forces and longitudinal growth. Growth is simulated

in the beam by decomposing the total strain8 ε = u′(x) into an elastic strain ε∗ and

growth strain εg by

ε = ε∗ + εg. (6.1)

The stress σ in the beam is then a function of the elastic strain ε∗ (as opposed to the

total strain ε for a passive material). If we assume a Hookean constitutive response,

this relation takes the form

σ = Eε∗ = E (ε− εg) (6.2)

where E is the Young’s modulus of the material.

Contraction is simulated by negative growth (i.e., εg < 0), and deformation of the

beam is resisted by an elastic foundation with stiffness k per unit volume of the bar.

Uniform contraction and uniform mechanical properties

For a uniformly contracting beam with uniform material properties (Fig. 6.2E,F), we

take
εg (x) = −εo

g

E (x) = Eo

, (6.3)

and the governing equation for the axial elongation u (x) of the beam is given by

u′′(x)− α2u′(x) = 0 (6.4)

8( )′ denotes differentiation with respect to x.
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where α =
√

k/E. We assume symmetry about the embryonic midline, so the left

end of the beam is held fixed while the right end remains traction-free. Thus, we take

the boundary conditions

u (0) = 0

σ (L) = 0 =⇒ du

dx
(L) = −εo

g

. (6.5)

Solving this equation in closed-form, we get

u (x) = −
εo
g

α cosh (αL)
sinh (αx) , (6.6)

which can be used to calculate both the stretch ratio

λ (x) = 1 + ε (x) = 1−
εo
g

cosh (αL)
cosh (αx) (6.7)

and the stress field

σ̄ (x) =
σ (x)

Eo

= εo
g

[
1− cosh (αx)

cosh (αL)

]
. (6.8)

Gradient in contraction and uniform mechanical properties

If contraction in the beam, however, is not uniform, and we consider the linear con-

traction gradient (Fig. 6.2F)

εg (x) = −εo
g +

εo
g

L
x, (6.9)

as well as uniform Young’s modulus

E(x) = Eo, (6.10)

the governing equation takes the form

u′′(x)− α2u(x) =
εo
g

L
. (6.11)
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Using the boundary conditions

u (0) = 0

σ (L) = 0 =⇒ u′(L) = 0
(6.12)

we can solve this equation in closed-form to yield

u (x) =
Eεo

g

kL
[cosh (αx)− tanh (αL) sinh (αx)− 1] . (6.13)

In this case, the stretch ratio is given by

λ (x) = 1 +
αEεo

g

kL
[sinh (αx)− tanh (αL) cosh (αx)] , (6.14)

and the stress field by

σ̄ (x) =
αEεo

g

kL
[sinh (αx)− tanh (αL) cosh (αx)]− εo

g

(x

L
− 1

)
. (6.15)

Uniform contraction and gradient in mechanical properties

Also, to assess the effects of a material property gradient, we consider the case of a

uniformly contracting beam with a linearly varying Young’s modulus (Fig. 6.2E,F):

εg (x) = −εo
g

E (x) = Eo

(
1−

1− 1
n

L
x

) (6.16)

where n is the fold decrease in modulus along the length L of the beam.

In this case, the governing equation is

u′′(x) +
E ′(x)

E(x)
· u′(x)− k

E(x)
· u(x) = −εo

g

E ′(x)

E(x)
, (6.17)
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and we take the boundary conditions

u(0) = 0

σ(L) = 0 =⇒ u′(L) = −εo
g

. (6.18)

We used the MATLAB subroutine bvp4c to solve Eqns. (6.17)–(6.18). For validation,

we compared our numerical solution for the special case of n = 1 with our analytical

solution for a uniformly contracting beam with uniform material properties (i.e.,

Eq. (6.6)).

