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ABSTRACT OF THE THESIS

Modeling Aerial Refueling Operations

by

Allen B. McCoy III

Doctor of Science in Systems Science and Mathematics

Washington University in St. Louis, 2010

Research Advisor: Professor Ervin Y. Rodin

Aerial Refueling (AR) is the act of offloading fuel from one aircraft (the tanker) to

another aircraft (the receiver) in mid flight. Meetings between tanker and receiver

aircraft are referred to as AR events and are scheduled to: escort one or more receivers

across a large body of water; refuel one or more receivers; or train receiver pilots,

tanker pilots, and boom operators. In order to efficiently execute the Aerial Refueling

Mission, the Air Mobility Command (AMC) of the United States Air Force (USAF)

depends on computer models to help it make tanker basing decisions, plan tanker

sorties, schedule aircraft, develop new organizational doctrines, and influence policy.

We have worked on three projects that have helped AMC improve its modeling and

decision making capabilities.

Optimal Flight Planning: Currently Air Mobility simulation and optimization

software packages depend on algorithms which iterate over three dimensional fuel

flow tables to compute aircraft fuel consumption under changing flight conditions.

When a high degree of fidelity is required, these algorithms use a large amount of
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memory and CPU time. We have modeled the rate of aircraft fuel consumption with

respect to AC Gross Weight, Altitude and Airspeed. When implemented, this formula

will decrease the amount of memory and CPU time needed to compute sortie fuel

costs and cargo capacity values. We have also shown how this formula can be used

in optimal control problems to find minimum costs flight plans.

Tanker Basing Demand Mismatch Index: Since 1992, AMC has relied on a

Tanker Basing/AR Demand Mismatch Index which aggregates tanker capacity and

AR demand data into six regions. This index was criticized because there were large

gradients along regional boundaries. Meanwhile tankers frequently cross regional

boundaries to satisfy the demand for AR support. In response we developed contin-

uous functions to score locations with respect to their proximity to demand for AR

support as well as their isolation from existing tanker bases.

Optimal Scheduling Because most of the tanker resources are controlled by indi-

vidual Air National Guard Units there is little to no central authority coordinating

tanker and receiver training schedules. We have been able to show that significant

flying hour savings could be achieved if National Guard tanker units were to yield

some of their scheduling autonomy to a central authority which was charged with the

responsibility of matching tanker training requirements to receiver training require-

ments.
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Chapter 1

Optimal Control Formulations of

Tanker Sortie Planning Problems

1.1 Introduction

When modeling aerial refueling operations it is important to remember that fuel is

both a commodity (one of the things being delivered), and a resource (one of the things

that makes a delivery possible). Moreover, it can be shown that the rate at which

a plane consumes fuel increases quadratically with the amount of fuel loaded onto

it. Consequently detailed flight planning is an essential component of any effort to

model AR operations. Currently, state of the art mobility simulation and optimization

packages, and the best tanker analysts in the Air Force, compute fuel consumption

and associated flight planning problems with the Portable Flight Planning System

(PFPS) or algorithms that iterate over a specific range table. These are the default

tools because they are extremely accurate and very easy to understand. That being

said, they have serious limitations. For example, PFPS only generates one flight plan

at a time. Consequently, it is not of any practical use to someone who needs to input

the costs of 100,000 different flight plans into an optimization or simulation model.

Meanwhile, algorithms that iterate over a specific range table consume large amounts

of processing time and memory. In addition to this, there is no indication that PFPS

or any of the iterative methods make any attempt to construct optimal flight paths.

That job rests completely on the judgment, skills, and experience of the end user.

In spite of the importance of realistic fuel flow calculations, none of the recent works

completed at Washington University, The Air Force Institute of Technology, or The
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University of Texas Austin have adequately touched on the subject ([11], [17], [14],

[3], [9], [12]).

The earliest and only documented attempt was made in [14] by Russina and Ruthsatz

(see equation (1.1)). They model fuel flow with a quadratic polynomial in altitude

(ALT), true airspeed (TAS), and weight (WGT), but fail to provide any justification

for choosing this model or details about the data they used to estimate their coef-

ficients. Furthermore, they do not provide any insight into the “goodness” of their

model’s fit.

Ẇ = α2(ALT )
2 + α1(ALT ) + α0 + ...

β2(TAS)
2 + β1(TAS) + β0 + ...

γ2(WGT )2 + γ1(WGT ) + γ0

(1.1)

If, as might be expected, they fit their coefficients with linear regression over specific

range, or some other type of first difference data1 it is doubtful they obtained coeffi-

cients that fit the data well. Meanwhile, there is no indication that they solved the

differential equation in gross weight, or that they fit their coefficients using estimates

of a derivative constructed from time series data generated by iterating over specific

range data.

The next best effort was probably put forth in [20] by a MITRE contractor named

Kirk Yost. Yost starts with a quadratic polynomial that includes interaction terms

but eventually boils it down to a Riccati differential equation in weight. Although

Yost solves this equation for a function of weight with respect to time, the motivation

of his work seems less focused on estimating parameters than it does on replacing

iterative methods with a closed formula. Thus, in spite of the fact that Yost derives a

valid function forW with respect to time, it seems as if he continued to use parameters

estimated from specific range data for the quadratic fuel flow model. Whatever the

case may be, the general lack of enthusiasm for Dr. Yost’s model indicates that his

results were not as accurate as it was hoped they would be.

1Given a Mach, altitude, and current gross weight, specific range data provides the number of
nautical miles a plane will fly in the time it takes to burn 1000 lbs of fuel. A much more detailed
description of specific range data is given in section 1.5.
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The goal of this chapter is to address the current the situation by laying the necessary

foundation for future work in this area. Specifically this chapter:

• Constructs a closed formula for the rate of fuel consumption from first principles

• Presents a technique that can be used to estimate parameter values from readily

available data

• Develops an optimal control formulation of the tanker sortie fuel planning prob-

lem

Finally while studying these systems it will be reasonable to assume that a plane’s

gross weight only changes with fuel consumption (or fuel offload). Consequently

fuel weight and gross weight can be used interchangeably. Thus the naive objective

of the first section of this chapter will be to find a function f which generates the

instantaneous change in gross weight given the current gross weight, altitude, and

airspeed.

Ẇ = f (W,Z, V ) (1.2)

1.2 The Basic Mechanics of Powered Flight

An essential component of solving flight planning problems with analytic methods

is a formula for a plane’s instantaneous rate of fuel consumption with respect to its

gross weight (W ), altitude (Z), and true airspeed (V ). Such a formula will define the

dynamics of the systems discussed in later sections and provide a means to control

those systems.

A theoretical foundation of aircraft fuel consumption can be derived from the mechan-

ics of powered flight using one of two coordinate systems: world reference coordinates

and plane reference coordinates. World reference coordinates use the plane’s “straight

line” ground path as the positive x axis and altitude as the z axis. Meanwhile plane

reference coordinates use the ray generated by the velocity vector of a plane’s cen-

ter of gravity as the positive horizontal axis. Ultimately flight planning problems

3



Figure 1.1: The world and plane reference coordinate systems.

will be solved in world reference coordinates, however three of the four forces acting

on powered flight (thrust, lift and drag) are either normal to or lie along a plane’s

flight path2. Consequently it will be useful to develop this theory in terms of both

coordinate systems.

The relationship between the two systems is given by the projection of a plane’s veloc-

ity vector onto the x and z axes of the world reference coordinate system. Specifically,

define V to be the magnitude of the velocity of a plane along its flight path and let

2According to Lan and Roskam [10] for most planes the force of thrust is very nearly in line with
a plane’s velocity vector under normal flying conditions.
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Figure 1.2: Division of flight path velocity into orthogonal world reference velocities.

Vx and Vz be the magnitudes of the orthogonal components of its velocity in world

reference coordinates. Then equations (1.3) through (1.6) define identities which can

be used to go back and forth between the two systems.

V =
(
V 2
x + V 2

z

) 1

2 (1.3)

cos γ =
Vx

(V 2
x + V 2

z )
1

2

(1.4)

sin γ =
Vz

(V 2
x + V 2

z )
1

2

(1.5)

tan γ =
Vz
Vx

(1.6)

For example, consider the force generated by the weight of the aircraft. This force

can be divided into one force which is exerted along a plane’s flight path, and another
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Figure 1.3: Division of Weight into Orthogonal Plane Reference Coordinates

which is exerted in a direction normal to a plane’s flight path. Specifically let W be

the magnitude of the force generated by the weight of an aircraft along the z-axis, let

WF be the magnitude of the component force exerted along a plane’s flight path, and

let WL be the magnitude of the component force exerted normal to a plane’s flight

path. Then WF = W sin γ and WL = W cos γ. From this and the above identities, it

is possible to generate the identities given by equations (1.7) and (1.8).

WF =
WVz

(V 2
x + V 2

z )
1

2

(1.7)

WL =
WVx

(V 2
x + V 2

z )
1

2

(1.8)

It is now possible to write out the equations of flight in terms of forces which are either

exerted along a plane’s flight path or in a direction normal to a plane’s flight path.
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Figure 1.4: Relevant forces of powered flight.

Let T , D, and L be the magnitudes of the forces of thrust, drag and lift (respectively).

Then the equations of zero acceleration flight are given by equations (1.9) and (1.10).

T = D +WF (1.9)

L = WL (1.10)

When the forces in these equations are not balanced a plane in flight will experience

some form of acceleration. Let g be the magnitude of the force due to gravity, let

Y1 be the magnitude of a plane’s acceleration along its flight path, and let Y2 be the

magnitude of a plane’s acceleration along its lift axes. Then the identities in equations

(1.11) and (1.12) can be derived from Newton’s laws of motion.

7



W

g
Y1 = T −D −WF (1.11)

W

g
Y2 = L−WL (1.12)

A similar set of identities can be constructed when the relevant forces are projected

into world reference coordinates. These are given in equations (1.13) and (1.14).

W

g
V̇x = (T −D −WF ) cos γ + (WL − L) sin γ (1.13)

W

g
V̇z = (T −D −WF ) sin γ + (L−WL) cos γ (1.14)

These last four equations can be combined and factored to yield a very useful system

of two equations in two unknowns.


 V̇x

V̇z


 =


 cos γ − sin γ

sin γ cos γ




 Y1

Y2


 (1.15)

Since the matrix in this system is non-singular for every angle γ it is possible to

express Y1 and Y2 and by extension equations (1.11) and (1.12) in terms of previously

defined physical quantities.


 Y1

Y2


 =


 cos γ sin γ

− sin γ cos γ




 V̇x

V̇z


 (1.16)

To get Y1, consider the top row of equation (1.16) along with equations (1.4) and

(1.5):

Y1 = (V̇x cos γ + V̇z sin γ) =
V̇xVx + V̇zVz

(V 2
x + V 2

z )
1

2

(1.17)
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Also, recall from equation (1.3) that V = (V 2
x + V 2

z )
1

2 and note that differentiating

both sides of this equation with respect to t yields the identity in equation (1.18).

V̇ =
VxV̇x + VzV̇z

(V 2
x + V 2

z )
1

2

(1.18)

Thus equations (1.17) and (1.18) imply that Y1 = V̇ .

Y1 = V̇ (1.19)

To get Y2 consider the bottom row of equation (1.16) along with equations (1.4) and

(1.5):

Y2 = −V̇x sin γ + V̇z cos γ

=
−V̇xVz + V̇zVx

(V 2
x + V 2

z )
1

2

=
(
V 2
x + V 2

z

) 1

2
V̇zVx − VzV̇x
(V 2

x + V 2
z )

(1.20)

Also, recall from equation (1.6) that tan γ = Vz

Vx
. This implies that γ = tan−1

(
Vz

Vx

)
.

Finally, note that differentiating both sides of this expression for γ with respect to t

yields the identity in equation (1.21).

