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ABSTRACT OF THE THESIS

Computable Performance Analysis of Recovering Signals with Low-dimensional

Structures

by

Gongguo Tang

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, 2011

Research Advisor: Arye Nehorai

The last decade witnessed the burgeoning development in the reconstruction of signals

by exploiting their low-dimensional structures, particularly, the sparsity, the block-

sparsity, the low-rankness, and the low-dimensional manifold structures of general

nonlinear data sets. The reconstruction performance of these signals relies heavily

on the structure of the sensing matrix/operator. In many applications, there is a

flexibility to select the optimal sensing matrix among a class of them. A prerequisite

for optimal sensing matrix design is the computability of the performance for different

recovery algorithms.

I present a computational framework for analyzing the recovery performance of signals

with low-dimensional structures. I define a family of goodness measures for arbitrary

sensing matrices as the optimal values of a set of optimization problems. As one of the

primary contributions of this work, I associate the goodness measures with the fixed

points of functions defined by a series of linear programs, second-order cone programs,
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or semidefinite programs, depending on the specific problem. This relation with the

fixed-point theory, together with a bisection search implementation, yields efficient

algorithms to compute the goodness measures with global convergence guarantees.

As a by-product, we implement efficient algorithms to verify sufficient conditions for

exact signal recovery in the noise-free case. The implementations perform orders-of-

magnitude faster than the state-of-the-art techniques.

The utility of these goodness measures lies in their relation with the reconstruction

performance. I derive bounds on the recovery errors of convex relaxation algorithms in

terms of these goodness measures. Using tools from empirical processes and generic

chaining, I analytically demonstrate that as long as the number of measurements

are relatively large, these goodness measures are bounded away from zeros for a

large class of random sensing matrices, a result parallel to the probabilistic analysis

of the restricted isometry property. Numerical experiments show that, compared

with the restricted isometry based performance bounds, our error bounds apply to a

wider range of problems and are tighter, when the sparsity levels of the signals are

relatively low. I expect that computable performance bounds would open doors for

wide applications in compressive sensing, sensor arrays, radar, MRI, image processing,

computer vision, collaborative filtering, control, and many other areas where low-

dimensional signal structures arise naturally.
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Chapter 1

Introduction

Recovery of signals with low-dimensional structures, in particular, sparsity [5], block-

sparsity [6], low-rankness [7], and and low-dimensional manifold structures for general

non-linear data set [8,9] has found numerous applications in signal sampling, control,

inverse imaging, remote sensing, radar, sensor arrays, image processing, computer vi-

sion, and so on. Mathematically, the recovery of signals with low-dimensional struc-

tures aims to reconstruct a signal with a prescribed structure, from usually noisy

linear measurements:

y = Ax+w, (1.1)

where x ∈ RN is the signal to be reconstructed, y ∈ Rm is the measurement vec-

tor, A ∈ Rm×N is the sensing/measurement matrix, and w ∈ Rm is the noise. For

example, a sparse signal is assumed to have only a few non-zero coefficients when

represented as a linear combination of atoms from an orthogonal basis or from an

overcomplete dictionary. For a block-sparse signal, the non-zero coefficients are as-

sumed to cluster into blocks; low-rank matrices have sparse singular value vectors.

The signals with sparsity, block-sparsity, and low-rank structures are illustrated in

Figure 1.1. Exploiting these low-dimensional structures can greatly improve the re-

covery performance even when only a small number of measurements are available.
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Figure 1.1: Signals with low-dimensional structures. Top to bottom: sparse signal,
block-sparse signal, and low-rank matrix.)
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1.1 Applications

We list some applications of the recovery of low-dimensional signals. This list is by

no means exhaustive. The readers are encouraged to check the references therein for

more detailed account on these applications and many other related ones.

Compressive Sensing

Compressive sensing [5,10,11] is a new paradigm for signal acquisition. The investiga-

Figure 1.2: Signal acquisition paradigm of compressive sensing. (Modified from
Richard Baraniuk, Justin Romberg, and Michael Wakin’s slides “Tutorial on Com-
pressive Sensing”.)

tion of compressive sensing renewed the research community’s interest in the recovery

of signals with low-dimensional structures and brought it to great popularity. The tra-

ditional sampling-and-compression scheme for signal acquisition is extremely waste-

ful. As exemplified in [5], “one can think about a digital camera which has millions of

imaging sensors, the pixels, but eventually encodes the picture in just a few hundred

kilobytes.” Compressive sensing properly combines the sampling and compression pro-

cesses by measuring the signal from different directions, i.e., instead of sampling the

signal, compressive sensing observes projections of the signal onto random directions.

One surprising discovery revealed by the theory of compressive sensing is that lin-

ear, random, and non-adaptive measurements of a number essentially proportional

to the degree of freedom of the signal is sufficient for exactly recovering the signal in

the noise-free case, and stably reconstructing the signal if noise exists [5]. This new

signal acquisition scheme greatly reduces the data necessary to record or transmit

a signal by exploiting the sparsity structure for most natural signals. It pushes the

information sampling rate far beyond the limit set by Shannon and Nyquist.

Sensor Arrays and Radar

Many practical problems in radar and sensor arrays can be reformulated as one of

3



sparse spectrum estimation through parameter discretization. In [12], the authors

transform the process of source localization using sensory arrays into the task of

estimating the spectrum of a sparse signal by discretizing the parameter manifold.

This method exhibits super-resolution in the estimation of direction of arrival (DOA)

compared with traditional techniques such as beamforming [13], Capon [14], and

MUSIC [15, 16]. Since the basic model employed in [12] applies to several other

important problems in signal processing (see [17] and references therein), the principle

is readily applicable to those cases. This idea is later generalized and extended to

other source localization settings in [18–20].

In radar applications, the target position-velocity space is usually discretized into a

large set of grid points. Assuming the target parameters are within the grid point

set, we represent the measurements as a linear combination of basis functions deter-

mined by the grid points and the radar system. Only those basis functions whose

corresponding grid points have targets will have non-zero coefficients. Since there are

only a few targets compared with the number of grid points, the coefficient vector is

sparse or block-sparse. Therefore, the target estimation problem is transformed into

one of estimating the sparse coefficients. This procedure generally produces estimates

with super resolution [21,22].

Electromagnetic Imaging

In electromagnetic imaging with a far-field assumption, the observed signals are mod-

eled as attenuated and delayed replicas of the transmitted signal, with attenuation

coefficients specified by the targets’ scattering properties. Since the targets are sparse

in the spatial domain, a discretization procedure transforms the model into one of

sparse representation as shown in 1.3 and the targets could be accurately localized

using sparsity enforcing techniques. A similar formulation is proposed for the near-

field scenarios by employing the electric field integral equation to capture the mutual

interference among targets. In both cases, exploiting sparsity of the targets in the

spatial domain improves localization accuracy [23].

MRI

In magnetic resonance imaging (MRI), the images to be observed are usually approx-

imately piece-wise constant, making them sparse in the Heaviside transform domain.

MRI observes a subset of the Fourier coefficients of the underlying image. In Figure

4



(a) True model with unknown targets. (b) Sparse model through spatial discretiza-
tion.

Figure 1.3: Far-field electromagnetic imaging.

1.4 (b), Fourier coefficients are sampled along 22 approximately radial lines. Tradi-

tional techniques using minimal energy reconstruction, i.e., minimizing the `2 norm

subject to observation constraint, produced recovered images with a lot of artifacts,

as shown in Figure 1.4 (c). In contrast, reconstruction by minimizing the `1 norm of

the Heaviside transform, or the closely related total variation, both of which enforce

sparsity in the transform domain, would exactly recover the original image as illus-

trated in Figure 1.4 (f) [1].

Image Processing

Most natural images and image patches are sparse in the wavelet [24] or discrete

cosine [25] transform domains, learned dictionaries [26], or even randomly sampled

raw image patches [3]. Exploiting this sparsity facilitates image denoising [27], image

inpainting [28], image superresolution [3], and many other image processing tasks.

For example, in [3], the authors propose a single image superresolution approach by

finding the coefficients in the sparse representation of each patch of the low-resolution

input, and using these coefficients to generate the high-resolution output. The results

are compared with other techniques in Figure 1.5.

Computer Vision and Pattern Recognition

Sparse signal representation and reconstruction have seen a significant impact in

computer vision, even when the task is to extract high-level sematic information [29].

In [4], a test face image with possible occlusion is represented as a sparse linear

5



(a) Logan-Shepp phantom (b) Fourier Sampling (c) Min-energy recovery

(d) Heaviside coefficients (e) Total variation (TV) coef-
ficients

(f) Min-TV recovery

Figure 1.4: Exploiting sparsity (in the Heaviside domain) improves MRI recovery.
(Modified from [1].)

Figure 1.5: Single image superresolution results of the girl image magnified by a
factor of 3 and the corresponding RMSEs. Left to right: input, bicubic interpolation
(RMSE: 6.843), neighborhood embedding [2] (RMSE: 7.740), sparse representation [3]
(RMSE: 6.525), and the original. (Reproduced from [3].)
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Figure 1.6: Sparse representation for robust face recognition. (a) Test image with
occlusion. (b) Test image with corruption. (Reproduced from [4].)

combination of training samples plus sparse errors due to occlusion or corruption, as

illustrated in Figure 1.6. The recovered spare coefficients simultaneously separate the

occlusion from the face image and determines the identity of the test image, allowing

robust face recognition.

Collaborative Filtering

Collaborative filtering is the process of automatically predicting a particular user’s

preference on something by collecting similar information from many other users.

It is best illustrated by the Netflix prize open competition. As an online DVD-

rental service, Netflix makes significant profit by accurately recommending DVDs

to users according to their tastes. The training data set provided by Netflix for

the competition consists of 100, 480, 507 ratings given by 480, 189 users to 17, 770

movies. Mathematically, we are given a data matrix with 480, 180 rows (users),

17, 770 columns (movies), and 100,480,507
480,189×17,770 ≈ 1.18% of its entries (see Figure 1.7 (b)).

The task is to predict the missing entries from the available ones (see Figure 1.7 (c)).

Apparently, without imposing additional structure on the data matrix, we are not able

to make any inference on the missing entries as they could be any allowed numbers.

A sensible assumption about the data matrix is that, due to the correlations between

different users and different movies, its rows and columns are highly dependent, i.e., it

has a small rank. The problem of completing the missing entries of a low-rank matrix

is called matrix completion [30–32], a special case of low-rank matrix recovery.
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(a) Netflix prize (b) Data matrix (c) Matrix completion

Figure 1.7: Collaborative filtering as a matrix completion problem.

Control

Low-rank matrices arise naturally in a variety of applications in control and sys-

tem theory such as model reduction, minimum order control synthesis, and system

identification [33]. Consider the system identification problem, the task is to decide

the dimension of the system state vector and system matrices A,B,C,D from the

input-output {u(t),y(t)}Tt=1 according to the following model:

x(t+ 1) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t). (1.2)

This problem can be formulated as a low-rank matrix estimation problem. Refer

to [33] for more details.

1.2 Need for Computable Performance Analysis

A theoretically justified way to exploit the low-dimensional structure in recovering x is

to minimize a convex function that is known to enforce that low-dimensional structure.

Examples include using the `1 norm to enforce sparsity, block-`1 norm (or `2/`1 norm)

to enforce the block-sparsity, and the nuclear norm to enforce the low-rankness. The

ability of these convex relaxation algorithms in recovering a low-dimensional signal

in the noise-free case is guaranteed by various null space properties [34–38]. In the

noisy case, the performance of these convex enforcements is usually analyzed using

variants of the restricted isometry property (RIP) [6, 7, 39]. Upper bounds on the

`2 norm of the error vectors for various recovery algorithms have been expressed in

terms of the RIP. Unfortunately, it is extremely difficult to verify that the RIP of a
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(a) Radial sampling trajectory (b) Spiral sampling trajectory

Figure 1.8: The sampling trajectory affects the system performance.

specific sensing matrix satisfies the conditions for the bounds to be valid, and even

more difficult to directly compute the RIP itself. Actually, the only known sensing

matrices with nice RIPs are certain types of random matrices [40].

In this dissertation, we investigate the recovery performance for sparse signals, block-

sparse signals, and low-rank matrices. The aforementioned applications require a

computable performance analysis of sparsity recovery, block-sparsity recovery, and

low-rank matrix reconstruction. While it is perfectly reasonable to use a random ma-

trix for signal sampling, the sensing matrices in other applications are far from random

and actually depend on the underlying measurement devices and the physical pro-

cesses that generate the observations. Due to the computational challenges associated

with the RIP, it is necessary to seek computationally more amenable goodness mea-

sures of the sensing matrices. Computable performance measures would open the door

to wide applications. Firstly, it provides a means to pre-determine the performance of

the sensing system before its implementation and the taking of measurements. In ad-

dition, in radar imaging [22], sensor arrays [12], DNA microarrays [41], and MRI [42],

we usually have the freedom to optimally design the sensing matrix. For example,

in MRI the sensing matrix is determined by the sampling trajectory in the Fourier

domain as shown in Figure 1.8; in radar systems the optimal sensing matrix design

is connected with optimal waveform design, one of the major topics of radar signal

processing. In view of the model (1.1), to optimally design the sensing matrix, we
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need to

1. analyze how the performance of recovering x from y is affected by A using

performance bounds on reconstruction errors, and define a function ω(A) to

accurately quantify the goodness of A in the context of signal reconstruction;

2. develop algorithms to efficiently verify that ω(A) satisfies the conditions for the

bounds to hold, as well as to efficiently compute ω(A) for arbitrarily given A;

3. design mechanisms to select within a matrix class the sensing matrix that is

optimal in the sense of best ω(A).

By proposing a family of goodness measures and designing algorithms with guaranteed

global convergence, we will successfully address the first two points in this dissertation.

We also point out ways to address the optimal sensing matrix design problem in future.

One distinctive feature of this work is our use of the `∞ and the block-`∞ norm as

performance criteria for sparsity recovery and block-sparsity recovery, respectively.

Although the `2 norm has been used as the performance criterion by the majority

of published research in block-sparse signal recovery, the adoption of the `∞ norm

and the block-`∞ norm is better justified. The `2 norms of the error vectors can be

expressed in terms of the `∞ norm and the block-`∞ norm in a tight and non-trivial

manner. More importantly, the `∞ norm and the block-`∞ norm of the error vector

have direct connections with the support recovery problem. In practical applications,

the signal support is usually physically more significant than the component values.

For example, in radar imaging, the sparsity constraints are usually imposed on the

discretized time–frequency domain. The distance and velocity of a target have a direct

correspondence to the support of the recovered signal. The magnitude determined

by coefficients of reflection is of less physical significance [21, 22]. Last but not least,

the `∞ norm and the block-`∞ norm result in performance measures that are easier

to compute.
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1.3 Contributions

We preview our contributions. We first define a family of goodness measures of the

sensing matrix, and use them to derive performance bounds on the recovery error vec-

tors. Our preliminary numerical results show that these bounds are tighter than the

existing restricted isometry constant based bounds. Secondly and most importantly,

we develop a fixed point iteration framework to design algorithms that efficiently

compute or bound the goodness measures for arbitrary sensing matrices. Each fixed

point iteration solves a series of linear programs, second-order cone programs, or

semidefinite programs, depending on the problem. The fixed point iteration frame-

work also demonstrates the algorithms’ convergence to the global optima from any

initial point. As a by-product, we obtain a fast algorithm to verify the sufficient

condition guaranteeing exact signal recovery via convex relaxation. Thirdly, we show

that the goodness measures are non-degenerate for subgaussian and isotropic random

sensing matrices as long as the number of measurements is relatively large, a result

parallel to that of restricted isometry constant for random matrices.

1.4 Organization

The rest of the dissertation is organized as follows. In Chapter 2, we introduce

our notations and present mathematical tools in matrix analysis, optimization, and

probability and statistics that are necessary for the development of this work. In

Chapter 3, we review previous work and present background knowledge in sparsity

recovery. Chapter 4 is devoted to our computable performance analysis for sparsity

recovery. We turn to block-sparsity recovery from Chapter 5 and summarize rele-

vant background information. We then develop our computable performance analysis

framework for block-sparsity recovery in Chapter 6. In Chapter 7, we introduce the

problem of low-rank matrix recovery. We partially extend our results on sparsity re-

covery and block-sparsity recovery to low-rank matrix recovery in Chapter 8. Section

9 summarizes our conclusions and points out potential future work.
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Chapter 2

Mathematical Foundations

In this chapter, we present the mathematical foundations of the dissertation by intro-

ducing notations and including basic concepts and relevant facts in matrix analysis,

optimization, and probability theory.

2.1 Vector and Matrix

2.1.1 Basic Notations

Sets are denoted by either upper case letters such as S or scripted upper case letters

such as I,F ,H. The symbols ∈, ⊆, ⊂,
⋂

,
⋃

, and \ denote the membership, subset,

proper subset, intersection, union, and relative complement relations or operations,

respectively. Specials sets such as the empty set, the set of all natural numbers, the

set of all integers, the set of all real numbers, and the set of all complex numbers are

represented by ∅, N, Z, R, and C, respectively. The set of non-negative real numbers

are denoted by R+. We use F to denote a general field. The cardinality of a set S, or

the number of its elements, is expressed as |S|, either a non-negative integer or ∞.

The n-dimensional real (resp. complex) Euclidean space is Rn (resp. Cn.) The n-

dimensional Euclidean space over a general field F is denoted by Fn. Rn
+ has a similar

meaning. We use bold, lower case letters such as x,y, z and ξ, ζ to represent generic

column vectors in the Euclidean space Fn. Non-bold lower case letters are for scalars.

The ith component of a vector x ∈ Fn, as a scalar, is denoted by xi, and xα is reserved

for vectors parameterized by the subscript α ∈ I. However, suppose S ⊂ {1, . . . , n}
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is an index set, we denote by xS the vector in F|S| formed by the components of x

indexed by the set S. Whether the subscript is a parameter or a component index

can be inferred from whether the letter is bold or not and from the context.

The symbols 0, ei, and 1 are reserved for the zero vector, the ith canonical basis

vector, and the vector with all ones, respectively. The dimensions of these vectors, if

not explicitly specified, are usually clear from the context.

For any vector x ∈ Fnp, we sometimes partition the vector into p blocks, each of length

n. The ith block is denoted by x[i] = xSi ∈ Fn with Si = {(i− 1)n+ 1, . . . , in}. More

generally, x[S] denotes the vector in Fn|S| formed by the blocks of lengths n indexed

by the set S.

We use upper case letters such as A,B,C to represent matrices in Fm×n. The jth

column of A is denoted by Aj, and the ijthe element by Aij or Ai,j. To avoid confusion

with the component index, we use superscript Aα to parameterize a collection of

matrices. Suppose S ⊂ {1, . . . ,m} and T ⊂ {1, . . . , n} are index sets, then AT

denotes the submatrix of A formed by the columns of A in T , and AS,T the submatrix

formed by the rows indexed by S and columns indexed by T . For A with np columns,

A[j] is the submatrix of columns {(j − 1)n + 1, . . . , jn}; if A also has mq rows, then

A[i],[j] is the submatrix of rows {(i−1)m, . . . , im} and columns {(j−1)n+1, . . . , jn}.
These notations can also be extended to index-set case A[S] and A[S],[T ] in a natural

way.

Symbols O and IN are reserved for the zeros matrix and the identity matrix, respec-

tively. The identity matrix usually has a subscript to indicate its dimension.

The vectorization operator vec(X) = [XT
1 XT

2 . . . XT
p ]T stacks the columns of X ∈

Fn×p into a long vector. Its inverse operator matn,p(x) satisfies vec(matn,p(x)) = x.

The Kronecker product is denoted by ⊗. The transpose, conjugate transpose, in-

verse, and pseudo inverse of underlying vectors and/or matrices when appropriate

are denoted respectively by T , H , −1, and †. The trace of a square matrix A is

trace(A) =
∑

iAii, and the determinant is denoted by det(A). For two symmetric

matrices A and B, A � B means A − B is positive semidefinite and A � B means

A−B is positive definite.
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The ith largest singular values of a matrix A is usually denoted by σi(A), and the sin-

gular value vector by σ(X) = [σ1(X) σ2(X) · · · ]T . The singular value decomposition

(SVD) of an m× n real or complex matrix A is a factorization of the form

A = UΣV H , (2.1)

where U is an m × m real or complex unitary matrix, Σ is an m × n rectangular

diagonal matrix with the singular value vector on the diagonal, and V is an n × n
real or complex unitary matrix.

A linear operator A : Rn1×n2 7→ Rm can be represented by m matrices A =

{A1, A2, . . . , Am} ⊂ Rn1×n2 as follows

A(X) = Avec(X)
def
=


vec(A1)T

vec(A2)T

...

vec(Am)T

 vec(X). (2.2)

We will interchangeably use A, A and A to represent the same linear operator.

For any linear operator A : Rn1×n2 7→ Rm, its adjoint operator A∗ : Rm 7→ Rn1×n2 is

defined by the following relation

〈A(X), z〉 = 〈X,A∗(z)〉 , ∀X ∈ Rn1×n2 , z ∈ Rm. (2.3)

2.1.2 Norms

From now on, the field F is either R or C. For any vector x ∈ Fn, the `q norms for

1 ≤ q ≤ ∞ are denoted by

‖x‖q =

(
n∑
i=1

|xi|q
)1/q

, 1 ≤ q <∞ (2.4)

and

‖x‖∞ = max
1≤i≤n

|xi|, q =∞. (2.5)

14



The canonical inner product in Fn is defined by 〈x,y〉 = xHy. Clearly, the `2 (or

Euclidean) norm is ‖x‖2 =
√
〈x,x〉.

The norm ‖x‖k,1 is the summation of the absolute values of the k (absolutely) largest

components of x. In particular, the `∞ norm ‖x‖∞ = ‖x‖1,1 and the `1 norm ‖x‖1 =

‖x‖n,1. We use ‖ · ‖� to denote a general vector norm.

For any x ∈ Fnp with p blocks, each of length n, the block-`q norms for 1 ≤ q ≤ ∞
associated with this block structure are defined as:

‖x‖bq =

(
p∑
i=1

‖x[i]‖q2

)1/q

, 1 ≤ q <∞ (2.6)

and

‖x‖b∞ = max
1≤i≤p

‖x[i]‖2, q =∞. (2.7)

Obviously, the block-`2 norm is the same as the ordinary `2 norm.

The support of x, supp(x), is the index set of the non-zero components of x. The

size of the support, usually denoted by the `0 “norm” ‖x‖0, is the sparsity level of x.

The block support of x ∈ Fnp, bsupp(x) = {i : ‖x[i]‖2 6= 0}, is the index set of the

non-zero blocks of x. The size of the block support, denoted by the block-`0 “norm”

‖x‖b0, is the block-sparsity level of x.

Suppose X ∈ Fn1×n2 . Define the Frobenius norm of X as ‖X‖F =
√∑

i,j |Xij|2 =√∑
i σ

2
i (X), the nuclear norm as ‖X‖∗ =

∑
i σi(X), and the operator norm as

‖X‖2 = max{σi(X)}, where σi(X) is the ith singular value of X. The rank of

X is denoted by rank(X) = |{i : σi(X) 6= 0}|. The inner product of two matrices

X1, X2 ∈ Fn1×n2 is defined as

〈
X1, X2

〉
= trace(X1HX2H) = vec(X1)Hvec(X2) =

∑
i,j

X1
ijX

2
ij. (2.8)
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Using the singular value vector σ(X), we have the following relations:

‖X‖F = ‖σ(X)‖2,

‖X‖∗ = ‖σ(X)‖1,

‖X‖2 = ‖σ(X)‖∞,

rank(X) = ‖σ(X)‖0. (2.9)

Note that we use ‖ · ‖2 to represent both the matrix operator norm and the `2 norm

of a vector. The exact meaning can always be inferred from the context.

2.1.3 Inequalities

Various inequalities will be used in the dissertation. We summarize some of the most

important ones in this section. The following Höler’s inequality is well-known:

n∑
i=1

aibi ≤

{
n∑
i=1

api

}1/p{ n∑
i=1

bqi

}1/q

, ai ≥ 0, bi ≥ 0, 1/p+ 1/q = 1. (2.10)

When p = q = 2, Hölder’s inequality is also called Cauchy-Schwartz inequality.

The Cr-inequality that holds for ai ≥ 0 is also very useful:{
n∑
i=1

ai

}r

≤

{
nr−1 {

∑n
i=1 a

r
i} , r ≥ 1;∑n

i=1 a
r
i , 0 ≤ r ≤ 1.

(2.11)

An application of the Cr-inequality to ai = |xi|p and r = p/q gives

‖x‖p ≥ ‖x‖q, 0 < p ≤ q ≤ ∞. (2.12)

As a consequence of the inequality (2.12) and Hölder’s inequality, we obtain

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤
√
k‖x‖2 ≤ k‖x‖∞, (2.13)
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where k = ‖x‖0 is the sparsity level of x, and

‖X‖2 ≤ ‖X‖F ≤ ‖X‖∗ ≤
√

rank(X)‖X‖F ≤ rank(X)‖X‖2, (2.14)

when applied to the singular vector. The involvement of the sparsity level and the rank

in the inequalities (2.13) and (2.14) makes them extremely useful in characterizing

the error vectors of convex relaxation algorithms enforcing sparsity, block-sparsity,

and low-rankness.

The dual norm ‖ · ‖∗� of any given norm ‖ · ‖� is defined by

‖x‖∗� = sup{〈x, z〉 : ‖z‖� ≤ 1}. (2.15)

Any two norms dual to each other satisfy the Cauchy-Schwartz type inequality:

〈x, z〉 ≤ ‖x‖�‖z‖∗�. (2.16)

Hölder’s inequality is a powerful tool to derive dual norms. We list dual norm pairs

useful to this work:

‖ · ‖p ↔ ‖ · ‖q, (2.17)

‖ · ‖bp ↔ ‖ · ‖bq, (2.18)

‖ · ‖2 ↔ ‖ · ‖∗, (2.19)

‖ · ‖F ↔ ‖ · ‖F, (2.20)

where 1/p+ 1/q = 1. As a consequence of the dual norm pairs, we have the following

Cauchy-Schwartz inequality:

〈
X1, X2

〉
≤ ‖X1‖F‖X2‖F,〈

X1, X2
〉
≤ ‖X1‖∗‖X2‖2.
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2.2 Optimization

One of the primary contributions of this work is the design of efficient algorithms to

compute performance measures with convergence guarantees. Tools from optimiza-

tion and mathematical programming are thus essential. We present relevant results

in this section.

2.2.1 Introduction

Mathematical optimization/programing aims at optimizing (maximizing or minimiz-

ing) an objective function over a constraint set. In its most abstract form, a mathe-

matical program or an optimization problem is formulated as

optimize f(x) s.t. x ∈ C, (2.21)

where “s.t.” is short for “subject to”, f : C → R is the objective function, and C is

the constraint set. For a specific problem the “optimize” operation is usually replaced

with more explicit min or max operations. For a minimization problem, the set of

optimal solutions (optimizers, minimizers) and the optimal objective value (optimum,

minimum) are usually denoted respectively by

argminx∈Cf(x), and f ? = min
x∈C

f(x). (2.22)

If there are multiple optimal solutions, we usually use x? to denote any one of them

and abuse notation to write x? = argminx∈Cf(x). The maximization case can be

defined similarly.

A general nonlinear programming problem is given in the following more explicit form

by specifying the constraint set using equality constraints and inequality constraints:

min f(x) s.t. g(x) ≤ 0, h(x) = 0, x ∈ D, (2.23)

where D ⊆ Rn is the domain of the nonlinear programming, g : Rn → Rm and

h : Rn → Rp are general nonlinear functions.
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Convex optimization is arguably the most important subfield of mathematical opti-

mization, due to its wide applicability in practice and the existence of efficient algo-

rithms with established convergence properties. In convex optimization, we assume

the objective function to be minimized (resp. maximized) is convex (resp. concave),

and the constraint set C is also convex. This requires f and the components of g

in (2.23) are convex, and h is affine. See [43] for a gentle introduction to convex

optimization.

2.2.2 Berge’s Maximum Theorem

One question of interest to us is the continuity of the optimal solution and the optimal

objective value with respect to parameter changes in the problem formulation. Berge’s

maximum theorem provides conditions guaranteeing such continuity:

Theorem 2.2.1. [44] Suppose X and Θ are metric spaces, f : X × Θ → R is

jointly continuous, and the parameterized constraint C : Θ� X is a compact-valued

correspondence. Define

f ?(θ) = max{f(x,θ) : x ∈ C(θ)}, (2.24)

C?(θ) = argmax{f(x,θ) : x ∈ C(θ)}. (2.25)

If the correspondence C is continuous ( i.e., both upper and lower hemicontinous) at

some θ ∈ Θ, then f ? is continuous at θ and C? is non-empty, compact-valued, and

upper hemicontinuous at θ.

2.2.3 Lagrange Duality

For the nonlinear programming problem in (2.23) with the domain D having non-

empty interior, the Lagrangian function L : Rn × Rm
+ × Rp → R is defined as

L(x,λ,ν) = f(x) + 〈λ, g〉+ 〈ν,h〉 . (2.26)
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The vectors λ and ν are called the dual variables or Lagrange multipliers. The

Lagrange dual function `(λ,ν) : Rm × Rp → R
⋃
{−∞} is defined as

`(λ,ν) = inf
x∈D
L(x,λ,ν). (2.27)

The dual function is always concave, even when the initial problem is not convex.

And the dual problem yields lower bound on the optimal value f ? of the original

problem (usually called the primal problem), namely, `? ≤ f ?. Since there exist

efficient algorithms to maximize a concave function such as `(λ,ν) if its function

value, gradient, and/or Hessian are easy to compute, the dual problem provides a

general framework to compute a lower bound on the optimal value of the primal

problem. This procedure is usually called Lagrange relaxation.

