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ABSTRACT OF THE DISSERTATION 

Intraurban Variability of Ambient Particulate Matter 

by 

Varun Yadav  

Doctor of Philosophy in Energy, Environmental & Chemical Engineering 

Washington University in St. Louis, 2013 

Professor Jay R. Turner, Chair 

 

An understanding of spatial and temporal variability in ambient particulate matter (PM) is 

important for effective air quality management and for assessing potential exposure 

misclassification in epidemiological and exposure studies used to support health-based standards. 

Spatiotemporal variability of PM in urban areas can be influenced by many factors, such as local 

sources of primary PM; source locations and their emission profiles; topographic barriers; 

meteorological patterns; behavior of semi-volatile components; and measurement errors. 

Intraurban variability is often gauged by conducting measurements at a network of monitoring 

stations across the region of interest. While certain statistical metrics are commonly used and 

interpreted in a relative sense across site-pairs, there is no standardized framework for analyzing 

such datasets.  

This dissertation presents systematic data analysis approaches applicable to a variety of 

monitoring networks for assessing intraurban variability in PM and its components. Interpreting 

patterns in statistical metrics for a network with a large number of sites can be particularly 

challenging, and calculating these metrics for each site with respect to a reference concentration 
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time series may better reveal the variability. In the absence of a representative background site, 

the network itself can be utilized to generate baseline and site-specific excess concentration time 

series to semi-quantitatively differentiate urban- and larger-scale contributions from local-scale 

emissions. Utilizing this approach to interpret patterns in the statistical metrics provides insights 

into the factors influencing the baseline and the monitoring sites displaying greater variability.  

Apportionment of measured concentrations at each site into baseline and site-specific excess 

concentrations towards refined application of wind regression tools for estimating local emission 

source regions are also discussed. The approach is also utilized for identifying meteorological 

and geographic factors that modulate the spatial and temporal PM trends. It also provides a 

weight-of-evidence to conventional source apportionment tools used for estimating local and 

regional source impacts. The strengths and limitations of the proposed approaches are discussed 

for a variety of networks measuring PM and/or its components on varying spatial and temporal 

scales. Issues regarding measurement uncertainty estimation and precision in data reporting 

which can influence interpretation of variability are also discussed. 
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Chapter 1 :Introduction 

1.1. Introduction 

An understanding of ambient particulate matter (PM) spatiotemporal variability is important for 

effective air quality management. Such management is often practiced on the urban scale, and 

intraurban variability affects the spatial zone that is represented by observational data collected 

at a given site.  Control strategy development requires an understanding of both the spatial zones 

represented by the monitoring network and the spatial zones of influence for emission sources.  

Spatiotemporal variability influences the value of each monitor in a network and, when 

considered in the context of the network objectives, this information can be used to optimize the 

network design.  In addition to air quality management, epidemiological and exposure studies 

used to support health-based standards can also be affected by exposure misclassification from 

inadequate accounting of spatial and/or temporal variability (Wilson et al., 2005).  It is 

commonly assumed that the spatial distribution of certain pollutants is homogeneous within large 

urban areas and ambient pollutant burdens at a central monitoring site are representative for the 

spatial extent of the study area.  Many studies supported this assumption and indeed found well 

correlated distributions of PM within urban areas (Burton et al., 1996 (PM2.5 and PM10); Pope et 

al., 2002 (PM2.5); Roosli et al., 2001 (PM10)).  In other cases, however, studies examining 

datasets on finer spatial and temporal scales suggest greater variation within urban areas than 

previously characterized (Ito et al., 2004 (PM2.5); Pinto et al., 2004 (PM2.5); Kim et al., 2005 

(PM2.5)).   
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Spatial variability of PM mass and its constituents in urban areas can be influenced by several 

factors such as those identified by Pinto et al. (2004):  

 local sources of primary PM emissions;  

 transient emission events;  

 topographic barriers that isolate sub-regions of the urban area;  

 meteorological phenomena that vary on spatial scales within the urban area;  

 differences in behavior of semi-volatile components; and  

 measurement errors. 

