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ABSTRACT OF THE DISSERTATION

Microstructure of Systems with Competition

by

Saurish Chakrabarty

Doctor of Philosophy in Physics

Washington University in St. Louis, 2012

Professor Zohar Nussinov, Chairperson

The micro-structure of systems with competition often exhibits many universal fea-

tures. In this thesis, we study certain aspects of these structural features as well as

the microscopic interactions using disparate exact and approximate techniques. This

thesis can be broadly divided into two parts.

In the first part, we use statistical mechanics arguments to make general state-

ments about length and timescales in systems with two-point interactions. We demon-

strate that at high temperatures, the correlation function of general O(n) systems

exhibits a universal form. This form enables the extraction of microscopic interaction

potentials from the high temperature correlation functions. In systems with long

range interactions, we find that the largest correlation length diverges in the limit of

high temperatures. We derive an exact form for the correlation function in large-n

systems with general two-point interactions at finite temperatures. From this, we

obtain some features of the correlation and modulation lengths in general systems in

the large-n limit. We derive a new exponent characterizing modulation lengths (or

times) in systems in which the modulation length (or time) either diverges or becomes
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constant as a parameter, such as temperature exceeds a threshold value.

In the second part of this thesis, we study the micro-structure of a metallic glass

system using molecular dynamics simulations. We use both classical and first prin-

ciples simulation to obtain atomic configurations in the liquid as well as the glassy

phase. We analyze these using standard methods of local structure analysis – calcu-

lation of pair correlation function and structure factor, Voronoi construction, calcu-

lation of bond orientational order parameters and calculation of Honeycutt indices.

We show the enhancement of icosahedral order in the glassy phase. Apart from this,

we also use the techniques of community detection to obtain the inherent structures

in the system using an algorithm which allows us to look at arbitrary length-scales.
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Chapter 1

Introduction

The understanding of the internal structure of systems is one of the important goals

in multiple branches of physics. The study of correlation functions of a relevant

field forms one of the means to achieve this goal. Fortunately, there lies a lot of

universality in such findings.[10–12] This universality could relate to the form which

the correlation function takes, its behavior as some parameter defining the system is

varied, the length or time scales which characterize it, or in some other property that

may be important depending on the system being studied.

This thesis focuses on the structural features of a variety of systems, mainly by

studying the behavior of relevant correlation functions both in real and Fourier spaces.
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1.1 Correlation functions

Typically, the first step in studying a physical system is the recognition of a suitable

order parameter φ(~x). In the study of most[13] phase transitions, for example, this

order parameter is chosen in such a way that its thermodynamic expectation value

vanishes on one side of the phase transition. Calculating the expectation value of the

order parameter is, however, not always enough when we are interested in properties

of a system in situations in which it is not undergoing a phase transition. The cor-

relation function is one of the most straightforward quantities that can be calculated

to quantify, in general, order that is present in a system.

The correlation function could be studied in many contexts. First, there is the

two-point correlation function G(~x) ≡ 〈φ(0)φ(~x)〉 which in translationally invariant

systems (e.g., liquids and various lattice systems in the absence of disorder), is asso-

ciated with the correlation between sites separated by ~x. Second, there is the pair

correlation function g(r) describing the average atomic number densities at a distance

r away from a chosen atom in systems such as liquids. The propagator in G(~x, t) in

quantum mechanics also represents the correlation between states at two space-time

points separated by (~x, t). Other forms of the correlation function which are not

discussed in this thesis, have been used in disparate arenas. Many of our results,

however, pertain to general correlation functions and may apply to various systems

which we do not discuss in detail. In this thesis, we will be interested in studying the
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first two kinds of correlation functions [i.e., G(~x) and g(r)]. The work in Chapters

3, 4 and 5 relates to the two-point correlation function G(~x). The configurations of

metallic glasses studied in Chapters 6 and 7 can be studied by looking at the pair

correlation function g(r) and a related Fourier space quantity S(q).

1.2 Structural features and universality

In statistical physics, models with short range interactions have been at the fo-

cus of much study for many decades. Perhaps one of the best known examples

are the Ising ferromagnet and the anti-ferromagnet.[14] In nature, long range in-

teractions are equally abundant.[15] Systems in which both long and short range

interactions co-exist constitute fascinating problems. Such competing interactions

can lead to a wealth of interesting patterns – stripes, bubbles, etc.[16–21] Realiza-

tions are found in numerous fields – quantum Hall systems,[22] adatoms on metal-

lic surfaces, amphiphilic systems,[23–26] interacting elastic defects (dislocations and

disclinations) in solids,[27] interactions amongst vortices in fluid mechanics[28] and

superconductors,[29] crumpled membrane systems,[2] wave-particle interactions,[30,

31] interactions amongst holes in cuprate superconductors,[32–36] arsenide super-

conductors,[37] manganates and nickelates,[38, 39] some theories of structural glass-

es,[40–44] colloidal systems,[45, 46] and many more. Much of the work to date focused

on the character of the transitions in these systems and the subtle thermodynamics
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that is often observed (e.g., the equivalence between different ensembles in many such

systems is no longer as obvious, nor always correct, as it is in the canonical short range

case.[47]) Other very interesting aspects of different systems have been addressed in

Ref. [48].

Figure 1.1: Sub-unit-cell resolution image of the electronic structure of a cuprate super-

conductor at the pseudo-gap energy. Inset shows Fourier space image of the

same figure. Nematic and smectic phases are highlighted using the red and

blue circles respectively. The nematic phase is characterized by commensurate

wave-vectors ~Q. The smectic wave-vector, on the other hand takes incommen-

surate values, ~S which is dependent on the amount of doping, albeit weakly.

(From Ref. [1]. Reprinted with permission from AAAS.)

In complex systems, there are, in general, possibly many important length and
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time scales that characterize correlations. Aside from correlation lengths describing

the exponential decay of correlations, in some materials there are length scales that

characterize periodic spatial modulations or other spatially non-uniform properties

as in Fig. 1.1.

1.3 Structure of liquids and glasses

In many situations, the study of two-point correlation functions fails to give us the

complete picture. Gauge theories (for which the two-point correlation function is

trivially zero [49, 50]) as well as numerous systems with “topological order” fall into

this category.[51, 52] In the systems of interest in this work, the structural details of

the system often have features which are not evident in the pair correlation function.

One such example is the liquid-to-glass transition. The pair correlation function of

a liquid system looks very similar to that of a glass. This does not mean that there

is no structural difference between liquids and glasses. Frank, in 1952, hypothesized

that metallic glasses have increased icosahedral order as compared with liquids.[53]

However, to be able to notice these (subtle) differences one must go beyond pair-

correlation-function-studies. Higher order correlation functions (e.g., four-point cor-

relation functions in space-time [54]) sometimes may capture these differences. The

techniques we use to analyze the structure in liquids and glasses is more direct. We

take various approaches to study the structure of the liquid and glassy systems. These
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are listed below.

• Bond-orientational order parameter W6. The orientation of bonds around

atoms in liquids and glasses is different.[55] For example, in many metallic glass

systems, there is an increase in icosahedral order as the liquid is vitrified. The

quantity W6 (which will be defined in Chapter 6) provides us a strong measure

of viable icosahedral order.

• Voronoi analysis. This is a method to obtain the region of space which is

closer to a chosen atom than any other atom.[56] The shapes of such regions

characterizes the kind of structural order present in a given system. In crystals,

the Voronoi cells are uniform (and are termed Wigner-Seitz cells) and are of

great importance in understanding electronic and other properties. We will use

this as one of our means to quantify icosahedral order in a system.

• Honeycutt-Anderson analysis Honeycutt-Anderson analysis is a way to

look at the local environment around bonds in a system.[57] This will also be

used to characterize local order in the liquid and glassy systems which we will

study.

• Community detection. This is a new method that we have introduced. We

will use the techniques of multi-resolution community detection[6] to obtain

pertinent structures at various resolutions in liquid and glassy systems. The

optimum resolutions for our systems will also be computed using such methods.
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1.4 Outline

In Chapter 2, we introduce the translationally invariant systems which we focus on

in Chapters 3, 4 and 5.

In Chapter 3, we examine correlation functions in the high temperature limit.

We derive a universal form of the correlation function of O(n) systems and use it

to obtain some interesting results. The material presented in this chapter has been

published.[58]

In Chapter 4, we derive a universal form of the Fourier space correlation func-

tion in the large-n limit (spherical model) and from it extract general behaviors of

length scales at finite temperatures. The material presented in this chapter has been

published.[59]

In Chapter 5, we discuss the presence of a universal exponent characterizing vari-

ous crossovers in systems where the correlation function changes from exhibiting fixed

wavelength modulations to continuously varying modulation lengths as the tempera-

ture (or some other general parameter λ) is varied.

In Chapter 6, we study a metallic glass system through molecular dynamics sim-

ulations. We look at the local structure and observe the change in icosahedral order

in high and low temperature systems, corresponding respectively to liquid and glassy

phases.

In Chapter 7, we use the techniques of community detection to find out the per-
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tinent length scales in a metallic glass system and look at the local structure of the

liquid and glassy systems at those resolutions. The material presented in this chapter

has been published.[60, 61]
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Chapter 2

Systems of study

2.1 Introduction

This chapter contains a general introduction to the systems we study along with the

definitions of the various terms we use. These will be used in chapters 3, 4 and 5 of

this thesis.

2.2 Systems of study

In the bulk of this thesis, we will be interested in translationally invariant systems

whose Hamiltonian, in general, takes the form,

H =
1

2

∑

~x 6=~y

V (|~x− ~y|)~S(~x) · ~S(~y). (2.1)
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In the continuum, this takes the form,

H =
1

2

∫

ddx ddy V (|~x− ~y|) ~S(~x) · ~S(~y). (2.2)

The quantities {~S(~x)} portray n-component spins or fields. The sites ~x and ~y lie on

a d-dimensional hypercubic lattice with unit lattice constant. The number of sites is

N .

The two point correlation function for the system in Eq. (2.1) is defined as,

G(~x) =
1

n
〈~S(0) · ~S(~x)〉. (2.3)

For large distances x = |~x|, the correlation function typically behaves as,

G(x) ≈
∑

i

fi(x) cos

(

2πx

L
(i)
D

)

e−x/ξi , (2.4)

where for the i-th term, fi(x) is an algebraic prefactor, L
(i)
D is the modulation length

and ξi is the corresponding correlation length. There can be multiple correlation and

modulation lengths.

Fourier space variables

We will use v(k) and ~s(~k) to denote the Fourier transforms of V (|~x − ~y|) and ~S(~x)

respectively. The Fourier transform convention used here is that,

a(~k) =
∑

~x

A(~x)ei
~k·~x, and

A(~x) =
1

N

∑

~k

a(~k)e−i~k·~x. (2.5)
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The Hamiltonian in Eq. (2.1) can be rewritten as,

H =
1

2N

∑

~k

v(k)~s(~k) · ~s(−~k). (2.6)

When v(~k) is analytic in all momentum space coordinates, it is a function of |~k|2 =

k2 (and not a general function of k ≡
√

∑d
l=1 k

2
l with {kl} being the Cartesian

components of ~k). This is so as |~k| has branch cuts when viewed as a function of a

particular kl (with all other kl′ 6=l held fixed). The lattice Laplacian that links nearest

neighbors sites in real space becomes

∆~k = 2
d
∑

l=1

(1− cos kl) (2.7)

in k-space. ∆~k veers towards |~k|2 in the continuum (small k) limit.

In the Fourier space, the correlation function takes the form,

G(~k) =
1

Nn
〈~s(~k) · ~s(−~k)〉. (2.8)

The modulation and correlation lengths can be obtained respectively from the real

and imaginary parts of the singularities (poles and branch points) of G(~k) in the

complex k-plane.

2.3 O(n) systems and the large-n limit

Heisenberg spins or O(n) spins refer to n-component spins whose magnitude is con-

strained to be a constant. This constraint makes the calculation of the correlation
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function (and hence other related physical quantities) much easier to handle. We

choose the normalization adopted by Stanley in Ref. [62].

~S(~x) · ~S(~x) = n. (2.9)

For Ising spins, n = 1. For XY spins, n = 2, and so on.

The large n limit of the O(n) spins is equivalent to the spherical model first

introduced by Berlin and Kac [63]. This equivalence was established in the work of

Stanley [62].

The single component spherical model is given by the Hamiltonian,

H =
1

2

∑

~x 6=~y

V (|~x− ~y|)S(~x)S(~y). (2.10)

The spins in Eq.(2.10) satisfy a single global (“spherical”) constraint,

∑

~x

S2(~x) = N. (2.11)

The results that will be derived in this work apply to a variety of systems. These

include theories with trivial n-component generalizations of Eq. (2.1). In the bulk of

this work, the Hamiltonian has a bilinear form in the spins. We will however, later

on, study “soft” spin model with explicit finite quartic terms as we now expand on.

An n-component generalization of Eq. (2.1) is given by the Hamiltonian

H =
1

2

∑

~x 6=~y

V (|~x− ~y|)~S(~x) · ~S(~y) +

u

4

∑

~x

(

~S(~x) · ~S(~x)− n
)2

. (2.12)
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Such a Hamiltonian represents standard (or “hard”) spin or O(n) systems if u ≫ 1

in the large u limit, the quartic term enforces a “hard” normalization constraint of

the particular form ~S(~x) · ~S(~x) = n. For finite (or small) u, Equation (2.12) describes

“soft”-spin systems wherein the normalization constraint is not strictly enforced.

2.4 Obtaining correlation and modulation lengths

from the momentum space correlation func-

tion

The correlation function in d-dimensional position space, G(~x) is related to that in

the momentum space, G(~k) by,

G(~x) =
1

N

∑

~k

G(~k) e−i~k·~x. (2.13)

In the continuum, this takes the form,

G(~x) =

∫

ddk

(2π)d
G(~k)e−i~k·~x. (2.14)

For spherically symmetric systems, i.e., G(~k) = G(k), we have,

G(x) =

∫ ∞

0

kd−1dk

(2π)d/2
Jd/2−1(kx)

(kx)d/2−1
G(k), (2.15)

and Jν(x) is a Bessel function of order ν. The above integral can be evaluated by

choosing an appropriate contour in the complex k-plane. The contour can be closed
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along a circular arc of radius R → ∞. The contribution from this curved part of the

contour is zero if,

|G(k)| . k−
d+1
2 , as k → ∞. (2.16)

After the integral is evaluated, we get terms in the position space correlation function

which are the residues associated with the poles of the momentum space correlation

function as well as contributions from its branch points. Together, we can summarize

that all characteristic lengthscales in position space are determined by,

1

G(m)(K)
= 0 , (2.17)

where K is complex and 0 ≤ m < ∞ is the smallest order of the derivative of G(k)

which diverges at k = K. Eq. (2.17) is a way of including all points of nonanalyticity

of the k-space correlation function in the complex k-plane. [Note: m = 0 for the poles

of G(k) and m ≥ 0 for the branch points.] The correlation and modulation lengths in

the system are determined respectively by the imaginary and real parts of such Ks.

The arguments made here hold for systems defined in the continuum. Extensions

to lattice systems is straightforward.
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Chapter 3

High temperature correlation

functions

3.1 Introduction

All systems veer towards a disordered fixed point in the limit of high temperatures.

There are a lot of interesting physics observed at temperatures close to various tran-

sitions. As such, a lot of research has been devoted to studying the behavior of

disparate systems at and in the vicinity of these finite temperature transitions.

In this chapter, we will focus on high temperature behavior and illustrate that a

simple form of the two-point correlation function is universally exact for rather gen-

eral systems. This will enable us to make several striking observations. In particular,

we will demonstrate that in contrast to common intuition, general systems with long
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range interactions have a correlation length that increases monotonically with tem-

perature as T → ∞. As they must, however, the correlations decay monotonically

with temperature (as the corresponding amplitudes decay algebraically with temper-

ature). There have been no earlier reports of diverging correlation lengths at high

temperature. A thermally increasing length-scale of a seemingly very different sort

appears in plasmas [64]. The Debye length λD, the distance over which screening

occurs in a plasma, diverges, at high temperature, as λD ∝
√
T . We introduce the

notion of a generalized Debye length associated with disparate long range interactions

(including confining interactions) and show that such screening lengths are rather

general.

Many early works investigated the high temperature disordered phase via a high

temperature series expansion [65, 66] with an eye towards systems with short range

interactions. In this chapter, we report on our universal result for the Fourier trans-

formed correlation function for systems with general pair interactions. As it must, for

nearest neighbor interactions, our correlation function agrees with what is suggested

by standard approximate methods (e.g., the Ornstein-Zernike (OZ) correlation func-

tion that may be derived by many approximate schemes [67]). This work places such

approximate results on a more rigorous footing and, perhaps most notably, enables

us to go far beyond standard short range interactions to find rather surprising results.

Our derivations will be done for spin and other general lattice systems with multi-

component fields. However, as illustrated later, our results also pertain to continuum
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theories.

3.2 The universal form of the high temperature

correlation functions

We now derive a universal form for the correlation function at high temperature.

As in any other calculation with Boltzmann weights, the high temperature limit is

synonymous with weak coupling. Initially, we follow standard procedures and examine

a continuous but exact dual theory. High T (or weak coupling) in the original theory

corresponds to strong coupling in the dual theory. We will then proceed to examine

the consequences of the dual theory at high temperature where the strong coupling

interaction term dominates over other non-universal terms that depend, e.g., on the

number of components in the original theory. This enables an analysis with general

results. Unlike most treatments that focus on the character of various phases and

intervening transitions, our interest here is strictly in the high temperature limit of

the correlation functions in rather general theories of Eq. (2.1). Our aims are (i)

to make conclusions concerning systems with long range interactions rigorous and

(ii) to extract microscopic interactions from measurements. It is notable that due

to convergence time constraints many numerical approaches, e.g., Ref. [68], compare

candidate potentials with experimental data at high temperature (above the melting

temperatures) where the approach that we will outline is best suited. We will perform
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a transformation to a continuous but exact dual theory where the high temperature

character of the original theory can be directly examined.

We augment the right hand side of Eq. (2.1) by [−∑~x
~h(~x)·~S(~x)] and differentiate

in the limit ~h→ 0 to obtain correlation functions in the usual way.

G(~x− ~y) =
1

n

〈

~S(~x) · ~S(~y)
〉

= lim
h→0

1

nβ2Z

n
∑

i=1

δ2Z

δhi(~x)δhi(~y)
, (3.1)

with Z the partition function in the presence of the external field ~h. By spin nor-

malization, G(~x) = 1 for ~x = 0. The index i = 1, 2, ..., n labels the n internal spin (or

field) components. The partition function

Z = TrS



exp



− β

2N

∑

~k

v(~k)|~s(~k)|2 + β
∑

~x

~h(~x) · ~S(~x)







 . (3.2)

The subscript S denotes the trace with respect to the spins. Using the Hubbard-

Stratonovich (HS) transformation, [69–71] we introduce the dual variables {~η(~x)}

and rewrite the partition function as

Z = TrS





∏

~k,i

(

[2π(−v(~k))]−1/2 ×

∫ ∞

−∞
dηi(~k)e

N

2βv(~k)
|ηi(~k)|2+ηi(~k)si(−~k)

)

∏

~x

eβ
~h(~x)·~S(~x)

]

(3.3)

= N TrS





∫

dNnη exp





N2

2β

∑

~x,~y

V −1(~x− ~y)~η(~x) · ~η(~y)

+ N
∑

~x

~η(~x) · ~S(~x) + β
∑

~x

~h(~x) · ~S(~x)
)]

, (3.4)
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with V −1(~x) the inverse Fourier transform of 1/v(~k) and N a numerical prefactor.

The physical motivation in performing the duality to the HS variables is that we wish

to retain the exact character of the theory [i.e., the exact form of the interactions and

the O(n) constraints concerning the spin normalization at all lattice sites]. It is for

this reason that we do not resort to a continuum approximation (such as that of the

canonical φ4 theory that we will discuss for comparison later on) where normalization

is not present. Another reason to choose to work in the dual space is the corre-

spondence with field theories which, in the dual space, becomes clearer in the high

temperature limit (in which the quartic term of the φ4 theories becomes irrelevant).

Further details are in Ref. [72]. For O(n) spins,

Z = N ′
∫

dNnη


exp





N2

2β

∑

~x,~y

V −1(~x− ~y)~η(~x) · ~η(~y)



×

∏

~x

In/2−1(
√
n|N~η(~x) + β~h(~x)|)

(
√
n|N~η(~x) + β~h(~x)|)n/2−1

]

. (3.5)

The second factor in Eq. (3.5) originates from the trace over the spins and as such

embodies the O(n) constraints (the trace in Eq. (3.4) is performed over all configu-

rations with [~S(~x)]2 = n at all sites ~x). Here, Iν(x) is the modified Bessel function of

the first kind. In the Ising (n = 1) case, the argument of the product in Eq. (3.5) is

a hyperbolic cosine. Up to an innocuous additive constant, Eq. (3.5) corresponds to
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the dual Hamiltonian,

Hd = −N2

2β2

∑

~x,~y

V −1(~x− ~y)~η(~x) · ~η(~y)

− 1

β

∑

~x

ln

(

In/2−1(
√
n|N~η(~x) + β~h(~x)|)

(
√
n|N~η(~x) + β~h(~x)|)n/2−1

)

. (3.6)

Our interest is in the h → 0 limit. The first term in Eq. (3.6) is the same for all n.

This term dominates, at low β, over the (second) n dependent term. As we will see,

this dominance will enable us to get universal results for all n. From Eq. (3.1), and

the identity

d

dx

[

Iν(x)

xν

]

=
Iν+1(x)

xν
,

we find that

G(~x− ~y) = δ~x,~y + (1− δ~x,~y)

〈

~η(~x) · ~η(~y)
|~η(~x)||~η(~y)| ×

In/2(N
√
n|~η(~x)|)In/2(N

√
n|~η(~y)|)

In/2−1(N
√
n|~η(~x)|)In/2−1(N

√
n|~η(~y)|)

〉

d

, (3.7)

where the average (〈.〉d) is performed with the weights exp(−βHd). Now, here is a

crucial idea regarding our exact dual forms. From Eq. (3.3), at high temperature, the

variables ηi(~k) strictly have sharply peaked Gaussian distributions of variance,

〈

∣

∣

∣
ηi(~k)

∣

∣

∣

2
〉

d

≈ −βv(~k)
N

as β → 0. (3.8)

Importantly, this variance tends to zero as β → 0. By Parseval’s theorem and trans-
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lational invariance,

〈

(ηi(~x))
2〉

d
=

1

N

∑

~x

〈

(ηi(~x))
2〉

d

=
1

N2

∑

~k

〈

∣

∣

∣ηi(~k)
∣

∣

∣

2
〉

d

≈ −βV (0)/N2

Thus, at high temperature, 〈[ηi(~x)]2〉 ≪ 1. It is therefore useful to perform a series

expansion in the dual variables η and this will give rise to a high temperature series

expansion in the correlation function. The Hamiltonian in dual space is given by

Hd = −N2

2β2

∑

~x,~y

V −1(~x− ~y)~η(~x) · ~η(~y)− N2

2β

∑

~x,i

ηi(~x)
2,

= − N

2β2

∑

~k,i

1

v(~k)

∣

∣

∣
ηi(~k)

∣

∣

∣

2

− N

2β

∑

~k,i

∣

∣

∣
ηi(~k)

∣

∣

∣

2

, (3.9)

with errors of O(1/T ). Expanding Eq. (3.7) to O(1/T 2),

G(~k) =
kBT

v(~k) + kBT
+

1

N

∑

~k′

v(~k′)

v(~k′) + kBT
. (3.10)

Equation(3.10) leads to counter-intuitive consequences for systems with long-range

interactions. The second term in Eq. (3.10) is independent of ~k and ensures that

G(~x) = 1 for ~x = 0. Inverting this result enables us to find the microscopic (spin ex-

change or other) interactions from the knowledge of the high temperature correlation

function. We thus flesh out (and further generalize for multicomponent systems such

as spins) the mathematical uniqueness theorem of Henderson for fluids [73] for which

a known correlation function G(~x) leads to a known pair potential function V (~x) up

to an innocuous constant. Equation(3.10) leads to a correlation function which is
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independent of V (0). Therefore, we can shift v(~k) for all ~k’s by an arbitrary constant

or equivalently set V (0) to an arbitrary constant. To O(1/T ), for V (0) = 0, we have,

v(~k) =
kBT

G(~k)
− 1

N

∑

~k′

kBT

G(~k′)
. (3.11)

The leading term of this expression for v(~k) does not scale with T . This is so as [1−

G(~k)] ∝ 1/T at high temperatures. Correlation functions obtained from experimental

data can be plugged into the right hand side to obtain the effective pair potentials.

Alternatively, in real space, for ~x 6= 0,

V (~x) = −kBTG(~x) + kBT
∑

~x′ 6=0,~x

G(~x′)G(~x− ~x′) (3.12)

Note that the two terms in Eq. (3.12) are O(1) and O(1/T ) respectively, since G(~x)

is proportional to 1/T at high temperature for ~x 6= 0. Extension to higher orders

may enable better comparison to experimental or numerical data. Our expansion is

analytic in the high temperature phase (i.e., so long as no transitions are encountered

as 1/T is increased from zero). The Gaussian form of Eq. (3.9) similarly leads to the

free energy density,

F =
kBT

2N

∑

~k

ln

∣

∣

∣

∣

∣

kBT

v(~k)
+ 1

∣

∣

∣

∣

∣

+O(1/T ). (3.13)

Armed with Eqs. (3.9) and (3.10), we can compute any correlation function with the

aid of Wick’s theorem. For example, for unequal ~kis, we have, 〈(~s(k1)·~s(−k1))...(~s(km)·

~s(−km))〉 = (Nn)m
∏m

i=1G(
~ki).
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It is straightforward to carry out a full high temperature series expansion of the

correlation function to arbitrary order. This is outlined in Appendix A. For example,

when V (~x = 0) = 0, the real space correlation function for separations ~x 6= 0 is, to

order O(1/T 3), given by

G(~x) = −V (~x)

kBT
+

1

(kBT )2

∑

~z

V (~z)V (~x− ~z)

− 1

(kBT )3





∑

~y,~z

V (~y)V (~z)V (~x− ~y − ~z)

− 2V (~x)
∑

~z

V (~z)V (−~z) + 2
(V (~x))3

n+ 2

]

. (3.14)

3.3 High temperature correlation lengths

We now illustrate that (i) in systems with short (or finite range) interactions, the

correlation length tends to zero in the high temperature limit and (ii) in systems

with long range interactions [74] the high temperature correlation length tends to the

screening length and diverges in the absence of screening.