If certain constraint qualification is satisfied and the original problem is convex, then

we have strong duality, namely, `? = f ?. When f and gis, the components of g,

are convex and h = Ax − b is affine, one such constraint qualification is the Slater

condition: there exists an x in the relative interior of D such that

gi(x) < 0, i = 1, . . . ,m, Ax = b. (2.28)

Note the dual norm defined in (2.15) can be viewed as the dual function of the

following optimization problem:

max 0 s.t. x ≤ 0,x ∈ D = {x : ‖x‖� ≤ 1}, (2.29)

since

`(λ) = supx∈DL(x,λ) = supx∈D 〈λ,x〉 = ‖λ‖∗�. (2.30)

2.2.4 Karush-Kuhn-Tucker (KKT) conditions

The KKT conditions are necessary for a solution of (2.23) to be optimal. Suppose x?

and (λ?,ν?) are primal and dual optimal points with zero duality gap. Then x? and

(λ?,ν?) must satisfy:
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• Stationarity:

∇f(x?) + 〈λ?,∇g(x?)〉+ 〈ν?,∇h(x?)〉 = 0 (2.31)

• Primal feasibility:

g(x?) ≤ 0

h(x?) = 0 (2.32)

• Dual feasibility:

λ? ≥ 0 (2.33)

• Complementary slackness:

λ?i gi(x
?) = 0, i = 1, . . . ,m. (2.34)

If f and gi in the primal program (2.23) are convex and h is affine, the the KKT

conditions are also sufficient for x? and (λ?,ν?) to be primal and dual optimal.

2.2.5 Linear, Second-Order Cone, and Semidefinite Programs

Three convex optimizations that are extensively used in this disertation are linear

programming, second-order cone programming, and semidefinite programming.

In a linear program, the objective function is linear and both the inequality and

equality constraint are affine. A general linear program has the form:

min cTx

s.t. Fx ≤ g

Ax = b, (2.35)

whose dual program is

max −gTλ− bTν

s.t. F Tλ+ ATν + c = 0. (2.36)
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In a standard form linear program, the only inequalities are componentwise nonneg-

ativity constraints:

min cTx

s.t. Ax = b

x ≥ 0. (2.37)

The dual program of (2.37) is

max −bTν

s.t. −ATν ≤ c, (2.38)

a linear program in inequality form.

A second-order cone program (SOCP) has linear objectives and second-order cone

constraints as well as linear constraints:

min fTx

s.t. ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m

Fx = g, (2.39)

where x ∈ Rn is the optimization variable, Ai ∈ Rni×n, and F ∈ Rp×n. The constraint

of the form

‖Ax+ b‖2 ≤ cTx+ d (2.40)

is called a second-order cone constraint, therefore the name SOCP. The dual of the

SOCP is yet another SOCP:

max −
m∑
i=1

(bTi zi + diwi) + gTν

s.t.
m∑
i=1

(AiTzi + ciwi) + F Tν = f

‖zi‖2 ≤ wi, i = 1, . . . ,m. (2.41)
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In a semidefinite program, besides the linear constraints and the linear objective

function, the nonlinear constraints are specified by the cone of positive semidefinite

matrices. More explicitly, a semidefinite program has the form

min cTx

s.t. x1F
1 + · · ·+ xnF

n +G � 0

Ax = b, (2.42)

where G,F1, . . . , Fn are symmetric positive semidefinite matrices of size k × k. The

dual program to (2.42) is

max −νTb+ trace(GZ)

s.t. trace(F iZ) + ci + ATi ν = 0, i = 1, . . . , n

Z � 0. (2.43)

2.2.6 Subdifferential and Nonsmooth Optimization

Most of the low-dimensional signal recovery algorithms involve continuous but nondif-

ferentiable functions. We gather some concepts and results in nonsmooth optimization

that are useful to the analysis of these algorithms.

A vector g is a subgradient of a function f : Rn → R at x if

f(y) ≥ f(x) + gT (y − x),∀y ∈ Rn. (2.44)

The set of all subgradient of f at x is called the subdifferential of f at x, denoted

by ∂f(x):

∂f(x) = {g : f(y) ≥ f(x) + gT (y − x),∀y ∈ Rn}. (2.45)

The definitions of subgradient and subdifferential do not require the convexity of f .

If f is convex, ∂f(x) is non-empty at every point in the relative interior of the domain

of f ; if f is differentiable, then the subdifferential coincides with the ordinary gradient

∂f(x) = {∇f(x)}.
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The subdifferential of a norm f(x) = ‖x‖� on Rn takes the form

∂‖x‖� =

{
{g ∈ Rn : 〈g,x〉 = ‖x‖�, ‖g‖∗� = 1} if x 6= 0;

{g ∈ Rn : ‖g‖∗� = 1}, if x = 0.
(2.46)

Applying this formula to ‖ · ‖1, ‖ · ‖b1, and ‖ · ‖∗, we have the following:

∂‖x‖1 =

g ∈ Rn : gi =


1, if xi > 0;

−1, if xi < 0;

a, |a| ≤ 1 if xi = 0.

 , (2.47)

∂‖x‖b1 =

{
g ∈ Rnp : g[i] =

{
x[i]

‖x[i]‖2
, if x[i] 6= 0;

a, ‖a‖2 ≤ 1 if x[i] = 0.

}
, (2.48)

∂‖X‖∗ = {UV T +W : ‖W‖2 ≤ 1, UTW = 0,WV = 0}, (2.49)

where X = UΣV T is the SVD of X.

The optimality conditions for both unconstrained and constrained optimizations with

differentiable objective functions and constraints can be generalized to nondifferen-

tiable cases using subdifferential. More explicitly, for unconstrained optimization with

a convex objective function f , we have

f(x?) = min
x
f(x)⇔ 0 ∈ ∂f(x?). (2.50)

For constrained optimization, under Slater’s condition, the KKT condition is gener-

alized to the following convex optimization

min f(x) s.t. g(x) ≤ 0 (2.51)

as: x? is primal optimal and λ? is dual optimal iff

g(x?) ≤ 0, (2.52)

λ? ≥ 0, (2.53)

0 ∈ ∂f(x?) +
n∑
i=1

λ?i∂gi(x
?), (2.54)

λ?i gi(x
?) = 0, i = 1, . . . , n. (2.55)
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2.2.7 Fixed Point Iteration

A fixed point of a given function f(x) : Rn → Rn is a solution to x = f(x). Given a

point x0 in the domain of f , the fixed point iteration

xt+1 = f(xt), t = 0, 1, 2, . . . (2.56)

which generate a sequence {x0,x1,x2, . . .}. If this sequence converges to x? and f is

continuous, then x? is a fixed point of f , i.e. , x? = f(x?).

Many well-known algorithms can be viewed as fixed point iterations. Examples in-

clude the power method [45] and its variants to compute eigenvectors, Newton’s

method [46] to find roots of functions, Runge-Kutta methods [47] to approximate

solutions of ordinary differential equations, some of the “successive approximation”

schemes used in dynamic programming to solve Bellman’s equation [48], and so on.

In the power method, the function is f(x) = Ax
‖Ax‖ . Under certain assumptions, the

fixed point iteration or the power iteration

xt+1 = f(xt) =
Axt
‖Axt‖

, t = 0, 1, 2, . . . (2.57)

converges to the eigenvector corresponding to the largest eigenvalue of A. Newton’s

method finds the root of a scalar differentiable function f(x) by using the iteration

xt+1 = xt −
f(xt)

f ′(xt)
, (2.58)

which is a fixed point iteration corresponding to the function g(x) = x− f(x)/f ′(x).

The fixed points of g(x) satisfying x = g(x), or equivalently, f(x)/f ′(x) = 0 are

indeed roots of f(x). Newton’s method can be generalized to vector functions by

appropriately replacing the derivative function f ′(x) with the gradient matrix.

We are concerned with the existence and uniqueness of the fixed point of a scalar

function defined over R+. One very simple sufficient condition for the existence of a

fixed point over the interval [a, b] for a continuous function f is f(a) > a and f(b) < b

as ensured by the intermediate value theorem.

The following theorem establishes a similar result without the continuity condition:
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Theorem 2.2.2. [49] Suppose f is an increasing function from R+ to R+ such that

f(a) > a for some positive scalar a, and f(b) < b for some scalr b > a. Then f has

a positive fixed point.

Uniqueness can usually be argued using the concavity of the function f .

2.3 Probability

One important component of this dissertation is the analysis of the proposed good-

ness measures’ probabilistic behavior when the sensing matrices are random. In this

section, we collect definitions and tools useful to the probabilistic analysis.

2.3.1 Notations

Probability and expectation operations are denoted by P and E, respectively. The ab-

breviation i.i.d. represents identically and independently distributed. The Gaussian

distribution with mean µ and covariance matrix Σ is denoted by N (µ,Σ).

For a scalar random variable x, the Orlicz ψ2 norm is defined as

‖x‖ψ2 = inf

{
t > 0 : E exp

(
|x|2

t2

)
≤ 2

}
. (2.59)

Markov’s inequality immediately gives that x with finite ‖x‖ψ2 has a subgaussian tail

P(|x| ≥ t) ≤ 2 exp(−ct2/‖x‖ψ2). (2.60)

The converse is also true, i.e., if x has a subgaussian tail exp(−t2/K2), then ‖x‖ψ2 ≤
cK.

A random vector ξ ∈ Rn is called isotropic and subgaussian with parameter L if

E| 〈ξ,u〉 |2 = ‖u‖22 and ‖ 〈ξ,u〉 ‖ψ2 ≤ L‖u‖2 hold for any u ∈ Rn. A random vector ξ
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with independent subgaussian entries ξ1, . . . , ξn is a subgaussian vector because [50]

‖〈ξ,u〉‖ψ2
≤ c

√√√√ n∑
i=1

u2i ‖ξi‖2ψ2

≤ c max
1≤i≤n

‖xi‖ψ2‖u‖2. (2.61)

Clearly, if in addition {ξi} are centered and has unit variance, then ξ is also isotropic.

In particular, the standard Gaussian vector on Rn and the sign vector with i.i.d. 1/2

Bernoulli entries are isotropic and subgaussian. Isotropic and subgaussian random

vectors also include the vectors with the normalized volume measure on various convex

symmetric bodies , for example, the unit balls of `np for 2 ≤ p ≤ ∞ [51].

2.3.2 Random Sensing Ensembles

Several types of random sensing matrices are of particular interest. We always assume

the matrix A is of size m× n in this subsection. The Gaussian ensemble consists of

matrices A ∈ Rm×n whose entries follow i.i.d. N (0, 1
m

). Matrices in the Bernoulli

ensemble have i.i.d. entries taking values ± 1√
m

with probability ±1
2
. If the rows

of A are normalized rows of the Fourier transform matrix randomly selected with

replacement, we say A is a sample from the Fourier ensemble. A matrix A is called

an isotropic and subgaussian matrix if its rows are i.i.d. isotropic and subgaussian

random vectors. As a consequence of the discussion at the end of the previous section,

the Gaussian ensemble and the Bernoulli ensemble are special cases of the isotropic

and subgaussian ensemble. Random matrices from the Gaussian, Bernoulli, and

Fourier ensembles are shown in Figure 2.1.

2.3.3 Gaussian Process

A Gaussian process is a stochastic process {ξt}t∈T indexed by the set T for which

any finite linear combination of ξt1 , . . . , ξtn follows Gaussian distributions. We also

assume that ξt is of mean zero. The Gaussian process is very important for the

probabilistic analysis not only for Gaussian random matrices, but also for general
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Figure 2.1: Random sensing matrices. Top to bottom: Gaussian matrix, Bernoulli
matrix, real part of a Fourier matrix.
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isotropic and subgaussian matrices. As we will see in Section 2.3.4, the behavior of

empirical processes involving general isotropic and subgaussian random vectors can

be characterized by associated Gaussian processes.

One of the most important tools for Gaussian processes is the comparison theorem,

in particular the Gordon’s inequality and the Slepian’s inequality. Under certain

conditions on the second order moments of the increments, these two inequalities

compare the expected extremal values of a Gaussian process with another Gaussian

process, one that is simpler for analysis purposes.

Lemma 2.3.1. [52, Chapter 3.1] Suppose (ξu,v)u∈U,v∈V and (ζu,v)u∈U,v∈V be Gaussian

processes with zero mean. If for all u, u′ ∈ U and v, v′ ∈ V ,

E(ξu,v − ξu′,v′)2 ≤ E(ζu,v − ζu′,v′)2, (2.62)

then

Slepian’s inequality: Esupu∈U,v∈V ξu,v ≤ Esupu∈U,v∈V ζu,v. (2.63)

If

E(ξu,v − ξu′,v′)2 ≤ E(ζu,v − ζu′,v′)2, if u 6= u′

E(ξu,v − ξu,v′)2 = E(ζu,v − ζu,v′)2, (2.64)

then

Gordon’s inequality: E inf
u∈U

supv∈VXu,v ≥ E inf
u∈U

supv∈V Yu,v. (2.65)

Consider only one index set and assume the index is time. The Slepian’s inequality

states that, the Gaussian process with the bigger step size measured by the second

order moments of the increments will have a larger maximal distance away from the

origin in its life. The Gordon’s inequality can be understood in a similar manner.
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Suppose G ∈ Rn1×n2 is a Gaussian matrix and g ∼ N (0, In), the following estimates

are useful:

E ‖G‖2 ≤
√
n1 +

√
n2, (2.66)

E ‖g‖2 ≤
√

E ‖g‖22 =
√
n, (2.67)

E‖g‖∞ = Emax
i
gi ≤

√
log n, (2.68)

where for (2.66) we used an upper bound for the expected largest singular value of a

rectangular Gaussian matrix [53, 54], (2.67) is due to Jensen’s inequality for convex

functions, and (2.68) is given by [52, Equation 3.13, page 79].

A related estimate is E‖g‖b∞ for g ∼ N (0, Inp), which can be bounded using the

Slepian’s inequality (2.63). We rearrange the vector g ∈ Rnp into a matrix G ∈ Rn×p

such that the vectorization vec(G) = g. Clearly, we have ‖g‖b∞ = ‖G‖1,2, where ‖·‖1,2
denotes the matrix norm as an operator from (Rn, ‖ · ‖`1) to (Rp, ‖ · ‖`2). Recognizing

‖G‖1,2 = maxv∈Sn−1,w∈T p−1 〈Gv,w〉, we define the Gaussian process Xv,w = 〈Gv,w〉
indexed by (v,w) ∈ Sn−1 × T p−1. Here Sn−1 = {v ∈ Rn : ‖v‖2 = 1} and T p−1 =

{w ∈ Rp : ‖w‖1 = 1}. We compare Xv,w with another Gaussian process Yv,w =

〈ξ,v〉 + 〈ζ,w〉 , (v,w) ∈ Sn−1 × T p−1, where ξ ∼ N (0, In) and ζ ∼ N (0, Ip). The

Gaussian processes Xv,w and Yv,w satisfy the conditions for the Slepian’s inequality

(See the proof of [55, Theorem 32, page 23]). Therefore, we have

E‖g‖b∞ = E max
(v,w)∈Sn−1×T p−1

Xv,w ≤ E max
(v,w)∈Sn−1×T p−1

Yv,w

= E max
v∈Sn−1

〈ξ,v〉+ E max
w∈T p−1

〈ζ,w〉

= E‖ξ‖2 + E‖ζ‖∞
≤
√
n+

√
log p. (2.69)

Here we have used (2.67) and (2.68).
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2.3.4 Estimates for Empirical Processes

Suppose {ξi}∞i=1 are i.i.d. random vectors. Denote Pn the empirical measure that

puts equal mass at each of the n random observations ξ1, . . . , ξn, i.e.,

Pn(·) =
1

n

n∑
i=1

δξi(·) (2.70)

with δξ(·) the dirac measure that puts unit mass at ξ. Suppose F is a collection of

measurable functions, then the empirical process indexed by the function class F is

of the form

{Pn(f 2)}f∈F =

{
1

n

n∑
i=1

f 2(ξi)

}
f∈F

. (2.71)

We have abused notation to use P (f 2) to denote the integration
∫
f 2dP with respect

to a measure P .

An important result established in [51] is an estimate of the converge rate of

supf∈F
∣∣Pn(f 2)− Ef 2

∣∣ . (2.72)

Before we turn to the general empirical process result of [51] developed by delicate

use of the powerful generic chaining idea, we need some notations and definitions. A

key concept in studying general Gaussian processes as well as the empirical process

{Pm(f 2)}f2∈F is the γp functional we are going to define. We need some setup first.

For any set X , an admissible sequence is a sequence of increasing partitions {Qk}k≥0
of X such that |Q0| = 1 and |Qk| = 22k for k ≥ 1. By a sequence of increasing

partitions, we mean that every set in Qk is contained in some set of Qk+1. We will

use Qk(X) to denote the unique set in the partition Qk that contains X ∈ X . The

diameter of Qk(X) is denoted by ∆(Qk(X)). Then we have the following definition

for γp functional associated with a metric space:

Definition 2.3.1. Suppose (X , d) is a metric space and p > 0. We define

γp(X , d) = inf supX∈X
∑
k≥0

2k/p∆(Qk(X)), (2.73)
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where the infimum is taken over all admissible sequences.

The importance of the γp functional lies in its relationship with the behavior of a

Gaussian process indexed by a metric space when the metric coincides with the one

induced by the Gaussian process. More precisely, suppose {ξX}X∈X is a Gaussian

process indexed by the metric space (X , d) with

d(X,Z) = (E(ξX − ξZ)2)1/2, (2.74)

then we have

cγ2(X , d) ≤ EsupX∈X ξX ≤ Cγ2(X , d) (2.75)

for some numerical constants c and C. The upper bound was first established by

Fernique [56] and the lower bound is obtained by Talagrand using majorizing mea-

sures [57]. The rather difficult concept of majorizing measures has been considerably

simplified through the notion of “generic chaining”, an idea that dates back to Kol-

mogorov and is greatly advanced in recently years by Talagrand [58]. The upper

bound (generic chaining bound)

EsupX∈X ξX ≤ Cγ2(X , d) (2.76)

is actually applicable as long as the increments of {ξX}X∈X have subgaussian tails:

P{|ξX − ξZ | > t} ≤ c exp

(
− t2

2d(X,Z)2

)
, ∀t > 0 (2.77)

for d(X,Z) defined in (2.74) and

EξX = 0, ∀X ∈ X . (2.78)

Under the conditions (2.77) and (2.78), an immediate consequence of the generic

chaining bound is the well-known Dudley’s inequality [52, 58]

EsupX∈X ξX ≤ C
∑
k≥0

2k/2ek(X ), (2.79)
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or equivalently in the more familiar integral form

EsupX∈X ξX ≤ C

∫ ∞
0

√
logN(X , d, ε), (2.80)

where ek(X ) and N(X , d, ε) are the entropy number and covering number [59, 60],

respectively. In general the generic chaining bound (2.76) is tighter than the Dudley’s

entropy bounds (2.79) and (2.80).

Now we are ready to present the result on the behavior of an empirical process{
1
n

∑n
i=1 f

2(ξi)
}
f∈F established in [51]:

Theorem 2.3.1. [51] Let {ξ, ξi, i = 1, . . . ,m} ⊂ Rn be i.i.d. random vectors which

induce a measure µ on Rn, and F be a subset of the unit sphere of L2(Rn, µ) with

diam(F , ‖ · ‖ψ2)
def
= maxf,g∈F ‖f − g‖ψ2 = α. Then there exist absolute constants

c1, c2, c3 such that for any ε > 0 and m ≥ 1 satisfying

m ≥ c1
α2γ22(F , ‖ · ‖ψ2)

ε2
, (2.81)

with probability at least 1− exp(−c2ε2m/α4),

supf∈F

∣∣∣∣∣ 1

m

m∑
k=1

f 2(ξk)− Ef 2(ξ)

∣∣∣∣∣ ≤ ε. (2.82)

Furthermore, if F is symmetric, we have

Esupf∈F

∣∣∣∣∣ 1

m

m∑
k=1

f 2(ξk)− Ef 2(ξ)

∣∣∣∣∣
≤ c3 max

{
α
γ2(F , ‖ · ‖ψ2)√

m
,
γ22(F , ‖ · ‖ψ2)

m

}
. (2.83)

A case that is of particular interest to us is when H is a subset of the unit sphere

of Rn, F = {〈u, ·〉 : u ∈ H}, and {ξ, ξi, i = 1, . . . ,m} are i.i.d. isotropic and

subgaussian random vectors with parameter L. In this case, due to (2.75), we have

γ2(F , ‖ · ‖ψ2) ∼ `∗(H) with the `∗-functional defined below:

Definition 2.3.2. LetH ⊂ Rn and g ∼ N (0, In). Denote by `∗(H) = E supu∈H 〈g,u〉.
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With these preparations, we combine [51, Theorem D] and the equivalence γ2(F , ψ2) ∼
`∗(H) to obtain:

Theorem 2.3.2. Let {ξ, ξi, i = 1, . . . ,m} ⊂ Rn be i.i.d. isotropic and subgaussian

random vectors, H be a subset of the unit sphere of Rn, and F = {fu(·) = 〈u, ·〉 :

u ∈ H}. Suppose diam(F , ‖ · ‖ψ2) = α. Then there exist absolute constants c1, c2, c3

such that for any ε > 0 and m ≥ 1 satisfying

m ≥ c1
α2`2∗(H)

ε2
, (2.84)

with probability at least 1− exp(−c2ε2m/α4),

supf∈F

∣∣∣∣∣ 1

m

m∑
k=1

f 2(ξk)− Ef 2(ξ)

∣∣∣∣∣ ≤ ε. (2.85)

Furthermore, if F is symmetric, we have

Esupf∈F

∣∣∣∣∣ 1

m

m∑
k=1

f 2(ξk)− Ef 2(ξ)

∣∣∣∣∣
≤ c3 max

{
α
`∗(H)√
m

,
`2∗(H)

m

}
. (2.86)
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Chapter 3

Sparsity Recovery: Background

In this chapter, we present background knowledge on sparsity recovery.

3.1 Introduction to Sparsity Recovery

Sparse signal reconstruction aims at recovering a sparse signal x ∈ Rn from observa-

tions of the following model1:

y = Ax+w, (3.1)

where A ∈ Rm×n is the measurement or sensing matrix, y is the measurement vec-

tor, and w ∈ Rm is the noise vector. The sparsity level k of x is defined as the

number of non-zero components of x. The measurement system is underdetermined

because the number of measurements m is much smaller than the signal dimension

n. However, when the sparsity level k is also small, it is possible to recover x from

y in a stable manner. Reconstruction of a sparse signal from linear measurements

appears in many signal processing branches, such as compressive sensing [1, 11, 61],

sparse linear regression [62], source localization [12, 18], sparse approximation, and

signal denoising [63]. Model (3.1) is applicable to many practical areas such as DNA

microarrays [64], radar imaging [65], cognitive radio [66], and sensor arrays [12, 18],

to name a few.

1More often than not, the signal x is sparse when represented using a known basis or dictionary
Φ, namely, x = Φs where s is sparse. In this case, the matrix Φ can be absorbed into the sensing
matrix A. Therefore, without loss of generality, we assume x is sparse.
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Research interest in sparsity recovery has been renewed in the past decade due to the

introduction of a new signal acquisition scheme: Compressive Sensing. The tradi-

tional Sampling-and-Compression paradigm for data acquisition samples a signal of

interest, e.g., an image, and then uses compression techniques such as wavelet trans-

form to reduce the size of the sampled signal for storage or transmission purposes.

Since the majority of the sampled signal will end up being thrown away, why do

we take them in the first place? Compressive Sensing combines the process of sig-

nal sampling and compression by replacing signal samples with more general linear

measurements and exploiting the sparsity property of most natural signals [1,11,61].

Most natural signals are compressible under some basis and are well approximated

by their k−sparse representations [67]. Therefore, this scheme, if properly justified,

will reduce the necessary sampling rate beyond the limit set by Nyquist and Shan-

non [5, 10]. Surprisingly, for exact k−sparse signals, if m = O(k log(n/k)) � n and

the measurement matrix is generated randomly from, for example, a Gaussian distri-

bution, we can recover a k−sparse signal exactly in the noise-free setting by solving a

linear programming task. Besides, various methods have been designed for the noisy

case [68–72]. Along with these algorithms, rigorous theoretic analysis is provided to

guarantee their effectiveness in terms of, for example, various lp-norms of the recovery

error [68–72].

One important technique to apply sparsity recovery algorithms in practical problems

is to create an artificial sparse signal by discretization. In [12], the authors transform

the process of source localization using sensory arrays into the task of estimating the

spectrum of a sparse signal by discretizing the parameter manifold. For simplicity,

suppose we have an array with m sensors on the plane, then at a specific time, the

output vector y ∈ Cm of the sensor array is a linear combination of array responses

for k sources distinguished by k direction-of-arrivals (DOAs) {θi}ki=1 ⊂ (0, π):

y =
k∑
i=1

a(θi)xi +w = A(θ)x+w. (3.2)

Here x ∈ Ck is vector of the unknown source signals, w ∈ Cm is an additive noise,

and the transfer matrix A(θ) ∈ Cm×k and the vector θ ∈ Rk are given by

A(θ) = [a(θ1) · · ·a(θk)] and θ = [θ1 · · · θk]T . (3.3)
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The array response vector a(θ) depends on the array configuration. The authors

of [12] discretize the parameter range (0, π) into n grid points {θ̂j}nj=1, and assume

the true DOAs {θi}ki=1 are among these grid points, i.e. , {θi}ki=1 ⊂ {θ̂j}nj=1. Then

the model (3.4) is rewritten into

y =
n∑
j=1

a(θ̂j)x̂j +w = A(θ̂)x̂+w, (3.4)

where

A(θ̂) = [a(θ̂1) · · ·a(θ̂n)] ∈ Cm×n, θ̂ = [θ̂1 · · · θ̂n]T ∈ Rn, (3.5)

and the jth component of the k−sparse vector x̂ is

x̂j =

{
xi, if θi = θ̂j;

0, otherwise.
(3.6)

Therefore, the problem of estimating the DOAs {θi}ki=1 for k sources is equivalent

with estimating the sparse signal x̂. This method exhibits super-resolution in the

estimation of DOA compared with traditional techniques such as beamforming [13],

Capon [14], and MUSIC [15,16]. Since the basic model (3.4) applies to several other

important problems in signal processing (see [17] and references therein), the principle

is readily applicable to those cases. This idea is later generalized and extended to

other source localization settings in [18–20] and radar problems in [21,22,73].

3.2 Recovery Algorithms

The power of sparsity recovery techniques partially comes from the fact that there

exist efficient algorithms with theoretical convergence guarantees to reconstruct the

sparse signal x from the measurement vector y. This fact is by no means trivial.

Consider the noise-free case in which we need to recover a k-sparse signal x ∈ Rn

from the vector

y = Ax ∈ Rm (3.7)
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with m much smaller than n. Without the sparsity constraint, there will be infinitely

many solutions. With the k-sparsity constraint, if the matrix A is such that any

2k columns are linearly independent (which requires m ≥ 2k), then the solution is

unique. A plausible heuristic to obtain the k-sparse signal x is to solve the following

optimization problem which minimizes the number of non-zero elements subject to

the observation constraint:

min
z∈Rn
‖z‖0 s.t. Az = Ax. (3.8)

Apparently, x is the unique solution to (3.8) for any k-sparse vector x if and only

if A is such that any of its 2k columns are linearly independent. Unfortunately,

the combinatorial optimization problem (3.8) is NP hard. A major breakthrough in

sparsity recovery is to establish that under certain mild conditions on A, one could

replace the `0 “norm” with the `1 norm in (3.8) and obtain the sparse signal x by

solving [1, 11, 61]:

min
z∈Rn
‖z‖1 s.t. Az = Ax, (3.9)

which is a convex relaxation of (3.8). The optimization problem (3.9) can be rewritten

as a linear program:

min
z,u

1Tnu s.t. z − u ≤ 0, −z − u ≤ 0, Az = Ax. (3.10)

Here 1n ∈ Rn is the column vector of all ones.

In the noisy setting, many algorithms have also been proposed to recover x from y

in a stable manner. We focus on three algorithms based on `1 minimization: the

Basis Pursuit (BP) [74], the Dantzig selector (DS) [69], and the LASSO estimator

(LASSO) [75].

BP: min
z∈Rn
‖z‖1 s.t. ‖y − Az‖� ≤ ε (3.11)

DS: min
z∈Rn
‖z‖1 s.t. ‖AT (y − Az)‖∞ ≤ µ (3.12)

LASSO: min
z∈Rn

1

2
‖y − Az‖22 + µ‖z‖1. (3.13)
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Here µ is a tuning parameter, and ε is a measure of the noise level. In the noise-free

case where w = 0, roughly speaking all the three algorithms reduce to (3.9).

The BP algorithm [74] tries to minimize the `1 norm of solutions subject to the

measurement constraint. It is applicable to both noiseless settings and bounded

noise settings with a known noise bound ε. The BP was originally developed for

the noise-free case, i.e. , ε = 0 in (3.11). In this dissertation, we refer to both

cases as the BP. In the context of sparse approximation, the BP avoids overfitting

by selecting a parsimonious representation within a specified approximation error

limit. For ε > 0, (3.11) can be reformulated as a linear program or second-order cone

program depending on � = 1, 2, or ∞. For example, when � = 2, the BP can be

recast as the second-order cone program:

min
z,u

1Tnu s.t. z − u ≤ 0, −z − u ≤ 0, ‖Az − y‖2 ≤ ε. (3.14)

The DS [69] aims to reconstruct a reasonable signal in most cases when the mea-

surement is contaminated by Gaussian noise. The constraint ‖AT (y − Az)‖∞ ≤ µ

requires that all feasible solutions must have uniformly bounded correlations between

the induced residual vector y − Ax and the columns of the sensing matrix A. One

motivation behind this constraint is to include in the solution variables that are highly

correlated with the observation y. Refer to [69] for discussions on reasons of control-

ling the size of the correlated residual vector rather than the size of the residual itself

as in Basis Pursuit. We emphasize that the optimization problem (DS) is convex and

can be cast as a linear program [69]:

min
u, z∈Rn

1Tnu s.t. z − u ≤ 0, −z − u ≤ 0, −µ1n ≤ AT (y − Az) ≤ µ1n. (3.15)

The LASSO estimator, as originally introduced, solved the optimization problem [75]:

min
z∈Rn

1

2
‖y − Az‖22 s.t. ‖z‖1 ≤ t, (3.16)

for some t > 0. Following the convention in [76], in this dissertaion we refer to the

solution to the closely related optimization problem (3.13) as the LASSO estimator.