Influences from local sources have been well studied and documented. Watson and Chow (2001) 

summarized spatial scales of influence for emission sources (Table 1-1).  These operationally 

defined scales can also be viewed from the perspective of the receptor sites where the 

observational data are collected.  Micro-, middle-, neighborhood-, and urban-scale emission 

sources will necessarily drive intraurban variability.  Topographical barriers and meteorological 

phenomena acting on spatial scales finer than the urban area can also modulate spatial 

variability.  While mountains and valleys are visually evident topographical barriers, urban 

canyons and water bodies can also influence airflow patterns.  Spatial variability in the 

environmental conditions such as meteorological conditions, temperature and humidity can also 

induce variability in the ambient particulate concentrations (Seinfeld and Pandis, 2006).  

Humidity, fog, as well as temperature differences due to urban-heat island effect can alter the 

PM characteristics.    
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Table 1-1. Spatial scales of emission source influence (Watson and Chow (2001)). 

Scale   Spatial range 

Micro 
 

~10 m 

Middle 
 

~0.1-1 km 

Neighborhood ~ 1-5 km 

Urban 
 

~5-50 km 

Regional 
 

~50-1000 km 

Continental ~1000-5000 km 

Global   >5000 km 

 

Transient emissions events that exert intraurban variability are typically less well characterized, 

especially if they are rare events within the dataset.  These exceptional events are often excluded 

from data analyses depending on the study objectives.  For example, holiday fireworks can result 

in large spikes in PM mass but are viewed as anomalies and are often excluded from source 

apportionment analyses.  Exceptions are transient events that lead to exceedances of a National 

Ambient Air Quality Standard (NAAQS); there is considerable motivation to quantify the impact 

from such events to petition for having such data excluded from the determination of whether a 

monitor violates the NAAQS.  Spatial differences in semi-volatile components are becoming 

better understood primarily due to advances in the measurement methods such as continuous 

monitors that can classify ambient PM mass into operationally defined volatile and nonvolatile 

components.  Finally, measurement error can also lead to artificial spatial variability in 

observational datasets.  In addition to these physical factors that modulate intraurban variability, 

analyses must consider the spatial extent of the region, temporal scales, and PM attributes of 

interest.  Depending on the analysis objectives, the time scale of interest may include 

climatological norms, annual, seasonal, day-of-week, diurnal or even hourly time scales. 
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Intraurban variability studies are conducted to meet a variety of study objectives; in many cases, 

however, the objectives are not well defined a priori and the data analysis proceeds without a 

clear roadmap.  One common objective – whether or not it is explicitly stated – is to delineate the 

relative contributions from sources exerting influence on different scales (e.g., local versus 

regional sources). Long-range transport of pollutants can lead to spatial homogeneity or 

uniformity in species concentrations across urban networks.  Depending on the location and 

strength of the local sources, meteorological conditions, and various other factors described 

earlier, local emission can disrupt this homogeneity.  Because of the numerous factors affecting 

variability, there are no general guidelines for data analysis and studies have used one-or-more 

different methods to gauge variability in PM and its constituents. A few such metrics and 

approaches are listed in Table 1-2 with their advantages and limitations.     

1.1.1. Metrics for gauging variability 

PM uniformity within urban areas is examined using several metrics, none of which alone can 

capture all aspects of variability.  A commonly used statistical metric is the Pearson’s correlation 

coefficient (r or PCC) which is defined as the ratio of the covariance between two datasets to the 

product of their respective standard deviations.  The coefficient is often used to gauge correlation 

in concentrations between two monitoring sites (Burton et al., 1996; DeGaetano et al., 2004).  

High intersite correlation indicates spatially consistent temporal variability but not necessarily 

spatial uniformity in mass concentrations (Pinto et al., 2004).  The coefficient of variation, which 

is a normalized measure of dispersion and defined as the ratio of the standard deviation to the 

mean value of the dataset expressed as a percentage, has also been used for characterizing 

variability.  It often utilized for examining temporal variability in concentration time series  
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Table 1-2. Various methods used for intraurban variability studies with their advantages 

and disadvantages. 

Method Advantages Disadvantages Examples 

Pearson 

Correlation 

Coefficient 

Measures linear relationship 

between two datasets. 

Tracks temporal variation. 

Does not inform about 

spatial variability. Sensitive 

to outliers 

Burton et al. 

(1996); Pinto et al. 

(2004) 

    Coefficient of 

Variation 

Informs about dispersion 

within a dataset. 