γ̇ =

d
dt

[
Vz

Vx

]

1 +
(
Vz

Vx

)2 =

(
V̇zVx − VzV̇x

)
/V 2

x

1 +
(
Vz

Vx

)2 =
V̇zVx − VzV̇x
V 2
x + V 2

z

(1.21)

Thus equations (1.20) and (1.21) imply that Y2 = V γ̇.

Y2 = V γ̇ (1.22)

9



Consequently equations (1.11) and (1.12) can be written completely in terms of pre-

viously defined physical quantities

V̇

(
W

g

)
= T −D −WF (1.23)

V γ̇

(
W

g

)
= L−WL (1.24)

These last two equations provide half of the fuel flow model’s theoretical foundations.

The next quarter of the model is provided by the ratio between pounds of fuel burned

per hour and the maximum pounds of thrust produced by burning fuel at that rate.

TSFC =
Ẇ

T
(1.25)

This ratio is known as Thrust Specific Fuel Consumption (TSFC) and is believed to

be a function of altitude and airspeed. It will be more useful in the current exercise

when expressed as in equation (1.26).

Ẇ = TSFC (Z, V )T (1.26)

Finally, it will be difficult to derive a fuel flow formula without approximating a

relationship between lift and drag. Let L and D be the magnitudes of the forces of

lift and drag. These magnitudes are given by equations (1.27) and (1.28).

L =
(
ρ (Z)V 2S

)
CL (1.27)

D =
(
ρ (Z)V 2S

)
CD (1.28)

where ρ (Z) is the density of the atmosphere at altitude Z, V is the airplane’s true

airspeed, S is the surface area of the plane’s lifting surfaces, CL is the coefficient of

10



lift, and CD is the coefficient of drag. In [6] Hale writes that the coefficients of lift

and drag change continuously with the Mach number, the Reynolds number, and the

angle α between a plane’s wing chord and its velocity vector.

Figure 1.5: Definition of α (angle of attack)

CL = CL(α,M,Re)

CD = CD(α,M,Re)

Hale also states that CL is a monotonically increasing function of α up to the stall

point CLmax
. Thus, if it is assumed that a plane will not fly beyond this point, it is

possible to write α as a function of CL. Consequently it is possible to write CD as a

function of CL, the Mach number, and the Reynolds number.

CD = CD(CL,M,Re)

(1.29)

Approximating this function with a second order Taylor expansion around the point

(CL0
, CD0

) where CD0
= CDmin

yields the following expression

CD(CL;M,Re)...

... ≈ CD(CL0
;M,Re) + C ′

D(CL0
;M,Re)(CL − CL0

) + 1
2
C ′′

D(CL0
;M,Re)(CL − CL0

)2

... = CD(CL0
;M,Re) + 1

2
C ′′

D(CL0
;M,Re)(CL − CL0

)2

... = CD0
(M,Re) +K(M,Re)(CL − CL0

)2

(1.30)

It is assumed that C ′
D(CL0

;M,Re) = 0 for all values of M and Re because this is

a first order necessary condition of a minimum. Hale writes that the coefficients
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CD0
(M,Re) and K(M,Re) can in practice be regraded as constants. Finally, al-

though no author explicitly states that CL0
can be regarded as a constant, it has not

been treated otherwise in any of the aircraft performance text books which have thus

far been reviewed. Thus it is assumed that the following is a reasonable, if not a good

approximation of the functional relationship between CD and CL for values of CL up

to CLmax
.

CD ≈ CD0
+K (CL − CL0

)2 (1.31)

This equation is known as the parabolic drag polar equation and will be used in an

expanded form

CD ≈ (K)C2
L − (2KCL0

)CL +
(
CD0

+KC2
L0

)
(1.32)

Finally combining equations (1.27), (1.28), and (1.32) it follows that

D =
(
ρ(Z)V 2S

)

K

(
L

ρ (Z)V 2S

)2

− (2KCL0
)

(
L

ρ (Z)V 2S

)
+
(
CD0

+KC2
L0

)



=

(
K

ρ (Z)V 2S

)
L2 − (2KCL0

)L+
(
ρ (Z)V 2S

) (
CD0

+KC2
L0

)
(1.33)

1.3 The Rate of Fuel Consumption

It is now possible to derive a general model for the rate at which a plane consumes

fuel while in flight. This model is based on the balance of forces identities culminating

in equations (1.23) and (1.24), the relationship between thrust and fuel flow given in

equation (1.26), and the relationship between lift and drag given in equation (1.33).

First note that equation (1.23) can be re-written so that thrust is expressed as a

function of drag, gross weight, acceleration along the flight path, and the angle of the

flight path with respect to the world’s horizon. Doing so generates equation (1.34).
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T = D +W

(
V̇

g
+ sin γ

)
(1.34)

Subbing this into equation (1.26) yields equation (1.35).

Ẇ = TSFC (Z, V )

[
D +W

(
V̇

g
+ sin γ

)]
(1.35)

Next note that equation (1.24) can be re-written so that lift is expressed as a function

of weight, acceleration along the flight path, the rate of change in the angle of the

flight path with respect to time, and the angle of the flight path with respect to the

world’s horizon. Doing so generates equation (1.36).

L = W

(
V γ̇

g
+ cos γ

)
(1.36)

Subbing this into equation (1.33) yields equation (1.37).

D = ...

[
K(V γ̇

g
+cos γ)

2

ρ(Z)V 2S

]
W 2 − (2KCL0

)
(
V γ̇

g
+ cos γ

)
W + (ρ (Z)V 2S)

(
CD0

+KC2
L0

)

(1.37)

Finally, subbing equation (1.37) into equation (1.35) yields equation (1.38).

Ẇ = TSFC (Z, V )
[
α1W

2 + α2W + α3

]
(1.38)

where:

α1 =
K
(
V γ̇

g
+ cos γ

)2

ρ (Z)V 2S
(1.39)
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α2 =

(
V̇

g
+ sin γ

)
− (2KCL0

)

(
V γ̇

g
+ cos γ

)
(1.40)

α3 =
(
ρ (Z)V 2S

) (
CD0

+KC2
L0

)
(1.41)

Next note that each of these coefficients can be expressed as functions of Z, Vx, V̇x,

Vz, and V̇z. First consider the following

V γ̇

g
+ cos γ =


(V 2

x + V 2
z )

1

2

g



(
V̇zVx − VzV̇x
V 2
x + V 2

z

)
+


 Vx

(V 2
x + V 2

z )
1

2




=


 V̇zVx − VzV̇x

g (V 2
x + V 2

z )
1

2


+


 gVx

g (V 2
x + V 2

z )
1

2




=
V̇zVx − VzV̇x + gVx

g (V 2
x + V 2

z )
1

2

Thus α1 can be written as

α1 =
K
(
V γ̇

g
+ cos γ

)2

ρ (Z)V 2S

=
K
(

V̇zVx−VzV̇x+gVx

g(V 2
x +V 2

z )
1

2

)2

ρ(Z) (V 2
x + V 2

z )S

=
K
(
V̇zVx − VzV̇x + gVx

)2

ρ (Z) g2 (V 2
x + V 2

z )
2 S

(1.42)
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Additionally α2 can be written as

α2 =

(
V̇

g
+ sin γ

)
− (2KCL0

)

(
V γ̇

g
+ cos γ

)

=

(
V̇xVx + V̇zVz + gVz

)
− (2KCL0

)
(
V̇zVx − VzV̇x + gVx

)

g (V 2
x + V 2

z )
1

2

(1.43)

And finally α3 can be written as

α3 =
[
ρ (Z)

(
V 2
x + V 2

z

)
S
] [
CD0

+KC2
L0

]
(1.44)

Thus a model for the plane’s fuel flow, with respect to its current state is given by

d

dt




W

X

Z

Vx

Vz




=




f
(
W,Z, Vx, Vz, V̇x, V̇z

)

Vx

Vz

V̇x

V̇z




(1.45)

where

f
(
W,Z, Vx, Vz, V̇x, V̇z

)
= TSFC (Z, Vx, Vz))

[
α1W

2 + α2W + α3

]
(1.46)

and

α1 =
K
(
V̇zVx − VzV̇x + gVx

)2

ρ (Z) g2 (V 2
x + V 2

z )
2 S

(1.47)

α2 =

(
V̇xVx + V̇zVz + gVz

)
− (2KCL0

)
(
V̇zVx − VzV̇x + gVx

)

g (V 2
x + V 2

z )
1

2

(1.48)

α3 =
[
ρ (Z)

(
V 2
x + V 2

z

)
S
] [
CD0

+KC2
L0

]
(1.49)
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1.4 Further Notation

In later sections it will be convenient to identify the fuel flow model as it runs back-

wards in time with its own special notation. Let ξ(t) be the state vector of this model.

Then

ξ(t) ≡ [W (−t), X(−t), Z(−t), Vx(−t), Vz(−t)]T (1.50)

and

d

dt
ξ(t) =




−f
(
W (−t), Z(−t), Vx(−t), Vz(−t), V̇x(−t), V̇z(−t)

)

−Vx(−t)
−Vz(−t)
−V̇x(−t)
−V̇z(−t)




(1.51)

Let u1(t) = −V̇x(−t) and u2(t) = −V̇z(−t). Then, with some relabeling, the fuel flow

model can be re-written in terms of the components of a state vector ξ and a control

vector u = [u1, u2]
T .

d

dt
ξ(t) =




−f (ξ1(t), ξ3(t), ξ4(t), ξ5(t), u1(t), u2(t))
−ξ4(t)
−ξ5(t)
u1(t)

u2(t)




(1.52)

For convenience, let

F (ξ, u) =




−f (ξ1, ξ3, ξ4, ξ5, u1, u2)
−ξ4
−ξ5
u1

u2




(1.53)

Then we can simply write ξ̇ = F (ξ, u).

16



1.5 Estimators For Unknown Coefficients

The model derived in the previous sections is of little practical use without reasonable

estimates of the area of the lifting surfaces S, the minimum drag coefficient CD0
,

the lift coefficient corresponding to the minimum drag coefficient CL0
, the second

order Taylor coefficient of the drag polar K, or a function for thrust specific fuel

consumption TSFC(Z, V ). The only data readily available to derive these estimates

is called Specific Range Data.

Figure 1.6: Typical Layout of Specific Range Data

Specific range data is typically organized in large lookup tables which, for a given

altitude, Mach number, and gross weight, provide the number of nautical miles a

plane can travel per 1000 lbs of fuel. Note that altitude and Mach are held constant

over each column of data. Therefore each column of data is associated with a constant

true airspeed. Consequently, it is possible to convert each specific range data point

into the amount of time it takes to burn 1000 lbs of fuel given a constant altitude,

airspeed, and a starting weight. The converted data can then be used to generate

time series which approximate the amount of time that would pass for a given change

in a plane’s gross weight if it flew at a constant altitude and airspeed, and had a

starting weight W0. Finally these time series can be used to estimate the values of

the unknown parameters. That is, of course, if it is possible to solve the differential

equation defined by equations (1.38) through (1.41).
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Figure 1.7: Conversion of Specific Range Data into ∆t values

Figure 1.8: Conversion of ∆t values into Time Series
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It turns out that this is not a difficult thing to do. Recall that the time series generated

from the spec range data assume a constant altitude and a constant positive airspeed.

Thus along any given column of data, Vx > 0 and Vz = V̇x = V̇z = 0. This implies

that γ = γ̇ = 0. Thus the differential equation associated with a particular column

of data (identified by a choice of altitude z and airspeed v) can be simplified into

equation (1.54).