The optimization problems (3.16) and (3.13) are equivalent in the sense that given
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t ≥ 0, there exists a µ ≥ 0 such that the two problems have the same solution, and

vice versa [77]. Problem (3.16) is usually referred to as constrained regression, while

problem (3.13) is `1-penalized regression. Both programs can be explicitly rewritten

as standard second-order cone programs and solved using a primal-dual log-barrier

algorithm [78,79].

3.3 Null Space Property and Restricted Isometry

Property

In the noise-free case, a minimal requirement on the convex relaxation algorithm (3.9)

is the uniqueness and exactness of the solution x̂
def
= argminz:Az=Ax‖x‖1, i.e., x̂ = x

for any k-sparse signal x. The sufficient and necessary condition for unique and exact

`1 recovery is given by the Null Space Property (NSP) [34–36]:

‖zS‖1 < ‖zSc‖1, ∀z ∈ null(A), |S| ≤ k, (3.17)

or equivalently

‖z‖k,1 <
1

2
‖z‖1,∀z ∈ null(A). (3.18)

Note that the sufficient and necessary condition for unique and exact `0 recovery

according to (3.8), any 2k columns of A are linearly independent, can be equivalently

expressed as

k <
1

2
‖z‖0,∀z ∈ null(A), (3.19)

or

‖zS‖0 < ‖zSc‖0,∀z ∈ null(A), |S| ≤ k. (3.20)

Therefore, the NSP can be viewed as an `1 relaxation of the sufficient and necessary

condition for unique `0 recovery.
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In the noisy case, many quantities have been proposed to study the recovery errors of

the BP, the DS and the LASSO, for example, the Restricted Isometry Constant (RIC)

[39, 61], the Restricted Eigenvalue assumption [80], and the Restricted Correlation

assumption [81], among others. The most popular quantity is the RIC, which we

follow [39,61] to define as follows:

Definition 3.3.1. For each integer k ∈ {1, . . . , n}, the restricted isometry constant

(RIC) δk of a matrix A ∈ Rm×n is defined as the smallest δ > 0 such that

1− δ ≤ ‖Ax‖
2
2

‖x‖22
≤ 1 + δ (3.21)

holds for arbitrary non-zero k−sparse signal x.

The RIC has a very clear geometrical meaning. Roughly speaking, a matrix A with

a small δk is nearly an isometry between Euclidean spaces when restricted onto all

k−sparse vectors. Apparently, δ2k(A) < 1 if and only if any 2k columns of the matrix

A are linearly independent. Therefore, δ2k(A) < 1 is the necessary and sufficient

condition for exact `0 recovery. As a consequence of the error bound (6.142), which

will be presented in the following, δ2k(A) <
√

2 − 1 is a sufficient condition for

the unique and exact recovery of the `1 minimization algorithm (3.9), suggesting

δ2k(A) <
√

2− 1 implies the NSP. The converse is not true.

Now we cite some of the most renowned performance results on the BP, the DS, and

the LASSO, which are expressed in terms of the RIC. Assume x is a k−sparse signal

and x̂ is its estimate given by any of the three algorithms; then we have the following:

1. BP [39]: Suppose that δ2k <
√

2 − 1 and ‖w‖2 ≤ ε. The solution to the BP

(3.11) satisfies

‖x̂− x‖2 ≤
4
√

1 + δ2k

1− (1 +
√

2)δ2k
· ε. (3.22)

2. DS [69]: If the noise w satisfies ‖ATw‖∞ < µ, and δ2k + δ3k < 1, then, the

error signal obeys

‖x̂− x‖2 ≤
4
√
k

1− δ2k − δ3k
µ. (3.23)
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3. LASSO [82]: If the noise w satisfies ‖ATw‖∞ < µ, and δ2k < 1/(3
√

2 + 1),

then, the error signal of (3.13) satisfies

‖x̂− x‖2 ≤
16
√
k

(1− δ2k)
(

1− 3
√
2δ2k

1−δ2k

)2µ. (3.24)

We note that in these error bounds, the terms involving the RIC on the right hand

sides are quite complicated expressions.

3.4 Probabilistic Analysis

Although the RIC provides a measure quantifying the goodness of a sensing matrix,

its computation poses great challenge. The computational difficulty is compensated

by the nice properties of the RIC for a large class of random sensing matrices. We

cite one general result below [83]:

Let A ∈ Rm×n be a random matrix whose entries are i.i.d. samples from any distri-

bution that satisfies the concentration inequality for any x ∈ Rn and 0 < ε < 1:

P
(∣∣‖Ax‖22 − ‖x‖22∣∣ ≥ ε‖x‖22

)
≤ 2e−mc0(ε), (3.25)

where c0(ε) is a constant depending only on ε and such that for all ε ∈ (0, 1), c0(ε) > 0.

Then, for any given δ ∈ (0, 1), there exist constants c1, c2 > 0 depending only on δ

such that δk ≤ δ, with probability not less than 1− 2e−c2m, as long as

m ≥ c1k log
n

k
. (3.26)

We remark that distributions satisfying the concentration inequality (3.25) include

the Gaussian distribution and the Bernoulli distribution. To see the implication of

(3.26), we suppose n = 1, 000, 000, the approximate size of a 1024× 1024 image, and

k = 10%n, then we need roughly m = 2.3kc1 Gaussian measurements to recover the

original signal.
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Chapter 4

Computable Performance Analysis

for Sparsity Recovery

4.1 Goodness Measures and Error Bounds

In this section, we derive performance bounds on the `∞ norms of the error vec-

tors. We first establish a theorem characterizing the error vectors for the `1 recovery

algorithms BP (3.11), DS (3.12), and LASSO (3.13).

Proposition 4.1.1. Suppose x in (3.1) is k−sparse and the noise w satisfies ‖w‖� ≤
ε, ‖ATw‖∞ ≤ µ, and ‖ATw‖∞ ≤ κµ, κ ∈ (0, 1), for the BP, the DS, and the LASSO,

respectively. Define h = x̂ − x as the error vector for any of the three `1 recovery

algorithms (3.11), (3.12), and (3.13). Then we have

c‖h‖k,1 ≥ ‖h‖1, (4.1)

where c = 2 for the BP and the DS, and c = 2/(1− κ) for the LASSO.

Proof of Proposition 4.1.1. Suppose S = supp(x) and |S| = ‖x‖0 = k. Define the

error vector h = x̂−x. For any vector z ∈ Rn and any index set S ⊆ {1, . . . , n}, we

use zS ∈ R|S| to represent the vector whose elements are those of z indicated by S.

We first deal with the BP and the DS. As observed by Candés in [39], the fact that

‖x̂‖1 = ‖x + h‖1 is the minimum among all zs satisfying the constraints in (3.11)

and (3.12), together with the fact that the true signal x satisfies the constraints as

required by the conditions imposed on the noise in Proposition 4.1.1, imply that
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‖hSc‖1 cannot be very large. To see this, note that

‖x‖1 ≥ ‖x+ h‖1
=

∑
i∈S

|xi + hi|+
∑
i∈Sc
|xi + hi|

≥ ‖xS‖1 − ‖hS‖1 + ‖hSc‖1
= ‖x‖1 − ‖hS‖1 + ‖hSc‖1. (4.2)

Therefore, we obtain ‖hS‖1 ≥ ‖hSc‖1, which leads to

2‖hS‖1 ≥ ‖hS‖1 + ‖hSc‖1 = ‖h‖1. (4.3)

We now turn to the LASSO (3.13). We use the proof technique in [7] (see also [80]).

Since the noise w satisfies ‖ATw‖∞ ≤ κµ for some small κ > 0, and x̂ is a solution

to (3.13), we have

1

2
‖Ax̂− y‖22 + µ‖x̂‖1 ≤

1

2
‖Ax− y‖22 + µ‖x‖1.

Consequently, substituting y = Ax+w yields

µ‖x̂‖1 ≤
1

2
‖Ax− y‖22 −

1

2
‖Ax̂− y‖22 + µ‖x‖1

=
1

2
‖w‖22 −

1

2
‖A(x̂− x)−w‖22 + µ‖x‖1

=
1

2
‖w‖22 −

1

2
‖A(x̂− x)‖22

+ 〈A(x̂− x),w〉 − 1

2
‖w‖22 + µ‖x‖1

≤ 〈A(x̂− x),w〉+ µ‖x‖1
=

〈
x̂− x, ATw

〉
+ µ‖x‖1.

Using the Cauchy-Swcharz type inequality, we get

µ‖x̂‖1 ≤ ‖x̂− x‖1‖ATw‖∞ + µ‖x‖1
= κµ‖h‖1 + µ‖x‖1,
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which leads to

‖x̂‖1 ≤ κ‖h‖1 + ‖x‖1.

Therefore, similar to the argument in (4.2), we have

‖x‖1
≥ ‖x̂‖1 − κ‖h‖1
= ‖x+ hSc + hS‖1 − κ (‖hSc + hS‖1)

≥ ‖x+ hSc‖1 − ‖hS‖1 − κ (‖hSc‖1 + ‖hS‖1)

= ‖x‖1 + (1− κ)‖hSc‖1 − (1 + κ)‖hS‖1,

where S = supp(x). Consequently, we have

‖hS‖1 ≥
1− κ
1 + κ

‖hSc‖1.

Therefore, similar to (4.3), we obtain

2

1− κ
‖hS‖1 ≥

1 + κ

1− κ
‖hS‖1 +

1− κ
1− κ

‖hS‖1

≥ 1 + κ

1− κ
1− κ
1 + κ

‖hSc‖1 +
1− κ
1− κ

‖hS‖1
= ‖h‖1. (4.4)

When the noise w ∼ N (0, σ2Im), as shown by Candés and Tao in [69], with high

probability, w satisfies the orthogonality condition

|wTAj| ≤ λnσ for all 1 ≤ j ≤ n, (4.5)

for λn =
√

2 log n. More specifically, defining the event

E
def
= {‖ATw‖∞ ≤ λnσ}, (4.6)
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we have

P(Ec) ≤ 2n · (2π)−1/2e−λ
2
n/2

λn
. (4.7)

Therefore, with λn =
√

2(1 + t) log n, we obtain

P(E) ≥ 1−
(√

π(1 + t) log n · nt
)−1

. (4.8)

As a consequence, the conditions on noise in Proposition (4.1.1) holds with high

probability for µ = λnσ =
√

2(1 + t) log nσ.

An immediate corollary of Proposition 4.1.1 is to bound the `1 and `2 norms of the

error vector using the `∞ norm:

Corollary 4.1.1. Under the assumptions of Proposition 4.1.1, we have

‖h‖1 ≤ ck‖h‖∞, (4.9)

‖h‖2 ≤
√
ck‖h‖∞. (4.10)

Furthermore, if S = supp(x) and β = mini∈S |xi|, then ‖h‖∞ < β/2 implies

supp(max(|x̂| − β/2, 0) = supp(x), (4.11)

i.e., a thresholding operator recovers the signal support.

For ease of presentation, we define the following goodness measures:

Definition 4.1.1. For any s ∈ [1, n] and matrix A ∈ Rm×n, define

ω�(Q, s) = min
z:‖z‖1/‖z‖∞≤s

‖Qz‖�
‖z‖∞

, (4.12)

where Q is either A or ATA.

Now we present the error bounds on the `∞ norm of the error vectors for the BP, the

DS, and the LASSO .
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Theorem 4.1.1. Under the assumption of Proposition 4.1.1, we have

‖x̂− x‖∞ ≤
2ε

ω�(A, 2k)
(4.13)

for the BP,

‖x̂− x‖∞ ≤
2µ

ω∞(ATA, 2k)
(4.14)

for the DS, and

‖x̂− x‖∞ ≤
(1 + κ)µ

ω∞(ATA, 2k/(1− κ))
(4.15)

for the LASSO .

Proof. Observe that for the BP

‖A(x̂− x)‖2 ≤ ‖y − Ax̂‖2 + ‖y − Ax‖2
≤ ε+ ‖Aw‖2
≤ 2ε, (4.16)

and similarly,

‖ATA(x̂− x)‖∞ ≤ 2µ (4.17)

for the DS, and

‖ATA(x̂− x)‖∞ ≤ (1 + κ)µ (4.18)

for the LASSO . The conclusions of Theorem 4.1.1 follow from equation (4.9) and

Definition 4.1.1.

One of the primary contributions of this work is the design of algorithms that compute

ω�(A, s) and ω∞(ATA, s) efficiently. The algorithms provide a way to numerically

assess the performance of the BP, the DS, and the LASSO according to the bounds

given in Theorem 4.1.1. According to Corollary 4.1.1, the correct recovery of signal
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support is also guaranteed by reducing the `∞ norm to some threshold. In Section 4.4,

we also demonstrate that the bounds in Theorem 4.1.1 are non-trivial for a large class

of random sensing matrices, as long as m is relatively large. Numerical simulations

in Section 4.5 show that in many cases the error bounds on the `2 norms based on

Corollary 4.1.1 and Theorem 4.1.1 are tighter than the RIC based bounds. We expect

the bounds on the `∞ norms in Theorem 4.1.1 are even tighter, as we do not need

the relaxation in Corollary 4.1.1.

We note that a prerequisite for these bounds to be valid is the positiveness of the

involved ω�(·). We call the validation of ω�(·) > 0 the verification problem. Note that

from Theorem 4.1.1, ω�(·) > 0 implies the exact recovery of the true signal x in the

noise-free case. Therefore, verifying ω�(·) > 0 is equivalent to verifying a sufficient

condition for exact `1 recovery.

4.2 Verification Algorithm

In this section and the next section, we present algorithms for verification and com-

putation of ω�(·). We will present a very general algorithm and make it specific only

when necessary. For this purpose, we use Q to denote either A or ATA, and use ‖ · ‖�
to denote a general norm.

Verifying ω�(Q, s) > 0 amounts to making sure ‖z‖1/‖z‖∞ ≤ s for all z such that

Qz = 0. Equivalently, we can compute

s∗ = min
z

‖z‖1
‖z‖∞

s.t. Qz = 0. (4.19)

Then, when s < s∗, we have ω�(Q, s) > 0. We rewrite the optimization (4.19) as

1

s∗
= max

z
‖z‖∞ s.t. Qz = 0, ‖z‖1 ≤ 1, (4.20)

which is solved using the following n linear programs:

max
z
zi s.t. Qz = 0, ‖z‖1 ≤ 1. (4.21)
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The dual problem for (4.21) is

min
λ
‖ei −QTλ‖∞, (4.22)

where ei is the ith canonical basis vector.

We solve (4.21) using the primal-dual algorithm expounded in Chapter 11 of [43],

which gives an implementation much more efficient than the one for solving its dual

(4.22) in [40]. This method is also used to implement the `1 MAGIC for sparse signal

recovery [79]. Due to the equivalence of ATAz = 0 and Az = 0, we always solve

(4.20) for Q = A and avoid Q = ATA. The former apparently involves solving linear

programs of smaller size. In practice, we usually replace A with the matrix with

orthogonal rows obtained from the economy-size QR decomposition of AT .

As a dual of (4.22), (4.21) (and hence (4.20) and (4.19)) shares the same limitation

as (4.22), namely, it verifies ω� > 0 only for s up to 2
√

2m. We now reformulate

Proposition 4 of [40] in our framework:

Proposition 4.2.1. [40, Proposition 4] For any m× n matrix A with n ≥ 32m, one

has

s∗ = min

{
‖z‖1
‖z‖∞

: Qz = 0

}
< 2
√

2m. (4.23)

4.3 Computation Algorithm

Now we turn to the computation of ω�. The optimization problem is as follows:

ω�(Q, s) = min
z

‖Qz‖�
‖z‖∞

s.t.
‖z‖1
‖z‖∞

≤ s, (4.24)

or equivalently,

1

ω�(Q, s)
= max

z
‖z‖∞ s.t. ‖Qz‖� ≤ 1,

‖z‖1
‖z‖∞

≤ s. (4.25)
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We will show that 1/ω�(Q, s) is the unique fixed point of certain scalar function. To

this end, we define functions fs,i(η), i = 1, . . . , n and fs(η) over [0,∞) parameterized

by s ∈ (1, s∗) as:

fs,i(η)
def
= max

z
{zi : ‖Qz‖� ≤ 1, ‖z‖1 ≤ sη}

= max
z
{|zi| : ‖Qz‖� ≤ 1, ‖z‖1 ≤ sη} , (4.26)

where the second equality is due to the symmetry of the domain for the maximization

to the origin, and

fs(η)
def
= max

z
{‖z‖∞ : ‖Qz‖� ≤ 1, ‖z‖1 ≤ sη}

= max
z:‖Qz‖�≤1
‖z‖1≤sη

max
i
|zi|

= max
i

max
z:‖Qz‖�≤1
‖z‖1≤sη

|zi|

= max
i
fs,i(η), (4.27)

where for the last but one equality we have exchanged the two maximizations. For

η > 0, it is easy to show that strong duality holds for the optimization problem

defining fs,i(η). As a consequence, we have the dual form of fs,i(η):

fs,i(η) = min
λ
sη‖ei −QTλ‖∞ + ‖λ‖∗�, (4.28)

where ‖ · ‖∗� is the dual norm of ‖ · ‖∗.

In the definition of fs(η), we basically replaced the ‖z‖∞ in the denominator of the

fractional constraint in (4.25) with η. The following theorem states that the unique

positive fixed point of fs(η) is exactly 1/ω�(Q, s).

Theorem 4.3.1. The functions fs,i(η) and fs(η) have the following properties:

1. fs,i(η) and fs(η) are continuous in η;

2. fs,i(η) and fs(η) are strictly increasing in η;

3. fs,i(η) is concave for every i;
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4. fs(0) = 0, fs(η) ≥ sη > η for sufficiently small η > 0, and there exists ρ < 1

such that fs(η) < ρη for sufficiently large η; the same holds for fs,i(η);

5. fs,i and fs(η) have unique positive fixed points η∗i = fs,i(η
∗
i ) and η∗ = fs(η

∗),

respectively; and η∗ = maxi η
∗
i ;

6. The unique fixed point of fs(η), η∗, is equal to 1/ω�(Q, s);

7. For η ∈ (0, η∗), we have fs(η) > η; and for η ∈ (η∗,∞), we have fs(η) < η; the

same statement holds also for fs,i(η).

8. For any ε > 0, there exists ρ1(ε) > 1 such that fs(η) > ρ1(ε)η as long as

0 < η ≤ (1 − ε)η∗; and there exists ρ2(ε) < 1 such that fs(η) < ρ2(ε)η as long

as η > (1 + ε)η∗.

Typical plots of the functions fs(η) and fs,i(η) are shown in Figure 4.1. All the

properties except 6) are illustrated in the figure. Note that although fs,i(η)s are

concave, fs(η) is not concave as clearly indicated in the plot.

Proof. 1. Since in the optimization problem defining fs,i(η), the objective function

zi is continuous, and the constraint correspondence

C(η) : [0,∞)� Rn

η 7→ {z : ‖Qz‖� ≤ 1, ‖z‖1 ≤ sη} (4.29)

is compact-valued and continuous (both upper and lower hemicontinuous), ac-

cording to Berge’s Maximum Theorem 2.2.1, the optimal value function fs,i(η)

is continuous. The continuity of fs(η) follows from that finite maximization

preserves the continuity.

2. To show the strict increasing property, suppose 0 < η1 < η2 and the dual

variable λ∗2 achieves fs,i(η2) in (4.28). Then we have

fs,i(η1) ≤ sη1‖ei −QTλ∗2‖∞ + ‖λ2‖∗�
< sη2‖ei −QTλ∗2‖∞ + ‖λ2‖∗�
= fs,i(η2). (4.30)
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Figure 4.1: The functions fs(η) and fs,i(η). The blue line is for the diagonal f = η.
The thick black plot is for fs(η), and other colored thin plots are for fs,i(η)s.
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The case for η1 = 0 is proved by continuity, and the strict increasing of fs(η)

also follows immediately.

3. The concavity of fs,i(η) follows from the dual representation (4.28) and the fact

that fs,i(η) is the minimization of a function of variables η and λ, and when λ,

the variable to be minimized, is fixed, the function is linear in η.

4. Next we show that when η > 0 is sufficiently small fs(η) ≥ sη. Take z = sηei.

We have ‖z‖1 = sη and zi = sη > η (recall s ∈ (1,∞)). In addition, when

0 < η ≤ 1/(s‖Qi‖�), we also have ‖Qz‖� ≤ 1. Therefore, for sufficiently small

η, we have fs,i(η) ≥ sη > η. Clearly, fs(η) = maxi fs,i(η) ≥ sη > η for such η.

Recall that

1

s∗
= max

i
min
λi
‖ei −QTλi‖∞. (4.31)

Suppose λ∗i is the optimal solution for each minλi ‖ei−QTλi‖∞. For each i, we

then have

1

s∗
≥ ‖ei −QTλ∗i ‖∞, (4.32)

which implies

fs,i(η) = min
λi

sη‖ei −QTλi‖∞ + ‖λi‖∗�

≤ sη‖ei −QTλ∗i ‖∞ + ‖λ∗i ‖∗�
≤ s

s∗
η + ‖λ∗i ‖2. (4.33)

As a consequence, we obtain

fs(η) = max
i
fs,i(η) ≤ s

s∗
η + max

i
‖λ∗i ‖2. (4.34)

Pick ρ ∈ (s/s∗, 1). Then, we have the following when η > maxi ‖λ∗i ‖2/(ρ−s/s∗):

fs,i(η) ≤ ρη, i = 1, . . . , n, and

fs(η) ≤ ρη. (4.35)

53



5. We first show the existence and uniqueness of the positive fixed points for

fs,i(η). The properties 1) and 4) imply that fs,i(η) has at least one positive

fixed point. (Interestingly, 2) and 4) also imply the existence of a positive fixed

point according to Theorem 2.2.2.) To prove uniqueness, suppose there are two

fixed points 0 < η∗1 < η∗2. Pick η0 small enough such that fs,i(η0) > η0 > 0 and

η0 < η∗1. Then η∗1 = λη0 + (1 − λ)η∗2 for some λ ∈ (0, 1), which implies that

fs,i(η
∗
1) ≥ λfs,i(η0) + (1−λ)fs,i(η

∗
2) > λη0 + (1−λ)η∗2 = η∗1 due to the concavity,

contradicting with η∗1 = fs,i(η
∗
1).

The set of positive fixed point for fs(η), {η ∈ (0,∞) : η = fs(η) = maxi fs,i(η)},
is a subset of

⋃p
i=1{η ∈ (0,∞) : η = fs,i(η)} = {η∗i }ni=1. We argue that

η∗ = max
i
η∗i (4.36)

is the unique positive fixed point for fs(η).

We proceed to show that η∗ is a fixed point of fs(η). Suppose η∗ is a fixed point

of fs,i0(η), then it suffices to show that fs(η
∗) = maxi fs,i(η

∗) = fs,i0(η
∗). If this

is not the case, there exists i1 6= i0 such that fs,i1(η
∗) > fs,i0(η

∗) = η∗. The

continuity of fs,i1(η) and the property 4) imply that there exists η > η∗ with

fs,i1(η) = η, contradicting with the definition of η∗.

To show the uniqueness, suppose η∗1 is fixed point of fs,i1(η) satisfying η∗1 < η∗.

Then, we must have fs,i0(η
∗
1) > fs,i1(η

∗
1) because otherwise the continuity implies

the existence of another fixed point of fs,i0(η). As a consequence, fs(η
∗
1) >

fs,i1(η
∗
1) = η∗1 and η∗1 is not a fixed point of fs(η).

6. Next we show η∗ = γ∗
def
= 1/ω�(Q, s). We first prove γ∗ ≥ η∗ for the fixed point

η∗ = fs(η
∗). Suppose z∗ achieves the optimization problem defining fs(η

∗), i.e.,

η∗ = fs(η
∗) = ‖z∗‖∞, ‖Qz∗‖� ≤ 1, ‖z∗‖1 ≤ sη∗. (4.37)

Since ‖z∗‖1/‖z∗‖∞ ≤ sη∗/η∗ ≤ s, we have

γ∗ ≥ ‖z∗‖∞
‖Qz∗‖�

≥ η∗. (4.38)
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If η∗ < γ∗, we define η0 = (η∗ + γ∗)/2 and

zc = argmaxz
s‖z‖∞
‖z‖1

s.t. ‖Qz‖� ≤ 1, ‖z‖∞ ≥ η0,

ρ =
s‖zc‖∞
‖zc‖1

. (4.39)

Suppose z∗∗ with ‖Qz∗∗‖� = 1 achieves the optimum of the optimization defin-

ing γ∗ = 1/ω�(Q, s). Clearly, ‖z∗∗‖∞ = γ∗ > η0, which implies z∗∗ is a feasible

point of the optimization problem defining zc and ρ. As a consequence, we have

ρ ≥ s‖z∗∗‖∞
‖z∗∗‖1

≥ 1. (4.40)

Figure 4.2: Illustration of the proof for ρ > 1.

Actually we will show that ρ > 1. If ‖z∗∗‖1 < s‖z∗∗‖∞, we are done. If not

(i.e., ‖z∗∗‖1 = s‖z∗∗‖∞), as illustrated in Figure 4.2, we consider ξ = η0
γ∗
z∗∗,

which satisfies

‖Qξ‖� ≤
η0
γ∗

< 1, (4.41)

‖ξ‖∞ = η0, and (4.42)

‖ξ‖1 = sη0. (4.43)
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To get ξn as shown in Figure 4.2, pick the component of ξ with the smallest

non-zero absolute value, and scale that component by a small positive constant

less than 1. Because s > 1, ξ has more than one non-zero blocks, implying

‖ξn‖b∞ will remain the same. If the scaling constant is close enough to 1,

‖Qξn‖� will remain less than 1. But the good news is that ‖ξn‖1 decreases, and

hence ρ ≥ s‖ξn‖∞
‖ξn‖1 becomes greater than 1.

Now we proceed to obtain a contradiction that fs(η
∗) > η∗. If ‖zc‖1 ≤ s · η∗,

then it is a feasible point of

max
z
‖z‖∞ s.t. ‖Qz‖� ≤ 1, ‖z‖1 ≤ s · η∗. (4.44)

As a consequence, fs(η
∗) ≥ ‖zc‖∞ ≥ η0 > η∗, contradicting with η∗ is a fixed

point and we are done. If this is not the case, i.e., ‖zc‖1 > s · η∗, we define a

new point

zn = τzc (4.45)

with

τ =
s · η∗

‖zc‖1
< 1. (4.46)

Note that zn is a feasible point of the optimization problem defining fs(η
∗) since

‖Qzn‖� = τ‖Qzc‖� < 1, and (4.47)

‖zn‖b1 = τ‖zc‖1 = s · η∗. (4.48)

Furthermore, we have

‖zn‖∞ = τ‖zc‖∞ = ρη∗. (4.49)

As a consequence, we obtain

fs(η
∗) ≥ ρη∗ > η∗. (4.50)

Therefore, for the fixed point η∗, we have η∗ = γ∗ = 1/ω�(Q, s).
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Figure 4.3: Illustration of the proof for fs(η
∗) ≥ ρη∗.

7. This property simply follows from the continuity, the uniqueness, and property

4).

8. We use contradiction to show the existence of ρ1(ε) in 8). In view of 4), we need

only to show the existence of such a ρ1(ε) that works for ηL ≤ η ≤ (1 − ε)η∗

where ηL = sup{η : fs(ξ) > sξ,∀0 < ξ ≤ η}. Suppose otherwise, we then

construct sequences {η(k)}∞k=1 ⊂ [ηL, (1− ε)η∗] and {ρ(k)1 }∞k=1 ⊂ (1,∞) with

lim
k→∞

ρ
(k)
1 = 1,

fs(η
(k)) ≤ ρ(k)η(k). (4.51)

Due to the compactness of [ηL, (1 − ε)η∗], there must exist a subsequence

{η(kl)}∞l=1 of {η(k)} such that liml→∞ η
(kl) = ηlim for some ηlim ∈ [ηL, (1 − ε)η∗].

As a consequence of the continuity of fs(η), we have
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fs(ηlim) = lim
l→∞

fs(η
(kl)) ≤ lim

l→∞
ρ
(kl)
1 η(kl) = ηlim. (4.52)

Again due to the continuity of fs(η) and the fact that fs(η) < η for η < ηL,

there exists ηc ∈ [ηL, ηlim] such that

fs(ηc) = ηc, (4.53)

contradicting with the uniqueness of the fixed point for fs(η). The existence of

ρ2(ε) can be proved in a similar manner.

Theorem 4.3.1 implies three ways to compute the fixed point of η∗ for fs(η), 1/ω�(Q, s).

1. Naive Fixed-Point Iteration: Property 8) of Theorem 4.3.1 suggests that

the fixed point iteration

ηt+1 = fs(ηt), t = 0, 1, . . . (4.54)

starting from any initial point η0 converges to η∗, no matter η0 < η∗ or η0 > η∗.