6.3.2 Finite element model

Using COMSOL Multiphysics (Version 3.5, COMSOL AB, Providence, RI), we con-

structed a nonlinear, 3D finite element model of the tissue around the AIP to simulate

our microindentation experiments. As shown below, we observed a stiffness gradient

around the AIP, which decreased with distance from the embryonic midline. To in-

vestigate a possible role for differences in tissue geometry in the observed gradient,

we used OCT section data from HH stage 8 embryos to construct our model geome-

try (Fig. 6.3). The largest difference in stiffness was observed between medial (red)

and lateral (green) regions of the AIP (Fig. 6.3A). Thus, using Adobe Illustrator, we

manually segmented the tissue geometry from OCT sections at these two locations

(Fig. 6.3B,C), and imported each into COMSOL.

We created separate models for indentation of both the medial (Fig. 6.3D) and lat-

eral AIP (Fig. 6.3E). In both cases, symmetry was assumed about the embryonic

midline, and each imported 2D section was swept through 3D space to create a

pseudo-embryonic geometry. For each model, the swept 2D section matched the tis-

sue geometry under the indenter.

As a first approximation, we neglect any material difference between the endoderm

and mesoderm, and model the entire tissue as a uniform, hyperelastic, nearly incom-

pressible material, characterized by the modified neo-Hookean strain-energy density

function

W =
µ

2

(
Ī − 3

)
+ p

(
1− J − p

2κ

)
. (6.19)
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Figure 6.3: Finite element model geometry based on OCT section data. (A) Bright
field image of HH stage 8 embryo. (B,B’) Medial (B) OCT section and (B’) segmented
section indicated by red line in (A). (C,C’) Lateral (C) OCT section and (C’) segmented
section indicated by green line in (A). (D,E) Segmented sections were imported into COM-
SOL and swept through 3D space to create pseudo-embryonic geometries. These models
were used to simulate microindentation at the (D) medial and (E) lateral AIP. Dashed red
circles indicate indentation sites. The dorsal side of the neural tube (NT) was placed on
rollers to simulate the presence of the vitelline membrane.
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In this equation, µ is the small-strain shear modulus, κ represents the bulk modu-

lus, J = detF is the dilatation ratio, where F represents the deformation gradient

tensor, p is a penalty variable introduced for nearly incompressible materials, and

Ī = J−2/3 tr
(
FT · F

)
is a modified strain invariant.

The Cauchy stress tensor is given by the relation

σ = J−1F· ∂W

∂FT
. (6.20)

The indenter is modeled as a Hookean material, with material properties typical for

Silica glass (E = 73.1 GPa and ν = 0.17, from the COMSOL Material Library).

For simplicity, we assume that the indenter tip is adherent to the tissue, and simulate

indentation by prescribing a known axial displacement at its far end. During inden-

tation, the indenter force is calculated by integrating the normal axial stress across

the cross-sectional area of the indenter. All other boundaries in the model are taken

to be traction-free.

The indenter itself deforms only negligibly, so a simulated FD curve is generated using

the prescribed axial displacement and the calculated indenter force.

6.4 Results

6.4.1 Gradients in both tension and stiffness are present around

the AIP

The heart tube forms between HH stages 7 and 9 in the early chick embryo, ap-

proximately 24–36 hr into its 21-day incubation period. We therefore made linear

incisions through the medial and lateral AIP in HH stage 8 embryos to probe the

tissue stresses during heart tube formation (Fig. 6.4). The incisions at the midline

opened immediately (Fig. 6.4B) to produce triangularly shaped wounds with a mean

opening angle φM = 59±3◦. Wounds in the lateral AIP, however, opened only slightly

and to a significantly lesser extent than those at the midline, with a mean opening

angle φL = 16 ± 3◦ (Fig. 6.4C). The same trend was observed regardless of whether
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Figure 6.4: Tension and tissue stiffness gradients around the AIP. (A-C) Small
linear incisions were made in the medial and lateral AIP, characterized by the opening
angles φM = 59 ± 3◦ and φL = 16 ± 3◦, respectively. The wounds at the midline opened
to a significantly greater extent (P < 0.001, two-sample Watson-Williams test,n=5). (D)
Microindentation tests were conducted at medial (red), mediolateral (blue), and lateral
(green) locations around the AIP. Arrows indicate the position of the indenter. (E) Force-
deflection (FD) curves for a characteristic embryo. At each location, dotted black curves
represent raw experimental data for three consecutive indentations. Solid lines represent
regression curves fit to the experimental data. (F) Tissue stiffness measured at 10 µm
deflection. A stiffness gradient, decreasing with distance from the midline, was observed
around the AIP. * = P < 0.05, ** = P < 0.01, *** = P < 0.001 (one-way ANOVA with
Tukey post-hoc test, n=5).
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the medial or lateral incision was made first, thus indicating a gradient in tension

