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Abstract

Recent work in the philosophy of biology has sought after an account of

mechanistic explanation. Biologists frequently encounter causal relationships

that beg for explanation. For example, genes appear to encode for particu-

lar phenotypes. How does gene expression work? Biologists posit mechanisms

to explain the link between cause and effect. Thus, gene expression would be

explained by an appeal to a complex mechanism linking the gene to the phe-

notype, as such an appeal will provide answers to broad ranges of “how” and

“why” questions about the causal relationship, and predict novel effects.

Here, I focus on a recent problem raised for mechanistic explanation. Mech-

anism discovery is an inferential process which takes empirical data as premises,

and produces a causal model of a mechanism as the conclusion. Such an in-

ferential process requires rules, yet few accounts of mechanistic explanation

attempt to provide them. Such inferential rules could be used to answer related

normative questions facing accounts of mechanistic explanation. In particu-

lar, they can be brought to bear on questions of explanatory relevance: Which

components are part of the mechanism, and how can we know? and questions

of explanatory adequacy: When is a mechanistic explanation a good explana-

tion? I argue that a formal account of mechanistic explanation grounded in a

manipulationist account of causation can answer these kinds of question.

A thoroughgoing defense of my account, however, requires that I defend

its assumptions. Among the assumptions is the highly contentious principle

known as ‘modularity’. Modularity is the claim that we must be able to in-

dependently manipulate each of the various components in a mechanism. The

final chapters of my dissertation focus on a thoroughgoing defense of modu-

larity against claims that it is frequently violated, conceptually intractable, or

simply inapplicable to especially biological systems.
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Toward a Normatively and

Descriptively Adequate View of

Mechanisms

Abstract

In 1948, Hodgkin and Huxley demonstrated a curious relationship between the voltage

and current inside a neuron just before it fires (the so-called ‘action-potential’). They

observed that, when one applies a certain fixed voltage across the cell membrane of

a prepared squid giant axon, the current across the membrane changes in accordance

with Ohm’s Law1—but only briefly. Then, the voltage across the membrane drops

precipitously (whatever the applied voltage might be), and current runs first out,

then into the cell before the membrane voltage stabilizes at a steady value. This

curious relationship is not observed in ordinary metallic conductors, whose behavior

is described entirely by Ohm’s Law. Something far more complex was going on inside

neurons.

Although they refused to speculate about the mechanism responsible for this curi-

ous relationship in their report (Hodgkin, Huxley, & Katz, 1952; Hodgkin & Huxley,

1R = V/I; for a fixed resistance, voltage and current are inversely proportional.
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1952a,b,c,d), they did provide a mathematical model of the relationship, a fourth-

degree polynomial approximation over the data. Yet, the success of the experiments

necessary to collect this data required some understanding of the mechanism that

they were studying. Indeed, they clearly saw that this non-linear response was gen-

erated by a pair of feedback loops, one positive (driving the voltage far down), and

one negative (returning the system to a steady state). They could see this because

the feedback loops had to be broken for accurate measurements to be taken in the

first place. They used a device called a voltage clamp, which (as the name implies)

permits the experimenter to hold the membrane voltage at a fixed value, preventing

it from shooting downwards, by breaking the feedback loops.

How could they know how to break the feedback loops, without at least some

understanding of the mechanism for this curious relationship? Indeed, they privately

speculated at length about possible mechanisms for the action potential (Huxley,

2002), and although none of them quite predicted the actual data recorded in their

experiments these speculations did crucially inform their calculations of the mathe-

matical model they did publish. None of the speculations were ever published, and

Hodgkin and Huxley were careful to point out that the model they developed should

not be viewed as an explanation of the data: It did not in their view, embody a

mechanism. Why not? Craver (2008) points out that Hodgkin and Huxley do pro-

vide additional evidence (an electrical model, evidence that the current comprised

the movement of sodium and potassium ions, &c.) that could be used to give their

mathematical model a causal interpretation, and hence to take a significant step for-

ward in giving a mechanistic explanation. And yet, Hodgkin and Huxley did not take

advantage of this evidence, steadfastly insisting that the model they developed could

not itself stand as an explanation. Indeed, nearly twenty years would pass before re-

searchers were willing to give the Hodgkin and Huxley model a causal interpretation

2



Hille, Armstrong, & MacKinnon (1999).

This reluctance is puzzling. Given the causal knowledge they must have had,

why did Hodgkin and Huxley refrain from making claims about the mechanism, or

even restricted claims about the causal structure of the mechanism, in their report?

Although they were rightly concerned that they had inadequate evidence that any of

the variables in their model referred to real properties of real things in the neuron

cell, they certainly had experimental evidence that the mathematical models could,

nevertheless, adequately describe not just correlations among voltage and current,

but causal connections. Yet they did not take this step. What additional evidence did

they and later researchers believe they required to make the leap from a functional

description to mechanical explanation?

Selecting an Explanatory Framework

Present models of explanation, it seems to me, cannot account for this reluctance.2

Hempel & Oppenheim’s (1948) D-N model of explanation (as Craver (2008) points

out) entails that the Hodgkin and Huxley model is in fact a good explanation. The

D-N model says that an explanation is a kind of sound argument with natural laws

as premises and the explanandum as the conclusion. And, indeed, the Hodgkin and

Huxley model can be read as a set of laws (or, more broadly, lawlike generalizations)

from which we can derive the complex relationship between voltage and current to

be explained. But, whatever other problems the D-N model has in this case, this

conclusion is at variance with Hodgkin and Huxley’s own assessment.

More recent causal accounts of explanation cannot account for their reluctance ei-

ther. The conserved-quantity or physical account of causation (Salmon (1997); Dowe

2What follows is not meant to convince the reader that I am right so much as to simply introduce
my own position, and offer some evidence that it is prima facie tenable.
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(2000) claims that giving a causal explanation involves tracing the transmission of a

conserved quantity (e.g. energy or mass) in the etiology for the explanandum phe-

nomenon. And yet, insofar as the Hodgkin and Huxley model does describe the trans-

mission of a conserved quantity, namely charge, it qualifies as a causal explanation.

Again, this is at variance with the actual position of the model’s authors.

A counterfactual account of causal explanation gets us a little closer. On this view,

an explanation consists in true counterfactuals that describe causal relations. The

Hodgkin and Huxley model does in fact describe a range of true causal counterfactual

statements, but it also supports a much broader range of non-causal counterfactuals3.

Thus, on the counterfactual view, additional evidence is needed to constrain the range

of counterfactual claims supported by the model. Indeed, Hodgkin and Huxley agree,

when they claim that their model picks out a broad class of possible mechanisms. But

Hodgkin and Huxley also worry that many of the terms in the model do not refer to

real components, a worry not accounted for by the counterfactual account.

Recently, philosophers have begun to analyze mechanisms as a special kind of

causal explanation, and to understand the role that mechanisms play in the practice

of biology (e.g., Bechtel & Richardson, 1993; Machamer, Darden, & Craver, 2000;

Glennan, 2002). Craver (2008) takes the Hodgkin and Huxley model, and Hodgkin

and Huxley’s reaction to it, as evidence for this view of explanation. Mechanistic

explanation claims that explanation involves analyzing the phenomenon into distinct

parts and showing how those parts interact to produce the phenomenon. On this

view, the Hodgkin and Huxley model is not explanatory, because it is a formal repre-

sentation: It does not pick out component parts of the mechanism. While the model

does say something about mathematical relations that hold within the mechanism—

and so counts only as what Craver calls a mechanism sketch—, it does not pick out

3Including what Lewis called ‘backtracking counterfactuals’, or a counterfactual whose evaluation
requires holding the present fixed and evaluating how the past must have differed.
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specifically causal interactions because it does not pick out the parts, the causal re-

lata. More is needed for the model to count as an explanation: To be explanatory, the

model must be given an interpretation such that the variables can be read as pick out

parts, and the functional relations as picking out causal relations among those parts.

So far, so good: This account does, to this point, a good job of accounting for Hodgkin

and Huxley’s understanding. And yet, although on the mechanistic view Hodgkin and

Huxley had enough puzzle pieces to form a mechanism sketch, they chose explicitly to

not take that step. The mechanistic account says that they would have been justified

in doing so, but they did not believe that they were. Mechanistic explanation doesn’t

yet quite capture the norms of explanation in play in this historical episode.

The Need for Rapprochement

As these mechanistic analyses mature, philosophers of biology have come to ask ques-

tions about mechanistic explanation that require a normative framework: What makes

a good mechanistic explanation? How can we know when we have a correct mech-

anistic explanation? One way to answer these questions is to look towards causal

modeling techniques (e.g., Pearl, 2000; Spirtes, Glymour, & Scheines, 1993). These

mathematical models provide a set of principles for inferring causal relations, and a

set of norms for determining when these principles can be reasonably applied. Thus,

causal modeling appears a good place to begin looking for answers. Yet, although

there are descriptive accounts of mechanisms, and there are mathematical models

of causal systems, neither alone is complete as an adequate account of mechanistic

explanation, and there is no currently available account that does justice to the two

of them.

Part of the reason that there is currently no account that bridges these two fields

is that many philosophers of biology are shy of abstract, normative claims, driven to
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avoidance by a dilemma: Normativity can be founded in either a priori principles, or

in a posteriori principles. But a reliance on a priori principles tends to distort actual

scientific practice (as evidenced by the failures of logical empiricism); and a reliance

on a posteriori principles commits the is-ought fallacy. Thus, one might think, there

can be no normative philosophy of biology.

But this dilemma is false. The worry that a priori principles distort practice is,

I think, largely a reaction to the failures of logical empiricism: Burned once, philoso-

phers of biology would rather not cross back into prescriptive territory. I think that

we can construct an account of mechanistic explanation that uses a priori principles

as a normative foundation, yet with minimal distortion of actual practice. The crucial

step is to recognize the central lesson of the naturalistic turn: Don’t just bring your

normative account to science and see how it measures up, but use actual scientific

practice to inform the selection of a priori principles (as there are many to choose

from) that are most likely to avoid undue distortion of actual practice.4 The way, in

other words, of avoiding the descriptivist dilemma is to bring the descriptive work

and the normative work into rapprochement.

What must such a rapprochement accomplish? On one hand, although the extant

accounts of mechanistic explanation do a fine job of describing many of the expla-

nations that biologists give, such are unable to evaluate these explanations. These

descriptive accounts lack an account of explanatory relevance—a measure of how

central a component or event is to a particular explanation—, and they lack any kind

of apparatus for constructing and evaluating the experiments, and the inferences made

from those experiments, that led to those very mechanistic explanations. Worth not-

ing is that Bechtel & Richardson (1993) and Darden (2001); Craver & Darden (2001);

4Some distortion is inevitable, at least insofar as biologists do not deploy sound reasoning in their
evaluation of mechanistic explanations. But, if there were no room for critique and improvement,
there would be no need for philosophical accounts of explanation in the first place.
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Darden (2002, 2006) do, of course, have an account of the strategies that biologists do

use for discovering experiments, but that these accounts deliberately steer away from

making the additional claim that these strategies are the right strategies, or from of-

fering principles by which one could evaluate these strategies generally. On the other

hand, satisfactory solutions to these problems cannot simply deny actual scientific

practice. It is easy to apply purely abstract models of causal reasoning to scientific

reasoning, without paying attention to the physical details that interest biologists.

A complete account of scientific explanation should not rely on pure formalism, but

should have a story as to why biologists do concern themselves with the particular

details.

Recent work on the problem has focused on crafting a rapprochement founded on

quantitative accounts of causal explanation, and in particular, on manipulationism.

Manipulationism claims that one of the defining characteristics of a causal relation is

that causes can be used to manipulate their effects. Thus, we can explain an effect by

an appeal to how that effect would have been different, had its causes been different.

Woodward (2002), for example, claims that a mechanism is a collection of entities

bound by relationships of manipulability; a causal network, in essence. But such a

definition is overly broad: Nearly any causal system can be described as a mechanism

on this view. But not every causal system is a mechanism. The moon’s position in the

sky has an effect on my dog’s gait (as it does on the tides), yet such a causal network

is likely not the sort of thing of interest to mammalogists. By failing to attend to

important qualitative details, Woodward’s account can only fuel the worries of the

descriptivists.

Craver (2007) has attempted a more naturalistic approach to building an account

of mechanistic explanation from manipulationism. Craver distinguishes two modes of

causal explanation: Constitutive and etiological. Where etiological explanations ex-
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plain by appeal to the antecedent causes of a phenomenon, constitutive explanations

explain by appeal to the causal interactions among the parts and components of the

phenomenon. Most mechanistic explanations offered in biology and neuroscience, he

observes, are of the constitutive kind. Thus, Craver identifies a particular subset of

causal explanations as specifically mechanistic. Craver harnesses the manipulation-

ism to give an account of constitutive relevance; We can know an entity is part of

a mechanism if it is related to the mechanism as part to whole (that is, is spatially

located within the physical bounds of the mechanism), and when we can manipulate

the mechanism by intervening into the entity and vice versa.

But where manipulationism claims that manipulability is a hallmark of causal re-

lations, Craver has now added that manipulability is also a hallmark of constitutive

relevance. As a result, Craver is faced with a dilemma. On the one hand, perhaps

constitutive relevance is a species of causal relation. But this view commits Craver

to that mechanisms engage in inter-level causation with their components—if we can

manipulate a component by manipulating the mechanism, it is because the mecha-

nism is a cause of the component. But Craver explicitly—and I think rightly—denies

this view. On the other hand, Craver risks creating epistemological confusion: Given

a relationship of mutual manipulability, how are we to know whether we face a re-

lationship of constitutive relevance, or a causal feedback loop? Although I leave off

argument for Chapter 3, I do not think an additional appeal to spatial (part-whole)

relations can provide the necessary distinction. If I am right, then, on this hand,

Craver’s view cannot quite accomplish what it sets out to.

As I will argue, the way out of this dilemma is to take a different approach

to the formal description of mechanisms. Rather than thinking of mechanisms as

constitutive, we should use etiological descriptions of mechanisms. By doing so, what

were once constitutive relationships become causal relationships, and the dilemma
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can be avoided by losing this distinction.

Towards a Descriptively and Normatively Adequate Account

of Mechanism

Manipulationism is a formal account that offers a set of principles and constraints on

when we can interpret a graph or a set of equations as representing specifically causal

relations. Mechanisms comprise a bounded set of components5 and the interactions

or activities that bind them together into a coherent, stable, productive whole. How

should components and activities be represented by a graph or an equation? The

accounts of Bechtel & Richardson (1993) or Machamer, Darden, & Craver (2000)

have no account of relevance to offer, no principles for representing mechanisms.

Indeed, it seems no author has yet taken seriously the matter of finding the right

mapping between the elements of the descriptive accounts of mechanism with the

formal elements of manipulationism. Woodward (2002) and Craver (2007) have the

first tentative steps forward, but there is much work to do. This dissertation focuses

on taking the next step forward.

Such a semantics for mechanisms would allow us to make sense of Hodgkin and

Huxley’s decision. Their model of the current-voltage relationship comprises variables

with clear physical interpretations (variables that represent the movement of sodium

ions, for example), and theoretical terms with no clear referent, inserted only to make

the model fit the data. Their reluctance to view their model as explanatory seems to

hinge on the lack of a clear mapping between these theoretical terms and any possible

mechanism component. Without a clear mapping, they had no way to constrain the

possible range of causal interpretations on the model, and hence no clear way to map

their model onto any kind of mechanism, possible, plausible, or otherwise.

5Although how they are bounded varies widely from account to account.
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Thus, only once we have an account of mechanism that includes normative princi-

ples for mapping formal elements of mathematical models with real, concrete elements

in biological systems can we begin to make sense of the inferential decisions that sci-

entists like Hodgkin and Huxley and their successors have made, and to judge such

decisions and their outcomes as proper or improper.

The first goal of this dissertation is to complete a rapprochement between descrip-

tive accounts of mechanism with formal account of causal inference, by proposing and

defending such a mapping. I will argue that the various descriptive accounts of mecha-

nism provide sufficient structural and interpretive constraints to ensure a unique map-

ping of manipulationist elements to mechanistic elements. Formal models comprise

causal relations and causal relata. Mechanisms link cause to effect as cause to effect;

mechanisms form hierarchies. I will argue that these two features of mechanisms rule

out certain classes of causal models as not describing mechanisms. Mechanisms com-

prise entities, activities, and interactions. I will argue that this feature of mechanisms

limits the possible range of interpretations of the relata and relations in mathemati-

cal models; namely, such that the causal relata are component-activity pairs, and the

causal relations are relations of interactivity. Finally, I will argue that, for any ade-

quate description of a mechanism, these constraints are sufficient to pick out exactly

one manipulationist causal model and interpretation of that model; that there is a

one-to-one relationship between mechanism descriptions and mechanism models. The

end product is a set of principles for bridging properties of formal models with proper-

ties of real biological mechanisms, and with real experimental techniques, completing

the rapprochement. I will argue, in closing, that the rapprochement presented in this

dissertation is descriptively adequate by applying it to a range of historical cases of

mechanism discovery, and showing how the principles of the rapprochement account

for what would otherwise seem peculiar features of the experiments described.
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The second goal of this dissertation is to defend my account against a recent and

potentially devastating objection to manipulationism. Because the rapprochement is

founded on manipulationism, and manipulationism is committed to an idea called

modularity. Modularity is, roughly, the idea that it must be possible to intervene into

any component of a mechanism independently of the rest, a feature called modularity.

Yet, precious few mechanisms in biology exhibit this property. Therefore, since ma-

nipulationism requires modularity (Glymour, 2004), and the rapprochement require

manipulationism, a devastating attack on modularity is a devastating attack on the

rapprochement.

In defense of a manipulationist rapprochement, I will provide two arguments. I

will first argue that certain of the characterizations of modularity offered by its critics

are either uncharitable, and false: They are far stronger, at any rate, than manipu-

lationism requires. I will second argue that the remaining objections to modularity

hang on some part of the modularity principle that can be safely dropped, at least

in the context of mechanistic explanation, and that dropping this part of modularity

does away with the objection without undermining manipulationism more broadly.

Plan of the Dissertation

This dissertation is divided into three broad parts: The first part contains an overview

of causal modeling and mechanistic explanation. The second part motivates and

presents my quantitative account of mechanism, which I call the manipulated mecha-

nism. The third part defends the manipulated mechanism against the criticism that

my account depends crucially on a contentious principle called modularity—a princi-

ple regularly violated by biological mechanisms.

Chapter 1 I begin the rapprochement by considering in detail both elements that
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I wish to bring together. In the first chapter, I consider the formal element,

offering a motivation for the inferential tools that causal modeling can provide

philosophers of biology. I give a brief précis of the machinery of causal mod-

els, and in particular Woodward’s manipulationist framework for reasoning in

causal models. Causal modeling techniques include the use of causal graphs and

causally interpreted systems of equations. I present the basic tools for bridging

these different kinds of models, and drawing causal inferences from them. I also

introduce the manipulationist principles of invariant generalizations, interven-

tions, and modularity. A normative account of mechanism that relies on causal

modeling and manipulationism as a quantitative foundation will draw heavily

upon these tools.

Chapter 2 Having examined the quantitative element of the rapprochement, I turn

in this chapter to consider the descriptive element of the rapprochement. This

chapter presents three different descriptive accounts of mechanism, due to Bech-

tel & Richardson (1993), Glennan (1996, 2002), and Machamer, Darden, &

Craver (2000). Mechanisms link cause to effect via the complex interactions of

a number of component parts, and have well-defined start conditions (on the

cause) and end conditions (on the effect). Mechanisms are bounded, and can

be hierarchically decomposed into sub-mechanisms. These common characteri-

zations of mechanism will be crucial in crafting my rapprochement in Chapter

4.

Chapter 3 With both elements of a rapprochement in hand, I turn to examine how

these elements have been deployed in earlier steps toward a rapprochement.

Woodward (2002) and Craver (2007) have both offered independent extensions

of mechanistic explanation that attempt to provide a quantitative basis for
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representing and reasoning about mechanisms. Both authors have argued that a

rapprochement of mechanism and manipulationism holds promise to solve both

the external and the internal challenges to a complete account of mechanistic

explanation; yet these two attempts are not without difficulties. Woodward fails

to capture the descriptive strength of the qualitative accounts of mechanisms;

Craver fails to capture the prescriptive strength of manipulationism.

Chapter 4 But these failures do not mean rapprochement is impossible; indeed,

they point the way to improvement. My diagnosis is that previous authors have

not yet taken seriously the challenge of mapping the formal elements of causal

models to the real elements of mechanisms. In this chapter, I develop a set

of constraints that the descriptive accounts of mechanism place on the formal

elements of manipulationism—a semantics for interpreting a causal model as a

biological mechanism. I begin by observing that causal models are blank slates,

open to interpretation. On the other hand, the qualitative accounts of litera-

ture are concrete and specific—indeed, this is their very descriptive strength. I

canvass the qualitative accounts for particular features that contribute to that

descriptive strength. Mechanisms link cause to effect; mechanisms are bounded;

mechanisms link entities and activities. I treat these features as constraints on

the possible interpretations of causal models; thus, only causal models that

link a cause to an effect, that have a clearly articulated mechanism bounding

principle, and that relate entities and activities can count as models of mech-

anism. I also observe that purely etiological accounts of mechanism can avoid

Craver’s struggle to fit a constitutive concept of mechanism with a flat modeling

technique. The qualitative constraints, in addition to constraining the possible

causal structure of a mechanism, also point the way to a purely etiological ac-

count of mechanistic relevance, and thus allows us to side-step the worries about
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relevance that drove Craver to adopt a hierarchical model in the first place.

These qualitative constraints and an etiological mechanistic relevance princi-

ple, when conjoined to the manipulationist account of causation, constitute the

manipulated mechanism, a complete quantitative account of mechanism. This

account holds the descriptive strength of the qualitative accounts, and the pre-

scriptive strength of manipulationism.

Chapter 5 However, because the manipulated mechanism leans so heavily on manip-

ulationism, it is subject to a peculiar but worrisome objection: Manipulationism,

roughly, requires that causal structures comprise independent components that

can be removed or altered independently of the other components (much like

the components in a mass-produced automobile). In this chapter, I examine

why manipulationism requires the modularity principle and I discriminate the

principle at stake with several similar principles that share the name ‘modu-

larity’. Specifically, manipulationism requires that when we intervene into any

component in a mechanism, that that intervention must be probabilistically

independent (uncorrelated) with any component that is not an effect of our

intervention—a concept Woodward has formalized in a principle he calls (PM).

But, the objections observe, very precious few mechanisms in biology (or else-

where) are modular in this way. So the manipulated mechanism will fail to

account for these common biological mechanisms. There are three variants on

this objection, and I must address each to defend the manipulated mechanism.

Chapter 6 The first variant on this objection, which I address in this chapter, ties

modularity to the causal Markov condition, which states that, for each compo-

nent, that component’s causes screen it off (render it conditionally independent)

from it’s non-effects. But the causal Markov condition is frequently violated
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by non-deterministic systems that exhibit all-or-none responses—many medi-

cal syndromes fit the bill—and by linear systems that depend on not just the

immediately prior state of the system, but all prior states—such as population

growth models. Such cases violate the causal Markov condition. But this ob-

jection fails, for two reasons. First, I argue that some mechanisms that violate

the Markov condition do not violate (PM). Second, I argue that (PM) em-

bodies two distinct claims, one of which bears no relationship to modularity

as discussed in Chapter 5; I argue that the remaining mechanisms that violate

the Markov condition only violate this extraneous condition of (PM). For this

reason, I close the chapter with an argument that we should weaken our for-

mulation of modularity to exclude this condition. What remains is a condition

I call (PMa).

Chapter 7 The second variant of the objection, addressed in this chapter, under-

stands modularity to require a mechanism to exhibit a feature I call modular in-

dependence, that each component of the mechanism must present some method

for manipulating it independently of the remainder. I consider three distinct

arguments to this effect, that the components must present an affordance, that

the components must be causally connected by wholly distinct mechanisms, and

that the components must interact in a linear, non-additive way. I argue that

this conception of modularity is mistaken insofar as it requires modularity to

be an actual feature of the mechanism itself; But a close reading of (PMa) re-

veals that it is a modal notion—the conditions for its satisfaction need not exist

prior to an intervention, and need not, therefore, be a feature of the mechanism

itself, but could be a feature of the intervention. In other words, the conception

of modularity here criticized is too narrow in focus. Thus, modularity requires

only a kind of ‘as-if’ modular independence.
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Chapter 8 In the final chapter of the dissertation, I take (PMa), the concept of as-if

modular independence, and the rapprochement developed in the first half of the

dissertation to demonstrate that my account, weakened though it is, can account

for a range of historical cases involving the experimental manipulation of ‘non-

modular’ mechanisms. Neither the mechanism for the action potential, nor the

chemical signaling of neurons, nor the mechanisms for the perception of pain

will count as modular in the sense used by critics of modularity. And, indeed,

no current account of mechanistic explanation can account for these historical

cases for much the same reason. Nevertheless, my account of the manipulated

mechanism is able to account for these historical episodes, by giving a formal

explanation for the complex interventions used in these historical episodes. I

here rest my defense of the manipulated mechanism.

In this dissertation, I have motivated, formulated, and defended a quantitative

account of mechanism that I call the manipulated mechanism. However, I have not

yet shown that the manipulated mechanism can match and surpass the early suc-

cesses of Woodward (2002) and Craver (2007). The manipulated mechanism holds

resources for identifying explanatorily relevant components, for determining when to

lump and when to split variables in a model, and for discovering the causal struc-

ture of a mechanism. Work on these research problems would form the foundation

for a general account of experimental mechanism discovery that can both capture

actual experimental practice in biology, and prescribe sound experimental strategies

for mechanism discovery.

16



Chapter 1

Causal Models and Experimental

Inference

Mechanisms are composed of parts that interact to bring about an end effect. How

can we discover which components are genuine parts of a mechanism? How can we

use controlled experiment to determine the contribution of a component to the end

effect, and what assumptions must be made for such inference to work? Under what

conditions is an explanation that appeals to a mechanism good or correct? Satisfac-

tory answers to questions as these can only be had from a system of causal inference.

This dissertation seeks to show how the tools of causal modeling—and specifically of

the manipulationist program of Pearl, Woodward, and others—can be used to answer

these kinds of questions. In this chapter, I introduce these tools. Chief among them

are causal models, a method for representing causal networks and causal inference

as graphs and graph operations, and, Woodward’s flavor of manipulationism, which

provide a set of assumptions and procedures for drawing causal inferences specifically

from experimental evidence. In the following chapters, I will lay a foundation that

shows how these tools map onto mechanisms, and how this mapping offers a way to
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answer the kinds of questions above.

Causal modeling techniques offer a normative framework for causal inference,

and as such are (as I will argue in Chapter 3) enormously useful for philosophical

problems in mechanistic explanation. I begin the dissertation with an exploration of

this normative power.

In §1.1, I present the fundaments of causal models. I introduce causal Bayes net-

works, systems of causally interpreted equations, and probabilistic models. I show

how these three kinds of models can be brought together using bridge principles. I

demonstrate briefly how causal Bayes networks have been used to solve problems in

decision theory and developmental psychology.

In §1.2, I present Woodward’s manipulationist account of causal relevance. Ma-

nipulationism provides a set of principles for drawing inferences on the basis of in-

terventions into causal models. To the formal account of causal models, manipula-

tionism adds a definition of an experimental intervention, and two constraints on the

structure of causal models, level invariance and modularity. These constraints justify

inferences about the structure of a particular causal system from experimental data.

As such, manipulationism provides a normative framework for evaluating experimen-

tal method, and for evaluating the inferences drawn from experimental intervention.

Where biologists and neuroscientists rely on experimental intervention for discover-

ing and justifying mechanistic explanations, then Woodward’s manipulationism will

prove a useful tool in evaluating discovery procedures and the resulting mechanistic

explanations.
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1.1 Causal Models

Causal models are tools for describing causal structures in a very general, content-

independent way. Causal models make no assumptions about the metaphysics of

causation, and they do not presume anything about the subject being modeled. They

are intended as a purely abstract formalism for predicting and describing causal

relations in general.

The kind of causal model that I appeal to in this dissertation, called a causal

Bayes network, uses probabilities do describe the relations among causal relata. The

basic idea is that causal relations give rise to characteristic patterns of statistical

correlation, and that we can therefore (given certain assumptions) use these patterns

of statistical correlations to infer the causal structure of a mechanism.

For example, when we observe that an increase in sugar intake correlates with an

increase in ATP production, we can infer that either sugar intake causes increased

ATP production, or that increased ATP production increases sugar intake, or that

both are the effects of an unmeasured common cause. The correlation is a sign of a

causal relation connecting the two. (More information is needed to determine which

of the three possibilities is the correct one, however.)

A causal Bayes net represents causal relations using a causal graph: A kind of

diagram containing circles (nodes) that represent variables (measurable quantities)

connected by arrows (directed edges) that represent direct causal relations among

the variables. Thus, we could represent the claim that increased sugar intake leads to

increased ATP production with the graph in Figure 1.1.

More complex causal relations, such as those in Figure 1.2, will naturally require

more nodes and more edges.1 A sequence of one or more edges is called path. There

1Although these graphs are obviously gross oversimplifications of the chemical pathways involved
in energy production, they suffice to make my point.
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G T

Figure 1.1: Changes in glucose intake (G) cause a corresponding change in ATP
production (T ).

are four paths of length one in Figure 1.2: one is a path linking D and I (called DI);

the remaining three are IT , GI, and IP . Notice that the path DI is the very same

path as ID; the direction does not matter. There are six paths of length two: DIT ,

DIG, DIP , GIP , GIT , and TIP . A path over directed edges (arrows), in which

each link is pointing in the same direction is called a directed path. A directed path

represents a causal chain. There are four directed paths of length two in Figure 1.2:

DIP , DIT , GIP , and GIT .

G

D

I

P

T

Figure 1.2: A more complex causal graph; D=ADP, G=glucose, T=ATP,
P=pyruvate, and I=unmeasured intermediate reactions.

Causal Bayes Nets

In a causal graph, directed edges represent direct causes, and directed paths represent

chains of causation. But how can we construct a causal graph from observational

data? Correlation does not imply causation, but because correlation is at least a sign

of causation, we can use correlations along with additional assumptions, to discover
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causal relations. Recall, though, that a given correlation is compatible with a range of

different causal structures. The power of causal Bayes nets is that they provide a set of

principles for using observed correlations to constrain the range of compatible causal

graphs (ideally to just one). Bayes net modeling harnesses the probability calculus to

create a metric called the screening-off condition: Correlations among two (or more)

variables can be broken (or even created) when we condition on a third variable.2

When X and Y are correlated, but uncorrelated conditional on a third variable Z

(an operation discussed below), then Z is said to screen off X from Y . For example,

let us suppose that anxiety and glaucoma are uncorrelated among the general adult

population. But, as it happens, heavy coffee consumption is a cause of both anxiety

and glaucoma, and so we will find that among those adults who drink large quantities

of coffee, both anxiety and glaucoma are correlated. Now, if we condition on coffee

consumption, this correlation will come apart, because there is no particular reason

to think that coffee is a cause of glaucoma or vice versa. Coffee drinking, then, is said

to screen off anxiety and glaucoma. Because common causes screen off their joint

effects, screening-off is a foot in the door for inferring causation from correlation. To

show how this kind of inference works, we should begin with the probability calculus.

Here are the axiomata of the probability calculus. These axiomata provide a def-

inition of probability. For a set of variables V, and for any elements of V, A and

B:

• P (A) ≥ 0

• P (V) = 1

• P (A ∨ B) = P (A) + P (B) when A and B are disjoint

2This discussion draws from several sources: Spirtes, Glymour, & Scheines (1993); Glymour
(2002); Pearl (2000); Hitchcock (2010).
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These axiomata specify that the probability of any variable having a particular value

or outcome will always lie between zero and one; that the probability that some

outcome or other will occur is one; and that we can sum the probabilities of disjoint

outcomes (i.e. a coin can come up heads or tails, but not both; thus the probability

of a coin landing heads or tails is the sum of the probability it will come up heads

with the probability it will come up tails).

Next, to these axiomata we add the definition of conditional probability:

P (A|B) =
P (A ∧ B)

P (B)

for P (B) > 0. This definition says that the probability of A taking a particular value,

given that B is known to have taken a particular value (i.e. conditional on B) is the

ratio of the probabilities of (A and B) to the probability of B.

Third, we need a notion of probabilistic independence: We say that two variables

A and B are independent when P (A∧B) = P (A)P (B). Suppose that Amy and Beth

each have a fair coin, and flip them. The outcomes of the two flips are independent,

in that the outcome of Beth’s coin flip does not in any way influence the outcome of

Amy’s coin flip. The probability of Amy’s coin showing heads, being a fair coin, is

1
2
; the same holds of Beth’s coin. Because the coin flips do not influence each other,

they are independent, and the probability that both Amy and Beth will show heads

is 1
4
.

But now suppose that Amy and Beth work together, and both take the bus to

work, but live in different parts of town (and hence ride different routes). Ostensibly,

the probability that Amy will be late is independent of the probability that Beth will

be late, since they ride different routes with different conditions, &c. But these events

are not independent because the conditions that affect their ability to arrive on time

are not fully distinct: For example, both will be affected by a bus-drivers’ strike, or a
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traffic accident near their workplace. Conditioning on these common circumstances,

however, will render their lateness independent: Once we rule out a drivers’ strike, or

an accident near the workplace, &c., and consider only their individual circumstances,

then the ability of each to make it to work on time is independent of the other’s. In

probabilistic terms, we say that two variables, A and B, are independent conditional

on a third, C, when P (A ∧ B|C) = P (A|C)P (B|C).

Fourth, we assume that two variables are dependent just in case they are not

independent.

Finally, we add one last assumption, a pair of bridge principles that link causation

with probabilistic dependence (and hence correlation). The first is the causal Markov

condition, which says that a variable is independent of its non-effects conditional on

the set of all and only its direct causes. Thus, if we have some variable A, the set of

its direct causes parents(A)3 , and some other variable C which is not a descendant

(effect) of A, then:

P (A ∧ C| parents(A)) = P (A| parents(A)) P (C| parents(A))

which, by Bayes’s theorem, is equivalent to

P (A| parents(A) ∧ C) = P (A| parents(A)).

This last form suggests one way to read the causal Markov condition: Once we know

the values of all of A’s direct causes, learning the value of any other variable (that

isn’t an effect of A) adds nothing to our knowledge the probability of A.

The second bridge principle is called faithfulness (which happens to be the con-

verse of the causal Markov condition: It says that the only conditional independencies

3In a directed graph, the relationships among different variables are described using kin terms.
If a variables A has a directed edge pointing to B, then A is a parent of B, and B a child of A. A
is an ancestor of B when there is a directed path of any length leading from A to B; B is then A’s
descendant. Since we are interpreting graphs causally, the parents of B are all its direct causes, and
the ancestors of B all of its (direct and indirect) causes.
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found in any graph are those implied by the causal Markov condition. In other words,

it claims that the causal Markov condition won’t overlook any additional conditional

independencies.

The causal Markov condition permits inference from probabilistic dependence and

statistical correlation to causal connection in a graph by stipulating the conditions for

judging when a variableB is a direct cause of another, A, and hence when the variables

should be connected by a directed edge in the graph. The causal Markov condition

says that, in a set of observational data, B is a cause of A when B is a member

of a set of variables that screens A from its non-effects. There are many algorithms

for using the causal Markov condition to infer causal structure from observed data,

although the particulars of these algorithms are beyond the scope of this chapter.

Causal modeling using Bayes nets has seen quite wide application. One area where

they have been deployed is in economic decision making. One long dominant model

of decision making, evidential decision theory (Gibbard & Harper, 1981), claims that,

given a decision, a range of options, and for each option a probability distribution over

a range of possible outcomes, you should choose the option with greatest expected

utility. The expected utility of an outcome is simply the sum of the probability of

that outcome multiplied by its value; the expected utility of a choice is the sum of

the expected utility over all possible outcomes for that choice.

A consequence of this theory, however, is that spurious correlations will affect

the expected outcome of a decision. To borrow an example from Sober (2001), bread

prices in London and Venetian sea levels are highly correlated (in that both are

more or less continuously rising). We might think, if we are evaluating strategies

for making bread more affordable, that one good strategy would be investing in the

Modulo Sperimentale Elettromeccanico project, aimed at providing a kind of sea wall

to protect Venice from floods. But of course this is absurd: It is absurd precisely
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because there is no causal mechanism linking Venetian flooding to bread prices in

London. We should, the argument goes, only act on those choices where we can have

an effect on the outcome. Halting Venetian flooding has no effect on bread prices, and

so we should not consider the investment as an effective option. Causal modeling is

one technique for sorting out which correlations are informative for economic decision

making by showing us which correlations are the result of a causal connection, and

hence can be used to bring about the desired outcome (Hagmayer & Sloman, 2005;

Hagmayer, Sloman et al., 2007).4

Developmental psychology has also drawn upon causal modeling to understand

how humans and other primates develop a causal understanding of the world. Psychol-

ogists have debated whether causal knowledge (or at least the ability to acquire causal

knowledge) was acquired or innate. Hume famously argued that all human knowledge

of the world is gleaned by the association of events or ideas; a more modern version of

this idea is embodied by the Rescorla-Wagner model (Rescorla & Wagner, 1972). But

more recent evidence (Miller, Barnet, & Grahame, 1995; Sloman & Lagnado, 2005)

suggests that this picture is too simple. Rather, humans are capable of retroactively

sorting through learned associations and developing a more refined causal picture of

the world from these associations—and that this ability develops at quite an early age

(Gopnik & Sobel, 2000; Gopnik, Sobel et al., 2001). Gopnik, Glymour et al. (2004)

argue that causal Bayes networks are the best foundation for a theory of causal learn-

ing in humans, by showing that human causal reasoning generally conforms to the

causal Markov condition.

The causal Markov condition is bridge from observed correlations to causal mod-

els; but what about inference from experimental intervention? I turn now to consider

4Of course, Sober uses this example to argue that causal modeling using Bayes nets is inappro-
priate in these circumstances precisely because the Markov condition would recommend the absurd
investment strategy described above. I am putting the example to slightly different use here.
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Woodward’s manipulationist account of causal modeling. Woodward offers a different

set of bridge principles for moving between causal models and experimental correla-

tions.

1.2 Manipulationism

Where the Markov condition permits causal inference from passive observational data,

Woodward (2003) offers a method for causal inference from experimental manipula-

tion. When we perform an ideal intervention into a causal system, and observe some

variable of interest to correlate with our intervention, we can (at least oftentimes)

conclude that the intervention was therefore a cause of the observed variable. Ma-

nipulationism is a formal rendering of the conditions and assumptions necessary to

support this kind of inference. Such inference is warranted when our experimental in-

terventions are ideal—when they are free of confounders, and are sufficiently surgical.

Variables that correlate with (are probabilistically dependent on) ideal interventions

are inferred to be effects of the intervention. In this way we can construct a causal

graph from a systematic sequence of interventions.

Systems of Causally Interpreted Equations

In addition to causal graphs, Woodward adds a new causal formalism: systems of

causally interpreted equations. Such systems capture the same causal relationships

as a graph, but also specify the functional relationship among the variables in the

causal system. Here is a simple mechanical system composed of gears, illustrated in

Figure 1.3. Attached to an input shaft Si is a gear with six teeth G1. That gear turns

a second gear with 10 teeth G2. The second gear turns a third with 20 teeth G3; the

third gear is mounted on an output shaft So. We can represent this mechanism with
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Figure 1.3: A system comprising an input shaft Si connected to an output shaft So

link by a train of three gears, G1, G2, and G3.

a system of equations that describes the rotational speed of each gear:

G1 = Si(1.1)

G2 =
6

10
G1(1.2)

G3 =
10

20
G2(1.3)

So = G3(1.4)

In a system of equations, the ‘=’ symbol indicates that the value of the terms to

the left (the left-hand side, or LHS) is equivalent to the value of the terms on the

right (the right-hand side, or RHS). In a causally interpreted system of equations,

‘=’ is given the additional meaning of a causal relation, where the variables on the

right-hand side are taken as the causes of the variable on the left-hand side. ‘=’

as equivalence is symmetric and transitive. Equivalence is transitive in that since

G1 = Si and G2 =
6
10
G1, then G2 =

6
10
Si. And equivalence is symmetric in that since

G1 = Si, then naturally Si = G1.
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But the causal version of ‘=’ is antisymmetric and intransitive.5 The causal version

of ‘=’ is antisymmetric because causation is not symmetric: G1’s causing G2 does not

alone imply that G2 causes G1.
6 Moreover, the causal version is intransitive because,

if G1 is a direct cause of G2, and G2 a direct cause of G3, it does not automatically

follow that G1 is a direct cause of G3 (even as it is a distal cause). We can rewrite

the equation for G2 as G2 =
6
10
Si, but we cannot infer from this rewriting that Si is

a direct cause of G2—because, in the system of gears presented here, it is not7

I shall say more about the features of systems of causally interpreted equations

below.

Interventions

Woodward sets out to give a semantics for causal models that captures scientific

practice in giving explanations based on the results of experimental intervention

(Woodward, 1997; Hausman & Woodward, 1999; Woodward, 1999, 2000; Woodward

& Hitchcock, 2003a; Woodward, 2003; Woodward & Hitchcock, 2003b). The

Manipulationism claims that we can discover whether X is a cause of Y (and the

functional relationship between the two) by intervening into X—but not just any

intervention will do. Correct causal inference (Woodward argues) requires that our

interventions be ideal: any measured variation in the purported effect Y must be due

to X and X alone.8 Thus, Woodward’s first axiom, intervention, requires that an

5This does not imply that such models assume causation itself is intransitive; merely that the
causal operator is.

6I say ‘alone’, because of course in this example it is true that G2’s moving would be a cause
of G1’s under certain circumstances. However, we can know this only because we have some prior
understanding of how gears work; this conclusion about the symmetry between G1 and G2 does not
follow from an algebraic manipulation of the equations. In general, algebraic manipulation does not
preserve causal relations.

7But of course, depending on how the causal system is arranged, G1 might well be a direct cause
of the other two gears. Whether G1 is a direct cause of G3 is a contingent, empirical fact that cannot
be derived from the algebraic manipulation of a system of causal equations.

8Although we must also attempt to account for measurement error and natural variation in Y .
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ideal intervention into X acts as a switch that cuts X off from its other causes, and

puts it under the causal control of the experimenter9.

Interventions in Causal Bayes Networks

Woodward’s definition of an ideal intervention proceeds in two steps. First he charac-

terizes what it is to be an intervention variable, for X with respect to Y . Then, using

this account of an intervention variable, he formulates the notion of intervention.

Intervention is a two-place predicate. An experiment defines a set of independent

variables (the variables we will be manipulating; in general the set will be a singleton)

and a set of dependent variables (the variables we will be measuring; again usually a

singleton set). To simplify the discussion (without loss of generality), let us talk about

single variables rather than sets. If the independent variable is X, and the dependent

Y , then Woodward defines an intervention I on X with respect to Y 10 as follows:

IV A variable I is an intervention variable for X with respect to Y if and only if

I1 I causes X.

I2 I acts as a switch for all the other variables that cause X. That is, certain

values of I are such that when I attains those values, X ceases to depend

on the values of other variables that cause X and instead depends only on

the value taken by I.

I3 Any directed path from I to Y goes through X, That is, I does no directly

cause Y and is not a cause of any causes of Y , if any, that are built into

the I − X − Y connection itself; that is, except for (a) any causes of Y

9Metaphorically speaking: Woodward allows for the possibility of ‘natural interventions’ which
do not occur at the behest of the laboratory scientist, as well as for non-scientific interventions of
the sort a small child might employ. Woodward’s account is not anthropocentric.

10Although I mention three variables, intervention is actually a predicate, although as is the case
here, it is often convenient to talk about it as though it were a variable. See the definition of (IN)
below.
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that are effects of X (i.e., variables that are causally between X and Y )

and (b) any causes of Y that are between I and X and have no effect on

Y independently of X.

I4 I is (statistically) independent of any variables Z that causes Y and that

is on a directed path that does not go through X.

(Woodward, 2003, p. 98)

For an intervention to be ideal, it must be a cause of the independent variable X

(I1), and not merely accidentally correlated with it. We must also be sure that any

change in X is a direct result of our intervention only (I2). Since we are interested

in X’s contribution to the dependent variable Y , it must not be the case that our

intervention causes Y directly or through any route that doesn’t include X (I3),

else we would be measuring I’s contribution to Y , and not X’s contribution to Y .

Finally, there should be no variables Z that are causes of Y that correlate with the

intervention (I4).

X

Y

Z X

Y

Z I

Figure 1.4: An intervention on X with respect to Y , before and after

A simple example of an intervention variable that meets IV is presented graphi-

cally in Figure 1.4. The left side of the figure represents a causal structure over X, Y ,

and Z. We wish to intervene on Y with respect to X, that is, we want to test whether

X is a cause of Y . The right side represents the results of that intervention. Impor-
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tantly, the intervention is a cause of X (satisfying I1), cuts off Z’s causal influence

on X (I2), and does not cause Y directly (I3).

Once we have a variable that meets condition IV , Woodward defines an interven-

tion thus:

(IN) I’s assuming some value I = zi is an intervention on X with respect to Y if

and only if I is an intervention variable for X with respect to Y and I = zi is

an actual cause of the value taken by X. (Woodward, 2003, p. 98)

Interventions in Causally Interpreted Systems of Equations

Using Pearl’s (2000) notation, Woodward represents an intervention in a system of

causally interpreted equations with the set operator (p. 339)11. We represent an in-

tervention into X to set it to some value x as

set(X = x).

The set operator works by deleting from our system of equations any equation with

X on the LHS (with X as an effect), and inserting the two new equations

X = aI(1.5)

I = zi(1.6)

where I meets condition IV, and x = azi.

Invariance

Not all equations can be interpreted causally. When are we warranted in giving an

equation (or any generalization) a causal interpretation? Woodward’s central claim

is that we are so warranted when that equation is invariant. An invariant equation

11The set operator, notice, is an explicit predicate, with no mention of an intervention variable.
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is one that continues to hold under (at least some range of) interventions on the

variables on the RHS. When we can correctly predict the value of an effect during

an intervention, we are justified in claim that that equation correctly captures the

causal structure of the variables involved. Put another way, manipulating a variable

should not change the way it interacts with its effects.

If X is a cause of Y , the principle of invariance claims that an intervention on X

with respect to Y should not disrupt the existing causal relationship between X and

Y ; that is, we do not want X and Y to behave differently when we are intervening.

If their behavior did change, we would not be able to draw an inference from the

behavior of X and Y during the experiment to the relationship between X and Y

under non-experimental circumstances. Figure 1.5 provides a graphical example of

this concept.

X

Y

X

Y

I

Figure 1.5: Applying the set operator on X, the parent of Y , does not change the
causal relationship between X and Y

Woodward uses a number of (prima facie) compatible variations on invariance

throughout his book; I have chosen the last and most general formulation for this

discussion. Woodward axiomatizes invariance as Probabilistic Level-Invariance:

PLI Pr(X| parents(X)) = Pr(X| set(parents(X))). (Woodward, 2003, p. 340)
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This can be read to say that intervening into the causes of X does not disrupt the

relationship between the causes of X and X itself. If, to take the automobile example,

I were to experiment by manipulating the gas pedal and observing the resulting

velocity, I would not expect that merely pressing on the gas pedal would alter the

nature of the relationship between pedal position and velocity change.

Modularity

The third and final principle in Woodward’s system is the modularity condition.

Where invariance is concerned with interventions into single equations, modularity

extends this concern to interventions on systems of equations; modularity requires

that interventions do not disrupt the system as a whole. Simply put, intervening on

a variable should not disrupt the other causal relations in our model. When causal

relations are expressed as equations, an intervention on one equation should leave the

other unrelated equations unchanged and invariant. If, in a system, X causes Y , and

A causes B (and that’s all), then interventions on X or Y should not disrupt the

relationship between A and B. Figure 1.6 demonstrates this principle graphically.

A

B

X

Y

A

B

X

Y

I

Figure 1.6: Interventions on X or Y have no effect on the relationship between A and
B.

The precise specification of the modularity requirement has undergone a number

of revisions in response to critics. Hausman & Woodward (1999) provide the earliest
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specification of interest here. This formulation was later updated by Woodward (2003)

in response to criticism (Cartwright, 2002). Although I return to consider this issue

in Chapters 5, 6 and 7, consider here a few attempts at formulating the principle:

(MOD) A system of equations ismodular if (i) each equation is invariant under some

range of interventions and (ii) for each equation there is a possible intervention

on the dependent variables that changes only that equation while the other

equations in the system remain unchanged and invariant. (Woodward, 2003, p.

329)

Additionally, Hausman & Woodward show that (MOD) implies a weaker but

closely related claim, (MOD*).

(MOD*) For all distinct variables X and Y , if X does not cause Y , then

Pr(Y&set(X)) = Pr(Y ) · Pr(set(X)). (Hausman & Woodward, 1999, p. 553)

Woodward also provides a probabilistic restatement of (MOD), designed as a

bridge principle for inferring causal structure from dependencies observed during an

experimental intervention.

Probabilistic Modularity (PM) For all distinct variables X and Y ,

Pr(X| parents(X)) = Pr(X| parents(X)& set(Y )), or equivalently,

X⊥set(Y )| parents(X). (Woodward, 2003, p. 340)

Once one has conditioned on the causes of a variable, X, setting any distinct vari-

able makes no difference to the probability distribution of X. That is, interventions

on X’s parents do not disrupt the relationship between X and parents(X) (the in-

variance condition) and interventions on variables other than X’s parents either make

no difference to X (if, say, the intervention is on one of X’s children) or are screened

off by parents(X).
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These three principles—intervention, invariance, and modularity—provide the

conditions under which we can bridge a set of probabilistic dependencies observed

during an experimental intervention with a causal graph to create a complete causal

model. The set of tools Woodward gives are designed to mirror the way experiments

are conducted and interpreted in the social sciences and elsewhere, but have been

carefully regimented to give the account a normative bite.

Manipulationism’s normative bite comes from the constraints that the principles

of intervention, invariance, and modularity place on experimental interventions. Ma-

nipulationism claims that, when these principles are satisfied, we are entitled to draw

certain causal inferences from an experimental intervention. And when these princi-

ples are not satisfied, that we do not have such entitlement. As such, manipulationism

places constraints on what counts as a good experimental design,12 and hence on what

counts as a good causal inference from experiment.

1.3 Conclusion

In this chapter, I have reviewed the components of a causal model—causal Bayes net-

works, probabilistic dependencies, and causally interpreted systems of equations—,

and principles that allow us to bridge them. Causal Bayes nets represent causal re-

lations as circle-and-arrow diagrams; probabilistic models represent correlations as

dependency relations, although they do not encode causal relations directly. The

causal Markov condition and the faithfulness condition are assumptions that permit

us to pick out which of the dependencies in a probabilistic model represent causal

relations, and hence permit us to construct causal Bayes networks on the basis of ob-

served probability distributions. Causally interpreted systems of equations represent

12Not all experiments involve interventions, of course, and manipulationism is silent about those
experiments that do not.
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causal relations as (possibly non-deterministic) mathematical functions.

