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This dissertation documents the relationship between stress-adaptation and 

reproductive specialization in three endemic plant species (Delphinium treleasei, 

Echinacea paradoxa, and Scutellaria bushii) that are locally-abundant but restricted to 

glade habitats and their closely-related congeners (D. carolinianum, E. pallida, S. ovata, 

and S. parvula) that have broader habitat use, including glades. Glades are hot, xeric 

environments with much exposed bedrock, limited soil development, herbaceous cover, 

and are found in a matrix of more mesic woodland and prairie habitat.  

Theory predicts that rare species are more likely to be self-compatible and have 

generalist pollination systems in order ensure reproduction when pollen limitation is low. 

However, if pollen is less limiting in larger local populations, other factors, such as 

abiotic stress or resource limitation, could exert stronger selection pressure on floral traits 

and plant-pollinator interactions. In Chapter Two, I test two hypotheses concerning 
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reproductive specialization in endemic plants and their common congeners (CC). I 

quantify morphological traits that are associated with stress-adaptation and reproductive 

specialization, pollinator behavior, plant specialization, and rates of autogamous self-

fertilization. The locally-abundant, regionally-rare (LARR) species were significantly 

different from their CCs in vegetative traits associated with stress-adaptation (i.e., stem 

length and leaf area), but the direction of the differences was not consistent among genera 

or with predictions of stress-adaptation. On the other hand, two of the three LARR taxa 

had larger flowers and fewer dominant pollinators than their CCs, though there were no 

differences in autogamous selfing rates. This study supports a more nuanced theory of the 

relationship between reproductive specialization and rarity that addresses additional 

factors influencing rare taxa, such as stress-adaptation.  

In Chapter 3, I examine the responses of the LARR and CC plants to drought and 

high heat conditions in order to explicitly test the prediction that the LARR species are 

more resistant to high-stress environments and allocate resources to fewer, higher-quality 

offspring in comparison to their widespread congeners. Plants that are adapted to stressful 

environment have a suit of traits that are thought to be adaptive and should lead to greater 

offspring quality in order to increase survival. I exposed plants of both species in a 

congeneric pair (D. treleasei, D. carolinianum, E. paradoxa, E. pallida, S. bushii, and S. 

ovata) to experimental manipulations of water availability and temperature regimes that 

were consistent with those experienced in the glade habitat. The LARR species were 

more resistant to stress is some morphological traits that are associated with adaptation to 

stressful environments, and the CC species were not. Moreover, the LARR species had 

fewer, higher-quality offspring, whereas the CC species have more seeds of lower 
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quality. This study indicates that plants that specialize on stressful environments differ 

from their CCs in morphological traits associated with stress-adaptation and in the 

allocation of resources to reproductive output, with implications for their interactions 

with pollinators. 

I then test the alternative hypotheses that two LARR species are (1) poorer 

competitors for pollinators, as predicted by traditional theory of reproduction in rare 

species, (2) are better competitors for pollinators in stressful environments in comparison 

to a common congener, or (3) do not compete with their common congeners for 

pollination services (Chapter 4). Rare species are predicted to have floral traits associated 

with higher selfing rates, such as smaller flowers and lower reward output, and therefore, 

may be poorer competitors for shared pollinators than closely-related, widespread 

species. An alternative prediction is that stressful abiotic conditions should result in 

selection for traits that increase offspring quality, such as fewer, larger flowers or more 

specialized pollination systems, that may confer greater competitive ability for 

pollinators. Finally, pollinator abundance and behavior differs spatially and temporarily, 

and both the strength and direction of competitive superiority may vary accordingly. I 

conducted pollinator competition trials at multiple localities, in order to control for spatial 

variation in pollinator assemblage. Naïve plants were exposed to pollinators in two 

treatment arrays, either with conspecifics or heterospecifics, and constant density. I 

compared the pollination and reproductive success of the CC and LARR species in mixed 

groups and in monoculture. The congeneric pairs did not compete for pollinators but 

varied in their morphological traits and reproductive success across sites. The results of 

this study indicates that spatial variation in plant-pollinator interactions dominates 
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pollination success in years with low pollinator abundance. The LARR species, one of 

which has a more specialized pollination system than its CC, had greater pollination and 

reproductive success (defined as pollen deposition and pollen tube growth, respectively) 

than their CCs. This pattern suggests that more specialized pollination systems may lead 

to increased reproductive success per visit. This study enhances our understanding of the 

impacts of spatial variation and specialization on interspecific interactions, which is 

increasingly important as we attempt to conserve rare species and habitats in a rapidly 

changing world.  

Finally, this dissertation explores the response of two LARR species and their 

CCs to regional climate change in order to test for the relative importance of intrinsic and 

extrinsic factors in determining species phenological patterns. Species responses to 

climate change have been well documented, but there is significant variation in responses 

both across and within taxa. I test the prediction that LARR species that specialize on 

stressful habitats are less responsive to climate change in comparison to their CC, since 

they are resistant to changes in abiotic conditions (intrinsic factors). On the other hand, 

local extrinsic factors may influence the degree of change at the scale of an individual. 

For instance, glade habitats have much exposed bed rock and low vegetative cover, 

which should increase the heat holding capacity and decrease cooling via 

evapotranspiration within the glade. All individuals that occur on glades will be equally 

likely to respond to climate change. Using herbarium specimens, I calculated a 

continuous variable to describe the development stage of all individuals and tested for the 

role of climate, long-term change (the time component), and habitat on the relationship 

between the development stage of the individual and the date it was collected. The 
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regional climate in Missouri and Arkansas is increasing in average minimum 

temperatures and precipitation, as indicated by an analysis of a composite climate 

variable. Delphinium treleasei (LARR) is responding to climate change by flowering 

earlier, and there is a similar trend in S. bushii (LARR), though low replication reduced 

my ability to rigorously test the response of this species. None of the widespread species 

exhibited a change in phenology with climate change. This study is the first to document 

phenological responses to climate change by describing the development stage of 

individuals in time, which is a more biologically realistic estimate of phenology. 

Moreover, the differential responses of LARR and CC plants indicating that intrinsic 

traits are driving their response to climate change. The stress-adapted species are more 

responsive to climate change, contrary to my prediction and may reflect a selective 

advantage for species that specialize on stressful habitats to more closely track climate. In 

light of current anthropogenic changes, understanding the influence of stress on 

reproductive systems, including local-adaptation and floral phenology, is of critical 

importance and warrants more in-depth study. 
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A fundamental goals in ecology and evolutionary biology is to determine the 

mechanisms that influence species distributions, particularly among rare and widespread 

species. Both biotic and abiotic factors are thought to contribute to species distributions, 

particularly in light of their reproductive biology. There are several competing theories 

contributing to our understanding of the relationship between reproduction and rarity. 

The first is that of reproductive assurance, that rare species should maintain the ability to 

self-fertilize in order to buffer for variability in pollination success. Therefore, rare 

species are predicted to have higher outcrossing rates and to be self-compatible (Baker, 

1955; Kelly et al., 1996; Neiland and Wilcock, 1998; Izco, 1998; Fausto et al., 2001; 

Murray et al., 2002; Domínguez Lozano and Schwartz, 2005; Jacquemyn, 2005; Moeller 

and Geber, 2005). This theory is realistic for locally rare species that may be infrequently 

visited by pollinators. However, species that are locally-abundant but regionally rare may 

not be limited by pollen availability, and other factors may play a more prominent role in 

determining their reproductive biology, such as stressful abiotic conditions (Armbruster 

and Reed, 2005; Fox and Reed, 2010). Rare species may have greater outcrossing rates in 

order to avoid negative genetic effects common to small population sizes (Wright 1922; 

Del Castillo and Trujillo, 2008; Firman and Simmons, 2008; Kennedy and Elle, 2008; 

Espeland and Emam, 2011).  

 My objective was to examine the relationship between rarity and reproduction in 

three locally-abundant, regionally rare glade plant species that are endemic to stressful 

habitats, in comparison to widespread, closely-related species that occur on glades but are 

not restricted to them. Glades are south to southwest facing, rocky outcroppings found 

throughout the Ozark region of Missouri and Arkansas. They characterized by high 
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quantity of exposed bedrock, low herbaceous cover, limited soil structure, and hot and 

xeric conditions (Baskin and Baskin, 1982; Nelson and Ladd, 1982; Yatskievych, 1999; 

Templeton et al., 2001). Glades have been of interest to ecologists and evolutionary 

biologists for decades due to their suit of endemic species, many with restricted ranges 

(Kucera and Martin, 1957; Baskin et al., 1974, 1982; Baskin and Baskin, 1985; Learn and 

Schaal, 1987; Jenkins and Jenkins, 2006) and their spatial structure, which makes them 

ideal for studies of dispersal (Brisson et al., 2003), spatial genetic structure (Learn and 

Schaal, 1987; Templeton et al., 2001; Brisson et al., 2003), metapopulation dynamics 

(Ryberg and Chase, 2007), and many other ecological and evolutionary topics (e.g., Van 

Zandt et al., 2005; Van Zandt, 2007).  

Glades are also ideal for the study of rarity and reproductive theory, since they 

have several endemic plant species in sympatry with widespread, closely-related species. 

Therefore, the mechanisms that restrict one species, and not the other, to glades can be 

explored while controlling for the potential effect of evolutionary history on species traits 

(Bevill and Louda, 1999). In this dissertation, I test hypotheses concerning the 

relationship between stress-adaptation and reproductive biology in three endemic glade 

species (Delphinium treleasei, Echinacea paradoxa, and Scutellaria bushii) in 

comparison to their widespread, closely-related species (D. carolinianum, E. pallida, S. 

ovata, and S. parvula). Each of the following four chapters has an introduction to the 

principles behind the specific hypotheses to be tested, contain new data and analyses, and 

separate tables and figures that demonstrate the methodology of or present the result from 

analyses of the data therein.  



4 

 

In the first chapter, I document differences in the morphological traits, pollination 

biology, and breeding systems of three congeneric species pairs through an in situ field, 

observational study. In the second chapter, I explicitly test the three hypotheses, (1) glade 

endemic species are more resistant to experimental stress, (2) they have floral traits that 

are associated with decreased attractiveness to pollinators but increased outcrossing rates, 

and (3) reproductive output is allocated to fewer, higher quality offspring in comparison 

to their widespread congeners. The research presented in Chapter 4 tests the prediction 

that the floral traits of two stress-adapted endemic plants confer lower competitive ability 

for pollination services in comparison to their common congeners. The research in 

Chapter 5 documents the phenological responses of two the congenic species pairs to 

regional climate change. The final chapter concludes the dissertation with a discussion of 

the major results and their conservation implications, particularly in light of recent global 

changes.  
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INTRODUCTION 

 The relative importance of biotic and abiotic mechanisms in determining species’ 

ranges is an elemental debate in ecology and evolutionary biology. Competitive exclusion 

(Hardin, 1960; Kunin and Gaston, 1997; Lloyd et al., 2002) and specialization to abiotic 

or biotic conditions may restrict the biogeographical range of a species (Rabinowitz et al., 

1981; Kruckeberg and Rabinowitz, 1985; Kunin and Gaston, 1997; Gregory and Gaston, 

2000), and rare plants are predicted to have self-compatible breeding systems and less 

specialized pollination systems in order to maintain reproduction given low pollen 

availability (Baker, 1955; Kelly et al., 1996; Izco, 1998; Neiland and Wilcock, 1998; 

Fausto et al., 2001; Murray et al., 2002; Domínguez Lozano and Schwartz, 2005; 

Jacquemyn, 2005; Moeller and Geber, 2005). While this prediction of reproductive 

assurance may be relevant for those species that are locally rare and have small local 

population sizes, locally abundant, regionally-rare (LARR) plants should be less 

restricted by pollen receipt, allowing for factors other than pollen availability to influence 

their reproductive biology (Rabinowitz et al., 1981; Kruckeberg and Rabinowitz, 1985; 

Fenster et al., 2004; Williams et al., 2009), such as resource limitation or adaptation to 

stressful environments. In 1981, Deborah Rabinowitz delineated seven forms of rarity 

based on population size, geographic extent, and habitat specificity (Table 2-1; 

Rabinowitz et al., 1981). Historically, the relationship between reproductive biology and 

rarity has focused on the rare species with small populations sizes. However, LARR 

plants may experience very different selective pressures, such as for increased 

outcrossing rates, enhanced offspring quality, or decreased resource-loss in stressful 

environments. 
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In response to xeric environments, plants often have similar suites of traits that are 

thought to be adaptive (Grime, 1977; Bryant et al., 1983; Chapin et al., 1993), each 

conferring a different advantage to the plant. While advantageous in more extreme 

abiotic habitats (Bryant et al., 1983; Chapin et al., 1993; Grime, 1977) stress adaptations 

often come at a cost, such as decreased competitive ability (Grime, 1977; Baskin and 

Baskin, 1988) potentially attractiveness to pollinators in more productive habitats. For 

instance, stress-adapted species are often shorter, with overall reduced floral output, and 

lower seed production (Aragón et al., 2008; Kudo et al., 2008). Plants that are taller 

(Dickson and Petit, 2006) and have larger floral displays are more attractive to pollinators 

and could be competitive dominants (Erhardt and Rusterholz, 1998; Naug and Arathi, 

2007; Aragón et al., 2008), which may select for more generalized pollination systems 

and confer lower competitive ability for pollinators. Moreover, nectar production, an 

important floral attraction trait, is reduced in order to conserve water in xeric 

environments (Halpern et al., 2010) and therefore should confer reduced attractiveness to 

pollinators. As survival becomes increasingly important for population stability, 

resources allocated to reproduction (e.g., floral attraction traits) may be reduced 

(Silvertown et al., 1993), potentially resulting in lower floral output and competitive 

ability for pollinators.  

Conversely if resources are limiting, investment in fewer, larger flowers that 

restrict the number and type of effective pollinators should increase outcrossing rates 

(Karron et al., 2004; Mitchell et al., 2004; Bell et al., 2005; Karron et al., 2009; Mitchell 

et al., 2009) and potentially enhance offspring quality. Plants with fewer flowers open 

concurrently are visited less frequently and for shorter periods of time, resulting in the 
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increased deposition of outcross pollen. Longer distances to floral rewards (i.e., spur or 

tube length) restrict the number and type of visitors that can access the reward, resulting 

in more specialized pollination systems (Anderson and Johnson, 2008), which should 

also increase offspring vigor and decrease resource losses through investment in lower-

quality, self-fertilized offspring (Darwin, 1877; Whittall and Hodges, 2007). Despite their 

importance, plant-pollinator interactions have not been explicitly integrated into stress-

competition theory. 

 I conducted observational and experimental studies to test six hypotheses 

regarding the relative importance of stress-adaptation verses reproductive specialization 

in three locally-abundant, regionally rare (LARR) plants that are endemic to the Ozark 

glades (i.e., geographically and edaphically restricted habitats characterized by hot and 

dry conditions) and congeners of these three species that occur on glades but are not 

restricted to them. First, I test the hypotheses that LARR plants have traits associated 

with stress-resistance or pollination specialization, such as smaller leaves and fewer, 

smaller flowers. Next, I test the predictions that LARR plants have lower rates of 

autogamy and are more dependent on their pollinators for their reproductive success (i.e., 

more pollen limited) in comparison to closely-related species with broader 

ecogeographical ranges. Finally, I test the hypotheses that visitation rates are lower and 

pollination specialization scores are higher in comparison to their CCs. In order to 

determine rates of autogamy and pollen limitation, I conducted breeding system and 

pollen-supplementation experiments. The hypotheses regarding pollination specialization 

and pollinator movement were examined through a three-year observational study of 

pollinator behavior. I show that two of the three LARR taxa are have more specialized 
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reproductive biology (morphology and pollination), but do not have traits associated with 

increased stressed-resistance. I then discuss the implications of these findings for species 

responses to climate change and conservation efforts in stressful environments. 

MATERIALS AND METHODS 

Study System—The glades of the Ozark Mountain Region are rocky, arid 

outcroppings that are spatially restricted within a matrix of more mesic oak-hickory forest 

matrix (Learn and Schaal, 1987; Baskin and Baskin, 1988; Templeton et al., 2001). They 

are dominated by herbaceous grasses and forbs and contain several endemic plant species 

(Nelson and Ladd, 1982; Yatskievych, 1999), many with restricted ranges. Temperature 

data recorded at three replicate glade, forest, and prairie sites between December 2007 

and August 2008, indicate that glades are significantly hotter than the surrounding 

habitats during the spring and summer months (DF = 3688, F = 2.36, p = 0.0017; not 

shown), when many LARR glade plant species are photosynthetically active and 

blooming.  

I chose three LARR glade species, Delphinium treleasei (Ranunculaceae), 

Echinacea paradoxa (Asteraceae - Heliantheae), and Scutellaria bushii (Lamiaceae) that 

are restricted to glades in the Ozark Region in Missouri and Arkansas but locally 

abundant (i.e., hundreds of individuals per glade). Each has a common congener 

(respectively, D. carolinianum, E. pallida, S. ovata, hereafter common congeners (CC)) 

that grows on glades but is not restricted to them. Comparing congeneric pairs provides 

insight into the factors that restrict one species to glades and not the other. Moreover, 

comparing several unrelated LARR species to their common congeners mitigates the 

potential influence of evolutionary history on the biological traits correlated with 
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endemism, such as specialized pollination. This provides a phylogenetically controlled 

study of the mechanisms contributing to the restricted ranges of these species 

(Kruckeberg and Rabinowitz, 1985; Bevill and Louda, 1999). Multiple congeneric 

comparisons allow for broader interpretation of the results from this study (Bevill and 

Louda, 1999) and a greater understanding of the relationship between stress-adaptation 

and reproductive biology, which has hitherto been not been explicitly explored.  

Vegetative traits—I quantified selected vegetative and floral traits that I 

hypothesized to differ between the stress-adapted and non-stress-adapted species for ten 

to fifteen individuals per site for multiple sites per species (average = 4.82 sites and 144.5 

individuals per species; Table 2-2; Figure 2-1). Over three field seasons (2007 – 2009), 

morphological traits were measured at no fewer than four glade sites for each LARR 

species and no fewer than one non-glade (i.e., prairie and woodland) and two glade sites 

for the widespread taxa (Table 2-2). I was not able to obtain above- or belowground 

biomass due to restrictions on the collection of the LARR plants and the required 

sampling techniques (including the substantial destruction of glade habitat). Therefore, 

biomass was estimated as the total number of leaves and total stem length (i.e., the 

product of the number of stems and stem length). In 2009, one medium-sized leaf per 

individual was measured for leaf thickness, pressed and digitized. The leaf area of each 

leaf was quantified in Sigma Scan (SYSTAT Software Inc., 2002), and total leaf area was 

calculated (i.e., average leaf area multiplied by the total number of leaves).  

Floral traits—I measured floral attraction traits (i.e., display size, nectar volume) 

and floral morphological traits that I predicted to affected pollinator behavior and 

pollinator effectiveness. Due to morphological differences, some floral attraction traits 
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were quantified differently for each of the genera, particularly for the Echinacea species. 

For the Delphinium species, corolla area was calculated as the product of corolla width 

and corolla height, and distance to the nectar reward refers to the length of the floral spur. 

I measured corolla area of the Scutellaria taxa as the square of the lower corolla, often 

called the landing pad, and distance to nectar as floral tube depth. For both Scutellaria 

and Delphinium, I documented the number of flowers produced per individual and the 

number of flowers open concurrently. The proportion of flowers open was calculated as 

the number of flowers open concurrently divided by the total number of flowers produced 

per individual, and total display size was calculated as the product of corolla area, as 

defined above, times number of flowers open. In order to estimate nectar production, 

plants were bagged prior to anthesis, left undisturbed for several hours (4-6 hours later 

for Delphinium species and 5-6 hours for Scutellaria species, except S. parvula at one site 

where individuals were bagged for 29 hours, because nectar levels were too low to 

quantify after shorter time periods), and nectar was collected via micro-capillary tubes. 

Nectar production was then quantified as nectar volume produced per hour. 

For the Echincaea species, corolla area was calculated as the product of the width 

and length of an average ray petal, and total display size is corolla area multiplied by the 

total number of ray petals. The number of flowers open per inflorescence was the sum of 

all florets that were shedding pollen or had receptive stigmas, and the proportion of 

florets open was quantified as the total number of florets open divided by the total 

number of florets produced. For all species, relative floral output was standardized by 

total stem length, in order to account for variation in individual plant size. Nectar was not 
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collected from Echinacea was not measured due to low nectar production and small floret 

size. 

Reproductive success and Breeding systems—In order to estimate ambient 

reproductive success in a common habitat, fruits were collected from individuals at the 

glade sites, and seedset was quantified for up to three fruits per individual. For 

Delphinium and Scutellaria species, total reproductive success is defined as the average 

number of seeds per fruit multiplied by the total floral output. For Echinacea taxa, total 

reproductive success is defined as the proportion of achenes (florets) with a fertilized 

seed multiplied by the total number of achenes per capitulum (inflorescence). Since 

Echinacea species are known to produce unfertilized capsules that collapse when 

pressure is applied, thirty seeds per capitulum were gently pressed with forceps to 

confirm fertility and ensure accurate estimates of reproductive success. Seeds that did not 

collapse under the small amount of applied pressure were assumed to be fertile. For all 

species, relative reproductive success was standardized by total stem length. 

I determined the degree to which each species is self-compatible via breeding 

system studies conducted under controlled greenhouse conditions or in natural 

populations when flowering could not be induced in the greenhouse. Wild-collected seed 

of the Delphinium and Echinacea taxa were germinated, transplanted and grown to 

flower in the greenhouse. I documented the phenology of reward presentation (e.g., 

corolla expansion, first nectar production, and stigma receptivity) under greenhouse 

conditions and in the field. I was unable to induce flowering of Scutellaria bushii in the 

greenhouse and conducted breeding system experiments for all Scutellaria taxa in the 

field. Thirty individuals per species were bagged before anthesis to exclude pollinators, 
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pollinated according to one of three treatments, and remained bagged until fruits 

developed. To demonstrate the role of pollinators in fertilization, the capacity of each 

species to self-pollinate, and the degree to which each species is or is not self-

incompatible; I applied self-pollen, outcross pollen, and no pollen to 10 individuals of 

each species, respectively. Following maturation, I collected the fruit and quantified 

reproductive success as above. Degree of autogamy was calculated as the ratio of 

reproductive success in the bagged and in the pollen supplement treatments. Dependence 

on pollinators for self-pollination was calculated as the ratio of bagged and self-pollinated 

treatments.  

Pollination biology— I conducted a pollen supplementation experiment at each 

field site to quantify ambient limitation of reproductive success via inadequate 

pollination. I applied outcross pollen to all receptive stigmas of 10 individuals, excluded 

pollinators from 10 individuals to estimate autogamous fertilization, and tagged 10 

additional individuals which remained open to pollinators and acted as the control. 

Following maturation, all marked flowers or achenes were collected, and the reproductive 

success quantified. Seed fertility of the Echinacea taxa was estimated as noted above. 

Pollen limitation was calculated as supplemented reproductive success minus ambient 

reproductive success.  

In order to document the pollination specialization of these target plant species, I 

recorded the number, type, and behavior (e.g., visit duration (s), anther and stigma 

contact) of all floral visitors through 30 minute observations during peak periods of 

activity and collected a representative number of each visitor for pollen counts and 

identification. Due to the spatial and temporal variation inherent in plant-pollinator 



14 

 

interactions, pollinator observations and insect collections were conducted at each site 

over two years, 2008 and 2009. In 2008, ten individual plants were observed for each 

species per site, and in 2009, fifteen individuals were observed. Replication was 

increased in 2009 in order to compensate for low visitation rates. Pollinator observations 

and collections were conducted at both glade and non-glade (i.e., prairies and woodlands) 

sites for all widespread species, which controls for potential differences in pollinator 

assemblages and behavior across sites. One inflorescence per individual was observed for 

30 minutes, two to three times during the blooming period (10-15 individuals x 2 

observation days x 3 sites per species = 60-90 individuals per species in 2008 and 2009, 

respectively; Table 2-2) in order to account for individual and temporal variation in insect 

activity. Since insect identification is often impossible during field observations, visitors 

were categorized into functional groups during field observations. Visitation rate of each 

species was calculated as the product of the visitation rate of the functional group per 30 

minute observation and the proportion of individuals of that functional group represented 

by the given species.  

Following collection in the field, visitors in Hymenoptera and Lepidoptera were 

identified by experts, where possible, to the species level (86.5%), and those in 

Coleoptera, Diptera, and Hemiptera were identified to family. Pollen was washed from 

insects with ethanol, mounted on slides and stained with Calberla’s solution (Ogden et 

al., 1974; Dafni, 1993; Clinebell and Bernhardt, 1998). Pollen loads were determined for 

each insect species as the average number of pollen grains of the focal plant species 

found on the insect. Pollen was identified with the aid of a pollen reference library of all 

co-blooming species, and total pollen flow (Lj) of the focal plant species was calculated,  
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where Sj is the total number of insect species visiting plant species j, pi is number of 

species j pollen grains carried by visiting species i, and vi is visitation rate of insect 

species i to plant species j. I measured the specialization of each plant species via the 

Generalization Index (i.e., the number of insect species that account for 95% of pollen 

flow), and the relative importance of all pollinators was quantified as the Dominance 

Index of Pollinator Importance (DPIj, modified from Galloni, 2008). The Dominance 

Index is a modification of the Simpson’s diversity index that accounts for both insect 

pollen load and visitation rate,   

  

(symbols are the same as in Eq. 1). The Dominance Index of ranges from zero (i.e., 

multiple pollinators each account for an equal proportion of pollen flow) to one (i.e., one 

pollinator accounts for all of the pollen flow), and it is a measure of the pollinator 

importance that accounts for pollinator richness within a defined pollinator community 

(Galloni, 2008). 

Statistics—All morphological traits, reproductive biology, and pollination biology 

were normalized where necessary and tested for significant differences between 

congeners via t-test in R Statistical Software (R Development Core Team 2008). 

Variables with low replication (i.e., N < 6) that either had either marginally significant t-

values or had variables that could not be normalized were analyzed via permutation 

            Sj 

Lj = ∑ (pivi)        Eq. 1 

       
i = 1

 

 

                  Sj 

DPIj =  ∑ [(pivi/Lj)
2
]      Eq. 2 

           
i = 1
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ANOVA (aovp in lmperm package; R Development Core Team 2008). All permANOVA 

results of non-normalizable data did not differ from the results of the t-tests; therefore I 

report only the t-test results.  

RESULTS 

Vegetative traits—Vegetative traits differed significantly between congeners but 

were not consistent among genera. Generally, there were no differences when non-glade 

habitats were included in the analyses, but for clarity, I discuss the differences within 

glades only, unless otherwise specified (all results are recorded in Table 2-3). Delphinium 

treleasei, the LARR taxa, did have thicker leaves than its CC as I predicted, but there 

were no differences in total stem length or in total leaf area, two estimates of biomass. 

Contrary to my predictions, the LARR D. treleasei had greater average leaf area (Table 

2-3, Figure 2-2a) than its CC D. carolinianum and was not significantly shorter. In 

congruence with my hypotheses, the LARR Echinacea paradoxa was shorter than its CC, 

E. paradoxa, but there were no differences in any other vegetative trait measured, 

including average leaf area (Figure 2-2b), leaf thickness, or total leaf area. The LARR S. 

bushii was significantly different from its CC, S. ovata, in congruence with my 

hypotheses for vegetative traits, but not from S. parvula. Scutellaria bushii was shorter 

than S. ovata but taller than S. parvula, and S. bushii had significantly lower leaf area 

than S. ovata but not S. parvula (Table 2-3, Figure 2-2c). Contrary to my hypotheses, S. 

bushii was significantly taller in comparison to both Scutellaria CCs (S. ovata and S. 

parvula). There were no differences in leaf thickness or total leaf area between S. bushii 

(LARR) and S. ovata or S. parvula. 



17 

 

Floral traits—As predicted, Delphinium treleasei (LARR) had significantly 

larger flowers than D. carolianum (Table 2-3, Figure 2-2d) and marginally greater 

distance to the nectar reward (spur length) when individuals from prairie sites were 

included. On the other hand, total floral output, relative floral output, and the number of 

flowers open concurrently did not differ between Delphinium taxa (Table 2-3). There 

were no differences between Echinacea species, except in ray petal size. The LARR E. 

paradoxa had marginally larger ray petals (corolla area) in comparison to E. pallida on 

glades (Table 2-3; Figure 2-2e), in congruence with my predictions. Scutellaria bushii 

(LARR) had significantly larger flowers (Table 2-3; Figure 2-2f) and greater distance to 

the nectar reward than both CCs, as predicted. In comparison to S. ovata, S. bushii 

(LARR) also had lower relative floral output across all habitats (Table 2-3). On glades 

alone, there were no differences in total floral output, relative floral output (i.e., the 

number of flowers per cm total stem length), or nectar volume between S. bushii and S. 

parvula. Contrary to my predictions, Scutellaria bushii had more flowers open 

concurrently and marginally greater proportion of flowers open in comparison to S. 

parvula, though total display size (total corolla area) was marginally larger, as predicted. 

When compared to S. ovata, S. bushii had significantly lower relative floral output, but 

there were no differences in the number or proportion of flowers open.  

Reproductive success and Breeding system experiments— Relative reproductive 

success (total seedset per unit total stem length) was significantly lower for the E. 

paradoxa (LARR) but not for the other two LARR taxa (Table 2-4) in comparison to 

their common congeners. There were no differences in total reproductive success 
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between any congeneric pair or in rates of autogamy, geitonogamy and outcrossing 

(Table 2-4).  

Pollination biology— Delphinium treleasei (LARR) had a lower generalization 

score than D. carolinianum (Figure 2-2g) and was more pollen limited when non-glade 

habitats were included in the analysis (Table 2-3). Pollinators did not probe fewer flowers 

consecutively or visit for shorter durations when visiting D. treleasei in comparison to D. 

carolinianum, and there was no difference between species in pollinator dominance or 

fidelity (Table 2-3).  Echinacea paradoxa (LARR) was more pollen limited than its CC, 

as predicted, but pollinator behavior and pollination generalization (i.e., the number of 

pollinators to account for 95% of pollen flow; Figure 2-2h) did not differ between 

species. Scutellaria bushii (LARR) did not differ from S. parvula in pollinator behavior 

or generalization score (Table 2-3; Figure 2-2i). The number of flowers visited 

consecutively did not differ between S. ovata and S. bushii on the glades, but when non-

glade habitats were included, visitors probed fewer flowers of S. bushii than S. ovata, as 

predicted (Table 2-3). Due to low insect abundance, pollinator collections were 

insufficient at all but one of the glades where S. ovata was studied; therefore, I was 

unable to conduct the analysis with glade sites only. However when non-glade habitats 

were included, S. bushii had a significantly lower generalization score than S. ovata 

(Table 2-3; Figure 2-2i) but not in dominance or pollinator fidelity.  

DISCUSSION 

Species of each of the seven forms of rarity ( Rabinowitz et al., 1981; Kunin and 

Gaston, 1997; Gregory and Gaston, 2000) may experience different selective pressures 

resulting in a wide range of pollination systems, given the appropriate abiotic or biotic 
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environment. Here I explore the reproductive biology of three locally-abundant and 

regionally-rare (LARR) plant species that are endemic to stressful environments. The 

floral traits and pollinator behavior documented in two of the three species in this study 

support the hypothesis that glade LARR species have more specialized reproductive 

systems. While these results generally support my prediction that persistence in stressful 

environments may result in pollination specialization, there is little evidence for stress-

adaptation per se. 

Glade endemics did not consistently share morphological traits associated with 

stress-adaptation, and differences in a few traits, such as leaf area (Figure 2-2b), had 

conflicting patterns across genera. For instance, leaves of S. bushii (Figure 2-2c) were 

significantly smaller than S. ovata but not than the other CC, S. parvula. Delphinium 

treleasei (LARR) had larger leaves than its CC (Figure 2-2a), which is the opposite of my 

prediction, and E. paradoxa was not different from its CC (Figure 2-2b). Height has a 

similar, contradictory pattern. S. bushii is shorter than S. ovata but taller than S. bushii; 

Echinacea paradoxa is shorter than its CC, and there is no difference between 

Delphinium species. One key trait that I was not able to assess due to collection 

restrictions was below ground growth, and it should be explored in order to have a more 

complete understanding of the vegetative traits associated with stress-adaptation in plants 

that are endemic to stressful environments, such as glades. However, the lack of 

consistent differences (both statistically and directionally) between congeners in the 

selected traits measured here suggests a lack of adaptation to the hot, dry conditions on 

glades.  
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On the other hand, all three LARR species had larger flowers (i.e., corolla area) 

than their common congeners (Figure 2-2 d–f), although Echinacea paradoxa was only 

marginally larger than E. pallida, (CC; Table 2-3). Corolla area was the only trait that 

was consistently different among the genera, which confirms the hypothesis that 

reproductive specialization plays an important specializing on stressful environments but 

not the hypothesis that stress-adapted plants are poor competitors for pollinators. 

Moreover, S. bushii (LARR) species had longer floral tubes than both of its common 

congeners (CC), and D. carolinianum had longer spurs, though only marginally when the 

non-glade habitats were included. I predicted that the restricted access to nectar reward 

would reduce the number of pollinators to account for the majority of pollen flow. In 

congruence with this hypothesis, Delphinium treleasei (LARR) also had a more 

specialized pollination system than its congener (Figure 2-2g), and S. bushii had a more 

specialized pollination system than S. ovata (Figure 2-2i), though specialization could 

only be tested when all habitats were included due to low pollinator abundances. On the 

other hand, there was no difference in the dominance index, which controls for the 

richness of visitors, between any congeners. This suggests that while the number of 

species that account for the majority of the pollen flow (i.e., the generalization score) is 

significantly lower, the dominance of any individual pollinator was not different between 

LARR taxa and their congeners. Visitation rates and total seed production also did not 

differ between congeners. However, higher specialization in some of the LARR taxa 

could lead to greater outcrossing and presumably higher offspring quality. Offspring 

quality (e.g., germination rate) was not assessed in this study. Therefore, further study is 

required to explore the effects of these mechanisms on overall reproductive success.  
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Contrary to Scutellaria and Delphinium, the LARR Echinacea species did not 

differ from E. pallida in pollination generalization, and it had lower relative reproductive 

success and was more pollen limited than its CC. This disparity in reproductive success 

could lead to the exclusion of the LARR E. paradoxa from habitats where competition 

for resources is more intense or where total reproductive output is more instrumental in 

population establishment (e.g., via founder effects). I have defined reproductive success 

as total seedset, but there are other potentially important traits that could affect fitness, 

specifically offspring quality (i.e., germination rate and establishment). While not 

significant, there is also a trend toward more generalized pollination in E. paradoxa 

(LARR; Figure 2-2h), a finding that warrants greater exploration to offset low replication 

(N = 4) at the site level caused by low pollinator abundances in 2009.  

In order to achieve reproductive assurance, rare plants are predicted to be self-

incompatible, assuming either low pollen availability due to local rarity or unpredictable 

pollination. However, reproductive assurance may not be optimal for locally abundant or 

stress-adapted taxa, which may be more limited by resources than by pollen. Rates of 

autogamy of the LARR plants in this study reflect neither selection for reproductive 

assurance nor reduction of inbreeding. Indeed, rates of autogamy appear to be conserved 

across taxa. While there is mixed support for pollination specialization, all LARR plants 

have larger floral displays (i.e., corolla area) than their congeners, which is congruent 

with our predictions for optimal resource allocation in LARR taxa to increase 

attractiveness and potentially outcrossing rates. More specialized pollination systems, as 

seen in D. treleasei, may result in higher pollinator efficiency, higher outcrossing rates, 

and lower stigmatic occlusion, which in turn may increase outcrossing rates and offspring 
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quality. If there is greater variation in floral traits, selection may act on those traits 

associated with pollination specialization, thereby increasing outcrossing rates while 

conserving the ability to self-pollinate. Additionally, inbreeding depression is predicted to 

be exacerbated in stressful environments (Wright, 1922; Hauser and Loeschcke, 1996; 

Cheptou et al., 2000; Armbruster and Reed, 2005; Waller et al., 2008) and could result in 

selection for increased outcrossing rates as well. The documentation of the mating 

systems and the strength of selection for traits conferring increased outcrossing rates are 

required to corroborate the hypothesis of higher inbreeding depression in stressful 

environments.  

Despite the lack of support for a stress-reproduction tradeoff, the results of this 

study support a more nuanced approach to the relationship between rarity and 

reproductive specialization. The Delphinium and Scutellaria LARR species have traits in 

congruence with my predictions of increased specialization and outcrossing rates, but the 

Echinacea species does not, suggesting that both mechanisms (i.e., increased selection 

for outcrossing and reduced allocation to reproduction) may be acting concurrently in 

different LARR taxa. Further study of additional LARR species and larger sample sizes 

at the site level will be needed to determine the relative prominence of each mechanism. 

These endemic glade plants may not be more stress-resistant or adapted to local abiotic 

conditions, but they may be restricted from more productive habitats via competitive 

exclusion.  It is unclear whether LARR glade plants are specifically adapted to glades or 

are simply restricted to glades due to low competitive ability in more productive habitats, 

and the relative importance of these mechanisms should be explored more in future 

research on the range restriction of species to stressful habitats.  
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The conventional paradigm of reproductive assurance in pollen-limited plants, 

such as locally rare plants, is an important theoretical prediction that has been supported 

by some studies (Fausto et al., 2001; Moeller and Geber, 2005). However, reproductive 

theory should be expanded to include more explicit predictions for each of the seven 

forms of rarity. The explicit integration of non-biogeographic factors, for instance stress-

adaptation and competition for pollinator services, into this paradigm could greatly 

enhance our understanding of the factors that determine and are affected by species eco-

geographical distributions. This study gains insight into stress-adaptation and pollination 

specialization as two potential factors restricting the ranges of three glade-endemic 

LARR species. The pattern of more specialized pollination systems (reflected in the 

LARR D. treleasei) and lower relative reproductive success (as in the LARR E. 

paradoxa) suggest a tradeoff between allocation to offspring quality and quantity that 

could affect the ability of rare plants to invade less-stressful habitats. Reduced 

reproductive success could inhibit the ability of LARR species to colonize new habitats 

and increase their risk of extinction. Moreover, specialization on insect pollinators found 

on or near glades could further restrict the ecogeographical range of these species.  

In response to climatic change, many species are predicted to shift their ranges, 

adapt to their new environment, or go extinct. Low colonization potential and high 

habitat specialization could inhibit the ability of rare species to track their optimal 

climatic conditions or adapt to novel habitats and environmental conditions, resulting in 

an even greater restriction of their ranges and an increase in their risk of extinction. 

Insight into the relative importance of potential confounding factors related to each of the 

seven forms of rarity is imperative for our understanding of the mechanisms determining 
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the biogeographical ranges of all species and for the creation of effective conservation 

and management plans for rare and endemic species. This study contributes to the 

development of a more nuanced theory regarding the interaction between rarity and 

reproductive specialization, which will inform our understanding and protection of rare 

and endemic plant species. 
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Table 2-1. Description of the Rabinowitz’s Seven Forms of Rarity based on geographic 

extent, population size and habitat specificity (modified from Rabinowitz et al., 1981).  

The bolded form of rarity represents the locally-abundant, regionally rare (LARR) taxa in 

this study. 

 

 Geographic Extent (GR) 

 Large Small 

Population Size (PS)     

     Somewhere  

        large 

Common Large PS 

Large GR 

Narrow HS 

Large PS 

Small GE 

Broad HS 

Large PS (LA) 

Small GE (RR) 

Narrow HS  

     Somewhere  

        small 

Small PS 

Large GE 

Broad HS 

Small PS 

Large GE 

Narrow HS 

Small PS 

Small GE 

Broad HS 

Small PS 

Small GE 

Narrow HS 

 Broad Narrow Broad Narrow 

 Habitat Specificity (HS) 
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Table 2-2. Replication for each species by habitat for the number of field sites and the 

number of plants for which I documented morphological traits (Morph) and observed 

pollinator behavior, and the number of insects collected for pollen load analysis (Insects).  

* Field sites were not mutually exclusive; therefore, field sites per species do not sum to 

total number of field sites.  

 

Plant species Habitat Field Sites* Plants (no.) Insects 

(no.) Morph Observ Insect Morph Observ 

Delphinium 

carolinianum 

Glade 5 4 3 90 75 137 

Prairie 3 1 1 40 10 21 

Delphinium treleasei Glade 8 7 3 193 128 157 

Echinacea pallida Glade 4 4 2 90 72 40 

Prairie 2 2 2 73 20 213 

Echinacea paradoxa Glade 5 5 2 110 62 60 

Scutellaria bushii Glade 7 4 3 244 123 31 

Scutellaria ovata Glade 3 3 1 72 48 86 

 Woodland 9 5 2 133 71 46 

Scutellaria parvula Glade 5 4 3 96 88 34 

 Woodland 2 0 0 7 0 0 

Total  31 23 18 1148 697 825 
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Table 2-3. Results (i.e., t-values) from analyses of morphological traits and pollination 

biology of three locally-abundant, regionally rare (LARR) taxa and their common 

congeners (CC) in glades and across all sites (including non-glade habitats, such as 

prairies and glades). Symbols represent significance levels († P < 0.01, *P < 0.05, ** P < 

0.01, *** P < 0.0001), traits that were analyzed within a single site (α; Echinacea corolla 

area and total display size only), and traits for which only comparisons included all 

habitats could be conducted (Ø; Scutellaria bushii vs. S. ovata pollination biology only 

(i.e., generalization score, dominance, and pollinator fidelity)). Numbers in parentheses 

denote significant P-values from permutation ANOVAs that were conducted for 

marginally significant t-test results and N < 6.   
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 Delphinium Echinacea Scutellaria 

     S. ovata S. parvula 

   Glades All sites Glades All sites  Glade All sites  Glade All sites 

Vegetative traits         

Height   0.93 1.19  2.84*  2.04†  8.31***  6.49*** -4.27** -3.31** 
Leaf area -14.07***   --  1.62   --  12.48*   -- -2.66   -- 

Leaf thickness -4.82**   --  1.64   --  2.28   -- -2.12   -- 

   Total stem length -0.53 -0.38 -0.79 -0.21 -2.76* -2.41 -4.58** -3.15** 
   Total leaf area -4.09†   --  0.77   -- -0.79   -- -3.05   -- 

Floral traits         

Corolla area -3.13** -3.36** -1.79†α   -- -4.82* -4.83** -12.69***   -- 

Distance to nectar -1.64 -2.07†   --   -- -5.88** -5.49** -26.3***   -- 

Nectar volume   1.58   --   --   --   --   -- -1.11   -- 

No. flowers open   1.19  0.95 -0.38  0.01  1.26  2.16† -4.24**   -- 

Proportion of 

flowers open 

 2.25†  1.67 -2.08   --  1.35  1.10  2.13†   -- 

Relative floral 

output 

 0.28 -0.29  0.52   --  3.80*  3.84** -0.44 -0.37 

Total display size -0.25 -0.06 -0.48 α   -- -1.43 -1.11 -5.33†   -- 

Total floral output  0.29  0.79  0.39   --  1.32  1.98† -4.24 -3.26** 

Pollination biology         

Visitation rate  1.00  0.63  0.85  0.47  0.64  1.99†  1.84   -- 

Visit duration -0.23 -0.48  0.08  0.24 -0.50  0.56  0.14   -- 

Flowers visited 

consecutively 

 0.75  0.51   --   --  1.66  2.64* -0.26   -- 

Pollen limitation  1.92 2.89† 

(0.0002) 

 6.14*   -- -1.10 -2.45† -1.98   -- 

Generalization 

score 
2.24† 

(0.004) 

2.10† 

(0.0002) 

-1.18 -0.57   -- 2.68†Ø 

(0.001) 

 1.00   -- 

Dominance -1.90 -1.49  1.45  0.64   -- -2.06Ø -1.67   -- 

Pollinator fidelity -0.15  0.39 -1.40  0.38   -- -1.97Ø -2.38   -- 
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Table 2-4. Comparison of reproductive success and breeding systems between three 

locally-rare, regionally-restricted (LARR) taxa and their common congeners (CC). 