Ẇ = aW 2 − bW + c (1.54)

with constant coefficients:

a =
T zv
SFCK

ρ (Z)V 2S
(1.55)

b = 2T zv
SFCKCL0

(1.56)

c = T zv
SFC

(
ρ (Z)V 2S

) (
CD0

+KC2
L0

)
(1.57)

This is a Riccati equation in W and is easily solved using standard techniques. In

particular, the solution to the initial value problem associated with a choice of altitude

(Z), airspeed (V ), and initial gross weight (W0) is given by equation (1.58).

W (t) = W0




cos(1
2
dt) +

(
W0b−2c
dW0

)
sin(1

2
dt)

cos
(
1
2
dt
)
+
(
2aW0−b

d

)
sin

(
1
2
dt
)


 (1.58)

where

d =
√
4ac− b2 = 2T zv

SFCK
1

2C
1

2

D0
(1.59)

Careful organization of the terms in the coefficients of the sin functions provide a

formula for W (t) parameterized by: W0; Z; V ; three parameters A, B, and C; and a

value Dzv which depends on Z and V . First note that the coefficient of the sin term

in the numerator of equation (1.58) can be written as as in equation (1.60).
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W0b− 2c

dW0

=
W0 (2T

zv
SFCKCL0

)− 2 (T zv
SFCρ(Z)V

2S)
(
CD0

+KC2
L0

)

W0

(
2T zv

SFCK
1

2C
1

2

L0

)

=
W0 (KCL0

)− (ρ(Z)V 2S)
(
CD0

+KC2
L0

)

W0

(
K

1

2C
1

2

L0

)

=

(
K

CD0

) 1

2

−


S
(
CD0

+KC2
L0

)

K
1

2C
1

2

D0



(
ρ(Z)V 2

W0

)
(1.60)

and that the coefficient of the sin term in the denominator of equation (1.58) can be

written as in equation (1.61).

2aW0 − b

d
=

2
(

T zv
SFC

K

ρ(Z)V 2S

)
W0 − 2T zv

SFCKCL0

2T zv
SFCK

1

2C
1

2

D0

=

(
K
S

) (
W0

ρ(Z)V 2

)
−KCL0

K
1

2C
1

2

D0

=

(
K

S2CD0

) 1

2

(
W0

ρ(Z)V 2

)
−
(
K

CD0

) 1

2

CL0
(1.61)

Thus it is possible to re-write equation (1.58) in the following way:

W (t) = W0



cos(Dzvt) +

(
A− B ρ(Z)V 2

W0

)
sin(Dzvt)

cos(Dzvt) +
(
C W0

ρ(Z)V 2 − A
)
sin(Dzvt)


 (1.62)

where

A =

(
K

CD0

) 1

2

CL0
(1.63)
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B =
S
(
CD0

+KC2
L0

)

K
1

2C
1

2

D0

(1.64)

C =

(
K

S2CD0

) 1

2

(1.65)

Dzv =
d

2
= T zv

SFCK
1

2C
1

2

D0
(1.66)

The advantage of this parameterization is that the coefficients A, B, C, and a coeffi-

cient matrix Dzv can be estimated from the time series data by minimizing the sum

of the squared errors,

arg min
ABCDzv

J∑

j=1

K∑

k=1

Ijk∑

i=1

Hijk∑

h=1

[
Whijk − Ŵhijk (A,B,C,Djk)

]2
(1.67)

The indices (i, j, k) identify the data series to which a particular data point belongs.

Specifically, for a given data series, j is the index of its Mach, k is the index of its

altitude, and i is the index of its initial weight. Meanwhile, h identifies the position

of a data point within a particular series. Note that the maximum number of initial

weights depends on the Mach, altitude pair. This is because some Mach altitude pairs

do not support the full range of initial weights.

1.6 Estimation Results

This model was implemented in MATLAB version 7.9.0 using the MATLAB function

nlinfit along with the following algorithm.

1. Choose a subset P of supported Mach altitude pairs
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2. Choose a subset W of initial weights to be used with each Mach

altitude pair.

3. For each Mach altitude pair in P and each initial weight in W

3.1. Check if Mach altitude pair supports initial weight.

Move on to next initial weight if current weight is not supported.

3.2. Use current Mach, altitude, and initial weight along

with specific range data to construct a time series Whijk.

3.3. Use the Mach, Altitude, and initial weight to build

inputs for Ŵijkh which correspond to the time series.

3.4. Store time series and corresponding inputs in memory.

4. Use the MATLAB function nlinfit along with data generated in step 3 to

estimate A, B, C, and Dzv.

5. For each Mach altitude pair supported by the specific range data set

5.1. For each initial weight that is supported by the Mach, altitude pair

construct a time series Whijk and inputs for Ŵijkh using

the estimates for A, B, and C generated in step 4.

5.2 Use the MATLAB function nlinfit along with the data generated in the

previous steps to estimate Dzv for the current Mach altitude pair.

This algorithm was implemented over the spec range data of a narrow body transport

jet with the set P defined in table 1.9. The maximum absolute errors produced over

any of the time series associated with a particular Mach altitude pair are mapped in

figure 1.10. Figure 1.11 zooms in on the top left corner of figure 1.10 and highlights

some absolute errors observed in the neighborhood of typical cruising Machs and

22



Flight Level (1000ft)
Mach 10 15 20 25 30 35
0.40 X X
0.42 X X
0.44 X X
0.46 X X X
0.48 X X X
0.50 X X X X
0.52 X X X X
0.54 X X X X
0.56 X X X X
0.58 X X X X
0.60 X X X X X
0.62 X X X X X
0.64 X X X X
0.66 X X X X
0.68 X X X X
0.70 X X X X X
0.72 X X X X
0.74 X X X X
0.76 X X X X

Figure 1.9: Set P of Mach Altitude Pairs used in model run.

altitudes. From these figures two things are clear. First, the maximum absolute error

between a value W (t;A,M,W0) derived from iterating over the associated specific

range table and an estimated value Ŵ (t;A,M,W0) is less than 5,000 lbs or less than

2% of the aircraft’s maximum ramp weight. Second, the concentration of large errors

at the extremes indicates that there might be something wrong with the assumption

that CD0
, K, and CL0

are constants.

To check the constant coefficients assumption the algorithm was modified to find a

parameter vector [ÂB̂ĈD̂]zv for each Mach altitude pair. The output of this algorithm

is presented in figure 1.12. From this picture it should be clear that both B̂ and Ĉ are

strongly affected by Mach, but probably not affected by altitude. Meanwhile, Â seems

to be affected by both Mach and altitude. Finally note that the maximum absolute

errors are now extremely small.

Although the extremely small errors in the second model are highly desirable, allowing

all four parameters to vary with Mach and altitude increases the complexity of the
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Figure 1.10: Estimation errors mapped by Mach and altitude.
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Figure 1.11: Estimation errors mapped by Mach and altitude zoomed in on range of
cruising altitude and Mach.
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Figure 1.12: An output of the results when the algorithm is modified to find a pa-
rameter vector [ÂB̂ĈD̂]zv for each Mach, altitude pair separately.

expression for Ẇ . Meanwhile the maximum absolute errors in the first model are

almost within tolerable limits. Ultimately the decision to use one model over the

other will depend on the needs of the end user. If a faster way to compute gross

weights over long flight paths is all that is required, then the second model is the

better model to use. However, the first model will be easier to use in the construction

of optimal flight paths.

1.7 An Optimal Control Formulation of the Tanker

Sortie Fuel Planning Problem

The mission to satisfy the aerial refueling requirements generated by the air opera-

tions of a single theater of war is referred to as an employment AR mission. The

overriding goal of an employment AR mission is to provide every receiver with the
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Figure 1.13: Characteristic employment AR mission tanker sortie.

fuel they need, when they need it, where they need it. Consequently the following

information is almost always completely specified for an employment AR mission AR

event (employment AR event):

• the start time and duration

• the coordinates of the initial and final positions

• the altitude and airspeed of the air refueling maneuver

• the total offload and rate of offload

Thus, given a tanker departure base B0, a tanker recovery base B1, and a set of

employment AR events E , the Employment Sortie Planning problem (ESP) can be

defined as follows:

ESP Find the tanker flight path which departs from B0, satisfies the requirements

of the AR events in E , and arrives at a final approach position near B1 with the

required fuel reserve while minimizing a weighted combination of tanker flying

time and tanker fuel consumption.

Observe that this problem completely specifies a tanker’s state at final approach and

many of the conditions the tanker needs to satisfy along the way. Meanwhile, it seems

as if finding an optimal departure fuel load is an important part of the problem’s

solution. This follows from the fact that one of the main goals of this problem is to
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minimize total fuel consumption, and the intuitive sense that the fuel flow rate Ẇ

increases with gross weight W under most (if not all) normal flight conditions.

These observations suggest that the problem should be solved backwards. One ap-

proach is to divide a sortie into a set of component flight legs and solve the sub-

problem associated with each flight leg backwards in time and in reverse order. To

illustrate this method, consider the following formulations of the subproblems asso-

ciated with the the example employment AR sortie given in figure 1.13.

1.7.1 Final Cruise Segment

The flight leg between way points 6 and 7 is a model for the final cruise segment of

a typical employment tanker sortie. At way point 7 the altitude Z(7), ground speed

V (7)
x , rate of descent V (7)

z , and gross weight W (7) of the tanker are determined by

Air Force regulations and characteristics of the recovery base. At way point 6 the

altitude Z(6) and airspeed V (6) are determined by the requirements of the AR event.

In addition to this, the rate of climb at this way point V (6)
z is assumed to be zero,

thus under the no wind assumption, the ground speed V (6)
x should be the same as the

airspeed. Finally, the length of the flight leg’s ground path d(6,7) is taken to be the

great circle distance between the two points. Thus, the problem posed by this flight

leg is to find the gross weight W
(6)
∗ at the end of the AR event and the flying time

T∗ which minimize the given cost function. Using the notation defined in section 1.4,

these criteria can be used to formulate the following optimization problem.

min
u∈U

∫ T∗

0
Chdt+ CfW

(6)
∗

s.t. ξ̇ = F (ξ, u)

ξ(0) =
[
W (7), d(6,7), Z

(7), V (7)
x , V (7)

z

]T

ξ(T ∗) =
[
W (6)

∗ , 0, Z(6), V (6)
x , 0

]T
(1.68)
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1.7.2 AR Segment

The flight leg between way points 5 and 6 is a model for a typical employment AR

event. The first requirement of this segment is that the tanker’s final gross weight

W (6) must equal the optimizing initial gross weight W
(6)
∗ of the following segment.