Woodward’s manipulationism provides a semantics for interpreting a causal Bayes

network as a model for predicting the outcomes of experimental interventions. Wood-

ward’s concepts of an intervention, and his principles of invariance and modularity

provide bridge principles for constructing causal Bayes networks on the basis of prob-

ability distributions observed under the conditions of experimental intervention. In-

variance and modularity are also principles of causal inference: They are rules for

constructing and updating graphical models in the face of experimental evidence.

Early accounts of mechanistic explanation and mechanisms face a cluster of prob-

lems centered around a common thread: How can we determine whether a particular

component is a part of a mechanism? Biologists usually turn to experimentation to

answer this question. Here, then, is where the principles of manipulationism hold

interest for the philosopher of biology: In guiding the inference from experiment to

mechanistic structure.

I turn now to introduce mechanistic explanation. In the chapter following, I show

how the causal modeling concepts introduced in this chapter can be applied to some

of the philosophical problems that mechanistic explanation faces.
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Chapter 2

Qualitative Accounts of Mechanism

In the previous chapter, I introduced causal modeling and manipulationism. Together,

these provide a powerful epistemological framework for drawing causal inferences

from experimental data. In this chapter, I give an historical overview of mechanistic

explanation, to highlight the steps taken. I argue that the next natural move is to

show how mechanisms can be represented using causal models, and how these models

facilitate causal inference about mechanisms.

Mechanisms are, to put it very roughly, a set of components that interact so as

to produce an end effect. Biologists, in particular, take their job to be, in part, the

description of the mechanisms in living nature that produce the phenomenon they

seek to explain.

But, we might ask, what justifies a biologist’s claims about the workings of a

mechanism? These claims are usually derived from a causal interpretation given to

some set of experimental data. As yet, our best accounts of mechanistic explanation

have only begun to make progress at showing how these inferences can be justified.

In this chapter, I trace the recent history of mechanistic philosophy, and show

how accounts have risen to meet the challenge of accounting for scientists’ behavior.
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I will flesh out the problem of experimental inference to mechanisms, and show that

meeting it is now very salient to mechanistic philosophy. In the following chapter, I

will show how the most recent accounts of mechanism have taken the first steps at

meeting this problem, and that there remains significant work to be done. Finally, in

Chapter 4, I return to the tools of causal modeling, to show how they can be applied

to solve this problem.

In the final chapter of his Four Decades of Scientific Explanation (1989), Salmon

raises several challenges for philosophers of science. Chief among them is this: That a

complete ontic1 account of causal explanation must face (what I call) Hume’s Ques-

tion.

Hume’s Question What is the secret connexion that links cause to effect?

On Salmon’s ontic view, to explain an event is to exhibit the causes of that event: to

situate the event in an etiology. But unless we can give a convincing account of what

it is that binds cause and effect, this kind of explanation is too shallow to do any

real scientific work. Explanation differs from mere description in that explanations

can answer a range of ‘what if things had been different?’ questions. Without an

account of causation at its heart, ontic explanation would be incapable of answering

these kind of counterfactual questions. For those that shared Salmon’s ontic view of

explanation, finding a suitable response to Hume was of utmost importance.

Glennan (1992, 1996, 2002), sharing Salmon’s ontic view, sought an answer to

Hume’s Question. Looking to how the sciences treat causation, Glennan suggests

1as opposed to a purely formal account, e.g. the DN model of Hempel & Oppenheim (1948).
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that Hume’s secret connexion is a mechanism, in the most general sense. In §2.1, I

review Glennan’s earlier (1996) account of mechanism, and his view of how an account

of mechanism can answer Hume (returning to his later views later in this chapter,

and in the next chapter). Glennan first account was ultimately, however, unable to

provide a satisfactory account of the secret connexion, because, as he admits, there

is some bottom-most level of basic physics for which we will not be able to analyze

the causal relations into mechanisms. And, at this level, Hume’s Question remains

unanswered.

Contemporaneously with Glennan, Bechtel & Richardson (1993) began a parallel

project. They did not seek to answer Hume’s Question; their interest was descriptive:

They sought to make sense of scientific explanatory practice, and in particular, the

methods by which scientists discovery mechanisms. Noticing that many scientific ex-

planations appeal to mechanisms, Bechtel & Richardson set out a descriptive project

aimed at characterizing the heuristics deployed to construct these kind of explana-

tions. In §2.2 I lay out their characterization of mechanisms as comprising parts that

are decomposable and localizable. Bechtel & Richardson show that the assumptions

of decomposability and localizability, while often false, have proven useful heuristics

for the discovery of mechanisms. These features will resurface in later treatments of

mechanistic explanation.

Bechtel & Richardson’s (1993) mechanistic project sought to accurately describe

scientific practice; however, other authors wanted to bring their descriptive concept

of mechanism to bear directly on problems facing accounts of scientific explanation.

Machamer, Darden, & Craver (2000) take Glennan’s causal notion of mechanism and

Bechtel and Richardson’s notions of decomposability and localizability to craft an

account of mechanistic explanation in fulfillment of Salmon’s ontic view. In §2.3, I

review this account, examining their precise formulation of mechanism in some detail,
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as it is the best developed view of mechanism.

As Machamer, Darden, & Craver are quick, and right, to criticize Glennan’s (1996)

reliance on causal laws, Glennan (2002) offered a refinement of his account that re-

placed talk of causal laws with talk instead of Woodward-style invariant general-

izations (see §1.2). Glennan’s ultimate aim was to show that mechanisms provide

the truth-makers for manipulationist counter-factual claims. Psillos (2004), however,

offers a strong argument that Glennan has put the cart before the horse: Counter-

factuals, Psillos argues, are more basic than mechanisms, and any future account of

mechanism had better recognize this. Psillos’s argument sets the stage for the move

towards a rapprochement of manipulationism and mechanism, and therefore warrants

close examination in §2.4.

2.1 Glennan’s Mechanism

I use Glennan’s (1992) PhD dissertation and the resultant publications (Glennan,

1996, 1997a,b) as a starting point for thinking about the mechanistic movement in

the philosophy of science. Although earlier authors (e.g. Salmon, 1984) certainly made

use of mechanistic concepts in their writing, Glennan’s achievement was to give one

of the first clear analyses of the concept of mechanism. Although Glennan has since

offered significant alterations to this account, his early work is, I believe, a good place

to start a discussion of mechanisms generally.

Glennan was less interested in scientific explanation than he was in answering

Hume’s Question. Hume asks: What is the secret connexion that links cause and

effect? Glennan responds: A mechanism. Glennan argues that we can distinguish

genuine causes from spurious correlation by looking for a mechanism that links a

purported cause to its effects. Thus, on Glennan’s view, when we explain E by appeal
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to its cause C, our explanation is incomplete until we specify the mechanism that

underlies the causal relation from C to E.

So, what is a mechanism? Glennan gives this account:

(M) A mechanism underlying a behavior is a complex system which produces that

behavior by the interaction of a number of parts according to direct causal laws.

(Glennan, 1996, p. 52)

Notice that (M) defines mechanism with respect to an ‘underlying a behavior’. Since

Glennan is interested in the connection of cause to effect (reading, perhaps con-

tentiously, ‘behavior’ as ‘effect’; I will have more to say in defense of this identification

in the next chapter). Why should a mechanism be defined relative to some behavior

or effect? A given physical system, Glennan observes, will exhibit indefinitely many

behaviors (has indefinitely many effects) (Kauffman, 1970). And, in any system, there

will be an indefinite number of ways to decompose it into potential mechanisms. By

defining a mechanism relative to a single behavior, we can be sure that there is (in a

given explanatory context) one and only one correct way to decompose a given com-

plex system. In this way, Glennan avoids any worries that the concept of mechanism

doesn’t lead to subjectivism about causal explanation: Whatever our explanatory in-

terests may be, once we have fixed those interests, there is an objective fact of the

matter as to which specification of a mechanism will satisfy those interests.

Glennan gives two features of this account further elaboration: law-governed in-

teractions and parts.

Laws

The interactions among the parts of a mechanism, according to (M), are governed

by direct causal laws. A law is causal if it relates cause and effect; a law is direct if
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it requires no intermediaries between cause and effect. To explain what he means,

and to motivate this proposal, Glennan considers two cases. First, although there

is a true counterfactual supporting the generalization that night follows day, such a

generalization is not causal, because it describes the correlation between two effects

that share a common cause (the rotation of the earth). Second, consider a system of

three gears, connected in a sequence. Although there is a true causal generalization

that describes the motion of the third gear in terms of the motion of the first, it is

not direct, because the generalization leaves off the intermediate gear, which is the

direct cause of the third gear’s motion. In contrast, a generalization that describes

the third gear’s motion in terms of the second would be a direct causal law, because

there are no intermediaries between the second and third gear that are left off. 2 By

requiring that the laws be direct causal laws, Glennan attempts to capture the sense

that a mechanism’s behavior “stems from a series of local interactions between parts”

(Glennan, 1996, p. 56).

Glennan takes a broad view of laws, following Goodman (1947): “Laws are gen-

eralizations (or universal propositions) which support counterfactuals. Law-like or

nomic generalizations are distinguished from accidental generalizations because acci-

dental generalizations offer no such support,” and laws are true law-like generaliza-

tions (Glennan, 1996, pp. 54–55). Glennan takes it as a virtue of this account that

it makes no distinction between ‘deep’ or fundamental laws, and higher-level coun-

terfactual supporting generalizations. This lack of distinction is a virtue for Glennan,

because it allows him to articulate e.g. social mechanisms, whose parts are governed

by generalizations that fall short of full-blown lawhood.

2Directness is ambiguous in the context of a real mechanism, of course: Why is the second gear
the direct cause of the third’s rotation, and not, say, tooth no. 35, or the forward-facing surface of
tooth no. 35, or so on? Glennan suggests that we think about directness as relative to a given set
of parts. If our decomposition of the gear mechanism bottoms out at gears, then the second gear is
a direct cause. If our analysis bottoms out at teeth (and other gear-parts), then tooth no. 35 is the
direct cause.
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However, as Glennan notes, the concept of counterfactual support is usually taken

to be a causal concept. But if counterfactual support is part of the analysis of mecha-

nisms, and mechanism is part of the analysis of causality, and causality a part of the

analysis of counterfactuals, then a reliance on counterfactual support renders Glen-

nan’s account circular. Glennan has a way out of this circularity that I will explore

below.

Invariant Generalizations

But (M)’s dependence on direct causal laws, Glennan realized, was fraught with

difficulty. Laws are problematic entities for philosophy of science generally, but too,

many scientific disciplines, e.g. biology and medicine, do not seem to even have laws

(Machamer, Darden, & Craver, 2000).

Woodward (2003) argues that the distinction between universal laws and acciden-

tal or contingent generalizations is ill-founded—precisely because the special sciences

lean very heavily on a class of such contingent generalizations. Woodward offers an

alternative. He says, instead, that the important generalizations for science are invari-

ant—generalizations that hold up under experimental test. (See §1.2) We can distin-

guish causal relations from mere correlations by testing them, and observing whether

the relation in invariant under intervention. The observed correlation, for example,

between thunderstorms and barometer fallings, does not hold when we intervene into

the barometer to set it to a particular value: Thunderstorms form independently of

any such manipulation.

Thus, Glennan (2002) (looking ahead slightly) offered a modification to (M)3

(M′):

3I depart from Glennan’s usage, by naming his modification as (M′), where Glennan continues
to call this new principle by the old name.

43



(M′) A mechanism for a behavior is a complex system that produces that behavior

by the interaction of a number of parts, where the interactions between parts

can be characterized by direct, invariant, change-relating generalizations.

Parts

Mechanisms, Glennan claims, are decomposable into parts, and a good mechanistic

explanation therefore explains by exhibiting how the parts interact to produce the

mechanism’s behavior. The idea that mechanisms are composed of parts is a sig-

nificant claim, and one that following accounts adopt as a defining characteristic of

mechanisms. But what is a part?

If we restricted our notion of parts to just physico-mechanical parts, Glennan’s

mechanisms would be nothing more than what he calls mere machines—a distinc-

tion that Glennan is very careful to draw (Glennan, 1996, p. 51). Rather, he desires

that his account should extend beyond mere machines: He wants electrical circuits

(which have no moving parts), chemical pathways involved in gene expression (which

appeal to genes—problematic entities in many ways, and spatially diffuse chemical

interactions), and computer software (which have no physical parts at all) to count as

mechanisms too. But if anything of our choosing can count as a part, then Glennan’s

account is rendered vacuous—there would be no constraint on how to decompose

a complex system, and so any decomposition would count as a mechanism. Thus

Glennan is forced to constrain what can count as a part: Parts are robust, and have

an independent existence from the mechanism as a whole. “It should in principle be

possible,” he tells us, “to take the part out of the mechanism and consider its proper-

ties in another context” (Glennan, 1996, p. 53).4 In short, parts must be, as he says,

4To foreshadow slightly, we see in this requirement the beginnings of a modularity requirement
for mechanisms.
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“objects” (p. 53).

The important consequence for this restriction on what can count is a part is that

it generates conditions for determining when mechanistic explanation ‘bottoms-out’.

Glennan notes that a part p of a mechanism need not be a simple, that is, p could itself

be decomposable as a mechanism. But if part p is not itself decomposable into further

parts, because p is not composed of objects which have independent existence, then

the mechanistic explanation has bottomed out—we can conclude that p is a simple

and neither has nor needs any further explanation.

Glennan offers the electromagnetic field as an example of a simple part. The

electromagnetic field is, on Glennan’s account, an object—it can play the role of

a part in a mechanism. We can decompose the electromagnetic field into two vector

fields, the electric field ~E and the magnetic field ~B. Having done this, Glennan notices

that we can attribute to any particular point in space an electric field strength and a

magnetic field strength. However, Glennan argues that such points in space cannot be

parts of a mechanism for the electromagnetic fields, because points in space are not

suitably independent. For example, although we can choose the strength of the e.g.

electric field at one point of space, we cannot do so independently of the field strength

at adjacent points in space. Moreover, points in space cannot be bounded, or excised

from the electromagnetic field. Indeed, points in space are not objects in any sense of

the term. So, although we can conceptually decompose the electromagnetic field in

this way, such a decomposition is not a mechanistic decomposition. Thus, Glennan

concludes, there is no the mechanism for electromagnetic field, and we can therefore

treat it as a simple part.

Glennan takes this as a significant result for his account, because the electromag-

netic field is what he calls a law-governed entity, the kind of entity that fundamental

physics deals in, and that eludes causal explanation—because there are no causes at
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the fundamental level.5 Thus, his account has a principled way of correctly identifying

law-governed entities: Law-governed entities are all and only those entities for which

we cannot give mechanistic explanations.

Circularity, Recursive Mechanisms, and Hume’s Puzzle

Thus fully elaborated, let us put (M) to Hume’s Question. We make a claim: C

explains E because C causes E. Hume asks: What is the secret connexion between

C and E? Glennan responds: There is a mechanism, composed of parts P (where, I

presume, C ∈ P6) that interact according to direct causal laws. Thus, in P we have

an causal-mechanical explanation of the causal relation between C and E.

But now, Glennan notes, Hume can re-raise his Question about any of the lawful

interactions among the members of P. Suppose that as part of the mechanism, P1

causes P2, in accordance with some direct causal law L that links the two. Hume will

once against ask: What is the secret connexion between P1 and P2?

This re-raising of Hume’s Question is what I call Hume’s Puzzle. Like a petulant

child continually asking ‘why?’, Hume can always re-raise his Question.

It is confessed, that the utmost effort of human reason is to reduce the

principles, productive of natural phenomena, to a greater simplicity, and

to resolve the many particular effects into a few general causes. . . But as

to the causes of these general causes, we should in vain attempt their

5I should be very quick to add that Glennan hangs nothing on the term ‘governed’; he uses the
term only as a colloquial short-hand for a part which cannot be decomposed further, and whose
behavior is completely captured by a fundamental law of physics.

6It is worth noting that neither Glennan nor Craver think that mechanisms are always etiological,
with the explanandum behavior manifested in some causally-downstream part. Rather, they permit
a constitutive view of mechanisms, allowing that the behavior of a mechanism may be a complex
description of large swaths (or even the entire) mechanism, and may involve both C and E. So,
in this sense, my characterization of Glennan here is unfair. Nevertheless, my goal here is only to
provide a simple example that demonstrates one of the strengths of Glennan’s view, even as such
ignores an important nuance. I will have more to say on constitutive vs. etiological mechanisms in
the next chapter.
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discovery; nor shall we ever be able to satisfy ourselves, by any particular

explication of them.. . . The most perfect philosophy of the natural kind

only staves off our ignorance a little longer. (Hume, 1777, p. 26)

A mechanistic account of causation—as Glennan well recognized—must not only

answer Hume’s Question, but Hume’s Puzzle as well.

Glennan’s proposed solution to Hume’s Puzzle is simple and elegant. Returning to

the question of the connection between parts P1 and P2, Glennan says either P1 and

P2 are connected by a mechanism—that is, the direct causal law L that links the parts

is a mechanically explicable law—, or they are are not connected by any mechanism—

that is, L is a fundamental law. Mechanisms, in short, are finitely recursive entities.

A mechanistically explicable law is a law that can be explained by appeal to a sub-

mechanism. A fundamental law goes hand-in-hand with Glennan called ‘law-governed

entities’7—they are a brute part of fundamental physics, for which no response to

Hume’s Question can be given. Thus, each time Hume re-raises his Question, we have

a ready answer. Either there is a sub-mechanism involved (to which Hume can raise

his Question yet again), or we can claim to have bottomed out.

This recursive nature of mechanisms is Glennan’s response to the problem of

circularity raised by analyzing laws causally. If we ask for an explanation of C causing

E, and we appealed to a mechanism that relies on laws that (in effect) claimed merely

that C was a cause of E, we would have a problem of circularity. But Glennan’s

recursive mechanisms do not work like that: We can explain C’s causing E by appeal

to a mechanism that relies on causal laws—but these laws will in turn appeal to the

causal workings of sub-mechanisms within this mechanism. And so our explanation

is not circular.

7Again, nothing hangs on the term ‘governed’; Glennan only uses it as a perhaps unfortunate
but somewhat clearer stand in for ‘part whose behavior is completely capture by a fundamental law
of physics, and not by a further mechanistic decomposition’.
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But, Glennan worries, when we hit the end of the recursion, we bottom out at

mechanically inexplicable causes at the fundamental level. What is our response to

Hume now? Do we just shrug out shoulders? Do we deny the existence of causation at

the level of fundamental physics? And, either way, does this move void the mechanical

account? We might worry, as Glennan do, that shrugging our shoulders when we

bottom out means that (M) is but a fancy gloss on a regularity theory of causation.

Glennan argues that his mechanistic account is much more than a simple regular-

ity account dressed up in fancy clothes. Glennan shields mechanisms by distinguishing

between two kinds of cause. He admits that “[a]t the level of fundamental physics,

Hume’s problem still remains” (Glennan, 1996, p. 68)—there are regularities that we

call causal, but for which no explanation is forthcoming, no answer to Hume’s Ques-

tion. But at higher levels, causation can be explicated mechanically and non-circularly,

and that this mechanical notion of causation is autonomous from the fundamental,

inexplicable notion. That is, even while mechanical explanation takes advantage of a

decomposition of the explanandum phenomenon, it does not reduce the explanandum

phenomenon to the resultant components: “we can distinguish between connections

and conjunctions, because we can understand the mechanisms which produce higher

level regularities” (Glennan, 1996, p. 68). That is, mechanistic explanations at higher

levels are autonomous, without need for appeal to lower levels.

Nevertheless, because there is no account of the secret connexion for fundamental

laws, Hume’s Question will, at some point in this recursive process, have no answer.

And so long as Hume is unsatisfied, we have work to do in putting together a complete

account of mechanistic explanation.
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2.2 Discovering Mechanisms

Whereas Glennan took himself to be solving Hume’s Problem, Bechtel & Richardson

were concerned with making sense of how scientists discover mechanistic explanations.

When they started the work a decade earlier (Bechtel & Richardson, 1993, p. xi), they

found in their case studies that, contra Hempel & Oppenheim (1948) (and contra

Glennan (1996), but cf. Glennan’s later revisions to eliminate laws from his account

(2002), discussed below.), scientists in biology, psychology, and medicine rarely, if

ever, cited laws in their explanations.8 Indeed, there was nothing in their explanations

that resembled D-N explanation at all. Rather than cite arguments, or discuss the

expectability of an explanandum, Bechtel & Richardson discovered that scientists

largely prefer to explain by laying out the mechanism by which the explanandum is

brought about.

On Bechtel & Richardson’s view, mechanistic explanation describes a kind of

machine (in a very broad sense) responsible for bringing about an explanandum phe-

nomenon. Thus, like Glennan, Bechtel & Richardson take mechanisms to be defined

relative to some phenomenon; there are no mechanisms simpliciter.

(B&R) A [mechanism]9 is a composite of interrelated parts, each performing its own

functions, that are combined in such a way that each contributes to producing

a behavior of the system. A mechanistic explanation identifies these parts and

their organization, showing how the behavior of the machines is a consequence

of the parts and their organization. [emphasis added] (p. 17)

Although Bechtel & Richardson do not provide any additional detail, one can easily

8Indeed, one may well wonder what a law of biology or a law of psychology would even look like.
Cf. Machamer, Darden, & Craver (2000)

9Bechtel & Richardson use here ‘machine’, but intend the same meaning as where other authors
use ‘mechanism’. I have edited the quote for consistency with Glennan’s (1996, pp. 51–2) usage of
‘machine’ and ‘mechanism’.
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see their commitment to the ontic conception of explanation (or, at least, that they

attribute this commitment to the scientists they present). An explanation, on their

view, is a text that refers to the mechanism in the world—and nothing more. They

are nonetheless unconcerned about answering Hume’s Question.

Bechtel & Richardson were primarily interested in how mechanistic explanations

were discovered and developed over time. Thus, in contrast to Glennan, who focused

on the technical apparatus of (M)—a necessary step to answering Hume’s Question—

Bechtel & Richardson do not dwell on (what I call) (B&R), but immediately identify

a pair of heuristics that scientists frequently use when constructing a mechanistic

explanation.

Mechanisms, note Bechtel & Richardson, are composed of parts. And thus, if

we want to construct a mechanistic explanation, we must identify the parts of the

mechanism that figure in that explanation. Bechtel & Richardson observe that life

scientists have often turned to the heuristics of decomposition and localization to

discover the parts of a mechanism, and hence to construct mechanistic explanations.

Decomposition

The scientists that Bechtel & Richardson present worked with complex phenomena.

Gall sought to explain general understanding, which encompasses large swaths of hu-

man cognitive achievement of varying kinds; Pasteur sought to explain fermentation,

which encompasses a wide range of different chemical interactions. Decomposition

involves breaking up such a complex phenomenal behavior into distinct and simpler

sub-behaviors, each of which is easier to investigate:

Decomposition assumes that one activity of a whole system is the product

of a set of subordinate functions performed in the system. It assumes that
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there are but a small number of such functions. . . [that] are minimally

interactive. . . [and] can be handled additively or perhaps linearly. (Bechtel

& Richardson, 1993, p. 23)

Notice what decomposition presumes of a mechanism: That the parts of a mecha-

nism interact in a (mostly) additive fashion. Of course, many (if not most?) complex

phenomenon are not the additive resultant of the behaviors of parts, as Bechtel &

Richardson well realize; nevertheless, as a heuristic, decomposition can get complex

projects rolling, even if the strategy does often ultimately fail.

Localization

Decomposition is a conceptual task; the sub-behaviors identified in decomposition

must then be identified within the complex system responsible for the complex phe-

nomenon behavior. Localization is the process of identifying parts or functions of

parts within a system as producing the sub-behaviors obtained from decomposition.

Of course, behaviors cannot often be localized in this way, even when a decomposition

succeeds. Sometimes a sub-behavior is diffuse within a system. For example, against

Gall, Flourens found that the understanding was not localizable to any particular

part of the human brain proper, but was diffuse across all parts of the brain. Still, as

a heuristic, Bechtel & Richardson maintain that localization is a fruitful strategy.

Although decomposition and localization will often fail, they provide a “tractable

strategy for attacking problems” (p. 27, emphasis mine) if not for solving them. This

is important because, say Bechtel & Richardson, most of the complex phenomena

that interest life sciences are really too complex for human minds to get a grip on,

and as scientists are (currently) human, the heuristics provide a method for getting

a cognitive foothold into explaining such complex phenomena.
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These two accounts see two distinct roles for mechanistic explanation to play.

Whereas Glennan was concerned with crossing one of the last looming hurdles for

causal explanation—answering Hume’s Question—, Bechtel and Richardson’s project

was more historical than philosophical. They were concerned with showing both that

scientists really do rely on mechanistic explanation, and in showing how such expla-

nations are discovered. One might take Glennan’s project as metaphysical : He was

concerned with answering Hume’s Question, of showing how a causal link can be de-

composed into a mechanism; whereas one might take Bechtel and Richardson’s project

as descriptive: They were concerned with showing how scientists actually do decom-

pose a causal link into a mechanism. Machamer, Darden, & Craver (2000) attempted

to synthesize these two projects, to create an account of mechanistic explanation.

2.3 MDC

Machamer, Darden, & Craver (2000), take these two views of mechanisms due to

Glennan and Bechtel & Richardson, and synthesize them into a new account, not of

causation, but of mechanistic explanation. Their essay—I will follow common par-

lance in referring to it as MDC—brought wide attention to the otherwise previously

obscure mechanisms literature. Like Bechtel and Richardson, MDC observed that life

scientists describe mechanisms in their explanations; if our philosophical accounts

of explanation are going to make any sort of contact with actual scientific prac-

tice, then we had better have an account of mechanistic explanation. Like Glennan,

MDC understood that giving an ontic account of mechanistic explanation required

solving Hume’s Problem. However, unlike Glennan, MDC did not offer mechanisms

themselves as a response to Hume; instead, they appealed to activities as the secret

connexion.
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MDC were moved to write, as on their view, “there is no adequate analysis of

what mechanisms are and how they work in science” (p. 4). The analyses of Glennan

(1992, 1996), and Bechtel & Richardson (1993) fall short of adequacy, as on MDC’s

view, they both failed to emphasize the importance of activities.

The emphasis of these earlier analyses, MDC note, had been on the component

parts of mechanisms and their interactions. Glennan emphasizes the lawful interac-

tions of parts; Bechtel and Richardson emphasize the contribution each part makes

to the explanandum behavior. But although being composed of interacting parts is

certainly a key feature of a mechanism, it is not the only feature.

Instead, MDC emphasize that when the parts of a mechanism interact, these

interactions are productive, not just of the final explanandum behavior, but of changes

within the mechanism itself. ‘State changes’ or ‘interactions’ are thin concepts that

cannot capture how those changes come about, or “the productivity by which those

changes are effected” (p. 5). MDC looked for a thicker concept, one that includes

the productive nature of these interactions, and one that gives some sense not just

that change occurs, but the concrete, particular nature of that change. This concept,

MDC claim, is not simply the properties and property transitions that entities have

and undergo, but is something more: A productivity—although the precise nature of

that productivity is left unexplored.10 MDC call these productive relations activities.

Too, MDC note that Glennan’s (1992; 1996) account of mechanism, perhaps the

best contender for an adequate analysis, leans heavily on the idea that the inter-

actions are the result of direct causal laws. Laws, MDC observe, rarely figure in

molecular biological or neuroscientific mechanistic explanations. Thus, a proper ac-

count of mechanisms will replace a problematic reliance on laws with a reliance on a

the thicker notion of activities.

10But see the Anscombian project of Bogen (2008), which aims at adding flesh to this very
concept.
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Thus, Machamer, Darden, & Craver offer the following characterization of mech-

anisms. They claim that

(MDC) Mechanisms are entities and activities organized such that they are produc-

tive of regular changes from start or set-up to finish or termination conditions.

(p. 3)

The notion of entities in (MDC) is little different than the notion of parts in

(M) or (B&R)—namely, that entities (or parts) be spatiotemporally located bear-

ers of properties, which are capable of engaging in activities. While (MDC) does not

explicitly require entities to be localizable (in the sense of Bechtel and Richardson),

it nevertheless implies that entities typically will be.11 Many of MDC’s mechanism

examples are composed of localizable parts: DNA replication (p. 3), chemical neu-

rotransmission (pp. 8–ff.), DNA transcription (pp. 15–ff.). Tellingly, when describing

neurotransmission they use several two-dimensional diagrams that spatially and tem-

porally locate the discrete parts of this mechanism, and note that “mechanisms are

often represented this way.” (p. 8). Moreover, MDC claim that “[t]raditionally one

identifies and individuates entities in terms of their properties and spatiotemporal

location”—which is a hedge, to be sure, but a strong hint that they would prefer

parts to be localizable.12

The notions of activities and regularity are new additions to the analysis, and so

demand further attention.

11Contrast located with localizable. Intelligence—that generic cognitive faculty—is clearly located
somewhere, namely in a subject’s head. But notice that being able to locate intelligence does not
imply that it is localizable: Intelligence (if there is any such thing) may be diffuse across the entire
cortex of the brain, and be heavily intertwined with many other cognitive functions.

12Although Craver admits to the hedge (in personal correspondence), he does observe that “they
have to be somewhere”.
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Activities

What makes the concept of activities a richer concept than simple interactions or state

changes? Activities are types of causes, MDC say, but scientists invoking mechanisms

do not typically use such abstract terms as ‘cause’. Instead, scientists invoke richer,

more specific verbs and gerunds. Following Anscombe (1971), MDC observe that

the word ‘cause’ “only becomes meaningful when filled out by other, more specific,

causal verbs, e.g., scrape, push, dry, carry, eat, burn, knock over” (p. 6), and that

a component is only counted as a cause (in the abstract sense) once it has been

identified as engaging in some specific activity. Being a cause is parasitic on engaging

in an activity.

But simply being a richer concept does not mandate the inclusion of activities

in an analysis of mechanism. Although MDC have claimed that scientists make use

of these richer concepts, and that the concept of causation is simply an abstraction

from the myriad activities that entities do engage in, no explicit argument is made

for their inclusion in (MDC) above and beyond a simple appeal to causes.

One natural interpretation of the move to include activities is that activities are

meant as a response to Hume’s Puzzle. Recall that Glennan responded to Hume’s

Puzzle with a finitely recursive appeal to mechanisms. Another possible response to

Hume’s Puzzle is to nip it at the bud: To give a response to the first instance of

Hume’s Question that does not permit it being re-raised. This is how empiricists

as Norton (2003) respond: By claiming that there is no necessary connection, and

therefore no causation (and no Question to be raised). Such a response is definitive,

and so solves Hume’s Puzzle.

MDC take a similar strategy (but sans the causal denial), by offering a definitive

response to the first instance of Hume’s Question. What is the connection between

cause and effect? In this instance, it is pushing; in another, electro-motive force; in
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yet another, combustion. These are all activities—all causal notions that, because

they are thick concepts, provide an answer to Hume’s Question. Activities are the

kind of thing that can be discovered by empirical investigation. It is an empirical

fact that C is related to E by the activity of combustion. And so in this sense, not

only do activities answer Hume’s Question, they answer it definitively, preempting

the re-raising and so solving Hume’s Puzzle, because there is no further need for

investigation: We can see the secret connexion—activities—for ourselves.

Regularity

Although (M) makes no explicit mention of regularity, Glennan clearly intended

that mechanisms were the kind of thing whose behavior was stable over time. Indeed,

this is one of the supposed virtues of laws, is that they explain the regularity of the

phenomena they subsume, and Glennan does, recall, invoke direct causal laws in (M).

That mechanisms act in accordance with such laws explains their regularity.

However, MDC eschew the notion of direct causal laws. First, while the subjects of

biology and neuroscience obviously exhibit regularities, such regularities are not laws

in the usual sense—they are contingent, hold often only for the most part, they often

vary substantially from one kind of organism to another. Laws, on the other hand,

are usually taken to be necessary, universal, and with no reference to particulars (see,

e.g., Hempel & Oppenheim, 1948).

But without a reliance on laws MDC must add the further stipulation that mech-

anisms are regular “in that they work always or for the most part in the same way

under the same conditions” (p. 3). Crucially missing from (MDC) and its discus-

sion, however, is any account of a mechanism’s regularity. MDC claim that “these

regularities are non-accidental and support counterfactuals to the extent that they

describe activities” (p. 7),—the presence of activities is clearly meant to explain the
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regular behavior of a mechanism, but no story is given for how activities are to play

that role. Activities might be on-off, non-deterministic, or even random, for example.

Although activities have an intuitive appeal as a source of regularity, a principled

account of how this works is still required.

Still, after the publication of MDC, one might well wonder what philosophical

work an appeal to mechanism is supposed to do. Glennan thought a proper account

of mechanism would solve Hume’s Problem; by now it is clear that this cannot be.

MDC thought that activities could solve Hume’s Problem, but, as I will show, Psillos

(2004) made it clear that this cannot be either.

If mechanisms cannot solve Hume’s Question, then what does the mechanistic

mode of explanation offer above and beyond competing theories of causal explana-

tion, such as the physical causal theories of Salmon (1994) and Dowe (2000)? These

accounts of physical causal explanation at least purport to have solutions to Hume’s

Problem without the mechanistic apparatus, which should make them appealing al-

ternatives. Or consider the manipulationist account developed by Woodward (1997,

1999, 2000, and his conspirators). Manipulationism purports to have an account of

causal explanation that doesn’t require a response to Hume’s Question in the first

place. Thus: Where do mechanisms fit in? What problem are they to solve?

One obvious strength of mechanistic explanation is that they have a descriptive

adequacy lacking in physical causation accounts, and only nascent in Woodward’s

manipulationism. Thus, mechanistic explanations bring us closer to actual scientific

practice, rather than forcing us to rely on abstractions or reconstructions of scientific

reasoning.

Psillos (2004) finds another equally important role for mechanistic explanation.

In raising a challenge to activities, he finds an important niche for mechanisms to

fill: They can tell us which counterfactual claims are also causal claims, by showing
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that there is a mechanism responsible for the truth of the counterfactual. That is,

the descriptive richness of mechanism is a necessary component for a fully fleshed-out

counterfactual explanation. I turn now to consider Psillos’s arguments, both against

and for mechanism, as his view opens the door to a quantitative account of mechanism

to complement the descriptive strengths of mechanistic explanation.

2.4 Psillos’s Challenge to Activities and

Counterfactuals

Recall that Glennan offered (M) as a response to Hume’s Question. Indeed, as Psillos

notes, Glennan took (M) as “an unproblematic way to understand the counterfactuals

which [mechanisms] sustain” (Glennan, 1996, p. 63). When we say that, had C been

otherwise, so too would have E (because C causes E), Glennan says that the truth

of this counterfactual claim is that there is an (M) mechanism that links C to E:

That mechanism “explains why the counterfactual holds” (Psillos, 2004, p. 308).

Mechanisms are the truth-makers for these kind of counterfactual claims.

Glennan (2002), recall, offered a new way to understand mechanisms that replaced

a reliance on direct causal laws (which, MDC and even Glennan himself worried, were

mysterious and, at any rate, play at most a small role in biology) with a reliance of

invariant generalizations—a particular class of counterfactual-supporting generaliza-

tions relating cause and effect that is stable under interventions. But now Psillos

worries that (M′) ((M) revised in this way), introduces a circularity: Mechanisms

explain counterfactuals, but counterfactuals explain the workings of a mechanism.

Although Psillos does not make the further claim that this circularity is vicious, the

circularity should certainly give one pause.

Moreover, Glennan distinguishes between mechanically explicable laws and funda-
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mental laws. A mechanically explicable law is one that can be explained by mecha-

nisms; a fundamental law cannot. Fundamental laws occur in the most fundamental

physics. Glennan cites Maxwell’s equations governing the electro-magnetic field as

an example of a fundamental law: There is no mechanism for electro-magnetic wave

propagation. Nevertheless, Psillos notes (p. 309 ff.), such laws clearly support coun-

terfactuals. So (M) mechanisms must not be a necessary condition for explaining

counterfactuals: There must be a further story about the truth of counterfactuals to

be told. Indeed, since any particular mechanism will bottom-out in such fundamental

laws, Psillos wonders whether mechanisms can play the role of truth-maker for coun-

terfactuals. Indeed, Psillos does not deny that mechanisms can explain mechanically

explicable laws—but they cannot be part of the truth conditions for those laws, as

they are rendered redundant by the fundamental laws upon which they supervene.

Consider an example: I claim that, were I to push the pedal, this automobile would

accelerate. We can explain this counterfactual claim by an appeal to the various bits

and bobs contained the pedal, fuel injector, and so forth. But, Psillos argues, these

bits and bobs, even as they offer a constitutive explanation of the acceleration, are

not themselves part of the truth conditions for that counterfactual: The truth of the

counterfactual is in the fundamental details of molecular motion and electro-weak

interactions upon which the story about the bits and bobs depends.

Thus Psillos concludes, at least for Glennan’s view, because fundamental laws or

mechanistically inexplicable invariant generalizations support counterfactual claims,

counterfactuals are more fundamental than mechanisms—mechanisms cannot, contra

Glennan, explain counterfactuals. Rather, Psillos concludes, it must be the other way

around.
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Activities are a Red Herring

Psillos argues that the same holds of MDC: They too put the mechanistic cart before

the counterfactual horse.

Machamer, Darden, & Craver, recall, include activities in their ontology. They

view entities and activities as distinct ontological categories, on a par. The properties

of an entity constrain what activities it may engage in; likewise, activities constrain

what entities may participate in those acts. “Entities and activities,” Machamer,

Darden, and Craver say, “are correlatives. They are interdependent” (p. 6). One

cannot exist without the other (p. 8).

On the MDC view, there is a symmetry in the interdependence between activities

and entities. But, Psillos points out, there is good reason to think that the relationship

between activities and entities is asymmetrical. First, (p. 312) Psillos notes that

(acknowledging one of MDC’s points) although we cannot have activities without

entities, we can have entities without activities—my glasses, for example, sitting on

my desk beside me, are in no way acting. Activities do not seem to have the same

independent existence that entities enjoy. Can there be throwing without an object

thrown? Psillos does not see how an activity can determine the kinds of entities

that can so act. The activity of throwing does not determine what can be thrown;

rather it is having a certain size and mass that determines whether an entity can be

thrown. These, size and mass, are properties of a particular entity, not properties of

the activity. Once you have the entities, you have the activities; they come along for

free. So, Psillos concludes, activities are redundant.

But even if activities weren’t redundant, they do not avoid counterfactuals. Ac-

tivities were posited, recall, as a response to Hume’s Question. MDC could not give

an account of mechanistic explanation without an account of causation. But Psil-

los does not think that activities are a suitable response, because they cannot avoid
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counterfactuals. Consider the mechanism for the action potential in neurons. At one

stage, a change in the potential across the neuron membrane triggers voltage gated

ion channels to open. Triggering is an activity that the potential field and the ion

channels participate in. But what does triggering mean? Psillos would argue that it

means something like this: If the potential hadn’t changed, the ion channel would not

have opened. Activities require counterfactuals in order for us to make sense of them.

Thus, positing activities does nothing to respond to Hume’s Question, because they

do not and cannot explain the counterfactuals they allude to. Thus, Psillos concludes,

activities do not explain counterfactuals. Rather, it must be the other way around.

Counterfactuals are the Key

Psillos concludes that neither can the Glennan nor the MDC account of causation

eliminate counterfactuals from causal explanations; Mechanisms are not the truth-

makers for causal counterfactual claims. Glennan’s account uses mechanisms to ex-

plain counterfactuals, but then turns to a different set of counterfactuals to explain

mechanisms, which in itself is not problematic. The problem is that this recursion

bottoms out, not in mechanisms, but in counterfactual claims that have no mecha-

nistic explanation. The MDC account relies on activities to explain counterfactuals,

but activities themselves only make sense if we make a further appeal to yet more

counterfactual claims.

One might read this conclusion as dismal; if mechanisms rely, ultimately, on coun-

terfactuals, then we might worry that counterfactuals are doing the explanatory heavy

lifting in a mechanistic explanation. What role, then, do the mechanisms themselves

play in the explanation (aside from giving the explanation a narrative that matches

scientific practice in describing causal explanations)?

Nevertheless, Psillos was optimistic that mechanisms could support explanations
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in non-experimental contexts, where the truth of causal counterfactual claims could

not be verified experimentally. For example, in history, one might establish causal

links by pointing to a plausible mechanism that appears to link cause and effect. But

this optimism, I think, is a bit deflationary, because it presumes that mechanism talk

is just giving a nice narrative gloss over an empirically defeasible observation of a chain

of cause and effect. This deflation misses something important about mechanisms.

Mechanisms are more than a story, because not just any causal system will count

as a mechanism. There are constraints on which causal systems can count as a mech-

anism. Indeed, precisely because mechanisms rely on counterfactual claims—claims

that can be experimentally tested—, these constraints are (as I will show in the next

chapter) powerful tools for guiding experimental inference about mechanisms. So,

although Psillos’s dismissal of mechanisms to the realm of informed speculation un-

dervalues mechanistic talk, his negative conclusion in fact points the way forward:

We can harness the counterfactuals that underlie mechanisms as an inferential tool.

Responses to the Counterfactualist View

Glennan (2011) has responded that mechanisms and counterfactuals are not asym-

metric. Although, he admits, mechanisms do depend on counterfactuals, counterfac-

tuals also depend on mechanisms: “what makes a certain counterfactual claim true,”

Glennan says, “is that there is a mechanism that would respond in a certain way to

a manipulation” (Glennan, 2011, p. 24). Where Glennan reads Psillos as drawing a

reductionist conclusion—namely, that mechanisms are reducible to counterfactuals—

Glennan here argues that the dependence of mechanisms on counterfactuals does not

entail the further claim that mechanisms reduce to counterfactuals, because counter-

factuals (or at least causal counterfactuals) depend on mechanisms for their truth-

makers. Thus, the dependence between mechanisms and counterfactuals is mutual,
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and there can be therefore no reduction of one to the other.

On Salmon’s view, what explains are things in the world: The mechanism itself

explains the causal link, not a description of the mechanism. On this ontic view of

explanation, if, as Psillos clearly wants, counterfactuals are to have any explana-

tory import it is because they (or their truth-makers) are a feature of the explaining

mechanism. However, Bogen has argued for two claims that block Psillos’s move.

First, Bogen (2004) argues that there are no actual truth-makers that can underwrite

counterfactual claims in any kind of non-trivial way13 Bogen (2005, 2008) makes the

further argument that counterfactuals are not themselves a feature of causal links,

because causation does not reduce to any kind of regularity, including the kind of

regularity implied by causal counterfactual claims. So, causal links (and by exten-

sion mechanisms) exhibit neither the truth-makers for counterfactual claims, nor the

regularities implied by them. Bogen departs from Psillos in that he disputes that

any coherent account of activities must rely on counterfactual claims. Rather, he

argues, the claim that one thing caused another need only rest on the actual facts

surrounding the two occurrences, and that these facts are sufficient for causal expla-

nations. Thus, counterfactuals are not a proper part of (ontic) causal explanation.

Instead, he argues that instead of general, abstract accounts of causation, we should

look to Anscombian activities to underwrite our causal explanations. This move has

the added benefit of matching actual scientific practice, which, he notes, is generally

devoid of overt counterfactual claims.

Nevertheless Bogen does not dispute that counterfactuals play an important epis-

temological role. We do use counterfactual reasoning to infer the existence of causal

relations, even if the counterfactuals are not constitutive of those relations. It is a cat-

egory mistake to say that this kind of inference works because of some modal feature

13Trivially, all counterfactual claims are true, because counterfactuals are a species of conditional
in which the antecedent is necessarily false. This kind of truth is uninformative and uninteresting.
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shared by all causal relations; yet, it is true that causal inference does seem to require

induction over counterfactual claims, because causal inference relies, in large part, on

making predictions: We say, if this thing is a cause of that, then were this to wiggle,

so would that. Such a prediction is readily testable, by making the counterfactual

consequent factual, and evaluating the antecedent causal claim appropriately.

I think that it is important to observe that both sides of this debate allow that

counterfactual reasoning is central to the discovery of mechanisms. I will return to

develop this point in greater detail in Chapters 5 and 8 where I argue that, contra

Bogen, counterfactual reasoning about the causal structure of mechanisms does in

fact require that mechanisms exhibit a kind of modal feature.

2.5 Conclusion

Mechanistic explanation is a kind of causal explanation that takes a cause and an

effect, and demonstrates how the cause brought the effect about by showing that

the causal relation is brought about by a number of interacting parts. Since mech-

anisms comprise causal relations among their parts, and causal relations comprise

mechanisms, mechanisms can contain sub-mechanisms, or can be parts in super-

mechanisms. The causal structure of the world can thus be hierarchically organized.

However, mechanisms must bottom-out in counterfactuals; below a certain point, the

causal relations in a mechanism are taken as brute, with no further explanation of the

counterfactuals that those bottom-most relations support. This bottoming-out may

be conventional (molecular biology, for example, bottoms out at the level of molecular

and atomic mechanisms, and molecular biological explanations as a rule do not in-

voke, e.g. quantum-level mechanisms), or they may be physical (fundamental physics

is engaged in the very search for that which is brute in the physical world; that which
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cannot be explained by further decomposition).

Although mechanistic explanation nicely captures scientific practice in giving ex-

planations, they fall short as metaphysical accounts of causation. Mechanisms, Psil-

los (2004) has argued, do not explain counterfactuals; rather, counterfactuals explain

mechanisms. If so, one might well wonder what role mechanistic explanation has to

play, if all of the heavy explanatory lifting is being borne by, say, manipulationist

accounts of causal explanation.

Yet, nothing in Psillos’s arguments undermines mechanistic explanation’s descrip-

tive strength. Indeed, his negative thesis sets the stage for a novel mechanistic thesis:

What if manipulationism could be harnessed to provide a quantitative account of

mechanism to complement the qualitative accounts glossed here? Manipulationism

provides an account of the counterfactuals that hold of a mechanism’s parts, where

the mechanistic accounts provide constraints on what kinds of causal structures are

to count as genuine mechanism, constraints that closely match scientific practice in

identifying mechanisms. If such is possible, we would have the tools to show not just

that, but how counterfactuals underlie the mechanistic explanations biologists give,

and how these counterfactuals could be harnessed to discover mechanisms experimen-

tally, and to evaluate the resulting mechanistic explanations. Manipulationism opens

the door to a quantitative and a normative account of mechanistic explanation.

Woodward (2002) and Craver (2007) have seen this opportunity, and have begun

a project of crafting a quantitative account mechanism. In the next chapter, I turn to

consider the motivation for rapprochement in more detail, and examine the promise

of these two projects. I also consider what must be done in order to complete these

projects, to craft a fully quantitative account of mechanism with sufficient resources

to also provide a normative account of mechanistic explanation.
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Chapter 3

Quantitative Accounts of

Mechanistic Explanation

In this chapter, I consider the normative turn in the mechanistic literature. The

descriptive accounts presented in the previous chapter do not, generally, attempt

to provide a framework for evaluating mechanistic explanations according to a set of

criteria. More recently, however, both Woodward (2002) and Craver (2007) have taken

steps forward in developing a normative account of mechanistic explanation, accounts

that would have the resources to evaluate mechanistic explanations by bringing the

formal apparatus of manipulationism to rapprochement with the descriptive accounts

of mechanism. I will argue that although both accounts represent concrete steps

towards rapprochement, neither quite gets us there. Woodward’s account looses sight

of the descriptive accounts of mechanism; Craver’s account looses sight of the formal

apparatus.
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In the previous chapter I introduced mechanistic explanation. In this chapter, I

consider how we might go about evaluating a mechanistic explanation. Some mecha-

nistic explanations are better than others; Craver (2007) distinguishes between com-

plete and incomplete explanations (mechanism sketches), and between more concrete

and more abstract explanation (mechanism schema). We might think, for example,

that the best mechanistic explanations are complete and maximally concrete. We

might also think that a good mechanistic explanation will leave out irrelevant de-

tails, deliberately tacit background conditions, and spuriously correlated phenomena.

A normative account of mechanistic explanation is one that provides a clear set of

desiderata, and principles for judging mechanistic explanations against these desider-

ata.

I have two goals in this chapter. First, I set up and defend the need for a norma-

tive account of mechanistic explanation—one that has the resources for evaluating

a mechanistic explanation against a reasonable set of criteria. Second, I set out and

evaluate two recent steps towards at creating a normative account of mechanistic

explanation.

In §3.1 I introduce the need for a normative account of mechanistic explanation,

argue that a rapprochement with the formal apparatus of manipulationism is a fruitful

approach to developing such an account.

In §§3.2–3.3 I examine two recent steps toward a rapprochement made by Wood-

ward (2002) and Craver (2007). Although both accounts recognize the value of bring-

ing manipulationism to mechanism, I will argue that both leave us with open questions

about how this rapprochement is best accomplished. In particular, neither attempt

quite succeeds in formulating a principle of mechanistic relevance that balances the

need for descriptive adequacy against the formal components of manipulationism.

Woodward’s (2002) account, which I consider in §3.2, analyzes mechanisms purely
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in terms of the patterns of counterfactual dependence associated with manipulation.

He analyzes a mechanism (or rather, a representation of a mechanism) as a set of

entities, and a set of generalizations invariant under interventions that describe the

relations of counterfactual dependence among those entities. Mechanistic relevance,

on this view, just is causal relevance. But, as I will argue, Woodward’s analysis does

an injustice to the qualitative accounts of mechanism it purports to account for: not

everything that is causally relevant is mechanistically relevant (indeed, this was part

of the very motivation for developing an account of mechanistic explanation in the

first place).

In contrast, Craver’s (2007) account, which I consider in §3.3, analyzes mecha-

nisms in terms of part-whole relations. Craver is primarily interested in developing

an account of mechanistic explanatory relevance based on Woodward’s manipula-

tionism. Craver observes that we can manipulate a whole by manipulating its parts;

as can we manipulate the parts by manipulating the whole. Only genuine parts will

exhibit this behavior, and thus we can discover whether a part is relevant by applying

the test of mutual manipulability. But, as I will argue, constitutive relevance is not

a relation that can be adequately captured with the formal apparatus of manipula-

tionism. In particular, there is no clear way to represent interlevel relationships using

causal graphs, nor any clear way to represent interlevel interventions.

In the next chapter, I will offer my own analysis of mechanistic relevance that

bridges the descriptive with the formal as the basis for a normative account of mech-

anistic explanation.
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3.1 The Need for Normativity

We have already accounts that do an excellent (if imperfect) job of accounting for how

biologists give mechanistic explanations. What further need is there for an account

that can evaluate the explanations given, and the process by which these explanations

are derived? I see two broad reasons why we should want to take this extra normative

step, one external and one internal. The external reason is that biologists themselves

have implicit epistemological norms for constructing and evaluating explanations,

standards that are fair game for philosophy; the internal reason is that meeting the

broader philosophical challenges of explanation requires an account of mechanistic

relevance. Manipulationism, I will argue, is a fruitful starting point for constructing

a normative account of explanation because it can address both of these projects

simultaneously.