Results shown are t-values, and significance levels are denoted with symbols († P < 0.10, 

*P < 0.05, ** P < 0.01, *** P < 0.0001). Breeding system studies of the Delphinium and 

Echinacea taxa were conducted in the greenhouse. Scutellaria bushii could not be 

induced to flower in the greenhouse; therefore, breeding system studies were conducted 

in the field. Numbers in parentheses denote significant P-values from permutation 

ANOVAs that were conducted for marginally significant t-test results and N < 6). 

 

 Delphinium Echinacea Scutellaria 

   S. ovata S. parvula 

Relative reproductive success 
0.34 2.33

†
(0.004)

 2.45 0.58 

Total reproductive success 0.43 1.95 1.70 -0.04 

Autogamous seedset 0.93 0.40 -0.22 -0.68 

Geitonogamy seedset 1.65 0.60 -- 0.001 

Outcross seedset -1.63 0.05 0.25 -0.40 
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Figure 2-1. A map of 31 glade and non-glade (woodland and prairies) field sites (○) in 

Missouri at which I quantified morphological traits and observed pollinators for three 

locally-abundant, regionally-rare species (Delphinium treleasei, Echinacea paradoxa, 

and Scutellaria bushii) in comparison to their common congeners (D. carolinianum, E. 

pallida, S. ovata, and S. bushii). Glade density was coded in to a heat-density map from 

Nelson and Ladd (1982). The original data represented a range in glade density per 7.5 

degree minute quadrats (approximately 144 km
2
 in Missouri); therefore the heat map 

reflects a rough estimate of glade density per 144 km
2
 as of1982.   
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Figure 2-2. Morphological traits and pollination biology of three locally-abundant, 

regional-rare plant species (LARR; Delphinium treleasei ( ), Echinacea paradoxa ( ), 

and Scutellaria bushii ( )) in comparison to their common congeners (CC; respectively, 

D. carolinianum ( ), E. pallida ( ), S. ovata ( ) and S. parvula ( )) as quantified in the 

field and graphed by distribution and genus; Leaf area (cm
2
; a – c), Corolla area (mm

2
; d 

– f), and Generalization score (g – i; no. species to account for 95% of pollen flow; the 

comparison between S. bushii and S. ovata was calculated with data from glade and non-

glade habitats due to low pollinator densities on glades; S. parvula does not have standard 

error bars, because it’s generalization score was identical across all sites). All other 

results shown were calculated from within-glade comparisons.  
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INTRODUCTION   

In 1981, Rabinowitz and colleagues developed a conceptual matrix describing 

seven types of rarity based on geographical range, habitat specificity, and local 

population size. A recent review of studies that reference this framework indicates that 

species in each category of rarity have some similar traits (Espeland and Emam, 2011). 

For instance, species that are habitat specialists and have geographically restricted ranges 

are more likely to have outcrossing mating systems, which are thought to maintain 

genetic diversity and reduce the potential for genetic drift (Espeland and Emam, 2011).  

In order to maintain high outcrossing rates, species that specialize on restricted habitats 

should have mechanisms that restrict the movement of self-pollen and enhance the 

transfer of outcross pollen, including herkogamy (the separation of reproductive parts in 

space; Lavergne et al., 2004), more specialized pollination systems (Darwin, 1877; 

Rymer et al., 2005; Galloni, 2008), or a reduction in the number of co-blooming flowers 

(Karron et al., 2004; Mitchell et al., 2004). The reduction in co-blooming flowers, for 

instance, alters pollinator behavior, resulting in fewer within-plant movements and the 

deposition of more outcross pollen (Karron et al., 2004; Mitchell et al., 2004). 

Specialized pollination systems have fewer pollinating species that collect and transfer 

pollen between plants, which can increase outcrossing rates and decrease the deposition 

of heterospecific. Heterospecific pollen deposition interferes with the establishment and 

growth of conspecific pollen on the stigma and can lead to a reduction in seedset 

(McLernon et al., 1996).   

In addition to buffering populations against genetic drift, higher outcrossing rates 

could also facilitate population viability is offspring quality is important, for instance if 
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inbreeding depression is prevalent (Cheptou et al., 2000; Fox and Reed, 2010). 

Specifically, local adaptation and offspring quality (e.g., higher germination rates and 

survivorship) should be particularly important for the maintenance of populations in 

stressful (defined as high temperatures and water stress) environments where the 

potential for mortality and negative genetic effects may be exacerbated (Hauser and 

Loeschcke, 1996; Heschel et al., 2005; Armbruster and Reed, 2005; Riginos et al., 2007). 

Many plants that specialize on stressful environments have a suite of traits that are 

thought to be adaptive (Grime, 1977; Chapin et al., 1993; Walck et al., 1999, 2002; Van 

Zandt, 2007), for instance by increasing water-use efficiency and increasing survival 

rates. The presence of these convergent traits across a broad taxonomic range implies that 

specialization on habitats with stressful conditions may require a relatively narrow set of 

traits that should be conserved across generations. Moreover, recruitment from more 

suitable habitats cannot buffer populations in the stressful environment via source-sink 

dynamics, since few if any other populations exist in more benign habitats. Therefore, 

species that specialize on stressful habitats should have less plasticity in their traits and be 

more tightly restricted to the local environment (Ellison and Parker, 2002; Pohlman et al., 

2005). 

However, traits that are adaptive in stressful conditions may also reduce the 

attractiveness of stress-adapted plant species and their ability to compete for pollinator 

services. For instance, plants that are shorter and have lower reproductive output may 

have greater fitness in high-stress environments, but they are less attractive to pollinating 

insects (Dickson and Petit, 2006; Mevi-Schutz and Erhardt, 2005; respectively), which 

could lead to a reduction in pollen receipt. While a small floral display (fewer flowers 
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open concurrently) may reduce within-plant movements and increase outcrossing rates, it 

may also reduce visitation rate, pollination success, and total seedset. In order to optimize 

their investment in reproduction under stressful conditions, specialist plants should 

exhibit traits that will reduce resource loss while increasing offspring quality. When 

offspring quality comes at a cost to total reproductive output, lower seedset in a stress-

adapted plants reduce their ability to colonize novel sites (Kelly et al., 1996b; 

MacDougall et al., 2006; Soberón, 2007), and therefore may contribute to range 

restriction of stress-adapted specialists. By identifying the mechanisms that restrict 

species ranges and contribute to their extinction risk, we will be better able to predict 

which species are affected by future climate changes and focus limited resources toward 

conservation of the species most vulnerable to extinction.  

In this experimental study, I manipulate temperature and plant-available water in 

order to test two hypotheses concerning the relationship between stress-adaptive traits, 

pollinator attraction traits, and reproductive success in three locally-abundant, regionally 

rare species (LARR) in comparison to a common congeneric species (CC). The first 

hypothesis states that LARR species are more resistant to abiotic stress (i.e., drought and 

temperature) and have traits associated with stress adaptation (via differential resource 

allocation). Specifically, I predict that the CC species will have a reduction in key 

physiological traits, such as relative growth rate and specific leaf area, with an increase in 

stress, and that the LARR species will not. The second hypothesis predicts that LARR 

species have floral traits that are associated with decreased attractiveness to pollinators 

but increased outcrossing rates, and the widespread species will have traits that are more 

attractive to a variety of pollinators. Finally, I test the prediction that offspring quality 
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will be higher in the stress-adapted LARR species than their CC species, which may 

facilitate offspring recruitment in stressful environments.  

MATERIALS AND METHODS 

Study Species 

 In order to assess the prediction that locally abundant, regionally rare (LARR) 

species are adapted stressful abiotic conditions, I will compare the response of three 

LARR plants (Delphinium treleasei, Echinacea paradoxa, and Scutellaria bushii) and 

their common congeneric species (CC; D. carolinianum, E. pallida, and S. ovata, 

respectively) to experimental manipulations of heat and water availability that are 

characteristic of the habitats to which they are endemic. These three LARR species are all 

endemic to the Ozark glades in Missouri and Arkansas, which are hot, xeric 

environments with thin soils and exclusively herbaceous cover, located within a matrix of 

more mesic woodland habitat (Nelson and Ladd, 1982; Baskin and Baskin, 1988; 

Templeton et al., 2001; Yatskievych, 1999). All three CC species also occur on glades 

but are not restricted to them, which will offer insight into the mechanisms that restrict 

the LARR species and not the CC species to glades. Comparing closely-related species 

also controls for the potential effect of evolutionary history on the vegetative and floral 

traits of LARR species, and the multiple comparisons across a range of evolutionary 

history make the results of this study more broadly applicable.   

Experimental manipulations 

The stress resistance of three LARR species and their CC species to drought and 

high heat conditions was estimated via greenhouse and growth chamber experiments. 

Individuals of each congeneric pair were exposed to a series of manipulated abiotic 
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conditions, in accordance with in situ field observations and optimized in the greenhouse, 

and their fitness responses were compared. Seeds collected in the field during Summer 

2008 were cold stratified at 4°C for 90 days and allowed to germinate. Forty-four to 50 

seedlings of each species were planted in a 3:2:1 ratio of Metromix360:Turface 

athletics:New Plant Life Topsoil mix, to approximate the relatively rapid draining soils 

associated with glades. Individual plants were allowed to establish for one week and 

randomly assigned to one of two treatment within two separate experiments, one that 

manipulated water availability (low and moderate water) and temperature regime (high 

and moderate temperature), with 22 to 45 replicates per treatment depending on the 

species pair (Table 3-1). Due to low growth rates of the Delphinium taxa, both the 

drought and temperature experiment were conducted twice in order to increase 

replication (from 64 to 133 individuals for the temperature experiment and 91 to 193 

replicates for the drought experiment). For the second experiment, established individuals 

were first cold stratified, then removed from the coldroom, and exposed to the same 

treatments as above. Individuals were randomly arranged in order to reduce potential 

spatial variation in abiotic conditions, and the temperature regimes were rotated weekly 

between two environmental chambers to diminish a potential chamber effect.   

Drought experiment––Watering regimes were designed to reach soil water-

holding capacity and were applied three times per week. The Delphinium and Echinacea 

species were first planted in small (7.6 cm diameter) pots, in order to maintain 

appropriate soil-moisture levels and where transplanted into large pots (11.4 cm 

diameter) after the first 49 days of treatment. The amount of water administered per 

treatment scaled with pot size (i.e., 50 mL for small pots and 100 mL for large pots) in 
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order to account for the increased soil volume. The Scutellaria species grew faster and 

were planted directly into the larger pots. The Delphinium and Echinacea species require 

vernalization, which simulate winter conditions, before they will bolt and flower. 

Following 49 days of treatment, all individuals were placed in an environmentally 

controlled coldroom (4ºC) and remained un-manipulated for 49 days. The individuals 

were then removed from the coldroom and allowed 10 days to acclimate. Cold 

stratification was repeated until the individual began flowering or until they had 

experienced four cold treatments, after which all individuals were harvested. During Fall 

2010, the water treatments were increased to 100 mL and 150 mL, respectively, for the 

Echinacea taxa due to low relative humidity in the greenhouse. Plants were fertilized 

once a week with Peters Professional 15-16-17 Peat-Lite Special at 150 ppm nitrogen 

dissolved in water to reduce the effect of resource limitation on plant traits. All 

individuals were given equal amounts of fertilizer (50 and 100 mL for small and large 

pots, respectively) and the additional water required for the control treatment was added 

before the individuals were watered with fertilizer water, in order to reduce loss of 

nutrients via leaching.  

Temperature experiment––The temperature regime for each species pair was 

determined via field observations of temperatures on and off glades during peak activity 

of each genus (Table 3-1) and incorporated diurnal temperature change. The temperature 

regime for the Echinacea species was reduced from 30/38 ºC after the first round of 

treatment, because growth was minimal and mortality was relatively high. For clarity, I 

focus on the response of these species following the first round of treatment. Temperature 

regimes commenced after an acclimation period during which the air temperature was 
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incrementally increased (two or three degrees Celsius every 3 or 4 days, for a total of 12 

days). Since the Delphinium and Echinacea taxa require vernalization before flowering, 

all individuals were placed in a coldroom for 49 days as above. Before cold stratification, 

the high temperature treatment was incrementally decreased and was subsequently 

increased before re-administering the experimental treatments upon removal from the 

coldroom. Cycles between treatment administration and cold stratification were repeated 

until flowering commenced or for up to four cold treatments, after which all individuals 

were harvested. Plants were watered with fertilizer once a week in order to reduce the 

potential effect of resource limitation on plant traits. 

Morphological measurements 

Vegetative traits––In order to assess the response of the LARR and CC species 

pairs to the above treatments, vegetative and reproductive traits were quantified. Plant 

height, number of stems, and vegetative output (i.e., leaf size and number) were noted 

weekly. Three leaves per individual were tagged upon emergence, and leaf death noted in 

order to calculate leaf turnover. Leaf thickness was measured for up to five leaves per 

individual and averaged. In the drought experiment with the Delphinium species, many of 

the leaves were relatively small and fragile, and leaf thickness could not be measured 

without damaging the leaves; therefore, I could not test for differences in leaf thickness 

for this experiment.  

Following fruit maturation, final morphological measurements were taken (e.g. 

final height, number of leaves, leaf thickness and trichome density), and plants where 

harvested, separated into vegetative, reproductive, and below ground biomass. One leaf 

per plant was removed, digitized for leaf area quantification in SigmaScan Pro 5.0 
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(SigmaScan Pro 5.0, 2002). The roots were washed thoroughly to remove soil particles, 

and all plant material was dried at 40-50ºC for no less than 48 hours and weighed. Total 

biomass, relative growth rate (total biomass divided by the age of the plant in days), leaf 

longevity, shoot to root ratio, and specific leaf area (SLA; the ratio of leaf area and dry 

mass) were quantified. Specific leaf area is a measure of leaf density; lower SLA 

indicates a more dense leaf, which is associated with lower evapotranspiration and 

photosynthetic rates. Relative reproductive output was calculated as the mass of 

reproductive material divided by total biomass (the sum of reproductive, shoot, and root 

biomass). 

 Reproductive traits––In order to simulate pollination and ensure seed set, I 

applied outcross pollen to three flowers per individual per week during blooming for the 

Delphinium and Scutellaria taxa and up to twenty florets for Echinacea species. 

Following maturation, the fruits were harvested. Due to morphological difference among 

genera, some traits, such as reproductive success, were quantified differently for each 

congeneric pair (see below). 

Delphinium congeners  

Vegetative traits––The Delphinium species have roughly round leaves that vary in 

the degree to which they are dissected. Therefore, I visually estimated the proportion of a 

circle filled by the leaf (i.e., 0.01, 0.25, 0.33, 0.5, 0.67, 0.75, and 1), and estimated the 

radius of the circle as the length of the leaf from the center (where the petiole and leaf 

blade merge) to the edge. Leaf area was then calculated as pi times the radius squared (π 

x (length of leaf blade)
2
 x proportion of circle). Throughout the experiment, biomass was 
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estimated in a non-destructive manner as total leaf area (leaf number multiplied by 

estimated leaf area).  

Reproductive traits––Individuals were checked three times a week for initiation of 

flowering, and reproductive phenology was defined as the age of the individual at the 

time of inflorescence initiation. Three flowers per plant were tagged while still in bud and 

monitored three times per week until flower senescence in order to determine flower 

longevity. At peak flowering, I measured the floral traits (i.e., sepal width, sepal height, 

floral spur length, and anther-stigma separation) of three flowers for each individual. 

Corolla area was calculated as the product of sepal area and height, and anther-stigma 

separation was measured from the top of stamen to the stigma of the lowest ovary. Nectar 

was collected from up to nine flowers per individual, and nectar volume was calculated. 

Nectar sugar content was determined using a Brix refractometer, and floral output was 

quantified as the number of flowers produced. 

Reproductive success––Following the collection of fruits, the number of fruits 

that developed seeds and the number seeds produced per pollinated flower were 

quantified. Total seedset was calculated as the product of average seedset per pollinated 

fruit and total floral output. In order to estimate seed quality, up to thirty seeds per 

individual were weighed, and mass per seed was calculated. 

Echinacea congeners 

Vegetative traits––Throughout the experiment, biomass was estimated in a non-

destructive manner as total leaf area (the product of leaf number and estimated leaf area) 

for the Echinacea species. Leaf area was calculated as the width times the length of an 

average leaf blade. Two individuals had an additional cold treatment and growth period 
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after the inflorescence senesced and were collected; none of the data collected after the 

inflorescences senesced (e.g., biomass measures) were used in the analyses.  

Reproductive traits––Individuals were checked three times a week for initiation of 

inflorescence, and reproductive phenology was defined as the age (days) of the individual 

at the time of initiation. Corolla area was calculated as the number of ligules multiplied 

by the area of an average ligule size (i.e., the product of ligule width and length). The 

number disk florets were counted, and nectar volume and sugar content were quantified 

for three florets per sexual stage (i.e., male and female), since Echinacea species are 

protandrous. Few individuals of E. paradoxa bloomed in the temperature experiment; 

therefore, nectar production and quality could not be compared.  

Reproductive success––Since Echinacea species are known to produce 

unfertilized capsules that collapse when pressure is applied, the pollinated capitula were 

gently pressed with forceps to confirm fertility. Seeds that did not collapse under the 

small amount of applied pressure were assumed to be fertile. Total reproductive success 

was quantified as the proportion of capsules that were fertile times the total number of 

florets produced. A virus infected some individuals resulting in the senescence of their 

inflorescences, and these individuals were excluded from the analyses of floral output 

and reproductive success. However, they were used in analyses of initiation of 

inflorescence, relative reproductive output, and total biomass. 

Scutellaria congeners 

Vegetative traits––Due to a large number of leaves and high variability of leaf 

size, the non-destructive estimate of biomass for the Scutellaria taxa was quantified as 

total stem length. One leaf per individual was collected, and the number of trichome was 
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counted in each of three, three by three millimeter squares haphazardly placed in upper 

third, middle third, and lower third of the leaf. Trichome density was quantified as the 

total number of trichomes per 27 mm
2
. 

Reproductive traits–– Individuals were checked three times a week for initiation 

of flowering, and reproductive phenology was defined as the age of the individuals in 

days at the time flowering commenced. Three flowers per plant were tagged while still in 

bud and monitored three times per week until flower senescence in order to determine 

flower longevity. At peak flowering, I measured the floral traits (i.e., petal width, petal 

depth height, floral tube length) of three flowers for each individual. Floral output was 

quantified as the number of flowers produced. The LARR S. bushii produced only 

cleistogamous flowers, which do not open, and all fruits were fertilized internally. 

Therefore, I did not pollinate any flowers of either species in order to maintain a balanced 

comparison. All measures of reproductive success are based on self-pollinated fruits and 

should be interpreted with caution.  

Reproductive success––During the breakdown process, the number of seeds per 

fruit was counted for ten fruits and averaged. Total seedset was calculated as the average 

number of seeds per fruit multiplied by total floral output, and offspring quality was 

determined via germination trails. Up to twenty and ten seeds for the drought and 

temperature experiments, respectively, were cold stratified for 90 days, placed in an 

environmentally-controlled chamber (21ºC), and allowed to germinate. Replication was 

different between the two experiments due to differences in total seedset, and replication 

of germination rates for the temperature experiment was biased (44 to 4, control to high 

temperature respectively) due to low fruit set in the high stress treatment. Since total 
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seedset could not be accurately quantified, I estimated total reproductive success as the 

proportion of fruits to set seed. 

Statistical analyses 

In order to control for multiple comparisons among congeners and treatments, 

vegetative traits of the Delphinium species were analyzed via two-way, nested 

MANOVA with Species and Treatment as factors and treatment nested within 

Experiment in order to account for replicate experiments. Only one individual of D. 

trealeasi (LARR) bolted in first experiments (i.e., the one without a cold treatment before 

manipulations commenced); therefore, the floral traits of the Delphinium taxa were 

analyzed for the second experiment only, and the experiment effect was removed. The 

morphological traits of Echinacea and Scutellaria taxa were tested via two-way 

MANOVA with Species and Treatment as factors. Since not all individuals flowered, 

analyses of vegetative and reproductive traits were conducted independently in order to 

account for the loss in replication that occurred. Some traits were only quantified for a 

subset of individuals, which would have decreased the replication of the MANOVA 

substantially and were analyzed separately. Those traits that were analyzed independent 

of the others, and therefore do not account for multiple comparisons, are indicated in the 

results section and corresponding results table (Table 3-2). Two traits of the Delphinium 

species had an exponential distribution in the temperature experiment and were analyzed 

via general linear model using the reciprocal link function in JMP Statistical Software 

(SAS Institute 2009).  

Individuals were also ranked by whether or not they initiated inflorescences, and 

differences among congeners and treatments were tested via two-way logistic regression 
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with Species and Treatment as factors using JMP Statistical Software (SAS, 2009). 

Analysis of the Delphinium species accounted for replicate experiments as above. The 

nectar sugar content of the Delphinium species often reached the maximum of the Brix 

refractometer, which truncated the continuous variable at 50%. Therefore, I ranked nectar 

sugar content based on concentration (i.e., if the sugar concentration was greater than or 

equal to 50 percent then it was coded as one and if it was less than 50 percent it was 

coded as 0), and logistic regression was used to test for differences among treatments and 

congeners as above.  

All data were transformed for normality, and if they could not be transformed, the 

analyses were repeated using permutation ANOVA (aovp in the R Statistical Package (R 

Development Core Team 2008)). I used permutation ANOVA in order to incorporate the 

nested experimental design of the Delphinium species into a nonparametric framework. 

Permutation ANOVA is a Monte Carlo resampling technique (without replacement) that 

estimates a null expectation based on a random resampling of the available data and 

compares each of 5000 runs to the null. Statistical significance is quantified as the 

number of runs for which the F-statistic is greater than or equal to the observed value.  

RESULTS 

Delphinium congeners 

Drought experiment––Only three D. carolinianum and no D. treleasei individuals 

bolted and flowered in the precipitation experiments combined, despite the large number 

of individuals (193) and duration of the experiment (175 treatment days, 322 days 

including cold stratification events). Therefore, only vegetative traits could be analyzed. 

Relative growth rate, total biomass, and shoot to root ratio were lower in the LARR D. 
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treleasei in comparison to its CC congener (Table 3-2), as I predicted. However, there 

was no effect of treatment or an interaction between treatment and species in any trait 

measured, which suggests that there is no adaptive benefit to these traits in response to 

drought. No leaf traits (i.e., leaf area, specific leaf area, total leaf area, and leaf longevity; 

Table 3-2) differed between species or treatments. 

Temperature experiment––The Delphinium congeners differed in their responses 

to stress, and the LARR, D. treleasei, was less negatively affected than its congener, in 

congruence with my hypothesis that the LARR species are more stress resistant. 

Delphinium carolinianum (CC) had lower relative growth rate and total seedset in the 

high stress treatment, but D. treleasei did not differ between treatments (Table 3-2; 

Figure 2-1A and C, respectively). Temperature regime had a significant effect on some 

traits in both Delphinium species, suggesting that they are either conserved, linked to 

evolutionarily stable traits, or do not represent an adaptive benefit in these plants. Height, 

total biomass, and shoot to root ratio were significantly lower in the high temperature 

treatment than the control treatment for both species (Table 3-2). In addition, the number 

of flowers open and floral display size decreased with an increase in temperature. Leaf 

longevity, on the other hand, was higher (Table 3-2), and relative reproductive output was 

lower in the high temperature treatment, as predicted by stress theory. 

The Delphinium congeners differed in some vegetative and reproductive traits, 

regardless of temperature treatment. As I predicted, D. treleasei (LARR) was shorter, had 

thicker leaves, and produced fewer flowers total (Table 3-2). Delphinium treleasei also 

had fewer flowers open concurrently and higher nectar sugar content, which may affect 

outcrossing rates and offspring quality if pollinator behavior is affected. The difference in 
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the number of flowers open concurrently is not driven by reduced floral output per se, 

since the proportion of flowers open was marginally lower for D. treleasei than D. 

carolinianum. On the other hand, anther-stigma separation was lower in the LARR D. 

treleasei (Table 3-2), which I predicted to be higher in order to increase the potential for 

outcross pollination. Moreover, the longevity of D. treleasei’s leaves and flowers was 

shorter in comparison to D. carolinianum. I predicted that leaf and flower longevity 

would be higher in the LARR species in order to reduce loss of resources and increase the 

potential for outcross pollination, respectively. There were no or marginal differences in 

some leaf traits (leaf area, specific leaf area, and leaf longevity; Table 3-2) and some 

floral traits (inflorescence initiation, corolla area, and floral spur length; Table 3-2).   

Echinacea congeners 

Drought experiment––The Echinacea species did not differ in their responses to 

watering regime, contrary to my predictions. Vegetative and floral traits did not differ 

between species and treatments indicating the E. paradoxa is not more locally-adapted or 

specialized than its CC congener. Both species had shorter stems, lower relative growth 

rates, reduced total biomass, and fewer florets in the drought treatment than the control 

treatment (Table 3-2), indicating that the drought treatment was inducing a stress 

response.  

Echinacea paradoxa (LARR) had thinner leaves and greater reproductive output 

(number of disk florets) than its CC, E. pallida, contrary to my prediction that LARR 

species would have thicker leaves and fewer florets. Moreover, E. paradoxa (LARR) 

bloomed later than E. pallida (CC). There were no differences in several traits (i.e., leaf 

area, leaf longevity, shoot to root ratio, corolla area, relative reproductive output, 
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reproductive phenology, total seedset, and the proportion of pollinated florets that were 

viable; Table 3-2), which suggests that these traits are either evolutionary conserved or 

both species are adapted to local conditions.  

Temperature experiment––One trait, specific leaf area (Table 3-2), differed 

between species in response to the temperature treatments. Echinacea paradoxa (LARR) 

had higher specific leaf area (SLA) than E. pallida in the control treatment, but there was 

no difference in the high temperature treatment (Table 3-2; Figure 3-2A). This difference 

in SLA suggests that E. paradoxa responds to stress by reducing water-loss and 

photosynthetic rates, and E. pallida (CC) has an increase in evapotranspirative cooling, 

which results in similar SLA in the high stress environment.  

Temperature treatment had a significant effect on leaf area, relative growth rate, 

and total biomass (Table 3-2), which indicates that the treatments were effective and that 

evolutionary history may be influencing the response of these species to an increase in 

temperature. Probability of flowering was the only trait that differed between species 

(Table 3-2), with E. pallida (CC) being more likely to flower than E. paradoxa (Table 3-

2; Figure 3-2B). However, it is important to note that few individuals bolted and 

flowered, and the majority of them were E. pallida (CC; 17 of 20), which decreased the 

power with which to test for differences among species and treatments.  

Scutellaria congeners 

Drought experiment––Scutellaria bushii (LARR) and S. ovata responded 

differently to the watering regimes, and S. bushii was more resistant to drought stress, 

confirming my hypothesis of greater resistance in the LARR taxa. Scutellaria ovata (CC) 

had a reduction in height (Figure 3-3A), relative growth rate, and total seedset (Figure 3-
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3B), but S. bushii did not (Table 3-2), which resulted in statistically significant 

differences between taxa in the control treatment only. In other words, the Scutellaria 

congeners did not differ in these traits under drought conditions. Reproductive phenology 

was only different between the congeners in the control treatment; S. bushii bloomed 

significantly later and was more variable than S. ovata. There was no difference between 

species across the drought treatments. 

Total biomass and total floral output decreased for both species with a decrease in 

water availability (Table 3-2), though the response was more substantial in S. ovata (CC) 

than S. bushii (LARR). Both responded similarly to a decrease in water availability with a 

shift in resource allocation, specifically shoot to root ratio was lower for both species in 

the drought treatment in comparison to the control treatment. Leaf thickness (Table 3-2) 

was significantly lower and relative reproductive output (Table 3-2; Figure 3-3C) was 

higher in S. bushii than S. ovata (Table 3-2), contrary to my predictions. On the other 

hand, trichome density (Table 3-2) and germination rate (Table 3-2; Figure 3-3D) of S. 

bushii were higher than its common congener, S. ovata, corroborating my hypothesis of 

greater stress-adaptation and offspring quality in the LARR species.  

Temperature experiment––The Scutellaria congeners responded differently to the 

temperature treatments, but the direction of those differences varies by trait. In 

congruence with my hypothesis, trichome density of S. bushii was higher than S. ovata 

and did not vary with temperature treatment. Scutellaria ovata, on the other hand, had an 

increase in trichome density with an increase in stress. Total floral output was lower for 

both species in the high temperature treatment, but the reduction was much larger in S. 

ovata (CC) than S. bushii. On average, S. ovata had a reduction of 388 (72.9%) flowers, 
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and S. bushii had 58 (59.2%) fewer flowers in the high stress treatment. Both species also 

had a decrease in height with an increase in temperature, resulting in the height of S. 

ovata in the high temperature treatment equaling that of S. bushii in the control treatment. 

Contrary to my predictions, specific leaf area, relative growth rate, and total biomass 

were not different between temperature treatments for S. ovata but were for S. bushii 

(LARR), which had a reduction in all three traits with an increase in temperature.  

In response to an increase in temperature, both species had lower leaf area, were 

less likely to bloom, produced fewer seeds, and had lower relative reproductive output, 

which suggests that more resources are being allocated to survival rather than 

reproduction under high stress conditions. Some vegetative and floral traits differed 

between the taxa, which supports a role for trait differences in the maintenance of species 

range size. Leaves of S. bushii (LARR) were smaller (had lower leaf area) and thinner 

than S. ovata, offering contradictory evidence for stress adaptation in the LARR species. 

Relative reproductive output and germination rate was greater for S. bushii than S. ovata, 

implying that offspring quality may be important in order to specialize on these restricted 

habitats. Scutellaria bushii bloomed significantly earlier than S. ovata (Table 3-2). 

DISCUSSION 

The relative importance of abiotic and biotic mechanisms in determining species 

ecogeographical distributions is a central and critical topic in ecology. Here, I document 

the potential for both factors to act synergistically in three locally-abundant, regionally-

rare (LARR) species. The LARR species were less responsive to experimental stress in 

key physiological traits, and two of the three differed from their common congeneric 

(CC) species in floral traits and offspring quality, which confirms my hypothesis that the 
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trade-off between resource allocation to vegetative and floral traits differs in LARR and 

CC species.  

Each of the LARR species was more resistant to high stress environments in 

comparison to their widespread congeners, despite a stress response in both species, and 

only one CC species (S. ovata in the temperature experiment) had any traits that were less 

responsive than the LARR species. While all species were negatively affected by drought 

or high temperature conditions, the LARR species had fewer traits negatively affected by 

an increase in stress, particularly those important for water conservation. For instance, the 

relative growth rate (RGR) of Delphinium treleasei (LARR) did not differ between 

temperature treatments, but D. carolinianum had a significant reduction in RGR with an 

increase in stress (Figure 3-1A). Relative growth rate (RGR) is thought to be adaptive in 

stressful environments as it is associated with low photosynthetic rates and high water-

use efficiency. Relative growth rate of D. treleasei was also lower than D. carolinianum 

in the precipitation experiment, which corroborates my prediction of stress-adaptation.  

Similarly, the impact of stress on specific leaf area differed between the 

Echinacea species and potentially reflects two strategies for responding to abiotic stress. 

Echinacea paradoxa (LARR) produced more dense leaves (lower SLA) in the high stress 

environment, which is associated with reduced water loss, lower RGR, and lower 

resource turnover. Echinacea pallida, on the other hand, produces leaves with higher 

SLA in the high temperature conditions, which may reflect an increase in evaporative 

cooling. Contrary to my predictions, E. pallida was more likely to bolt and had fewer 

florets than E. paradoxa (Figure 3-3 B and C, respectively) in the precipitation 

experiment, which suggests that E. pallida has an accelerated life cycle and lower total 



52 

 

reproductive output in comparison to E. paradoxa. However, these Echinacea species are 

perennial and live longer than the duration of this study. Therefore, I could not test for 

this mechanism.  

The Scutellaria species also differed in their response to an increase in stress, and 

S. bushii was generally more resistant to stress. For instance, Scutellaria ovata (CC) was 

shorter in the drought treatment in comparison to the control treatment, and S. bushii had 

no change in height (Figure 3-3A), which is associated with stress-adaptation. This 

pattern was consistent in several other traits (e.g., total biomass, relative growth rate, 

etc.), further corroborating my hypothesis that LARR species are more resistant to stress. 

Height is also an important attraction trait for many insect species and may result in 

higher competitive ability of S. ovata for pollinator services in less stressful habitats. In 

the high stress environment, there was no height difference between S. ovata and S. 

bushii, indicating that the competitive advantage of height may be reduced. The results 

from the temperature experiment with the Scutellaria species are less clear, with some 

traits differing in the direction I predicted and others in the opposite direction, 

particularly the vegetative traits. This variation in response to stress between temperature 

and drought stress may reflect the different physiological mechanisms that underlie 

resistance to these traits or it may reflect the simplicity of the experimental design. In 

order to pin-point which abiotic stressor dominated species responses given limited 

space, I conducted independent experiments and did not cross the water and temperature 

treatments. However, a combination of abiotic factors is likely contributing to the unique 

conditions on glades in concert. The rocky substrate and extreme abiotic conditions on 

glades make in situ, population-level, field manipulations difficult, and the establishment 
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of individuals from the species of interest is unreliable. Therefore, future studies should 

combine manipulations of abiotic factors in common garden experiments with in situ 

observational studies that document both biotic and abiotic factors at the individual level. 

The combination of common garden experiments and observational studies will 

contribute to a more biologically realistic understanding of abiotic and biotic factors in 

determining the reproductive success and population growth of LARR and CC species. 

Key floral attraction traits also differed between congeners in these experiments, 

as I predicted if resources for reproduction are allocated differently in LARR and CC 

species. Delphinium carolinianum was significantly taller than its LARR congener and 

could be a better competitor for pollinator services, if height dominates attractiveness. 

Delphinium treleasei (LARR) had fewer flowers open concurrently, which is less 

attractive to pollinators but often increases outcrossing rates via a reduction in within 

plant movement by the pollinator. While only marginally significant, the flowers of D. 

treleasei were larger than D. carolinianum, suggesting that the resources committed to 

reproduction are allocated to fewer, larger flowers. Previous research indicates that D. 

treleasei has fewer, larger flowers in the field and that they attract more specialized 

pollinators (Miller-Struttmann, Chapter 1). Nectar sugar concentration was also higher in 

D. treleasei than D. carolinianum, but there was no difference in nectar volume, which 

indicates that more concentrated nectar reward may be an important attraction trait for the 

species that specialize on water-limited habitats. Many nectar-collecting insects can 

detect nectar quality and choose flowers accordingly (Wilson et al., 2006), resulting in 

preferential visitation to those species with the greater reward. Moreover, higher sugar 

concentration is advantageous in stressful environments where water is limiting and may 
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compensate for the reduction in floral display. On the other hand, greater viscosity may 

make the nectar of the LARR species more difficult remove from the flower and may 

reduce the number of species able to extract the reward. Choice trials should be 

conducted with known pollinators of these species to determine if nectar sugar 

concentrations consistent with field measurements affect rate of nectar removal and the 

number of species able to capitalize on the resource. The LARR species, S. bushii, did 

not produce chasmogamous flowers, and I could not quantify floral attraction traits for 

this species. However, relative reproductive output was higher in S. bushii (LARR), 

contrary to the prediction of stress-resistance, but in congruence with my prediction that 

higher-quality offspring, which require greater resource investment, are required in order 

to species to survive and specialize on stressful habitats.     

The measures of reproductive success in D. treleasei and S. bushii (LARR) 

documented here confirm my prediction that LARR species have fewer, higher-quality 

offspring, which may increase survival rates and population viability in more stressful 

habitats. Both LARR species had significantly higher offspring quality (i.e., seed mass 

and germination rate, respectively). Conversely, total seedset of both CC species (D. 

carolinianum and S. ovata) was significantly higher in the control treatments but was 

equivalent to their LARR congeners in the high stress treatments. The difference in total 

seedset between LARR and CC species in the control treatment may reflect an important 

role for propagule pressure in determining species ranges. High propagule pressure is 

thought to contribute to range expansion in some species by reducing recruitment 

limitation and increasing the number of individuals and genotypes with the potential to 

establish in a new habitat (Kelly et al., 1996; MacDougall et al., 2006; Soberón, 2007). In 
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less stressful habitats, the higher seedset of the CC species may allow it to establish more 

quickly than the LARR species, increase in population size, and/or outcompete it for 

abundant resources. However, in stressful habitats, high offspring quality may enhance 

survival and allow adaptation to local conditions, thus reinforcing the pattern of range 

restriction to specific, stressful abiotic conditions seen in these LARR species.  

Given the rate of current climatic change and the prevalence of entomophilous 

pollination, understanding the relative importance of biotic and abiotic mechanisms in 

determining the biogeographical ranges of species is imperative. Few studies consider 

biotic and abiotic mechanisms in concert, despite a long history of inquiry into both, 

independent of one another. Future studies should work to understand how these 

mechanisms interact and in which cases they will predominate, rather than regard them as 

mutually exclusive. While biological information is lost by reducing continuous traits 

into categories, the seven forms of rarity offer a framework through which to make and 

test predictions concerning which mechanisms are most relevant for species with similar 

distributions.  In this study, I explored the potential interaction between abiotic stress and 

reproductive allocation in three regionally-rare, habitat-specialist species, which are 

characterized by a type of rarity that is often ignored in the discussion of rarity and found 

that both may contribute to the restriction of their ranges to glade habitats. These results 

imply an important role for pollination biology in mediating the interaction between the 

stress-adaptation and reproductive success in stressful environments. In an era of 

increasing anthropogenic impacts on natural habitats, a more in-depth and nuanced 

understanding of the determinants of species biogeographical ranges will create more 

efficient and hopefully more effective conservation strategies.   
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Table 3-1. A description of the temperature regimes, number of cold stratifications 

required to induce flowering, and the floral traits that were quantified differently for each 

congeneric pair. Temperature regimes are based on field collected data, and reflect the 

night and day time temperatures, respectively. Temperatures were gradually changed 

manner over two hours in order to reduce heat shock. The Echinacea species had a 

temperature regime of 28/30ºC for the first application of the treatment. However due to 

slow growth, the temperature regime was changed to 27/35ºC, and analyses did not 

include data recorded from the first treatment application. 

 Temperature 

Regime 

(low/high) 

Replication 

(Drought/Temp) 

No. cold 

treatments 

Corolla 

area (CA) 

Display 

size 

Floral 

output 

Reproductive 

success 

Total Bolted 

Delphinium  21/29 ºC 193/133 0/62 0 - 2 Sepal 

width x 

height 

CA x no. 

flowers 

open 

No. 

flowers 

Mass per  

seed 

Echinacea 27/35 ºC 89/94 36/20 3 - 4 Ray petal 

width x 

length 

CA x no. 

ray petals 

No. 

florets 

Fertilized 

florets: 

Pollinated 

florets 

Scutellaria 28/38 ºC 90/103 87/70 0 Petal 

width x 

height 

CA x no. 

flowers 

open 

No. 

flowers 

Germination 

rate 
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Table 3-2. Statistical results from analyses of vegetative traits, floral traits, and 

reproductive success between three congeneric species pairs and in response to 

experimental manipulations of water availability and air temperature. Analyses of the 

experiments with the Delphinium species have an additional term (Treatment nested 

within Experiment), since each experiment (drought and temperature) was repeated in 

order to increase replication. Few individuals (3) bolted in the drought experiment with 

the Delphinium species, and only vegetative traits could be analyzed. Significance values 

are indicated by symbols († denotes P < 0.1, * indicates P < 0.05, ** signifies P < 0.01, 

and *** symbolizes P < 0.001) and bolded. Some traits did not meet the assumption of 

normality for parametric tests, and a non-parametric resampling procedure (permutation 

ANOVA) was used to assess differences between species and treatments. When results of 

the parametric and non-parametric analyses differed, the significance levels from the non-

parametric tests are indicated in parentheses, and those that are significant are bolted.  

ø denotes that analyses were run independent of the other traits (i.e., not corrected for 

multiple comparisons) due to low replication of that trait. 

‡ signifies analyses that were conducted using data from one of the two experimental 

replications (Delphinium species height and reproductive traits only) 

• indicates that the analyses were conducted with data from both replicate experiments for 

the Delphinium temperature experiment. 

^ signifies that the data have an exponential distribution and were analyzed independent 

of the other variables via general linear model using a reciprocal link function to 

transform the data. 