around the AIP, with the tensile stresses nearly vanishing laterally.

Moreover, microindentation tests at medial (red), mediolateral (blue), and lateral

(green) locations around the AIP revealed a decreasing stiffness gradient (Fig. 6.4D-

F). Regions of high tension corresponded to regions of high stiffness, which suggested

to us the possibility that differential amounts of cytoskeletal contraction (which would

tend to cause tension) might be behind the observed stiffness gradient.

6.4.2 Qualitative model results indicate uniform contraction

around the AIP

To explore this idea, we simulate the endoderm and mesoderm around the AIP using

the relatively simple model of a contracting beam on an elastic foundation (Fig. 6.2).

The contractile beam represents the endoderm, and the mesoderm is modeled by a

series of springs (Fig. 6.2B). Employing a linear growth theory for beams (see section

6.3.1 for further details), we consider the cases of both (i) uniform contraction, where

εg (x) = −εo
g, and (ii) a decreasing linear gradient in contraction, where εg (x) =

−εo
g + εo

gx/L (Fig. 6.2F). Since a linear theory is used, the particular value of εo
g

does not qualitatively affect our results, and we demonstratively consider the case of

εo
g = 0.1.

Both contractile distributions produce a gradient in stress along the AIP (Fig. 6.5A,B).

For the case of uniform contraction, as α increases (i.e., as the foundation stiffness

increases, or beam modulus decreases), the gradient becomes more and more localized

to the lateral end of the beam (Fig. 6.5A). When a linear gradient in contraction is

included, however, the stresses decrease steadily along the entire length of the beam

for all values of α (Fig. 6.5B). Moreover, as α decreases and the foundation effects

attenuate, the qualitative shape of the curves looks increasingly similar between the

two cases.

Thus, a comparison of our model results to our tissue cutting experiments alone is

unable to distinguish between the cases of uniform and spatially graded contraction.
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Figure 6.5: Stress and stretch ratio plots for a contractile beam on an elastic
foundation. (A,B) Plots of stress σ̄(x) = σ(x)/Eo along contractile beam of length L for
the cases of (A) uniform contraction and (B) a linear gradient in contraction. (C,D) Plots
of the stretch ratio λ(x) for the cases of (C) uniform contraction and (D) a linear gradient
in contraction. Here, α =

√
k/Eo where k is the foundation stiffness and Eo is the Young’s

modulus. For each set of plots, we take k/Eo = 10i, where i = −5,−4,−3,−2,−1, 0.
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Figure 6.6: Measuring endodermal stretch ratios around the AIP during heart
tube formation. (A,B) Bright field/fluorescent images of a characteristic HH stage 7+
embryo after (A) 0 hr and (B) 6 hr of incubation. Labeled endodermal cells, which formed
an arc of segmented lines around the AIP, were tracked in time. The stretch ratio λ for each
line segment was calculated by dividing the deformed length by the undeformed length. (C)
Stretch ratios were evaluated at the midpoint of each line segment and plotted a function
of the distance along the AIP x. A linear regression for λ(x) showed that more tissue
shortening occurred in the lateral, as opposed to the medial, region of AIP.

If we also consider, however, the deformation patterns around the AIP, and plot the

stretch ratio λ along the length of the beam for both cases, divergent trends emerge

(Fig. 6.5C,D). For uniform contraction, a majority of the tissue shortening occurs

laterally (Fig. 6.5C), while for a linear gradient in contraction, the trend is reversed

and more shortening is present at the midline (Fig. 6.5D).