Very sensitive to outliers. Houthuijs et al. 

(2001); 

Martuzevicius et 

al. (2004) 

    Coefficient of 

Divergence 

Tracks spatial homogeneity. Does not inform about 

temporal variability.  

Wongphatarakul et 

al. (1998); Pinto et 

al. (2004) 

    Absolute 

Concentration 

Difference 

Provides direct measure of 

concentration gradient 

across sites. 

Prone to large propagated 

uncertainty, 

Blanchard et al. 

(1999); Röösli et 

al. (2004) 

    Ratio-of-

Ratios 

Indicates if the quantities 

are impacted by similar 

sources. 

Undermines drivers of 

variability at the 

background site.  

Schwab et al. 

(2004) 

    Cumulative 

Probability 

Function 

Relates concentration 

distribution to wind 

direction. 

Dependent on concentration 

distribution. Different time 

scales of mass and wind 

datasets can cause smearing. 

Kim et al. (2003); 

Begum et al. 

(2004); Wang et 

al. (2011) 

Nonparametric 

Wind 

Regression 

Relates concentrations to 

wind directions. 

Independent of 

concentration distribution.  

Smoothing parameter used 

can either add noise or 

overlook minor sources. 

Henry et al. 

(2002); Wang et 

al. (2011) 

Nonparametric 

Trajectory 

Regression 

Relates concentrations to 

air mass locations along the 

near-field back trajectory 

Requires short-term 

variability in winds and 

high-time resolution data. 

Henry et al. (2011) 
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(either in its entirety or windowed) at a single site and can be used for examining spatial 

variability across simultaneously operated monitoring stations for a given sampling event 

(Houthuijs et al., 2001; Martuzevicius et al., 2004).  However, this metric is very sensitive to the 

extreme values and is typically used to gauge dispersion within a distribution (either in 

concentration time series of a site or for a sampling event across multiple sites). Coefficient of 

Divergence (COD), defined as the root mean square of the ratio of sample-specific difference to 

its sum, is also used as a scale to gauge the concentration variability (Wongphatarakul et al., 

1998).  It is usually compared to other COD values to gauge spatial variability in a relative sense 

(Pinto et al., 2004).  COD < 0.20 are often associated with spatial homogeneity while higher 

values are associated with relative spatial heterogeneity (Wilson et al., 2005).  However, a 

context for the absolute COD value has not been provided and thus the extent of variability 

cannot be inferred from its value alone.  

1.1.2. Other approaches for interpreting variability  

In addition to the aforementioned metrics, various other approaches have been used for gauging 

intraurban variability.  A common approach is to calculate inter-site concentration differences as 

they provide a direct measure of excess at one site compared to the another (Blanchard et al., 

1999; Noble et al., 2003; Nerriere et al., 2005).  Kim et al. (2005) observed significant spatial 

variability in source contributions identified from the receptor modeling of PM2.5 mass across ten 

monitoring sites in St. Louis, even though PM2.5 mass was fairly well correlated.  However, 

comparing average concentration differences alone disregards valuable information in the 

distribution of differences that can be used to examine the underlying drivers for variability.  

Species contributed by local sources can display discernible variation but the interpretation of 

variability in species dominated by regionally transported contributions can be confounded by 
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the often relatively large propagated uncertainty for the concentration differences (Roosli et al., 

2001).   

Schwab et al. (2004) examined seasonal variability across urban and rural sites in the New York 

state by defining a “ratio-of-ratios” (RR) metric.  For a given species, the ratio of seasonal 

average at a given site to the seasonal average at a rural site was defined as the “base ratio”.  The 

site- and season-specific base ratios for each species were divided by the corresponding base 

ratio for PM2.5 mass to gauge variability in site- and season-specific species concentrations 

relative to PM2.5 mass.  Species with significant local influences would be expected to have RR 

values greater than unity, while species dominated by regional transport would be less than unity.  

By interpreting RR values in a relative sense, the study examined spatial uniformity of sulfates 

and seasonal variability of nitrates.  While RR values outside 0.6-2 were deemed significantly 

different from unity, values within 0.6-2 were more challenging to interpret.  

