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ABSTRACT OF THE THESIS 
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Master of Arts in Psychology 

Washington University in St. Louis, 2013 

Professor Mitchell S. Sommers, Chair 

 

Audiovisual (AV) speech perception is perception in which both auditory and visual 

information is available in order to understand a talker, compared to an auditory signal alone, 

during face-to-face communication. This form of communication yields significantly higher 

word recognition performance as compared to either sensory modality alone, constituting a 

general AV advantage for speech perception. Despite an overall AV advantage, older adults 

seem to receive less benefit from this bimodal presentation than do younger adults. However, 

there is evidence to suggest that not all age-related deficits in AV speech perception are of a 

sensory nature, but are also influenced by cognitive factors (e.g. Pichora-Fuller et al., 1995). In 

the current study, I extend an existing model of spoken-word recognition to the AV domain and 

refer to the new model as the Auditory-Visual Neighborhood Activation Model (AV-NAM). The 

primary goal of the current study was to examine the cognitive factors that contribute to age-

related and individual differences in AV perception of words varying in lexical density (i.e. easy 

and hard words). Forty-nine younger and 50 older adults completed a series of cognitive 

inhibition tasks and several spoken word identification tasks. The words were presented in 

auditory-only, visual-only, and AV conditions. Overall, younger adults demonstrated better 
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inhibitory abilities and higher word identification performance than older adults. However, 

whereas no relationship was observed between inhibitory measures and word identification 

performance in younger adults, there was a significant relationship between inhibition, as 

measured by Stroop interference, and intelligibility of lexically difficult words in older adults. 

These results are interpreted within the framework of the newly adapted AV-NAM and the 

implications for inhibitory deficits in older adults that contribute to impairments in speech 

perception.  
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Introduction 

I. Sensory Contributions to Audiovisual Speech Perception  

  During face-to-face speech communication, listeners use information from the speech 

signal available in both the auditory and visual modalities in order to facilitate perception. This 

combined sensory signal is known as audiovisual (AV) speech perception, and successful AV 

perception involves successfully extracting and integrating auditory (A) and visual (V) 

information present in the speech signal. Numerous studies have shown a benefit for AV speech 

compared with A or V alone (e.g., Green, 1998; Summerfield, 1987).  

One particularly striking demonstration of the visual contribution to speech perception is 

the McGurk effect (McGurk & MacDonald, 1976). This phenomenon occurs when an auditory 

signal specifying a particular phoneme (e.g., /ba/) is dubbed with a visual signal specifying a 

different phoneme, usually at a different place of articulation (e.g., /ga/). Most often, listeners 

will report hearing a different phoneme (typically /da/ or /tha/, for an auditory /ba/ paired with a 

visual /ga/) when the visual signal is added. For example, superimposing the voiced utterance 

/ba-ba/ over lip movements for /ga-ga/ results in subjects reporting the utterance /da-da/ 

(McGurk & MacDonald, 1976). Numerous studies (e.g. Green, Kuhl, Meltzoff, & Stevens, 1991; 

Green & Norrix, 1997; Rosenblum, Yakel, & Green, 2000) have since replicated this effect, 

validating the claim that information from the acoustic signal is combined with information from 

the visual signal and can significantly affect speech perception. 

 While the McGurk effect focuses on AV perception of phonemes, studies have also 

examined the effect of an additional visual signal to more complex acoustic speech stimuli. In a 

study by Behne et al. (2007) which compared syllable identification under audio-only (A), 

visual-only (V), and AV conditions between younger adults (19-30 years) and mid-aged adults 
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(49-60 years), the investigators observed that older adults made a higher proportion of correct 

responses in V-only presentation, as compared to younger adults. From these findings, the 

authors suggested that with age comes an increasing use and reliance on the visual signal for 

additional sensory information. Such results suggest that the use of visual cues in AV speech 

perception may be a function of the experience accompanying advancing age, such that the 

effects of age-related hearing loss, as well as greater linguistic knowledge (Schneider & Pichora-

Fuller, 2000; Wingfield, Alexander, & Cavigelli, 1994) which may produce a greater benefit 

from the visual signal in older adults. Most models of AV speech perception incorporate at least 

three independent contributors to AV speech performance – 1) the ability to encode auditory 

information; 2); the ability to encode visual information (i.e. lipread) and 3) the ability to 

integrate information obtained from the two modalities (A and V). 

These factors of unimodal encoding and sensory integration have been particularly 

important in the investigation of age-related differences in AV speech perception, particularly in 

how older individuals are able to recognise speech. Advancing age is typically accompanied by 

some degree of hearing loss in the form of cochlear hair cell degeneration (Hull, 1995; Liu & 

Yan, 2007), as well as vision loss in the form of lens stiffening and macular degeneration (Liu, 

White, & LaCroix, 1989; Kasper, 1978). In particular, studies consistently demonstrate that age-

related sensorineural hearing loss (presbycusis) is the primary contributor to impaired speech 

perception (e.g. Halling & Humes, 2000, Humes et al., 1994). Reductions in sound sensitivity, 

particularly in the higher frequencies, as well as other changes in the auditory periphery can all 

affect older listeners’ ability to perceive speech (Morrell, Gordon-Salant, Pearson, Brant, & 

Fozard, 1996; Pichora-Fuller, 2003). Visual speech cues, such as lip-reading have also been 

found to be impaired in older adults (Honnell, Dancer, & Gentry, 1991; Sommers, Tye-Murray, 
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& Spehar, 2005), such that older individuals are less adept at recognising speech in a V 

condition. Taking these findings together, it is clear that sensory loss in older adults negatively 

affects unimodal encoding. However, this deficit can be overcome by an alternative means of 

obtaining additional information to the speech signal, available in the form of combined 

audiovisual (AV) speech.  

The benefit of bimodal (i.e. AV) presentation of speech perception has been studied 

across a range of age groups. In one such study, Walden, Busacco, and Montgomery (1993) 

examined the differences between middle-aged (35 to 50 years of age) and older (65 to 80 years 

of age) adults with comparable hearing on recognition of speech stimuli in A, V, and AV 

presentation. For both groups, AV percent correct was significantly higher than that of A-only 

performance, which in turn exceeded V-only performance. However, due to large differences 

between the two groups in V-only performance, interpretable findings independent of V-only 

performance are difficult. As such, the question of focus has shifted to how AV perception is 

differentially affected by age while minimising the influence of unimodal perception. Sommers 

et al. (2005) tested younger and older adults on consonant, word, and sentence identification in 

all three sensory modalities (A, V, and AV), while additionally equating the age groups for 50% 

audibility in the A condition (ASHA, 1978). The authors observed a similar pattern of results 

across the three conditions as did Walden et al, such that performance for both younger and older 

adults was highest in the bimodal AV condition, followed by the unimodal conditions. Other 

studies (e.g. Hay-McCutcheon, Pisoni, & Kirk, 2005; Tye-Murray, Sommers, & Spehar, 2007) 

have also observed a similar pattern of AV performance as a function of sensory modality, in 

which individuals perform significantly better under AV conditions, as opposed to unimodal 

conditions.  
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One reason for this improved performance in AV, compared with A or V conditions, is 

the complementary nature of AV speech perception (e.g. Blamey, Cowan, Alcantara, Whitford, 

& Clark, 1989; Grant & Seitz, 1998), in the sense the two sensory signals provide 

complementary information about speech. This advantage derives from the fact that when the 

information conveyed by one sensory signal is masked (i.e. through perceptual degradation), the 

introduction of the alternate signal provides additional information (Grant, Walden, & Seitz, 

1998). Thus, in order to obtain the maximum amount of information in noisy conditions, it is 

beneficial to take advantage of the two speech signals together. For example, voicing and 

phrasing cues are well conveyed by the auditory signal, but not by the visual signal. Conversely, 

cues conveying information about place of articulation are better conveyed by the visual signal 

than by the acoustic signal, particularly in noise. Moreover, the AV advantage occurs even when 

both the A and V signals are fully available (Massaro & Light, 2004). This complementarity of 

available information from two speech signals in perception becomes especially true in the 

presence of noise, wherein perception of the A-only signal is more prone to effects of noise 

(Sumby & Pollack, 1954; Erber, 1969). That is to say, the AV advantage is greatest under 

adverse listening conditions in which the auditory signal is masked (Macleod & Summerfield, 

1987) in both younger and older adults (Girin, Schwartz & Feng, 2001).  

The visual contribution to speech perception has been formalised as the term visual 

enhancement (VE) from an idea presented by Sumby and Pollack (1954). VE is a measure of the 

improvement obtained in an AV condition compared with an A-only condition, normalised to A-

only performance Specifically, VE refers to the degree to which perception of an auditory speech 

stimulus benefits from adding an additional visual signal. VE is calculated as follows: 

VE = (AV-A) ⁄ (1-A) 
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 This formula directly compares an individual’s A and AV performance, such that 

differences in baseline A-only performance are normalised in order to calculate the overall 

improvement (relative to the maximum possible improvement) as a result of additional visual 

information. This measure has been used in a number of studies investigating AV speech 

perception (Rabinowitz, Eddington, Delhorne, & Cuneo, 1992; Grant et al., 1998; Sommers, 

2005) in order to observe the obtained benefit of additional visual information. Sommers et al. 

(2005) specifically investigated age-related differences in AV perception with an emphasis on 

examining the effects of VE. The authors observed that while older adults appeared to be 

benefitting slightly less than younger adults from an additional visual signal (an average 

proportion of 0.63 in younger adults, compared to an average proportion of 0.57 in older adults), 

this difference did not reach significance. Moreover, while A-only performance was equivalent 

for both groups, older adults achieved significantly lower identification accuracy than younger 

adults in V-only performance. Thus, despite significant impairments in V performance, older 

adults were still able to benefit from an additional visual signal at a comparable level to younger 

adults. In a later study, Tye-Murray et al. (2007) assessed VE in normal-hearing and hearing-

impaired older adults, and found that after accounting for differences in unimodal A and V 

performance, the normal-hearing and hearing-impaired groups also experienced comparable 

levels of visual enhancement. Together, these findings suggest that older adults have an intact 

ability to integrate multiple sources of sensory information into single bimodal percept; that is, 

despite overall lowered levels of AV performance, they are still receiving the same amount of 

measurable benefit from the additional visual signal.  