3.3.1 Decaying lengthscales

We consider first the standard case of short range interactions. On a hyper-cubic lat-

tice in d spatial dimensions, nearest neighbor interactions have the lattice Laplacian

∆(~k) = 2
∑d

l=1(1− cos kl) , with kl the l-th Cartesian component of the wave-vector

~k as their Fourier transform. In the continuum (small k) limit, ∆ ∼ |~k|2. Gen-
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erally, in the continuum, arbitrary finite range interactions of spatial range p have

v(~k) ∼ |~k|2p with p > 0 (and superpositions of such terms) as their Fourier trans-

forms. In general finite range interactions, similar multi-nomials in (1− cos kl) and in

k2l appear on the lattice and the continuum respectively. For simplicity, we consider

v(~k) ∼ |~k|2p. Correlation lengths are determined by the reciprocal of the imaginary

part of the poles of Eq. (3.10), |Im {k∗}|−1. We then find that in the complex k

plane, (k∗)
2p ∼ −kBT . Poles are given by k∗ ∼ (kBT )

1/(2p) exp[(2m+ 1)πi/(2p)] with

m = 0, 1, ..., 2p − 1. Correlation lengths then tend to zero in the high temperature

limit as ξ ∼ T−1/(2p)/| sin(2m+1)π/(2p)| – there are p such correlation lengths. Sim-

ilarly, there are p periodic modulation lengths scaling as LD ∼ 2πT−1/(2p)/| cos(2m+

1)π/(2p)|. The usual case of p = 1 corresponds to an infinite LD [i.e., spatially

uniform (non-periodic) correlations] and ξ ∼ T−1/2.

3.3.2 Diverging lengthscales

An unusual feature arises in the high temperature limit of systems with long range

interactions where v(~k) diverges in the small k limit. Such a divergence enables

the correlator of Eq. (3.10) to have a pole at low k and consequently, on Fourier

transforming to real space, to have a divergent correlation length. In the presence of

screening v(~k) diverges and G(k) has a pole when the imaginary part of k is equal

to the reciprocal of the screening length. The correlation length then tends to the

screening length at high temperature. For concreteness, we consider generic screened
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interactions where the Fourier transformed interaction kernel vL(k) ∼ 1
(k2+λ−2)p

′ with

p′ > 0 and λ the screening length. Perusing the poles of Eq. (3.10), we find that for

all p′, the correlation lengths tend to the screening length in the high temperature

limit,

lim
T→∞

ξ(T ) = λ. (3.15)

From Eq. (3.15), when λ becomes arbitrarily large, the correlation length diverges.

Physically, such correlations enable global “charge neutrality” [75] for the correspond-

ing long range interactions (Coulomb or other). It is notable that in several systems,

e.g., [76], neutrality or (Gauss-like) constraints between charges (or defects) lead

to algebraic correlations. In the high temperature limit, the bare interactions are

faint relative to the temperatures yet constraints of charge neutrality may lead to

weak long range correlations. This general divergence of high temperature correla-

tion lengths in systems with long range interactions is related to the effective range of

the interactions. At high temperature, the correlation function matches the “direct”

contribution, e−βVeff (~r) − 1 ∼ −βVeff (~r). If the effective interactions between two

fields have a range λ, then that is reflected in the correlation length. In Coulomb

systems, the Debye length λD sets the range of the interactions (for large distances,

the interactions are screened). As stated earlier, at high temperature, λD diverges.

As we see by Fourier transforming Eq. (3.10), although the imaginary part of the

poles tends to zero (and thus the correlation lengths diverge), the prefactor multi-
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plying e−|~x|/ξ is a monotonically decaying function of T . Thus in the high temper-

ature limit the real space correlator G(~x) monotonically decays with temperature

(as it must). For instance, for p′ = 1 in d = 3 dimensions, the pair correlator

G(x) ∼ e−x/λ/(Tx) tends, for any non-zero x, to zero as T → ∞. That is, the

amplitude vanishes in the high temperature limit as (1/T ). We find similar results

when we have more than one interaction. For instance, in the presence of both a

short and a long range interaction, (at least) two correlation lengths are found. One

correlation length (or, generally, set of correlation lengths) tends to zero in the high

temperature limit (as for systems with short range interactions) while the other cor-

relation length (or such set) tends to the screening length (as we find for systems

with long range interactions). An example of a system where this can be observed

is the screened “Coulomb frustrated ferromagnet”, [33, 34] given by the Hamiltonian

H = [−J∑〈~x,~y〉 S(~x)S(~y) + Q
∑

~x6=~y VL(|~x − ~y|)S(~x)S(~y)], with J,Q > 0 and the

long range interaction VL(x) = e−x/λ

x
in d = 3 dimensions and VL(x) = K0(x/λ) in

d = 2 with λ the screening length and K0 a modified Bessel function of the second

kind. Similar dipolar systems [16, 18, 19] have been considered. Apart from the usual

correlation length that vanishes in the high temperature limit, we find an additional

correlation length that tends to the screening length λ.
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3.4 Generalized Debye length (and time) scales

We now introduce the notion of generalized Debye length (and time) scales that are

applicable to general systems with effective or exact long range interactions. These

extend the notion of a Debye length from Coulomb type system where it is was

first found. If the Fourier space interaction kernel v(k) in a system with long range

interactions is such that 1
v(k)

is analytic at k = 0, then the system has a diverging

correlation length, ξlong at high temperature. To get the characteristic diverging

lengthscales, we consider the self-consistent small k solutions to kBT/v(k) = −1

for high temperature (which gives the poles in the correlation function). Thus, as

T → ∞, ξlong diverges as p
√
kBT , where p is the order of the first non-zero term in

the Taylor series expansion of 1
v(k)

around k = 0. This divergent length-scale could

be called the generalized Debye length. If the long-range interactions in the system

are of Coulomb type, then this corresponds to the usual Debye length λD where

p = 2. A more common way to obtain this result is as follows. Suppose we have

our translationally invariant system which interacts via pairwise couplings as in Eq.

(2.1). We can define a potential function for this system as,

φ(~x) =
∑

~y,~y 6=~x

V (|~x− ~y|)S(~y). (3.16)

The “charge” S(~x) in the system is perturbed by an amount Ŝ(~x) and we observe

the response φ̂(~x) in the potential function φ(~x) assuming that we stay within the

regime of linear response. We assume that S(~x) follows a Boltzmann distribution,
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i.e., S(~x) = A exp (−βCφ(~x)), where C is a constant depending on the system. It

follows that Ŝ(~x) = −βCS(~x)φ̂(~x). At this point, we can ignore the fluctuations in

S(~x) as they do not contribute to the leading order term. Thus, Ŝ(~x) = −βCS0φ̂(~x),

where S0 = 〈S(~x)〉. In Fourier space, this leads to the relation,

φ̂(~k) = −βCS0v(~k)φ̂(~k) (3.17)

The modes with non-zero response are therefore given by,

−v(~k) ∝ kBT. (3.18)

For a Coulomb system, these modes are given by (−k−2) ∝ kBT , yielding a correlation

length λD ∝
√
kBT .

As a brief aside, we discuss what occurs when the above considerations (and also

those to be detailed anew in Sec. 3.6.1) are applied to an imaginary time action of a

complex field ψ that has the form,

Saction =
1

2

∫

dτdτ ′ddxddx′
[

ψ(x, τ)

K(x− x′, τ − τ ′)ψ(x′, τ ′)
]

+ ... . (3.19)

In the above, the imaginary time coordinates 0 ≤ τ, τ ′ ≤ β with a kernel K that is

long range in space or imaginary time and the ellipsis denoting higher order terms

(e.g., generic |ψ|4 type terms) or imposing additional constraints on the fields ψ [such

as normalization that we have applied thus far for O(n) systems]. In such a case, the

associated Debye length (or imaginary time) scale may diverge in the weak coupling
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(i.e., K → aK with a → 0+) limit. In an analogous way, repeating all of the earlier

calculations done thus far for spatial correlations, we find divergent correlation times

in the low coupling limit for systems with a kernel K that is long range in |τ−τ ′|. An

action such as that of Eq. (3.19) may also describe a system at the zero temperature

limit (whence β → ∞) and the (imaginary) time scale is unbounded.

In Appendix B, we will relate the divergence of the generalized Debye type length

scales in the high temperature limit to a similar divergence in the largest correlation

length in systems with long range interactions.

Confining potentials

We discussed long range interactions (with, in general, a screening which may be set

to be arbitrarily small) such as those that arise in plasma, dipolar systems, and other

systems in condensed matter physics. In all of these systems, the long range po-

tentials dropped monotonically with increasing distance. Formally, we may consider

generalizations which further encompass confining potentials such as those that cap-

ture the effective confining potentials in between quarks in quantum chromodynamics

(QCD) as well as those between charges in one dimensional Coulomb systems (where

the effective potentials associated with the electric flux tubes in one dimension lead

to linear potentials). The derivations that we carried through also hold in such cases.

For instance, in a one-dimensional Coulomb system, the associated linear potential

V (x) ∼ |x| leads to the usual Coulomb Fourier space kernel v(k) ∼ k−2. In general,
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for a potential V (x) ∼ |~x|−a in d spatial dimensions, the corresponding Fourier space

kernel is, as in the earlier case, v(k) ∼ |~k|−p, where p = d − a. Following the ear-

lier discussion, this leads, at asymptotically high temperatures (and for infinitesimal

screening), to correlation lengths that scale as ξ ∼ p
√
T . In the presence of screening,

the correlation length at infinite temperature saturates and is equal to the screening

length. Similarly, as seen by Eq. (3.18), the generalized Debye screening length scales

in precisely the same manner. In Eq. (B-13), we comment on the relation between

the two scales.

3.5 Generalizations

Here we illustrate how our results can be generalized to systems which do not fall

into the class of systems introduced in Sec. 2.2.

3.5.1 Disorder

When Eq. (2.1) is replaced by a system with non-translationally invariant exchange

couplings V (~x, ~y) ≡ 〈~x|V |~y〉, then V will be diagonal in an orthonormal basis (|~u〉)

different from the momentum space eigenstates, i.e., V |~u〉 = v(~u)|~u〉. Our derivation

will be identical in the |~u〉 basis. In particular, Eq. (3.10) will be the same with v(~k)

replaced by v(~u).
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3.5.2 Fluids

Our results can be directly applied to fluids. In this case the spin at each site in

Eq. (2.1) may be replaced by the local mass density. The pair structure factor S(k)

is the same as the Fourier space correlation function G(k) [77]. For r 6= 0, the pair

distribution function g(r) is related to the correlation function G(r) defined above as

g(r) = G(r) + 1. (3.20)

For r = 0, g(r) = 0.

3.5.3 General multi-component interactions

In the case of systems with multiple interacting degrees of freedom at each lattice site,

we have a similar result. We consider, for instance, the non-rotationally invariant

O(n) Hamiltonian,

H =
1

2

∑

~x 6=~y

∑

a,b

Vab(~x, ~y)Sa(~x)Sb(~y), (3.21)

where the interactions Vab(~x, ~y) depend on the spin components 1 ≤ a, b ≤ n as well

as the locations ~x and ~y. By fiat, in Eq. (3.21), Vab(~x = ~y) = 0. Non-rotationally

symmetric interactions such as those of Eq. (3.21) with a kernel Vab which is not

proportional to the identity matrix in the internal spin space 1 ≤ a, b ≤ n appear

in, e.g., Dzyaloshinsky-Moriya interactions [78, 79], isotropic [80] and non-isotropic

compasses [81], Kugel-Khomskii- [80, 82] and Kitaev-type [83] models. Such interac-

tions also appear in continuous and discretized non-Abelian gauge backgrounds (and
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scalar products associated with metrics of curved surfaces) used to describe metallic

glasses and cholesteric systems. [43, 44, 84–92]. The lattice “soccer ball” spin model

[43] is precisely of the form of Eq. (3.21). Replicating the calculations leading to Eq.

(A-9), for ~x 6= ~y, to O(1/T 2), we find that

Gab(~x, ~y) = 〈Sa(~x)Sb(~y)〉

= −Vab(~x, ~y)
kBT

+
1

(kBT )2

∑

c,~z

Vac(~x, ~z)Vcb(~z, ~y). (3.22)

Correspondingly, in Fourier space, this explicitly takes the form

Gab(~k) = δab −
vab(~k)

kBT
+

1

(kBT )2

∑

c

vac(~k)vcb(~k). (3.23)

3.5.4 Bose/Fermi gases

Here we discuss Bose and Fermi systems to illustrate the generality of our result from

Eq. (3.10). We consider the Hamiltonian given by

H = H0 +HI ,

where

H0 =
∑

~x

ψ̂†(~x)
p2

2m
ψ̂(~x),

HI =
1

2

∑

~x,~x′

ρ̂(~x)V (~x− ~x′)ρ̂(~x′), (3.24)

with ρ̂(~x) = ψ̂†(~x)ψ̂(~x)− 〈ψ̂†ψ̂〉0.

Here and throughout, 〈·〉0 denotes an average with respect to H0 (the ideal gas

Hamiltonian). The fields ψ obey appropriate statistics(Bose-Einstein or Fermi-Dirac)
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depending on the system being studied. The standard partition function is

Z = Z0

∫

Dη(~x, τ) e−βΦ. (3.25)

Here, τ is the standard imaginary time coordinate (0 ≤ τ ≤ β). Z0 is the partition

function of the non-interacting system described by H0, and the η’s are the dual fields

after performing the HS transformation. We can express Φ as

Φ = −N2

2β3

∫ β

0

dτ
∑

~x,~x′

η(~x, τ)V −1(~x− ~x′)η(~x′, τ)

−N
β

ln

〈

Tτ exp

(

1

β

∫ β

0

dτ
∑

~x

η(~x, τ)ρ̂(~x, τ)

)〉

0

. (3.26)

where Tτ is the (imaginary) time-ordering operator. It is clear that the factor of the

partition function which controls high temperature behavior comes from the first term

in Φ. Thus, for small β (high temperature), Φ of Eq. (25) results in a distribution

of the values of η which is sharply peaked around η = 0. Also, for small β, the

integrands of Eq. (3.27) have little dependence on τ . Therefore, at high temperature,

Φ = −N2

2β2

∑

~x,~x′

η(~x)
[

V −1(~x− ~x′)

+βA(~x− ~x′)] η(~x′), (3.27)

where A(~x− ~x′) = 〈ρ(~x)ρ(~x′)〉0 = Cδ~x,~x′ , with C = ρ20 being a constant. The correla-

tion function for this system is defined as G(~x − ~y) = 〈ρ(~x)ρ(~y)〉, It is easy to show

that written in terms of the dual variables,

G(~x− ~y) =

〈

f ′(Nη(~x))

f(Nη(~x))

f ′(Nη(~y))

f(Nη(~y))

〉

d

, (3.28)
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where f(a) = Trρ(~x) e
aρ(~x) and, as before, 〈·〉d denotes the average with respect to

the dual fields η. For small values of the η variables (high temperature), we have

in general, G(~x − ~y) = C0 + C1〈η(~x)η(~y)〉d, with C0 chosen such that G(~x) = C for

~x = 0 and C1 defined by the statistics of ρ and the form of the pair interaction V .

Therefore, we have,

G(~k) = C +
C1kBT

C[Cv(~k) + kBT ]

− 1

N

∑

~k

C1kBT

C[Cv(~k) + kBT ]
. (3.29)

This is similar to the classical O(n) correlation function in Fourier space [Eq. (3.10)].

We can easily generalize Eq. (3.29) for multi-component or polyatomic systems as

in Eq. (3.22). Applied to scattering data from such systems, our results may enable

the determination of effective unknown microscopic interactions that underlie the

system. Similarly, replication of the same derivation, mutatis mutandis, for quantum

SU(2) spins ~S = (Sx, Sy, Sz) in the coherent spin representation leads to the high

temperature result of three-component [O(n = 3)] classical spins. This illustrates

the well known maxim that at high temperature, details may become irrelevant and

systems “become classical”. In a similar manner, at high T , the details underlying

the classical O(n) model [the O(n) normalization constraints concerning a fixed value

of |~S(~x)| for n component vectors ~S(~x) at all sites ~x] effectively became irrelevant at

high temperature – the behavior for all n was similar.
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3.6 Approximate Methods

The exact high temperature results that we obtained for lattice spin systems and the

generalizations that we discussed in Section 3.5 are, as we will show below, similar to

those attained by several approximate methods. This coincidence of our exact results

with the more standard and intuitive approximations enables a better understanding

from different approaches. A corollary of what we discuss below is that the divergence

of the correlation lengths in systems with long range interactions in the high temper-

ature limit (as in Sec. 3.3) appears in all of these standard approximations. However,

as we illustrated earlier in our work, and in Sec. 3.3 in particular, this divergence is

not a consequence of a certain approximation but is an exact feature of all of these

systems in their high temperature limit.

In what follows, we will specifically discuss (i) φ4 field theories, (ii) the large n

limit, and (iii) the OZ approach for fluids invoking the mean-spherical approximation

(MSA) [93].

3.6.1 Ginzburg-Landau φ4-type theories

In the canonical case, the free energy density of the φ4 theory is given by

F =
1

2
(∇φ(~x))2 + 1

2
rφ2(~x) +

a

4!
φ4(~x). (3.30)

A finite value of a corresponds to the “soft-spin” approximation where the norm is

not constrained, 〈φ2(~x)〉 6= 1. Here, r = c(T − T0), with c a positive constant. The
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partition function [94] is Z =
∫

Dφ e−F where F =
∫

F ddx with d the spatial

dimension. At high temperature, the correlator behaves in a standard way (the OZ

form)
〈

|φ(~k)|2
〉

= 1
k2+r

. The irrelevance of the φ4 term may, e.g., be seen by effectively

setting φ4(~x) → 6〈φ2(~x)〉φ2(~x) in the computation of the partition function. As

〈φ2(~x)〉 is small [in fact, from Fourier transforming the above, 〈φ2(~x)〉 = O(1/T )],

the φ4 term is smaller than the (∇φ)2 term in Eq. (3.30) by a factor of a/T and

therefore can be neglected. When general two body interactions with an interaction

kernel v(~k) are present, we similarly have 〈|φ(~k)|2〉 = 1

v(~k)+r
. Our result of Eq. (3.10)

for interactions of arbitrary spatial range illustrates that suggestive results for the

correlation lengths attained by soft spin approximations are not far off the mark for

general systems in the high temperature limit. As far as we are aware, the high

temperature correlation length of general theories was not known to be similar to

that suggested by various perturbative schemes (including the 1/n [95] and ǫ [96]

expansions).

3.6.2 Correlation functions in the large-n limit

We now provide a derivation of Eq. (3.10) as it applies in the large n limit. Long

ago, Stanley [62] demonstrated that the large n limit of the O(n) spins is identical to

the spherical model first introduced by Berlin and Kac [63].
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The single component spherical model is given by the Hamiltonian,

H =
1

2

∑

~x 6=~y

V (|~x− ~y|)S(~x)S(~y). (3.31)

The spins in Eq. (3.31) satisfy a single global (“spherical”) constraint,

∑

~x

S2(~x) = N, (3.32)

enforced as an ensemble average [93] by a Lagrange multiplier µ. This leads to the

functional H ′ = H +µN which renders the model quadratic [as both Eqs. (3.31) and

(4.16) are quadratic] and thus exactly solvable; see, e.g., Ref. [33].

From the equipartition theorem, in the higher temperature region of T ≥ Tc

[when no order onsets and no Fourier mode is macroscopically occupied to form “a

condensate” (i.e., 〈|s(~k)|2〉/N2 → 0 for all ~k in the thermodynamic (N → ∞)) limit],

the Fourier space correlator

G(~k) =
1

N
〈|s(~k)|2〉 = kBT

v(~k) + µ
. (3.33)

The real space two point correlator is given by

G(~x) ≡ 〈S(0)S(~x)〉 = kBT

N

∑

~k

ei
~k·~x

v(~k) + µ
. (3.34)

To complete the characterization of the correlation functions at different tempera-

tures, we note that the Lagrange multiplier µ(T ) is given by the implicit equation

1 = G(~x = 0). Thus,

kBT

N

∑

~k

1

v(~k) + µ
= 1. (3.35)
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This implies that the temperature T is a monotonically increasing function of µ.

Equation (4.20) also implies that in the high temperature limit,

µ = kBT. (3.36)

Taken together, Eqs. (4.18) and (3.36) yield Eq. (3.10) in the asymptotic high

temperature limit. For completeness, we briefly note what happens at low T (T <

TC). In the spherical model, at the critical temperature (Tc), the Lagrange multiplier

µ takes the value,

µmin = −min
~k

{v(~k)}. (3.37)

For T < Tc, (at least) one mode ~q is macroscopically occupied; the mode(s) ~q being

occupied is one for which v(~k) is minimum. The “condensate fraction” 〈|s(~q)|2〉/N2 >

0.

3.6.3 Ornstein-Zernike equation

As noted earlier, application of the MSA to the OZ equation for fluids reproduces

similar results for the “total correlation function”, h(~r). This is defined as h(~r) =

g(~r) − 1, where g(~r) is the standard radial distribution function. The OZ equation

for a fluid with particle density ρ is given by,

h(~r) = C(~r) + ρ

∫

dr′C(~r − ~r′)h(~r′), (3.38)

38



Chapter 3 High temperature correlation functions

where C(~r) is the “direct correlation function”. Using the MSA, C(~r) = −βV (~r) [93],

we get in Fourier space,

S(~k) =
kBT

ρv(~k) + kBT
. (3.39)

This is similar to our result for G(~k). However, it is valid only for systems in which

the MSA is a good approximation.

3.7 Conclusions

(i) We derived a universal form for high temperature correlators in general O(n)

theories as well as Bose and Fermi gases and quantum spin systems. This enables

the extraction of unknown microscopic interactions from measurements of the high-

temperature correlation functions. Similar considerations may also be enacted for

general Potts and other systems.

(ii) We discovered divergent correlation lengths in systems with long range inter-

actions in the high temperature limit. This divergence is replaced by a saturation

when the long range interactions are screened.

(iii) We introduced generalized Debye lengths (and times) associated with such

divergent correlation lengths (and decay times).
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Modulation and correlation lengths

in systems with competing

interactions

In this chapter, we investigate the general temperature dependence of the structural

features that appear in such systems when competing interactions of short and long

range are present.

The principal physics addressed in this work is that of rich nonuniform patterns

and their evolution with temperature. We will examine these rather general classical

systems by, predominantly, invoking large-n methods. Here, n is the number of com-

ponents of the classical fields or spins that we consider. When competing interactions

are present on different scales (including, notably, long range interactions), modula-
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tion (or domain) lengths are seen to generally characterize oscillatory correlations.

We find that these modulation lengths often adhere to various scaling laws, sharp

crossovers and divergences at various temperatures (with no associated thermody-

namic transition). We also find that in such systems, correlation lengths generically

evolve into modulation lengths (and vice versa) at various temperatures. The behav-

ior of correlation and modulation lengths as a function of temperature will afford us

with certain selection rules on the possible underlying microscopic interactions. In

their simplest incarnation, our central results are as follows:

1. In canonical systems harboring competing short (finite) and long range inter-

actions modulated patterns appear. Depending on the type of the long range

interaction, the modulation length either increases or decreases from its ground

state value as the temperature is raised. We will relate this change, in lattice

systems, to derivatives of the Fourier transforms of the interactions that are

present.

2. There exist special crossover temperatures at which new correlation/modulation

lengths come up or some cease to exist. The total number of characteristic

length scales (correlation + modulation) remains conserved as temperature is

varied, except at the crossover points.

3. The presence of the angular dependent dipolar interaction term that frustrates

an otherwise unfrustrated ferromagnet vis a vis a simple scalar product be-
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tween the dipoles adds new (dominant) length scales. The angular dependence

significantly changes the system.

We will further investigate the ground state modulation lengths in general frus-

trated Ising systems and also point to discontinuous jumps in the modulation lengths

that may appear in the large-n rendition of some systems.

Armed with these general results, we may discern the viable microscopic inter-

actions (exact or effective) which underlie temperature dependent patterns that are

triggered by two competing interactions. Our analysis suggests the effective micro-

scopic interactions that may drive non-uniform patterns such as those underlying

lattice analogs of the systems of Fig. 4.1.

The treatment that we present in this work applies to lattice systems and does not

account for the curvature of bubbles and other continuum objects. These may be aug-

mented by inspecting energy functionals (and their associated free-energy extrema)

of various continuum field morphologies under the addition of detailed domain wall

tension forms, e.g., explicit line integrals along the perimeter where surface tension

exists, and the imposition of additional constraints via Lagrange multipliers, as in,

e.g., Ref. [97]. We leave their analysis for future work. One of the central results of

our work is the derivation of conditions relating to the increase/decrease of modula-

tion lengths in lattice systems with changes in temperature. These conditions relate

the change in the modulation length at low temperatures to the derivatives of the

Fourier transforms of the interactions present.
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Figure 4.1: Reproduced with permission from Science, Ref.[2]. Reversible “strip-out” in-

stability in magnetic and organic thin films. Period (LD) reduction under the

constraint of fixed overall composition and fixed number of domains leads to

elongation of bubbles. Left panel (A) in magnetic garnet films, this is achieved

by raising the temperature [labeled in (B) in degrees Celsius] along the sym-

metry axis, H = 0 (period in bottom panel, ∼ 10µm) (see Fig. 5). Right

panel (B) In Langmuir films composed of phospholipid dimyristolphospha-

tidic acid (DMPA) and cholesterol (98:2 molar ratio, pH 11), this is achieved

by lowering the temperature at constant average molecular density [period in

bottom panel, ∼ 20µm]

.
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In Sec. 4.1, we derive the scaling form for the Ising ground states for general

frustrating long range interactions. Henceforth, we provide explicit expressions for

the crossover temperatures and the correlations lengths in the large-n limit.

In Sec. 4.2, we introduce the two spin correlation function for a general system in

this limit.

Based on the correlation function, we then present some general results for systems

with competing nearest neighbor ferromagnetic interaction and an arbitrary long

range interaction in Sec. 4.3. We start by deriving the equilibrium stripe width

for a two-dimensional Ising system with nearest neighbor ferromagnetic interactions

and competing long range interactions. We derive an expression for the change in

modulation length with temperature for low temperatures for large-n systems. We

illustrate how the crossover temperature, T ∗ arises in the large-n limit and show some

general properties of the system associated with it.

We present some example systems in Sec. 4.4. We numerically calculate the

correlation function for the screened Coulomb frustrated ferromagnet and the dipolar

frustrated ferromagnet. We then study the screened Coulomb frustrated ferromagnet

in more details. Next, we show some results for systems with higher dimensional

spins. We study a system with the dipole-dipole interaction for three-dimensional

spins, without ignoring the angular dependent term and show that this term changes

the ground state length scales of the system considerably. We also present a system

with the Dzyaloshinsky - Moriya interaction in addition to the ferromagnetic term
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and a general frustrating long range term.

We give our concluding remarks in Sec. 4.5.

Throughout most of this work we will focus on systems with competing interac-

tions having Hamiltonians of the following form.

H = −J
∑

〈~x,~y〉
S(~x)S(~y) +Q

∑

~x 6=~y

VL(|~x− ~y|)S(~x)S(~y), (4.1)

where the first term represents nearest neighbor ferromagnetic interaction for posi-

tive J and the second term represents some long range interaction that opposes the

ferromagnetic interaction for positive Q. We will study properties of general systems

of the form of Eq. (4.1). In order to flesh out the physical meaning of our results and

illustrate their implications and meaning, we will further provide explicit expressions

and numerical results for two particular examples. The Hamiltonian (4.1) represents

a system that we christen to be the screened Coulomb frustrated ferromagnet when

VL(r) =
e−λr

4πr
in three dimensions, and

VL(r) = K0(λr) in two dimensions, (4.2)

where λ−1 represents the screening length and K0 is a modified Bessel function,

K0(x) =

∫ ∞

0

dt
cos xt√
1 + t2

. (4.3)

Throughout our work, we will discuss both the screened and unscreened renditions

of the Coulomb frustrated ferromagnet. Equation (4.1) corresponds to a dipolar
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frustrated ferromagnet when

VL(r) =
1

r3

=
1

(r2 + δ2)3/2
in the limit δ → 0, (4.4)

on the lattices that we will consider. Later, we also consider a general direction

dependent (relative to the location vectors) form of the dipolar interaction for three-

dimensional spins; we will replace the scalar product form of the dipolar interactions

in Eqs. (4.1) and (4.4) by the precise dipolar interactions between magnetic moments.