The algorithm can be made more efficient in the case η0 < η∗. More specifically,

since fs(η) = maxi fs,i(η), at each fixed-point iteration, we set ηt+1 to be the

first fs,i(ηt) that is greater than ηt + ε with ε some tolerance parameter. If for

all i, fs,i(ηt) < ηt + ε, then fs(ηt) = maxi fs,i(ηt) < ηt + ε, which indicates the

optimal function value can not be improved greatly and the algorithm should

terminate. In most cases, to get ηt+1, we need to solve only one optimization

problem minλ sη‖ei − QTλ‖∞ + ‖λ‖∗� instead of n. This is in contrast to the

case where η0 > η∗, because in the later case we must compute all fs,i(ηt) to

update ηt+1 = maxi fs,i(ηt). An update based on a single fs,i(ηt) might generate

a value smaller than η∗.

In Figure 4.4, we illustrate the behavior of the naive fixed-point iteration al-

gorithm (4.54). These figures are generated by Matlab for a two dimensional

problem. We index the sub-figures from left to right and from top to bot-

tom. The first (upper left) sub-figure shows the star-shaped region S = {z :
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Figure 4.4: Illustration of naive fixed-point iteration (4.54) when � =∞.

‖Qz‖∞ ≤ 1, ‖z‖1/‖z‖∞ ≤ s}. Starting from an initial η0 = ‖x0‖∞ with x0 ∈ S,

the algorithm solves

max
z
‖z‖∞ s.t. ‖Qz‖� ≤ 1, ‖z‖1 ≤ s · η0 (4.55)

in sub-figure 2. The solution is denoted by the black dot. Although the true

domain for the optimization in (4.55) is the intersection of the distorted `∞ ball

{z : ‖Qz‖∞ ≤ 1} and the `1 ball {z : ‖z‖1 ≤ 1}, the intersection of the `1 ball

(light gray diamond) and the star-shaped region S forms the effective domain,

which is the dark grey region in the sub-figures. To see this, we note the optimal

value of the optimization (4.55) η1 = ‖x1‖∞ ≥ η0. As a consequence, for the

optimal solution x1, we have ‖x1‖1/‖x1‖∞ ≤ ‖x1‖1/η0 ≤ s. In the following
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sub-figures, at each iteration, we expand the `1 ball until we get to the tip point

of the star-shaped region S, which is the global optimum.

Despite of its simplicity, the naive fixed-point iteration has two major disad-

vantages. Firstly, the stopping criterion based on successive improvement is not

accurate as it does not reflect the gap between ηt and η∗. This disadvantage can

be remedied by starting from both below and above η∗. The distance between

corresponding terms in the two generated sequences is an indication of the gap

to the fixed point η∗. However, the resulting algorithm is very slow, especially

when updating ηt+1 from above η∗. Secondly, the iteration process is slow, es-

pecially when close to the fixed point η∗. This is because ρ1(ε) and ρ2(ε) in 8)

of Theorem 4.3.1 are close to 1.

2. Bisection: The bisection approach is motivated by property 7) of Theorem

4.3.1. Starting from an initial interval (ηL, ηU) that contains η∗, we compute

fs(ηM) with ηM = (ηL + ηU)/2. As a consequence of property 7), fs(ηM) > ηM

implies fs(ηM) < η∗, and we set ηL = fs(ηM); fs(ηM) < ηM implies fs(ηM) > η∗,

and we set ηU = fs(ηM). The bisection process can also be accelerated by

setting ηL = fs,i(ηM) for the first fs,i(ηM) greater than ηM. The convergence

of the bisection approach is much faster than the naive fixed point iteration

because each iteration reduces the interval length at least by half. In addition,

half the length of the interval is an upper bound on the gap between ηM and

η∗, resulting an accurate stopping criterion. However, if the initial ηU is too

larger than η∗, the majority of fs(ηM) would turn out to be less than η∗. The

verification of fs(ηM) < ηM needs solving n linear programs or second-order

cone programs, greatly degrading the algorithm’s performance.

3. Fixed-Point Iteration + Bisection: The third approach combines the ad-

vantages of the bisection method and the fixed-point iteration method, at

the level of fs,i(η). This method relies heavily on the representation fs(η) =

maxi fs,i(η) and η∗ = maxi η
∗
i .

Starting from an initial interval (ηL0, ηU) and the index set I0 = {1, . . . , n},
we pick any i0 ∈ I0 and use the (accelerated) bisection method with starting

interval (ηL0, ηU) to find the positive fixed point η∗i0 of fs,i0(η). For any i ∈ I0/i0,
fs,i(η

∗
i0

) ≤ η∗i0 implies that the fixed point η∗i of fs,i(η) is less than or equal to

η∗i0 according to the continuity of fs,i(η) and the uniqueness of its positive fixed
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point. As a consequence, we remove this i from the index set I0. We denote I1
as the index set after all such is removed, i.e., I1 = I0/{i : fs,i(η

∗
i0

) ≤ η∗i0}. We

also set ηL1 = η∗i0 as η∗ ≥ η∗i0 . Next we test the i1 ∈ I1 with the largest fs,i(η
∗
i0

)

and construct I2 and ηL2 in a similar manner. We repeat the process until the

index set It is empty. The η∗i found at the last step is the maximal η∗i , which is

equal to η∗.

Note that in equations (4.24), (4.25), and (4.27), if we replace the `∞ norm with any

other norm ( with some other minor modifications), especially ‖ · ‖s,1 or ‖ · ‖2, then a

naive fixed-point iteration algorithm still exists. In addition, as we did in Corollary

4.1.1, we can express other norms on the error vector in terms of ‖ · ‖s,1 and ‖ · ‖2.
We expect the norm ‖ · ‖s,1 would yield the best performance bounds. Unfortunately,

the major problem is that in these cases, the function fs(η) do not admit an obvious

polynomial time algorithm to compute. It is very likely the corresponding norm

maximization defining fs(η) for ‖ · ‖s,1 and ‖ · ‖2 are NP hard [84].

4.4 Probabilistic Analysis

In this section, we analyze the probabilistic behavior of ω�(Q, s) for random sensing

matrices. More precisely, we will establish a result similar to (3.26) that guarantees

ω�(Q, s) bounded away from zero with high probability.

For this purpose, we define the `1-constrained minimal singular value (`1-CMSV),

which is connected with ω�(Q, s) and is more amenable to theoretical analysis:

Definition 4.4.1. For any s ∈ [1, n] and matrix A ∈ Rm×n, define the `1-constrained

minimal singular value (abbreviated as `1-CMSV) of A by

ρs(A) = min
z: ‖z‖21/‖z‖22≤s

‖Az‖2
‖z‖2

. (4.56)

Despite the seeming resemblance of the definitions for ω�(Q, s), especially ω2(A, s),

and ρs(A), the difference in the `∞ norm and the `2 norm has important implica-

tions. As shown in Theorem 4.3.1, the `∞ norm enables the design of optimization
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procedures with nice convergence properties to efficiently compute ω�(Q, s). On the

other hand, the `1-CMSV yields tight performance bounds at least for a large class

of random sensing matrices, as we will see in Theorem 4.4.1.

However, there are some interesting connections among these quantities, as shown in

the following proposition. These connections allow us the analyze the probabilistic

behaviors of ω�(Q, s) using the results for ρs(A) established in Theorem 4.4.1.

Proposition 4.4.1.

√
s
√
ω∞(ATA, s) ≥ ω2(A, s) ≥ ρs2(A). (4.57)

Proof. For any z such that ‖z‖∞ = 1 and ‖z‖1 ≤ s, we have

zATAz ≤
∑
i

|zi||(ATAz)i|

≤ ‖z‖1‖ATAz‖∞
≤ s‖ATAz‖∞. (4.58)

Taking the minimum over {z : ‖z‖∞ = 1, ‖z‖1 ≤ s} yields

ω2
2(A, s) ≤ sω∞(ATA, s). (4.59)

Note that ‖z‖1/‖z‖∞ ≤ s implies ‖z‖1 ≤ s‖z‖∞ ≤ s‖z‖2, or equivalently,

{z : ‖z‖1/‖z‖∞ ≤ s} j {z : ‖z‖1/‖z‖2 ≤ s}. (4.60)

As a consequence, we have

ω2(A, s) = min
‖z‖1/‖z‖∞≤s

‖Az‖2
‖z‖2

‖z‖2
‖z‖∞

≥ min
‖z‖1/‖z‖∞≤s

‖Az‖2
‖z‖2

≥ min
‖z‖1/‖z‖2≤s

‖Az‖2
‖z‖2

= ρs2(A), (4.61)
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where the first inequality is due to ‖z‖2 ≥ ‖z‖∞, and the second inequality is because

the minimization is taken over a larger set.

We first establish a probabilistic result on ρs(A). In particular, we derive a condition

on the number of measurements to get ω�(Q, s) bounded away from zero with high

probability for sensing matrices with i.i.d. subgaussian and isotropic rows. Recall

that a random vector ξ ∈ Rn is called isotropic and subgaussian with constant L if

E| 〈ξ,u〉 |2 = ‖u‖22 and P(| 〈ξ,u〉 | ≥ t) ≤ 2 exp(−t2/(L‖u‖2)) hold for any u ∈ Rn.

Theorem 4.4.1. Let the rows of the scaled sensing matrix
√
mA be i.i.d. subgaussian

and isotropic random vectors with numerical constant L. Then there exist constants

c1 and c2 such that for any ε > 0 and m ≥ 1 satisfying

m ≥ c1
L2s log n

ε2
, (4.62)

we have

E|1− ρs(A)| ≤ ε, (4.63)

and

P{1− ε ≤ ρs(A) ≤ 1 + ε} ≥ 1− exp(−c2ε2m/L4). (4.64)

Proof. We connect the `1−CMSV for the sensing matrix A with an empirical process.

Suppose the rows of
√
mA are i.i.d. isotropic and subgaussian random vectors with

constant L, and are denoted by {aTi , i = 1, . . . ,m}. Denote Hn
s = {u ∈ Rn : ‖u‖22 =

1, ‖u‖21 ≤ s}, a subset of the unit sphere of Rn. We observe that for any ε ∈ (0, 1)

ρ2s(A) = min
u:u∈Hns

uTATAu < (1− ε)2 < (1− ε) (4.65)

is a consequence of

supu∈Hns

∣∣∣∣ 1

m
uT (
√
mA)T (

√
mA)u− 1

∣∣∣∣
= supu∈Hns

∣∣∣∣∣ 1

m

m∑
i=1

〈ai,u〉2 − 1

∣∣∣∣∣ ≤ ε. (4.66)
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Define a class of functions parameterized by u as Fs = {fu(·) = 〈u, ·〉 : u ∈ Hn
s }.

Since Ef 2(a) = E 〈u,a〉2 = ‖u‖22 = 1 due to isotropy, the proof of Theorem 4.4.1

boils down to estimating

E supf∈Fs

∣∣∣∣∣ 1

m

m∑
k=1

f 2(ai)− Ef 2(a)

∣∣∣∣∣ (4.67)

and

P

{
supf∈Fs

∣∣∣∣∣ 1

m

m∑
k=1

f 2(ai)− Ef 2

∣∣∣∣∣
}

(4.68)

using Theorem 2.3.2. The symmetry of Hn
s (and hence of Fs) yields

α = diam(Fs, ‖ · ‖ψ2)

= 2 supu∈Hns ‖ 〈u,a〉 ‖ψ2 ≤ 2L. (4.69)

Now the key is to compute `∗(Hn
s ) (actually an upper bound suffices). Clearly, we

have

`∗(Hn
s ) = Esupu∈Hns 〈g,u〉

≤ E‖u‖1‖g‖∞
≤

√
s log n. (4.70)

The conclusions of Theorem 4.4.1 then follow from (6.134) and Theorem 2.3.2 with

suitable choice of c1.

Following the proof procedure in [85] and using several novel entropy number esti-

mates, we can also establish a result similar to (but slightly worse than) that of The-

orem 4.4.1 for bounded orthonormal systems [86], which include the partial Fourier

matrix and Hadamard matrix as important special cases.

Combining Proposition 4.4.1 and Theorem 4.4.1, we obtain the following probabilistic

result on ω�(Q, s) for subgaussian and isotropic matrices.
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Theorem 4.4.2. Under the assumptions and notations of Theorem 4.4.1, there exist

constants c1 and c2 such that for any ε > 0 and m ≥ 1 satisfying

m ≥ c1
L2s2 log n

ε2
, (4.71)

we have

E ω2(A, s) ≥ 1− ε, (4.72)

P{ω2(A, s) ≥ 1− ε} ≥ 1− exp(−c2ε2m), (4.73)

and

E ω∞(ATA, s) ≥ (1− ε)2

s
, (4.74)

P
{
ω∞(A, s) ≥ (1− ε)2

s

}
≥ 1− exp(−c2ε2m). (4.75)

As mentioned in Section 2.3.1, sensing matrices with i.i.d. subgaussian and isotropic

rows include the Gaussian ensemble, and the Bernoulli ensemble, as well as the nor-

malized volume measure on various convex symmetric bodies, for example, the unit

balls of `np for 2 ≤ p ≤ ∞ [51]. In equations (4.74) and (4.75), the extra s in the lower

bound of ω∞(ATA, s) would contribute an s factor in the bounds of Theorem 4.1.1.

It plays the same role as the extra
√
k factor in the error bounds for the DS and the

LASSO in terms of the RIC and the `1−CMSV [69,87].

The measurement bound (4.71) implies that the algorithms for verifying ω� > 0 and

for computing ω� work for s at least up to the order
√
m/ log n. The order

√
m/ log n

is complementary to the
√
m upper bound in Proposition 4.2.1.

Note that Theorem 4.4.1 implies that the following program:

max
z
‖z‖2 s.t. Az = 0, ‖z‖1 ≤ 1, (4.76)

verifies the sufficient condition for exact `1 recovery for s up to the order m/ log n.

Unfortunately, this program is NP hard and hence not tractable.
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4.5 Numerical Simulations

In this section, we provide implementation details and numerically assess the per-

formance of the algorithms for solving (4.19) and (4.24). All the numerical exper-

iments in this section were conducted on a desktop computer with a Pentium D

CPU@3.40GHz, 2GB RAM, and Windows XP operating system, and the computa-

tions were running single-core.

The n linear programs (4.21) for solving (4.19) are reformulated as the following

standard linear programs:

min
[

eTi 0T
] [ z

u

]

s.t.
[
Q O

] [ z
u

]
= 0 I −I

−I −I

0T 1T

[ z
u

]
≤

 0

0

1

 (4.77)

for i = 1, . . . , n. These linear programs are implemented using the primal-dual al-

gorithm outlined in Chapter 11 of [43]. The algorithm finds the optimal solution

together with optimal dual vectors by solving the Karush-Kuhn-Tucker condition us-

ing linearization. The major computation load is solving linear systems of equations

with positive definite coefficient matrices.

Recall that the optimization defining fs,i(η) is

min zi s.t. ‖Qz‖� ≤ 1, ‖z‖1 ≤ sη. (4.78)

Depending on whether � = 1,∞, or 2, (4.78) is solved using either linear programs

or second-order cone programs. For example, when � = ∞, we have the following
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corresponding linear programs:

min
[

eTi 0T
] [ z

u

]

s.t.


Q O

−Q O

I −I

−I −I

0T 1T


[
z

u

]
≤


1

1

0

0

sη

 , i = 1, . . . , n, (4.79)

which are solved using the primal-dual algorithm similar to that for (4.77). When

� = 2, we rewrite (4.78) as the following second-order cone programs

min
[

eTi 0T
] [ z

u

]

s.t.
1

2

∥∥∥∥∥[ Q O
] [ z

u

]∥∥∥∥∥
2

2

− 1

 ≤ 0

 I −I

−I −I

0T 1T

[ z
u

]
≤

 0

0

sη

 . (4.80)

We use the log-barrier algorithm described in Chapter 11 of [43] to solve (4.80).

Interested readers are encouraged to refer to [79] for a concise exposition of the general

primal-dual and log-barrier algorithms and implementation details for similar linear

programs and second-order cone programs.

We test the algorithms on Bernoulli, Gaussian, and Hadamard matrices of different

sizes. The entries of Bernoulli and Gaussian matrices are randomly generated from

the classical Bernoulli distribution with equal probability and the standard Gaussian

distribution, respectively. For Hadamard matrices, first a square Hadamard matrix

of size n (n is a power of 2) is generated, then its rows are randomly permuted and its

first m rows are taken as an m×n sensing matrix. All m×n matrices are normalized

to have columns of unit length.
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The performance of the verification program (4.20) was previously reported in [87]

in another context. For completeness, we reproduce some of the results in Tables

4.1, 4.2, and 4.3. We present the calculated lower bounds for k∗, defined as the

maximal sparsity level such that the sufficient and necessary condition (3.17) holds.

We compare the lower bounds and the running times for our implementation of (4.19),

denoted as L∞, and for the algorithm given in [40], denoted as JN (the authors’

initials). Apparently, the lower bound on k∗ computed by L∞ is k∗
def
= bs∗/2c with

s∗ given by (4.19). Table 4.1 and 4.2 are for Hadamard and Gaussian matrices,

respectively, with n = 256 and m = bρnc, ρ = 0.1, 0.2, . . . , 0.9. Table 4.3 is for

matrices with a leading dimension n = 1024. We conclude that L∞ and JN give

comparable lower bounds, and our implementation of L∞ performs much faster. In

addition, it consumes less memory and is very stable, as seen by the variation in

execution times.

Table 4.1: Comparison of L∞ and JN for a Hadamard matrix with leading dimension
n = 256.

m
lower bound on k∗ CPU time (s)
L∞ JN L∞ JN

25 1 1 3 35
51 2 2 6 70
76 3 3 7 102
102 4 4 9 303
128 5 5 9 544
153 7 7 13 310
179 9 9 15 528
204 12 12 18 1333
230 19 18 18 435

In the next set of experiments, we assess the performance of (4.79) and (4.80) for

computing ω∞(ATA, s) and ω2(A, s), respectively. We compare our recovery error

bounds based on ω� with those based on the RIC. Combining Corollary 4.1.1 and

Theorem 4.1.1, we have for the Basis Pursuit

‖x̂− x‖2 ≤
2
√

2k

ω2(A, 2k)
ε, (4.81)
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Table 4.2: Comparison of L∞ and JN for a Gaussian matrix with leading dimension
n = 256.

m
lower bound on k∗ CPU time (s)
L∞ JN L∞ JN

25 1 1 6 91
51 2 2 8 191
76 3 3 10 856
102 4 4 13 5630
128 4 5 16 5711
153 6 6 20 1381
179 7 7 24 3356
204 10 10 25 10039
230 13 14 28 8332

Table 4.3: Comparison of L∞ and JN for Gaussian and Hadamard matrices with
leading dimension n = 1024. In the column head, “G” represents Gaussian matrix
and “H” represents Hadamard matrix.

m
lower bound on k∗ CPU time (s)

L∞(H) L∞(G) JN(G) L∞(H) L∞(G) JN(G)

102 3 2 2 182 136 457
204 4 4 4 501 281 1179
307 6 6 6 872 510 2235
409 8 7 7 1413 793 3659
512 11 10 10 1914 990 5348
614 14 12 12 1362 1309 7156
716 18 15 15 1687 1679 9446
819 24 20 21 1972 2033 12435
921 37 29 32 2307 2312 13564

and for the Dantzig selector

‖x̂− x‖2 ≤
2
√

2k

ω∞(ATA, 2k)
µ. (4.82)
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For comparison, the two RIC bounds are

‖x̂− x‖2 ≤
4
√

1 + δ2k(A)

1− (1 +
√

2)δ2k(A)
ε, (4.83)

for the Basis Pursuit, assuming δ2k(A) <
√

2− 1 [39], and

‖x̂− x‖2 ≤
4
√
k

1− δ2k(A)− δ3k(A)
µ, (4.84)

for the Dantzig selector, assuming δ2k(A)+δ3k(A) < 1 [69]. Without loss of generality,

we set ε = 1 and µ = 1.

The RIC is computed using Monte Carlo simulations. More explicitly, for δ2k(A),

we randomly take 1000 sub-matrices of A ∈ Rm×n of size m × 2k, compute the

maximal and minimal singular values σ1 and σ2k, and approximate δ2k(A) using the

maximum of max(σ2
1 − 1, 1 − σ2

2k) among all sampled sub-matrices. Obviously, the

approximated RIC is always smaller than or equal to the exact RIC. As a consequence,

the performance bounds based on the exact RIC are worse than those based on the

approximated RIC. Therefore, in cases where our ω� based bounds are better (tighter,

smaller) than the approximated RIC bounds, they are even better than the exact RIC

bounds.

In Tables 4.4, 4.5, and 4.6, we compare the error bounds (4.81) and (4.83) for the

Basis Pursuit algorithm. The corresponding s∗ and k∗ for different m are also included

in the tables. Note the blanks mean that the corresponding bounds are not valid.

For the Bernoulli and Gaussian matrices, the RIC bounds work only for k ≤ 2, even

with m = b0.8nc, while the ω2(A, 2k) bounds work up until k = 9. Both bounds are

better for Hadamard matrices. For example, when m = 0.5n, the RIC bounds are

valid for k ≤ 3, and our bounds hold for k ≤ 5. In all cases for n = 256, our bounds

are smaller than the RIC bounds.

We next compare the error bounds (4.82) and (4.84) for the Dantzig selector. For

the Bernoulli and Gaussian matrices, our bounds work for wider ranges of (k,m)

pairs and are tighter in all test cases. For the Hadamard matrices, the RIC bounds

are better, starting from k ≥ 5 or 6. We expect that this indicates a general trend,

namely, when k is relatively small, the ω based bounds are better, while when k is
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Table 4.4: Comparison of the ω2 based bounds and the RIC based bounds on the `2
norms of the errors of the Basis Pursuit algorithm for a Bernoulli matrix with leading
dimension n = 256.

m 51 77 102 128 154 179 205
s∗ 4.6 6.1 7.4 9.6 12.1 15.2 19.3

k k∗ 2 3 3 4 6 7 9

1
ω bd 4.2 3.8 3.5 3.4 3.3 3.2 3.2
ric bd 23.7 16.1 13.2 10.6 11.9

2
ω bd 31.4 12.2 9.0 7.4 6.5 6.0 5.6
ric bd 72.1 192.2

3
ω bd 252.0 30.9 16.8 12.0 10.1 8.9
ric bd

4
ω bd 52.3 23.4 16.5 13.6
ric bd

5
ω bd 57.0 28.6 20.1
ric bd

6
ω bd 1256.6 53.6 30.8
ric bd

7
ω bd 161.6 50.6
ric bd

8
ω bd 93.1
ric bd

9
ω bd 258.7
ric bd

large, the RIC bounds are tighter. This was suggested by the probabilistic analysis

of ω in Section 4.4. The reason is that when k is relatively small, both the relaxation

‖x‖1 ≤ 2k‖x‖∞ on the sufficient and necessary condition (3.17) and the relaxation

‖x̂− x‖2 ≤
√

2k‖x̂− x‖∞ are sufficiently tight.

In Table 4.10 we present the execution times for computing different ω. For random

matrices with leading dimension n = 256, the algorithm generally takes 1 to 3 minutes

to compute either ω2(A, s) or ω∞(ATA, s).

In the last set of experiments, we compute ω2(A, 2k) and ω∞(ATA, 2k) for a Gaussian

matrix and a Hadamard matrix, respectively, with leading dimension n = 512. The

row dimensions of the sensing matrices range over m = bρnc with ρ = 0.2, 0.3, . . . , 0.8.
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Table 4.5: Comparison of the ω2 based bounds and the RIC based bounds on the
`2 norms of the errors of the Basis Pursuit algorithm for a Hadamard matrix with
leading dimension n = 256.

m 51 77 102 128 154 179 205
s∗ 5.4 7.1 9.1 11.4 14.0 18.4 25.3

k k∗ 2 3 4 5 6 9 12

1
ω bd 3.8 3.5 3.3 3.2 3.1 3.0 3.0
ric bd 46.6 13.2 9.2 9.4 8.3 6.2 5.2

2
ω bd 13.7 8.4 6.7 5.9 5.4 4.9 4.6
ric bd 46.6 24.2 15.3 8.6 7.1

3
ω bd 30.9 14.0 10.1 8.4 7.1 6.3
ric bd 1356.6 25.4 10.3 8.8

4
ω bd 47.4 18.9 13.2 9.9 8.1
ric bd 40.0 14.0 10.2

5
ω bd 51.5 22.6 13.8 10.3
ric bd 18.8 11.6

6
ω bd 50.8 20.1 13.1
ric bd 42.5 15.9

7
ω bd 31.8 16.7
ric bd 94.2 19.7

8
ω bd 63.5 21.7
ric bd 1000.0 24.6

9
ω bd 449.8 29.4
ric bd 39.1

10
ω bd 42.8
ric bd 35.6

11
ω bd 72.7
ric bd 134.1

12
ω bd 195.1
ric bd

In Figure 4.5, the quantities ω2(A, 2k) and ω∞(ATA, 2k) are plotted as a function of

k for different m. We can clearly see how increasing the number of measurements

(namely, the value of m) increases the goodness measure, and how increasing the

sparsity level decreases the goodness measure.

In Figure 4.6, we compare the `2 norm error bounds of the Basis Pursuit using

ω2(A, 2k) and the RIC. The color indicates the values of the error bounds. We remove
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Table 4.6: Comparison of the ω2 based bounds and the RIC based bounds on the `2
norms of the errors of the Basis Pursuit algorithm for a Gaussian matrix with leading
dimension n = 256.

m 51 77 102 128 154 179 205
s∗ 4.6 6.2 8.1 9.9 12.5 15.6 20.0

k k∗ 2 3 4 4 6 7 10

1
ω bd 4.3 3.7 3.5 3.4 3.3 3.2 3.2
ric bd 26.0 14.2 10.0 10.9 12.1

2
ω bd 34.3 12.3 8.3 7.0 6.4 5.9 5.6
ric bd 47.1 27.6

3
ω bd 197.4 23.4 14.5 11.6 9.8 8.9
ric bd

4
ω bd 1036.6 39.6 21.7 15.9 13.4
ric bd

5
ω bd 49.3 26.4 20.0
ric bd

6
ω bd 284.2 48.8 31.2
ric bd

7
ω bd 129.1 48.1
ric bd

8
ω bd 185.5
ric bd

9
ω bd 9640.3
ric bd

all bounds that are greater than 50 or are not valid. Hence, all white areas indicate

that the bounds corresponding to (k,m) pairs that are too large or not valid. The

left sub-figure is based on ω2(A, 2k) and the right sub-figure is based on the RIC. We

observe that the ω2(A, 2k) based bounds apply to a wider range of (k,m) pairs.

In Figure 4.7, we conduct the same experiment as in Figure 4.6 for a Hadamard

matrix and the Dantzig selector. We observe that for the Hadamard matrix, the RIC

gives better performance bounds. This result coincides with the one we obtained in

Table 4.8.

The average time for computing each ω2(A, 2k) and ω∞(ATA, 2k) was around 15

minutes.
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Table 4.7: Comparison of the ω∞ based bounds and the RIC based bounds on the `2
norms of the errors of the Dantzig selector algorithm for the Bernoulli matrix used in
Table 4.4.

m 51 77 102 128 154 179 205
s∗ 4.6 6.1 7.4 9.6 12.1 15.2 19.3

k k∗ 2 3 3 4 6 7 9

1
ω bd 6.0 5.4 4.8 4.4 4.2 4.1 4.1
ric bd 46.3 17.4 12.1 11.2 10.3 8.6

2
ω bd 102.8 38.4 29.0 18.5 14.1 12.8 11.9
ric bd 47.2 22.5

3
ω bd 1477.2 170.2 81.2 57.0 41.1 32.6
ric bd

4
ω bd 522.7 194.6 128.9 89.0
ric bd

5
ω bd 768.7 323.6 203.2
ric bd

6
ω bd 24974.0 888.7 489.0
ric bd

7
ω bd 3417.3 1006.9
ric bd

8
ω bd 2740.0
ric bd

9
ω bd 10196.9
ric bd
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Table 4.8: Comparison of the ω∞ based bounds and the RIC based bounds on the `2
norms of the errors of the Dantzig selector algorithm for the Hadamard matrix used
in Table 4.5.

m 51 77 102 128 154 179 205
s∗ 5.2 6.9 9.1 12.1 14.4 18.3 25.2

k k∗ 2 3 4 6 7 9 12

1
ω bd 4.8 4.0 3.8 3.4 3.4 3.2 3.1
ric bd 15.6 9.3 7.0 6.3 5.8 5.1

2
ω bd 50.9 16.2 10.1 7.1 7.0 6.1 5.3
ric bd 45.3 16.6 13.7 10.6 8.8

3
ω bd 108.2 30.7 14.3 13.9 10.0 8.0
ric bd 1016.4 29.9 24.9 15.8 12.5

4
ω bd 150.7 35.3 29.3 16.8 11.7
ric bd 126.4 38.7 24.2 16.6

5
ω bd 108.5 64.2 31.4 17.3
ric bd 187.3 30.0 22.1

6
ω bd 3168.9 171.5 59.7 25.3
ric bd 112.0 53.1 26.8

7
ω bd 1499.5 116.3 38.8
ric bd 411.7 71.3 34.7

8
ω bd 265.3 61.4
ric bd 95.4 47.6

9
ω bd 2394.0 96.0
ric bd 198.7 61.9

10
ω bd 157.4
ric bd 82.9

11
ω bd 296.4
ric bd 130.3

12
ω bd 898.2
ric bd 201.2
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Table 4.9: Comparison of the ω∞ based bounds and the RIC based bounds on the `2
norms of the errors of the Dantzig selector algorithm for the Gaussian matrix used in
Table 4.6.

m 51 77 102 128 154 179 205
s∗ 4.6 6.2 8.1 9.9 12.5 15.6 20.0

k k∗ 2 3 4 4 6 7 10

1
ω bd 6.5 5.1 4.8 4.3 4.2 4.0 3.9
ric bd 30.0 18.0 14.6 9.7 9.3 9.1

2
ω bd 119.4 37.8 22.5 17.6 14.1 12.7 11.4
ric bd 91.5 44.4 23.5

3
ω bd 1216.7 120.7 67.3 53.6 38.7 36.4
ric bd 2546.6

4
ω bd 4515.9 318.2 168.4 115.8 109.0
ric bd

5
ω bd 663.6 292.4 247.8
ric bd

6
ω bd 5231.4 764.3 453.5
ric bd

7
ω bd 2646.4 1087.7
ric bd

8
ω bd 2450.5
ric bd

9
ω bd 6759.0
ric bd
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Table 4.10: Time in seconds taken to compute ω2(A, ·) and ω∞(ATA, ·) for Bernoulli,
Hadamard, and Gaussian matrices

k type m 51 77 102 128 154 179 205

1

Bernoulli
ω2 118 84 133 87 133 174 128
ω∞ 75 81 84 65 63 144 151

Hadamard
ω2 84 82 82 82 80 79 79
ω∞ 57 55 58 58 58 58 57

Gaussian
ω2 82 84 212 106 156 185 104
ω∞ 69 65 72 102 81 104 72

3

Bernoulli
ω2 155 96 95 97 97 131
ω∞ 300 228 190 125 135 196

Hadamard
ω2 91 88 87 88 74 72
ω∞ 84 83 77 92 102 70

Gaussian
ω2 134 168 115 95 96 100
ω∞ 137 142 125 165 145 105

5

Bernoulli
ω2 97 111 97
ω∞ 156 81 107

Hadamard
ω2 87 85 85 81
ω∞ 75 74 75 75

Gaussian
ω2 98 105 96
ω∞ 193

7

Bernoulli
ω2 164 104
ω∞ 178 85

Hadamard
ω2 82 77
ω∞ 134 71 65

Gaussian
ω2 106 105
ω∞ 193
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Figure 4.5: ω2(A, 2k) and ω∞(ATA, 2k) as a function of k with n = 512 and different
ms. The top plot is for a Gaussian matrix, and the bottom plot is for a Hadamard
matrix.
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Figure 4.6: ω2(A, 2k) based bounds v.s. RIC based bounds on the `2 norms of the
errors for a Gaussian matrix with leading dimension n = 512. Left: ω2(A, 2k) based
bounds; Right: RIC based bounds.
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Figure 4.7: ω∞(ATA, 2k) based bounds v.s. RIC based bounds on the `2 norms of
the errors for a Hadamard matrix with leading dimension n = 512. Left: ω2(A, 2k)
based bounds; Right: RIC based bounds
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Chapter 5

Block Sparsity Recovery:

Background

In this chapter, we present background knowledge on block-sparsity recovery in a

structure similar to Chapter 3.