º denotes that analyses were run independent of the other traits using logistic regression. 
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 Drought Temperature 

 Species 
Treatment x 

Experiment 

Species x 

Treatment 
Species 

Treatment x 

Experiment 

Species x 

Treatment 

Delphinium        

Vegetative traits       

Height
‡
 -- -- -- 21.52*** 10.53** 0.006 

Leaf thickness -- -- -- 13.43*** 2.88
†
 1.69 

Leaf area
ø
 2.18 0.11 0.34 3.43

†
 2.86

†
 0.98 

Specific leaf area 0.39 0.11 0.49 0.09 1.12 1.25 

Total leaf area 0.30 1.23 0.62 -- -- -- 

Leaf longevity 1.48 0.092 0.031 (0.27) (0.0627) (0.84) 

Relative growth 

rate
^
 

(0.0014) (0.41) (0.92) 1.05 6.53* 5.24* 

Shoot:Root ratio (<0.0001) (0.12) (0.65) (0.0196) (0.094) (0.34) 

Total biomass
^
 (0.0008) (0.87) (0.96) 0.057 11.41*** 1.04 

Reproductive traits
‡
       

Inflorescence 

initiationº
•
 

-- -- -- 0.89 2.96 1.30 

Anther-stigma 

separation 

-- -- -- 8.91** 0.005 1.03 

Corolla area -- -- -- 3.04
†
 3.45

†
 1.11 

Display size -- -- -- 3.09
†
 6.62* 0.70 

Floral output -- -- -- 5.75* 9.21* 0.29 

Floral spur length -- -- -- 0.03 0.44 0.66 

Flower longevity -- -- -- 13.01** 2.24 1.17 

Nectar volume -- -- -- 0.06 1.60 1.94 

Nectar sugar 

contentº 

-- -- -- 5.15* 5.21* 0.66 

No. flowers open -- -- -- 11.88** 4.70* 0.68 

Proportion of 

flowers open 

-- -- -- 3.26 0.25 0.04 

Relative 

reproductive 

output 

-- -- -- 0.58 5.60* 0.63 

Reproductive 

phenology 

-- -- -- (0.90) (0.10) (0.077) 

Reproductive success
‡
       

Seed quality -- -- -- 13.80*** 9.24** 1.49 

Total seedset -- -- -- (0.11) (0.093) (0.051) 

 Species Treatment 
Species x 

Treatment 
Species Treatment 

Species x 

Treatment 

Echinacea       

Vegetative traits       

Height 3.09
†
 17.05** 0.16 0.59 2.90 0.46 

Leaf area 0.07 2.31 1.70 0.14 0.35 0.43 

Leaf thickness 12.42** 0.85 0.19 0.00 5.44* 0.61 

Leaf longevity 1.58 1.79 0.11 2.05 3.72
†
 1.80 

Specific leaf area 1.39 0.06 0.22 3.83
†
 0.70 6.83* 

Relative growth rate 6.69* 13.85** 0.05 (0.18) (<0.0001) (0.67) 
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Total biomass 2.03 16.61** 0.18 (0.43) (<0.0001) (0.42) 

Shoot:Root ratio (1.00) (0.12) (0.58) (0.50) (1.00) (0.57) 

Reproductive traits       

Inflorescence 

initiationº 

1.00 1.91 0.61 15.06** 0.01 0.96 

Corolla area 0.16 1.63 0.02 0.00 2.75 0.07 

Floral output 19.15** 12.69** 0.09 0.03 0.01 0.34 

Nectar sugar content 0.03 0.40 0.01 -- -- -- 

Nectar volume 1.69 0.80 0.07 -- -- -- 

Relative 

reproductive 

output 

(0.11) (0.066) (1.00) 0.21 1.16 1.35 

Reproductive 

phenology 
(0.0261) (0.18) (0.94) 0.45 1.87 4.51

†
 

Reproductive success       

Proportion fertile 

capitula 

0.58 1.63 0.58 0.60 0.10 0.44 

Total seedset 0.60 3.16
†
 0.12 1.34 0.06 0.79 

Scutellaria       

Vegetative traits       

Height  23.61*** 22.52*** 4.33* 198.2*** 202.0*** 29.03*** 

Leaf area 1158*** 13.5** 1.97 146.3*** 26.47*** 2.11 

Leaf longevity
ø
 -- -- -- 2.28 1.0 0.01 

Leaf thickness 308.0*** 0.01 0.07 80.75*** 0.11 1.90 

Shoot:Root ratio 0.61 4.92* 0.75 0.04 0.33 2.18 

Specific leaf area 0.20 1.88 0.24 0.42 3.02
†
 5.24* 

Trichome density 12.17** 0.37 1.36 27.71*** 1.83 11.00** 

Relative growth rate 239.2*** 35.51*** 14.94** (<0.0001) (<0.0001) (0.0136) 

Total biomass (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) 

Reproductive traits       

Inflorescence 

initiationº 

-- -- -- 1.71 33.77*** 0.02 

Floral output 101.6*** 148.9*** 54.97*** (0.53) (<0.0001) (<0.0001) 

Relative 

reproductive 

output 

7.94** 2.28 0.69 (0.058) (<0.0001) (0.34) 

Reproductive 

phenology 

(0.14) (0.96) (0.0233) 5.13* 1.32 2.55 

Reproductive success       

Total seedset 79.25*** 49.91*** 6.15* -- -- -- 

Total fruit set -- -- -- 2.10 3.20** 0.07 

Germination rate 31.31*** 0.96 0.03 (0.0286) (0.093) (0.57) 
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Figure 3-1. Vegetative and reproductive traits of a locally-abundant regionally rare 

species (LARR), Delphinium treleasei, in comparison to its common congener, D. 

carolinianum and in response to experimental temperature treatments, (A) relative 

growth rate (mg/day; square root transformed), (B) total potential seedset (average 

number of seeds per fruit times the total number of flowers; square root transformed), (C) 

floral output (number of flowers; loge transformed), and (D) average seed mass (mg). 

Statistically significant differences between treatments and species in panels (A) and (C) 

are designated by having different letters (those that share letters are not significantly 

different). In panels (B) and (D), statistical significance is indicated by asterisks (* 

designates P < 0.05, ** indicates P < 0.01, and *** represents P < 0.001).  
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Figure 3-2. Vegetative and reproductive traits of Echinacea paradoxa (LARR) and E. 

pallida (CC) in response to temperature treatments and compared to each other (data 

represented in panels (B) and (C) are from the precipitation experiment), (A) specific leaf 

area (cm
2
 per unit biomass; loge transformed), (B) floral phenology (age in days at date of 

inflorescence initiation), and (C) floral output (number of florets; log transformed). 

Statistically significant differences between treatments and species in panels (A) and (C) 

are designated by having different letters (those that share letters are not significantly 

different). In panels (B) and (D), statistical significance is indicated by asterisks (* 

designates P < 0.05, ** indicates P < 0.01, and *** represents P < 0.001). 
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Figure 3-3. Vegetative and reproductive traits of Scutellaria bushii (LARR) in 

comparison to S. ovata (CC) and in response to watering treatments, (A) height (cm), (B) 

relative reproductive output (square root transformed), (C) total potential seed set 

(average number of seeds per fruit times total floral output), and (D) germination rate. 

Statistically significant differences between treatments and species in panels (A) and (C) 

are designated by having different letters (those that share letters are not significantly 

different). In panels (B) and (D), statistical significance is indicated by asterisks (* 

designates P < 0.05, ** indicates P < 0.01, and *** represents P < 0.001). 
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INTRODUCTION 

A primary tenet of ecology is the role of competitive exclusion in determining 

species ranges (Tilman, 1976; Chase et al., 2002; Chase and Leibold, 2003; Fargione et 

al., 2003; Lau et al., 2008; Angert, 2009), although some studies challenge this tenet 

(Volkov et al., 2003; Muneepeerakul et al., 2008). Historically, the theory of competitive-

exclusion has been conceptualized in terms of abiotic resources (Hardin, 1960; Tilman, 

1976; Chase and Leibold, 2003; Rodríguez-Gironés and Santamaría, 2007; Abrams et al., 

2008). Biotic resources, such as pollination services, are also limiting in many habitats 

(Totland and Eide, 1999; Knight et al., 2005; Fishman and Willis, 2006; Spigler and 

Chang, 2009; Martén-Rodríguez and Fenster, 2010; Wagenius and Lyon, 2010) and may 

lead to the extinction of local populations via reduced reproductive success. Many plants 

compete for pollinators (Brown et al., 2002; Bell et al., 2005; Devaux and Lande, 2009; 

Mitchell et al., 2009) and species with low relative abundance are often poorer 

competitors (Flanagan et al., 2010). Biotic resources could, therefore, contribute to the 

restriction of some rare species’ ranges. An increase in competition for shared pollinators 

reduces the seedset of poorer competitors (Brown and Mitchell, 2001; Bell et al., 2005), 

and should restrict species from establishing populations in habitats characterized by 

competition for pollinators. Moreover, species that occur on stressful habitats, often have 

a similar suite of traits that are adaptive in stressful abiotic conditions (Grime, 1977; 

Chapin et al., 1993), specifically in hot and xeric environments, but may lead to reduced 

competitive ability for pollinators in more productive habitats, as is seen with 

competition for other resources (Maestre et al., 2009).  
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Rare taxa are thought to be less reliant on their pollinators by adopting self-

compatibility (Darwin, 1877; Fausto et al., 2001; Moeller and Geber, 2005; Harder et al., 

2008; Jacquemyn and Brys, 2008; Martén-Rodríguez and Fenster, 2010), which ensures 

reproductive success despite low pollination success. Plants that are self-compatible often 

have lower investment in floral traits to attract pollinators and often have smaller and less 

abundant flowers, and lower nectar and pollen rewards (Anderson and Busch, 2006; 

Fishman and Willis, 2006; Kennedy and Elle, 2008; Foxe et al., 2009); making them less 

attractive to pollinators (Kudo and Harder, 2005; Dickson and Petit, 2006; Ishii et al., 

2008; Parachnowitsch and Kessler, 2010). Therefore, this hypothesis would predict that 

rare taxa are poor competitors for pollinators. The principle of reproductive assurance is 

based on one of the seven forms of rarity (Rabinowitz et al., 1981), which are defined by 

a combination of local population size, geographical extent, and habitat specificity (Table 

4-1). One important assumption underlying this model, specifically low pollen 

availability, is applicable when local populations are small or pollination success is low 

or unpredictable. On the other hand, locally-abundant, regionally-rare (LARR) taxa may 

not be limited by pollen availability if pollination is sufficient and predictable. This leads 

to the possibility that other factors, other than low pollen availability, can affect selection 

on floral traits, such as stressful conditions or competition for pollinator services.  

If rare species specialize on the stressful (defined here as hot and xeric) habitat in 

which they occur, they should be locally-adapted and better able to tolerate those 

conditions than species that are not restricted to these habitats or that are adapted to more 

benign habitats (Grime, 1977; Chapin et al., 1993). The widespread species may have a 

lower photosynthetic rates and a greater reduction in floral output and floral attraction 
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traits when stress is high. A reduction in floral attraction traits could diminish their ability 

to attract pollinators and compete for pollinator services under stressful conditions. Plants 

with larger floral displays and greater reward output are better competitors for pollinator 

services (Brown and Mitchell, 2001; Bell et al., 2005) and have greater reproductive 

success (Bell et al., 2005; Kudo and Harder, 2005). Stressful conditions may also select 

for higher offspring quality and outcrossing rates, in response to high mortality or 

inbreeding depression. Therefore, I predict that LARR species that are endemic to 

stressful environments should exhibit traits associated with increased outcrossing rates 

and competitive ability for pollinators. Individuals with fewer, larger flowers are known 

to have higher outcrossing rates (Karron et al., 2004; Eckert et al., 2009; Karron et al., 

2009) mediated by pollinator behavior, and pollinators are attracted to individuals with 

greater floral display, either via flower number or flower size (Kudo and Harder, 2005; 

Dickson and Petit, 2006; Ishii et al., 2008; Parachnowitsch and Kessler, 2010). According 

to this hypothesis, and contrary to traditional theory, LARR taxa should be better 

competitors for shared pollinators than widespread, closely-related species when in high 

stress habitats.   

In this study, I test the hypothesis that floral attraction traits affect the relative 

competitive ability of two locally-abundant, regional rare taxa (LARR) in comparison to 

their widespread, common congeners (CC) for pollinators in the stressful (i.e., hot and 

xeric) habitats of the Ozark glades. Specifically, I will test two alternative predictions. 

First, LARR taxa have traits associated with increased attractiveness to pollinators and 

are better competitors for pollinators than their common congeners (CC). Alternatively, 

LARR species have traits associated with reduced competitive ability (e.g., fewer, 
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smaller flowers) and are poorer competitors than their CC, as traditional competitive 

exclusion theory would predict. I tested these hypotheses via a modified De Witt 

replacement competition experiment that maintained density of inflorescences but 

manipulated the relative proportion of conspecific and heterospecific individuals. I 

introduce naïve individuals to pollinators in a common habitat to assess their ability to 

attract pollinators as measured by visitation rate and reproductive success.  

MATERIALS AND METHODS 

Study system—I chose two plant species endemic to glades, Delphinium treleasei 

(Ranunculaceae) and Echinacea paradoxa (Asteraceae), which are restricted to glades in 

the Ozark Region in Missouri and Arkansas and have common congeners (CC; D. 

carolinianum and E. pallida, respectively; vouchers of all species will be deposited in the 

Missouri Botanical Garden) that can grow on glades but are not restricted to them. Glades 

are hot, dry habitats with a high-proportion of exposed bedrock dominated by herbaceous 

vegetation, which occur within a matrix of more mesic oak-hickory woodland (Kucera 

and Martin, 1957; Yatskievych, 1999). Comparing congeneric pairs provides insight into 

the factors that restrict one species to glades and not the other, and multiple congeneric 

comparisons also make the results of this study more broadly applicable (Bevill and 

Louda, 1999). Moreover, comparing restricted species to their widespread congeners 

mitigates the potential influence of evolutionary history on the biological traits correlated 

with competitive ability for coevolved pollinators.   

Experimental design—I conducted a field competition experiment in order to 

explicitly test the relative competitive abilities of the LARR and CC taxa. In order to 

control for spatial variation in pollinator assemblage and abundance, I conducted the 
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experiment at multiple field sites (two for Delphinium and three for Echinacea; Table 4-

2) across a broad geographic range relative to the distribution of the LARR taxa. Sites 

were chosen based on two criteria: (1) both species of a congeneric pair occur on the 

same glade and (2) the density of each species was roughly similar. Inflorescences from 

elsewhere in the same glade were bagged before flowering in order to exclude visiting 

insects. Because successful transplantation into glades is difficult due to shallow soils and 

extreme conditions, all inflorescences were collected, placed in glass containers filled 

with water and wrapped with a light, neutral-colored material in order to keep the 

inflorescence fresh and erect. Each individual was randomly assigned to one of three 

competition treatments: interspecific competition, focal individuals in the intraspecific 

competition, and non-focal individuals in the intraspecific competition treatment. In other 

words, each species competed with individuals of the same species (intraspecific, 0% 

proportion to heterospecifics) and with individuals of its congener (interspecific, 50% 

proportion to conspecifics) while plant density remained constant (Figure 4-1). The 

intraspecific competition treatment was subdivided into focal and non-focal individuals in 

order to maintain equal replication per species per treatment (i.e., two individuals per 

species per treatment replicate), despite a difference in relative abundance of 

conspecifics. Only those individuals assigned to the focal group were used for statistical 

analyses in order to maintain a balanced comparison between treatments. The experiment 

was repeated two to three times per site with different individuals, depending on 

availability of inflorescences, for a total of up to 36 individuals per field site [(4 

individuals for the intraspecific competition treatment + 2 individuals for the interspecific 

competition treatment) x 3 replicates x 2 species; Figure 4.1].  
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Floral attraction traits—I measured the following floral attraction traits: plant 

height, number of open flowers (Delphinium) or florets (Echinacea), flower size 

(Delphinium only), and total display size (TDS). Due to morphological differences, TDS 

was quantified differently for each genus. For the Delphinium taxa, TDS is defined as the 

product of the total number of flowers open times corolla area (i.e., flower width x flower 

height), and TDS for the Echinacea taxa the product of number ray petals times corolla 

area (i.e., ray petal width times ray petal length). Pollinator attraction traits were 

measured following observations, in order to avoid damaging flowers or altering reward 

quality or quantity (e.g., pollen quantity). 

Pollination and reproductive success—Plants were exposed to pollinators (i.e., 

bagging removed) after they were placed in the competition array in order to ensure that 

pollination occurred only when in the arrays, and they remained in the arrays for six to 

eight hours. I observed the number, type, and behavior (e.g., visit duration, anther and 

stigma contact) of all floral visitors during peak periods of activity for 30 minutes. The 

arrays were placed in a part of the glade where both species occur in equal abundance in 

order to reduce any potential density-dependence effect on pollinator behavior. 

Pollination was quantified as visitation rate, visit duration, and the number of flowers 

probed per visit (for Delphinium species only). Because seedset from cut inflorescences 

is variable and often unsuccessful, I quantified reproductive success as the number of 

pollen grains germinated and the number of pollen tubes reaching the ovary. Once the 

inflorescences were removed from the field, they remained undisturbed for 24 hours to 

allow for pollen tube growth, after which each ovary was dissected from the 

inflorescence. At one site (SNR; Table 4-2), the abundance of individuals blooming 
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concurrently was low and insufficient to conduct the experiment. Therefore, individuals 

that were collected at different (HHTSP) were randomly re-assigned to a new treatment 

and the experiment was repeated at SNR. Since Echinacea species have florets that are 

only receptive for one day, I was able to collect the achenes in between experiments and 

ensure that pollen deposition and pollen tube growth were not the result of previous 

exposure to pollinators. I also allowed two days between observation periods, during 

which the inflorescences were excluded from pollinators and kept in cool (roughly 23ºC) 

conditions to reduce wilting. I carefully removed those achenes that were exposed to 

pollinators after each treatment, without damaging the capitula.  

Once removed, the ovaries were fixed in 3:1, 95% ethanol:glacial acetic acid for 2 

hours, rinsed and stored in 70% ethanol. They were then immersed in 10% (w/v) solution 

of sodium sulfite and autoclaved for 30 or 40 minutes at 60 or 70°Celsius for Delphinium 

and Echinacea taxa, respectively.  After cooling, each pistil was mounted on a slide, 

covered with 3-5 drops of decolorized aniline blue, refrigerated for 24 hours, and 

illuminated using a 100 W fluorescent source (Lipow et al. , 2002) on a Zeiss Universal 

microscope. In order to determine reproductive success, I counted the number of pollen 

grains on the stigma, the number of pollen tubes growing down the style, and the number 

of pollen tubes reaching the ovary (see Lipow et al., 2002). Competitive ability was 

quantified as differences in visitation rate, number of pollen on the stigma, number of 

pollen tubes germinating down the style, and number of pollen tubes to reach the ovary in 

response to the competition treatments.  

Statistical analyses—I tested for differences in morphological traits between 

species of each genus and to ensure that the randomization procedure was not biased (i.e., 
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traits did not vary by treatment) via a two-way, nested ANOVA with Treatment and 

Distribution as factors. Distribution was nested within Site to control for potential spatial 

variation in species’ traits. All three treatments (i.e., intraspecific, interspecific focal 

plants, interspecific non-focal plants) were included to determine the potential for a bias 

in the randomization procedure. Upon finding a significant interaction term, I used a 

Tukey’s HSD posthoc test to determine paired differences between the significant factors. 

Model reduction was conducted for all marginally significant results using the step 

function in the R Statistical Package (R Development Core Team, 2008), in order to 

refine the statistical result. The step function systematically removes higher-order terms 

from the model structure, compares the Akaike Information Criterion (AIC; a measure of 

relative goodness of fit that penalizes model complexity) between models, and reduces 

the model to that with the best fit (i.e., lowest AIC). Following model reduction, 

differences in the morphological trait was compared among the factors in the reduced 

model (e.g., nested ANOVA with distribution nested within site).  

The effects of competition treatment on pollination and reproductive success were 

tested as a two-way, nested ANOVA with treatment and distribution nested within site. 

Treatment was nested within site to control for among-site variation in pollinator 

composition and abundance. Since some morphological traits varied spatially, 

distribution was also nested within site, in order to differentiate between the effects of 

site-level variation in morphological traits and pollinator assemblages. Due to low 

visitation rates and pollen deposition, significant differences in the competitive ability of 

congeners were also tested using a two-way nested, permutation ANOVA (aovp in R 

Statistical Package (R Development Core Team, 2008)) with Treatment and Distribution 
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nested within Site as above. I used a Monte Carlo resampling approach (i.e., without 

replacement) to construct a null expectation based on a random sampling of the available 

data and compared each of 5000 runs to the null. Statistical significance is quantified as 

the number of runs for which the F-statistic is greater than or equal to the observed value. 

Response variables were tested for normality and transformed as necessary. Variables 

that could not be transformed to meet the assumption of normality for parametric 

statistics were also tested for differences using the permutation approach described 

above. Results did not differ between the parametric and nonparametric analyses; 

therefore, I report the results of the parametric tests.  

RESULTS 

Morphological traits—For the Delphinium taxa, morphological traits differed 

between congeners and across sites, but there was no treatment effect, which verified the 

randomization procedure. Height and display size of both Delphinium taxa differed 

significantly between sites (DF = 1, F stat = 6.33, P value = 0.0197; DF = 1, F stat = 

26.0, P value < 0.0001, respectively; Figure 4-2 A and B), which means that the 

morphological traits differed between the replicates and could reflect different abiotic 

conditions between sites. There was no difference between congeners (DF = 2, F stat = 

1.18, P value > 0.05; DF = 2, F stat = 1.98, P value > 0.05; respectively). There was a 

significant interaction between site and distribution for the number of flowers open 

(NFO) concurrently (DF = 2, F stat = 5.54, P value = 0.0105; Figure 4-3A). The LARR 

Delphinium treleasei had a higher NFO at one site (RBCA) than the other, but there was 

no difference between sites for the CC or between congeners within a site. Corolla height 

(CH), which includes the landing pad of the flower, also differed among species and sites 
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for the Delphinium taxa (DF = 2, F stat = 7.04, P value = 0.0043; Figure 4-3B). The 

LARR species had greater CH than its CC at DCA but not at RBCA, which suggests that 

CH is as variable by geography as it with between congeners. Distance to nectar was 

marginally different between Delphinium species at different sites (DF = 2, F stat = 2.87, 

P value = 0.0780), which was driven by a marginal difference between taxa at one site 

(DCA).  

The Echinacea taxa are not different in their morphological traits among the 

interspecific, focal-individuals of the intraspecific treatment, and the non-focal 

individuals of the intraspecific treatment, again verifying the randomization procedure. 

They also differed in their morphological traits among sites and species; in other words, 

species traits were different at some sites and not at others. The number of flowers open 

and display size differed significantly among sites for both species, indicated the 

geographic variation is greater than any differences between congeners. There were more 

flowers open at PLH than either HHT or SNR (DF = 2, F stat = 19.15, P value < 0.0001), 

and total display size was successively larger at PLH, HHT, and SNR (DF = 2, F stat = 

42.92, P value <0.0001). Height was significantly different between congeners among 

sites (DF = 2, F stat = 9.88, P value = 0.0005; Figure 4-4A), which was driven by 

differences between congeners at one site (HHTSP). Echinacea paradoxa (LARR) was 

significantly shorter than its CC at HHTSP, which is consistent with the prediction of 

greater competitive ability. 

Competitive ability—Neither pollination nor reproductive success differed 

between the intra- and interspecific competition treatments for either genus. However, 

both genera had significant differences among sites and distributions. Both Delphinium 
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species had marginally lower visitation rates at DCA than RBCA (DF = 1, F stat = 3.48, 

P value = 0.0833; Figure 4-2C), but there was no difference between species or 

treatments (DF = 2, F stat = 0.54, P value > 0.05; DF = 2, F stat = 0.36, P value > 0.05; 

respectively). There were no differences in visit duration or the number of flowers probed 

per visit for site, distribution or treatment. The Delphinium species differed across sites in 

the number of pollen grains germinating on the stigma (DF = 2, F stat = 11.33, P value = 

0.0017); the LARR species at RBCA had a greater number in comparison to the LARR 

species at DCA and to its CC at either site. The number of tubes developing down the 

style was significantly different between species within sites (DF = 3, F stat = 4.61, P 

value = 0.0327; Figure 4-3C); the LARR species at RBCA had more tubes in comparison 

to its CC at either site and to itself at DCA. However, there were no differences in the 

number of pollen tubes reaching the ovaries (DF = 3, F stat = 0.56, P value > 0.05), 

which may reflect low pollen quality or maternal effects, since the inflorescences were 

removed from the rest of the individual which could impede pollen tube growth.  

The Echinacea taxa did not differ in visitation rate among sites (DF = 2, F stat = 

2.36, P value > 0.05) or by distribution within sites (DF = 3, F stat = 1.80, P value > 

0.05). The duration of the visits received was also not different among sites (DF = 2, F 

stat = 1.21, P value > 0.05) or by distribution within sites (DF = 3, F stat = 2.04, P value 

> 0.05). The number of pollen grains deposited on the stigma was significantly different 

between species across sites (DF = 3, F stat = 4.75, P value = 0.0232; Figure 4-4B), but 

there were no differences between congeners within a given site. There was also no 

difference in the number of pollen tubes reaching the ovaries at any site (DF = 3, F stat = 

1.10, P value > 0.05). 



75 

 

DISCUSSION 

 For decades, the relative importance of biotic and abiotic factors in determining 

species distributions has been debated in ecology. Competition for shared pollinators may 

influence distributions via reproductive success. Here, I tested the alternative hypotheses 

that two rare species are (1) poorer competitors for pollinators in comparison to their 

common congeners (CC), based on the predictions of traditional reproductive theory 

which state that rare taxa have higher selfing rates and are therefore less attractive to 

pollinators, (2) better competitors for pollinators in the plant specialize for increased 

attractiveness in stressful environments, or (3) equal competitors for pollinators because 

pollination is not limiting or due to evolutionary history. There was no significant effect 

of the competition treatment on pollination or reproductive success of any species tested. 

However, there was significant spatial variation in the floral traits and reproductive 

success of endemics and their CC, which indicates the important role of scale on 

interspecific interactions and, potentially, the mechanisms restricting a species’ range.   

Contrary to my predictions, neither the CC nor the LARR species were 

consistently better competitors for pollinators. There were no significant differences in 

visitation rate, pollen deposition, or pollen tube growth between intra- and interspecific 

competition treatments. The lack of a treatment effect suggests that competition for 

pollinator services is not occurring between these congeneric pairs on glades. Overall, 

visitation and fertilization rates were very low, which could be the result of low insect 

abundance in 2009, when this experiment was conducted, or of generally low 

reproductive success in the hot, dry glade environment. In habitats with more abundant 

pollinators or less-stressful conditions, competition may be occurring. In order to 
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eliminate the potential effects of pollinator identity and experience, I conducted this 

experiment on glades at which both species occur. In order to fully understand the 

potential role of competition for pollinators in restricting the distribution of glade 

endemic plants, studies that test for differences in relative competitive ability for 

pollinators in non-glade habitats are required. While the LARR species’ coevolved 

pollinators may not occur off of glades, a comparison of competitive ability for 

pollinators on and off glades will determine if the distributions of LARR species are 

influenced by their plant-pollinator interactions, either via a lack of effective pollinators 

or poor competitive ability for shared pollinators in comparison to their CC. 

While there was no treatment effect on pollination or reproductive success, all 

species showed significant spatial variation in floral traits and pollination success. The 

traits of both Delphinium species indicate a tradeoff between allocation to reproduction 

and vegetative output that varies across space. Plants of both species were shorter but had 

greater floral displays at RBCA than at DCA. The insects respond to the increase in floral 

display seen at RBCA with higher visitation rates to plants at RBCA in comparison to 

DCA. Differences in allocation to reproduction could be a function of variation in soil 

nutrient content or habitat suitability between sites. For instance, if DCA is hotter and 

drier than RBCA, the difference seen in floral and vegetative traits would support the 

prediction that allocation to reproduction increases with stress. Higher visitation rates at 

RBCA than at DCA also indicate a role of larger spatial-scale variation in floral density 

on insect behavior. While I chose an area within each glade where both species were in 

equal abundance, density on the glade as a whole can vary considerable across glades. 

Anecdotally, relative abundance and floral density of the Delphinium species was much 
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lower at DCA in comparison to RBCA. Insects are known to travel large distances (van 

Nieuwstadt and Iraheta, 1996; Pasquet et al., 2008; Elliott, 2009; Rader et al., 2011), 

sometimes moving distances  greater than the size of many glade habitat (e.g., more than 

a kilometer; Osborne et al., 2008; Pasquet et al., 2008; Wikelski et al., 2010), which can 

range in size from less than one hectare to greater than 200 hectares (Nelson and Ladd, 

1982). Therefore, the pollinators may be responding to inflorescence density on the glade 

and not directly to individual variation in floral traits. Future studies will document floral 

density and abiotic conditions across glades in order to disentangle the relative 

importance of these two mechanisms. 

The Delphinium congeners also differed significant in reproductive success (i.e., 

number germinating pollen grains and pollen tube growth) at RBCA. While there was no 

difference in visitation rate or the number of total pollen grains on the stigma, the LARR 

plant had more pollen tubes that were germinating and developing down the style. This 

pattern suggests that the visits to the LARR Delphinium species may have been more 

effective and resulted in the transfer of higher quality or more conspecific pollen in 

comparison to its common congener. The Delphinium congeners are known to hybridize 

(Warnock, 1987), and germination rates may reflect differences in the ability of 

conspecific pollen to cross-pollinate. However, pollen quality of each species, per se, was 

not quantified, and further research is needed to determine the mechanism behind the 

greater proportion of pollen grains that successfully fertilized ovaries in D. treleasei. In a 

previous study conducted at a larger spatial scale (Chapter 1), I showed that the endemic 

Delphinium species had a more specialized pollination system (i.e., fewer species of 

pollinators accounted for the majority of pollen flow) than its congener, which could 
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account for the difference seen in pollen germination rate and pollen tube growth. 

Moreover, spatial variation in pollen tube growth is likely a result of low visitation rates 

and not variation in pollinator effectiveness. While differences were only marginally 

statistical significant due to low pollinator abundance and replication, visitation rates 

were nearly four times (3.8) higher at RBCA than DCA, and visit duration was more than 

two and a half times greater.  

The Echinacea species also differed in their floral traits and reproductive success 

among sites. However, there was no difference within a given site, with the exception of 

height, which suggests that the differences were dominated by site-level effects. The 

LARR species was shorter than its CC at HHTSP. They were also shorter at SNR (which 

were individuals collected from HHTSP due to low abundance of blooming individuals at 

SNR), but the pollinators did not respond differently to the congeners at SNR. I predicted 

that the pollinators would be more attracted to the taller individuals, as has been shown in 

other taxa (Dickson and Petit, 2006), which would be the CC at both HHTSP and SNR. 

Contrary to my predictions, pollen deposition rate was higher to the LARR species at 

HHTSP, and there was no difference at SNR. Pollen deposition rate may be related to the 

variation in pollinator fidelity or effectiveness of the pollinators among sites, as seen in 

the Delphinium species. However, the LARR E. paradoxa does not have a more 

specialized pollination system than E. pallida. Moreover, the disparity in pollen 

deposition did not lead to differences in pollen tube growth or fertilization rates, which 

suggests there may be a trade-off between pollen abundance vs. pollen viability. In other 

words, E. paradoxa pollen may be more abundant but of lower quality, resulting in a 

negligible difference in reproductive success. On the other hand, the pollen deposited on 
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the stigmas of E. paradoxa could have had a greater proportion of heterospecific pollen, 

resulting in reduced fertilization rates. Unfortunately, the pollen of each Echinacea 

species could not be distinguished from one another, so I was unable to test for this 

mechanism. In future studies, pollen of each individual should be tagged with fluorescent 

dye in order to distinguish between the transfer of heterospecific and conspecific pollen 

deposition.  

Conclusion 

This study illuminates the importance of large-scale mechanisms for local 

reproductive success and pollination specialization for greater pollen transfer. In contrast 

to our hypotheses, there was no difference in competitive ability between two endemic 

glade plants and their congeners. Competition for pollinator services has been 

documented in some habitats (Brown and Mitchell, 2001; Bell et al., 2005; Internicola et 

al., 2007) but there is no evidence of competition for pollinator services between these 

congeners in glade habitats. While these congeners did not compete for pollinators, there 

were differences in the reproductive success of the Delphinium congeners when 

pollination visitation was relatively high. The Delphinium endemic glade plant has a 

more specialized pollination system and may have more effective pollinators. Pollination 

specialization is predicted to increase conspecific pollen transfer (Darwin, 1877; Rymer 

et al., 2005; Galloni, 2008) and increases reproductive success (Rymer et al. 2005;  

Galloni 2008) as documented in this study. Moreover, differences in pollination success 

and reproductive success appear to be influenced by habitat-level factors, such as 

inflorescence abundance or pollinator assemblages, and less by individual morphological 

traits. The structure of habitat within a landscape is known to affect the distribution and 
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behavior of pollinating insects in experimental and agricultural settings (Kremen et al., 

2002; Ricketts et al., 2008). This study demonstrates the potential significance of 

landscape-scale factors on plant-pollinator interactions and plant reproductive success of 

LARR plants in natural habitats.  Understanding the relative importance of landscape-

scale factors on local interactions is increasingly important given high rates of habitat 

alteration and climatic change around the world.  
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Table 4-1. Description of the Rabinowitz’s Seven Forms of Rarity based on geographic 

extent, population size and habitat specificity (modified from Rabinowitz et al., 1981).  

The bolded form of rarity represents the locally-abundant, regionally rare (LARR) taxa in 

this study. 

 

 Geographic Extent (GR) 

 Large Small 

Population Size (PS)     

     Somewhere  

        large 

Common Large PS 

Large GR 

Narrow HS 

Large PS 

Small GE 

Broad HS 

Large PS (LA) 

Small GE (RR) 

Narrow HS  

     Somewhere  

        small 

Small PS 

Large GE 

Broad HS 

Small PS 

Large GE 

Narrow HS 

Small PS 

Small GE 

Broad HS 

Small PS 

Small GE 

Narrow HS 

 Broad Narrow Broad Narrow 

 Habitat Specificity (HS) 
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Figure 4.1. A schematic of a representative glade site (A) and the competition treatments 

(B; including intraspecific and interspecific competition treatments. In order to maintain 

equal replication between intra- and interspecific competition treatments only two 

individuals per intraspecific treatment (the focal individuals, solid and outlined circles) 

were used to test for differences between LARR and CC species in response to the 

competition treatments. The non-focal species (striped circles) were excluded from the 

analyses in order to maintain equal replication between treatments), and (C) a map of 

sites at which I conducted a pollination competition experiment with two congeneric 

species pairs, Delphinium treleasei and D. carolinianum (  ) and Echincaea paradoxa 
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and E. pallida (  ; LARR and CC, respectively). Glade density data was from Nelson 

and Ladd (1982) coded in to a heat-density map. The original data represented a range in 

glade density per 7.5 degree minute quadrats (approximately 144 km
2
 in Missouri); 

therefore the heat map reflects a rough estimate of glade density per 144 km
2
 as of 1982. 
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Figure 4-2. Morphology and visitation rates of two Delphinium species at two field sites 

in south-western Missouri Drury Conservation Area (DCA) and Rocky Barrens 

Conservation Area (RBCA), including (A) Height (cm), (B) Display size (floral output x 

corolla area), and (C) visitation rate per 30 minute observation period. * denotes 

statistically significant differences. 

  



85 

 

 



86 

 

Figure 4-3. Floral traits and reproductive success of a locally-abundant, regionally rare 

(LARR) Delphinium treleasei, and its common congener (D. carolinianum, CC) at two 

field sites in south-western Missouri (Drury Conservation Area (DCA) and Rocky 

Barrens Conservation Area (RBCA)), including (A) floral display (the number of open 

flowers), (B) corolla height, including the landing pad, and (C) the number of pollen 

tubes developing down the style of the experimental plants. Different letters denote 

statistically significant differences.  
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Figure 4-4. Height (A) and reproductive success (B; number of pollen grains on the 

stigma) of a locally-abundant, regionally rare (LARR) species, Echinacea paradoxa, and 

its common congener (E. pallida, CC) at three field sites in Missouri (HaHaTonka State 

Park (HHTSP), Private glade (PLH), and Shaw Nature Reserve (SNR)). Different letters 

represent statistical differences between   
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   INTRODUCTION 

 Phenological shifts in response to climate change have been well documented 

(IPCC, 2007, Badeck et al., 2004; Dose and Menzel, 2004; Ibanez et al., 2010; Kudo and 

Hirao, 2005; Lambert et al., 2010; Sherry et al., 2007). While species responses are 

consistent with the direction of climate change, there is considerable variation in the 

degree to which species are responding (Kudo and Hirao, 2005; Cleland et al., 2006; 

Miller-Rushing et al., 2007; Miller-Rushing and Primack, 2008; Miller-Rushing and 

Inouye, 2009; Forrest et al., 2010). For instance, many plant species in the same genus 

respond differently to changes in climate (Miller-Rushing and Primack, 2008; Miller-

Rushing and Inouye, 2009), and differential responses may affect interspecific 

interactions (Forrest et al, 2010, Rafferty and Ives, 2011). Both intrinsic and extrinsic 

factors, for example pre-adaptation or micro-climate effects, respectively, may contribute 

to the variation in species responses to climate such. The mechanisms behind interspecies 

variation are rarely assessed (but see Kudo and Hirao, 2005; Miller-Rushing and Inouye, 

2009) and could inform our understanding of the relative importance of the biological 

processes that underlie them.  

Variation in species responses to climate change may be partially explained by 

historical factors, such as genetic composition or traits that are pre-adapted to climate 

change. For instance, species that are adapted to stressful (i.e., hot and/or xeric) climatic 

conditions or are relicts from previous periods of climate change may have traits that are 

better adapted to future climatic conditions than those species found in less-stressful 

environments. Plants that occur in stressful habitats often have a suite of traits, known as 

the stress-resistance syndrome (SRS), which are thought to reduce the negative effects of 
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heat and drought stress (Chapin et al., 1993). These species may therefore be 

lessresponsive to changes in climatic conditions than species without SRS traits, such as 

widespread species with broader habitat tolerances.  

Moreover, species that specialize on stressful habitats may also have lower 

phenotypic plasticity (Ellison and Parker, 2002; Pohlman et al., 2005), either in their 

morphological traits or in their phenological patterns. Strong selection for local 

adaptation can lead to reduced phenotypic plasticity (Ellison and Parker, 2002; Pohlman 

et al., 2005), and many rare and endemic plants are thought to be habitat specialists 

(Rabinowitz et al., 1981; Izco, 1998, Espeland and Emam, 2011) that are restricted in 

their ranges due to the lack of suitable habitat. Therefore, stress-adapted specialist plant 

species should be less responsive to climate change in comparison to species that occur in 

multiple habitat types. Alternatively, local adaptation to a stressful environment may 

include the ability to track short periods of favorable abiotic conditions, such as cooler 

temperatures or rain events (Aronson, 1992; Angert et al., 2010). Stress-adapted species 

would then be more responsive to climate change in order to avoid higher-stress 

conditions later in the season. 

In addition to intrinsic factors, extrinsic mechanism, such as local abiotic 

conditions, may affect the impact of regional climate change on individuals (Kudo and 

Hirao, 2006) and the evolution of populations in unpredicted ways. Many local factors, 

such as plant cover, soil composition, and exposed bedrock, may also influence 

microclimate conditions, such as the retention and distribution of heat and water 

throughout a habitat. Evaporative cooling of plants via transpiration can buffer 

temperatures in the surrounding habitat (Georgescu et al., 2011), vegetation structure can 
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reduce the wind exposure experienced by other plants near them (Lortiek et al. 2002), and 

the latent heat of exposed bedrock may increase soil and air temperatures close to the 

ground. These local factors can indirectly influence the degree to which an individual is 

impacted by regional climate change by either mitigating or intensifying climate 

conditions. For instance, plants that occur in soils with low water-holding capacity may 

be more responsive to increases temperature, which should reduce plant-available water.  

 In this study, I address three hypotheses that potentially influence differential 

responses of endemic species and their closely-related congeners to regional warming 

based on two principles, pre-adaptation and local habitat effects. The first predicts that 

plants that are endemic to high-stress habitats are less responsive to regional climate 

change than closely-related, widespread species. Alternatively, the second hypothesis 

predicts that stress-adapted species are more responsive to changes in abiotic conditions 

via greater ability to track suitable habitat in time. The third predicts that all plants in 

exposed, xeric habitats have greater response to regional warming, regardless of 

geographic range size. I test these predictions using a novel, continuous descriptor of 

development stage that was calculated for each herbarium specimen and a categorical 

variable describing the habitat in which the individual was collected. Using data collected 

from 21 weather stations over the 110 years throughout the region to which these species 

are endemic (Missouri and Arkansas), I determined which factors (range, habitat, weather 

or change in climate through time) are the primary drivers of phenology in all species.  

METHODS 

 Study System—I selected two species restricted to glades in the Ozark Region of 

Missouri and Arkansas, Delphinium treleasei (Ranunculaceae) and Scutellaria bushii 
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(Lamiaceae); each of which has at least one widespread congener (D. carolinianum ssp. 

carolinianum, S. ovata, and S. parvula) that grows on glades but is not restricted to them. 

Glades are hot, dry habitats with exposed bedrock, thin soils, and limited herbaceous 

plant cover that occur within a matrix of more mesic oak-hickory woodlands. They are 

relatively stressful habitats, which are hotter than the surrounding woodland and prairie 

habitats during the spring and summer months (data not shown) when these plants are 

photosynthetically active and blooming. Comparing these congeneric pairs provides 

insight into the factors that restrict one species to glades and not the other. Moreover, 

comparing restricted species to their widespread congeners mitigates the potential 

influence of evolutionary history on the biological traits correlated with endemism. 

Multiple congeneric comparisons also make the results of this study more broadly 

applicable (Bevill and Louda, 1999).   

 Climatic data—In order to document potential changes in climate, I acquired 

climate data from fourteen weather stations throughout Missouri (Figure 5-1), six weather 

station in Arkansas, and one in Kansas, for a total of 22 weather stations. Stations were 

chosen based on the duration of available data and location, in order to accurately 

describe the climate variables throughout the range of our target species. Climate data 

were available for at least five, spatially distributed weather stations between 1897 and 

1905, between 1905 and 1931 roughly half of the weather stations had available data, and 

after 1931 all weather stations contributed data for most years. The data from all weather 

stations was checked for missing values. If any weather station did not have data for 

every month in a given year, the data from that weather station for that year were 

excluded from the analyses. The climatic data were reduced to annual averages across all 
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sites in order to control for spatial variation in climate. I conducted a principle 

components analysis (PCA) to reduce the multiple abiotic variables (i.e., average 

temperature, average high temperature, average minimum temperature, and yearly 

precipitation) into 2 principle components describing the climate in multivariate space. 

Since average minimum and maximum temperatures are inherently correlated with 

average annual temperature, I first regressed minimum and maximum temperatures 

against average annual temperature, and the residuals from this analysis were used in the 

PCA. In this way, I was able to more accurately describe climate space by isolating the 

effects of maximum and minimum temperatures on phenology, independent of annual 

average temperature. This is particularly important if the range of temperatures has an 

influence on phenology. The summary of these data represented by the first two principle 

components allowed me to explore the response of each species to a more meaningful 

variable that incorporated multiple interacting factors contributing to climate.  

 Plant phenology—All available herbarium specimens for our target species were 

acquired from six herbaria that were considered to have the largest holdings of these 

species, the Missouri Botanical Garden, University of Arkansas Herbarium, Illinois 

Natural History Museum, United States National Herbarium, New York Botanical 

Gardens, and Field Museum. The development stage of each specimen was calculated 

using a continuous variable that standardized for floral output. All floral buds, open 

flowers, and fruits were counted, and I ranked each unit (i.e., bud as zero, flower as 1, 

and fruit as 2), summed them, and divided by the total floral output. Development stage, 

was calculated as, 

DS = b*0 + f*1 + r*2      Equation 1.0 

   2(b+f+r) 
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where b is the number of buds, f is the number of flowers and r is the number of fruits. 