To test between these two cases, we fluorescently labeled endodermal cells in HH stage

7+ embryos (i.e., before either the heart tube had formed) and cultured them ex ovo

(Fig. 6.6). Labels positioned around the AIP were tracked in time (Fig. 6.6A,B)

and used to compute endodermal stretch ratios. In these embryos, more shortening
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Figure 6.7: Microindentation tests after treatment with the myosin II inhibitor
blebbistatin. (A) Tissue stiffness at medial (red), mediolateral (blue) and lateral (green)
locations around the AIP both before (solid bars) and after (hatched bars) incubation
with 100 µM blebbistatin. A residual stiffness gradient was still present after blebbistatin
treatment. * = P < 0.05, ** = P < 0.01, *** = P < 0.001 (one-way ANOVA with Tukey
post-hoc test, n=5). Solid bars are the same as those included in Fig. 6.4F. (B) The relative
stiffness decrease after treatment with blebbistatin nearly identical for each tissue location.
(C) Bright field image of HH stage 8 embryo. OCT sections through each indentation
location show differences in tissue geometry around the AIP. Arrows indicate the position
of the indenter.
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was observed laterally than at the midline (Fig. 6.6C), consistent with our model for

uniform contraction (Fig. 6.5C).

As a further test, we also repeated our microindentation experiments in the pres-

ence of the myosin II inhibitor blebbistatin to determine the stiffness decrease when

contraction was suppressed (Fig. 6.7). These experiments were conducted using the

same embryos as those included in Fig. 6.4, so we were able to directly compare tissue

stiffness measurements before and after blebbistatin treatment. On average, the rela-

tive stiffness decrease at each tissue location was approximately uniform and equal to

∼ 60% (Fig. 6.7B). If we assume that any increase (or decrease) in tissue stiffness is

proportional to the amount of contraction in the tissue (as has been assumed in other

computational models of morphogenesis (Ramasubramanian and Taber, 2008)), this

result further implicates uniform contraction around the AIP.

6.4.3 Simulated microindentation tests indicate a gradient in

material properties.

Somewhat surprisingly, a stiffness gradient was still present around the AIP even after

treatment with blebbistatin (Fig. 6.7B). This residual gradient could be due to either

differences in tissue geometry or to differences in the passive mechanical properties

of the tissue. Thus, to characterize tissue geometry in living embryos, we captured

OCT sections at locations corresponding to each indentation site around the AIP

(Fig. 6.7C). Visual inspection of these images showed marked differences in both the

curvature and the thickness of the tissue under the indenter.

To test whether geometrical differences alone could account for the observed gradient,

we constructed a 3D finite element model of the tissue around the AIP to simulate

our microindentation experiments. As described in section 6.3.2, we used segmented

OCT images to create a pseudo-embryonic geometry for the model. Since the largest

difference in stiffness was observed between the medial and lateral regions of the AIP

(Fig. 6.7A), we created separate models for these two cases. In both, we used the

segmented OCT image corresponding to the indentation site of interest to create the

swept model geometry (Fig. 6.3D,E).
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Figure 6.8: Simulating our microindentation experiments around the AIP. (A,D)
OCT sections through the (A) medial and (D) lateral AIP before indentation (top), as the
indenter first comes into contact the tissue (middle), and after indentation (bottom). Red
pixels indicate the leading edge of the deformation, and blue pixels, the trailing edge. See
section 6.2.5 for details. Scale bar = 200 µm. (B,E) Undeformed and deformed geometries
from our models simulating microindentation of the (B) medial and (E) lateral AIP. The
algorithms used to analyze our OCT images were used to characterize the leading and
trailing edges of the deformation. Both models qualitatively match the tissue deformations
observed experimentally. (C) The simulated force-deflection (FD) curve at the medial
AIP (solid red line) approximately matches our experimental FD data after blebbistatin
treatment (black dotted lines), if we specify µ = 65 Pa. (F) If we use µ = 65 Pa to simulate
microindentation of the lateral AIP, the simulated FD curve (solid green line) is much
stiffer than that seen experimentally (black dotted lines). When µ = 15 Pa is included in
the model, however, the simulated FD curve (dashed green line) matches our experimental
data. These results suggest a gradient in passive mechanical properties around the AIP.
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We also performed microindentation experiments using OCT to characterize the ge-

ometry of the tissue under the indenter as it deformed (red pixels indicate the leading

of the deformation; blue pixels, the trailing edge) (Fig. 6.8A,C).