II. Cognitive Contributions to Spoken-Word Recognition 

Overall, evidence from the literature demonstrates that speech perception is facilitated by 

information obtained simultaneously from auditory and visual speech signals, and that this form 
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of bimodal perception is superior to speech perception presented within either modality in 

isolation. Older adults also benefit from AV speech such that recognition is improved in 

comparison to A-only and V-only speech, although not to the same degree as younger adults. In 

addition to age-related sensory impairments being the cause of this poorer recognition 

performance (Pichora-Fuller & Souza, 2003), there also appears to be a significant cognitive 

component as well. Studies have demonstrated that age-related cognitive declines in processing 

speed (van Rooij & Plomp, 1990) and working memory capacity (Pichora-Fuller, Schneider, & 

Daneman, 1995) also contribute to auditory speech perception ability. Moreover, it has been 

shown that these cognitive deficits exist independently of sensory decline; Sommers (1996) 

found evidence to support age-related deficits in lexical retrieval that persisted despite 

controlling for hearing loss. It is these cognitive changes that will be the focus of the following 

sections, with a particular focus on the access and retrieval of lexical representations during 

auditory spoken word recognition.  

a. The Neighborhood Activation Model (NAM).  

In the current study we adapt a well-investigated model of auditory spoken-word 

recognition to the case of AV presentation. According to such models, auditory word recognition 

occurs when an incoming speech stimulus is compared to existing representations in the mental 

lexicon to establish a best-match between the target and items in the lexicon. Luce and Pisoni 

(1998) posited that the underlying structural relations of words in the lexicon are also important 

in the process of spoken word recognition in their Neighborhood Activation Model (NAM) of 

spoken-word recognition. According to the NAM, lexical items are arranged based on their 

phonetic similarity to a particular target word, such that phonetically similar items are grouped 

close to the target, while phonetically dissimilar items are situated further away from the target. 

Operationally this arrangement of lexical ‘neighbourhoods’ is derived from words that can be 
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formed from the target word through deletion, addition, or substitution of a single phoneme 

(Greenberg & Jenkins, 1964). For instance, the words CAN, SCAT, and AT are all lexical 

neighbours of the word CAT. Subsequently, the term neighbourhood density (ND) refers to the 

number of phonetically similar items to a target word; accordingly, high-density neighbourhoods 

are comprised of many phonetically similar items to a target word, while low-density 

neighbourhoods are comprised of a small number of phonetically similar items to a target word. 

In addition to structural relations, word recognition can also be affected by frequency relations, 

such that the ease with which spoken words are recognised is directly related to the objective 

frequency of these words in experienced language.  

Although the NAM considers a combination of these factors together as playing a role in 

word recognition, the effects of ND and frequency can exist independently of one another. 

Indeed, Sommers (1996) found that ND effects exist after equating frequency across lexically 

easy and hard words; it is the ND parameter that will be of primary interest here. In particular, 

the NAM hypothesises that this neighbourhood-based structural organisation of lexical 

representations has consequences for spoken-word recognition, such that a certain word – 

depending upon its neighbourhood size – will be either easy or difficult to recognise. 

Specifically, high ND words – which intrinsically comprise more neighbours –, ought to be more 

difficult to perceive in comparison to words with low ND words (i.e. words with fewer 

confusable items). In addition to observing classic word frequency effects, Luce and Pisoni 

(1998) observed lexical density effects in speech intelligibility. Specifically, the authors 

observed that response accuracy of high ND words was worse in comparison to low ND words, 

findings indeed consistent with the NAM.  The word frequency and ND parameters were then 

combined with neighbourhood frequency to designate words based on lexical difficulty. The 
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authors defined lexically easy words as a high frequency word in a low density neighbourhood 

whose neighbourhood frequency was also low. In contrast, a lexically hard word was a low 

frequency word in a high density, high frequency neighbourhood. Through a series of 

experiments testing frequency and density effects on perceptual identification in noise, auditory 

lexical decision time, and word naming time, they observed that listeners indeed recognised 

lexically easy words more quickly and accurately than lexically hard words. Collectively, the 

findings from the experiments support the hypothesis that a neighbourhood organisational 

structure significantly affects the discriminability and facilitation of access and retrieval during 

spoken-word recognition. The active dynamics of this structure will be discussed in the next 

section. 

b. The Role of Inhibition in the NAM. 

The underlying mechanisms of the NAM entail a dynamic interaction between activation 

and competition among word candidates within the lexicon as the basis for spoken-word 

recognition. This activation-competition framework is not necessarily unique to the NAM (e.g. 

Lahiri & Marslen-Wilson, 1991; Norris, 1994), but represents a range of speech perception 

models that are characterised by the relationship between the target speech stimulus and 

competing candidates. According to these models, the process of auditory word recognition 

proceeds as follows: 1) perceiving a word activates the corresponding lexical representation in 

the lexicon; 2) perceiving the word involves parallel activation of acoustically similar 

representations which results in competition amongst the representations; 3) in order to isolate 

and identify the target, the activated competitors must be suppressed; this inhibitory mechanism 

subsequently leads to lowered activation levels of the competitors and elevated activation of the 

target. It is also important to note that competition between candidates continues until the level 
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of one candidate exceeds the average within the entire lexicon, thus emphasising the need for 

continuing inhibition. Moreover, the level of inhibition is determined directly by the level of 

activation, such that more strongly activated candidates will exert greater inhibition. This 

inhibition of competitors typically occurs in a graded fashion based on the phonetic similarity of 

the target word to neighbouring candidates, such that more similar items initially receive higher 

levels of activation. These activation levels are monitored by word decision units that correspond 

to the specific acoustic-phonetic pattern of a candidate item. As the speech stimulus continues to 

be received and processed, levels of activation are reduced for those candidates that are no longer 

consistent with the target, while those items that display continued levels of acoustic similarity 

exhibit increased levels of activation, accruing in the word decision unit. The final stage of 

successful word recognition occurs when all the irrelevant items have been eliminated through 

active inhibition, and levels of activation converge upon the target word, and its word decision 

unit exceeds some criterion threshold. That is, word recognition is achieved once sufficient 

perceptual evidence has become available that matches an existing lexical representation.  

This mechanism of inhibition in spoken-word word recognition has been demonstrated in 

several paradigms including word-to-picture matching (e.g., Magnuson, Dixon, Tanenhaus, & 

Aslin, 2007), gating (e.g., Garlock, Walley, & Metsala, 2001), and priming (Dufour & Peereman, 

2003; Goldinger, Luce, & Pisoni, 1989). Together, these findings demonstrate that the effect of 

competing neighbours act to inhibit word recognition, consistent with the original findings of 

Luce and Pisoni (1998). Moreover, these effects have been computationally modelled (Chen & 

Mirman, 2012), substantiating the claim that coactivated representations produce a net inhibitory 

effect upon the target word if they are strongly activated, and also consistent with modifications 

to the NAM proposed by Sommers (1996).  
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Given this inhibitory mechanism which appears to play an important role in lexical 

access during auditory word recognition, it is possible to make certain predictions for accuracy in 

word recognition performance. First, lexically easy words should be associated with a relatively 

high level of accurate recognition. By definition, these words belong to a sparse neighbourhood 

in which there are only a few words that compete for recognition during initial activation. 

Therefore, during recognition, the four-stage process outlined above should proceed in a 

relatively rapid manner – because there are fewer items in the neighbourhood, fewer items 

compete for activation, thus making the process of eliminating competitors faster and easier  by 

reducing inhibitory demands relative to hard words. Secondly, lexically hard words should be 

associated with a relatively lower level of accurate recognition as compared to lexically easy 

words. Such words belong to a dense neighbourhood with many words potentially competing for 

activation. In this case, the word recognition process should be more difficult – now with a 

greater number of words within the auditory neighbourhood, inhibitory demands are increased as 

more competing neighbours must be inhibited in order to identify the target word.  

In sum, lexically easy words should yield higher and more accurate recognition 

performance than lexically hard words. The findings of Luce and Pisoni (1998) are consistent 

with these hypotheses, providing evidence from both recognition accuracy speed – lexically easy 

words yielded higher accuracy and faster recognition, while lexically hard words yielded poorer 

accuracy and slower recognition. As Luce and Pisoni also observed, a number of studies have 

confirmed density effects on recognition accuracy to persist in the presence of perceptual noise 

added during presentation of the speech stimulus, wherein words from low density 

neighbourhoods are recognised more accurately than those from high density neighbourhoods 
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(Bradlow & Pisoni, 1999; Dirks, Takayana, & Moshfegh, 2001; Takayanagi, Dirks, & 

Moshfegh, 2002, Vitevich & Luce, 1999).  

Collectively, these findings are consistent with the framework put forth by the NAM, the 

hypothesis of which is an activation-competition framework mediates the process of auditory 

spoken-word recognition, in which recognition of target words is facilitated by inhibition of 

competing neighbours. The next section will discuss this framework as it applies to theories of 

cognitive aging, as well as direct evidence for the role of inhibition in spoken-word perception. 

III. Cognitive Aging & the NAM 

 There is limited work investigating how age-related changes in cognitive processing 

affect the architecture and associated processing within the speech perception system. Given the 

prior discussion on age-related sensory impairments in speech perception, the current discussion 

now turns to age-related cognitive changes that may also be involved, particularly the 

mechanisms of spoken-word recognition as put forth by the NAM. As with the effects of lexical 

difficulty upon word recognition, predictions can also be made concerning the effects of age, and 

specifically, age-related cognitive declines in inhibitory control.  

 A major theory in the field of cognitive aging has been the inhibitory deficit hypothesis 

(Hasher & Zacks, 1988; McDowd & Filion, 1992; McDowd & Oseas-Kreger, 1991). The 

hypothesis asserts that there are age-related declines in the ability to inhibit or suppress irrelevant 

information from working memory (WM). Specifically, three types of inhibitory control have 

been proposed: access, deletion, and restraint (Hasher & Zacks, 1988). Access refers to the 

inhibitory control of preventing items from entering WM. Deletion refers to the removal of items 

from WM which are no longer relevant. Finally, restraint refers to the inhibition of strongly 

activated responses which could incorrectly influence cognition/behaviour. Evidence for all three 
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types of inhibition have been observed in a number of paradigms, such as the Stroop task (Houx, 

Jolles, & Vreeling, 1993; McDowd, 1997), off-target verbosity (Arbuckle & Gold, 1993), 

directed forgetting (Conway, Harries, Noyes, Racsma'ny, & Frankish, 2000; Zacks, Radvansky , 

& Hasher, 1996), the Flanker task (Verbruggen, Liefooghe, & Vandierendonck, 2004), and many 

others. Declines in inhibitory control for adults are manifest in many forms such as poorer recall 

and higher proportions of false memories (Balota et al., 1999; Craik & McDowd, 1987). 

Moreover, inhibition has been implicated to play an important role in speech and language 

processing (e.g. Berg & Schade, 1992; Wurm & Samuel, 1997), and is considered here within 

the context of the NAM.  