Therefore, phenological stage ranges between zero and one, where zero denotes a plant 

that is in full bud, 0.5 denotes a plant in full bloom, and one reflects an individual in full 

fruit. Development stage of all Scutellaria taxa was biased by development stage; many 

more individuals were collected at the developmental limits (i.e., zero and one). 

Individuals at these limits were excluded from the analyses, in order to remove this bias 

and acquire a normal distribution. All collection dates were converted into a continuous 

Julian date.  

In order to control for latitudinal variation in climatic conditions, I used latitude as 

a covariate for all analyses in order to account for this variation. Many modern specimens 

were georeferenced and for other specimens with sufficient descriptive locality 

information on the herbarium labels, I estimated latitude via satellite imagery in Google 

Earth (Google, 2011). Specimens that could not be georeferenced were excluded from the 

analyses. Using the descriptors on the herbarium labels, habitat was categorized into four 

main types, Glade, Prairie, Woodland and Disturbed, representing the major habitat types 

in which these species were found. The designation “Glade” included all specimens with 

habitat described as upland prairies, rocky prairies, bald knobs, etc. “Woodland” refers to 

specimens collected from habitats characterized as rocky woodlands, wet woodland, 

upland woodland, forests, etc. “Prairie” included specimens collected from meadows, 

prairies and wet prairies, and “Disturbed” denotes habitats along roadsides, railroads, and 

power-lines, unless otherwise specified on the herbarium specimen. There were only 3 

specimens in woodland habitats for S. parvula; therefore I pooled all non-glade habitats 

in order to increase replication. 
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 Statistical Analyses—Regression analyses were conducted to determine whether 

and which abiotic factors and their composite climate variables (PC 1 and 2) were 

changing through time. Multiple regression was used to test which variable and their 

interactions explained the most variation in phenological stage for each species. 

Specifically, I tested for the effects of climate in a given year (defined as principle 

component 1(PC 1)), change in climate through time (represented by time in years), 

habitat (the common species only), and the interactions of these factors on the 

relationship between development stage and collection date. The interaction between 

climate (PC 1) and collection date tested the prediction that the phenology of these 

species is controlled by climate and not (for instance if the species is photoperiodic). 

Change in phenology due to climate change was documented as the interaction between 

collection date and year. Latitude was included as a covariate in order to account for 

spatial variation in phenology. Model reduction was used (step in the R Statistical 

Package (R Development Core Team 2008), in order to refine the statistical result. The 

step function systematically removes higher-order terms from the model structure, 

compares the Akaike information criterion (AIC; a measure of relative goodness of fit 

that penalizes model complexity) between models, and reduces the model to that with the 

best fit (i.e., lowest AIC).  

 All variables were transformed for normality, and if normality could not be 

achieved, the statistical test was repeated with summarized data or via nonparametric 

tests. Time in years could be not normalized for either Delphinium taxa or for S. ovata, 

but the results were consistent when I conducted the analyses when time in years was 

categorized into pre- and post-1960 time periods. I report the results of the analysis with 
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time as a categorical variable for the Delphinium taxa for ease of interpretation. For the 

Scutellaria species, I report the results of the analysis with time as a continuous variable, 

because the development stage of S. bushii was biased by time (all pre-1960 individuals 

were in full fruit). Analyses could only be conducted for the latter part of the century. 

Latitude was non-normal for D. treleasei, and analyses were conducted with and without 

the covariate. There was no difference in the analyses for D. treleasei, so I report the 

analyses conducted on the categorical time variable here.  

RESULTS 

 Regional climate change—The first principle component of climate (PC 1) in 

Missouri and Arkansas explained 69.46% variation, and the second explained an 

additional 27.21%, for a total of 96.66% of variation explained by the first two principle 

components. The first principle component of climate has changed over the last 117 years 

(DF = 109, R
2 

= 0.179, F = 23.73, P < 0.0001; Figure 5-2A) but the second has not (DF = 

109, R
2 

= 0.0131, F = 1.44, P > 0.05; data not shown). Therefore, I focus on the effect of 

changes in PC1 on phenology as the climate change factor. When tested independently, 

minimum temperatures (DF = 109, R
2 

= 0.079, F = 9.31, P = 0.029; Figure 5-2B) and 

precipitation (DF = 109, R
2 

= 0.0939, F = 11.29, P = 0.0011; Figure 5-2C) were 

positively correlated with time and are driving the changes in climate (PC 1) toward a 

warmer and wetter climate. There was no change in average (DF = 109, R
2 

= 0.019, F = 

2.13, P > 0.05) or maximum daily temperatures (DF = 109, R
2 

= 0.0002, F = 0.023, P > 

0.05) through time.  

  Phenological responses to climate change— the development stage of D. 

treleasei, the rare species, was significantly affected by collection date (N = 20, F = 
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26.37, P < 0.0001) and climate (N = 20, F = 8.04, P = 0.0114), and had a marginal 

response to climate change (N = 20, F = 3.68, P = 0.0725; Figure 5-3A), in congruence 

with my hypotheses. Latitude also explained a marginally significant amount of variation 

in the development stage of D. treleasei (N = 20, F = 4.34, P = 0.0535) but did not 

improve the performance of the model; therefore, it was removed from the final model. 

Not surprisingly, collection date explained a significant amount of the variation in the 

development stage of D. carolinianum (N = 79; F = 11.95; P = 0.0010). The variation in 

development stage of D. carolinianum was not significantly described by latitude or any 

interaction term. For instance, there was no effect of habitat on response to climate 

change (N = 79, F = 0.07; P > 0.05). Neither latitude nor climate was a significant factor 

(N = 79, F = 0.03, P > 0.05; N = 79, F = 0.61, P > 0.05; respectively) in explaining the 

development stage of D. carolinianum.  

 Due to bias in the age of individuals of Scutellaria bushii throughout the century 

(all individuals from the early-20
th

 century were in fruit), only analyses based on modern 

collections (1960 to present) could be analyzed, and the replication was reduced to 11. 

During this period, variation in the phenophase of S. bushii was explained by collection 

date (N = 11, F = 20.17, P = 0.0020) and marginally by time (N = 11, F = 3.69, P = 

0.0912; Figure 5-4A), my measure of climate change. Latitude (N = 11, F = 0.189, P > 

0.05; removed from the final model via step) and climate (N = 11, F = 2.45, P > 0.05) did 

not explain a significant amount of variation in the phenophase of S. bushii, but low 

replication and the lack of early-century data make these analyses inconclusive.  

 Variation in the development stage of S. ovata was explained by latitude (N = 55, 

F = 9.64, P = 0.0031) and marginally by collection date (N = 55, F = 3.64, P = 0.0620). 
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There was no significant interaction between habitat and collection date (N = 55, F = 

1.81, P > 0.05) or between habitat and response to climate change (i.e., Habitat by Time 

by Julian date; N = 55, F = 0.41, P > 0.05). Neither climate (N = 55, F = 1.96, P > 0.05) 

nor time (N = 55, F = 1.93, P > 0.05; Figure 5-4B; removed from the final model via 

step) explained a significant amount of the variation in phenology for S. ovata. Therefore, 

spatial variation in day length or temperature appears to account for the phenology of S. 

ovata.  

 Scutellaria parvula’s development stage was correlated only with collection date 

(N = 22, F = 5.54, P = 0.0289). There was no interaction between climate and collection 

date (N = 22, F = 0.18, P > 0.05; removed from final model via step) or between 

collection date and change through time (N = 22, F = 1.16, P > 0.05; Figure 5-4C; 

removed from final model via step), suggesting that other factors are stabilizing the 

phenological response of S. parvula to climate change, such as day length, genetic 

constraints, or interspecific interactions. There was no effect habitat (N = 22, F = 0.79, P 

> 0.05; removed from final model via step) or its interaction with time (N = 22, F = 

0.072, P > 0.05) on the phenology of S. parvula. Latitude also did not explain a 

significant amount of variation seen in the development stage of S. parvula (N = 22, F = 

0.11, P > 0.05; removed from final model via step).   

DISCUSSION 

In this study, I find that related pairs of widespread and rare endemic species 

respond differently to regional climate change, and intrinsic factors appear to drive their 

phenological patterns. The climate of the Ozark region has seen an increase in minimum 

temperatures and precipitation over the past century, and one of the rare plants, 
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Delphinium treleasei, is responding with phenological change. I predicted that species 

that are endemic to high-stress environments would be less responsive to climatic change, 

assuming local adaptation to abiotic stress. However, the results indicate the opposite. 

The endemic D. treleasei is blooming earlier but the phenology of the widespread 

species, D. carolinianum, has not changed within any habitat, including glades. 

Therefore, the phenological change documented in D. treleasei is not driven by local 

habitat or stress tolerance, contrary to my predictions. While stress tolerance per se is not 

driving the phenology of D. treleasei, local adaptation may still be playing an important 

role through phenotypic plasticity. Greater plasticity in phenology would allow 

individuals to track temporal variation in climate and either avoid more stressful 

conditions or capitalize on favorable conditions. For instance, if a species specializes on 

hot, dry environments, it may be more responsive to a reduction in stress, such as an 

increase in precipitation (Aaronson, 1992; Angert et al., 2010). The differential responses 

of sympatric congeners may induce changes in their interspecific interactions. On 

average, D. carolinianum blooms roughly 2.8 days earlier than D. treleasei. Therefore 

within native habitats, the phenologies of the Delphinium species are converging. These 

species of Delphinium can hybridize (Warnock, 1987), and they share some pollinators 

(Miller-Struttmann, data not published). Therefore, hybridization rates and competition 

for shared pollinators could increase in the future if the phenology of D. treleasei 

continues to advance. 

 None of the Scutellaria species responded to changes in climate with shifts in 

phenology. Variation in the phenology of one common congener, S. ovata, was 

influenced by spatial variation and marginally by collection date, but neither climate nor 
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climate change affected phenology. Scutellaria ovata may be responding to day length or 

to climatic factors that are not changing in this region, such as high temperatures. The 

developmental stage of another widespread species, S. parvula, was correlated with only 

collection date, and there was no effect of spatial variation or climate. Similarly, the 

climatic factors to which S. parvula is responsive may not be changing in this region of 

the degree of change in key climatic factors may not be sufficient to affect the phenology 

of this species. On the other hand, additional factors such as interspecific interactions 

could be stabilizing the response of S. parvula to climate change if they are exerting 

selective pressure on phenology in opposing directions (Elzinga et al., 2007; Strauss and 

Irwin, 2004).  The phenology of the endemic S. bushii was marginally described by 

climate change, as indicated by difference in phenology since 1970. Interestingly, the 

direction of the relationship between climate change and phenology is counter-intuitive. 

Scutellaria bushii is blooming marginally later through time, not earlier as I predicted and 

as seen in D. treleasei. Climate change in Missouri and Arkansas is driven by two main 

factors, minimum temperature and precipitation. Unlike many species, the phenology of 

S. bushii may not be responding to temperature, since minimum temperatures are 

increasing and should result in the advancement of flowering. Precipitation has increased 

by roughly 20 cm (20%) over the last century, may be driving the phenology of S. bushii. 

An increase in precipitation could lead to later onset of flowering or to a longer flowering 

period. However, the low replication of scorable specimens reduced my ability to 

rigorously test the prediction that intrinsic factors drive the phenological response of S. 

bushii to climate change, and this pattern should be interpreted with caution. Detailed 
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field experiments should be conducted to establish if this pattern is real and to explicitly 

test the mechanisms potentially leading to the phenological shifts seen in S bushii. 

 This is the first study of which I am aware that documents the phenological shifts 

of plant species using a continuous phenophase measure. A continuous measure allowed 

me to disentangle the effect of collection date from phenological stage, which is a 

confounding factor in most phenological studies using herbarium specimens. Most 

studies rely on more general categories, such as in fruit or in flower, and could be 

misleading if collection date and phenophase are correlated through time. Herbarium 

records are an abundant and important resource for understanding the effects of climate 

change on phenology. However, data collected from these records should be analyzed 

carefully, and the results interpreted with caution. Incorporating vital biological 

information, such as the developmental stage of the individual, will improve our 

understanding and prediction of species responses to climate change. Understanding the 

determinants of plant phenology allows scientists to summarize and categorize the types 

of species that will respond to climate change and in which direction they will respond. 

This broader scale understanding will improve our ability to predict which species should 

be of future conservation concern and those that may have lower risk of decline.  
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Figure 5-1. A map of the 21 weather stations ( ) in Missouri and Arkansas from which 

data were summarized in order to investigate changes in climate through time (1987-

2009). Stations were chosen based on duration of data and location in order to account 

for spatial variation in climate throughout the region in which the herbarium specimens 

were collected.  
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Figure 5-2. Changes in climatic variables between 1897 and 2009 in Missouri and 

Arkansas as documented by 21 weather stations, including (A) the composite variable 

Climate, defined as the first principle component (PC 1) from a principle components 

analysis of four abiotic variables (i.e., mean temperature, maximum temperature, 

minimum temperature, and precipitation), (B) average monthly minimum temperature 

(ºC), and (C) total annual precipitation (cm).  
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Figure 5-3. Phenology of an endemic plant, Delphinium treleasei, and its widespread 

congener, D. carolinianum, during two period of time, before and after 1960 (pre- and 

post-1960, respectively). Phenology is defined as the product of collection date and 

phenophase, which is a continuous variable that describes the developmental stage of an 

individual. Statistical significance is denoted by a dagger (†) for results with P < 0.075. 
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Figure 5-4. Phenology of an endemic plant, Scutellaria bushii (A), and two widespread 

congeners, S. ovata (B) and S. parvula (C) during the past 40 to 105 years in Missouri 

and Arkansas. Phenology is defined as the product of phenophase and collection date, 

and only S. bushii had a marginally significant response to climate change through time. 
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The goal of this dissertation was to determine the relationship between 

reproduction and rarity in three glade-endemic plants based on predictions developed 

from two prominent ecological principles, reproductive assurance and stress-adaptation. I 

confirm the predicted that locally-abundant, regionally-rare species (LARR) are more 

resistant to stressful abiotic conditions and have more specialized reproductive systems 

than the CC species. Moreover, the LARR and CC species responded differently to 

regional climate change, which could lead to a shift in their interspecific interactions. By 

coalescing abiotic and biotic mechanisms into a suite of predictions that could be tested 

simultaneously, this research is more biologically realistic that previous studies of rarity 

and reproduction and corroborates the necessity for a more nuanced theory relating the 

two.  

Contrary to the traditional prediction that rare species have more generalized 

reproductive systems, two of the three LARR species studied in this dissertation had 

larger flowers and more specialized pollination systems in comparison to their CC 

species. This pattern confirms my predictions that optimal resource allocation differed 

between congeners and that the LARR taxa had traits that are associated with higher 

outcrossing rates. Therefore, factors other than reproductive assurance via low pollen 

availability may be influencing the pollination biology and reproductive success of these 

species, such as offspring quality and local-adaptation. The LARR species did not differ 

consistently from the CC species in vegetative traits that are associated with stress-

adaptation and do not appear to be more stress tolerant than the CC species. While some 

traits indicate that the LARR species are not locally adapted to the glade environment, I 
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could not measure certain key traits (i.e., biomass and root to shoot ratios) that may affect 

their ability to tolerate stressful conditions.  

Experimental manipulations of abiotic conditions (i.e., water availability and 

temperature) confirm that the glade endemic plants are more resistant to high stress 

conditions. The CC species had reductions in biomass and growth parameters with an 

increase in stress, and the LARR species did not. Moreover, allocation to reproductive 

output differed between two of the three pairs of congeners. The LARR species had 

fewer, higher-quality offspring than their CC species, and stress level did not affect 

offspring quality or quantity in the LARR species. Offspring quality may increase 

survival rates and population viability in more stressful habitats. When under low stress 

conditions, the CC species produced many more seeds than the LARR species, but 

seedset was equivalent to their LARR congeners when stress was high. Differences in 

reproductive allocation between congeners corroborate my prediction that production of 

high quality offspring is adaptive in stressful environments. Greater offspring abundance 

in the CC species may allow them to invade novel habitats with a greater range of abiotic 

conditions, and therefore may contribute to their larger bigeographic ranges. The CC 

species also had traits associated with greater competitive ability for pollinators, such as 

being taller and producing more flowers. However, total display size did not differ, since 

the LARR species had fewer but marginally larger flowers.  

Field competition experiments determined that the LARR and CC species did not 

differ in their ability to compete for pollinators and that pollinator behavior (visit 

duration) also did not differ either between congeners or treatments. Landscape-scale 

spatial variation in floral traits was mirrored by pollinator behavior; plants at sites with 
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shower plants were visited more frequently than those at sites with less attractive 

individuals. Interestingly, one LARR species, D. treleasei, had greater reproductive 

success (more pollen tubes germinating down the style) than its CC species at the site 

with higher visitation rates, despite the fact that visitation rate and visit duration were not 

different between congeners. More germinating pollen tubes without a difference in 

pollinator effort suggests that the LARR species has greater proportional pollination 

success (e.g., higher fertilization rates per unit of pollination effort). This pattern supports 

my prediction that specialized pollination systems are more efficient and result in the 

transfer of high quality pollen. Similarly, the Echinacea species differed in pollen 

deposition rates at one site. Echinacea paradoxa (LARR) had more pollen on their 

stigmas, and neither visitation rate nor visit duration differed between species. However, 

this difference did not result in greater reproductive success of the LARR species. Pollen 

tube growth was low for both species, which could reflect low pollen quality ora 

reduction of pollen tube growth in cut inflorescences. These results indicate an important 

role for large-scale mechanisms and pollination specialization in determining local 

reproductive success of LARR species and their CC species.  

Finally, this work documents the differential responses of LARR and CC species 

in their responses to climate change. The CC species, which I predicted would be more 

responsive to regional climate change, have not changed in their phenological patterns. 

The LARR species, on the other hand, are responding to climate change, but their 

phenological shifts are in opposing directions. One species, D. treleasei, is advancing in 

flowering date and the other, S. bushii, is delaying. The variation in responses between 

the LARR species suggests that they are responding to different climatic variables. 
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Delphinium treleasei is blooming earlier, which is consistent with higher minimum 

temperatures. Scutellaria bushii, which is blooming later, may be responding to an 

increase in precipitation that has occurred in this region. Few studies have looked at the 

role of precipitation on floral phenology, and this study indicates that it warrants more 

exploration. The differences between congeners in response to climate change imply that 

interspecific interactions may also shift with the new abiotic conditions. The Delphinium 

species are converging in their phenologies, which could result in competition for shared 

pollinators or greater hybridization rates.  

The research in this dissertation advances our understanding of how locally-

abundant, regionally-rare species differ in their intrinsic traits from and in their 

interactions with their common congeners. I demonstrate that both biotic and abiotic 

factors, specifically pollination biology and stressful abiotic conditions, may be 

contributing synergistically to the range restriction of three glade endemic plant species. 

Determining how biotic and abiotic factors interact to affect species traits, and potentially 

their distributions, is particularly important for rare and endemic species, many of which 

are at increasing risk of extinction. Differences in the responses of LARR and CC species 

to regional climate change further support the need for a more nuanced understanding of 

the seven types of rarity. In light of the current rate of climate change, a more informative 

framework with which to predict which rare species are most vulnerable to changes in 

climate is imperative.  

Future work 

In this dissertation, I document the unique attributes of three species that fall into 

one of the seven types of rarity, locally-abundant and regionally rare taxa. Hitherto, the 
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focus of most research into rarity has focused on those species that are locally-rare, and a 

robust body of theory and empirical studies explores the ecological and evolutionary 

causes and consequences of this type of rarity. However, the theory is less developed for 

the other six types of rarity, which warrant closer examination. In future work I will 

expand this theory in order to better understand the ecological and evolutionary 

mechanisms that drive variation in species distributions. Specifically, future work should 

explore the mechanisms behind the disparity in offspring quality and quantity between 

congeners by documenting the relationship between mating system and offspring survival 

in endemic and widespread species.  

My research shows that LARR and CC species differ in resource allocation to 

reproduction, which indicates that offspring quality may be adaptive in stressful habitats. 

In order to more fully understand what excludes the LARR species from non-glade 

habitats, I advise that future research explore the role of propagule pressure and offspring 

quality on the invasion success of the LARR and CC species into novel habitats and on 

survival in high stress environments. While greenhouse studies can inform how species 

respond to stress under controlled conditions, the abiotic conditions on the glades cannot 

be reproduced. Field studies should be conducted in order to confirm that these patterns 

are consistent in more realistic conditions and in the context of natural ecological 

communities.   

 Research into additional pairs of related species, which vary in their distributions 

and in the habits on which they specialize, will determine how generalizable the results 

from this research are. If rare species that are habitat specialists are more dependent on 

their coevolved pollinators for persistence, they may be more susceptible to pollinator 
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declines. The concomitant decline of oligolectic (specialist), pollinating insects and 

pollinator-dependent plants in Europe (Biesmeijer et al., 2006) illustrates the need for a 

more holistic understanding of the mechanisms determining species biogeographical 

ranges, particularly for rare and endemic species, many of which are at increasing risk of 

extinction. Coalescing abiotic and biotic mechanisms into a suite of predictions that can 

be tested simultaneously will not only make the results more biologically realistic, but it 

will also make them more relevant. With a greater understanding of the factors that 

determine variation in species distributions, we will be better equipped to protect, 

conserve and restore Earth’s declining biodiversity in a rapidly changing environment.   
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This dissertation documents the relationship between stress-adaptation and 

reproductive specialization in three endemic plant species (Delphinium treleasei, 

Echinacea paradoxa, and Scutellaria bushii) that are locally abundant but restricted to 

stressful habitats and their closely-related congeners (D. carolinianum, E. pallida, S. 

ovata, and S. parvula) that have broader habitat use, including hot, xeric habitats. In 

Chapter Two, I test two hypotheses concerning reproductive specialization in endemic 

plants and their common congeners (CC). I quantify morphological traits that are 

associated with stress-adaptation and reproductive specialization, pollinator behavior, and 

reproductive specialization. The locally abundant, habitat specialist (LAHS) species were 

significantly different from their CCs in vegetative traits but the direction of the 

differences was not consistent among genera. On the other hand, two of the three LAHS 

taxa had larger flowers and fewer dominant pollinators than their CCs.  
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In Chapter 3, I examine the responses of the LAHS and CC plants to drought and 

high heat conditions in order to explicitly test the prediction that the LAHS species are 

more resistant to high-stress environments. The LAHS species were more resistant to 

stress, and the CC species were not. Moreover, the LAHS species had fewer, higher-

quality offspring, whereas the CC species have more seeds of lower quality. In Chapter 4, 

I test the hypothesis that two LAHS species are poorer competitors for pollinators, as 

predicted by traditional theory of reproduction in rare species. The congeneric pairs did 

not compete for pollinators but varied in their morphological traits and reproductive 

success across sites.  

Finally, the research in Chapter 5 explores the response of two LAHS species and 

their CCs to regional climate change. Using herbarium specimens, I test the prediction 

that LAHS species that specialize on stressful habitats are less responsive to climate 

change in comparison to their CC. The LAHS species are responding to climate change 

by flowering earlier, but none of the widespread species exhibited a change in phenology 

with climate change. This dissertation supports a more nuanced theory of the relationship 

between reproductive specialization and rarity that addresses additional factors 

influencing rare taxa, such as stress-adaptation, and that has important implications for 

species’ responses to climate change. 
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INTRODUCTION  
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A fundamental goal in ecology and evolutionary biology is to determine the 

mechanisms that influence species distributions, particularly among rare and widespread 

species. Both biotic and abiotic factors are thought to contribute to species distributions, 

particularly in light of their reproductive biology. There are several competing theories 

contributing to our understanding of the relationship between reproduction and rarity. 

The first is that of reproductive assurance, that rare species should maintain the ability to 

self-fertilize in order to buffer reproductive success from variability in pollination 

success. Rare species are predicted to have higher selfing rates and to be self-compatible 

(Baker, 1955; Kelly et al., 1996; Neiland and Wilcock, 1998; Izco, 1998; Fausto et al., 

2001; Murray et al., 2002; Domínguez Lozano and Schwartz, 2005; Jacquemyn, 2005; 

Moeller and Geber, 2005). This theory is realistic for locally rare species that may be 

infrequently visited by pollinators. However, species that are locally abundant but 

regionally rare may not be limited by pollen availability, and other factors may play a 

more prominent role in determining their reproductive biology, such as stressful abiotic 

conditions (Armbruster and Reed, 2005; Fox and Reed, 2011). Rare species may have 

greater outcrossing rates in order to avoid negative genetic effects of inbreeding or 

genetic drift common to small population sizes (Wright 1922; Del Castillo and Trujillo, 

2008; Firman and Simmons, 2008; Kennedy and Elle, 2008; Espeland and Emam, 2011).  

 My objective was to examine the relationship between rarity and reproduction in 

three locally abundant, regionally rare glade plant species that are endemic to stressful 

habitats, in comparison to widespread, closely-related species that occur on glades but are 

not restricted to them. Glades are south to southwest facing, rocky outcroppings found 

throughout the Ozark region of Missouri and Arkansas. They are characterized by high 
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quantity of exposed bedrock, low herbaceous cover, limited soil structure, and hot and 

xeric conditions (Baskin and Baskin, 1982; Nelson and Ladd, 1982; Yatskievych, 1999; 

Templeton et al., 2001). Glades have been of interest to ecologists and evolutionary 

biologists for decades due to their assemblage of endemic species, many with restricted 

ranges (Kucera and Martin, 1957; Baskin et al., 1974, 1982; Baskin and Baskin, 1985; 

Learn and Schaal, 1987; Jenkins and Jenkins, 2006) and their spatial structure, which 

makes them ideal for studies of dispersal (Brisson et al., 2003), spatial genetic structure 

(Learn and Schaal, 1987; Templeton et al., 2001; Brisson et al., 2003), metapopulation 

dynamics (Ryberg and Chase, 2007), and many other ecological and evolutionary topics 

(e.g., Van Zandt et al., 2005; Van Zandt, 2007).  

Glades are also ideal for the study of rarity and reproductive theory, since they 

serve as habitat for several endemic plant species occurring in sympatry with widespread, 

related congeners. Therefore, the mechanisms that restrict one species, and not the other, 

to glades can be explored while controlling for the potential effect of evolutionary history 

on species traits (Bevill and Louda, 1999). In this dissertation, I test hypotheses 

concerning the relationship between stress-adaptation and reproductive biology in three 

endemic glade species (Delphinium treleasei, Echinacea paradoxa, and Scutellaria 

bushii) in comparison to their widespread, closely-related species (D. carolinianum, E. 

pallida, S. ovata, and S. parvula). Each of the following four chapters has an introduction 

to the principles behind the specific hypotheses to be tested, new data and analyses, and 

separate tables and figures.  

In the first chapter, I document differences in the morphological traits, pollination 

biology, and breeding systems of three congeneric species pairs through an in situ field, 
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observational study. In the second chapter, I explicitly test three hypotheses: (1) glade 

endemic species are more resistant to experimental stress, (2) they have floral traits that 

are associated with decreased attractiveness to pollinators but increased outcrossing rates, 

and (3) reproductive output is allocated to fewer, higher quality offspring in comparison 

to their widespread congeners. The research presented in Chapter 4 tests the prediction 

that the floral traits of two stress-adapted endemic plants confer lower competitive ability 

for pollination services in comparison to their common congeners. The research in 

Chapter 5 documents the phenological responses of two of the congeneric species pairs to 

regional climate change. The final chapter concludes the dissertation with a discussion of 

the major results and their conservation implications, particularly in light of recent global 

changes.  
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INTRODUCTION 

 The relative importance of biotic and abiotic mechanisms in determining species’ 

ranges is an fundamental debate in ecology and evolutionary biology. Competitive 

exclusion (Hardin, 1960; Kunin and Gaston, 1997; Lloyd et al., 2002) and specialization 

to abiotic or biotic conditions may restrict the biogeographical range of a species 

(Rabinowitz et al., 1981; Kruckeberg and Rabinowitz, 1985; Kunin and Gaston, 1997; 

Gregory and Gaston, 2000). Historically, the relationship between reproductive biology 

and rarity has focused on rare species with small populations sizes. Rare plants are 

predicted to have self-compatible breeding systems and less specialized pollination 

systems in order to maintain reproduction in response to low pollen availability (Baker, 

1955; Kelly et al., 1996; Izco, 1998; Neiland and Wilcock, 1998; Fausto et al., 2001; 

Murray et al., 2002; Domínguez Lozano and Schwartz, 2005; Jacquemyn, 2005; Moeller 

and Geber, 2005). While this prediction of reproductive assurance may be relevant for 

those species that are locally rare, habitat specialists, many of which are locally abundant, 

should be less restricted by pollen receipt, allowing for factors other than pollen 

availability to influence their reproductive biology (Rabinowitz et al., 1981; Kruckeberg 

and Rabinowitz, 1985; Fenster et al., 2004; Williams et al., 2009), such as resource 

limitation or specialization on stressful abiotic conditions. Rabinowitz et al. (1981) 

categorized species distributions into seven forms of rarity based on three factors: 

population size, geographic extent, and habitat specificity (Table 2-1). Locally-abundant, 

habitat specialist (LAHS) plants may experience very different selective pressures, such 

as for increased outcrossing rates, enhanced offspring quality, or decreased resource-loss 

in stressful environments.  
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For instance, rare species that specialize on a particular set of abiotic conditions 

may have mechanisms that increase genetic variation, which may buffer the population 

against inbreeding depression or genetic drift (Espeland and Emam, 2011). If resources 

are limiting, investment in fewer, larger flowers that restrict the number and type of 

effective pollinators should increase outcrossing rates (Karron et al., 2004; Mitchell et al., 

2004; Bell et al., 2005; Karron et al., 2009; Mitchell et al., 2009) and potentially enhance 

offspring quality. Plants with fewer flowers open concurrently are visited less frequently 

and for shorter periods of time, resulting in the increased deposition of outcross pollen. 

By limiting access to floral rewards (e.g., by increased spur or tube length), species may 

restrict the number and type of visitors that can access the reward, resulting in more 

specialized pollination systems (Anderson and Johnson, 2008), which should also 

increase offspring vigor and decrease resource losses through investment in lower-

quality, self-fertilized offspring (Darwin, 1877; Whittall and Hodges, 2007).  

On the other hand, plants that are adapted to stressful (i.e., hot and dry) conditions 

often have similar suites of traits that are thought to be adaptive (Bryant, J.P., Chapin, 

F.S., & Klein, D. R., 1983; Chapin, F.S. 1980; Chapin, F. S., Autumn, K., & Pugnaire, F., 

1993; Grime, 1977). While advantageous in more extreme abiotic habitats (Bryant et al., 

1983; Chapin et al., 1993; Grime, 1977), stress adaptations often come at a cost, such as 

decreased competitive ability in the absence of stress (Baskin, J. M. & C. C. Baskin, 

1988; Grime, 1977) and potentially in reduced attractiveness to pollinators in more 

productive habitats. For instance, stress-adapted species are often shorter, with overall 

reduced floral output, and lower seed production (Aragón et al., 2008; Kudo et al., 2008). 

Plants that are taller (Dickson and Petit, 2006) and have larger floral displays are more 
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attractive to pollinators and could be competitive dominants for pollinators (Erhardt and 

Rusterholz, 1998; Naug and Arathi, 2007; Aragón et al., 2008), which may select for 

more generalized pollination systems (Muchhala et al., 2010). Moreover, nectar 

production, an important floral attraction trait, is reduced in order to conserve water in 

xeric environments (Halpern et al., 2010) and therefore may result in reduced 

attractiveness to pollinators, if sugar quantity is similarly reduced. As survival becomes 

increasingly important for population stability, resources allocated to reproduction (e.g., 

floral attraction traits) may be reduced (Silvertown et al., 1993), potentially resulting in 

lower floral output and competitive ability for pollinators.  

 I conducted observational and experimental studies to test six hypotheses 

regarding the relative importance of habitat specialization via stress-adaptation versus 

reproductive specialization in three locally abundant, habitat specialist (LAHS) plants 

that are endemic to the Ozark glades (i.e., geographically and edaphically restricted 

habitats characterized by hot and dry conditions) and congeners of these three species 

that can occur on glades but are not restricted to them. First, I test the hypotheses that 

LAHS plants have traits associated with stress-resistance and/or pollination 

specialization, such as smaller leaves and fewer, smaller flowers. Next, I test the 

predictions that LAHS plants have lower rates of autogamy and are more dependent on 

their pollinators for their reproductive success (i.e., more pollen-limited) in comparison to 

closely related species with broader habitat use. Finally, I test the hypotheses that 

visitation rates are lower and pollination specialization scores are higher in comparison to 

their common congeners (CCs). In order to determine rates of autogamy and pollen 

limitation, I conducted breeding system and pollen-supplementation experiments. The 
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hypotheses regarding pollination specialization and pollinator movement were examined 

through a three-year observational study of pollinator behavior. I show that two of the 

three LAHS taxa are have more specialized reproductive biology (morphology and 

pollination), but do not have traits associated with increased stress-resistance. I then 

discuss the implications of these findings for species responses to climate change and 

conservation efforts in stressful environments. 

MATERIALS AND METHODS 

Study System—The glades of the Ozark Mountain Region are rocky, arid 

outcroppings that are spatially restricted to south or southwest facing ridge tops within a 

matrix of more mesic oak-hickory forest matrix (Learn and Schaal, 1987; Baskin and 

Baskin, 1988; Templeton et al., 2001). They are dominated by grasses and forbs and 

contain several endemic plant species (Nelson and Ladd, 1982; Yatskievych, 1999), 

many with restricted ranges. Temperature data recorded at three replicate glade, forest, 

and prairie sites between December 2007 and August 2008, indicate that glades are 

significantly hotter than the surrounding habitats during the spring and summer months 

(DF = 3688, F = 2.36, p = 0.0017; data not shown), when many LAHS glade plant 

species are photosynthetically active and blooming.  

I chose three LAHS glade species, Delphinium treleasei (Ranunculaceae), 

Echinacea paradoxa (Asteraceae - Heliantheae), and Scutellaria bushii (Lamiaceae) that 

are restricted to glades in the Ozark Region in Missouri and Arkansas but locally 

abundant (i.e., hundreds of individuals blooming concurrently per glade). Each has a 

common congener (respectively, D. carolinianum, E. pallida, S. ovata and S. parvula, 

hereafter common congeners (CC)) that may be locally abundant on glades but is not 
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restricted to them. I use two species of Scutellaria because neither matches all of my 

criteria. Scutellaria ovata tends to occur at the edges of glades where there is greater soil 

depth and canopy cover, and it is less often found in the center of glades; S. parvula 

occurs in the center of glades, but these glade specialists may represent a subspecies 

within the broader species (George Yatskievych, pers. com.). Comparing congeneric 

pairs provides insight into the factors that restrict one species to glades but not the other. 

Moreover, comparing several unrelated LAHS species to their common congeners 

mitigates the potential influence of evolutionary history on the biological traits correlated 

with endemism, such as specialized pollination. This provides a phylogenetically 

controlled study of the mechanisms contributing to the restricted ranges of these species 

(Kruckeberg and Rabinowitz, 1985; Bevill and Louda, 1999). Multiple congeneric 

comparisons allow for broader interpretation of the results from this study (Bevill and 

Louda, 1999) and a greater understanding of the relationship between stress-adaptation 

and reproductive biology, which has hitherto been not been explicitly explored.  

Vegetative traits—I quantified selected vegetative that I hypothesized would 

differ between the stress-adapted and non-stress-adapted species, measured for 10-15 

individuals per site for multiple sites per species (average = 4.82 sites and 144.5 

individuals per species; Table 2-2; Figure 2-1). Over three field seasons (2007 – 2009), 

morphological traits were measured at no fewer than four glade sites for each LAHS 

species and no fewer than one non-glade (i.e., prairie and woodland) and two glade sites 

for the widespread taxa (Table 2-2). I was not able to obtain data on above- or 

belowground biomass due to restrictions on the collection of the LAHS plants and the 

required sampling techniques (which would include substantial destruction of glade 
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habitat). Therefore, biomass was estimated as the total number of leaves and total stem 

length (i.e., the product of the number of stems and stem length). In 2009, one medium-

sized leaf per individual was measured for leaf thickness, pressed and digitized. The leaf 

area of each leaf was quantified in Sigma Scan (SYSTAT Software Inc., 2002), and total 

leaf area was calculated (i.e., average leaf area multiplied by the total number of leaves).  

Floral traits—I measured floral attraction traits (i.e., display size, nectar volume) 

and floral morphological traits that I predicted could affect pollinator behavior and 

pollinator effectiveness (i.e., amount of pollen carried and pollinator fidelity). Due to 

morphological differences, some floral attraction traits were quantified differently for 

each of the genera. For the Delphinium species, corolla area was calculated as the product 

of corolla width and corolla height; distance to the nectar reward refers to the length of 

the floral spur. I measured corolla area of the Scutellaria taxa as the square of the lower 

corolla, often called the landing pad, and distance to nectar as floral tube depth. For both 

Scutellaria and Delphinium, I documented the number of flowers produced per individual 

and the number of flowers open concurrently. The proportion of flowers open was 

calculated as the number of flowers open concurrently divided by the total number of 

flowers produced per individual, and total display size was calculated as the product of 

corolla area, as defined above, times number of flowers open. In order to estimate nectar 

production, plants were bagged prior to anthesis, left undisturbed for several hours (4-6 

hours for Delphinium species and 5-6 hours for Scutellaria species, except S. parvula at 

one site where individuals were bagged for 29 hours, because nectar levels were too low 

to quantify after shorter time periods), and nectar was collected via micro-capillary tubes. 

Nectar production was then quantified as nectar volume produced per hour. 
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For the Echincaea species, corolla area was calculated as the product of the width 

and length of an average ray petal, and total display size is corolla area multiplied by the 

total number of ray petals. The number of flowers open per inflorescence was the sum of 

all florets that were shedding pollen or had receptive stigmas, and the proportion of 

florets open was quantified as the total number of florets open divided by the total 

number of florets produced. For all species, relative floral output was standardized by 

total stem length, in order to account for variation in individual plant size. Nectar was not 

collected from Echinacea due to low nectar production and small floret size. 

Reproductive success and breeding systems—In order to estimate reproductive 

success in a common habitat, fruits were collected from individuals at the glade sites, and 

seed set was quantified for up to three fruits per individual. For Delphinium and 

Scutellaria species, total reproductive success is defined as the average number of seeds 

per fruit multiplied by the total floral output. For Echinacea taxa, total reproductive 

success is defined as the proportion of achenes (florets) with a fertilized seed multiplied 

by the total number of achenes per capitulum (inflorescence). Since Echinacea species 

are known to produce unfertilized capsules that collapse when pressure is applied, thirty 

seeds per capitulum were gently pressed with forceps to confirm fertility and ensure 

accurate estimates of reproductive success. Seeds that did not collapse under the small 

amount of applied pressure were assumed to be fertile. For all species, relative 

reproductive success was standardized by total stem length. 

I determined the degree to which each species is self-compatible by breeding 

system studies conducted under controlled greenhouse conditions or in natural 

populations when flowering could not be induced in the greenhouse. Wild-collected seed 
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of the Delphinium and Echinacea taxa were germinated, transplanted and grown to 

flower in the greenhouse. I documented the phenology of reward presentation (e.g., 

corolla expansion, first nectar production, and stigma receptivity) under greenhouse 

conditions and in the field. I was unable to induce flowering of Scutellaria bushii in the 

greenhouse and conducted breeding system experiments for all Scutellaria taxa in the 

field. Thirty individuals per species were bagged before anthesis to exclude pollinators, 

pollinated according to one of three treatments, and kept bagged until fruits developed. 

To demonstrate the role of pollinators in fertilization, the capacity of each species to self-

pollinate, and the degree to which each species is or is not self-incompatible, I applied 

self-pollen, outcross pollen, and no pollen to 10 individuals of each species, respectively. 

Following maturation, I collected the fruit and quantified reproductive success as noted 

above. Degree of autogamy was calculated as the ratio of reproductive success in the 

bagged and in the pollen supplement treatments. Dependence on pollinators for self-

pollination was calculated as the ratio of bagged and self-pollinated treatments.  

Pollination biology— I conducted a pollen supplementation experiment at each 

field site to quantify ambient limitation of reproductive success via inadequate 

pollination. I applied outcross pollen to all receptive stigmas of 10 individuals, excluded 

pollinators from 10 individuals to estimate autogamous fertilization, and tagged 10 

additional individuals which remained open to pollinators and acted as the control. 

Following maturation, all marked flowers or achenes were collected, and the reproductive 

success quantified. Seed fertility of the Echinacea taxa was estimated as noted above. 

Pollen limitation was calculated as supplemented reproductive success minus ambient 

reproductive success.  
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In order to document the pollination specialization of these target plant species, I 

recorded the number, type, and behavior (e.g., visit duration (s), anther and stigma 

contact) of all floral visitors through 30 minute observations during peak periods of 

activity and collected a representative number of each visitor for pollen counts and 

identification. Due to the spatial and temporal variation inherent in plant-pollinator 

interactions, pollinator observations and insect collections were conducted at each site 

over two years, 2008 and 2009. In 2008, ten individual plants were observed for each 

species per site, and in 2009, fifteen individuals were observed. Replication was 

increased in 2009 in order to compensate for low visitation rates. Pollinator observations 

and collections were conducted at both glade and non-glade (i.e., prairies and woodlands) 

sites for all CC species, in order to control for potential differences in pollinator 

assemblages and behavior across sites. One inflorescence per individual was observed for 

30 minutes, two to three times during the blooming period (10-15 individuals x 2 

observation days x 3 sites per species = 60-90 individuals per species in 2008 and 2009, 

respectively; Table 2-2) in order to account for individual and temporal variation in insect 

activity. Since insect identification is often impossible during field observations, visitors 

were categorized into functional groups during field observations. Visitation rate of each 

species was calculated as the product of the visitation rate of the functional group per 30 

minute observation and the proportion of individuals of that functional group represented 

by the given species.  

Following collection in the field, visitors in Hymenoptera and Lepidoptera were 

identified by experts, where possible, to the species level (86.5%), and those in 

Coleoptera, Diptera, and Hemiptera were identified to family. Pollen was washed from 
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insects with ethanol, mounted on slides and stained with Calberla’s solution (Ogden et 

al., 1974; Dafni, 1993; Clinebell and Bernhardt, 1998). Pollen loads were determined for 

each insect species as the average number of pollen grains of the focal plant species 

found on the insect. Pollen was identified with the aid of a pollen reference library of all 

co-blooming species, and total pollen flow (Lj) of the focal plant species was calculated,  

         

where Sj is the total number of insect species visiting plant species j, pi is number of 

species j pollen grains carried by visiting species i, and vi is visitation rate of insect 

species i to plant species j. I measured the specialization of each plant species via the 

Generalization Index (i.e., the number of insect species that account for 95% of pollen 

flow), and the relative importance of all pollinators was quantified as the Dominance 

Index of Pollinator Importance (DPIj, modified from Galloni, 2008). The Dominance 

Index is a modification of the Simpson’s diversity index that accounts for both insect 

pollen load and visitation rate,   

  

(symbols are the same as in Eq. 1). The Dominance Index ranges from zero (i.e., multiple 

pollinators each account for an equal proportion of pollen flow) to one (i.e., one 

pollinator accounts for all of the pollen flow) and is a measure of the pollinator 

importance that accounts for pollinator richness within a defined pollinator community 

(Galloni, 2008). 