In addition to this, the altitude Z, airspeed V , and duration T of this flight leg

are given by the event’s receiver requirements and are assumed to be fixed constant

values. Because altitude and airspeed are fixed during this flight leg, it follows that

the rate of ascent Vz is zero which implies that the ground speed Vx is equal to the

airspeed. Also, it should be observed that during an AR event a tanker’s gross weight

is affected both by fuel consumption and fuel offload. The most conservative way

to model this is to assume that fuel is offloaded in one contiguous time interval at

the end of the AR event and to add the constant offload rate R to the rate of fuel

flow Ẇ over that interval. The size of the offload interval τ can be computed by

dividing the amount of fuel that needs to be offloaded by the offload rate. Finally,

the tanker’s boom will likely be down throughout most if not all of an AR flight

segment. Therefore, the fuel flow model used in the optimization problem associated

with this flight leg, should be parameterized with coefficients estimated from a “Boom

Down” specific range data set. Thus, the problem posed by this flight leg is to find

the minimum gross weight W
(5)
∗ at the beginning of the AR event needed to satisfy

the end of leg fuel requirement and the offload amount while flying at an altitude

and airspeed and for a duration of time set by the receiver requirements. Using the

notation defined in section 1.4 these criteria can be used to formulate the following

optimization problem.

min W (5)
∗

s.t. Ẇ (t) =





−f(W ;Z, Vx, 0, 0, 0) +R t ∈ [0, τ)

−f(W ;Z, Vx, 0, 0, 0) t ∈ [τ, T ]

W (0) = W (6)
∗

W (T ) = W (5)
∗ (1.69)
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1.7.3 Inter AR Cruise Segment

The flight leg between way points 4 and 5 is a model for any cruise segment between

two AR events. The problem posed by this flight leg is almost exactly the same

in structure as the one posed by the final cruise flight segment. The distinguishing

difference is the fact that the duration of this flight leg is limited to the amount of time

that exists between the end of the first AR event and the beginning of the second AR

event. The remaining conditions come from the requirements of the two AR events

and the fact that the tanker’s final gross weightW (5) must equal the optimizing initial

gross weightW
(5)
∗ of the following segment. Thus, the problem posed by this flight leg

is to find the smallest initial gross weight W
(4)
∗ such that the tanker can depart from

the first AR event and arrive on time at the second AR event while satisfying the end

of leg fuel requirement. Using the notation defined in section 1.4 these criteria can

be used to formulate the following optimization problem.

min
u∈U

W (4)
∗

s.t. ξ̇ = F (ξ, u)

ξ(0) =
[
W (5)

∗ , d(4,5), Z
(5), V (5)

x , 0
]T

ξ(T ) =
[
W (4)

∗ , 0, Z(4), V (4)
x , 0

]T
(1.70)

1.7.4 Initial Cruise Segment

The flight leg between way points 2 and 3 is a model for the initial cruise segment

of a typical employment sortie. At way point 3 the tanker’s weight is given by

the optimizing initial gross weight W
(3)
∗ of the following segment, altitude Z(3) and

airspeed V (3) are determined by the requirements of the first AR event, and the

rate of climb V (3)
z is assumed to be zero. Under the no wind assumption, this last

requirement implies that the tankers ground speed V (3)
x should be the same as the

airspeed V (3). Meanwhile, the only component of the tanker’s state that is specified at

way point 2 is its altitude Z(2) which is required to be the minimum cruising altitude
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Zmin allowed by Air Force regulations. Finally the distance d(2,3) between way point

2 and way point 3 is taken to be the great circle distance d(1,3) between way point

1 and way point 3 minus the minimum time climb out distance associated with the

tanker’s maximum ramp weight. Thus, the problem posed by this flight leg is to find

the gross weight W
(2)
∗ and the flying time T∗ which minimize the given cost function.

Using the notation defined in section 1.4 these criteria can be used to formulate the

following optimization problem.

min
u∈U

∫ T∗

0
Chdt+ CfW

(2)
∗

s.t. ξ̇ = F (ξ, u)

ξ(0) =
[
W (3)

∗ , d(2,3), Z
(3), V (3)

x , 0
]T

ξ(T ∗) =
[
W (2)

∗ , 0, Zmin, V
(2)
x∗ , V

(2)
z∗

]T
(1.71)

1.7.5 Initial Climb Segment

The flight leg between way points 1 and 2 is a model for the initial climb segment of

a typical employment sortie. At way point 2 the tanker’s altitude is required to be

Zmin as specified by Air Force regulations. In addition to this, the tanker’s weight,

ground speed, and rate of descent are given by the optimizing initial gross weight

W
(2)
∗ , the optimizing ground speed V

(2)
x∗ , and the optimizing rate of descent V

(2)
z∗ of

the initial cruise segment. Meanwhile, at way point 1, altitude is taken to be 0 ft

and airspeed is taken to be 0 ft

sec
. Finally the distance d(1,2) between way point 1 and

way point 2 is taken to be the minimum time climb out distance associated with the

tanker’s maximum ramp weight weight. Thus, the problem posed by this flight leg is

to find the gross weight W
(1)
∗ which minimizes the time T∗ it takes to traverse d(1,2),

and get to the minimum cruising altitude Zmin. Using the notation defined in section

1.4 these criteria can be used to formulate the following optimization problem.
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min
u∈U

∫ T∗

0
dt

s.t. ξ̇ = F (ξ, u)

ξ(0) =
[
W (2)

∗ , d(1,2), Zmin, V
(2)
x∗ , V

(2)
z∗

]T

ξ(T ∗) =
[
W (1)

∗ , 0, 0, 0, 0
]T

(1.72)

1.7.6 Example Implementation

Given an employment sortie planning problem with departure base B0, a set of N AR

events, and a recover base B1 this method can be implemented using the following

algorithm.

1. Get the final approach requirements of B1

2. Get the receiver requirements of N th AR event

3. Solve the final flight leg problem

4. For i = 0 to (N -1)

Solve the AR Segment problem of AR event (N -i)

If: there is an AR event (N -i)-1

Get the receiver requirements of AR event (N -i)-1

Solve the Inter AR Cruise Segment Problem

else:

break

Loop

5. Solve the initial flight leg problem

6. Solve the initial climb problem

One obvious refinement to this algorithm would be the incorporation of a conditional

statement at the end of each iteration in the AR event loop which checks to see if

the tanker can “get” to the departure base without exceeding its maximum take off

weight.
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1.8 Suggestions for Future Research

It should be clear that the problems presented in section 1.7 will not be easy to solve

considering the governing system developed in section 1.3. Consequently a reasonable

next step will be to find ways to either simplify the dynamics of the system, or simplify

the tanker sortie planning problem. One immediate simplification would be to assume

that each flight leg is flown at a constant altitude. This would cut out the need to

consider velocity and acceleration on the Z axis and reduce the number of terms in

the dynamics as well as the dimension of optimal control function. It may even be

to reasonable remove acceleration along the X axis from the problem and consider

optimal control formulations which use velocity along the X axis as the control.

It should also be noted that the problems presented in section 1.7 assume that the

best ground path between two points will be the one with the shortest distance. This

assumption completely ignores the effects of wind and obstacles created by erupting

volcanoes, political boundaries, and anti aircraft weapons. Consequently it will also

be useful to find a way to generalize these problems to a sphere which is endowed

with a simple but practical wind map and eventually a sphere with both a wind map

and no fly zones.

Finally, there are several other characteristic flight planning problems to consider.

For example, it would be useful to define maximum orbit offload boundaries given

a cruise leg distance, as well as maximum cargo loads given an aircraft, a point of

departure, and a point of arrival.
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Chapter 2

Tanker Basing Demand Mismatch

Index
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% Demand 

% Tankers NC
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%  Tankers NE
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% Tankers 
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Figure 2.1: Original Six Region Tanker Basing Demand Mismatch Map

2.1 Introduction

In 1992 Headquarters (HQ) Air Mobility Command (AMC) Studies and Analysis was

asked to construct a measure that could be used to inform tanker basing decisions

made during the first Base Realignment and Closure (BRAC) process. In response

to this request they divided the Continental United States (CONUS) into six regions,

counted the number of tanker and receiver aircraft within each region, and gave each

region a numerical value using the following formula
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Region Score =
% Share of Receiver Aircraft within Region

% Share of Tanker Aircraft within Region
(2.1)

This method for quantifying the inter regional balance of the tanker fleet with respect

to the geographic distribution of receiver aircraft is known as the Six Region Tanker

Basing Demand Mismatch Index (6TBDMI).

The core ideas of the 6TBDMI are: that a region can be given two dimensionless

values, one corresponding to its proximity to tanker resources (henceforth a Supply

Score or SS) and one corresponding to its proximity to demand for Air Refueling

(AR) support (henceforth a Demand Score or DS); that ideally both of these scores

would be equal; and that when a region’s Supply Score was greater than (less than)

its Demand Score, its TBDMI would indicate that tankers needed to be subtracted

from (added to) the region. Specifically the 6TBDMI uses a region’s percent share of

tanker and receiver aircraft as its supply and demand scores. By dividing the demand

score by the supply score the 6TBDMI puts the ideal state at a TBDMI value of 1;

the oversupply continuum of scores on the half open interval between zero and one;

and the under supply continuum of scores on the open set of real numbers greater

than one. In addition to this, it is interesting to note that as a region’s demand score

changes, its 6TBDMI value only changes at a constant rate equal to the reciprocal of

its supply score (i.e. 1
SS

). Meanwhile, as a region’s supply score changes its 6TBDMI

value changes at a rate equal to (−DS
SS2 ). Thus the 6TBDMI is extremely sensitive to

changes in supply score when supply score is small. In particular, as a region’s supply

score goes to zero, both its 6TBDMI value, and the rate of change in its 6TBDMI value

grow without bound. Consequently it would seem as if it is absolutely unacceptable

(“Infinitely Bad”) for any region to be without a tanker, even regions with demand

scores equal to zero. Considering the size of the regions used in the 6TBDMI this

amount of sensitivity to supply score would tend to make sense; especially in the

light of the fact that it is highly unlikely any of these regions would ever have a zero

percent share of receiver aircraft.

Although this scoring method is intuitively clear and provides a good rough estimate

of the tanker and receiver aircraft landscape, it is flawed in three critical ways. First,

by assigning the same value to every point in a region, the 6TBDMI tacitly assumes

that tanker and receiver aircraft are evenly distributed throughout the regions in
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Percent of Demand Within a 750 Mile Round Trip 

Distance

Boundaries of Traditional 6 Region TBDMI

Boundary scheme that concentrates demand in two regions

Figure 2.2: The traditional 6 region map, and a boundary scheme that concentrates
demand into two regions

which they are located. This is not always true. For example in 2006 there were only

two KC-135 tanker bases in the north west region, and both of these bases were in

the north west corner of that region. Second, the 6TBDMI assumes that tanker and

receiver aircraft only operate within the regions in which they are located. Again

this is not supported by the data. For example, Lincoln Nebraska is located just

north of the border between the north central and south central regions. Meanwhile,

during the period between FY06-Q1 and FY09-Q4, 56% of the round robin tanker

sorties flown by the tanker unit at Lincoln Nebraska were flown to support AR events

that took place in the south central region. Finally, before the 6TBDMI can be

implemented someone needs to decide how the country should be partitioned. This

aspect of the index was not clearly defined by its inventors. Consequently present and
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future analysts are faced with the decision to either stick with tradition or redraw

the boundaries. Complicating this decision is the problem that no matter how the

boundary lines are drawn, a discrete regional TBDMBI will create winners and loosers

in what is a politically charged zero sum game. Moreover, because the data do not

support the two tacit assumptions discussed above, winners under some regional

boundary schemes will likely be loosers under others. Consequently the 6TBDMI is

politically indefensible. And while this is not a mathematical criteria, it is a very

practical thing to consider. Ultimately an index of this nature needs to stand up to

intense scruitiny so that it can be used both to shape the best course of action, and

defend it.

For these reasons, in December 2009 HQ AMC Analysis, Assessments, and Lessons

Learned was asked to repair or replace the 6TBDMI in support of KC-X tanker bed

down decisions. The following research was conducted to respond in whole to that

request.

2.2 The Ideal TBDMI

The purpose of a TBDMI is to provide decision makers with the ability to clearly

see where tankers need to be added and where they can be safely subtracted. This

is done by showing them where the demand for AR support is high (low) relative to

the supply of neighboring tanker resources, and where it is satisfied (but only just

satisfied). Consequently the ideal TBDMI will consider the geographic distribution of

the demand for AR support (as opposed to the geographic distribution of receiver air-

craft). Moreover, a location’s score will depend on all of the AR demand surrounding

it as well as all of the tankers in a position to support that AR demand. In addition

to this, considering the extremely long range of tanker aircraft, the ideal TBDMI

should not produce a set of neighboring locations in which the TBDMI values are

starkly different. Specifically, suppose that two locations were said to be equivalent

if the difference between their TBDMI values was sufficiently small. Then at any

test location on the map it should be possible to find a radius so that every point

within the radius of the test point was equivalent to the test point. In short, the ideal

TBDMI will be continuous with respect to location. Finally, the results of the ideal
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TBDMI will be largely dominated by tanker operations data and parameter values

which can be supported by analyses conducted on that data set. This is not to say

that the results of the ideal TBDMI won’t be subject to decisions made by end users,

but rather that end users should only be allowed to insert their judgment when it can

be supported by empirical evidence.