Discovery and Evaluation

Darden (2006) argues that the process of mechanism discovery—one of the primary

aims of biology—is one of continual construction, evaluation, and refinement. Her

interest is in collecting and generalizing the strategies for construction, evaluation,

and refinement that biologists use in the process of discovering mechanisms. But,

Darden is careful to point out that her task is not one of developing norms for how

mechanistic explanations should be constructed, evaluated, and refined. The strate-

gies she develops “are ‘advisory,’ not descriptive or prescriptive” (p272). “In a future

discovery episode,” she continues, “the philosopher may be able to provide advice

that one or more of these strategies may prove useful.”

But we are left wondering: How can we know these strategies are useful? That

they worked in the past is no guarantee that they will work in the future. And if
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they are useful, we might wonder what features of these strategies make them useful?

Under what circumstances will they be useful and why? The future biologists we are

advising will surely ask these questions—they will, rightly, want to know that our

advice is sound advice.

Philosophers have long studied epistemology and the norms of inference. There

is nothing special about scientific reasoning that puts it out of bounds, not even

that biologists are generally good making inferences about mechanisms. If we really

want to say something about strategies for construction, evaluation, and refinement

of mechanistic explanation, we need to draw out scientists’ hidden assumptions and

inferential practices. If our goal is the best science possible, it seems incumbent upon

philosophy to do just that.

At times, Darden even seems to agree. Drawing upon Craver’s (2007) distinctions

between how-possibly, how-plausibly, and how-actually mechanisms, and mechanisms

sketches, schemata, and full explanations, Darden has set up a system for evaluating

mechanistic explanations. A more concrete mechanistic explanation is better than a

more abstract explanation; a mechanistic explanation with fewer gaps is better than

one with more gaps; a mechanistic explanation that conforms to empirical constraints

is better than one that is merely possible (pp. 289–ff). All this seems to suggest that

Darden is very much engaged in a normative project, because she has an account of

better and worse mechanistic explanations.

But these norms, as Darden admits (even as she does not admit that they are

norms), are just a first step (pp. 306–306). A fully-fleshed out how-actually mechanis-

tic explanation might yet not be very good, if, for example, it contains a great many

irrelevant factors, or gets the order of events wrong, a point I turn to now.
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Explanatory Relevance

Hempel & Oppenheim’s (1948) DN model of explanation faced a wide range of prob-

lems from within philosophy (and without). The DN model was plagued by problems

of relevance (Kyburg, 1965; Salmon, 1979), asymmetry (Bromberger, 1966), making it

the hard way (Suppes, 1970), and of accidental generalizations (Salmon, 1998). These

problems, described below, are ongoing concerns for any account of explanation, and

so our best accounts of mechanistic explanation had better be able to handle them.

Craver (2007) has argued that a successful account of scientific explanation must

be able to offer delineation principles along (minimally) each of these axes:

Relevance In an explanatory text, some elements will be relevant to the explanation,

and some will not. Good explanations include all and only the relevant elements.

Asymmetry The relationship of explanation links a set of explanans (which do the

explaining) to the explanandum (which is to be explained). This relationship is

typically not reversible—the tides do not explain the orbit of the moon. Good

explanations get the ordering correct.

Making it the Hard Way . The explanans need not render the explanandum ex-

pectable in any sense. Sometimes the explanans can render the explanandum

unlikely (as when a pool player makes a very difficult shot). Good explanations

do not rely on expectability in all cases.

Accidental Generalizations . No clear conception of laws is forthcoming; never-

theless, some generalizations are more explanatory than others. Good explana-

tions rely only on explanatory generalizations.

Thus, a successful account of scientific explanation will:

1. Discriminate the explanatorily relevant from the explanatorily irrelevant,

71



2. Correctly identify the direction of explanation,

3. Not conflate expectability with explanation, and

4. Discriminate explanatory generalizations from non-explanatory.

These desiderata stem from our tutored philosophical intuitions about what makes

for a good explanation. Salmon (1989) took these desiderata as pointing to a causal

theory of explanation: Causes are explanatorily relevant to their effects; the direction

of explanation is the direction of causation; effects need not be expected from their

causes; and causal generalizations are explanatory where non-causal or accidental

generalizations are not.

But it is not clear that the early descriptive accounts of mechanistic explanation

are up to the task, especially with respect to relevance. None of the accounts dis-

cussed in the previous chapter offers a sense of what it means for a component to be

mechanistically explanatorily relevant, aside that it must be a part of the mechanism.

But how can we determine which components are mechanism parts? Only once we

have a principled answer to this question can we begin to satisfy Craver’s desiderata.

Glennan (2002); Woodward (2002); Craver (2007) have all independently iden-

tified Woodward’s manipulationism as a framework that could be used to craft an

account of mechanistic explanation that has an answer to the mechanistic relevance

question, and hence would satisfy all four desiderata. Each of these accounts ask that

we adopt Salmon’s view that causation is the key to all four desiderata. Then, adopt-

ing Woodward’s manipulationism, each account characterizes the causal relationship

between two entities as a relation of counter-factual dependence under interventions.

In this way, manipulationism appears to hold the tools for satisfying Craver’s desider-

ata by bringing Salmon’s causal relevance to mechanistic explanation.
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Indeed, a rapprochement of mechanism and manipulationism should help us with

the external challenges, discussed above. Darden (2006) argues that many of the

strategies for evaluation and refinement hinge on experimental evidence, but does

not offer a clear vision of how experimental evidence should alter our mechanistic

hypotheses. Manipulationism holds that causal relevance is closely bound up with ex-

perimental manipulation. From an initial standpoint at least, manipulationism looks

fruitful for thinking about this inferential relationship. I will argue in following chap-

ters that, in fact, it is.

Moving Forward with Rapprochement

However, application of the manipulationist framework to mechanistic explanation

is not a straight-forward affair, because mechanistic explanation, as presented in the

previous chapter, is a slightly different animal than the kind of causal explanation

that Woodward was after. Causal relations are central to mechanisms, yes, but where

a Woodwardian explanation would be content to stop there, mechanistic explanation

requires more. For one, many (though by no means all) of the mechanists are dissatis-

fied with an account of causation that rests on relations of manipulability; the causal

relations in mechanisms are built from productive activities (Bogen, 2004; Machamer,

2004), which are not merely counterfactuals or regularities. Moreover, if we restrict

ourselves to causal relations, we miss the unique structural features of mechanisms:

Mechanisms are hierarchical, comprising sub-mechanisms; and they are etiological,

linking a cause with an effect.

Thus, we should ask ourselves: How can we apply the tools of manipulationism to

specifically mechanistic explanation, and yet do justice to these central features? Too,

as Darden is at pains to point out, biologists practice does seem to work for them, and

she is right to defend the idea that they do not need ‘saving’; thus, our application of

73



manipulationist tools should not run roughshod over actual scientific practice either.

We should ask, how can we use these tools to lay manifest the assumptions and

implicit inferences biologists make?

I turn now to survey two recent steps forward in answering this question, two

attempts at rapprochement between manipulationism and mechanism.

3.2 Woodward’s Quantitative Mechanism

Woodward (2002), unsatisfied that then-current accounts of mechanism could expand

beyond the life sciences, uses manipulationism as the basis for a generalized account of

mechanism. As withMDC, Woodward faults Glennan (1996)1 for his reliance on direct

causal laws—not only are laws not to be found in, e.g. biology, they often aren’t even

found in physics. Given that mechanisms are structured entities whose components

are described with causal generalizations (and not laws specifically), Woodward is

concerned with how to construct a causal model of a mechanism that adequately

captures the mechanism’s structure. He presents a set of necessary conditions for a

causal model to be specifically a model of a mechanism.

(MECH)

Woodward begins by considering a block sliding down an inclined plane (Woodward,

2002, p. S367–ff.), as in Figure 3.1. In the ideal case, the effect of gravity on the

block’s acceleration is given by the equation

(3.1) a = g sin θ − µkg cos θ

1He was, I am supposing, unaware at the time of Glennan’s (2002) concession to invariant
generalizations—as both papers were presented at the very same symposium.
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Θ

a

Figure 3.1: A block sliding with acceleration a down a plane inclined to angle Θ.
Adapted from Woodward 2002, Figure 1, p. S376.

where a is the magnitude of the block’s acceleration, g the gravitational constant of

9.8ms2, µk the coefficient of dynamic friction, and θ the angle of the incline (p. S368;

with corrections).

Equation (3.1) is not (Woodward claims) a law, even while it describes a produc-

tive (i.e. causal) relationship. The equation is limited in scope, holds only approxi-

mately, and only holds at all within a narrow region of space (that is, near the surface

of the earth) (p. S368). But it does correctly describe how, for example, altering the

angle of the incline or greasing the slope would change the acceleration experienced

by the block. That is, it correctly describes the causal relationship between gravity,

friction, and angle on the movement of the block. It is an invariant generalization, in

the manipulationist sense of the term.

Woodward, agreeing with Machamer, Darden, & Craver (2000) and Glennan

(2002), claims that mechanisms, such as the mechanism for the acceleration of the

block, should be construed as relying on, not laws, but what he calls invariant gen-

eralizations.2 This concept, he claims, does not suffer the drawbacks of an appeal to

2Although Machamer (2004) has individually rejected manipulationism as anything more than
an epistemic tool, and Darden has shied from making claims either way, it seems to me that the
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laws—there are invariant generalizations in biology, invariant generalizations need not

be necessary, unlimited in scope, or even widely applicable to correctly underwrite our

causal claims. They need only be such that they correctly predict the consequences of

(some) interventions into the causes—the variables on the RHS. (For a more detailed

treatment of causal interpretation of equations, refer back to Chapter 1.)

Woodward considers too how mechanism parts fit with invariant generalizations.

He argues that that modularity constrains the possible decompositions of a mecha-

nism. The modularity condition, recall from §1.2, requires that in a causal model of

more than one equation, that interventions into one equation not disrupt the remain-

ing equations. Put slightly differently, if an intervention into one equation does disrupt

the remaining equations, then there is likely a problem with the model, specifically,

that there is some causal relationship involving the intervened-into variable that is

incorrectly represented in the model (or not represented at all). But how does mod-

ularity constraint the decomposition of a mechanism?

The components of a mechanism each engage in one or more distinct behaviors,

each of which, Woodward assumes, can be captured with an invariant generalization.

The interactions or activities within a mechanism are the result of the components

engaging in these behaviors. Components of a mechanism are distinct insofar as they

engage in distinct behaviors. Removing or disrupting a component will remove the

behaviors it contributes from the working of mechanism as well. Likewise, remov-

ing a behavior from a mechanism can only be achieved by removing the component

responsible for it. The removal of a behavior from a mechanism is captured by the

account of activities presented in Machamer, Darden, & Craver (2000) does at least begin to point
down this path (cf. Psillos, 2004). They say that activities support regularities that are “non-
accidental and support counterfactuals to the extent that they describe activities. For example,
if this single base in DNA were changed and the protein synthesis mechanism operated as usual,
then the protein produced would have an active site that binds more tightly” (pp. 7–8). While not
explicitly manipulationist in character, this passage suggests that their conception of activities is
nevertheless amenable to the manipulationist view.
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elimination of the invariant generalizations that describe that behavior from the rep-

resentation. Modularity requires that, if when we remove or disrupt one behavior, a

second behavior is removed or disrupted as a result, those behaviors must belong to

the same component. Thus, we can know if we have decomposed a mechanism cor-

rectly when our model comprises distinct behaviors. And we can know if our model

comprises distinct behaviors because the generalizations will conform to modularity.

From the notions of invariant generalizations and modularity, Woodward con-

structs this characterization of a mechanistic model:

(MECH) A necessary condition for a representation to be an acceptable model of

a mechanism is that the representation

(i) describe an organized or structured set of parts or components, where

(ii) the behavior of each component is described by a generalization that is

invariant under interventions and where

(iii) the generalizations governing each component are also independently

changeable, and where

(iv) the representation allows us to see how, in virtue of (i), (ii) and (iii), the

overall output of the mechanism will vary under manipulation of the input

to each component and changes in the components themselves.

(Woodward, 2002, p.S375)

(i) simply restates the basic idea of a mechanistic explanation due to, e.g., Machamer,

Darden, & Craver (2000); (ii) is where Woodward connects activities with invariant

generalizations; (iii) and (iv) together comprise a statement of the modularity con-

dition described above, which governs how a mechanism can be decomposed into

parts.
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(MECH) is specifically designed to bridge the qualitative analyses of mecha-

nism with Woodward’s manipulationist framework, and hence stands as a qualitative

analysis of mechanism. A graphical model of a mechanism would use, (MECH)

tells us, variables to stand for components, and directed edges to stand for activ-

ities, as Woodward (explicitly, but perhaps unreflectively) links components with

variables, and activities with edges. Invariant generalizations, recall, represent causal

connections; the causal relata are the components themselves. Thus do activities qua

invariant generalizations correspond to edges and components to variables.

But this is the full extent of Woodward’s attempt to harmonize his account with

the forgoing qualitative accounts. (MECH) falls flat as an attempt to bridge the

qualitative and quantitative, as it runs roughshod over several important aspects

of the qualitative accounts of mechanism. First, although Glennan and MDC are

careful to point out that mechanisms are always mechanisms for some behavior,

(MECH) places no such constraint on mechanisms, nor does it offer a principle by

which to determine which components are or are not relevant to the mechanism.

Second, mechanisms are posited to explain known (or hypothesized) cause-and-effect

relations; (MECH) makes no attempt to link a putative cause to an effect, or to

offer constraints on how to model a mechanism that does. I turn now to examine

these shortcomings in detail.

(MECH) and Mechanism Bounding

My first objection to (MECH) arises from the fact that it fails to offer a bound-

ing principle. Notice that Woodward has eschewed Glennan’s idea that there are no

mechanisms simpliciter : Where Glennan argued that mechanisms are defined with

reference to an explanandum phenomenon, Woodward makes no such requirement.

MDC are adamant that mechanisms have start and stop conditions, but such a con-
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straint makes no appearance in (MECH). The only constraint that (MECH) places

on the structure of a mechanism is that it contain component parts and their behav-

iors. (MECH) in particular permits any component to participate in a mechanism,

so long as it is causally relevant. Similarly does (MECH) permit us to arbitrarily

exclude any component as a member of a mechanism.

One might defend Woodward at this point by observing that (MECH) only

characterizes representations of mechanisms, and not mechanisms themselves; that

therefore it is not incumbent on (MECH) to lay out any membership or other struc-

tural constraints as these are well-handled by the qualitative accounts themselves.

Such a defense is disingenuous, however, as neither do Glennan’s account nor

MDC’s account provide such principles of membership; indeed, many had hoped that

the formal apparatus of manipulationism might supply such principles. The onus

should be on the quantitative accounts to supply these principles. In which case, we

should prefer to (MECH) a quantitative account that can add such a principle to

the extant descriptive accounts.

(MECH) and Mechanistic Explanation

My second objection to (MECH) arises from the lack of bounding principles. With

no bounding principles, Woodward does not constrain mechanisms to lie between an

explanandum cause and an explanandum effect. Thus, (MECH) does not require a

mechanism to link an explanandum cause to an explanandum effect—Woodward has

identified mechanisms with causal structure simpliciter, and leaves for mechanisms,

therefore, no explanatory work to do. The explanatory heavy lifting, on Woodward’s

(2003) view, is borne entirely by invariant generalizations.

A mechanistic explanation is a response to a request to explain how it is that a

cause and an effect are so linked. We may observe that A causes B, and then ask:
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What explains the link between the two? The response, on the mechanistic view, is

a description of the mechanism that links A to B. But for Woodward, what explains

the link between A and B is a relationship of counter-factual dependence that is

invariant under intervention—that we can manipulate B by intervening to change A

explains the causal link between A and B.

Thus, for Woodward, an invariant generalization that describes the relationship

between A and B is (minimally) explanatory, where for the mechanist, it is not

explanatory at all (because generalizations are not mechanisms).3 There remains a

fundamental disconnect between (MECH) and the descriptive accounts of mecha-

nism about what is doing the explanatory heavy lifting, a disconnect that must be

bridged before we can harness manipulationism to mechanism.

Craver (2007) picks up this challenge, by arguing that, in mechanistic explana-

tion, the hierarchical organization of mechanisms, which can also be modeled using

invariant generalizations of a particular sort, are bearing some of the explanatory

work. He offers an account of constitutive relevance that draws upon manipulationist

concepts, which I turn now to consider.

3.3 Craver and Constitutive Explanation

Craver (2007) moves the rapprochement forward by drawing upon Salmon’s (1984)

distinction between etiological causal-mechanical explanation and constitutive causal-

mechanical explanations. Where etiological explanation encompasses the prior causes

of the explanandum, constitutive explanation encompasses the internal causes within

the explanandum. Craver argues that while Woodward’s account of manipulationism

3Woodward would, I think, allow that a causal structure over A and B is not a very deep
explanation, and that uncovering a finer-grained causal structure would yield a deeper explanation.
My point nevertheless stands.
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provides a solid account of etiological explanation, mechanistic explanations do not

generally look to the explanandum’s etiology, but to their constitution. Where Wood-

ward’s (MECH) does not account for constitutive explanatory relevance, Craver’s

goal is to provide a characterization of constitutive relevance that can take advantage

of manipulationist concepts.

Giving a constitutive explanation requires that we first identify the components

of the mechanism—that is, those elements that are constitutively relevant to the

explanandum—, and the causal organization of those components that make the ex-

planandum phenomenon possible. Craver invokes, as did Woodward, manipulationism

to describe the causal dependencies within a mechanism: Craver characterizes mech-

anism activities as Woodward-style generalizations invariant under interventions. A

full mechanistic explanation will show how the joint action of the components bring

about (in a non-causal sense that I explore below) the explanandum phenomenon,

and how the invariant generalizations therefore can be harnessed for the purposes of

prediction and control.

On Craver’s view the components are not causally related to the explanandum

phenomenon in any way; the proper relationship of component to explanandum is

that of part to whole (see also Craver & Bechtel, 2007). So the joint action of the

components just is the behavior of the explanandum phenomenon. Nevertheless, like

the causal relation, the part-whole relation, Craver notes, also exhibits a pattern of

counterfactual dependence whereby we can manipulate the whole by intervening into

the parts, and vice versa. If I shorten each of the legs of a table, I have shortened

the table; if I increase the sodium concentration within an neural axon, I have ipso

facto altered the action potential’s rate of propagation. This feature of constitution

suggests a criterion for constitutive explanatory relevance, which Craver calls Mutual

Manipulability.
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Mutual Manipulability

Whereas etiological explanation has a clear criterion for explanatory relevance—if A

is a cause of the explanandum B, then it is etiologically explanatorily relevant—there

is as yet no clear criterion for constitutive explanation. Craver demonstrates that he

can harness manipulationist principles as the basis for an account of constitutive

explanatory relevance, which he calls Mutual Manipulability.

(MM) An entity X engaged in activity φ is constitutively relevant to the behavior

Ψ of a mechanism M [the explanandum phenomenon] if and only if

(i) X is a (spatio-temporal) part of M , (Craver, 2007, p. 153)

(ii) when φ is set to the value φ1 in an ideal intervention, then Ψ takes on the

value f(φ1) (p. 155), and

(iii) if Ψ is set to the value Ψ1 in an ideal intervention, then φ takes on the

value g(Ψ1) (p. 159).
4

Conditions (ii) and (iii) together capture the idea expressed above that parts and

wholes enter into relations of manipulability. Given a whole, its total set of parts is

identical with it. Because of this relation of identity, changes in the parts just are

changes in the whole, and vice versa. Constitution is not a causal relationship, and

yet it is a relationship that yields relations of manipulability (again, see also Craver &

Bechtel, 2007, for a discussion of this distinction). This feature of constitution permits

a test for constitutive relevance: If a putative component is mutually manipulable with

the explanandum phenomenon, then it is constitutively relevant to the explanation

for that phenomenon.

4 Craver (2007) uses S to represent the mechanism. I will use M to represent the mechanism,
as in subsequent chapters, I will require S to represent the start or input conditions. For the sake
of consistency, I have re-lettered Craver’s usage to match my later usage.

82



Although (MM) condition (i) may appear superfluous, it is necessary for (MM)

to work. It is necessary because an entity that causes the explanandum, and is also

caused by the explanandum will exhibit mutual manipulability with the explanan-

dum, and yet remain irrelevant to the explanation. Imagine a cognitive phenomenon

as performing mental calculations. A subject’s heart beat, then, will have a bearing

on the subject’s ability to calculate (if it is too fast, calculations will turn up incorrect

more often than not, suppose; if it is too slow, the calculations will not be performed

as the subject passes out from lack of oxygen). Too could the calculations have an

effect on heart beat (if, for instance, the subject will be rewarded for correct calcula-

tions, or if the calculations are particularly vexing). Yet the heart rate is surely not

relevant to a mechanistic explanation of this cognitive phenomenon: It is not relevant,

because it is not part of the mechanism.

Manipulability as a Sign of Causation and Constitution

Where Woodward’s quantitative account of mechanism lost sight of the central fea-

tures of the extant descriptive accounts, Craver’s quantitative account of mechanism

runs into problems with manipulationist formalism. I raise two issues for Craver.

First, I worry that his account irretrievably conflates causation and constitution by

treating both as relations of counterfactual dependence invariant under interventions.

Second, I worry that, even if the first worry is fully addressed, the strong hierarchical

and mereological features of his account defy tidy representation in a formal model,

and hence defy analysis by the tools of causal modeling—which was one of the very

goals of rapprochement.

Here is my first worry in detail. Woodward takes an observed relationship of

manipulability as a sign of causation. Central to the manipulationist project is that

if when wiggling A we observe B to wiggle, this observation is evidence that A is
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causally relevant to B. Central to Craver’s project is that if when wiggling A we

observe B to wiggle, this observation is (partial) evidence that A is constitutively

relevant to B. Suppose, then, that we wiggle A, and observe B to wiggle. What

should we conclude? Our options are: That A is causally relevant to B, that A is

constitutively relevant to B, that A is both causally and constitutively relevant to B.

Craver offers a principled way for making this decision. First, he categorically

denies the possibility of inter-level causation (a point emphasized by Craver & Bechtel

(2007)). Second, he observes that constitutive relevance is a symmetric relationship,

where causal relevance is not: If A is constitutively relevant to B, then if we were

to wiggle B, we should expect to observe A to wiggle. If A caused B, we should not

expect that.

Thus, constitutive relationships are always mutually manipulable, the relation of

manipulability is symmetric. Causal relations, on the other hand, are asymmetric:

Manipulating the cause will change the effect, but not vice versa. However, there is

no reason to think that a mechanism could not comprise parts that are causes each

other, where A causes B, and B causes A. Homeostatic mechanisms, mechanisms with

feedback loops, are one example. A thermostat works by simultaneously measuring

the air temperature, and adjusting a heating element to bring the the air temperature

to some set value. The heating element and the temperature sensor exhibit, therefore,

a relationship of mutual manipulability, yet neither is constituted by the other.

Craver offers a principled way to distinguish constitutive relevance from feed-

back loops in (MM) condition (i) above. Condition (i) stipulates that for A to be

constitutively relevant to B, A must be a part of B in a straightforward spatio-

temporal sense. But this response only begs the question off a little longer, because

this spatio-temporal notion of parthood already presumes some notion of system

84



boundaries—which is precisely the issue at stake.5

One possible way to assess parthood is by inspection: A car has wheels, carbure-

tors, doors, and so forth. All of these are parts of the car. Naturally, not all of these

parts are relevant to particular mechanistic explanations of the car, e.g. the mecha-

nism for acceleration, but that’s hardly a problem because once we have the candidate

parts, mutual manipulability will take care of determining which are mechanistically

relevant. Such a response, however, amounts to an appeal to compartmental bound-

aries or spatial coherence, principles Craver has already rejected (see his Chapter 5):

How else do we know which parts belong to the car, except to observe that there is

some set of parts that literally hang together in a particular way (coherence), and

which are contained roughly within the metal or plastic panels encasing it (compart-

ments)?

Thus, without a principle that can independently identify the spatio-temporal

parts of the mechanism in hand, we cannot distinguish feedback loops from relations

of mechanistic constitution—both are relations of manipulability. Even if we had such

a principle, however, I have a second worry.

Representing Interlevel Interventions

My second worry is that there is no coherent representation for Craver’s constitutive

conception of mechanisms using causal Bayes networks. Recall that one of the moti-

vations for rapprochement was to harness the power of formal causal inference, which

requires that we be able to create explicit representations of a mechanism within the

formalism of causal graphs. But how do we represent constitutive relevance?

One option is with arrows. Because constitution and causation both exhibit pat-

terns of counterfactual dependence invariant under intervention, and because Wood-

5With thanks to Craver for offering a tidy way to make this point.

85



A B

Figure 3.2: A causal model over A and B that is ambiguous with respect to whether
A is a part of B, B is a part of A, or A and B are engaged in a causal feedback loop.

ward’s semantics for causal models has arrows representing such relationships, both

constitutive and causal relevance relations could be reasonably represented in a causal

graph by arrows (even with a principle for determining parthood).

But using the same formal element to represent two very distinct ontological

categories creates onerous difficulties, for our inferences will rely only on the formal

properties of the graph; if the graph does not distinguish causal from constitutive

relevance, then neither will our inferences. If we have a graph such as in Figure 3.2,

we cannot tell from the graph alone whether A is constitutively relevant to B, B is

constitutively relevant to A, or A and B form a causal feedback loop. So, on this

representation, the previous worry continues to find purchase in the formal context.

Perhaps there is another way to represent constitutive relevance.

On Craver’s constitutive view, individual mechanisms span two levels: the level

of the whole, and the level of its parts. Moreover, drawing on Glennan’s hierarchical

view of mechanisms, the parts may themselves be mechanisms, and the whole may

be a part in a greater mechanism. Thus does Craver define his notion of mechanistic

levels. Perhaps we should represent a mechanism with two levels, that of mechanism

part and that of mechanism whole.

In fact, Craver does use this kind of representational schema, as exemplified in

Figure 3.3. In this diagram, the mechanism M sits over and above its components

X1, . . . , X4, representing that M is at a higher mechanistic level than its parts. The

arrows connecting the parts, φ1, . . . , φ4 represent the activities that link the parts.
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Figure 3.3: Schematic causal model of a mechanism. Nodes represent components;
arrows represent activities. Adapted from Craver 2007, Figure 1.1, p. 7.

xxxxxxxxxxxxxxxxxxxxxx

M

X1

X2

X3

X4
Ψ

φ1

φ2

φ4

φ5

φ3

Figure 3.4: Redrawing Craver’s figure, with identical elements collapsed for clarity.

But what are we to make of the double sets of arrows pointing into M and X1, and

pointing out of M and X4? Do the pairs represent the same causal interaction, or

distinct causal interactions? It cannot be the latter, because that would allow that

we could change M independently from X1 in violation of (MM) conditions (ii)

and (iii) above. So the pair of arrows into M must both represent one and the same

causal relation; and the same for the pair of arrows out. I make this identity explicit

in Figure 3.4.

Presuming the representation in Figure 3.4 is suitable, how then are we to repre-

sent interventions into M? As I see it, there are (exactly) four ways to understand an
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M

X1

X2

X3

X4

I

Figure 3.5: Intervening directly into M . (In this figure, and those following, I have
for clarity left off the activity labels ‘Φ’, and ‘ψ1’–‘ψ5’.)

intervention on M . These are presented diagrammatically in Figures 3.5–3.8.6 Note

that I do not want to beg any questions about how the effects of the parts bring

about M ’s ψ-ing, so there are no arrows connecting the mechanism parts to M (i.e.,

let us presume that we have found a solution to the first worries raised above about

the conflation of causation and constitution.) I represent an intervention into M as a

node I, with an edge directed towards the intervened-into entity. Since intervention

is a two-place predicate, suppose that these interventions are made with respect to

X2—that is, suppose that we want to know whether X2 is a proper component of M .

In Figure 3.5, I construe ‘intervening into M ’ literally. In fact, I am not sure

how to intervene directly and literally into M without requiring the M have an

independent existence from its parts, a thesis that denies that the whole is identical

with the (organized) parts. How do I intervene into my lawnmower’s mowing, or the

neuron’s firing if that intervention isn’t in fact into one (or more) of my lawnmower’s

or neuron’s parts? I set this issue aside, so as to avoid begging questions against

Craver. Let us allow that it may well be possible to intervene directly into M .

If it is possible for to intervene directly intoM independently of intervening into its

parts, then the intervention must be causally independent of all of the parts Xi: The

6The observant reader may wonder that there appear to be more than four ways, but these
additional ways are degenerate cases that devolve into one of the four given, and so need not be
considered additional cases.
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intervention must be a cause of M , and must cut off all of M ’s causes, including (if

indeed they are causes of M) the Xi. The intervention cannot be a direct cause of X2

(the dependent variable) on pain of conflation. But if the intervention is independent

of the parts, and the behavior of the mechanism just is the organized interactions

of its components, then it is hard to see how such an intervention would have an

effect on X2, or indeed, on any of the parts, unless there is a relationship of top-down

causation from the mechanism whole to the individual parts.7

To use an example, Imagine a Rube Goldberg machine whose behavior is pouring

my coffee. The coffee-pouring is an effect that occurs as a result of the various steps in

the machine: the coffee-pouring is not contemporaneous with any subset of its parts’

activities: neither the cat chasing the mouse into the hole, nor the mouse eating the

cheese, nor the diminishing quantity of cheese tipping the scales. The tipping scale

raises a lever that tips the coffee pot: only then does the coffee pour. An intervention

into the coffee-pouring that is not simply an intervention into the machine’s parts

must occur at this point, cutting the rest of the machine off from the coffee-pouring.

The difficulty for imagining an intervention into M in this way is that it requires

M to be a distinct entity from its parts. But Craver identifies the mechanism with

its parts: Therefore an intervention into M must be an intervention into one or more

of its parts. So talk of direct interventions into M is incoherent. Let us try a different

way of representing an intervention into M , then.

So, perhaps an intervention into the mechanism is an intervention into one (or

more) of its parts. But which part should we consider intervening into? Perhaps we

should intervene into the part most causally downstream in the mechanism, the part

that is the most direct cause ofM ’s Ψ-ing (in this case, X4). Insofar as the activity of

the whole is constituted by the activity of the parts, interventions into the behavior

7And, to reiterate, Craver is committed against the existence of such top-down causation (and
again, see also Craver & Bechtel, 2007).
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Figure 3.6: Intervening into M via X3.

of the whole should prefer interventions into parts closest to the production of that

behavior, that is, those parts most causally downstream from the input conditions.

Ideally, if we want to intervene into a lawnmower’s mowing, we should consider in-

tervening into the blades first, insofar as mowing is cutting grass, and the blades are

what cut the grass directly.8

Suppose we intervene into the most causally downstream part, that closest (in

some sense of the word) to the output of the mechanism. Figure 3.6 illustrates this

case. But in this example, how could such an intervention affect any other component

of the mechanism? Recall that we want to know if X2 is a part of the mechanism;

we are intervening into the mechanism to see if we can manipulate X2, and so satisfy

(MM) condition (iii) of (MM). Because the intervention cuts all of the incoming ar-

rows to X4, and there are no edges from X4 to X2, there is no way for the intervention

to manipulate X2 (the dependent variable). So interventions into M with respect to

X2 cannot proceed this way, as (MM) condition (iii) could never be satisfied: There

is no causal route from X4 to X2.

Perhaps then, we can intervene into M with respect to X2 by intervening some-

where causally upstream of X2. Figure 3.7 illustrates such an intervention, at X1.

8In fact, it seems that we cannot intervene into any other part without foreknowledge of at
least some of the mechanism. Knowing nothing of the mechanism of the lawnmower, we cannot even
contemplate intervening into the fuel flow or carburetor. This is a serious issue, but a tangential
issue; I set it aside.
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Figure 3.7: Intervening into M via X1.
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Figure 3.8: Intervening into M via the start conditions.

In this case, condition (iii) will hold for X2, but at dear cost, for the intervention

is no longer ideal. The intervention manipulates M through a route that includes

X2, which is strictly forbidden.9 To see this, the intervention also causes X3 and X4,

which partly constitutes (and hence changes) M . But the intervention is supposed to

be into M . We have put the cart before the horse.

Finally, we might intervene into M by intervening into the input or start condi-

tions, as illustrated in Figure 3.8. But this kind of intervention fares no better than

an intervention into X1, and for the same reasons.

We have exhausted each of the possibilities for intervening into M , and found

each one highly problematic. The problem lies in Craver’s reliance on constitution:

His representation of the constitutive relationship reveals that talk of intervening into

a mechanism with respect to its parts is incoherent.

9Recall from §1.2 that a causal structure of the form I → Y → X cannot count as an intervention
into Y with respect to X.
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Note that this conclusion has profound repercussions for neuroimaging studies.

Consider a stereotyped neuroimaging study. A neuroscientist wishes to investigate a

behavior Ψ, which is explained by mechanism M . A subject is given some base task

to perform, during which hemodynamic measurements are made. This base task is

designed to specifically not to elicit behavior Ψ, so as to provide a contrast condition.

The subject is then given a task that elicits behavior Ψ; hemodynamic measurements

are made. These measurements are compared against the measurements from the

base task; any differences are presumed to be a part of mechanism M .

This paradigm fits neatly with the interpretation in Figure 3.8: the intervention

is causally prior to M : we might think of the task instructions as manipulating the

neurons in the sensory system, which is taken to be prior to M in some sense. This is

taken, on Craver’s model, to be a manipulation ofM with respect to X (where X also

leads to changes in the brain’s hemodynamics10. However, as pointed out above, this

manipulation is not ideal, in that it manipulates M on a route that passes through

the component X. Thus, on Craver’s account, we cannot conclude that X is a part of

M . We can only conclude that the task instructions and stimuli are a cause of X. For

example, it might be the case that the task is a common cause of X and M . Because

the intervention (as Craver envisions it) fails to be ideal, we can conclude nothing

about the relationship between X and M .

The conclusion to draw from this discussion is that M is not something above

the parts, but a distinct entity, and requires a distinct representation in the graph.

Condition (iii) of (MM) cannot be, therefore, tested—because X is not a part of M .

If the mechanism’s behavior—the explanandum phenomenon—is something that is

brought about by the activities and interactions of the parts of the mechanism, then

the proper way to think about M is as an effect of one or more of the components,

10for our purposes, we need not consider the possible confound involved in confusing X’s produc-
ing a hemodynamic change with X’s φ-ing, which is ostensibly different.
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that is, to identify it with what I have been calling the explanandum phenomenon,

rather than the component parts.

Constitutive relevance, as I have shown, cannot be modeled in a causal graph.

Insofar as Craver’s account of mechanistic relevance as constitutive relevance cannot

be modeled, his attempt at rapprochement does not quite get us a formal account of

mechanism. In the next chapter, I consider a different kind of mechanistic relevance

that does capture Craver’s intuition that mechanism components are somehow parts

of a whole, and show that this new relevance relation can be molded using causal

graphs. The key is to discard the spatio-temporal parthood criterion in favor of a

relation I call causal betweenness.

3.4 Conclusion

The time is ripe for a normative account of mechanistic explanation. We need a

principled account of better and worse mechanistic explanation. Moreover, insofar as

biologists are engaged in an epistemic enterprise, their norms of inference are fair

game for evaluation; and hence too are the inferences themselves.

A good explanation includes all and only those elements that are explanatorily

relevant; A good mechanistic explanation includes all and only those elements that

are mechanistically relevant. Thus, a normative account of mechanistic explanation

requires a principle to identify those elements that are mechanistically relevant. One

way forward in this endeavor is to look to manipulationism.

Woodward (2002) took the first step forward with his manipulationist account

of mechanism. Woodward identifies mechanistic relevance with his manipulationist

version of causal relevance: An element is relevant to the explanandum if they ex-

hibit a particular relationship of manipulability where intervening into that element
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brings about changes in the explanandum. But, looking to the descriptive accounts

of mechanism, this view appears to allow too much in: Not everything causally rele-

vant to the production of the explanandum will be a genuine part of the mechanism

for the explanandum, including background conditions and causal precursors to the

mechanism.

Craver (2007) has taken a second step forward by offering a different account of

mechanistic relevance. Observing that mechanistic explanation is a variety of what

Salmon called constitutive explanation, Craver identifies mechanistic relevance with

a manipulationist account of constitutive relevance: An element is relevant to the

explanandum if they exhibit a relationship of mutual manipulability and the element

is a spatio-temporal part of the explanandum. Craver’s account of mechanistic rele-

vance seems to get our intuitions about explanatory relevance right, but cannot be

formalized using causal graphs. Because constitutive relevance cannot be adequately

formalized, we cannot use the formal methods of manipulationism Craver appeals to

to draw inferences about constitutive relationships.

The next step forward then is to develop an account of mechanistic relevance that

does justice to the descriptive accounts of mechanism, and that can be formalized

without remainder. In the next chapter, I will present and argue for an etiological

conception of mechanistic relevance based on Woodward’s causal relevance and a

principle I call mechanistic betweenness.
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Chapter 4

The Manipulated Mechanism: A

New Rapprochement

I argued in the previous chapter that we need a normative account of mechanism.

One way forward is to bring the descriptive accounts of mechanism into rapproche-

ment with a formal framework for drawing inferences about mechanisms using causal

models. In the previous chapter, I examined two steps towards rapprochement with

manipulationism offered by Woodward (2002), and by Craver (2007). In this chap-

ter, I present a step forward towards rapprochement, by presenting and arguing for

two new elements: A semantics for mechanism models that I call the Interactionist

View, and a principle of mechanistic relevance called Etiological Mutual Manipula-

bility. I demonstrate that these elements create a rapprochement that is descriptively

adequate, by using them to illustrate two real-world mechanisms: the mechanism for

pencil sharpening and the mechanism for the neuron depolarization.
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In this chapter, I present and argue for the Manipulated Mechanism, a rapproche-

ment of mechanistic explanation with manipulationism built upon a principled seman-

tics for mechanism models and a principle for identifying the explanatorily relevant

components of a mechanism.

The key to successful rapprochement is a bridge between mechanism descriptions

and mechanism models. This chapter is devoted to building just such a bridge. Two

elements necessary for a bridge are missing in the current state of the rapprochement

of mechanistic explanation and manipulationism: A semantics for mechanism models,

and a mechanistic relevance principle that identifies which components/variables are

properly considered relevant to a mechanism/mechanism model.

Glennan (2005) presents a set of desiderata meant to establish when a model of a

mechanism model is adequately similar to the mechanism it represents. He asks:

1. Does the model predict (quantitatively or qualitatively) the overall

behavior of the mechanism? Do these predictions hold for all inputs,

or only for some ranges?

2. Has the model identified all of the components in the mechanism?

Have the components been localized?

3. For each component, has the model correctly identified its causally

relevant properties—that is, the properties whose changes figure into

interactions with other components?

4. Does the model provide quantitatively accurate descriptions of the

interactions and activities of each component?

5. Does the model correctly represent the spatial and temporal organi-

zation of the mechanism?
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6. If the model includes sub-models of the mechanical structure of com-

ponents, are these sub-models good representations of these compo-

nents?

7. Is the mechanism identified by the model the sole mechanism re-

sponsible for the production of the behavior, or are there multiple

mechanisms? If there are multiple mechanisms, do they operate con-

currently and redundantly, or do different mechanisms operate in

different contexts? (Glennan, 2005, p.457)

Ignoring the first question, which is a question that must be put to any causal

model, Glennan’s thought is that a candidate mechanism model must have answers to

the remainder to qualify as a mechanism model. A mechanism model must, in other

words, adequately capture certain central features of a genuine mechanistic explana-

tion. It must account for all and only the component parts of the mechanism, the

activities or interactions that bind them together as a mechanism, and the structure

of the mechanism generally. (Already one can see that Woodward’s (2002) account

does not have the resources to answer these kind of questions.)

But what we do not yet have is a principled way of evaluating a model to see how

well it can supply answers to these questions. Under what conditions can we say that

a model has identified a particular component, or its causal relations? How do the

formal elements of causal models map onto the qualitative elements of mechanistic

explanations?

In this chapter, I develop principles for addressing Glennan’s desiderata. In §4.1,

I claim that mechanisms place constraints on the semantics for mechanism models.

Mechanisms are entities and activities or interactions, productive of regular changes,

organized in a particular way. If a causal model is to represent a mechanism, there
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must be some interpretation of that model such that we can reconstruct a story

about the entities and their activities and their organization from that model. This

requirement places constraints on the possible semantics for the nodes and the arrows.

What I take to be the Default View is that the nodes represent entities, and the

arrows activities, but I will argue that this view is mistaken, because it leaves off the

idea that the entities and activities together are productive of regular changes—and

productivity is here doing the causal work. Thus, I will argue for a different view, the

Interactivity View, that nodes represent what I call activity-component pairs, and

arrows relations of manipulability.

There is more. As I will discuss in §4.2, mechanisms place constraints on the

structure of causal models. I argue that a mechanism is a kind of causal explanation

that links an explanandum cause to an explanandum effect—and that even appar-

ently non-etiological mechanisms (constitutive mechanisms, homeostatic mechanisms,

correlative mechanisms) can be redescribed in purely etiological terms. I call such a

mechanism that links a cause to an effect an etiological mechanism. An etiological

mechanistic explanation analyzes the explanandum causal relation into many lower-

level1 components that engage in lower-level causal relations. Thus, mechanisms are

not just causal structures, but causal structures with a specific kind of organization,

one that shows how an explanandum cause causally contributes to an explanandum

effect. From these constraints on the causal structure of mechanisms, I derive a mech-

anistic relevance principle called Etiological Mutual Manipulability: The parts of a

mechanism are all and only those components that satisfy the constraints on the

causal structure of mechanisms.

Finally, in §4.3, I argue that a rapprochement using these semantics and mech-

anistic relevance principle can maintain the descriptive adequacy of the existing de-

1I use this word very loosely here. See Craver (2007, Chapter 5) for a detailed discussion of
mechanistic hierarchies.

98



scriptive accounts of mechanistic explanation by demonstrating that they capture the

relevant descriptive details of two mechanistic explanations, the mechanism for pencil

sharpening and the mechanism for neuron depolarization during an action potential.

4.1 Semantics for Mechanism Models

Why do we want a semantics for mechanism models? A rapprochement is a bridge

between descriptive and formal—it must show how the formal elements of causal mod-

eling map onto the descriptive elements of mechanistic explanation. A rapprochement

that fails to provide principles for inter-translation is not a genuine rapprochement.

Mechanisms comprise components, and these components engage in a variety of

activities (in the Machamer, Darden, & Craver (2000) sense of the word). Construct-

ing a rapprochement that maintains the descriptive adequacy of mechanistic explana-

tion requires a carefully articulated link between the formal elements of a causal graph

and these qualitative elements. This link is a semantics for causal graphs; specifically,

it is a principle for the interpretation of arrows, and a principle for the interpretation

of nodes.

Of course, a causal graph is a graph that has already been given some minimal

interpretation of the nodes and arrows. The nodes represent causal relata, and the

arrows represent causal relations. But accounts of mechanistic explanation have their

own additional ontological commitments about what the causal relata can be, and

manipulationism presents its own constraints on the causal relations, and so we need

additional constraints on the semantics. We might take the nodes as representing

mechanism components, and arrows as representing the causal interactions among

the components—a position I call the Default View, because it is quite natural, and

appears fairly frequently, if implicitly, in the mechanistic literature. I am going to
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argue, however, that we should instead take a view I call the Interactivity View,

in which we take the nodes as representing activity-component pairs—I call these

‘active components’—, and the arrows as the causal interactions among the active

components.

Before I turn to consider these two views, let us set the stage by considering some

central constraints on a semantics for mechanism models.

Components and Activities

There are two clear constraints on the possible interpretations of a graphical model

of a mechanism. First, such models must somehow capture the idea that mechanisms

are decomposable into component parts. Second, they must somehow capture the idea

that the components are active and interact, and that these activities or interactions

are the producers of change.

Common to all qualitative accounts of mechanism is that mechanisms are com-

posed of parts or (my preferred term) components.2 In most concrete examples of

mechanisms, components are entities or things : middle-sized physical objects that

occupy a finite but non-zero volume of space-time3, e.g. levers, pumps, and volumes

of water (Glennan, 2002); inclined planes and blocks (Woodward, 2002); mRNA and

amino acids (Darden & Craver, 2006); ion channels (Craver, 2007). Sometimes, au-

thors will admit more esoteric entities, e.g. electro-magnetic fields (Glennan, 2002)

or voltage gradients (Craver, 2007) (neither of which occupies space in the sense of

excluding other entities from occupying the same location). Glennan (2002) is more

2A terminological note: I use ‘components’ as a generic term for the kinds of causal relata found
in a mechanism. I use ‘part’ in the mereological sense, e.g. ‘part of a mechanism’.

3That said, most authors will grant fundamental particles—which are not middle-sized, and may
not occupy non-zero volumes of space-time—as components. Eberhardt (personal communication)
has pointed out that economic phenomenon do not seem located in space, in which case it looks like
these accounts preclude the possibility of economic mechanisms.
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explicitly ecumenical, in allowing that parts need not be localizable or describable

in a purely physical vocabulary, and suggests software components and information

could also be parts of mechanisms.

The idea that a mechanism can be decomposed into components is central to

the descriptive accounts of mechanism; the behavior of a mechanism is generated

by and only by the components of that mechanism (see Chapter 2). Thus, a large

part of mechanistic explanation consists in identifying which of those components

are genuine parts of the mechanism. Identifying a mechanism’s components is the

problem of mechanistic relevance. 4

On the view of Machamer, Darden, & Craver (2000), the constituent components

are active.5 Machamer, Darden, & Craver make the point more forcefully when they

claim that “mechanisms do things. They are active and so ought to be described in

terms of the activities of their entities” (p. 5). Moreover, “activities are the producers

of change” (p. 3). That is, the activities are the causal links between the components;

without activities there would be no change, and without change there would be

nothing to explain (because there would be no explanandum behavior). Activities,

on this dualist view, are real things, as real as the components that engage in them.6

More recently, Bogen (2004, 2008) and Machamer (2004) have offered independent

defense of this dualist view.

4Of course some, perhaps Sandra Mitchell, might be quick to point out that biologists often talk
about the ‘mechanism for natural selection’, which seems to have no particular components, not in
this sense anyway: It’s not like there is some enduring machine that sits idle, roaring to life only to
(naturally) select one or more organisms. Whether natural selection is a genuine counter-example,
or is simply not a mechanism, is open to debate. I do not mean to beg any questions, but to simply
take note of a prominent feature of extant accounts of mechanism; whether and when it is decided
that this feature requires modification, my account should naturally follow suit.

5Although Craver has since disavowed activities, being rather vexed entities
6I ignore that sometimes a lack of change, or a lack of behavior, is what needs explaining, e.g.

homeostatic systems. Why, for example, is it that human bodies typically do not deviate very far
from a fixed internal temperature? But homeostatic mechanisms are indeed composed of active
components; without that activity, the static state would change; our bodies would cool off (or
heat up) to match the ambient temperature. So even in these cases, activities are crucial to the
explanation.
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Where MDC maintained an explicit dualism, holding that activities had an ex-

istence independent of components, other authors have found this dualism at best

vexed (e.g. Glennan, 2002; Craver, 2007). Nevertheless, it is a central feature of all

accounts of mechanism that the components are not simply inert, but act together

in a coordinated, productive way. Bechtel & Abrahamsen (2005) require that mech-

anisms contain “component operations” (p. 3), which they characterize as similar to

activities, but with a greater emphasis on the idea that operations belong to indi-

vidual components, and have no independent existence (a point Machamer, Darden,

& Craver do not deny). Glennan (1996, 2002), who explicitly denounces activities,

nevertheless claims that a mechanism “produces [the explanandum] behavior by the

interaction of a number of parts” (p. S344, emphasis mine). Woodward (2002) and

Craver (2007) likewise reject activities in favor of talk of invariant generalizations.

Where interactions or invariant generalizations are expressed as purely quantitative

relationships, on the manipulability view an activity is not an independent thing in

its own right, but a description of the quantities and their functional relations.

Even if activities are falling out of favor as an analysis of causation, our models

could only benefit from capturing the descriptive depth of activities. And if the dualist

views of MDC, Bogen, and Machamer are right, then our models would be incomplete

without a representation of activities. Thus, mechanism models shoud capture not just

that this gear’s position is a cause of that gear’s position, but that this gear’s rotating

(an activity of the gear) is a cause of that gear’s rotating. If we accept activities as

ontologically sui generis and an indespensable part of mechanistic explanation, there

must be room for them in the model. If we do not accept activities as anything but

a kind of narrative description of unanalyzed causal relations, our models would still

be improved if they could include some kind of referent to these descriptions. So, I

include activities among the items a mechanistic semantics must capture, without
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committing myself to the dualist view.

Let us see now one common semantics for models, and how it fares against these

considerations.

The Default View

On one common semantics for graphical mechanism models, the arrows represent

activities (the producers of change), and variables represent mechanism components.

I take this to be the Default View, because it is quite natural, captures the descriptive

constraints described above, and in the absence of any explicit interpretive strategy,

this is the view that most authors seem to reflexively adopt.

Default View Variables represent components and arrows represent activities or

interactions.

The Default View has the virtue of being very natural, in that it brings out

and exploits an obvious structural similarity between causal models and mechanisms:

Mechanisms have components and activities, graphs have nodes and arrows. This

view is so natural that several authors (including Machamer, Darden, & Craver, 2000;

Woodward, 2002; Craver, 2007) have taken it independently, if reflexively. Machamer,

Darden, & Craver write that “If a mechanism is represented schematically by A →

B → C, then the continuity lies in the arrows and their explication is in terms of the

activities that the arrows represent” (p. 3).

Woodward (2002) says that a mechanism model must “(i) describe an organized

or structured set of parts or components, where (ii) the behavior of each component is

described by a generalization that is invariant under intervention” (p. S375). Again,

since manipulationism has it that arrows represent relationships of manipulability,

Woodward here seems committed to the additional claim that arrows represent the
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behaviors of components—where I read ‘behavior’ as closely analogous, if not syn-

onymous, to ‘activity’. Less directly, he is committed to taking nodes as representing

components, in that he requires components have a representation in the model (by

(i)), and that, with arrows having received an interpretation, only nodes remain to

assign meaning to.

Figure 4.1: Schematic causal model of a mechanism. Nodes represent components;
arrows represent activities. Taken from Craver (2007, Figure 1.1, p. 7).