 As previously described, inhibition is posited to be one of the mechanisms involved in 

the NAM’s conception of auditory spoken-word recognition. Thus, further predictions can be 

made concerning age differences in auditory speech perception of lexically easy and hard words, 

with particular focus on the contribution of age-related declines in inhibitory control. First, older 

adults should achieve a similar level of recognition accuracy of easy words as younger adults (if 

audibility is equated). The rationale for this prediction is based on the relative inhibitory 

demands – fewer competitors experience activation and consequently require less inhibition in 

order to be eliminated as candidates. That is, for easy words deactivation of competitors requires 

relatively minimal inhibitory demands. Without this burden of inhibitory demands and all other 

factors held constant, younger and older adults should be able to perform similarly in their ability 

to recognise words with few competitors.  

In contrast, older adults should be disproportionately worse at recognising lexically hard 

words. For these types of words, total activation levels within the system are heightened overall, 

and so greater inhibition is required to reduce activation of these competitors to below threshold 
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in order to identify the target word. In cases, such as older adults, where inhibitory control may 

be impaired, this would result in continued (partial) activation of competing lexical candidates, 

thus reducing the ability of the system to have activation that exceeds threshold on the unique 

target word. Thus, age-related decreases in recognition accuracy of hard words would result in 

part from impairments in inhibitory control that are necessary to suppress activation of 

competing words.  

The first study testing these age-related differences in the effects of lexical difficulty on 

recognition was conducted by Sommers (1996). A series of experiments compared younger and 

older adults in their ability to identify words varying in lexical difficulty (i.e. easy vs. hard). 

Sommers observed that both younger and older adults achieved a higher level of recognition 

accuracy for easy words than for hard words, a finding consistent with the first set of predictions 

from the NAM. Moreover, it was observed that older adults exhibited a significantly greater 

difference between easy and hard items than did younger adults, such that recognition accuracy 

for easy words between age groups was roughly equivalent, while older adults’ accuracy for hard 

items was significantly lower than for young. It is worth noting that these age differences could 

not be accounted for by differences in sensitivity. These findings were replicated in a follow-up 

experiment which presented the words in a background of white noise; while overall 

performance was expectedly lower for both groups as compared to Experiment 1, the 

exaggerated difference between younger and older adults’ identification of hard words remained. 

The interaction of age and lexical difficulty was also observed in a later study by Sommers and 

Danielson (1999). Using a similar experimental manipulation in which younger and older 

listeners were instructed to identify lexically easy and hard words presented in a background of 

speech-shaped noise. An identical pattern of results was observed here, such that younger and 
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older adults performed comparably in identifying easy words, but older adults performed 

significantly worse in identifying hard words.  

To investigate the contribution of inhibition in accounting for the age differences in 

identifying hard words, Sommers and Danielson (1999) examined the pattern of errors for 

incorrect responses: if competing candidates for hard words fail to be inhibited and remain 

active, then they should exhibit a level of activation similar to the intended target word and thus 

be more likely to be produced during identification. That is, incorrect responses to hard words 

should be phonetic neighbours of the target word. Moreover, if older adults have more difficulty 

reducing activation levels on competitors due to inhibitory deficits, then they should have an 

increased probability of incorrectly responding with a lexical neighbour. The findings confirmed 

this, demonstrating that age differences in the probability of producing neighbours varied as a 

function of lexical difficulty, such that older adults were approximately 30% more likely to 

produce neighbours as errors to hard words than to easy words, while younger adults were only 

8% more likely.  

A second experiment directly examined the role of inhibition in accounting for age-

related differences in lexical difficulty, using an index of inhibition (composed of an auditory 

Garner speeded classification task [Garner, 1974], and an auditory Stroop task [Jerger et al., 

1993]) to predict the ability to recognize lexically easy and hard words on the basis of individual 

and age differences in inhibitory control. Not only did older adults perform more poorly on the 

inhibition tasks, the investigators found that the index of inhibition was significantly correlated 

with identification performance of lexically hard words, but not easy words. Indeed, a regression 

analysis revealed that inhibition accounted for roughly 28% of unique variance in hard word 

identification, independent of the effects of education, vocabulary and age. Moreover, age was 
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also a unique contributor to performance, independent of inhibitory ability (~10%). These results 

were interpreted to suggest that due to older adults’ reduced inhibitory ability; they are less able 

than younger adults to inhibit lexical neighbours during word perception. Taler, Aaron, 

Steinmetz, and Pisoni (2010) also demonstrated the relationship between inhibition and 

identification performance for high ND words in older adults, observing a significant negative 

correlation between Stroop interference and the accuracy for high ND words. Thus, age-related 

impairments in inhibitory control appear to be a significant contributor to difficulties in 

recognising words with many lexical neighbours (i.e. hard words).  

Overall, the body of work to date concerning the relationship between age-related 

impairments in cognitive inhibition and identification accuracy of lexically easy and hard words 

suggest a clear relationship between the two, and provides evidence to support the role inhibitory 

mechanisms in the NAM. Despite critiques of this hypothesis (Burke, 1997), the predictions 

regarding the activation-competition framework of this model remain well-supported by the 

literature. 

IV.  AV Speech Perception & the NAM 

Thus far, the discussion concerning lexical density has been exclusively in the domain of 

auditory spoken-word recognition. The final section introduces the concept of AV lexical 

density, and its significance in the current experiment. 

As in the auditory domain where words are recognised in the context of other words, i.e. 

neighbourhoods, research has extended this to the domain of visual speech perception. Mattys, 

Bernstein, and Auer (2002) found that visually similar words appear to operate according to 

principles similar to those observed for auditory presentation, such that words presented visually 

produce a pattern of identification similar to that observed with auditory presentations; lexically 
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easy words have relatively higher rates of identification than lexically hard words. These visually 

similar words are defined on the basis of containing certain groups of phonemes, such as /f/ and 

/v/, that are indistinguishable based on V-only information because they appear similar on the 

face and lips. These phonemic units, based on the addition, substitution, or deletion of a single 

visual unit, are called visemes, and are the visual analog of the auditory unit phoneme, defined as 

a visual motor pattern that distinguishes speech sounds (Jackson, 1988). Accordingly, similar to 

auditory neighbourhoods, visual neighbourhoods can be either sparse or dense, depending upon 

the number of visual neighbours of a target item that are activated during visual word 

recognition. In a further examination of visual speech perception, Auer (2002) extended the 

NAM to predicting visual spoken-word identification accuracy, examining whether ND 

principles would also apply to speech stimuli when presented visually. The investigators reported 

that after controlling for segmental intelligibility (i.e. the acoustic-phonetic stimulus properties), 

low ND were more readily identified than high ND words. These findings were interpreted as 

providing support for similar operations underlying visual and auditory word recognition 

Tye-Murray et al. (2007) subsequently proposed and created an auditory-visual (AV) 

neighbourhood structure combining both auditory and visual neighbourhoods. These 

neighbourhoods constitute the region of overlap between the auditorily and visually defined 

neighbourhoods for a particular word – that is, words that are both auditory and visual 

neighbours of the target item. This overlap between unimodal neighbourhoods can be referred to 

as the intersection density (ID); candidate items for words presented in AV are thus items that 

are both A and V neighbours, i.e. those that fall within the ID. These can be further placed within 

the context of the earlier discussion about lexically easy and lexically hard words, in that easy 

words are those that have relatively low ID because of only few competing items within the 
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region of neighbourhood overlap, and hard words are those with a higher ID (i.e., more items 

competing within the region of overlap). Figure 1 displays a schematic of the relationship 

between auditory and visual neighbourhoods and their overlap. The top set of circles indicate 

auditory (A) and visual (V) neighbours for the words fork (a) and fish (b). The bottom set of 

circles depicts the overlap between the unimodal neighbourhoods when both are activated 

simultaneously during AV presentation. Although both words have comparable unimodal 

neighbourhood sizes, the intersection density is much larger for fork than it is for fish, thus 

making it more likely that an individual will recognise fish than fork in AV presentation, given 

the fewer number of competitors. 

 

 

Figure 1. Borrowed from Tye-Murray et al. (2007). A schematic depiction of the 

intersection density (ID) created as a result of simultaneous activation of unimodal sensory 

neighbourhoods. 

 

According to Tye-Murray et al. (2007), the process of spoken-word identification in AV 

presentation proceeds in a nearly identical manner to the unimodal case; a speech stimulus 
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presented both acoustically and visually activates the target word, as well as modality-specific 

candidate words in the region of overlap that are also coactivated by the two speech signals. 

These competitors must be inhibited in order to activate the target word, whereas those words 

outside of the intersection receive minimal or no activation
1
. Therefore, words with few 

competitors should be more easily identified than words with more competitors. Tye-Murray et 

al. tested this hypothesis using a list of words from the Children’s Audiovisual Enhancement 

Test (CAVET). They divided words on this test into groups of low (i.e. easy) and high (i.e. hard) 

intersection density. As predicted, items with low IDs were recognised significantly more often 

than those with high IDs, supporting both the existence of an AV neighbourhood structure in 

spoken-word recognition, and suggesting that similar mechanisms may underlie unimodal and 

bimodal word recognition.  

Using these principles set forth by the NAM, it is thus possible to conceptualise an 

adapted model which considers the dynamics of activation-competition in the AV speech system. 

This model will henceforth be referred to as the Auditory-Visual Neighborhood Activation 

Model (AV-NAM).  

The AV advantage becomes especially apparent in the framework of this bimodal 

framework. By perceiving a word through both an acoustic and visual signal, the number of 

activated words in the intersection density is immediately reduced in comparison to the speech 

signal presented in either modality alone. For example, the word fork has 13 auditory neighbours 

and 5 visual neighbours, as depicted in Figure 1. When the word fork is presented under AV 

conditions however, the number of neighbours is reduced to three, such that there are only three 

common candidates between the auditory and visual neighbourhoods. Moreover, the additional 

                                                 
1
 Words that are outside the intersection density area also receive activation, but are not candidates for 

recognition because they do not reside within the intersection density overlap. 
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benefit of the visual signal to the existing acoustic signal also becomes apparent. Visual 

enhancement within the context of the AV-NAM specifically refers to the reductions of items in 

the ID relative to unimodal neighbourhoods, such that a large number of A-only candidates can 

be eliminated quickly as potential candidates because they are not also visual neighbours and 

therefore do not enter into the region of overlap.   

One prediction from the AV-NAM with respect to aging is that, as was the case with A 

presentation, older adults should have a disproportionately greater difficulty in identifying hard 

words than easy words, as compared to younger adults. However, contrary to this hypothesis, 

Tye-Murray et al (2007) observed no Age x Lexical Difficulty interaction for AV presentations. 

The authors tested both younger and older participants and although both had lower performance 

for lexically hard words, there was no interaction with age, although the pattern was trending in 

the predicted direction. In addition, the focus of this study was on the lexical characteristics of 

the AV neighbourhood, and therefore did not assess the contributions of inhibitory mechanisms.  