On a hypercubic lattice, the nearest neighbor interactions in real space of Eq.

(4.1) have the lattice Laplacian

∆(~k) = 2
d
∑

l=1

(1− cos kl), (4.5)

as their Fourier transform. In the continuum (small k) limit, ∆(~k) = k2. The real

lattice Laplacian

〈~x|∆|~y〉 =















2d for ~x = ~y

−1 for |~x− ~y| = 1.

(4.6)

Notice that 〈~x|∆R|~y〉 = 0 for |~x− ~y| > R, where R is the spatial range over which

the interaction kernel is non-vanishing. The following corresponds to interactions of
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Range=2 lattice constants,

〈~x|∆2|~y〉 = 2d(2d+ 2) for ~x = ~y

−4d for |~x− ~y| = 1

2 for (~x− ~y) = (±êℓ ± êℓ′) where ℓ 6= ℓ′

1 for a ±2êℓ separation. (4.7)

Correspondingly, in the continuum, the Lattice Laplacian and its powers attain

simple forms and capture tendencies in numerous systems. Surface tension in many

systems is captured by a g(∇φ)2 term where φ is a constant in a uniform domain.

Upon Fourier transforming, such squared gradient terms lead to a k2 dependence. The

effects of curvature which are notable in many mixtures and membrane systems, can

often be emulated by terms involving (∇2h) with h being a variable parameterizing

the profile; at times the interplay of such curvature terms with others leads, in the

aftermath, to a simple short range k4 term in the interaction kernel [the continuum

version of the squared lattice Laplacian of Eq. (4.7)]. An excellent review of these

issues is addressed in Ref. [2].

47



Chapter 4 Competing interactions

4.1 Ground-state stripe width for Ising systems:

lattice versus continuum theory scaling

Next, we briefly discuss the ground state stripe width for systems where the long range

interaction VL(|~x−~y|) in Eq. (4.1) has vL(k) = 1/kp as its Fourier transform. Below,

we discuss the Ising ground states. We will later on consider the spherical model

that will enable us to compute the correlation functions at arbitrary temperatures.

The upshot of the up and coming discussion is that in the long wavelength limit, the

lattice and continuum results differ from one another due to the presence of the long

range interaction and the ensuing non-trivial dependence of the modulation lengths

on the lattice spacing.

We consider a system with Ising spins in d dimension and assume that the system

forms a “striped” pattern (periodic pattern along one of the dimensions – stripes in

two dimensions, parallel slices in three dimensions and so on) of spin-up and spin-

down states of period l (the modulation length of the system at zero temperature,

LD(T = 0)). We assume the “first” direction (i.e., that along ê1) to be the direction

along which we have the periodic pattern. We have
∣

∣

∣s(~k)
∣

∣

∣ 6= 0 only if k2 = k3 =

. . . = kd = 0 and

∣

∣

∣
s(~k)

∣

∣

∣

2

=















4
sin2(k/2)

, when k1 is an odd multiple of 2π
l
,

0, when k1 is an even multiple of 2π
l
.

(4.8)

For asymptotically small Q in Eq. (4.1), the ground state of the system will have
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small wave-vectors ~k. For small k’s we have,

∣

∣

∣s(~k)
∣

∣

∣

2

∼ 16

k2
, when k1 is an odd multiple of 2π

l
. (4.9)

We next compute the energy as a function of l and then minimize it with respect to

l to get the equilibrium stripe width. For a general lattice constant a, we find that

l =

[

(2π)p+2a3−dJ

4Q(p+ 2− d)
(

1− 1
2p+2

)

ζ(p+ 2)

] 1
p+3−d

, (4.10)

where ζ(t) is the Riemann zeta function,

ζ(t) =
∞
∑

n=1

1

nt
. (4.11)

Our lattice result of Eq. (4.10) may be contrasted with the continuum modulation

period

l = 2π

(

2J

pQ

) 1
p+2

(4.12)

obtained by finding the minimizing wave-vector q for the kernel (J/k2 + Q/kp) [the

Fourier transform of Eq. (4.1) and computing (2π/q)]. In the continuum, where no

lattice length scale is present, Eq. (4.12) constitutes (up to an overall multiplicative

numerical prefactor) the sole quantity that has the correct dimensions of length that

can be built out of J and Q. The power law scaling of l on Q in the asymptotic

small Q (or, equivalently, small k) limit is radically different between the cases of

the lattice [Eq. (4.10)] and the continuum [Eq. (4.12)]. For the particular case the

two-dimensional (d = 2) Coulomb frustrated (p = 2) ferromagnet, Eq. (4.10) states
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that

l = 4 3
√

3Ja/Q. (4.13)

This result is in accord with the analysis of Refs. [42, 98]. For long range dipolar

interactions (p = 3) in d = 2 dimensions, we find that

l = δ

√

3J

Q
. (4.14)

4.2 Correlation Functions in the large-n limit: gen-

eral considerations

The results reported henceforth were computed within the spherical or large-n limit

[63]. It was found by Stanley long ago [62] that the large-n limit of the n component

normalized spin systems [so called O(n) spins] is identical to the spherical model first

introduced by Berlin and Kac. [63]

The designation of “O(n) spins” simply denotes real fields (spins) of unit length

that have some arbitrary number (n) of components. For n = 1, the system is an

Ising model: a single component real field having unit norm allows for only two

scalars at any given site ~x: S(~x) = ±1. The n = 2 system corresponds to a two

component spin system in which the spins are free to rotate in a two-dimensional

place – S2
1(~x) + S2

2(~x) = 1 (an XY spin system). The case of n = 3 corresponds to a
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system of three component Heisenberg type spins, and so on. In general,

n
∑

a=1

Sa(~x)Sa(~x) = 1. (4.15)

We now introduce the spherical model in its generality. The spins in Eq. (2.1)

satisfy a single global (“spherical”) constraint,

∑

~x

〈S2(~x)〉 = N, (4.16)

enforced by a Lagrange multiplier µ. This leads to the functional H ′ = H + µN ,

which renders the model quadratic [as both Eqs. (2.1) and (4.16) are quadratic] and

thus exactly solvable, see, e.g., [33]. The continuum analogs of Eqs. (2.1, 4.16) read

H =
1

2

∫

ddx ddy V (|~x− ~y|)S(~x)S(~y),
∫

ddx 〈S2(~x)〉 = const. (4.17)

The quadratic theory may be solved exactly. From the equipartition theorem, for

T ≥ Tc, the Fourier space correlator

G(k) = 〈|S2(k)|〉 = kBT

v(k) + µ
. (4.18)

The real space two point correlator is given by

G(~x) ≡ 〈S(0)S(~x)〉 = kBT

∫

BZ

ddk

(2π)d
ei
~k·~x

v(k) + µ
, (4.19)

with d the spatial dimension and BZ denoting the integration over the first Brillouin

zone. For a hypercubic lattice in d dimensions with a lattice constant that is set to
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one, −π < ki ≤ π for i = 1, 2, ..., d. Henceforth, to avoid cumbersome notation, we

will generally drop the designation of BZ; this is to be understood on all momentum

space integrals pertaining to the lattice systems that we examine. To complete the

characterization of the correlation functions at different temperatures, we note that

the Lagrange multiplier µ(T ) is given by the implicit equation 1 = G(~x = 0). Thus,

1 = kBT

∫

ddk

(2π)d
1

v(k) + µ
. (4.20)

This implies that the temperature T is a monotonic increasing function of µ. For a

hypercubic lattice system, performing the momentum integration on a hypercube of

side 2π in the reciprocal lattice, in the high temperature limit,

µ = kBT. (4.21)

In continuum renditions of the large-n system, Eq. (4.20) also implies that in the

high temperature limit,

µ

kBT
=

πd/2Λd

(2π)dΓ(d
2
+ 1)

(4.22)

=⇒ T ∝ µ, (4.23)

where Λ is the upper limit of the k integration, representing the ultra-violet cut-off.

Furthermore, as the integration range in Eq. (4.20) is finite, we can prove that µ(T )

is an analytic function of T (see Appendix F). This supports the assumption that

G−1(T, k) is analytic in T and k at all points except k = 0 where v(k) is usually

singular.
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We investigate the general character of the correlation functions given by Eq.

(4.19) for rotationally invariant systems. If the minimum (minima) of v(k) occur(s)

at momenta q far from the Brillouin zone boundaries of the cubic lattice then we may

set the range of integration in Eq. (4.19) to be unrestricted. The correlation function

is then dominated by the location of the poles (and/or branch cuts) of 1/[v(k) + µ].

Thus, we look for solutions to the following equation.

v(k) + µ = 0. (4.24)

The system is perfectly ordered in its ground state. From a temperature at which the

system is not perfectly ordered, as we lower the temperature, the correlation length

diverges at T = Tc. At T = Tc, µ takes the value,

µmin = − min
k∈BZ

[v(k)]. (4.25)

As the temperature is increased, the disorder creeps in and in many systems, at a

temperature T ∗, the modulation length diverges.

The characteristic length scales of the system are governed by the poles of [v(k)+

µ]−1.

J∆(~k) +QvL(k) + µ = 0, (4.26)

which in the continuum limit takes the form

Jk2 +QvL(k) + µ = 0. (4.27)

Employing the above considerations, we will derive, in the next section, some general

results for systems of the form (4.1).
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Our work will focus on classical systems. The extension to the quantum arena

[33] is straightforward. In, e.g., large-n bosonic renditions of our system, replicating

the usual large-n analysis, we find [43] that the pair correlator

GB(~k) =

nB

(

√

v(~k)+µ
kBT

)

+ 1
2

√

v(~k)+µ
kBT

, (4.28)

with the bosonic distribution function

nB(x) =
1

ex − 1
. (4.29)

The correlator of Eq. (4.28) is of a similar nature as that of the classical correlator

of Eq. (4.18) with branch cuts generally appearing in the quantum case. Our analysis

below relies on the evolution of the poles of v(k) + µ as a function of temperature in

classical systems.

In the quantum arena, we first choose the proper contour in the complex k-space

(going around the branch cuts). Then, we argue that the only points that contribute

to the integral are the points where the integrand is singular. This corresponds to

v(k) + µ = 0. Thus, the integral remains unchanged if we expand the integrand to

lowest order in v(k) + µ. Doing this, we get, to leading order,

GB(k) =
kBT

v(k) + µ
(4.30)

which is same as the classical expression of Eq. (4.18). The characteristic length

scales of the system are therefore still determined by the zeros of v(k) + µ in the

complex k plane in the exact same way.
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For interactions that are not isotropic, for both classical and quantum cases, we

need to consider the full six-dimensional space of the complex components of ~k along

each of the three coordinate axes.

4.3 Large-n Results

In this section, we present some general results for systems of the form (4.1) in their

large-n limit. First, we find the dependence of the modulation length on temperature,

near Tc. Next, we will illustrate an analogy between the behavior of the correlation

length near the critical temperature Tc and that of the modulation length near T ∗.

We will then discuss some aspects of the crossover points. We end this section with

some results in the high temperature limit.

4.3.1 The low temperature limit: a criterion for determining

an increase or decrease of the modulation length at low

temperatures

In this section, we derive universal conditions for increasing or decreasing modulation

lengths in general systems with pairwise interactions. Equations (4.41) and (4.43)

show general conditions for the change in modulation length, LD with temperature
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for a general system of the form (4.1). The value, k0 of k that satisfies Eq. (4.25),

v(k0) = min
k∈BZ

v(~k) (4.31)

determines the modulation length at T = Tc.

v(k0) + µmin = 0, (4.32)

v′(k0) = 0. (4.33)

As the temperature is raised, the new pole near k0 will have an imaginary part

corresponding to the finite correlation length. The real part will also change in general

and this would induce a change in the modulation length. Let µ(T ) = µmin+ δµ with

δµ > 0. Then we have,

k = k0 + δk,

δk =
∞
∑

j=1

δkj, (4.34)

where δkj ∝ δµxj , xj+1 > xj. Our goal is to find the leading order real contribution

to δk that would give us the change in modulation length with increasing µ and hence

with increasing temperature.

∞
∑

j=2

v(j)(k0)
δkj

j!
+ δµ = 0. (4.35)
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Suppose v(n)(k0) = 0 for 2 < n < p and v(p)(k0) 6= 0. (Clearly, in most cases, the

third derivative is not zero and p = 3.) We have,

v(2)(k0)

2!
)(δk21 + 2δk1δk2 + ...)

+[
v(p)(k0)

p!
(δkp1 + pδkp−1

1 δk2 + ...) +
v(p+1)(k0)

(p+ 1)!
×

(δkp+1
1 + (p+ 1)δkp1δk2 + ...) + ...] + δµ = 0. (4.36)

To leading order,

v(2)(k0)

2!
δk21 + δµ = 0,

δk21 = − 2δµ

v(2)(k0)
. (4.37)

From this, we see that δk1 is imaginary. This constitutes another verification of

the well established result about the universality of the divergence of the correlation

length, ξ at Tc with the mean-field type critical exponent ν = 1/2 in the large-n limit.

ξ ∝ (T − Tc)
−ν ,

ν =
1

2
. (4.38)

The next, higher order, relations are obtained using the method of dominant balance.

v(2)(k0)(δk1)(δk2) +
v(p)(k0)

p!
(δk1)

p = 0

δk2 =
(−1)

p+1
2 v(p)(k0)(δµ)

p−1
2

2p!(v
(2)(k0)
2!

)
p+1
2

. (4.39)

Therefore, δk2 is real if p is odd and imaginary if p is even. If,

LD(T ) = LD(Tc) + δLD, (4.40)
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then, for p = 2n+ 1,

δLD =
2π

k20

(−1)nv(2n+1)(k0)δµ
n

2(2n+ 1)!(v
(2)(k0)
2!

)n+1
. (4.41)

Thus to get the leading order real contribution to δk for even p[> 2], we have to go

to higher order.

2(
v(2)(k0)

2!
)δk1δk3 +

v(p+1)(k0)

(p+ 1)!
δkp+1

1 = 0

δk3 =
(−1)1+p/2v(p+1)(k0)(δµ)

p/2

2(p+ 1)!(v
(2)(k0)
2!

)p/2+1
. (4.42)

For p = 2n,

δLD =
2π

k20

(−1)nv(2n+1)(k0)(δµ)
n

2(2n+ 1)!(v
(2)(k0)
2!

)n+1
. (4.43)

If, for p = 2n, v(2n+1)(k0) = 0, then we will need to continue this process until we

get a real contribution to δk. In appendix D, we provide explicit forms for δLD for

different values of p.

In the most common case, where v(3)(k0) 6= 0, we have,

δLD = −2π

k20

v(3)(k0)

3[v(2)(k0)]2
δµ. (4.44)

Also, applying this to a nearest neighbor system in the continuum frustrated by a

general long range interaction given by vL(k) in Fourier space , we get,

δLD = −2π

k20

Qv
(3)
L (k0)

3[v
(2)
L (k0)]2

δµ. (4.45)

This shows that it is the long range term that determines the sign of the change

in modulation length with temperature as the system is heated from T = TC . The
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results derived above allow us to relate an increase/decrease in the modulation length

at low temperatures to the sign of the first non-vanishing odd derivative (of an order

larger than two) of the Fourier transform of the interactions that are present. It

is important to emphasize that our results apply to any interaction. These may

include screened or unscreened Coulomb and other long range interactions but may

also include interactions that are strictly of finite range [e.g., next-nearest neighbor

interactions on the lattice for which we have vL = −t∆2 (with a constant t > 0, see

Eq. (4.7))].

The results from this section about modulation lengths just above TC , can give

us similar behavior of the correlation lengths at temperatures slightly below T ∗.

4.3.2 A correspondence between the temperature T ∗ at which

the modulation length diverges and the critical temper-

ature Tc

The critical temperature Tc corresponds to the maximum value of µ for which Eq.

(4.24) still attains a real solution. Thus,

v(k0) + µmin = 0,

v′(k0) = 0,

v′′(k0) > 0. (4.46)
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For systems in which the modulation length diverges at T ∗, T ∗ corresponds to the

minimum value of µ for which Eq. (4.24) has a purely imaginary solution. Thus, if

v(iκ) = v̂(κ),

v̂(κ0) + µ∗ = 0

v̂′(κ0) = 0

v̂′′(κ0) < 0 =⇒ v′′(iκ0) > 0 (4.47)

Thus, we expect similar qualitative results for the correlation lengths at temperatures

slightly above Tc as for modulation lengths slightly below T ∗ and vice-versa. [The

relations for the derivatives of v̂(κ0) in Eq. (4.47) are guaranteed to hold only if

T ∗ > Tc.]

4.3.3 Crossover temperatures: emergent modulations

For systems with competing multiple range interactions, there may exist special tem-

peratures at which the poles of the correlation function change character, thus chang-

ing modulation lengths to correlation lengths and vice-versa. In particular, for most

systems we have a crossover temperature T ∗ above which the system does not have

any modulation. Apart from this kind of phenomenon, there might also be finite

discontinuous jumps in the modulation length. This is illustrated with an example in

Sec. 4.3.4.

We start by defining the crossover temperature T ∗ for a ferromagnetic system
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frustrated by a general long range interaction. Let k = iκ, κ ∈ R above T ∗ and

κ = κ0 at T ∗. Let v(k) = f(z), z = k2. Above T ∗, µ = µmin +∆µ (∆µ > 0). Using

Eq. (4.25),

µ = −f(−κ2) = −min
k∈R

v(k) + ∆µ

= max
k∈R

[−v(k)] + ∆µ. (4.48)

T ∗ corresponds to the minimum value of ∆µ for which we have at least one such

solution (see Fig. 4.2). Thus,

−5 −4 −3 −2 −1 0 1 2 3 4 5
−50

−25

0

25

50

z

−
f(

z)

µ
min

(− κ
0
2, µ* )

Figure 4.2: −f(z) = −v(k) = µ plotted against z = k2 for purely real and purely imagi-

nary k’s (T → 0 and T → ∞ respectively). The negative z regime corresponds

to temperatures (Lagrange multiplier, µ’s) for which purely imaginary solu-

tions exist. The maximum of the curve in the positive z regime corresponds

to the modulations at T = Tc [µ = µmin], which is the maximum temperature

at which pure modulations exist.
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µ∗ = min

κ ∈ R

−v(iκ) ≥ µmin

[−v(iκ)]

= − max

κ ∈ R

−v(iκ) ≥ µmin

[v(iκ)]. (4.49)

Sometimes, the crossover point is slightly more difficult to visualize (see Fig. 4.3).

In this case, the minimum upper branch of −f(z) for z < 0 [equivalently the upper

branches of −v(iκ)] gives us the value of µ∗. The branch chosen has to continue

to µ = +∞ so that at least one term without modulation is always available as

we increase the temperature, as required by the definition of T ∗. The other branch

provides such solutions only up to a certain temperature. Also, the part of it that is

below µmin is irrelevant.
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)
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−
f(
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min

Figure 4.3: Left: Solid line: −v(k) plotted against k; Dashed line: −v(iκ) plotted against

κ. Right: −f(z) plotted against z.

If f(z) is an odd function of z (e.g. the Coulomb frustrated ferromagnet), µ∗ =
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−µmin and the correlation length at T ∗ is the same as the modulation length at Tc.

Also, for the system in Eq. (4.1), if limκ→0 vL(iκ) = +∞, we have, µ∗ = µmin,

and T ∗ = Tc.

T ∗ = Tc if all the competing interactions are of finite range and crossover

exists

For systems where all the competing interactions are of finite range, T ∗ = Tc. We

prove this as follows. Since finite range interactions contribute to v(k) as powers

of ∆(~k) → k2, for a system with only finite range interactions, f(z) is analytic for

all z. For a minimum of −f(z) to exist in the z < 0 regime which is higher than

the maximum in the z > 0 regime, we need f(z) to be discontinuous at some point.

Putting all of the pieces together, we find that there are no possibilities: (i) no

crossover, i.e., T ∗ = ∞ or (ii) κ0 = 0 and µ∗ = µmin with T ∗ = Tc.

T ∗ → Tc as the strength of the long range interaction is turned off

The results from this section and the next hold for a general system, not just the

frustrated ferromagnet.

The crossover temperature T ∗ tends to Tc for Q = 0 as Q → 0. For a general

system, let G(T, k) denote the Fourier space correlation function at temperature T .

By definition, at T = Tc the correlation length is infinite. Thus, Tc is the solution to

G−1(T, k) = 0, (4.50)
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such that k ∈ BZ (or for continuum renditions, k ∈ R).

T ∗ is the temperature at which the modulation length diverges for the frustrated

ferromagnet, or becomes the same as the modulation length of the unfrustrated system

at Tc for a general system. Thus, T ∗ is the solution to

G−1(T, q + iκ) = 0, (4.51)

with κ ∈ R (q = 0 for the case of the frustrated ferromagnet, q = π for the frustrated

anti-ferromagnet). At Tc, for Q = 0, we have,

G−1(Tc, q) = 0. (4.52)

This however also satisfies Eq. (4.51), with κ = 0. Therefore,

lim
Q→0

T ∗ = Tc. (4.53)

We demonstrate this in the large-n limit (see Fig. 4.4). For Q = 0, we have

µmin = 0 and k0 = 0. Let vL(k) diverge as k−2p near k = 0. For small Q, from Eq.

(4.25), we have,

k0 = (
pQ

J
)

1
2p+2 ,

µmin = −p+ 1

p
p

p+1

J
p

p+1Q
1

p+1 . (4.54)

If p is odd,

µ∗ = −µmin,

κ0 = k0. (4.55)
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Figure 4.4: Illustration of the limit T ∗ → Tc as Q → 0 with vL(k) = 1/k3. The plot

shows −f(z) = −v(k) vs z = k2, for v(k) = Jk2 + Q/k3 with J = 1 and

Q = {1−Blue, 0.1−Green, 0.01−Yellow, 0.001−Red}. ‘*’ represents the value

of µ∗ and dot represents µmin.

As Q→ 0, κ0 = k0 = 0 and µ∗ = µmin = 0, that is,

lim
Q→0

T ∗ = Tc(Q = 0). (4.56)

Proof of the conservation of the total number of characteristic length scales

In this section we consider the general situation in which the Fourier transform of the

interaction kernel, v(k), is a rational function of z = ∆(k), (z → k2 in the continuum

limit). That is, we consider situations for which

v(k) = f(z) =
P (z)

Q(z)
, (4.57)

with P and Q polynomials (of degreesM1 andM2 respectively). We will now demon-

strate that the combined sum of the number of correlation and the number of mod-

ulation lengths remains unchanged as the temperature is varied.
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Before providing the proof of our assertion, we first re-iterate that the form of Eq.

(4.57) is rather general. For a system with finite range interactions (V (|~x−~y| > R) = 0

with finite R) that is even under parity (V (~x−~y) = V (~y−~x)), the Fourier transform

of V (~x−~y) can be written as a finite order polynomial in (1− cos kl) with the spatial

direction index 1 ≤ l ≤ d where d is the dimensionality. In the small |~k| (continuum

limit), (1 − cos kl) → k2l /2. The particular case of a system with only finite range

interactions that exist up to a specified range R on the lattice (the range being equal to

a graph distance measuring the number of lattice steps beyond which the interactions

vanish) of the form of Eq. (4.57) corresponds to v(k) = P (z) with the order of the

polynomial M1 being equal to the interaction range, R = M1. Our result below

includes such systems as well as general systems with long range interactions. For

long range interactions such as, e.g., the screened Coulomb frustrated ferromagnet,

f(z) = 1/(z+λ2). The considerations given below apply to the correlations along any

of the spatial directions l (and as a particular case, radially symmetric interactions

for which the correlations along all directions attain the same form).

Returning to the form of Eq. (4.57), the Fourier space correlator of Eq. (4.18) is

given by

G(~k) = kBT
Q(z)

F (z)
; F (z) = P (z) + µQ(z). (4.58)

On Fourier transforming Eq. (4.58) to real space to obtain the correlation and mod-

ulation lengths, we see that the zeros of F (z) determine these lengths. Expressed in
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terms of its zeros, F can be written as

F (z) = A
M
∏

j=1

(z − zj), (4.59)

where M = max[M1,M2]. Perusing Eq. (4.58), we see that F is a polynomial in z

with real coefficients. As F ∗(z) = F (z∗) it follows that all roots of F are either (a)

real or (b) come in complex conjugate pairs (zj = z∗i 6= zi). We now focus on the two

cases separately.

(a) Real roots: If a particular root zj = a2, a ∈ R then on Fourier transforming Eq.

(4.58) by the use of the residue theorem, we obtain a term with a modulation length,

LD = 2π/a. Conversely, if zj = −a2, we get a term with a correlation length, ξ = 1/a.

(b) Next we turn to the case of complex conjugate pairs of roots. If the pair of roots

zj, z
∗
j is not real, that is, zj = |zj|eiθ, then on Fourier transforming, we obtain a term

containing both a correlation length, ξ = (
√

|zj|| sin θ
2
|)−1, and modulation length,

LD = 2π(
√

|zj|| cos θ
2
|)−1.

Putting all of the pieces together see that as (a) each real root of F (z) contributes to

either a correlation length or a modulation length and (b) complex conjugate pairs

of non-real roots contribute to one correlation length and one modulation length,

the total number of correlation and modulation lengths remains unchanged as the

temperature (µ) is varied. The total number of correlation + modulation lengths is

given by the number of roots of F (z) (that is,M). Thus, the system generally displays

a net of M correlation and modulation lengths. This concludes our proof. At very
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special temperatures, the Lagrange multiplier µ(T ) may be such that several poles

degenerate into one – thus lowering the number of correlation/modulation lengths at

those special temperatures. Also, in case M = M2, the total number of roots drops

from M2 to M1 at µ = 0. What underlies multiple length scales is the existence

of terms of different ranges (different powers of z in the illustration above) – not

frustration.

The same result can be proven using the transfer matrix method, for a one-

dimensional system with Ising spins. This is outlined in appendix C. A trivial

extension enables similar results for other discrete spin systems (e.g., Potts spins).

4.3.4 First order transitions in the modulation length

In this section, we show that there might be systems in which the modulation length

makes finite discontinuous jumps. In these situations, the modulation length does not

diverge at a temperature T ∗ (or set of such temperatures). The ground state modula-

tion lengths (the reciprocals of Fourier modes {~qi} minimizing the interaction kernel)

need not be continuous as a function of the parameters that define the interactions.