Craver (2007) frequently (though not consistently) constructs mechanism models

using the Default View (see Figure 4.1). Craver describes this figure:

At the top is the phenomenon to be explained.. . . Beneath S’s ψ-ing are

represented the entities [components] (circles) and activities (arrows) that

are are organized together in the mechanism. (p. 7)

Here is a simple example applying the Default View. Suppose that we wish to

model the mechanism for protein synthesis. Darden & Craver (2006) describe (very

schematically) the mechanism in this way:
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The base sequence in DNA is transcribed into messenger RNA, which

moves to the ribosomes, the site for the subsequent stages. A specific

triplet codon on the messenger RNA hydrogen bonds to its complementary

anticodon on a transfer RNA, which is attached to its specific activated

amino acid. As the transfer RNAs bond sequentially to the messenger

RNA, the amino acids are brought into appropriate proximity so that

peptide bond form. Incorporation of amino acids occurs in a specific linear

order, based on the order of the codons in the messenger RNA. (p. 82)

The components and activities are easy enough to see. Minimally, a model of this

mechanism should include mRNA, tRNA, and amino acids. Activities include mRNA

transcoding onto tRNA, tRNA hydrogen bonding with amino acids, and amino acids

peptide bonding to each other. On the Default View, then, a graphical model of the

mechanism for protein synthesis might look like Figure 4.2.

DNA mRNA tRNA

protein amino acid

transcription codon base-pairing

hydrogen bonding

peptide bonding

Figure 4.2: Schematic model of the mechanism for protein synthesis, with Default
View semantics.

In this figure, I have chosen the nodes to represent the four components identi-

fied above, and the arrows to represent the productive activities of the components.

Indeed, as one might hope, this figure is not too different from elementary textbook

accounts, or even Crick’s (1970) central dogma (Figure 4.3). The similarities to actual
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scientific texts suggests that perhaps this is the right way forward.

DNA RNA protein
transcription translation

replication

Figure 4.3: Crick’s central dogma (adapted from Crick, 1970).

A Problem with the Default View

But as natural and inoffensive as the Default View is, it cannot work, because it

does not take the formal element of the rapprochement seriously enough. Montaña

(2009) presents a compelling argument that the Default View is the wrong way to

think about modeling mechanisms. Recall that graphical models capture the structure

of the causal relations within a mechanism (or causal system generally), but not the

fine details about the mathematical relationships among the nodes. The Default View

creates an undesirable divide between graphical models and their functional analogs

(e.g. systems of causally interpreted equations). Montaña asks us to take a graphical

model such as the one in Figure 4.2, and use it to construct a functional model.

He claims that we cannot, because components are not the kind of thing that can be

assigned values, and hence be represented by the variables in a mathematical function.

And if we cannot make this transformation, then something has gone wrong in our

representation. He argues that what has gone wrong is the Default View’s insistence

on components as the causal relata, and thus urges us to rethink how to interpret

mechanism models.

Here is Montaña’s argument. He begins by noting that components (he calls them
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‘parts’) and properties or attributes belong to distinct ontological categories. If we

remove a component from a mechanism, we destroy it.7 But attributes cannot be

removed from a mechanism, at least, not without removing a component. We can

change the color, for example, of one or more components, but we cannot remove

color—color is not the kind of thing that can be removed. Moreover, Montaña notes,

whereas attributes—being determinables—are the kind of thing that can take a value

(e.g., color can take a value from the range {violet, blue, green,. . . }), components are

not the kind of thing that can take a value. What is the value of a wheel? Montaña

thinks this question nonsense. We can ask the value of a wheel’s position or its

rotational velocity or its weight or its color, but not the value of a wheel full-stop.

Thus, components and attributes are distinct ontological categories.

Next, Montaña observes that causal models are meant to capture the relationship

between the values of its variables. Underwriting a graphical model is either a prob-

abilistic or algebraic model, which relates the values of the variables. Therefore, in

causal models, variables can only represent something that can take values, namely

attributes. Since attributes are ontologically distinct entities from components, vari-

ables in a causal model cannot, therefore, represent components.

By extension, arrows in a causal model cannot represent activities. Recall that

activities are always activities of components, there are no activities simpliciter.

Thus, if variables cannot represent components, then it is not clear what the arrows

should or can represent, except that it must not be activities.

One way to read Montaña’s conclusion is that components just aren’t the causal

relata in a mechanism. Interestingly, despite their apparent commitment to the De-

7This is not to say that we destroy it utterly, but insofar as a mechanism is always a mechanism
for a behavior, and removing a component leads to a cessation of that behavior, then what remains
after removing a component is not that mechanism. It may well be that a new behavior emerges
from the removal (imagine removing the wheels from a car; the car no longer moves, but it can still
be used to e.g. generate electricity), but the original mechanism is gone.
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fault View, Machamer, Darden, & Craver acknowledge this same point by observing

that “. . . objects simpliciter . . . may be said to be causes only in a derivative sense”

(p. 6) The reason is worth noting. “An entity,” MDC tell us, “acts as a cause when

it engages in a productive activity” (p. 6). Noticing that components are not causal

relata (at least not as far as mechanisms are concerned), and noticing too that the

variables of a causal model are the representatives of causal relata, why then should

we accept the Default View? Clearly we shouldn’t.

I turn now to address the shortcomings presented above in my own semantics for

mechanism models.

The Interactivity View: Activity-Component Pairs and

Relations of Manipulability

Recall that Glennan (2002) characterizes mechanisms as the “interaction of a number

of parts, where the interactions between parts can be characterized by direct, invari-

ant, change-relating generalizations” (p. S344). Interactions are deflationary: To say

that one component interacts with another is simply to say that the one brings about

a change in the other. We are left to wonder: Yes, but how is that change brought

about?

Machamer, Darden, & Craver characterize mechanisms as “are entities and activ-

ities organized such that they are productive of regular changes” (p.3) Activities are

meant to supply an answer to this worry: To say that a component engages in an

activity is to say that that an active component is productively engaged in a process

of change. Activities are meant to be descriptions of what it means to ‘bring about’

in a particular context. But we are left to wonder: What are activities changing or

bringing about?
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Tabery (2004) asks both of these questions, and where Glennan and MDC took

their views on interactions and activities to be mutually exclusive, Tabery cogently

notes that they are anything but. They are complementary. Activities open up the

interaction ‘black box’, and tell us how components interact. But activities need

interactions too: “We must identify what. . .makes the producer productive” (Tabery,

2004, p. 11). It’s fine to say that a component e.g. pushes, but without a clear notion of

what this push is changing or to what degree, the activity of pushing is not informative

enough. Filling those blanks requires an appeal to interactions.

Tabery’s observations point the way forward in replacing the Default View. He

concludes with a call to explore the exact relationship between interactions and ac-

tivities. An account of this relationship will also, as I will show, provide a suitable

response to the Default View.

“An entity,” Machamer, Darden, & Craver tell us, “acts as a cause when it engages

in a productive activity” (p. 6, emphasis mine). This is an interesting and different

claim: The claim here is that the causal relata are not components (as with the

Default View), but activity-component pairs. But if activities are part of the relata,

what is doing the relating?

Glennan offers an option. On his account, interactions among components “can

be characterized by direct, invariant, change-relating generalizations” (Glennan, 2002,

p.S344). And recall again that these kind of generalizations reflect relationships of

manipulability. On Woodward’s (2003) manipulationist account, relations of manip-

ulability are to be represented by arrows in a causal graph. Thus, to say that X

interacts with Y is to say that we could bring about changes in Y by manipulat-

ing X, or graphically, X → Y . So, taking Glennan’s view of the causal relation in a

mechanism, contra the Default View, arrows represent not activities, but interactions.

If Tabery is right, and interactions and activities are complementary, then the
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foregoing discussion suggests that the relationship between them must be this: Activ-

ities (with their bearers, components), being determinables, are the causal relata, and

interactions are the causal relation. Interactions support counterfactual claims about

the productive relations among activities. Thus, we should use variables to represent

activity-component pairs (since activities are always activities of something), and

arrows to represent the interactions among activity-component pairs.8

Interactivity View Variables represent activity-component pairs and arrows rep-

resent relationships of manipulability (counterfactual dependence under inter-

vention).

One might worry that the Interactivity View runs into its own problem with the

formal representation. As I discussed in Chapter 2, Psillos (2004) has argued that

activities require counterfactuals. And I have just argued that activities should be

represented by variables. But this seems a category mistake: Counterfactuals have

modal content, where variables do not. There is nothing modal in the claim ‘X = 5’.

I respond by observing that Tabery’s synthesis of activities and interactions places

the modal onus on interactions. The ‘change-relating’ aspects of MDC’s concept of

activities are better handled by the concept of an interaction, and the description of

how the change is brought about is better handled by the concept of activities. In this

way, it seems that thinking of activities as a quantifiable attribute of a component is

the right way forward: The gear is rotating at such-and-such a rate; the enzyme is

catalyzing at this-or-that rate. Described in this way, there is no dependence relation,

8Note that this view permits a component to appear in multiple places in a causal graph;
components often have more than one activity, and several of these activities may be components in
a mechanism, and hence need distinct representation. For example, in a given mechanism, a gear’s
rotation and its momentum (resistance to movement) may play two distinct roles in a mechanism,
in which case we will need two variables in our model, both of which represent a distinct aspect of
the same component, the gear. With thanks to Jan Plate and Dennis Des Chene for helping me see
this point.
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let alone a relation of counterfactual dependence, because there is only the actor, and

not the subject. The counterfactual dependence enters only when we assign a subject

to the verbs—when we view the activity as interacting with another component.

The Interactivity View maintains the proper links to the descriptive elements,

without running into difficulties with the representation. Moreover, by explicitly link-

ing relations of manipulability to a feature of the mechanism—interactions—we have

explicitly incorporated not just causal modeling, but specifically manipulationism as

a feature of the rapprochement.

However, the full extent of the usefulness of the Interactivity View won’t become

clear until we consider the structural constraints on mechanism models. I turn now to

give these constraints, and then to show how these constraints when conjoined with

the Interactivity view yield a complete formal account of mechanistic explanation.

4.2 Mechanistic Relevance

Not just any component or activity or interaction is relevant to a particular mech-

anistic explanation. My consumption of table salt last night, although a source of

sodium, does not figure into an explanation for the movements of sodium across cell

membranes in my nervous system, even as the consumption of table salt is perhaps

causally relevant. In the previous chapter, I argued for the need for an account of

mechanistic relevance, and against Craver’s (2007) account of constitutive relevance;

I turn now to consider a etiological approach to solving this problem.

I begin by observing a close tie between mechanistic relevance and the causal struc-

ture of mechanisms. Mechanisms have specific constraints on their causal structure.

In particular, since mechanisms are posited to explain cause-and-effect relationships,

the mechanism must have a causal structure that links the explanandum cause to the
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explanandum effect as cause to effect. Any active component that is not part of the

link from explanandum cause to explanandum effect is not going to be relevant to

explaining how it is that the cause brought the effect about. On the other hand, any

active component that is part of this link will be relevant. I consider these claims in

more detail below.

On the other hand, causal graphs are quite flexible in how they can be structured.

As a result, not just any causal graph can be used to represent a mechanism. In

this section, I lay out the structural constraints imposed on graphical models by the

descriptive accounts of mechanism. I will develop a principle, called M-Separation,

that distinguishes causal structures that are genuine representations of a mechanism

from causal structures that cannot be used to represent a mechanism. I will then

argue that this principle can be used as the foundation for an etiological account of

mechanistic relevance that I call Etiological Mutual Manipulability.

I begin by examining the structural constraints imposed by mechanistic explana-

tion.

Mechanisms link Cause to Effect

The problem of explanatory relevance is the problem of identifying just those com-

ponents that are necessary for an explanation, and ignoring the components that are

not. When we aim to explain the dissolution of some salt in water, we should appeal

to certain aspects of the salt’s crystalline structure, and the bi-polar nature of water

molecules; we should not appeal to the salt’s having been hexed, or being located

in the northern hemisphere, or the dissolution’s taking place at precisely 7:35PM.

These later factors have no bearing on how or why the salt dissolves, because they

are not causally related to the salt’s dissolution. In the previous chapter, I introduced

Salmon’s causal-mechanical concept of explanatory relevance, which claims that only

112



causes explain their effects; neither do effects explain their causes nor do mere corre-

lates explain each other.

Here is a claim that I want to defend: Mechanisms explain by linking explanandum

cause to explanandum effect as cause to effect. Mechanisms are posited to explain

cause-and-effect relationships; I call the cause in the causal relationship that needs

explaining the explanandum cause, and the effect the explanandum effect. There are

many ways that the explanandum cause could be conceivably linked to the explanan-

dum effect: They might coincidentally co-vary; they might share a common cause;

they might occur in some temporal sequence; they might both be the same color;

one might be a cause of the other. If we want to understand why it is that the ex-

planandum cause brings the explanandum effect about, then only explanations that

analyze this causal link are going to be useful; explanations that appeal to a common

cause, or a shared color are not going to be useful. We can take advantage of the

claim that mechanisms link cause to effect to identify which components, among the

many available, belong to the mechanism, and hence are relevant to a mechanistic

explanation.

One might object to this characterization of mechanistic relevance, because some

mechanisms (one might claim) do not exhibit this kind of etiological cause-to-effect

structure. Craver (2007) distinguishes etiological mechanisms (mechanisms that do

link an explanandum cause to an explanandum effect) from constitutive mechanisms9,

which explain by decomposition: showing how a complex phenomenon is constituted

by—not caused by—the mechanism’s parts. Glennan (personal communication) has

made the further claim that homeostatic mechanisms—mechanisms that use feedback

to maintain a steady state–and correlative mechanisms—mechanisms that explain two

9In the previous chapter, I considered Craver’s principle for constitutive relevance, Mutual Ma-
nipulability, and ultimately rejected it; here, I am considering something slightly different, Craver’s
constitutive mechanisms, for which Mutual Manipulability was a relevance measure.

113



distinct effects in virtue of being their common cause—do not offer explanations of a

cause-and-effect relationship, and cannot therefore be cast into this etiological mold.

I will argue that all three of these mechanism types can be described equally well as

etiological mechanisms, and hence cast as explaining the link between a cause and an

effect. Once I have established this, I will lay out a principle of mechanistic relevance.

Constitutive Mechanisms

A constitutive mechanistic explanation is an explanation of a complex phenomenon

that shows the phenomenon is constituted by the parts of a mechanism. On this

view, the mechanism is identical with the explanandum phenomenon (and hence

that the components of the mechanism are proper parts of the explanandum), and

the explanation proceeds by analyzing the phenomenon into interacting parts. On

this view, there is not a clear cause and effect relationship that is being explained

by the mechanism, but rather the phenomenon is shown to constitute some set of

causal interactions. Usually, constitutive explanations are offered to explain complex

phenomena, phenomena that exhibit a number of interesting features. The action

potential in the neuron, to take one of Craver’s (2007) example, has many facets:

A particular time-dependent change in membrane potential; flows of sodium and

potassium ionic currents; the propagation of the signal from one axon segment to

another; and so forth. Together, these hang together as a single, coherent, but multi-

faceted phenomenon. It is a single phenomenon, because there is a single mechanism

responsible for it, that can explain all of its various facets.

In the previous chapter, I argued that one cannot represent an ideal intervention

into a constitutive mechanism, that is, we cannot model what Craver calls a top-down

intervention. The problem is that there is no way to intervene into a mechanism that

isn’t somehow an intervention into one or more of its components. I would like to
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suggest another way to think about top-down interventions, from an etiological point

of view. Craver offers an example of a top-down experiment. “In activation experi-

ments,” Craver writes (p. 151), “one intervenes to activate, trigger, or augment the

explanandum phenomenon and the detects the properties or activities of one or more

putative components of its mechanism”. Neural imagine experiments are a kind of

activation experiment: A subject is given a stimulus that activates some cognitive

mechanism, e.g. a text passage or an image, and a scanner is used to detect the activ-

ity of neurons or neural regions in the brain. But notice that the stimulus is, in this

case, clearly a cause of both the cognitive mechanism’s activation, and of the neural

activity—precisely because the cognitive activity is constituted by—just is—the neu-

ral activity.10 Thus, the experimental intervention—the presentation of a stimulus—is

causally prior to both the mechanism and the explanandum phenomenon.

xxxxxxxxxxxxxxxxxxxxxx

M

V1 O2N1

N2

N3

N4

I

Figure 4.4: V1 is the primary visual cortex; N1–N4 are brain regions that comprise a
cognitive mechanism of interest; O2 is the oxygenation of the blood in those regions.

Figure 4.4 illustrates one way we might model such an experiment. Suppose that

the cognitive mechanism under investigation comprises brain regions N1–N4. We

present a visual stimulus, activating the primary visual cortex V1, which, through

a number of processing steps in various explanatorily irrelevant brain regions, results

10On a physicalist view, anyway. I don’t mean to beg questions against dualists.
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in signals being passed into the mechanism. As these regions N1–N4 are activated,

they (presumably) trigger an increase in blood oxygenation in the same physical

location, O2.
11 Our fMRI scanner detects this blood oxygenation.

xxxxxxxxxxxxxxxxxxxxxx
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I

Figure 4.5: N1–N4 are brain regions in the motor cortex; M is the movement of a
particular muscle.

Notice that we can also easily give bottom-up experiments the same kind of treat-

ment. In stimulation experiments, for example, “one intervenes to excite or intensify

some component in a mechanism and then detects the effects of that intervention on

the explanandum phenomenon” (p. 149). Fritsch and Hertzog’s famous experiments

introduced small electrical currents into the motor cortex to produce movements in

specific muscles. Such an experiment might be modeled as in Figure 4.5. They inter-

vened directly into a brain region using an electric probe12; the neurons stimulated

sent a signal to a particular muscle (mediated, no doubt, by the cerebellum), caus-

ing the muscle to contract. This kind of experiment is easy to redescribe in purely

etiological terms.

Notice that this description of an activation experiment does not make appeals to

11Really, there should be an O2 node for each brain region Nn, but I wanted to keep the figure
simple; my points will stand in either case.

12Whether their interventions were ‘hard’, or arrow-breaking interventions, or even ideal, makes
this example just a little thorny, but let us suppose for now that these issues do not arise. I will deal
with this kind of issue in Chapter 8
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levels. This is not to say that Craver’s hierarchical interpretation of these experiments

is mistaken, only that there are multiple descriptions of these experiments, some of

which are etiological, and some of which are inter-level.

Thus, we can re-describe a constitutive mechanism that explains some complex

phenomenon as a complex of overlapping etiological mechanisms, each explaining a

simple facet of the complex phenomenon.

Homeostatic Mechanisms

Homeostatic mechanisms are mechanisms that use feedback to correct deviations

from a particular state, thus maintaining that state. Homeostatic mechanisms are a

bit different, because although they do have an etiological structure; what they lack

are clear start and stop conditions, or explanandum causes.13 We could ask, how was

it on this occasion that the temperature dipped below the thermostat setting that

the thermostat brought the temperature back up? Such a request specifies a cause

(the deviant state), and the effect (the final state), and the explanation of this change

will certainly be an etiological mechanism, but a token mechanism. Mechanisms are

generally thought of as types, explaining a broad range of counterfactuals. And insofar

as a homeostatic mechanism is a type, it appears to lack clear start conditions.

But we must be careful here not to conflate mechanisms with machines. A ma-

chine, as Glennan uses the term, is a collection of physico-mechanical parts that are

connected together, but which are not themselves explanatory. A pencil sharpener, or

an automobile are examples of machines. A machine becomes a mechanism only when

it is part of an explanation for a phenomenon. Pencil sharpeners are mechanisms for

pencil sharpening (and for the production of pencil shavings, and of the distinctive

grinding noise that occurs during pencil sharpening, &c.). Automobiles contain mech-

13This example, and the following are due to Glennan (personal communication).
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anisms that explain acceleration and so forth. Homeostatic mechanisms, insofar as

they are explanatory, explain a lack of change, stasis.

That the room is a particular temperature may not require explanation; if the

temperature outside the room is 20◦C, then the room would have been 20◦C anyway,

and the thermostat is playing absolutely no role in maintaining this comfortable state

and therefore is not part of the explanation for the room’s temperature. That the room

is a comfortable 20◦C, given that it is very cold outside, does require explanation,

because then the thermostat is engaged in a kind of active process of staving off the

cold, even as the temperature of the room itself remains static. But notice, in this

case, there is a cause and effect relationship that is being explained by appeal to the

thermostat: How is it that the thermostat prevents deviations in temperature outside

the room from affecting the temperature inside? The cause is the cold temperature

outside; the effect is warm temperature inside. And the thermostat is the mechanism

linking them: It senses slight drops in temperature due to the outside cold, and brings

the heater online to warm the air back up.

Here, then, is a clear sense in which homeostatic machines can be described as

etiological mechanisms.

Correlative Mechanisms

Although neither is a cause of the other, we might ask how it is that the formation

of storms and the falling of barometers are linked (because they are). One can rea-

sonably talk of a mechanism responsible for the correlation: Changing air pressure is

a mechanism with two distinct (but merely correlated) effects. In this case, changing

air pressure is a mechanism that links two effects as correlates, rather than linking a

cause to an effect.

While I grant that this is a perfectly fine use of ‘mechanism’, as with the previous
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examples, it can be seen as an etiological mechanism. Specifically, it can be seen

as a pair of overlapping etiological mechanisms, with a change in air pressure as

the explanandum cause, and the formation of storms as one explanandum effect,

and the falling barometer as the second explanandum effect. The falling pressure

produces both through different, if overlapping mechanisms. In the case of the storm,

decreases in air pressure cause atmosphere water to rapidly condense, forming clouds

and eventually rain. In the case of the barometer, decreases in air pressure cause a

column of mercury to fall under its own weight, changing the indicator.

So although in one sense it is true that falling air pressure is the mechanism for

the correlation, we can re-describe this system as a pair of etiological mechanisms,

one for each of the joint effects.

I do not take this to be an exhaustive list of the kinds of non-etiological mech-

anisms, but rather a demonstration of how such mechanisms can be re-described as

etiological mechanisms.

Etiological Mechanisms and Relevance

Mechanisms link an explanandum cause to an explanandum effect as cause to effect. If

this etiological view is correct, how then can we mine it for a principle of mechanistic

relevance?

The etiological view offers a ready way to identify an active component as mech-

anistically relevant: The mechanistically relevant active components are all and only

those active components that cause (perhaps indirectly) the explanandum effect, and

that are caused by (perhaps indirectly) the explanandum cause. Let me defend this

claim.

Figure 4.6 illustrates a causal system with many active components. Craver (2007)

calls variables such as S1 and S2 in the figure that so not cause the explanandum
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S1 S2

M

B1 B2

E

Figure 4.6: S1 and S2 are a sterile effects; B1 and B2 are background conditions; none
but M properly belong to the mechanism linking C to E.

effect sterile effects—and notes that while they may be very useful in identifying the

components of a mechanism, they are not themselves explanatory and hence cannot

be mechanistically relevant, precisely because they do not in any way connect up

with the explanandum effect, and hence cannot link the explanandum cause to the

explanandum effect. Depending on the context, components such as B1 and B2 in

the figure that are not caused by the explanandum cause might be called background

conditions, or conflaters, or simply irrelevant. None of these categories are relevant

to a mechanistic explanation either, for the same reasons: They are independent of

the explanandum cause, and cannot, therefore, illuminate the causal link in question.

Only M in the figure properly belongs to the mechanism linking C to E, because

only M is both caused by the explanandum cause C, and causes the explanandum

effect E, therefore linking C and E as cause to effect.

Let us formalize this principle, and see what it gets us.

M-separation

I have argued now that a mechanism links an explanandum cause to an explanandum

effect. This etiological conception immediately suggests a flat (non-hierarchical) rep-

resentation of a mechanism using graphical models: If C represents the explanandum
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cause, E the explanandum effect, andM the mechanism that links them, then an ex-

planation of the causal relation C → E should have the general form C → M → E.

But, there is much work to be done: Mechanisms contain, in general, many parts,

and many causal relations. Thus, in all but the simplest mechanistic explanations,

the actual mechanism is something more complex, and we need a clear method for

articulating when a component is and is not a part of a mechanism.

Suppose that we have a set of candidate mechanism components, and we wish to

know: Which are part of the mechanism linking C to E? On an etiological view, since

the mechanism links the explanandum cause to the explanandum effect as cause to

effect, then we should be able to trace a directed path from C, throughM , to E.14 We

can trace such a path because mechanisms are an effect of the explanandum cause,

and a cause of the explanandum effect.15

But it is not enough that there be just some path from C through M to E. If C,

M , and E are sets of variables, we want each explanandum cause and each mechanism

component to be doing some kind of causal work to bring each of the explanandum

effects about. Each explanandum cause should be playing some role in setting the

mechanism up, and each component of the mechanism should be contributing to the

production of one or more of the explanandum effect.

Given this consideration, here is a graphical principle that I call m-separation,

meant to capture the above intuitions: We will assign a semantics below!

Graphical M-Separation (GMR) Given three disjoint sets of variables, A, B, and

14Recall that a directed path from A to B is a path that begins at A, whose first link is an arrow
that points away from A, in which each link points in the same direction, and in which the final link
is an arrow that points to B. See Chapter 1.

15Mechanistic explanation makes a transitivity of causation a fundamental assumption. If it is
true that C causes E, that there is a mechanism M that explains this causal link, and we accept
Salmon’s asymmetry thesis that effects do not explain causes, nor do correlates explain each other,
then we are committed to the notion that C →M → E. Thus, we mechanists are committed to the
transitivity of causes—if only within mechanisms.
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C, B m-separates A from C if and only if

1. all directed paths from any member of A to any member of C pass through

and only through one or more members of B, and

2. there exists at least one such path.

The first condition requires that any causal relationship between a member of A

and a member of C is mediated by one or more members of B. It also requires

that there be no intermediaries between A and B, or between B and C. That is, if

A → x1 → x2 → x3 → C, then the set comprising x1,x2,x3 m-separates A from C,

but no proper subset of those three will so m-separate. The second condition simply

gives the universal quantifier in the first condition existential import. Otherwise, the

first requirement could be trivially satisfied by two variables A and C with no path

connecting them.

Refer back to Figure 4.6. In that figure, there is a directed path from C to E,

CME. M and only M lies on this path; None of S1, S2, B1 or B2 lie on this path.

Therefore, in this graph, M is said to m-separate E from C.

A B C

Figure 4.7: Only in structures as this does B m-separate A from C and C from A.

Notice that m-separation is asymmetric: If B m-separates A from C, it need not

necessarily m-separate C from A. For it to do so, there must be a return path from

C to A that passes through B, as in Figure 4.7.

We can now easily apply m-separation as a mechanism bounding principle, by ap-

plying the semantics for mechanism models developed in the first half of this chapter.
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When we interpret variables as active components, and arrows as interactions, we can

apply m-separation to yield the following principle:

Graphical Mechanistic Relevance (GMR) Given a set of explanandum causes

C, a set of explanandum effects E, and the smallest set of active components

M that m-separates C from E, then X is mechanistically relevant in the expla-

nation for E if and only if X ∈M .

Reading arrows as causal relations, (GMR) says that all and only the components

in a graph which are caused by one or more of the explanandum causes (directly or

indirectly) and cause one or more of the explanandum effects are the parts of the

mechanism linking the two explananda sets. This is precisely what we wanted.

Notice that (GMR), by explicitly harnessing the interactivity view of mecha-

nism model semantics, provides a bridge between graphical models and mechanisms.

(GMR) uses m-separation to provide an account of mechanistic relevance, in the

sense of being a principle for identifying which active components are relevant to a

mechanistic explanation.

C

M

E

Figure 4.8: Mechanistic relevance is an asymmetric relation. Here, M is not a mech-
anism linking C to E as cause to effect.

A crucial point to note is that (GMR) demonstrates not all causal structures

count as mechanisms. Consider the causal structures in Figures 4.8 and 4.9. In neither

case does M count as a mechanism linking C to E, because in neither case does M
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C

M

E

Figure 4.9: Common causes are not mechanisms.

m-separate C from E. In Figure 4.8, M m-separates E from C, but not C from E,

and hence cannot be the mechanism linking C to E as cause to effect—because C is

not related to E as cause to effect at all.

From the structural constraints imposed on mechanism models by the descriptive

accounts of mechanism, I’ve developed an etiological bounding principle, (GMR),

that can tell us whether a given component is a part of a mechanism by examining

the arrows in the graph, and hence constrains the range of possible causal structures

a mechanistic explanation can have. What (GMR) doesn’t give us, unlike Craver’s

(MM), is a testing procedure. For that, we can turn to the Interactivity View’s

semantics for arrows, that they represent not just unanalyzed causal relations, but

relations of manipulability.

The manipulationist semantics gives us a ready testing procedure for (GMR). If

an arrow from A to B means that we can manipulate B by intervening into A, then

the Interactivity View yields the following:

Etiological Mutual Manipulability (EMM) An activity-component pair X is

part of a mechanism linking a set of explanandum causes C to a set of ex-

planandum effects E if an only if

(i) we can manipulate X by intervening into one or more of C, and

(ii) we can manipulate one or more of E by intervening into X.
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On the Interactivity View semantics, Etiological Mutual Manipulability16 will re-

veal which variables will satisfy (GMR), in that observed relations of manipulability

must be represented by unidirectional directed paths (perhaps of length one) in a

model of the tested mechanism. Because (EMM) yields components caused by the

explanandum cause, and that cause the explanandum effect, components that sat-

isfy (EMM) will be in any set that m-separates the explanandum cause from the

explanandum effect.

Of course, not every causal relation will be revealed by ideal interventions, even

if they do support manipulationist counter-factuals. For example, if X causes Y and

Z, and Y also causes Z so as to exactly counter-act X’s causal influence on Z, then

even ideal interventions on X will not reveals the X → Z link. This means that

(GMR) does not entail (EMM), at least not without the additional (and obviously

contentious) assumption that there are no such counteracting relationships. However,

this is not a problem for my view specifically, but a general shortcoming of any

manipulationist view. The upshot is that we can still judge as might be right that X

is mechanistically relevant, yet unable to test the claim empirically.

The Interactivity View and Etiological Mutual Manipulability explicitly link the

descriptive components of mechanistic explanation—activities and entities—with the

formal apparatus of manipulationism and graphical models. Given a particular mech-

anism, or a description of a mechanism, these principles constrain the range of possi-

ble causal models that can be used to represent that mechanism, and by connecting

these models to manipulationism, yield a method for drawing inferences about the

mechanisms or the descriptions.

I turn now to put the my account of mechanistic relevance, and of the semantics

16Of course, there is no mutual manipulability on this view, but it does share what I think is
an interesting affinity to Craver’s (2007) account of mechanistic relevance. The name is meant to
express this affinity.
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for mechanism models, to test by applying them to real mechanisms, and showing

that the resulting rapprochement is descriptively adequate.

4.3 The Manipulated Mechanism

The Interactivity View and Mechanistic Relevance are two more steps forward for

the rapprochement begun by Glennan (2002); Woodward (2002) and Craver (2007).

These two principles specify how to bridge the qualitative, descriptive elements of

mechanistic explanation with the formal elements of manipulationism and causal

modeling. I call the resulting rapprochement the Manipulated Mechanism.

Of particular interest, the Manipulated Mechanism has descriptive adequacy miss-

ing from earlier versions of rapprochement. To demonstrate, I apply the Manipulated

Mechanism to two examples: the planetary pencil sharpener, and the production of

the action potential in the squid giant axon. In each case I will work from a description

of the mechanism to show how my account can be used to build up an interpreted

causal model that captures the central qualitative aspects of each mechanism.

The Pencil Sharpener

The planetary pencil sharpener is a staple of academic life, and an archetypal machine

(in Glennan’s sense of the term). To use it, one inserts a pencil into the hole while

turning a crank; in due course the pencil is neatly sharpened. We may request a

mechanistic explanation of it: How is it that turning the crank yields a sharp pencil?

Figure 4.10 reveals the internal workings of the planetary pencil sharpener. The

key to the pencil sharpener is a system of planetary gears (from which the style

of sharpener gets its name). The crank is bolted to a gear carrier, and turning the

crank causes this carrier to rotate about the pencil axis. Contained within the gear
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Figure 4.10: Planetary pencil sharpener internals.17

carrier are two planetary gears that revolve around the pencil. The planetary gears

engage a fixed annular gear which causes the planetary gears to counter-rotate, that

is, to rotate against the direction of their revolution. Finally, attached directly to the

planetary gears are two cylindrical blades held at an angle within the gear carrier.

These blades are made to revolve around the pencil while counter-rotating against the

pencil as they revolve. These two motions cause the blades to shave off the pencil’s

material in a uniformly circular manner.

The first step in constructing a model of this mechanism is to identify the ex-

planandum cause and explanandum effect. Given the rather explicit request just

above, the choice is clear: The explanandum cause is the crank’s turning (C), and

the explanandum effect is the pencil’s being sharpened (S).

The second step is to identify the remaining activity-component pairs. The gear

carrier rotates (G). The planetary gears revolve (P r
1 , P

r
2 ) and counter-rotate (P c

1 , P
c
2 ).

17Photo credit: Toytoy.
http://commons.wikimedia.org/wiki/File:Pencil_sharpener_mechanism.jpg.
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The annular gear, being fixed, opposes the revolution of the planetary gears which

sets them counter-rotating (A). Finally, the cylindrical blades revolve around the

pencil (Br
1, B

r
2), and counter-rotate against it (Bc

1, B
c
2).

The third step is to identify the interactions among the activity-component pairs.

The crank rotates the gear carrier (C → G). The gear carrier revolves the two plane-

tary gears around the pencil (G→ P r
1 and G→ P r

2 ). The revolution of each planetary

gear is opposed by the annular gear, which forces each planetary gear into counter-

rotation (P r
1 → P c

1 and A → P c
1 ; ditto for the second planetary gear). Since both

planetary gears are fixed to the cylindrical blades, the rotation and revolution of each

gear forces the cylindrical blades to revolve and counter-rotate as well (P r
1 → Br

1

and P c
1 → Bc

1; ditto for the second cylindrical blade). Finally, the revolving and

counter-rotating of the cylindrical blades shaves material off of the pencil (Br
1 → S

and Br
0 → S; ditto for the second cylindrical blade).

xxxxxxxxxxxxxxxxxC GA S

P r
1

P r
2

P c
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2
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2
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2

Figure 4.11: A causal model of the mechanism connecting the crank to pencil sharp-
ening.

The final step is to put all of these parts together into a graph. Figure 4.11
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shows the results. Applying (GMR) to the resulting graph reveals the mechanistically

relevant components (indicated by the dashed outline in the figure). All and only

{G,P r
1 , P

r
2 , P

c
1 , P

c
2 , B

r
1, B

r
2, B

c
1, B

c
2} are on a directed path from C to S, and thus count

as mechanistically relevant components.

Interestingly, A, the annular gear’s opposition to the planetary gears’ movement,

is not mechanistically relevant according to (GMR), and thus is not a proper part

of the mechanism. But this result is at odds with our intuitions that the annular

gear is very much a component of the pencil sharpener. This result brings into sharp

relief the distinction between our colloquial notions of mechanism or machine, and the

philosophical concept of mechanistic explanation. In an everyday sense of the word

‘mechanism’, of course the annular gear is a part. But so too, on this view, are force

by which the crank is turned, the casing, the wall-mounting, and the art-deco trim.

Such use of the term ‘mechanism’ is meant to pick out an entire, discrete object.

But a mechanistic explanation, in contrast, seeks to understand the causal links

between a stipulated cause and effect, and so some parts of the pencil sharpener will

naturally not be parts of the mechanistic explanation (and perhaps some components

not part of the pencil sharpener might turn out to be mechanistically relevant). The

art-deco trim, for instance, clearly plays no causal role in bringing about a sharp

pencil, and so it does not belong to the mechanism in this sense of the word. But the

annular gear is, one might object, causally relevant to pencil sharpening. And indeed

it is—but this is where mechanistic explanation parts ways with more generally causal

explanations. Crank-turning is not causally relevant to the working of the annular

gear; the annular gear is not in any sense causally between the explanandum cause

and explanandum effect, and thus is properly left out of a mechanistic explanation.

The point can be considered in a different way. Suppose that we held the crank

fixed, and rotated the annular gear only. If we did, we would find that we could
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sharpen a pencil in this way, and we might well ask: What is the mechanism linking the

rotation of the annular gear to pencil sharpening? And the result would be much the

same as in Figure 4.11, save that G would be excluded as mechanistically irrelevant.

Thus, there are two distinct ways to use a pencil-sharpener to sharpen a pencil, and

two different (but overlapping) mechanisms that describe these two ways.

Here, the distinction between colloquial notions and philosophical notions of mech-

anism becomes sharpest. Where the colloquial sense recognizes but one thing, the pen-

cil sharpener, the philosophical sense recognizes several partially overlapping things,

including the mechanism linking the crank to sharp pencils, and the mechanism link-

ing the annular gear to sharp pencils. There is also the mechanism linking the crank

and annular gear taken together to sharp pencils. Too, there is the mechanism linking

the crank to the production of pencil shavings, the internal clockwork’s inefficiency

to our hearing of pencil-sharpening-noises, the art-deco trim’s reflectivity to our aes-

thetic judgments of the pencil sharpener, and so ad infinitum. So, within the single

object of the pencil sharpener reside many, perhaps infinitely many, mechanisms, de-

pending on how one picks out the explanandum cause and the explanandum effect.

But this is just a consequence of the idea that, as Craver puts it, ‘there are no mecha-

nisms simpliciter; all mechanisms are mechanisms of something, and it is by reference

to that something that the relevance of components is established.’ (Craver, 2004, p.

969)18

So much for my toy example. Let us turn to some biology and see how the ma-

nipulated mechanism fares there.

18The annular gear in this example is meant to be analogous to a classic example of a background
condition, oxygen. We might ask: What caused the fire at the factory? and accept: The arsonist’s
torch. as a suitable response, and yet reject: The influx of oxygen. as inappropriate. The reason is
that, in this context, oxygen is a background condition. Although it is true that the fire would have
been short-lived without oxygen, it is irrelevant to the desired explanation. In the same way, the
annular gear plays a critical role in the sharpening of pencils, but in the context of the explanation
requested, it is a background condition. I take this affinity to be a strength of my view, as counter-
intuitive as the result might otherwise be.
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Neuron Depolarization

The action potential is an electrical pulse that is transmitted down the axon of neu-

rons. It has the interesting feature that, once started, it cannot be stopped or atten-

uated (without external disturbance, anyway). Machamer, Darden, & Craver (2000)

use the mechanism for the action potential as a test case for their account; I shall

follow suit.

The action potential has three stages: As the action potential reaches a region of

the axon, it triggers a depolarization, a rapid upward change in the transmembrane

voltage from a roughly -70mV resting state. Then, as the action potential passes, it

triggers a hyperpolarization wherein the transmembrane voltage is driven back down

well below the resting state. A refractory period follows during which resting state

equilibrium is restored. I discuss here the mechanism for depolarization.

Embedded within the cell membrane a a number of voltage-gated sodium (Na+)

channels. These channels are composed on one large protein with four identical parts.

These parts are elongated, and span the membrane; they are grouped close together

so as to form a pore. Each of the four parts consists in two domains: A voltage sensor

and a gate.

The voltage sensor is constructed of four α helices19, of which one (S4) has a regular

sequence of positive charges along its length. The remaining three have negative

charges along their length. At rest, the negative charges and the positive charges

align, and the negative charges hold the S4 helix in equilibrium. An approaching

action potential, however, disrupts this balance: The changing voltage gradient across

the membrane disrupts the equilibrium, and S4 rotates such that the positive charges

come out of alignment with the negative charges, and so is pushed out of the cell like

19An α helix is a kind of protein structure in which a length of protein is twisted into a helix at
the rate of 3.4 acid bases per turn.
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a corkscrew (Hall, 1992).

The relationship between the voltage sensor and the gate is still something of a

mystery. The gate domain contains two helices, S5 and S6; normally, S6 blocks the

channel. But the movement of the S4 helix induces the S6 helix in the gate to bend in

the middle, opening the channel to the flow of sodium (Sands, Grottesi, & Sansom,

2005).

As the sodium channels open, sodium is pushed out of the cell by the electro-

motive force of the approaching action potential. The resulting change in relative

sodium density across the cell membrane results in a local depolarization, which in

turn causes more sodium channels to open, forming a positive feedback loop (Hall,

1992). In this way the leading edge of the action potential is propagated: As depo-

larization increases at one locale, it spreads as a weaker depolarization further down,

triggering sodium channels there to open, and so forth all the way down the axon.

First, we identify the explanandum. The explanandum causes are the approach of

the leading edge of the action potential and the initial resting conditions (the equi-

librium sodium concentration; the location and orientation of the ion channels, etc.).

The explanandum effects are the radical local depolarization (the peak of the action

potential, and its movement) and the increase in the intracellular concentrations of

sodium.

Second, the entities and activities. The first is the relative charge across the cell

membrane, the membrane potential (V ). The voltage sensor S4 detects changes in

the trans-membrane voltage by providing a charge to be impelled; hence the S4 can

move outwards from the cell membrane (m). The gate S6 can undergo a conformance

change, bending like a straw, opening and closing the channel and making it more or

less conductive to sodium (g). Finally, sodium ions can flow across the membrane in
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greater or lesser quantity (I).20

Third, the interactions. The membrane potential impels the voltage sensor slightly

out of the cell (V → m). The movement of S4 triggers a conformance change in S6

(m→ g). The conformance change opens the channel to the movement of sodium ions

(g → I). The membrane potential pushes the sodium ions through the open channels

(V → I). Finally, the movement of sodium ions directly alters the membrane potential

(I → V ).

xxxxxxxxx

V

m

g

I

Figure 4.12: A model of the mechanism of axon depolarization during an action
potential.

These interactions are combined in the model of Figure 4.12. Notice that we

identified particular states of the membrane potential as both explanandum cause

and explanandum effect: We asked, how is it that a slight upward disturbance in the

membrane potential can rapidly and radically amplify itself? Thus, we are asking

for the mechanism for a self-triggering positive feedback mechanism—we should not

surprised to see that A is both explanandum cause and explanandum effect.

Not in the model, however, are the initial conditions nor the final conditions. The

location and orientation of the ion channels is implied by the causal dependencies

in the graph: If the orientation or location were otherwise, then the the causal de-

20The variables were chosen to align with the choices of Hodgkin & Huxley (1952d).
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pendencies exhibited by the axon would be quite different. But Machamer, Darden,

& Craver also specify the initial states of the activity-component pairs as part of

the explanandum cause. Representing these initial and final states requires a func-

tional model. Graphical models cannot themselves represent the functional relations

among activity-component pairs—they can only demonstrate that such relations ex-

ist. To complete the model, we require a functional model that spells out the observed

mathematical relationship among the active entities during experimental interven-

tions. Once we have done so, we will have accounted for the initial and final states

of the activity-component pairs. Indeed, we will find that Hodgkin & Huxley (1952d,

pp. 504–507,512) have already done this work for us with their mathematical model

relating the membrane potential to ion current:21

I = gV

g = m3hḡ

dm

dt
∝ V

The first equation claims that the sodium current is proportional to the sodium

channel conductance and the deviation of the membrane potential from rest; the

second that the channel conductance is proportional to the third power of m, which

Hodgkin and Huxley interpreted as representing what we now call the gating charge—

effectively a representation of the outward movement of S4; and h which represents

gate inactivation (which is not part of the mechanism for depolarization, but for the

later hyperpolarization), and a constant. The third entry above summarizes Hodgkin

and Huxley’s demonstration in a sequence of equations that m is a function of and

proportional to the membrane potential.22

21The Hodgkin and Huxley model is of course comprehensive over sodium and potassium currents,
as well as leakage, capacitance, and other electrical currents. I focus here on only the part of the
model dealing with sodium, and so leave off the relevant subscripts.

22The change in m is a complex function of V . I have summarized the function by simply noting
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To this, we need only add Ohm’s law:

V = I
1

g

which claims that voltage is proportional to current and inversely proportional to

conductance. Given causal interpretations, in which the variable on the left-hand side

is read to be an effect of the variables on the right-hand side, these equations serve

as a functional adjunct to the graphical model in Figure 4.12. Notice, in particular,

that although I have derived the graphical model from a narrative description of the

mechanism, we could have derived just the same model directly from this functional

model, once given a causal interpretation. This kind of convergence speaks to the

descriptive and quantitative adequacy of my account of the manipulated mechanism

4.4 Conclusion

Formal systems are, by their very nature, uninterpreted: Rich in syntax but devoid of

semantics. But accounts of mechanism are not, nor can they be, purely formal enter-

prises. A semantics is thus required to apply causal models to the job of mechanistic

explanation. A complete quantitative account of mechanism should bring together

the syntax of a formal framework for causal reasoning, and the semantics of qual-

itative accounts of mechanisms. Previous work on the rapprochement have faltered

either because they have unfettered themselves from the qualitative constraints of

mechanistic explanation, or the formal elements of manipulationism. In this chapter,

I have considered a two new elements for the rapprochement that neglect neither the

syntax nor the semantics, the Interactivity View, and Graphical M-Separation (with

its testing procedure Etiological Mutual Manipulability). The Manipulated Mecha-

nism, as I call my account, retains the descriptive strength of Machamer, Darden, &

that the change in m is proportional to V to avoid bogging the discussion down in arcane details.

135



Craver (2000) and Glennan (1996) and the prescriptive strength of Woodward (2003).

In this way, manipulationism and causal modeling open the door to a wide range of

prescriptive and normative enterprises: evaluating mechanistic explanations, judging

when a component is or is not part of a mechanism and hence its relevance to an

explanation, and using experimentation to discover mechanisms.

I turn now to defend the rapprochement developed here against a recent and com-

pelling objection raised against Woodward’s manipulationism: That the rapproche-

ment require mechanisms to be modular, where in fact very few mechanisms actually

are.
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Chapter 5

The Principle of Modularity

My account of the manipulated mechanism is founded on Woodward’s manipulation-

ist account of causal relevance. My account, therefore, inherits the assumptions of

manipulationism. Central among the assumptions of manipulationism is the princi-

ple of modularity, which is (roughly) the assumption that we can intervene into the

various parts of a mechanism independently of each other. Modularity faces a number

of challenges, but in my opinion they each rest on a failure to satisfactorily pin down

the idea motivating modularity. Some turn on intuitive notions orthogonal to the

intuitions behind modularity. Some include in the concept of modularity additional

very strong assumptions. In this chapter, I set up a defense of modularity by trying

to be explicit about this central bridge principle, to understand the causal intuitions

driving it, to lay out its various formulations, and to lay out its working parts so

that we can know which objections strike at its heart, and which are irrelevant to

our ability to make inferences on the basis of causal interventions. By the end of the

chapter, I will defend Woodward’s Probabilistic Modularity as the right articulation

of modularity to found a defense of modularity.1

1With thanks to Craver (personal communication) for helping articulate the goal of this chapter.
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I perform an experiment, and conclude from the resulting data that the indepen-

dent variable must be a cause of the dependent variable.2 But to draw this conclusion

I need an assumption or assumptions that permit me to move from a set of observed

correlations to a causal claim—after all, correlation does not (alone) imply causa-

tion.In this chapter, I explore the assumptions necessary for this kind of inference,

and focus my attention on one controversial assumption known as modularity.

In §5.1, I examine why we might think experimental manipulation is a good form

of causal inference. I begin by articulating what I take to be a basic intuition about

how causal relations behave during an experimental manipulation, namely that the

correlations generated by causal connections are robust in a way that merely acci-

dental correlations are not, and that therefore causal correlations will survive at least

some experimental manipulation where accidental correlations will not. This intuition

gives rise to two assumptions. The first assumption, which I call the asymmetry of

causal correlation (ACC) is that causal correlations will survive experimental ma-

nipulation of the cause only; the second assumption, which I call the symmetry of

accidental correlation (SAC) states that accidental correlations will not survive ex-

perimental manipulation of either correlate. I argue that (SAC) is the most basic

articulation of modularity: That interventions should be able to break the correlations

linking the intervened-upon entity from its non-effects.

But, (ACC) and (SAC) are not themselves useful for causal inference in the real

world. Instead, we need a modularity principle that builds upon (SAC), that can

connect our intuitions about causal correlations to formal systems of inference. Many

2Of course, our conclusions will be more carefully couched than this simple gloss. But this is
nevertheless the kind of positive conclusion I would like to be able to make, and so I run with
it. The couching and qualifying of biologists’ actual conclusions largely stem from difficulties in
the analysis of the experimental data (and a general conservative hesitance). Statistical methods
require assumptions that can’t always be guaranteed, and the results of statistical analysis are always
probabilistic in nature. Assuming that statistical methods can return reliable, incontrovertible results
is obviously a gross idealization on my part, but it gets the ball rolling as a limiting case.
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authors (Fodor, 1983; Cooley & Leroy, 1985; Hausman & Woodward, 1999) have

offered a broad range of more nuanced modularity principles; a somewhat confusing

accident of the literature is that each has called their own version “modularity”.

But each author augments (SAC) in a different way, and to a different degree. In

§5.2, I lay out some of the most well-known versions of modularity, show how each

is in some sense analogous to (SAC), and how each varies from either the intuitions

behind or the inferential purpose of (SAC). Most of these principles have too-specific

subjects to be of general interest, or do not in themselves license causal inference from

experimental manipulation. As such, these principles are not workable for purposes

of manipulationist causal inference, and are not appropriate targets for the critics of

modularity.

On the other hand, Woodward’s (2003) Probabilistic Modularity (PM) was for-

mulated specifically for experimental inference and is the centerpiece of his manip-

ulationist framework—and by extension of the manipulated mechanism as well. In

§5.3, I argue that it offers a bridge principle that links experimental observation

with causal inference, unlike the principles considered in the previous section, and is

therefore the right articulation to defend. I argue that (PM) is a workable modularity

principle that describes our modular intuitions, and licenses causal inferences from

experimental manipulation in the same way as (SAC). My argument proceeds by

analyzing Woodward’s probabilistic modularity into two distinct principles, which I

helpfully label (PMa) and (PMb). (PMa) bears a strong resemblance to (SAC),

but (PMb) is not itself a modularity principle.

In the following chapter, I will show that some objections to modularity are really

objections to the non-modularity principle (PMb) contained within (PM), and that

we can avoid these objections by jettisoning (PMb). Other objections work as objec-

tions to (PMa), however. In the final two chapters, I will show that these objections
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rest on a misconstrual of the metaphysical demands of modularity. At any rate, my

goal in this chapter is to get maximally clear as to what modularity is, to show how

various articulations of it relate to each other, and to set up the defense of modularity

executed in following three chapters.

5.1 Modular Intuitions

Before we can select a formulation of modularity to defend, let us step back to consider

what a modularity principle is, and why we need one for inference from experimental

manipulation. I begin by examining two basic intuitions about causal relations, and

derive from them two basic principles (ACC) and (SAC). (SAC) is of particular

interest, as it is the most basic formulation of a modularity principle; getting clear

on the role that (SAC) plays in causal inference in toy systems will serve as a useful

foundation for evaluating the more nuanced modularity principles I examine in the

next section.