Our microindentation simulations at both the medial and lateral regions of the AIP

produce deformed shapes that qualitatively match those observed via OCT (Fig. 6.8B,D).

This was not the case for preliminary 2D models, nor simple extruded 3D models,

which did not include a crescentic AIP.

At the medial AIP, our simulated force-deflection (FD) curve roughly matches our

experimental FD data if the small-strain shear modulus is taken as µ = 65 Pa

(Fig. 6.8E). Here, we use blebbistatin-treated experimental data for comparison, since

we are interested in the residual stiffness gradient. When µ = 65 Pa is included in

the model for the lateral AIP, however, the simulated FD curve is much stiffer than

that observed experimentally (Fig. 6.8F). But if µ is reduced to 15 Pa, the model

more closely matches the experimental FD curves.

This result then suggests that differences in mechanical properties, not geometry,

are responsible for the residual stiffness gradient around the AIP after blebbistatin

treatment. We thus estimate an approximately 4-fold decrease in tissue modulus

between the medial and lateral regions of the AIP.

If then, returning to our beam on a foundation model, we include a mechanical

property gradient, and consider a uniformly contracting beam with a linearly varying
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Young’s modulus, the qualitative behavior is similar to that seen in our previous

model with uniform contraction (compare Figs 6.9A,B and 6.5A,C) — the stresses

vanish laterally (Fig. 6.9A) and most of the (overall) shortening occurs at the midline

(Fig. 6.9B).

In this model, we include stiffness gradients on the order of that observed experi-

mentally; the fold change in Young’s modulus n varies from 1 to 10. Still, as the

steepness of the gradient increases (i.e., as n increases) (Fig. 6.2E), the deformations

at the lateral end of the beam become more local. The stress distribution, however,

maintains a similar overall shape, but begins to flatten out and decrease somewhat

in magnitude.

Taken together, these results suggest that while cytoskeletal contraction around the

AIP is approximately uniform, a gradient in passive mechanical properties is present,

decreasing with distance from the midline.

6.5 Discussion

At a fundamental level, morphogenesis is accomplished through the action of me-

chanical forces, as the simple geometry of the early embryo deforms to give rise to

the intricate 3D structures of the adult organism (Blanchard and Adams, 2011). In

metazoans, the embryo is comprised largely of thin epithelia (or cell sheets), and this

dramatic transformation occurs as physical forces act both within and upon these cell

sheets.

During animal development, cytoskeletal contractility provides a major intrinsic driv-

ing force for epithelial morphogenesis (Wozniak and Chen, 2009; Martin, 2010).

Within each cell, meshworks of actin microfilaments are cross-linked with myosin

motor proteins. These motors then work to pull antiparallel actin fibers toward one

another and generate contractile force (Martin, 2010). In a host of model organisms,

contractility has been shown to drive both cell shape changes (Martin et al., 2009;

Solon et al., 2009; Blanchard et al., 2010) and cell intercalation (Skoglund et al., 2008;

Fernandez-Gonzalez et al., 2009; Rauzi et al., 2010; Fernandez-Gonzalez and Zallen,

2011), as well as higher order structures like multicellular rosettes (Blankenship et al.,
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2006) and actomyosin purse strings, such as observed during Drosophila dorsal clo-

sure (Kiehart et al., 2000; Hutson et al., 2003). This stands in stark contrast to

morphogenesis in plants, which owing to the physical constraints of a cell wall, does

not depend on actomyosin contractility. Instead, shape changes are driven primarily

by changes in internal turgor pressure (Dumais et al., 2006).