V. Overview of the Current Experiment 

 

The present study was designed to extend the findings of Tye-Murray et al. (2007) by 

investigating the role of inhibition in AV speech perception using the framework of the AV-

NAM. The current experiment tested younger and older adults on three separate tasks of 

cognitive inhibition, as well as a spoken-word identification task in A, V, and AV conditions. 

Individuals were also assessed for vocabulary, processing speed, and hearing ability. In order to 

determine the degree to which inhibitory ability predicts age-related and individual differences in 

identification of words varying in lexical difficulty, regression techniques were used to examine 

word identification performance as a function of inhibitory ability. If AV perception of spoken-

words is affected by the number of competing words that are simultaneously activated by 
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unimodal input, older adults’ AV perception may also suffer because their inhibitory deficits 

result in larger numbers of competing word candidates common to both modalities remaining 

active and interfering with correct identification. Moreover, because inhibitory demands are 

increased for perception of high ID words, a stronger relationship between inhibition and 

intelligibility of high ID words is expected. Additionally, this experiment also examined the 

relationship between inhibitory ability and visual enhancement to determine whether the ability 

to benefit from visual information added to the acoustic signal differs as a function of age-related 

or individual differences in inhibitory ability. Together, these findings will further extend our 

current knowledge of the role of cognitive mechanisms involved in AV spoken-word 

identification, and how this process may elucidate the changes in speech perception that 

accompany the aging process. 
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Methods 

Participants 

 

One hundred and seven total participants were recruited for this study. Fifty-four young 

adults (42 women) were recruited from the Washington University (WU) Psychology Subject 

Pool. Fifty-three community-dwelling older adults (30 women) were recruited from the subject 

pool maintained by the WU Aging and Development Program.  

All participants were tested for hearing ability, processing speed, and vocabulary 

knowledge. To assess hearing ability, participants received a hearing test measuring pure-tone 

air-conduction thresholds (PTA) for octave frequencies from 250 Hz to 4,000 Hz. The PTA 

average (the average threshold at 500, 1000, and 2000 Hz) was obtained for each individual. 

Participants also completed two tasks of processing speed. In the dot-location task with 40 trials, 

(Chen, Myerson, & Hale, & Simon, 2000), participants were to respond as quickly as possible as 

to which of two dots was closer to a central target dot. In a category judgement task with 80 

trials, (Chen, Hale, & Myerson, 2007), participants were to respond as quickly as possible as to 

which of two words presented side by side in the centre of the screen was an animal (the 

alternate choice was a non-animal, such as an inanimate object or food item). All participants 

also completed the Vocabulary subtest of the Wechsler Adult Intelligence Scale (WAIS; 

Wechsler, 1955). Additionally, older adults completed the Mini-Mental Status Examination 

(MMSE) (Folstein, Folstenin, & McHugh, 1975). Table 1 depicts this information, in addition to 

demographic variables. Younger and older adults did not significantly differ on WAIS 

Vocabulary scores, but did predictably differ on hearing ability and speeded response times. 

However, both groups exhibited thresholds that were within clinically normal limits (less than 20 

dB hearing loss) for all but the highest frequency, and response times were consistent with age-

related slowed responding (e.g. Salthouse, 1996).  
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Table 1 

Demographic, Hearing Loss, and Processing Speed Information for Younger and Older Adults 

Variable Younger Adults Older Adults 

N 54  53  

Mean Age  20.36 (.21) 71.98 (0.99) 

MMSE - 28.98 (0.15) 

WAIS-IV Vocabulary 63.36 (.69) 63.42 (1.25) 

PTA Left dB HL 4.92 (.58) 21.16 (1.59)** 

PTA Right dB HL 5.16 (.56) 19.73 (1.39)** 

Dot Location Task (in ms) 635.43 (17.23) 987.04 (38.08)** 

Dot Location Accuracy (%) 98.40 (0.55) 97.47 (0.97) 

Category Judgment Task (in ms) 596.13 (15.84) 742.63 (24.45)** 

Category Judgment Accuracy (%) 100.00 (0.00) 96.60 (1.91) 
* p < .001 

Note. Standard error of the mean shown in parentheses. 

 

 

Tasks 

Visual colour-word Stroop task. 

Three measures of inhibitory control were assessed in this experiment. All tasks were 

performed in the same room, where participants were seated approximately 50 cm away from the 

computer screen. The first task was the Stroop (1935) colour-naming paradigm, which has been 

used extensively in prior literature to examine age-related differences in inhibitory control (e.g., 

Earles et al., 1997; Hasher, Stoltzfus, Zacks, & Rypma, 1991; West & Alain, 2000).  

Stimuli. The stimuli for color Stroop task consisted of four colour words (red, blue, 

green, yellow), and four neutral words (deep, legal, poor, bad) presented randomly in either a 

red, blue, green, or yellow hue (Spieler, Balota, & Faust, 1996). A total of 80 trials were 
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presented, consisting of 32 congruent (the colour word and hue are identical), 24 incongruent 

(the hue differs from the colour word), and 24 neutral (a neutral word) trials. 

Procedure. This task was presented in E-Prime 2.0 (Psychological Software Tools, Inc., 

Pittsburgh, PA). In the task, participants were told to name the colours in which the word 

appeared as quickly and as accurately as possible. Participants were given 16 practise trials 

before beginning the experimental trials, and the experimenter remained in the room for the 

duration of the testing session. Each trial began with a fixation stimulus consisting of three plus 

signs displayed for 700 ms. The screen was then blank for 50 ms, followed by the appearance of 

the stimulus word. The word was displayed on a black background and remained on the screen 

until the participant responded vocally into a microphone. Once the voice-operated relay for 

response latency was triggered, the experimenter pressed one of four keys to code the 

participant’s colour response.  

 

 

Eriksen Flanker task 

 

The second task of inhibitory control was the Eriksen and Eriksen (1974) Flanker task, 

adapted from a version used by Friedman and Miyake (2004), in which the task was used as an 

assessment of how well participants were able to select targets that were simultaneously 

presented with irrelevant distractors. In this task, participants must respond as quickly and 

accurately as possible to the identity of a central target that is flanked by distracting items.  

 Stimuli. The stimuli consisted of four different targets: the letters H, K, S, and C. The 

flanker letters consisted of these same letters, but presented in a string of four (two on each side 

of the central target letters). Participants were instructed to press a button on the right side of the 

keyboard when the target letter was H or K, and a button on the left side when the target letter 
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was S or C. A congruent trial consisted of a target letter flanked by identical distractors (e.g., 

HHHHH); an incongruent-compatible trial consisted of a target letter flanked by different 

distractor letters but corresponding to the same response (e.g., KKHKK); an incongruent-

incompatible trial consisted of a target letter flanked by different distractor letters and 

corresponding to the opposite response (e.g., SSHSS); and a neutral condition consisted of a 

target letter presented in isolation (e.g., H). There were 160 total trials, consisting of 35 

congruent trials, 35 compatible incongruent trials, 40 incompatible incongruent trials, and 50 

neutral trials.  

 Procedure. This task was presented in E-Prime. Participants were given 16 practise trials 

before beginning the experimental trials. Each trial began with a fixation stimulus consisting of 

three plus signs displayed for 700 ms. The screen was then blank for 50 ms, followed by the 

appearance of the stimulus. The stimulus was displayed in black letters on a white background 

and remained on the screen until the participant pressed a key which triggered the next stimulus. 

 

 

Phonological DRM Task 

 

The final task of inhibitory control included in the experiment was the phonological 

variant of the Deese-Roediger-McDermott (DRM; Roediger & McDermott, 1995) task 

developed to examine false memories by Sommers and Lewis (1999). False phonological 

memories occur when a participant falsely recognises a critical word which was not previously 

presented, but is a phonologically-related associate of all words in a given list (e.g. an ‘old’ 

response to the critical word CAT, whereas CAB, THAT, and MAT were presented previously).  

Stimuli. Eight lists were randomly selected from the 24 lists generated by Sommers and 

Lewis (1999). Each list consisted of 15 phonological neighbours of a critical item (CI) specific to 
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that list. All stimuli were recorded by a male talker with a Midwestern American dialect and 

presented auditorily to the participants through headphones.  

Procedure.  

Study phase. The task was presented in SuperLab 4.5.4 (Cedrus Corporation, 

1999). Participants heard one list at a time, separated by a 500-Hz tone signifying the 

beginning of the next list. Within each list, words were separated by a 500-ms 

interstimulus interval.  

Test phase. After all the lists had been presented, an old/new auditory recognition 

task began in which participants were presented with a test list of 24 old and 24 new 

items. Of the 24 new words, 8 were CI’s of the previously presented lists and the 

remaining 16 new items consisted of words randomly selected from non-presented lists.  

The 24 old items were words pseudo-randomly selected from the presented lists. 

Participants were instructed to press a key corresponding to OLD if they had heard the 

item in the study phase, or a key corresponding to NEW if they had not heard the item in 

the study phase.  

 

Spoken-Word Identification Task.  

 Stimuli. One hundred and eighty words were obtained from the English Lexicon Project 

(Balota et al., 2007). Words were selected on the basis of words that are both A neighbours and 

V neighbours, i.e., intersection density (ID), in order to obtain sufficient numbers of both high ID 

and low ID items in order to obtain the strongest density effects. High and low ID values were 

determined using the 10C4V method, in which V neighbourhoods are created by categorising all 

of the phonemes in each word as one of 10 consonants or 4 vowels (from Iverson, Bernstein, & 
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Auer, 1998). These words consisted of both monosyllabic and disyllabic nouns and verbs (see 

Appendix for the complete stimulus list). Hyperspace Analogue to Language (HAL) log-

transformed frequency norms (Lund & Burgess, 1996) across low and high words were also 

obtained and equated as closely as possible in order to assess neighbourhood properties 

independently of word frequency. Table 2 depicts mean ID and HAL log frequency for both easy 

and hard words. 

 

 

Table 2 

Lexical Characteristics of Low Intersection Density Words and High Intersection Density Words 

 Easy Words Hard Words 

Mean Intersection Density (SD) 1.0 (0.0) 11.1 (2.4) 

Mean HAL Log Frequency (SD) 9.1 (2.3) 8.8 (2.1) 

SD = standard deviation. 

 

 All stimuli were recorded by a young female talker who had a Midwest American dialect. 

During recording, only the head and shoulders of the talker were visible, filmed with high-

intensity studio lighting before a neutral background. Each stimulus presentation began with the 

talker saying the carrier phrase, “Say the word”, followed by the target word, and lasted for 

approximately 5 s.   