We often think that when one thing causes another, that the two will exhibit some

correlation. Indeed, this is likely the only direct evidence we could possibly have for a

causal relation. But correlation alone is not enough to infer causation, because there

are many non-causal reasons why two things might be correlated (see Haig, 2003, for

an overview of different kinds of non-causal correlation). Accidental correlations are

profligate: As Sober (2001) famously observed, the price of bread is closely correlated

with the sea level in Venice. Accidental correlations can also arise from a common

cause. Thus, we need a procedure for filtering causal correlation—the kind that arises

when one correlate is the cause of the other—from these other kinds of correlation

(which I will lump together under the heading of ‘accidental correlations’).

Biologists have long considered experimental manipulation a useful method for
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filtering accidental correlations from causal correlations. In general, experimental in-

ference works something like this: When I manipulate A, and I observe that B is

correlated with my intervention into A, then I conclude that my manipulation of A

brought about the changes in B—that A causes B. The presumption is that there is

something about the act of intervention that permits us to conclude that the correla-

tion between A and B is not accidental. This assumption begins to find modern form

in Mill’s (1843) Methods, and lies at the heart of accounts by von Wright (1971),

Menzies & Price (1993), Pearl (2000), and Woodward (2003).3

The experimental mode of inference rests on two assumptions that revolve around

intuitions that experimental interventions are somehow special, in that whatever cor-

relates with an intervention must have been caused by that intervention. Put slightly

differently, experimental inference relies on the idea that accidental correlations are

fragile and do not survive experimental manipulation, where causal correlations are

robust and do survive experimental manipulation.

The first intuition is that causes are difference makers. Introducing a change into

a cause will introduce changes into its effects4, and these changes will be correlated

(when they occur). Building on this intuition, the first assumption is that when one

thing5 is a cause of a second and the two are correlated, then the correlation between

the two will survive interventions into the first, the cause. Call this assumption the

asymmetry of causal correlation or (ACC).

3Of course, the causal Markov condition (described in Section 1.1) is another method for sorting
correlations that arise from common causes from directly causal correlations (although it requires
an assumption that other kinds of accidental correlation do not arise). I consider the relationship
between the causal Markov condition, and the principles underlying experimental manipulation in
Chapter 6.

4Roughly. I am explicating an intuition, not offering a rigorous account of causation. I, for now,
ignore issues about cancelation of effects, transitivity, and other ways that wiggling a cause might
not lead to a wiggle in the effect.

5I use the deliberately ambiguous term ‘thing’ here as a placeholder for whatever we decide
causal relata to be; here we are after a sign of the causal relation, and so the nature of the relata
doesn’t yet concern us.
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The second intuition is that accidental correlations are not a channel through

which we can exert control; this is a hallmark of causal relations only. Introducing a

change into an accidental correlate will not introduce changes in the other correlate.

Building on this intuition, the second assumption is that when one thing is not a

cause of a second and the two are correlated, then the correlation between the two

will disappear under interventions into the first. Call this assumption the symmetry

of accidental correlation or (SAC).

(SAC) is amodularity principle. It captures the important if perhaps less common

intuition that causes are the kind of thing that we can get ahold of independently

of each other—that causes are, in some vague sense, modules. Suppose we have two

(causally unrelated) causes before us: Our intuition is that the way we manipulate

one of the causes places no constraints on how we can manipulate the second cause. If

these two are not causally related, (SAC) tells us that any correlation between them

will disappear once we intervene into either one of them. But, if the manipulation

of one created constraints on how we could manipulate the second, these constraints

would appear as a correlation, an outcome that (SAC) specifically rules out. To offer

a simplistic illustration, suppose I have before me two knobs. There’s no reason why

I couldn’t turn both of them this way and that in precisely the same way. But I

could also rotate each of the two knob any way I choose, without one knob being

constrained by the movement of the other. I can manipulate them independently of

each other.

(ACC) and (SAC) together form the foundation of a (rather primitive) system

of causal inference from experimental manipulation. This foundation, as we shall see,

is very weak: To accomplish any kind of inferential heavy-lifting, (ACC) and (SAC)

will have to be strengthened considerably, and they must be supplemented with ad-

ditional assumptions about the nature of interventions. But (ACC) and (SAC) will
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work in simple toy systems; and insofar as they get the very simplest cases right, then

(ACC) and (SAC) are good building blocks to start from.

To provide a simple illustration of how (ACC) and (SAC) work, suppose again

a system comprising two variables A and B. In such a system there are four possible

causal relations among A and B: A can cause B, B can cause A, they can both cause

each other, or neither is a cause of the other. Moreover, assume that A correlates

with B. The question is, given given the correlational data resulting from a pair of

interventions—one on A and one on B, how can we derive the cause structure of the

system?

Table 5.1: Using (ACC) and (SAC) to map experimental correlations to causal
structure.

A 6↔ B A→ B A← B A↔ B

set(A) ⊥ B X X

set(A) 6⊥ B X X

A ⊥ set(B) X X

A 6⊥ set(B) X X

(ACC), recall, says that causal correlations survive interventions into the cause,

but not the effect. (SAC) says that accidental correlations do not survive interven-

tions into either relata. So, if an intervention into A does not correlate with B, then

(ACC) permits us to conclude that A must not be a cause of B; if an intervention

into B does not correlate with A, then (ACC) permits us to conclude that B must

not be a cause of A. Likewise, of an intervention into A does correlate with B, then

(SAC) permits us to conclude that A is a cause a B; if an intervention into B does

correlate with A, then (SAC) permits us to conclude that B is a cause of A. Table

5.1 summarizes these results; along the top of the table are the possible causal con-
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nections among A and B; along the left are the four possible experimental outcomes

(with ‘set(A)’ indicating an intervention into A, ‘ 6⊥’ indicating correlation, and ‘⊥’

indicating a lack of correlation). The check-marks in the table indicate, according

to (SAC) and (ACC), which set of experimental correlations match each possible

causal structure.

Thus, at least in this toy system, having a modularity principle (namely, (SAC))

is necessary for causal inference from experimental manipulation (in conjunction with

(ACC), of course). The centrality of (SAC) in causal reasoning can be brought out

by considering failures of the principle.

Failures of (SAC) and (ACC)

The conditions under which a principle is violated can be instructive for assessing the

principle’s usefulness.

Violations of (ACC) lead us to falsely classify causal correlations as accidental.

(ACC) says that if A and B are correlated, and A is a cause of B, then the cor-

relation will survive interventions into A. Thus, (ACC) is violated when A and B

are correlated, A is a cause of B, and the correlation disappears under interventions

into A. Under these conditions, we could not conclude (on the basis of (ACC) alone)

that A was not a cause of B. Violations of (ACC) deny us causal knowledge, but

do not lead us to falsely posit a causal connection where non exists. If we take as a

reasonable default view that we should assume two things6 are not causally related

until we have positive evidence otherwise, then although violations of (ACC) will

lead us astray, they will leave us with overly conservative causal models.

Violations of (SAC) lead us to falsely classify accidental correlations as causal.

(SAC) says that if A and B are correlated, and neither A nor B is a cause of

6. . . events, properties, what have you. . .
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the other, then the correlation will disappear under interventions into either. Thus,

(SAC) is violated when A and B are correlated, neither is a cause of the other, and

the correlation remains during an intervention into one or the other. Under these

conditions, we would conclude (on the basis of (SAC) alone) that A was a cause of

B. Violations of (SAC) make causal connections appear to be more common than

they in fact are. Again, if we take as a default view that we should assume two things

are not causally related until we have positive evidence otherwise, then violations

of (SAC) provide false positive evidence, and leave us with causal models with too

many causal connections.

Violations of (ACC) leave us lacking in causal knowledge, which is certainly a

loss. So long as (ACC) isn’t violated in every instance, we can still learn something

true about the causal structure of the world—we are left with no doubts about the

causal links we do include in our models. But violations of (SAC) leave us with too

many causal connections. Even if (SAC) is violated occasionally, we are left with

doubts about the causal links we include in our models. Thus, if we have independent

reason to think that (SAC) might be violated, then we also have reason to doubt

the causal models that we construct using it, and hence the entire system of inference

that relies on it. If we were to discover that (ACC) were frequently violated, we

might wonder what our causal models of the world were missing, but such violations

would not cast doubt on previous inferences. On the other hand, if we were to discover

that (SAC) were frequently violated, such violations would cast doubt on previous

inferences, for we would have reason to think at least some of them are unjustified. For

this reason, violations of (SAC) are far more pernicious than violations of (ACC).

The diagnostic conclusion to draw from considering the conditions under which

(SAC) fails is this; That (SAC) is an inferential safeguard that justifies our inference

to causal links using (ACC) or similar principles. Without a modularity principle
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like (SAC), we could not justifiably include any causal link in our models.

So far, we have only considered toy systems comprising two variables. Causal infer-

ence in more realistically complex systems requires taking on additional assumptions.

I offer (ACC) and (SAC) as a starting point for thinking about modularity, what

it can do for us, and what it requires. (SAC) in particular gets at the central idea

behind modularity, and my discussion of it in this section is not meant as a weighty

treatise on causal reasoning, but as a way of getting as clear as possible about the

role that modularity plays in causal inference from experimental manipulation. Thus,

having examined the most basic modularity principle, (SAC), I turn now to examine

more nuanced modularity principles.

5.2 Disambiguating ‘Modularity’

A defense of modularity requires a clear statement of the principle to defend. Having

considered the overly simple modularity principle, (SAC), I turn now to consider

more sophisticated modularity principle formulations: Fodorian modularity, develop-

mental modularity, and Woodward-Hausman modularity.

Fodorian Modularity

First allow me to clear away a confusion that will likely occur to readers familiar

with Fodor’s work. Though Fodorian modularity can support certain kinds of causal

inference, his idea of modularity is almost entirely distinct from the kind of modu-

larity I am concerned with. Fodorian modularity is a domain-specific, coarse-grained

principle, where modularity in the sense discussed in the previous section is a domain-

general, fine-grained principle.

Fodorian modularity is domain-specific. Fodor is interested in issues of cognitive,
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rather than causal, structure and organization. “Roughly,” Fodor tells us, “modular

cognitive systems are domain specific, innately specified, hardwired, autonomous,

and not assembled”—but they are especially informationally encapsulated (Fodor,

1983). Fodor has crafted his list of attributes to characterize cognitive systems, unlike

(SAC), which is crafted to describe causal systems generally.

Fodorian modularity is coarse-grained. Fodorian modules are computational, en-

compassing mechanisms at many levels (in the mechanistic sense of Craver (2007)).

To perform one cognitive function will require a great many causal interactions among

neurons, each of which will comprise many causal interactions at the molecular level,

and so on. Fodorian modularity does not require anything of these lower-level sys-

tems; nor does it require anything of higher-level systems comprising many Fodorian

modules. In contrast, (SAC) is concerned with causal systems at any level of gran-

ularity.

That said, Fodorian modularity and (SAC) are related, and this relation is worth

noting. A Fodorian module is strongly independent of other parts of the mind (mod-

ules or not). The interactions—surely a causal relation—between a Fodorian module

and other parts of the brain are narrow and restricted—this is the essence of informa-

tional encapsulation. What makes a Fodorian module a module at all is that the inner

details are utterly opaque to the rest of the system. In this way, the rest of the system,

insofar as it depends on a particular module, would not be the least disrupted if that

module were replaced with a second module providing the same interface, but com-

prising radically different internal workings. Thus, we could intervene into a Fodorian

module so as to disrupt any accidental correlations with other modules. But where

(SAC) makes this kind of claim of any causal system, Fodorian modularity makes

this claim only of cognitive systems, and only at the level of cognitive modules.

Thus, despite the similarities to (SAC), Fodorian modularity is too narrow for
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the purposes of general causal inference. There is no reason to think that only in-

formationally encapsulated entities can satisfy modularity, as I use the term. Unlike

Fodorian modules, most causal systems do not involve the transmission or transduc-

tion of a signal, and when they do, there is no reason to think that signal must be of

narrow bandwidth. Genes, as I will discuss below, are often thought to be modular,

that is, independent of one another. But, Griffiths (2001) has argued that genes do

not encode information—yet the success of Griffiths’s argument surely does not un-

dermine the causal independence of genes. So, even if we extend Fodorian modularity

to cover non-cognitive systems, its central requirement that modules be processors of

information is yet too strong for his principle to apply to the kinds of biological cases

we are interested in. Thus, when I talk of modularity, I am not speaking of Fodorian

modularity.

Developmental Modularity

Modularity plays a central role in the emerging field of evolutionary-development

biology (evo-devo). Seeking to understand the evolutionary history of a phenotype,

evo-devo researchers compare the development of related phenotypes across species.

The patterns on butterfly and moth wings have provided a fruitful case study for

evo-devo researchers. These patterns appear to be composed from genetic building

blocks—the pattern elements (e.g. coloration, geometry, and repetition) are, in many

cases, encoded in distinct genes such that researchers can manipulate one pattern ele-

ment, leaving the remainder intact. For example, the size of eye-spots on the forewings

is independent of the size (or existence) or eye-spots on the hindwings; the coloration

of the eye-spot can vary between the forewings and hindwings as well, but these pat-

tern elements cannot be varied between the left and right forewings, or the left and

right hindwings. (Beldade & Brakefield, 2002).
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These patterns are encoded separately, develop (more or less) independently, and

are thus thought to have evolved independently as well. Thus, researchers as Wagner,

Pavlicev, & Cheverud (2007) call them modules. “A network of interactions,” Wag-

ner, Pavlicev, & Cheverud tell us, “is called [developmentally] modular if it is subdi-

vided into relatively autonomous, internally highly connected components” (Wagner,

Pavlicev, & Cheverud, 2007, p. 921).7 This definition share much in common with

(SAC). The general idea is that if a phenotype is developmentally modular, then we

can intervene into that phenotype independently of the organism’s other phenotypes.

Unlike Fodorian modularity, developmental modularity is not domain-specific:

Wagner’s definition makes no reference to genes, phenotypes, or any other biology-

specific entity. But like Fodorian modularity, and unlike (SAC), it is restricted to

fairly coarse-grained systems. On Wagner’s view, modularity is a property of a ‘net-

work of interactions’; but (SAC) is a claim about single interactions. Developmental

modularity is a metric for subdividing a complex into simpler parts based on observed

features (in a similar manner to Simon’s (1962) notion of near-decomposability),

where (SAC) is a claim about individual correlations during an intervention.

A

B

Figure 5.1: A developmental modular system, comprising two modules ‘A’ and ‘B’.

7I used the term ‘developmental modularity’ for purposes of disambiguation only: Nothing hangs
on the word choice.
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Figure 5.2: A non-developmental modular system.

To illustrate the difference, consider the two causal systems represented in Fig-

ures 5.1 and 5.2. The system represented in Figure 5.1 is developmentally modular,

because it can be subdivided into two developmental modules, which I have labeled

‘A’ and ‘B’, according to the relative density of causal interactions among the nodes

in each module: The components are clustered into modules that have more internal

connections than external. The system represented in Figure 5.2 is not developmen-

tally modular, because it cannot be subdivided into developmental modules, because

it is fully interconnected: There is no subgraph in the system that has more internal

connections than external.

Yet (SAC) is not a claim about systems, but about individual correlations. An

accidental correlation will satisfy (SAC) when it disappears under interventions to

one or the other correlate. A causal correlation will satisfy (SAC) when it disappears

under interventions into the effect. Thus, either of the system in Figure 5.1 and 5.2

might contain correlations that satisfy or fail to satisfy (SAC).

Thus, developmental modularity is distinct from the kind of modularity repre-

sented by (SAC). Developmental modularity is a metric for clustering systems of

interacting entities; the kind of modularity I am after is a principle for discriminating
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accidental from causal correlation.

Woodward-Hausman Modularity

The notion of modularity articulated by Hausman & Woodward (1999, 2004a,b);

Woodward (1999, 2002, 2003) is related to, but distinct from the two principles dis-

cussed above. Woodward-Hausman modularity8 is a general principle that places

constraints on interventions into a causal system.

Modularity should be understood as claiming that for each [component]

there will be some range of interventions (interventions that are of the

“right kind” and not “too big” that disrupt only the relationship between

[that component] and its direct causes and no others in the system of

interest. We take this to be a substantive claim concerning the nature of

causation. . . . (Hausman & Woodward, 2004a, p. 850)

On their view, modularity is a general, abstract claim that causal inference requires

that each component in a causal system be independently manipulable, that is, that

we can intervene into each component without disrupting the rest of the system.

The worry against which modularity ensures is easy to see: If our interventions did

disrupt a causal system extensively, then we would not be warranted in drawing

any causal conclusions from our intervention. If an intervention into a metabolic

pathway utterly destroys it, we would be nevertheless mistaken to then claim that

the pathway’s precursors cause its destruction.

Notice in particular what Woodward-Hausman modularity does not say. It says

nothing about what a component is, anything about how richly that component is

interconnected with others, how it processes information, or whether it is in any sense

8Again, I qualify the label only to ease disambiguation.
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opaque or atomic. Woodward-Hausman modularity, unlike Fodorian modularity or

developmental modularity, is not a claim about the overall structure of a system, but

is a constraint placed on individual causal links within that system. In particular,

it requires that if two components are causally correlated, then that correlation will

disappear during an intervention into the effect. A system is modular if and only if

each component is modular in this way.

In this sense, and again unlike Fodorian or developmental modularity, Hausman-

Woodward modularity has a commonality with (SAC), in that both place the same

constraints on interventions into the effect of a cause-effect pair. This particular ex-

pression of Hausman-Woodward modularity does not, however, make any claims

about accidental correlations, and whether they survive or disappear under inter-

vention. As such, it is a principle for determining the direction of causation from

interventions into causal correlations, and so can sort accidental correlations arising

from common causes from causal correlations, but it does not yet permit us to sort

all accidental correlations from causal correlations.

Woodward-Hausman modularity is a good first step towards a general formulation

of a modularity principle. Unlike Fodorian or developmental modularity, it captures at

least part of the intuition that we can sort different correlations via intervention. I turn

now to consider a refinement on Woodward-Hausman modularity, called probabilistic

modularity. Probabilistic modularity is of interest because it permits distinguishing

purely coincidental correlations from causal relations, and because it provides an

explicit bridge between observed correlations and causal models.
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5.3 Woodward’s Probabilistic Modularity

Woodward’s (2003) manipulationist view of causal relevance is designed around the

idea that experimental intervention is one way to discover causal relations. The con-

cept of modularity, in the sense of a principle for sorting accidental from causal cor-

relations, figures prominently in his account of causal relevance. Woodward provides

a refinement on Woodward-Hausman modularity, that he calls probabilistic modu-

larity, or (PM). In this section, I will argue that because (PM) licenses the same

range of causal inferences as (SAC), (PM) is a modularity principle of the kind we

are looking for. Moreover, that it can act as a bridge principle linking probabilistic

dependencies with graphical dependences, (PM) has the right features to serve as

a modularity principle for the manipulated mechanism. I will also argue, however,

that (PM) contains much more than a modularity principle, and in the next chapter

that this addition is extra baggage that makes (PM) an easy target for critics of

modularity.

Woodward’s (PM) makes explicit how to represent the results of interventions

in causal graphs. Specifically, (PM) claims that, in a correct causal model, the par-

ents (direct causes) of a variable (or set of variables) will screen that variable from

interventions into any other variable or set of variables.

(PM) Suppose a set of variables V, and Z, Y ∈ V, and Z is distinct from Y . Then

∀Y ∀ZP (Y | parents(Y )) = P (Y | parents(Y )& set(Z))

(Woodward, 2003, p. 340).

(PM) captures the idea that given a variable B, and the set of B’s direct causes

(parents(B)), interventions into some distinct variable A won’t disrupt those causal

relationships—they will survive an intervention into A, even when A is among B’s di-
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rect causes. To give a dramatic if overly simple example, whatever causal relationship

exists between the location of the moon and the changing of the tides, my exper-

imental intervention into a squid giant axon preparation will not alter that causal

relationship. (And if, somehow, magically, they did, wouldn’t we wonder if there was

a causal connection linking the two after all?)

Given that a dependency (the probabilistic analog to a statistical correlation) be-

tween A and B could arise when A causes B, and given that interventions represented

by the set operator cut the causes of the intervened into variables, then (PM) tells

us that whatever variables correlate with the intervention are effects of that inter-

vention. Thus, it appears that (PM) justifies drawing causal conclusions from the

dependencies that arise during an experiment, and hence justifies the same range of

causal inferences as does (SAC). I turn now to argue this point.

The Range of Causal Inference Licensed by (PM)

(PM) can be analyzed, as I will show, into two distinct principles. These principles

are graph-theoretic analogs to (SAC) and (ACC). Because (SAC) is a modularity

principle, its analog in (PM) is a modularity principle too, because it licenses the

same kinds of inference. (ACC) is not a modularity principle, so (PM), qua modu-

larity principle, is carrying around some extra baggage. The significance of this extra

baggage will become apparent in the next chapter, when I show that some attacks on

(PM), qua modularity principle, find purchase only in the analog of (ACC), which

is not a modularity principle. For now, the important point is that (PM) is in fact

a modularity principle, and as a bridge principle linking experimental manipulation

with causal graphs, is a candidate formulation of modularity that we can use as a

starting point for defending modularity as a general inferential principle.

(PM), as formulated above, claims that interventions into some variable B will
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be independent of every other distinct variable A, conditional on A’s direct causes.

This way of putting it suggests four different cases for evaluating (PM): When B is

a direct cause of A (when B is a member of parents(A)), when B is an indirect cause

of A (when B is a cause but not in parents(A), when B is an effect of A, and when

B is neither a cause nor an effect of A.

AB AB

I

Figure 5.3: B is a cause of A, but an intervention into A breaks the arrow leading from
B into A, representing the idea that interventions should render the intervened-into
variable independent of its non-effects.

Case 1 B is a cause of A. (PM) claims that B’s parents screen B from set(A). In-

terventions represented by the set operator are what Woodward calls arrow-breaking,

and what Eberhardt & Scheines (2007) call structural. Such interventions into A cut

A off from its causes, as in Figure 5.3. So, where B was a cause of A, set(A) has

no causes in the model (including B). So, if B depends on A, such a dependance

must be coincidental (since neither can B and set(A) share a common cause). But,

since conditioning on parents(B) could not render B independent of A, there is no

reason to think that parents(B) should screen B from set(A). How could cutting off

the causes of A suddenly render B’s parents relevant? But (PM) claims that B and

set(A) are independent given B’s parents. So, if this independence relation holds, it

must be because B is independent unconditionally9 of set(A). Thus, for this case,

(PM) is a stipulation that an intervention into A, in virtue of cutting A from its

9See §1.1 for a discussion of dependence, conditional and unconditional.
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causes, renders A unconditionally independent of its parents. Thus, (PM) entails

that B ⊥ set(A).

AB AB

I

Figure 5.4: Neither Y nor A cause each other.

Case 2 Neither B nor A is a cause of the other. This case turns out to be no

different than Case 1, as illustrated in Figure 5.4. In Case 1, B was a cause of A, but

intervening into A broke that causal connection under the stipulation that B was not

a cause of set(A). When B is already not a cause of A, then B is also not a cause of

set(A)10, and the same logic applies: B’s parents are irrelevant to the independence of

B and set(A), even when B and A share a common cause. Thus, since (PM) claims

that B is independent of set(A) conditional on parents(B), that independence must

hold because B is unconditionally independent of set(A). Thus, again, (PM) entails

that B ⊥ set(A).

If we combine the results of Case 1 and Case 2, we get an interesting result: In

neither case is A a cause (direct or indirect) of B. Thus, (PM) entails that if A does

not cause B, then B ⊥ set(A).

But what when A is a cause of B?

Case 3 A is a cause of B. A can be a direct cause of B, or just an indirect cause

of B. When A is an indirect cause, in the simplest case, A will be a direct cause of

10Note that it is not generally true that B will not be a cause of interventions into A; but (by
definition, see §1.2), B will not be a cause of ideal interventions into A, represented by the ‘set’
operator.
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some other variable that is itself a direct cause of B. More complex cases will involve

more intermediate variables. So, there are two sub-cases to consider.

AB AB

I

Figure 5.5: A is a direct cause of B.

Case 3.1 When A is a direct cause of B, as in Figure 5.5, then so too is set(A).

Since the parents of B contains of all B’s direct causes, then set(A) is in parents(B).

Therefore, parents(B) = (parents(B)& set(A)), and the conditional independence

claimed by (PM) holds trivially. Thus, (PM) entails that B ⊥ set(A)| parents(B).

AB AB

I

Figure 5.6: A is an indirect cause of B.

Case 3.2 When A is only an indirect cause of B, as in Figure 5.6, then (PM)

claims that B’s parents will screen it off from set(A). (PM) entails again that B ⊥

set(A)| parents(B).

Again, we can combine the two cases to get an interesting result, for in both cases

is A a cause of B, and in both cases (PM) entails the same result. (PM) entails,

therefore, that if A is a cause B, then B ⊥ set(A)| parents(B).
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We can formalize these two principles comprising (PM).

(PM) Suppose a set of variables V, and Z, Y ∈ V, and Z is distinct from Y . Then

∀Y ∀Z

(PMa) If Y is a non-descendant of Z, then Y ⊥ set(Z).

(PMb) If Y is a descendant of Z, Y ⊥ set(Z)| parents(Y ).

With this analysis of (PM), we can see clearly that (PMa) is a graph-theoretic

analog of (SAC). (SAC) claims that when A does not cause B and both are corre-

lated, interventions into A will not be correlated with B. (PMa) claims that when B

is not a descendant of A, then set(A) will be probabilistically independent of B. The

difference is twofold. First, the definition of the set operator carries additional as-

sumptions about what counts as an intervention, whereas (SAC) takes intervention

as an unanalyzed primitive. Second, (PMa), in making a claim about probabilistic

independence and graphical relations, brings the axioms of probability and graph

theory along as additional assumptions as well, where again (SAC) takes correlation

as an unanalyzed primitive concept. Thus, (PMa) is a modularity principle, and

because it contains (PMa), so too is (PM).

In addition to containing a modularity principle, (PM) contains something else:

(PMb), which is a graph theoretic analog of (ACC) (one that bears a close relation

to the Markov principle, as I will show in the next chapter). (PMb) claims that

when B is a descendant of A, then set(A) will be probabilistically independent of

B conditional on B’s parents. This is an important distinction, because it does not

entail that set(A) will necessarily depend on B (as (ACC) claims), but that B’s

parents will screen it from any intervention into A. I will have more to say about this

feature of (PMb) in the next chapter.
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5.4 Conclusion

In this chapter, I have aimed to make the assumption of modularity explicit and clear.

I have shown that causal inference from experimental manipulation requires two

assumptions, the asymmetry of causal correlation (ACC) and the symmetry of acci-

dental correlation, (SAC), and that of these two, (SAC) is best viewed as a primitive

articulation of the modularity principle.

I have argued, using (SAC) as a measuring stick, that many well-known principles

that happen to be called “modularity” do not in fact articulate the same intuitions

about causal inference that (SAC) does. I have also argued that one articulation,

Probabilistic Modularity (PM), due to Woodward (2003), does not only articulate

the right intuitions, but provides an explicit bridge from experimental observations

to the tools of causal modeling, making (PM) the best articulation of modularity to

use in my broader defense of modularity.

I have also argued, in the course of comparing (PM) to (SAC), that we can

usefully analyze (PM) into two distinct principles, (PMa), and (PMb). The first,

(PMa), articulates the same thesis as (SAC), making it a modularity principle,

where the second, (PMb) does not articulate the intuitions behind modularity; in-

stead, as I will show in the next chapter, it articulates a completely different idea,

that causes are Markovian in nature.

In the next chapter, I turn to consider a pair of arguments that criticize (PM) on

the grounds that it is closely bound up with another controversial principle, the causal

Markov condition. I will show that most of this criticism really falls on (PMb)—the

non-modularity principle half of (PM), and that these attacks present us with good

reason for dropping (PMb) from our analysis. The remaining attacks fall on (PMa),

but, as I will show, rely on an highly questionable assumption.
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In the final two chapters of the dissertation, I will present and argue for a princi-

pled account of modularity based on (PMa).

160



Chapter 6

Modularity and the Causal Markov

Condition

Modularity bears a close relationship to a distinct causal inference principle called

the causal Markov condition. Some authors, notably Nancy Cartwright, have argued

that there are many mechanisms in biology (and elsewhere) that violate the causal

Markov condition. Do these mechanisms also violate modularity, and if so, do they

pose a threat to my account of the Manipulated Mechanism? In this chapter, I argue

for two claims. The first claim is that my account of the Manipulated Mechanism

can account for mechanisms that violate the causal Markov condition. The second

claim is that Woodward’s (2003) articulation of modularity, (PM), although a good

first approximation of a formal modularity principle, is too strong as a principle of

modularity, and therefore needs to be weakened. These two claims are closely related.

Mechanisms that violate the causal Markov condition, I will argue, do not appear to

violate the intuitive notion of modularity presented in the previous chapter. But they

do sometimes violate (PM), in virtue of violating one of its components, a principle I

introduced in the previous chapter called (PMb). This tension suggests that (PMb)
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is not an expression of some facet of modularity, and does not therefore belong in

a formal articulation of modularity. I close the chapter by arguing for the rejection

of (PMb) as a part of a modularity principle, and for the more general claim that

modularity and the causal Markov condition are perhaps not so closely related as has

been thought.

Consider the following argument:

1. The Manipulated Mechanism requires Modularity.

2. Modularity implies the causal Markov condition.

3. Many (indeterministic) biological mechanisms violate the Markov condition.

4. Therefore many (indeterministic) biological mechanisms fall outside the scope

of the Manipulated Mechanism.

Insofar as biology and neuroscience are littered with indeterministic mechanisms, we

should like to avoid the conclusion of this argument. The first premise is straight-

forwardly true. The second premise has been offered and defended by Hausman &

Woodward (1999). Cartwright (1999a) has argued for the plausibility of the third. The

conclusion follows by repeated application of modus tolens. The above argument is

obviously valid, and is, as I will argue, sound—for certain readings of the modularity

principle, readings that I will argue are too strong. In this chapter, I will argue that

the conclusion can in fact be avoided, because the first premise is only true under

an overly strict reading of modularity, and because we can reformulate a weaker
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articulation of modularity that is less strict, rendering the third line false—and the

argument, therefore, unsound.

But first, consider a biological example. Patients infected with HIV typically, after

a period of latency, develop acquired immunodeficiency syndrome (AIDS), which is

characterized by a wide variety of symptoms resulting from opportunistic infections.

Within any given period in the typical range of clinical latency (typically between

several months and twenty years), it is a matter of probability as to whether a partic-

ular HIV-positive patient will develop AIDS. The HIV virus is the common cause of

the symptoms compresent in the syndrome, although the production of the symptoms

occurs through several paths, including the infection of CD4+ T-cells, macrophages,

and microglial cells. Nevertheless, because of the timecourse of AIDS, the symptoms

are all strongly correlated without being a cause of each other, such that having one

symptom is often a greater predictor of having other symptoms than is being HIV-

positive. Moreover, there is no single factor, not even T-cells, that we could point to

as a single process responsible for all of the symptoms, because HIV works through

many channels simultaneously (even though most symptoms do develop as a result

of a low T-cell count). (Wikipedia, 2010)

The interesting structural feature to this example is that there is a common

cause—HIV infection—with many effects—the various symptoms. Each effect has

a certain probability of appearing, and knowing that a patient is HIV-positive in-

creases the probability that any particular symptom is present. But the probability

that one particular symptom is present is increased even more when we know that a

patient has one or more other characteristic symptoms. Put slightly differently, if we

know that someone is HIV+, finding out that they have one symptom makes it even

more likely that they have a second, beyond knowing only that they were HIV+.1

1Thanks to Frederick Eberhardt for putting the point in this way.
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Thus:

S1 ← H+ → S2

but

Pr(S1|H
+) > P (S1)

(1)Pr(S1|S2&H
+) > P (S1|H

+)

This characterization of AIDS represents a failure of the screening off principle. A

variable (or set of variables) C screens one variable A from another B when, given the

state of C, finding out the state of B does not increase the probability of A occurring.

Put a little differently, B adds no information about the probable state of A beyond

what C already gives us. Recall from Chapter 1 that the causal Markov condition

entails that common causes screen their children from each other, that is, knowing

the common cause tells us everything there is to know about either of the effects, and

that learning something about one of the effects will not tell us anything new about

the other one. When Z is a sibling of X (and is not also an effect of X), then the

parents of X (which are, in this case, also the parents of Z) will screen X from Z.

Therefore, from (CM):

Pr(X| parents(X)) = Pr(X| parents(X)&Z)

But in the case of AIDS (from (1) above):

Pr(S1| parents(S1)) < Pr(S1| parents(S1)&S2)

The common-cause in this example, being HIV positive, fails to screen its effects

from each other, because the presence of one symptom is a better indicator of the

presence of other symptoms than is knowing a patient is HIV positive. The reason

is simple: Patients that are HIV positive may not yet—or ever—exhibit any symp-

toms of AIDS. But once one symptom develops, many others follow very quickly. So,
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although AIDS is a cause of the symptoms, knowing whether a patient has a partic-

ular symptom tells us more about whether that patient has any of the others.2 Thus,

AIDS violates the Markov condition. If my argument above is correct, then this is a

serious problem for my account of the Manipulated Mechanism, if it cannot account

for the mechanism for AIDS or other syndromes.

In this chapter, I consider the consequences for the modularity principle of fail-

ures of the causal Markov condition—exhibited, for example, by syndromes. In §6.1,

I present Hausman and Woodward’s argument that (PM), a formulation of the mod-

ularity principle, entails (CM), a formulation of the causal Markov condition. I also

present a reason to suspect the argument’s conclusion, namely that Hausman and

Woodward have misconstrued what it means to be an intervention in an indetermin-

istic system.

Then, I turn to consider two different kinds of causal structure that give life

to this suspicion, causal structures that violate (CM) without violating (PM). In

§6.2, I consider a class of examples similar to the AIDS example above offered by

Cartwright (1999a). These examples, which I call Polluting Factories, have a common

cause structure in which two effects are more closely correlated with each other than

with their common cause. I argue that Polluting Factories, despite violating (CM),

do not necessarily violate (PM).

In §6.3, I consider a different class of examples, which I call Degenerate Chains,

in which a remote, indirect effect appears to exert a causal influence across temporal

or physical gaps. For example, the 1989 Exxon Valdez oil spill is considered to have

had a direct influence on the 1993 collapse of the herring populations in Prince Henry

Sound, despite a large temporal and causal gap between the two events. I argue that

2Moreover, whether there is a single intermediate cause between the HIV infection and the
appearance of each symptom that could explain this correlation is an empirical question; even if we
might think such an intermediate cause was likely, there is no a priori reason why there must be
one.
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Degenerate Chains, like Polluting Factories, do not necessarily violate (PM).

On the basis of these two examples, I draw two conclusions. First, I argue that

(PM) does not entail (CM) because Hausman and Woodward’s reasoning rests on

a conceptual confusion about the relationship between indeterministic variation and

interventions. Second, I argue that, contrary to what we might conclude on the basis

of (PM), the contexts in which Polluting Factories and Degenerate Chains satisfy

(PM) are contexts that, ironically, seem to contradict the spirit of (PM), that

interventions should not disrupt the probability distribution within a model.

In §6.4 I resolve this tension by arguing that (PM), as a formulation of the

principle of modularity, is too strong, I draw upon my analysis of (PM) into (PMa)

and (PMb) from the previous chapter. I will argue, on the basis of these examples,

that (PMb) is not a proper part of the best analysis of modularity, and that we

should instead advert to (PMa) alone as our modularity principle. I will show that

(PMb) is a heavily conditionalized version of the causal Markov condition. But it has

the odd feature that, given some mechanism like a Polluting Factory or a Degenerate

Chain that violates the causal Markov condition, that interventions into certain parts

of those mechanisms should alter the mechanism to satisfy the Markov condition. Yet,

such an alteration seems to extend beyond the limited reach that interventions should

have, and indeed seems a violation of the very spirit of (PMb). I close the chapter

by concluding that a (PMb) is an ancillary principle, and not a part of modularity

itself.. I show that such a move does, unfortunately, increase the ambiguity of certain

kinds of causal inference, but does not yield false inferences about Polluting Factories,

as (PM) would. I also argue that the weakened condition is more consistent with the

spirit of the modularity condition.

In the next chapter, I turn to consider a class of arguments against modularity to

which (PMa) remains vulnerable: That modularity requires (or just is the require-
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ment) that the various components in a mechanism be independently manipulable.

6.1 An Argument that (PM) Entails (CM)

Let us begin by considering the first premise in the argument that opened this chapter:

1. Modularity entails the causal Markov condition.

The causal Markov condition, recall, connects causal graphs with probabilities—it

is a principle for deriving causal structure from observed correlations (see §1.1). The

Markov condition (notice that I have not said ‘the causal Markov condition’) states

that, in a directed graph, each variable (node) is independent of its non-descendants

conditional on its parents. Somewhat informally: Once we know the states of a vari-

able X’s parents, learning the state of any other variable (except those that are

descendants of X, and of course X itself) adds nothing to our knowledge of X. One

way to express this independence is to write:

Markov Condition Where Y is not a descendant of X,

Pr(X&Y | parents(X)) = Pr(X| parents(X)) · Pr(Y | parents(X)).

The Markov condition becomes the causal Markov condition when we interpret the

kinship relationships as causal relationships, i.e., ‘parent’ = ‘direct cause’, ‘ancestor’

= ‘direct or indirect cause’, &c.

Hausman & Woodward (1999) have argued for the claim that modularity entails

the causal Markov condition. Roughly speaking, their argument is that, because in-

terventions should not disrupt the causal structure of a system, then what is true

during an intervention is (ideally) true outside of an intervention as well. Modularity

places constraints on the causal structure during an intervention that are related to
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the constraints placed on causal structures by the causal Markov condition; then,

outside of any intervention, a modular system should therefore conform to the causal

Markov condition (should be, in the parlance, “Markovian”).

Here is their argument in detail. They begin by supposing we have some set of

variables V that we use to represent a causal structure, and offer a characterization

of what it means to intervene into a variable in this set. “[T]he relevant notion of an

intervention that sets the value of [any variable in V] X is,” they tell us, “(roughly)

just that of something that is a direct cause of X and that bears no causal relations

to the other variables under consideration except those that arise from its directly

causing X” (p. 535). Moreover, the intervention must be exogenous (must not have

a cause within the set of variables V), and it must be uncorrelated of every other

variable that is not a child of X. (p. 535–536)

Hausman & Woodward assume the following three principles (detailed below):

causal sufficiency; a principle that they call (CM1)3; and the principle that inter-

ventions can be treated as independent random variables (p. 573).

Causal sufficiency is the claim that we have not left out ofV any relevant common

causes (which could, if otherwise left out of V, create spurious correlations among

some variables.) (p. 527).

(CM1) is the claim that probabilistic dependence among variables must result

from a causal dependence among them:

(CM1) If X and Y are probabilistically dependent, then either X causes Y or Y

causes X or X and Y are effects of some common cause Z in the set of variables

V (p. 524).

3Hausman and Woodward use ‘CM’ to name principles related to the causal Markov condition,
and ‘PM’ to name principles related to modularity.
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Worth noting at this point is that (CM1) and causal sufficiency together entail that

all of the exogenous variables in V are independent of each other.

The principle that interventions can be treated as independent random variables

states simply that we can represent an intervention into X by replacing occurrences of

X in our model with a random variable setX. Moreover, interventions into X render

it independent of its parents (and indeed all of its non-descendants); so the claims

that setX is an independent random variable means that setX is unconditionally

independent of X’s descendants.

Hausman & Woodward then use the assumption that interventions can be treated

as independent random variables to construct a formal notion of modularity, which

they call Probabilistic Modularity, or just (PM).

(PM) When Z is any set of variables distinct from Y , and the values to which the

variables in Z are set lie within the relevant range, then

P (Y | parents(Y )) = P (Y | parents(Y )& setZ)

(p. 573). Equivalently:

Y ⊥ setZ| parents(Y ).

The intuition driving this formulation is simply that if we could not intervene into

Z independently of Y , then the probability distribution over Y conditional on Y ’s

parents would change when we intervened into Z. When we can intervene into Z

independently of any other variables, then (PM) holds for all Y . When we can

intervene into any variables independently of any other variable, then (PM) holds

also for all Z.

Enough premises: To the argument itself, then. Take any two distinct variables X

and Y in V; (PM) implies that Y is independent of interventions on X, given Y ’s
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parents (the direct causes of Y ) represented in V:

(6.1) P (Y | parents(Y )) = P (Y | parents(Y )& setX)

Now, if, in addition, X does not (directly or indirectly) cause Y , (PM) implies

that each ancestor of Y , Z, is also independent of interventions on X conditional on

its (Z’s) parents.

(6.2) P (Z| parents(Z)) = P (Z| parents(Z)& setX)

In other words, interventions on X render it independent of each and every of X’s

non-descendants.

Both (6.1) and (6.2) together imply that interventions into X are unconditionally

independent of Y . This holds for the following reason. If X were a cause of Y , then

we would expect that Y would be dependent on interventions on X; (PM) implies

that Y ’s causes will screen Y off from interventions on X in this case. But when

X is not among Y ’s ancestors, there are no variables ‘causally between’ X and Y .

Thus, there is nothing to screen off: interventions on X must be independent from Y

unconditionally. Hausman & Woodward call this result (MOD*).

(MOD*) For all distinct X and Y in V, if X does not cause Y , then

P (Y&setX) = P (Y ) · P (setX)

(p. 576).

(MOD*) claims that interventions into X render X independent of every other

variable, save X’s descendants. So far, so good.

Now, Hausman & Woodward ask us to back up for a moment, and consider what

happens when we hold parents(X) constant. If X is indeterministic, X can vary even

when we hold parents(X) fixed. “So in the circumstances in which parents(X) is
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unchanging,” Hausman & Woodward say, “either X varies spontaneously or because

of causes that have no causal relation to any other variables except in virtue of causing

X” (p. 576). Since we are holding parents(X) fixed, these additional causes of X must

not appear inV. At any rate, (CM1) and Causal Sufficiency ensure that each of these

sources of variation is unconditionally independent of every other exogenous variable,

and therefore count as interventions into X. That is, (CM1) and Causal Sufficiency

ensure that there is no source of indeterministic variation in X that does not also

meet the criteria for an intervention into X.

Thus, and this is the crucial turn in the argument, “since changes in X conditional

on parents(X) count as interventions with respect to Y , changes in X conditional on

parents(X) must be independent of the same things that set−X is independent of”

(p. 576). Therefore, the following bi-conditional holds, which I call Modular Markov,

or simply (MM)4:

(MM)

P (Y & setX) = P (Y ) · P (setX)

⇔

P (X |Y & parents(X)) = P (X | parents(X)).

Notice that the left-hand side of (MM) is (MOD*); Hausman & Woodward call

the principle on the right-hand side (CM2). Because Hausman & Woodward have

already argued for (MOD*), they conclude that (CM2) must therefore also hold.

Their final move is to notice that the Markov condition is simply the conjunction

of (CM1) and (CM2). Since Hausman and Woodward have assumed (CM1), and

4Hausman & Woodward call this bi-conditional ‘(=)’, which seems confusing. I have altered
their nomenclature for clarity.
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have derived (CM2) from (PM), then the conjunction of (CM1) and (PM) implies

the Markov condition. QED.

Thus have Hausman & Woodward argued from modularity in the guise of (PM)

(plus auxiliary assumptions) to the causal Markov condition; moreover, this argument

is designed to hold in indeterministic contexts (they provide a separate argument for

deterministic contexts that closely parallels this one).

A Weakness in the Argument

I first should note that other authors have raised problems for this argument. Steel

(2006) has argued that (CM1) is doing most of the heavy lifting in the argument,

and that (PM) is in fact superfluous. Cartwright (2002) has argued that both (PM)

and (CM2) are separately derivable from the background assumptions, and hence it

is a mistake to think that one therefore entails the other.

I raise a different issue for the argument. I am willing to entertain that (PM) plays

a central role in the argument, and that the background assumptions are not doing any

kind of inferential heavy lifting. Instead, I find Hausman and Woodward’s justification

for the bi-conditional (MM) suspect. The justification is meant to show how two

apparently distinct claims link up: (MOD*)—a claim about causal systems under

intervention—and (CM2)—a claim about causal systems not under intervention.

The justification centers around the claim that indeterministic variation in a variable

counts as an intervention. Hausman and Woodward explain:

By assumption, in addition to its represented direct causes (parents(X)),

it [X] has some unrepresented causes whose effect is summarized by the

error term UX in the equation for X. By definition, these are direct causes,

and, given causal sufficiency, they bear no causal relationship to any vari-
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able other than X apart from those which result from their being direct

causes ofX. UX thus satisfies the definition of an intervention with respect

to the [sic] X. . . (p. 553)

We might wonder why the indeterministic variation in X (represented by Haus-

man and Woodward by ‘an error term UX ’) will always satisfy the definition of an

intervention with respect to X. An intervention is not simply a cause of some vari-

able X, but has close restrictions placed on it: ‘The crucial point’, Hausman and

Woodward stress, ‘is that an intervention with respect to X is a direct cause of X

that has no causal relations to any of the variables in V [the model] except in virtue

of being a direct cause of X’ (p. 536). Elsewhere (p. 553), Hausman and Woodward

make the further claim that (CM1), in virtue of these causal restrictions, entails

that interventions on X cannot be correlated with any other variable in the model

(except for X’s effects, of course).

And yet, as I will now turn to show, it is conceivable for a causal system to vio-

late the causal Markov condition without violating (MOD*) or (CM1) (during an

intervention), which if true demonstrates that the two halves of (MM) can come

apart. The difficulty is this. Suppose that we have a causal system in which one inde-

terministic variable X is causally unrelated to another Y , and yet the indeterministic

variation in X is nevertheless correlated with the variation in Y . Such a system vio-

lates (CM1). Yet, in such a system, it is conceivable that there is some intervention

on X—an intervention that is not simply the indeterministic variation in X, but

rather one that is capable of overriding this variation—that renders X independent

of Y . Such a system under intervention does not violate (CM1). Thus, one and the

same system can violate (CM1) and satisfy (CM1) depending on whether it is being

intervened into. This contradicts Hausman and Woodward’s justification for (MM).

In the following sections, I present two different kinds of causal structure with
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this kind of feature, wherein the indeterministic variation in one or more variables

violates (CM), yet where an external intervention can restore it. The possibility of

such systems suggests that the link between external interventions and indeterministic

variation is not nearly so close as Hausman and Woodward believe.

6.2 Polluting Factories

In this section, I want to consider one way in which the causal Markov condition can

be violated: By common cause structures in which the joint effects are more closely

correlated with each other than they are with their common cause. Call these, for

reasons that will become clear below, Polluting Factories. In this section, I begin by

describing how such a structure violates Markov. I then turn to Nancy Cartwright’s

arguments that the causal Markov condition is not generally satisfied by probabilis-

tic causal structures because Polluting Factories are strikingly common. Although

Cartwright uses her discussion as an argument for causal pluralism (and, by exten-

sion, as an argument against any domain-general system of causal inference), I put her

discussion to a slightly different use: To show one central point of departure between

the causal Markov condition and modularity. I will argue that that common cause

structures that violate the Markov condition do not necessarily lead to violations of

modularity, and hence that we have good reason to think that modularity does not

entail the causal Markov condition, contra Hausman and Woodward.

Cartwright (1999b) observes that the causal Markov condition encompasses two

different constraints. One constraint is a proscription against causal influence across

temporal gaps (i.e. Degenerate Chains, which I address in §6.3 below). The second

constraint, and the one that Cartwright (1999b) is interested in, ensures that the

parents of a variable screen that variable off from its siblings. A variable (or set
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Figure 6.1: C is a common cause of A and B

of variables) C screens one variable A from another B when, given the state of C,

finding out the state of B does not increase the probability of A occurring, that is.

Put a little differently, B adds no information about the probable state of A beyond

what C already gives us.

Now, consider a common cause structure as in Figure 6.1. Since C is the only cause

of A and of B, and neither A nor B cause each other, the causal Markov condition

(as I mentioned above) implies that C screens A off from B: Given knowledge of the

state of C, knowing the state of A adds nothing to our knowledge of B and vice versa.

Thus, A and B are conditionally independent given C:

Pr(A&B|C) = Pr(A|C) · Pr(B|C)

This conditional independence represents the cross-constraints placed on the proba-

bility distribution over A and B as a result of the underlying causal structure, namely

A and B’s sharing a common cause C. And, centrally for the causal inference project

of Spirtes, Glymour, & Scheines (1993), this constraint can be used as a marker to

identify a common cause (or at least that there is a common cause) or an intermedi-

ate cause from observational data about A and B—namely, that when A and B are

observed to be dependent, yet conditionally independent on C, we can conclude that

C is a common cause of A and B.

Cartwright offers a concrete example to illustrate why the Markov condition works
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to help us identify common causes. As it happens, candy consumption is strongly

(albeit negatively) correlated with divorce rates. But there doesn’t seem to be a good

reason to posit a causal relation between candy consumption and divorce rates—

How could (in general) giving up candy break up a family? Why should discovering

infidelity lead to a loss of appetite for sweets? But, if we additionally consider the

effects of aging, the solution becomes clear: It is unsurprising to learn that children

have a stronger preference for candy than do adults, nor is it unsurprising to learn

that children typically don’t divorce, since they cannot marry in the first place. Once

we condition on the age of each subject, we see that age neatly accounts for both

effects: Children have a stronger preference for candy and are less likely to divorce

(since they are too young to marry), while adults tend to replace their taste for

candy with a taste for Brussels sprouts, and are more likely to divorce (since they

have surpassed the legal age to marry).

Thus, once we know that a person is a child, knowing that they are not divorced

does not tell us anything new—we could already infer a preference for candy from

their age. Likewise, once we know that a person is an adult, knowing their preference

for candy is uninformative about the chances of their being divorced. The correlation

between candy and divorce goes away, because age screens candy consumption from

divorce rates. The screening-off condition of the causal Markov condition entitles us

to conclude that age is a common cause of candy consumption and divorce rates.

Crucial to this example, Cartwright notes, is that the causal mechanisms by which

age diminishes taste for candy and by which age increases the likelihood of divorce are

quite distinct. We can explain how age screens off candy consumption from divorce

by telling two different stories. With candy, we might tell a neuro-physiological story

about changing metabolic needs, the development of will-power, and the effects these

changes have on the eating behaviors of young adults. But with divorce, we might
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G

Figure 6.2: In glycolosis, glucose (G) is converted into a product/by-product pair,
pyruvate (P ) and NADH (N).

tell a sociological-legal story about the contractual institution of marriage and its

dissolution, and in particular about how we deny children the right to enter into legally

binding contracts. So we should not be surprised that age, here treated as a very

coarsely-grained variable, renders candy consumption and divorce rates independent,

because the mechanism by which age has an effect on candy consumption and the

mechanism by which age has an effect on divorce rates are themselves so very different.

Thus, Cartwright notes that the Markov condition will correctly identify common

causes when the joint effects are brought about by distinct processes, as with candy

consumption and divorce rates.