2.3 Constructing New Supply and Demand Scores

Figure 2.3: A grid of discrete locations generated over CONUS

Consider a location p on the map. Under the 6 TBDMI, p’s supply score is equal to

the percent of the tanker fleet located within the same region as p. Thus p’s supply

score can be computed with equation (2.2).

SS0(p) =
100∗

∑J

j=1
ψ(p,TBj)Tj∑J

j=1
Tj

p ∈ CONUS (2.2)

where Tj is the number of tankers at the jth tanker base, TBj is the location of the

jth tanker base and the function ψ(p, TBj) is given by equation (2.3).

ψ(p, TB) =





1 if TB is located in same region as p

0 else
(2.3)

As discussed in section 2.1, one of the biggest problems with the 6TBDMI is that ψ

is a horrible way to determine what should and should not be included in a location’s

measure of neighboring capacity. First, tanker aircraft are not evenly distributed

within regions. Moreover, tankers just beyond a regional boundary are excluded from
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a location’s supply score no matter how close they are to the location. A better

indicator function would include tankers at every tanker base in some symmetric

neighborhood around a location p in its supply score. Consider for example the

candidate supply score given by equation (2.4).

CSS1(p) =
100∗

∑J

j=1
χ

M
(p,TBj)Tj∑J

j=1
Tj

p ∈ CONUS (2.4)

where χM is given by equation (2.5).

χ
M
(p, TB) =





1 if dist(p, TB) < M

0 if dist(p, TB) ≥M
(2.5)

This function computes the percent share of the tanker fleet within some fixed distance

M of a location p. Although it is an improvement on the 6TBDMI supply score, there

are still two problems to think about. First χM is not continuous with respect to

location. Consequently CSS1 will probably not be continuous either. To see this

consider the diagram in figure 2.4.

p TBp2p1 p3 p4

M

Figure 2.4: Illustrating points of discontinuity generated by a simple indicator func-
tion

Because location p is exactly M miles away from tanker base TB, the tankers at

TB will not be included in location p’s supply score. Nor will they be included in

the supply score of any location to the left of p. Meanwhile these tankers will be

included in the supply scores of every point between p and TB. Consequently there

will always be points in the neighborhood around p with starkly different supply

scores (no matter how small the neighborhood around p is drawn).

Second, this function gives the same weight to every tanker no matter how far it is

from a point. To see why this is important, consider two different locations p1 and
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p2. Suppose that p1 is within 300 miles of 2% of the fleet, 600 miles of 6% of the fleet,

and 1000 miles of 12% of the fleet. Alternatively suppose that the second location

isn’t within 700 miles of 1% of the fleet, but is within 1000 miles of 12% of the fleet.

The two locations get the same supply score in spite of the fact that p1 is in an area

of the country which is much more densely populated with tankers.
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Figure 2.5: The percent share of the tanker fleet within M miles of two example
locations

Both of these problems are solved by the candidate supply score given in equation

(2.6).

CSS2(p) =

∑J

j=1
φ

M
(p,TBj)Tj∑J

j=1
Tj

p ∈ CONUS (2.6)

where φM is given by equation (2.7).

φ
m
(p, TB) =




M − dist(p, TB) if dist(p, TB) < M − 1

(M−1)
dist(p,TB)

if dist(p, TB) ≥M − 1
(2.7)

This supply score computes the average residual weight given to the tankers around

a location. The choice of weighting tankers according to a linear function of distance

up to (M −1) is justified by the fact that tanker sortie costs are approximately linear
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with sortie duration [15]. Consequently M should be chosen to reflect factors such

as maximum acceptable travel leg length and crew duty day restrictions. Meanwhile,

when tankers are positioned beyond (M−1) miles, the weighting function is designed

to decline rapidly from a maximum second tier weight of 1 but never reach zero.

Consequently CSS2(p) will be a continuous function of location, and will always be

strictly positive.

The only problem with this function is that it does not produce values that are

dimensionless, but rather values in the units of the weighting function. This problem

is solved by computing a raw score for every point inside some closed, bounded region

of the map, finding the maximum score over that region, and dividing the raw scores

by the maximum score.

RSS(p) =
J∑

j=1

φ
M
(p, TBj)Tj (2.8)

MaxRSS = max
p∈CONUS

RSS(p) (2.9)

SS(p) =
RSS(p)

MaxRSS
(2.10)

A location’s demand score can be computed in almost exactly the same way. The

only slight variation to consider is the fact that AR events often start in one location

and end in another. Consequently the weight function needs to be computed using

the round trip distance formula given in equation (2.11).

RtDist(p, AR) = dist(p, q1) + dist(p, q2) (2.11)

where q1 is the starting point of an area of AR activity and q2 is its end point. Note the

distance traveled over the AR legs are excluded from the round trip distance because

it is rarely provided by the raw data (for example an AR event could require flying

the track multiple times), and because this is a constant length which is independent

of the point at which the demand score is being computed.
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p

q1

q2

Figure 2.6: Illustration of the round trip distance between a location and an area of
AR activity

Thus the formulation for the demand score is given by equations (2.12) through (2.15).

λm(p, AR) =




M −RtDist(p, AR) if RtDist(p, AR) < M − 1

(M−1)
RtDist(p,AR)

if RtDist(p, AR) ≥M − 1
(2.12)

RDS(p) =
I∑

i=1

λM(p, ARi)Di (2.13)

MaxRDS = max
p∈CONUS

RDS(p) (2.14)

DS(p) =
RDS(p)

MaxRDS
(2.15)

where p is a point in CONUS, ARi is the ith AR track and Di is a measure of the

demand for AR support observed along the ith track. The list of choices for measuring

AR demand includes:

1. Number of round trip tanker Sorties flown to an AR track

2. Hours of tanker time spent at an AR track

3. Pounds of fuel offloaded at an AR track
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4. Number of receivers refueled along an AR track

However, the number of round trip (or local) tanker sorties flown to an AR track over

a period of time is the only measure of AR demand for which there is reliable data.

2.4 Three Candidate TBDMIs
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Figure 2.7: Actual Supply Score viewed as the Ideal Demand Score

The supply and demand scores developed in the previous section are intentionally

designed to lie on the interval between zero and one. Thus, a location with a demand

score near 1 either has a larger percent share of a system’s AR demand within its

M mile radius, is close to the active AR tracks within its M mile radius, or both.

Presumably it would be a good thing if similar statements could be made about the

location’s proximity to tanker resources, and a bad thing if they could not. Meanwhile

a location with a demand score near 0 must have a small percent share of the system’s

AR demand within its M mile radius, is far from an active AR track, or both. Again

it would probably be a good thing if similar statements could be made about such a
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Figure 2.8: Actual Demand Score viewed as the Ideal Supply Score

location’s proximity to tanker resources. With that in mind it seems reasonable to

assume that the ideal situation is for a location’s supply and demand scores to be equal

or at least close to equal. Assuming this to be the case, there are two ways to look at

a given location’s observed or Actual Supply Score(SSA) and Actual Demand Score

(DSA). On the one hand, a locations SSA could be viewed as the appropriate level

of surrounding AR demand given the actual level of surrounding tanker resources.

On the other hand, a location’s DSA could be viewed as the appropriate level of

surrounding tanker resources given the active level of surrounding AR demand.

The first point of view might be useful to analysts who are concerned with reposi-

tioning receiver aircraft or practice ranges and take the layout of tanker units as a

given. Meanwhile the second point of view is useful to analysts who are concerned

with adding tankers to the system, or moving tankers around within the system and

take the layout of receiver units, practice ranges, and the AR demand signal they

generate as a given. Since the second point of view is currently the more relevant of

the two, it is the perspective from which three candidate TBDMIs will be evaluated.
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First, let p be a location on the CONUS map, and consider the TBDMI obtained by

dividing this location’s demand score by its supply score.

TBDMI1(p) =
DSA(p)

SSA(p)
(2.16)

This score is the logical descendant of the 6TBDMI score and could be viewed as

expressing a location’s supply score as a percentage of its actual supply score.

TBDMI1(p) =
DSA(p)

SSA(p)
=
SSI(p)

SSA(p)
(2.17)

Shifting the scale to the left by one unit, as in equation (2.18), generates a second

TBDMI that is the same qualitatively, but has a slightly different meaning.

TBDMI2(p) =
DSA(p)

SSA(p)
− 1 =

SSI(p)− SSA(p)

SSA(p)
(2.18)

Specifically, TBDMI2 can be viewed as the percent by which a location’s SSA needs

to be changed in order for it to have an ideal supply level.

SSA(1 + TBDMI2) = SSA + SSA(
SSI − SSA

SSA

) = SSI (2.19)

The third candidate TBDMI is obtained by removing the denominator from TBDMI2.

TBDMI3(p) = DSA(p)− SSA(p) = SSI(p)− SSA(p) (2.20)

This scoring method can be viewed as computing the absolute difference between

a location’s observed supply score and its ideal supply score and is qualitatively

different from the previous two scoring methods. For example, if a location’s demand

score increases, its TBDMI3 value will increase by the same amount. Similarly, if its

supply score increases, its TBDMI3 value will decrease by the same amount. Thus

the rate of change in TBDMI3 is constant in both supply and demand score. This is
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radically different from the other two scoring methods in that their rates of change

were unbounded on the unit square and depended on either the location’s supply score

or both its supply score and demand score. Furthermore, far from being “infinitely

bad” for a location to be without any tanker support, the TBDMI3 judges how bad

the situation is by the amount of AR demand that is observed in the vicinity of the

location. Consequently this index produces a far less dramatic picture, and in some

instances a more accurate picture.

TB
2

TB
1

Figure 2.9: A situation where the demand signal will outlast the supply signal

Consider for example locations in an area of the map where both the supply and

demand signal are dying out, but the demand signal outlasts the supply signal. In

these areas the TBDMI1 and TBDMI2 values will shoot off to infinity meanwhile the

TBDMI3 values will rise as the tanker signal weakens, and then steadily fall back to

zero when the demand signal finally fades away.

2.5 Residual Concerns and a Fourth TBDMI

Ideally the indices constructed in the previous section would use supply and demand

scores which could be easily interpreted as “The Relative Density of Tanker Supply”

and “Relative Density of AR Demand” around a location. Although the demand
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scores in section 2.3 mute many of the complaints levied against the 6TBDMI, they do

not silence all of them and cannot quite be considered in this ideal light. The biggest

problem remaining with these scoring methods is that they do not make a distinction

between locations around which tankers and or AR demand are evenly distributed

and locations around which these structures are distributed asymmetrically.

T1

T2

AR1

AR2

T2

T1

AR1

AR2

p1 p2

Figure 2.10: Example of two different supply structures with the same supply scores

For example, consider the two locations diagrammed in figure 2.10. The regions

around both locations have the same demand structure but two different supply

structures. Clearly, location p2 should have a TBDMI value closer to “ideal” than

location p1. However, the scores constructed in section 2.3 give both locations the

same supply score and thus the same TBDMI values. The difference between the new

scoring methods and the 6TBDMI is that every location is evaluated independently of

every other location. Consequently locations to the right of p1 will have smaller and

smaller supply scores, and thus larger and larger TBDMI values. Meanwhile locations

to the right of location p2 will not see their supply scores drop off as quickly.