 Procedure. Participants were tested in a sound-attenuated room. Stimuli were presented 

via a PC (Dell 420) equipped with a Matrox (Millennium G400 Flex) 3D video card and through 

headphones (Sennheiser HD 265). Video configuration was in dual screen mode so that stimuli 

could be presented to participants in the test booth while the experimenter monitored 

participants’ responses in a control room. The participant was instructed to listen to the entirety 

of the stimulus (“Say the word _____”), and then verbally repeat the terminal word into a 

microphone. Each sentence stimulus was cued by a prompt on the screen indicating the mode of 
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presentation: an eye for V-only (“watch”), an ear for A-only (“listen”), and both an eye and ear 

for AV (“watch and listen”). During presentation, a 6-talker babble noise was added to the 

auditory stimulus using a sound processing delivery system (RP 2, Tucker-Davis Technologies 

System 3, Gainesville, FL). The signal-to-babble (SNB) was set at -1 dB across all participants to 

prevent ceiling performance during identification. The stimuli were randomly distributed equally 

across A-only (the auditory stimulus mixed with the babble without seeing the talker), V-only 

(the talker’s head and shoulder’s also presented in babble without the auditory stimulus), and AV 

(seeing and hearing the talker overlaid with babble) presentation. The same presentation order 

was used for all participants to eliminate presentation order as a source of variance. Participants 

were encouraged to provide a response on every trial, regardless of certainty. A correct response 

was only counted if the participant repeated the word verbatim. The first three trials were 

considered practise trials.  

 The entire experimental session lasted approximately 2 hours. Participants were 

compensated $10 or 1.0 course credit per half-hour of participation. All procedures were 

approved by and adhered to guidelines outlined by the Human Research Protection Office at 

Washington University in St. Louis.  
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Results 

Several participants had to be eliminated from analyses due to a combination of 

incomplete/missing data from one or more tasks and/or inappropriate inclusion in the age group 

(i.e. a few of the older adult participants had signed up through the PSYC 100 subject pool), 

leaving a total of 99 participants (younger, n = 49, 38 women; older, n = 50, 30 women). 

 

Stroop task. 

Response latencies exceeding two standard deviations of the mean for each condition 

(congruent, neutral, and incongruent) were excluded from the analyses. This resulted in the 

exclusion of approximately 6% of the data from younger adults, and 8% from older adults. A 

small proportion of these excluded trials contained no-response trials. The mean response 

latencies and accuracy are displayed in Table 3, as well as the Stroop effect for each group and z 

scored (standardized) means. A mixed analysis of variance (ANOVA) with age as a between-

subjects variable and Stroop condition as a repeated-measures variable revealed that older adults 

had significantly slower response latencies, F(1,97) = 89.99, η
2 

= .57, p < .001.  Response 

latencies also significantly differed across the three conditions, F(2,96) = 234.03, η
2 

= .43, p < 

.001. Critically, there was a Age x Condition interaction, F(2,194) = 37.78, η
2 

= .35, p < .001. 

The interaction remained significant when analysed using the standardised means, which were 

calculated by transforming each reaction time to a z score based on each participant’s mean and 

standard deviation (Faust et al., 1999), F(2,194) = 12.43, η
2 

= .21, p = .039. The Stroop effect, or 

the Stroop interference score, was calculated for each participant by subtracting the mean 

response latency in the congruent trials from the mean response latencies in the incongruent 

trials. Stroop interference was significantly greater for older adults than for younger adults, t(98) 

= 7.22, Cohen’s d = 1.45, p < .001.  



30 

 

As with response latencies, ANOVAs were also conducted on the mean accuracy data. 

Given that both older and younger participants achieved near ceiling performance in all 

conditions, there were no main effects or interactions. Thus, the results from the Stroop task 

suggest a reliable age-related increase in interference that is unrelated to a possible speed-

accuracy tradeoff.  

 

Table 3 

Response Latencies (in Milliseconds) and Accuracy (in Percentage) in the Stroop Task  

 Young (n = 49) Old (n = 50) 

Condition Mean response latencies (ms) 

        Congruent (SE) 584.6 (8.5) 705.82 (14.1) 

        Neutral (SE) 617.4 (8.3) 769.53 (13.6) 

        Incongruent (SE)     680.2 (10.9)  898.21 (19.1) 

 Mean standardised response latencies (ms) 

        Congruent (SE) -.61 (.04) -.77 (.07) 

        Neutral (SE) -.13 (.03) -.21 (.04) 

        Incongruent (SE) .52 (.03) .67 (.04) 

  Stroop Interference (SE) 95.6 (5.4) 192.42 (12.2) 

 Accuracy (%) 

       Congruent (SE) 96.8 (0.9) 98.3 (0.2) 

       Neutral (SE) 96.6 (0.7) 99.9 (0.1) 

       Incongruent (SE) 97.7 (0.6) 93.3 (0.3) 

SE = standard error of the mean. 

 

Flanker task 

 Similar to the Stroop task, response latencies exceeding two standard deviations of the 

mean for each condition were excluded from analyses, resulting in the removal of approximately 
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5% and 7% of responses from younger adults and older adults, respectively. One older 

participant and one younger participant were excluded for significantly poor accuracy. The 

remaining average response latencies within each condition and accuracy are displayed in Table 

4. A 2 (age) x 3 (condition) mixed ANOVA revealed that older adults were slower than younger 

adults in all conditions, F(1,95)= 45.91, η
2 

= .49, p < .001. There was also an effect of condition, 

F(3,93)= 33.15, η
2 

=  .14, p < .001. However, there was no Age x Condition interaction, 

F(3,285)= 2.12, η
2 

= .01, p = .09. ANOVAs were also conducted on the mean accuracy data, and 

revealed no main effects or interactions. Thus, in contrast to the Stroop task, there did not appear 

to be a significant effect of age-related interference.  

Table 4 

Response Latencies (in Milliseconds) and Accuracy (in Percentage) in the Flanker Task  

 Young (n = 49) Old (n = 49) 

Condition Response latencies 

       Congruent (SE) 560.1 (16.6) 753.6 (26.8) 

       Compatible incongruent (SE) 599.1 (20.1) 830.3 (31.6) 

       Incompatible incongruent (SE) 573.1 (13.2) 802.0 (30.9) 

       Neutral (SE) 528.4 (14.9) 743.4 (27.2) 

       Interference (SE) 75.8 (8.2) 94.7 (8.9) 

   

 Accuracy (%) 

       Congruent (SE) 99.6 (0.1) 98.6 (0.1) 

       Compatible incongruent (SE) 99.5 (0.1) 98.8 (0.1) 

       Incompatible incongruent (SE) 99.1 (0.1) 97.4 (0.2) 

       Neutral (SE) 99.0 (0.1) 98.5 (0.2) 

SE = standard error of the mean. 
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Phonological DRM task 

 Table 5 displays the mean proportion of ‘OLD’ responses to old items, new items, and 

critical lure items. Old responses to critical lure items represent the false alarm rate. A 2 (age) x 3 

(condition) repeated-measures ANOVA revealed a significant effect of age, F(1,97) = 3.10, η
2 

= 

.09, p = .049; and condition, F(2,96)= 323.67, η
2 

= .694, p < .001. There was also a significant 

Age x Condition interaction, F(2,194)= 4.07, η
2 

= .01, p = .02. Post-hoc pairwise comparisons 

with Bonferroni corrections revealed that older adults performed similarly to younger adults in 

the proportion of ‘OLD’ responses to old and new items, but had a significantly higher 

proportion of ‘OLD’ responses (i.e. false alarms) to critical lures than younger adults, p < .01.  

Table 5 

Proportion of ‘OLD’ Responses to Items in the Phonological DRM Task  

 Young (n = 49) Old (n = 50) 

Condition   

Old Items 71.8 (1.6) 71.4 (1.0) 

New Items 26.7 (1.7) 29.7 (2.4) 

Critical Lures (False Alarm 

Rate) 
45.1 (2.6) 56.7 (3.0) 

Note. Parentheses indicate standard error of the mean. 

 

Relationship Between Inhibition Measures 

 To assess whether the three tasks shared a common construct, Pearson product-moment 

correlations were computed. The results are presented in Table 6. None of the correlations were 

significant, indicating that the three tasks may not be tapping into the same aspect of inhibition.   
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Table 6 

Pearson Product-Moment Correlations between the interference measures from the Stroop, 

Flanker, and DRM task 

 
Stroop 

interference 

Flanker 

interference 
DRM interference 

Stroop 

interference 

— 
.08 .13 

Flanker 

interference 

 
— .17 

DRM interference   — 

 

 

Spoken-word Identification Task 

The practise (i.e. the first three) trials from each participant were excluded from analyses. 

The exclusion of these trials, which happened to be all in A-only presentation, did not affect the 

overall pattern of the data.  

Figure 2 depicts overall identification in each modality (A-only, V-only, and AV) between 

the two age groups. A 2 (age) x 3 (modality condition) factorial ANOVA revealed a significant 

interaction, F (2,194) = 37.42, η
2 

= .02, p < .001. Pairwise comparisons with Bonferroni 

corrections indicated that younger adults demonstrated superior identification performance of 

words presented in A and AV conditions compared to older adults (both p < .001), but 

demonstrated comparable performance to older adults in the V condition (p = .179); this absence 

of age differences may be due to near floor level performance.. The results from AV will be the 

focus of the rest of the analyses. 

Because participants were not equated for audibility, it was particularly important to 

examine whether the age differences in AV performance were due to reduced audibility in older 

adults. A one-way ANCOVA was conducted to compare AV performance between young and 
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older adults, using hearing ability as a covariate. The age difference was still significant with a 

mean difference of 11.33 percent, F(1,96) = 37.63, η
2 

= .21, p < .001, suggesting a reliable 

difference between younger and older participants, even after controlling for hearing ability. A 

plot depicting the range in identification performance for younger and older adults across the 

three conditions is shown in the Appendices as Figure A2 and A3.   
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Figure 2. Percentage correct word identification in auditory-only (A), visual-only (V), and 

audiovisual (AV) conditions. Error bars represent the standard error of the mean.  
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Figure 3 depicts identification performance as a function of age and intersection density (ID, 

i.e. low vs high) in AV performance only. A 2 (Age) x 2 (Intersection Density) ANOVA 

revealed a main effect of Age, F(1,97) = 65.74, η
2 

= .42, p < .001, in which younger adults 

performed significantly better than older adults; and a main effect of ID, F(1,97) = 46.93, η
2 

= 

.79, p < .001, in which low ID items were recognised more often than high ID items. There was 

also a significant Age x ID interaction, F(1,97) = 8.21, η
2 

= .03, p = .005, indicating that while 

older adults are generally poorer at recognising AV words overall, they are significantly 

impaired at recognising high ID words in particular.  
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Figure 3. Percentage correct word identification in AV as a function of low ID words and 

high ID words. Error bars represent the standard error of the mean.  
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Error Analysis 

 An error analysis was then conducted to examine what types of errors participants were 

producing. The rationale for this stems from the activation-competition mechanism of the NAM. 