Goldman et al. (2010) assessed spatial variability of twelve PM2.5 pollutants in the Metropolitan 

Atlanta area by calculating modified semi-variances, defined as the ratio of one-half of the 

variance of the two inter-site concentration differences normalized by the average of those two 

observations for each species. For correlated observations the modified semi-variances 

approached zero and unity for uncorrelated observations.  By plotting the logarithmic semi-

variances against the corresponding distance between the two monitoring sites, the estimated 

range for secondary and primary pollutants were determined to be consistent with the respective 

zone of influence.   
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1.1.3. Identifying emission sources using meteorological datasets 

The coupling between observed concentrations with surface and synoptic winds can provide 

considerable insight into the impact of emission sources.  Even though the wind direction and 

speed often vary throughout the sampling duration, various tools building upon the simple 

‘pollution rose’ have been developed to take advantage of meteorological data to determine the 

directionality of possible sources.  Calm winds (operationally, wind speeds below the starting 

threshold of the sensor such as ~1 m/s) are usually removed from the analysis since stagnation or 

sloshing of air masses leads to elevated concentrations which cannot be tracked back to any 

particular source through the surface winds data.  Long-range transport of pollutants, i.e. 

contributions from emission sources located at large distances compared to the spatial scale of an 

urban-scale network, is expected to result in uniform contributions at all monitoring sites.  

Concentration variation with synoptic winds are often examined using air mass back trajectories 

to identify emission source regions (Davis et al., 2003; Allen and Turner, 2008; Robinson et al., 

2011).  In general, each observed/modeled concentration at the receptor location is assigned to 

every grid in the spatial domain along the corresponding back trajectory and combined using 

some statistical measure to obtain a conditional probability field based on the residence time of 

air masses (Stohl, 1998).  Various approaches have been used to identify the source regions for 

concentrations over continental scales (Stohl, 1996; Keeler and Samson, 1989; Polissar et al., 

2001; Zhou et al., 2004; Scheifinger and Kaiser, 2007). 

A variety of approaches are utilized to identify the directionality of local sources leading to high 

concentrations at a receptor site.  One such tool is the Conditional Probability Function (CPF) 

plot, which displays the fraction of samples from each discrete wind sector that have 

concentrations at the receptor site higher than a predetermined threshold concentration (Kim et 
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al. (2003) based on a conditional probability framework described by Ashbaugh et al. (1985)).  

The threshold concentration is typically chosen based on the distribution of receptor 

concentrations such as the top 25
th

 percentile.  The putative source bearings obtained from CPF 

plots can be smeared across wind sectors if there is mismatch between the time resolution of the 

meteorological data and pollutant data (e.g., 24-hour integrated samples with hourly winds).  In 

the ideal case, the pollutant samples would be collected with time direction shorter than the 

characteristic time for persistent changes in the wind direction.  Pollutant and concurrent 

meteorological measurements at fine resolution, if available, provide robust identification of the 

influential sources (Davidson et al., 2009).  While such synchronization is often not practical, 

CPF plots have been used to identify source locations in various PM data analysis and source 

apportionment studies (Kim and Hopke, 2004; Begum et al., 2004).  

Non-parametric wind regression (NWR) is a method of quantifying the relationship between the 

dependent (concentration) and predictor (wind direction) variables without making any 

assumptions about the functional form of the relationship or the statistical distribution of the data 

(Henry et al., 2002).  By using NWR with Gaussian kernel as a non-subjective alternative to the 

usual discrete wind sector method, the directionality of peak concentrations at the receptor sites 

can be estimated.  The optimized width of the kernel function (the smoothing parameter) plays a 

significant role in determining the bearings of the concentration peaks.  A large smoothing 

parameter results in smoother curves and some peaks corresponding to real sources may be lost 

or not resolved, while a small smoothing parameter can lead to peaks dominated by noise and/or 

large peaks being resolved into multiple false peaks.  Confidence intervals for NWR plots, 

generated using a bootstrap method, are recommended to examine the validity of the NWR 

peaks.  NWR plots are often utilized for determining the directionality of the emission sources 
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impacting a receptor site (Henry et al., 2002; Yu et al., 2004; Henry 2008; Wang et al., 2011).  