            Sj 

Lj = ∑ (pivi)        Eq. 1 
       i = 1 
 

                  Sj 

DPIj =  ∑ [(pivi/Lj)
2]      Eq. 2 

           i = 1 
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Statistics—All morphological, reproductive, and pollination traits were 

normalized where necessary and tested for significant differences between congeners via 

one-tailed t-test in R Statistical Software (R Development Core Team 2008). The 

direction of each t-test (i.e., greater than or less than; indicated in the results table) was 

based on the following hypotheses: (1) the LAHS species have traits associated with the 

xeric SRS and their CC species do not, (2) the LAHS species have floral traits that are 

more attractive to pollinators than are those of the CC species, (3) the CC species have 

more generalist pollination systems than their LAHS congeners, and (4) the CC species 

have higher rates of autogamy than their LAHS congeners. In order to control for 

multiple tests of each of the above hypotheses via multiple traits, the significance values 

of each set of traits was modified using the Šidak Correction for multiple comparisons 

(Šidak, 1967). Variables with low replication (i.e., N < 6) that either had either 

marginally significant t-values or had variables that could not be normalized were 

analyzed via permutation ANOVA (aovp in lmperm package; R Development Core Team 

2008). All permANOVA results of non-normalizable data did not differ from the results 

of the t-tests; therefore I report only the t-test results.  

RESULTS 

Vegetative traits—Vegetative traits differed significantly between congeners but 

were not consistent among genera. Generally, there were no differences between results 

from analyses that included and those that excluded non-glade habitats, but for clarity, I 

discuss the differences within glades only, unless otherwise specified (all results are 

recorded in Table 2-3). Delphinium treleasei, the LAHS taxa, did have thicker leaves 

than its CC as I predicted, but there were no differences in total stem length or in total 
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leaf area, two estimates of biomass. Contrary to my predictions, the LAHS D. treleasei 

had greater average leaf area (Table 2-3, Figure 2-2a) than its CC D. carolinianum and 

was not significantly shorter. In congruence with my hypotheses, the LAHS Echinacea 

paradoxa was marginally shorter than its CC, E. paradoxa, but there were no differences 

in any other vegetative trait measured, including average leaf area (Figure 2-2b), leaf 

thickness, or total leaf area. The LAHS S. bushii was significantly different from its CC, 

S. ovata, in congruence with my hypotheses for vegetative traits, but not from S. parvula. 

Scutellaria bushii was shorter than S. ovata but not than S. parvula, and S. bushii had 

marginally significantly lower leaf area than S. ovata but not its other CC, S. parvula 

(Table 2-3, Figure 2-2c). Contrary to my hypotheses, S. bushii was significantly taller in 

comparison to both Scutellaria CCs (S. ovata and S. parvula). There were no differences 

in leaf thickness or total leaf area between S. bushii (LAHS) and S. ovata or S. parvula. 

Floral traits—As predicted, Delphinium treleasei (LAHS) had significantly 

larger flowers than D. carolianum (Table 2-3, Figure 2-2d). On the other hand, distance 

to nectar, total floral output, relative floral output, and the number of flowers open 

concurrently did not differ between Delphinium taxa (Table 2-3). There were no 

differences between Echinacea species, except in ray petal size. The LAHS E. paradoxa 

did not differ from E. pallida in any floral trait, including corolla area (Table 2-3; Figure 

2-2e), in congruence with my predictions. Scutellaria bushii (LAHS) had significantly 

larger flowers (Table 2-3; Figure 2-2f) and greater distance to the nectar reward than both 

CCs, as predicted. In comparison to S. ovata, S. bushii (LAHS) also had lower relative 

floral output across all habitats (Table 2-3). There were no differences in relative floral 

output (i.e., the number of flowers per cm total stem length) or nectar volume (glades 
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only) between S. bushii and S. parvula. Total display size (total corolla area) was 

marginally larger for S. bushii in comparison to S. parvula, as predicted. Contrary to my 

predictions, Scutellaria bushii did not have fewer flowers open concurrently or lower 

proportion of flowers open in comparison to S. parvula. When compared to S. ovata, S. 

bushii had significantly lower relative floral output, but there were no differences in the 

number or proportion of flowers open.  

Reproductive success and Breeding system experiments— Relative reproductive 

success (total seed set per unit total stem length) was significantly lower for the E. 

paradoxa (LAHS) but not for the other two LAHS taxa (Table 2-4) in comparison to their 

common congeners. There were no differences in total reproductive success between any 

congeneric pair or in rates of autogamy, geitonogamy and outcrossing (Table 2-4).  

Pollination biology— Delphinium treleasei (LAHS) had a lower generalization 

score than D. carolinianum (Figure 2-2g) but was not less pollen limited when non-glade 

habitats were included in the analysis (Table 2-3). Pollinators did not probe fewer flowers 

consecutively or visit for shorter durations when visiting D. treleasei in comparison to D. 

carolinianum, and there was no difference between species in pollinator dominance or 

fidelity (Table 2-3).  Echinacea paradoxa (LAHS) was marginally more pollen limited 

than its CC, as predicted, but pollinator behavior and pollination generalization (i.e., the 

number of pollinators to account for 95% of pollen flow; Figure 2-2h) did not differ 

between species. Scutellaria bushii (LAHS) did not differ from S. parvula in pollinator 

behavior or generalization score (Table 2-3; Figure 2-2i). The number of flowers visited 

consecutively did not differ between S. ovata and S. bushii on the glades, but when non-

glade habitats were included, visitors probed marginally fewer flowers of and visited 
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marginally less frequently to S. bushii than S. ovata, as predicted (Table 2-3). Due to low 

insect abundance, pollinator collections were insufficient at all but one of the glades 

where S. ovata was studied; therefore, I was unable to conduct the analysis with glade 

sites only. However when non-glade habitats were included, S. bushii had a significantly 

lower generalization score than S. ovata (Table 2-3; Figure 2-2i) but not in dominance or 

pollinator fidelity.  

DISCUSSION 

Species of each of the seven forms of rarity (Rabinowitz et al., 1981; Kunin and 

Gaston, 1997; Gregory and Gaston, 2000) may experience different selective pressures 

resulting in a wide range of pollination systems, given the appropriate abiotic or biotic 

environment. Here I explore the reproductive biology of three locally abundant and 

regionally-rare (LAHS) plant species that are endemic to stressful environments. The 

floral traits and pollinator behavior documented in two of the three species in this study 

support the hypothesis that glade LAHS species have more specialized reproductive 

systems. While these results generally support my prediction that persistence in stressful 

environments may result in pollination specialization, there is little evidence for stress-

adaptation per se. 

Glade endemics did not consistently share morphological traits associated with 

stress-adaptation, and differences in a few traits, such as leaf area (Figure 2-2b), had 

conflicting patterns across genera. For instance, leaves of S. bushii (Figure 2-2c) were 

marginally smaller than S. ovata but not than the other CC, S. parvula. Neither D. 

treleasei (Figure 2-2a) nor E. paradoxa (Figure 2-2b) had smaller leaves than their 

respective CCs. Height has a similar, contradictory pattern. S. bushii is shorter than S. 



20 
 

ovata but not than S. bushii; Echinacea paradoxa is marginally shorter than its CC, and 

there is no difference between Delphinium species. One key trait that I was not able to 

assess due to collection restrictions was below-ground growth, and it should be explored 

in order to have a more complete understanding of the vegetative traits associated with 

stress-adaptation in plants that are endemic to stressful environments, such as glades. 

However, the lack of consistent differences between congeners in the selected traits 

measured here suggests either that other features that were not measured here contribute 

to adaptation to the hot, dry conditions on glades or that there is a lack of adaptation to 

xeric environments entirely.  

On the other hand, two of the three LAHS species had larger flowers (i.e., corolla 

area) than their common congeners (Figure 2-2 d–f), with the exception of Echinacea 

paradoxa (Figure 2-2e; Table 2-3). Moreover, S. bushii (LAHS) species had longer floral 

tubes than both of its common congeners (CC). I predicted that the LAHS species would 

have fewer pollinators that account for the majority of pollen flow. In congruence with 

this hypothesis, Delphinium treleasei (LAHS) also had a more specialized pollination 

system than its congener (Figure 2-2g), and S. bushii had a more specialized pollination 

system than S. ovata (Figure 2-2i), though specialization could only be tested when all 

habitats were included due to low pollinator abundances. On the other hand, there was no 

difference in the dominance index, which controls for the richness of visitors, between 

any congeners. This finding suggests that while the number of species that account for 

the majority of the pollen flow (i.e., the generalization score) was significantly lower, the 

dominance of any individual pollinator species was not different between LAHS taxa and 

their congeners. Visitation rates and total seed production also did not differ between 
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congeners. However, higher specialization in some of the LAHS taxa could lead to 

greater outcrossing and presumably higher offspring quality. Offspring quality (e.g., 

germination rate) was not assessed in this study. Therefore, further study is required to 

explore the effects of these mechanisms on overall reproductive success.  

Unlike Scutellaria and Delphinium, the LAHS Echinacea paradoxa did not differ 

from E. pallida in pollination generalization, and it had lower relative reproductive 

success and was marginally more pollen limited than its CC. This disparity in 

reproductive success could lead to the exclusion of the LAHS E. paradoxa from habitats 

where competition for resources is more intense or where total reproductive output is 

more instrumental in population establishment (e.g., via founder effects). I have defined 

reproductive success as total seed set, but there are other potentially important traits that 

could affect fitness, specifically offspring quality (as measured by germination rate and 

establishment). While not significant, there is also a trend toward more generalized 

pollination in E. paradoxa (LAHS; Figure 2-2h), a finding that warrants greater 

exploration to offset low replication (N = 4) at the site level caused by low pollinator 

abundances in 2009.  

In order to achieve reproductive assurance, rare plants are predicted to be self-

compatible, assuming either low pollen availability due to local rarity or unpredictable 

pollination. However, reproductive assurance may not be optimal for locally abundant or 

stress-adapted taxa, which may be more limited by other resources than by pollen. Rates 

of autogamy of the LAHS plants in this study reflect neither selection for reproductive 

assurance nor reduction of inbreeding. Rates of autogamy appear to be conserved across 

taxa and may reflect the importance of evolutionary history, not habitat specialization, in 
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determining rates of autogamy. While there is mixed support for pollination 

specialization, two of the three LAHS plants have larger floral displays (i.e., corolla area) 

than their congeners, which is congruent with our predictions for optimal resource 

allocation in LAHS taxa to increase attractiveness and potentially outcrossing rates. More 

specialized pollination systems, as seen in D. treleasei, may result in higher pollinator 

efficiency and lower stigmatic occlusion, which in turn may increase outcrossing rates 

and offspring quality. If there is greater variation in floral traits, selection may act on 

those traits associated with pollination specialization, thereby increasing outcrossing rates 

while conserving the ability to self-pollinate. Additionally, inbreeding depression is 

predicted to be exacerbated in stressful environments (Wright, 1922; Hauser and 

Loeschcke, 1996; Cheptou et al., 2000; Waller et al., 2008; but see Armbruster and Reed, 

2005) and could result in selection for increased outcrossing rates as well. The 

documentation of the mating systems and the strength of selection for traits conferring 

increased outcrossing rates are required to corroborate the hypothesis of higher 

inbreeding depression in stressful environments.  

Despite the lack of support for a stress-reproduction tradeoff, the results of this 

study support a more nuanced approach to the relationship between rarity and 

reproductive specialization. The Delphinium and Scutellaria LAHS species have traits in 

congruence with my predictions of increased specialization and outcrossing rates, but the 

Echinacea species does not, suggesting that both mechanisms (i.e., increased selection 

for outcrossing and reduced allocation to reproduction) may be acting concurrently in 

different LAHS taxa. Further study of additional LAHS species and larger sample sizes at 

the site level will be needed to determine the relative prominence of each mechanism. 
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These endemic glade plants may not be more stress-resistant or adapted to local abiotic 

conditions, but they may be restricted from more productive habitats via competitive 

exclusion.  It is unclear whether LAHS glade plants are specifically adapted to glades or 

are simply restricted to glades due to low competitive ability in more productive habitats, 

and the relative importance of these mechanisms should be explored more in future 

research on the range restriction of species to stressful habitats.  

The conventional paradigm of reproductive assurance in pollen-limited plants, 

such as locally rare plants, is an important theoretical prediction that has been supported 

by some studies (Fausto et al., 2001; Moeller and Geber, 2005). However, reproductive 

theory should be expanded to include more explicit predictions for each of the seven 

forms of rarity. The explicit integration of non-biogeographic factors, such as stress-

adaptation and competition for pollinator services, into this paradigm could greatly 

enhance our understanding of the factors that determine and are affected by species eco-

geographical distributions. This study provides insight into stress-adaptation and 

pollination specialization as two potential factors restricting the ranges of three glade-

endemic LAHS species. The pattern of more specialized pollination systems (reflected in 

the LAHS D. treleasei) and lower relative reproductive success (as in the LAHS E. 

paradoxa) suggest a tradeoff between allocation to offspring quality and quantity that 

could affect the ability of rare plants to invade less-stressful habitats. Reduced 

reproductive success could inhibit the ability of LAHS species to colonize new habitats 

and increase their risk of extinction. Moreover, specialization on insect pollinators found 

on or near glades could further restrict the ecogeographical range of these species.  
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In response to climatic change, many species are predicted to shift their ranges, 

adapt to a new environment, or go extinct. Low colonization potential and high habitat 

specialization could inhibit the ability of rare species to track their optimal climatic 

conditions or adapt to novel habitats and environmental conditions, resulting in an even 

greater restriction of their ranges and an increase in their risk of extinction. Insight into 

the relative importance of potential confounding factors related to each of the seven 

forms of rarity is imperative for our understanding of the mechanisms determining the 

biogeographical ranges of all species and for the creation of effective conservation and 

management plans for rare and endemic species. This study contributes to the 

development of a more nuanced theory regarding the interaction between rarity and 

reproductive specialization, which will inform our understanding and protection of rare 

and endemic plant species. 

  



25 
 

Table 2-1. Description of Rabinowitz’s Seven Forms of Rarity based on geographic 

extent, population size and habitat specificity (modified from Rabinowitz et al., 1981).  

Bold font represents the locally abundant, habitat specialist (LAHS) taxa and the 

underlined font represents the common congeners in this study. 

 

 Geographic Extent (GE) 

 Large Small 

Population Size (PS)     

     Somewhere  
        large 

Common Large PS 
Large GE 
Narrow HS 

Large PS 
Small GE 
Generalist HS 

Large PS (LA) 

Small GE  

Narrow HS (HS) 

     Somewhere  
        small 

Small PS 
Large GE 
Broad HS 

Small PS 
Large GE 
Narrow HS 

Small PS 
Small GE 
Broad HS 

Small PS 
Small GE 
Narrow HS 

 Broad Narrow Broad Narrow 

 Habitat Specificity (HS) 
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Table 2-2. Replication for each species by habitat for the number of field sites and the 

number of plants for which I documented morphological traits (Morph) and observed 

pollinator behavior, and the number of insects collected for pollen load analysis (Insects).  

* Field sites were not mutually exclusive; therefore, field sites per species do not sum to 

total number of field sites.  

 

Plant species Habitat Field Sites* Plants (no.) Insects 

(no.) Morph Observ Insect Morph Observ 

Delphinium 

carolinianum 

Glade 5 4 3 90 75 137 
Prairie 3 1 1 40 10 21 

Delphinium treleasei Glade 8 7 3 193 128 157 

Echinacea pallida Glade 4 4 2 90 72 40 
Prairie 2 2 2 73 20 213 

Echinacea paradoxa Glade 5 5 2 110 62 60 

Scutellaria bushii Glade 7 4 3 244 123 31 

Scutellaria ovata Glade 3 3 1 72 48 86 
 Woodland 9 5 2 133 71 46 

Scutellaria parvula Glade 5 4 3 96 88 34 
 Woodland 2 0 0 7 0 0 

Total  31 23 18 1148 697 825 
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Table 2-3. Results (i.e., t-values) from analyses of morphological traits and pollination 

biology of three locally abundant, habitat specialist (LAHS) taxa and their common 

congeners (CC) in glades and across all sites (including non-glade habitats, such as 

prairies and glades). Numbers in parentheses denote significant P-values from 

permutation ANOVAs that were conducted for marginally significant t-test results and N 

< 6. Letters refers to traits that were analyzed within a single site (a; Echinacea corolla 

area and total display size only) and to traits for which only comparisons included all 

habitats could be conducted (b; Scutellaria bushii vs. S. ovata pollination biology only). 

Symbols represent significance levels based on the restricted α via the Šidak Correction 

for multiple comparisons (αSC).  

Vegetative traits (αSC = 0.010): † P < 0.05, *P < 0.01, ** P < 0.001, *** P < 0.0001 

Floral traits (αSC = 0.006): † P < 0.03, *P < 0.006, ** P < 0.001, *** P < 0.0001 

Pollination biology (αSC = 0.017): † P < 0.085, *P < 0.017, ** P < 0.001, *** P < 0.0001 
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 Prediction Delphinium Echinacea Scutellaria 

 CC vs. LAHS     S. ovata S. parvula 
 (sign t-value)   Glades All sites Glades All sites  Glade All sites  Glade All sites 

Vegetative traits           
Height  > (+)   0.93 1.19  2.84†  2.04† 8.31*** 6.49*** -4.27 -3.31 
Leaf area > (+)  -10.4   --  1.62   -- 12.48†   -- -2.66   -- 
Leaf thickness <  (-) -4.82*   --  1.64   --  2.28   -- -2.12   -- 

   Total stem length > (+)  -0.53 -0.38 -0.79 -0.21 -2.76 -3.15 -4.58 -3.15 
   Total leaf area > (+)  -4.09   --  0.77   -- -0.79   -- -3.05   -- 

Floral traits           
Corolla area <  (-) -3.13* -3.36* 

 

-1.79a   -- -4.82* -4.83**  -14.7***   -- 

Distance to nectar <  (-) -1.64 -2.07   --   -- -5.88* -5.49* -24.6***   -- 
Nectar volume  <  (-)  1.58   --   --   --   --   -- -1.11   -- 
No. flowers open  > (+)   1.19  0.95 -0.38  0.01  1.26  2.16 -3.94   -- 
Proportion of 

flowers open 
> (+)   2.25†  1.67 -2.08   --  1.35  1.08  2.12   -- 

Relative floral 
output 

> (+)   0.28 -0.29  0.52   --  3.80*  3.85* -0.44 -0.37 

Total display size <  (-) -0.25 -0.06 -0.48a   -- -1.43 -1.11 -4.81†   -- 
Total floral output <  (-)  0.29  0.79  0.39   --  1.40  1.98 -4.26* -3.26* 

Pollination biology           
Visitation rate > (+)   1.00  0.63  0.85  0.47  0.64  1.99†  1.84   -- 
Visit duration > (+)  -0.23 -0.48  0.08  0.24 -0.50  0.56  0.14   -- 
Flowers visited 

consecutively 
> (+)   0.75  0.51   --   --  1.66  2.64† -0.26   -- 

Pollen limitation > (+)   0.07   0.57  6.14†   -- -0.39 -0.77 -0.26   -- 
Generalization 

score 
> (+)   2.24† 

(0.014) 

  2.27† 

(0.0002) 

-1.18 -0.46   -- 2.68†b 

(0.001) 

 1.00   -- 

Dominance <  (-) -1.90 -1.44  1.45  0.59   -- -2.06b -1.67   -- 
Pollinator fidelity <  (-) -0.15  0.65 -1.40 -0.39   -- -1.97b -2.38   -- 
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Table 2-4. Comparison of reproductive success and breeding systems between three 

locally-rare, habitat specialist (LAHS) taxa and their common congeners (CC). Results 

shown are t-values, and significance levels are denoted with symbols († P < 0.10, *P < 

0.05, ** P < 0.01, *** P < 0.0001). Breeding system studies of the Delphinium and 

Echinacea taxa were conducted in the greenhouse. Scutellaria bushii could not be 

induced to flower in the greenhouse; therefore, breeding system studies were conducted 

in the field. Numbers in parentheses denote significant P-values from permutation 

ANOVAs that were conducted for marginally significant t-test results and N < 6). 

 

 Delphinium Echinacea Scutellaria 

   S. ovata S. parvula 

Relative reproductive success 
0.34 2.33

†
(0.004)

 2.45 0.58 

Total reproductive success 0.43 1.95 1.70 -0.04 
Autogamous seed set 0.93 0.40 -0.22 -0.68 
Geitonogamy seed set 1.65 0.60 -- 0.001 
Outcross seed set -1.63 0.05 0.25 -0.40 
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Figure 2-1. A map of 31 glade and non-glade (woodland and prairies) field sites (○) in 

Missouri at which I quantified morphological traits and observed pollinators for three 

locally abundant, habitat specialist species (Delphinium treleasei, Echinacea paradoxa, 

and Scutellaria bushii) in comparison to their common congeners (D. carolinianum, E. 

pallida, S. ovata, and S. parvula). Glade density was coded in to a heat-density map from 

Nelson and Ladd (1982). The original data represented a range in glade density per 7.5 

degree minute quadrats (approximately 144 km2 in Missouri); therefore the heat map 

reflects a rough estimate of glade density per 144 km2 as of 1982.   
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Figure 2-2. Morphological traits and pollination biology of three locally abundant, 

regional-rare plant species (LAHS; Delphinium treleasei ( ), Echinacea paradoxa ( ), 

and Scutellaria bushii ( )) in comparison to their common congeners (CC; respectively, 

D. carolinianum ( ), E. pallida ( ), S. ovata ( ) and S. parvula ( )) as quantified in the 

field and graphed by distribution and genus; Leaf area (cm2; a – c), Corolla area (mm2; d 

– f), and Generalization score (g – i; no. species to account for 95% of pollen flow; the 

comparison between S. bushii and S. ovata was calculated with data from glade and non-

glade habitats due to low pollinator densities on glades; S. parvula does not have standard 

error bars, because it’s generalization score was identical across all sites). All other 

results shown were calculated from within-glade comparisons.  
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INTRODUCTION   

In 1981, Rabinowitz and colleagues developed a conceptual matrix describing 

seven types of rarity based on geographical range, habitat specificity, and local 

population size. A recent review of studies that reference this framework indicates that 

species in each category of rarity have some similar traits (Espeland and Emam, 2011). 

For instance, species that are habitat specialists and have geographically restricted ranges 

are more likely to have outcrossing mating systems, which are thought to maintain 

genetic diversity and reduce the potential for genetic drift (Espeland and Emam, 2011).  

In order to maintain high outcrossing rates, species that specialize on restricted habitats 

should have mechanisms that restrict the movement of self-pollen and enhance the 

transfer of outcross pollen, including herkogamy (the separation of reproductive parts in 

space; Lavergne et al., 2004), more specialized pollination systems (Darwin, 1877; 

Rymer et al., 2005; Galloni, 2008), or a reduction in the number of co-blooming flowers 

(Karron et al., 2004; Mitchell et al., 2004). The reduction in co-blooming flowers, for 

instance, alters pollinator behavior, resulting in fewer within-plant movements and the 

deposition of more outcross pollen (Karron et al., 2004; Mitchell et al., 2004). 

Specialized pollination systems have fewer pollinating species that collect and transfer 

pollen between plants, which can increase outcrossing rates and decrease the deposition 

of heterospecific pollen. Heterospecific pollen deposition interferes with the 

establishment and growth of conspecific pollen on the stigma and can lead to a reduction 

in seed set (McLernon et al., 1996).   

In addition to buffering populations against genetic drift (Espeland and Emam, 

2011), higher outcrossing rates could also facilitate population viability if offspring 
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quality is important, for instance if inbreeding depression is prevalent (Cheptou et al., 

2000; Fox and Reed, 2011). Specifically, local adaptation and offspring quality (e.g., 

higher germination rates and survivorship) should be particularly important for the 

maintenance of populations in stressful (defined here as high temperatures and water 

stress) environments where the potential for mortality and negative genetic effects may 

be exacerbated (Hauser and Loeschcke, 1996; Heschel et al., 2005; Armbruster and Reed, 

2005; Riginos et al., 2007). Many plants that specialize on stressful environments have a 

suite of traits that are thought to be adaptive (Grime, 1977; Chapin et al., 1993; Walck et 

al., 1999, 2002; Van Zandt, 2007), for instance by increasing water-use efficiency. The 

presence of these convergent traits across a broad taxonomic range implies that 

specialization on habitats with stressful conditions may require a relatively narrow set of 

traits that should be conserved across generations. Moreover, recruitment from more 

suitable habitats cannot buffer populations in the stressful environment via source-sink 

dynamics, since few if any other populations exist in more benign habitats. Therefore, 

species that specialize on xeric habitats should have less plasticity in their traits and be 

more tightly restricted to the local environment (Ellison and Parker, 2002; Pohlman et al., 

2005). 

Traits that are adaptive in xeric conditions may also reduce the attractiveness of 

xeric-adapted plant species and their ability to compete for pollinator services. For 

instance, plants that are shorter and have lower reproductive output may be able to 

tolerate high-stress environments, but they are less attractive to pollinating insects 

(Dickson and Petit, 2006; Mevi-Schutz and Erhardt, 2005; respectively), which could 

lead to a reduction in pollen receipt. While a small floral display (fewer flowers open 
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concurrently) may reduce within-plant movements and increase outcrossing rates, it may 

also reduce visitation rate, pollination success, and total seed set. In order to optimize 

their investment in reproduction under stressful conditions, specialist plants should 

exhibit traits that will reduce resource loss while increasing offspring quality. When 

offspring quality comes at a cost to total reproductive output, lower seed set in a stress-

adapted plant may reduce its ability to colonize novel sites (Kelly et al., 1996b; 

MacDougall et al., 2006; Soberón, 2007), and therefore may contribute to range 

restriction of stress-adapted specialists. By identifying the mechanisms that restrict 

species ranges and contribute to their extinction risk, we will be better able to predict 

which species are affected by future climate changes and focus limited resources toward 

conservation of the species most vulnerable to extinction.  

In this study, I manipulate temperature and plant-available water in order to test 

three hypotheses concerning the relationship between xeric-adaptive traits, pollinator 

attraction traits, and reproductive success in three locally abundant, habitat specialist 

species (LAHS) in comparison to a common congeneric species (CC). The first 

hypothesis states that LAHS species are better adapted to the glade environment in 

comparison to related species with more generalist habitat use. Specifically, the LAHS 

species should have traits associated with adaptation to hot, xeric habitats (via differential 

resource allocation) and therefore be resistant to abiotic stress (defined here as drought 

and high temperature). I predict that the CC species will have a reduction in key 

physiological traits, such as relative growth rate and specific leaf area, with an increase in 

stress, and that the LAHS species will not. The second hypothesis predicts that LAHS 

species have floral traits that are associated with decreased attractiveness to pollinators 
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but increased outcrossing rates, and the widespread species will have traits that are more 

attractive to a variety of pollinators. Finally, I test the prediction that offspring quality 

will be higher in the stress-adapted LAHS species than their CC species, which may 

facilitate offspring recruitment in stressful environments.  

MATERIALS AND METHODS 

Study Species 

 In order to assess the prediction that locally abundant, habitat specialist (LAHS) 

species are adapted to hot, xeric conditions, I will compare the response of three LAHS 

plants (Delphinium treleasei, Echinacea paradoxa, and Scutellaria bushii) and their 

common congeneric species (CC; D. carolinianum, E. pallida, and S. ovata, respectively) 

to experimental manipulations of heat and water availability that are characteristic of the 

habitats to which they are endemic. These three LAHS species are all endemic to the 

Ozark glades in Missouri and Arkansas, which are hot, xeric environments with thin soils 

and exclusively herbaceous cover, located within a matrix of more mesic woodland 

habitat (Nelson and Ladd, 1982; Baskin and Baskin, 1988; Templeton et al., 2001; 

Yatskievych, 1999). All three CC species also occur on glades but are not restricted to 

them, which will offer insight into the mechanisms that restrict the LAHS species and not 

the CC species to glades. Comparing closely-related species also controls for the 

potential effect of evolutionary history on the vegetative and floral traits of LAHS 

species, and the multiple comparisons across a range of evolutionary history make the 

results of this study more broadly applicable.   

Experimental manipulations 
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The stress resistance of three LAHS species and their CC species to drought and 

high heat conditions was estimated via greenhouse and growth chamber experiments. 

Individuals of each congeneric pair were exposed to a series of manipulated abiotic 

conditions, in accordance with in situ field observations and optimized in the greenhouse, 

and their fitness responses were compared. Seeds collected in the field during the summer 

of 2008 were cold stratified at 4°C for 90 days and allowed to germinate. Forty-four to 50 

seedlings of each species were planted in a 3:2:1 ratio of Metromix360:Turface 

athletics:New Plant Life Topsoil mix, to approximate the relatively rapid draining soils 

associated with glades. Individual plants were allowed to establish for one week and 

randomly assigned to one of two treatments within two separate experiments, one that 

manipulated water availability (low and moderate water) and temperature regime (high 

and moderate temperature), with 22 to 45 replicates per treatment depending on the 

species pair (Table 3-1). Due to low growth rates of the Delphinium taxa, both the 

drought and temperature experiment were conducted twice in order to increase 

replication (from 64 to 133 individuals for the temperature experiment and 91 to 193 

replicates for the drought experiment). For the second experiment, established individuals 

were first cold stratified, then removed from the coldroom, and exposed to the same 

treatments as above. Individuals were randomly arranged in order to reduce potential 

spatial variation in abiotic conditions, and the temperature regimes were rotated weekly 

between two environmental chambers to diminish a potential chamber effect.   

Drought experiment––Watering regimes were designed to reach soil water-

holding capacity and were applied three times per week. The Delphinium and Echinacea 

species were first planted in small (7.6 cm diameter) pots, in order to maintain 
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appropriate soil-moisture levels and where transplanted into large pots (11.4 cm 

diameter) after the first 49 days of treatment. The amount of water administered per 

treatment scaled with pot size (i.e., 50 mL for small pots and 100 mL for large pots) in 

order to account for the increased soil volume. The Scutellaria species grew faster and 

were planted directly into the larger pots. The Delphinium and Echinacea species require 

vernalization, which simulate winter conditions, before they will bolt and flower. 

Following 49 days of treatment, all individuals were placed in an environmentally 

controlled coldroom (4ºC) and remained un-manipulated for 49 days. The individuals 

were then removed from the coldroom and allowed 10 days to acclimate. Cold 

stratification was repeated until the individual began flowering or until they had 

experienced four cold treatments, after which all individuals were harvested. During the 

fall of 2010, the water treatments were increased to 100 mL and 150 mL, respectively, for 

the Echinacea taxa due to low relative humidity in the greenhouse. Plants were fertilized 

once a week with Peters Professional 15-16-17 Peat-Lite Special at 150 ppm nitrogen 

dissolved in water to reduce the effect of resource limitation on plant traits. All 

individuals were given equal amounts of fertilizer (50 and 100 mL for small and large 

pots, respectively) and the additional water required for the control treatment was added 

before the individuals were watered with fertilizer water, in order to reduce loss of 

nutrients via leaching.  

Temperature experiment––The temperature regime for each species pair was 

determined via field observations of temperatures on and off glades during peak 

flowering time of each genus (Table 3-1) and incorporated diurnal temperature change. 

The temperature regime for the Echinacea species was reduced from 30/38 ºC after the 
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first round of treatment, because growth was minimal and mortality was relatively high. 

For clarity, I focus on the response of these species following the first round of treatment. 

Temperature regimes commenced after an acclimation period during which the air 

temperature was incrementally increased (two or three degrees Celsius every 3 or 4 days, 

for a total of 12 days). Since the Delphinium and Echinacea taxa require vernalization 

before flowering, all individuals were placed in a coldroom for 49 days as above. Before 

cold stratification, the high temperature treatment was incrementally decreased and was 

subsequently increased before re-administering the experimental treatments upon 

removal from the coldroom. Cycles between treatment administration and cold 

stratification were repeated until flowering commenced or for up to four cold treatments, 

after which all individuals were harvested. Plants were watered with fertilizer once a 

week in order to reduce the potential effect of resource limitation on plant traits. 

Morphological measurements 

Vegetative traits––In order to assess the response of the LAHS and CC species 

pairs to the above treatments, vegetative and reproductive traits were quantified. Plant 

height, number of stems, and vegetative output (i.e., leaf size and number) were noted 

weekly. Three leaves per individual were tagged upon emergence, and leaf death noted in 

order to calculate leaf turnover. Leaf thickness was measured for up to five leaves per 

individual and averaged. In the drought experiment with the Delphinium species, many of 

the leaves were relatively small and fragile, and leaf thickness could not be measured 

without damaging the leaves; therefore, I could not test for differences in leaf thickness 

for this experiment.  
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Following fruit maturation, final morphological measurements were taken (e.g., 

final height, number of leaves, leaf thickness and trichome density), and plants where 

harvested, separated into vegetative, reproductive, and below ground biomass. One leaf 

per plant was removed, digitized for leaf area quantification in SigmaScan Pro 5.0 

(SigmaScan Pro 5.0, 2002). The roots were washed thoroughly to remove soil particles, 

and all plant material was dried at 40-50ºC for at least 48 hours and weighed. Total 

biomass, relative growth rate (total biomass divided by the age of the plant in days), leaf 

longevity, shoot to root ratio, and specific leaf area (SLA; the ratio of leaf area and dry 

mass) were quantified. Specific leaf area is a measure of leaf density; lower SLA 

indicates a more dense leaf, which is associated with lower evapotranspiration and 

photosynthetic rates. Relative reproductive output was calculated as the mass of 

reproductive material divided by total biomass (the sum of reproductive, shoot, and root 

biomass). 

 Reproductive traits––In order to simulate pollination and ensure seed set, I 

applied outcross pollen to three flowers per individual per week during blooming for the 

Delphinium and Scutellaria taxa and up to twenty florets for Echinacea species. 

Following maturation, the fruits were harvested. Due to morphological differences among 

genera, some traits, such as reproductive success, were quantified differently for each 

congeneric pair (see below). 

Delphinium congeners  

Vegetative traits––The Delphinium species have roughly round leaves that vary in 

the degree to which they are dissected. Therefore, I visually estimated the proportion of a 

circle filled by the leaf (i.e., 0.1, 0.25, 0.33, 0.5, 0.67, 0.75, and 1), and estimated the 
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radius of the circle as the length of the leaf from the center (where the petiole and leaf 

blade merge) to the edge. Leaf area was then calculated as π times the radius squared (π x 

(length of leaf blade)2 x proportion of circle). Throughout the experiment, biomass was 

estimated in a non-destructive manner as total leaf area (leaf number multiplied by 

estimated leaf area).  

Reproductive traits––Individuals were checked three times a week for initiation of 

flowering, and reproductive phenology was defined as the age of the individual at the 

time of inflorescence initiation. Three flowers per plant were tagged while still in bud and 

monitored three times per week until flower senescence in order to determine flower 

longevity. At peak flowering, I measured the floral traits (i.e., sepal width, sepal height, 

floral spur length, and anther-stigma separation) of three flowers for each individual. 

Corolla area was calculated as the product of sepal area and height, and anther-stigma 

separation was measured from the top of stamen to the stigma of the lowest ovary. Nectar 

was collected from up to nine flowers per individual, and nectar volume was calculated. 

Nectar sugar content was determined using a Brix refractometer, and floral output was 

quantified as the number of flowers produced. 

Reproductive success––Following the collection of fruits, the number of fruits 

that developed seeds and the number seeds produced per pollinated flower were 

quantified. Total seed set was calculated as the product of average seed set per pollinated 

fruit and total floral output. In order to estimate seed quality, up to thirty seeds per 

individual were weighed, and mass per seed was calculated. 

Echinacea congeners 
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Vegetative traits––Throughout the experiment, biomass was estimated in a non-

destructive manner as total leaf area (the product of leaf number and estimated leaf area) 

for the Echinacea species. Leaf area was calculated as the width times the length of an 

average leaf blade. Two individuals were subject to an additional cold treatment and 

growth period after the inflorescence senesced due to mislabeling; none of the data 

collected after the inflorescences senesced (e.g., biomass measures) were used in the 

analyses.  

Reproductive traits––Individuals were checked three times a week for initiation of 

inflorescence, and reproductive phenology was defined as the age (days) of the individual 

at the time of initiation. Corolla area was calculated as the number of ligules multiplied 

by the area of an average ligule size (i.e., the product of ligule width and length). The 

number disk florets were counted, and nectar volume and sugar content were quantified 

for three florets per sexual stage (i.e., male and female), since Echinacea species are 

protandrous. Few individuals of E. paradoxa bloomed in the temperature experiment; 

therefore, nectar production and quality could not be compared.  

Reproductive success––Since Echinacea species are known to produce 

unfertilized capsules that collapse when pressure is applied, the pollinated capitula were 

gently pressed with forceps to confirm fertility. Seeds that did not collapse under the 

small amount of applied pressure were assumed to be fertile. Total reproductive success 

was quantified as the proportion of capsules that were fertile times the total number of 

florets produced. A virus infected some individuals resulting in the senescence of their 

inflorescences, and these individuals were excluded from the analyses of floral output 
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and reproductive success. However, they were used in analyses of initiation of 

inflorescence, relative reproductive output, and total biomass. 

Scutellaria congeners 

Vegetative traits––Due to a large number of leaves and high variability of leaf 

size, the non-destructive estimate of biomass for the Scutellaria taxa was quantified as 

total stem length. One leaf per individual was collected, and the number of trichome was 

counted in each of three, three by three millimeter squares haphazardly placed in upper 

third, middle third, and lower third of the leaf. Trichome density was quantified as the 

total number of trichomes per 27 mm2. 

Reproductive traits–– Individuals were checked three times a week for initiation 

of flowering, and reproductive phenology was defined as the age of the individuals in 

days at the time flowering commenced. Three flowers per plant were tagged while still in 

bud and monitored three times per week until flower senescence in order to determine 

flower longevity. At peak flowering, I measured the floral traits (i.e., petal width, petal 

depth height, floral tube length) of three flowers for each individual. Floral output was 

quantified as the number of flowers produced. The LAHS S. bushii produced only 

cleistogamous flowers, which do not open, and all fruits were fertilized internally. 

Therefore, I did not pollinate any flowers of either species in order to maintain a balanced 

comparison. All measures of reproductive success are based on self-pollinated fruits and 

should be interpreted with caution.  

Reproductive success––During the breakdown process, the number of seeds per 

fruit was counted for ten fruits and averaged. Total seed set was calculated as the average 

number of seeds per fruit multiplied by total floral output, and offspring quality was 
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determined via germination trails. Up to twenty and ten seeds for the drought and 

temperature experiments, respectively, were cold stratified for 90 days, placed in an 

environmentally-controlled chamber (21ºC), and allowed to germinate. Replication was 

different between the two experiments due to differences in total seed set, and replication 

of germination rates for the temperature experiment was biased (44 to 4, control to high 

temperature respectively) due to low fruit set in the high stress treatment. Since total seed 

set could not be accurately quantified, I estimated total reproductive success as the 

proportion of fruits to set seed. 

Statistical analyses 

In order to control for multiple comparisons among congeners and treatments, 

vegetative traits of the Delphinium species were analyzed via two-way, nested 

MANOVA with Species and Treatment as factors and treatment nested within 

Experiment in order to account for replicate experiments. Only one individual of D. 

trealeasi (LAHS) bolted in the first experiment (i.e., the one without a cold treatment 

before manipulations commenced); therefore, the floral traits of the Delphinium taxa 

were analyzed for the second experiment only, and the experiment effect was removed. 

The morphological traits of Echinacea and Scutellaria taxa were tested via two-way 

MANOVA with Species and Treatment as factors. Since not all individuals flowered, 

analyses of vegetative and reproductive traits were conducted independently in order to 

account for the loss in replication that occurred. Some traits were only quantified for a 

subset of individuals, which would have decreased the replication of the MANOVA 

substantially and were analyzed separately. Those traits that were analyzed independently 

of the others, and therefore do not account for multiple comparisons, are indicated in the 
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results section and corresponding results table (Table 3-2). Two traits of the Delphinium 

species had an exponential distribution in the temperature experiment, could not be 

normalized, and were analyzed via general linear model using the reciprocal link function 

in JMP Statistical Software (SAS Institute 2009).  

Individuals were also ranked by whether or not they initiated inflorescences, and 

differences among congeners and treatments were tested via two-way logistic regression 

with Species and Treatment as factors using JMP Statistical Software (SAS, 2009). 

Analysis of the Delphinium species accounted for replicate experiments as above. The 

nectar sugar content of the Delphinium species often reached the maximum of the Brix 

refractometer, which truncated the continuous variable at 50%. Therefore, I ranked nectar 

sugar content based on concentration (i.e., if the sugar concentration was greater than or 

equal to 50 percent then it was coded as one and if it was less than 50 percent it was 

coded as 0), and logistic regression was used to test for differences among treatments and 

congeners as above.  

All data were transformed for normality (except where noted above), and if they 

could not be transformed, the analyses were repeated using permutation ANOVA (aovp 

in the R Statistical Package (R Development Core Team 2008)). I used permutation 

ANOVA in order to incorporate the nested experimental design of the Delphinium 

species into a nonparametric framework. Permutation ANOVA is a Monte Carlo 

resampling technique (without replacement) that estimates a null expectation based on a 

random resampling of the available data and compares each of 5000 runs to the null. 

Statistical significance is quantified as the number of runs for which the F-statistic is 

greater than or equal to the observed value.  
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RESULTS 

Delphinium congeners 

Drought experiment––Only three D. carolinianum and no D. treleasei individuals 

bolted and flowered in the precipitation experiments combined, despite the large number 

of individuals (193) and duration of the experiment (175 treatment days, 322 days 

including cold stratification events). Watering treatments had been optimized in the 

greenhouse using the Delphinium taxa, and growth was not biased by treatment, which 

suggests the stress treatment per se did not cause the low rate of flowering. Therefore, 

only vegetative traits could be analyzed. Relative growth rate, total biomass, and shoot to 

root ratio were lower in the LAHS D. treleasei in comparison to its CC congener (Table 

3-2), as I predicted. However, there was no effect of treatment or an interaction between 

treatment and species in any trait measured, which suggests that there is no adaptive 

benefit to these traits in response to drought. No leaf traits (i.e., leaf area, specific leaf 

area, total leaf area, and leaf longevity; Table 3-2) differed between species or treatments. 