During perception of high ID words, a large number of competitors receive activation, and may 

remain active for some time before being inhibited. Low ID words do not necessitate the same 

degree of inhibition due to fewer competitors. Therefore, if deficits in inhibiting lexical 

neighbours are partly responsible for age-related differences in recognising high ID words, then 

older adults ought to be more likely to produce neighbours (i.e. persistently active candidates) as 

incorrect responses.  

The percentage of errors which were lexical neighbours to the target item was computed 

(i.e. neighbourhood errors) in order to address this prediction. Table 7 depicts the overall 

percentage of neighbourhood errors in AV, as well as neighbourhood errors made in response to 

low ID items and high ID items. An independent-samples t-test indicated that older adults 

produced significantly more neighbourhood errors overall, t(97) = 3.54, Cohen’s d = .71, p < 

.001. A repeated-measures ANOVA was then conducted to determine whether the percentage of 

ID errors differed depending on whether the target item was a low ID or high ID item. The 

results revealed a significant effect of ID, F(1,97) = 527.03, η
2 

= .84, p < .001, in which a 

significantly higher proportion of errors were made to high ID items. The interaction between 

Age x Intersection Density was only marginally significant, F(1,97) = 3.73, η
2 

= .01, p = .056. 

Despite not reaching strict criterion for significance, the trend indicates that older adults appear 

to produce more neighbourhood errors than do younger adults, particularly to high ID words. 
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Table 7 

Percentage of Error Responses Classified as Lexical Neighbours to the Target Item in Younger 

and Older Adults 

Young (n = 49)  Old (n = 50) 

Tot. 

Errors 
Low High 

 Tot. 

Errors 
Low High 

14.92 

(.84) 

13.43 

(3.14) 

86.56 

(3.25) 

 19.14 

(.85) 

6.83 

(1.26) 

93.17 

(1.25) 

 

Note. Standard error of the mean in parentheses.   

Tot. Errors = the percentage of total errors that are neighbourhood errors (i.e. incorrectly producing a 

lexical neighbour)   

Low  = the percentage of incorrectly-produced lexical neighbours to low ID items   

High = the percentage of incorrectly-produced lexical neighbours to high ID items 

 

 

 

Visual Enhancement  

 The degree to which adding a visual signal improves word intelligibility (i.e. visual 

enhancement, or VE) was also compared between the age groups. VE is calculated as follows: 

VE = (AV-A) ⁄ (1-A) 

 This formula (Sumby & Pollack, 1954) directly compares an individual’s A and AV 

performance, such that differences in baseline A-only performance are normalised in order to 

calculate the overall improvement (relative to the maximum possible improvement) 

 as a result of additional visual information. Figure 4 depicts overall VE for both younger and 

older adults, while Figure 5 depicts VE as a function of age group and lexical difficulty. Using 

an independent-samples t-test analysis, a significant difference in VE was found between 

younger and older adults, such that younger adults obtained higher VE scores than older adults, 

t(97) = 4.84, SE = .02, Cohen’s d = .95, p < .001. A repeated-measures ANOVA was then 

conducted to determine whether younger and older adults differed in VE scores, depending upon 

whether the item was easy or hard. The interaction was significant, F(1,97) = 4.97, η
2 

= .02, p = 
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.028, indicating that older adults receive significantly less benefit than younger adults from an 

additional visual signal to hard words, as compared to easy words. This analysis was also 

repeated using V-only performance as a covariate, and a similar pattern of results was obtained 

As with the results from overall AV identification, an ANCOVA was conducted to compare VE 

scores between young and older adults, using hearing ability as a covariate. The difference was 

still significant with a mean proportion difference in VE of .08, F(1,96) = 12.54, η
2 

= .10, p < 

.001, suggesting that reliable differences between younger and older participants persist after 

controlling for hearing ability. A scatterplot depicting the range of VE scores for young and old 

adults is shown in Appendix A4. 

 

 

 
 

Figure 4. Overall visual enhancement (VE) scores for younger and older adults shown in 

proportion. Error bars represent the standard error of the mean. 
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Figure 5. Visual enhancement (VE) scores for younger and older adults as a function of low 

ID words and high ID words. Error bars represent the standard error of the mean. 

 

 

 

Inhibition and AV Word Identification 

 As demonstrated above, none of the three tasks designed to assess inhibition were 

correlated. However, two of the tasks – the Stroop and DRM task – produced age-related effects 

in interference. Nevertheless, all three tasks will be examined with respect to their relationship to 

AV word identification.  

However, in order to properly isolate the effect of age-related inhibition, general slowing 

must be taken into account (Salthouse, 1996). Because the two measures of processing speed 

were significantly correlated (r = .55 at the p < .001 level), the two measures were combined into 

a speed index, created by standardizing response latencies for the two tasks and computing an 

average z-score for each participant (Faust et al., 1999). 
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Table 8 displays the Pearson zero-order correlations between the demographic variables (age 

and WAIS vocabulary), hearing ability (as measured by PTA in the better ear of each 

participant), processing speed, the three inhibition tasks, AV identification scores (overall, as 

well as for low ID items and high ID items), and VE scores (overall, as well as for low ID items 

and high ID items). The table clearly demonstrates correlations with age in a number of different 

factors, particularly the AV and VE scores, such that increases in age are associated with poorer 

AV and VE scores. However, there was no correlation between age and the Flanker or DRM 

task. In fact, the only inhibition task to be correlated with age was the Stroop task, indicating an 

age-related increase in Stroop interference as a measure of inhibition. Moreover, higher AV and 

VE scores were associated with lower Stroop interference. Together, these findings may suggest 

that the relationship between Stroop inhibition and AV word identification may be a result of the 

strong relationship Stroop interference has with age. 

 

 

  

   

   

   

   

* p < .05
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Table 8. 

Pearson Product-Moment Correlations Between Demographic, Speed, Inhibitory, and AV Measures 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 

1. Age — .01  .67** .37** .59** .160 -.160 -.64** -.52** -.64** -.44** -.25*0 -.44** 

2. Vocabulary  — -.1800 .0200 -.0500 -.20* -.020 .0100 .0600 -.0300 -.0200 .0900 .0100 

3. Hearing Ability   — .1300 .36**0 .130    .07 -.63** -.55** -.61** -.44** -.2400 -.46** 

4. Speed Index    — .43** .110 .020 -.35** -.35** -.30** -.1600 -.1300 -.1800 

5. Stroop interference     — .080 -.010 -.56** -.21*0  -.57** -.45** -.1500 -.36** 

6. Flanker interference      — .040 -.0800 -.0800 -.0700 -.0700 .1100 .0600 

7. DRM interference       — .0200 -.0200 .0500 -.0500 -.0400 -.0400 

8. AV Total        — .90** .93** .89** .42** .63** 

9. AV (Low ID)         — .69** .81** .50** .47** 

10. AV (High ID)          — .82** .28** .67** 

11. VE           — .47** .68** 

12. VE (Low ID)            — .78** 

13. VE (High ID)             — 

Note: AV = Audiovisual;      ID = Intersection density;          VE = Visual enhancement 

*p < .05,     **p < .01 

 

 

 



44 

 

Predictors of AV Word Identification 

In order to investigate the unique contributions of age and Stroop inhibition to AV word 

intelligibility, a series of hierarchical linear regressions were conducted. Given the strong 

correlation between age and AV, the regressions were conducted separately for each age group. 

For each analysis, the hearing ability, speed index, as well as the measure of Stroop inhibition 

were used to predict AV and VE performance (because of the lack of significant correlations 

between the Flanker and DRM task and the AV and VE scores, these variables were omitted 

from further analysis). Hearing ability was entered into the first step, followed by the speed 

index in the next step, and Stroop interference in the final step. It is particularly important to note 

that processing speed was entered into the regression analysis in the step preceding Stroop 

inhibition – this allows for the element of speed to be controlled for when considering Stroop 

interference, as it important to do so when considering age differences in the Stroop task. Three 

separate analyses were conducted for AV performance – overall identification, as well as 

performance for low ID items and high ID items.  

Table 9 displays overall AV identification scores for both younger and older adults, as 

predicted by hearing, speed, and Stroop interference. Table 10 displays AV intelligibility scores 

for younger and older adults, separately for identification of low ID and high ID items as 

predicted by the three variables. From Table 9, it appears that Stroop interference is not 

significantly predictive of overall AV word identification in younger adults (1.8%), however AV 

word identification in older adults is significantly predicted by Stroop interference (12.3%), in 

addition to hearing ability. In Table 10 where the results are not parsed into identification of low 

and high ID items, neither hearing nor inhibitory ability is predictive of AV word identification 

performance of low or high ID items in younger adults. In contrast, hearing ability in older adults 
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was observed to be predictive of both low and high ID word identification; however, inhibitory 

ability as measured by Stroop accounts for an additional 10.3% unique variance in predicting AV 

word identification of high ID words, controlling for hearing ability and processing speed. In 

contrast, Stroop interference was not significantly predictive of low ID word identification 

(2.6%). Therefore, inhibitory ability as measured by Stroop appears to be strongly predictive of 

high, but not low, ID word intelligibility in older adults only, while inhibitory ability is not 

significantly predictive of AV word intelligibility in younger adults. In addition to controlling for 

the effects of speed via partial correlation, individual effect sizes were computed for each 

individual (Faust et al., 1999), such that the effect of processing speed was removed for each 

individual based on the difference between his/her mean RTs in the incongruent and congruent 

conditions, divided by the standard deviation of their combined incongruent and congruent RTs. 

Entering these effect sizes into the regressions analyses converged on the same pattern of data, 

further providing support for the effect of age-related interference independent of processing 

speed (see Table 11 for R
2
 change and F values). 
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Table 9. 

Results of Hierarchical Regression Analyses Predicting Audiovisual (AV) Identification 

 Coefficient R
2
 R

2 
Change F Change 

                  Variable Younger Adults  

Step 1     

                                 Hearing Ability -.106 .011   .519 

     

Step 2     

         Hearing Ability -.111 .036 .025 1.162 

             Speed Index -.158    

     

Step 3     

Hearing Ability -.158 .054 .018 .885 

Speed Index -.157    

Stroop  interference -.143    

 Older Adults  

Step 1     

Hearing Ability -.439 .193  11.208** 

     

Step 2     

       Hearing Ability -.453 .228 .035 2.110 

          Speed Index -.189    

     

Step 3     

Hearing Ability -.453 .351 .123 8.531** 

Speed Index -.061    

Stroop  interference -.373    

Note. Coefficients are standardized. 