Henry et al. (2002) used the estimated peak locations in NWR plots of cyclohexane 

concentrations measured at two sites to triangulate the likely source location.  However, such 

triangulation has not been attempted in an area with a complex set of emission sources.  Similar 

to CPF plots, NWR plots can also be noisy if the time resolution of the meteorological dataset 

and the measured mass are not same.  Henry et al. (2011) proposed a nonparametric trajectory 

regression (NTA) to utilize high time resolution concentrations and local wind trajectories to 

estimate emission source locations, but its applicability to various scenarios is yet to be tested.   

1.1.4. Variability from measurement error 

Measurement error results from differences between measured and true ambient concentrations 

and is inherent to ambient air pollution monitoring.  Errors can occur because of instrument 

and/or spatial errors which is the inability of a single time-series to accurately represent the 

ambient levels throughout the study area (Wade et al., 2006).  For example, similar time-

averaged concentrations at two sites may suggest spatial uniformity but if the concentration 

differences on finer time resolutions cannot be explained by measurement uncertainty, then there 

could be spatial variability between the sites which is masked by the time averaging (Turner, 

2008).  Furthermore, observed inter-site concentration differences that can be explained by 

precision estimates of the measured concentrations may not lead to robust estimation of spatial 

and temporal variability.  Thus, datasets that capture a range of concentrations with high 

precision in data reporting are preferred for such analysis to be representative of true variability.  

Uncertainty estimates of the species concentrations, when available, enable better understanding 

of concentration differences that can prevent misclassification of variability.  
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1.2. Thesis objectives and structure 

Air quality studies performed during the course of this dissertation are summarized in Appendix 

A.  The main body of this dissertation is structured to focus on the unifying theme of this work 

which is the development and evaluation of strategies for assessing intraurban spatial variability 

in PM and its components that can be applied to urban- and finer-scale monitoring networks.  In 

particular, three networks with markedly different characteristics are examined (Table 1-3). The 

common approach for analyzing these datasets is to evaluate variability in concentrations across 

the monitoring sites by utilizing one-or-more metrics/approaches and then to identify the 

probable emission source locations/zones that contribute to the variability across the network.  

The approach has been iterative with lessons learned from one study used to inform reanalysis of 

the other studies.  A systematic approach to identifying and interpreting variability in 

concentrations from a network of urban- and finer-scale monitoring sites has emerged and its 

advantages and limitations are examined for a variety of networks.    

Table 1-3. Characteristics of monitoring networks examined in this dissertation. 

Network 
 

Measurements 

Location Spatial scale Sites 
 

Parameters Duration Resolution 

St. Louis, 

MO, USA 
Urban 4 

 

PM10 air  

toxic metals 

One year  

(2008) 

24-hour integrated 

1-in-3 days  

Dearborn, 

MI, USA 
Neighborhood 3 

 

PM2.5  

EC/OC 

Three months 

(Sep-Dec, 2008) 

Hourly  

continuous 

Hong Kong, 

China 
Urban 

14 
 

PM10  

Mass 

Ten years  

(1998-2008) 

Hourly  

continuous 

10 
 

PM10  

Species 

Ten years  

(1998-2008) 

24-hour integrated 

1-in-6 days 

4 
 

PM2.5  

Species 

Three years 

(2000-01; 2004-

05; 2008-09) 

24-hour integrated 

1-in-6 days 
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The first objective of this dissertation was to develop a systematic approach to combine 

statistical metrics used for gauging spatiotemporal variability in concentrations.  In Chapter 2, air 

toxic metals measured across a four site urban-scale network in St. Louis, MO, are utilized to 

introduce a graphical tool for interpreting spatiotemporal variability using correlation coefficient 

and coefficient of divergence.  Next, an approach is proposed to apportion the measured 

concentrations at each site into a network-wide baseline and site-specific excess concentrations 

to semi-quantitatively differentiate local-scale emission source contributions from sources 

exerting influence over larger spatial scales.  Finally, concentration-wind direction relationships 

are examined for estimating the emission source locations/zones influencing the observed 

variability in concentrations.  Strengthens and limitations of these approaches are examined 

using various air toxic metals species that were measured.  

Chapter 3 extends this methodology to PM carbon concentrations measured at high time 

resolution across a three site neighborhood-scale network in an industrial area in Dearborn, MI.  