Another lesser problem is that tankers beyond a location’s M mile radius may have

extremely little influence on its supply score, even though these tankers might have

a great deal of influence on the level of support provided to AR tracks located within

its M mile radius. Again the fact that every location is evaluated independently of

every other location, and the fact that the supply and demand scores are constructed
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AR2

p1

T2
T1

Figure 2.11: Example of tankers located just outside a locations M mile radius

to be continuous with respect to location means that points above p1 will see their

supply scores steadily increase along with their demand scores.

That being said, there is enough residual concern to motivate the development of a

fourth candidate TBDMI. TBDMI4 looks at a location as if it could be the center

point of a brand new tanker base and asks the question: “To what extent would

phantom tankers positioned at this location benefit its surrounding demand for AR

support?”. To answer this question for a given location, CTBMI4 supposes that the

location is the bed down location of a phantom squadron of K tankers. It then

computes the percentage that these K tankers represent to each of the neighboring

AR tracks adjacent supply of tankers. Finally, it uses these percentages to weight

each track’s demand for AR support. The benefit of adding the phantom tankers at

the location is then judged by the sum of the weighted demand signals. A rigorous

formulation of this scoring method is formulated in equations (2.21) through (2.24).

DWi(p) =
Kλ(p, ARi)

Kλ(p, ARi) +
∑J

j=1 Tjλ(TBj, ARi)
(2.21)

RS(p) =
I∑

i=1

DWi(p)Di (2.22)
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MaxRS = max
p∈CONUS

RS(p) (2.23)

TBDMI4(p) =
RS(p)

MaxRS
(2.24)

where p is a location in CONUS, λ is the distance weighting function defined in

equation (2.12) and K is the number of phantom tankers temporarily bed down at

each location.

The advantage of this index over the previous indices is that it evaluates the rela-

tionship between tankers and AR tracks by the distance between the tankers and the

tracks rather than boldly assuming that tankers are uniformly distributed around a

given location. The disadvantage of using this index is that analysts will have to

choose and defend the value of a second parameter. In addition to this, the meaning

of a location’s index value is much less clear. In the very least it ranks the locations

with respect to the benefit of adding tankers. However, the true value of this index is

its ability to validate or contradict the results generated by the previous three indices.

2.6 Results

The following results are based on actual tanker operations data taken from the FY06-

Q1 through FY09-Q4 time period. It is believed that the geographic distribution

of AR demand over the next five to ten years will closely resemble the geographic

distribution of demand over the last four years. Consequently, to determine the

location of the first KC-X squadrons, this data has been paired with the post BRAC

FY12 tanker basing plan.

First, consider the results obtained from the 6TBDMI (see figure 2.12). These results

were generated by dividing a region’s percent share of AR events by its percent share

of tankers because the receiver bed down plan is not currently available for analysis.

The regional values produced by this TBDMI indicate that the North East and South

Central regions have more tankers than they should given their levels of AR demand,
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Figure 2.12: Results of the 6TBDMI

the North Central and South West regions have the correct number of tankers given

the share of demand observed within their borders, and that the North West and

South East regions need more tankers. However, because these regions are so big,

further analysis would be needed to determine where in the North East and South

Central regions tanker aircraft can be safely removed, and where in the North West

and South East they should be added.

Now consider the maps drawn using the new TBDMIs with M = 500 and M = 700.

These maps demonstrate that there isn’t a general need for tankers all over the North

West or all over the South East. On the contrary, all four of the new TBDMIs indicate

that if tankers are needed anywhere near the North West, they are really only needed

along the border between California and Oregon. Moreover, features observed on

these maps indicate that the 6TBDMI may erroneously support the conclusion that

the entire South West region is adequately supported.

A slightly more confusing story develops over the South East Region. Consider the

demand score map generated for M = 500 (top right corner of figure 2.13). This

map reveals a corridor of demand that stretches from north west Florida, through

eastern Georgia, and into South Carolina. Although this corridor becomes less and

less apparent in the demand score maps as M increases, it continues to show up in
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all four of the new TBDMI maps through M = 750 and in the fourth TBDMI map

through M = 1000. This suggests that if tankers are needed in the South East, then

they should be located somewhere along this corridor.

As regards regions with too many tankers, all of the new TBDMIs support the con-

clusion that tankers based in Michigan, Wisconsin, and Indiana are out of position.

However, they also support the addition of tankers somewhere along the Atlantic

costs between Virginia and Maine. Meanwhile, considering the size and strength of

the demand signal over Kansas and Missouri, even at M = 500, it is unlikely that

any of the tankers currently located at bases in the South Central region should be

removed.

On a final note, consider the M = 500 and M = 700 maps, and observe the demand

signal over Arizona and the demand signal off the north east tip of Maine pushing

toward Nova Scotia. These signals have about the same intensity and exist in regions

that are not significantly different in terms of surrounding tanker capacity. However,

they behave quite differently. The area off the coast of Maine generates TBDMI1 and

TBDMI4 scores which explode partly because the track off of the East Cost is oriented

in such a way that its demand signal outlasts the supply signals of the tankers to the

south west and partly because there are so few tankers in the area. Meanwhile the

demand over Arizona is surrounded on four sides by tanker bases. Consequently the

TBDMI1 and TBDMI4 values get large, but don’t explode. In contrast the TBDMI3

maps show that the absolute difference between supply and demand scores is about

the same all along the east coast.

2.7 Going Forward (Final Caveats)

It is important to note that the TBDMIs developed above do not compute or consider

the minimum or maximum number of tankers needed to support a given level of AR

demand. Consequently they do not indicate in an absolute sense whether an area

needs more tankers or whether it is in a position to relinquish a few tankers. They

can only indicate in a relative sense if a location has more tankers than other areas,

or fewer tankers than other areas, and if this surplus or deficit can be justified given

the location’s relative level of AR demand. This should not be a problem when the
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Figure 2.13: Results of the new TBDMIs for M = 500
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Figure 2.14: Results of the new TBDMIs for M = 750
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Figure 2.15: Results of the new TBDMIs for M = 1000
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Figure 2.16: Results of the new TBDMIs for M = 1250
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supply of tankers is less than or equal to the supply of tankers needed to satisfy

AR demand because the goal in this situation is to spread the resources as evenly

as possible. However, when there are more tankers than are needed to satisfy the

system’s demand, these TBDMIs could suggest that areas with an ample supply of

tankers need yet more tankers. This would happen if, for example, an area had a

relatively small surplus compared to other areas, but contained a relatively large

share of the total demand for AR support. Consequently further research is needed

to find ways to include minimum and maximum tanker supply requirements into the

TBDMIs.

In addition to this it is also necessary to look more deeply into how TBDMIs should

be used to find the optimal tanker basing strategy. Currently the Air Force is using

the TBDMI and several other factors to simply rank candidate tanker bases and is

only choosing from among the top ranked bases. While this may be a reasonable

approach to choose the next tanker base, or perhaps the next two tanker bases, this

is probably not a good way to generate the best network of tanker bases. Ultimately

long term strategic tanker basing decisions should be considered in the framework of

a location routing problem which takes both construction and operating costs into

consideration. Ultimately TBDMIs could be used to find initial solutions to location

routing problems designed to find optimal tanker basing strategies. They could also

be used to evaluate, or at least spot check the results generated by problem solving

algorithms.
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Chapter 3

Using TBDMIs In Tanker Basing

Analysis

3.1 Introduction

Generating maps that compare a single basing structure to current or forecast op-

erations data, as was done in section 2.6, is an obvious and important use of the

TBDMIs. Their real value, however, may be their ability to help decision makers

choose new basing structures. Specifically, TBDMIs can be used to evaluate the wis-

dom of implementing tanker basing strategies generated by solving optimal location

routing problems. Tractable forms of these problems attempt to capture the numer-

ous details of day to day tanker operations with a single objective value and a minimal

set of constraints. Consequently it is unlikely that assertions such as “An acceptable

duality gap has been achieved” and “All integral constraints are satisfied” will res-

onate with decision makers who are thoroughly versed in the complexities of tanker

operations and are often skeptical of oversimplified scheduling models. Constructs,

such as the TBDMIs, provide an independent and easily understood framework which

can be used to study the interaction between a given bed down plan and anticipated

demand for AR support. Furthermore, because the maps produced by these indices

clearly illustrate the the strengths and weaknesses of a particular basing strategy,

TBDMIs provide decision makers yet another way to compare and possibly decide

between different basing strategies.

This use of the TBDMIs is illustrated in two slightly different ways. First, the pro-

posed FY12 basing strategy is compared to the results generated by a reasonably
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simple location routing problem. After that, an optimal basing strategy generated by

evaluating the complete data set, is compared to an optimal basing strategy generated

by only evaluating low priority AR events.

3.2 Location Routing and Scheduling Models

The basing strategies discussed in the following sections are obtained by evaluating

actual tanker operations data with the optimization problem given by equations (3.1)

through (3.9).

min
K∑

k=1

L∑

l=1

XklDkl (3.1)

such that:

1 =
L∑

l=1

Xkl 1 ≤ k ≤ K (3.2)

EPDS ∗ Sl ≥
∑

k∈Dh

Xkl 1 ≤ l ≤ L, 1 ≤ h ≤ H (3.3)

EPWS ∗ Sl ≥
∑

k∈Wi

Xkl 1 ≤ l ≤ L, 1 ≤ i ≤ I (3.4)

EPMS ∗ Sl ≥
∑

k∈Mj

Xkl 1 ≤ l ≤ L, 1 ≤ j ≤ J (3.5)

MS ≥
L∑

l=1

Sl (3.6)

MSPB ≥ Sl 1 ≤ l ≤ L (3.7)

Xkl Binary (3.8)

Sl Integer (3.9)

The indices h, i, j, k, and l refer to day, week, month, AR event, and tanker Base IDs,

respectively. The binary decision variable Xkl is equal to 1 if event k is assigned to

base l and the integer decision variable Sl defines the number of squadrons positioned

at base l.
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The constraints defined in equation (3.2) require that each AR event is assigned

to exactly one tanker base. Meanwhile the constraints defined by equations (3.3)

through (3.5) control the number of AR events given to each base per day, week, and

month of the time horizon. Note that the sums in the second collection of constraints

are restricted to events k that occurred on the hth day (k ∈ Dh), in the ith week

(k ∈ Wi), or during the jth month (k ∈ Mj). Also note that the constants EPDS,

EPWS, and EPMS dictate the number of events per squadron per day, week, and

month respectively, and do not distinguish between Active Duty, Air Force Reserve,

or Air National Guard squadrons. Together the collection of constraints generated by

equations (3.2) through (3.5) tacitly assume that each tanker sortie will only support

one AR event. This assumption is largely supported by the data. Specifically, during

the period between FY06-Q1 and FY09-Q4, 90% of all CONUS AR events were

supported by a round robin tanker sortie and 90% of all round robin tanker sorties

only supported one AR event.

The constraints defined in equation (3.6) and (3.7) use the constants MS (maximum

number of squadrons) and MSPB (maximum number of squadrons per base) to limit

the number of squadrons put into service and the number of squadrons allowed at

each base. In all of the results given in the following sections it is assumed that 32

squadrons of 12 tankers per squadron will be put into service, and that no more than 3

squadrons will be positioned at each base. It is important to realize that the observed

data and a choice of maximum number of squadrons define minimum allowable values

on the constants EPDS, EPWS, and EPMS. For example, the problem is infeasible

if the product (EPDS)(MS) is less than the observed maximum number of events on

any of the days defined in the data set. In the results given below, EPDS, EPWS,

and EPMS are set at 4, 14, and 56 respectively.