5.1 Introduction to Block Sparsity Recovery

Block-sparsity is yet another important low-dimensional structure that can be ex-

ploited effectively in signal recovery. Mathematically, the recovery of signals with

block-sparsity structures reconstructs a block-sparse signal from usually noisy linear

measurements:

y = Ax+w, (5.1)

where x ∈ Rnp is a signal with p blocks, each of length n, A ∈ Rm×np is the measure-

ment or sensing matrix, y ∈ Rm is the measurement vector, and w ∈ Rm is the noise

vector. We assume x is a k−block-sparse signal, namely, the block-sparsity level of x

is ‖x‖b0 = k � p. The number of measurements m is much smaller than the signal

dimension np, making the measurement system underdetermined.

Block-sparsity arises naturally in applications such as sensor arrays [12], radar [22],

multi-band signals [88], and DNA microarrays [64]. A particular area that motivates

this work is the application of block-sparse signal recovery in radar systems. The
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signals in radar applications are usually sparse because there are only a few targets

to be estimated among many possibilities. However, a single target manifests itself

simultaneously in the sensor domain, the frequency domain, the temporal domain, and

the reflection-path domain. As a consequence, the underlying signal would be block-

sparse if the radar system observes the targets from several of these domains [21,22].

A very special block-sparse model is when x is a complex signal, such as the models in

sensor array and radar applications. Note that the computable performance analysis

developed in Chapter 4 for the real variables does not apply to the complex case.

5.2 Recovery Algorithms

Many algorithms in sparse signal recovery have been extended to recover the block-

sparse signal x from y by exploiting the block-sparsity of x. We focus on three

algorithms based on block-`1 minimization: the Block-Sparse Basis Pursuit (BS-BP)

[6], the Block-Sparse Dantzig selector (BS-DS) [89], and the Block-Sparse LASSO

estimator (BS-LASSO) [90].

BS-BP: min
z∈Rnp

‖z‖b1 s.t. ‖y − Az‖2 ≤ ε (5.2)

BS-DS: min
z∈Rnp

‖z‖b1 s.t. ‖AT (y − Az)‖b∞ ≤ µ (5.3)

BS-LASSO: min
z∈Rnp

1

2
‖y − Az‖22 + µ‖z‖b1. (5.4)

Here µ is a tuning parameter, and ε is a measure of the noise level. All three op-

timization problems have efficient implementations using convex programming. For

example, the BS-BP can be solved by the following second-order cone program:

min
z,u

1Tpu s.t. ‖Az − y‖2 ≤ ε, ‖z[i]‖2 ≤ ui, i = 1, . . . , p. (5.5)

In the noise-free case where w = 0, roughly speaking all the three algorithms reduce

to

min
z∈Rnp

‖z‖b1 s.t. Az = Ax, (5.6)
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which is the block-`1 relaxation of the block-`0 problem:

min
z∈Rn
‖z‖b0 s.t. Az = Ax. (5.7)

5.3 Null Space Characterization and Restricted Isom-

etry Property

A minimal requirement on the block-`1 minimization algorithms is the uniqueness

and exactness of the solution x̂
def
= argminz:Az=Ax‖x‖b1, i.e., x̂ = x. When the true

signal x is k−block-sparse, the sufficient and necessary condition for exact block-`1

recovery is given by the block-sparse version of NSP [37]∑
i∈S

‖z[i]‖2 <
∑
i/∈S

‖z[i]‖2,∀z ∈ null(A), |S| ≤ k, (5.8)

or equivalently

‖z[S]‖b1 <
1

2
‖z‖b1, ∀z ∈ null(A), |S| ≤ k. (5.9)

Similar to the sparse version of NSP, the block-sparse version of NSP can be viewed

as a block-`1 relaxation of the sufficient and necessary condition for unique recovery

of (5.7). The unique and exact block-`0 recovery according to (5.7) is that for any

index set S ⊂ {1, . . . , p} of size 2k, the columns of A[S] are linearly independent,

which can be equivalently expressed as

k <
1

2
‖z‖b0,∀z ∈ null(A), (5.10)

or

‖z[S]‖b0 < ‖z[Sc]‖b0,∀z ∈ null(A), |S| ≤ k. (5.11)

In the noisy case, extending the RIC to block-sparse vectors, we define the block

restricted isometry constant (bRIC) as follows:
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Definition 5.3.1. Let A ∈ Rm×np be a given matrix. For each integer k ∈ {1, . . . , p},
the block restricted isometry constant (bRIC) δbk is defined as the smallest δ > 0 such

that

1− δ ≤ ‖Ax‖
2
2

‖x‖22
≤ 1 + δ (5.12)

holds for arbitrary non-zero k−block-sparse signal x.

A matrix A with a small δbk is nearly an isometry when restricted onto all k−block-

sparse vectors. Apparently, δ2k(A) < 1 if and only if for any S ⊂ {1, . . . , p} of size

2k, the columns of the matrix A[S] are linearly independent. Therefore, δb2k(A) < 1

is the necessary and sufficient condition for exact block-`0 recovery. It is shown in [6]

that δb2k(A) <
√

2 − 1 is a sufficient condition for the unique and exact recovery of

the block-`1 minimization algorithm (5.6), suggesting δb2k(A) <
√

2 − 1 implies the

block-sparse version of the NSP. The converse is not true.

Now we present some of performance bounds on the BP, the DS, and the LASSO in

terms of the bRIC. Assume x is a k−block-sparse signal and x̂ is its estimate given

by any of the three algorithms; then we have the following:

1. BS-BP [6]: Suppose that δb2k <
√

2− 1 and ‖w‖2 ≤ ε. The solution to the BP

(3.11) satisfies

‖x̂− x‖2 ≤
4
√

1 + δb2k

1− (1 +
√

2)δb2k
· ε. (5.13)

2. BS-DS: If the noise w satisfies ‖ATw‖∞ < µ, and δb2k + δb3k < 1, then, the

error signal obeys

‖x̂− x‖2 ≤
4
√
k

1− δb2k − δb3k
µ. (5.14)
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3. BS-LASSO: If the noise w satisfies ‖ATw‖∞ < µ, and δb2k < 1/(3
√

2 + 1),

then, the error signal of (3.13) satisfies

‖x̂− x‖2 ≤
16
√
k

(1− δb2k)
(

1− 3
√
2δb2k

1−δb2k

)2µ. (5.15)

These performance bounds are exactly parallel to those on their sparse counterparts

and the derivations are similar. However, we are not able to locate references for

(5.14) and (5.15).

5.4 Probabilistic Analysis

Section 5.3 states that a sufficiently small bRIC guarantees stable recovery of a block-

sparse signal from linear measurements. Similar to standard RIC, it has been shown

that for a class of random sensing matrices, the bRIC δb2k is small with high proba-

bility. We present such a result below [6]:

Let A ∈ Rm×np be a random matrix whose entries are i.i.d. samples from the Gaussian

distribution N (0, 1/m). Suppose t > 0 and 0 < δ < 1 are numerical constants. If

m ≥ 36

7δ

(
log

(
2

(
p

k

))
+ kn log

(
12

δ

)
+ t

)
, (5.16)

then δb2k(A) < δ with probability at least 1− exp(−t).

Since we have

(p/k)k ≤
(
p

k

)
≤ (ep/k)k, (5.17)

the right hand side of (5.16) is roughly

c(δ)
(
k log

p

k
+ kn

)
. (5.18)
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Chapter 6

Computable Performance Analysis

for Block-Sparsity Recovery

6.1 Goodness Measures and Error Bounds

In this section, we derive performance bounds on the block-`∞ norms of the error

vectors. We first establish a proposition characterizing the error vectors of the block-

`1 recovery algorithms.

Proposition 6.1.1. Suppose x ∈ Rnp in (5.1) is k−block-sparse and the noise w

satisfies ‖w‖2 ≤ ε, ‖ATw‖b∞ ≤ µ, and ‖ATw‖∞ ≤ κµ, κ ∈ (0, 1), for the BS-BP,

the BS-DS, and the BS-LASSO, respectively. Define h = x̂ − x as the error vector

for any of the three block-`1 recovery algorithms (5.2), (5.3), and (5.4). Then we have

‖h[S]‖b1 ≥ ‖h‖b1/c, (6.1)

where S = bsupp(x), c = 2 for the BS-BP and the BS-DS, and c = 2/(1− κ) for the

BS-LASSO.

Proof. Suppose S = bsupp(x) and |S| = ‖x‖b0 = k. Define the error vector h =

x̂− x.

We first prove the proposition for the BS-BP and the BS-DS. The fact that ‖x̂‖b1 =

‖x+ h‖b1 is the minimum among all zs satisfying the constraints in (5.2) and (5.3),

together with the fact that the true signal x satisfies the constraints as required by

the conditions imposed on the noise in Proposition 6.1.1, implies that ‖h[Sc]‖b1 cannot
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be very large. To see this, note that

‖x‖b1 ≥ ‖x+ h‖b1
=

∑
i∈S

‖x[i] + h[i]‖2 +
∑
i∈Sc
‖x[i] + h[i]‖2

≥
∑
i∈S

‖x[i]‖2 −
∑
i∈S

‖h[i]‖2 +
∑
i∈Sc
‖h[i]‖2

= ‖x[S]‖b1 − ‖h[S]‖b1 + ‖h[Sc]‖b1
= ‖x‖b1 − ‖h[S]‖b1 + ‖h[Sc]‖b1. (6.2)

Therefore, we obtain ‖h[S]‖b1 ≥ ‖h[Sc]‖b1, which leads to

2‖h[S]‖b1 ≥ ‖h[S]‖b1 + ‖h[Sc]‖b1 = ‖h‖b1. (6.3)

We now turn to the BS-LASSO (5.4). Since the noise w satisfies ‖ATw‖b∞ ≤ κµ for

some κ ∈ (0, 1), and x̂ is the minimizer of (5.4), we have

1

2
‖Ax̂− y‖22 + µ‖x̂‖b1 ≤

1

2
‖Ax− y‖22 + µ‖x‖b1.

Consequently, substituting y = Ax+w yields

µ‖x̂‖b1 ≤
1

2
‖Ax− y‖22 −

1

2
‖Ax̂− y‖22 + µ‖x‖b1

=
1

2
‖w‖22 −

1

2
‖A(x̂− x)−w‖22 + µ‖x‖b1

=
1

2
‖w‖22 −

1

2
‖A(x̂− x)‖22

+ 〈A(x̂− x),w〉 − 1

2
‖w‖22 + µ‖x‖b1

≤ 〈A(x̂− x),w〉+ µ‖x‖b1
=

〈
x̂− x, ATw

〉
+ µ‖x‖b1.

Using the Cauchy-Swcharz type inequality, we get

µ‖x̂‖b1 ≤ ‖x̂− x‖b1‖ATw‖b∞ + µ‖x‖b1
= κµ‖h‖b1 + µ‖x‖b1,
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which leads to

‖x̂‖b1 ≤ κ‖h‖b1 + ‖x‖b1.

Therefore, similar to the argument in (6.2), we have

‖x‖b1
≥ ‖x̂‖b1 − κ‖h‖b1
= ‖x+ h[Sc] + h[S]‖b1 − κ

(
‖h[Sc] + h[S]‖b1

)
≥ ‖x+ h[Sc]‖b1 − ‖h[S]‖b1 − κ

(
‖h[Sc]‖b1 + ‖h[S]‖b1

)
= ‖x‖b1 + (1− κ)‖h[Sc]‖b1 − (1 + κ)‖h[S]‖b1,

where S = bsupp(x). Consequently, we have

‖h[S]‖b1 ≥
1− κ
1 + κ

‖h[Sc]‖b1.

Therefore, similar to (6.3), we obtain

2

1− κ
‖h[S]‖b1 =

1 + κ

1− κ
‖h[S]‖b1 +

1− κ
1− κ

‖h[S]‖b1

≥ 1 + κ

1− κ
1− κ
1 + κ

‖h[Sc]‖b1 +
1− κ
1− κ

‖h[S]‖b1
= ‖h‖b1. (6.4)

An immediate corollary of Proposition 6.1.1 is to bound the block-`1 and `2 norms of

the error vectors using the block-`∞ norm.

Corollary 6.1.1. Under the assumptions of Proposition 6.1.1, we have

‖h‖b1 ≤ ck‖h‖b∞, (6.5)

‖h‖2 ≤
√
ck‖h‖b∞. (6.6)

Furthermore, if S = bsupp(x) and β = mini∈S ‖x[i]‖2, then ‖h‖b∞ < β/2 implies

{i : ‖x̂[i]‖2 > β/2} = bsupp(x), (6.7)
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i.e., a thresholding operator recovers the signal block-support.

Proof. Suppose S = bsupp(x). According to Proposition 6.1.1, we have

‖h‖b1 ≤ c‖h[S]‖b1 ≤ ck‖h‖b∞. (6.8)

To prove (6.6), we note

‖h‖22
‖h‖2b∞

=

p∑
i=1

(
‖h[i]‖2
‖h‖b∞

)2

≤
p∑
i=1

(
‖h[i]‖2
‖h‖b∞

)
=
‖h‖b1
‖h‖b∞

≤ ck. (6.9)

For the first inequality, we have used
‖h[i]‖2
‖h‖b∞

≤ 1 and a2 ≤ a for a ∈ [0, 1].

For the last assertion, note that if ‖h‖b∞ ≤ β/2, then we have for i ∈ S,

‖x̂[i]‖2 = ‖x[i] + h[i]‖2 ≥ ‖x[i]‖2 − ‖h[i]‖2 > β − β/2 = β/2; (6.10)

and for i /∈ S,

‖x̂[i]‖2 = ‖x[i] + h[i]‖2 = ‖h[i]‖2 < β/2. (6.11)

For ease of presentation, we introduce the following notation:

Definition 6.1.1. For any s ∈ [1, p] and matrix A ∈ Rm×np, define

ω�(Q, s) = min
z:‖z‖b1/‖z‖b∞≤s

‖Qz‖�
‖z‖b∞

, (6.12)

where Q is either A or ATA.
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Now we present the error bounds on the block-`∞ norm of the error vectors for the

BS-BP, the BS-DS, and the BS-LASSO.

Theorem 6.1.1. Under the assumption of Proposition 6.1.1, we have

‖x̂− x‖b∞ ≤
2ε

ω2(A, 2k)
(6.13)

for the BS-BP,

‖x̂− x‖b∞ ≤
2µ

ωb∞(ATA, 2k)
(6.14)

for the BS-DS, and

‖x̂− x‖b∞ ≤
(1 + κ)µ

ωb∞(ATA, 2k/(1− κ))
(6.15)

for the BS-LASSO.

Proof. Observe that for the BS-BP

‖A(x̂− x)‖2 ≤ ‖y − Ax̂‖2 + ‖y − Ax‖2
≤ ε+ ‖Aw‖2
≤ 2ε, (6.16)

and similarly,

‖ATA(x̂− x)‖b∞ ≤ 2µ (6.17)

for the BS-DS, and

‖ATA(x̂− x)‖b∞ ≤ (1 + κ)µ (6.18)

for the BS-LASSO. Here for the BS-LASSO, we have used

‖AT (Ax̂− y)‖b∞ ≤ µ, (6.19)
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a consequence of the optimality condition

AT (Ax̂− y) ∈ µ∂‖x̂‖b1 (6.20)

and the fact that the ith block of any subgradient in ∂‖x̂‖b1 is x̂[i]/‖x̂[i]‖2 if x̂[i] 6= 0

and is g otherwise for some ‖g‖2 ≤ 1.

The conclusions of Theorem 6.1.1 follow from equation (6.5) and Definition 6.1.1.

A consequence of Theorem 6.1.1 and Corollary 6.1.1 is the error bound on the `2

norm:

Corollary 6.1.2. Under the assumption of Proposition 6.1.1, the `2 norms of the

recovery errors are bounded as

‖x̂− x‖2 ≤
2
√

2kε

ω2(A, 2k)
(6.21)

for the BS-BP,

‖x̂− x‖2 ≤
2
√

2kµ

ωb∞(ATA, 2k)
(6.22)

for the BS-DS, and

‖x̂− x‖2 ≤
√

2k

1− κ
(1 + κ)µ

ωb∞(ATA, 2k/(1− κ))
(6.23)

for the BS-LASSO.

Although the results presented so far are in strict parallel with those for sparsity re-

covery, it is difficult to design algorithms to compute exact ω�(A, s) and ωb∞(ATA, s).

We will design algorithm to lower bound ω�(A, s) and ωb∞(ATA, s). When these lower

bounds are in place of ω�(A, s) and ωb∞(ATA, s) in Theorem 6.1.1, the resulting ex-

pressions are genuine upper bounds on the recovery errors for block-sparsity recovery.

Therefore, the algorithms provide a way to numerically assess the performance of the

BS-BP, the BS-DS, and the BS-LASSO. According to Corollary 6.1.1, the correct

recovery of signal block-support is also guaranteed by reducing the block-`∞ norm
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to some threshold. In Section 6.4, we also demonstrate that the bounds in Theorem

6.1.1 are non-trivial for a large class of random sensing matrices, as long as m is

relatively large. Our preliminary numerical simulations in Section 6.5 show that in

many cases the error bounds on the `2 norms based on Corollary 6.1.2 are tighter

than the block RIP based bounds.

6.2 Verification Algorithm

In this section, we consider the computational issues of ω�(·).

6.2.1 Semidefinite Relaxation for Verification

A prerequisite for the bounds in Theorem 6.1.1 to be valid is the positiveness of the

involved ω�(·). We call the validation of ω�(·) > 0 the verification problem. Note that

from Theorem 6.1.1, ω�(·) > 0 implies the exact recovery of the true signal x in the

noise-free case. Therefore, verifying ω�(·) > 0 is equivalent to verifying a sufficient

condition for exact block-`1 recovery.

Verifying ω�(Q, s) > 0 is equivalent with making sure ‖z‖b1/‖z‖b∞ ≤ s for all z such

that Qz = 0. Therefore, we compute

s∗ = min
z

‖z‖b1
‖z‖b∞

s.t. Qz = 0. (6.24)

Then, when s < s∗, we have ω�(Q, s) > 0. The following theorem presents an

optimization procedure that computes a lower bound on s∗.

Proposition 6.2.1. The reciprocal of the optimal value of the following optimization,

denoted by s∗,

max
i

min
P[i]

max
j
‖δijIn − P T

[i]Q[j]‖2 (6.25)
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is a lower bound on s∗. Here P is a matrix variable of the same size as Q, δij = 1

for i = j and 0 otherwise, and P =
[
P[1], . . . , P[p]

]
, Q =

[
Q[1], . . . , Q[p]

]
with P[i] and

Q[j] having n columns each.

Proof. We rewrite the optimization (6.24) as

1

s∗
= max

z
‖z‖b∞ s.t. Qz = 0, ‖z‖b1 ≤ 1. (6.26)

Note that in (6.26), we are maximizing a convex function over a convex set, which

is in general very difficult. We will use a relaxation technique to compute an upper

bound on the optimal value of (6.26). Define a matrix variable P of the same size as

Q. Since the dual norm of ‖ · ‖b∞ is ‖ · ‖b1, we have

max
z
{‖z‖b∞ : ‖z‖b1 ≤ 1, Qz = 0}

= max
u,z

{
uTz : ‖z‖b1 ≤ 1, ‖u‖b1 ≤ 1, Qz = 0

}
= max

u,z

{
uT (z − P TQz) : ‖z‖b1 ≤ 1, ‖u‖b1 ≤ 1, Qz = 0

}
≤ max

u,z

{
uT (Inp − P TQ)z : ‖z‖b1 ≤ 1, ‖u‖b1 ≤ 1

}
. (6.27)

In the last expression, we have dropped the constraint Qz = 0. Note that the unit

ball {z : ‖z‖b1 ≤ 1} ⊂ Rnp is the convex hall of {epi ⊗v : 1 ≤ i ≤ p,v ∈ Rn, ‖v‖2 ≤ 1}
and uT (Inp − P TQ)z is convex (actually, linear) in z. As a consequence, we have

max
u,z

{
uT (Inp − P TQ)z : ‖z‖b1 ≤ 1, ‖u‖b1 ≤ 1

}
= max

j,v,u

{
uT (Inp − P TQ)(epi ⊗ v) : ‖u‖b1 ≤ 1, ‖v‖2 ≤ 1

}
= max

j
max
v,u

{
uT (Inp − P TQ)[j]v : ‖u‖b1 ≤ 1, ‖v‖2 ≤ 1

}
= max

j
max
u

{
‖(Inp − P TQ)T[j]u‖2 : ‖u‖b1 ≤ 1

}
, (6.28)

where (Inp − P TQ)[j] denotes the jth column blocks of Inp − P TQ, namely, the sub-

matrix of Inp − P TQ formed by the ((j − 1)n+ 1)th to jnth columns.
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Applying the same argument to the unit ball {u : ‖u‖b1 ≤ 1} and the convex function

‖(Inp − P TQ)T[j]u‖2, we obtain

max
u,z

{
uT (Inp − P TQ)z : ‖z‖b1 ≤ 1, ‖u‖b1 ≤ 1

}
= max

i,j
‖(Inp − P TQ)[i],[j]‖2. (6.29)

Here (Inp − P TQ)i,j is the submatrix of Inp − P TQ formed by the ((i− 1)n+ 1)th to

inth rows and the ((j − 1)n + 1)th to jnth columns, and ‖ · ‖2 is the spectral norm

(the largest singular value).

Since P is arbitrary, the tightest upper bound is obtained by minimizing maxi,j ‖(Inp−
P TQ)[i],[j]‖2 with respect to P :

1/s∗ = max
z
{‖z‖b∞ : ‖z‖b1 ≤ 1, Qz = 0}

≤ min
P

max
i,j
‖(Inp − P TQ)[i],[j]‖2

= 1/s∗. (6.30)

Partition P and Q as P =
[
P[1], . . . , P[p]

]
and Q =

[
Q[1], . . . , Q[p]

]
with P[i] and Q[j]

having n columns each. We explicitly write

(Inp − P TQ)[i],[j] = δijIn − P T
[i]Q[j], (6.31)

where δij = 1 for i = j and 0 otherwise. As a consequence, we obtain

min
P

max
i,j
‖(Inp − P TQ)[i],[j]‖2

= min
P[1],...,P[p]

max
i

max
j
‖δijIn − P T

[i]Q[j]‖2

= max
i

min
P[i]

max
j
‖δijIn − P T

[i]Q[j]‖2. (6.32)

We have moved the maxi to the outmost because for each i, maxj ‖δijIn − P T
[i]Q[j]‖2

is a function of only P[i] and does not depends on other variables P[l], l 6= i.

Because s∗ < s∗, the condition s < s∗ is sufficient condition for ω� > 0 and for the

uniqueness and exactness of block-sparse recovery in the noise free case. To get s∗,
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for each i, we need to solve

min
P[i]

max
j
‖δijIn − P T

[i]Q[j]‖2. (6.33)

An equivalent semidefinite program is obtained as follows:

min
P[i],t

t s.t. ‖δijIn − P T
[i]Q[j]‖2 ≤ t, j = 1, . . . , p. (6.34)

⇔ min
P[i],t

t s.t.

[
tIn δijIn − P T

[i]Q[j]

δijIn −QT
[j]P[i] tIn

]
� 0, j = 1, . . . , p. (6.35)

Small instances of (6.34) and (6.35) can be solved using CVX [91]. However, it

is beneficial to use first-order techniques to solve (6.33) directly. We observe that

maxj ‖δijIn−P T
[i]Q[j]‖2 can be expressed as the largest eigenvalue of a block-diagonal

matrix (Q(P[i]) defined in (6.37)). The smoothing technique for semidefinite opti-

mization developed in [92] is then used to minimize the largest eigenvalue of Q(P[i])

with respect to P[i]. To get an ε accuracy, the overall time complexity for computing

(6.25) is O
(
n3p2
√

log np/ε
)
. We present more details in the next subsection.

6.2.2 Smoothing Technique for Solving (6.33)

We first consider the problem (6.33). Since for any matrix X, the non-zero eigenvalues

of [
0 X

XT 0

]
(6.36)

are {σl(X)}
⋃
{−σl(X)}, where σl(X) is the lth non-zero singular value of X, we

could control the largest singular value of X by controlling the largest eigenvalue

of (6.36). In addition, the eigenvalues of a block diagonal matrix is the union of the

eigenvalues of its blocks. As a consequence, minP[i]
maxj ‖δijIn−P T

[i]Q[j]‖2 is equivalent
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to minimizing the largest eigenvalue of

Q(P[i])
def
=



0 δi1In − P T
[i]Q[1]

δi1In −QT
[1]P[i] 0

. . .

0 δipIn − P T
[i]Q[p]

δipIn −QT
[p]P[i] 0


def
=


Q1(P[i])

. . .

Qp(P[i])

 (6.37)

with respect to P[i]. We employ a first order smoothing technique developed in [92]

to solve the minimization of largest eigenvalue problem

min
P
λmax(Q(P )), (6.38)

where for notation simplicity we have omitted the subscript i.

For any µ > 0, define the following smooth approximation of maximal eigenvalue

function

φµ(P )
def
= µ log

(
trace exp

(
Q(P )

µ

))
def
= µ logFµ(P ), (6.39)

which satisfies

λmax(Q(P )) ≤ φµ(P ) ≤ λmax(Q(P )) + µ log(2np). (6.40)
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Thus, if µ = ε/(2 log(2np)) with ε > 0 the target precision, then φµ(P ) is a ε/2

approximation of λmax(Q(P )). In addition, since whenever ‖P‖F ≤ 1, we have

max
j

∥∥∥∥∥
[

0 −P TQ[j]

−QT
[j]P 0

]∥∥∥∥∥
2

2

= max
j
‖P TQ[j]‖22

≤ max
j
‖P‖22‖Q[j]‖22

≤ max
j
‖Q[j]‖22. (6.41)

according to [92, Section 4], the gradient of φµ(P ) is Lipschitz continuous with respect

to the Frobenius norm and has Lipschitz constant

L =
2 log(2np) maxj ‖Q[j]‖22

ε
. (6.42)

Note that for (6.33) we could always takeQ as the orthogonal matrix obtained through

the QR decomposition of AT . As a consequence, maxj ‖Q[j]‖2 ≤ 1 and we take

L =
2 log(2np)

ε
. (6.43)

We define the gradient mapping T (P ) = P − L−1∇φµ(P ) as the optimal solution to

the following minimization problem:

min
R

{
〈∇φµ(P ), R− P 〉+

1

2
L‖R− P‖2F

}
, (6.44)

and define the prox-function d(P ) = ‖P‖2F/2. The algorithm in [92] for solving (6.33)

goes as

For k ≥ 0 do

1. Compute φµ(P (k)) and ∇φµ(P (k))

2. Find U (k) = T (P (k)) = P (k) − L−1∇φµ(P (k)).
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3. Find

V (k) = argminV

{
Ld(V ) +

k∑
i=1

i+ 1

2

[
φµ(P (i)) +

〈
∇φµ(P (i)), V − P (i)

〉]}

= − 1

L

k∑
i=0

i+ 1

2
∇φµ(P (i))

4. Set P (k+1) = 2
k+3

V (k) + k+1
k+3

U (k).