This area has several emission sources and the emissions are likely intermittent.  These factors 

complicate the identification of putative sources driving the observed variability.  Chapter 4 

presents the assessment for an urban-scale air quality network in Hong Kong with multiple PM 

mass and speciation datasets collected over eleven years at fourteen sites.  The methodology 

contributes to a weight-of-evidence approach for interpreting spatial and temporal variability 

occurring over multiple spatial scales with well characterized concentration-source contribution 

linkages obtained from conventional source apportionment tools and in some cases evaluated 

using an emission inventory.  The methodology is also utilized to identify the various 

meteorological and geographic factors that modulate the spatial and temporal PM trends over 

Hong Kong.  Additional information about the source apportionment of Hong Kong speciation 
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datasets performed during this dissertation work is presented in Appendices B and C.  Issues 

regarding measurement uncertainty estimation and precision in data reporting that can influence 

interpretation of variability are discussed in Chapter 5 using the collocated species data collected 

in Hong Kong.  Finally, the overall contributions of this dissertation work are summarized in 

Chapter 6. 

The work performed in this doctoral research was the result of collaborations with state, regional 

and national government agencies, equipment manufacturers, and also academic institutions.  

Most dissertation chapters are academic papers which are in various stages of peer-review and 

publication.  The content within each manuscript is/will be largely the same as that found in the 

dissertation chapters and appendices.  The ambient PM samples used in Chapter 2 were collected 

by a four-site network managed by the Missouri Department of Natural Resources (MDNR).  

The candidate was responsible for the data collection at the Washington University in St. Louis 

(WUSTL) monitoring site; analytical analysis of samples collected at all four sites; the data 

analysis; interpretation and writing of the chapter.  Chapter 2, co-authored with Prof. Jay Turner, 

was submitted to Atmospheric Environment in October 2013 for the peer-review publication 

process.  The data used in Chapter 3 was collected by the Michigan Department of 

Environmental Quality (MDEQ) and the candidate was responsible for the data analysis, 

interpretation and writing of the chapter.  Chapter 3, co-authored with Prof. Jay Turner, will be 

submitted for peer-review publication after minor modifications.   

The datasets used in Chapter 4, Chapter 5, Appendix B and Appendix C were collected by the 

Hong Kong Environment Protection Department (HKEPD).  The overall data analysis project 

was a collaboration between Prof. Alexis Lau Dr. Zibing Yuan of Hong Kong University of 

Science and Technology (HKUST), the candidate and Prof. Jay Turner of Washington University 
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in St. Louis, and Dr. Peter Louie of HKEPD.  The candidate was responsible for the modeling, 

interpretation and writing of Chapter 4, Chapter 5 and Appendix C (which is the Supplementary 

Information for Chapter 4).  HKEPD and HKUST collaborated by providing their 

insights/comments on the interpretation of the analysis performed by the candidate.  Appendix B 

was published in the journal Atmospheric Environment in 2013 with Dr. Zibing Yuan (HKUST) 

as the first author, who conducted Positive Matrix Factorization (PMF) modeling of the PM10 

dataset and took the lead in writing the paper.  The candidate also conducted PMF modeling of 

the PM10 data in parallel to HKUST to support the collaboration, and conducted all of the 

modeling presented in the Supplementary Information section of Appendix B.  The candidate 

conducted all of the analyses in Chapter 4 (with Appendix C) and Chapter 5 which are in the 

review process with the co-authors at HKEPD and HKUST and will be submitted for peer-

review publication.  In accordance with the Washington University of St. Louis standards for 

completion of the thesis, the candidate is the first author and primary contributor to all four 

papers embodied by Chapters 2-5 and is the secondary author to the published work presented in 

Appendix B.  The funding sources and other people involved with each project are 

acknowledged within each chapter.  
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Chapter 2 :Gauging intraurban variability of ambient particulate 

matter arsenic and other air toxic metals from a network of 

monitoring sites 

2.1. Abstract 

A four site monitoring network was established in the Missouri portion of Metropolitan St. Louis 

during 2008 to characterize spatiotemporal patterns in PM10 arsenic.  Arsenic measured at two 

urban sites in the City of St. Louis was typically higher than arsenic at two suburban sites.  