As we will simply illustrate below, in a manner that is mathematically similar to that

appearing in the Ginzburg-Landau constructs, a “first order transition” in the value

of the ground state modulation lengths can arise. Such a possibility is quite obvious

and need not be expanded upon in depth. As an illustrative example, let us consider
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the Range=3 interaction kernel

v(k) = a[∆ + ǫ] +
1

2
b[∆ + ǫ]2 +

1

3
c[∆ + ǫ]3, (4.60)

with (0 < ǫ ≪ 1) and c > 0. If the parameters are such that a > 0 and b < 0,

then v(k) displays three minima, i.e. [∆ + ǫ] = 0 and [∆ + ǫ] = ±m2
+ , where

m2
+ = 1

2c
[−b+

√
b2 − 4ac]. the locus of points in the ab plane where the three minima

are equal to one another is defined by v(k) = 0. This leads to the relation m2
+ =

−4a
b
. Putting all of the pieces together, we see that b = −4

√

ca/3 constitutes a line

of “first order transitions”. On traversing this line of ”first order transitions”, the

minimizing [∆ + ǫ] (and thus the minimizing wavenumbers) changes discontinuously

by ∆m = (−4a
b
)1/2 = (3a

c
)1/4.

4.4 Example systems

In this section, we will investigate in detail several frustrated systems. We will start

our analysis by examining the screened Coulomb Frustrated Ferromagnet. A screened

Coulomb interaction of screening length λ−1 has the continuum Fourier transformed

interaction kernel v(k) = [k2 + λ2]−1. The lowest order non-vanishing derivative of

vL(k) of order higher than two is that of p = 3. Invoking Eq. (4.41), we find a

modulation length that increases with increasing temperature as T → T+
c (see also

appendix D, Eq. (D-18) in particular) .
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The dipolar interaction can be thought of as the δ → 0 limit of the interaction,

Vd =
1

[(~x− ~y)2 + δ2]3/2
. (4.61)

This form has a simple Fourier transform. In two spatial dimensions,

vd(k) = 2πδ−1e−kδ. (4.62)

In three dimensions,

vd(k) = 4πK0(kδ), (4.63)

K0 being a modified Bessel function (see Eq. (4.3)).

In this case, we similarly find that the first non-vanishing derivative of vL is order

of order p = 3 in the notation of Eq. (4.41). This, as well as the detailed form of

Eq. (D-18) suggest an increasing modulation length with increasing temperature as

T → T+
c .

4.4.1 Numerical evaluation of the Correlation function

In Figs.(4.5,4.6), we display a numerical evaluation of the correlation function for

the Coulomb frustrated ferromagnet and the dipolar frustrated ferromagnet (see Eqs.

(4.1, 4.2, 4.4)) on a two-dimensional lattice of size 100× 100.
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Figure 4.5: The correlator G(x, y) for a two-dimensional screened Coulomb ferromagnet

of size 100 by 100. J = 1, Q = 0.0004, screening length= 100
√
2. A: µ =

µmin = −0.0874, B: µ = µmin + 0.001, C: µ = µmin + 0.003, D: G(x,y) for

y = 0 for A(blue)[LD = 20], B(green)[LD = 24] and C(red)[LD = 26].

4.4.2 Coexisting short range and screened Coulomb interac-

tions

In this section, we study the screened Coulomb frustrated ferromagnet in more details.

In the continuum limit, the Fourier transform of the interaction kernel of Eq. (4.1)

with VL(x) given by Eq. (4.2) is

v(k) = Jk2 +
Q

k2 + λ2
. (4.64)
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Figure 4.6: The correlator G(x, y) for a two-dimensional dipolar ferromagnet of size 100

by 100. J = 1, Q = 0.15. A: µ = µmin = −1.1459, B: µ = µmin+4× 10−5, C:

µ = µmin+1×10−3, D: G(x,y) for y = 0 for A(blue)[LD = 14], B(green)[LD =

15] and C(red)[LD = 16].

In appendix E, we provide explicit expressions for the dependence of µ on the temper-

ature T . This dependence delineates the different temperature regimes. For T > T ∗

wherein the temperature T ∗ is set by

µ(T ∗) = Jλ2 + 2
√

JQ, (4.65)

from Eq. (4.18), the pair correlator in d = 3 dimensions is given by

G(~x) =
kBT

4πJ |~x|
1

β2 − α2

×[e−α|~x|(λ2 − α2)− e−β|~x|(λ2 − β2)]. (4.66)
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Here,

α2, β2 =
λ2 + µ/J ∓

√

(λ2 − µ/J)2 − 4Q/J

2
. (4.67)

By contrast, for temperatures T < T ∗, we obtain an analytic continuation of Eq.

(4.66) to complex α and β,

G(~x) =
kBT

8α1α2πJ |~x|
e−α1|~x|

×[(λ2 − α2
1 + α2

2) sinα2|~x|+ 2α1α2 cosα2|~x|], (4.68)

In Eq. (4.68), α = α1 + iα2 = β∗. In a similar fashion, in d = 2 spatial dimensions,

for T > T ∗,

G(~x) =
kBT

2π

1

β2 − α2
[(λ2 − α2)K0(α|~x|)

+(β2 − λ2)K0(β|~x|)]. (4.69)

As in the three-dimensional case, the high temperature correlator of Eq. (4.69) may

be analytically continued to lower temperatures, T < T ∗, for which α and β become

complex.

High temperature limit

In the high temperature limit, in two spatial dimensions, from Eq. (4.69), we have,

G(~x) =
kBT

2πJ
K0

(
√

kBTΛ2

4πJ
|~x|
)

− 8π

kBTΛ4
K0 (λ|~x|) .

(4.70)
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In three spatial dimensions, from Eq. (4.66), we have,

G(~x) =
kBT

4πJ |~x|e
−
√

kBTΛ3

6π2J
|~x| − 9π3Q

kBTΛ6|~x|e
−λ|~x|. (4.71)

In the unscreened case, in two spatial dimensions,

G(~x) =
kBT

2πJ
K0

(
√

kBTΛ2

4πJ
|~x|
)

− 8π

kBTΛ4
K0

(

√

4πQ

kBTΛ2
|~x|
)

. (4.72)

In three spatial dimensions,

G(~x) =
[ kBT

4πJ |~x|e
−
√

kBTΛ3

6π2J
|~x|

− 9π3Q

kBTΛ6|~x|e
−
√

6π2Q

kBTΛ3 |~x|
]

. (4.73)

From the above expressions, it is clear that the coefficients of the terms corresponding

to the diverging correlation length goes to zero in the high temperature limit.

We note that two correlation lengths are manifest for all (µ − Jλ2)2 > 4JQ.

This includes all unfrustrated screened attractive Coulomb ferromagnets (those with

Q < 0)). The evolution of the correlation functions may be traced by examining the

dynamics of the poles in the complex k plane as a function of temperature. At high

temperatures, correlations are borne by poles that lie on the imaginary k axis.

Thermal evolution of modulation length at low temperatures

At T = T ∗, the poles merge in pairs at k = ±i
√

λ2 +
√

Q/J . At lower temperatures,

T < T ∗, the poles move off the imaginary axis (leading in turn to oscillations in the
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correlation functions). The norm of the poles, |α| = (Q/J + λ2µ(T )/J)1/4 tends to

a constant in the limit of vanishing screening (λ−1 = 0) wherein the after merging

at T = T ∗, the poles slide along a circle (Fig. 4.7). In the low temperature limit of

the unscreened Coulomb ferromagnet, the poles hit the real axis at finite k, reflecting

oscillatory modulations in the ground state. In the presence of screening, the pole

trajectories are slightly skewed (Fig. 4.8) yet for Q/J > λ4, α tends to the ground

state modulation wavenumber
√

√

Q/J − λ2. If the screening is sufficiently large,

i.e., if the screening length is shorter than the natural period favored by a balance

between the unscreened Coulomb interaction and the nearest neighbor attraction

(λ > (Q/J)1/4), then the correlation functions never exhibit oscillations. In such

instances, the poles continuously stay on the imaginary axis and, at low temperatures,

one pair of poles veers towards k = 0 reflecting the uniform ground state of the heavily

screened system.

To summarize, at high temperatures the pair correlator G(x) is a sum of two

decaying exponentials (one of which has a correlation length which diverges in the

high temperature limit). For T < T ∗ in under-screened systems, one of the correlation

lengths turns into a modulation length characterizing low temperature oscillations. At

the cross-over temperature T ∗, the modulation length is infinite. As the temperature

is progressively lowered, the modulation length decreases in size – until it reaches

its ground state value. The temperature T ∗(Q/J, λ) is a “disorder line” [99–102] like

temperature (Fig 4.9). An analytical thermodynamic crossover does occur at T = T ∗.
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Figure 4.7: Location of the poles with increasing temperature (left to right) in the complex

k-plane for the Coulomb frustrated ferromagnet. For temperatures below Tc,

all the poles are real. Above Tc, the poles split in opposite directions of the

real axis to give rise to two new complex poles. For Tc < T < T ∗, we have

complex poles. At T ∗, pairs of such poles meet on the imaginary axis. Above

T ∗, the poles split along the imaginary axis. Thus, above T ∗, the poles are

purely imaginary.
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Figure 4.8: Trajectory of the poles in the complex k-plane for Tc < T < T ∗ for the

screened Coulomb ferromagnet. The screening length, λ−1 decreases from left

to right. In the first figure λ = 0 and λ > (Q/J)1/4 in the last figure.
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Figure 4.9: Temperature at which the modulation length diverges for a 100×100 Coulomb

frustrated ferromagnet plotted versus the relative strength of the Coulomb

interaction with respect to the ferromagnetic interaction. [Blue:λ = λ0 =

1/(100
√
2); Red:λ = 0.999λ0; Black:λ = 1.001λ0]

A large-n calculation illustrates that the internal energy per particle

U

N
=

1

2
(kBT − µ), (4.74)

To detect a crossover in U and that in other thermodynamic functions, the forms of

µ both above and below T ∗ may be derived from the spherical model normalization

condition to find that the real valued functional form of µ(T ) changes (See appendix

E).

The system starts to exhibit order at the critical temperature T = Tc given by

1

kBTc
=

∫

ddk

(2π)d
1

v(~k)− v(~q)
. (4.75)

For Q/J > λ4, the modulus of the minimizing (ground state) wavenumber (|~q|) is
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given by

q =
2π

Lg
D

=

√

√

Q/J − λ2, (4.76)

with Lg
D the ground state modulation length. Associated with this wavenumber is

the kernel v(~q) = 2
√
JQ − Jλ2 to be inserted in Eq. (4.75) for an evaluation of

the critical temperature Tc. Similarly, the ground state wavenumber ~q = 0 whenever

Q/J < λ4. If Q/J > λ4 and modulations transpire for temperatures T < T ∗,

the critical temperature at which the chemical potential of Eq. (4.19), µ(Tc) =

Jλ2 − 2
√
JQ, is lower than the crossover temperature T ∗ (given by Eq. (4.65)) at

which modulations first start to appear. The Screened Coulomb Ferromagnet has

Tc(Q/J = λ4) > 0 in d > 4 dimensions and in any dimension Tc(Q/J > λ4) = 0. For

small finite n, a first order Brazovskii transition may replace the continuous transition

occurring at Tc within the large-n limit [103]. Depending on parameter values such

an equilibrium transition may or may not transpire before a possible glass transition

may occur [41, 104].

Domain length scaling in the Coulomb Frustrated Ferromagnet

The characteristic length scales are governed by the position of the poles of [v(k) +

µ]−1. See Fig. 4.7 for an illustration of the pole locations at low temperatures. For the

frustrated Coulomb ferromagnet of Eq. (4.64) in the absence of screening (λ−1 = 0),

v(k) + µ =
J

k2
(k4 +

µ

J
k2 +

Q

J
). (4.77)
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Eq. (4.77) enable us to determine, in our large-n analysis, the cross-over temperature

T ∗ at which µ∗ = µ(T ∗) = 2
√
JQ. At T = T ∗, the poles lie on the imaginary axis

in k-plane. As the temperature is lowered below T ∗, the two poles bifurcate. This

bifurcation gives rise to finite size spatial modulations. At temperatures T < T ∗,

the four poles slide along a circle of fixed radius of size (Q/J)1/4 (see Fig. 4.7). At

zero temperature, these four poles merge in pairs to form two poles that lie on the

real axis. The inverse modulation length is set by the absolute values of the real

parts of the poles. We will set µ ≡ (2
√
JQ − δµ). In the following, we will obtain

the dependence of the real part of the poles on δµ. The poles of 1/(v(k) + µ) are

determined by

k2pole = − µ

2J
± i

√

Q

J
− µ2

4J2
=

√

Q

J
e±2iθ. (4.78)

At µ = µ∗, the angle θ = π/2. This point corresponds to the transition between

(i) the high temperature region (T > T ∗) wherein the system does not exhibit any

modulations and (ii) the low temperature region (T < T ∗). (See Fig. 4.7.) Eq. (4.78)

implies that cos 2θ = [1− δµ
µ∗ ] or

kpole,real =
δµ1/2

2J1/2
. (4.79)

Thus, we get a crossover exponent of 1/2.
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4.4.3 Full direction and location dependent dipole-dipole in-

teractions

In this subsection and the next, we consider systems where the spins are three-

dimensional and the interactions have the appropriate directional dependence. In

this subsection, we will consider the effect of including the full dipolar interactions

vis a vis the more commonly used scalar product form between two dipoles that is

pertinent to two-dimensional realizations. The dipolar interaction is given by

Hdip =
∑

~x 6=~y

[

~S(~x) · ~S(~y)
r3

− 3[~S(~x) · ~r][~S(~y) · ~r]
r5

]

. (4.80)

The two point correlator for a ferromagnetic system frustrated by this interaction is

given, in the large-n approximation, by

G(~x) = kBT

∫

ddk

(2π)d
ei
~k·~x

[

2

J∆(~k) +Qvd(k) + µ
+

1

J∆(~k)− 2Qvd(k) + µ

]

, (4.81)

where vd(k) is given by Eqs. (4.62,4.63). For temperatures T ≤ Tc,

µmin = −min
k∈R

{J∆(~k) +Qvd(k),

J∆(~k)− 2Qvd(k)}. (4.82)

The Fourier transformed dipolar interaction kernel is positive definite, vd(k) > 0.

An unscreened dipolar interaction leads to a vd(k) that diverges (tends to negative

infinity) at its minimum at k = 0. In the presence of both upper and lower distance
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cutoffs (see, e.g., Eq. (4.4) for a lower cutoff) on the dipolar interaction, the minimum

of vd(k) attains a finite value and the system has a finite critical temperature.

Examining Eq. (4.81), we see that the introduction of the angular dependence

in the dipolar interaction changes the results that would be obtained if the angular

dependence were not included in a dramatic way.

(i) New correlation and modulation lengths arise from the second term in Eq.

(4.81).

(ii) At low temperatures, the second term in Eq. (4.81) becomes dominant as its

poles have a smaller real part (and thus a larger correlation length) relative to the

first term in Eq. (4.81) that appears for an isotropic dipole-dipole interactions.

4.4.4 Dzyaloshinsky- Moriya Interactions

As another example of a system with interactions having non-trivial directional depen-

dence, we consider a system of three component spins with the Dzyaloshinsky-Moriya

interaction [78, 79] present along with the ferromagnetic interaction and a long range

interaction,

H = −J
∑

〈~x,~y〉

~S(~x) · ~S(~y) +
∑

〈~x,~y〉

~D · [~S(~x)× ~S(~y)]

+Q
∑

~x6=~y

VL(|~x− ~y|)~S(~x) · ~S(~y). (4.83)

We diagonalize this interaction kernel to obtain a Hamiltonian of the form,

H =
∑

~x,~y

∑

a

Ŝ∗
a(~x)Va(~x, ~y)Ŝa(~y). (4.84)
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The Ŝa’s are linear combinations of the components of ~S. In a large-n approximation,

the two point correlator is given by

G(~x) = kBT

∫

ddk

(2π)d
ei
~k·~x

[

1

J∆(~k) +QvL(k) + µ
+

2(J∆(~k) +QvL(k) + µ)

(J∆(~k) +QvL(k) + µ)2 + (D2
1 +D2

2 +D2
3)[∆(~k)]2

]

. (4.85)

The presence of the Dzyaloshinsky-Moriya interaction does not alter the original

poles and hence does not change the original length scales of the system. However,

additional length scales arise due to the second term in Eq. (4.85).

A system of prominence where Dzyaloshinsky-Moriya interactions are important is

MnSi [105]. The spiral order is naturally susceptible to glass like dynamics. [43, 105]

4.5 Conclusions

1. We studied the evolution of the ground state modulation lengths in frustrated

Ising systems as the interaction parameters are varied.

2. We investigated, in large-n theories, the evolution of modulation and correlation

lengths as a function of temperature in different classes of systems.

3. We proved that, in large-n theories, the combined sum of the number of corre-

lation and the number of modulation lengths is conserved as the temperature

is varied.
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4. We studied three-dimensional dipolar systems. We found that the full dipolar

interactions with angular dependence included, changes the ground state of the

system and also adds new length scales.
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Universality of modulation length

(and time) exponents

5.1 Introduction

In this chapter, we investigate the evolution of these length scales as a function of some

parameter λ, such as the temperature T . We will largely focus on the temperature

dependences of the correlation function to derive and discuss our results. We report

on the temperature (or other parameter) dependence of emergent modulation lengths

that govern the size of various domains present in some systems. Our central result

is that if fixed wavelength modulations characterized by a particular finite length

scale, L∗, appear beyond some temperature T∗ then, the modulation length, LD on
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the other side of the crossover differs from L∗ as

|LD − L∗| ∝ |T − T∗|νL . (5.1)

When there are no modulations on one side of T∗, i.e., L∗ → ∞, we have near the

crossover,

LD ∝ |T − T∗|−νL . (5.2)

Apart from some special situations, we find that irrespective of the interaction,

νL = 1/2. We arrive at this rather universal result assuming that there is no phase

transition at the crossover temperature T∗. Our result holds everywhere inside a given

thermodynamic phase of a system.

Our considerations are not limited to continuous crossovers. A corollary of our

analysis pertains to systems with discontinuous (“first-order” like) jumps in the cor-

relation or modulation lengths.

We will further comment on situations in which a branch point appears at T∗.

We will present examples where we obtain rational and irrational exponents and also

the anomalous critical exponent η. Our analysis affords general connections to the

critical scaling of correlation lengths in critical phenomena.

Our results for length scales can be extended to timescales. We will, amongst

other notions, in employing a formal interchange of spatial with temporal coordinates,

introduce the concept of a Josephson timescale.

Lastly, further deepening the analogy between results in the spatial and time
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domain, we will comment on the presence of phases with aperiodic spatial “chaotic”

modulations (characteristic of amorphous configurations) in systems governed by non-

linear Euler-Lagrange equations. Aperiodic “chaotic” modulations may appear in

strongly correlated electronic systems.

In Appendix G, we present applications to Fermi systems pertaining to metal–

band insulator transition, change of Fermi surface topology, divergence of effective

masses, Dirac systems and topological insulators.

5.2 A universal domain length exponent – Details

of analysis

In this section, we derive (via various inter-related approaches), our central result –

the existence of a new exponent for the domain length in rather general systems.

We will now consider the situation in which the system exhibits modulations at

a fixed wave-vector q for a finite range of temperatures on one side of T∗, [viz., (i)

T > T∗, or, (ii) T < T∗] and starts to exhibit variable wavelength modulations on

the other side [(iii) T < T∗ for (i) and T > T∗ for (ii)]. A schematic illustrating this

is shown in Fig. 5.1. In sub-section 5.2.1, we will assume that the pair correlation

function is meromorphic (realized physically by absence of phase transitions) at the

crossover point and illustrate how modulation length exponents may appear. In sub-

section 5.2.2, we will comment on the situation where the crossover point may be a
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<>
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(a) Variable modulation

length.

k

(b) The crossover point

(T = T∗).

<
> k

(c) Fixed modulation

length.

Figure 5.1: Schematic showing the trajectories of the singularities of the correlation func-

tion near a fixed – variable modulation length crossover. Two poles of the

correlation function merge at k = k∗ at T = T∗. On the fixed modulation

length side of the crossover point, Re k = q.

branch point of the correlation function.

5.2.1 Crossovers at general points in the complex k-plane

In the up and coming, we will assume that the pair correlator, G(T, k) is a mero-

morphic function of k and T near a crossover point. Our analysis below is exact

as long as we do not cross any phase boundaries. Such a case is indeed material-

ized in the incommensurate-commensurate crossovers in the three-dimensional axial

next-nearest-neighbor Ising (ANNNI) model [106, 107] (which is of type (ii) in the

classification above). This phenomenon is also seen in the ground state phase diagram

of Frenkel-Kontorova models [108] in which one of the coupling constants is tuned
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instead of temperature.

In the following, we present two alternative derivations for the universal exponent

characterizing this crossover.

First approach

In general, if the pair correlation function G(T, k) is a meromorphic function of the

temperature T and the wave-vector k near a crossover point (T∗k∗), then G
−1(T, k)

must have a Taylor series expansion about that point. We have,

G−1(T, k) =
∞
∑

m1,m2=0

Am1m2(T − T∗)
m1(k − k∗)

m2 . (5.3)

Since G−1(T∗, k∗) = 0, we have, A00 = 0. Let us try to find the trajectory of the pole

K(T ) (with K(T∗) = k∗) of G(T, k) in the complex k-plane as the temperature is

varied around T∗. Writing down the leading terms of G−1(T, k) , we have, in general,

G−1(T, k) ∼
[m/a]
∑

p=0

Bp(T − T∗)
m−ap(k − k∗)

n+bp +

o((T − T∗)
m(k − k∗)

n), (5.4)

as (T, k) → (T∗, k∗) with m,n, a, b integers, m,n ≥ 0, a, b ≥ 1, and Bp = Am−ap, n+bp

in Eq. (5.3). In the summand, [x] represents the greatest integer less than or equal

to x. Terms negligible compared to a quantity x are represented by o(x). We have,

K(T ) ∼ k∗ + C(T − T∗)
a/b, (5.5)

where C is some constant, yielding νL = a/b. By the very definition of T∗, on one

side of T∗ [(i) or (ii) above], there exists at least one root [say, K(T )] of G−1 satisfying
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KR(T ) = q, where q is a constant. On the other side [(iii) above],KR(T ) 6= q. As such,

the function K(T ) is non-analytic at T∗. The left hand side of Eq. (5.5) is therefore

not analytic at T = T∗, implying that the right hand side cannot be analytic. This

means that (a/b) cannot be an integer, which in turn implies that b ≥ 2. Therefore,

in the most common situations we might encounter,

G−1(T, k) ∼ A(T − T∗) + B(k − k∗)
2

=⇒ a = 1 and b = 2. (5.6)

When Fourier transforming G(T, k) by evaluating the integral in Eqs. (2.14, 2.15)

using the technique of residues, the real part of the poles (i.e., KR) gives rise to

oscillatory modulations of length LD = 2π/KR. If the modulation length locks its

value to 2π/q on one side of the crossover point, then, on the other side, near T∗, it

must behave as

|2π/LD − q| ∝ |T − T∗|1/2

=⇒ νL = 1/2. (5.7)

Second approach

We now turn to a related alternative approach that similarly highlights the univer-

sal character of the modulation length exponent. If the correlation function G is a

meromorphic function of k, then, expanding about a zero K1(T ) of G
−1, we have,

G−1(T, k) = A(T ) (k −K1(T ))
m1 G−1

1 (T, k), (5.8)
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where G−1
1 (T, k) is an analytic function of k and G−1

1 (T,K1(T )) 6= 0. We can do this

again for the function G−1
1 (T, k) choosing one of its zeros K2(T ) and continue the

process until the function left over does not have any more zeros. We have,

G−1(T, k) = A(T )

p
∏

a=1

(k −Ka(T ))
ma G−1

p (T, k), (5.9)

where the function G−1
p (T, k) is an analytic function with no zeros, mas are integers

and, in principle, p may be arbitrarily high. This factorization can be done in each

phase where G is meromorphic. Let K1(T ) be a non-analytic zero of G−1, i.e., one

for which Re K1(T ) = q on one side of T = T∗. To ensure analyticity of G−1 in T

in the vicinity of T = T∗, there must be at least one other root K2(T ), such that as

T → T∗, both K1(T ) and K2(T ) veer towards k∗, where Re k∗ = q [e.g., see Fig. 5.2

which is of type (i) above, k∗ = ±i]. In other words, p in Eq. (5.9) cannot be smaller

than two. The proof of this assertion is simple. If p = 1, then, according to Eq. (5.9),

G−1(T, k) = A(k − K1(T ))G
−1
1 (T, k). At T = T∗, however, K1(T ) is not analytic,

implying that G−1(T, k) can be analytic only if p ≥ 2. For p ≥ 2, at T∗, G
−1 will, to

leading order, vary quadratically in (k − k∗) in the complex k plane near k∗. Thus,

∂G−1

∂k

∣

∣

∣

∣

(T∗,k∗)

= 0. (5.10)
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Figure 5.2: Location of the poles of the correlation function of the large-n Coulomb frus-

trated ferromagnet for J = Q = 1 in the complex k-plane. The circle and the

Y -axis show the trajectory K(T ) of the poles as the temperature T is varied.

Now, if G−1 has a finite first partial derivative relative to the temperature T then,

for a pole K near k∗, to leading order,

G−1(T∗, k∗) + (T − T∗)
∂G−1

∂T

∣

∣

∣

∣

(T∗,k∗)

+
(K − k∗)

2

2!

∂2G−1

∂k2

∣

∣

∣

∣

(T∗,k∗)

= 0. (5.11)

By its definition, k∗ satisfies the equality G−1(T∗, k∗) = 0. Therefore,

|K − k∗| =

√

√

√

√

2(T∗ − T ) ∂G−1

∂T

∣

∣

(T∗,k∗)

∂2G−1

∂k2

∣

∣

(T∗,k∗)

. (5.12)

Equation (5.7) is an exact equality. It demonstrates that the exponent νL = 1/2
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universally unless one of ∂2G−1

∂k2
and ∂G−1

∂T
vanishes at (T∗, k∗).[109] Often, G−1(T, k) is

a rational function of k, i.e.,

G−1(T, k) =
G−1

n (T, k)

G−1
d (T, k)

, (5.13)

where G−1
n (T, k) and G−1

d (T, k) are polynomial functions of k. In those instances, we

get the same result as above by using G−1
n (T, k) in the above arguments. The value of

the critical exponent is similar to that appearing for the correlation length exponent

for mean-field or large-n theories. It should be stressed that our result of Eq. (5.7)

is far more general.

Lock-in of the correlation length. Apart from the crossovers across which the

modulation length locks in to a fixed value, we can also have situations where the

correlation length becomes constant as a crossover temperature T∗∗ is crossed. If this

happens, our earlier analysis for the modulation length may be replicated anew for

the correlation length. Therefore, if the correlation length has a fixed value ξ0 on one

side (T < T∗∗ or T > T∗∗) of the crossover point, then, on the other side (T > T∗∗ or

T < T∗∗, respectively), near T∗∗, it must behave as,

|1/ξ − 1/ξ0| ∝ |T − T∗∗|νc , (5.14)

where, like νL, νc = 1/2 apart from special situations where it may take some other

rational values. Here and throughout, we use νc to represent the usual correlation

length exponent, ν to distinguish it from the modulation length exponent νL.
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5.2.2 Branch points

A general treatment of a situation in which the crossover point is a branch point of

the inverse correlation function in the complex k-plane is beyond the scope of this

work. Branch points are ubiquitous in correlation functions in both classical as well

as quantum systems.