But why, Cartwright wonders, should we think that common causes invariably

produce their effects via completely distinct processes? Many processes result in a

product, and simultaneously with that product, one or more by-products. These by-

products are not produced via a (completely) independent process from the products

themselves. Glycolosis, to take a biological example, is a process of converting glucose

into pyruvate which also produces NADH as a by-product. We might represent this

metabolic process using a causal graph as in Figure 6.2.

Glycolosis does not proceed by first making some glucose into pyruvate, and then

making other glucose into NADH via completely different sequences. Rather, NADH

molecules are the tailings of pyruvate production: the two are products of the same
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X Y

Figure 6.3: Factory F produces chemical X, and pollutant Y as a by-product.

process.

Cartwright worries that in indeterministic cases, where the action of the process

is chancy, and does not completely determine whether product and by-product are

produced (as often happens in molecular pathways), this kind of example will run

afoul of the Markov condition.5 It will run afoul of Markov when the following three

conditions are met: There is a common cause that produces a product/byproduct

pair via a single process as in the example of glycolosis above; The common cause’s

working is chancy, i.e. it doesn’t always result in a product; And when the common

cause does work, the product and by-product are invariably both produced together.

As an illustration, Cartwright constructs an example she calls the Polluting Fac-

tory (see Figure 6.3). The city’s sewage plant requires chemicalX to treat raw sewage.

They purchase chemical X from a nearby factory F . Unfortunately, factory F only

successfully produces chemical X about 80% of the days it is operational. Moreover,

when it does produce chemical X, it also produces nasty pollutant Y as a necessary

by-product.

In this example, the factory (F ) is a common cause of both chemical X and

pollutant Y . Since F is the one and only cause of bothX and Y , the Markov condition

5In deterministic causation, causes necessitate their effects; thus, common causes necessitate
their joint effects, and so Pr(E1|C) = Pr(E2|C) = 1. This equality ensures that (CM) is trivially
satisfied: Pr(E1|C) = Pr(E1|C&E2) = 1.
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tells us (see above) that X and Y ought to be independent of their common cause F :

Pr(Y&X|F ) = Pr(X|F ) · Pr(Y |F ).

But notice that in the narrative of the Polluting Factory, the independence does

not hold. The probability that X is produced, given that the factory is operating, is

80%; likewise for the byproduct Y . Multiplying these together yields:

Pr(X|F ) · Pr(Y |F ) = 0.8 · 0.8 = 0.64

But because pollutant Y is a byproduct of the process for making chemical X, the

probability of X and Y , given that the factory is operating, is also 80%:

Pr(Y&X|F ) = 0.8

The screening-off condition, as I’ve just said, requires these quantities to be the same.

But they are not. There is a dependency between X and Y that is not fully accounted

for by looking at the common cause F ; F fails to screenX off from Y . So the Polluting

Factory violates the screening-off condition, and hence the Markov condition.

One way to make clear how the Polluting Factory violates the Markov condition

is to note that the Markov condition encapsulates the intuition that any dependency

must have a causal explanation: Either one correlate causes the other, or they share

a common cause. But chemical X and pollutant Y share a non-causal correlation;

although the common cause F does account for some of the dependence between X

and Y , it does not account for all of it. And since there is no further causal connection

between X and Y , the Markov condition is not satisfied by this structure.

We could, however, take the standard tack of claiming that such a violation of

Markov is evidence that there must be some latent variable that should be added to

our model, a variable that will account for this stray dependence. We might speculate

that both chemical X and pollutant Y are in fact not a direct result of the factory’s
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Figure 6.4: Factory F produces chemical X and pollutant Y by way of chemical
process C.

chancy operating F , but by a hidden cause that links the factory operations to a

particular chemical reaction C that yields both X and Y and that is itself not chancy.

The resulting model is presented in Figure 6.4. On this addition, C is produced by F

80% of the time; and C necessitates both X and Y . In this way, we can restore the

Markov condition, because

Pr(X|C) = 1

Pr(Y |C) = 1

Pr(X&Y |C) = 1

Pr(X&Y |C) = Pr(X|C) · Pr(Y |C).

On this view, the Polluting Factory, as presented, is not a plausible counter-example

because it leaves out a crucial detail, namely something about how chemical reaction

C is the true common cause of X and Y . But we should pause for a moment and ask,

as Cartwright asks, why we should be willing to commit ourselves to this new story.

It seems an empirical question, and not an a priori one, whether C really exists and

plays this purported role. So it is unfair to insist that there must be some entity to

play the role of C, a priori, as the Markov condition seems to do. Indeed, Cartwright
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asks, is the Polluting Factory really so implausible? Regardless of our gut instincts,

let us follow her lead for a moment, and suppose that it is plausible, without the

further decoration with latent variables.

Cartwright contends that the plausibility of the Polluting Factory rests on two

independently plausible claims. The first claim is that there can be genuine macro-

level cases of indeterministic causation—that we should not be forced to advert to

finer-grained analyses (such as the one above involving C) simply because of a need

to explain away apparent violations of (CM). The second claim is that joint effects

of a common cause can be produced by non-independent processes. The first claim

seems reasonable enough, and I won’t devote attention to it; at any rate, I certainly

do not wish to dispute that point. However, we might think that the second claim,

upon which the Polluting Factory rests, is contentious. Cartwright provides two in-

dependent reasons to accept the non-independence claim.

Taking the the possibility of genuine macro-level indeterminacy in more detail,

consider the range of possible outcomes of the Polluting Factory. When F occurs

(when the factory has been asked to produce chemical X), the possible outcomes

are (+x,+y), (−x,+y), (+x,−y), and (−x,−x)6. When we allow that causality can

be probabilistic, Nature assigns7 a joint probability over the space of possibilities

by assigning a probability to each outcome, Pr(+x,+x), Pr(−x,+y), Pr(+x,−y),

and Pr(−x,−y). How are these assignments made? The axiomata of probability

place certain constraints: Each probability must be greater than zero, and the sum

of the probabilities of all outcomes must come to one. But these constraints are

largely notational, reflecting a constructed system for calculating probabilities. The

6Where +x indicates the production of chemical X, and −x indicates the non-production of
chemical X, etc.

7Cartwright is all too happy to anthropomorphize the external world. I indulge her here just
a bit, simply because not much hangs on it. Rather, she seems to find talking about Nature and
Nature’s actions as a useful shorthand for much wordier and vexed locutions about laws of nature
or the metaphysical structure of the universe.
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Markov condition is different, Cartwright observes, because it places an ontological

(rather than an epistemological) constraint on Nature’s assignment of probabilities

such that Pr(+x,+y) ·Pr(−x,−y) = Pr(−x,+y) ·Pr(+x,−y). But “nothing in the

concept of causality, or of indeterministic causality,” Cartwright claims, “constrains

how Nature must proceed.” If Nature was so constrained, as must be the case for

the Markov condition to hold universally, then the Markov condition comes with an

implicit—and rather mysterious—metaphysical commitment about the structure of

the universe, such that there is this constraint in the world (and not just in our system

of representations) that bars Nature from assigning the probabilities as she sees fit.

The commitment is mysterious because it simply isn’t clear what the world must be

like for such a constraint to hold; nor are the proponents of the Markov condition

offering any candidate metaphysical conditions—it is outside their job description as

epistemologists, as it were.8

Cartwright’s second consideration is that the existence of Polluting Factories is

an empirical matter, not a conceptual matter, and we do seem to be surrounded by

them. Syndromes like AIDS, and chemical processes with by-products like glycolosis

appear to be real-world examples of Polluting Factories. Bell’s elaboration on the

EPR experiment is very much a real-world example of a Polluting Factory (albeit

one confined to the depths of quantum mechanics)(Bell, 1964; Aspect, Grangier, &

Roger, 1981). At any rate, there is no a priori reason to think that such cases cannot

exist, unless we take the Markov condition as an a priori claim (which we do not).

Thus, a claim that Polluting Factories cannot exist is an empirical claim, and the

onus falls on the claimant for proof thereof.

8Indeed, as Craver (personal communications) points out, Clark Glymour and his cohort are
insistent that they are not in the business of doing metaphysics, except (as Eberhardt points out to
me) insofar as they are willing to reject as murky any metaphysics that does not comport with the
Markov condition. In any case, we might wonder that Cartwright sees the causal Markov condition
as saddling supposedly metaphysics-neutral causal inference with metaphysical assumptions.
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Polluting Factories and (PM)

So, for the purposes of argument, let us take Cartwright’s worry about the Markov

condition seriously. We are likely surrounded by Polluting Factories. At any rate,

there’s nothing conceptually inconsistent about the idea of a Polluting Factory. And,

more to the point, there seems nothing about the structure of Polluting Factories

that precludes giving a mechanistic explanation of their joint effects. And Polluting

Factories do violate the Markov condition. Now if, as I discussed in the previous sec-

tion, (PM) entails the Markov condition, then by modus tollens, Polluting Factories

will also violate (PM). The problem is that they do not violate (PM).

Recall from the previous chapter that we can analyze (PM) into the conjunction

of two claims, (PMa) and (PMb):

(PM) Suppose a set of variables V, and Z, Y ∈ V, and Z is distinct from Y . Then

∀Y ∀Z

(PMa) If Y is a non-descendant of Z, then Y ⊥ set(Z).

(PMb) If Y is a descendant of Z, Y ⊥ set(Z)| parents(Y ).

Suppose, moreover, that we were to intervene into the operating of the factory F , to

make it run. What does (PM) entail about the probability distribution during that

intervention? X and Y are both descendants of F , thus (PMa) is trivially satisfied.

(PMb) is also trivially satisfied for X and Y because parents(X) = {set(F )} and

parents(Y ) = {set(F )}. Now, suppose we were to intervene to generate chemical X

at the premises independently of the factory’s operation. Here, (PMb) is trivially

satisfied because neither F nor Y are a descendant of X. And, where F is a non-

descendant of X, (PMa) should be satisfied, insofar as our intervention into X is

surgical and satisfies the constraints on interventions discussed in Chapter 1. But Y
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is also a non-descendant of X, and there is nothing in the structure of Cartwright’s

story that tells us how to evaluate the probability Pr(Y |F&set(X)).

On the one hand, we might suppose that intervening into X would not change its

dependency on Y , that is, that there is no way to manufacture chemical X without

also producing pollutant Y as a by-product. In this case, (PMa) would be here vio-

lated. But on the other hand, there is nothing preventing us from supposing that, for

whatever reason, intervening into X could break its dependency on Y , that interven-

ing to manufacture chemical X could proceed without the production of pollutant Y .

Perhaps we need only use a different method than is employed by the factory. In this

case, (PMa) would be satisfied. And, if it is possible for the Polluting Factory to

satisfy (PMa) and (PMb), then the Polluting Factory stands as a counter-example

to Hausman and Woodward’s claims that (PM) entails (CM).

To draw this final point out in more detail, let us consider a different kind of

causal system that violates (CM), a structure I call a Degenerate Chain. A close

look at Degenerate Chains will shed light on what has gone wrong for Hausman and

Woodward’s justification for (MM).

6.3 Degenerate Chains and (PM)

In addition to Polluting Factories, (CM) is also violated by what I call Degenerate

Chains. A Degenerate Chain is a causal structure that consists of a causal chain

X → Y → Z, (with no arrow directly connecting X to Z), and where Pr(Z|Y ) 6=

Pr(Z|Y&X): where Y does not screen its effect Z from its cause X. In other words,

X provides information about Z beyond what Y provides. Such a chain violates the

Markov condition, which requires that Y does screen Z from X—that X does not

provide information about Z beyond what Y provides. As a technical term, I call this
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kind of failure of a variable to screen its causes from its effects a degeneracy. The

question before us, then, is: Do Degenerate Chains violate (PM)?

I will argue in this section for two claims. First, I will argue that Degenerate Chains

sometimes violate (PM), and that when they do, it is in virtue of violating (PMb).

Second, I will point out that Degenerate Chains have a curious feature: Degenerate

Chains that do not violate (PM) seem, nevertheless, to violate an intuitive notion

that (PMb) is meant to capture: That interventions should not alter the probability

distribution among the intervention’s descendants. This tension, I will argue, gives us

reason to think that (PMb) has no place in a broad articulation of modularity. I will

conclude that squaring (PM) with our modular intuitions demands that we jettison

(PMb) from our analysis of modularity, and that therefore neither Degenerate Chains

nor Polluting Factories pose a threat to modularity-based accounts of mechanism.

As one might expect, jettisoning (PMb) comes at an inferential cost. I close this

section by examining what inferential power is lost by abandoning (PMb) as part

of our analysis of modularity. I show that in certain inferential contexts, (PMb) will

yield a non-singleton equivalence class of causal structures. Although (PMb) will

not always yield definitive conclusions, I will argue that the true causal structure is

guaranteed to be a member of the equivalence class (PMb) yields up. In contrast,

(PM) will actually yield an incorrect result in these same contexts. I conclude, on

this basis, that the inability of (PMb) to yield a single, correct causal structure is

not in fact a total loss in inferential power, but a gain (in that (PMb) alone will

never yield incorrect results), and that this provides additional reason to abandon

(PMb) from our analysis of modularity.

Degenerate Chains come in two varieties: transitive and intransitive. Transitive

causal chains are ones of the form X → Y → Z, and in which X increases the

probability of Y , Y increases the probability of Z, but X paradoxically decreases the
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Figure 6.5: A partitioning of the individuals who smoke (+s) or don’t smoke (−s),
had a heart attack (+h) or didn’t (−h), and who suffered chest pains (+p) or didn’t
(−p), with the observed size of each partition. Adapted from Eells & Sober (1983).

probability of Z9.

Intransitive Degenerate Chains

Eells & Sober (1983) have demonstrated that the Markov condition implies transi-

tivity, and so intransitive causal chains violate the Markov condition. The reason is

that, for example, where Y increases the probability of Z, X decreases the probability

of Z, therefore knowing X yields additional information about Z beyond knowing Y

alone. Eells & Sober give the following example of an intransitive case.

Suppose that we observe 200 individuals, and observe their smoking behavior

S at time t1, the occurrence of heart attacks H between times t1 and t2, and the

occurrence of chest pain P between times t2 and t3. Individuals may smoke (S = +s)

or not (S = −s), have a heart attack (H = +h) or not (H = −h), and suffer chest

pains (P = +p) or not (P = −p). One possible set of observations are plotted in

Figure 6.5.

Ostensibly, smoking is a cause of heart attacks, and heart attacks are a cause of

chest pains: S → H → P . We can estimate the conditional probabilities from the

9Or, more generally, where the correlation between the first and last elements in the chain is
opposite the correlation between the individual links.
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observed frequencies.

Pr(+h|+ s) =
60

100
= 0.60

Pr(+h| − s) =
50

100
= 0.50

Thus, smoking increases the probability of a heart attack. Moreover,

Pr(+p|+ h) =
30 + 49

60 + 50
= 0.72

Pr(+p| − h) =
15 + 25

40 + 50
= 0.44

Thus, heart attacks increase the probability of chest pain. But notice that,

Pr(+p|+ s) =
30 + 15

100
= 0.45

Pr(+p| − s) =
25 + 25

100
= 0.50

Smoking reduces the probability of chest pain. The causal chain is intransitive. But

notice what makes the chain intransitive: The probability of suffering chest pains

depends not on the occurrence of a heart attack alone, but also on whether the

individual smoked: Smokers are equally likely to suffer chest pain as not following a

heart attack, where non-smokers are more likely to suffer chest pain than not after

a heart attack. But this means that heart attacks do not screen smoking from chest

pain:

Pr(+p|+ h) = 0.80 6= Pr(+p|+ h&+ s) = 0.58

Pr(+p|+ h) = 0.80 6= Pr(+p|+ h&− s) = 0.50

Pr(+p| − h) = 0.44 6= Pr(+p| − h&+ s) = 0.38

Pr(+p| − h) = 0.44 6= Pr(+p| − h&− s) = 0.50

Thus, P and H are not conditionally independent given S, and hence H fails to screen

P from H:

Pr(P |H) 6= Pr(P |H&S)
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Yet, (CM) requires that

Pr(P |H) = Pr(P |H&S)

Thus, intransitive causal chains are degenerate.10

However, Intransitive Degenerate Chains are not limited to the realm of fiction.

Consider the case, discussed in Sober & Lewontin (1982) of heterozygote superiority.

In diploid organisms, genes come in pairs; much of the time, genes will have two vari-

ants, a dominant and a recessive. But not all pairs of genes exhibit strict dominance:

Sometimes their effects are additive in some way. If one variant G encodes for the

production of a protein that is necessary in small quantities for survival, but that is

lethal in large quantities, and the second variant g does not encode for the protein,

then the two homozygous pairs GG and gg will have lower overall fitness than the

heterozygous pair Gg—in the first case, too much protein is produced, in the second

not enough, but the heterozygous pair produces just the right amount. Cases of het-

erozygote superiority, then, are cases where we cannot say that gene G has a high

fitness, because it is only in the context of being paired with gene g that fitness is high

(much as how, in the made-up example, it is only heart attacks in the context of not

smoking that cause a dramatic rise in chest-pain cases). Thus, although G encodes

for the production of a protein, and that protein is necessary for survival, transitiv-

ity fails, because it is not the case that the presence of G in a population increases

the average fitness. Such cases of heterozygote superiority present the possibility of

Intransitive Degenerate Chains—and insofar as such mechanisms violate modularity

too, we should worry.

10Sober does not consider the case that there might be a missing causal link in this model, that if
added would render the model Markovian, because his concern is in showing that intransitivity im-
plies a violation of the Markov condition. Positing a latent common cause to explain the degeneracy
would also (presumably) eliminate the intransitivity, and hence would add nothing to his argument.
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Figure 6.6: A causal model of herring populations in Prince William Sound from
1989–1993. V represents the Exxon Valdez oil spill, and 89–93 represent the state of
the herring population at each year 1989–1993, culminating in the population collapse
in 1993.

Transitive Degenerate Chains

But although intransitivity is sufficient for degeneracy (Eells & Sober, 1983), it is not

necessary (Suppes, 1986). Suppes argues that some transitive causal chains violate

the screening-off condition, and then offers several examples of such chains: The

asymptotic behavior of certain parameterizations of the iterated prisoner’s dilemma,

weather forecasting, and econometric models relating consumption and disposable

income. These examples share a crucial feature, in that all model causation as a

relation among events (the prisoner’s response at iteration n; the temperature this

morning; disposable income this quarter), yet in these models each event depends

not only upon the most proximal prior event, but upon all prior events. But the

causal Markov condition says that an event’s direct cause—namely, the most proximal

event—is sufficient to predict the event with maximal precision. Knowing the full

history will not add anything to our knowledge or the correctness of our prediction

of that event. Thus, these examples are Degenerate Chains. A concrete example of a

transitive Degenerate Chain will make the oddity of these cases clear.

As a result of the 1989 Exxon Valdez oil spill, researchers and fishers grew con-

cerned about the stability of the herring population in Prince William Sound. By

1992, herring population had not shown a significant decrease in size, leading some
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researchers to conclude that the oil spill had not threatened the population’s stability.

Yet in 1993, the population collapsed dramatically (and has yet to recover). The exact

causes of the collapse—and in particular, the role of the Valdez spill—are still a sub-

ject of intense debate. The reason for debate is the Markovian intuition that the events

of 1989 could not be a direct cause of the events of 1992 (because causation does not

jump temporal gaps), yet there is no other compelling explanation for the population

collapse to be found. Thorne & Thomas (2008) have presented compelling evidence

that, despite the a four-year gap between the spill and the population collapse, the

spill is nevertheless the best explanation of the population collapse, intervening events

notwithstanding.

The problem is this. For any given year’s population, its only cause is the prior

year’s population (see Figure 6.6. The Markov condition tells us that, to predict a

given year’s population, knowing the population at prior year is sufficient. However,

there is nothing in the data for the herring population in 1992 that would have pre-

dicted the collapse in 1993—hence the surprise. Yet, there is nevertheless something

in the data for a much earlier year, specifically the Valdez oil spill in 1989, that does

not appear in the data for 1992 and that does provide additional information that

could predict the collapse in 1993. Thus, the population in 1992 does not screen the

population in 1991 from the oil spill in 1989, and we have a Degenerate Chain and a

violation of (CM).

Nevertheless, unlike the cases described above, this kind of Degenerate Chain

is transitive. The reason that changes in biological populations are Degenerate is

because they don’t depend only on the previous year’s population size; rather, the

state of any population is influenced in addition by multi-year trends. Oversimplifying

a bit to make my point, a large population last year doesn’t necessarily entail a large

population this year if there has been a long-term downward trend in size. In the case
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of the herring in Prince William Sound, Thorne & Thomas claim that the Valdez spill

set in motion a subtle trend over the four years following that ultimately caused the

1992 collapse, but that the trend was not apparent by looking at any single year’s

data. Thus, in the case of the Prince William Sound herring, the causal chain from the

Valdez spill to the population collapse was transitive: The spill is clearly an indirect

cause of the collapse.

What hay are we to make of Degenerate Chains? Degenerate Chains violate the

screening-off condition in a different way than do Polluting Factories. But where

Polluting Factories do not necessarily run afoul of (PM), I will now argue that

Degenerate Chains do necessarily violate (PM).

6.4 Degenerate Chains and (PM)

Degenerate Chains violate (CM). And, much like Polluting Factories, they can violate

(PM), in virtue of violating (PMb). The way in which Degenerate Chains violate

or satisfy (PMb) is particularly illuminating: A Degenerate Chain A → B → C

that satisfies (PMb) does so when the degeneracy disappears during interventions

into A. Yet, part of the intuition behind modularity is that interventions should not

alter the causal structure (or at least circumscribed parts of the causal structure) of

the mechanism being investigated. This tension, I will argue, is reason to abandon

(PMb) as part of a formal articulation of modularity.

Let us first take the case where we have a Degenerate Chain A→ B → C in which

the degeneracy holds during interventions into A. Because the chain is degenerate:

Pr(C|B) 6= Pr(C|B&A)

And because, ex hypothesi, the degeneracy holds under interventions into A, then B
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will fail to screen interventions into A from C:

Pr(C|B) 6= Pr(C|B&set(A))

Again, recall that we can analyze (PM) into the conjunction of two claims,

(PMa) and (PMb):

(PM) Suppose a set of variables V, and Z, Y ∈ V, and Z is distinct from Y . Then

∀Y ∀Z

(PMa) If Y is a non-descendant of Z, then Y ⊥ set(Z).

(PMb) If Y is a descendant of Z, Y ⊥ set(Z)| parents(Y ).

Because C is a descendant of set(A), (PMa) is trivially satisfied. And, because

parents(C) = {B}, (PMb) entails that

Pr(C|B) = Pr(C|B&set(A))

which is false because (again, ex hypothesi) the chain is degenerate under interventions

into A. So (PMb) is violated, and hence (PM) is as well.

Now, let us consider the case in which the degeneracy disappears under interven-

tions into A. In this case,

Pr(C|B) 6= Pr(C|B&A)

but, ex hypothesi, the degeneracy disappears under interventions into A,

Pr(C|B) = Pr(C|B&set(A))

Which is not a violation of (PMb), and so (PM) is satisfied.

These two results are quite odd, as I will now argue. One might read the intu-

itive notion of modularity as I developed it in Chapter 5 as the idea that interven-

tions should not disturb the causal structure downstream of the intervention. But,
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Hausman and Woodward’s articulation (PM) embodies a more nuanced idea: That

interventions should not disturb the probability distribution downstream of the in-

tervention. Where (PMa) is a principle that allows us to determine which other

components are effects of an intervened-upon variable, (PMb) is a principle that

allows us to sort those effects as direct or indirect by inspecting the probability dis-

tribution over those effects. Thus, in this guise, (PMb) can be read as a principle that

prohibits interventions from altering the probability distribution downstream of the

intervention—presuming that the causal system already satisfies the causal Markov

condition.

This rider is not idle; it brings out what is odd about (PMb) in the context

of Degenerate Chains. Non-Markovian systems—Polluting Factories and Degenerate

Chains—satisfy (PMb) precisely when interventions do alter the probability dis-

tribution downstream of the intervention. Yet, (PMb) is supposed to ensure that

interventions do not alter the probability distribution downstream of the interven-

tion.

The tension is readily resolved when we see that (PMb) is a very specific require-

ment that is only expected to hold of Markovian systems. (PM), in other words, is a

modularity principle only for Markovian causal systems. But if we want a maximally

broad formulation of modularity, one that does not presume a causal system will sat-

isfy the causal Markov condition, (PMb) cannot be a proper part of our articulation

of modularity.

If the above argument is right, the existence of Degenerate Chains (and indeed

Polluting Factories) stands as a good reason for abandoning (PMb) as part of our

analysis of modularity. But at what cost? What are the limitations of causal inference

from (PMa), without (PMb)? We can only well and truly abandon (PMb) once

we are certain that what remains is a tractable modularity principle.
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The Cost of Eliminating (PMb)
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Figure 6.7: Modularity equivalence class for interventions into A that result in ob-
served correlations with B and C.

Consider the causal structures in Figure 6.7. Suppose that the true structure is

represented by 6.7.a, and we intervene into A. We observe that both B and C cor-

relate with our intervention. If we assume only (PMa), which claims interventions

into A will render it independent of its non-descendants, we can only conclude that B

and C must be descendants of A: We cannot, on the basis of that single intervention

and (PMa), discern which of the structures in Figure 6.7 is the true structure.11,12

Narrowing the equivalence class down requires either additional interventions or ad-

11This claim assumes cycles are not permitted; if we admit cycles, the equivalence class grows
larger.

12Notice that the equivalence class in Figure 6.7 is not a Markov equivalence class, because
we are not assuming that the causal structure will satisfy the Markov condition. Instead, I call it a
modularity equivalence class because it contains those structures indistinguishable on the assumption
that they satisfy modularity (in the form of (PMa)).
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ditional assumptions or both. Let us intervene some more.

If we additionally intervene into C, we will find no correlation with B (because in

the true causal structure, B is not a descendant of C). But (PMa) only permits us

to draw conclusions on the basis of observed correlations: A finding of no correlation

does not rule 6.7.c and 6.7.d out of the equivalence class. An intervention into B

will reveal a correlation with C, and will thus permit us to rule out 6.7.b, and with

the additional assumption of acyclicity, 6.7.c and 6.7.d as well. Yet, 6.7.a and 6.7.e

remain in the class, having exhausted the possibilities for variables to intervene into.

This should be unsurprising: A Degenerate Chain is degenerate precisely because a

degenerate structure as in 6.7.a will exhibit precisely the same probability distribution

as a non-degenerate structure as in 6.7.e. The Degenerate Chain is thorny precisely

because A and C are spuriously correlated in just the same way as though A were

a direct cause of C, leading (CM) and (PMb) to (falsely) identify that spurious

correlation as a direct causal correlation.

Of course, if we can know that the distribution over {A,B,C} satisfies (CM), then

we can eliminate 6.7.e as well, because B will screen C from A during interventions

on A. And since this is precisely the kind of limited Markov claim made by (PMb),

jettisoning (PMb) as I am suggesting means we cannot take this additional step

without an additional reason to accept (CM) in the particular circumstances of our

experiments.

When we can’t be sure that the distribution over {A,B,C} will satisfy (CM),

then without (PMb), we can only get as far as ruling out every case but 6.7.1 and

6.7.e. This is the inferential ability lost when we assume only (PMa).

On the other hand, if we know that the distribution over {A,B,C} does not

satisfy (CM), then we’ve gained (in some perhaps attenuated sense) inferential abil-

ity, because (PM) and (CM) (taken as assumptions individually or together) will
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yield false results, where (PMb) yields a set of results containing the true result.

If {A,B,C} is a Degenerate Chain, and with only an intervention on A, (PM) will

falsely pick out 6.7.b as the causal structure, where the set picked out by (PMa)

will at least contain the true causal structure. In this case, (PMa) is correct, where

(PM) is not. Consider what happens if we additionally perform an intervention on

B. (PM) and (PMa) will both inform us that B is a cause of C; yet, this result is

inconsistent with (PM)’s earlier justification of the claim that B is not a cause of

C. (PMa) is a more cautious principle that in these circumstances at least does not

result in a contradiction when we intervene on different variables at different times.

(Hence the aforementioned gain in inferential ability).

So, I conclude from this discussion that the best analysis of modularity is (PMa),

and not (PM) for the reasons iterated above. First, (PMb) runs counter to the idea

of modularity, by requiring that interventions impose changes on the probability dis-

tribution of a causal system when such does not satisfy (CM). Second, when applied

to causal systems that do not satisfy (CM), (PM) yields incorrect results, where

(PMa) does. Although we do lose some inferential ability by rejecting (PMb), we

can regain it by additionally assuming (CM) when such assumption is independently

warranted.

Why Keep (PMa)?

There are many ways that the Markov condition can be violated. Why should we

hold Polluting Factories and Degenerate Chains as special cases that decide how we

should craft a modularity principle? Consider an example I will call the Cosmic Prank.

Suppose we have two variables A and B, which share no causal connection between

them, no shared common cause, no shared joint effects. A and B are independent,

Pr(B) = Pr(B|A). Suppose that we intervene into A, and find observe that Pr(B) 6=
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Pr(B| set(A)). More prosaically, we observe that A and B spontaneously correlate

when we intervene into A—as though the universe were playing a perverse joke on us.

(PMa) is violated, and, as we are holding tenaciously to this principle, we would be

led to falsely conclude that Amust be a cause of B. Statistically speaking, somewhere,

such Cosmic Pranks are quite likely to occur. Why do Cosmic Pranks not count as

evidence against (PMa) in the same way that Degenerate Chains count as evidence

against (PMb)?

The answer to this question lies in our conception of what it means to be an in-

tervention, discussed in the previous chapter. An intervention is a highly constrained

alteration of a causal system designed to sort causal correlations from accidental

correlations, in order to inform us which parts of the system are effects of the in-

tervention. To achieve this end, interventions must disrupt certain correlations and

preserve others. Which must be disrupted, and which must be preserved? Suppose we

intervene into A. Then, as I argued in the previous chapter, any accidental correlation

involving A must be broken; moreover, any causal relation with A as an effect must

also be broken. These correlations must be broken on pain of making a false positive

causal inference about A. Modularity is supposed to capture this intuition. Moreover,

if possible, any causal relation with A as a cause (directly or indirectly) must be

preserved, on pain of making a false negative causal inference about A. Invariance

is suppose to capture this intuition, although Woodward’s expressions of modularity

are meant to encapsulate invariance claims as well.

Degenerate Chains present an interesting test case to this last requirement; they

present a case where, in a chain A→ B → C, C depends on A in a way that violates

some common-sense notions about causal correlations, but that is nevertheless causal

in character. Expecting an intervention into A to impose the Markov condition on

its descendants seems to ask that an intervention disrupt certain causal correlations
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in which A is the cause. As I have shown, in the case of Degenerate Chains, this

too-stringent requirement leads us to false conclusions. At any rate, the peculiar

probabilistic structure of Degenerate Chains is not at odds with the intuitions about

modularity expressed above.

But Cosmic Pranks fly in the face of these intuitions about what interventions

are, and what they are supposed to achieve—which is why I call them pranks. The

structure of the Cosmic Prank is specifically designed to contradict the intuitions

above, namely that interventions are useful tools for discovering the effects of the

intervened-into entity, where Degenerate Chains do not. Thus, it seems to me that

where (PMb) gets the modular intuitions wrong, (PMa) is a perfectly adequate

expression of these intuitions. Insofar as we are committed to the idea that interven-

tions are a generally useful tool for causal discovery, then too are we committed to

the idea that Cosmic Pranks are not a good reason to abandon (PMa).

6.5 Conclusion

In this chapter I have argued for two broad conclusions. First, I have defended

my account of the Manipulated Mechanism against the worry that non-Markovian

mechanisms—which may be legion in biology—fall outside the scope of my account.

Second, I have taken the first steps at defending a new articulation of modularity in

the form of (PMa), one that will serve the Manipulated Mechanism’s broader goals

of forming the foundation of an account of mechanistic explanation and mechanism

discovery.

I have argued first that Hausman & Woodward’s (1999) formulation of modularity

(PM) does not entail (CM), through the use of two counter-examples, Cartwright’s

Polluting Factories, and my own Degenerate Chains. Both of these kinds of counter-

198



example are specifically designed to violate some aspect of (CM), yet there are

circumstances in which either may yet satisfy (PM). In both counter-example, when

they violate (PM), it is in virtue of violating one of its components, (PMb). It would

seem, then, that (PMb) is bearing quite a lot of weight in Hausman and Woodward’s

argument, as it appears to make a limited kind of Markovian claim.

But, if we are aiming for a broad and inclusive articulation of modularity to

serve as the foundation for evaluating mechanistic explanations and for guiding the

discovery of mechanisms in biology, then (PMb) looks overly specialized for our

purposes. If we want to be able to account for non-Markovian mechanisms, then we

must not include Markov-like claims in our account of modularity. Instead, I believe

that (PMa) is a far better candidate articulation.

But all is not well. A new line of attack claims that even the weakened articulation

(PMa) is sometimes violated by different class of mechanisms. In the next chapter,

I consider the claim that modularity requires that mechanism components exhibit a

feature that I call modular independence—that it be possible to surgically remove or

alter a component without disrupting the remainder of the mechanism. Yet, biology is

full of mechanisms that do not exhibit modular independence, and hence even (PMa)

is regularly violated. Again, such an argument, if successful, would be quite damaging

to my account of the Manipulated Mechanism and so demands our attention.
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Chapter 7

Modularity and Modular

Independence

One concern about modularity is that it seems to require that we be able to get a

hold of each component in a mechanism independently of the others, that we be able

to surgically intervene on that component. Call this requirement independent ma-

nipulability. However, the requirement of independent manipulability is quite strong

(Cartwright, 2001, 2004; Chemero & Silberstein, 2008), and is rarely satisfied be-

cause many mechanisms comprise components that are tightly connected, or interact

in non-additive ways. For example, components that work together in a feedback

loop, such as in the action potential in the neuron, do not appear to exhibit this

independent manipulability, because there is no way to intervene into one without

also disturbing the other (via the feedback loop). In this chapter, I examine three

different conceptions of modular independence, each with a corresponding argument

that that form of modular independence is rare, and hence that real mechanisms

rarely satisfy modularity. I defend modularity against these claims by showing that

modular independence is a too-narrow view of modularity. Each of these arguments
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presupposes that modularity must be some actual feature of a mechanism. I argue

that modularity is in fact a modal notion that constrains how a mechanism should

behave were it being intervened into, and thus that modularity is compatible with the

idea that we can use interventions to modify a mechanism to produce the required

independencies. Thus, modular independence, I conclude, is not a necessary condi-

tion for modularity: When surgical interventions are not possible, we can nevertheless

create the necessary conditions for modularity, and carry out an experiment as if we

were making a surgical intervention. In the following chapter, I explore this idea of

as-if modular independence in more detail.

One criticism of modularity is that it requires mechanisms exhibit a feature I

call modular independence—that each of the components in the mechanism has some

way of intervening into it without disturbing the remainder of the mechanism. This

criticism observes that this is a very strong condition, and that very few mechanisms

will have this feature. Therefore, precious few mechanisms are modular. Consider the

following argument:

1. Modularity requires that the components in a mechanism exhibit modular in-

dependence.

2. Very few mechanisms (especially in biology) comprise modularly independent

components.

3. Therefore, modularity is violated by these mechanisms.

4. The Manipulated Mechanism requires modularity.
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5. Therefore, the Manipulated Mechanism cannot account for these kind of mech-

anisms

6. Scientists are nevertheless capable of reasoning about such mechanisms.

7. Nor can the Manipulated Mechanism account for the kind of inference scientists

use for reasoning about them.

Premises one and two have been argued for, in various guises, by Cartwright (2001,

2004); Chemero & Silberstein (2008). Line three follows by modus tollens. Line five

follows from three and four by modus ponens. I want to resist the conclusion in line

five (and in the next chapter, I will return to this argument to resist the conclusion

in line seven); I will do so by arguing that modularity does not in fact require that

the components in a mechanism exhibit modular independence.

Critics of modularity claim that modularity requires that we be able to get ahold

of each component in a mechanism independently of the others. Getting an inde-

pendent hold on a component depends on whether the component has one or more

properties that we can exploit for these purposes, a kind of property I call “modular

independence”. But, the ability to intervene into a component independently is a

very strong condition, because real (as opposed to made-up or toy) mechanisms often

comprise components that are tightly connected, or interact in non-additive ways. For

example, components that work together in a feedback loop, such as in the action po-

tential in the neuron, do not appear to exhibit this independent manipulability. And

even when the components in a mechanism can be gotten ahold of independently,

we might not know how, or doing so might be unethical (e.g. vivisection). Without

modular independence, the argument goes, we cannot secure modularity, and thus

cannot draw justified inferences using modularity. So much the worse for my account

of the Manipulated Mechanism.
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I begin the chapter by examining two different forms of modular independence,

affordances and independently-disruptable mechanisms, and one property that can

defeat modular independence, dynamiticty.

An affordance, according to Cartwright (2001), is a kind of special “handle” by

which we can take the component through its full range of values independently of

whatever is causing it, by overriding its causes. I call these things affordances because

they have a certain affinity with Gibsonian affordances (Gibson, 1977), although

strictly speaking the two concepts are different. But I do mean that they are a kind

of property that offers itself up as a way of directly manipulating the component.

Unsurprisingly, Cartwright asks us to note that such affordances are quite rare. I

present her argument from affordances in §7.1.

Independently disruptable processes, according to Cartwright (2004) are causal

links between mechanism components1 that can be severed or altered independently

of each other. Cartwright contrasts these with tightly-coupled systems, which are

systems whose causal relations are overlapping or closely bound up such that the

components cannot be excised from their mechanism without disrupting the mech-

anism more generally. Independently disruptable processes are likewise quite rare. I

present her argument from independently disruptable processes in §7.2

Chemero & Silberstein (2008) provide a different perspective on independent ma-

nipulability, by arguing that dynamical systems cannot comprise components that

exhibit any kind of independent manipulability, in part because there is no clear way

to decompose dynamical systems into distinct components in the first place. Thus,

by their lights, only linear, additive systems (i.e. non-dynamical systems) can exhibit

independent manipulability. I present their argument in §7.3.

1Recall that mechanisms are hierarchical; the causal connections within a mechanism are them-
selves mechanisms, albeit at a lower mechanistic level. To avoid any confusion, I refer to the sub-
mechanisms within a given mechanism as ‘processes’.
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But, I will argue, these views of modularity are too narrow. In §7.4 I will argue

that each of these argument rests on the assumption that the independence that

modularity requires from an intervention must have existed within the mechanism

prior to the intervention. This is a common-sensical view: How can I surgically excise

this component if it is so closely bound up with its neighbors? All of the arguments

make the case that the independence required at the time of intervention is somewhere

latent within the intervened-into component, and that modularity is satisfied when

the mechanism manifests this latent feature. And each argument is right to point

out that expecting this to be a general feature of the world is overly optimistic.

This common-sensical understanding is quite mistaken, however. A close reading of

(PMa), the formalization of modularity I advocated for in the previous chapter,

reveals no such implication—there is nothing in (PMa) that requires an intervention

to work by manifesting a latent independence, because (PMa) is silent about the

probability distributions exhibited by a mechanism when it is not being intervened

into.

Indeed, (PMa) is a modal concept, a principle that tells us what would be the

case were we to intervene. And, when properly understood as a modal claim, and not

a claim about the actual world, modularity does not require that the actual world

be any particular way at all. Indeed, modularity is compatible with the idea that

our interventions modify the mechanism being investigted to create the necessary

independencies; we can use interventions to create conditions that satisfy modularity.

What does it mean to create an independence, to create the necessary conditions

for modularity? And what are the limits to how we can modify a mechanism and still

draw inferences from our interventions? I turn to answer this question in the following

chapter, by examining a series of exemplar case studies where researchers have done

precisely this.
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7.1 Affordance Modularity

Interventions can work on a component by either actively cutting off its causes—what

(Eberhardt & Scheines, 2007) (in a later commentary on the distinction) call a ‘hard’

intervention—, or by influencing the component without cutting off its causes—what

Eberhardt & Scheines call a ‘soft’ intervention. Cartwright (2001, 2004) seeks to

clarify what modularity entails under each of these conceptions of an intervention, to

show that in either case modularity demands too much of the world. I begin with her

work with soft interventions.

When we are using soft interventions, a modular system will be one in which each

component “has a cause all of its own that can contribute to whatever its other causes

are doing to make the effect take any value in its range” Cartwright (2001, p. 66).

The availability of these causes—which I call affordances—ensures that we can get

at each component without worrying about whether our intervention will affect other

unrelated components, so long as we intervene through the affordance only. Call this

kind of modularity affordance-modularity.

But why should we think, she asks, that affordances will be a general feature of

causal systems? Cartwright (2000, 2001) claims that although some causal systems

will surely offer affordances for manipulating them, these systems are rare.

Cartwright calls causal systems epistemically convenient when they are linear and

deterministic, and when each effect (variable) in the system “has a cause all of its

own that can contribute to whatever its other causes are doing to make the effect take

any value in its range” (2001, p. 66) (what I will call affordances). An epistemically

convenient linear deterministic system is a system that can be modeled using a system
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of linear equations of the following form:

X1 = U1

X2 = a21X1 + U2

...

Xn = ΣanjXj + Un

with a probability measure P over the terms U1, U2, . . . Un such that there are no cross-

restraints among the various U -terms, each U -term is probabilistically independent

of every other U -term, and no U -term can take the value of 0 with probability 1.2

The U -terms are what I have been calling affordances. I call them such because

they provide a kind of handle by which we can get a hold of each effect in the

system independently. If we are interested to know whether Xi causes Xj, Cartwright

observes, we need only hold all of the affordances steady, save Ui. We can then use

affordance Ui to vary Xi; and if Xj varies in train, then we know not only that

Xi is one of Xj’s causes, we can also map out the specific functional relationship

that holds between the two. The independence of each affordance from the rest is

of particular importance for securing independent manipulability. If two affordances

were correlated, then we would be unable to discern whether any changes in the

dependent variable of our experiment were due to our intervention, or the correlated

affordance.

This is simply the most straightforward discovery method; there are others that

work for epistemically convenient systems. What makes these systems convenient is

that there are easily proved theorems (which Cartwright takes the time to prove for

2I do not think there is anything significant about the fact that X1 is the only exogenous non-
affordance, and that each Xn is a function over all and only Xn−1, Xn−2, . . . , X1. I am unsure why
Cartwright insists that linear causal models will have precisely this structure, (except, as Eber-
hardt has pointed out to me, that she thinks some of the coefficients aij might be 0, and uses this
presentation to make that point. At any rate, I should hasten to point out that nothing hangs on it.
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our sake, pp. 68–ff.) which show that it is possible to prove that a particular model

is a correct representation of the underlying causal structure.

But, Cartwright asks, why should we think that every causal system will be epis-

temically convenient—will have affordances for each effect? She claims that authors

as Woodward don’t offer modularity as a tool in an axiomatic system, but as a gen-

eral description of a feature common to all causal systems. Cartwright’s argument

against what she calls the doctrine of universal epistemic convenience is quite simple.

Cartwright offers the toaster as a counter-example to the doctrine. Within the toaster

we can find a common-cause structure for which the joint effects have no affordances.

And if the effects have no affordances, then we cannot get at them independently of

each other, and hence modularity is violated.

Inside a toaster is a lever arm that springs into motion when the toast is done (as

measured by a temperature sensor). This lever arm has two jobs: It must cut off the

flow of electric current to the heating coils, and it must push up the toast-rack so as

to pop the toast out of the toast-slots at the top of the toaster. Within the toaster,

there is no other method of cutting off the heating coils, nor is there any other method

of ejecting toast. The lever arm is the only cause of these two effects. Being the only

cause of the effects, we cannot independently manipulate the toast-ejecting behavior

without also necessarily affecting the heating-coil cut-off behavior, because the only

way to manipulate the toast-ejecting behavior is via the lever arm. So the toaster is

not modular. QED.

One natural response to Cartwright’s argument is to ask: Well, why not simply

unbolt the lever arm from the toast-rack? Can’t we intervene into the toast-rack in

this way? Cartwright has two responses ready. The first response is that the act of

unbolting is a hard intervention—but affordance modularity establishes the truth-

conditions for modularity when we are using soft interventions. Unbolting the lever
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arm cuts (nearly literally) the toast-rack from its direct causes; a soft intervention,

on the other hand, because it does not cut causal arrows, is not the sort of thing that

will modify the toaster mechanism. The strategy of unbolting thus misses the point

of the toaster counter-example: That there is no intervention that does not modify

the toaster so as to render the toast-rack and the lever arm independent.

Cartwright has a second response for those that might insist that the act of unbolt-

ing is an act of helping ourselves to an affordance in the toaster, and that therefore

unbolting does count as a soft intervention. In this case, the unbolting strategy re-

quires a claim that the bolting of the two parts is itself an additional cause of the

movement of the rack, one that can be treated as an affordance. Cartwright rightly

thinks that this an odd thing to demand, for “to do so is to mix up causes that pro-

duce effects within the. . . toaster with the facts responsible for the toaster operating

in the way it does; that is, to confuse the causal laws at work with the reason those

are the causal laws at work.” (p. 72). All this is just to say that trying to treat the

bolting of the toast-rack to the lever arm as an affordance is a category mistake:

Unbolting just is a hard intervention, and claims otherwise are nonsensical.

None of this is to say that we are not permitted to unbolt the toast-rack. Far

from it. But once we commit ourselves to a hard intervention, a different notion

of modularity is in play (one which I examine the following section). Cartwright’s

response is simply that we cannot use the possibility of a hard intervention as an

argument against the truth-conditions for modularity under soft interventions without

begging the question.

More to the point, Cartwright claims that the constraints that epistemic conve-

nience places on a causal system seem arbitrary; the demand for epistemic convenience

amounts to a claim “that it is impossible to build a bomb that cannot be defused.”

Nor can we make a deterministic device of this sort: the correct function
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Figure 7.1: Which variables are exogenous depends on the variable set selected.

of the mechanisms requires that they operate in a vacuum; so we seal

the whole device in a vacuum in such a way that we cannot penetrate

the cover to affect one cause in the chain without affecting all of them.

Maybe we cannot build a device of this sort—but why not? It does not

seem like the claim that we cannot build a perpetual motion machine. On

the doctrine of universal epistemic convenience we either have to say that

these devices are indeed impossible, or that what is going on from one

step to the next inside the cover is not causation. . . (p. 73)

So, Cartwright concludes, the doctrine of universal epistemic convenience is not

merely violated, but it is violated with regularity: the toaster is hardly an unusual

system. And so modularity must not be a universal feature of the world; indeed, it

will be vanishingly rare. And I certainly concede that this is a problem, if we think

that the toaster represents a perfectly reasonable, indeed archetypal, mechanism, that

the manipulated mechanism should be able to account for.

Soft Interventions and Exogenous Variables—A Worry for

Cartwright

I raise three issues for Cartwright’s worries about modularity and epistemic conve-

nience.
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I would like to pause at this point to raise a worry peculiar to this argument, that

does not bear on the remaining two. It seems that Cartwright has in mind an odd

notion of intervention, that we can only intervene into exogenous causes. Why is it

that we can only intervene via affordances? Why can we not intervene directly into

the various variables directly? Whether a cause is exogenous is determined by our

choice of variables.

Consider the two models of the toaster in Figure 7.1. In the left-hand model,

both the movement of the toast-rack and the shutting-off of the heating coil are

exogenous—they have no causes (in the set of variables used in the model). But in

the right-hand model, they are not: They share a common cause, the lever-arm, which

is exogenous. Neither model is more or less correct than the other, given the choice

of variables.

But, if Cartwright’s implicit claim that we can only perform soft interventions via

exogenous variables is right, then the possibility of intervention will depend on our

choice of variables. On the left-hand model, we can intervene into the toast-rack; on

the right-hand model we cannot. But this cannot be right. How could our variable

choice—a pragmatic, abstract choice—affect the metaphysical, causal structure of a

mechanism? There is no real difference between the toasters in Figure 7.1, only a

difference in representation. Yet, Cartwright’s notion of modularity has committed

her to the very puzzling result that the left-hand diagram represents a modular mech-

anism, and the right-hand one does not. This very puzzling feature of her notion of

intervention strongly suggests that we should not put too much stock in her worries

about the possibility of interventions in the case of the toaster.
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7.2 Independently Disruptable Processes

When we are limited to soft interventions, she argued that modularity requires unique

affordances for each mechanism component. Cartwright (2004) argues that when we

can make use of hard interventions, modularity requires, not unique affordances, but

that each causal relation consists of its own process or mechanism that is independent

of the process of mechanism underlying every other causal relation in the system.

Consider again Cartwright’s archetypal linear deterministic system:

X1 = U1

X2 = a21X1 + U2

...

Xn = ΣanjXj + Un

Cartwright would say, when hard interventions are available, that such a system is

modular, not in virtue of anything about the U -terms, but when for each Xi it is pos-

sible to rewrite the equation as Xi = x without altering any of the causal relations

represented by the other equations in the system. This is clearly the notion of modu-

larity that Woodward (2003) has in mind. Woodward calls such single replacements

wiping-out the causal generalization for Xi, and setting Xi to a particular value x.

When will it be possible to wipe out each equation independently of others?

Hausman & Woodward (1999) claim that systems whose effects are the result of

distinct mechanisms3 will satisfy modularity in this way. They claim, plausibly, that

3Hausman & Woodward (and Cartwright) use the term ‘mechanism’, and I am fairly certain
they mean ‘mechanism’ in much the same way as Glennan (1996) or (2002); but I find that their
use of the term is very loose and unconstrained. I will continue their use of the term, but only with
a little reluctance. Woodward, for example, often uses ‘mechanism’ ambiguously: to refer to that
which links cause and and effect, and to refer to the equations in a causal model, which of course
pick out multiple cause-effect relations, each with their own mechanism linking them together. I not
make too much hay of this unfortunate equivocation. Cartwright, as we shall see, makes no such
promise.
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The central presupposition. . . is that if two mechanisms are genuinely dis-

tinct it ought to be possible (in principle) to interfere with one without

changing the other. Conversely, if there is no way, even in principle, to

decouple mechanisms—to interfere with one while leaving another alone—

then the mechanisms are not distinct. . . . This understanding of distinct-

ness of mechanisms plus the assumption that each equation expresses

a distinct mechanism implies modularity: it is, in principle, possible to

intervene and to disrupt the relations expressed by each equation inde-

pendently. Hausman & Woodward (1999, p. 549)).

So, on Hausman & Woodward’s view, modularity requires something I will call in-

dependently disruptable processes4. These are different from affordances. Affordances

are unique causes of each variable in a causal system that can be used as a kind of

handle. Independently disruptable processes, on the other hand, are unique causal

relations linking pairs of variables that can be broken or disrupted independently of

the other causal relations.

Cartwright believes that the requirement of independently disruptable processes

is too strong. Nature, Cartwright notes, has no obligation to be friendly or accessible.