The most expensive step of the algorithm is computing the matrix exponential. How-

ever, we could alleviate this by exploiting the block-diagonal structure of Q(P ). More

precisely, we have

Fµ(P ) = trace exp

(
Q(P )

µ

)
=

p∑
j=1

trace exp

(
Q[j](P )

µ

)
, (6.45)

and

φµ = µ logFµ(P )

= µ log

[
p∑
j=1

trace exp

(
Q[j](P )

µ

)]
. (6.46)

The exponential of Q(P )/µ is also a block-diagonal matrix, whose blocks are obtained

by computing the exponential of the blocks in the diagonal of Q(P )/µ. The total

complexity for computing Fµ(P ) is O(n3p).

It remains to derive a formula for ∇φµ(P ), the key of which is to compute the deriva-

tive of the trace exponential function. We need the following two lemmas.

Lemma 6.2.1. Define p(t) = trace(A + tB)k. Then we have p′(t) = k trace((A +

tB)k−1B).
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Proof. Since p(t) = trace ((A+ t0B) + (t− t0)B)k, we only need to prove the result

for t = 0. We note

p(t) =
k∑
j=0

tjtrace(Sk,j(A,B)), (6.47)

where the Hurwitz product Sk,j(A,B) is the sum of all words of length k in A and

B and j B’s appear. In addition, we have Sk,0(A,B) = Ak, and trace(Sk,1(A,B)) =

ktrace(Ak−1B) due to trace(CD) = trace(DC) for any C and D of compatible di-

mensions. As a consequence, we obtain

p′(0) = lim
t→0

p(t)− p(0)

t

= lim
t→0

(
Ak + tktrace(Ak−1B) + t2

∑k
j=2 t

j−2Sk,j(A,B)
)
− Ak

t

= lim
t→0

ktrace(Ak−1B) + t
k∑
j=2

tj−2Sk,j(A,B)

= ktrace(Ak−1B). (6.48)

Lemma 6.2.2. Define q(t) = trace exp(A+tB). Then we have q′(t) = trace (exp(A+ tB)B).

Proof. The calculation proceeds as follows:

q′(t) =

(
∞∑
k=0

trace(A+ tB)k

k!

)′

=

(
∞∑
k=0

[
trace(A+ tB)k

]′
k!

)

=

(
∞∑
k=0

trace
(
(A+ tB)kB

)
k!

)

= trace

(
∞∑
k=0

(A+ tB)k

k!
B

)
= trace (exp(A+ tB)B) . (6.49)
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We now compute ∇φµ(P ) = µ
Fµ(P )

∇Fµ(P ). Note that

∇Fµ(P ) = ∇trace exp

(
Q(P )

µ

)
=

p∑
j=1

∇trace exp

(
Q[j](P )

µ

)
. (6.50)

The partial derivative is computed as follows

∇Pαβtrace exp

(
Q[j](P )

µ

)
=

∂

∂Pαβ
trace exp

(
1

µ

[
0 δijIn

δijIn 0

]
− 1

µ

∑
α,β

Pαβ

[
0 enβe

mT
α Q[j]

QT
[j]e

m
α enTβ 0

])

= − 1

µ
trace

{
exp

(
Q[j](P )

µ

)[
0 enβe

mT
α Q[j]

QT
[j]e

m
α enTβ 0

]}
(6.51)

according to Lemma 6.2.2. The partition

exp

(
Q[j](P )

µ

)
=

[
M j

1,1 M j
1,2

M jT
1,2 M j

2,2

]
(6.52)

gives an explicit expression

∇Pαβtrace exp

(
Q[j](P )

µ

)
= − 2

µ
emTα Q[j]M

jT
1,2e

n
β. (6.53)

Therefore, we obtain

∇Fµ(P ) =

p∑
j=1

∇trace exp

(
Q[j](P )

µ

)

=

p∑
j=1

∑
α,β

∇Pαβtrace exp

(
Q[j](P )

µ

)
emα enTβ

=

p∑
j=1

∑
α,β

− 2

µ
emTα Q[j]M

jT
1,2e

n
βe

m
α enTβ

= − 2

µ

(
p∑
j=1

Q[j]M
jT
1,2

)
, (6.54)
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which yields

∇φµ(P ) =
µ

Fµ(P )
∇Fµ(P )

= − 2

Fµ(P )

(
p∑
j=1

Q[j]M
jT
1,2

)
. (6.55)

6.3 Computation Algorithm

6.3.1 Fixed-Point Iteration for Computing ω�(·)

We present a general fixed-point procedure to compute ω�. Recall that the optimiza-

tion problem defining ω� is as follows:

ω�(Q, s) = min
z

‖Qz‖�
‖z‖b∞

s.t.
‖z‖b1
‖z‖b∞

≤ s, (6.56)

or equivalently,

1

ω�(Q, s)
= max

z
‖z‖b∞ s.t. ‖Qz‖� ≤ 1,

‖z‖b1
‖z‖b∞

≤ s. (6.57)

For any s ∈ (1, s∗), we define a function over [0,∞) parameterized by s

fs(η) = max
z
{‖z‖b∞ : ‖Qz‖� ≤ 1, ‖z‖b1 ≤ sη} . (6.58)

We basically replaced the ‖z‖b∞ in the denominator of the fractional constraint in

(6.57) with η. It turns out that the unique positive fixed point of fs(η) is exactly

1/ω�(Q, s) as shown by the following proposition.

Proposition 6.3.1. The function fs(η) has the following properties:

1. fs(η) is continuous in η;

2. fs(η) is strictly increasing in η;
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3. fs(0) = 0, fs(η) ≥ sη > η for sufficiently small η > 0, and there exists ρ < 1

such that fs(η) < ρη for sufficiently large η;

4. fs(η) has a unique positive fixed point η∗ = fs(η
∗) that is equal to 1/ω�(Q, s);

5. For η ∈ (0, η∗), we have fs(η) > η; and for η ∈ (η∗,∞), we have fs(η) < η;

6. For any ε > 0, there exists ρ1(ε) > 1 such that fs(η) > ρ1(ε)η as long as

0 < η < (1 − ε)η∗; and there exists ρ2(ε) < 1 such that fs(η) < ρ2(ε)η as long

as η > (1 + ε)η∗.

Proof. 1. Since in the optimization problem defining fs(η), the objective function

‖z‖b∞ is continuous, and the constraint correspondence

C(η) : [0,∞) � Rnp

η 7→ {z : ‖Qz‖� ≤ 1, ‖z‖b1 ≤ sη} (6.59)

is compact-valued and continuous (both upper and lower hemicontinuous), ac-

cording to Berge’s Maximum Theorem 2.2.1, the optimal value function fs(η)

is continuous.

2. The monotone (non-strict) increasing property is obvious as increasing η en-

larges the region over which the maximization is taken. We now show the strict

increasing property. Suppose 0 < η1 < η2, and fs(η1) is achieved by z∗1 6= 0,

namely, fs(η1) = ‖z∗1‖b∞, ‖Qz∗1‖� ≤ 1, and ‖z∗1‖b1 ≤ sη1. If ‖Qz∗1‖� < 1, (this

implies ‖z∗1‖b1 = sη1), we define z2 = cz∗1 with c = min (1/‖Qz∗1‖�, sη2/‖z∗1‖b1) >
1. We then have ‖Qz2‖� ≤ 1, ‖z2‖b1 ≤ sη2, and fs(η2) ≥ ‖z2‖b∞ = c‖z∗1‖b∞ >

fs(η1).

Consider the remaining case that ‖Qz∗1‖� = 1. Without loss of generality,

suppose ‖z∗1‖b∞ = max1≤j≤p ‖z∗1[j]‖2 is achieved by the block z∗1[1] 6= 0. Since

Q1z
∗
1[1] is linearly dependent with the columns of {Q[j], j > 1} (m is much less

than (p− 1)n), there exist {αj ∈ Rn}j>1 such that Q[1]z
∗
1[1] +

∑p
j=2Q[j]αj = 0.

Define α =
[
z∗T1[1],α

T
2 , · · · ,αTp

]
∈ Rnp satisfying Qα = 0 and z2 = z∗1 + cα for

c > 0 sufficiently small such that ‖z2‖b1 ≤ ‖z∗1‖b1 + c‖α‖b1 ≤ sη1 + c‖α‖b1 ≤
sη2. Clearly, ‖Qz2‖� = ‖Qz∗1 + cQα‖� = ‖Qz∗1‖� = 1. As a consequence, we

have fs(η2) ≥ ‖z2‖b∞ ≥ ‖z2[1]‖2 = (1 + c)‖z∗1[1]‖2 > ‖z∗1‖b∞ = fs(η1).
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The case for η1 = 0 is proved by continuity.

3. Next we show fs(η) > sη for sufficiently small η > 0. Take z as the vector whose

first element is sη and zero otherwise. We have ‖z‖b1 = sη and ‖z‖b∞ = sη > η

(recall s ∈ (1,∞)). In addition, when η > 0 is sufficiently small, we also have

‖Qz‖� ≤ 1. Therefore, for sufficiently small η, we have fs(η) ≥ sη > η.

We next prove the existence of ηB > 0 and ρB ∈ (0, 1) such that

fs(η) < ρBη, ∀ η > ηB. (6.60)

We use contradiction to prove this statement. Suppose for all ηB > 0 and

ρB ∈ (0, 1), there exists η > ηB such that fs(η) ≥ ρBη. Construct sequences

{η(k)}∞k=1 ⊂ (0,∞), {ρ(k)}∞k=1 ⊂ (0, 1), and {z(k)}∞k=1 ⊂ Rnp such that

lim
k→∞

η(k) =∞,

lim
k→∞

ρ(k) = 1,

ρ(k)η(k) ≤ fs(η
(k)) = ‖z(k)‖b∞,

‖Qz(k)‖� ≤ 1,

‖z(k)‖b1 ≤ sη(k). (6.61)

Decompose z(k) = z
(k)
1 + z

(k)
2 where z

(k)
1 is in the null space of Q and z

(k)
2 in

the orthogonal complement of the null space of Q. The sequence {z(k)1 }∞k=1 is

bounded since c‖z(k)1 ‖ ≤ ‖Qz
(k)
1 ‖� ≤ 1 where c = infz:Qz=0 ‖Qz‖�/‖z‖ > 0 and

‖ · ‖ is any norm. Then ∞ = limk→∞ ‖z(k)‖b∞ ≤ limk→∞(‖z(k)1 ‖b∞ + ‖z(k)2 ‖b∞)

implies {z(k)2 }∞k=1 is unbounded. For sufficiently large k, we proceed as follows:

s∗ >
s(

s
s∗

)1/4 ≥ sη(k)

ρ(k)η(k)
≥ ‖z

(k)‖b1
‖z(k)‖b∞

≥ ‖z(k)2 ‖b1 − ‖z
(k)
1 ‖b1

‖z(k)2 ‖b∞ + ‖z(k)1 ‖b∞
≥
( s
s∗

)1/4 ‖z(k)2 ‖b1
‖z(k)2 ‖b∞

,(6.62)

where the second and last inequalities hold only for sufficiently large k and the

last inequality is due to the unboundedness of {z(k)2 } and boundedness of {z(k)1 }.
As a consequence, we have

‖z(k)2 ‖b1
‖z(k)2 ‖b∞

≤ s√
s
s∗

=
√
ss∗ < s∗ with Qz

(k)
2 = 0, (6.63)
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which contradicts with the definition of s∗.

4. Next we show fs(η) has a unique positive fixed point η∗, which is equal to

γ∗
def
= 1/ω�(Q, s). Properties 1) and 3) imply that there must be at least one

fixed point.

To show the uniqueness, we first prove γ∗ ≥ η∗ for any fixed point η∗ = fs(η
∗).

Suppose z∗ achieves the optimization problem defining fs(η
∗), i.e.,

η∗ = fs(η
∗) = ‖z∗‖b∞, ‖Qz∗‖� ≤ 1, ‖z∗‖b1 ≤ sη∗. (6.64)

Since ‖z∗‖b1/‖z∗‖b∞ ≤ sη∗/η∗ ≤ s, we have

γ∗ ≥ ‖z∗‖b∞
‖Qz∗‖�

≥ η∗. (6.65)

If η∗ < γ∗, we define η0 = (η∗ + γ∗)/2 and

zc = argmaxz
s‖z‖b∞
‖z‖b1

s.t. ‖Qz‖� ≤ 1, ‖z‖b∞ ≥ η0,

ρ =
s‖zc‖b∞
‖zc‖b1

. (6.66)

Suppose z∗∗ with ‖Qz∗∗‖� = 1 achieves the optimum of the optimization defin-

ing γ∗ = 1/ω�(Q, s). Clearly, ‖z∗∗‖b∞ = γ∗ > η0, which implies z∗∗ is a feasible

point of the optimization problem defining zc and ρ. As a consequence, we have

ρ ≥ s‖z∗∗‖b∞
‖z∗∗‖b1

≥ 1. (6.67)

Actually we will show that ρ > 1. If ‖z∗∗‖b1 < s‖z∗∗‖b∞, we are done. If not

(i.e., ‖z∗∗‖b1 = s‖z∗∗‖b∞), as illustrated in Figure 6.1, we consider ξ = η0
γ∗
z∗∗,

which satisfies

‖Qξ‖� ≤
η0
γ∗

< 1, (6.68)

‖ξ‖b∞ = η0, and (6.69)

‖ξ‖b1 = sη0. (6.70)
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Figure 6.1: Illustration of the proof for ρ > 1.

To get ξn as shown in Figure 6.1, pick the block of ξ with smallest non-zero `2

norm, and scale that block by a small positive constant less than 1. Because

s > 1, ξ has more than one non-zero blocks, implying ‖ξn‖b∞ will remain the

same. If the scaling constant is close enough to 1, ‖Qξn‖� will remain less than

1. But the good news is that ‖ξn‖b1 decreases, and hence ρ ≥ s‖ξn‖b∞
‖ξn‖b1

becomes

greater than 1.

Now we proceed to obtain a contradiction that fs(η
∗) > η∗. If ‖zc‖b1 ≤ s · η∗,

then it is a feasible point of

max
z
‖z‖b∞ s.t. ‖Qz‖� ≤ 1, ‖z‖b1 ≤ s · η∗. (6.71)

As a consequence, fs(η
∗) ≥ ‖zc‖b∞ ≥ η0 > η∗, contradicting with η∗ is a fixed

point and we are done. If this is not the case, i.e., ‖zc‖b1 > s · η∗, we define a

new point

zn = τzc (6.72)

with

τ =
s · η∗

‖zc‖b1
< 1. (6.73)
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Note that zn is a feasible point of the optimization problem defining fs(η
∗) since

‖Qzn‖� = τ‖Qzc‖� < 1, and (6.74)

‖zn‖b1 = τ‖zc‖b1 = s · η∗. (6.75)

Furthermore, we have

‖zn‖b∞ = τ‖zc‖b∞ = ρη∗. (6.76)

As a consequence, we obtain

fs(η
∗) ≥ ρη∗ > η∗. (6.77)

Figure 6.2: Illustration of the proof for fs(η
∗) ≥ ρη∗.
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Therefore, for any positive fixed point η∗, we have η∗ = γ∗, i.e., the positive

fixed point is unique.

5. Property 5) is a consequence of 1), 3), and 4).

6. We demonstrate only the existence of ρ2(ε). The existence of ρ1(ε) can be proved

in a similar manner, and hence is omitted.

We need to show that for fixed ε > 0, there exists ρ(ε) < 1 such that for any

η ≥ (1 + ε)η∗ we have

fs(η) ≤ ρ(ε)η. (6.78)

In view of (6.60), we need to prove the above statement only for η ∈ [(1 +

ε)η∗, ηB]. We use contradiction. Suppose for any ρ ∈ (0, 1) there exists η ∈ [(1+

ε)η∗, ηB] such that fs(η) > ρη. Construct sequences {η(k)}∞k=1 ⊂ [(1 + ε)η∗, ηB]

and {ρ(k)}∞k=1 ⊂ (0, 1) with

lim
k→∞

ρ(k) = 1,

fs(η
(k)) > ρ(k)η(k). (6.79)

Due to the compactness of [(1 + ε)η∗, ηB], there must exist a subsequence

{η(kl)}∞l=1 of {η(k)}∞k=1 such that liml→∞ η
(kl) = ηlim for some ηlim ∈ [(1+ε)η∗, ηB].

As a consequence of the continuity of fs(η), we have

fs(ηlim) = lim
l→∞

fs(η
(kl)) ≥ lim

l→∞
ρ(kl)η(kl) = ηlim. (6.80)

Again due to the continuity of fs(η) and the fact that fs(η) < η for η > ηB,

there exists ηc ∈ [ηlim, ηB] such that

fs(ηc) = ηc, (6.81)

contradicting with the uniqueness of the fixed point for fs(η).

The result implies that starting from any initial point below the fixed point,

through the iteration ηt+1 = fs(ηt) we can approach an arbitrarily small neigh-

borhood of the fixed point exponentially fast.
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We have transformed the problem of computing ω�(Q, s) into one of finding the pos-

itive fixed point of a one-dimensional function fs(η). The property 6) of Proposition

6.3.1 states that we could start with any η0 and use the iteration

ηt+1 = fs(ηt), t = 0, 1, · · · (6.82)

to find the positive fixed point η∗. In addition, if we start from two initial points, one

less than η∗ and one greater than η∗, then the gap between the generated sequences

indicates how close we are from the fixed point η∗.

Property 5) suggests finding η∗ by bisection search. Suppose we have an interval

(ηL, ηU) that includes η∗. Consider the middle point ηM = ηL+ηU
2

. If fs(ηM) < ηM, we

conclude that η∗ < ηM and set ηU = ηM; if fs(ηM) > ηM, we conclude that η∗ > ηM and

set ηL = ηM. We continue this bisection procedure until the interval length ηU − ηL
is sufficiently small.

6.3.2 Relaxation of the Subproblem

Unfortunately, except when n = 1 and the signal is real, i.e., the real sparse case, it is

not easy to compute fs(η) according to (6.58). In the following theorem, we present

a relaxation of the subproblem

max
z
‖z‖b∞ s.t. ‖Qz‖� ≤ 1, ‖z‖b1 ≤ sη (6.83)

by computing an upper bound on fs(η). This proof is similar to that of Proposition

6.2.1.

Proposition 6.3.2. When Q = A and � = 2, we have

fs(η) ≤ max
i

min
P[i]

max
j
sη‖δijIn − P T

[i]Q[j]‖2 + ‖P[i]‖2; (6.84)
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when Q = ATA and � = b∞, we have

fs(η) ≤ max
i

min
P[i]

max
j
sη‖δijIn − P T

[i]Q[j]‖2 +

p∑
l=1

‖P[l],[i]‖2. (6.85)

Here P[i] (resp. Q[j]) is the submatrix of P (resp. Q) formed by the (i− 1)n+ 1th to

inth columns (resp. (j − 1)n+ 1th to jnth columns), and P[l],[i] is the submatrix of P

formed by the (i− 1)n+ 1th to inth columns and the (l − 1)n+ 1th to lnth rows.

For each i = 1, . . . , p, the optimization problem

min
P[i]

max
j
sη‖δijIn − P T

[i]Q[j]‖2 + ‖P[i]‖2 (6.86)

can be solved using semidefinite programming:

min
P[i],t0,t1

sηt0 + t1

s.t. ‖δijIn − P T
[i]Q[j]‖2 ≤ t0, j = 1, . . . , p;

‖P[i]‖2 ≤ t1.

⇔

min
P[i],t0,t1

sηt0 + t1

s.t.

[
t0In δijIn − P T

[i]Q[j]

δijIn −QT
[j]P[i] t0In

]
� 0, j = 1, . . . , p;[

t1Im P[i]

P T
[i] t1In

]
� 0. (6.87)

Similarly, the optimization problem

min
P[i]

max
j
sη‖δijIn − P T

[i]Q[j]‖2 +

p∑
l=1

‖P[l],[i]‖2 (6.88)
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can be solved by the following semidefinite program:

min
P[i],t0,t1,...,tp

sηt0 +

p∑
l=1

tl

s.t. ‖δijIn − P T
[i]Q[j]‖2 ≤ t0, j = 1, . . . , p;

‖P[l],[i]‖2 ≤ tl, l = 1, . . . , p.

⇔

min
P[i],t0,t1

sηt0 +

p∑
l=1

tl

s.t.

[
t0In δijIn − P T

[i]Q[j]

δijIn −QT
[j]P[i] t0In

]
� 0, j = 1, . . . , p;[

tlIn P[l],[i]

P lT
[i] tlIn

]
� 0, l = 1, . . . , p. (6.89)

First-order implementations using smoothing approximation are detailed in Sections

6.3.3 and 6.3.4.

6.3.3 Smoothing Technique for Solving (6.86)

We now proceed to solve the following optimization problem for a particular i:

min
P

max
j
η‖δijIn − P TQ[j]‖2 + ‖P‖2, (6.90)

which is equivalent to

min
P
ηλmax(Q(P )) + λmax(P(P )) (6.91)

with

P(P ) =

[
0 P T

P 0

]
. (6.92)
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For any µ1, µ2 > 0, define the following smooth approximations

φµ1(P )
def
= µ1 log

(
trace exp

(
Q(P )

µ1

))
def
= µ1 logFµ1(P ),

ψµ2(P )
def
= µ2 log

(
trace exp

(
P(P )

µ2

))
def
= µ2 logGµ2(P ),

fµ1,µ2(P )
def
= ηφµ1(P ) + ψµ2(P ). (6.93)

Similar arguments lead to the choices

µ1 =
ε

4η log(2np)
, (6.94)

µ2 =
ε

4 log(m+ n)
, (6.95)

with approximation accuracy

ηφµ1(P ) + ψµ2(P ) ≤ ηλmax(Q(P )) + λmax(P(P )) ≤ ηφµ1(P ) + ψµ2(P ) +
ε

2
. (6.96)

The corresponding Lipschitz constants for the gradient functions of φµ1(P ) and ψµ2(P )

are respectively

L1 =
4 log(2np) maxj ‖Q[j]‖22

ε
(6.97)

L2 =
4 log(m+ n)

ε
. (6.98)

As a consequence, the Lipschitz constant for the gradient function of fµ1,µ2(P ) is

L =
4η log(2np) maxj ‖Q[j]‖22 + 4 log(m+ n)

ε
. (6.99)

The gradient function is expressed as

∇fµ1,µ2(P ) = η∇φµ1(P ) +∇ψµ2(P ) (6.100)

with ∇φµ1(P ) given in (6.55) and

∇ψµ2(P ) =
2

Gµ2(P )
M12T , (6.101)
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where the partition

exp

(
P(P )

µ

)
=

[
M11 M12

M12T M22

]
. (6.102)

6.3.4 Smoothing Technique for Solving (6.88)

The third optimization can be solved in a similar manner

min
P

max
j
η‖δijIn − P TQ[j]‖2 +

p∑
l=1

‖(P T )T[l]‖2

⇔

min
P
ηλmax(Q(P )) +

p∑
l=1

λmax(P((P T )T[l])). (6.103)

Define

ϕµ3(P ) =

p∑
l=1

µ3 log

(
trace exp

(
P((P T )T[l])

µ3

))
,

fµ1,µ3(P ) = ηφµ1(P ) + ϕµ3(P ) (6.104)

with µ1 given in (6.94) and µ3 = ε
4p log(np+n)

. The Lipschitz constant for the gradient

function of fµ1,µ3(P ) is

L =
4η log(2np) maxj ‖Q[j]‖22 + 4p log(np+ n)

ε
. (6.105)

The gradient of ϕµ3(P ) is

∇ϕµ3(P ) =
[
∇(PT )T

[1]
ψµ3((P

T )T[1]) · · · ∇(PT )T
[p]
ψµ3((P

T )T[p])
]
, (6.106)

which together with (6.55) gives the gradient of fµ1,µ3(P ).

112



6.3.5 Fixed-Point Iteration for Computing a Lower Bound

on ω�

Although Proposition 6.3.2 provides ways to efficiently compute upper bounds on the

subproblem (6.83) for fixed η, it is not obvious whether we could use it to compute an

upper on the positive fixed point of fs(η), or 1/ω�(Q, s). We show in this subsection

that another iterative procedure can compute such upper bounds.

To this end, we define functions gs,i(η) and gs(η) over [0,∞) parameterized by s for

s ∈ (1, s∗),

gs,i(η) = min
P[i]

sη

(
max
j
‖δijIn − P T

[i]Q[j]‖2
)

+ ‖P[i]‖2,

gs(η) = max
i
gs,i(η). (6.107)

The following proposition lists some properties of gs,i(η) and gs(η).

Proposition 6.3.3. The functions gs,i(η) and gs(η) have the following properties:

1. gs,i(η) and gs(η) are continuous in η;

2. gs,i(η) and gs(η) are strictly increasing in η;

3. gs,i(η) is concave for every i;

4. gs(0) = 0, gs(η) ≥ sη > η for sufficiently small η > 0, and there exists ρ < 1

such that gs(η) < ρη for sufficiently large η; the same holds for gs,i(η);

5. gs,i and gs(η) have unique positive fixed points η∗i = gs,i(η
∗
i ) and η∗ = gs(η

∗),

respectively; and η∗ = maxi η
∗
i ;

6. For η ∈ (0, η∗), we have gs(η) > η; and for η ∈ (η∗,∞), we have gs(η) < η; the

same statement holds also for gs,i(η).

7. For any ε > 0, there exists ρ1(ε) > 1 such that gs(η) > ρ1(ε)η as long as

0 < η ≤ (1 − ε)η∗; and there exists ρ2(ε) < 1 such that gs(η) < ρ2(ε)η as long

as η > (1 + ε)η∗.
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Proof. 1. First note that adding an additional constraint ‖P[i]‖2 ≤ sη in the defi-

nition of gs,i does not change the definition, because gs,i(η) ≤ sη as easily seen

by setting P[i] = 0:

gs,i = min
P[i]

{
sη

(
max
j
‖δijIn − P T

[i]Q[j]‖2
)

+ ‖P[i]‖2 : ‖P[i]‖2 ≤ sη

}
= −max

P[i]

{
−sη

(
max
j
‖δijIn − P T

[i]Q[j]‖2
)
− ‖P[i]‖2 : ‖P[i]‖2 ≤ sη

}
.(6.108)

Since the objective function to be maximized is continuous, and the constraint

correspondence

C(η) =
{
P[i] : ‖P[i]‖2 ≤ sη

}
(6.109)

is compact-valued and continuous (both upper and lower hemicontinuous), ac-

cording to Berge’s Maximum Theorem [44], the optimal value function gs,i(η)

is continuous. The continuity of gs(η) follows from that finite maximization

preserves the continuity.

2. To show the strict increasing property, suppose η1 < η2 and P 2
[i] achieves gs,i(η2).

Then we have

gs,i(η1) ≤ sη1

(
max
j
‖δijIn − P 2T

[i] Q[j]‖2
)

+ ‖P 2
[i]‖2

< sη2

(
max
j
‖δijIn − P 2T

[i] Q[j]‖2
)

+ ‖P 2
[i]‖2

= gs,i(η2). (6.110)

The strict increasing of gs(η) then follows immediately.

3. The concavity of gs,i(η) follows from the fact that gs,i(η) is the minimization of

a function of variables η and P[i], and when P[i], the variable to be minimized,

is fixed, the function is linear in η.
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4. Next we show that when η > 0 is sufficiently small gs(η) ≥ sη. For any i, we

have the following,

gs,i(η) = min
P[i]

sη

(
max
j
‖δijIn − P T

[i]Q[j]‖2
)

+ ‖P[i]‖2

≥ min
P[i]

sη
(
1− ‖P T

[i]Q[i]‖2
)

+ ‖P[i]‖2

≥ min
P[i]

sη
(
1− ‖P[i]‖2‖Q[i]‖2

)
+ ‖P[i]‖2

= sη + min
P[i]

‖P[i]‖2
(
1− sη‖Q[i]‖2

)
≥ sη > η, (6.111)

where the minimum of the last optimization problem is achieved at P[i] = 0

when η < 1/(s‖Q[i]‖2). Clearly, gs(η) = maxi gs,i(η) ≥ sη > η for such η.

Recall that

1

s∗
= max

i
min
P[i]

max
j
‖δijIn − P T

[i]Q[j]‖2. (6.112)

Suppose P ∗[i] is the optimal solution for each minP[i]
maxj ‖δijIn− P T

[i]Q[j]‖2. For

each i, we then have

1

s∗
≥ max

j
‖δijIn − P ∗T[i] Q[j]‖2, (6.113)

which implies

gs,i(η) = min
P[i]

sη

(
max
j
‖δijIn − P T

[i]Q[j]‖2
)

+ ‖P[i]‖2

≤ sη

(
max
j
‖δijIn − P ∗T[i] Q[j]‖2

)
+ ‖P ∗[i]‖2

≤ s

s∗
η + ‖P ∗[i]‖2. (6.114)

As a consequence, we obtain

gs(η) = max
i
gs,i(η) ≤ s

s∗
η + max

i
‖P ∗[i]‖2. (6.115)
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Pick ρ ∈ (s/s∗, 1). Then, we have the following when η > maxi ‖P ∗[i]‖2/(ρ−s/s∗):

gs(η) ≤ ρη. (6.116)

5. We first show the existence and uniqueness of the positive fixed points for gs,i(η).

The properties 1) and 4) imply that gs,i(η) has at least one positive fixed point.

To prove uniqueness, suppose there are two fixed points 0 < η∗1 < η∗2. Pick η0

small enough such that gs,i(η0) > η0 > 0 and η0 < η∗1. Then η∗1 = λη0+(1−λ)η∗2

for some λ ∈ (0, 1), which implies that gs,i(η
∗
1) ≥ λgs,i(η0) + (1 − λ)gs,i(η

∗
2) >

λη0 + (1− λ)η∗2 = η∗1 due to the concavity, contradicting with η∗1 = gs,i(η
∗
1).

The set of positive fixed point for gs(η), {η ∈ (0,∞) : η = gs(η) = maxi gs,i(η)},
is a subset of

⋃p
i=1{η ∈ (0,∞) : η = gs,i(η)} = {η∗i }

p
i=1. We argue that

η∗ = max
i
η∗i (6.117)

is the unique positive fixed point for gs(η).