For example, as in Chapter 4, in the large-n rendition of a bosonic system (with a

Hamiltonian of Eq. (2.1) and S(x) representing bosonic fields), the momentum space

correlation function at temperature T is given by

G(~k) =

√

µ1

v(~k) + µ



nB





√

µ1(v(~k) + µ)

kBT



+
1

2



 , (5.15)

where µ1 is a constant having dimensions of energy, µ is the chemical potential,

nB(x) = 1/(ex− 1) is the Bose distribution function and kB is Boltzmann’s constant.

Similar forms, also including spatial modulations in G(r), may also appear. We

briefly discuss examples where we have a branch cut in the complex k-plane.

The one-dimensional momentum space correlation function,

G(k) =
1

√

(k − q)2 + r
+

1
√

(k + q)2 + r
, (5.16)

reflects a real space correlation function given by

G(x) =
2 cos(qx)K0(x

√
r)

π
, (5.17)

where K0(·) is a modified Bessel function. Thus, as is to be expected, we obtain

length scales associated with the branch points K = ±q ± i
√
r.
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Similarly, the three-dimensional real space correlation function corresponding to

G(k) =
1

√

(k − q)2 + r
, (5.18)

exhibits the same correlation and modulation lengths along with an algebraically

decaying term for large separations. Another related G−1(k) involving a function of

|~k| (i.e., not an analytic function of k2) was investigated earlier.[110]

Throughout the bulk of our work, we consider simple exponents associated with

analytic crossovers. In considering branch points, our analysis may be extended to

critical points. As is well known, at critical points of d dimensional systems, the

correlation function for large r, scales as

G(r) ∝ 1

rd−2+η
, (5.19)

with η the anomalous exponent. Such a scaling implies, for non-integer η, the exis-

tence of a k = 0 branch point of G(k).

If the leading order behavior of 1/G(m)(T, k) is algebraic near a branch point

(T∗, k∗), then we get an algebraic exponent characterizing a crossover at this point [m

being the lowest order derivative of G(k) which diverges at k = k∗ as in Eq. (2.17)].

That is, we have,

1

G(m)(T, k)
∼ A(T − T∗)

z1 − B(k − k∗)
z2

as (T, k) → (T∗, k∗). (5.20)
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This implies that the branch points K deviate from k∗ as

(K − k∗) ∼
(

A

B

)1/z2

(T − T∗)
z1/z2 . (5.21)

We therefore observe a length scale exponent ν = z1/z2 at this crossover. This

exponent may characterize a correlation lengths and/or a modulation lengths. The

exponent z1/z2 may assume irrational values in many situations in which the function

G−1(T, k) is not analytic near the crossover point. Such a situation could give rise to

phenomena exhibiting anomalous exponents η. For example, if we have a diverging

correlation length at a critical temperature Tc, for a system with a correlation function

which behaves as in Eq. (5.19), then, we have in Eq. (5.20), z2 = 2 − η. Thus, we

have,

|LD − LDc| ∝ |T − Tc|
z1
2−η ,

=⇒ νL =
z1

2− η
, (5.22)

where LDc = 2π/|Re k∗|, and more importantly,

ξ ∝ |T − Tc|−
z1
2−η ,

=⇒ νc =
z1

2− η
. (5.23)

Other critical exponents could also, in principle, be calculated using hyper-scaling

relations.

If G−1(T, k) has a Puiseux representation about the crossover point, i.e.,

G−1(T, k) =
∞
∑

m=m0

∞
∑

p=p0

amp(k − k∗)
m/a(T − T∗)

p/b, (5.24)
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with am0p0 = 0, where m0, p0, a and b are integers, then, the result we derived above

applies to the relevant length scale and the crossover exponent ν = a/b, is again a

rational number.

Generalizing, if G−1(T, k) is the ratio of two Puiseux series, we use the numerator

to obtain the leading order asymptotic behavior and hence obtain a rational exponent.

5.2.3 A corollary: Discontinuity in modulation lengths im-

plies a thermodynamic phase transition

Non-analyticities in the correlation function G(k) for real wave-vector k imply the

existence of a phase transition. This leads to simple corollaries as we now briefly

elaborate on. A sharp discontinuous jump in the value of the modulation lengths

(and/or correlation lengths) implies that the zeros {Ka} of G−1(k) in the complex k

plane, exhibit discontinuous (“first order-like”) jumps as a function of some parameter

(such as the temperature T when T = T∗). When this occurs, as seen by, e.g.,

differentiating the reciprocal of the product of Eq. (5.9), the correlation function

will, generally, not be analytic as a function of T at T = T ∗. Putting all of the

pieces together, we see that a discontinuous change in the modulation (or correlation)

lengths impies the existence of a bona fide phase transition. Thus, all commensurate-

commensurate crossovers must correspond to phase transitions. For example, see the

ANNNI model.[102]
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5.2.4 Diverging correlation length at a spinodal transition

Our analysis is valid for both annealed and quenched systems so long as translational

symmetry is maintained (and thus, the correlation function is diagonal in k-space).

In particular, whenever phase transitions are “avoided” the rational exponents of Eq.

(5.5) will appear.[33, 34, 43]

In diverse arenas, we may come across situations in which there are no diverging

correlation lengths even when the inverse correlation function has zeros corresponding

to real values of the wave-vector. These are signatures of a first order phase transition,

e.g., transition from a liquid to a crystal. If the first order phase transition is somehow

avoided, then the system may enter a metastable phase and may further reach a point

where the correlation length diverges, e.g., a spinodal point. If it is possible to reach

this point and if the inverse correlation function is analytic there, then our analysis will

be valid, thereby leading to rational exponents characterizing the divergence of the

correlation length. There are existing works in the literature which seem to suggest

that such a point may not be reachable. For example, in mode coupling theories of

the glass transition, the system reaches the mode coupling transition temperature

TMCT at which the viscosity and relaxation times diverge and hence does not reach

the point where the correlation length blows up.[111]
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5.2.5 Conservation of characteristic length scales

In Ref. [59], it was mentioned that the total number of characteristic length scales in

a large-n system remains constant in systems in which the Fourier space interaction

kernel v(~k) is a rational function of k2 and the real space kernel is rotationally in-

variant. (Similar results hold for systems with reflection point group symmetry.[112])

In this sub-section, we generalize that argument and say that whenever the Fourier

space correlator G(~k) of a general rotationally invariant system is a rational function

of k2,i.e.,

G(~k) =
P (k2)

Q(k2)
, (5.25)

the total number of correlation and modulation lengths remains constant apart from

isolated points as a tuning parameter λ is smoothly varied. In Eq. 5.25, the functions

P (k2) and Q(k2) are polynomial functions of k2. Rotational invariance requires that

G(~k) is real-valued for real wavevectors k. As argued in Ref. [59], all length scales

in the such systems are associated with the poles of G(k) in the complex k-plane

and these remain constant for a given form of the function G(k). Each real root of

the function Q(k2) gives rise to a term in the real space correlation function which

has one correlation or modulation length. Non-real roots (which necessarily come in

complex conjugate pairs) give rise to a correlation and a modulation length. Thus,

the total number of characteristic length scales in the system is equal to the order of

the polynomial function Q(k2) which remains fixed.
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5.3 O(n) systems

The correlation function for O(n) systems can be calculated exactly at both the low

and the high temperature limits. At intermediate temperatures, various crossovers

and phase transitions may appear. In this section, we discuss the low and high

temperature behavior length scales characterizing O(n) systems.

5.3.1 Low temperature configurations

It was earlier demonstrated [98] that for O(n ≥ 2), all ground states of a system have

to be spirals (or poly-spirals) of characteristic wave-vectors ~qα, given by

v(~qα) = −min
~k∈Rd

v(~k), (5.26)

where R
d represents the set of all d-dimensional real vectors. At T = 0, the modula-

tion lengths in the system are given by

Li,α
D (T = 0) = 2π/qi,α, (5.27)

where i(1 ≤ i ≤ d) labels the Cartesian directions in d dimensions. This, together

with Eq. (5.28) gives us the high and low temperature forms of the correlation

function and its associated length scales.
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5.3.2 High temperatures

As demonstrated in Chapter 3, diverse systems behave in the same way at high

temperatures. For O(n) systems,

G−1(T, k) = 1 + v(k)/kBT +O(1/T 3). (5.28)

The high temperature series may be extended and applied at the crossover tempera-

ture T∗, if there is no phase transition at temperatures above T∗ and for all relevant

real k’s, |v(k)| ≪ kBT∗. [A detailed example will be studied in Sec. 5.3.5.] Generally,

Eq. (5.28) may be analytically continued for complex k’s and in the vicinity of T∗,

δk ∼
[

m! kB(T∗ − T )

v(m)(k∗)

] 1
m

, (5.29)

where k∗ is a characteristic wave-vector at T∗. In the above, δk denotes the change

in the location of the poles K of G−1 when the temperature is changed from T∗ to

T (i.e., δk ≡ K − k∗) and m is the order of the lowest non-vanishing derivative of

v(k) at k∗. As in previous analysis, v′(k∗) = 0 and m ≥ 2. For general v(k), typically

m = 2 and νL = 1/2 as before.

We now turn to examples which explicitly illustrate how our results are realized

including exceptional systems with non-trivial exponents.
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5.3.3 Large-n Coulomb frustrated ferromagnet – modulation

length exponent at the crossover temperature T∗

In the current sub-section and the two that follow, we will discuss the large-n limit

in O(n) systems. The results in the previous two sections pertain to arbitrary n. We

illustrate how our result applies to the large-n Coulomb frustrated ferromagnet. As

mentioned in Chapter 4, in the large-n limit, O(n) systems are exactly solvable and

behaves as the spherical model. The correlation function in k-space is given by

G−1(T, k) = [v(k) + µ(T )]/kBT, (5.30)

where v(k) is the Fourier space interaction kernel and µ(T ) is a Lagrange multiplier,

that enforces the spherical constraint. The paramagnetic transition temperature TC

is obtained from the relation, µ(TC) = −mink∈R v(k). Below TC , the Lagrange mul-

tiplier µ(T ) = µ(TC). Above TC , µ(T ) is determined by the global average constraint

that G(~x = 0) = 1
N

∑

~kG(
~k) = 1. This global constraint also implies that, above

TC , small changes in temperature result in proportional changes in µ(T ) and at high

temperatures, µ(T ) is a monotonic increasing function of T . The Fourier space kernel

v(k) for the “Coulomb frustrated ferromagnet” (in which nearest neighbor ferromag-

netic interactions of strength J compete with Coulomb effects of strength Q) is given

by v(k) = Jk2 + Q/k2, where J and Q are positive constants. The critical temper-

ature, TC of this system is given by µ(TC) = −2
√
JQ. At TC , the correlation length

is infinity and the modulation length is LD = 2π 4
√

J/Q. As the temperature is in-
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creased, the modulation length increases and the correlation length decreases. At T∗,

given by µ(T∗) = 2
√
JQ, the modulation length diverges and the correlation length

becomes ξ = 4
√

J/Q. At temperatures above T∗, the correlation function exhibits no

modulations and there is one decreasing correlation length and one increasing cor-

relation length. The term in the correlation function with the increasing correlation

length becomes irrelevant at high temperatures because of an algebraically decay-

ing prefactor. The divergence of the modulation length at T∗ shows an exponent of

νL = 1/2.[59]

5.3.4 An example with νL 6= 1/2

In what follows, we demonstrate, as a matter of principle, that the exponent for the

divergence of the modulation length (and also the correlation length) can be different

from 1/2 in certain special cases. As an illustrative example, we consider a large-n

(or spherical model) system for which in Eq. (2.6),

v(k) = A(k2 + l−2
s )2 + 4B(k2 + l−2

s )

+4C/(k2 + l−2
s ) +D/(k2 + l−2

s )2, (5.31)

where ls is a screening length. If we set A = B = C = D = 1 then in the resultant

system νL 6= 1/2 at a crossover temperature. It has a critical temperature TC , given

by µ(TC) = −10. At TC , the modulation length is LD = 2π/
√

1− 1/l2s and the

correlation length blows up (as required by definition). At the crossover temperature
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T∗ (for which µ(T∗) = 6) the modulation length diverges and the correlation length

scales as ξ = 1/
√

1 + 1/l2s . A temperatures just below T∗, the modulation length LD

diverges as LD ∝ (T∗ −T )−1/4 meaning that νL = 1/4. This is because the first three

derivatives of v(k) vanish at k = i, which is the characteristic wave-vector at T∗ (see

Fig. 5.3).
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Figure 5.3: Location of the poles of the correlation function of the system in Eq. (5.31)

for large ls (small screening) in the complex k-plane.

5.3.5 An example in which T∗ is a high temperature

We now provide an example in which the high temperature result of Sec. 5.3.2

(valid for any O(n) system with arbitrary n) can be applied at a crossover point.
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Consider the large-n system in Eq. (5.31) with A = 1, B ≫ 1, C = 1/4, D = 0 and

the screening length, ls ≫ B. The critical temperature of this system is given by

µ(TC) ∼ −4
√
B where the modulation length is LD ∼ 2π 4

√
4B. There is a crossover

temperature T∗ such that µ(T∗) ∼ 4B2. One of the modulation lengths diverges at

T∗. The corresponding correlation length is given by ξ ∼ 1/
√
2B. This provides

an example in which |v(k)| ≪ kBT∗ for all real k’s satisfying |k| ≤ π. The second

derivative of v(k) is non-zero at the crossover point, resulting in a crossover exponent

νL = 1/2.

5.4 Crossovers in the ANNNI model

We now comment on one of the oldest studied examples of a system with a crossover

temperature. The following Hamiltonian represents the ANNNI model.[102, 106, 107]

H = −J1
∑

〈~x,~y〉
S(~x)S(~y) + J2

∑

〈〈~x,~y〉〉
S(~x)S(~y), (5.32)

where as throughout, ~x is a lattice site on a cubic lattice, and the spins S(~x) = ±1.

The couplings, J1, J2 > 0. In the summand, 〈·〉 represents nearest neighbors and

〈〈·〉〉 represents next nearest neighbors along one axis (say the Z-axis), see Fig. 5.4.

Depending on the relative strengths of J1 and J2, the ground state may be either

ferromagnetic or in the “〈2〉 phase”. The “〈2〉 phase” is a periodic layered phase, in

which there are layers of width two lattice constants of ‘up” spins alternating with

layers of “down” spins of the same width, along the Z-axis. As the temperature is

104



Chapter 5 Universality of modulation length (and time) exponents

J
2

J
1

J
1

J
1

Z↑

Figure 5.4: The coupling constants in the three-dimensional ANNNI model.

increased, the correlation function exhibits jumps in the modulation wave-vector at

different temperatures. At these temperatures, the system undergoes first order tran-

sitions to different commensurate phases. The inverse correlation function G−1(T, k)

is therefore not an analytic function of k and T at the transition points. The phase

diagram for the ANNNI model, however, also has several crossovers where the system

goes from a commensurate phase to an incommensurate phase with a continuously

varying modulation length (see Fig. 5.5).[3, 4] At these crossover points, following

our rigorous analysis, we expect a crossover exponent νL = 1/2. Such a scaling of

the modulation length has been estimated by several approximate techniques near

the “Lifshitz point” PL.[102, 113–118] The Lifshitz point is the point in the phase

diagram of the ANNNI model at which the high temperature paramagnetic phase

coexists with the ferromagnetic phase as well as a phase with continuously varying

modulation lengths. It is marked as PL in Fig. 5.5(b). Although the point PL has a

first order transition, it can be thought of as a limit in which the incommensurate and
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(a) (b)

(c)

-J
2
/J

1
T

INCOMMENSURATE

COMMENSURATE

(d)

Figure 5.5: Existence of incommensurate phases between the commensurate regions in

the phase diagram of the ANNNI model. (a) Mean field phase diagram of

the ANNNI model in three dimensions. The shaded regions show higher order

commensurate phases which have variable modulation length incommensurate

phases in between (From Ref. [3]. Reprinted with permission from APS.) (b)

Phase diagram for the three-dimensional ANNNI model using a modified ten-

sor product variational approach (From Ref. [4]. Reprinted with permission

from APS.) (c) Variation of wavelength along paths A1B1 and A3B3 of (b)

showing a smooth variation of the wavelength near the paramagnetic transi-

tion line (From Ref. [4]. Reprinted with permission from APS.) (d) Cartoon

of an incommensurate-commensurate crossover region from (a).
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commensurate regions in Fig. 5.5(a) shrink and merge to a single point. We would

also like to point out that it is known [119] that if the wave-vector takes all possi-

ble rational values (“complete devil’s staircase”), we have no first order transitions.

Additionally, non-analyticity of the correlation function does not prohibit other quan-

tities from having continuous crossover behavior. For example, the correlation of the

fluctuations, i.e., the connected correlation function may generally exhibit continuous

variation from a fixed to a variable modulation length phase. If the inverse connected

correlation function is analytic, our result can be applied to it resulting in a crossover

exponent of 1/2.

5.5 Parameter extensions and generalizations

It is illuminating to consider simple generalizations of our result to other arenas. We

may also replicate the above derivation for a system in which, instead of temperature,

some applied other field λ is responsible for the changes in the correlation function

of the system. Some examples could be pressure, applied magnetic field and so on.

The complex wave-vector k could also be replaced by a frequency ω whose imaginary

part would then correspond to some decay constant in the time domain.

More generally, we look for solutions to the equation

G−1(λ, u) = 0, (5.33)

with the variable u being a variable Cartesian component of the wave-vector, the
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frequency, or any other momentum space coordinate appearing in the correlation

function between two fields (u = ki, ω, and so on). Replicating our steps mutatis

mutandis, we find that the zeros of Eq. (5.33) scale as |u−u0| ∝ |λ−λ∗|1/2 whenever

the real (or imaginary) part of some root becomes constant as λ crosses λ∗. Thus,

our predicted exponent of νL = 1/2 could be observed in a vast variety of systems in

which a crossover occurs as the applied field crosses a particular value, in the complex

wave-vector like variable.

Another generalization of our result proceeds as follows.[120] Suppose that we have

a general analytic operator (including any inverse propagator) G−1(λ) that depends

on a parameter λ. Let aα be a particular eigenvalue,

G−1(λ) |aα(λ)〉 = aα(λ) |aα(λ)〉. (5.34)

If aα(λ) changes from being purely real to becoming complex as we change the param-

eter λ beyond a particular value λ∗ (i.e., aα(λ > λ∗) is real and aα(λ < λ∗) is complex,

or the vice versa), then the imaginary part of aα(λ) will scale (for λ < λ∗ in the first

case noted above and for λ > λ∗ in the second one) as Im {aα(λ)} ∝ |λ − λ∗|1/2. A

particular such realization is associated with the spectrum of a non-Hermitian Hamil-

tonian [playing the role of G−1 in Eq. (5.34)] which, albeit being non-Hermitian,

may have real eigenvalues (as in PT symmetric Hamiltonians).[121] In this case, the

crossover occurs when a system becomes PT symmetric as a parameter λ crosses a

threshold λ∗.
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Similarly, if aα(λ) changes from being pure imaginary to complex at λ = λ∗, then

the real part of the eigenvalue will scale in the same way. That is, in the latter

instance, Re {aα(λ)} ∝ |λ− λ∗|1/2.

Our next brief remark pertains to some theories with multi-component fields, e.g.

n component theories with Hamiltonians of the form,[43]

H =
1

2N

∑

~k,i,j

vij(k)si(~k)sj(~k), (5.35)

in which, unlike Eq. (2.6) (as well as standard O(n) theories), the interaction kernel

vij might not be diagonal in the internal field indices i, j = 1, 2, . . . , n. An example

is afforded by a field theory in which n component fields are coupled minimally to a

spatially uniform (and thus translationally invariant) non-Abelian gauge background

which emulates a curved space metric.[43] In this case, the index α in Eq. (5.34) is

a composite of an internal field component coordinate w = 1, 2, . . . , n and ~k-space

coordinates. For each of the n branches w, we may determine the associated ~k-space

zero eigenvalue of Eq. (5.34) which we label by Kw (i.e., aw,k=Kw(λ) = 0). The largest

correlation is length is associated with the eigenvector which exhibits the smallest

value of |Im Kw|. As usual, as λ is varied, we may track for each of the n branches,

the trajectories poles of G in the complex k-plane. Although the location of the

multiple poles may vary continuously with the parameter λ, the dominant poles (those

associated with the largest correlation length) might discontinuously change from one

particular subset of eigenvectors to another (see Fig. 5.6). As such, the correlation
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function of the system may show jumps in its dominant modulation length at large

distances as λ crosses a threshold value λ∗ even though no transitions (nor cross-overs

similar to that of Fig. (5.1) which form the focus of this work) are occurring. Such

Figure 5.6: “Jumps” in the modulation length: The figure shows the evolution of the

poles associated with two different eigenvectors with the parameter λ in the

complex k-plane. The solid portion of the trajectories show which pole cor-

responds to the dominant term (larger correlation length) in the correlation

function. The ×-s denote the poles at λ = λ∗ and the arrows denote the

direction of increasing λ. It is evident, therefore, that the modulation length

corresponding to the dominant term jumps from LD1 to LD2 as λ crosses the

threshold value λ∗.

jumps in the large distance modulation lengths appear in O(n) systems defined on a

fixed, translationally invariant, non-Abelian background or metric as in Ref. [43].

In Appendix G, we discuss exponents associated with lock-ins of correlation and
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modulation lengths in Fermi systems. When dealing with zero temperature behavior,

we use the chemical potential µ as the control parameter λ. We discuss metal-insulator

transition, exponents in Dirac systems and topological insulators. Additionally, we

comment on crossovers related to changes in the Fermi surface topology as well as

those related to situations with divergent effective mass.

5.6 Implications for the time domain: Josephson

time scales

As we alluded to above, the results that we derived earlier that pertained to length

scales can also be applied to time scales in which case we look at a temporal corre-

lation function characterized by decay times (corresponding to correlation lengths)

and oscillation periods (corresponding to modulation lengths). We may obtain decay

time and oscillation period exponents whenever one of these time scales freezes to a

constant value as some parameter λ crosses a threshold value λ∗.

Many other aspects associated with length scales have analogs in the temporal

regime. Towards this end, in what follows, we advance the notion of a “Josephson

time scale”. We first very briefly review below the concept of a Josephson length

scale. In many systems [with correlation functions similar to Eq. (5.19)], just below

the critical temperature, the correlation function as a function of wave-vector, k
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behaves as

G(k) ∝















k−2+η for k ≫ 1/ξJ ,

k−2 for k ≪ 1/ξJ ,

(5.36)

thus defining the Josephson length scale, ξJ .[122] Such an argument may be extended

to a time scale, τJ (real or imaginary) in systems with Lorentz invariant propagators.

For a given wave-vector k, τJ may be defined as,

G(k, ω) ∝















ω−2+ηt for ω ≫ 1/τJ ,

ω−2 for ω ≪ 1/τJ ,

(5.37)

where ω is the frequency conjugate to time while performing the Fourier transform

and ηt( 6= 0) is an anomalous exponent for the time variable.

5.7 Chaos and glassiness

Thus far, we have considered phases in which the modulation length is well defined.

For completeness, in this section, we mention situations in which aperiodic phases

may be observed. The general possibility of such phenomena in diverse arenas is well

known.[119, 123] We focus here on translationally invariant systems of the form of

Eqs. (2.1,2.12) with competing interactions on different scales that lead to kernels

such as

v(k) = k4 − c1k
2 + c2, (5.38)
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where c1 and c2 are positive constants may give rise to glassy structures for non

zero u. Such a dispersion may arise in the continuum (or small k) limit of hyper-

cubic lattice systems with next nearest neighbor interactions (giving rise to the k4

term) and nearest neighbor interactions (giving rise to the k2 term). Within replica

type approximations, such kernels that have a finite k minimum (i.e., ones with

c1 > 0) may lead to extensive configurational entropy that might enable extremely

slow dynamics.[41, 43]

The simple key idea regarding “spatial chaos” is as follows. It is well known that

nonlinear dynamical systems may have solutions that exhibit chaos. This has been

extensively applied in the time domain yet, formally, the differential equations govern-

ing the system may determine not how the system evolves as a function of the time t

but rather how fields change as a spatial coordinate (x) [replacing the time (t)]. Under

such a simple swap of t↔ x, we may observe spatial chaos as a function of the spatial

coordinate x. In general, of course, more than one coordinate may be involved. The

resultant spatial configurations may naturally correspond to amorphous systems and

realize models of structural glasses. A related correspondence in disordered systems

has been found in random Potts systems wherein spin glass transitions coincide with

transitions from regular to chaotic phases in derived dynamical analogs.[124]

In the translationally invariant systems that form the focus of our study, an effec-
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tive free energy of the form

F [s] =
1

2

∫

ddk

(2π)d
(v(~k) + µ)|s(~k)|2 +

u

4

∫

ddx(S2(~x)− 1)2. (5.39)

is generally associated with single component (n = 1) systems of the form of Eqs. (

2.12). In Eq. (5.39), µ represents the deviation from the transition temperature in

Ginzburg-Landau theories (or equivalently related to Eq. (5.30)).

Euler-Lagrange equations for the spins S(~x) are obtained by extremizing the free

energy of Eq. (5.39). These equations are, generally, nonlinear differential equations

(as discussed in Appendix H). As is well appreciated, however, nonlinear dynamical

systems may exhibit chaotic behavior. In general, a dynamical system may, in the

long time limit, either veer towards a fixed point, a limit cycle, or exhibit chaotic

behavior. We should therefore expect to see such behavior in the spatial variables

in systems which are governed by Euler-Lagrange equations with forms similar to

nonlinear dynamical systems. Upon formally replacing the temporal coordinate by

a spatial coordinate, chaotic dynamics in the temporal regime map onto to a spatial

amorphous (glassy) structure.

In Fig. 5.7(a), we illustrate the spatial amorphous glass-like chaotic behavior that

a one-dimensional rendition of the system of Eq. (5.38) exhibits. In Figs. 5.7(b)–

5.7(g), we provide plots of the spatial derivatives of different order vs each other (and

S(x) itself).
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Figure 5.7: Glassiness in system with v(k) as in Eq. (5.38) with c1 = 5, c2 = 4 and u = 1

and µ = 1 in Eq. (5.39).
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Figure 5.8: Example of aperiodic structure inspired by system with nonlinear jerks. Here

J(S(x), S′(x), S′′(x)) = −2S′(x)+(|S(x)|−1) and initial conditions are S(0) =

−1, S′(0) = −1, S′′(0) = 1 (chosen from Ref. [5]).

Another example comes from the spatial analog of dynamical systems with non-

linear “jerks”. It is well known that systems with nonlinear “jerks” often give rise

to chaos[5] “Jerk” here refers to the time derivative of a force, or, something which

results in a change in the acceleration of a body. Translating this idea from the

temporal regime to the spatial regime, one can expect to obtain a aperiodic/glassy

structure in a system for which the Euler Lagrange equation, Eq. (H-50) may seem

simple. For example, if we have the following, Euler Lagrange equation for a partic-

ular one-dimensional system,

S ′′′(x) = J(S(x), S ′(x), S ′′(x)), (5.40)

with a non-linear function J(S(x), S ′(x), S ′′(x)) then the system may have aperiodic

structure. An example is depicted in Fig. (5.8).
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We now discuss O(n) systems and illustrate the existence of periodic solutions

(and absence of chaos) in a broad class of systems.