** p < .01 
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Table 10. 

Results of Hierarchical Regression Analyses Predicting AV Identification of Low ID Words and High ID Words 

   Low ID Words     High ID Words  

          

 
Coefficient R

2
 R

2 
Change 

F 

Change 

 
Coefficient R

2
 R

2 
Change F Change 

Variable  Younger Adults       

Step 1          

Hearing Ability -.154 .024  1.117  -.032 .001  .047 

          

Step 2          

Hearing Ability -.159 .046 .022 1.028  -.036 .015 .014 .624 

Speed Index -.148     -.117    

          

Step 3          

Hearing Ability -.145 .047 .002 .075  -.119 .072 .058 2.739 

Speed Index -.148     -.115    

Stroop  interference .043     -.254    

  Older Adults       

Step 1          

Hearing Ability -.274 .075  .415  -.431 .186  10.731** 

          

Step 2          

Hearing Ability -.245 .146 .071 .438  -.440 .200 .014 .798 

Speed Index -.276     -.118    

          

Step 3          

Hearing Ability -.345 .172 .026 .656  -.440 .303 .103 6.650* 

Speed Index -.315     .001    

Stroop  interference .174     -.342    

Note. Coefficients are standardized. ID = Intersection Density. 

* p < .05,    ** p < .01 
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Table 11.  

 

Results of Hierarchical Regressions Models Using Stroop Effect Sizes as Predictor Variable 

Dependent Variable R
2
 Change F 

Older Adults   

AV – Low ID Words .014 0.833 

AV – High ID Words .093   5.689* 

Younger Adults   

AV – Low ID Words .034   1.610 

AV – High ID Words .008   0.368 

* p < .05 

 

 

Predictors of Visual Enhancement (VE) 

 A similar series of hierarchical regressions were conducted in order to investigate the 

independent contributions of hearing, speed, and Stroop inhibition on VE for each age group. 

Again, three separate analyses were conducted for AV identification scores – overall VE, as well 

as VE of low ID items and high ID items. 

Table 12 displays overall VE scores for younger and older adults, as predicted by 

hearing, speed, and Stroop interference. Table 13 displays VE scores from younger and older 

adults, separated by identification of low and high ID items as predicted by the three variables. In 

a similar pattern to the AV word identification data, inhibitory ability in younger adults is not 

significantly predictive of VE. In older adults however, inhibitory ability significantly accounts 

for 13.9% of the variance in accounting for VE, in addition to hearing ability. In Table 13 where 

the data is separated into VE of low and high ID items, Stroop inhibitory ability is still not 
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predictive of VE for either low or high ID items in younger adults. In a similar pattern to the AV 

results, Stroop interference significantly accounts for 16.7% of the variance in predicting VE of 

high ID items, but not low ID items, in older adults.  

Thus, in a similar pattern to AV word identification, the benefit obtained from additional 

visual information in high ID word identification in older adults is strongly predicted by 

inhibitory ability, while there is no inhibitory contribution to VE of low ID words. 
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Table 12. 

Results of Hierarchical Regression Analyses Predicting VE Scores for Words in Audiovisual (AV) Presentation 

 Coefficient R
2
 R

2 
Change F Change 

                   Variable Younger Adults    

Step 1     

Hearing Ability -.106 .011  .518 

     

Step 2     

        Hearing Ability -.111 .044 .033 1.554 

           Speed Index -.182    

     

Step 3     

Hearing Ability -.146 .054                       .010 .472 

Speed Index -.181    

Stroop  interference -.107    

 Older Adults    

Step 1     

Hearing Ability -.292 .085  4.388* 

     

Step 2     

        Hearing Ability -.300 .097 .012 .604 

           Speed Index -.109    

     

Step 3     

Hearing Ability -.301 .236 .139 8.190** 

Speed Index .027    

Stroop  interference     -.397    

Note. Coefficients are standardized. VE = Visual Enhancement. 

* p < .05,    ** p < .01 

 



50 

 

Table 13. 

Results of Hierarchical Regression Analyses Predicting VE of Low ID Words and High ID Words in Audiovisual (AV) Presentation 

   Low ID Words     High ID Words  

          

 
Coefficient R

2
 R

2 
Change F Change 

 
Coefficient R

2
 R

2 
Change F Change 

Variable  Younger Adults       

Step 1          

Hearing Ability -.002 .000  .000  -.130 .017  .792 

          

Step 2          

Hearing Ability -.006 .009 .009 .392  -.136 .047 .030 1.439 

Speed Index -.093     -.175    

          

Step 3          

Hearing Ability  .019 .014 .005 .233  -.197 .079 .031 1.504 

Speed Index -.093     -.173    

Stroop  interference .076     -.188    

  Older Adults       

Step 1          

Hearing Ability -.203 .041  2.018  -.299 .090  4.627* 

          

Step 2          

Hearing Ability -.218 .083 .042 2.096  -.299 .090 .000 .003 

Speed Index -.205      .007    

          

Step 3          

Hearing Ability -.219 .140 .057 2.993  -.300 .257    .167 10.102** 

Speed Index -.118       .156    

Stroop  interference -.255     -.435    

Note. Coefficients are standardized. VE = Visual Enhancement; ID = Intersection Density. 

* p < .05,    ** p < .01 
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Discussion 

 The goal of the current study was to assess the role of inhibitory control on audiovisual 

(AV) spoken-word perception, independent of age-related sensory declines and processing 

speed. Measures of hearing ability, processing speed, inhibitory control, and word intelligibility 

were obtained from younger and older participants. The basic pattern of results revealed that 

younger adults demonstrated superior identification performance in AV presentation, compared 

to older adults, consistent with previous findings (e.g. Sumby and Pollack, 1954; Erber, 1969; 

Sommers et al., 2005). Low intersection density (ID) words, as defined by words with few 

neighbours that are both auditory and visual neighbours were also identified at a higher rate than 

high ID words, i.e. words with a high number of neighbours. Critically, it was observed that 

inhibitory ability as measured by the Stroop task was observed to be correlated with high ID 

word identification, but only for older adults.  

A more direct investigation of the relationship between age-related inhibitory control and 

AV word intelligibility was obtained through hierarchical regression analyses, which revealed 

that a significant proportion of the variance in AV word identification of high ID words in older 

adults was accounted for by Stroop interference, independent of hearing loss or processing 

speed. This relationship did not reach significance for low ID words, nor in younger adults for 

either high or low ID words. These findings largely conform to an inhibitory deficit account of 

age-related declines in word intelligibility which exist independent of sensory impairments or 

general slowing. In addition to the significant independent contributions of hearing ability and 

processing speed which have been implicated in previous speech perception research (e.g. 

Humes & Roberts, 1990; Cienkowski & Carney, 2002; van Rooij & Plomp, 1990), these findings 
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are consistent with an existing body of research that describes the effect of age-related declines 

in cognition on speech perception. 

 

Aging and the AV-NAM 

 The results of this study are consistent with previous research and predictions of the 

original NAM (Luce & Pisoni, 1998; Sommers, 1996; Vitevitch & Luce, 1999; Sommers & 

Danielson, 1999; Taler et al., 2010): words with many lexical neighbours generate greater 

activation and subsequently greater competition in spoken-word recognition, resulting in greater 

inhibitory demands which are necessary to isolate the target word. Although explicit claims 

about inhibition per se were not made in the original conception of the NAM, Sommers (1996) 

proposed additional tenets to the NAM which account for inhibition-driven competition amongst 

lexical items. Specifically, Sommers proposed that during word recognition, active inhibition is 

the mechanism by which the activation of irrelevant lexical candidates must be lowered.  

The validity of this proposal is supported by the present results considered within the 

context of the adapted AV-NAM which demonstrated intelligibility differences for low ID and 

high ID words. By definition, high ID words have many lexical neighbours and therefore many 

lexical items competing for activation; consequently, inhibitory demands are relatively high, in 

contrast to words with fewer lexical competitors. Indeed, the finding that Stroop interference was 

only predictive of high ID words and only for older adults supports this activation-competition 

framework of the AV-NAM, and specifically, the inhibitory mechanism which mediates AV 

speech intelligibility.  

 The age-based interaction of performance and ID also speaks to the inhibitory 

mechanisms of the AV-NAM, as well as to age-related decreases in inhibitory function. The 
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results are also consistent with previous research suggesting inhibitory declines in older adults 

(e.g. Hasher & Zacks, 1988; Hasher et al., 1991; Kramer, Humphrey, Larish, & Logan, 1994) – 

age-related reductions in inhibitory abilities directly and independently contribute to 

intelligibility difficulties, particularly of words with many lexical neighbours, as was observed in 

Table 10. From these results, it would appear that as a result of impaired inhibitory function as 

measured by increased Stroop interference, older adults are less able to meet the increased 

inhibitory demands required for high ID word identification, and intelligibility consequently 

suffers. This also demonstrates individual differences within older adults with regard to those 

with either intact or diminished inhibitory ability, who may be described as ‘good’ and ‘poor’ 

inhibitors, respectively. Those who are good inhibitors, i.e. those who experience less Stroop 

interference, will demonstrate higher AV identification of high ID words; in contrast, ‘poor’ 

inhibitors, i.e. those who experience more Stroop interference, will exhibit poorer high ID word 

identification performance.  

These findings also extend the results of Sommers (1996) who found that younger and 

older adults performed similarly in identification of words with few lexical neighbours, but 

diverged significantly in identification of words with many neighbours (note, however, that this 

study examined A-only lexical difficulty). If the difference between younger and older adults 

were solely due to age-related hearing impairments – which were observed to be significantly 

correlated with both low ID and high ID word identification (Table 8) – then the difference 

between the age groups should be roughly similar for both easy and hard words. However, the 

greater difference between the age groups for high ID words indicates that audibility alone is not 

the determining factor.  
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Younger adults also exhibited higher VE scores compared to older adults, indicating that 

they are benefiting to a greater degree from an additional visual signal than older adults, even 

when controlling for hearing ability. This is the first study to demonstrate a significant 

differences in VE between the two age groups, as previous studies examining VE have found 

directional, but not statistically significant, differences between younger/older adults (Sommers 

et al., 2005) and normal-hearing/hearing-impaired older adults (Tye-Murray et al., 2007). It is 

worth noting, however, that these previous studies used different sets of speech stimuli; further 

investigations of comparing VE between younger and older adults would help to specify the 

conditions under which the benefits of VE occur for different age groups and/or materials. 

Stroop interference also predicted obtained visual benefit (i.e. VE) for intelligibility of 

high ID words in older adults, but not younger adults. The pattern of results echo those in AV 

word intelligibility, such that inhibitory ability strongly predicts overall VE for older but not 

younger adults, and when separated into easy and hard words, is only predictive of VE of high 

ID words. These findings suggest that older adults’ ability to benefit from the addition of a visual 

signal in AV word intelligibility is at least partially determined by inhibitory ability. Considered 

within the context of the AV-NAM, this appears to make sense. This adapted model supposes 

that during AV word presentation, the unimodal neighbourhoods are perceived and integrated 

simultaneously into a bimodal percept, thereby eliminating unimodal neighbours as potential 

competitors. However, impairments in the inhibitory mechanism might lead to inefficient 

integration of the sensory neighbourhoods, resulting in the unimodal candidates remaining at 

least somewhat active, thereby preventing a clearly delineated intersection density. Therefore, 

age-related declines in inhibitory ability may lead to unimodal neighbours (in either A-only or V-

only) incorrectly remaining active, thereby increasing the pool of competitors to the target word. 
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Essentially, older adults may not be benefitting from additional visual information because they 

are unable to integrate the two sensory neighbourhoods and inhibit those unimodal candidates 

which are irrelevant.  