Temperature experiment––The Delphinium congeners differed in their responses 

to stress, and the LAHS, D. treleasei, was less negatively affected than its congener, in 

congruence with my hypothesis that the LAHS species are more stress resistant. 

Delphinium carolinianum (CC) had lower relative growth rate and total seed set in the 

high stress treatment, but D. treleasei did not differ between treatments (Table 3-2; 

Figure 2-1A and C, respectively). Temperature regime had a significant effect on some 

traits in both Delphinium species, suggesting that they are either conserved, linked to 

evolutionarily stable traits, or do not represent an adaptive benefit in these plants. Height, 

total biomass, and shoot to root ratio were significantly lower in the high temperature 
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treatment than the control treatment for both species (Table 3-2). In addition, the number 

of flowers open and floral display size decreased with an increase in temperature. Leaf 

longevity, on the other hand, was higher (Table 3-2), and relative reproductive output was 

lower in the high temperature treatment, as predicted by stress theory. 

The Delphinium congeners differed in some vegetative and reproductive traits, 

regardless of temperature treatment. As I predicted, D. treleasei (LAHS) was shorter, had 

thicker leaves, and produced fewer flowers in total (Table 3-2). Delphinium treleasei also 

had fewer flowers open concurrently and higher nectar sugar content, which may affect 

outcrossing rates and offspring quality if pollinator behavior is affected. The difference in 

the number of flowers open concurrently is not driven by reduced floral output per se, 

since the proportion of flowers open was marginally lower for D. treleasei than D. 

carolinianum. On the other hand, anther-stigma separation was lower in the LAHS D. 

treleasei (Table 3-2), which I predicted to be higher in order to increase the potential for 

outcross pollination. Moreover, the longevity of D. treleasei’s leaves and flowers was 

shorter in comparison to D. carolinianum. I predicted that leaf and flower longevity 

would be higher in the LAHS species in order to reduce loss of resources and increase the 

potential for outcross pollination, respectively. There were no or marginal differences in 

some leaf traits (leaf area, specific leaf area, and leaf longevity; Table 3-2) and some 

floral traits (inflorescence initiation, corolla area, and floral spur length; Table 3-2).   

Echinacea congeners 

Drought experiment––The Echinacea species did not differ in their responses to 

watering regime, contrary to my predictions. Vegetative and floral traits did not differ 

between species and treatments indicating the E. paradoxa is not more locally-adapted or 
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specialized than its CC congener with respect to the traits measured here. Both species 

had shorter stems, lower relative growth rates, reduced total biomass, and fewer florets in 

the drought treatment than the control treatment (Table 3-2), indicating that the drought 

treatment was inducing a stress response.  

Echinacea paradoxa (LAHS) had thinner leaves and greater reproductive output 

(number of disk florets) than its CC, E. pallida, contrary to my prediction that LAHS 

species would have thicker leaves and fewer florets. Moreover, E. paradoxa (LAHS) 

bloomed later than E. pallida (CC). There were no differences in several traits (i.e., leaf 

area, leaf longevity, shoot to root ratio, corolla area, relative reproductive output, 

reproductive phenology, total seed set, and the proportion of pollinated florets that were 

viable; Table 3-2), which suggests that these traits are either evolutionary conserved or 

both species are adapted to local conditions.  

Temperature experiment––One trait, specific leaf area (Table 3-2), differed 

between species in response to the temperature treatments. Echinacea paradoxa (LAHS) 

had higher specific leaf area (SLA) than E. pallida in the control treatment, but there was 

no difference in the high temperature treatment (Table 3-2; Figure 3-2A). This difference 

in SLA suggests that E. paradoxa responds to stress by reducing water-loss and 

photosynthetic rates, and E. pallida (CC) has an increase in evapotranspirative cooling, 

which results in similar SLA in the high stress environment.  

Temperature treatment had a significant effect on leaf area, relative growth rate, 

and total biomass (Table 3-2), which indicates that the treatments were effective and that 

evolutionary history may be influencing the response of these species to an increase in 

temperature. Probability of flowering was the only trait that differed between species 
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(Table 3-2), with E. pallida (CC) being more likely to flower than E. paradoxa (Table 3-

2; Figure 3-2B). However, it is important to note that few individuals bolted and 

flowered, and the majority of them were E. pallida (CC; 17 of 20), which decreased the 

power with which to test for differences among species and treatments.  

Scutellaria congeners 

Drought experiment––Scutellaria bushii (LAHS) and S. ovata responded 

differently to the watering regimes, and S. bushii was more resistant to drought stress, 

confirming my hypothesis of greater resistance in the LAHS taxa. Scutellaria ovata (CC) 

had a reduction in height (Figure 3-3A), relative growth rate, and total seed set (Figure 3-

3B), but S. bushii did not (Table 3-2), which resulted in statistically significant 

differences between taxa in the control treatment only. In other words, the Scutellaria 

congeners did not differ in these traits under drought conditions. Reproductive phenology 

was only different between the congeners in the control treatment; S. bushii bloomed 

significantly later and was more variable than S. ovata. There was no difference between 

species across the drought treatments.  

Total biomass and total floral output decreased for both species with a decrease in 

water availability (Table 3-2), although the response was more substantial in S. ovata 

(CC) than S. bushii (LAHS). Both responded similarly to a decrease in water availability 

with a shift in resource allocation, specifically shoot to root ratio was lower for both 

species in the drought treatment in comparison to the control treatment. Leaf thickness 

(Table 3-2) was significantly lower and relative reproductive output (Table 3-2; Figure 3-

3C) was higher in S. bushii than S. ovata (Table 3-2), contrary to my predictions. On the 

other hand, trichome density (Table 3-2) and germination rate (Table 3-2; Figure 3-3D) 
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of S. bushii were higher than its common congener, S. ovata, corroborating my 

hypothesis of greater stress-adaptation and offspring quality in the LAHS species.  

Temperature experiment––The Scutellaria congeners responded differently to the 

temperature treatments, but the direction of those differences varies by trait. In 

congruence with my hypothesis, trichome density of S. bushii was higher than S. ovata 

and did not vary with temperature treatment. Scutellaria ovata, on the other hand, had an 

increase in trichome density with an increase in stress. Total floral output was lower for 

both species in the high temperature treatment, but the reduction was much larger in S. 

ovata (CC) than S. bushii. On average, S. ovata had a reduction of 388 (72.9%) flowers, 

and S. bushii had 58 (59.2%) fewer flowers in the high stress treatment. Both species also 

had a decrease in height with an increase in temperature, resulting in the height of S. 

ovata in the high temperature treatment equaling that of S. bushii in the control treatment. 

Contrary to my predictions, specific leaf area, relative growth rate, and total biomass 

were not different between temperature treatments for S. ovata but were for S. bushii 

(LAHS), which had a reduction in all three traits with an increase in temperature.  

In response to an increase in temperature, both species had lower leaf area, were 

less likely to bloom, produced fewer seeds, and had lower relative reproductive output, 

which suggests that more resources are being allocated to survival rather than 

reproduction under high stress conditions. Some vegetative and floral traits differed 

between the taxa, which supports a role for trait differences in the maintenance of species 

range size. Leaves of S. bushii (LAHS) were smaller (had lower leaf area) and thinner 

than S. ovata, offering contradictory evidence for stress adaptation in the LAHS species. 

Relative reproductive output and germination rate was greater for S. bushii than S. ovata, 



51 
 

implying that offspring quality may be important in order to specialize on these restricted 

habitats. Scutellaria bushii bloomed significantly earlier than S. ovata (Table 3-2). 

DISCUSSION 

The relative importance of abiotic and biotic mechanisms in determining species 

ecogeographical distributions is a central and critical topic in ecology. Here, I document 

the potential for both factors to act synergistically in three locally abundant, regionally-

rare (LAHS) species. The LAHS species were less responsive to experimental stress in 

key physiological traits, and two of the three differed from their common congeneric 

(CC) species in floral traits and offspring quality, which confirms my hypotheses that the 

LAHS species are locally adapted to the xeric glad environment and that the trade-off 

between resource allocation to vegetative and floral traits differs in LAHS and CC 

species.  

Each of the LAHS species was more resistant to high stress environments in 

comparison to their widespread congeners, despite a stress response in both species, and 

only one CC species (S. ovata in the temperature experiment) had any traits that were less 

responsive than the LAHS species. While all species were negatively affected by drought 

or high temperature conditions, the LAHS species had fewer traits negatively affected by 

an increase in stress, particularly those important for water conservation. For instance, the 

relative growth rate (RGR) of Delphinium treleasei (LAHS) did not differ between 

temperature treatments, but D. carolinianum had a significant reduction in RGR with an 

increase in stress (Figure 3-1A). Relative growth rate (RGR) is thought to be adaptive in 

stressful environments as it is associated with low photosynthetic rates and high water-
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use efficiency. Relative growth rate of D. treleasei was also lower than D. carolinianum 

in the precipitation experiment, which corroborates my prediction of stress-adaptation.  

Similarly, the impact of stress on specific leaf area differed between the 

Echinacea species and potentially reflects two strategies for responding to abiotic stress. 

Echinacea paradoxa (LAHS) produced more dense leaves (lower SLA) in the high stress 

environment, which is associated with reduced water loss, lower RGR, and lower 

resource turnover. Echinacea pallida, on the other hand, produces leaves with higher 

SLA in the high temperature conditions, which may reflect an increase in evaporative 

cooling. Contrary to my predictions, E. pallida was more likely to bolt and had fewer 

florets than E. paradoxa (Figure 3-3 B and C, respectively) in the precipitation 

experiment, which suggests that E. pallida has an accelerated life cycle and lower total 

reproductive output in comparison to E. paradoxa. However, these Echinacea species are 

perennial and live longer than the duration of this study. Therefore, I could not test for 

this mechanism.  

The Scutellaria species also differed in their response to an increase in stress, and 

S. bushii was generally more resistant to stress. For instance, Scutellaria ovata (CC) was 

shorter in the drought treatment in comparison to the control treatment, and S. bushii had 

no change in height (Figure 3-3A), which is associated with stress-adaptation. This 

pattern was consistent in several other traits (e.g., total biomass, relative growth rate, 

etc.), further corroborating my hypothesis that LAHS species are more resistant to stress. 

Height is also an important attraction trait for many insect species and may result in 

higher competitive ability of S. ovata for pollinator services in less stressful habitats. In 

the high stress environment, there was no height difference between S. ovata and S. 
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bushii, indicating that the competitive advantage of height may be reduced. The results 

from the temperature experiment with the Scutellaria species are less clear, with some 

traits differing in the direction I predicted and others in the opposite direction, 

particularly the vegetative traits. This variation in response to stress between temperature 

and drought stress may reflect the different physiological mechanisms that underlie 

resistance to these traits, or it may reflect the simplicity of the experimental design. In 

order to pin-point which abiotic stressor dominated species responses given limited 

space, I conducted independent experiments and did not cross the water and temperature 

treatments. However, a combination of abiotic factors is likely contributing to the unique 

conditions on glades in concert. The rocky substrate and extreme abiotic conditions on 

glades make in situ, population-level, field manipulations difficult, and the establishment 

of individuals from the species of interest is unreliable. Therefore, future studies should 

combine manipulations of abiotic factors in common garden experiments with in situ 

observational studies that document both biotic and abiotic factors at the individual level. 

The combination of common garden experiments and observational studies will 

contribute to a more biologically realistic understanding of abiotic and biotic factors in 

determining the reproductive success and population growth of LAHS and CC species. 

In addition to absolute differences in the degree of response, the greater variation 

in response of the CC species to the high and moderate stress conditions suggests that 

they have greater phenotypic plasticity in the measured traits. While I did not explicitly 

test for differences in phenotypic plasticity, which requires genetically identical 

individuals, the trend of greater phenotypic change in the CC species vs. the LAHS 

species is consistent across the genera. Greater phenotypic variation in the traits of the 
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CC species in comparison to their LAHS congeners could result several potential 

processes, including genetic assimilation and/or genetic homeostasis. Genetic 

assimilation is the process by which phenotypic variation in response to an environmental 

condition becomes canalized and no longer requires the environmental signal to be 

expressed (Waddington 1953a, b; Pigliucci et al., 2006). Under consistent selective 

pressure for the xeric-adaptive traits, the genetic reaction norm of a given trait should 

vary less between environments, as documented by the reduced response of the LAHS 

species to changes in stress. From the perspective of the CC species which have broader 

habitat use, the differences in phenotypic variation between CC and LAHS species 

suggest the mechanism of genetic homeostasis, or the maintenance of genetic variability 

through adaptation to a diverse set of environmental conditions (Waddington, 1953b, 

Lerner, 1954), for instance as would be experienced across multiple habitat types. Future 

studies should explicitly test the relative importance of these mechanisms in determining 

the differences in phenotypic variation between CC and LAHS species.   

Key floral attraction traits also differed between congeners in these experiments, 

as I predicted if resources for reproduction are allocated differently in LAHS and CC 

species. Delphinium carolinianum was significantly taller than its LAHS congener and 

could be a better competitor for pollinator services, if height dominates attractiveness. 

Delphinium treleasei (LAHS) had fewer flowers open concurrently, which is less 

attractive to pollinators but often increases outcrossing rates via a reduction in within 

plant movement by the pollinator. While only marginally significant, the flowers of D. 

treleasei were larger than D. carolinianum, suggesting that the resources committed to 

reproduction are allocated to fewer, larger flowers. Previous research indicates that D. 
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treleasei has fewer, larger flowers in the field and that they attract more specialized 

pollinators (Miller-Struttmann, Chapter 1). Nectar sugar concentration was also higher in 

D. treleasei than D. carolinianum, but there was no difference in nectar volume, which 

indicates that more concentrated nectar reward may be an important attraction trait for the 

species that specialize on water-limited habitats. Many nectar-collecting insects can 

detect nectar quality and choose flowers accordingly (Wilson et al., 2006), resulting in 

preferential visitation to those species with the greater reward. Moreover, higher sugar 

concentration is advantageous in stressful environments where water is limiting and may 

compensate for the reduction in floral display. On the other hand, greater viscosity may 

make the nectar of the LAHS species more difficult to remove from the flower and may 

reduce the number of species able to extract the reward. Choice trials should be 

conducted with known pollinators of these species to determine whether nectar sugar 

concentrations consistent with field measurements affect rate of nectar removal and the 

number of species able to capitalize on the resource. The LAHS species, S. bushii, did not 

produce chasmogamous flowers, and I could not quantify floral attraction traits for this 

species. However, relative reproductive output was higher in S. bushii (LAHS), contrary 

to the prediction of stress-resistance, but in congruence with my prediction that higher-

quality offspring, which require greater resource investment, are required in order to 

species to survive and specialize on stressful habitats.     

The measures of reproductive success in D. treleasei and S. bushii (LAHS) 

documented here confirm my prediction that LAHS species have fewer, higher-quality 

offspring, which may increase survival rates and population viability in more stressful 

habitats. Both LAHS species had significantly higher offspring quality (i.e., seed mass 
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and germination rate, respectively). Conversely, total seed set of both CC species (D. 

carolinianum and S. ovata) was significantly higher in the control treatments but was 

equivalent to their LAHS congeners in the high stress treatments. The difference in total 

seed set between LAHS and CC species in the control treatment may reflect an important 

role for propagule pressure in determining species ranges. High propagule pressure is 

thought to contribute to range expansion in some species by reducing recruitment 

limitation and increasing the number of individuals and genotypes with the potential to 

establish in a new habitat (Kelly et al., 1996; MacDougall et al., 2006; Soberón, 2007). In 

less stressful habitats, the higher seed set of the CC species may allow it to establish more 

quickly than the LAHS species, increase in population size, and/or outcompete it for 

abundant resources. However, in stressful habitats, high offspring quality may enhance 

survival and allow adaptation to local conditions, thus reinforcing the pattern of range 

restriction to specific, stressful abiotic conditions seen in these LAHS species.  

Given the rate of current climatic change and the prevalence of entomophilous 

pollination, understanding the relative importance of biotic and abiotic mechanisms in 

determining the biogeographical ranges of species is imperative. Few studies consider 

biotic and abiotic mechanisms in concert, despite a long history of inquiry into each 

individually. Future studies should work to understand how these mechanisms interact 

and in which cases they will predominate, rather than regard them as mutually exclusive. 

While biological information is lost by reducing continuous traits into categories, the 

seven forms of rarity offer a framework through which to make and test predictions 

concerning which mechanisms are most relevant for species with similar distributions.  In 

this study, I explored the potential interaction between abiotic stress and reproductive 
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allocation in three regionally-rare, habitat-specialist species, which are characterized by a 

type of rarity that is often ignored in the discussion of rarity and found that both may 

contribute to the restriction of their ranges to glade habitats. These results imply an 

important role for pollination biology in mediating the interaction between the stress-

adaptation and reproductive success in stressful environments. In an era of increasing 

anthropogenic impacts on natural habitats, a more in-depth and nuanced understanding of 

the determinants of species biogeographical ranges will create more efficient and 

hopefully more effective conservation strategies.   
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Table 3-1. A description of the temperature regimes, number of cold stratifications 

required to induce flowering, and the floral traits that were quantified differently for each 

congeneric pair. Temperature regimes are based on field collected data, and reflect the 

night and day time temperatures, respectively. Temperatures were gradually changed 

manner over two hours in order to reduce heat shock. The Echinacea species had a 

temperature regime of 28/30ºC for the first application of the treatment. However due to 

slow growth, the temperature regime was changed to 27/35ºC, and analyses did not 

include data recorded from the first treatment application. 

 Temperature 

Regime 

(low/high) 

Replication 

(Drought/Temp) 

No. cold 

treatments 

Corolla 

area (CA) 

Display 

size 

Floral 

output 

Reproductive 

success 

Total Bolted 

Delphinium  21/29 ºC 193/133 0/62 0 - 2 Sepal 
width x 
height 

CA x no. 
flowers 
open 

No. 
flowers 

Mass per  
seed 

Echinacea 27/35 ºC 89/94 36/20 3 - 4 Ray petal 
width x 
length 

CA x no. 
ray petals 

No. 
florets 

Fertilized 
florets: 
Pollinated 
florets 

Scutellaria 28/38 ºC 90/103 87/70 0 Petal 
width x 
height 

CA x no. 
flowers 
open 

No. 
flowers 

Germination 
rate 
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Table 3-2. Statistical results from analyses of vegetative traits, floral traits, and 

reproductive success between three congeneric species pairs and in response to 

experimental manipulations of water availability and air temperature. Analyses of the 

experiments with the Delphinium species have an additional term (Treatment nested 

within Experiment), since each experiment (drought and temperature) was repeated in 

order to increase replication. Few individuals (3) bolted in the drought experiment with 

the Delphinium species, and only vegetative traits could be analyzed. Significance values 

are indicated by symbols († denotes P < 0.1, * indicates P < 0.05, ** signifies P < 0.01, 

and *** symbolizes P < 0.001) and indicated in bold font. Some traits did not meet the 

assumption of normality for parametric tests, and a non-parametric resampling procedure 

(permutation ANOVA) was used to assess differences between species and treatments. 

When results of the parametric and non-parametric analyses differed, the significance 

levels from the non-parametric tests are indicated in parentheses, and those that are 

significant are indicated in bold font.  

ø denotes that analyses were run independent of the other traits (i.e., not corrected for 

multiple comparisons) due to low replication of that trait. 

‡ signifies analyses that were conducted using data from one of the two experimental 

replications (Delphinium species height and reproductive traits only) 

• indicates that the analyses were conducted with data from both replicate experiments for 

the Delphinium temperature experiment. 

^ signifies that the data have an exponential distribution and were analyzed independent 

of the other variables via general linear model using a reciprocal link function. 

º denotes that analyses were run independent of the other traits using logistic regression. 
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 Drought Temperature 

 Species 
Treatment x 

Experiment 

Species x 

Treatment 
Species 

Treatment x 

Experiment 

Species x 

Treatment 

Delphinium        

Vegetative traits       
Height‡ -- -- -- 21.52*** 10.53** 0.006 
Leaf thickness -- -- -- 13.43*** 2.88† 1.69 
Leaf areaø 2.18 0.11 0.34 3.43† 2.86† 0.98 
Specific leaf area 0.39 0.11 0.49 0.09 1.12 1.25 
Total leaf area 0.30 1.23 0.62 -- -- -- 
Leaf longevity 1.48 0.092 0.031 (0.27) (0.0627) (0.84) 
Relative growth 

rate^ 
(0.0014) (0.41) (0.92) 1.05 6.53* 5.24* 

Shoot:Root ratio (<0.0001) (0.12) (0.65) (0.0196) (0.094) (0.34) 
Total biomass^ (0.0008) (0.87) (0.96) 0.057 11.41*** 1.04 

Reproductive traits
‡
       

Inflorescence 
initiationº• 

-- -- -- 0.89 2.96 1.30 

Anther-stigma 
separation 

-- -- -- 8.91** 0.005 1.03 

Corolla area -- -- -- 3.04† 3.45† 1.11 
Display size -- -- -- 3.09† 6.62* 0.70 
Floral output -- -- -- 5.75* 9.21* 0.29 
Floral spur length -- -- -- 0.03 0.44 0.66 
Flower longevity -- -- -- 13.01** 2.24 1.17 
Nectar volume -- -- -- 0.06 1.60 1.94 
Nectar sugar 

contentº 
-- -- -- 5.15* 5.21* 0.66 

No. flowers open -- -- -- 11.88** 4.70* 0.68 
Proportion of 

flowers open 
-- -- -- 3.26 0.25 0.04 

Relative 
reproductive 
output 

-- -- -- 0.58 5.60* 0.63 

Reproductive 
phenology 

-- -- -- (0.90) (0.10) (0.077) 

Reproductive success
‡
       

Seed quality -- -- -- 13.80*** 9.24** 1.49 
Total seed set -- -- -- (0.11) (0.093) (0.051) 

 Species Treatment 
Species x 

Treatment 
Species Treatment 

Species x 

Treatment 

Echinacea       

Vegetative traits       
Height 3.09† 17.05** 0.16 0.59 2.90 0.46 
Leaf area 0.07 2.31 1.70 0.14 0.35 0.43 
Leaf thickness 12.42** 0.85 0.19 0.00 5.44* 0.61 
Leaf longevity 1.58 1.79 0.11 2.05 3.72† 1.80 
Specific leaf area 1.39 0.06 0.22 3.83† 0.70 6.83* 

Relative growth rate 6.69* 13.85** 0.05 (0.18) (<0.0001) (0.67) 
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Total biomass 2.03 16.61** 0.18 (0.43) (<0.0001) (0.42) 
Shoot:Root ratio (1.00) (0.12) (0.58) (0.50) (1.00) (0.57) 

Reproductive traits       
Inflorescence 

initiationº 
1.00 1.91 0.61 15.06** 0.01 0.96 

Corolla area 0.16 1.63 0.02 0.00 2.75 0.07 
Floral output 19.15** 12.69** 0.09 0.03 0.01 0.34 
Nectar sugar content 0.03 0.40 0.01 -- -- -- 
Nectar volume 1.69 0.80 0.07 -- -- -- 
Relative 

reproductive 
output 

(0.11) (0.066) (1.00) 0.21 1.16 1.35 

Reproductive 
phenology 

(0.0261) (0.18) (0.94) 0.45 1.87 4.51† 

Reproductive success       
Proportion fertile 

capitula 
0.58 1.63 0.58 0.60 0.10 0.44 

Total seed set 0.60 3.16† 0.12 1.34 0.06 0.79 

Scutellaria       

Vegetative traits       
Height  23.61*** 22.52*** 4.33* 198.2*** 202.0*** 29.03*** 

Leaf area 1158*** 13.5** 1.97 146.3*** 26.47*** 2.11 
Leaf longevityø -- -- -- 2.28 1.0 0.01 
Leaf thickness 308.0*** 0.01 0.07 80.75*** 0.11 1.90 
Shoot:Root ratio 0.61 4.92* 0.75 0.04 0.33 2.18 
Specific leaf area 0.20 1.88 0.24 0.42 3.02† 5.24* 

Trichome density 12.17** 0.37 1.36 27.71*** 1.83 11.00** 

Relative growth rate 239.2*** 35.51*** 14.94** (<0.0001) (<0.0001) (0.0136) 

Total biomass (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) 

Reproductive traits       
Inflorescence 

initiationº 
-- -- -- 1.71 33.77*** 0.02 

Floral output 101.6*** 148.9*** 54.97*** (0.53) (<0.0001) (<0.0001) 

Relative 
reproductive 
output 

7.94** 2.28 0.69 (0.058) (<0.0001) (0.34) 

Reproductive 
phenology 

(0.14) (0.96) (0.0233) 5.13* 1.32 2.55 

Reproductive success       
Total seed set 79.25*** 49.91*** 6.15* -- -- -- 
Total fruit set -- -- -- 2.10 3.20** 0.07 
Germination rate 31.31*** 0.96 0.03 (0.0286) (0.093) (0.57) 
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Figure 3-1. Vegetative and reproductive traits of a locally abundant regionally rare 

species (LAHS), Delphinium treleasei, in comparison to its common congener, D. 

carolinianum and in response to experimental temperature treatments, (A) relative 

growth rate (mg/day; square root transformed), (B) total potential seed set (average 

number of seeds per fruit times the total number of flowers; square root transformed), (C) 

floral output (number of flowers; loge transformed), and (D) average seed mass (mg). 

Statistically significant differences between treatments and species in panels (A) and (C) 

are designated by having different letters (those that share letters are not significantly 

different). In panels (B) and (D), statistical significance is indicated by asterisks (* 

designates P < 0.05, ** indicates P < 0.01, and *** represents P < 0.001).  
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Figure 3-2. Vegetative and reproductive traits of Echinacea paradoxa (LAHS) and E. 

pallida (CC) in response to temperature treatments and compared to each other (data 

represented in panels (B) and (C) are from the precipitation experiment), (A) specific leaf 

area (cm2 per unit biomass; loge transformed), (B) floral phenology (age in days at date of 

inflorescence initiation), and (C) floral output (number of florets; log transformed). 

Statistically significant differences between treatments and species in panels (A) and (C) 

are designated by having different letters (those that share letters are not significantly 

different). In panels (B) and (D), statistical significance is indicated by asterisks (* 

designates P < 0.05, ** indicates P < 0.01, and *** represents P < 0.001). 
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Figure 3-3. Vegetative and reproductive traits of Scutellaria bushii (LAHS) in 

comparison to S. ovata (CC) and in response to watering treatments, (A) height (cm), (B) 

relative reproductive output (square root transformed), (C) total potential seed set 

(average number of seeds per fruit times total floral output), and (D) germination rate. 

Statistically significant differences between treatments and species in panels (A) and (C) 

are designated by having different letters (those that share letters are not significantly 

different). In panels (B) and (D), statistical significance is indicated by asterisks (* 

designates P < 0.05, ** indicates P < 0.01, and *** represents P < 0.001). 
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INTRODUCTION 

A primary tenet of ecology is the role of competitive exclusion in determining 

species ranges (Tilman, 1976; Chase et al., 2002; Chase and Leibold, 2003; Fargione et 

al., 2003; Lau et al., 2008; Angert, 2009), although some studies challenge this tenet 

(Volkov et al., 2003; Muneepeerakul et al., 2008). Historically, the theory of competitive-

exclusion has been conceptualized in terms of abiotic resources (Hardin, 1960; Tilman, 

1976; Chase and Leibold, 2003; Rodríguez-Gironés and Santamaría, 2007; Abrams et al., 

2008). Biotic resources, such as pollination services, are also limiting in many habitats 

(Totland and Eide, 1999; Knight et al., 2005; Fishman and Willis, 2006; Spigler and 

Chang, 2009; Martén-Rodríguez and Fenster, 2010; Wagenius and Lyon, 2010) and may 

lead to the extinction of local populations via reduced reproductive success. Many plants 

compete for pollinators (Brown et al., 2002; Bell et al., 2005; Devaux and Lande, 2009; 

Mitchell et al., 2009), and species with low relative abundance are often poorer 

competitors (Flanagan et al., 2010). Biotic resources could, therefore, contribute to the 

restriction of some rare species’ ranges. An increase in competition for shared pollinators 

reduces the seed set of poorer competitors (Brown and Mitchell, 2001; Bell et al., 2005), 

and should restrict species from establishing populations in habitats characterized by 

competition for pollinators. Moreover, species that occur on stressful habitats often have 

a similar suite of traits that are adaptive in stressful abiotic conditions (Grime, 1977; 

Chapin et al., 1993), specifically in hot and xeric environments, but may lead to reduced 

competitive ability for pollinators in more productive habitats, as is seen with 

competition for other resources (Maestre et al., 2009).  
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Rare taxa are thought to be less reliant on their pollinators by adopting self-

compatibility (Darwin, 1877; Fausto et al., 2001; Moeller and Geber, 2005; Harder et al., 

2008; Jacquemyn and Brys, 2008; Martén-Rodríguez and Fenster, 2010), which ensures 

reproductive success despite low pollination success. Plants that are self-compatible often 

have lower investment in floral traits to attract pollinators and often have smaller and less 

abundant flowers, and lower nectar and pollen rewards (Anderson and Busch, 2006; 

Fishman and Willis, 2006; Kennedy and Elle, 2008; Foxe et al., 2009); making them less 

attractive to pollinators (Kudo and Harder, 2005; Dickson and Petit, 2006; Ishii et al., 

2008; Parachnowitsch and Kessler, 2010). Therefore, this hypothesis would predict that 

rare taxa are poor competitors for pollinators. The principle of reproductive assurance is 

based on one of the seven forms of rarity (Rabinowitz et al., 1981), which are defined by 

a combination of local population size, geographical extent, and habitat specificity (Table 

4-1). One important assumption underlying this model, specifically low pollen 

availability, is applicable when local populations are small or pollination success is low 

or unpredictable. On the other hand, locally abundant, regionally-rare (LAHS) taxa may 

not be limited by pollen availability if pollination is sufficient and predictable. This leads 

to the possibility that factors other than low pollen availability can affect selection on 

floral traits, such as stressful conditions or competition for pollinator services.  

If rare species specialize on the stressful (defined here as hot and xeric) habitat in 

which they occur, they should be locally-adapted and better able to tolerate those 

conditions than species that are not restricted to these habitats or that are adapted to more 

benign habitats (Grime, 1977; Chapin et al., 1993). The widespread species may have 

lower photosynthetic rates and a greater reduction in floral output and floral attraction 
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traits when stress is high. A reduction in floral attraction traits could diminish their ability 

to attract pollinators and compete for pollinator services under stressful conditions. Plants 

with larger floral displays and greater reward output are better competitors for pollinator 

services (Brown and Mitchell, 2001; Bell et al., 2005) and have greater reproductive 

success (Bell et al., 2005; Kudo and Harder, 2005). Stressful conditions may also select 

for higher offspring quality and outcrossing rates, in response to high mortality or 

inbreeding depression. Therefore, I predict that LAHS species that are endemic to 

stressful environments should exhibit traits associated with increased outcrossing rates 

and competitive ability for pollinators. Individuals with fewer, larger flowers are known 

to have higher outcrossing rates (Karron et al., 2004; Eckert et al., 2009; Karron et al., 

2009) mediated by pollinator behavior, and pollinators are attracted to individuals with 

greater floral display, either via flower number or flower size (Kudo and Harder, 2005; 

Dickson and Petit, 2006; Ishii et al., 2008; Parachnowitsch and Kessler, 2010). According 

to this hypothesis, and contrary to traditional theory, LAHS taxa should be better 

competitors for shared pollinators than widespread, closely-related species when in high 

stress habitats.   

In this study, I test the hypothesis that floral attraction traits affect the relative 

competitive ability of two locally abundant, regional rare taxa (LAHS) in comparison to 

their widespread, common congeners (CC) for pollinators in the stressful (i.e., hot and 

xeric) habitats of the Ozark glades. Specifically, I will test two alternative predictions. 

First, LAHS taxa have traits associated with increased attractiveness to pollinators and 

are better competitors for pollinators than their common congeners (CC). Secondly, 

LAHS species have traits associated with reduced competitive ability (e.g., fewer, smaller 
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flowers) and are poorer competitors than their CC, as traditional competitive exclusion 

theory would predict. I tested these hypotheses via a modified De Witt replacement 

competition experiment that maintained density of inflorescences but manipulated the 

relative proportion of conspecific and heterospecific individuals. I introduce naïve 

individuals to pollinators in a common habitat to assess their ability to attract pollinators 

as measured by visitation rate and reproductive success.  

MATERIALS AND METHODS 

Study system—I chose two plant species endemic to glades, Delphinium treleasei 

(Ranunculaceae) and Echinacea paradoxa (Asteraceae), which are restricted to glades in 

the Ozark Region in Missouri and Arkansas and have common congeners (CC; D. 

carolinianum and E. pallida, respectively) that can grow on glades but are not restricted 

to them. Glades are hot, dry habitats with a high-proportion of exposed bedrock 

dominated by herbaceous vegetation, which occur within a matrix of more mesic oak-

hickory woodland (Kucera and Martin, 1957; Yatskievych, 1999). Comparing congeneric 

pairs provides insight into the factors that restrict one species to glades and not the other, 

and multiple congeneric comparisons also make the results of this study more broadly 

applicable (Bevill and Louda, 1999). Moreover, comparing restricted species to their 

widespread congeners mitigates the potential influence of evolutionary history on the 

biological traits correlated with competitive ability for coevolved pollinators.   

Experimental design—I conducted a field competition experiment in order to 

explicitly test the relative competitive abilities of the LAHS and CC taxa. In order to 

incorporate spatial variation in pollinator assemblage and abundance, I conducted the 

experiment at multiple field sites (two for Delphinium and three for Echinacea; Table 4-
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2) across a broad geographic range relative to the distribution of the LAHS taxa. Sites 

were chosen based on two criteria: (1) both species of a congeneric pair occur on the 

same glade and (2) the density of each species was roughly similar. Inflorescences from 

elsewhere in the same glade were bagged before flowering in order to exclude visiting 

insects. Because successful transplantation into glades is difficult due to shallow soils and 

extreme conditions, all inflorescences were collected, placed in glass containers filled 

with water and wrapped with a light, neutral-colored material in order to keep the 

inflorescence fresh and erect. Each individual was randomly assigned to one of three 

competition treatments: interspecific competition, focal individuals in the intraspecific 

competition, and non-focal individuals in the intraspecific competition treatment. In other 

words, each species competed with individuals of the same species (intraspecific, 0% 

proportion to heterospecifics) and with individuals of its congener (interspecific, 50% 

proportion to conspecifics) while plant density remained constant (Figure 4-1). The 

intraspecific competition treatment was subdivided into focal and non-focal individuals in 

order to maintain equal replication per species per treatment (i.e., two individuals per 

species per treatment replicate), despite a difference in relative abundance of 

conspecifics. Only those individuals assigned to the focal group were used for statistical 

analyses in order to maintain a balanced comparison between treatments. The experiment 

was repeated two to three times per site with different individuals, depending on 

availability of inflorescences, for a total of up to 36 individuals per field site [(4 

individuals for the intraspecific competition treatment + 2 individuals for the interspecific 

competition treatment) x 3 replicates x 2 species; Figure 4.1].  
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Floral attraction traits—I measured the following floral attraction traits: plant 

height, number of open flowers (Delphinium) or florets (Echinacea), flower size 

(Delphinium only), and total display size (TDS). Due to morphological differences, TDS 

was quantified differently for each genus. For the Delphinium taxa, TDS is defined as the 

product of the total number of flowers open times corolla area (i.e., flower width x flower 

height), and TDS for the Echinacea taxa the product of number ray petals times corolla 

area (i.e., ray petal width times ray petal length). Pollinator attraction traits were 

measured following observations, in order to avoid damaging flowers or altering reward 

quality or quantity (e.g., pollen quantity). 

Pollination and reproductive success—Plants were exposed to pollinators (i.e., 

bagging removed) after they were placed in the competition array in order to ensure that 

pollination occurred only when in the arrays, and they remained in the arrays for six to 

eight hours. I observed the number, type, and behavior (e.g., visit duration, anther and 

stigma contact) of all floral visitors during peak periods of activity for 30 minutes. The 

arrays were placed in a part of the glade where both species occur in equal abundance in 

order to reduce any potential density-dependence effect on pollinator behavior. 

Pollination was quantified as visitation rate, visit duration, and the number of flowers 

probed per visit (for Delphinium species only). Because seed set from cut inflorescences 

is variable and often unsuccessful, I quantified reproductive success as the number of 

pollen grains germinated and the number of pollen tubes reaching the ovary. Once the 

inflorescences were removed from the field, they remained undisturbed for 24 hours to 

allow for pollen tube growth, after which each ovary was dissected from the 

inflorescence. At one site (SNR; Table 4-2), the abundance of individuals blooming 
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concurrently was low and insufficient to conduct the experiment. Therefore, individuals 

that were collected at a different site (HHTSP) were randomly re-assigned to a new 

treatment and the experiment was repeated at SNR. Since Echinacea species have florets 

that are only receptive for one day, I was able to collect the achenes in between 

experiments and ensure that pollen deposition and pollen tube growth were not the result 

of previous exposure to pollinators. I also allowed two days between observation periods, 

during which the inflorescences were excluded from pollinators and kept in cool (roughly 

23ºC) conditions to reduce wilting. I carefully removed those florets that were exposed to 

pollinators after each treatment, without damaging the capitula.  

Once removed, the ovaries were fixed in 3:1, 95% ethanol:glacial acetic acid for 2 

hours, rinsed and stored in 70% ethanol. They were then immersed in 10% (w/v) solution 

of sodium sulfite and autoclaved for 30 or 40 minutes at 60 or 70°Celsius for Delphinium 

and Echinacea taxa, respectively.  After cooling, each pistil was mounted on a slide, 

covered with 3-5 drops of decolorized aniline blue, refrigerated for 24 hours, and 

illuminated using a 100 W fluorescent source (Lipow et al. , 2002) on a Zeiss Universal 

microscope. In order to determine reproductive success, I counted the number of pollen 

grains on the stigma, the number of pollen tubes growing down the style, and the number 

of pollen tubes reaching the ovary (see Lipow et al., 2002). Competitive ability was 

quantified as differences in visitation rate, number of pollen on the stigma, number of 

pollen tubes germinating down the style, and number of pollen tubes to reach the ovary in 

response to the competition treatments.  

Statistical analyses—I tested for differences in morphological traits between 

species of each genus via a two-way, nested ANOVA with Treatment and Distribution as 
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factors in order to ensure that the randomization procedure was not biased (i.e., traits did 

not vary by treatment). Distribution was nested within Site to control for potential spatial 

variation in species’ traits. All three treatments (i.e., intraspecific, interspecific focal 

plants, interspecific non-focal plants) were included to determine the potential for a bias 

in the randomization procedure. Upon finding a significant interaction term, I used a 

Tukey’s HSD posthoc test to determine paired differences between the significant factors.  

The effects of competition treatment on pollination and reproductive success were 

tested as a two-way, nested ANOVA with treatment and distribution nested within site. 

Treatment was nested within site to control for among-site variation in pollinator 

composition and abundance. Since some morphological traits varied spatially, 

distribution was also nested within site, in order to differentiate between the effects of 

site-level variation in morphological traits and pollinator assemblages. Due to low 

visitation rates and pollen deposition, significant differences in the competitive ability of 

congeners were also tested using a two-way nested, permutation ANOVA (aovp in R 

Statistical Package (R Development Core Team, 2008)) with Treatment and Distribution 

nested within Site as above. I used a Monte Carlo resampling approach (i.e., without 

replacement) to construct a null expectation based on a random sampling of the available 

data and compared each of 5000 runs to the null. Statistical significance is quantified as 

the number of runs for which the F-statistic is greater than or equal to the observed value. 

Response variables were tested for normality and transformed as necessary. Variables 

that could not be transformed to meet the assumption of normality for parametric 

statistics were also tested for differences using the permutation approach described 
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above. Results did not differ between the parametric and nonparametric analyses; 

therefore, I report the results of the parametric tests.  

  RESULTS 

Morphological traits—For the Delphinium taxa, morphological traits differed 

between congeners and across sites, but there was no treatment effect, which verified the 

randomization procedure. Height and display size of both Delphinium taxa differed 

significantly between sites (DF = 1, F stat = 6.33, P value = 0.0197; DF = 1, F stat = 

26.0, P value < 0.0001, respectively; Figure 4-2 A and B), which means that the 

morphological traits differed between the replicates and could reflect different abiotic 

conditions between sites. There was no difference between congeners (DF = 2, F stat = 

1.18, P value > 0.05; DF = 2, F stat = 1.98, P value > 0.05; respectively). There was a 

significant interaction between site and distribution for the number of flowers open 

(NFO) concurrently (DF = 2, F stat = 5.54, P value = 0.0105; Figure 4-3A). The LAHS 

Delphinium treleasei had a higher NFO at one site (RBCA) than the other, but there was 

no difference between sites for the CC or between congeners within a site. Corolla height 

(CH), which includes the landing pad of the flower, also differed among species and sites 

for the Delphinium taxa (DF = 2, F stat = 7.04, P value = 0.0043; Figure 4-3B). The 

LAHS species had greater CH than its CC at DCA but not at RBCA, which suggests that 

CH is as variable by geography as it with between congeners. Distance to nectar was 

marginally different between Delphinium species at different sites (DF = 2, F stat = 2.87, 

P value = 0.0780), which was driven by a marginal difference between taxa at one site 

(DCA).  



75 
 

The Echinacea taxa are not different in their morphological traits among the 

interspecific, focal-individuals of the intraspecific treatment, and the non-focal 

individuals of the intraspecific treatment, again verifying the randomization procedure. 

They also differed in their morphological traits among sites and species; in other words, 

species traits were different at some sites and not at others. The number of flowers open 

and display size differed significantly among sites for both species, indicated the 

geographic variation is greater than any differences between congeners. There were more 

flowers open at PLH than either HHT or SNR (DF = 2, F stat = 19.15, P value < 0.0001), 

and total display size was successively larger at PLH, HHT, and SNR (DF = 2, F stat = 

42.92, P value <0.0001). Height was significantly different between congeners among 

sites (DF = 2, F stat = 4.55, P value = 0.0091; Figure 4-4A), which was driven by 

differences between congeners at one site (HHTSP). Echinacea paradoxa (LAHS) was 

significantly shorter than its CC at HHTSP, which is consistent with the prediction of 

greater competitive ability. 

Competitive ability—Neither pollination nor reproductive success differed 

between the intra- and interspecific competition treatments for either genus. However, 

both genera had significant differences among sites and distributions. Both Delphinium 

species had marginally lower visitation rates at DCA than RBCA (DF = 1, F stat = 3.48, 

P value = 0.0833; Figure 4-2C), but there was no difference between species or 

treatments (DF = 2, F stat = 0.54, P value > 0.05; DF = 2, F stat = 0.36, P value > 0.05; 

respectively). There were no differences in visit duration or the number of flowers probed 

per visit for site, distribution or treatment. The Delphinium species differed across sites in 

the number of pollen grains germinating on the stigma (DF = 2, F stat = 11.33, P value = 
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0.0017); the LAHS species at RBCA had a greater number in comparison to the LAHS 

species at DCA and to its CC at either site. The number of tubes developing down the 

style was significantly different between species within sites (DF = 3, F stat = 4.61, P 

value = 0.0327; Figure 4-3C); the LAHS species at RBCA had more tubes in comparison 

to its CC at either site and to itself at DCA. However, there were no differences in the 

number of pollen tubes reaching the ovaries (DF = 3, F stat = 0.56, P value > 0.05), 

which may reflect low pollen quality or maternal effects, since the inflorescences were 

removed from the rest of the individual which could impede pollen tube growth.  