We proceed to show that η∗ is a fixed point of gs(η). Suppose η∗ is a fixed point

of gs,i0(η), then it suffices to show that gs(η
∗) = maxi gs,i(η

∗) = gs,i0(η
∗). If this

is not the case, there exists i1 6= i0 such that gs,i1(η
∗) > gs,i0(η

∗) = η∗. The

continuity of gs,i1(η) and the property 4) imply that there exists η > η∗ with

gs,i1(η) = η, contradicting with the definition of η∗.

To show the uniqueness, suppose η∗1 is fixed point of gs,i1(η) satisfying η∗1 < η∗.

Then, we must have gs,i0(η
∗
1) > gs,i1(η

∗
1) because otherwise the continuity implies

the existence of another fixed point of gs,i0(η). As a consequence, gs(η
∗
1) >

gs,i1(η
∗
1) = η∗1 and η∗1 is not a fixed point of gs(η).

6. This property simply follows from the continuity, the uniqueness, and property

4).

7. We use contradiction to show the existence of ρ1(ε) in 7). In view of 4), we need

only to show the existence of such a ρ1(ε) that works for ηL ≤ η ≤ (1 − ε)η∗

where ηL = sup{η : gs(ξ) > sξ,∀0 < ξ ≤ η}. Suppose otherwise, we then
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construct sequences {η(k)}∞k=1 ⊂ [ηL, (1− ε)η∗] and {ρ(k)1 }∞k=1 ⊂ (1,∞) with

lim
k→∞

ρ
(k)
1 = 1,

gs(η
(k)) ≤ ρ(k)η(k). (6.118)

Due to the compactness of [ηL, (1 − ε)η∗], there must exist a subsequence

{η(kl)}∞l=1 of {η(k)} such that liml→∞ η
(kl) = ηlim for some ηlim ∈ [ηL, (1 − ε)η∗].

As a consequence of the continuity of gs(η), we have

gs(ηlim) = lim
l→∞

gs(η
(kl)) ≤ lim

l→∞
ρ
(kl)
1 η(kl) = ηlim. (6.119)

Again due to the continuity of gs(η) and the fact that gs(η) < η for η < ηL,

there exists ηc ∈ [ηL, ηlim] such that

gs(ηc) = ηc, (6.120)

contradicting with the uniqueness of the fixed point for gs(η). The existence of

ρ2(ε) can be proved in a similar manner.

The same properties in Proposition 6.3.3 hold for the functions defined below:

hs,i(η) = min
P[i]

sη

(
max
j
‖δijIn − P T

[i]Q[j]‖2
)

+

p∑
l=1

‖P[l],[i]‖2, (6.121)

hs(η) = max
i
hs,i(η). (6.122)

Proposition 6.3.4. The functions hs,i(η) and hs(η) have the following properties:

1. hs,i(η) and hs(η) are continuous in η;

2. hs,i(η) and hs(η) are strictly increasing in η;

3. hs,i(η) is concave for every i;
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4. hs(0) = 0, hs(η) ≥ sη > η for sufficiently small η > 0, and there exists ρ < 1

such that hs(η) < ρη for sufficiently large η; the same holds for hs,i(η);

5. hs,i and hs(η) have unique positive fixed points η∗i = hs,i(η
∗
i ) and η∗ = hs(η

∗),

respectively; and η∗ = maxi η
∗
i ;

6. For η ∈ (0, η∗), we have hs(η) > η; and for η ∈ (η∗,∞), we have hs(η) < η; the

same statement holds also for hs,i(η).

7. For any ε > 0, there exists ρ1(ε) > 1 such that hs(η) > ρ1(ε)η as long as

0 < η ≤ (1 − ε)η∗; and there exists ρ2(ε) < 1 such that hs(η) < ρ2(ε)η as long

as η > (1 + ε)η∗.

An immediate consequence of Propositions 6.3.3 and 6.3.4 is the following:

Theorem 6.3.1. Suppose η∗ is the unique fixed point of gs(η) (hs(η), resp.), then we

have

η∗ ≥ 1

ω2(A, s)

(
1

ωb∞(ATA, s)
, resp.

)
. (6.123)

Proposition 6.3.3 implies three ways to compute the fixed point η∗ for gs(η). The

same discussion is also valid for hs(η).

1. Naive Fixed-Point Iteration: Property 7) of Proposition 6.3.3 suggests that

the fixed point iteration

ηt+1 = gs(ηt), t = 0, 1, . . . (6.124)

starting from any initial point η0 converges to η∗, no matter η0 < η∗ or η0 > η∗.

The algorithm can be made more efficient in the case η0 < η∗. More specifically,

since gs(η) = maxi gs,i(η), at each fixed-point iteration, we set ηt+1 to be the

first gs,i(ηt) that is greater than ηt + ε with ε some tolerance parameter. If for

all i, gs,i(ηt) < ηt + ε, then gs(ηt) = maxi gs,i(ηt) < ηt + ε, which indicates the

optimal function value can not be improved greatly and the algorithm should

terminate. In most cases, to get ηt+1, we need to solve only one optimization

problem minP[i]
sη
(

maxj ‖δijIn − P T
[i]Q[j]‖2

)
+ ‖P[i]‖2 instead of p. This is in
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contrast to the case where η0 > η∗, because in the later case we must compute

all gs,i(ηt) to update ηt+1 = maxi gs,i(ηt). An update based on a single gs,i(ηt)

might generate a value smaller than η∗.

The naive fixed-point iteration has two major disadvantages. Firstly, the stop-

ping criterion based on successive improvement is not accurate as it does not

reflect the gap between ηt and η∗. This disadvantage can be remedied by start-

ing from both below and above η∗. The distance between corresponding terms

in the two generated sequences is an indication of the gap to the fixed point η∗.

However, the resulting algorithm is very slow, especially when updating ηt+1

from above η∗. Secondly, the iteration process is slow, especially when close to

the fixed point η∗. This is because ρ1(ε) and ρ2(ε) in 7) of Proposition 6.3.3 are

close to 1.

2. Bisection: The bisection approach is motivated by property 6) of Proposition

6.3.3. Starting from an initial interval (ηL, ηU) that contains η∗, we compute

gs(ηM) with ηM = (ηL + ηU)/2. As a consequence of property 6), gs(ηM) > ηM

implies gs(ηM) < η∗, and we set ηL = gs(ηM); gs(ηM) < ηM implies gs(ηM) > η∗,

and we set ηU = gs(ηM). The bisection process can also be accelerated by setting

ηL = gs,i(ηM) for the first gs,i(ηM) greater than ηM. The convergence of the

bisection approach is much faster than the naive fixed point iteration because

each iteration reduces the interval length at least by half. In addition, half the

length of the interval is an upper bound on the gap between ηM and η∗, resulting

an accurate stopping criterion. However, if the initial ηU is too larger than η∗,

the majority of gs(ηM) would turn out to be less than η∗. The verification

of gs(ηM) < ηM needs solving p semidefinite programs, greatly degrading the

algorithm’s performance.

3. Fixed-Point Iteration + Bisection: The third approach combines the ad-

vantages of the bisection method and the fixed-point iteration method, at

the level of gs,i(η). This method relies heavily on the representation gs(η) =

maxi gs,i(η) and η∗ = maxi η
∗
i .

Starting from an initial interval (ηL0, ηU) and the index set I0 = {1, . . . , p},
we pick any i0 ∈ I0 and use the (accelerated) bisection method with starting

interval (ηL0, ηU) to find the positive fixed point η∗i0 of gs,i0(η). For any i ∈ I0/i0,
gs,i(η

∗
i0

) ≤ η∗i0 implies that the fixed point η∗i of gs,i(η) is less than or equal to
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η∗i0 according to the continuity of gs,i(η) and the uniqueness of its positive fixed

point. As a consequence, we remove this i from the index set I0. We denote I1
as the index set after all such is removed, i.e., I1 = I0/{i : gs,i(η

∗
i0

) ≤ η∗i0}. We

also set ηL1 = η∗i0 as η∗ ≥ η∗i0 . Next we test the i1 ∈ I1 with the largest gs,i(η
∗
i0

)

and construct I2 and ηL2 in a similar manner. We repeat the process until the

index set It is empty. The η∗i found at the last step is the maximal η∗i , which is

equal to η∗.

6.4 Probabilistic Analysis

In this section, we analyze how good are the performance bounds in Theorem 6.1.1

for random sensing matrices. For this purpose, we define the block `1-constrained

minimal singular value (block `1-CMSV), which is an extension of the `1-CMSV define

in Definition 4.4.1 in the sparse setting:

Definition 6.4.1. For any s ∈ [1, p] and matrix A ∈ Rm×np, define the block `1-

constrained minimal singular value (abbreviated as block `1-CMSV) of A by

ρs(A) = min
z: ‖z‖2b1/‖z‖

2
2≤s

‖Az‖2
‖z‖2

. (6.125)

The most important difference between ρs(A) and ω�(Q, s) is the replacement of

‖ · ‖b∞ with ‖ · ‖2 in the denominators of the fractional constraint and the objective

function. The Euclidean norm ‖ · ‖2 is more amenable to probabilistic analysis. The

connections between ρs(A), ω2(A, s), and ωb∞(ATA, s), established in the following

lemma, allow us to analyze the probabilistic behaviors of ω�(Q, s) using the results

for ρs(A) we are going to establish later.

Lemma 6.4.1.

√
s
√
ωb∞(ATA, s) ≥ ω2(A, s) ≥ ρs2(A). (6.126)
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Proof. For any z such that ‖z‖b∞ = 1 and ‖z‖b1 ≤ s, we have

zATAz =
〈
z, ATAz

〉
≤ ‖z‖b1‖ATAz‖b∞
≤ s‖ATAz‖b∞. (6.127)

Taking the minima of both sides of (6.127) over {z : ‖z‖b∞ = 1, ‖z‖1 ≤ s} yields

ω2
2(A, s) ≤ sωb∞(ATA, s). (6.128)

For the other inequality, note that ‖z‖b1/‖z‖b∞ ≤ s implies ‖z‖b1 ≤ s‖z‖b∞ ≤
s‖z‖2, or equivalently,

{z : ‖z‖b1/‖z‖b∞ ≤ s} j {z : ‖z‖b1/‖z‖2 ≤ s}. (6.129)

As a consequence, we have

ω2(A, s) = min
‖z‖b1/‖z‖b∞≤s

‖Az‖2
‖z‖2

‖z‖2
‖z‖b∞

≥ min
‖z‖b1/‖z‖b∞≤s

‖Az‖2
‖z‖2

≥ min
‖z‖b1/‖z‖2≤s

‖Az‖2
‖z‖2

= ρs2(A), (6.130)

where the first inequality is due to ‖z‖2 ≥ ‖z‖b∞, and the second inequality is because

the minimization is taken over a larger set.

Next we derive a condition on the number of measurements to get ρs(A) bounded

away from zero with high probability for sensing matrices with i.i.d. subgaussian and

isotropic rows.

Theorem 6.4.1. Let the rows of the sensing matrix
√
mA be i.i.d. subgaussian

and isotropic random vectors with constant L. Then there exist constants c1 and c2
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depending on L such that for any ε > 0 and m ≥ 1 satisfying

m ≥ c1
sn+ s log p

ε2
, (6.131)

we have

E|1− ρs(A)| ≤ ε, (6.132)

and

P{1− ε ≤ ρs(A) ≤ 1 + ε} ≥ 1− exp(−c2ε2m). (6.133)

Proof of Theorem 6.4.1. We apply Theorem 2.3.2 to estimate the block `1-CMSV.

Denote Hn
s = {u ∈ Rnp : ‖u‖22 = 1, ‖u‖2b1 ≤ s}, a subset of the unit sphere of Rnp.

Similar to the proof of Theorem 4.4.1 for the sparse case, the proof of Theorem 6.4.1

boils down to computing an upper bound of `∗(Hn
s ):

`∗(Hn
s ) = Esupu∈Hns 〈g,u〉

≤ E‖u‖b1‖g‖b∞
≤
√
sn+

√
s log p (6.134)

according to (2.69). The conclusion of Theorem 6.4.1 then follows.

Using ρs(A), we could equally develop bounds similar to those of Theorem 6.1.1 on

the `2 norm of the error vectors. For example, the error bound for the BS-BP would

look like

‖x̂− x‖2 ≤
2ε

ρ2k(A)
. (6.135)

The conclusion of Theorem 6.4.1 combined with the previous equation implies that

we could stably recover a block sparse signal using BS-BP with high probability if

the sensing matrix is subgaussian and isotropic and m ≥ c(kn+ k log p)/ε2. If we do

not consider the block structure in the signal, we would need m ≥ c(kn log p)/ε2 mea-

surements as the sparsity level is kn [87]. Therefore, the prior information regarding

the block structure greatly reduces the number of measurements necessary to recover
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the signal. The lower bound on m is essentially the same as the one given by the

block RIP (See [6, Proposition 4] and the end of Section 5.4).

Theorem 6.4.2. Under the assumptions and notations of Theorem 6.4.1, there exist

constants c1, c2 depending on L such that for any ε > 0 and m ≥ 1 satisfying

m ≥ c1
s2n+ s2 log p

ε2
, (6.136)

we have

E ω2(A, s) ≥ 1− ε, (6.137)

P{ω2(A, s) ≥ 1− ε} ≥ 1− exp(−c2ε2m), (6.138)

and

E ωb∞(ATA, s) ≥ (1− ε)2

s
, (6.139)

P
{
ωb∞(ATA, s) ≥ (1− ε)2

s

}
≥ 1− exp(−c2ε2m). (6.140)

Equation (6.136) and Theorem 6.1.1 imply that for exact signal recovery in the noise

free case, we need O(s2(n + log p) measurements for random sensing matrices. The

extra s suggests that the ω� based approach to verify exact recovery is not as optimal

as the one based on ρs. However, ω� is computational more amenable as we are

going to see in Section 6.3. The measurement bound (6.136) also implies that the

algorithms for verifying ω� > 0 and for computing ω� work for s at least up to the

order
√
m/(n+ log p).

6.5 Preliminary Numerical Simulations

In this section, we present preliminary numerical results that assess the performance

of the algorithms for verifying ω2(A, s) > 0 and computing ω2(A, s). We also compare

the error bounds based on ω2(A, s) with the bounds based on the block RIP [6]. The

involved semidefinite programs are solved using CVX.
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We test the algorithms on Gaussian random matrices. The entries of Gaussian ma-

trices are randomly generated from the standard Gaussian distribution. All m × np
matrices are normalized to have columns of unit length.

We first present the values of s∗ computed by (6.25), k∗ = bs∗/2c, and compare them

with the corresponding quantities when A is seen as the sensing matrix for the sparse

model without knowing the block-sparsity structure. The quantities in the later case

are computed using the algorithms developed in [87, 93]. We note in Table 6.1 that

for the same sensing matrix A, both s∗ and k∗ are smaller when the block-sparse

structure is taken into account than it is not taken into account. However, we need

to keep in mind that the true sparsity level in the block-sparse model is nk, where k

is the block sparsity level. The nk∗ in the fourth column for the block-sparse model is

indeed much greater than the k∗ in the sixth column for the sparse model, implying

exploiting the block-sparsity structure is advantageous.

Table 6.1: Comparison of the sparsity level bounds on the block-sparse model and
the sparse model for a Gaussian matrix A ∈ Rm×np with n = 4, p = 60.

m
Block Sparse Model Sparse Model
s∗ k∗ nk∗ s∗ k∗

72 3.96 1 4 6.12 3
96 4.87 2 8 7.55 3
120 5.94 2 8 9.54 4
144 7.14 3 12 11.96 5
168 8.60 4 16 14.66 7
192 11.02 5 20 18.41 9

In the next set of experiments, we compare the computation times for the three

implementing methods discussed at the end of Section 6.3.5. The Gaussian matrix

A is of size 72 × 120 with n = 3 and p = 40. The tolerance parameter is 10−5. The

initial η value for the Naive Fixed-Point Iteration is 0.1. The initial lower bound ηL

and upper bound ηU are set as 0.1 and 10, respectively. All three implementations

yields η∗ = 0.7034. The CPU times for the three methods are 393 seconds, 1309

seconds, and 265 seconds. Therefore, the Fixed-Point Iteration + Bisection gives the

most efficient implementation in general.
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In the last experiment, we compare our recovery error bounds on the BS-BP based

on ω2(A, s) with those based on the block RIP. Recall the from Corollary 6.1.2, we

have for the BS-BP

‖x̂− x‖2 ≤
2
√

2k

ω2(A, 2k)
ε. (6.141)

For comparison, the block RIP bounds is

‖x̂− x‖2 ≤
4
√

1 + δ2k(A)

1− (1 +
√

2)δ2k(A)
ε, (6.142)

assuming the block RIP δ2k(A) <
√

2−1 [6]. Without loss of generality, we set ε = 1.

The block RIP is computed using Monte Carlo simulations. More explicitly, for

δ2k(A), we randomly take 1000 sub-matrices of A ∈ Rm×np of size m × 2nk with

a pattern determined by the block-sparsity structure, compute the maximal and

minimal singular values σ1 and σ2k, and approximate δ2k(A) using the maximum of

max(σ2
1 − 1, 1 − σ2

2k) among all sampled sub-matrices. Obviously, the approximated

block RIP is always smaller than or equal to the exact block RIP. As a consequence,

the performance bounds based on the exact block RIP are worse than those based on

the approximated block RIP. Therefore, in cases where our ω2(A, 2k) based bounds

are better (tighter, smaller) than the approximated block RIP bounds, they are even

better than the exact block RIP bounds.

In Tables 6.2, we present the values of ω2(A, 2k) and δ2k(A) computed for a Gaussian

matrix A ∈ Rm×np with n = 4 and p = 60. The corresponding s∗ and k∗ for different

m are also included in the table. We note that in all the considered cases, δ2k(A) >√
2 − 1, and the block RIP based bound (6.142) does not apply at all. In contrast,

the ω2 based bound (6.141) is valid as long as k ≤ k∗. In Table (6.3) we show the ω2

based bound 6.141.

125



Table 6.2: ω2(A, 2k) and δ2k(A) computed for a Gaussian matrix A ∈ Rm×np with
n = 4 and p = 60.

m 72 96 120 144 168 192
s∗ 3.88 4.78 5.89 7.02 8.30 10.80

k k∗ 1 2 2 3 4 5

1
ω2(A, 2k) 0.45 0.53 0.57 0.62 0.65 0.67
δ2k(A) 0.90 0.79 0.66 0.58 0.55 0.51

2
ω2(A, 2k) 0.13 0.25 0.33 0.39 0.43
δ2k(A) 1.08 0.98 0.96 0.84 0.75

3
ω2(A, 2k) 0.11 0.18 0.25
δ2k(A) 1.12 1.01 0.93

4
ω2(A, 2k) 0.02 0.12
δ2k(A) 1.26 1.07

5
ω2(A, 2k) 0.03
δ2k(A) 1.28

Table 6.3: The ω2(A, 2k) based bounds on the `2 norms of the errors of the BS-BP
for the Gaussian Matrix in Table 6.2.

m 72 96 120 144 168 192
s∗ 3.88 4.78 5.89 7.02 8.30 10.80

k k∗ 1 2 2 3 4 5

1 ω2 bound 6.22 13.01 9.89 6.50 11.52 9.50
2 ω2 bound 58.56 25.37 14.64 7.30 16.26
3 ω2 bound 53.54 21.63 30.27
4 ω2 bound 236.74 23.25
5 ω2 bound 127.59
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Chapter 7

Low-Rank Matrix Recovery:

Background

The last low-dimensional structure we will discuss in this dissertation is the low-

rankness of matrices. We review previous work on low-rank matrix recovery in this

chapter.

7.1 Introduction to Low-Rank Matrix Recovery

Suppose X ∈ Rn1×n2 is a matrix of rank r � min{n1, n2}, the low-rank matrix

reconstruction problem aims to recover matrix X from a set of linear measurements

y corrupted by noise w:

y = A(X) +w, (7.1)

where A : Rn1×n2 → Rm is a linear measurement operator. Without loss of general-

ity, we always assume n1 ≤ n2. The noise vector w ∈ Rm is either deterministic or

random. In the deterministic setting we assume boundedness: ‖w‖2 ≤ ε, while in

the stochastic setting we assume Gaussianity: w ∼ N (0, σ2Im). Since the matrix X

lies in a low-dimensional sub-manifold of Rn1×n2 , we expect m� n1n2 measurements

would suffice to reconstruct X from y by exploiting the signal structure. Application

areas of model (7.1) include factor analysis, linear system realization [94,95], matrix
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completion [30, 31], quantum state tomography [96], face recognition [97, 98], Eu-

clidean embedding [99], to name a few (See [7,100,101] for discussions and references

therein).

A fundamental problem pertaining to model (7.1) is to reconstruct the low-rank

matrix X from the measurement y by exploiting the low-rank property of X, and the

stability of the reconstruction with respect to noise. For any reconstruction algorithm,

we denote the estimate of X as X̂, and the error matrix H
def
= X̂ −X. The stability

problem aims to bound ‖H‖F in terms of m,n1, n2, r, the linear operator A, and the

noise strength ε or σ2.

7.2 Recovery Algorithms

We briefly review three low-rank matrix recovery algorithms based on convex relax-

ation: the matrix Basis Pursuit, the matrix Dantzig selector, and the matrix LASSO

estimator. A common theme of these algorithms is enforcing the low-rankness of so-

lutions by penalizing large nuclear norms, or equivalently, the `1 norms of the singular

value vectors. As a relaxation of the matrix rank, the nuclear norm remains a mea-

sure of low-rankness while being a convex function. In fact, the nuclear norm ‖ · ‖∗
is the convex envelop of rank(·) on the set {X ∈ Rn1×n2 : ‖X‖2 ≤ 1} [100, Theorem

2.2]. Most computational advantages of the aforementioned three algorithms result

from the convexity of the nuclear norm.

The matrix Basis Pursuit algorithm [7, 100] tries to minimize the nuclear norm of

solutions subject to the measurement constraint. It is applicable to both noiseless

settings and bounded noise settings with a known noise bound ε. The matrix Basis

Pursuit algorithm was originally developed for the noise-free case in [100]:

mBP : min
Z∈Rn1×n2

‖Z‖∗ s.t. y = A(Z), (7.2)

which is a convex relaxation of the following rank minimization problem

min
Z∈Rn1×n2

rank(Z) s.t. y = A(Z). (7.3)
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The noisy version of matrix Basis Pursuit solves:

mBP : min
Z∈Rn1×n2

‖Z‖∗ s.t. ‖y −A(Z)‖2 ≤ ε. (7.4)

In this dissertation, we refer to both cases as matrix Basis Pursuit.

The matrix Dantzig selector [7] reconstructs a low-rank matrix when its linear mea-

surements are corrupted by unbounded noise. Its estimate for X is the solution to

the nuclear norm regularization problem:

mDS : min
Z∈Rn1×n2

‖Z‖∗ s.t. ‖A∗(y −A∗(z))‖2 ≤ µ, (7.5)

where µ a control parameter.

The matrix LASSO estimator solves the following optimization problem [7,102]:

mLASSO: min
Z∈Rn1×n2

1

2
‖y −A(Z)‖22 + µ‖Z‖∗. (7.6)

All three optimization problems can be solved using convex programs. The key is to

note that the nuclear norm admits an semidefinite programming characterization via

‖X‖∗ = min
W 1∈Rn1×n1
W 2∈Rn2×n2

(
trace(W 1) + trace(W 2)

)
/2 s.t.

[
W 1 X

XT W 2

]
� 0. (7.7)

Recall from Chapter 2 that for any linear operator A : Rn1×n2 7→ Rm, its adjoint

operator A∗ : Rm 7→ Rn1×n2 is defined by the following relation

〈A(X), z〉 = 〈X,A∗(z)〉 , ∀X ∈ Rn1×n2 , z ∈ Rm. (7.8)

The semidefinite representation of the nuclear norm (7.7) together with the following

semidefinite representation for the constraint in the mDS (7.5)[
µIn1 A∗(y −A(X))

(A∗(y −A(X)))∗ µIn2

]
� 0 (7.9)
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lead to an SDP formulation of the mDS:

min
W 1∈Rn1×n1
W 2∈Rn2×n2

(
trace(W 1) + trace(W 2)

)
/2

s.t.


W 1 Z 0 0

ZT W 2 0 0

0 0 µIn1 A∗(y −A(X))

0 0 (A∗(y −A(X)))∗ µIn2

 � 0. (7.10)

The other two algorithms mBP and mLASSO can be recast into semidefinite programs

in a similar manner.

7.3 Null Space Characterization and Restricted Isom-

etry Property

The NSP for sparsity recovery and block-sparsity recovery has been extended to low-

rank matrix recovery [38]. We first consider the rank minimization problem (7.3).

Apparently, (7.3) correctly recovers X from y = A(X) for any X with rank(X) = r

if and only if

rank(Z) ≥ 2r,∀ Z ∈ null(A). (7.11)

As shown in [38], the nuclear norm minimization problem (7.2) uniquely recovers X

from y = A(X) for any X with rank(X) = r if and only if

‖Z1‖∗ < ‖Z2‖∗,∀ Z = Z1 + Z2 ∈ null(A), rank(Z1) = r, rank(Z2) ≥ r. (7.12)

The aim of stability analysis is to derive error bounds of the solutions of the convex

relaxation algorithms (7.4), (7.5), and (7.6). These bounds usually involve the inco-

herence of the linear operator A, which is measured by the matrix restricted isometry

constant (mRIC) defined below [7,100]:
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Definition 7.3.1. For each integer r ∈ {1, . . . , n1}, the matrix restricted isometry

constant (mRIC) δmr of a linear operator A : Rn1×n2 7→ Rm is defined as the smallest

δ > 0 such that

1− δ ≤ ‖A(X)‖22
‖X‖2F

≤ 1 + δ (7.13)

holds for arbitrary non-zero matrix X of rank at most r.

A linear operatorA with a small δr means thatA is nearly an isometry when restricted

onto all matrices with rank at most r. Hence, it is no surprise that the mRIC is

involved in the stability of recovering X from A(X) corrupted by noise when X is of

rank at most r.

Now we cite stability results on the mBP, the mDS, and the mLASSO, which are

expressed in terms of the mRIC. Assume X is of rank r and X̂ is its estimate given

by any of the three algorithms; then we have the following:

1. mBP [7]: Suppose that δ4r <
√

2 − 1 and ‖w‖2 ≤ ε. The solution to the mBP

(7.4) satisfies

‖X̂ −X‖F ≤
4
√

1 + δ4r

1− (1 +
√

2)δ4r
· ε. (7.14)

2. mDS [7]: If δ4r <
√

2 − 1 and ‖A∗(w)‖2 ≤ λ, then the solution to the mDS

(7.5)

‖X̂ −X‖F ≤
16

1− (
√

2 + 1)δ4r
·
√
r · µ. (7.15)

3. mLASSO [7]: If δ4r < (3
√

2 − 1)/17 and ‖A∗(w)‖ ≤ µ/2, then the solution to

the mLASSO (7.6) satisfies

‖X̂ −X‖F ≤ C(δ4r)
√
r · µ, (7.16)

for some numerical constant C.
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7.4 Probabilistic Analysis

Although the mRIC provides a measure quantifying the goodness of a linear operator,

its computation poses great challenges. In the literature, the computation issue is

circumvented by resorting to a random argument. We cite one general result below [7]:

Let A : Rn1×n2 7→ Rm be a random linear operator satisfying the concentration in-

equality for any X ∈ Rn1×n2 and 0 < ε < 1:

P
(∣∣‖A(X)‖22 − ‖X‖2F

∣∣ ≥ ε‖X‖2F
)
≤ Ce−mc0(ε). (7.17)

for fixed constant C > 0. Then, for any given δ ∈ (0, 1), there exist constants c1, c2 >

0 depending only on δ such that δr ≤ δ, with probability not less than 1− Ce−c1m, as

long as

m ≥ c2nr. (7.18)
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Chapter 8

Partial Extension to Low-Rank

Matrix Recovery

We would like to extend the performance analysis and computational algorithms de-

veloped for sparsity recovery and block-sparsity recovery to low-rank matrix recovery.

However, although we could develop a parallel theory for performance bounds and

probabilistic analysis on the bounds, it turns out extremely difficult to extend the

computational algorithms. In this chapter, we present the performance bounds based

on the so called `∗ constrained minimal singular value and its probabilistic analysis.

We leave the computational issues to future work. Without lass of generality, in this

chapter we assume n1 ≤ n2.

8.1 `∗-Constrained Minimal Singular Values

We first introduce a quantity that continuously extends the concept of rank for a given

matrix X. It is also an extension of the `1-sparsity level from vectors to matrices [103].

Definition 8.1.1. The `∗-rank of a non-zero matrix X ∈ Rn1×n2 is defined as

τ(X) =
‖X‖2∗
‖X‖2F

=
‖σ(X)‖21
‖σ(X)‖22

, (8.1)

where ‖ · ‖∗ is the nuclear norm of a matrix and ‖ · ‖F the Frobenius norm. We use

σ(X) ∈ Rn1 to denote the vector of singular values of X in decreasing order.
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The scaling invariant τ(X) is indeed a measure of rank. To see this, suppose rank(X) =

r; then Cauchy-Schwarz inequality implies that

τ(X) ≤ r, (8.2)

and we have equality if and only if all non-zero singular values of X are equal. There-

fore, the more non-zero singular values X has and the more evenly the magnitudes

of these non-zero singular values are distributed, the larger τ(X). In particular, if X

is of rank 1, then τ(X) = 1; if X is of full rank n1 with all singular values having the

same magnitudes, then τ(X) = n1. However, if X has n1 non-zero singular values but

their magnitudes are spread in a wide range, then its `∗-rank might be very small.