The objective function of this model uses the distance Dkl between the kth event

and the lth tanker base to compute the total distance flown to support all of the AR

events in the data set. Minimizing this objective function should drive the model

toward a basing strategy which has the potential to fly the least number of miles

while satisfying all of the scheduling constraints.
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Finally, a pure scheduling model is employed to find schedules with the absolute

minimum distance traveled while satisfying a similar set of constraints. This model

is given in equations (3.10) through (3.15).

min
K∑

k=1

L∑

l=1

XklDkl (3.10)

Such That:

1 =
L∑

l=1

Xkl 1 ≤ k ≤ K (3.11)

EPDT ∗ Tl ≥
∑

k∈Dh

Xkl 1 ≤ l ≤ L, 1 ≤ h ≤ H (3.12)

EPWT ∗ Tl ≥
∑

k∈Wi

Xkl 1 ≤ l ≤ L, 1 ≤ i ≤ I (3.13)

EPMT ∗ Tl ≥
∑

k∈Mj

Xkl 1 ≤ l ≤ L, 1 ≤ j ≤ J (3.14)

Xkl Binary (3.15)

The main difference between this model and the previous one is that it uses tankers

as the smallest divisible unit instead of squadrons. This is done so that the schedul-

ing model can evaluate both the bed down plans generated by the previous model,

which use 384 tankers divided into 32 squadrons of 12 tankers, and the FY12 basing

plan, which uses 388 tankers divided into squadrons of varying size. In order to ac-

commodate this change, the scheduling model uses the constants EPDT , EPWT , and

EPMT to control the number of events assigned to each tanker base per tanker per

day, week, and month respectively. Finally to maintain a correspondence with the

previous model, the results given below were generated with these values set at 4/12,

14/12, and 56/12 respectively.

3.3 Tanker Basing

The Location Routing model defined in the previous section was given the set of 25

tanker bases found in the FY12 tanker basing plan (see figure 3.1), and was used
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KPSM

KWRI

KADW

KPIT
KLCK

KBHM

KTYS KGSB

KMCF

ICAO Base Name ICAO Base Name ICAO Base Name ICAO Base Name ICAO Base Name

KADW Andrews KGSB Seymour Johnson KLTS Altus KPIT Pittsburgh KSUU Travis

KBGR Bangor KGUS Grissom Field KMCF MacDill KPSM Pease KSUX Souix City

KBHM Birmingham KIAB McConnell KMKE Mitchell Field KRIV March KTIK Tinker

KBLV Scott KLCK Rickenbacker KMTC Selfridge KSKA Fairchild KTYS McGhee Tyson

KFOE Forbes Field KLNK Lincoln KPHX Phoenix KSLC Salt Lake City KWRI McGuire

Figure 3.1: Air fields at which the FY12 tanker basing plan locates tanker aircraft

to evaluate tanker operations data from three different time periods: FY06-FY07,

FY07-FY08, and FY08-FY09. A model run of the entire period was not evaluated

because the laptop, on which this work was done, did not have enough memory to

support a model run of that size.

The results generated by the model were largely the same for all three time periods.

Of the 25 bases, 15 were given the same number of tankers across the entire data set.

More importantly 3 distinct regions were given the same exact resource structure.

Specifically, the set of 96 tankers allocated to the western states was always divided

so that Fairchild AFB (KSKA) got 24, Salt Lake City (KSLC) got 12, Travis AFB

(KSUU) got 36, and Phoenix (KPHX) got 12. The set of 72 tankers positioned along

the mid Atlantic down through Florida was always divided so that there were 24

at McGuire (KWRI), 8 at Andrews (KADW), 24 at Seymour-Johnson (KGSB), and

12 at Mac Dill (KMCF). And the set of 36 tankers allocated to the region between

western Nebraska and eastern Wisconsin was always divided evenly between Lincoln

Nebraska (KLNK), Sioux City Iowa (KSUX), and General Mitchell Field (KMKE).
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ICAO FY0607 FY0708 FY0809

KADW 12 12 12

KBGR 36 36 24

KBHM 12 12 24

KBLV 12 24 24

KFOE 24 12 12

KGSB 24 24 24

KGUS 12 0 12

KIAB 12 24 12

KLCK 0 12 0

KLNK 12 12 12

KLTS 24 12 12

KMCF 12 12 12

KMKE 12 12 12

KMTC 0 0 0

KPHX 12 12 12

KPIT 12 0 12

KPSM 12 24 24

KRIV 12 12 12

KSKA 24 24 24

KSLC 12 12 12

KSUU 36 36 36

KSUX 12 12 12

KTIK 12 12 12

KTYS 12 12 12

KWRI 24 24 24

Figure 3.2: Basing plans generated by the Location Routing Model

The differences between the three optimal basing strategies are easily explained by

looking at the M = 500 and M = 750 demand score maps of the three periods

(figures 3.3 and 3.4 respectively). These maps clearly show that, in relative terms,

the eastern edge of the south west and the region off the north east tip of Maine saw

less activity with the progression of time while the south east and western Virginia

saw their relative share of AR demand increase. As a result, the model positioned

progressively fewer tankers in Oklahoma and Kansas, and progressively more tankers

at bases which are closer to the south east and the Ohio River valley.

The scheduling model was used to evaluated each basing strategy for the FY06-FY07

and FY08-FY09 time periods separately, and in each of the eight cases it was able to

62



M=500 Demand Score Maps

FY06-FY07

FY07-FY08

FY08-FY09

Figure 3.3: M=500 Demand Score Maps for the three different time periods
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M=750 Demand Score Maps

FY06-FY07

FY07-FY08

FY08-FY09

Figure 3.4: M=750 Demand Score Maps for the three different time periods

64



find an optimal solution. The results generated by these model runs are presented in

figure 3.5.

Miles traveled to Support AR demand

Basing Strategy FY06-FY07 FY08-FY09 Totals

FY12 15,300,838 13,809,288 29,110,126
Opt 0607 13,212,094 12,532,664 25,744,758
Opt 0708 13,143,756 12,386,439 25,530,195
Opt 0809 13,367,530 12,333,754 25,701,284

Figure 3.5: Results from optimal scheduling model

The Opt 0708 basing strategy produced the best schedules from among the three

optimal basing strategies. Considering the fact that this basing plan was generated

from half of the FY06-FY07 period and half of the FY08-FY09 period, and the fact

that both periods have about the same volume of AR activity, this result tracks with

expectations. That being said, there is a less than 1% difference between the distances

traveled under these three basing plans and this difference only represents about

63,825 miles per year. In light of the distances traveled per tanker sortie a difference

that small can be attributed to the optimal scheduling model finding better matches

for about 100 to 200 AR events per year under the Opt 0708 basing plan. In a similar

analysis, the FY12 basing plan generated schedules which flew an additional 894,982

miles per year. This can be attributed to the optimal scheduling model finding about

1,800 better assignment per year with the Opt 0708 base plan. Although that seems

like a large number, it only accounts for 10% of the annual demand for AR support.

Consequently, after accounting for the simplifying assumptions used to make the

models tractable, it might be reasonable to brush the difference between the FY12

and Opt 0708 basing aside. However, when the 14% difference in distance flown

is viewed alongside the TBDMI maps generated by the Opt 0708 and FY12 basing

strategies (figures 3.6 and 3.7 respectively), the argument for the Opt 0708 basing

strategy is much more compelling.

The TBDMI1 maps clearly show that the Opt 0708 tanker basing strategy does a

better job of distributing tanker resources with respect to the geographic distribution

of AR demand. In particular, it shows that little to no damage is done by reallocat-

ing some of the tankers currently positioned in the central corridor, and almost no
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Figure 3.6: TBDMI1 Maps Generated by the Opt 0708 Basing Strategy
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Figure 3.7: TBDMI1 Maps Generated by the FY12 Basing Strategy
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damage is done by reallocating a large number of the tankers currently positioned in

Wisconsin, Indiana, and Ohio. Meanwhile the addition of tankers on the west coast

has produced a noticeable reduction in the TBDMI1 values in the south west and

along the California/Oregon border. Finally increasing the number of tankers along

the east coast and distributing tankers more evenly along the east coast appears to

have dramatically reduced TBDMI1 values there.

3.4 Comparing Data Sets

Figure 3.8: Decomposition of demand for AR support by priority level

One of the questions that came up while collecting data and studying results was

whether priority 1 and 2 AR events should be included in a strategic basing analysis.

Priority 1 and 2 events (hence forth high priority events) are almost certainly related

to missions that directly supported the war effort in Iraq or Afghanistan. These

events account for less than a quarter of the work done by the tanker fleet but are

heavily concentrated along the mid Atlantic coast and out over the north eastern

tip of Maine. Consequently, including these events in strategic basing analyses pulls

resources towards the east and north east. Priority 3, 4, and 5 events (hence forth

low priority events) are mostly related to training and are distributed over the entire

Continental United States (CONUS) along with receiver units and practice ranges.
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Consequently, in spite of the fact that they represent 81% of the demand for AR

support, their importance is diluted.

The argument for leaving high priority events in the analysis is simple and obvious:

this is valid data and represents a very important part of the tanker fleet’s mission.

There are, however, three very good reasons they should not be included. First and

foremost is the argument that a long term basing plan, heavily influenced by today’s

conflicts is not all that strategic. Specifically, if trouble were to suddenly break out in

the Pacific, a tanker basing plan sculpted by data from the last 5 years would suddenly

look very foolish. In addition to this, there is the argument that dollars and resources

will always exist to fly the extra miles to support high priority missions. Meanwhile,

dollars for training keep getting cut. In light of that fact, and in anticipation of a

time when Iraq and Afghanistan are at peace, it makes a lot of sense to base tankers

near the areas in which they are needed to support training efforts. Finally, there is

the argument that the data requirements for high priority events far exceed the data

requirements of low priority events. Consequently, while it is safe to assume that

close to 100% of all high priority events will make it into the data set, it is hard to

estimate the comprehensiveness of the the low priority data set. This asymmetry in

data capture skews the results even more toward the regions in which high priority

events are concentrated and amplifies the wisdom of the previous two arguemnts.

To study the difference made by high priority events, the location routing problem was

used to generate an optimal basing strategy for low priority AR events taken from

the FY07-FY08 time period. The optimal schedule generated by the fifth basing

strategy had an optimal distance value of 28,004,916, which is nearly the same as

the FY12 basing plan. The contours of the TBDMI1 map generated by the fifth

basing strategy (figure 3.9) are also very similar to the FY12 basing plan. The main

distinctions are in the north east, the south east and the south west. The fifth basing

plan has noticeably lower TBDMI1 scores in the south east and south west, while the

FY12 basing plan has noticeably lower TBDMI1 scores in the north east. Meanwhile,

there are only four differences in the way in which the Opt 0708 and the fifth tanker

basing plan distributed tankers. Specifically, 36 tankers were removed from Bangor

and distributed evenly between Grissom Field (KGUS), Selfridge AFB (KMTC), and

McGhee Tyson AFB (KYTS).
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Figure 3.9: TBDMI1 maps for the fifth basing strategy
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Figure 3.10: TBDMI1 maps for the sixth basing strategy
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Together the previous results and the results from the limited data set suggest a sixth

and final basing strategy which acknowledges the increasing importance of the south

east (as seen in FY08-FY09 panes of figures 3.3 and 3.4), the ongoing importance

of the north east, and serious doubts that tankers are truly needed at Selfridge Air

Force Base. This hand made strategy starts with the tanker basing plan generated

by the truncated data set, moves the 12 tankers positioned at Selfridge AFB back

into Bangor, and moves the 12 tankers positioned at Grissom down to Birmingham.

The TBDMI1 maps produced by the hybrid basing strategy (see figure 3.10) and the

previous basing strategies suggest that the region between western Illinois and and

Western Pennsylvania can be covered reasonably well by tankers positioned at the

corners (e.g. Scott AFB, and Rickenbacker AFB, or Scott AFB and Pittsburgh).

It also demonstrates that the south will be well served by an additional 12 tankers

somewhere near Birmingham. Finally, considering the fact that the demand in the

North East is not 100% permanent, it seems reasonable to expect that surges in AR

demand along the north east will be supported by temporarily positioning tankers

from other parts of the country at Bangor or Pease.