The Echinacea taxa did not differ in visitation rate among sites (DF = 2, F stat = 

2.36, P value > 0.05) or by distribution within sites (DF = 3, F stat = 1.80, P value > 

0.05). The duration of the visits received was also not different among sites (DF = 2, F 

stat = 1.21, P value > 0.05) or by distribution within sites (DF = 3, F stat = 2.04, P value 

> 0.05). The number of pollen grains deposited on the stigma was significantly different 

between species across sites (DF = 3, F stat = 4.75, P value = 0.0232; Figure 4-4B), but 

there were no differences between congeners within a given site. There was also no 

difference in the number of pollen tubes reaching the ovaries at any site (DF = 3, F stat = 

1.10, P value > 0.05). 

DISCUSSION 

 For decades, the relative importance of biotic and abiotic factors in determining 

species distributions has been debated in ecology. Competition for shared pollinators may 

influence distributions via reproductive success. Here, I tested the alternative hypotheses 

that two rare species are (1) poorer competitors for pollinators in comparison to their 

common congeners (CC), based on the predictions of traditional reproductive theory 
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which state that rare taxa have higher selfing rates and are therefore less attractive to 

pollinators or (2) better competitors for pollinators in the plant specialized for increased 

attractiveness in stressful environments. There was no significant effect of the 

competition treatment on pollination or reproductive success of any species tested. 

However, there was significant variation among sites in the floral traits and reproductive 

success of endemics and their CC, which indicates the important role of scale on 

interspecific interactions and, potentially, the mechanisms restricting a species’ range.   

Contrary to my predictions, neither the CC nor the LAHS species were 

consistently better competitors for pollinators. There were no significant differences in 

visitation rate, pollen deposition, or pollen tube growth between intra- and interspecific 

competition treatments. The lack of a treatment effect suggests that competition for 

pollinator services is either not occurring between these congeneric pairs on glades or 

they have equal competitive abilities. In a previous study (Chapter 2), I demonstrate that 

pollen limitation did not differ between Delphinium congeners and was moderately low 

(D. treleasei: 3.18 seeds per fruit (12.3%) and D. carolinianum: 3.69 seeds per fruit 

(20.84%)), which indicates that competition for pollinator services may not be occurring 

since pollen is not strongly limiting. The LAHS E. paradoxa, on the other hand, was 

marginally more pollen limited than E. pallida (Chapter 2), and these species could be 

competing for limited pollen resources. Overall visitation and fertilization rates were 

quite low (0.87 visits/30 min and 1.02 pollen tubes that reached the ovary) and may have 

been too low to detect competition in either species pair. In habitats with more abundant 

pollinators or less-stressful conditions, competition for pollinator services may be greater. 

In order to eliminate the potential effects of pollinator identity and experience, I 
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conducted this experiment on glades at which both species occur. These species are often 

found on glades without the other; therefore, these sites may represent a subset of 

ecological space in which both species can occur. In order to fully understand the 

potential role of competition for pollinators in restricting the distribution of glade 

endemic plants, studies that test for differences in relative competitive ability for 

pollinators in non-glade habitats and in glades with varying relative population density of 

each congener are required. While the LAHS species’ coevolved pollinators may not 

occur off of glades, a comparison of competitive ability for pollinators on and off glades 

will determine whether or not the distributions of LAHS species are influenced by their 

plant-pollinator interactions, either via a lack of effective pollinators or poor competitive 

ability for shared pollinators in comparison to their CC. 

While there was no treatment effect on pollination or reproductive success, all 

species showed significant spatial variation in floral traits and pollination success. The 

traits of both Delphinium species indicate a tradeoff between allocation to reproduction 

and vegetative output that varies across space. Plants of both species were shorter but had 

greater floral displays at RBCA than at DCA. The insects respond to the increase in floral 

display seen at RBCA with higher visitation rates to plants at RBCA in comparison to 

DCA. Differences in allocation to reproduction could be a function of variation in soil 

nutrient content or habitat suitability between sites. For instance, if DCA is hotter and 

drier than RBCA, the difference seen in floral and vegetative traits would support the 

prediction that allocation to reproduction increases with stress. Higher visitation rates at 

RBCA than at DCA also indicate a role of larger spatial-scale variation in floral density 

on insect behavior. While I chose an area within each glade where both species were in 
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equal abundance, density on the glade as a whole can vary considerably across glades. 

Anecdotally, relative abundance and floral density of the Delphinium species was much 

lower at DCA in comparison to RBCA. Insects are known to travel large distances (van 

Nieuwstadt and Iraheta, 1996; Pasquet et al., 2008; Elliott, 2009; Rader et al., 2011), 

sometimes moving distances  greater than the size of many glade habitat (e.g., more than 

a kilometer; Osborne et al., 2008; Pasquet et al., 2008; Wikelski et al., 2010), which can 

range in size from less than one hectare to greater than 200 hectares (Nelson and Ladd, 

1982). Therefore, the pollinators may be responding to inflorescence density on the glade 

and not directly to individual variation in floral traits. Future studies will document floral 

density and abiotic conditions across glades in order to disentangle the relative 

importance of these two mechanisms. 

The Delphinium congeners also differed significantly in reproductive success (i.e., 

number germinating pollen grains and pollen tube growth) at RBCA. While there was no 

difference in visitation rate or the number of total pollen grains on the stigma, the LAHS 

plant had more pollen tubes that were germinating and developing down the style. This 

pattern suggests that the visits to the LAHS Delphinium species may have been more 

effective and resulted in the transfer of higher quality or more conspecific pollen in 

comparison to its common congener. The Delphinium congeners are known to hybridize 

(Warnock, 1987), and germination rates may reflect differences in the ability of 

conspecific pollen to cross-pollinate. However, pollen quality of each species, per se, was 

not quantified, and further research is needed to determine the mechanism behind the 

greater proportion of pollen grains that successfully fertilized ovaries in D. treleasei. In a 

previous study conducted at a larger spatial scale (Chapter 1), I showed that the endemic 
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Delphinium species had a more specialized pollination system (i.e., fewer species of 

pollinators accounted for the majority of pollen flow) than its congener, which could 

account for the difference seen in pollen germination rate and pollen tube growth. 

Moreover, spatial variation in pollen tube growth is likely a result of low visitation rates 

and not variation in pollinator effectiveness. While differences were only marginally 

statistical significant due to low pollinator abundance and replication, visitation rates 

were nearly four times (3.8) higher at RBCA than DCA, and visit duration was more than 

two and a half times greater.  

The Echinacea species also differed in their floral traits and reproductive success 

among sites. However, there was no difference within a given site, with the exception of 

height, which suggests that the differences were dominated by site-level effects. The 

LAHS species was shorter than its CC at HHTSP. They were also shorter at SNR (which 

were individuals collected from HHTSP due to low abundance of blooming individuals at 

SNR), but the pollinators did not respond differently to the congeners at SNR. I predicted 

that the pollinators would be more attracted to the taller individuals, as has been shown in 

other taxa (Dickson and Petit, 2006), which would be the CC at both HHTSP and SNR. 

Contrary to my predictions, pollen deposition rate was higher to the LAHS species at 

HHTSP, and there was no difference at SNR. Pollen deposition rate may be related to the 

variation in pollinator fidelity or effectiveness of the pollinators among sites, as seen in 

the Delphinium species. However, the LAHS E. paradoxa does not have a more 

specialized pollination system than E. pallida. Moreover, the disparity in pollen 

deposition did not lead to differences in pollen tube growth or fertilization rates, which 

suggests there may be a trade-off between pollen abundance vs. pollen viability. In other 
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words, E. paradoxa pollen may be more abundant but of lower quality, resulting in a 

negligible difference in reproductive success. On the other hand, the pollen deposited on 

the stigmas of E. paradoxa could have had a greater proportion of heterospecific pollen, 

resulting in reduced fertilization rates. Unfortunately, the pollen of the Echinacea species 

could not be distinguished from each other, so I was unable to test for this mechanism. In 

future studies, pollen of each individual could be tagged with fluorescent dye in order to 

distinguish between the transfer of heterospecific and conspecific pollen deposition.  

Conclusion 

This study illuminates the potential influence of site-level characteristics on local 

reproductive success and pollination specialization for greater pollen transfer. In contrast 

to our hypotheses, there was no difference in competitive ability between two endemic 

glade plants and their congeners. Competition for pollinator services has been 

documented in some habitats (Brown and Mitchell, 2001; Bell et al., 2005; Internicola et 

al., 2007) but there is no evidence of competition for pollinator services between these 

congeners in glade habitats. While these congeners did not compete for pollinators, there 

were differences in the reproductive success of the Delphinium congeners when 

pollination visitation was relatively high. The Delphinium endemic glade plant has a 

more specialized pollination system and may have more effective pollinators. Pollination 

specialization is predicted to increase conspecific pollen transfer (Darwin, 1877; Rymer 

et al., 2005; Galloni, 2008) and increases reproductive success (Rymer et al. 2005;  

Galloni 2008) as documented in this study. Moreover, differences in pollination success 

and reproductive success appear to be influenced by habitat-level factors, such as 

inflorescence abundance or pollinator assemblages, and less by individual morphological 
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traits. The structure of habitat within a landscape is known to affect the distribution and 

behavior of pollinating insects in experimental and agricultural settings (Kremen et al., 

2002; Ricketts et al., 2008). This study demonstrates the potential significance of 

landscape-scale factors on plant-pollinator interactions and plant reproductive success of 

LAHS plants in natural habitats.  Understanding the relative importance of landscape-

scale factors on local interactions is increasingly important given high rates of habitat 

alteration and climatic change around the world.  
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Table 4-1. Description of the Rabinowitz’s Seven Forms of Rarity based on geographic 

extent, population size and habitat specificity (modified from Rabinowitz et al., 1981).  

Bold font represents the locally abundant, regionally rare (LAHS) taxa in this study. 

 
 Geographic Extent (GE) 

 Large Small 

Population Size (PS)     

     Somewhere  
        large 

Common Large PS 
Large GE 
Narrow HS 

Large PS 
Small GE 
Broad HS 

Large PS (LA) 

Small GE  

Narrow HS (HS) 

     Somewhere  
        small 

Small PS 
Large GE 
Broad HS 

Small PS 
Large GE 
Narrow HS 

Small PS 
Small GE 
Broad HS 

Small PS 
Small GE 
Narrow HS 

 Broad Narrow Broad Narrow 

 Habitat Specificity (HS) 

  



84 
 

 
 
Figure 4.1. A schematic of a representative glade site (A) and the competition treatments 

(B; including intraspecific and interspecific competition treatments. In order to maintain 

equal replication between intra- and interspecific competition treatments only two 

individuals per intraspecific treatment (the focal individuals, solid and outlined circles) 

were used to test for differences between LAHS and CC species in response to the 

competition treatments. The non-focal species (striped circles) were excluded from the 

analyses in order to maintain equal replication between treatments), and (C) a map of 

sites at which I conducted a pollination competition experiment with two congeneric 

species pairs, Delphinium treleasei and D. carolinianum (  ) and Echincaea paradoxa 
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and E. pallida (  ; LAHS and CC, respectively). Glade density data was from Nelson 

and Ladd (1982) coded in to a heat-density map. The original data represented a range in 

glade density per 7.5 degree minute quadrats (approximately 144 km2 in Missouri); 

therefore the heat map reflects a rough estimate of glade density per 144 km2 as of 1982. 
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Figure 4-2. Morphology and visitation rates of two Delphinium species at two field sites 

in south western, Missouri Drury Conservation Area (DCA) and Rocky Barrens 

Conservation Area (RBCA), including (A) Height (cm), (B) Display size (floral output x 

corolla area), and (C) visitation rate per 30 minute observation period. * denotes 

statistically significant differences. 
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Figure 4-3. Floral traits and reproductive success of a locally abundant, regionally rare 

(LAHS) Delphinium treleasei, and its common congener (D. carolinianum, CC) at two 

field sites in south western Missouri (i.e., Drury Conservation Area (DCA) and Rocky 

Barrens Conservation Area (RBCA)), including (A) floral display (the number of open 

flowers), (B) corolla height, including the landing pad, and (C) the number of pollen 

tubes developing down the style of the experimental plants. Different letters denote 

statistically significant differences.  
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Figure 4-4. Height (A) and reproductive success (B; number of pollen grains on the 

stigma) of a locally abundant, regionally rare (LAHS) species, Echinacea paradoxa, and 

its common congener (E. pallida, CC) at three field sites in Missouri (HaHaTonka State 

Park (HHTSP), Private glade (PLH), and Shaw Nature Reserve (SNR)). Different letters 

represent statistical differences between   
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   INTRODUCTION 

 Phenological shifts in response to climate change have been well documented 

(IPCC, 2007, Badeck et al., 2004; Dose and Menzel, 2004; Ibanez et al., 2010; Kudo and 

Hirao, 2005; Lambert et al., 2010; Sherry et al., 2007). While species responses are 

consistent with the direction of climate change, there is considerable variation in the 

degree to which species are responding (Kudo and Hirao, 2005; Cleland et al., 2006; 

Miller-Rushing et al., 2007; Miller-Rushing and Primack, 2008; Miller-Rushing and 

Inouye, 2009; Forrest et al., 2010). For instance, many plant species in the same genus 

respond differently to changes in climate (Miller-Rushing and Primack, 2008; Miller-

Rushing and Inouye, 2009), and differential responses may affect interspecific 

interactions (Forrest et al, 2010, Rafferty and Ives, 2011). Both intrinsic and extrinsic 

factors, for example pre-adaptation or micro-climate effects, respectively, may contribute 

to the variation in species responses to climate change. The mechanisms behind 

interspecies variation are rarely assessed (but see Kudo and Hirao, 2005; Miller-Rushing 

and Inouye, 2009) and could inform our understanding of the relative importance of the 

biological processes that underlie them.  

Variation in species responses to climate change may be partially explained by 

historical factors, such as habitat specialization, genetic composition, or pre-adaptation to 

a particular climatic change. Species that specialize on stressful habitats may also have 

lower phenotypic plasticity (Ellison and Parker, 2002; Pohlman et al., 2005), either in 

their morphological traits or in their phenological patterns. Species that are adapted to a 

narrow suite of abiotic conditions may exhibit limited phenotypic plasticity that would 

allow them to respond to climate change. Strong selection for local adaptation can lead to 
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reduced phenotypic plasticity (Ellison and Parker, 2002; Pohlman et al., 2005), and many 

rare and endemic plants are thought to be habitat specialists (Rabinowitz et al., 1981; 

Izco, 1998, Espeland and Emam, 2011) that are restricted in their ranges due to the lack 

of suitable habitat. Therefore, stress-adapted specialist plant species could be less 

responsive to climate change in comparison to species that occur in multiple habitat 

types. Alternatively, local adaptation to a stressful environment may include the ability to 

track short periods of favorable abiotic conditions, such as cooler temperatures or rain 

events (Aronson, 1992; Angert et al., 2010). Stress-adapted species would then be more 

responsive to climate change in order to avoid higher-stress conditions later in the season. 

In addition to intrinsic factors, extrinsic mechanisms, such as local abiotic 

conditions, may affect the impact of regional climate change on individuals (Kudo and 

Hirao, 2006) and the evolution of populations in unpredicted ways. Many local factors, 

such as plant cover, soil composition, and exposed bedrock, may also influence 

microclimate conditions, such as the retention and distribution of heat and water 

throughout a habitat. Evaporative cooling of plants via transpiration can buffer 

temperatures in the surrounding habitat (Georgescu et al., 2011), vegetation structure can 

reduce the wind exposure experienced by other plants near them (Lortiek et al. 2002), and 

the latent heat of exposed bedrock may increase soil and air temperatures close to the 

ground. These local factors can indirectly influence the degree to which an individual is 

impacted by regional climate change by either mitigating or intensifying climate 

conditions. For instance, plants that occur in soils with low water-holding capacity may 

be more responsive to increased temperature, which should reduce plant-available water.  
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 In this study, I address three hypotheses that potentially influence differential 

responses of endemic species and their closely-related congeners to regional warming 

based on two principles, pre-adaptation and local habitat effects. The first predicts that 

plants that are specialize on high-stress habitats are less responsive to regional climate 

change than closely-related, widespread species. Alternatively, the second hypothesis 

predicts that stress-adapted species are more responsive to changes in abiotic conditions 

via greater ability to track suitable habitat in time. The third predicts that all plants in 

exposed, xeric habitats have greater response to regional warming, regardless of 

geographic range size. I test these predictions using a novel, continuous descriptor of 

developmental stage that was calculated for each herbarium specimen and a categorical 

variable describing the habitat in which the individual was collected. Using data collected 

from 21 weather stations over the 110 years throughout the region to which these species 

are endemic (Missouri and Arkansas), I determined which factors (range, habitat, weather 

or change in climate through time) are the primary drivers of phenology in all species.  

METHODS 

 Study System—I selected two species restricted to glades in the Ozark Region of 

Missouri and Arkansas, Delphinium treleasei (Ranunculaceae) and Scutellaria bushii 

(Lamiaceae); each of which has at least one widespread congener (D. carolinianum ssp. 

carolinianum, S. ovata, and S. parvula) that grows on glades but is not restricted to them. 

Glades are hot, dry habitats with exposed bedrock, thin soils, and limited herbaceous 

plant cover that occur within a matrix of more mesic oak-hickory woodlands. They are 

xeric habitats, which are hotter than the surrounding woodland and prairie habitats during 

the spring and summer months (data not shown) when these plants are photosynthetically 
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active and blooming. Comparing these congeneric pairs provides insight into the factors 

that restrict one species to glades and not the other. Moreover, comparing restricted 

species to their widespread congeners mitigates the potential influence of evolutionary 

history on the biological traits correlated with endemism. Multiple congeneric 

comparisons also make the results of this study more broadly applicable (Bevill and 

Louda, 1999).   

 Climatic data—In order to document potential changes in climate, I acquired 

climate data from fourteen weather stations throughout Missouri (Figure 5-1), seven 

weather stations in Arkansas, and one in Kansas, for a total of 22 weather stations. 

Stations were chosen based on the duration of available data and location, in order to 

accurately describe the climate variables throughout the range of our target species. 

Climate data were available for at least five, spatially distributed weather stations 

between 1897 and 1905; between 1905 and 1931, roughly half of the weather stations had 

available data; and after 1931 all weather stations contributed data for most years. The 

data from all weather stations were checked for missing values. If any weather station did 

not have data for every month in a given year, the data from that weather station for that 

year were excluded from the analyses. The climatic data were reduced to annual averages 

across all sites in order to control for spatial variation in climate. I conducted a principle 

components analysis (PCA) to reduce the multiple abiotic variables (i.e., average 

temperature, average high temperature, average minimum temperature, and yearly 

precipitation) into 2 principle components describing the climate in multivariate space. 

Since average minimum and maximum temperatures are inherently correlated with 

average annual temperature, I first regressed minimum and maximum temperatures 
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against average annual temperature, and the residuals from this analysis were used in the 

PCA. In this way, I was able to more accurately describe climate space by isolating the 

effects of maximum and minimum temperatures on phenology, independent of annual 

average temperature. This is particularly important if the range of temperatures has an 

influence on phenology. The summary of these data represented by the first two principle 

components allowed me to explore the response of each species to a more meaningful 

variable that incorporated multiple interacting factors contributing to climate.  

 Plant phenology—All available herbarium specimens for our target species were 

acquired from six herbaria that were considered to have the largest holdings of these 

species, the Missouri Botanical Garden, University of Arkansas Herbarium, Illinois 

Natural History Museum, United States National Herbarium, New York Botanical 

Gardens, and Field Museum. The developmental stage of each specimen was calculated 

using a continuous variable that standardized for floral output. All floral buds, open 

flowers, and fruits were counted, and I ranked each unit (i.e., bud as zero, flower as 1, 

and fruit as 2), summed them, and divided by the total floral output. Developmental stage 

was calculated as, 

DS = b*0 + f*1 + r*2      Equation 1.0 
   2(b+f+r) 

where b is the number of buds, f is the number of flowers and r is the number of fruits. 

Therefore, phenological stage ranges between zero and one, where zero denotes a plant 

that is in full bud, 0.5 denotes a plant in full bloom, and one reflects an individual in full 

fruit. Developmental stage of all Scutellaria taxa was biased by developmental stage; 

many more individuals were collected at the developmental limits (i.e., zero and one). 

Individuals at these limits were excluded from the analyses, in order to remove this bias 
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and acquire a normal distribution. All collection dates were converted into a continuous 

Julian date.  

In order to control for latitudinal variation in climatic conditions, I used latitude as 

a covariate for all analyses in order to account for this variation. Many modern specimens 

were georeferenced and for other specimens with sufficient descriptive locality 

information on the herbarium labels, I estimated latitude via satellite imagery in Google 

Earth (Google, 2011). Specimens that could not be georeferenced were excluded from the 

analyses. Using the descriptors on the herbarium labels, habitat was categorized into four 

main types, Glade, Prairie, Woodland and Disturbed, representing the major habitat types 

in which these species were found. The designation “Glade” included all specimens with 

habitat described as upland prairies, rocky prairies, bald knobs, rocky outcrops, barrens, 

cedar glades, limestone glades, etc. “Woodland” refers to specimens collected from 

habitats characterized as rocky woodlands, wet woodland, upland woodland, forests, etc. 

“Prairie” included specimens collected from meadows, prairies and wet prairies, and 

“Disturbed” denotes habitats along roadsides, railroads, and power-lines, unless 

otherwise specified on the herbarium specimen. There were only 3 specimens in 

woodland habitats for S. parvula; therefore I pooled all non-glade habitats in order to 

increase replication. 

 Statistical Analyses—Regression analyses were conducted to determine whether 

and which abiotic factors and their composite climate variables (PC 1 and 2) were 

changing through time. In order to test for nonlinearity in the relationship between abiotic 

factors and year, I compared the Akiaike Information Criterion (AICc; a measure of 

relative goodness of fit that penalizes model complexity and controls for replication) of 
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the linear model to those constructed using nonparametric smoothing models. Those 

variables with a nonlinear relationship with time were fitted using nonparametric 

smoothing methods via generalized additive models (gam; R Development Core Team, 

2008) and I then compared the AICc between models and rejected the linear model if the 

difference between the AICc’s (∆AICc) was greater than six. If there was no difference 

(i.e., less than 6 ∆AICc), I report the results from the more parsimonious, linear model 

 I then explored the potential for shifts in the relative importance of each factor 

(i.e., average temperature, maximum temperature (residuals), minimum temperature 

(residuals) and precipitation) in determining each principle competent (PC) through time. 

I separated the time variable into decades and conducted independent principle 

component analyses for each decade (i.e., 1897-1909, 1910-1919, 1920-1929, 1930-1939, 

1940-1949, 1950-1959, 1960-1969, 1970-1979, 1980-1989, 1990-1999, and 2000-2009). 

I extracted the weightings for each variable in a given decade and tested for changes in 

the absolute value of the weightings (which refer to the correlation between the factor and 

PC of interest) through time via regression analysis. A large negative and positive 

weighting denote high correlation between the variable and the PC; therefore, I use the 

absolute value in order to explore the strength of the relationship – whether the 

relationship is negative or positive. In this way, I was able to determine if the importance 

of a variable is changing through time. 

 Multiple regression was used to test which variable and their interactions 

explained the most variation in phenological stage for each species. Specifically, I tested 

for the effects of climate in a given year (defined as PC 1), change in climate through 

time (represented by time in years), habitat (the common species only), and the 
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interactions of these factors on the relationship between developmental stage and 

collection date. I focus on PC 1 since it has changed linearly through time and explained 

the majority (57.54%) of climatic variation in the Ozark region. The interaction between 

climate (PC 1) and collection date tested the prediction that the phenology of these 

species is controlled by climate and not (for instance if the species is photoperiodic). 

Change in phenology due to climate change was documented as the interaction between 

collection date and year. Latitude was included as a covariate in order to account for 

spatial variation in phenology. Model reduction was used (step in the R Statistical 

Package (R Development Core Team 2008) in order to refine the statistical result. The 

step function systematically removes higher-order terms from the model structure, 

compares the Akaike information criterion (AIC; a measure of relative goodness of fit 

that penalizes model complexity) between models, and reduces the model to that with the 

best fit (i.e., lowest AIC with a threshold of 6).  

 All variables were transformed for normality, and if normality could not be 

achieved, the statistical test was repeated with summarized data or via nonparametric 

tests. Time in years could be not normalized for either Delphinium taxa or for S. ovata, 

but the results were consistent when I conducted the analyses when time in years was 

categorized into pre- and post-1960 time periods. I report the results of the analysis with 

time as a categorical variable for the Delphinium taxa for ease of interpretation. For the 

Scutellaria species, I report the results of the analysis with time as a continuous variable, 

because the developmental stage of S. bushii was biased by time (all pre-1960 individuals 

were in full fruit). Analyses could only be conducted for the latter part of the century. 

Latitude was non-normal for D. treleasei, and analyses were conducted with and without 
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the covariate. There was no difference in the analyses for D. treleasei, so I report the 

analyses conducted on the categorical time variable here.  

RESULTS 

 Regional climate change—The climate in Missouri and Arkansas has become 

warmer and wetter over the past 112 years. When tested independently, average annual 

temperature has fluctuated nonlinearly through time (DF = 110, F = 13.88, P < 0.0001, 

AICc = 256.80, ∆AICc = 30.44; Figure 5-2A). Maximum temperatures are decreasing 

nonlinearly (DF = 110, F = 8.77, P < 0.0001, AICc = 40.65, ∆AICc = 18.28; Figure 5-

2B), and minimum temperatures are increasing nonlinearly (DF = 110, F = 21.72, P = 

0.0006, ∆AICc = 11.90; Figure 5-2C). Precipitation is increasing linearly through time 

(DF = 109, R2 = 0.0938, F = 11.29, P = 0.0011; Figure 5-2D). 

 The first principle component of climate (PC 1) in Missouri and Arkansas was 

primarily influenced by maximum temperature, minimum temperature, and total 

precipitation (Table 1), and it explained 57.54% variation in climate. The second PC was 

described primarily by average temperature (Table 1) and explained an additional 25.62% 

for a total of 83.16% of variation explained by the first two principle components. The 

third PC explained an additional 12.11% of variation for a total of 95.27% variation 

explained. The first principle component of climate has changed linearly over the last 112 

years (DF = 109, R2 = 0.179, F = 23.73, P < 0.0001, AICc = 390.78; Figure 5-3A), and 

the second PC has fluctuated through time in a nonlinear fashion (DF = 110, F = 10.90, P 

< 0.0001, AICc = 297.52, ∆AICc = 23.52). I focused on the effect of changes in PC 1 on 

phenology as the climate change factor, since PC 2 did not show a a clear directional shift 

and explained less than half of the variation in climate in comparison to PC 1.   
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The strength of correlations (i.e., the absolute value of the weighting) between 

PC1 and average and maximum temperatures did not change through time (Average 

temperature: DF = 9, R2 = 0.0278, F = 0.26, P < 0.0001; Maximum temperature: DF = 9, 

R2 = 0.112, F = 1.14, P > 0.05). There was a marginal change in the variation explained 

by minimum temperatures (DF = 9, R2 = 0.324, F = 4.29, P = 0.0681), but this was 

driven by the outlier decade, average of the years 1897-2009. There was no significant 

difference when the outlier was removed (DF = 9, R2 = 0.125, F = 1.14, P > 0.05). The 

correlation between PC1 and precipitation did change marginally through time (DF = 9, 

R2 = 0.325, F = 4.34, P = 0.067; Figure 5-3B) and was highly significant when the 

outlier, average of the years 1910-1919, was removed (DF = 9, R2 = 0.840, F = 42.07, P 

= 0.0002). There were no changes in the relationships between PC2 and any climatic 

factor through time (Average temperature: DF = 9, R2 < 0.0001, F = 0.0008, P > 0.05; 

Maximum temperature: DF = 9, R2 = 0.142, F = 1.49, P > 0.05; Minimum temperature: 

DF = 9, R2 = 0.187, F = 2.07, P > 0.05; Precipitation: DF = 9, R2 = 0.237, F = 2.79, P > 

0.05). The strength of the relationship between PC3 and maximum temperature decreased 

through time (DF = 9, R2 = 0.439, F = 7.04, P = 0.0264), but there was no change for any 

other factor (Average temperature: DF = 9, R2 = 0.100, F = 1.01, P > 0.05; Minimum 

temperature: DF = 9, R2 = 0.0017, F = 0.015, P > 0.05; Precipitation: DF = 9, R2 = 0.090, 

F = 0.895, P > 0.05). 

  Phenological responses to climate change—The developmental stage of D. 

treleasei, the rare species, was significantly affected by collection date (N = 20, F = 

23.11, P = 0.0002, AICc = -44.37) and climate (N = 20, F = 8.13, P = 0.0116, AICc =      

-44.37), and had a marginal response to climate change (N = 20, F = 3.59, P = 0.0764, 
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AICc = -44.37; Figure 5-4A), in congruence with my hypotheses. Latitude also explained 

a marginally significant amount of variation in the developmental stage of D. treleasei (N 

= 20, F = 4.34, P = 0.0535, AICc = -44.37). Not surprisingly, collection date explained a 

significant amount of the variation in the developmental stage of D. carolinianum (N = 

79; F = 11.26; P = 0.0013, AICc = -113.39). The variation in developmental stage of D. 

carolinianum was not significantly described by latitude or any interaction term. For 

instance, there was no effect of habitat on response to climate change (N = 79, F = 1.99; 

P > 0.05, AICc = -113.39). Neither latitude nor climate was a significant factor (N = 79, 

F = 0.03, P > 0.05, AICc = -113.39; N = 79, F = 0.76, P > 0.05, AICc = -113. 39; 

respectively) in explaining the developmental stage of D. carolinianum.  

 Due to bias in the age of individuals of Scutellaria bushii throughout the century 

(all individuals from the early-20th century were in fruit), only analyses based on modern 

collections (1960 to present) could be analyzed, and the replication was reduced to 11. 

During this period, variation in the phenophase of S. bushii was explained by collection 

date (N = 11, F = 20.17, P = 0.0020, AICc = -22.39). Under the reduced model, 

phenology was marginally affected by time (N = 11, F = 3.69, P = 0.0912, AICc= -22.39; 

Figure 5-5A), my measure of climate change, but there was no significant effect of time 

in the full model (N=11, F = 2.17, P = 0.1909, AICc = -18.73). Since there was no 

difference between the reduced and full model (∆AICc = 3.66), both models should be 

considered as potentially accurate. There were no other qualitative differences between 

the models. Latitude (N = 11, F = 0.189, P > 0.05, AICc = -18.73; removed from the 

reduced model via step) and climate (N = 11, F = 2.45, P > 0.05, AICc = -18.73) did not 
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explain a significant amount of variation in the phenophase of S. bushii. Low replication 

and the lack of early-century data make these analyses inconclusive.  

 Variation in the developmental stage of S. ovata was explained by latitude (N = 

55, F = 9.76, P = 0.0031, AICc = -25.13) and marginally by collection date (N = 55, F = 

3.64, P = 0.0611, AICc = -25.13). Neither climate (N = 55, F = 1.96, P > 0.05, AICc = -

25.13) nor time (N = 55, F = 1.93, P > 0.05, AICc = -25.13; Figure 5-5B) explained a 

significant amount of the variation in phenology for S. ovata. There was no significant 

interaction between habitat and collection date (N = 55, F = 1.81, P > 0.05, AICc = -

25.13) or between habitat and response to climate change (i.e., Habitat by Time by Julian 

date; N = 55, F = 0.41, P > 0.05, AICc = -25.13). Therefore, spatial variation in day 

length or temperature appears to account for the phenology of S. ovata.  

 Scutellaria parvula’s developmental stage was correlated with collection date (N 

= 22, F = 6.12, P = 0.0223, AICc = -33.30), and varied marginally across habitats (N = 

22, F = 3.08, P = 0.0950, AICc = -33.30). Specifically, individuals in the glade habitat 

bloomed marginally earlier than in nonglade habitas. There was no interaction between 

climate and collection date (N = 22, F = 0.70, P > 0.05, AICc = -21.86; removed from 

final model (∆AICc = 11.44)) or between collection date and change through time (N = 

22, F = 0.88, P > 0.05, AICc = -21.86; Figure 5-5C; removed from final model (∆AICc = 

11.44)), suggesting that other factors are stabilizing the phenological response of S. 

parvula to climate change, such as day length, genetic constraints, or interspecific 

interactions. There was no effect of an interaction between habitat and time (N = 22, F = 

0.013, P > 0.05, AICc = -21.86; removed from final model (∆AICc = 11.44)) on the 

phenology of S. parvula. Latitude also did not explain a significant amount of variation 
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seen in the developmental stage of S. parvula (N = 22, F = 0.12, P > 0.05, AICc = -21.86; 

removed from final model (∆AICc = 11.44)).   

DISCUSSION 

In this study, I find that related pairs of widespread and rare endemic species 

respond differently to regional climate change, and intrinsic factors appear to drive their 

phenological patterns. The climate of the Ozark region has seen an increase in minimum 

temperatures and precipitation over the past century and a decrease in maximum 

temperatures. On the whole, the Ozark region is becoming wetter and warmer, with a 

reduction in the severity of temperature extremes (maximum and minimum 

temperatures). Moreover, precipitation is less correlated with PC1 through time, as 

indicated by a decline in the weighting through time. In other words, the inter-annual 

variation in climate seen today is less influenced by variation in precipitation than it was 

100 years ago.  

One of the rare plants, Delphinium treleasei, is responding to changes in climate 

with phenological change. I predicted that species that are endemic to high-stress 

environments would be less responsive to climatic change, assuming habitat 

specialization to xeric glade habitats, in comparison to CC species with broader habitat 

use. However, the results indicate the opposite. The endemic D. treleasei is blooming 

earlier but the phenology of the widespread species, D. carolinianum, has not changed 

within any habitat, including glades. The lack of a habitat effect in D. carolinianum 

suggests that local abiotic conditions do not influence its phenology. Therefore, the 

phenological change documented in D. treleasei is not driven by local abiotic conditions 

in the glade habitat, contrary to my prediction. Greater plasticity in phenology allows 
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individuals to track temporal variation in climate and either avoid more stressful 

conditions or capitalize on favorable conditions. For instance, if a species specializes on 

hot, dry environments, it may be more responsive to a reduction in stress, such as an 

increase in precipitation (Aaronson, 1992; Angert et al., 2010). Alternatively, genetic 

homogeneity across habitats could reduce the ability of D. carolinianum to respond to 

local climatic conditions (Lerner, 1954). In order to test for these mechanisms, future 

studies should explore the genetic basis for these phenological trends.  

The differential responses of sympatric congeners may induce changes in their 

interspecific interactions, regardless of the mechanism driving the pattern. On average, D. 

carolinianum blooms roughly 2.8 days earlier than D. treleasei. Therefore within native 

habitats, the phenologies of the Delphinium species are converging. These species of 

Delphinium can hybridize (Warnock, 1987), and they share some pollinators (Miller-

Struttmann, data not published). Therefore, hybridization rates and competition for 

shared pollinators could increase in the future if the phenology of D. treleasei continues 

to advance. 

 Neither of the common Scutellaria species responded to changes in climate with 

shifts in phenology. Variation in the phenology of one common congener, S. ovata, was 

influenced by spatial variation and marginally by collection date, but neither climate nor 

climate change affected phenology. Scutellaria ovata may be responding to day length or 

to climatic factors that are not changing in this region, such as high temperatures. The 

developmental stage of another widespread species, S. parvula, was correlated with 

collection date and habitat, and there was no effect of spatial variation or climate. While 

the individuals in the glade habitats had an earlier phenology than individuals in the 
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nonglade habitats, there was no change in phenology for individuals in either habitat 

type. The climatic factors to which S. parvula is responsive may not be changing in this 

region, or the degree of change in key climatic factors may not be sufficient to affect the 

phenology of this species. Moreover, additional factors such as interspecific interactions 

could be stabilizing the response of S. parvula to climate change if they are exerting 

selective pressure on phenology in opposing directions (Elzinga et al., 2007; Strauss and 

Irwin, 2004).  The phenology of the endemic S. bushii was marginally described by 

climate change, as indicated by difference in phenology since 1970. However, this model 

did not fit the data any better than the full model, under which there was no effect of time 

on phenology of S. bushii. Interestingly, the direction of the relationship between climate 

change and phenology is counter-intuitive. Scutellaria bushii is blooming marginally 

later through time, not earlier as I predicted and as seen in D. treleasei. Climate change in 

Missouri and Arkansas is driven by two main factors, warming temperatures and 

increased precipitation. Unlike many species, the phenology of S. bushii may not be 

responding to temperature, since temperatures are increasing and should result in the 

advancement of flowering. Precipitation has increased by roughly 18.2 cm (17.8%) over 

the last century (comparison of average precipitation between 1897-1909 and 2000-

2009), and may be driving the marginal change in the phenology of S. bushii. An increase 

in precipitation could lead to later onset of flowering or to a longer flowering period. 

However, the low replication of scorable specimens reduced my ability to rigorously test 

the prediction that intrinsic factors drive the phenological response of S. bushii to climate 

change, and this pattern should be interpreted with caution. Detailed field experiments 
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should be conducted to establish if this pattern is real and to explicitly test the 

mechanisms potentially leading to the phenological shifts seen in S bushii. 

 This is the first study of which I am aware that documents the phenological shifts 

of plant species using a continuous phenophase measure. A continuous measure allowed 

me to disentangle the effect of collection date from phenological stage, which is a 

confounding factor in most phenological studies using herbarium specimens. Most 

studies rely on more general categories, such as in fruit or in flower, and could be 

misleading if collection date and phenophase are correlated through time. Herbarium 

records are an abundant and important resource for understanding the effects of climate 

change on phenology. However, data collected from these records should be analyzed 

carefully, and the results interpreted with caution. Incorporating vital biological 

information, such as the developmental stage of the individual, will improve our 

understanding and prediction of species responses to climate change. Understanding the 

determinants of plant phenology allows scientists to summarize and categorize the types 

of species that will respond to climate change and in which direction they will respond. 

This broader scale understanding will improve our ability to predict which species should 

be of future conservation concern and those that may have lower risk of decline.  
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Table 5-1. The weightings of each variable (Average temperature, residuals of maximum 

temperature, residuals of minimum temperature, and total precipitation) toward the first 

four principle components from a principle components analyses across all years and by 

decade. The residuals from a multiple regression of maximum and minimum temperature 

against average temperature were used in order to remove any potential correlation 

between maximum and minimum temperatures with average temperatures; therefore, I 

was able to isolate the influence of maximum and minimum temperatures from average 

temperature on the multivariate climate axes.  

 PC All years 1897-1909 1910-19 1920-29 1930-39 1940-49 1950-59 1960-69 1970-79 1980-89 1990-99 2000-09 

Weightings              

Average 

temperature 

(ºC) 

PC1  0.0414  0.3881  0.4213  0.1409  0.1329 0.3314  0.4029  0.3305 -0.4388 -0.0753 -0.3378  -0.2305 

PC2 -0.9739 -0.5966 -0.6142  0.9355  0.9900 -0.9428  0.9149  0.8666  0.7312 -0.9235 -0.6603   0.6760 

PC3 -0.2221  0.5028  0.6456 -0.2581 -0.0264 0.0025 -0.0263  0.3731 -0.5113  0.3760 -0.6697  -0.6991 

 PC4  0.0209 -0.4906 -0.1688  0.1957  0.0391 0.0364 -0.0005  0.0242 -0.1066  0.0032  0.0378  -0.0350 

Maximum 

temperature 

(residuals) 

PC1  0.6110 -0.6217 -0.6034   -0.5213  0.5781 -0.5738  0.5341  0.5654 0.5470  0.6122  0.6282 -0.6554 

PC2 -0.0497 -0.3304  0.1746   -0.1932 -0.0935 -0.2280 -0.2268 -0.3157 0.0389  0.0894 -0.0175 -0.2565 

PC3  0.2614 -0.4491  0.6654   -0.7910  0.4249  0.3481  0.2766  0.2782 -0.5458  0.3481 -0.3391 -0.0673 

 PC4 -0.7456 -0.5502  0.4034 0.2556  0.6903 -0.7054  0.7660 -0.7094 0.6335 -0.7043 -0.7001  0.7073 

Minimum 

temperature 

(residuals) 

PC1 -0.5932  0.0958  0.6024  0.5838 -0.5819  0.5770 -0.5305 -0.5608 -0.5500 -0.6134 -0.6341   0.6422 

PC2  0.0668  0.7285  0.2270 -0.1155  0.0397  0.1746   0.2187   0.3467   0.0168 -0.0887 -0.0191   0.2958 

PC3 -0.4653  0.1435  0.0229   -0.5468 -0.3723 -0.3686 -0.5287 -0.2630 0.3368 -0.3347 0.2984  0.0390 

PC4 -0.6536 -0.6629  0.7649   -0.5890  0.7219 -0.7077  0.6255 -0.7044 0.7640 -0.7098 -0.7131  0.7061 

Total 

precipitation 

(cm) 

 

PC1  0.5226  0.6736  0.3091  0.6063 -0.5563  0.4775 -0.5206 -0.5065 -0.4536 -0.4933 -0.2987   0.3239 

PC2  0.2111 -0.0649  0.7354 -0.2722  0.0979  0.1695  0.2524 -0.1707 -0.6808  0.3622  0.7505  -0.6243 

PC3 -0.8160 -0.7245  0.3742 -0.0936  0.8247  0.8620  0.8021  0.8451 -0.5720  0.7908 -0.5895  -0.7108 

PC4  0.1282 -0.1308 -0.4729  0.7413 -0.0285 -0.0178  0.1481  0.0037 -0.0594  0.0081 -0.0012   0.0062 

Variation explained             

 Proportion  PC1  0.5754  0.3956  0.5696 0.4776  0.7204  0.6832  0.8427  0.6925  0.8196  0.6295  0.5843 0.5177 

PC2  0.2562  0.3766  0.3282 0.2579  0.2421  0.1968  0.1353  0.2150  0.1655  0.2727  0.2476 0.4155 

 PC3  0.1211  0.1281  0.0571 0.1666  0.0364  0.1192  0.0201  0.0925  0.0142  0.0976  0.1681 0.0668 

 PC4  0.0473  0.0997  0.0451 0.0980  0.0012  0.0008  0.0019  0.00002  0.0007  0.0002  0.00003 0.00003 

 Cumulative  PC1  0.5754  0.3956  0.5696 0.4776  0.7204  0.6832  0.8427  0.6925  0.8196  0.6295  0.5843 0.5177 

PC2  0.8316  0.7722  0.8978 0.7354  0.9624  0.8800  0.9780  0.9075  0.9852  0.9022  0.8319 0.9332 

PC3  0.9527  0.9003  0.9549 0.9020  0.9988  0.9992  0.9981  0.99998  0.9993 0.9999  1.0000 0.99997 

 PC4  1.0000  1.0000  1.0000 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000 1.0000  1.0000 1.0000 
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Figure 5-1. A map of the 21 weather stations (  ) in Missouri and Arkansas from which 

data were summarized in order to investigate changes in climate through time (1987-

2009). Stations were chosen based on duration of data and location in order to account for 

spatial variation in climate throughout the region in which the herbarium specimens were 

collected.  
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Figure 5-2. Changes in climatic variables between 1897 and 2009 in Missouri and 

Arkansas as documented by 21 weather stations, including (A) average monthly 

minimum temperature (ºC), (B) maximum temperatures (residuals after regression 

against average temperatures in order to remove the confounding factor of average 

temperature), (C) minimum temperatures (residuals from regression with average 

temperature as above), and (D) total annual precipitation (cm). 
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Figure 5-3. Changes in the composite climate variable and in the strength of correlation 

between one factor and PC 1 as documented by 21 weather stations in Missouri and 

Arkansas, including  (A) the composite variable Climate, defined as the first principle 

component (PC 1) from a principle components analysis of four abiotic variables (i.e., 

mean temperature, maximum temperature (residuals), minimum temperature (residuals), 

and precipitation), and (B) the change in weightings of precipitation for PC1 by decade 

between 1897 and 2009. 
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Figure 5-4. Phenology of an endemic plant, Delphinium treleasei, and its widespread 

congener, D. carolinianum, during two period of time, before and after 1960 (pre- and 

post-1960, respectively). Phenology is defined as the product of collection date and 

phenophase, which is a continuous variable that describes the developmental stage of an 

individual. Statistical significance is denoted by a dagger (†) for results with P < 0.075. 
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Figure 5-5. Phenology of an endemic plant, Scutellaria bushii (A), and two widespread 

congeners, S. ovata (B) and S. parvula (C) during the past 40 to 105 years in Missouri 

and Arkansas. Phenology is defined as the product of phenophase and collection date, 

and only S. bushii had a marginally significant response to climate change through time. 
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The goal of this dissertation was to determine the relationship between 

reproduction and rarity in three glade-endemic plants based on predictions developed 

from two prominent ecological principles, reproductive assurance and stress-adaptation. I 

confirm the prediction that locally abundant, regionally-rare species (LAHS) are more 

resistant to stressful abiotic conditions (Chapter 3) and have more specialized 

reproductive systems than the CC species (Chapter 2). Moreover, the LAHS and CC 

species responded differently to regional climate change, which could lead to a shift in 

their interspecific interactions. By coalescing abiotic and biotic mechanisms into a suite 

of predictions that could be tested simultaneously, this research is more biologically 

realistic than previous studies of rarity and reproduction and corroborates the necessity 

for a more nuanced theory relating the two.  