The `∗-constrained minimal singular value is defined as follows:

Definition 8.1.2. For any τ ∈ [1, n1] and any linear operator A : Rn1×n2 7→ Rm,

define the `∗-constrained minimal singular value (abbreviated as `∗-CMSV) by

ρτ (A)
def
= inf

X 6=0, τ(X)≤τ

‖A(X)‖2
‖X‖F

. (8.3)

For an operator A, a non-zero ρτ (A) roughly means that A is invertible when re-

stricted onto the set {X ∈ Rn1×n2 : τ(X) ≤ τ}, or equivalently, the intersection

of the null space of A and {X ∈ Rn1×n2 : τ(X) ≤ τ} contains only the null vec-

tor of Rn1×n2 . The value of ρτ (A) measures the invertibility of A restricted onto

{τ(X) ≤ τ}. As We will show that the error matrices for convex relaxation algo-

rithms have small `∗-ranks. Therefore, the error matrix is distinguishable from the

zero matrix given the image of the error matrix under A. Put it another way, given

noise corrupted A(X), a signal matrix X is distinguishable from X+H, as long as the

noise works in a way such that the error matrix H has a small `∗-rank. This explains

roughly why ρτ (A) determines the performance of convex relaxation algorithms.
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8.1.1 Stability of Convex Relaxation Algorithms

In this section, we present the stability results for three convex relaxation algorithms:

the matrix Basis Pursuit, the matrix Dantzig Selector, and the matrix LASSO esti-

mator. As one will see in the proofs to Theorems 8.1.1, 8.1.2 and 8.1.3, the procedure

of establishing these theorems has two steps:

1. Show that the error matrix H = X̂−X has a small `∗-rank: τ(H) ≤ τ for some

suitably selected τ , which automatically leads to a lower bound ‖A(H)‖2 ≥
ρτ‖H‖F. Here X is the true matrix and X̂ is its estimate given by convex

relaxation algorithms.

2. Obtain an upper bound on ‖A(H)‖2.

These are all relatively easy to show for the matrix Basis Pursuit algorithm. We have

the following stability result:

Theorem 8.1.1. If matrix X has rank r and the noise w is bounded; that is, ‖w‖2 ≤
ε, then the solution X̂ to the mBP (7.4) obeys

‖X̂ −X‖F ≤ 2ε

ρ8r
. (8.4)

The corresponding bound (7.14) using mRIC is expressed as 4
√
1+δ4r

1−(1+
√
2)δ4r
· ε under the

condition δ4r ≤
√

2 − 1. Here δr is the mRIC defined in Definition 7.3.1. We note

the `∗-CMSV bound (8.4) is more concise and only requires ρ8r > 0. Of course,

we pay a price by replacing the subscript 4r with 8r. A similar phenomena is also

observed in the sparse signal reconstructions case. By analogy to the sparse case and

the block-sparse case we expect that it is easier to get ρ8r > 0 than δ4r ≤
√

2− 1.

Before stating the results for the matrix Dantzig Selector and the matrix Lasso esti-

mator, we cite a lemma of [7]:

Lemma 8.1.1. [7, Lemma 1.1] Suppose w ∼ N (0, σ2Im). If C ≥ 4
√

(1 + δm1max(A)) log 12,

then there exists a numerical constant c > 0 such that with probability greater than
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1− 2 exp(−cn2) that

‖A∗(w)‖ ≤ C
√
n2σ, (8.5)

where A∗ is the adjoint operator of A.

Lemma 8.1.1 allows to transform statements under the condition of ‖A∗(w)‖2 ≤ µ,

e.g. Theorem 8.1.2 and 8.1.3, into ones that hold with large probability. We now

present the error bounds for the matrix Dantzig Selector and the matrix LASSO

estimator, whose proofs can be found in Sections 8.1.3 and 8.1.4, respectively.

Theorem 8.1.2. Suppose the noise vector in model (7.1) satisfies ‖A∗(w)‖2 ≤ µ,

and suppose X ∈ Rn1×n2 is of rank r. Then, the solution X̂ to the mDS (7.5) satisfies

‖X̂ −X‖F ≤
4
√

2

ρ28r
·
√
r · µ. (8.6)

Theorem 8.1.3. Suppose the noise vector in model (7.1) satisfies ‖A∗(w)‖2 ≤ κµ

for some κ ∈ (0, 1), and suppose X ∈ Rn1×n2 is of rank r. Then, the solution X̂ to

the matrix LASSO estimator (7.6) satisfies

‖X̂ −X‖F ≤
1 + κ

1− κ
· 2
√

2

ρ2 8r
(1−κ)2

·
√
r · µ. (8.7)

For example, if we take κ = 1− 2
√

2/3, then the bound becomes

‖X̂ −X‖F ≤ 6(1−
√

2

3
) · 1

ρ29r
·
√
r · µ. (8.8)

The readers are encouraged to compare the statements of Theorem 8.1.2 and 8.1.3

with those using mRIC as cited in Section 7.3 (Equations (7.15), (7.16) and the

conditions for them to be valid).

In this section, we present the derivation of bounds on the reconstruction error for the

matrix Basis Pursuit, the matrix Dantzig selector and the matrix LASSO estimator.

As shown in Theorems 8.1.1, 8.1.2 and 8.1.3, our bounds are given in terms of the

`∗-CMSV rather than the mRIC of linear operator A.
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8.1.2 Basis Pursuit

We first establish a bound on the Frobenius norm of mBP error matrix using the

`∗-CMSV. Recall the two steps discussed in Section 8.1.1:

1. Show that the error matrix H = X̂ −X has small `∗ rank: τ(H) ≤ 8r, which

automatically leads to a lower bound ‖A(H)‖2 ≥ ρ8r‖H‖F;

2. Obtain an upper bound on ‖A(H)‖2.

For mBP (7.4), the second step is trivial as both X and X̂ satisfy constraint ‖y −
A(Z)‖ ≤ ε in (7.4). Therefore, the triangle inequality yields

‖A(H)‖2 = ‖A(X̂ −X)‖2
≤ ‖A(X̂)− y‖2 + ‖y −A(X)‖2
≤ 2ε. (8.9)

In order to establish that the error matrix has a small `∗-rank in the first step, we

present two lemmas on the properties of nuclear norms derived in [100]:

Lemma 8.1.2. [100, Lemma 2.3] Let A and B be matrices of the same dimensions.

If ABT = 0 and ATB = 0 then ‖A+B‖∗ = ‖A‖∗ + ‖B‖∗.

Lemma 8.1.3. [100, Lemma 3.4] Let A and B be matrices of the same dimensions.

Then there exist matrices B1 and B2 such that

1. B = B1 +B2

2. rank(B1) ≤ 2rank(A)

3. AB2T = 0 and ATB2 = 0

4. 〈B1, B2〉 = 0.

Now we give a proof of Theorem 8.1.1:
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Proof of Theorem 8.1.1. We decompose the error matrix B = H according to Lemma

8.1.3 with A = X, more explicitly, we have:

1. H = H0 +Hc

2. rank(H0) ≤ 2rank(X) = 2r

3. XHcT = 0 and XTHc = 0

4. 〈H0, Hc〉 = 0.

As observed by Recht et.al in [100] (See also [39], [7] and [103]), the fact that ‖X̂‖∗ =

‖X+H‖1 is the minimum among all Zs satisfying the constraint in (7.4) implies that

‖Hc‖∗ cannot be very large. To see this, we observe that

‖X‖∗ ≥ ‖X +H‖∗
= ‖X +Hc +H0‖∗
≥ ‖X +Hc‖∗ − ‖H0‖∗
= ‖X‖∗ + ‖Hc‖∗ − ‖H0‖∗. (8.10)

Here, for the last equality we used Lemma 8.1.2 andXHcT = 0, XTHc = 0. Therefore,

we obtain

‖Hc‖∗ ≤ ‖H0‖∗, (8.11)

which leads to

‖H‖∗ ≤ ‖H0‖∗ + ‖Hc‖∗
≤ 2‖H0‖∗
≤ 2

√
rank(H0)‖H0‖F

= 2
√

2r‖H‖F, (8.12)

where for the next to the last inequality we used the fact that ‖H‖∗ ≤
√

rank(H)‖H‖F ,

and for the last inequality we used the pythagoras theorem ‖H‖2F = ‖H0‖2F+‖Hc‖2F ≥
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‖H0‖2F because 〈H0, Hc〉 = 0. Inequality (8.12) is equivalent to

τ(H) ≤ 8 rank(X) = 8r. (8.13)

It follows from (8.9) and Definition 8.1.2 that

ρ8r‖H‖F ≤ ‖A(H)‖2 ≤ 2ε. (8.14)

Hence, we get the conclusion of Theorem 8.1.1

‖X̂ −X‖F ≤ 2ε

ρ8r
. (8.15)

8.1.3 Dantzig Selector

This subsection is devoted to the proof of Theorem 8.1.2.

Proof of Theorem 8.1.2. Suppose X ∈ Rn1×n2 is of rank r, and X̂ is the solution to

the matrix Dantzig selector (7.5). Define H = X̂ −X. We note that to obtain that

H has a small `∗-rank (8.13), we used only two conditions:

• ‖X̂‖∗ = ‖X +H‖∗ is the minimum among all matrices satisfying the optimiza-

tion constraint;

• the true signal X satisfies the constraint.

Obviously, the first condition holds simply because of the structure of the matrix

Dantzig selector. If the noise vector w satisfies ‖A(w)‖2 ≤ µ, then the true signal X

also satisfy the constraint:

‖A∗(r)‖2 = ‖A∗(y −A(X))‖2
= ‖A∗(w)‖2 ≤ µ. (8.16)
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Consequently, we have τ(H) ≤ 8r following the same procedure as in the Proof of

Theorem 8.1.1 in Section 8.1.2, or equivalently,

‖H‖∗ ≤
√

8r‖H‖F. (8.17)

We now turn to the second step to obtain an upper bound on ‖A(X)‖F. The condition

‖A(w)‖2 ≤ µ and the constraint in the Dantzig selector (7.5) yield

‖A∗(A(H))‖2 ≤ 2µ (8.18)

because

A∗(w − r̂) = A∗
(

(y −A(X))− (y −A(X̂))
)

= A∗
(
A(X̂)−A(X)

)
= A∗(A(H)), (8.19)

where r̂ = y − A(X̂) is the residual corresponding to the matrix Dantzig selector

solution X̂. Therefore, we obtain an upper bound on ‖A(H)‖2F as follows:

〈A(H),A(H)〉 = 〈H,A∗(A(H))〉

≤ ‖H‖∗‖A∗(A(H))‖2
≤ 2µ‖H‖∗. (8.20)

Equation (8.20), the definition of ρ8r, and equation (8.17) together yield

ρ28r‖H‖2F ≤ 〈A(H),A(H)〉

≤ 2µ‖H‖∗
≤ 2µ

√
8rσ‖H‖F. (8.21)

We conclude that

‖H‖F ≤ 4
√

2

ρ28r
·
√
r · µ, (8.22)

which is exactly the result of Theorem 8.1.2.
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8.1.4 LASSO Estimator

We derive a bound on the matrix LASSO estimator using the procedure developed

in [7] (see also [80]).

Proof of Theorem 8.1.3. Suppose the noise w satisfies ‖A∗(w)‖2 ≤ κµ for some small

κ > 0. Because X̂ is a solution to (7.6), we have

1

2
‖A(X̂)− y‖22 + µ‖X̂‖∗ ≤

1

2
‖A(X)− y‖22 + µ‖X‖∗.

Consequently, substituting y = A(X) +w yields

µ‖X̂‖∗ ≤
1

2
‖A(X)− y‖22 −

1

2
‖A(X̂)− y‖22 + µ‖X‖∗

=
1

2
‖w‖22 −

1

2
‖A(X̂ −X)−w‖22 + µ‖X‖∗

=
1

2
‖w‖22 −

1

2
‖A(X̂ −X)‖22

+
〈
A(X̂ −X),w

〉
− 1

2
‖w‖22 + µ‖X‖∗

≤
〈
A(X̂ −X),w

〉
+ µ‖X‖∗

=
〈
X̂ −X,A∗(w)

〉
+ µ‖X‖∗.

Using the Cauchy-Swcharz type inequality, we get

µ‖X̂‖∗ ≤ ‖X̂ −X‖∗‖A∗(w)‖2 + µ‖X‖∗
= κµ‖H‖∗ + µ‖X‖∗,

which leads to

‖X̂‖∗ ≤ κ‖H‖∗ + ‖X‖∗.

141



Therefore, similar to the argument in (8.10) we have

‖X‖∗ ≥ ‖X̂‖∗ − κ‖H‖∗
= ‖X +H‖∗ − κ‖H‖∗
≥ ‖X +Hc +H0‖∗ − κ

(
‖Hc‖∗ + ‖H0‖∗

)
≥ ‖X +Hc‖∗ − ‖H0‖∗ − κ

(
‖Hc‖∗ + ‖H0‖∗

)
= ‖X‖∗ + ‖Hc‖∗ − ‖H0‖∗ − κ

(
‖Hc‖∗ + ‖H0‖∗

)
= ‖X‖∗ + (1− κ)‖Hc‖∗ − (1 + κ)‖H0‖∗.

Consequently, we have

‖Hc‖∗ ≤
1 + κ

1− κ
‖H0‖∗,

an inequality slightly worse than (8.11) for small κ. Therefore, an argument similar

to the one leading to (8.12) yields

‖H‖∗ ≤
2

1− κ
√

2r‖H‖F, (8.23)

or equivalently,

τ(H) ≤ 8r

(1− κ)2
. (8.24)

Now we need to establish a bound on

‖A∗(A(H))‖2 ≤ ‖A∗(y −A(X))‖2 + ‖A∗(y −A(X̂))‖2
≤ ‖A∗(w)‖2 + ‖A∗(y −A(X̂))‖2
= κµ+ ‖A∗(y −A(X̂))‖2. (8.25)

We follow the procedure in [7] (see also [80]) to estimate ‖A∗(y −A(X̂))‖2. Since X̂

is the solution to (7.6), the optimality condition yields that

A∗(y −A(X̂)) ∈ ∂‖X̂‖∗, (8.26)
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where ∂‖X̂‖∗ is the family of subgradient of ‖ · ‖∗ evaluated at X̂. According to [31],

if the singular value decomposition of X̂ is UΣV T , then we have

∂‖X̂‖∗ = {µ(UV T +W ) : ‖W‖2 ≤ 1,

UTW = 0,WV = 0}. (8.27)

As a consequence, we obtain A∗(y −A(X̂)) = µ(UV T +W ) and

‖A∗(y −A(X̂))‖2 ≤ ‖µ(UV T +W )‖2
= µ. (8.28)

We used ‖UV T +W‖2 = 1 because

max
x:‖x‖2=1

‖(UV T +W )x‖2

= max
y:‖y‖2=1

‖(UV T +W )V y‖2 ≤ 1. (8.29)

Following the same lines in (8.20), we get

‖A(H)‖22 ≤ (κ+ 1)µ‖H‖∗. (8.30)

Then, Equation (8.23), (8.25) and (8.28)

ρ2 8r
(1−κ)2

‖H‖2F ≤ ‖A(H)‖22

≤ (κ+ 1)µ

√
8r

1− κ
‖H‖F. (8.31)

As a consequence, the conclusion of Theorem 8.1.3 holds.

8.2 Probabilistic Analysis

This section is devoted to analyzing the properties of the `∗-CMSVs for several im-

portant random sensing ensembles. Although the bounds in Theorem 8.1.1, 8.1.2

and 8.1.3 have concise forms, they are useless if the quantity involved, ρτ , is zero or
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approaches zero for most matrices as n1, n2,m, k vary in a reasonable manner. We

show that, at least for the isotropic and subgaussian ensemble, the `∗-CMSVs are

bounded away from zero with high probability.

Recall from Chapter 2 that a linear operator A : Rn1×n2 → Rm can be represented

by a collection of matrices A = {A1, . . . , Am}. Based on this representation of A, we

have the following definition of isotropic and subgaussian operators:

Definition 8.2.1. Suppose A : Rn1×n2 → Rm is a linear operator with corresponding

matrix representation A . We say A is from the isotropic and subgaussian ensemble

if for each Ai ∈ A , vec(Ai) is an independent isotropic and subgaussian vector with

constant L, and L is a numerical constant independent of n1, n2.

For any isotropic and subgaussian operator
√
mA the typical value of ρτ (A) concen-

trates around 1 for relatively large m (but � n1n2). More precisely, we have the

following theorem:

Theorem 8.2.1. Let
√
mA be an isotropic and subgaussian operator with some nu-

merical constant L. Then there exists absolute constants c1, c2 depending on L only

such that for any ε > 0 and m ≥ 1 satisfying

m ≥ c1
τn2

ε2
, (8.32)

we have

E|1− ρτ (A)| ≤ ε (8.33)

and

P {1− ε ≤ ρτ (A) ≤ 1 + ε} ≥ 1− exp(−c2ε2m). (8.34)

Proof of Theorem 8.2.1. Since the linear operator A is generated in a way such that

E‖A(X)‖22 = ‖X‖2F for any X ∈ Rn1×n2 , we have |ρτ (A)− 1| < 1− ε is a consequence
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of

supX∈Hτ

∣∣∣∣ 1

m
A(X)TA(X)− 1

∣∣∣∣
= supX∈Hτ

∣∣∣∣∣ 1

m

m∑
k=1

〈
Ak, X

〉2 − 1

∣∣∣∣∣ ≤ ε. (8.35)

As usual, the operator A is represented by a collection of matrices A = {A1, . . . , Am}.
We define a class of functions parameterized by X as Fτ

def
= {fX(·) = 〈X, ·〉 : X ∈ Hτ}

with

Hτ = {X ∈ Rn1×n2 : ‖X‖F = 1, ‖X‖2∗ ≤ τ}. (8.36)

It remains to compute `∗(Hτ ) as follows

`∗(Hτ ) = EsupX∈Hτ 〈G,X〉

≤ c ‖X‖∗ E ‖G‖2
≤ c

√
τ
√
n2, (8.37)

where G is a Gaussian matrix with i.i.d. entries from N (0, 1). As a consequence, the

conclusions of Theorem 8.2.1 hold.

8.3 Computational Difficulties

There are significant challenges in extending the computational framework developed

for sparsity recovery and block-sparsity recovery to low-rank matrix recovery. One

might attempt to use the spectral norm ‖X‖2 to define a similar ω function and

develop a fixed point theory to compute it. The fixed point theory can indeed be

generalized to low-rank matrix recovery. However, the subprograms to compute the

associated scalar auxiliary functions are difficult to solve. To see this, note that the

verification problems induced by the `∗-CMSV and the ω function defined via the
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spectral norm take the form:

max
X∈Rn1×n2

‖X‖� s.t. A(X) = 0, ‖X‖∗ ≤ 1, (8.38)

where � = F or 2. When � = F and X ∈ Rn×n is a diagonal matrix with x ∈ Rn on

its diagonal, (8.38) is equivalent with

max
x∈Rn

‖x‖2 s.t. Ax = 0, ‖x‖1 ≤ 1, (8.39)

for suitably defined A. As we mentioned in Chapter 4, the optimization (8.39) is NP

hard [84].

When � = 2, it is also not obvious how to solve (8.38). A relaxation procedure similar

to those for sparsity recovery and block-sparsity recovery goes as follows:

max{‖X‖2 : X ∈ Rn1×n2 ,A(X) = 0, ‖X‖∗ ≤ 1}

= max{〈X, Y 〉 : X ∈ Rn1×n2 , Y ∈ Rn1×n2 ,A(X) = 0, ‖X‖∗ ≤ 1, ‖Y ‖∗ ≤ 1}

= max{
〈
X − BT ◦ A(X), Y

〉
: X ∈ Rn1×n2 , Y ∈ Rn1×n2 ,A(X) = 0, ‖X‖∗ ≤ 1, ‖Y ‖∗ ≤ 1}

≤ max{
〈
X − BT ◦ A(X), Y

〉
: X ∈ Rn1×n2 , Y ∈ Rn1×n2 , ‖X‖∗ ≤ 1, ‖Y ‖∗ ≤ 1}

= max ‖(id− BT ◦ A)(X)‖2 s.t. ‖X‖∗ ≤ 1
def
= g(B). (8.40)

We have used ◦ to denote the composition of two operators and id to denote the

identity operator. Then a tight upper bound is obtained by minimizing the following

convex function

g(B) = max
X 6=0

‖(id− BT ◦ A)(X)‖2
‖X‖∗

, (8.41)

which is the operator norm of id−BT ◦ A : (Rn1×n2 , ‖ · ‖∗)→ (Rn1×n2 , ‖ · ‖2). Unfor-

tunately, we do not have an efficient way to compute this operator norm and/or its

subgradient.

146



Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this dissertation, we analyzed the performance on recovering signals with low-

dimensional structures, in particular, the sparsity, block-sparsity, and low-rankness.

According to the addressed problems and the used techniques, the body of the work

can be divided into three parts:

• Goodness Measures and Performance Bounds: In this part, we defined

functions such as ρs(A) and ω�(Q, s) to quantify the goodness of the sensing

matrix in the context of signal recovery. These goodness measures are usually

defined as the Rayleigh quotient type quantities minimized over a set charac-

terizing the recovery error vectors. Therefore, the functions ρs(A) and ω�(Q, s)

quantify the invertibility of the sensing matrix A in the worst-case scenario. We

then derived performance bounds in terms of these goodness measures. One dis-

tinct feature of this work is that, instead of the popular `2 norm, we used the `∞

norm and the block-`∞ norm as the performance criteria for sparsity recovery

and block-sparsity recovery, respectively. We chose these two unconventional

norms because of their connections with other performance criteria, especially

the signal support, and because of the computability of the resulting goodness

measures and performance bounds.

• Computational Algorithms: We designed algorithms to compute the good-

ness measures, more explicitly, the ω functions. We overcame the computational

difficulty due to the highly non-convexity of ω by reducing its computation and
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approximation to the localization of the unique positive fixed points of scalar

auxiliary functions. These auxiliary functions were in turn computed by a se-

ries of linear programs, second-order cone programs, or semidefinite programs.

Based on the fixed point characterization of the goodness measures, we devel-

oped efficient algorithms to compute the ω functions using fixed point iterations

and bisection search, and established their convergence.

As a by-product, we developed algorithms to verify the uniqueness and exactness

of various convex relaxations algorithms in the noise-free case. These verification

algorithms are generally easier to solve than to compute or approximate the

ω functions directly. Numerical simulations show that our implementations

produce state-of-the-art results.

• Probabilistic Analysis: The third part of this work consists of probabilistic

analysis of the goodness measures for random sensing matrices, especially the

isotropic and subgaussian ensemble. We employed a general result in estimat-

ing the convergence rates of empirical processes, which was established using

the idea of generic chaining. By reducing the problem to merely computing

the expected value of the supreme of a properly defined Gaussian process, the

empirical process approach turned out to be a truly powerful tool in analyzing

the probabilistic behavior of the ω and ρ functions. As a matter of fact, these

functions defined for sparsity recovery, block-sparsity recovery, and low-rank

matrix recovery can be analyzed using the empirical process approach in a very

similar manner.

We expect that these goodness measures will be useful in comparing different sensing

systems and recovery algorithms, as well as in designing optimal sensing matrices.

9.2 Future Work

In future, we plan to extend the work in several directions expounded in the following.

• Optimal Sensing Matrix Design: We plan to apply our computational algo-

rithms to the optimal design of the sensing matrix. A complete optimal design
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framework would require optimizing, e.g., the ω functions subject to constraint

on the allowable sensing matrices. Since the procedures to compute the ω

functions are already complex, the problems of optimal design pose significant

challenges. We will instead consider simpler problems. For example, we plan

to consider how to extract a submatrix B from a large sensing matrix A with

as fewer rows as possible but retain the recovery performance of A. Note that

for block-sparsity recovery, the recovery performance is determined by

max
i

min
P[i]

sη

(
max
j
‖δijIn − P T

[i]A[j]‖2
)

+ ‖P[i]‖2,

= ‖Inp − P ∗TA‖b 2,∞ + max
i
‖P ∗[i]‖2, (9.1)

where P ∗ is the optimal solutions and the ‖ · ‖b 2,∞ norm for an np×np matrix

is defined as the maximal largest singular values of its p2 n × n blocks. If we

could select rows of A indexed by S to form a submatrix B such that

‖P ∗TA− P ∗T[S]B‖b 2,∞ (9.2)

is small, then triangle inequality implies that B might produce recovery per-

formance similar to A. We therefore convert the problem of sensing matrix

selection into one of low rank matrix approximation with the ‖ · ‖b 2,∞ norm as

the approximation accuracy measure. A similar idea was developed in [104] for

sparsity recovery.

• Extension to Other Low-dimensional Structures: One common feature

of the low-dimensional signals considered in this paper is that they can be

expressed as the linear combinations of a few elements from an atomic set. For

example, the atomic set for sparse signals is the set of the canonical basis vectors,

and the atomic set for low-rank matrices is the set of all rank one matrices. This

idea has been extended into other atomic sets such as those formed by sign-

vector {−1,+1}n, permutation matrices, and orthogonal matrices, and finds

applications in many practical problems [105]. It would be interesting to extend

the computable performance analysis to these new low-dimensional structures.

• Extension to Nonuniform Recovery: This work focuses on the performance

analysis of uniform recovery. We would like to extend the results to nonuniform
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recovery. For uniform recovery, once the sensing matrix is chosen, then all sig-

nals with certain low-dimensional structure must be able to be recovered as long

as the noise satisfies some conditions. Therefore, the performance analysis on

uniform recovery is a worst-case-scenario analysis and the conditions imposed

on the sensing matrix are quiet stringent. On the other hand, nonuniform recov-

ery only requires the successful recovery of a portion of the signals, sometimes

a single signal. For example, in sparsity recovery we might have some prior

information of the support of the underlying signal, and require stable recovery

only those signals described by the prior information. The prior information

might come from previous estimates of the signals in a system where signals are

streaming in and changing slowly. We expect that by properly incorporating

the prior information we would obtain tighter performance bounds that are still

computable.

• Applications to practical problems: We will apply our computable perfor-

mance measures to many practical problems. Areas of interest include sensor

array, MRI, MIMO radar, reflectance estimation, and machine learning. For

example, in reflectance estimation from RGB information using sparsity recov-

ery [106], the system performance can be greatly improved if we measure the

RGB under several different illuminations. Since the choices of illuminations

are very limited, we could compare their performance by directly computing

the goodness measures associated with each choice. We expect the computable

performance measures we developed in this dissertation would provide new ap-

proaches to many such practical problems.

150



References

[1] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,” IEEE
Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, feb 2006.

[2] H. Chang, D. Y. Yeung, and Y. Xiong, “Super-resolution through neighbor
embedding,” in Proc. IEEE Conf. Comput. Vis, 2004, vol. 1, pp. 275–282.

[3] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via sparse
representation,” IEEE Trans. Image Process., vol. 19, no. 11, pp. 2861 –2873,
nov. 2010.

[4] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face recognition
via sparse representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31,
no. 2, feb 2009.

[5] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,”
IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21–30, mar 2008.

[6] Y. C. Eldar and M. Mishali, “Robust recovery of signals from a structured
union of subspaces,” IEEE Trans. Inf. Theory, vol. 55, no. 11, pp. 5302 –5316,
nov. 2009.

[7] E. J. Candès and Y. Plan, “Tight oracle inequalities for low-rank matrix re-
covery from a minimal number of noisy random measurements,” IEEE Trans.
Inf. Theory, vol. 57, no. 4, pp. 2342–2359, apr 2011.

[8] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric frame-
work for nonlinear dimensionality reduction,” Science, vol. 290, no. 5500, dec
2000.

[9] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally
linear embedding,” Science, pp. 2323–2326, dec 2000.

[10] R. G. Baraniuk, “Compressive sensing [lecture notes],” IEEE Signal Process.
Mag., vol. 24, no. 4, pp. 118–121, jul 2007.

[11] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4,
pp. 1289–1306, apr 2006.

151



[12] D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal reconstruction
perspective for source localization with sensor arrays,” IEEE Trans. Signal
Process., vol. 53, no. 8, pp. 3010–3022, aug 2005.

[13] D. H. Johnson and D. E. Dudgeon, Array Signal Processing: Concepts and
Techniques, Prentice Hall, Englewood Cliffs, NJ, 1993.

[14] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Pro-
ceedings of the IEEE, vol. 57, no. 8, pp. 1408–1418, aug 1969.

[15] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE
Trans. Antennas Propag., vol. 34, no. 3, pp. 276–280, mar 1986.

[16] G. Bienvenu and L. Kopp, “Adaptivity to background noise spatial coherence
for high resolution passive methods,” in Proc. IEEE Int. Conf. Acoustics, Speech
and Signal Processing (ICASSP 1980), Denver, CO, apr 1980, vol. 5, pp. 307–
310.

[17] P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and Cramér-Rao
bound: Further results and comparisons,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 38, no. 12, pp. 2140–2150, dec 1990.

[18] D. Model and M. Zibulevsky, “Signal reconstruction in sensor arrays using
sparse representations,” Signal Processing, vol. 86, pp. 624–638, mar 2006.

[19] V. Cevher, M. Duarte, and R. G. Baraniuk, “Distributed target localization via
spatial sparsity,” in European Signal Processing Conference (EUSIPCO 2008),
Lausanne, Switzerland, aug 2008.

[20] V. Cevher, P. Indyk, C. Hegde, and R. G. Baraniuk, “Recovery of clustered
sparse signals from compressive measurements,” in Int. Conf. Sampling Theory
and Applications (SAMPTA 2009), Marseille, France, may 2009, pp. 18–22.

[21] S. Sen and A. Nehorai, “Sparsity-based multi-target tracking using OFDM
radar,” IEEE Trans. Signal Process., vol. 59, pp. 1902–1906, Apr. 2011.

[22] S. Sen, G. Tang, and A. Nehorai, “Multiobjective optimization of OFDM radar
waveform for target detection,” IEEE Trans. Signal Process., vol. 59, no. 2, pp.
639–652, feb 2011.
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