The Euler-Lagrange equations for the system in Eq. (5.39) [written longhand

in Eqs. (H-50, H-56)] become linear in case of “hard” spins, i.e., when the O(n)

condition is strictly enforced, i.e., u → ∞. In this limit, all configurations in the

system can be described by a finite set of modulation wave-vectors (as was the case

for the ground states in Sec. 5.3.1).

There are several ways to discern this result. First, it may be simply argued that

since the Euler-Lagrange equations represent a finite set of coupled linear ordinary

differential equations, chaotic solutions are not present. The configurations, therefore

must be characterized by a finite number of modulation wave-vectors.

A second approach is more quantitative. The idea used here is the same as the one

used in Ref. [98]. An identical construct can be applied to illustrate that spiral/poly-

spiral states are the only possible states that satisfy the Euler-Lagrange equation if

n > 1. With v being a functional of the lattice Laplacian of Eq. (2.7), the lattice

rendition of the Euler-Lagrange equations in Fourier space reads

D(∆~k)s(
~k) = 0. (5.41)

In what follows we consider what transpires when the Euler-Lagrange equations have

real wave-vectors K = {~qm}vas solutions.

D(∆~k)s(
~k)
∣

∣

∣

~k=~qm
= 0. (5.42)
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To obtain a bound on the number of wave-vectors that can be used to describe a

general configuration satisfying the Euler-Lagrange equations, we consider general

situations wherein (i) 2(~qm ± ~qm′) 6= ~krec for any ~qm, ~qm′ ∈ K, where ~krec represents a

reciprocal lattice vector; and, (ii) ~qm ± ~qm′ 6= ~qp ± ~qp′ for any ~qm, ~qm′ , ~qp, ~qp′ ∈ K. Let

a particular state be described as

~S0(~x) =
∑

m

~ame
−i~qm·~x, (5.43)

where the vectors ~am have n components for O(n) systems. As the states must have

real components, the above equation must take the form,

~S0(~x) =

Nq
∑

m=1

(

~ame
−i~qm·~x + ~a∗me

i~qm·~x) . (5.44)

In the above, ~a∗m denotes the vector whose components are complex conjugate those

of the vector ~am. In Eq. (5.44), we do not count terms involving the wave-vectors ~qm

and −~qm separately as such terms has been explicitly written in the sum.

We next define the complex vectors {~Um} and {~Vm} as

~Um = ~ame
−i~qm·~x,

~Vm = ~ame
i~qm·~x. (5.45)
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The O(n) normalization condition can then be expressed as,

∑

m

|~Um|2 = n,

∑

m

|~Vm|2 = n,

∑

~qm−~qm′= ~A

(

~U∗
m · ~Um′ + ~V ∗

m′ · ~Vm
)

+

∑

~qm+~qm′= ~A

(

~U∗
m · ~Vm′ + ~U∗

m′ · ~Vm
)

= 0. (5.46)

Solutions to Eq. (5.46) are spanned by the set of mutually orthonormal basis vectors

{~Um} ∪ {~Vm}. As these 2Nq basis vectors are described by n-components each, we

must have,

Nq ≤ n/2. (5.47)

Therefore, such states satisfying the Euler-Lagrange equations for an O(n ≥ 2) system

can at most be characterized by n/2 pairs of wave-vectors. These states can be

described by Nq spirals (or “poly-spirals”) each of which is described in a different

orthogonal plane.

A few remarks are in order.

• When u in Eq. (5.39) is finite, i.e., in the soft spin regime, poly-spiral solutions

could be present even though aperiodic solutions are also allowed.

• Continuum limit: In the hard-spin limit, i.e., u → ∞ in Eq. (5.39), if the

Fourier space Euler-Lagrange equation is satisfied by non-zero real wave-vectors,
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we have poly-spiral solutions as in the lattice case. When u is finite, aperiodic

solutions may also be present.

• If the Fourier space Euler-Lagrange equation does not have any real wave-vector

solution, poly-spiral states are not observed.

In nonlinear dynamical systems, chaos is often observed via intermittent phases.

As a tuning parameter λ is varied, the system enters a phase in which it jumps between

periodic and aperiodic phases until the length of the aperiodic phase diverges. This

divergence is characterized by an exponent ν = 1/2 similar to ours.[125]

5.8 Conclusions

Most of the work concerning properties of the correlation functions in diverse arenas,

has to date focused on the correlation lengths and their behavior. In this work, we

examined the oscillatory character of the correlation functions when they appear.

We furthermore discussed when viable non-oscillatory spatially chaotic patterns

may (or may not appear); in these, neither uniform nor oscillatory behavior is found.

Our results are universal and may have many realizations. Below, we provide a brief

synopsis of our central results.

1. We have shown the existence of a universal modulation length exponent νL =

1/2 [Eq. (5.7)]. Here the scaling could be as a function of some general parame-
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ter λ such as temperature. This is observed in systems with analytic crossovers

including the commensurate-incommensurate crossover in the ANNNI model.

2. In certain situations the above exponent could take other rational values [Eq.

5.5].

3. This result also applies to situations where a correlation length may lock in to

a constant value as the parameter λ is varied across a threshold value [as in Eq.

(5.14)].

4. We extended our result to include situations in which the crossover might take

place at a branch point. In this case irrational exponents could also be present.

In Eqs. (5.22, 5.23), we provide universal scaling relations for correlation and

modulation lengths.

5. We illustrate that discontinuous jumps in the modulation/correlation lengths

mandate a thermodynamic phase transition.

6. We showed that in translationally invariant systems (with rotational and/or

reflection symmetry), the total number of correlation and modulation lengths

is generally conserved as the general parameter λ is varied.

7. Our results apply to both length scales as well as time scales. We further

introduce the notion of a Josephson time scale.
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8. We comment on the presence of aperiodic modulations/amorphous states in sys-

tems governed by nonlinear Euler-Lagrange equations. We illustrate that in a

broad class of multi-component systems chaotic phases do not arise. Spiral/poly-

spiral solutions appear instead.

9. Our results have numerous applications. We discussed several non-trivial con-

sequences for classical system in the text. For completeness, in Appendix G,

we discuss, rather simple applications of our results to non-interacting Fermi

systems.
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Chapter 6

A molecular dynamics study on

the micro-structure of Al88Fe5Y7

6.1 Introduction

The importance of metallic glasses has been acknowledged by materials scientists for

more than half a century. Since then, there have been attempts at understanding their

structure and properties. [53, 55, 126–129] More modern approaches are reported in

[60, 130]. There is however very little knowledge about the physics that governs

the microscopic structure and the properties of such systems. It is not known, for

example, how the structure and composition of a system is correlated to its ease of

vitrification. The influence of cooling rates on the resulting structures is also not

clear.
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Molecular dynamics (MD) simulations provide us with tools to study physical

systems through controlled experiments on the computer. With the knowledge of the

constituent elements first principles MD studies can be made on a variety of systems.

To perform such studies, however, in a feasible amount of time, it is necessary to

keep the system small. Such problems are further magnified when studying systems

without any long range order. It is not a problem when studying crystalline systems

because of the periodicity.

Another way to hasten the simulation times or equivalently make the system size

bigger is to make the theory simpler. This is done by replacing the ab-initio simulation

by a classical MD simulation in which the system is made up of classical particles

and we provide the inter-particle forces.

This work is an attempt to look at the local structure of a metallic system in the

liquid and glassy phases through classical and ab-initio MD simulations. We studied

the Al88Fe5Y7 system using classical and ab-initio MD simulation techniques. In

both cases we obtained a room temperature system configuration. We compared the

pair structure factor calculated from the room temperature configurations obtained

from the classical simulations with X-ray diffraction data taken on room quenched

room temperature samples. Since the system size used for ab-initio simulations was

not large enough, we compared the pair correlation functions obtained from ab-initio

simulations to those obtained by Fourier transforming the experimental diffraction

data. We also relaxed the room temperature structure to see the attributes which
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the system preferred.

6.2 Results

There is increase in icosahedral order as the system is cooled. Both classical as

well as ab-initio runs show this. This is manifested as an increase in the frequency

distribution ofW6 near −0.169 (the value for the perfect icosahedron) [Figs. 6.1 to 6.3

and 6.4 to 6.6]. The Voronoi statistics corresponding to the perfect icosahedron,
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Figure 6.1: Distribution of W6 for Al atoms obtained from classical simulation. The hori-

zontal axis shows W6 values and the vertical axis shows normalized frequency

distribution.

(0,0,12) also increases as we cool the system. Relaxing further enhances icosahedral

order showing that it is indeed preferred [Tables 6.1 and 6.2].
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Figure 6.2: Distribution of W6 for Fe atoms obtained from classical simulation.
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Figure 6.3: Distribution of W6 for Y atoms obtained from classical simulation.

6.3 Methods

6.3.1 Classical molecular dynamics simulation

All of these simulations were done using a classical MD software developed by the

Institute for Theoretical and Applied Physics (ITAP) called IMD [8, 131]
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Figure 6.4: Distribution of W6 for Al atoms for VASP run.
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Figure 6.5: Distribution of W6 for Fe atoms for VASP run.

Pair potentials

First, we developed the pair potentials that were used to perform the MD simulations.

This was done by using data from ab-initio calculations on crystalline systems in

which the same elements are in similar environment. The pair potentials for which

the forces and energies were best fit were chosen for use in the IMD simulation. The

fitted energies are shown in Fig. 6.7. The fitted forces are shown in Fig. 6.8. The
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Figure 6.6: Distribution of W6 for Y atoms for VASP run.

Voronoi 1500K 300K Relax

Types Al Fe Y Al Fe Y Al Fe Y

(0,0,12) 0.28 0.00 0.00 3.55 3.75 0.00 3.98 3.75 0.00

(0,0,12,2) 0.00 0.00 0.00 0.21 0.00 0.00 0.21 0.00 0.00

(0,1,10,2) 0.28 0.00 0.00 1.78 0.00 0.00 2.63 0.00 0.00

(0,3,6,4) 0.65 0.00 0.00 1.35 0.00 0.00 1.42 0.00 0.00

(0,5,4,4) 0.36 0.00 0.00 0.64 0.00 0.00 0.28 0.00 0.00

(0,3,6) 0.00 8.75 0.00 0.00 7.50 0.00 0.00 10.00 0.00

(0,5,4) 0.21 6.25 0.00 0.00 17.50 0.00 0.00 15.00 0.00

Table 6.1: Voronoi statistics for IMD run. The figures show the proportion (percent) of

the important different Voronoi polyhedra.
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Voronoi 1500K 300K Relax

Types Al Fe Y Al Fe Y Al Fe Y

(0,0,12) 0.23 0.00 0.00 0.80 2.00 0.00 1.02 2.00 0.00

(0,0,12,2) 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(0,1,10,2) 0.11 0.00 0.00 0.91 0.00 0.00 1.59 0.00 0.00

(0,3,6,4) 0.23 0.00 0.00 0.57 0.00 0.00 1.14 0.00 0.00

(0,5,4,4) 0.91 0.00 0.00 0.23 0.00 0.00 0.45 0.00 0.00

(0,3,6) 0.11 10.00 0.00 0.00 14.00 0.00 0.23 6.00 0.00

(0,5,4) 0.00 12.00 0.00 0.00 22.00 0.00 0.00 20.00 0.00

Table 6.2: Voronoi statistics for VASP run. The figures show the proportion (percent) of

the important different Voronoi polyhedra.
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Figure 6.7: Energies fitted with first principles calculations.
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Figure 6.8: Forces fitted with first principles calculations.

pair potentials that were hence calculated are plotted in Fig. 6.9.
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Figure 6.9: Pair potentials.

Some initial runs

We prepared a configuration with 200 atoms with the correct density and composition.

We did different trial runs with IMD on this system. We also studied the diffusion

rates at different temperatures and found out that 20 ps were long enough to obtain
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configurations at 1500K which could be treated as independent.

Getting a large system configuration at room temperature

An initial large configuration at 1500K was created by doubling a smaller sized system

(200 atoms) in all the Cartesian directions. The resulting system therefore had 1600

atoms. We then reduced the sizes of the basis vectors so that the volume matched

the low-temperature volume. This system was then allowed to go to a physically

preferred configuration by running it at that temperature for a long time (20.36 ps).

Then, the system was cooled to 600K in 4.072 ps. It was then cooled to 500K in 20.36

ps. The final configuration was obtained by cooling the system to room temperature

(300K) in 4.072 ps. The whole process was repeated 4 more times, each time starting

with the final configuration at 1500K of the previous run and running it for 20.36 ps.

Relaxing the system

We relaxed the last room temperature configuration. The minimum energy configu-

ration was obtained using the conjugate gradient method.

6.3.2 First principles molecular dynamics simulation

The first principles simulations that we performed were done using the Vienna ab-

initio simulation package (VASP) [132–134].
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Getting a room temperature sample

The initial configurations were obtained from IMD runs at 1500K on a systems having

200 atoms. These were allowed to run for 500 fs at 1500K. They were then cooled to

1000K in 500 fs. At this point, each of the simulation cell edge lengths were reduced

by 1% to account for the volume change with temperature. The systems were again

allowed to settle to the new volume for 500 fs. The systems were then cooled to 300K

in 700 fs.

Relaxing the sample

We relaxed the room temperature configurations. The relaxation was done using

VASP which also used the conjugate gradient algorithm.

6.3.3 Analysis

Pair correlation function and Structure factor

The pair correlation function is the normalized density of atoms around a particular

atom. For atom types A and B, it is calculated by first forming a histogram of all

B atoms at a distance between r and r + δr from A atoms. This is then normalized

by dividing by 4πr2δr and nAnB. The resulting function is then smeared with a

Gaussian of standard deviation 0.025Å to get the partial pair correlation function for

pair A-B, gAB(r).
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The partial structure factor SAB(q) for pair A-B is obtained from gAB(r) using

SAB(q) = 1 + 4πρ

∫ ∞

0

[gAB(r)− 1]
sin(qr)

qr
r2dr. (6.1)

The total pair correlation function is obtained from the partials by normalized

weighting in proportion to nAnBZAZB where ZA represents the atomic number of the

A atoms and nA the number of A atoms in the simulation cell. The total structure

factor is also obtained in the same way.

Bond-orientational order parameter W6

The bond-orientational order parameter, W6 [55] helps us detect icosahedral order

present in our system. The value of W6 for an isolated icosahedral cluster is -0.169

which is very different from other clusters [bcc:+0.013; fcc:-0.013; hcp:-0.012]. Thus,

distribution of W6 values in a system can help us in quantifying the amount of icosa-

hedral order.

For a given atom, W6 is calculated as follows. Taking any reference frame, the

orientational angles θ and φ are noted for all the bonds (line joining near neighbor

atoms). The quantity Q̄6,m = 〈Y6,m(θ, φ)〉 is then calculated for all m, −6 ≤ m ≤ 6,

where the average is taken over all the bonds. From this, W6 is calculated using the
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following.

W6 = (
6
∑

m=−6

|Q̄6,m|2)−3/2
∑

m1,m2,m3,

m1 +m2 +m3 = 0









6 6 6

m1 m2 m3









Q̄6,m1Q̄6,m2Q̄6,m3(6.2)

where








6 6 6

m1 m2 m3









represent the Wigner 3j symbols.

Voronoi analysis

Voronoi analysis helps us in visualizing the local environments around atoms. For

this, first a Voronoi polyhedron is constructed around a chosen atom in the following

way. Perpendicularly bisecting planes are drawn for all lines joining that atom to

other atoms. The smallest closed polyhedron thus formed is the Voronoi polyhedron

for this atom. It is then assigned a set of integers (F3, F4, F5, ...) where Fi is

the number of faces of the Voronoi polyhedron with i edges. For example, (0,0,12)

represents the icosahedron, (0,12,0) represents the fcc and hcp, (0,6,0,8) represents

the bcc, and so on. (0,0,12,x), x = 2, 3, 4, ... represents icosahedral structures with

disclinations.
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Honeycutt-Anderson analysis

This is another method to characterize and quantify local order. Each bond between

to atoms of types A and B is characterized by 3 integers n1n2n3, where n1 is 1 if the

atoms are nearest neighbors, 2 if they are second neighbors and so on (We are not

interested in n1 > 2); n2 is the number of common neighbors the two atoms have;

and n3 is the number of pairs of these common neighbors which are neighbors of each

other. For example, 155 is characteristic of perfect icosahedra, 244 is present in bcc

structures, 233 is present when an atom sits outside an icosahedron at second neighbor

distance from the center atom, and so on. [Note: The distances corresponding to near

neighbors, second neighbors, and so on, are obtained from the minima in the gAB(r)

plot.]

6.4 Observations and inference

The total and partial pair correlation functions obtained from the classical molecular

dynamics simulation has been plotted in Fig. (6.10). The structure factor was calcu-

lated from this and plotted in Fig. 6.11. A comparison with X-ray diffraction data

has been shown in Fig. 6.12.

The pair correlation functions obtained from first principles MD simulation has

been plotted in Fig. 6.13. The structure factors obtained from these has been shown

in Fig. 6.14. It is to be noted, however, that due to the smallness of the system
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Figure 6.10: Total and partial pair correlation functions from the classical MD simula-

tions.
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Figure 6.11: Total and partial structure factors obtained from classical simulation.

size, the total structure factor in Fig. 6.14 does not agree well with diffraction data.

The range of wave-vectors for which diffraction data was available to us made us

decide that it was more justified to compare the pair correlation functions obtained

by Fourier transforming the diffraction data with those calculated using first principles

simulation. Such a comparison is shown in Fig. 6.15.
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Figure 6.12: Comparison of total structure factors from experiment and classical MD

simulation.
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Figure 6.13: Total and partial pair correlation functions obtained from ab-initio simula-

tion.

6.4.1 A look at the Al-Fe-Y phase diagram

The coexisting phases of Al-Fe-Y that may be present in our system are Al10Fe2Y.oC52,

pure Al as Al.cF4 and an Al-Y binary as Al3Y.hP8 [Fig. 6.16]. The Al8CeFe2.oP44
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Figure 6.14: Total and partial structure factors obtained from ab-initio simulation.
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Figure 6.15: Comparison of pair correlation function from first principles simulation and

Fourier transforming X-ray diffraction data.

and Al10Fe2Gd.oC52 [Gd can be replaced by Y] phases are theoretically predicted to

be stable but are not yet experimentally verified.

We looked at the environments of Fe-Y and Y-Y in the Al10Fe2Y crystal. In

[Fig. 6.17], we see that Y-Y are second neighbors and there are 3 common Al neighbors

which form a square (approximately). Presence of such a structure could be studied
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Figure 6.16: Al-Fe-Y phase diagram. Phases 2 and 3 are theoretically predicted to be

stable but have not been found experimentally.

with Honecutt-Anderson (HA) analysis and looking for HA index 244 where the first

2 stands for second neighbors, the first 4 indicates 4 common neighbors and the last

4 shows the number of bonds between the common neighbors.

In [Fig. 6.18], we see that Fe-Y are second neighbors and there are 3 Al atoms which

form an approximately equilateral triangle which are very close to being immediate

neighbors for both Fe and Y. Such a structure would correspond to HA index of 233

if the Al atoms were indeed common neighbors. However, this structure could also be

interpreted as an icosahedron with Fe as the centre atom and Al as the surrounding

atoms and a Y atom outside this.
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Figure 6.17: Y-Y environment in Al10Fe2Y . Grey atoms represent Al, blue represent Fe

and purple represent Y.

Figure 6.18: Y-Y environment in Al10Fe2Y . Grey atoms represent Al, blue represent Fe

and purple represent Y.
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6.4.2 Honeycutt-Anderson analysis

The distribution of the HA indices for the bonds in the configurations obtained from

both classical and ab-initio simulations also show the increased icosahedral order in

the cooled and relaxed configurations. These are plotted in Figs. 6.19–6.28.
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Figure 6.19: Statistics for nearest neighbor HA indices for Al-Al pairs obtained from clas-

sical simulation.
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Figure 6.20: Statistics for nearest neighbor HA indices for Al-Fe pairs obtained from clas-

sical simulation.
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Figure 6.21: Statistics for nearest neighbor HA indices for Al-Y pairs obtained from clas-

sical simulation.
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Figure 6.22: Statistics for nearest neighbor HA indices for Fe-Y pairs obtained from clas-

sical simulation.

Some second neighbor HA indices which we thought were interesting to look at

were 244 for Y-Y pairs and 233 for Fe-Y pairs.

For the Y-Y pairs [Figs. 6.29 and 6.30], we see that 244 is preferred by the IMD

configuration but not by the VASP configuration. Since 244 for Y-Y is a characteristic

of the crystal structure, we conclude that the VASP run did a better job at going to
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Figure 6.23: Statistics for nearest neighbor HA indices for Y-Y pairs obtained from clas-

sical simulation.
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Figure 6.24: Statistics for nearest neighbor HA indices for Al-Al pairs obtained from first

principles simulation.

the amorphous structure.

For the Fe-Y pairs [Figs. 6.31 and 6.32], we see that the 233 is preferred by VASP

and not by IMD.
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Figure 6.25: Statistics for nearest neighbor HA indices for Al-Fe pairs obtained from first

principles simulation.
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Figure 6.26: Statistics for nearest neighbor HA indices for Al-Y pairs obtained from first

principles simulation.

6.4.3 Bond orientation

The distribution of W6 values becomes more skewed on cooling and further on re-

laxing, towards the value for the perfect icosahedron (-0.169) for Al and Y centered

analysis for both IMD and VASP runs. There is no such trend in the Y centered W6

distribution.
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Figure 6.27: Statistics for nearest neighbor HA indices for Fe-Y pairs obtained from first

principles simulation.
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Figure 6.28: Statistics for nearest neighbor HA indices for Y-Y pairs obtained from first

principles simulation.

6.4.4 Voronoi analysis

The Voronoi polyhedron representing the perfect icosahedron is (0, 0, 12). For the

IMD simulation (Table 6.1), Voronoi analysis indicated that the proportion of Al

centered icosahedra increased on cooling, and increased further on relaxing. Fe cen-
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Figure 6.29: Statistics for second neighbor HA indices for Y-Y pairs obtained from clas-

sical simulation.
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Figure 6.30: Statistics for second neighbor HA indices for Y-Y pairs obtained from ab-

initio simulation.

tered icosahedra also increased in number on cooling but did not change on relaxing.

An Y atom is too big to form an icosahedron with it at the center and Al atoms

around.

For the VASP run (Table 6.2), the trends were exactly same as the IMD run. The

numbers however, were much less in this case.
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Figure 6.31: Statistics for second neighbor HA indices for Fe-Y pairs obtained from clas-

sical simulation.
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Figure 6.32: Statistics for second neighbor HA indices for Fe-Y pairs obtained from ab-

initio simulation.
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Chapter 7

Detecting hidden structures in

metallic glasses by multiresolution

network clustering

7.1 Introduction

This chapter introduces a new method of obtaining the essential structural features

on all length scales in general complex systems with the knowledge of pairwise inter-

action strengths. We apply our methods to detect the natural scales and obtain the

structures of metallic glasses. Complex systems and glasses are not easy to analyze

with conventional theoretical tools.[135] In a gas, all interactions between the basic

constituents are weak, so the system is easy to understand and analyze. At the other
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extreme, the interactions in regular periodic solids are generally strong, and such

solids may be characterized by their unit cells and related broken symmetries.

The situation is radically different for liquids and glasses. Liquids that are rapidly

cooled (“supercooled”) below their melting temperature cannot crystallize and in-

stead, at sufficiently low temperatures, become “frozen” in an amorphous state (a

“glass”) on experimental time scales. On supercooling, liquids may veer towards lo-

cal low energy structures,[130, 136] such as icosahedral structures observed in metallic

glasses,[137, 138] before being quenched into the amorphous state. Lacking a simple

crystalline reference, the general structure of glasses is notoriously difficult to quantify

in a meaningful way beyond the smallest local scales. As such, it remains a paradigm

for analyzing structure in complex materials.

Network analysis has been transformative in generating keen new insights in nu-

merous areas such as sociology, homeland security, biology, and many other problems.

Complex physical problems have not yet been examined before through this prism in

this detail. We specifically introduce methods from the growing discipline of “com-

munity detection”.[139] The key idea is that any complex physical system may be

expressed as a network of nodes (e.g., atoms, electrons, etc.) and connecting links

that quantify the relations (interactions/correlations) between the nodes. With this

representation, we then apply multiresolution methods [6] from network theory to

analyze the systems.
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7.1.1 Partitions of large systems into weakly coupled ele-

ments

As depicted in Fig. 7.1, community detection describes the problem of finding clusters

(“communities”) of nodes with strong internal connections and weak connections

between different clusters. The definitions of nodes and edges depend on the system

being modeled. For the present system, between each pair of nodes i and j we have

an edge weight Vij which may emulate an interaction energy or measured correlation

between sites i and j. The nodes may belong to any of q communities, {Ca}qa=1. In

our particular realization, the nodes represent particles and edges model the pair-wise

potential energy interactions.

7.1.2 Community detection method

Our (Potts type) Hamiltonian reads

H =
1

2

q
∑

a=1

∑

i,j∈Ca

(Vij − v)[θ(v − Vij) + γθ(Vij − v)]. (7.1)

In Eq. (7.1), the inner sum is over nodes i and j in the same community Ca, and the

outer sum is performed over the q different communities. The number of communities

q may be specified from the outset or left arbitrary (the usual case) allowing the

algorithm to determine q based on the lowest energy solution(s).[6, 140]

Minimizing this Hamiltonian corresponds to identifying strongly connected clus-

ters of nodes. The parameter γ > 0 tunes the relative weights of the connected and
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Figure 7.1: A weighted network with 4 natural (strongly connected) communities. The

goal in community detection is to identify such strongly related clusters of

nodes. Solid lines depict weighted links corresponding to complimentary or

attractive relationships between nodes i and j (denoted by Aij) [(Vij − v) < 0

in Eq. (7.1)]. Gray dashed lines depict missing or repulsive edges (denoted by

Bij) [(Vij − v) > 0]. In both cases, the relative link weight is indicated by the

respective line thicknesses.

unconnected edges and allows us to vary the targeted scale of the community division

(the “resolution”). The model for the current application could be further generalized

by incorporating n-body interactions or correlation functions (such as three or four

point correlation functions). Details concerning a greedy minimization of Eq. (7.1)

appear in Refs. [6] and [140].
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7.1.3 Multiresolution network analysis

We address multi-scale partitioning [6] by employing information-theory measures

[141, 142] to examine contending partitions for each system scale. While decreasing γ,

we minimize Eq. (7.1) resulting in partitions with progressively lower intra-community

edge densities, effectively “zooming out” toward larger structures. A key construct

in our approach is the application of replicas – independent solutions of the same

problem. The number of replicas p may be set by the user where higher value of p

leads to more accurate analysis.

In static systems replicas were formed by permuting the order of nodes in Ref.

[6]. In this work, we take advantage of the dynamic system to implement a further

generalization where replicas are defined at different times (see Fig. 7.2. We au-

tomatically determine the natural scales of a system by identifying the values of γ

for which these replicas agree most strongly via information theory measures such as

normalized mutual information NMI and variation of information VI.

The central result from Ref. [6], that we use in this work, is that extrema (includ-

ing plateaux) of information theory overlaps (when averaged over all replica pairs) in-

dicate the “natural” network scales.[6] That is, we find the values γ∗ for which the av-

erage Q of information overlaps (over all replica pairs) is extremal, (dQ/dγ)|γ=γ∗ = 0.