Contrary to the traditional prediction that rare species have more generalized 

reproductive systems, two of the three LAHS species studied in this dissertation had 

larger flowers and more specialized pollination systems in comparison to their CC 

species. This pattern confirms my predictions that optimal resource allocation differed 

between congeners and that the LAHS taxa had traits that are associated with higher 

outcrossing rates. Therefore, factors other than reproductive assurance via low pollen 

availability may be influencing the pollination biology and reproductive success of these 

species, such as offspring quality and local-adaptation. The LAHS species did not differ 

consistently from the CC species in vegetative traits that are associated with stress-

adaptation and do not appear to be more stress tolerant than the CC species. While some 

traits indicate that the LAHS species are not locally adapted to the glade environment, I 
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could not measure certain key traits (i.e., biomass and root to shoot ratios) that may affect 

their ability to tolerate stressful conditions.  

Experimental manipulations of abiotic conditions (i.e., water availability and 

temperature) confirm that the glade endemic plants are more resistant to high stress 

conditions. The CC species had reductions in biomass and growth parameters with an 

increase in stress, and the LAHS species did not. Greater phenotypic plasticity in the CC 

species suggests a potential role for genetic assimilation, or the canalization of xeric-

adaptive traits, in habitat specialization. Greater plasticity may allow the CC species to 

persist in multiple habitats, but the LAHS species, with their more refined traits, are 

better adapted to the abiotic conditions on the glades. Moreover, allocation to 

reproductive output differed between two of the three pairs of congeners. The LAHS 

species had fewer, higher-quality offspring than their CC species, and stress level did not 

affect offspring quality or quantity in the LAHS species. Offspring quality may increase 

survival rates and population viability in more stressful habitats. When under low stress 

conditions, the CC species produced many more seeds than the LAHS species, but seed 

set was equivalent to their LAHS congeners when stress was high. Differences in 

reproductive allocation between congeners corroborate my prediction that production of 

high quality offspring is adaptive in stressful environments. Greater offspring abundance 

in the CC species may allow them to invade novel habitats with a greater range of abiotic 

conditions, and therefore may contribute to their larger bigeographic ranges. The CC 

species also had traits associated with greater competitive ability for pollinators, such as 

being taller and producing more flowers. However, total display size did not differ, since 

the LAHS species had fewer but marginally larger flowers.  
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Field competition experiments determined that the LAHS and CC species did not 

differ in their ability to compete for pollinators and that pollinator behavior (visit 

duration) also did not differ either between congeners or treatments. Landscape-scale 

spatial variation in floral traits was mirrored by pollinator behavior; plants at sites with 

showier plants were visited more frequently than those at sites with less attractive 

individuals. Interestingly, one LAHS species, D. treleasei, had greater reproductive 

success (more pollen tubes germinating down the style) than its CC species at the site 

with higher visitation rates, despite the fact that visitation rate and visit duration were not 

different between congeners. More germinating pollen tubes without a difference in 

pollinator effort suggests that the LAHS species has greater proportional pollination 

success (e.g., higher fertilization rates per unit of pollination effort). This pattern supports 

my prediction that specialized pollination systems are more efficient and result in the 

transfer of high quality pollen. Similarly, the Echinacea species differed in pollen 

deposition rates at one site. Echinacea paradoxa (LAHS) had more pollen on their 

stigmas, and neither visitation rate nor visit duration differed between species. However, 

this difference did not result in greater reproductive success of the LAHS species. Pollen 

tube growth was low for both species, which could reflect low pollen quality or a 

reduction of pollen tube growth in cut inflorescences. These results indicate an important 

role for large-scale mechanisms and pollination specialization in determining local 

reproductive success of LAHS species and their CC species.  

Finally, this work documents the differential responses of LAHS and CC species 

in their responses to climate change. The CC species, which I predicted would be more 

responsive to regional climate change, have not changed in their phenological patterns. 
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This pattern is congruent with genetic homeostasis, which occurs through adaptation to 

varied or multiple environments. Therefore while the xeric-adapted traits of the CC 

species have a plastic response to stress (Chapter3), their phenological patterns are less 

variable. The LAHS species, on the other hand, are responding to climate change, but 

their phenological shifts are in opposing directions. One species, D. treleasei, is 

advancing in flowering date and the other, S. bushii, is delaying in one of the two models. 

The variation in responses between the LAHS species suggests that they are responding 

to different climatic variables. Delphinium treleasei is blooming earlier, which is 

consistent with higher minimum temperatures. Scutellaria bushii, which is blooming 

later, may be responding to an increase in precipitation that has occurred in this region. 

Few studies have looked at the role of precipitation on floral phenology, and this study 

indicates that it warrants more exploration. The differences between congeners in 

response to climate change imply that interspecific interactions may also shift with the 

new abiotic conditions. The Delphinium species are converging in their phenologies, 

which could result in competition for shared pollinators or greater hybridization rates.  

The research in this dissertation advances our understanding of how locally 

abundant, regionally-rare species differ in their intrinsic traits from and in their 

interactions with their common congeners. I demonstrate that both biotic and abiotic 

factors, specifically pollination biology and stressful abiotic conditions, may be 

contributing synergistically to the range restriction of three glade endemic plant species. 

Determining how biotic and abiotic factors interact to affect species traits, and potentially 

their distributions, is particularly important for rare and endemic species, many of which 

are at increasing risk of extinction. Differences in the responses of LAHS and CC species 
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to regional climate change further support the need for a more nuanced understanding of 

the seven types of rarity. In light of the current rate of climate change, a more informative 

framework with which to predict which rare species are most vulnerable to changes in 

climate is imperative.  

Future work 

In this dissertation, I document the unique attributes of three species that fall into 

one of the seven types of rarity, locally abundant and regionally rare taxa. Hitherto, the 

focus of most research into rarity has focused on those species that are locally-rare, and a 

robust body of theory and empirical studies explores the ecological and evolutionary 

causes and consequences of this type of rarity. However, the theory is less developed for 

the other six types of rarity, which warrant closer examination. In future work I will 

expand this theory in order to better understand the ecological and evolutionary 

mechanisms that drive variation in species distributions. Specifically, future work should 

explore the mechanisms behind the disparity in offspring quality and quantity between 

congeners by documenting the relationship between mating system and offspring survival 

in endemic and widespread species.  

My research shows that LAHS and CC species differ in resource allocation to 

reproduction, which indicates that offspring quality may be adaptive in stressful habitats. 

In order to more fully understand what excludes the LAHS species from non-glade 

habitats, I advise that future research explore the role of propagule pressure and offspring 

quality on the invasion success of the LAHS and CC species into novel habitats and on 

survival in high stress environments. While greenhouse studies can inform how species 

respond to stress under controlled conditions, the abiotic conditions on the glades cannot 
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be reproduced. Field studies should be conducted in order to confirm that these patterns 

are consistent in more realistic conditions and in the context of natural ecological 

communities.   

 Research into additional pairs of related species, which vary in their distributions 

and in the habits on which they specialize, will determine how generalizable the results 

from this research are. If rare species that are habitat specialists are more dependent on 

their coevolved pollinators for persistence, they may be more susceptible to pollinator 

declines. The concomitant decline of oligolectic (specialist) pollinating insects and 

pollinator-dependent plants in Europe (Biesmeijer et al., 2006) illustrates the need for a 

more holistic understanding of the mechanisms determining species biogeographical 

ranges, particularly for rare and endemic species, many of which are at increasing risk of 

extinction. Coalescing abiotic and biotic mechanisms into a suite of predictions that can 

be tested simultaneously will not only make the results more biologically realistic, but it 

will also make them more relevant. With a greater understanding of the factors that 

determine variation in species distributions, we will be better equipped to protect, 

conserve and restore Earth’s declining biodiversity in a rapidly changing environment.   



120 
 

LITERATURE CITED 

Abrams, P.A., Rueffler, C. & Kim, G. (2008) Determinants of the strength of disruptive 

and/or divergent selection arising from resource competition. Evolution, 62, 1571-

1586. 

Anderson, B. & Johnson, S.D. (2008) The geographical mosaic of coevolution in a plant-

pollinator mutualism. Evolution, 62, 220-225. 

Anderson, I.A. & Busch, J.W. (2006) Pollinator-mediated selection weakens floral 

integration in self-compatible taxa of Leavenworthia (Brassicaceae). American 

Journal of Botany, 93, 860-867. 

Angert, A.L. (2009) The niche, limits to species distributions, and spatiotemporal 

variation in demography across the elevation ranges of two monkeyflowers. 

Proceedings of the National Academy of Sciences of the United States of America, 

106 Suppl, 19693-19698. 

Angert, A.L., Horst, J., Huxman, T.E., & Venable, D.L. (2010) Phenotypic plasticity and 

precipitation response in Sonoran desert winter annuals. American Journal of 

Botany, 97, 405-411. 

Aragón, C.F., Escudero, A. & Valladares, F. (2008) Stress-induced dynamic adjustments 

of reproduction differentially affect fitness components of a semi-arid plant. Journal 

of Ecology, 96, 222-229. 

Aronson, J., Kigel, A., Shmida, A., & Klein, J. (1992) Adaptive phenology of desert and 

Mediterranean populations of annual plants grown with and without water stress. 

Oecologia, 89, 17-26.  



121 
 

Armbruster, P. & Reed, D.H. (2005) Inbreeding depression in benign and stressful 

environments. Heredity, 95, 235-242. 

Badeck, F.W., Bondeau, A., Bottcher, K., Doktor, D., Lucht, W., Schaber, J., & Sitch, S. 

(2004) Responses of spring phenology to climate change. New Phytologist, 162, 

295-309. 

Baker, H.G. (1955) Self-compatibility and establishment after “long-distance” dispersal. 

Evolution, 9, 347-349 

Baskin, J.M. & Baskin, C.C. (1974) Some aspects of the autecology of prairie larkspur 

(Delphinium virescens) in Tennessee cedar glades. American Midland Naturalist, 

92, 58-71. 

Baskin, J.M. & Baskin, C.C. (1982) Ecological life cycle and temperature relations of 

seed germination and bud growth of Scutellaria parvula. Bulletin of the Torrey 

Botanical Club, 109, 1-6. 

Baskin, J.M. & Baskin, C.C. (1985) Photosynthetic pathway in 14 southeastern cedar 

glade endemics, as revealed by leaf anatomy. American Midland Naturalist, 114, 

205-208. 

Baskin, J.M. & Baskin, C.C. (1988) Endemism in rock outcrop plant communities of 

unglaciated eastern United States: An evaluation of the roles of the edaphic, genetic 

and light factors. Journal of Biogeography, 15, 829-840. 

Baskin, C.C., Baskin, J.M., & Quarterman, E. (1972) Observations on the Ecology of 

Astragalus tennesseensis. American Midland Naturalist, 88, 167-182. 

Bell, J.M., Karron, J.D. & Mitchell, R.J. (2005) Interspecific competition for pollination 

lowers seed production and outcrossing in Mimulus ringens. Ecology, 86, 762-771. 



122 
 

Bevill, R.L. & Louda, S.M. (1999) Comparisons of related rare and common species in 

the study of plant rarity. Conservation Biology, 13, 493-498. 

Biesmeijer, J.C., Roberts, S.P.M., Reemer, M., Ohlemuller, R., Edwards, M., Peeters, T., 

Schaffers, A.P., Potts, S.G., Kleukers, R., Thomas, C.D., Settele, J., & Kunin, W.E. 

(2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the 

Netherlands. Science, 313, 351-354 

Brisson, J.A, Strasburg, J.L. & Templeton, A.R. (2003) Impact of fire management on the 

ecology of collared lizard (Crotaphytus collaris) populations living on the Ozark 

Plateau. Animal Conservation, 6, 247-254. 

Brown, B.J., Mitchell, R.J. & Graham, S.A. (2002) Competition for pollination between 

an invasive species (purple loosestrife) and a native congener. Ecology, 83, 2328-

2336. 

Brown, B. & Mitchell, R. (2001) Competition for pollination: Effects of pollen of an 

invasive plant on seed set of a native congener. Oecologia, 129, 43-49. 

Bryant, J.P., Chapin, F.S., & Klein, D.R. (1983) Carbon/nutrient balance of boreal plants 

in relation to vertebrate herbivory. Oikos, 40, 357-368. 

Chapin, F. S. (1980) The mineral nutrition of wild plants. Annual Review of Ecology and 

Systematics, 11, 233-260. 

Chapin, F. S., I., Autumn, K., & Pugnaire, F. (1993) Evolution of suites of traits in 

response to environmental stress. The American Naturalist, 142, S78-S92. 

Chase, J. & Leibold, M. (2003) Ecological niches: linking classical and contemporary 

approaches (interspecific interactions). University of Chicago Press, Chicago, IL. 



123 
 

Chase, J.M., Abrams, P.A., Grover, J.P., Diehl, S., Chesson, P., Holt, R.D., Richards, 

S.A., Nisbet, R.M., & Case, T.J. (2002) The interaction between predation and 

competition: A review and synthesis. Ecology Letters, 5, 302-315. 

Cheptou, P.O., Berger, A., Blanchard, A., Collin, C., & Escarre, J. (2000) The effect of 

drought stress on inbreeding depression in four populations of the Mediterranean 

outcrossing plant Crepis sancta (Asteraceae). Heredity, 85 Pt 3, 294-302. 

Cleland, E.E., Chiariello, N.R., Loarie, S.R., Mooney, H.A., & Field, C.B. (2006) 

Diverse responses of phenology to global changes in a grassland ecosystem. 

Proceedings of the National Academy of Sciences of the United States of America, 

103, 13740-13744. 

Clinebell, R.R.I. & Bernhardt, P. (1998) The pollination ecology of five species of 

Penstemon (Scrophulariaceae) in the tallgrass prairie. Annals of the Missouri 

Botanical Garden, 85, 126-136. 

Dafni, A. (1993) Pollination ecology: A practical approach. Oxford University Press, 

Oxford, U. K. 

Darwin, C. (1877) On the various contrivances by which British and foreign orchids are 

fertilized (ed. D. Appleton). New York. 

Del Castillo, R.F. & Trujillo, S. (2008) Effect of inbreeding depression on outcrossing 

rates among populations of a tropical pine. The New Phytologist, 177, 517-24. 

Devaux, C. & Lande, R. (2009) Displacement of flowering phenologies among plant 

species by competition for generalist pollinators. Journal of evolutionary biology, 

22, 1460-1470. 



124 
 

Dickson, C.E. & Petit, S. (2006) Effect of individual height and labellum colour on the 

pollination of Caladenia (syn. Arachnorchis) behrii (Orchidaceae) in the northern 

Adelaide region, South Austrailia. Plant Systematics and Evolution, 262, 65-74. 

Domínguez Lozano, F. & Schwartz, M.W. (2005) Patterns of rarity and taxonomic group 

size in plants. Biological Conservation, 126, 146-154. 

Dose, V. & Menzel, A. (2004) Bayesian analysis of climate change impacts in 

phenology. Global Change Biology, 10, 259-272. 

Eckert, C.G., Ozimec, B., Herlihy, C.R., Griffin, C.A., & Routley, M.B. (2009) Floral 

morphology mediates temporal variation in the mating system of a self-compatible 

plant. Ecology, 90, 1540-1548. 

Elliott, S.E. (2009) Subalpine bumble bee foraging distances and densities in relation to 

flower availability. Environmental Entomology, 38, 748-756. 

Ellison, A.M. & Parker, J.N. (2002) Seed dispersal and seedling establishment of 

Sarracenia purpurea (Sarraceniaceae). American Journal of Botany, 89, 1024-1026. 

Elzinga, J.A., Atlan, A., Biere, A., Gigord, L., Weis, A.E., & Bernasconi, G. (2007) Time 

after time: Flowering phenology and biotic interactions. Trends in Ecology & 

Evolution, 22, 432-439. 

Erhardt, A. & Rusterholz, H.P. (1998) Do Peacock butterflies (Inachis io L.) detect and 

prefer nectar amino acids and other nitrogenous compounds? Oecologia, 117, 536-

542. 

Espeland, E.K. & Emam, T.M. (2011) The value of structuring rarity: The seven types 

and links to reproductive ecology. Biodiversity and Conservation, 963-985. 



125 
 

Fargione, J., Brown, C.S., & Tilman, D. (2003) Community assembly and invasion: An 

experimental test of neutral versus niche processes. Proceedings of the National 

Academy of Sciences of the United States of America, 100, 8916-8920. 

Fausto , Jr ., J.A., Eckhart, V.M., & Geber, M.A. (2001) Reproductive assurance and the 

evolutionary ecology of self-pollination in Clarkia xantiana. America Journal of 

Botany, 88, 1794-1800. 

Fenster, C.B., Armbruster, W.S., Wilson, P., Dudash, M.R., & Thomson, J.D. (2004) 

Pollination syndromes and floral specialization. Annual Review of Ecology, 

Evolution, and Systematics, 35, 375-403. 

Firman, R.C. & Simmons, L.W. (2008) Polyandry facilitates postcopulatory inbreeding 

avoidance in house mice. Evolution, 62, 603-611. 

Fishman, L. & Willis, J.H. (2008) Pollen limitation and natural selection on floral 

characters in the yellow monkeyflower, Mimulus guttatus. New Phytologist, 3, 820-

810. 

Flanagan, R.J., Mitchell, R.J., & Karron, J.D. (2010) Increased relative abundance of an 

invasive competitor for pollination, Lythrum salicaria, reduces seed number in 

Mimulus ringens. Oecologia, 164, 445-454. 

Forrest, J., Inouye, D.W., & Thomson, J.D. (2010) Flowering phenology in subalpine 

meadows: Does climate variation influence community co-flowering patterns? 

Ecology, 91, 431-440. 

Fox, C.W. & Reed, D.H. (2011) Inbreeding depression increases with environmental 

stress: An experimental study and meta-analysis. Evolution, 65, 246-258. 



126 
 

Foxe, J.P., Slotte, T., Stahl, E.A., Neuffer, B., Hurka, H., & Wright, S.I. (2009) Recent 

speciation associated with the evolution of selfing in Capsella. Proceedings of the 

National Academy of Sciences of the United States of America, 106, 5241-5245. 

Galloni, M. (2008) Visitor diversity and pollinator specialization in Mediterranean 

legumes. Flora, 203, 94-102. 

Georgescu, M., Lobell, D.B., & Field, C.B. (2011) Direct climate effects of perennial 

bioenergy crops in the United States. Proceedings of the National Academy of 

Sciences of the United States of America, 108, 4307-4312. 

Gregory, R.D. & Gaston, K.J. (2000) Explanations of commonness and rarity in British 

breeding birds: Separating resource use and resource availability. Oikos, 88, 515-

526. 

Grime, J.P. (1977) Evidence for the existence of three primary strategies in plants and its 

relevance to ecological and evolutionary theory. The American Naturalist, 111, 

1169–1194. 

Halpern, S.L., Adler, L.S., & Wink, M. (2010) Leaf herbivory and drought stress affect 

floral attractive and defensive traits in Nicotiana quadrivalvis. Oecologia, 163, 961-

971. 

Harder, L.D., Richards, S.A., & Routley, M.B. (2008) Effects of reproductive 

compensation, gamete discounting and reproductive assurance on mating-system 

diversity in hermaphrodites. Evolution, 62, 157-172. 

Hardin, G. (1960) The competitive exclusion principle. Science, 131, 1292-1297. 

Hauser, T.P. & Loeschcke, V. (1996) Drought stress and inbreeding depression in 

Lychnis flos-cuculi (Caryophyllaceae). Evolution, 50, 1119-1126. 



127 
 

Heschel, M.S., Hausmann, N., & Schmitt, J. (2005) Testing for stress-dependent 

inbreeding depression in Impatiens capensis (Balsaminaceae). American Journal of 

Botany, 92, 1322-1329. 

Ibanez, I., Primack, R.B., Miller-Rushing, A.J., Ellwood, E., Higuchi, H., Lee, S.D., 

Kobori, H., & Silander, J.A. (2010) Forecasting phenology under global warming. 

Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3247-

3260. 

Internicola, A.I., Page, P.A., Bernasconi, G., & Gigord, L.D.B. (2007) Competition for 

pollinator visitation between deceptive and rewarding artificial inflorescences: An 

experimental test of the effects of floral colour similarity and spatial mingling. 

Functional Ecology, 21, 864-872. 

Ishii, H.S., Hirabayashi, Y. & Kudo, G., (2008) Combined effects of inflorescence 

architecture, display size, plant density and empty flowers on bumble bee behaviour: 

Experimental study with artificial inflorescences. Oecologia, 156, 341-350. 

Izco, J. (1998) Types of rarity of plant communities. Journal of Vegetation Science, 9, 

641-646. 

Jacquemyn, H. (2005) Does nectar reward affect rarity and extinction probabilities of 

orchid species? An assessment using historical records from Belgium and the 

Netherlands. Biological Conservation, 121, 257-263. 

Jacquemyn, H. & Brys, R. (2008) Density-dependent mating and reproductive assurance 

in the temperate forest herb Paris quadriolia (Trilliaceae). American Journal of 

Botany, 95, 294-298. 



128 
 

Jenkins, S.E. & Jenkins, M.A. (2006) Effects of prescribed fire on the vegetation of a 

savanna-glade complex in northern Arkansas. Southeastern Naturalist, 5, 113-126. 

Hegland, S.J. & Totland, Ø. (2008) Is the magnitude of pollen limitation in a plant 

community affected by pollinator visitation and plant species specialisation levels? 

Oikos, 117, 883-891. 

Karron, J.D., Mitchell, R.J., Holmquist, K.G., Bell, J.M., & Funk, B. (2004) The 

influence of floral display size on selfing rates in Mimulus ringens. Heredity, 92, 

242-248. 

Karron, J.D., Holmquist, K.G., Flanagan, R.J. & Mitchell, R.J. (2009) Pollinator 

visitation patterns strongly influence among-flower variation in selfing rate. Annals 

of Botany, 103, 1379-1383. 

Kelly, C.K., Woodward, F.I., & Crawley, M.J. (1996) Ecological correlates of plant 

range size: Taxonomies and phylogenies in the study of plant commonness and 

rarity in Great Britain. Philosophical Transactions of the Royal Society B: 

Biological Sciences, 351, 1261-1269. 

Kennedy, B.F. & Elle, E. (2008) The inbreeding depression cost of selfing: Importance of 

flower size and population size in Collinsia parviflora (Veronicaceae). American 

Journal of Botany, 95, 1596-1605. 

Knight, T.M., Steets, J.A., Vamosi, J.C., Mazer, S.J., Burd, M., Campbell, D.R., Dudash, 

M.R., Johnston, M.O., Mitchell, R.J., & Ashman, T.L. (2005) Pollen limitation of 

plant reproduction: Pattern and process. Annual Review of Ecology, Evolution, and 

Systematics, 36, 467-497. 



129 
 

Kremen, C., Williams, N.M., & Thorp, R.W. (2002) Crop pollination from native bees at 

risk from agricultural intensification. Proceedings of the National Academy of 

Sciences of the United States of America, 99, 16812-16816. 

Kruckeberg, A.R. & Rabinowitz, D. (1985) Biological aspects of endemism in higher 

plants. Annual Review of Ecology and Systematics, 16, 447-479. 

Kucera, C.L. & Martin, S.C. (1957) Vegetation and soil relationships in the glade region 

of the southwestern Missouri Ozarks. Ecology, 38, 285-291. 

Kudo, G. & Harder, L.D. (2005) Floral and inflorescence effects on variation in pollen 

removal and seed production among six legume species. Functional Ecology, 19, 

245-254. 

Kudo, G. & Hirao, A.S. (2005) Habitat-specific responses in the flowering phenology 

and seed set of alpine plants to climate variation: Implications for global-change 

impacts. Population Ecology, 48, 49-58. 

Kudo, G., Ida, T.Y., & Tani, T. (2008) Linkages between phenology, pollination, 

photosynthesis, and reproduction in deciduous forest understory plants. Ecology, 89, 

321-331. 

Kunin, W.E. & Gaston, K.J. (1997) Rare-common differences: An overview. The biology 

of rarity: causes and consequences of rare-common differences. (eds. K.J. Kunin, & 

W.E. Gaston), pp. 12-29. Chapman & Hall, London, UK. 

Lambert, A.M., Miller-Rushing, A.J., & Inouye, D.W. (2010) Changes in snowmelt date 

and summer precipitation affect the flowering phenology of Erythronium 

grandiflorum (glacier lily; Liliaceae). American Journal of Botany, 97, 1431-1437. 



130 
 

Lau, J.A., McCall, A.C., Davies, K.F., McKay, J.K., & Wright, J.W. (2008) Herbivores 

and edaphic factors constrain the realized niche of a native plant. Ecology, 89, 754-

762. 

Lavergne, S., Thompson, J.D., Garnier, E., & Debussche, M. (2004) The biology and 

ecology of narrow endemic and widespread plants: A comparative study of trait 

variation in 20 congeneric pairs. Oikos, 107, 505-518. 

Learn, G.H.J., & Schaal, B.A. (1987) Population subdivision for ribosomal DNA repeat 

variants in Clematis fremontii. Evolution, 41, 433-438. 

Lerner, I.M. (1954) Genetic Homeostasis. John Wiley & Son, New York 

Lipow, S., Bernhardt, P., & Vance, N. (2002) Comparative rates of pollination and fruit 

set in widely separated populations of a rare orchid (Cypripedium fasciculatum). 

International Journal of Plant Sciences, 163, 775-782. 

Lloyd, K.M., Lee, W.G., & Wilson, J.B. (2002) Competitive abilities of rare and common 

plants: Comparisons using Acaena (Rosaceae) and Chionochloa (Poaceae) from 

New Zealand. Conservation Biology, 16, 975-985. 

Lortiek, C.J., Michalet, R., Paolini, L., Pugnaireq, F.I., Newingham, B., Aschehoug, E.T., 

Armasq, C., Kikodze, D., & Cook, B.J. (2002) Positive interactions among alpine 

plants increase with stress. Zoologica, 417, 844-848. 

MacDougall, A.S., Boucher, J., Turkington, R., & Bradfield, G.E. (2006) Patterns of 

plant invasion along an environmental stress gradient. Journal of Vegetation 

Science, 17, 47-56. 



131 
 

Maestre, F.T., Callaway, R.M., Valladares, F., & Lortie, C.J. (2009) Refining the stress-

gradient hypothesis for competition and facilitation in plant communities. Journal of 

Ecology, 97, 199-205. 

Martén-Rodríguez, S., & Fenster, C.B. (2010) Pollen limitation and reproductive 

assurance in Antillean Gesnerieae: A specialists vs. generalist comparison. Ecology, 

91, 155-165. 

McLernon, S.M., Murphy, S.D., & Aarssen, L.W. (1996) Heterospecific pollen transfer 

between sympatric species in a midsuccssional old-field community. American 

Journal of Botany, 83, 1168-1174. 

Mevi-Schutz, J. & Erhardt, A. (2005) Amino acids in nectar enhance butterfly fecundity: 

a long-awaited link. The American Naturalist, 165, 411-419. 

Miller-Rushing, A.J. & Inouye, D.W. (2009) Variation in the impact of climate change 

on flowering phenology and abundance: An examination of two pairs of closely 

related wildflower species. American Journal of Botany, 96, 1821-1829. 

Miller-Rushing, A.J., Katsuki, T., Primack, R.B., Ishii, Y., Lee, S.D., & Higuchi, H. 

(2007) Impact of global warming on a group of related species and their hybrids: 

Cherry tree (Rosaceae) flowering at Mt. Takao, Japan. American Journal of Botany, 

94, 1470-1478. 

Miller-Rushing, A.J. & Primack, R.B. (2008) Global warming and flowering times in 

Thoreauʼs Concord: A community perspective. Ecology, 89, 332-341. 

Mitchell, R.J., Karron, J.D., Holmquist, K.G. & Bell, J.M. (2004) The influence of 

Mimulus ringens floral display size on pollinator visitation patterns. Functional 

Ecology, 18, 116-124. 



132 
 

Mitchell, R.J., Flanagan, R.J., Brown, B.J., Waser, N.M., & Karron, J.D. (2009) New 

frontiers in competition for pollination. Annals of Botany, 103, 1403-1413. 

Mitchell, R.J., Irwin, R.E., Flanagan, R.J., & Karron, J.D. (2009) Ecology and evolution 

of plant-pollinator interactions. Annals of Botany, 103, 1355-1363. 

Moeller, D.A. & Geber, M.A. (2005) Ecological context of the evolution of self-

pollination in Clarkia xantiana: Population size, plant communities, and 

reproductive assurance. Evolution, 59, 786-799. 

Muchhala, N., Brown, Z., Armbruster, W.S., & Potts, M.D. (2010) Competition drives 

specialization in pollination systems through costs to male fitness. The American 

Naturalist, 176, 732-743. 

Muneepeerakul, R., Bertuzzo, E., Lynch, H.J., Fagan, W.F., Rinaldo, A., & Rodriguez-

Iturbe, I. (2008) Neutral metacommunity models predict fish diversity patterns in 

Mississippi-Missouri basin. Nature, 453, 220-222. 

Murray, B.R., Thrall, P.H., Gill, A.M., & Nicotra, A.B. (2002) How plant life-history and 

ecological traits relate to species rarity and commonness at varying spatial scales. 

Austral Ecology, 27, 291-310. 

Naug, D. & Arathi, H.S. (2007) Receiver bias for exaggerated signals in honeybees and 

its implications for the evolution of floral displays. Biology Letters, 3, 635-637. 

Neiland, M.R.M. & Wilcock, C.C. (1998) Fruit set, nectar reward, and rarity in the 

Orchidaceae. American Journal of Botany, 85, 1657-1671. 

Nelson, P. & Ladd, D. (1982) Preliminatry report on the identification, distribution and 

classification of Missouri glades. Proceedings of the Seventh North American 



133 
 

Prairie Conference. (ed. C. Kucera), pp. 59-76. Southwestern Missouri State 

University, Springfield, MO. 

Ogden, E.C., Raynor, G.S., Hayes, J., DM, L., & Haines, J. (1974) Manual for sampling 

air-borne pollen. Hafner Press, New York. 

Osborne, J.L., Martin, A.P., Carreck, N.L., Swain, J.L., Knight, M.E., Goulson, D., Hale, 

R.J., & Sanderson, R.A. (2008) Bumblebee flight distances in relation to the forage 

landscape. The Journal of animal ecology, 77, 406-415. 

Parachnowitsch, A.L. & Kessler, A. (2010) Pollinators exert natural selection on flower 

size and floral display in Penstemon digitalis. New Phytologist, 188, 393-402. 

Pasquet, R.S., Peltier, A., Hufford, M.B., Oudin, E., Saulnier, J., Paul, L., Knudsen, J.T., 

Herren, H.R., & Gepts, P. (2008) Long-distance pollen flow assessment through 

evaluation of pollinator foraging range suggests transgene escape distances. 

Proceedings of the National Academy of Sciences of the United States of America, 

105, 13456-13461. 

Pigliucci, M., Murren, C.J., & Schlichting, C.D. (2006) Phenotypic plasticity and 

evolution by genetic assimilation. Journal of Experimental Biology, 209, 2362-2367. 

Pohlman, C.L., Nicotra, A.B., & Murray, B.R. (2005) Geographic range size, seedling 

ecophysiology and phenotypic plasticity in Australian Acacia species. Journal of 

Biogeography, 32, 341-351. 

Quarterman, E. (2007) Ecology of cedar glades. I. Distribution of glade flora in 

Tennessee. Bulletin of the Torrey Botanical Club, 77, 1-9. 

R Development Core Team. (2008) R: A language and environment for statistical 

computing. 



134 
 

Rabinowitz, D., Rapp, J.K., Sork, V.L., Rathcke, B.J., Reese, G.A., & Weaver, C, J. 

(1981) Phenological properties of wind- and insect-pollinated prairie plants. 

Ecology, 62, 49-56. 

Rader, R., Edwards, W., Westcott, D.A., Cunningham, S.A., & Howlett, B.G. (2011) 

Pollen transport differs among bees and flies in a human-modified landscape. 

Diversity and Distributions, 17, 519-529. 

Rafferty, N.E., & Ives, A.R. (2011) Effects of experimental shifts in flowering phenology 

on plant-pollinator interactions. Ecology Letters, 14, 69-74. 

Ricketts, T.H., Regetz, J., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., 

Bogdanski, A., Gemmill-Herren, B., Greenleaf, S.S., Klein, A.M., Mayfield, M.M., 

Morandin, L.A., Ochieng, A., Potts, S.G., & Viana, B.F. (2008) Landscape effects 

on crop pollination services: Are there general patterns? Ecology Letters, 11, 499-

515. 

Riginos, C., Heschel, M.S., & Schmitt, J. (2007) Maternal effects of drought stress and 

inbreeding in Impatiens capensis (Balsaminaceae). American Journal of Botany, 94, 

1984-1991. 

Rodríguez-Gironés, M.A., & Santamaría, L. (2007) Resource competition, character 

displacement, and the evolution of deep corolla tubes. The American Naturalist, 

170, 455-464. 

Rosenzweig, C., Casassa, G., Karoly, D.J., Imeson, A., Liu, C. Menzel, A., Rawlins, S., 

Root, T.L., Seguin, B., & Tryjanowski, P. (2007) Assessment of observed changes 

and responses in natural and managed systems. Climate Change 2007: Impacts, 

Adaptation, and Vulnerability. Contribution of Working Group II to the Fourth 



135 
 

Assessment Report of the Intergovernmental Panel on Climate Change (eds. M.L. 

Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden, & C.E. Hanson), pp. 79-

131. Cambridge University Press, Cambridge, U.K.  

Ryberg, W.A. & Chase, J.M. (2007) Predator-dependent species-area relationships. The 

American Naturalist, 170, 636-642. 

Rymer, P., Whelan, R., Ayre, D., Weston, P., & Russell, K. (2005) Reproductive success 

and pollinator effectiveness differ in common and rare species (Proteaceae). 

Biological Conservation, 123, 521-532. 

SAS Institute, Inc. (2009) JMP Statistical Discover Software 8. 

Sherry, R.A., Zhou, X., Gu, S., Arnone, J.A., Schimel, D.S., Verburg, P.S., Wallace, 

L.L., & Luo, Y. (2007) Divergence of reproductive phenology under climate 

warming. Proceedings of the National Academy of Sciences of the United States of 

America, 104, 198-202. 

SigmaScan Pro 5.0. (2002) Systat Software Inc. 

Silvertown, J.; Franco M., Pisanty I., and Mendoza, A.M. (1993) Comparative plant 

demography – relative importance of life-cycle components to the finite rate of 

increase in woody and herbaceous perennials. Journal Ecology, 81, 465-476. 

Soberón, J. (2007) Grinnellian and Eltonian niches and geographic distributions of 

species. Ecology Letters, 10, 1115-1123. 

Sprigler,R. & Chang, S. (2009) Pollen limitation and reproduction varies with population 

size in experimental populations of Sabatia angularis (Gentianacea). Botany, 87, 

330-338 



136 
 

Strauss, S.Y. & Irwin, R.E. (2004) Ecological and evolutionary consequences of 

multispecies plant-animal interactions. Annual Review of Ecology, Evolution, and 

Systematics, 35, 435-466. 

Šidàk, Z. (1967). Rectangular confidence region for themeans of multivariate normal 

distributions. Journal of the American Statistical Association, 62, 626–633.  

Templeton, A.R., Robertson, R.J., Brisson, J., & Strasburg, J. (2001) Disrupting 

evolutionary processes: The effect of habitat fragmentation on collared lizards in the 

Missouri Ozarks. Proceedings of the National Academy of Sciences of the United 

States of America, 98, 5426-5432. 

Tilman, D. (1976) Ecological competition between algae: Experimental confirmation of 

resource-based competition theory. Science, 192, 463-465. 

Tilman, D. (2004) Niche tradeoffs, neutrality, and community structure: a stochastic 

theory of resource competition, invasion, and community assembly. Proceedings of 

the National Academy of Sciences of the United States of America, 101, 10854-

10861. 

Totland, Ø. & Eide, W. (1999) Environmentally-dependent pollen limitation on seed 

production in alpine Ranunculus acris. Ecoscience, 6, 173-179. 

van Nieuwstadt, M.G.L. & Ruano Iraheta, C.E. (1996) Relation between size and 

foraging range in stingless bees (Apidae, Meliponinae). Apidologie, 27, 219-228. 

Van Zandt, P.A. (2007) Plant defense, growth, and habitat: A comparative assessment of 

constitutive and induced resistance. Ecology, 88, 1984-1993. 



137 
 

Van Zandt, P.A., Collins, E., Losos, J.B., & Chase, J.M. (2005) Implications of food web 

interactions for restoration of Missouri Ozark glade habitats. Restoration Ecology, 

13, 312-317. 

Volkov, I., Banavar, J.R., Hubbell, S.P., & Maritan, A. (2003) Neutral theory and relative 

species abundance in ecology. Nature, 424, 1035-1037. 

Waddington, C.H. (1953a) Genetic assimilation of an acquired character. Evolution, 7, 

118-126. 

Waddington, C.H. (1953b) ‘Baldwin Effect’, ‘Genetic Assimilation’ and ‘Homeostasis’. 

Evolution, 7, 386-387. 

Wagenius, S. & Lyon, S. (2010) Reproduction of Echinacea angustifolia in fragmented 

prairie is pollen-limited but not pollinator-limited. Ecology, 91, 733-742. 

Walck, J.L., Baskin, J.M., & Baskin, C.C. (1999) Ecology of the endangered species 

Solidago shortii. VII. Survivorship and flowering, and comparison with common, 

geographically-widespread Solidago species. Journal of the Torrey Botanical 

Society, 126, 124-132. 

Walck, J.L., Baskin, J.M., & Baskin, C.C. (2002) Why is Solidago shortii narrowly 

endemic and S. altissima geographically widespread? A comprehensive comparative 

study of biological traits. Journal of Biogeography, 28, 1221-1237. 

Waller, D.M., Dole, J., & Bersch, A.J. (2008) Effects of stress and phenotypic variation 

on inbreeding depression in Brassica rapa. Evolution, 62, 917-931. 

Warnock, M.J. (1987) Vicariant distribution of two Delphinium species in southeastern 

United States. Botanical Gazette, 148, 90-95. 



138 
 

Whittall, J.B. & Hodges, S.A. (2007) Pollinator shifts drive increasingly long nectar spurs 

in columbine flowers. Nature, 447, 706-709. 

Wikelski, M., Moxley, J., Eaton-Mordas, A., López-Uribe, M.M., Holland, R., 

Moskowitz, D., Roubik, D.W., & Kays, R. (2010) Large-range movements of 

neotropical orchid bees observed via radio telemetry. PLoS ONE, 5, e10738. 

Williams, S.E., Williams, Y.M., VanDerWal, J., Isaac, J.L., Shoo, L.P., & Johnson, C.N. 

(2009) Ecological specialization and population size in a biodiversity hotspot: how 

rare species avoid extinction. Proceedings of the National Academy of Sciences of 

the United States of America, 106 Suppl, 19737-19741. 

Wilson, P., Castellanos, M.C., Wolfe, A.D., & Thomson, J.D. (2006) Shifts between bee 

and bird pollination in Penstemons. Plant–Pollinator Interactions: From 

Specialization to Generalization. (eds N.M. Waser & J. Ollerton), p. 47–68. The 

University of Chicago Press, Chicago, IL. 

Wright, S. (1922) Coefficients of inbreeding and relationship. The American Naturalist, 

56, 330-338.  

Yatskievych, G. (1999) Steyermarkʼs Flora of Missouri, 2nd ed., Vol. 1. Missouri 

Department of Conservation, Jefferson City, Missouri. 

 


	Washington University in St. Louis
	Washington University Open Scholarship
	1-1-2011

	Causes of rarity in glade-endemic plants: Implications for responses to climate change
	Nicole Miller-Struttmann
	Recommended Citation


	Microsoft Word - MillerStruttmann_Dissertation_FINAL2