3.5 Suggestions for Further Research

The location routing model presented in this chapter takes a very simple and narrow

view of the the tanker basing problem. Meanwhile, planners have to deal with less

tangible factors such as the ability for Air National Guard units to recruit tanker

crews and maintenance staff, noise pollution, air space restrictions, and encroachment

on surrounding civilian populations. Future research should focus on more detailed

models which consider these factors as well as the costs of opening new tanker bases,

moving tanker units from their current locations, increasing the capacity of tanker

bases, and downsizing or closing existing locations. Also, considering the 10 to 20

year time line involved, realistic models will make an attempt to account for the time

value of money.

The time horizon on KC-X basing decisions also makes it critical to develop the

ability to accurately forecasts changes in the geographic distribution of AR demand.

Currently analysts are forced to assume that the receiver basing structure, practice
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range structure, and intensity of receiver activity will stay approximately the same

over the course of the next 10 years. This is because a large portion of the AR

event records which are readily available to analysts in a query-able form do not

reference the receiver unit or the receiver type. As a result it is very difficult to

study the structure of current AR demand with respect to the current receiver bed

down strategy. By extension, it is very difficult to forecast changes in the geographic

distribution of AR demand with changes in the receiver bed down plan.

Finally, because these are rather lofty goals, it might be useful in the near term to

consider other narrowly focused tanker basing problems and see how their TBDMI

scores stack up to the TBDMI scores of the model presented in this chapter. For

example, it may be interesting to study a location routing model which attempts

to minimize the maximum distance traveled by any one tanker sortie. It may also

be interesting to consider a model which minimizes the number of tanker bases put

into service, while satisfying similar scheduling constraints and limiting the maximum

round trip distance traveled by a single tanker sortie.
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Chapter 4

Optimizing Tanker Training

Schedules

4.1 Introduction

Most of the tanker aircraft (e.g. KC-135s) are controlled by individual Air National

Guard units, or units in the Air Force Reserves. Because these units cannot be directly

tasked by 618 TACC there is little to no central authority coordinating tanker and

receiver training schedules. At most, 618 TACC is responsible for managing a web

based process called the Horse Blanket and encourages tanker and receiver units to

communicate their training requirements and coordinate their schedules through this

system. However, because engagement in the Horse Blanket process is optional, a

large number of low priority AR training missions are planned over the phone at

the unit level. Even when the Horse Blanket is used to schedule AR events, little

to no effort is made at the global level to find training schedules which minimize

the total distances traveled or maximize the number of receivers supported per mile

traveled. In fact most of the AR events supported through the Horse Blanket enter

the system already paired to a tanker unit. Thus the system is often prevented from

using optimization of any sort to find better schedules.

For the last three years the Air Mobility Command has been looking for ways to

improve the situation. The following research was done to provide a first rough

estimate on the amount of money that could be saved by reforming the system.
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4.2 A Scheduling Model

The Horse Blanket Process is a quarterly process designed to help receiver units

and tanker units communicate their training requirements and coordinate a training

schedule. In theory, at the beginning of each fiscal quarter, receiver units are suppose

to provide the Horse Blanket with a list of their requirements and tanker units are

suppose to provide it with their availability. If this was truly the case, the system’s

optimization tools could be engaged to find an optimal schedule. It is widely believed,

however, that receiver units load more requests into the system than they actually

need, hoping that enough requests are supported to satisfy their true requirement.

Meanwhile it is believed tanker units hold back on posting their availability until they

see a receiver request they are willing to support. In addition to this, a large number

of events are entered into the system as complete, pre-coordinated, packages.

In spite of the fact that end users don’t allow the Horse Blanket process to work as it

was designed it is, none the less, a warehouse of primordial scheduling data. Specifi-

cally, each AR request entered into the system provides the day, location, start time,

and duration of a training event which a receiver unit is willing to support along with

the number and type of receiver aircraft the unit is willing to provide. Consequently,

a receiver unit’s list of requests can be viewed as an accurate calendar of its avail-

ability. Meanwhile the list of AR events supported by a tanker unit communicates

both the weekly availability of that tanker unit, as well as the mix of receiver types,

and number of day and night time events the tanker unit needs in order to satisfy

its quarterly training requirements. With this interpretation of the data in mind,

consider the optimization problem given by equations (4.1) through (4.10).

min
I∑

i=1

J∑

j=1

XijDij (4.1)

such that:

1 ≥
J∑

j=1

Xij 1 ≤ i ≤ I (4.2)
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TWSjh ≥
∑

i∈Wh

XijTi 1 ≤ j ≤ J, 1 ≤ h ≤ H (4.3)

TNFj ≤
∑

i∈NF

XijTi 1 ≤ j ≤ J (4.4)

TNHj ≤
∑

i∈NH

XijTi 1 ≤ j ≤ J (4.5)

TDFj ≤
∑

i∈DF

XijTi 1 ≤ j ≤ J (4.6)

TDHj ≤
∑

i∈DH

XijTi 1 ≤ j ≤ J (4.7)

RWDDkh ≤
∑

i∈DWkh

XijRik 1 ≤ k ≤ K, 1 ≤ h ≤ H (4.8)

RWNDkh ≤
∑

i∈NWkh

XijRik 1 ≤ k ≤ K, 1 ≤ h ≤ H (4.9)

Xij Binary (4.10)

The indices h, i, j, and k refer to week, AR event, tanker unit, and receiver unit IDs

respectively. The binary decision variable Xij is equal to 1 if event i is assigned to

tanker unit j, and 0 otherwise.

The constraints defined in equation (4.2) require that each AR event is assigned to

at most one tanker unit.

The constraints defined by equation (4.3) use the constants TWSjh (Tanker Unit

Weekly Supply) and the constant Ti (Number of Tankers Required By Event) to

control the number of tanker sorties each tanker unit is expected to generate during

each week of the quarter. Note that the sums in these constraints are restricted to

the AR events which are scheduled to occur during a given week (i ∈ Wh). Also note

that this constraint, and the ones that follow, tacitly assume that each tanker sortie

only supports one AR event.

The constants TNFj (Tanker Unit Night Fighter Requirement), TNHj (Tanker Unit

Night Heavy Requirement), TDFj (Tanker Unit Day Fighter Requirement) and TDHj

(Tanker Unit Day Heavy Requirement) are used with Ti in constraints (4.4) through
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(4.7) to ensure that each tanker unit gets the number of day and night time sorties

it needs over the quarter and to maintain each unit’s mix of receiver aircraft. Note

that the sums in these constraints are restricted to AR events which are associated

with night fighters (i ∈ NF), night heavies (i ∈ NH), day fighters (i ∈ DF), and day

heavies (i ∈ DH), respectively.

The constants RWDDkh (Receiver Unit Weekly Day Time Demand) RWNDkh (Re-

ceiver Unit Weekly Night Time Demand) are used along with the constant Ri (the

number of receiver aircraft participating in an event) in constraints (4.8) and (4.9) to

guarantee that each receiver unit is provided a minimum level of day and night time

support in every week of the quarter. Note that the sums in these constraints are

restricted to day or night time events of a particular receiver unit and week (i ∈DWkh

and i ∈NWkh, respectively).

Finally, the objective function of this problem uses the distance Dij between the ith

AR event and jth tanker unit to compute the total distance flown between the tanker

units, and the supported AR events. Minimizing this objective should drive the model

toward the schedule which provides receiver units the same minimum level of weekly

support while maintaining both the weekly operations tempo and receiver portfolios

of each tanker unit.

4.3 Results

The optimization model given in equations (4.1) through (4.10) was used to evaluate

the Horse Blanket data of each quarter from FY07-2 through FY10-3. It was found

that reforming the Horse Blanket System or its practice of use could reduce the

average number of miles flown per quarter by as much as 23%. Assuming average

ground speeds of 420 miles per hour, and average tanker operating costs of $7,000

per hour [4] this amounts to average quarterly savings of $7,424,039. Over the three

complete years of data, this translates to an average annual savings of $26,454,956.

While the real savings from reform will be less than the amounts suggested by this

study, it is unlikely that they will be an order of magnitude less. Finally, these

results were recently used in presentations that convinced senior leaders at HQ AMC

to engage the human resources needed to reform the Horse Blanket process.
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QRTR HB_MILES OPT_MILES ABS_DIFF HB_COST OPT_COST ABS_DIFF % DIFF
FY07-2 2,390,246     1,831,517     558,729     39,837,433    30,525,283    9,312,150     23.38%

FY07-3 2,636,532     1,720,960     915,572     43,942,200    28,682,667    15,259,533    34.73%

FY07-4 2,297,852     1,707,484     590,368     38,297,533    28,458,067    9,839,467     25.69%

FY08-1 2,001,947     1,425,710     576,237     33,365,783    23,761,833    9,603,950     28.78%

FY08-2 1,928,148     1,469,946     458,202     32,135,800    24,499,100    7,636,700     23.76%

FY08-3 2,041,412     1,548,616     492,796     34,023,533    25,810,267    8,213,267     24.14%

FY08-4 1,652,343     1,324,980     327,363     27,539,050    22,083,000    5,456,050     19.81%

FY09-1 1,360,870     1,042,903     317,967     22,681,167    17,381,717    5,299,450     23.36%

FY09-2 1,522,343     1,222,715     299,628     25,372,383    20,378,583    4,993,800     19.68%

FY09-3 1,471,713     1,173,874     297,839     24,528,550    19,564,567    4,963,983     20.24%

FY09-4 2,207,274     1,721,781     485,493     36,787,900    28,696,350    8,091,550     22.00%

FY10-1 1,714,507     1,420,320     294,187     28,575,117    23,672,000    4,903,117     17.16%

FY10-2 1,426,747     1,140,058     286,689     23,779,117    19,000,967    4,778,150     20.09%

FY10-3 1,993,610     1,658,487     335,123     33,226,833    27,641,450    5,585,383     16.81%

TOTALS 26,645,544 20,409,351 6,236,193 444,092,400 340,155,850 103,936,550 23.98%

AVERAGE QRTLY Savings

MILES Dollars

7,424,039$     

Figure 4.1: Potential quarterly savings

QRTR HB_MILES OPT_MILES ABS_DIFF HB_COST OPT_COST ABS_DIFF % DIFF
FY07-4 to FY08-3 8,269,359     6,151,756     2,117,603   137,822,650   102,529,267   35,293,383    25.61%

FY08-4 to FY09-3 6,007,269     4,764,472     1,242,797   100,121,150   79,407,867    20,713,283    20.69%

FY09-4 to FY10-3 7,342,138     5,940,646     1,401,492   122,368,967   99,010,767    23,358,200    19.09%

3 Yr Total 21,618,766 16,856,874 4,761,892 360,312,767 280,947,900 79,364,867  22.03%

AVG Annual Savings 26,454,956$    

MILES Dollars

Figure 4.2: Potential annual savings

78



4.4 Directions of Future Research

There are three areas of research needed to help AMC reform the Horse Blanket

Process. First, planners would like to know when it is advantageous to temporarily

reposition tankers near an area with a local surge in AR activity. To do this correctly

they will also need to know how to identify the resources that will be repositioned.

Second, data support the assertion that 90% of all round robin tanker sorties which

support an AR event only support one AR event. As a result, additional savings

could be realized if a larger share of tanker sorties supported 2 or more AR events.

Thus it will soon be necessary to formulate AR event scheduling as a Vehicle Routing

Problem with time windows. Finally in order for a more centralized scheduling process

to work and maintain the trust and respect of its end users, it will need to be able

to handle last minute requests, weather dealys, and maintenance cancellations with

out completely falling appart. Further research into the details of these events, and

scheduling in the face of uncertainty will be necessary to handle this challenge.
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