We then identify the parititions that correspond to these γ∗(s).
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Figure 7.2: A set of replicas separated by a time ∆t between successive replicas. We gen-

erate a model network for each replica using the potential energy between the

atoms as the respective edge weights and then solve each replica independently

by minimizing Eq. (7.1) over a range of γ values. We then use information

measures [6] to evaluate how strongly pairs of replicas agree on the ground

states of Eq. (7.1).

7.2 Systems studied

We examine a model glass former derived from the three-component AlYFe metallic

glass of Chapter 6 which we designate as “A”, “B”, and “C” in mixture ratios of

88%, 7%, and 5%, respectively. We additionally test the ubiquitous Lennard-Jones

potential using the Kob-Andersen (KA) 80:20 binary liquid [9] which lies in the glass-

forming mixture region [143].
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7.2.1 Ternary model glass former

In this section, we discuss our study on the ternary system mentioned above. As

depicted in Fig. 7.4, we use classical molecular dynamics (MD) [8] to simulate the

system dynamics.

a0 a1 a2 a3 a4 a5

AA * * * * * *

AB 1.92 17.4 6.09 3.05 -4.68 3.48

AC 2.38 8.96 -14.9 3.11 -3.88 4.38

BB * * * * * *

BC 1.88 8.00 -3.42 2.53 -1.25 3.00

CC * * * * * *

Table 7.1: Fit parameters for Eq. (7.2) obtained from fitting configuration forces and

energies to ab-initio data (as in Chapter 6). The units of the parameters are

such that given r in Å, φ(r) is in eV . (That is, the parameters a1, a4 and a5

are dimensionless, a0 is in Å, a2 is in eV Åa5 and a3 is in Å−1.) The same-

species (*) data is replaced by a suggested potential derived from generalized

pseudo-potential theory [7].

For this, as in Chapter 6, we need accurate effective pair potentials that portray

the pairwise interactions between the atoms in the system. Our model potential
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Figure 7.3: The pair potentials for our three-component model glass former (see Fig.

7.4). We indicate the atomic types by “A”, “B”, and “C” which are included

with mixture ratios of 88%, 7%, and 5%, respectively. The units are given

for a specific candidate atomic realization (AlYFe) discussed in the text. The

same-species data uses a suggested potential derived from generalized pseudo-

potential theory [7].

energy function is,

φ(r) =
(a0
r

)a1
+
a2
ra5

cos (a3r + a4) , (7.2)

where r is the distance between the centers of two atoms. This potential form incor-

porates a realistic weak long range interaction. Table 7.1 summarizes the parameter

values ai which depend on the specific types for a pair of interacting atoms, and Fig.

7.3 shows the respective potential plots.

After the forces and energies were fit to first-principles data (as in Chapter 6, the

same-species model interactions are finally replaced by that suggested by generalized
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Figure 7.4: A depiction of our simulated model glass former with three components “A”,

“B”, and “C” with mixture ratios of 88%, 7%, and 5%, respectively. The

N = 1600 atoms are simulated via IMD [8] in cube of approximately 31 Å

in size with periodic boundary conditions. The identities of the atoms are C

(red), A (silver), B (green) in order of increasing diameters.

pseudo-potential theory (GPT).[7] As illustrated in Fig. 7.4, we simulate N = 1600

atoms in a cubic system approximately 31 Å in size using periodic boundary condi-

tions. This width is approximately twice the size of any suspected MRO structures.

The system is initialized at a temperature of T = 1500 K and allowed to equilibrate

for a long time using a constant number of atoms (N), a constant volume (V), and a

constant energy (E). That is, we work within the NVE ensemble. After allowing for

system equilibration, we save s high temperature configurations separated by a fixed
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period of simulation time. (We fixed the value of s at 12 for all our simulations.)

Prior to cooling, the length scales in the system are changed by 1% to account for

the increase in density as a result of cooling since we choose to cool the system in an

NVT ensemble to control the temperature. This was done to keep a realistic density

difference between the high and low temperature configurations. It should not have

any important physical consequences pertaining to local structure. The system is then

rapidly quenched to a temperature of T = 300 K, and it is allowed to equilibrate (in a

mostly frozen state) in an NVE ensemble. We again save s separate low temperature

configurations separated by a long period of simulation time.

7.2.2 Lennard-Jones glass

Here we discuss the application of our methods to simulations of the Kob-Anderson

mixture. The pair potentials are given by

φαβ(r) = 4ǫαβ

[

(σαβ
r

)12

−
(σαβ
r

)6
]

(7.3)

where α or β designate one of two atomic types A and B. Specifically, in accord with

KA we set the dimensionless units ǫAA = 1.0, ǫAB = 1.5, ǫBB = 0.5, σAA = 1.0,

σAB = 0.80, and σBB = 0.88.

As in the ternary glassy system above, we use MD [8] to simulate a LJ system of

N = 2000 atoms. The system is initialized at a temperature of T = 5 (using energy

units where the Boltzmann constant kB = 1) and allowed to evolve for a long time.
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We save s high temperature configurations separated by 10000 time steps. The time

step size is ∆t = 0.0069 in LJ time units. Then, the system is rapidly quenched to a

temperature of T = 0.01 which is well below the glass transition temperature of the

KA-LJ system. The system is evolved in this mostly frozen state, and we save s low

temperature configurations separated by 10000 steps of simulation time.

7.3 Results

We assign edges between the nodes (atoms) with the respective weights based on the

empirical pair-potentials given by Eqs. (7.2) and (7.3). Specifically, we calculate the

potential energy φij between each pair of nodes i and j in the system and then shift

each value by a constant φ0 to obtain φ′
ij = φij + φ0 (assuming that φij → 0 as the

distance between particles i and j tends to infinity (r → ∞)). The shift φ0 > 0 is

necessary for the community detection algorithm to properly partition the network

of atoms since it provides an objective definition of which interatomic spacings are

preferable for a well-defined cluster and which are preferred to be excluded from a

cluster.

In our particular application here, we calculate the average potential energy of

the system and set φ0 = −φavg. For use in Eq. (7.1), we define an edge with a weight

Aij = −φ′
ij between nodes i and j if φ′

ij < 0, and we weight any missing links (or

“repulsive edges”) by Bij = φ′
ij if φ

′
ij ≥ 0. We then solve both model systems over a
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large range of γ using s = 12 replicas and t = 10 optimization trials per replica.

While φ0 = −φavg is an intuitive shift that accomplishes the goal of an objective

cluster definition here, it is not an appropriate shift for some problems. For example,

using φ0 = −φavg turns out to be problematic in some cases for lattice models. In a

general setting, we examine a continuum of potential shifts φ0 and monitor extrema

in the information theory measures as a function of both γ in Eq. (7.1) and φ0.

In addition to the systems tested below, we applied the algorithm to various test

cases including square, triangular, and cubic lattice structures. The algorithm is able

to correctly identify the natural leading order scales (plaquettes and composites of

plaquettes as “cascades” in the information theory correlations). Further testing in-

volved two-dimensional defects (dislocations, interstitials, etc.) and domain walls in

a lattice. Defects in triangular lattices occurred most frequently near cluster bound-

aries.

We also tested static configurations for the ternary model glass system where each

replica is a model of the same configuration. There we detected structures in both

low and high temperatures where the high temperature “structures” are more fragile

(that is, harder to solve in the clustering problem). This corresponds to identifying

relevant transient features in a dense liquid.
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7.3.1 Ternary model glass results

In Figs. 7.5 and 7.6, panels (a) and (b) show the information theory based correlations

(averaged over all replica pairs as in [6]) over a range of network resolutions.

Figure 7.5: Panels (a) and (b) show the plots of information measures IN , V , H, and I

and the number of clusters q (right-offset axes) versus the Potts model weight

γ in Eq. (7.1). The ternary model system contains 1600 atoms in a mixture of

88% type A, 7% of type B, and 5% of type C with a simulation temperature

of T = 300 K which is well below the glass transition for this system. This

system shows a strongly correlated set of replica partitions as evidenced by

the information extrema at (i) in both panels. A set of sample clusters for

the best resolution at γ ≃ 0.001 is depicted in Fig. 7.9.
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Figure 7.6: Panels (a) and (b) show the plots of information measures IN , V , H, and I

and the number of clusters q (right-offset axes) versus the Potts model weight

γ in Eq. (7.1). The ternary model system contains 1600 atoms in a mixture of

88% type A, 7% of type B, and 5% of type C with a simulation temperature

of T = 1500 K which is well above the glass transition for this system. At this

temperature, there is no resolution where the replicas are strongly correlated.

See Fig. 7.5 for the corresponding low temperature case where the replicas are

much more highly correlated at γ ≃ 0.001.

The lower temperature system at T = 300 K in Fig. 7.5(a) shows a peak NMI at

(ia) with a corresponding VI minimum at (ib). Fig. 7.7 depicts an example of the

full system partition.

161



Chapter 7 Multiresolution network clustering

Figure 7.7: A depiction of the full partitioned system where unique cluster memberships

are depicted as distinct colors (best viewed in color). The atomic identities

are B, A, C in order of increasing diameters. Overlapping nodes (multiple

memberships per node) are added to these communities to determine the best

interlocking system clusters.

Fig. 7.8 shows some sample clusters within the simulation bounding box at resolu-

tion parameter value of γbest ≃ 0.001 where we include overlapping node memberships

(the replicas correlations are calculated on partitions), and Fig. 7.9 depicts additional

samples of the best clusters.

The corresponding high temperature (T = 1500 K) solutions have a much lower

NMI at γbest ≃ 0.001 indicating significantly worse agreement among replicas. That

is, one would expect that the high temperature system T = 1500 K is in a liquid state,
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(a) (b)

(c) (d)

Figure 7.8: Panel (a) is the full system cube, and panels (b) – (d) show three sample

clusters (one distinct cluster each using periodic boundary conditions) within

the simulation box . Note that the algorithm can identify structures beyond

immediate short range neighbors.
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Figure 7.9: A depiction of some of the best clusters of the low temperature (T = 300K)

ternary system at the peak replica correlation at feature (i) in Fig. 7.5. These

clusters include overlapping node membership assignments where each node

is required to have an overall negative binding energy to the other nodes in

the cluster. The atomic identities are C (red), A (silver), B (green) in order

of increasing diameters.

so any observed features are not dynamically stable across all replicas (snapshots of

the system over time). At T = 300 K, the best structures have consistent cluster

sizes that are exclusively MRO.

The plateau regions for γ > 10 are similar to the LJ plot in Fig. 7.10, but in this

system the NMI plateau is lower. In the high temperature case in Fig. 7.6, there are

additional “almost-plateaus” for the range 0.001 . γ . 0.1. These plateaus represent

a region of structural transition, but we are not concerned with them because the
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replica correlations are very low.

Figure 7.10: Panels (a) and (b) show the plots of information measures IN , V , H, and

I and the number of clusters q (right-offset axes) versus the Potts model

weight γ in Eq. (7.1). The LJ system contains 2000 atoms in a mixture of

80% type A and 20% type B (Kob-Andersen binary LJ system [9]) with a

simulation temperature of T = 0.01 (energy units) which is well below the

glass transition of Tc ≃ 0.5 for this system. This system shows a somewhat

strongly correlated set of replica partitions as evidenced by the information

extrema at (ia,b) in panels (a) and (b). A set of sample clusters for the best

resolution at γ = 104 is depicted in Fig. 7.11.
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Figure 7.11: Several of the best clusters for the peak replica correlation at feature (i) in

Fig. 7.10. These clusters include overlapping node membership assignments

where each node is required to have a overall negative binding energy to the

other nodes in the cluster. The atomic identities are B (silver) and A (red)

in order of increasing diameters.

7.3.2 Binary Lennard-Jones glass results

In Figs. 7.10 and 7.12, panels (a) and (b) show the data for the replica information

correlations over a range of network resolutions. The lower temperature system at

a temperature of T = 5 (in units of kB = 1) in Fig. 7.5(a) shows a plateau in

NMI at (ia) with a corresponding VI plateau at (ib) which are the local extrema

(V = 0 is a trivial solution with only one cluster in this problem). Fig. 7.11 depicts

a sample of the best clusters, including overlapping node memberships, at resolution

(i) for γbest ≃ 104. The corresponding higher temperature solutions at γbest ≃ 104
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Figure 7.12: Panels (a) and (b) show the plots of information measures IN , V , H, and

I and the number of clusters q (right-offset axes) versus the Potts model

weight γ in Eq. (7.1). The LJ system contains 2000 atoms in a mixture of

80% type A and 20% type B (Kob-Andersen binary LJ system [9]) with a

simulation temperature of T = 5 (energy units) which is well above the glass

transition of Tc ≃ 0.5 for this system. At this temperature, the replicas are

significantly less correlated than the corresponding low temperature case in

Fig. 7.10.

(see Figs. 7.12 and7.13) have a lower NMI (indicating a weak agreement among

replicas). The dependence number of replicas (See Fig. 7.13) required to achieve

high accuracy underscores the faint agreement between contending solutions and the
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(a) (b) (c) (d)

Figure 7.13: A sample depiction of dispersed clusters for the LJ system Eq. (7.3) at a tem-

perature of T = 5 (in units where kB = 1). The shown clusters correspond

to the multiresolution plot in Fig. 7.12 at value of the resolution parameter

of γ = 104. These clusters are a sample of high temperature counterparts to

the low temperature clusters in Figs. 7.10 and 7.11. Panels (a) and (b) show

a more typical example of dispersed clusters at a number of replicas s = 10.

In some cases, the identified high temperature clusters can be more com-

pact, but not densely packed. Panels (c) and (d) provide sample solutions

for s = 20 replicas.

high temperature complexity of the problem. Our identified structures for this LJ

model system are consistent in terms of the cluster sizes and are almost exclusively

SRO configurations with simple adjunct-type atoms extending into the low end of

MRO size structures.
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7.4 Conclusions

Our method is a new and very general approach to determine the natural multi-scale

structures of complex physical systems. We do not bias the expected configurations

in any way. The only required inputs are the pairwise interaction potentials between

the atoms. In case information about such pairwise interactions are not easy to

obtain, the algorithm can be used with the pair correlation functions used as weights.

Information theory extrema (including plateaus) between contending solutions give

the different pertinent structures on all important length scales (lattice scales and

correlation lengths) of the system in an unbiased unified way.
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A High temperature series expansion of the cor-

relation function

We now outline in detail how we may obtain a high temperature (T ) series expansion

of the correlation function to arbitrary order for a general system with translational

invariance. The results we present below are valid in the high temperature phase of

general lattice (spin or other) and continuum systems. However, these may hold at

low temperatures, provided we can analytically continue to low temperatures from the

high temperature phase, i.e., arrive at these without having a phase transition. We

should emphasize that as we set the temperature to be arbitrarily high, the density

does not have to be small as is assumed in methods derived from Mayer’s cluster

expansion for fluids. Our result is therefore valid for the high temperature phase

of any system. Albeit trivial, we should remark that, formally, for any finite size

system of N sites (or of finite volume for a continuum theory), no matter how large
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yet still finite, there are no phase transitions [instead there might be progressively

sharp (as N increases), yet analytic, crossovers]. Thus, in finite size systems, the

radius of convergence of the high T expansion is infinite. In general, the long range

character of the interactions will not enable us to invoke many of the simplifying

elegant tricks presented elsewhere. For instance, the counting of connected contours

and loops [144, 145] that appear in high temperature series expansions involving

nearest neighbor interactions cannot be applied here.

We can perform the high temperature series expansion directly in the original spin

space. However, we find it easier to make a transformation to a dual space where our

Boltzmann weights become Gaussian in the high temperature limit.

The correlation function of the original theory can be expressed in terms of the

correlation function (and higher moments) of the dual theory – we employ that in

our calculation. The dual theory to a nearest neighbor ferromagnetic system is a

Coulomb gas. A nearest neighbor ferromagnetic system in dimensions d > 2 at

low T has an ordered phase and a small correlation length (the correlation length

diverges at T = Tc). This does not imply that the Coulomb system has a small

correlation length at high temperature. O(n) constraints become faint at high T in

the dual theory whereas in the exact Coulomb gas at high T , the O(n) constraints

are there. The same also applies for a soft spin realization of the Coulomb gas where

exp[−βu(S2− 1)2] which is zero as β → ∞ (or T → 0) unless S2 = 1 everywhere. By

contrast in the exact dual theory at high temperature, the relative strength of theO(n)
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constraints becomes negligible relative to the “interaction” term containing (βV )−1.

Even though we can ignore β prefactors when β = O(1) and consider dual theories

and soft spin realization we cannot ignore the T dependence at high T about the

infinite T disordered limit. Otherwise we get a contradiction as our exact calculation

with the exact dual theory (containing the T -dependent prefactors) shows.

We will keep things general and perform the simple series expansion of the dual

Hamiltonian Hd in Eq. (3.6):

Hd = −N2

2β2

∑

~x,~y

V −1(~x− ~y)~η(~x) · ~η(~y)

− 1

β

∑

~x

ln

(

In/2−1(
√
nN |~η(~x)|)

(
√
nN |~η(~x)|)n/2−1

)

,

= −N2

2β2

∑

~x,~y

V −1(~x− ~y)~η(~x) · ~η(~y)

−N
2

2β

∑

~x

~η(~x) · ~η(~x)

+
N4

4(n+ 2)β

∑

~x

[~η(~x) · ~η(~x)]2 + ... . (A-4)

In Eq. (A-4), the interaction V should be thought of as a translationally invariant

matrix. That is, in a Dirac type notation, 〈~x|V |~y〉 = V (~x− ~y). In Eq. (A-4), V −1 is

the inverse Fourier transform of 1/v(~k), where v(~k) is the Fourier transform of V (~x)

[146].

Next, we separate Hd into a quadratic part Hd0 and higher order (interaction
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type) terms which we denote by ∆H. That is,

Hd0 = −N2

2β2

∑

~x,~y

V −1(~x− ~y)~η(~x) · ~η(~y)

−N
2

2β

∑

~x

~η(~x) · ~η(~x) (A-5)

∆H =
N4

4(n+ 2)β

∑

~x

[~η(~x) · ~η(~x)]2 + ... . (A-6)

The expectation value of any quantity X may be computed by

〈X〉d =
〈Xe−β∆H〉d0
〈e−β∆H〉d0

, (A-7)

= 〈X〉d0 − β [〈X∆H〉d0 − 〈X〉d0〈∆H〉d0]

+
β2

2!

[

〈X(∆H)2〉d0 − 2〈X∆H〉d0〈∆H〉d0

+2〈X〉d0〈∆H〉2d0 − 〈X〉d0〈(∆H)2〉d0
]

+... , (A-8)

where 〈·〉d0 represents the expectation value calculated with the Boltzmann weight

associated with the Hamiltonian Hd0. We may retain terms to arbitrary order in η2

(or corresponding order in 1/T ). Equation (3.7) can be expanded to arbitrary order

in η2, where we rewrite all expectation values with respect to the Hamiltonian Hd0.

The terms become expectation values of a product of an even number of η fields

with respect to the quadratic Hamiltonian Hd0. We can then use Wick’s theorem to

compute the expectations with respect to Hd0 to all orders. To order 1/T 3 we obtain

173



Appendix

for ~x 6= 0,

G(~x) = −V (~x)

kBT
+

1

(kBT )2

[

∑

~z

V (~z)V (~x− ~z)− 2V (0)V (~x)

]

+
1

(kBT )3



−
∑

~y,~z

V (~y)V (~z)V (~x− ~y − ~z)+

2V (~x)
∑

~z

V (~z)V (−~z) + 3V (0)
∑

~z

V (~z)V (~x− ~z)

−5(V (0))2V (~x)− 2
(V (~x))3

n+ 2

]

. (A-9)

As a brief aside, we note that from the fluctuation dissipation theorem the suscepti-

bility χ = β
∑

~xG(~x). At asymptotically high temperature, G(~x) ≃ δ~x,0 giving rise to

Curie’s law, χ ∝ 1/T . The terms in Eq. (A-9) lead to higher order corrections. To

next order, χ = 1
kB(T−θC)

with the Curie temperature θC =
∑

~x 6=0 V (~x) in the weak

coupling limit. Thus far, in the literature, the Curie-Weiss form has been invoked to

ascertain whether a given system has dominantly ferromagnetic or anti-ferromagnetic

interactions (by examining the sign of θC) and their strength (|θC |). We see that by

not focusing solely on χ = βG(~k = 0) but rather on the scattering function G(~k) for

all ~k, we can in principle deduce the interaction v(~k) and hence V (~x). We further

note, in passing, that for ferromagnetic systems (ones with V (~x) ≤ 0), all terms in

G(~x) are positive and the correlation functions are monotonically decreasing with T

(or increasing with the inverse temperature β). This and similar relations are con-

sequences of extensions of the standard Griffiths inequalities [147] to general O(n)
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systems with arbitrary range (ferromagnetic) interactions. The extension of these

relations to the O(n) systems discussed here follows from, e.g., an explicit Feynman

type diagrammatic expansion (e.g., [52]) that represents the high temperature series

expansion and noting that each diagram is trivially positive. Replacing the sums for

the clock model of Ref. [52], in e.g., O(2) systems, all angular integrals reduce to

products of the type
∫ 2π

0
dθ exp(inθ) = 2πδn,0 ≥ 0.

In Fourier space, the real space convolutions become momentum space products

and vice versa. Equation (A-9) then reads

G(~k) = 1− v(~k)

kBT
+

1

(kBT )2

[

(v(~k))2 − 2V (~x = 0)v(~k)
]

+
1

(kBT )3



−(v(~k))3 +
2v(~k)

N

∑

~k1

(v(~k1))
2

+3V (~x = 0)(v(~k))2 − 5(V (~x = 0))2v(~k)− 2

N2(n+ 2)
×

∑

~k1, ~k2

v(~k1)v(~k2)v(~k − ~k1 − ~k2)



−G1(0), (A-10)

where G1(0) is the value obtained by inserting ~x = 0 in Eq. (A-9). It should be

noted that the real space correlation function cannot change if we shift the on-site

interaction V (~x = 0) which is equivalent to a uniform shift to v(~k) for all k. This is

because the O(n) spin is normalized – |~S(~x)|2 = n at all sites ~x. This invariance to a

constant shift holds for all T and consequently to any order in 1/T , the coefficients

must be invariant to a global shift in v(k). Among other things, we earlier invoked

this invariance [72] to shift v(~k) to enable a HS transformation in the cases for which
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initially v(~k) > 0 for some values of ~k. We can, of course, invoke this invariance here

also to obtain the above high temperature series expansion with a well-defined HS

dual. The final results, as we re-iterated above are invariant under this shift as is

also manifest in our series expansion in powers of 1/T . Although obvious, we note

that the expansion in Eq. (A-10) is performed in powers of 1/T involving v(k) for

real vectors ~k. In examining the correlation lengths via contour integration in the

complex k plane, the corresponding v(k) may be extended for complex k.

We see from the expansion in Eq. (A-10) that already to O(1/T ), it is also

clear that the lengthscales of the system (which are determined by the poles of the

Fourier space correlation function) are governed by the poles of v(~k) in the complex

~k space. Thus, if, e.g., v(~k) = 1/(k2 + λ−2), the correlation length tends to λ at high

temperature. It therefore must diverge for a system with no screening.

In cases where the correlation function is known from some experimental technique

or otherwise, the series expansion for the correlation function can be inverted to arbi-

trary order to obtain the pairwise interactions. To O(1/T 2), for non-zero separation

~x, the potential function is given by,

V (~x) = −kBT
[

G(~x)−
∑

~z

′
G(~z)G(~x− ~z)

+
∑

~y,~z

′
G(~y)G(~z)G(~x− ~y − ~z)

+2G(~x)
∑

~z

′
G(~z)G(−~z)− 2 (G(~x))3

n+ 2

]

. (A-11)

The prime indicates that the sum excludes terms containing G(0). As is evident from
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our earlier results and discussion, in Eq. (A-11), each correlation function G(~x) is of

order (1/T ).

We reiterate that, as in our discussion in Sec. 3.6, our results for lattice O(n) spin

models match with the leading order behavior at high temperature obtained from

several standard approximate theories based on Mayer’s cluster expansion derived for

liquid systems, e.g., Born-Green theory [148] and OZ theory with the Percus-Yevick

approximation [149] or MSA [93]. As implicit above, our 1/T expansion can indeed

be extended to systems in which the liquid and the gas phase are not separated by a

phase transition, e.g., for pressures larger than the pressure at the liquid-vapor criti-

cal point. As further noted in Sec. 3.6, various approximations also suggest that at

high temperatures, the correlation length may match the length scale characterizing

the interaction potential and, in particular, will diverge in systems having long range

interactions (as we have established).
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B Relation between the generalized Debye lengths

and divergence of the high temperature corre-

lation lengths

An intuitive approximate approach for the understanding of the rigorous yet seem-

ingly paradoxical result that we report in this work – that of the divergence of the

correlation lengths in the high temperature limit of systems with long range inter-

actions – is afforded by the OZ framework. Specifically, in the language of OZ ap-

proximations, the “total” high temperature correlation function is the same as the

“direct” correlation function [see, e.g., Ref. [77] (Sec. 2.6) for the definition of the

“direct” OZ correlation functions] and behaves as

G(~x) ∼ −βV (~x) (B-12)

for ~x 6= 0. Thus, if the potential is screened beyond a distance λ, the correlation

length approaches λ at high temperature. That is, if we have an effective interaction

resulting, e.g., from higher order effects in 1/T , such as that leading to the Debye

screening length (λD) in Coulomb systems [and generalizations introduced earlier in

Eq. (3.18)], then at high temperature, the correlation length

ξ −−−→
T→∞

λD. (B-13)

This is a particular case of Eq. (3.15).
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To O(1/T 2), Eq. (A-10) is identical to Eq. (3.10). The poles of G in the complex

k plane can, of course, be computed by finding those of Eq. (3.10) or considering

directly those of Eq. (A-10): both give rise to the same answer as they must.

C Transfer Matrix in the one-dimensional system

with Ising spins

Thus far, we focused primarily on high dimensional continuous (large-n) spin sys-

tems. For completeness, we review and illustrate how some similar conclusions can

be drawn for one-dimensional Ising systems with finite ranged interactions and briefly

discuss trivial generalizations. In particular, we show how the sum of the number of

modulation and number of correlation lengths does not change as the temperature is

varied. In Sec. 4.3.3, we illustrated how this arises for general large-n systems.

For interactions of range R in a one-dimensional Ising spin chain, the transfer

matrix, T is of dimensionM = O(2R). The correlation function for large system size,

takes the form

G(x) =
2R−1
∑

k=1

Ak

(

λk
λ0

)x

, (C-14)

where λis are the eigenvalues of the transfer matrix. Since the characteristic equation

has real non-negative coefficients, from Perron-Frobenius theorem, λ0 is real, positive

and is non-degenerate. The secular equation, det(T − λI) = 0 is a polynomial in λ

with real coefficients. Thus, two possibilities need to be examined: real roots, and,
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complex conjugate pairs of roots. Real eigenvalues λp give terms with correlation

length,

ξ = ln

(

λ0
|λp|

)

. (C-15)

Complex conjugate eigenvalues, λq and λ
∗
q correspond to the same correlation length

and modulation length, given by,

ξ = ln

(

λ0
|λq|

)

, (C-16)

LD =
2π

tan−1
(

Im{λq}
Re{λq}

) . (C-17)

Thus, the total number of correlation and modulation lengths is the order of the

polynomial in λ in the secular equation, or simply the dimension of the transfer

matrix – O(2R). Similar to our conclusions for the high dimensional continuous spin

systems, this number does not vary with temperature. For q state Potts type spins,

replicating the above arguments mutatis mutandis, we find that the total number of

correlation and modulation lengths is O(qR). Similarly, for such a system placed on

a d-dimensional slab of finite extent in, at least, (d− 1) directions along which it has

a length of order O(l) > R, there will be O(ql
d−1

) transfer matrix eigenvalues and

thus an identical number for the sum of the number of modulation lengths with the

number of correlation lengths.