Indeed, the case of the Polluting Factory, introduced in the previous chapter, is one

potential counter-example: chemical X and pollutant Y are correlated because they

are produced by non-distinct mechanisms (as will it be for all cases of product and

by-product).

Cartwright (2004) instead focuses on a different counter-example to the require-

ment of independently disruptable processes, the carburetor. The carburetor is an in-

4In their discussions, Cartwright and Hausman and Woodward use the term ‘mechanism’. But
they are in fact reffering to the mechanism that explains a particular causal relation within a
higher-level mechanism. To avoid confusion, I will refer to the causal relations within a mechanism
as ‘processes’. Nothing weights on this bit of terminological distinction.
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genious piece of engineering, which manages several functions simultaneously through

the operation of a single mechanism: the Venturi effect. A venturi tube is a tube with

a constriction in the middle. When fluid (such as air) passes through the tube, it

speeds up as it passes through the constriction. But the Bernoulli principle states

that as the speed of a fluid increases, the lateral pressure it exerts decreases. In a

carburetor, an emulsion tube is placed right at the constriction such that incoming air

from the air filter draws gasoline through the emulsion tube at the venturi constric-

tion. The gasoline is atomized by the narrow emulsion tube, and is evenly distributed

through the air by the time the air reaches the other side of the constriction. In this

way, the carburetor can ensure that the engine receives a proper mix of air and fuel.

One desirable feature of the carburetor is that the amount of gasoline drawn from

the emulsion tube is proportional to the velocity of the air passing through; and since

the air is drawn through the tube by the vacuum created by the movement of the

engine’s pistons, the amount of gasoline supplied is thus proportional to the speed of

the engine.

G
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E
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T

Figure 7.2: Graph of Cartwright’s Carburetor
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Here is Cartwright’s model of the most central features of a carburetor’s operation:

F = f(A,E,G)

A = g(P,G)

E ′ = h(E,P,G)

P = j(V, T,G)

where F is the gasoline in venturi tube; E is the gasoline in the emulsion tube; E ′ is

the gasoline exiting emulsion tube; A is the airflow through the venturi constriction;

P is the air pressure in the venturi constriction; V is the vacuum pressure; T is the

setting of the throttle valve; and G is the geometry of venturi chamber. Figure 7.2

presents a graphical version of the same model.5

The model succinctly describes the salient features of the operation of the carbu-

retor described above. It also captures very neatly the central role that the particular

shape of the venturi tube plays; variations in the shape of the constriction will have

consequences for all aspects of the operation of the carburetor.

Notice that the only exogenous variables are T , the setting of the throttle value

(which follows the position of the acceleration pedal in the cab); P , the vacuum of

the engine (which is a function of the rotational velocity of the engine); and G, the

geometry of the venturi tube. Although we can intervene into T and P , the ingenious

design of the carburetor, Cartwright notes, precludes the possibility of wiping-out

any of the equations. There is no independent way to re-write the equation for, e.g.

the airflow through the venturi without actually cracking open the carburetor and

modifying the shape of the venturi:

The conclusion is that an intervention on any of the causally determined

5The interpretation of the variables as parts in this model is Cartwright’s own use of the Default
View semantics. Since nothing I discuss here hangs on the semantics for causal models, I will not
make any hay of her use of the Default View.
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variables requires an alteration to the geometry of the chamber; any such

alteration will, of necessity, alter the relationships expressed in the other

causal equations, in violation of modularity. Cartwright (2004, p. 23)

Notice that this is not a claim about the existence or independence of affordances.

Rather, the claim is that in the carburetor there is really only one causal process at

work—the Venturi effect—, and this one process is implicated in the causal relations

governing several effects. I call such systems, in which one causal process links the

workings of many otherwise disparate effects, tightly coupled. If we wanted to ma-

nipulate one effect, say the airflow, by intervening into the geometry of the venturi

constriction, we are out of luck because there is no distinct, independently disruptable

process linking the geometry to the airflow. We could intervene into the venturi with

respect to the airflow for the purposes of testing the effects of changes in the venturi

on the airflow, but only at the cost of intervening into every other variable that de-

pends on the geometry of the venturi constriction; and so, we cannot intervene into

any of these independently. Thus, the carburetor—and all tightly coupled systems,

which are legion—violates modularity.

Biology presents another example: The inner ear of mammals. The inner ear medi-

ates two important functions, hearing and balance. The cochlear system in the inner

ear translates pressure waves in the air into pressure waves in a fluid that are then

propagated through the cochlea, which contains many small hair-like cells (called hair

cells) which move in the fluid in response to changes in pressure. The movement of

these hair cells is then translated into nerve impulses. The vestibular system uses

the very same fluid, but in a slightly different way. Movement of the head causes

fluid to move through the vestibular labyrinth, also lined with hair cells. Again, the

movement of the hair cells is translated into nerve impulses. Both the cochlear system

and the vestibular system depend on the movement of the same fluids, common to
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each system, and so an infection of the fluid called labyrinthitis often causes both

hearing loss and dizziness as a result. Thus, not only is the vestibular fluid a common

cause of hearing and balance, but the mechanism for hearing and the mechanism for

balance are not distinct, in that both make use of the vestibular fluid and the inner

ear. The inner ear is thus tightly coupled, in that we cannot intervene independently

into either the cochlear or the vestibular system via the vestibular fluid.

One response to this kind of example is to observe that we are not limited to

intervening into the airflow via the venturi geometry, or the cochlear system via the

common fluid. To modify the airflow we need only mount a blower fan between the

air-filter and the carburetor; then we can manipulate airflow by simply blowing more

or less air into the carburetor. But such a response misses the point. This response

presupposes that there really are distinct processes at play, or that we can simply

arbitrarily insert new processes at will. And maybe in the case of the carburetor we

can, but this is no guarantee that the strategy is universal, or even widely applicable.

Nevertheless, we might worry, with Hausman & Woodward (1999), that if there

are four (correct) equations, one for each effect, there must be four distinct processes,

one for each effect (and so blower-fan–type strategies are generally sound). But this

worry is an illusion, Cartwright tells us, created by the structure and nature of systems

of linear equations. Putting the Polluting Factory to new work, she responds:

I have not yet figured out how to represent separate processes by sepa-

rate equations. Look for instance at the probabilistic equations [for the

Polluting Factory]. There is one equation for each separate effect. As I un-

derstand it, Hausman & Woodward think that the two effects [chemical

X and pollutant Y ] studied in this example are not produced by distinct

processes but rather by the same process. So we should have one equation,

an equation for the process, rather than two. But what is this equation?
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What, for instance, are the quantities to be equated? Cartwright (2002,

p. 416, footnote 6)

Although it is easy to read Cartwright’s response as a certain willful refusal to be

reasonable, she is raising an important point: Systems of equations are useful tools

for representing the functional relationship between causes and effects, but we should

be careful about how we interpret our models. In the case of a causally-interpreted

system of linear equations, Hausman & Woodward reify the ‘=’ as a causal process.

But it’s not clear what this reification adds to what the equations already tell us.

If each term on the right-hand side is a cause of the term on the left-hand side,

what more do we gain by insisting that, moreover, the equation represents a distinct

process? Cartwright thinks we gain nothing, and I am inclined to agree.

What do we lose by discarding the requirement that equations represent indepen-

dently disruptable processes? Hausman & Woodward’s quote above is clear: We lose

modularity. But why should we think that independent manipulability requires dis-

tinct process? Indeed, it is at this point that both Cartwright and her adversaries seem

to lose sight of what modularity requires of the world. In the remainder of this sec-

tion, I shall argue that modularity does not in fact require independently disruptable

processes, that the carburetor is in fact modular, and so presents no counter-example

to modularity claims.

Modularity in Tightly-Coupled Systems

Consider the following example of a tightly coupled system. Fred and Ginger dance

with each other. As each dances, their position changes (to simplify things some-

what). The dancers’ position is a function of three things: the choreography of the

dance, set ahead of time; error resulting from imperfections in the reproduction of
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movement from the choreography; and movement in response to the partner. If Fred

steps forward slightly from a slight imbalance, Ginger will step backward slightly in

response.

Thus, the position of each dancer is a function of, among other things, the position

of the dancer just a moment ago, and the position of the other dancer. This is some-

what ponderous, however, especially when one reflects on what ‘just a moment ago’

means, and the fact that there is a slight lag between the other dancer’s movements

and this dancer’s response. It makes much more sense to talk about the difference in

position of one dancer with respect to time as a function of the difference in position

of the other dancer with respect to time. This, of course, is the same as talking about

the velocity (difference in position) of one dancer as a function of the velocity of the

other dancer.

But the very reasons that lead us to consider the positions of Fred and Ginger

as partial differentials (as per the previous paragraph) are the same reasons that

might lead us to reject modularity. Fred’s and Ginger’s movements are not distinct,

because there is a single continuous reciprocal feedback mechanism connecting them—

a causal process common to both Fred’s movements and Ginger’s. We cannot, as with

the carburetor, intervene to wipe-out one generalization, say that governing Fred’s

movement, without disrupting the other, that governing Ginger’s movement, because

they are both the result of a single process linking both movements.

Cartwright’s worry about tightly coupled systems is an epistemological worry,

rather than the metaphysical worry she casts it as being. Just because it would be

difficult if not impossible to have Ginger move in a different way without altering the

relationship between Ginger and Fred does not mean that modularity does not hold

of the Ginger-Fred system, because we can still understand the claim that ‘Ginger’s

movement affects (causes) Fred’s movement’ means ‘were Ginger to step in this-or-
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that way, Fred would respond as thus.’

That modularity is a modal notion suggests a way forward. That the causal struc-

ture of Ginger and Fred does not currently exhibit independently disruptable pro-

cesses is not reason to think that it is not modular. What if we could change out the

problematic common process linking Fred’s and Ginger’s movements with a new pair

of causal processes?

We construct a pair of anthropomorphic robots that are capable of carrying out

basic dancing instructions. The robots are quite simple, in that neither needs to sense

or respond to its dancing partner. We program each robot to carry out a series of

maneuvers meant to test how Fred and Ginger respond to their partners, and pair

Fred with one robot, and Ginger with the other. We might then instruct each robot to

do a simple box-trot, but to seemingly randomly (but in reality cleverly programmed)

stumble slightly this way or that. We have total control over the stumbles; we need

only observe how Fred responds without worrying about trying to factor out how

Ginger will counter-respond, and vice versa. Because we can control the stumbling

of each robot independently, we can independently disrupt the processes linking Fred

and Ginger with their dance partners. Thus can we, at least in principle, break a

feedback loop without losing information about what makes the loop work.

Thus, although Fred and Ginger are governed by several generalizations, and al-

though, like the carburetor, these generalizations are harnessed together (although, in

this case, by a feedback loop rather than a singular central feature) and so represent

what Cartwright and Hausman & Woodward would identify as a single process, we

have successfully intervened. Why? We have un-harnessed the generalizations by re-

moving the mutual dependence of Fred on Ginger and Ginger on Fred. In a very loose

sense, we have replaced the singular process underwriting the entire system with a

new set of independently disruptable processes. By replacing wholesale the overlap-
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ping, non-distinct processes we can pull the generalizations apart, and intervene into

either Fred or Ginger independently, satisfying modularity.

If we return to the carburetor, we can make a similar move as with the Fred-and-

Ginger case.. If our interest is to understand the particular functional relationships

within a carburetor, we ought to be able to decouple the single process governing each

feature. Suppose we wish to intervene to manipulate the fuel flow from the emulsion

tube. If we are to decouple the process that produces emulsified gasoline we have to

decouple it from the air-flow, the pressure in the venturi tube, etc. Indeed, this is

easy enough: We have already noted that we can use a blower-fan to manipulate the

air-flow. For a given set of setup conditions, we measure the air-flow in an unmodified

carburetor. We then modify the venturi geometry. We measure the air-flow under the

same conditions, and then we use a blower-fan to eliminate any differences in the

air-flow between the two carburetors. Then, we can say precisely how the shape of

the venturi tube affects fuel flow, without worrying that any difference in fuel flow is

due to the difference in air-flow.

Notice that in the case of the carburetor, unlike in the case of Fred and Ginger, we

decouple the singular process by introducing a second process: We, in effect, intervene

in multiple places. One intervention is experimental (the change in the shape of the

venturi tube); the other intervention is restorative (the blower-fan). Indeed, although

the case of Fred and Ginger is fanciful, this kind of reasoning is precisely how scientists

proceed when faced with a tightly coupled feedback system—yet more evidence that

Cartwright has illicitly narrowed the range of truth-conditions for modularity. In the

next chapter, I will examine the case of Hodgkin and Huxley’s experiments on the

squid giant axon: Their experiments depended on an apparatus called a voltage clamp

which introduces multiple simultaneous manipulations into the neural cell to break

apart a tightly-coupled feedback loop in just the way described above.
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Thinking of modularity as a modal concept, we can see that the concept of inde-

pendently disruptable processes does not exhaust the truth-conditions for modularity.

Modularity makes claims about how the world would (or should) be during an in-

tervention, where Cartwright has interpreted it as a claim about how the world is.

Once we begin to admit possibilities, satisfying modularity becomes quite easy, even

in tightly-coupled systems, so long as we can think of ways to modify the overlap-

ping processes. I return to this modal nature of modularity in the last section of this

chapter.

But first, we must return to feedback loops, which, as I discussed above, must be

teased apart before we can treat a system containing them as modular. I turn now to

consider feedback in more detail, because some authors worry whether feedback loops

can even be decomposed into components in the first place. If they cannot, then the

idea that we can pull them apart is misguided, and this modal notion of modularity

that I’ve introduced will be untenable.

7.3 Dynamical Systems and Decomposition

Dynamical systems are closely related to tightly-coupled systems. Where tightly-

coupled systems comprise a number of components whose interactions overlap, dy-

namical systems are complex systems that cannot be readily decomposed into distinct

components in the first place. Because there are no distinct components, it is hard

to see how a Fred-and-Ginger like intervention can work, since that strategy depends

on being able to carve up a system into individual components for testing.

Dynamical systems are of interest to us, because there are a well-understood set

of mathematical tools for analyzing their complex behavior, and these have lately

become popular for describing and explaining biological systems. Dynamical systems
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analysis focuses on the kinematics of a system; how the system evolves over time,

and how the various measurable properties change in relation to each other. One

early example of dynamical systems modeling in biology is the Hodgkin and Huxley

model of the action potential. This model describes the movement of potassium (K+)

and sodium (Na+) ions across a neuron cell membrane as a function of changes in

potential difference across the membrane. But the model also describes the changes

in potential difference as a function of the relative concentration of ions. Changes

in potential are caused by differences in ion concentrations; the movements of ions

are impelled by potential differences. Hodgkin and Huxley used systems of non-linear

differential equations to model this behavior (a topic I will return to below).

But, as important to biology as dynamical systems are, there is a wrinkle. Modular

independence requires that a mechanism be decomposable. And decomposability, as

Chemero & Silberstein (2008) argue, requires the mechanism be linear—that is, non-

dynamical. A non-linear system is one whose various elements do not interact in an

additive fashion to produce their effects, that is, whose elements produce interaction

(in the statistical sense of the term) where the contribution of one element can be

modulated by the contribution of another. For example, a positive feedback loop

operates by rapidly magnifying small changes in initial conditions into exponentially

larger effects, larger than the sum of the individual small changes that initiated

the feedback cycle. Chemero & Silberstein (2008) think that non-linearity poses a

problem for modularity because there is no way to cleanly demarcate the various

causal contributions being made by each cause in the mechanism, and hence there is

no way to identify any possible component as a distinct cause in the mechanism—and

without distinct causes, there is nothing to be modular.

Thus, if Chemero & Silberstein are right, non-linear systems will not be in general

modular, and hence when the behavior of the system is produced by a mechanism,
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the Manipulated Mechanism will not be able to account for this mechanism. In this

section, I will argue that modularity does not require that we be able to decompose

a mechanism into independent and linear functions that can each be localized to

individual components in the mechanism. I will argue moreover that modularity does

not require that the various components interact in a strictly linear fashion, and that

therefore non-dynamical system can be modular.

Decomposability and Non-Linearity

Modular independence requires that a mechanism be decomposable, because modu-

lar independence is a feature of mechanism components. If we cannot decompose a

mechanism into components, then there is nothing to have the property of modular

independence.

Decomposition, Bechtel & Richardson (1993) tell us, is the process of taking a

mechanism, analyzing it into distinct functions, and then localizing those functions in

spatio-temporal regions of the mechanism by identifying those regions that carry out

or implement each of the functions. Insofar as the decomposition is correct, then the

functions will be localizable to the mechanism’s components. Bechtel & Richardson

worry that only linear, additive functional relations will be decomposable.

An algebraic function is linear when the terms on the left side of the ‘=’ sign are

an additive combination of the terms on the right. Additivity is simply the property

of being the sum of two or more terms. Thus, a linear function is one where each of

the terms are combined through addition, rather than some other operator such as

multiplication or exponentiation. When two terms are non-additive, they appear as

an interaction (in the statistical sense of the word), where the contribution of one

term can modulate or be modulated by the contribution of a second. (For an extended

discussion of linearity and additivity, please see Appendix A.)
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Bechtel & Richardson tell us

Decomposition assumes that one activity of a whole system is the product

of a set of subordinate functions performed in the system. It assumes that

there are but a small number of such functions. . . [that] are minimally

interactive. . . [and] can be handled additively or perhaps linearly. (p. 23,

emphasis added)

Bechtel & Richardson do not argue for this claim, but Chemero & Silberstein (2008)

do. They argue that at non-linear dynamical systems will defy mechanistic explana-

tion, because they defy decomposability. In a dynamical system,

the more localizability and decomposition fail, the harder mechanistic

explanation will be, and a high degree of non-linearity is bad news for

both of these. (p. 16)

This worry parallels van Gelder’s (1995), who is concerned that the mind, as a dy-

namical system, cannot be decomposed into modules, each with a specific functional

role to play. But Chemero & Silberstein come to a stronger conclusion than does

van Gelder. They conclude not merely that if the mind is a non-linear dynamical

system then it won’t be composed of modules, but that then it won’t be composed of

anything, because the very notion of composition doesn’t make sense in a non-linear

context.

Chemero & Silberstein (2008) begin their argument by allowing that a system of

linear equations can be decomposed into subsystems. They do not explicitly define

what they mean by a ‘subsystem’, or how to decompose a mathematical model; I

have attempted here to charitably fill in these gaps.

If the goal of decomposition is to find a description of the causal relations in a

mechanism, and a subdivision of the mechanism into components consistent with this
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description, and we are using systems of equations to describe the causal relations,

then our system of equations must meet the constraints on causal interpretations

discussed in Chapter 1. Specifically, there must be one equation for each endogenous

variable (a variable representing an effect), with the endogenous variable on the left-

hand side and all of its causes (and none of its non-causes) on the right-hand side.

Thus, I presume that Chemero & Silberstein mean that decomposing a system of

equations means solving that system for each of its endogenous variables. That is, as

I understand them, decomposition requires that we take a linear system of equations,

and manipulate it algebraically until each endogenous variable appears as the left-

hand side of one and only one equation in the system. Call each resultant solved

equation a subsystem, and the total set of solved equations the decomposed system.

Here is a worked example of how I take decomposition to work. Suppose we have

a linear system in n+m variables, with n endogenous variables X = {x1 . . . xn} and

m exogenous variables Z = {z1 . . . zm}. Then a decomposed system will consist of n

solved equations of the form

xi = f(X \ xi , Z)

where f is a linear function of its operands of the form:

f(V,U) =
∑

aivi +
∑

bjuj .

But non-linear systems, Chemero & Silberstein claim, cannot be so decomposed,

because they cannot (in general) be solved in each endogenous variable. Consider a
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set of variables X, and a system of differential equations in matrix notation6:

dX

dt
= f ′(X) = FX.

So long as the coefficients in F are constants (and the coefficient for the term on the

right-hand side containing the variable on the left-hand side is zero), the system is

linear. But if any of the coefficients is one of the variables in X, then the function

containing that coefficient will be non-linear because it is a multiplicative combination

of variables rather than a simple additive combination, and because there will be a

term in one of the equations of the form xixj, where xi is the coefficient. The resulting

system will violate additivity7, and hence the system will be non-linear.

Let us suppose that we are dealing with only non-linear systems. Such systems

(as the ones discussed above) are not generally solved in all of their variables, but

are only solved in the first time-derivatives of their variables. To solve a system (and

hence to decompose it), we need to use the calculus to rewrite the equations in the

form

Xt+1 = f(Xt) = GXt.

Where G is a new coefficient matrix for the solution, and t is a subscript indicating

6This is a nice shorthand for the system of equations

dx1

dt
= f ′

1(X) =

n
∑

i=1

ai1xi

...

dxn

dt
= f ′

n(X) =

n
∑

i=1

ainxi.

The advantages of using matrix notation should at this point be clear. Notice that in a linear system,
for the equation with xj on the left-hand side, the coefficient for the term aijxj will be zero, and all
other coefficients will be constants.

7Additivity is simply the property of being made up of additive combinations of variables, e.g.
in f(x, y, z) = ax + by + cz. Non-additive systems are composed of multiplicative, exponential, or
logarthimic combinations of variables, e.g. g(x, y, z) = xy+yz, &c.. See Appendix A for an extended
discussion of additivity and its relationship to linearity.
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that X evolves over time; xt is the value of x at time t, and xt+1 the value of x at the

next time step.8

In general, however, although systems of differential equations can be solved,

systems of non-linear differential equations cannot be solved in their variables—only

very simple systems and systems that exhibit special properties have solutions. For

example, systems of quadratic equations in one quadratic variable (and zero or more

linear variables)—i.e. a system of equations of the form 0 = ax2 + by + c, and where

in each only the x term is squared—can be reduced to a single quadratic equation,

which can be solved using the quadratic formula x = −b±
√
b2−4ac
2a

. But in general,

there is no method for solving systems of non-linear differential equations, and most

systems have no solution at all9. So, if decomposing a system means solving it (as

I take Chemero & Silberstein to mean), then most non-linear differential systems

cannot be decomposed. So far so good.

The final step is to show that these mathematical difficulties are likewise difficulties

for mechanistic explanation. Chemero & Silberstein identify the decomposition of a

system of solved equations with the decomposition of a causal system into independent

mechanisms (which is largely how, as I have shown, Bechtel & Richardson (1993) and

Hausman & Woodward (1999) characterize decomposition); and they identify the

result of the mathematical decomposition (the solution of the system of equations in

each variable), with the mechanisms in the causal system. They conclude that the

tightly-coupled nature of dynamical systems precludes the possibility of disentangling

the various entities in a mechanism that system represents; that the coupled nature

of the equations mirrors the deeply entangled nature of the entities:

8Such a representational notation does not presume discrete time steps. The representation
allows talk of, e.g. limǫ→∞ xt+ǫ.

9Just because there is no method for solving an equation does not mean there is no solution.
But often there aren’t any solutions to be had anyway.
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When the behaviors of the constituents of a [mathematical] system are

highly coherent and correlated, the [causal] system cannot be treated even

approximately as a collection of uncoupled individual parts. Instead, some

particular global or nonlocal description is required, taking into account

that individual constituents cannot be fully characterized without refer-

ence to larger scale structures of the system such as order parameters.

(Chemero & Silberstein, 2008, p. 16)

Two equations for xi and xj are coupled if xi shows up as a coefficient in the equation

of xj or vice versa. And in a non-linear dynamical system, such coupling will occur

at least once, if not in multiple places. Chemero & Silberstein are claiming that

if we cannot solve a mathematical system (because of coupling), then there is no

meaningful way to talk about decomposing the physical system the mathematical

system represents (for the parts must therefore also be coupled). So highly non-linear

physical systems cannot be decomposed in the way that mechanistic explanation

requires. And if they cannot be decomposed, then these physical systems cannot

satisfy modularity. QED.

Several questions for Chemero & Silberstein come to mind. First, why should we

identify the solutions to a system of equations (the mathematical decomposition)

with the entities of the physical system being represented (the mechanistic decompo-

sition)? Granted that this is a view I am imputing to Chemero & Silberstein, but it

seems the only way to make sense of their claim that non-linearity defies mechanis-

tic decomposition. Second, does non-linearity, and hence non-decomposability, really

violate modularity? That is, are there other ways to satisfy modularity when this

particular way fails? I turn now to consider these questions in some detail.
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Non-Linearity and Modularity

Why must we be able to solve a system of equations to identify the entities of the

mechanism the system represents? At first blush, we might think that only a solved

system can be treated as a causal model. Each solved variable appears on the left-

hand side of one and only one equation in the solved system; giving each equation

a causal interpretation yields a causal model that fully describes the causes of each

variable. Although this move seems natural, a closer examination reveals that this

position is unfounded: There is no a priori reason to think that a solved system will

correctly represent the causal relations within the mechanism.

We might think that, in a particular case, the unsolved system may give the

correct causal relations. Woodward (2003) has argued that in a linear system, at

most one arrangement of the variables can represent the true causal structure among

those variables, and that algebraic rearrangement does not preserve causal relations.

Extending his argument, there is no particular reason to think that the calculus will

preserve causal relations either, as the calculus is a superset of algebra, and there is

no particular reason to think that a system’s being non-linear provides a guarantee

that mathematical manipulation will preserve the causal relations. So, if an unsolved

non-linear dynamical system does represent the true causal structure, then the solved

system will not represent the true causal structure. And therefore there is no reason

to think that the solved system is a privileged representation of causal interactions.

Consider the following non-linear causal model:

dZ

dt
= UZ

dX

dt
= Y Z + UX

dY

dt
= XZ + UY

The model is non-linear because the first time-derivatives ofX and Y are non-additive
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combinations of each other. Moreover, since the model is dynamical, it is not solved

in its variables—rather, it is solved in the variables’ first time-derivatives. Suppose

that this model represents the true causal structure among the first time-derivatives

of the variables X, Y , and Z. That is, the model represents that the velocity of each

variable (it’s first time derivative) is caused by the multiplicative combination of the

position of two other variables.10 There is nothing in the mathematical structure of

the model that precludes us from setting any of the variables, e.g. wiping-out the

equation above for dY
dt

and re-writing it as

dY

dt
= set(Y ).

This new equation represents an intervention into the velocity of Y . Such an inter-

vention breaks the arrows leading into the velocity of Y , which include arrows from

Z and X. Interventions work by disrupting certain of a mechanism’s activities. But

notice that the system’s being non-linear doesn’t have any bearing on whether could

make such an intervention. And the system’s not being solved is likewise irrelevant

to the metaphysical possibility of intervention. The final equations claims that x is

a cause of dY
dt
, and says nothing about whether we can intervene into dY

dt
directly;

the second that dX
dt

is an effect of Y . So, I do not think that there is any reason to

think that non-linearity precludes the possibility of independent manipulability of the

variables.

Neither non-linearity nor being dynamical (nor their combination) need violate

modularity. On the one hand, there is no obstacle to our being able to make sense

of interventions into non-linear systems. A non-linear system is one in which one

or more variables appear as coefficients in the right-hand side of one or more equa-

10Although being a cause of velocity might sound exotic, or perhaps even untenable, consider
that the mass of our sun has a concrete causal influence on not only the position of the earth, not
only its velocity, but on its second time-derivative: its acceleration. So such a causal model is hardly
unusual.
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tions. But Chemero & Silberstein appear to conflate the modular independence with

additivity. Additivity ensures that the terms in a linear function are independent,

in that there are no interactions among the variables in the statistical sense of the

word. The existence of multiplicative effects in a system means that we cannot use

linear statistical methods for analyzing such systems (e.g. ANOVA), without addi-

tional assumptions. But for causal modeling, these kinds of interactions are innocuous.

Chemero & Silberstein (2008) appear to conflate this statistical sense of interaction

with the probabilistic notion of dependence, which is quite different. Two variables

X and Y are dependent when they are correlated; they interact when they multiply

together to produce a joint effect Z. Dependence is orthogonal to linearity: X and

Y can correlate, yet still jointly produce Z in additive fashion. Likewise could they

produce Z in a non-linear fashion without themselves being correlated. So, although

modularity does require certain patterns of independence among the variables in a

model, it hardly requires linearity. To take a quick example, although genotype and

environment might interact in a non-additive fashion to produce a phenotype (Tabery,

2009), we can yet intervene on either genotype or environment without difficulty.

On the other hand, there is also no obstacle to our ability to decompose non-linear

mechanisms, because physical decomposition is not isomorphic with mathematical

decomposition, and so a failure of mathematical decomposability does not entail that

we cannot find a mechanistic decomposition. Chemero & Silberstein (2008) appear to

presume that variables in mathematical systems must represent entities, a view that I

rejected in Chapter 4. If variables need not represent entities, then we need not worry

that decomposing a mechanism into its entities requires that we be able to decompose

or solve the system of equations that model it. The functional structure of a causal

system is captured in the system of equations that best fit those functions; thus,

having a system of equations that can be given a physical interpretation—whether
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they are solved or not—is sufficient for decomposition.

Cartwright’s argument from affordances, her argument from independently dis-

ruptable processes, and Chemero & Silberstein’s (2008) argument from decomposabil-

ity share a common thread. Each argument rests on a presupposition that modularity

is an actual (in the sense of non-modal) feature of a causal system. But, as I turn

now to argue, modularity is a modal claim about interventions, and does not depend

on a causal system having any of the properties described so far in the chapter.

7.4 Sufficient Conditions for (PMa)

Each of the arguments I have considered in this chapter takes as their goal to un-

dermine modularity as a general principle for causal inference. Each proceeds by

demonstrating a set of conditions that must be met by a mechanism before it will

satisfy modularity (it must have affordances, or must comprise independently dis-

ruptable processes, or must contain only linear, non-dynamical interactions). Then,

each argument argues that these conditions are in some way extraordinary by offer-

ing some kind of counter-example: a mechanism that is seemingly commonplace, that

fails the stringent conditions described, and that is yet clearly the kind of mechanism

amenable to experimental analysis. Thus, each argument concludes, modularity is the

wrong way to think about causal inference in these kinds of cases.

If the examples and arguments succeed, then insofar as the examples are mecha-

nisms, then the manipulated mechanism will fail to account for them. For my account

to succeed, I must show that, although such stringent conditions are sufficient for

modularity, they are not necessary for satisfying modularity.

What is common to each argument is this. Because modularity makes a claim

that certain independencies must hold during an intervention, each of the conditions
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offered presume that those independencies must be the result of some latent feature

of the mechanism intervened into. Affordances are a kind of ‘handle’ that each com-

ponent must have, that we can take advantage of during a soft intervention to assure

modularity. Independently disruptable processes are causal relations that have no

overlap or common component. Non-dynamiticity ensures that the components in a

mechanism depend only on the value of a manipulation, and not its rate of change.

But this kind of requirement is too strong. Modularity is a modal notion: it does

not explicitly demand anything of the mechanism being intervened into except during

an intervention. Modularity encodes a set of counter-factual claims about how the

mechanism should behave were we intervening into it ideally or surgically. Consider

again my offered formulation, (PMa):

(PMa) Suppose a set of variables V, and Z, Y ∈ V, and Z is distinct from Y . Then

∀Y ∀Z, If Y is a non-descendant of Z, then Y ⊥ set(Z).

We can talk about a mechanism prior to and during an intervention; (PMa) is

a principle for linking inferences about the former to conclusions about the latter.

(PMa) is a conditional, with the antecedent a proposition about the mechanism prior

to intervention (Z is not a cause of Y ) and the consequent a proposition about the

mechanism during the intervention (Y ⊥ set(Z)). In this way, it licenses inference

about the causal structure of mechanism prior to intervention from observations of

dependence made during an intervention: If we observe a dependency between Y

and set(Z), then we can infer that Z (prior to the intervention!) must be a cause of

Y . But this is all (PMa) has to say about the mechanism prior to intervention. In

particular, although (PMa) does not make any claims about how the independencies

that must hold during an intervention should come about. It does not prohibit, for

example, modification of a mechanism that does not disrupt the causal structure or
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independencies required.

If, however, the authors surveyed in this chapter are right, that satisfying modular-

ity really does require that the components in a mechanism be already independent,

then they render modularity trivial—if the variables are already independent, then

the inferential work is being borne by the requirement of ideal interventions. If Z and

Y are already independent in the right way, and we are presuming our interventions

to be ideal, then modularity falls out of these conditions trivially. Thus, the argu-

ments that I’ve considered are merely arguments that many if not most mechanisms

will not satisfy modularity trivially (because the components of most mechanisms are

not already independent in the right way). This is hardly news.

But why should we think that modularity demands that we leave the mechanism

of interest intact? Why not modify it? Cartwright (2004), as discussed earlier, has

stated that we cannot inquire about the causal structure of a toaster by modifying

it, because the resulting mechanism will be quite different from the original toaster,

and no similarity metric will ultimately justify inference to the causal structure of

the original. But, as I’ve just noted, modularity just is a principle that licenses such

analogical reasoning from a mechanism being intervened into, to conclusions about

the mechanism prior to intervention. In which case, her worries about modifying the

mechanism seem misplaced. More to the point, biologists frequently do modify—

sometimes quite heavily—the mechanisms under study. And, indeed, such modifica-

tion appears licensed by (PMa), so long as it is done in the service of securing the

necessary independencies, and so long as it is done without rearranging the causal

relations beyond what is strictly necessary for an ideal intervention (i.e. that we sever

all and only those causal relations of which the manipulated variable is an effect). In

these cases, modularity is actually doing quite a lot of inferential work not borne by

the concept of an ideal intervention: (PMa) gives us, first, the constraints on how
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much or in what ways we are permitted to modify the mechanism, and second, having

modified it how to infer a causal connection in the original mechanism.

In the next chapter, I turn to consider historical cases in which biologists and

neuroscientists did in fact modify the mechanism under investigation, and I show

how that these modifications were performed in the service of satisfying modularity.

With a handful of empirical case studies in hand, I develop a general set of constraints

that modularity places on the modification of mechanisms via intervention.

7.5 Conclusion

In this chapter, I have considered arguments that many mechanisms violate mod-

ularity, because the necessary conditions for modularity are too strong. Weak in-

terventions, according to Cartwright, necessitate that each effect in a system have a

unique affordance for modularity to be satisfied. Strong interventions necessitate that

each effect be brought about by a distinct mechanism for modularity to be satisfied.

Chemero and Silberstein argued that mechanisms must be linear and non-dynamical

to satisfy modularity. I have argued in each case that the author has a too-narrow

view of modularity: That, properly understood, all of these conditions are indeed suf-

ficient for modularity, but affordances, distinct mechanisms, and linearity are hardly

the only sufficient conditions for modularity. Each of these accounts presumes that

modularity demands that we not modify the mechanism under study. Yet, there is

nothing in the modularity principle that places any such requirements on our in-

vestigations. Modularity does place constraints on how and when we can modify a

mechanism and still derive true causal conclusions, but these constraints are not such

that we can never modify a mechanism.

What remains is to spell out in detail a principled account of the necessary con-
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ditions for modularity. I turn now to complete this task.
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Chapter 8

As-If Modular Independence

In this chapter I elaborate on how one can satisfy modularity without requiring that

the mechanism already exhibit some kind of independence—a feature I call ‘modular

independence’. In the previous chapter, I considered three different ways that a mech-

anism can exhibit modular independence: via unique affordances, independently dis-

ruptable mechanisms, and linearity, and I argued that satisfying modularity does not

require that a mechanism exhibit modular independence. How can we intervene into

a mechanism that does not exhibit modular independence? In this chapter, I examine

three historical cases in which experimenters successfully intervened into mechanisms

that did not exhibit modular independence. In each case, the experimenters had to

somehow create the necessary independencies for satisfying modularity. I develop, on

the basis of these cases, a general account of what I call ‘as-if modular independence’,

a set of conditions on how an intervention can modify a mechanism to create the

necessary independencies to satisfy modularity.
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One way to satisfy modularity is when a mechanism exhibits a feature that I call

modular independence. A modularly independent mechanism is one that has a latent

structure—affordances, additive effects, &c.—that can be exploited by interventions

so as to bring about the independencies necessary to satisfy modularity. In the pre-

vious chapter, I argued that modular independence is not necessary for modularity.

Instead, I suggested that, rather than relying on some latent structure in the mecha-

nism, we can use interventions to create a kind of ‘as-if’ modular independence, and

so secure modularity without relying on actual modular independence.

In this chapter, I extend that argument by presenting three historical cases in

which researchers sought to investigate mechanisms that did not exhibit modular

independence. In each case, the researchers used a complex intervention that af-

fected multiple components simultaneously in order to create as-if modular indepen-

dence in these mechanisms. I show that the curious interventions used were crafted

specifically—if tacitly—to secure modularity. I will argue in each case that the use of

a simple, näıve intervention would result in a violation of (PMa), but, in contrast,

that the complex interventions actually used secured the satisfaction of (PMa).

Hodgkin and Huxley, investigating the electrical characteristics of the squid giant

axon, found that the voltage and the current across the cell-membrane were not only

physically impossible to tease apart (being, effectively, two measurements of the same

phenomenon), but formed part of a feedback cycle which could not, therefore, be bro-

ken. In §8.1 I show how Hodgkin and Huxley were able to satisfy modularity through

the combined use of multiple simultaneous manipulations and negative feedback. If

they had tried to intervene by simply manipulating the membrane voltage, they would

have found that this manipulation would drive the membrane current up—and hence

the membrane voltage too, rendering their manipulation and their measurement of

the current invalid. Instead, as I will show in §8.1 they performed two simultaneous
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manipulations, of the membrane voltage and of the membrane current, such that the

axon behaved as though the voltage and current did not feed back upon each other.

In this way, they could vary the voltage independently of the current, and satisfy

modularity.

Otto Loewi sought to discover whether a mysterious and possibly fictious chem-

ical substance—vagusstoff—was the mechanism by which the vagus nerve signaled

the heart muscles. But, having simply postulated its existence, he knew nothing of

its composition or how to synthesize it, except by direct stimulation of the vagus

nerve. But since stimulating the vagus nerve causes the heart rate to slow, such an

intervention would be unrevealing if not question-begging. Vagusstoff, being a mys-

tery, could not be intervened into independently of the vagus nerve. In §8.2, I will

show how Loewi surmounted this difficulty by preparing an analog that comprised

two heart preparations. In the first, he stimulated the vagus nerve, and collected the

fluid from its base. In the second, he stripped off the vagus nerve, and introduced

the fluid collected from the first. Thus could Loewi manipulate vagusstoff using only

stimulation of the vagus nerve without risk of violating modularity.

Pain is a difficult concept to quantify and measure; as a result, the testing of

analgesic drugs can be quite a complicated affair. First, as a subjective experience,

pain can only be measured indirectly; one popular model for pain measurement is

the ‘cold pressor’ task, first identified by Wolf & Hardy (1941).1 In this task, subjects

are asked to immerse their hand in a bath of very cold water. The cold water brings

about a dull, aching pain in the subject; the length of time that a subject is willing to

maintain the submersion is taken as a measure of pain threshold. This task, offering

an operational measurement of pain, appears ideal for testing the effectiveness of

analgesics. Two complications arise, however. First, pain tolerance is affected by a

1As an interesting philosophical aside, Wolf, in this study, was the first to observe that aching
‘cold’ pain signals are conducted by “the small, non-mylenated [fibers] of class C” (p.531).
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great many factors, all of which contribute to the measured task time; these must be

accounted for and subtracted out. Second, analgesics are double-acting: They (ideally)

have a pharmacological action, but they also have a psychological action known as

the placebo response, which is completely independent of the pharmacological agent,

and can be elicited by any substance that the patient believes to be an analgesic.

The risk to modularity is that we cannot intervene ideally on the neurological factors

affecting pain threshold; we have only ham-fisted interventions available to us, and as

a result, we cannot attribute the sum of a subject’s pain response to the drug alone.

We need a way to hold the other factors, including the placebo response, steady. In

§8.3, I show how the method of subtraction combined with experimental controls

permit us to treat otherwise ham-fisted interventions as surgical.

In all three of these cases, researchers sought to understand a mechanism by

intervening into it—and in all three cases, the mechanism defied straightforward

intervention, because the experimenters could not get an independent hold on the

intervention variable. Modularity, however, seems to require that the components

of a mechanism be such that we could get a hold of each component independently.

Therefore, the mechanisms above appear to violate modularity. Yet, in all three cases,

the researchers were successful in their experiments. How can this be? How can a

mechanism into which we cannot intervene straightforwardly possibly be modular?

In this chapter, I will argue that in each of the above cases, the researchers de-

ployed complex or indirect interventional techniques that permitted the satisfaction

of modularity. When the usual methods of carving—perhaps literally—a component

from its context cannot be used (and hence, where modularity cannot be satisfied

trivially), scientists often turn to techniques such as multiple simultaneous manipu-

lations, experimentation on analogs or models, and the method of subtraction with

experimental controls.
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8.1 Multiple Manipulations

Let me begin by drawing a useful distinction. An ideal intervention simultaneously

fixes the value of one variable2 in such a way as to render that variable independent

of its non-descendants. A manipulation, on the other hand, is the fixing of a variable

that may or may not render that variable independent of its non-descendants. I

introduce this distinction because, although an ideal experiment will comprise one

or more ideal interventions, a single ideal intervention may in turn comprise one or

more manipulations. Manipulations are changes to a variable introduced to achieve

an intervention. In the ideal case, an intervention into Z will comprise precisely

one manipulation, a manipulation to bring Z to the desired experimental level. But

there is no reason why, in a single intervention, we must limit ourselves to a single

manipulation. Call an intervention in one manipulation ‘simple’, and in multiple

interventions ‘complex’.

Z Y

I

Z Y

Figure 8.1: Z and Y in a feedback cycle that cannot be broken.

Now, suppose that we are investigating a mechanism as the one in Figure 8.1 in

which Z and Y are tied together in a feedback loop. Suppose moreover that a simple

intervention into Z is insufficient to cut the causal arrow from Y to set(Z), in that

2Or a set of variables; what I say here applies mutatis mutandis to sets.
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the act of setting Z changes Y , which is itself not a problem, but the change in Y

introduces a change in Z, causing Z to deviate from the value set by our intervention.

The resulting violation of modularity is subtle.

(PMa) requires that, if Z does not cause Y , then set(Z) is independent of Y . We

observe that set(Z) is dependent on Y , and so that Z does cause Y . But because of

the unbroken feedback, and the actual value of Z gets away from the value of set(Z),

we cannot say that the correlation we do observe is the result of our intervention,

that is, we cannot report whether we are observing that set(Z) or just Z simpliciter

is correlated with Y . For example, it might be that, under the experimental circum-

stances, although Z causes Y generally, here manipulating Z yields no change in Y .

Yet, it might also be that Y varies randomly, and changes in Y in this context do

bring about changes in the value of Z. Thus, we cannot say that the observed corre-

lation was the result of the setting of Z to a particular value, or the result of random

fluctuations in Y driving Z. Thus, although application of (PMa) yields the right

results, it is (possibly) for the wrong reasons. All because the simple intervention

fails to break the causal arrow that extends from Y to Z. Modularity is therefore not

satisfied if we cannot eliminate the causal influence from Y to set(Z).

I

Z Y

Figure 8.2: Z and Y in a feedback cycle that canceled out by the intervention.

But, if we cannot cut off Y ’s causal influence on Z, we might still achieve the

desired result through the simultaneous manipulation of both Z and Y . Here is how.

We begin by measuring Y . Then, we manipulate Z as before, setting it to the desired
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command value. At the same time, we also manipulate Y via some distinct route

or means, setting Y so as to prevent it from deviating from the measured value.

Now, too, we measure how much change we must introduce into Y to hold it at a

fixed value—the change in Z changes Y , and our second manipulation changes it

back. Now, because Y doesn’t change, we can vary Z at will. And because we are

measuring the manipulation of Y , we can use this as an indirect measure of Z’s effect

on Y independent of Y ’s effect on Z. In this way, we can pull the dependence between

set(Z) and Y apart. The structure of this complex intervention is diagramed in Figure

8.2. Abstractly speaking, the two manipulations of Y and Z together constitute a

complex intervention into Z that creates modular independence, in that they permit

us to take Z through its full range independently of the value of Y , where we could

not achieve this independence with just one manipulation of Z alone.

This abstract case may sound like armchair speculation, but in fact this tech-

nique of using multiple manipulations in one intervention to induce modularity in

an otherwise non-modular system is common. Frequently, researchers are faced with

a positive feedback loop linking two variables so as to render them dependent; and

to intervene, the loop must be broken. Positive feedback loops can often be broken

by constructing an additional negative feedback loop, such as described above, to

counteract the positive feedback loop. Indeed, this is precisely how Kenneth Cole’s

voltage clamp permits the investigation of the voltage-current feedback loops that

drive the action potential in neurons.

The Voltage Clamp

Neurons conduct electrical signals down the length of their axons, called action poten-

tials. The action potential is a moving wave-front that is triggered in the axon hillock,

and travels down the axon where it stimulates the release of neurotransmitters. The
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action potential works in part by exploiting Ohm’s law to generate a positive feedback

mechanism.

Consider a segment of the axon. Prior to an action potential, there is a greater

concentration of Na+ ions outside the cell than inside. An approaching action po-

tential wave-front drives the membrane potential—the difference in electrical voltage

across the axon membrane—higher. Embedded in the membrane are voltage-sensitive

gates. The change in membrane potential triggers the Na+ gates to open. When they

do, Na+ ions flood into the cell, driven by diffusion forces (against the membrane

potential). The rapid influx of Na+ drives the membrane potential even higher, very

rapidly. As the membrane potential increases, more and more Na+ channels open,

admitting more and more Na+ ions in a positive feedback loop. At this point, the

action potential wave-front (which is basically a region of high membrane potential) is

propagated into the next adjacent section of the axon. Once the membrane potential

reaches a particular threshold level, K+ channels in the cell membrane begin to open,

beginning a negative feedback cycle. The opening of the K+ channels permits K+

ions to flow out of the cell, driven by the membrane potential (and against diffusion

forces). The movement of K+ ions out the cell rapidly brings the membrane potential

down, well below the resting potential, and thus closes the Na+ ion channels and K+

channels as well. Finally, specialized proteins called Na+/K+ pumps actively pump

K+ into the cell and Na+ out of the cell, restoring the resting state and readying the

axon segment for another action potential.

In general, the action potential is characterized by by two feedback loops: a posi-

tive feedback loop linking the membrane potential with Na+ currents, and a negative

feedback loop linking the membrane potential with K+ currents. Both of these ionic

currents are electrical currents (of a piece with electrical currents generated by the

movement of e− particles—electrons).
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The first step to discovering the mechanism for the action potential came with

Hodgkin and Huxley’s voltage clamp experiments (Hodgkin, Huxley, & Katz, 1952;

Hodgkin & Huxley, 1952a,b,c,d). Hodgkin and Huxley had several hypotheses about

the mechanism for the action potential (Huxley, 2002), and each hypothesis made

different predictions about the specific relationship between membrane potential and

each ion current across the membrane. Thus, their first task was to measure this

relationship.

Several issues arise with the measurement of ion current at given command levels

for the membrane potential (Cole & Moore, 1960; Hodgkin, Huxley, & Katz, 1952;

Koester & Siegelbaum, 2000). The first issue is the membrane capacitance. Capac-

itors are electronic components that pass a current when and only when there is a

change in voltage across the capacitor. Because the cell membrane acts as a capaci-

tor, electrically separating the cell interior from the exterior, any change in membrane

potential will cause an electrical current to flow across the membrane. This capaci-

tive current, know to Hodgkin and Huxley, is distinct from the currents that result

from the working of the action potential, they needed to take independent measure-

ments of the capacitive current so that they could subtract it from their later current

measurements.

The second issue is that the membrane potential is not stable. Because the squid

giant axon—their preferred preparation—is quite small (no more than maybe one mil-

limeter in diameter), the pool of ions within the axon is likewise relatively small in

comparison to the effectively infinite reservoirs of ions outside of the cell membrane.

The movement of ions across the membrane in response to a membrane potential

thus significantly alters the size of this ion reservoir, either fortifying or depleting it,

and therefore alters the relative charge density across the membrane. So, ionic cur-

rent across the membrane is a cause of the membrane potential. But because voltage
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is an electro-motive force, specific values of the membrane potential will drive ions

(and electrons) across the cell membrane. So the membrane potential is a cause of

transmembrane ionic current. Above a certain potential, ionic current and membrane

potential form a positive feedback loop, each driving the other.3 Thus, any attempt

to explore the voltage-current relationship by simply creating a given membrane po-

tential will lead to instabilities in the membrane potential that result in unreliable

measurements of current—one cannot be sure how much of the current is due to the

command potential, and how much is due to the instabilities in the membrane po-

tential. This second issue is particularly vexing because it exacerbates the first issue:

Setting the membrane potential will cause, via feedback, additional changes in volt-

age which, per the first issue, create a confounding capacitance current. Moreover,

this second issue is particularly interesting because it means that simple interventions

into the membrane potential cannot possibly satisfy modularity—set(V ) remains de-

pendent on I, making a determination of the effect of set(V ) on I impossible.

But both issues can be solved simultaneously. The solution to the second issue lies

in finding a way to stabilize the membrane potential at a given command potential, by

neutralizing the positive feedback loop. And, since the capacity current is a function

of changes in membrane potential, and since solving the first issue requires stabilizing

the membrane potential, solving the second issue automatically solves the first. But,

how to stabilize the membrane potential?

Cole (1949) invented a device that monitors changes in the membrane potential

and adjusts the applied voltage via a calibrated negative feedback loop. Cole observed

that injecting an electric current (i.e. a current composed of moving electrons) that

opposed the ionic current can be used to fix the total relative charge density—the

3This discussion only considers the effects of NA+ ions; K+ ions are also important for the
action potential, because their movement across the membrane is part of a negative feedback loop
that returns the axon to a resting state.
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determiner of the membrane potential—, even while ions are flowing freely across

a membrane. If we continuously measure the membrane potential, and continuously

adjust the injected electric current to be just strong enough to exactly counter the

ionic current, we can keep the membrane potential at the command level. Because

the electric current will be exactly opposed to the ionic current, we can measure

the electric current being pumped across the cell membrane as a proxy measure for

the ionic current. This technique, called the voltage clamp4, holds the membrane po-

tential steady by using negative feedback to counteract the positive feedback cycle

described above. The voltage clamp permits interventions into the membrane poten-

tial by manipulating first the membrane potential directly, then by manipulating the

total transmembrane current by injecting an electric current such that the total cur-

rent remains at zero (i.e. so that ionic current + electric current = 0). The voltage

clamp is thus a technique for complex interventions that insure modularity. Here is

how the apparatus achieves these ends.

The voltage clamp begins with four wires (Figure 8.3). Two wires, the current

wire (a) and the voltage wire (b), are introduced inside the axon. Two more wires,

the reference wire (c) and the ground wire (e) are introduced just outside the axon.5

The current wire (a) is connected to both an ammeter (not pictured) and the output

of a feedback-generating amplifier (whose operation is described below). The voltage

wire (b) and the reference wire (c) are connected to the input of the amplifier via a

special kind of voltmeter called a voltage comparator.