Cytoskeletal contraction not only exerts forces, but also modifies the mechanical

properties of the tissue — both actively contracting cells and tissues stiffen (Wakatsuki

et al., 2000, 2001; Rémond et al., 2006; Zhou et al., 2009). This then muddles our

understanding of the role contractility plays during development, since it both drives

the deformations observed during morphogenesis and increases the rigidity of the

tissues being deformed. This observation has led others to speculate about a possible

role for mechanical feedback in regulating contraction (Taber, 2009; Davidson, 2011).

Moreover, recent experimental work in Drosophila has indicated a possible role for

mechanical tension in regulating myosin II dynamics (Fernandez-Gonzalez et al., 2009;

Pouille et al., 2009) during early development.

Here, we show how cytoskeletal contractility and tissue stiffness are spatially dis-

tributed around the AIP during heart tube formation. In Chapter 5, we indicated

that endodermal contraction in this region pulls the heart fields toward the midline,

enabling them to fuse and form the primitive heart tube. By qualitatively comparing

our model results with both label tracking and tissue cutting experiments, we suggest

that this contraction is relatively uniform around the AIP.

Our microindentation tests revealed a decrease in tissue stiffness after treatment with

blebbistatin (Fig. 6.7A,B). Thus, as observed by several others in different tissue

structures (Rémond et al., 2006; Zhou et al., 2009; Filas et al., 2011), cytoskeletal

contraction was shown to contribute to overall tissue stiffness. In addition, the ob-

served stiffness decreases were on the order of those seen in both the heart and brain

of later stage chick embryos treated with blebbistatin (Ramasubramanian et al., 2008;

Filas et al., 2011).

When contraction was suppressed, we also observed a residual stiffness gradient

around the AIP, decreasing with distance from the midline (Fig. 6.7A). Finite el-

ement simulations of our microindentation experiments suggest that this gradient is

due to differences in the passive mechanical properties of the tissue (Fig. 6.8). The
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small-strain modulus µ for a neo-Hookean material is related to the Young’s modulus

E for a linear elastic material by E = 3µ (Taber, 2004). Using this relation, our

measured constitutive properties (µ = 65 Pa and µ = 15 Pa for the medial and lat-

eral AIP, respectively) are on the order of those measured for dorsal isolates of early

Xenopus laevis embryos (E = 20 − 100 Pa) (Zhou et al., 2009), and c-looped chick

hearts (µ = 26 Pa) (Zamir and Taber, 2004a).

This approximately 4-fold stiffness gradient is somewhat larger than the natural vari-

ations in tissue stiffness observed among Xenopus laevis gastrulae (von Dassow and

Davidson, 2009). Moreover, since the gradient was consistently observed in every

embryo we studied, it is tempting to speculate about both its molecular underpin-

nings and its possible morphogenetic role. Though regional differences in actomyosin

contractility have been shown to account for variations in tissue stiffness (Zhou et al.,

2009), that does not seem to be the case here, since a residual gradient was still ob-

served after treatment with blebbistatin. An abundant extra-cellular matrix (ECM),

however, is present between the mesoderm and endoderm (Linask and Lash, 1986;

Drake et al., 1990; Wiens, 1996), and it would also be interesting to test whether

differential amounts of cross-linking within the ECM might be able to explain the

observed gradient.

Additionally, recent work using transgenic quail embryos has shown that endothelial

cells in the forming vitelline vascular network migrate medially toward the heart (Sato

et al., 2010). Since mechanical stiffness gradients have been shown to influence the

directional movements of migrating cells in vitro (Lo et al., 2000; Discher et al., 2005),

it would be interesting to investigate whether or not the observed gradient around

the AIP contributes to these endothelial cell movements.

In conclusion, we propose that endodermal contraction, which draws the heart fields

toward the midline, is uniform around the AIP. The passive mechanical properties of

the tissue, however, vary – decreasing in stiffness with distance from the embryonic

midline. These results then give new insight into how tissue stiffness and contractility

are distributed during heart tube formation, and how they might contribute to the

observed morphogenetic deformations.
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Chapter 7

Conclusions

For decades, biologists have done the important work of identifying many of the ge-

netic and molecular factors involved in heart development (Yutzey and Kirby, 2002;

Buckingham et al., 2005; Abu-Issa and Kirby, 2007; Meilhac and Buckingham, 2010).