However, it is important to note that general claims about inhibitory function must be 

interpreted with caution. Age-related interference effects were only observed in two of the tasks 

(Stroop and DRM), and only the Stroop task was correlated with AV word identification. 

Therefore, it is possible that the three tasks may be measuring different aspects of the same 

construct (inhibition). Sommers and Danielson (1999) also found that Stroop was predictive of 

auditory word identification of hard but not easy words, although a different measure of Stroop 

interference was used (the RTs from the incongruent condition, as opposed to the present study 

which measured Stroop interference as a differences score between incongruent and congruent 

RTs). There thus seems to be a common mechanism between AV speech intelligibility and the 

Stroop task in particular. According to the Hasher and Zacks (1988) conception of inhibition, the 

Stroop task would be considered a restraint function, in that it involves a strongly activated but 

incorrect response (i.e. word naming) which must be restrained in order to proceed with the 

correct response (colour naming). This idea can be considered similar to that which occurs with 

lexical activation in the AV-NAM – during AV word presentation, strongly activated but 

irrelevant competitors must be inhibited (i.e. restrained) in order to activate the target item. 

Accordingly, when words possess a greater number of lexical competitors, more items must be 

inhibited, thus paralleling its similarity with the restraint mechanism of the Stroop task. Although 

a full discussion of the inhibition construct is beyond the scope of this thesis, it is clear that some 

aspect of age-related increases in susceptibility to interference is involved in the obtained 

findings. 
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Burke (1997) has contested the involvement of age-related inhibition in hard word 

recognition. Burke argues that the inhibitory relationship between the target item and 

competitors is bidirectional, such that inhibition of the competitors would also result in inhibition 

of the target; in the case of older adults with impaired inhibitory abilities, there would be less 

inhibition of the competitors as well as the target. Subsequently, the effect of age-related 

declines in inhibition would be counteracted by reduced inhibition of targets by their neighbours. 

The difficulty with this argument, as Sommers and Danielson (1999) point out, is that it does not 

consider overall activation and inhibition, merely relative levels. Overall activation levels are 

accompanied by proportional increases in inhibitory effects, which are altered with additional 

sensory evidence to identify to the target word, not to the competitors. As this additional 

information is received, it is thus the target-to-competitor inhibitory relationship which has 

greater effects than the reverse situation. As Sommers and Danielson note, “it is this asymmetry 

in the inhibitory influences of targets and competitors that provides a mechanism whereby age- 

related inhibitory deficits could impair recognition of hard words” (pg 468). 

Finally, the Pearson correlations in Table 8 showed that processing speed was highly 

correlated with AV performance. Although this relationship disappeared in the regression 

analyses when Stroop interference was entered as a predictor variable, it suggests that speed may 

be an important factor to consider in speech perception. Contrary to the current findings, 

Sommers (1998) and Sommers and Danielson (1999) both observed that tasks measuring speed 

of processing did not significantly predict (auditory) spoken-word recognition. Nevertheless, the 

influence of speed is an important one to consider, particularly when assessing age-related 

differences. General slowing of cognitive processing has been observed in a number of lexical 

tasks (Myerson, Ferraro, Hale, & Lima, 1992), and one could imagine within the framework of 
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the NAM that general slowing could result in more items remaining active for a longer time, 

especially for high ID words, because of delays in eliminating more competitors. Naming times 

were not obtained in the present study, and so further investigations may be necessary to 

conclude whether individual differences in processing speed contribute to individual differences 

in AV speech intelligibility.  

 

Future Research 

One theoretical aspect of the AV advantage involves the reduction in competing lexical 

candidates, although we have no direct evidence for this from the current study. The mechanistic 

explanation for the AV advantage arises from the fact that the AV intersection density eliminates 

a large number of unimodal competitors, and so inhibitory ability should predict a smaller 

amount of variance in explaining AV word identification (because there are fewer candidates) 

than it should for A-only word identification (because of more candidates). This was unable to be 

addressed in the current study because all stimuli were selected based on AV characteristics (i.e. 

those based on intersection density values), and even examining a select number of A-only 

presented stimuli based on extreme density values would be an unbalanced and unfair 

comparison to AV-presented stimuli. Future investigations into the AV advantage would benefit 

from examining the differences between intelligibility of words with high- and low-density A 

neighbours and words high- and low-density AV neighbours in order to determine whether a 

decrease in lexical competitors alters the amount of variance explained by inhibitory ability.  

Although word-based stimuli are necessary to examine the phenomenon of speech 

intelligibility, the words were placed within identical carrier phrases. Placing the words within 

more naturalistic sentences may allow for a more realistic investigation of how spoken-word 
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recognition works. For example, Sommers and Danielson (1999) placed easy and hard words 

within the context of high- and low-predictability sentences, from which target word 

identification scores were easily obtained. As this study was only the first to examine the role of 

inhibition in easy/hard AV word intelligibility, future studies would do well to examine lexical 

difficulty effects within the context of more naturalistic speech.  

 

Clinical Implications and Conclusions 

The clinical implications of this work concerning the interplay between aging, inhibitory 

function, and speech perception largely lie in the practice of aural rehabilitation. It is a well-

established finding that age-related impairments in hearing ability affect the intelligibility and 

perception of spoken language (e.g. CHABA, 1988; see Introduction). Much of the previous 

work examining aural rehabilitation strategies in clinical populations (i.e. individuals with 

hearing impairments, older adults) has focussed on auditory processing. To this end, hearing aids 

have been implemented in clinical settings, primarily targeting the higher frequency 

amplification (Hogan & Turner, 1998; Turner & Cummings, 1999) and sound localisation 

(Byrne & Noble, 1998; Seeber, Baumann, & Fastl, 2004). However, the success of hearing aids 

has been mixed. While some studies have reported some benefits of aided listening (Gatehouse, 

Naylor, & Elberling, 2006) and perception in modulated noise (Gatehouse, Naylor, & Elberling, 

2003), the evidence to suggest robust effectiveness of hearing aids – particularly over a long-

term period – remains largely limited (e.g. Mulrow, Tuley, & Aguilar, 1992; Surr, Cord, & 

Walden, 1998). 

The findings from the present study, along with results of previous studies (e.g. CHABA, 

1988; Tun, Wingfield, Stine, & Mecsas, 1992) suggest that a focus on auditory processing alone 



59 

 

may limit the scope of clinical utility. Instead, an alternative strategy would be to incorporate 

both cognitive and sensory factors in an integrated approach to rehabilitation. In the present 

study, both factors clearly demonstrated independent contributions to speech perception in older 

adults, suggesting that it is a combination of both processes which cause impairments to 

perceiving speech in noise. This strategy is especially relevant in the context of the NAM, which 

indeed makes specific claims about the interplay between low-level sensory mechanisms and 

higher-level cognitive mechanisms. Luce and Pisoni (1998) specifically state that, “when 

evaluating hearing-impaired listeners, the [NAM] model emphasizes that simple tests of speech 

pattern discrimination and phonetic feature discrimination will grossly underestimate the 

complex task that faces hearing impaired and normal listeners in understanding spoken-words in 

naturalistic settings” (pg 41). This statement directly speaks to the interaction of sensory and 

cognitive mechanisms, such that assessments which solely target acoustic mechanisms will be at 

a clinical disadvantage, due to the exclusion of the punitive effect of cognitive mechanisms. In 

some cases, these cognitive effects may be detrimental to lexical discrimination, as in the case of 

inhibitory decline. In other instances however, the wide range of cognitive mechanisms present 

in the speech system may actually promote compensatory strategies in lieu of other declines. 

Indeed, Sommers and Danielson (1999) observed that older listeners are able to use additional 

semantic information provided by high predictability context in order to compensate for 

inhibitory declines.  

The current study illustrates the importance of considering spoken-word recognition as a set 

of dynamic perceptual processes, as delineated by the NAM and adapted to a bimodal framework 

of the model called the AV-NAM, which will be of great utility in proceeding forward with 

strategies to improve speech perception in older adults. The results provide evidence as to 
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inhibitory mechanisms underlying some aspects of speech perception, which also interact with 

sensory processes. A better understanding of this interaction will inform future work examining 

both the theoretical nature of the relationship, as well as training strategies for older adults.  
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APPENDIX 

A1 

Audiovisual (AV) Stimulus List 

Low Intersection Density Neighbourhood 

Words 
 

High Intersection Density Neighbourhood 

Words 

shimmer paid audio  thorn groan lure 

dance daily tape  ball lows ardour 

stead doily cougar  sore boar warm 

step acme sled  rail torque fort 

better honoured valley  stoke line roar 

brush prod kids  rain rink toll 

dome seeker shaggy  where score sink 

crumb bones shriek  core filly course 

three shoddy tummy  sting lower shawl 

outdo cheek moored  fork fuse round 

office little hotter  dawn root more 

mayor glass blush  airy foal bing 

dream live cad  corn while saying 

gas nettle boost  store talk coarse 

pain adding hit  caught ruse wrought 

gent fizzle god  load pall stone 

pang third resin  wing shore force 

person slime silo  offer wick tore 

team alloys cob  fore sync yore 

mud van dubbed  pour taught mark 

attire doing peg  forge form fall 

big asset much  rune clone wall 

duo base manor  morn gore lawn 

sighed glove ember  ward ford slow 

nozzle bin void  mall door war 

child better cheap  caller tall firm 

zooms kit brass  ramp fawn thought 

girl judo vase  bring foul poor 

chateau season bottle  nor sloan lure 

sheets aside drop  will art ardour 

      image       people   walk cough  
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A2 

 

Figure I. A plot displaying the range of word recognition performance of younger adults across 

A-only, V-only, and AV conditions, depicted respectively across the horizontal axis. The black 

horizontal bar represents the mean within each condition.  
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A3 

 

Figure II. A scatterplot displaying the range of word identification performance of older adults 

across A-only, V-only, and AV conditions, depicted respectively across the horizontal axis. The 

black horizontal bar represents the mean within each condition.  
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A4. 

 

 

Figure III. A scatterplot depicting the range of visual enhancement (VE) scores obtained by 

younger (filled circles) and older (open circles) adults. The horizontal axis values represent each 

item. 
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