The membrane potential is measured by the voltage comparator. One probe—the

voltage wire (b)—is inserted inside the axon, and the other—the reference wire (c)—is

placed just outside the axon. The voltage comparator measure the potential between

4Cole’s name for the device was the ‘potential control’; In fact, Hodgkin, Huxley, & Katz (1952)
were the first to call it a ‘voltage clamp’. (Cole & Moore, 1960)

5I use the same wire labels as Hodgkin, Huxley, & Katz (1952); wire d, absent from this discus-
sion, is part of a mechanism to verify that the voltage clamp is operating as intended.
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Voltage wire (b)
Current wire (a)

Axon

Reference wire (c)

Ground (e)

Voltage
comparator

Amplifier

Command voltage

Figure 8.3: Configuration of electrode wires and voltage clamp.
(Adapted from Hodgkin, Huxley, & Katz 1952.)

these probes; and since they are placed on either side of the axon membrane, this

potential is the membrane potential. The voltage comparator, on the basis of this

measurement, sends a signal to an amplifier. This amplifier compares the signal com-

ing from the voltage comparator to a command voltage created by a pulse generator

(not pictured). When the two signals differ, the amplifier creates an electric current

across the membrane from the current wire (a) to the ground (e), in this way adjusting

the membrane potential.

The electric current generated by the amplifier, in order to successfully stabilize

the membrane potential, must exactly match the ionic current across the membrane

(since the membrane potential is being held fixed, the capacity current is therefore

zero). In this way, even as the ion concentration gradient changes in response to ion

flux across the membrane, the total flow of current (both ionic and electric) does not

change, and hence neither does the membrane potential. Very conveniently, because

the ionic current and electric current are exactly counter-balanced, to measure total
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ionic current Hodgkin and Huxley needed only to place an ammeter (again, not

pictured) along the current wire (a) to measure the electric current; reversing the

sign yields the ionic current.

In this way, a command voltage can be set, held steady for a period of time, and

ionic current measurements can be read directly off the current wire (a), thus per-

mitting the voltage-current measurements needed to begin exploration of the mech-

anism for the action potential. So the voltage clamp is a technique for intervening

via multiple simultaneous manipulations in order to break apart otherwise depen-

dent components. The voltage clamp is an intervention technique that renders the

membrane potential independent of its causes, namely the effects of changing trans-

membrane current. The voltage clamp secures modularity in a system that does not

offer independent manipulability of its components.

There is yet another way to secure modularity: The construction of an experimen-

tal analog. I turn now to consider this method.

8.2 Analog Construction

Sometimes, modular independence fails because the necessary interventions are sim-

ply not available for reasons of ethics, logistics, or ignorance. In these cases, there is

a second way to achieve as-if modular independence: By constructing an analogous

mechanism which does exhibit the necessary independencies, ensuring modularity.

When a mechanism has components Z and Y that are dependent in a way that

defeats modularity, we can sometimes design an intervention into Z that satisfies

modularity by constructing a second mechanism analogous to the first, but which does

exhibit modular independence. Call the mechanism of interest the target mechanism,

and the constructed analog the experimental analog mechanism. The intervention is
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then carried out in the experimental analog. If the analog is constructed such that

set(Z) is conditionally independent of Y given Y ’s parents, then even if interventions

into the target mechanism are impossible without violating modularity, the analog

still can. And if the analog is sufficiently similar to the target, then the experimental

results from the analog can be used to draw conclusions about the target.

Using the strategy of analog construction requires some additional inferential as-

sumptions. First, the analog must differ from the target—otherwise there would be

no point in constructing the analog. In particular, the point of difference must be

that where set(Ztarget) is dependent on Ytarget, in the analog set(Zanalog) must be un-

conditionally independent of Yanalog. Often times, establishing such independence is

non-trivial: For example, in cognitive psychology, although a particular brain function

might exhibit modular independence in that we can lesion brain regions to (literally)

cut causal connections, in healthy human subjects such lesioning is staggeringly un-

ethical. Yet, we can still establish as-if modular independence by constructing exper-

imental analogs from elaborate computer simulations, e.g. ACT-R (Byrne, Anderson

et al., 2004), and simulating lesioning in the model instead. Computer models are

also popular for testing how changes to environmental factors will affect local animal

populations where directly manipulating the environment is practically impossible

(e.g., the predator-prey models of Lotka, 1925; Volterra, 1926).

Second, the analog must not differ from the target too much. In general, analogical

reasoning stands or falls on the similarity between the target and the analog. It be

a mistake to claim that a pocket-watch is a suitable experimental analog for the

suprachiasmatic nuclei in mammalian brains, simply because both exhibit a 24-hour

cycle. The analog must be sufficiently similar to the target to support analogical

inference from interventions on the experimental analog to causal conclusions about

the target. Thus, we must already have some basic knowledge of the mechanism in
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order to take advantage of this technique.

Thus, there are a matched pair of constraints on analog construction. Here is one

articulation of these constraints that I will defend below. Suppose that we have a

mechanism with components Ztarget and Ytarget, in which Ztarget does not cause Ytarget,

and in which we desire to intervene on Ztarget, and where set(Ztarget) is dependent

on Ytarget. Then, two constraints that are jointly sufficient for an inference from the

analog to the target are:

Causal Difference The analog must differ from the target insofar as Zanalog
6 must

not depend on any other components besides its (direct and indirect) effects.

That is, Zanalog must have no causes (including latent common causes connecting

Zanalog to any other measured variable), and must not be otherwise correlated

with any other components (except its effects).

Causal Similarity Aside from the constraints on Zanalog, the causal structures of the

two mechanisms, including the functional nature of those causal relations, must

be the same across the target and the analog with respect to the set of measured

variables. That is, ∀X∀V 6= Z if Xtarget → Vtarget then Xanalog → Vanalog and if

Vtarget = f(Xtarget) then Vanalog = f(Xanalog).

The first constraint specifies how the analog must differ from the target: If we

are intervening into Z, then we must construct our analog so that Zanalog has the

independence necessary to permit that intervention without violating modularity.

Recall that the presumption is that such an intervention is not possible in the target

mechanism (else we wouldn’t need to construct an analog). So, we must be sure that

our construction renders Zanalog exogenous, where such is not true about Ztarget. By

rendering Zanalog exogenous, we can be certain (if our intervention is ideal) that we can

6Or, more precisely, whatever it is that Zanalog represents in the analog mechanism.
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Figure 8.4: The problem of latent common causes. Left: Target. Right: Analog

manipulate Zanalog secure in the knowledge that any correlation that arises elsewhere

in the analog arises as an effect of Zanalog.

Notice that it is not enough to cut the causal arrows from measured variables to

Zanalog. Although we do not have to cut every cause of Zanalog off, we must at least cut

off the influence on Zanalog from latent common causes that connect Zanalog to other

measured variables, because such common causes can create confounding dependen-

cies in the experimental analog. Consider the case illustrated in Figure 8.4. On the

left is the target mechanism, in which Xtarget causes Ztarget; Ztarget causes Ytarget. But,

unknown to us, there is a latent variable Ltarget that is a common cause of Xtarget

and Ztarget. In the analog, we must cut the arrows from each measured variable that

is a cause of Zanalog; (I represents our intervening into Zanalog). But our intervention

will still fail modularity, because we will find that Xanalog remains correlated with our

intervention into Zanalog even though Zanalog does not cause Xanalog. So we would—

falsely!—conclude that Ztarget was a cause of Xtarget. The reason is that the latent

common cause Lanalog creates a confounding dependency between Xanalog and Zanalog.

So we must be sure that our analog cuts arrows to Zanalog from latent common causes.

The second constraint specifies how the analog must remain similar to the target.

252



Without similarity, there is no basis for analogical inference from the model to the

target. Since the reasoning being deployed is causal, this constraint specifies causal

and functional similarity as the relevant similarity metrics. Thus, although the target

and the analog may be composed of different components in different materials, the

functional and causal relations must remain the same (excluding the restrictions on

Zanalog specified in the previous constraint). That is, the set of measured variables

which we have picked to represent the target must be able to represent components

in the analog, such that the causal structure among the variables is the same for both

the target and the analog.

It is important to emphasize that similarity of bare causal structure is not enough:

We must ensure the functional relations are the same as well. Suppose that the

target mechanism consists in two cogs, one twice as large as the second, and that the

larger drives the smaller. In our model, Atarget represents the rotation of the larger,

and Btarget the rotation of the smaller. Thus, in our model, Atarget → Btarget. Now,

consider a second mechanism that consists in two levers, one Aanalog half as large as

the second Banalog, and that the smaller lever drives the larger. Thus, in this second

model, Aanalog → Banalog. The causal structures of the two models are identical,

but the functional relation differ across the two models, because Btarget =
1
2
Atarget,

yet Banalog = 2Aanalog. The functional relation between A and B is different across

the two mechanisms. And so, interventions into lever Aanalog with respect to lever

Banalog will not yield reliable information about the functional relationship between

the two cogs in the first mechanism. For this reason, experimental analogs must not

only share the same causal structure as the target (with respect to the measured

variables), but the same functional structure as well. But just as the entities need

not be the same, neither need the activities be the same. What is important for

analogical inference in this case is that the mathematical relationship between the
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components (the active entities) remain the same. Whether we know in advance that

the mathematical relationships are the same is not itself important; thus, we can use

this method to learn about a causal system, verifying the necessary verisimilitudes

post hoc.

Now, because I have not specified any constraints on the particular entities and

activities used in constructing an experimental analog, we can be quite creative in

how we satisfy the first constraint. One way to intervene into Cartwright’s tightly-

coupled carburetor, for instance, is to simply replace the Venturi chamber with an

array of new components, each of which plays one and only one of the several roles

the Venturi chamber plays.7 So long as each of the new parts plays the same causal

and functional roles in the analog as the Venturi does in the target, then we can treat

the analog as equivalent to the target with respect to interventions into any of those

new components. That said, this strategy clearly requires some causal knowledge of

the mechanism in order to assess the quality of the original; but we do not need a

complete knowledge of the causal or functional structure (otherwise there would be

no point in experimenting in the first place), as the example below will demonstrate.

We can see these constraints at work in actual scientific practice. Experimental

analogs may be the most common technique deployed by scientists generally. Nearly

any experiment that requires an experimental preparation, or that makes use of a

model organism, or that uses a computer or physical simulation makes use of this

strategy. Consider the intriguing case of Loewi’s discovery of vagusstoff, a chemical

we now know as acetylcholine.

7Which, incidentally, is precisely what a fuel injector does—it performs the same functions as
the carburetor, but in such a way that all of the various functions of the Venturi chamber in a
carburetor are carried out by separate components.
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Loewi’s Beating Hearts

Loewi’s discovery of vagusstoff (Loewi & Navratil, 1926) is a clear example of creating

as-if modular independence using analog construction. Acetylcholine, we now know,

is the medium of communication between the vagus nerve and the heart. The vagus

nerve is one of two major nerves connected to the heart; the vagus nerve signals the

heart to slow its rate of beating (and the other nerve signals the heart to increase

its rate of beating). In the late nineteenth and early twentieth centuries, biologists

sought to understand the mechanism by which these nerves were capable of exciting

or inhibiting the muscle fibres of the heart. Although Galvani theorized that the vagus

nerve used electrical signals to directly stimulate the heart muscles, by the mid-1920’s

there was good reason to think that the vagus nerve might instead rely on chemical

signals.

In 1921, Loewi performed a now classic experiment to decide whether the va-

gus nerve was signaling the heart via electrical impulses or via chemical secretions

(Loewi & Navratil, 1926). Loewi prepared two frog hearts by cannalizing them and

submerging them in Ringer’s solution. In the first heart, he electrically stimulated the

vagus nerve. If the vagus nerve communicated with the heart muscles by secreting

a chemical agent (which, not knowing what that chemical would be, or whether it

even existed, he referred to with the delightfully vague term ‘vagusstoff ’), then the

vagus nerve should, he reasoned, secrete that agent into the Ringer’s solution. He then

collected a sample of the Ringer’s solution from and transferred it to a second heart

preparation, which differed only in having been stripped of its vagus and sympathetic

nerves. If the transplanted Ringer’s solution contained vagusstoff, then the muscles

of the second heart should respond to it by slowing its beating.

Indeed, the second heart did slow at the introduction of the Ringer’s solution from

the first heart. Although it would be several years before vagusstoff was shown to be
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acetylcholine, Loewi’s demonstration was sufficient to establish that the vagus nerves

do signal the heart via a chemical agent. Let us consider his demonstration in the

light of my discussion of analog construction.

V A H

V

I

A H

Figure 8.5: Causal models of the mechanism for the vagus nerve, and a one-
preparation experiment that violates modularity. Although in this experiment, V is
what is actually being manipulated, the intended intervention is in fact on A—hence
the violation.

Loewi had clearly defined input and output components, the excitation of the

vagus nerve and the slowing heart-rate. And, stimulation of the vagus nerve clearly

produced a slowed heart-rate, so the input component is a cause of the output com-

ponent. Loewi hypothesized that there was a very simple mechanism that linked

the input and output components, namely vagusstoff, as in Figure 8.5. However, not

knowing what vagusstoff was, or how it acted, there was no way for him to manipu-

late this component in situ, with just one preparation. Since, if vagusstoff was real,

the only method that Loewi had for producing vagusstoff was to stimulate the vagus

nerve. So, a one-preparation experiment would violate modularity, because interven-

tions into the presence of vagusstoff could not be made independent of the direct

cause of vagusstoff, namely the the vagus nerve. Figure 8.5 models a one-preparation

experiment; V represents the stimulation of the vagus nerve, A the production of

vagusstoff (acetylcholine), and H the slowing of the heart-rate. In a one-preparation
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experiment, V → A, but set(A) 6⊥ V (because there is not way to cut the causal

connection linking V with A), in violation of (PMa).

To ensure his inferences were sound, Loewi constructed an analog: a second heart

preparation sans vagus nerve. In this way, his intervention would satisfy modularity,

because his intervention into the presence of vagusstoff could be made independently

of any stimulation of the vagus nerve—for there was no vagus nerve to stimulate.

In the analog, he literally cut the causal connection between V and A. Thus, any

observed changes in the heart could be attributed solely to the intervention—to the

presence of vagusstoff—, and not to a confound caused by a violation of modularity.

To obtain the hypothetical vagusstoff, Loewi stimulated the vagus nerve in the first

heart; he needed only to introduce it to the second preparation to test his hypothesis.

And if, as actually occurred, the introduction slowed the heart rate, then he could

infer that the slowed heart rate in the first preparation resulted from the secretion of

vagusstoff during the stimulation of the vagus nerve: His intervention into the analog

provided sufficient grounds for reasoning about the causal structure of the original

preparation.

Vt At Ht

Va

I

Aa Ha

Figure 8.6: Causal models of Loewi’s two-preparation experiment. Top, the target ;
bottom, the analog.

Figure 8.6 presents a model model of Loewi’s two-preparation experiment. At the
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top is a model of the first preparation, the target mechanism. At the bottom is a

model of the second preparation, the experimental analog. Loewi could not intervene

into Atarget without also necessarily intervening into Vtarget (because the vagus nerve

was the only means of producing vagusstoff that Loewi knew of, not knowing what

vagusstoff was or even if it existed); so he created an analog in which he could cut

(quite literally) the causal influence of the vagus nerve on the production of vagusstoff,

and so intervene directly into Aanalog.

Finally, having established that vagusstoff was capable of slowing the heart-rate

in the experimental analog, Loewi reasoned that the that vagusstoff was the inter-

mediate mechanism by which the vagus nerve slowed the heart-rate in the target

mechanism, the first preparation.

There are three points to make about this example. First and foremost is that

the target preparation violated modularity (and not for any metaphysical reason,

but because Loewi simply didn’t know enough about his hypothesized vagusstoff—

even whether it existed—to synthesize it by means other than via the vagus nerve

itself), so that Loewi couldn’t safely assume that the components exhibited modular

independence. Second, Loewi overcame this hurdle through the construction of an

analog mechanism that permitted him to reason as if the components did exhibit

modular independence anyway. Third, Loewi then used a form of analogical reasoning

to apply the experimental correlation he observed in the analog preparation to the

mechanism at work in the target preparation.

We can see why the arguments against modularity glossed earlier are unconvinc-

ing. The critics’ arguments from modular independence presume that experimental

interventions take place within the very same mechanism we are trying to under-

stand. This may be true of some kinds of mechanisms (especially those that really

do, for example, provide affordances), but it is not true generally, and certainly wasn’t
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true for Loewi’s case. Since modularity is a modal claim about what would happen

during an intervention, modularity need only hold in the experimental analog and

not of the target system. Thus, there is no particular reason to think that seemingly

non-modular systems, such as Leowi’s first preparation, or carburetors and toasters,

violate modularity full stop. Each of these mechanisms can be investigated by testing

causal claims in an experimental analog.

But, as I’ve already said, we are not free to construct our analog in any way we

wish. Recall the two constraints I raised earlier. The first constraint requires that,

if we are intervening into Zanalog, that Zanalog be uncorrelated with its non-effects

in the analog. Loewi’s second preparation eliminated the component that produced

vagusstoff, the vagus nerve. Doing so allowed him to introduce vagusstoff into the

preparation without worry about this kind of confound.

The second constraint requires that the causal and functional structure of the ana-

log mirror the target as closely as possible (ideally, exactly). Leowi ensured that his

analog preparation had the same causal structure as the target (aside from the sev-

ered vagus nerve), by using the same kind of heart and the same kind of preparation

as in the target. Presuming that the neither heart was in any way abnormal, by con-

structing the analog out of the same materials as the target, Loewi was able to readily

satisfy the second constraint. I should take pain to note, however, that he was in no

way constrained to use a heart from the same species of frog; rather, he used a heart

from the same species of frog because it was a very expedient and uncontroversial

way to ensure that both preparations shared the same causal structure.

Having ensured his analog satisfied these constraints, Loewi was therefore jus-

tified in using modularity to infer from his experimental observation of the analog

preparation—that the introduction of Ringer’s solution slowed the heart rate—to

a conclusion about the causal structure of the target preparation—that the vagus
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nerve communicates with the heart via a chemical soluble in Ringer’s solution. What

licensed this inference was that vagusstoff has the same causal and functional influ-

ence on the analog heart as on the target heart—and not that both hearts were made

of the same stuff.

(But notice too, as an aside, that Loewi was not free to use, for example, a

contrived mechanical heart designed specifically to respond to, say, Ringer’s solution.

Precisely because such an analog is contrived, and because Loewi didn’t know the

mechanism by which the vagus nerve worked, we wouldn’t have sufficient reason to

think that such a ‘heart’ would have shared the same causal and functional structure

as the target heart. Thus, Loewi would not have been justified in drawing inferences

from the contrived ‘heart’ to the target frog heart.)

I turn now to demonstrate a third way that as-if modular independence can be

created: the method of subtraction. The method of subtraction is effectively a special

case of analog construction, but sees widespread enough use to warrant a separate

discussion.

8.3 The Method of Subtraction

There are many occasions when neither multiple interventions nor analog construction

can be used to effectively (or ethically) ensure modularity. The problem is that of-

tentimes we cannot independently manipulated the components in a mechanism, not

because of anything about the mechanism—it might well be modularly independent—

but because we find ourselves limited to ham-fisted interventions. Many human stud-

ies suffer this difficulty: There is no currently known way to conduct a drug study, for

example, that does not risk confounding the effects of the drug with the placebo re-

sponse. Clinical pharmacologists rely on a method for studying analgesics that uses a
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Figure 8.7: Three different interventions; Left: surgical intervention into Z; Middle:
Ham-fisted intervention into Z; Right: Ham-fisted intervention into Z that obscures
the causal relation between Z and Y .

second intervention (called a control) that differs from the experimental intervention

only in that the drug administered is a sham. In the control patients, any response to

the inert pill administered can be reasonably attributed to the placebo response. This

placebo response is measured in the control case, and then subtracted from the mea-

sured response in the experimental case. In this way, researchers can draw inferences

as though the responses to the drug were independent from the placebo response.8

Mill (1843) calls such a procedure the method of difference.

One way that modularity can be violated is when our interventions into Z nec-

essarily, though unintentionally, manipulate Y (whatever the causal relationship be-

tween Z and Y might be). Figure 8.7 illustrates the point: On the left, the intervention

affects only Z—call such interventions that affect only the targeted components sur-

gical. In the middle, the intervention affects Z and Y , although it was only targeted

at Z—call such interventions ham-fisted. Such interventions violate modularity when

set(Z) would have been independent of Y had the intervention been surgical, but the

ham-fisted nature of the actual intervention leads to a dependency between set(Z)

and Y . Moreover, even when Y is an effect of Z, as in the right of the figure, the

functional nature of that dependency will change as a result of the intervention, and

8Notice that the method of subtraction can be used in conjunction with multiple interventions
and analog construction, and is not an exclusive alternative to those methods. For example, in analog
construction, control analogs are often required to verify the similarity of the analogs to the target.
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even though we would correctly observe that Z was a cause of Y , we could yet be

quite mistaken about the functional relationship between Z and Y .

Notice, too, that although in the first two cases, the surgical and the ham-fisted

interventions are both technically ideal, in the third case, the ham-fisted intervention

is not ideal. So, if we are presuming ideal interventions, the third case should never

arise. In which case the issue at hand is not that the mechanism fails to exhibit mod-

ular independence, but that we cannot achieve an ideal intervention. Some non-ideal

interventions, such as a ham-fisted intervention, will create a violation of modularity

in an otherwise perfectly modular mechanism.

When ham-fisted interventions are unavoidable—as for example in pharmaco-

logical studies—, there is yet a way to satisfy as-if modularity. We can do so by

making two interventions9—one experimental intervention and one control interven-

tion10—into two subjects—the experimental subject, and the control subject. In the

experimental case, we simply perform the full-blown ham-fisted intervention. In the

control case we perform a limited intervention that manipulates only the ham-fisted

bits of the experimental intervention, and not the intended target of the experimental

intervention. We then measure the changes arising from the control intervention, and

record them as error. Finally, we subtract (often literally, but sometimes metaphori-

cally) the error from the results of the experimental case. Ideally, we are left with a

measure of the changes that would have been brought about had the experimental

intervention been surgical.

The particulars of the subtraction will vary depending on the particulars of the

experiment. In neuroimaging studies, for example, two images—one experimental and

one control—are overlaid, normalized, and registered; whatever is common to both

images is subtracted out with a linear filter. In response time studies, subjects are

9Not manipulations, but full interventions.
10Thus, we may need two sets of multiple manipulations or two analogs to make two interventions.
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timed performing a baseline task and an experimental task, and the response times are

numerically subtracted. The results of each subtraction are taken as a measurement

of the direct effects of the intervention on the dependent variable.

There are, of course, constraints on how the control intervention should be crafted.

Suppose that we have a set of variables V, and that we wish to intervene into Z ⊂ V.

But suppose that our intervention is ham-fisted, and also affects all of the variables

in some distinct subset H ⊂ (V \ Z). To justify the subtraction of the difference

between the control and the subject, and hence create as-if modular independence, a

control intervention must satisfy the following conditions:

Subject Similarity The control subject and experimental subject must share the

same causal and functional structure with respect to V;

Control Similarity the control intervention must manipulate all and only the mem-

bers of H in the control subject, and must do so in exactly the same way as the

ham-fisted experimental intervention in the experimental subject; and

Control Difference the control intervention must not manipulate Z in the control

subject in any way.

That is, we must be certain that our control intervention is ham-fisted in precisely

the same ways as our experimental intervention; only then can we be sure we are sub-

tracting out (controlling for) all and only the ham-fisted aspects of the experimental

intervention.

These constraints are illustrated in the four diagrams of Figure 8.8. Suppose that

we wish to intervene into Z, but we can only do so ham-fistedly, as in the first diagram,

such that H contains W and X. The second diagram illustrates how our control

intervention should be structured so that we can apply the method of subtraction.

The third and fourth diagrams show two different ways that the control interventions
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Figure 8.8: A controlled intervention; Left: Experimental, ham-fisted intervention;
Middle-Left: Control intervention; Middle-Right and Right: Botched control inter-
ventions.

can go wrong: They can control too little, or too much (or both, not pictured, by

affecting only X and Y ).

If the control intervention does not affect all of H, as in the third diagram in

Figure 8.8, then we will be led to draw false positive conclusions that Z is a cause of

whatever variables in H are left out of the control, and which co-vary with set(Z).

In the diagram, for example, our control intervention does not control for W , and we

will be falsely led to conclude that Z causes W .

On the other hand, if the control intervention affects more than what is in H, and

those additional variables are effects of Z, then we can be falsely led to conclude that

Z is not a cause of those variables, because they won’t be seen to co-vary with Z after

subtraction. In the fourth diagram, for example, our control intervention controls for

Y when it shouldn’t. As a result, we may be falsely led to conclude that Z does not

cause Y .11

To illustrate the method of subtraction in context, I turn to the study of analgesic

effectiveness in humans. Evaluating the effectiveness of pain relievers requires two

applications of the method of subtraction, and we can use the forgoing discussion to

11That wiggling Z does not yield concomitant wiggling of Y is not conclusive proof that Z does
not cause Y , but it is at least prima facie evidence that Z likely doesn’t cause Y .
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understand the complexity in this standard experimental design.

So, suppose we wish to evaluate the effectiveness of a new analgesic drug for pain

relief. Because pain tolerance is highly subjective, we cannot measure an analgesic’s

effectiveness in absolute terms. Rather, we must measure how much of a difference in

a subject’s pain tolerance the analgesic makes. One way we can measure this difference

in tolerance is with the cold pressor task, invented by Wolf & Hardy (1941). In this

task, the subject is asked to place her hand in a bowl of ice water for as long as she

can tolerate it—very painful, but only so long as the hand is submerged. The length

of time that she can tolerate leaving her hand submerged is taken as a measure of

the subject’s base pain tolerance. We might measure an analgesic’s effectiveness by

administering the drug and asking the subject to perform the cold pressor task. The

resulting measurement is alone, however, is insufficient to tell us how effective the

drug is, because our intervention was ham-fisted: We have no way to distinguish

the effects of the drug from various other factors that yield (operationalized) pain

tolerance (e.g. that it takes time to cool the hand sufficiently to sense that cooling

as pain, that pain signals take non-zero time to travel from the hand, that there is

some neural mechanism that suppresses immediate response to pain, &c.). Thus this

simple intervention results in a violation of modularity.

To measure the effectiveness of a pain reliever, we need to control for the laws

of thermodynamics, the finite speed of neural signaling, and the subject’s baseline

pain tolerance: We must measure their pain tolerance first without the drug, and

then second with the drug12. In this way, we can measure directly the effects of the

drug on pain-tolerance levels by subtracting the first measurement from the second.

The difference in times can then be attributed entirely to the drug. If the subject is

capable of performing the cold pressor task for a longer period in the presence of the

12And, perhaps at several intervals after drug administration, to get a time-profile for the drug’s
effectiveness.

265



analgesic than without, we might conclude that the analgesic successfully increased

the subject’s pain tolerance, and we have an objective measure of the size of the effect

in the difference in measurements. We are justified in this conclusion, because the

first test—the control intervention—satisfies the criteria above. Subject Similarity

is satisfied in virtue of taking the two measurements of the same subject. Control

Similarity is satisfied in that we are administering the same test in the same way in

both cases. And Control Difference is satisfied because the drug is only administered

in the second case. Thus, we can be reasonably sure that the difference in measured

times is due exclusively to the administration of the drug.

However, although an improvement, even the addition of this second, control,

intervention is insufficient to satisfy modularity because analgesics are double-acting :

they exert an analgesic effect through both a pharmacological route and through the

placebo response. Because the drug can affect pain tolerance along two distinct routes,

our intervention remains ham-fisted. In the first way, the drug works through whatever

biochemical mechanism the drug was designed to target. In the second way, the drug

works through much higher-level psychological mechanisms of subject expectations

and conditioning, that is, via a second route that has nothing to do with the actual

chemical composition of the drug. So, as they stand, our interventions remain ham-

fisted, insofar as they cannot distinguish the effects of the chemical action of the drug

and the placebo response.

Clinical trials of analgesics therefore make use of an additional control, that we

might subtract the placebo response from the pharmacological effect of the analgesic.

Consider a typical example: Yuan, Karrison et al. (1998) examined the effect of ac-

etaminophen on cold pressor response by having each subject perform four distinct

tasks. In the first task13 the subject was given a small dose of acetaminophen; in

13The order of task presentation was randomized from subject to subject, of course. The role of
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the second, a medium dose; in the third, a large dose. In the fourth task the subject

was administered a sugar pill. Then, the pain threshold responses for each task were

compared. Since neither the subject nor the experimenter knew which drug was be-

ing administered in each task, the size of the placebo response should be the same

in each task. But the quantity of acetaminophen was varied across the tasks from

between none to a large dose. Thus, for any given subject, any difference in pain

threshold response across the tasks could be attributed to the pharmacological action

of the acetaminophen; the response for the placebo-only control task is a pure placebo

response that is also taken as a baseline measurement of pain threshold. This base-

line can be subtracted from the three experimental conditions to obtain the absolute

change in response due to the pharmacological action of the acetaminophen alone.

Subject Similarity is maintained by giving each subject both experimental and

control tasks (although there might be differences in the subject between trials, of

course). The tasks are separated by sufficient time to prevent the subjects from ac-

climating to the cold pressor task, and to prevent and cumulative effects of being

administered several doses of drug close together in time. Control Difference is se-

cured by the use of the placebo task as a control. The placebo has no pharmacological

component, and so cannot be used to manipulated the target mechanism, but can be

used to manipulate the undesired, placebo mechanism. Finally, Control Similarity is

secured by ensuring that the placebo response will be the same across all four tasks.

The technician did not know which pill is the sugar pill (and hence inadvertently

tipping off the subject), the sugar pills were the same size, shape, and color as the ac-

etaminophen. Since the placebo response seems to result from the subject’s knowledge

and expectations, and since their knowledge and expectations are carefully managed

to be identical across all four tasks, the assumption of identical placebo responses

randomization is beyond the scope of this chapter, but is yet another way to create as-if modular
independence.
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appears justified.

This kind of clinical drug trials nicely illustrate what I want to say about the

method of subtraction. Often, our interventions are ham-fisted, but where we have

a method for varying our interventions (as in the administration of either the drug

or a placebo), we can use two variants of the intervention to make two ham-fisted

measurements. When the interventions differ in precisely one way—where one affects

Z and the other does not—then we can subtract the resulting measurements to get

at the difference our intervention made to Z’s effects directly, despite the ham-fisted

nature of those interventions.

8.4 Conclusion

In the last four chapters of this dissertation, I have considered that modularity may

well be the manipulated mechanism’s weakest link. Modularity certainly has its share

of critics. The general worry about modularity seems to be that modularity is not

a very good general principle, that it is too strong to be useful outside of a small

number of overly contrived examples.

In response, I have established an intuitive distinction between the modularity as

a feature of a mechanism (modular independence), and modularity as a modal feature

of an intervention (as-if modular independence). I have shown that, although modu-

larity is satisfied by mechanisms that exhibit modular independence, modularity can

also be satisfied, contra the critics of modularity, by interventions that create as-if

modular independence. Modularity fails only when our intervention is not indepen-

dent of its effects. But, as the critics I have addressed have rightly noticed, many of

our interventions are not independent of their non-effects. Frequently, either because

of the structure of the mechanism under investigation, a failing of our intervention
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technique, ethical issues, or simple ignorance, we cannot be sure that our interven-

tion is independent in the right ways. Nevertheless, we can still secure as-if modular

independence, and hence modularity, in these circumstances.

In this chapter, I have applied this concept of as-if modular independence to three

historical cases, to show that this view of modularity permits us to make sense of

the complex experimental techniques used in each case—an improvement over earlier

conceptions of modularity (such as modularity’s critics have in mind). I have used

these cases to offer some strategies by which we might use interventions to create

as-if modular independence. We can use multiple manipulations to directly control

for any undesired effects of our intervention; we can construct an analog which is

sufficiently similar to the target system, and which is designed to exhibit modular

independence; we can treat undesired effects of our intervention as error, measure

that error independently from the intervention, and use the method of subtraction

to infer what the effects of an ideal surgical intervention would look like. There are

doubtless many more such techniques; I need not document them all here. Rather, I

need only establish that modularity is not the overly-strong constraint on mechanisms

that its critics have claimed it to be, and that even under this weaker interpretation

it is capable of doing the inferential work it was designed for. Better yet, this result

is only really news to philosophers: Scientists have been relying on as-if modular

independence for centuries. What remained was only to formalize these techniques,

and show that they are a natural fit to the formal techniques used in the manipulated

mechanism.

I conclude that, in contrast to the opinion of critics, modularity is far from the

weakest link in the manipulated mechanism; Indeed, the opposite is true, for I have

shown that a careful examination of modularity allows us to view many common

experimental paradigms as instances of Woodwardian manipulationist inference, and
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that modularity is a robust assumption that yet holds a great deal of inferential

power.

Thus, I conclude my defense of the manipulated mechanism against the claim that

its reliance on modularity undermines the entire project from the start.
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Conclusion

In this dissertation, I have argued for two broad claims. First, I have argued that

my account of the Manipulated Mechanism is the right step forward in resolving for

the program of mechanistic explanation pressing issues of normativity. Second, I have

argued that, whatever other flaws it might have, modularity is not a point of weakness

for my account, but a strength.

The Manipulated Mechanism

Several normative issues face any account of mechanistic explanation. Mechanism

discovery is an inferential process, wherein one infers causal structures from experi-

mental data, and is hence amenable to a normative analysis. We might ask: What are

the assumptions that justify this kind of inferences? Other normative questions arise,

too (Craver, 2007): When is a component properly said to be part of a mechanism?

How can we distinguish proper components from mere background conditions or spu-

rious correlates? How can we know when a mechanistic explanation is a good one,

that is, is justified by the empirical evidence? Such questions cry out for the addition

of a normative component to our understanding of mechanistic explanation.

Although we already have several richly qualitative accounts of mechanistic expla-

nation, none of them provides the necessary normative framework for answering these

kind of questions. I have argued that one promising avenue to explore is Woodward’s
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manipulationist account of causal explanation (Woodward, 2003).

OnWoodward’s view, a claim thatX causes Y is true just when the counterfactual

claim that ideal interventions intoX would be followed by regular changes in Y is true.

Woodward claims that experimentation is one way to test this counterfactual claim—

in effect making the counterfactual factual, and therefore readily testable. Woodward

defends this claim by providing a set of constraining principles that, when satisfied,

permit the inference from correlation observed during experimental intervention to

general causal claim.

Woodward himself (2002), Craver (2007), and most recently Glennan (personal

communication), have attempted to construct a bridge between Woodward’s system

of experimental inference, and the qualitative accounts of mechanistic explanation due

to Glennan (1996, 2002) and Machamer, Darden, & Craver (2000). However, these

first steps are yet incomplete, as none quite manage to bridge the quantitative to the

qualitative: Woodward’s account doesn’t capture all of the detail of the qualitative

accounts; Craver’s doesn’t quite capture all of the detail of the quantitative.

I have argued that the right way to bring manipulationism and mechanism to-

gether in a rapprochement that can harness the full inferential power of manipula-

tionism while doing justice to the richly qualitative aspects of the accounts of MDC

and Glennan. Where the causal models in Woodward’s manipulationism are, by de-

sign, largely uninterpreted, the qualitative accounts of mechanism can be thought

of as providing constraints on the possible interpretations of a causal model. Thus,

speaking very coarsely, mechanisms are bounded entities, with well-defined start and

stop conditions, and are composed of entities and activities. Any causal model of a

mechanism must reflect these features: It must reflect that mechanism’s boundaries,

it’s start and stop conditions, and its composition.

I have argued for a set of principled constraints that bridge these qualitative
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features of mechanisms with the formal apparatus of manipulationism, which taken

together I call the Manipulated Mechanism. First, the causal structure of a mecha-

nism model must meet certain structural constraints. A mechanism must comprise

one or more variables that represent the explanandum cause, and one or more vari-

ables that represent the explanandum effect. A mechanism model must comprise one

or more variables that m-separate the explanandum cause from the explanandum

effect. Second, the formal elements of a mechanism model must be capable of rep-

resenting the mechanism using the semantics of the Interactivity View. The arrows

must represent not just causal relations, but relations of dependence under interven-

tion. The variables must represent entity-activity pairs. Only models that meet these

constraints can be said to be models of mechanisms, and hence candidates for genuine

explanatory texts.

In addition to providing a normative framework for answering questions of ex-

planatory relevance, the Manipulated Mechanism provides tools for the discovery of

mechanistic explanations from experimental data. To do so, in the final chapter I

turned to three particularly complex historical cases of mechanism discovery, cases

that appear to defy straightforward manipulationist explanation. These cases illus-

trate that the Manipulated Mechanism (when paired with a suitable modularity prin-

ciple, namely (PMa)) can account for the various strategies used by the researchers

in these cases.

But the Manipulated Mechanism appeared to remain highly vulnerable to a class

of objections to the principle of modularity, a cornerstone of Woodward’s manipula-

tionism.
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Modularity

Any appeal to Woodward’s manipulationist framework faces a particular difficulty:

The assumption of modularity. Central to manipulationism is the idea that it should

always be possible in principle to intervene into a causal system surgically, that is,

without disrupting anything in the system beyond the experimental target. Yet, many

complex causal systems defy such surgical interventions—and some of the most inter-

esting mechanisms in biology appear to be among them. If there are known biological

mechanisms that are not modular (and yet were discovered via experimental manip-

ulations), then my account of the Manipulated Mechanism will be incomplete, for it

will not be able to account for these mechanisms.

Thus, in defense of the Manipulated Mechanism, I have executed a defense of

modularity against these claims. My defense is two-pronged: One the one hand, I claim

that some charges of violations of modularity are spurious, either misunderstanding

modularity or the nature of the violation. No doubt, the term ‘modularity’ draws

Fodorian images in many readers’ heads, and yet, Woodward’s modularity is quite

different. Thus, for example, the brain can be Woodward-modular without being

Fodor-modular—and hence any claim that a system violates Fodor-modularity is not

automatically a claim that that system violates Woodward-modularity. Too, some

commentators (e.g. Chemero & Silberstein, 2008) have claimed a close connection

between modularity and the mathematical assumption of additivity, to then argue

that non-linear dynamical systems, being non-additive, violate modularity. But the

connection is not so close: Although additive systems are modular, I argue, not all

modular systems are additive.

On the other hand, some charges that certain systems violate modularity are

well-founded. I argue that modularity, as Woodward and others have formulated it,

really encapsulates two distinct assumptions: That an intervention is probabilistically
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dependent only on the intervened-into-variable and its effects (PMa); And that an

intervention is probabilistically independent of the intervened-into-variable’s effects,

conditional on those variable’s parents (PMb). The first claim is not terribly con-

tentious, but the second is quite strong and quite controversial. I demonstrate that

the systems that do violate modularity do so in virtue of violating the second distinct

assumption. Moreover, I argue that the second principle is not doing much philosoph-

ical work for the modularity assumption, and that we can therefore safely jettison it

from our formulation. What remains is weak enough to dodge the counter-examples

raised against modularity, yet strong enough to do modularity’s work.

I closed the dissertation (as mentioned above) by showing how (PMa), properly

understood, is a modal principle that licenses the analogical reasoning from experi-

mental subjects to their ‘real-world’ counterparts. I have argued that modularity does

not require independently manipulable parts, but rather that we can create modular-

ity, via careful interventional strategies, in systems that critics took to be exemplars

of non-modularity. Looking at case histories, I demonstrated that modularity can be

restored to a system via the use of multiple simultaneous manipulations, feedback

loops, experimental analogs, controlled studies, and the method of subtraction.

I do not take myself to have offered anything like a full or complete account of

these strategies. Nevertheless, I do take myself to have broadened the range of cases

in biology that mechanistic explanation can account for.

Future Directions

Among the many questions my dissertation leaves open, I see three broad questions

of particular interest. First, can my account correctly handle cases of false inference?

Late 19th-century genetics focused on finding the mechanism for heredity, and was
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fraught with (as many projects are in their earliest stages) much difficulty. Many

candidate mechanisms were proposed, and, in hindsight, nearly all were quite off

the mark. Yet most of the proposed mechanisms came with experimental evidence

backing them. If my account of the Manipulated Mechanism is on solid footing, then

it should offer resources for evaluating the experimental inference underwriting these

early proposals relied on, for understanding where the proposals had gone astray, and

for explaining why the resulting conclusions were nevertheless somehow plausible.

Second, what happens when experimental conditions are less than ideal? Although

one focus of my dissertation is in finding the weakest principles that will support

inference about mechanisms, even these very weak assumptions might fail to hold.

For example, neuroscientists often assume that distinct brain regions perform distinct

functions, and that therefore cognitive activity can be localized to particular brain

regions. This assumption is necessary for fMRI studies: In them, two images are

taken under slightly different tasks, and the images subtracted. If this assumption

holds, then the remainder will indicate which brain regions are responsible for the

difference in cognitive activity. But, of course, the assumption that there is a one-to-

one correspondence between brain regions and cognitive functionality is suspect at

best. What kinds of weaker assumptions could we apply to draw useful inferences from

fMRI studies? Thus, one very large research task is to flesh out a set of minimum

assumptions for experimental inference, and to test those assumptions against the

very messy and complex contexts in which actual experimentation (such as fMRI

studies) is performed.

Finally, when constructing models, or deciding how to construct an experiment,

are there principles that guide researchers’ choice of variables? Theoretical assump-

tions obviously constrain which variables a researcher will consider, but are there

more fundamental assumptions that transcend theory that also place constraints? In

276



particular, Woodward’s modularity condition can be used to distinguish functionally

identical, but structurally different models given a set of experimental data. It ap-

pears to me that this kind of decision process could be applied to questions of variable

selection as well.
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Appendix A

Non-Linearity and Dynamiticity

What is a non-linear system? A non-linear system is a mathematical construct—a

model—comprising a system of non-linear equations.1

What, then, is a non-linear equation? A non-linear equation is an equation that

is not linear. A linear equation is an equation whose LHS is an additive combination

of the paramters on the RHS:

f(x1, . . . , xn) = a1x1 + . . .+ anxn

where the ai are constants. The function f is called a linear function if it can be

written out in this form. Linear functions exhibit two important properties, additivity

and homogeneity.

Additivity f(x+ y) = f(x) + f(y).

Homogeneity f(αx) = αf(x).

1The word ‘system’ can mean many things, and gets tossed around in this context as though
it did not. First, ‘system’ may be used as shorthand for ‘system of equations’, which is nothing
more than a set of equations taken together. Second, ‘system’ may be used to refer to a collection
of coöperating components in the world, i.e. a mechanism. I will use ‘system’ for the mathematic
construct, and ‘mechanism’ for the thing in the world the system represents.
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The function given as an example above satisfies additivity because:

f(x1 + y1, . . . , xn + yn) = a1(x1 + y1) + . . .+ an(xn + yn)

= a1x1 + a1y1 + . . .+ anxn + anyn

= a1x1 + . . .+ anxn + a1y1 + . . .+ anyn

= f(x1, . . . , xn) + f(y1, . . . , yn)

Likewise does the function satisfy homegeneity:

f(αx1, . . . , αxn) = a1αx1 + . . .+ anαxn

= α (a1x1 + . . .+ anxn)

= αf(x1, . . . , xn)

When plotted to Cartesian coordinates, linear equations will plot as hyperplanes (i.e.,

in two variables as a line, in three as a plane, etc.).

A system of linear equations can be represented as the product of two matrices. If

we have m equations in n variables, then one n×m matrix represents the coffecients

in each linear equation, and the other matrix is a column matrix containing the

variables:
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. . .
...

am1 am2 · · · amn



















·



















x1

x2

...

xn



















A non-linear equation, then, is one that violates either additivity, homogenity, or

both. For example, consider the logistic map:

xn+1 = f(xn) = rxn(1− xn)
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The logistic map violates homogeneity:

f(αxn) = rαxn (1− (αxn))

= α (rxn(1− αxn))

6= α (rxn(1− xn))

and additivity:

f(xn + yn) = r (xn + yn) (1− (xn + yn))

= r (xn + yn) (1− (xn + yn))

= (rxn + ryn) (1− (xn + yn))

= rxn(1− (xn + yn)) + ryn(1− (xn + yn))

6= rxn(1− xn) + ryn(1− yn)

What is a dynamical system? A dynamical system is a system of equations, each

of which is a dervative of one or more variables with respect to time. That is, it is a

system of equations that describes how a set of variables change over time, how they

move. To take an example from Newtonian mechanics, if the position of a body x is

represented by the function f at time t, its velocity v is first time-derivative of x, and

its acceleration a is the first time-derivative of velocity, or the second time-derivative

of position:

x = f(t)

v =
dx

dt
= f ′(t)

a =
dv

dt
=
d2x

dt2
= f ′′(t)

Differential equations can be linear or non-linear. For example, if in the above example

x = −16t2 +16t+32 (a non-linear function), the velocity is given by dx
dt

= −32t+16

(a linear function).
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Putting the two together, a non-linear dynamical system is a system of non-linear

differential equations.
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wirkung’. Pflügers Archiv European Journal of Physiology, 214, pp. 678–688.

Lotka, A.J. (1925). The Elements of Physical Biology. Williams & Williams Co.,

Baltimore.

Machamer, P.K. (2004). ‘Activities and Causation: The Metaphysics and Epistemol-

ogy of Mechanisms’. International Studies in the Philosophy of Science, 18, pp.

27–39.

Machamer, P.K., Darden, L., & Craver, C.F. (2000). ‘Thinking about Mechanisms’.

Philosophy of Science, 67, pp. 1–25.

Menzies, P. & Price, H. (1993). ‘Causation as a Secondary Quality’. The British

Journal for the Philosophy of Science, 44, pp. 187–203.

Mill, J.S. (1843). A System of Logic, Ratiocinative and Inductive. John W. Parker.

Miller, R., Barnet, R., & Grahame, N. (1995). ‘Assessment of the Rescorla-Wagner

model’. Psychological bulletin, 117, pp. 363–386.

Montaña, J. (2009). ‘Break the Toaster: Manipulationist Descriptions of Mechanisms’.

The International Society for the History, Philosophy, and Social Studies of Biology,

Brisbane, Australia, July, 2009.

290



Norton, J.D. (2003). ‘Causation as Folk Science’. Philosophers’ Imprint, 3, pp. 1–22.

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge University

Press, New York.

Psillos, S. (2004). ‘A Glimpse of the Secret Connexion: Harmonizing Mechanisms

with Counterfactuals’. Perspectives on Science, 12, pp. 288–319.

Rescorla, R. & Wagner, A. (1972). ‘A theory of Pavlovian conditioning: Variations in

the effectiveness of reinforcement and nonreinforcement’. In A. Black &W. Prokasy,

eds., ‘Classical Conditioning II’, pp. 64–99. Appleton-Century-Crofts.

Salmon, W.C. (1979). ‘Review: Propensities: A Discussion Review’. Erkenntnis, 14,

pp. 183–216.

Salmon, W.C. (1984). Scientific Explanation and the Causal Structure of the World.

Princeton University Press, Princeton.

Salmon, W.C. (1989). Four Decades of Scientific Explanation. University of Min-

nesota Press, Minneapolis.

Salmon, W.C. (1994). ‘Causality without Counterfactuals’. Philosophy of Science,

61, pp. 297–312.

Salmon, W.C. (1997). ‘Causality and Explanation: A Reply to Two Critiques’. Phi-

losophy of Science, 64, pp. 461–477.

Salmon, W.C. (1998). Causality and Explanation. Oxford University Press, Oxford.

Sands, Z., Grottesi, A., & Sansom, M.S. (2005). ‘Voltage-Gated Ion Channels’. Cur-

rent Biology, 15, pp. R44 – R47.

291



Simon, H.A. (1962). ‘The Architecture of Complexity’. Proceedings of the American

Philosophical Society, 106, pp. 467–482.

Sloman, S.A. & Lagnado, D.A. (2005). ‘Do We “do”?’ Cognitive Science, 29, pp.

5–39.

Sober, E. (2001). ‘Venetian sea levels, British bread prices, and the principle of the

common cause’. The British Journal for the Philosophy of Science, 52, pp. 331–346.

Sober, E. & Lewontin, R.C. (1982). ‘Artifact, Cause and Genic Selection’. Philosophy

of Science, 49, pp. 157–180.

Spirtes, P., Glymour, C., & Scheines, R. (1993). Causation, Prediction and Search.

Springer Lecture Notes in Statistics. MIT Press, Harvard, MA.

Steel, D. (2006). ‘Comment on Hausman and Woodward on the Causal Markov

Condition’. British Journal for the Philosophy of Science, 57.

Suppes, P. (1970). A Probabilistic Theory of Causality. North-Holland, Amsterdam.

Suppes, P. (1986). ‘Non-Markovian Causality in the Social Sciences with some The-

orems on Transitivity’. Synthese, 68, pp. 129–140.

Tabery, J. (2009). ‘Difference Mechanisms: Explaining Variation with Mechanisms’.

Biology and Philosophy, 24, pp. 645–664. 10.1007/s10539-009-9161-2.

Tabery, J.G. (2004). ‘Synthesizing Activities and Interactions in the Concept of a

Mechanism’. Philosophy of Science, 71, pp. 1–15.

Thorne, R.E. & Thomas, G.L. (2008). ‘Herring and the “Exxon Valdez” oil spill: An

investigation into historical data conflicts’. International Council for the Explo-

ration of the Sea Journal of Marine Science, 65, pp. 44–50.

292



Volterra, V. (1926). ‘Fluctuations in the abundance of a species considered mathe-

matically’. Nature, 118, pp. 558–560.

Wagner, G.P., Pavlicev, M., & Cheverud, J.M. (2007). ‘The road to modularity’.

Nature Reviews Genetics, 8, pp. 921–931.

Wikipedia (2010). ‘HIV — Wikipedia, The Free Encyclopedia’. [Online; accessed

26-February-2010].

Wolf, S. & Hardy, J.D. (1941). ‘Studies on pain. Observations on pain due to local

cooling and on factors involved in the “cold pressor” effect’. Journal of Clinical

Investigation, 20, pp. 521–533.

Woodward, J. (1997). ‘Explanation, Invariance, and Intervention’. Philosophy of

Science, 64, pp. S26–S41.

Woodward, J. (1999). ‘Causal Interpretation in Systems of Equations’. Synthese,

121, pp. 199–257.

Woodward, J. (2000). ‘Explanation and Invariance in the Special Sciences’. British

Journal for the Philosophy of Science, 51, pp. 197–254.

Woodward, J. (2002). ‘What is a Mechanism? A Counterfactual Account’. Philosophy

of Science, 69, pp. S366–S377.

Woodward, J. (2003). Making Things Happen: A Theory of Causal Explanation.

Oxford University Press, Oxford.

Woodward, J. & Hitchcock, C. (2003a). ‘Explanatory Generalizations, Part I: A

Counterfactual Account’. Noûs, 37, pp. 1–24.
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