Over the years, these efforts have helped elucidate the vast biochemical signaling net-

works, which drive cardiac specification and differentiation in the embryo (Olson and

Srivastava, 1996). Even so, despite this deep molecular understanding of cardiogene-

sis, the biophysical mechanisms which link these molecular factors to actual, physical

changes in cardiac morphology remain unclear (Taber, 2006).

Toward this end, we have identified some of the tissue-level forces that drive heart

tube formation in the early chick embryo. Rather surprisingly, our work suggests that,

although the heart is a mesodermally derived structure (i.e., the cardiac progenitors

take up residence in the mesoderm), all three germ layers physically contribute to

formation of the heart tube.

Head fold morphogenesis is the first step in this process. It sets the stage for cardiac

development by folding the (initially flat) heart fields out-of-plane, enabling them to

form a tube along the ventral aspect of the embryo. Our work suggests that head fold

formation is driven by forces that originate in the ectoderm, forces that are typically

associated with neurulation — the formation of the neural tube.

The primitive heart tube itself then forms as the mesodermal heart fields move toward

the midline, and fuse to construct a straight muscle-wrapped tube. During this

process, the mesoderm remains in close contact with the endoderm, and this medial

motion is typically attributed to active crawling of the (mesodermal) heart fields over
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the underlying endoderm. Our results, however, indicate that the endoderm plays

a crucial mechanical role during this process. Instead of just serving as a passive,

secretory substrate for the crawling mesoderm, the endoderm actively contracts and

pulls the heart fields toward the midline. Moreover, defects in endodermal contraction

can lead to heart malformations such as cardia bifida.

The ectoderm and endoderm thus contribute mechanically to the process of heart

tube formation, a result which may have implications for cardiac tissue engineers who

hope to recapitulate this process in vitro. While it is well established that inductive

signaling between the different germ layers plays a role in cardiogenesis (Nascone

and Mercola, 1996; Lough and Sugi, 2000; Brand, 2003), these physical interactions

appear to also play an important morphogenetic role in shaping the heart.

Going forward, it would be interesting to more fully investigate the cellular and molec-

ular mechanisms which underpin these tissue-level forces. For instance, are active cell

shape changes or is cell intercalation responsible for the observed endodermal short-

ening around the AIP? And what are the actomyosin dynamics within these cells as

the overall tissue shortens?

Advances in microscopy and targeted fluorescent reporter proteins have made answer-

ing questions like these a possibility. These techniques have been used to great effect

in studies of Drosophila germ band extension (Blankenship et al., 2006; Rauzi et al.,

2008; Butler et al., 2009; Fernandez-Gonzalez et al., 2009), dorsal closure (Kiehart

et al., 2000; Hutson et al., 2003; Solon et al., 2009; Gorfinkiel et al., 2009; Blan-

chard et al., 2010), and ventral furrow formation (Martin et al., 2009, 2010). So

far, however, their utility has been primarily restricted to genetically tractable model

organisms like zebrafish and Drosophila. Pioneering work that seeks to create lines

of transgenic quail (Sato et al., 2010), however, may make these dynamic studies of

tissue morphogenesis possible in avian embryos.

Recent theoretical (Taber, 2008, 2009) and experimental work has also indicated a

regulatory role for mechanical forces during development (Farge, 2003; Desprat et al.,

2008; Fernandez-Gonzalez et al., 2009; Filas et al., 2011). In particular, during the

later stage of looping, chick hearts have been shown to adapt to altered mechanical

loading (Nerurkar et al., 2006; Ramasubramanian and Taber, 2008). Whether is the

case for the forces that form the early tube remains an exciting avenue of research
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to explore, as we work to connect physical mechanisms of morphogenesis with the

underlying molecular cell biology and genetics.
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