The eigenvalues change from being complex below certain crossover temperatures

to being purely real above. These temperatures form the “disorder line”.
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D Detailed expressions for δLD for different orders

p(≥ 3) at which the interaction kernel has its

first non-vanishing derivative

If the lowest order (larger than p = 2) non-vanishing derivative of v(k) at the minimiz-

ing wavenumber k0 (see Eq. (4.31)) is of order p = 3 (the most common case) then,

in the large-n limit, the change in the modulation length at temperatures T > Tc

(µ(T ) = µmin + δµ)about its value at T = Tc of Eq. (4.41) is given by

δLD = −2π

k20

v(3)(k0)δµ

3(v(2)(k0))2
. (D-18)

We employ Eq. (D-18) in our analysis in Sec. 4.4. If the lowest order derivatives are

of order p = 4 or 5 then,

δLD =
2π

k20

v(5)(k0)(δµ)
2

30(v(2)(k0))3
. (D-19)

Similarly, for p = 6 or 7,

δLD = −2π

k20

v(7)(k0)(δµ)
3

630(v(2)(k0))4
, (D-20)

and so on.

E µ(T ) for the screened Coulomb ferromagnet

We now briefly provide an explicit expression for the relation between the large-n

Lagrange multiplier µ and the temperature T for the screened Coulomb ferromagnet.
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In three dimensions, with Λ as an ultra-violet cutoff, at high temperatures [T > T ∗],

we get to the following implicit equation for µ(T ) in the case of the screened Coulomb

ferromagnet of Eq. (4.64),

1

T
=

Λ

2π2
+

√
2

4π2w

×
(λ2µ− µ2 + µw − 2Q

√

λ2 + µ+ w
tan−1(

Λ
√
2

√

λ2 + µ+ w
)

−λ
2µ− µ2 + µw + 2Q
√

λ2 + µ− w
tan−1(

Λ
√
2

√

λ2 + µ− w
)
)

. (E-21)

In Eq. (E-21), we employed the shorthand w ≡
√

(µ− λ2)2 − 4Q. The parameter

w vanishes at the crossover temperature T ∗ at which a divergent modulation length

makes an appearance, w(T = T ∗) = 0. At low temperatures, T < T ∗, w becomes

imaginary and an analytical crossover occurs to another real functional form.

F Proof that µ(T ) is an analytic function of T

In this appendix, we illustrate that in the large-n limit, the thermodynamic functions

are analytic for all temperatures T > Tc, including the discussed cross-over tempera-

ture T = T ∗ (hence justifying the use of the term ”cross-over”) of, e.g, the Coulomb

frustrated ferromagnet of Eqs. (2.1, 4.64).

From Eq. (4.20), using,

µ > µmin = −min v(k), (F-22)
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it is clear that µ(T ) is a continuous function of T . Differentiating,

dµ

d(kBT )
=

[

(kBT )
2

∫

ddk

(v(k) + µ)2

]−1

, (F-23)

and,

d2µ

d(kBT )2
= − 2

kBT

dµ

d(kBT )
+

2(kBT )
2

(

dµ

d(kBT )

)3 ∫
ddk

(v(k) + µ)3
(F-24)

with the integrations performed over the first Brillouin zone on the lattice (or up to

some ultra-violet cutoff Λ in the continuum). The first two derivatives are thus always

finite so long as the integration range is finite. All higher order derivatives are sum of

terms which are products of lower order derivatives, (kBT )
a and

∫

ddk
(v(k)+µ)b

, where a

and b are integers, with b > 0. Thus, for finite integration range, µ(T ) is an analytic

function of T . In the large-n limit, the internal energy per site, U/N = [kBT−µ(T )]/2.

Our result concerning the analyticity of µ(T ) implies that the internal energy is

analytic and thus all of its derivatives and all other thermodynamic potentials.

G Fermi systems

In this appendix, we discuss several examples of non-interacting fermionic systems

where we observe a correlation or modulation length exponent. We will, in what

follows, ignore spin degrees of freedom which lead to simple degeneracy factors for

the systems that we analyze. In non-interacting Fermi systems, the mode occupancies

183



Appendix

are given by the Fermi function. That is,

〈n(~k)〉 = 〈c†(~k)c(~k)〉 = 1

eβ(ǫ(~k)−µ) + 1
, (G-25)

where c(~k) and c†(~k) are the annihilation and creation operators at momentum ~k and

β = 1/(kBT ) with T the temperature. The correlation function associated with the

amplitude for hopping from the origin to lattice site ~x is given by

G(~x) = 〈C†(0)C(~x)〉 =
∑

~k

〈n(~k)〉e−i~k·~x. (G-26)

Thus far, in most explicit examples that we considered we discussed scaling with

respect to a crossover temperature. In what follows, we will, on several occasions,

further consider the scaling of correlation and modulation lengths with the chemical

potential µ. We will use the letter υ to represent exponents corresponding to scaling

with respect to µ and continue to use ν to represent scaling with respect to the

temperature T .

The existence of modulated electronic phases is well known.[32, 150–164] In par-

ticular, the Fermi wave-vector dominated response of diverse modulated systems as

evident in Lindhard functions, particular features of charge and spin density waves

dominated by Fermi surface considerations in quasi- one dimensional and other sys-

tems have long been discussed and have numerous experimental realizations in diverse

compounds.[163, 164] The exponents that we derived in this work appear for all elec-

tronic and other systems in which a crossover occurs in the form of the modulations

seen in charge, spin, or other degrees of freedom. Our derived results concerning scal-
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ing apply to general interacting systems. To highlight essential physics as it pertains

to the change of modulations in systems of practical importance, we briefly review

and further discuss free electron systems.

G.1 Zero temperature length scales – Scaling as a function

of the chemical potential µ

We first consider a non-interacting fermionic system with a dispersion ǫ(~k). At zero

temperature, the number of particles occupying the Fourier mode ~k is given by

〈n(~k)〉 =















1 for ǫ(~k) < µ

0 for ǫ(~k) > µ.

(G-27)

All correlation functions as all other zero temperature thermodynamic properties, are

determined by the Fermi surface geometry. We now consider the correlation function

of Eq. (G-26). This correlation function will generally exhibit both correlation and

modulation lengths. To obtain the modulation lengths along a chosen direction (the

direction of the displacement ~x), a ray along that direction may be drawn. The

intercept of this ray with the Fermi surface provides the pertinent modulation wave-

vectors. As we vary µ we alter the density, ρ via

ρ = gs

∫

ǫ(~k)<µ

ddk

(2π)d
, (G-28)

gs being the spin degeneracy (gs = 2 for non-interacting spin-half particles such as

electrons). As the Fermi surface topology is varied, the following effects may be
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observed.

1. If two branches of the Fermi surface touch each other at µ = µ0 and are disjoint

for all other values of µ, then a smooth crossover will appear from one set

of modulation lengths to another with |LD − LD0| ∝ |µ − µ0| on both sides

of the crossover. This crossover will be associated with an exponent υL =

1 characterizing the scaling of the modulation lengths with deviations in the

chemical potential. An example where a crossover of this kind is realized is the

ǫg = 0 case of the schematic shown in Fig. 7.14 in which the crossover occurs

at µ = µ0. Other examples of this occur at half filling of the square lattice

Figure 7.14: Transition from a metal to a band insulator. This figure is for illustration

only.

tight binding model and at three-quarters filling of the triangular lattice tight

binding model. These will be discussed later.
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2. If on the other hand, one branch of the Fermi surface vanishes as we go past

µ = µ0, the crossover is not so smooth and we get some rational fraction υL

(usually υL = 1/2) as the crossover exponent: |LD − LD0| ∝ |µ− µ0|υL , on one

side of the crossover. An example of this is shown in Fig. 7.15. Here,

|LD − LD0| =
L2
D0

2π

√

2|µ− µ0|
|ǫ′′(2π/LD0)|

, (G-29)

where LD0 is the modulation length at the point where the µ = µ0 line touches

the ǫ(k) curve, such that ǫ′(2π/LD0) = 0 The hopping correlation function takes

the form,

G(x) =
(ax)d/2Jd/2(ax)

(2π)d/2xd
− (bx)d/2Jd/2(bx)

(2π)d/2xd

+
(cx)d/2Jd/2(cx)

(2π)d/2xd
, (G-30)

where µ′
0 < µ < µ0 and a, b and c in Eq. (G-30) (corresponding to modulation

lengths of 2π/a, 2π/b and 2π/c) are the values of k for which ǫ(k) = µ (as

shown in Fig. 7.15).

At arbitrarily small but finite temperatures, the correlation function exhibits mod-

ulations of all possible wavelengths. The prefactor multiplying a term with spatial

modulations at wave-vector ~k is the exponential of (−|ǫ(~k) − µ|). An illustrative

example is provided in Fig. 7.16. Apart from the dominant zero temperature modu-

lations, associated with the wave-vector k2 in Fig. 7.16, at finite temperature, there

are additional contributions from wave-vectors for which |ǫ(k) − µ| is small relative
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to kBT . Near k2, we can assume ǫ(k) is linear such that ǫ(k) ≈ µ + (k − k2)ǫ
′(k2).

Similarly, near k1, ǫ(k) − µ ≈ −∆ − (k − k1)
2ǫ′′(k1)/2, where ∆ = µ − µ0 (see Fig.

7.16). For large β, both these contributions are highly localized around k2 and k1 re-

spectively making the above approximations very good and the Fourier transforming

integrals easy to evaluate (〈n(~k)〉 taking exponential and Gaussian forms). We have,

G(x) =
(k2x)

d/2Jd/2(k2x)

(2π)d/2xd
− 2(k2x)

d/2Jd/2−1(k2x)

(2π)d/2βǫ′(k2)xd−1

+
e−β∆(k1x)

d/2Jd/2−1(k1x)

(2π)
d−1
2

√

βǫ′′(k1)xd−1
, (G-31)

where β → ∞ and ∆ → 0, such that β∆ → ∞.

(a)

a b c k
x

k
y

(b) (c)

Figure 7.15: Example of a Fermi system where the modulation length exponent is 1/2.

The gray region shows the filled states. When µ > µ0, modulations cor-

responding to wave-vectors k = a and k = b cease to exist and we get an

exponent of 1/2 at this crossover. Similarly, when µ < µ′
0, modulations

corresponding to wave-vectors k = b and k = c die down.
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Figure 7.16: The same Fermi system as in Fig. 7.15, but now with a chemical potential

µ = µ0 +∆, slightly higher than µ0. The temperature is small but finite.

Next, we will discuss scaling of the modulation length in with the chemical po-

tential, µ in the familiar tight binding models on the square and triangular lattices

at zero temperature.

Tight binding model on the square lattice

We consider a two-dimensional tight binding model of the square lattice. The disper-

sion in this model is given by

ǫ(~k) = −2t (cos kx + cos ky) . (G-32)

The constant energy contours corresponding to Eq. (G-32) are drawn in Fig. 7.17.

As is clear from Fig. 7.17, there are certain directions (e.g., along the X-axis) along

which there is no ~k for ǫ(~k) > 0. If we consider the same system at zero temperature,
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Figure 7.17: Constant energy contours for two-dimensional tight binding model on the

square lattice in Eq. (G-32). The red square corresponds to the particle hole

symmetric contour where ǫ(~k) = 0. The contours inside it are for negative

ǫ(~k) and those outside are for positive ǫ(~k).

the following three crossovers are observed.

(i) Half filling: The chemical potential µ is zero at the half filling state. The Fermi

surface is given by ±kx ± ky = π. For small µ, we have,

±kx ± ky = π +
µ

2t sin kx
, (G-33)

thus giving us an uninteresting modulation exponent, υL = 1.

(ii) Empty band: When µ = −4t, none of the states are occupied. As we increase µ

by a tiny amount δµ above this value, we observe a non-zero modulation wave-vector,
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k =
√

δµ/t, thus showing a modulation exponent υL = 1/2.

(iii) Full inert bands: When µ = +4t, all the states are occupied. As we lower µ

by a tiny amount δµ below this value, we observe a difference δk of the modulation

vector from ±êxπ± êyπ. We have, δk =
√

δµ/t, thus showing a modulation exponent

υL = 1/2 again.

Tight binding model on the triangular lattice

The analysis of the triangular lattice within the tight binding approximation, is very

similar to the square lattice discussed above. The dispersion ǫ(~k) is given by

ǫ(k) = −2t cos kx − 4t cos
kx
2
cos

ky
√
3

2
. (G-34)

We have exponents similar to the square lattice.

(i) Three-quarters filling: The chemical potential µ = 2t corresponds to the three-

quarters filling state. If we concentrate on the {kx = π, ky : −π/
√
3 → π/

√
3}

segment (same phenomenon is present at all the other segments of the quarter filling

Fermi surface), we get,

δkx ∼ δµ

2 cos
(

ky
√
3

2

) , (G-35)

where kx = π+δkx is obtained when µ = 2t+δµ. This leads to a modulation exponent

of υL = 1. The Fermi surfaces for chemical potentials µ close to three-quarters filling

are schematically shown in Fig. 7.18.

(ii) Empty band: When µ = −6t, none of the states is occupied. As we increase µ by
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a tiny amount δµ above this value, we observe a non-zero modulation wave-vector,

k =
√

2δµ/3, thus showing a modulation exponent υL = 1/2.

(iii) Full inert bands: When µ = 3t, all of the states are occupied and close to this

value the Fermi surface is composed of six small circles around ~k = x̂ cos(nπ/3) +

ŷ sin(nπ/3), n = {0, 1, 2, 3, 4, 5}. If µ = 3t− δµ, we get, | ~δk| = 2
√

δµ/3, again giving

us a modulation length exponent, υL = 1/2.

Metal-Insulator transition

We discuss here the metal to band insulator transition at zero temperature. In a

non-interacting system, this occurs when the Fermi energy is changed such that all

occupied bands become completely full, as shown in Fig. 7.14. In the insulator, the

Fermi energy lies in between two bands and thus the filled states are separated from

the empty states by a finite energy gap. As the Fermi energy is tuned, the Fermi

energy might touch one of the bands thereby rendering the system metallic. Close to

this transition, the energy is quadratic in the momentum k, i.e., |k| ∝ |δµ|1/2. This

implies that,

|δk| ∝ |δµ|1/2. (G-36)

Following the scaling convention in Eq. (5.7), we adduce a similar exponent

υL = 1/2 (G-37)
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-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6
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Figure 7.18: Fermi surface for a triangular lattice with tight binding. The dashed lines are

the Brillouin zone boundaries. This demonstrates a smooth crossover from

one set of Fermi surface branches to another as µ is changed across µ = 2.

The points where the crossovers take place are (0,±2π/
√
3), (±π,±π/

√
3).

The modulation length exponent for this crossover is υL = 1.

that governs the scaling of the modulation lengths with the shift δµ of the chemical

potential (instead of temperature variations).
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Dirac systems

The low energy physics of graphene and Dirac systems is characterized by the exis-

tence of Dirac points in momentum space where the density of states vanishes and

the energy, ǫ(k) is proportional to the momentum k for small k. When we invoke and

repeat our earlier analysis to these systems, we discern a trivial exponent

|δk| ∝ |δµ|

=⇒ υDirac = 1. (G-38)

This exponent may be contrasted with that derived from Eq. (G-37).

Topological Insulators – Multiple length scale exponents as a function of

the chemical potential µ

The quintessential low energy physics of three-dimensional topological insulators can

be gleaned from the following effective Hamiltonian[165] in momentum space,

H(~k) = ǫ0(~k)I4×4 +
























M(~k) A1kz 0 A2k−

A1kz −M(~k) A2k− 0

0 A2k+ M(~k) −A1kz

A2k+ 0 −A1kz −M(~k)

























(G-39)

where ǫ0(~k) = C + D1k
2
z + D2k

2
⊥, M(~k) = M − B1k

2
z − B2k

2
⊥ , with k± = kx + iky,

k⊥ =
√

k2x + k2y and A1, A2, B1, B2, C, D1 and D2 constants for a given system. The
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Figure 7.19: Energy levels of Bi2Se3 topological insulator.

7.19(a): ǫ(~k) versus k⊥ at kz = 0; 7.19(b): ǫ(~k) versus kz at k⊥ = 0; 7.19(c):

ǫsurf (kx, ky) versus ~k⊥ ≡ (kx, ky).

energy bands are given by

ǫ(~k) = ǫ0(~k)±
√

M(~k)2 + A1k2z + A2k2⊥. (G-40)

These bands are plotted in Figs. 7.19(a) and 7.19(b). The finite gap between the two

bands leads to an exponentially damped hopping amplitude, characterized by a finite

correlation length when the Fermi energy lies within this gap. These energy bands
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disperse quadratically for small k thus yielding

|δk| ∝
√

|δµ|

=⇒ υbulk = 1/2 (G-41)

whenever the correlation length diverges and a insulator to metal transition takes

place in the bulk, thus allowing long range hopping. The same exponent is also ex-

pected whenever the modulation length becomes constant as µ crosses some threshold

value.

The effective Hamiltonian for the surface states is given by

Hsurf =









0 A2k−

A2k+ 0









, (G-42)

leading trivially to surface energies

ǫsurf (kx, ky) = ±A2k⊥. (G-43)

Similar to the Dirac points in graphene (see Fig. 7.19(c)), we trivially find an exponent

of

υsurf = 1. (G-44)

An example of a zero temperature Fermi system in which υL is not half or

one

Very large (or divergent) effective electronic masses meff can be found in heavy

fermion systems (and at putative quantum critical points).[166, 167] If the electronic
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dispersion ǫ(~k) has a minimum at ~k0 then a Taylor expansion about that minimum

trivially reads

ǫ(~k) = ǫ(~k0) +
~
2

2

∑

ij

(

m−1
eff

)

ij
(ki − k0i)(kj − k0j) +

∑

ijl

Aijl(ki − k0i)(kj − k0j)(kl − k0l) + . . . . (G-45)

When present, parity relative to ~k0 or other considerations may limit this expansion

to contain only even terms. As an example, we consider the dispersion

ǫ(k) = c1 − c2(k
2 − k20)

4, (G-46)

where c2 > 0. The hopping correlation function of such a system has a term which

exhibits modulations at wave-vector k = k0 at µ = µ∗ = c1. At higher values of the

chemical potential, such a term ceases to exist. At lower values (µ = µ∗ − δµ), this

term breaks up into two terms whose modulation wave-vectors are different from k0

by,

k − k0 ∼ ± δµ1/4

2k0c
1/4
2

,

=⇒ υL = 1/4. (G-47)

G.2 Finite temperature length scales – Scaling as a function

of temperature

At finite temperatures, apart from the modulation lengths, there generally is a set

of characteristic correlation lengths. From Eq. (G-26), these are obtained by finding
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the poles (or other singularities) of the Fermi function. Along some direction ê0,

the wave-vector ~k0 = ê0k0 is associated with a pole k0 = ±2π/L0 ± i/ξ0. At this

wave-vector,

ǫ(~k0) = µ+
2n+ 1

β
i, (G-48)

where n is an integer. For a given µ, let us suppose that as we change the temperature,

at T = T0, we reach a saddle point of ǫ(~k) in the complex plane of one of the Cartesian

components of ~k. Then, near this saddle point, the corresponding correlation and

modulation lengths scale as,

|LD − LD0| ∝ |T − T0|νL ,

|ξ − ξ0| ∝ |T − T0|νc , (G-49)

where νL = νc = 1/2 in most cases (when the second derivative is not zero).

H Euler-Lagrange equations for scalar spin sys-

tems

We elaborate on the Euler-Lagrange equations associated with the free energy of Eq.

(5.39) in Sec. 5.7. These assume the form,

∫

ddyṼ (~x− ~y)S(~y) + µS(~x)

+u(S2(~x)− 1)S(~x) = 0, (H-50)
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where Ṽ (~x) = [V (~x)+V (−~x)]/2. For example, if we consider the finite ranged system

for which,

∫

ddyṼ (~x− ~y)S(~y) = a∇2S(~x)

+ b∇4S(~x) + . . . , (H-51)

then, we have,

a∇2S(~x) + b∇4S(~x) + . . .+ µS(~x)

+ u(S2(~x)− 1)S(~x) = 0. (H-52)

For lattice systems, the Euler Lagrange equation (H-50) reads

∑

~y

Ṽ (~x− ~y)S(~y) + µS(~x)

+ u(S2(~x)− 1)S(~x) = 0. (H-53)

In general, it may be convenient to express the linear terms in the above equation in

terms of the lattice Laplacian ∆. We write

D(∆)S(~x) ≡
∑

~y

Ṽ (~x− ~y)S(~y) + µS(~x), (H-54)

D being some operator which is a function of the lattice Laplacian ∆. The real-space

lattice Laplacian ∆, given by the Fourier transform of Eq. (2.7), acts on a general

field f as

∆f(~x) ≡ −
d
∑

i=1

[f(~x+ êi) + f(~x− êi)− 2f(~x)]. (H-55)
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Here, {êi} denote unit vectors along the Cartesian directions. (In the continuum

limit, ∆ can be replaced by −∇2.) The Euler-Lagrange equation then, takes the

form,

D(∆)S(~x) + u(S2(~x)− 1)S(~x) = 0. (H-56)

Equation H-51 corresponds, on the lattice, to

∑

~y

Ṽ (~x− ~y)S(~y) =

−a∆S(~x) + b∆2S(~x) + . . . . (H-57)

The Euler Lagrange equation for this finite ranged system reads

−a∆S(~x) + b∆2S(~x) + . . .+ µS(~x)

+ u(S2(~x)− 1)S(~x) = 0. (H-58)
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[35] U. Löw, V. J. Emery, K. Fabricius, and S. A. Kivelson. Study of an Ising

model with competing long- and short-range interactions. Phys. Rev. Lett.,

72(12):1918–1921, Mar 1994.

[36] E. W. Carlson, V. J. Emery, S. A. Kivelson, and D. Orgad. Concepts in high

temperature superconductivity. In K. H. Bennemann and John B. Ketterson,

editors, Superconductivity, chapter 21, pages 1225–1348. Springer Berlin Hei-

delberg, 2008. See also arXiv:cond-mat/0206217.

[37] V. B. Nascimento, Ang Li, Dilushan R. Jayasundara, Yi Xuan, Jared O’Neal,

Shuheng Pan, T. Y. Chien, Biao Hu, X. B. He, Guorong Li, A. S. Sefat, M. A.

McGuire, B. C. Sales, D. Mandrus, M. H. Pan, Jiandi Zhang, R. Jin, and E. W.

Plummer. Surface geometric and electronic structures of BaFe2As2(001). Phys.

Rev. Lett., 103:076104, Aug 2009.

[38] S-W. Cheong, G. Aeppli, T. E. Mason, H. Mook, S. M. Hayden, P. C. Can-

206



Bibliography

field, Z. Fisk, K. N. Clausen, and J. L. Martinez. Incommensurate magnetic

fluctuations in La2−xSrxCuO4. Phys. Rev. Lett., 67:1791–1794, Sep 1991.

[39] D. I. Golosov. Magnetic domain walls in single-phase and phase-separated

double-exchange systems. Phys. Rev. B, 67:064404, Feb 2003.

[40] Daniel Kivelson, Steven A. Kivelson, Xiaolin Zhao, Zohar Nussinov, and Gilles

Tarjus. A thermodynamic theory of supercooled liquids. Physica A: Statistical

and Theoretical Physics, 219(1-2):27 – 38, 1995.

[41] Jörg Schmalian and Peter G. Wolynes. Stripe glasses: Self-generated random-

ness in a uniformly frustrated system. Phys. Rev. Lett., 85:836–839, Jul 2000.

[42] M. Grousson, G. Tarjus, and P. Viot. Phase diagram of an Ising model

with long-range frustrating interactions: A theoretical analysis. Phys. Rev.

E, 62(6):7781–7792, Dec 2000.

[43] Zohar Nussinov. Avoided phase transitions and glassy dynamics in geomet-

rically frustrated systems and non-abelian theories. Phys. Rev. B, 69:014208,

2004.

[44] G Tarjus, S A Kivelson, Z Nussinov, and P Viot. The frustration-based ap-

proach of supercooled liquids and the glass transition: a review and critical

assessment. Journal of Physics: Condensed Matter, 17(50):R1143, 2005.

207



Bibliography

[45] B. V. Derjaguin and L. Landau, Acta Physiochim, URSS 14, 633 (1941); E.

J. Verwey and J. T. G. Overbeek Theory of Stability of Lyophobic Colloids

(Elsevier, Amsterdam, 1948).

[46] C. Reichhardt and C. J. Olson. Novel colloidal crystalline states on two-

dimensional periodic substrates. Phys. Rev. Lett., 88:248301, May 2002.

[47] Julien Barré, David Mukamel, and Stefano Ruffo. Ensemble inequivalence in

mean-field models of magnetism. In Thierry Dauxois, Stefano Ruffo, Ennio

Arimondo, and Martin Wilkens, editors, Dynamics and Thermodynamics of

Systems with Long-Range Interactions, volume 602 of Lecture Notes in Physics,

pages 45–67. Springer Berlin Heidelberg, 2002.

[48] Mark Ya. Azbel’. Long-range interaction and heterogeneity yield a different

kind of critical phenomenon. Phys. Rev. E, 68:050901, Nov 2003.

[49] S. Elitzur. Impossibility of spontaneously breaking local symmetries. Phys.

Rev. D, 12:3978–3982, Dec 1975.

[50] John B. Kogut. An introduction to lattice gauge theory and spin systems. Rev.

Mod. Phys., 51:659–713, Oct 1979.

[51] X.G. Wen. Quantum Field Theory of Many-Body Systems: From the Origin of

Sound to an Origin of Light and Electrons. Oxford graduate texts in mathe-

matics. Oxford University Press, 2007.

208



Bibliography

[52] G. Ortiz, E. Cobanera, and Z. Nussinov. Dualities and the phase diagram of

the p-clock model. Nuclear Physics B, 854(3):780 – 814, 2012.

[53] F. C. Frank. Supercooling of liquids. Proceedings of the Royal Society of London.

Series A. Mathematical and Physical Sciences, 215(1120):43–46, 1952.

[54] C. Dasgupta, A. V. Indrani, Sriram Ramaswamy, and M. K. Phani. Is there

a growing correlation length near the glass transition? Europhysics Letters,

15(3):307, 1991.

[55] Paul J. Steinhardt, David R. Nelson, and Marco Ronchetti. Bond-orientational

order in liquids and glasses. Phys. Rev. B, 28(2):784–805, 1983.

[56] G. Voronoi. Nouvelles applications des paramètres continus à la théorie des
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