Spatiotemporal variability in arsenic is examined by plotting the Pearson correlation coefficient 

(PCC) against the coefficient of divergence (COD) for each site-pair to merge the temporal 

tracking ability of PCC with COD’s ability to gauge spatial homogeneity.  Arsenic measured 

across the network is apportioned into a network-wide baseline and site-specific excess 

concentrations to semi-quantitatively differentiate local-scale emission source contributions from 

sources exerting influence over larger spatial scales.  Comparing measured concentrations at 

each site against the network-wide baseline concentration using a scattergram of PCC and COD 

emphasizes the impact of local sources on intraurban variability.  Conditional probability 

function (CPF) plots constructed using site-specific measured arsenic and surface winds identify 

a broad emission source region towards the east, but mask the bearings of local sources in the 

urban core.  CPF plots using site-specific arsenic in excess of the baseline concentrations provide 

better resolution of local emission source bearings and are triangulated to identify a likely arsenic 

emission source zone along the industrialized Mississippi Riverfront.  Additional air toxic metals 
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measured in this study (selenium, manganese and lead) are also investigated to examine the 

efficacy of this methodology to characterize intraurban variability.  

2.2. Introduction 

The United States Clean Air Act Amendments of 1990 identified 187 hazardous air pollutants 

(HAPs, or Air Toxics) based on their potential for serious health effects.  Acute exposure to air 

toxic metals such as arsenic can produce multiple organ toxicity, while long-term exposure can 

be carcinogenic (Duker et al., 2005; USEPA, 2004).  The St. Louis Community Air Project 

(CAP), conducted over the period 2001-05, featured detailed measurements of air toxics in an 

urban residential neighborhood and identified arsenic as an air toxic metal of concern for 1 in 

100,000 increased cancer risks from a 70-year exposure sustained at the observed annual average 

ambient concentration (USEPA, 2005).  However, these ambient particulate matter metals data 

were derived from Chemical Speciation Network (CSN) protocol measurements for PM2.5 and 

time-average concentrations were sensitive to the method used to impute concentration values 

below the minimum detection limit. Annual average PM10 arsenic measured at Blair St., a 

National Air Toxics Trends Station (NATTS) site in the City of St. Louis, is of the same 

magnitude as other such sites across the United States (USEPA, 2007).  However, maximum 24-

hour arsenic concentrations measured at Blair St. are frequently higher than those measured at 

the other sites.  The poorly characterized influence of local sources and the need for improved 

arsenic detectability to estimate robust time-average concentrations motivated the examination of 

short-term spatiotemporal variability of arsenic to identify local sources in the St. Louis region 

using sampling and analytical methods with higher sensitivity than those provided by the CSN. 
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Ambient arsenic can originate from natural sources (e.g. soil erosion and volcanic emissions) and 

anthropogenic sources (e.g. smelting of metals, use of pesticides, and combustion of fuels 

including coal-fired power plants).  However, contributions from anthropogenic sources are 

estimated to be almost three times more than that from natural sources (WHO, 2001).  Air 

samples collected over a decade at 14 counties along the Texas-Mexico border indicated a rise in 

ambient arsenic concentrations with rapid industrialization in the region (Shields, 1991).  An 

arsenic speciation study during 2001-02 at the highly industrialized Huelva region in 

southwestern Spain identified peak arsenic concentrations to occur at the urban background site 

for winds from the direction of a metal smelting facility (Sánchez-Rodas et al., 2007).  PM1.3 air 

toxic metals such as arsenic, selenium and lead, were measured at 30 minute resolution in East 

St. Louis (USA) during 2001-02 using the Semi-continuous Elements in Aerosol System 

(SEAS).  Wind directions during periods of high species concentration were examined to identify 

potential emission source regions (Wang et al., 2011).   

Many air quality studies have assumed that the spatial distribution of the pollutant is 

homogeneous within large urban areas and that concentrations at a central site are representative 

of the entire study area (Burton et al., 1996; Roosli et al., 2001).  However, several recent studies 

examining datasets on finer spatial and temporal scales often indicate greater variation within 

urban areas than was previously characterized (Pinto et al., 2004; Kim et al., 2005).  The spatial 

zone of representation for observational data collected at a site depends on the spatial scale of 

influence exerted by emission sources and thus is species-specific.  Inadequate accounting of 

spatial and/or temporal variability can lead to exposure misclassification in epidemiological and 

exposure studies used to support health-based standards (Wilson et al., 2005).   
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Summary statistics such as the mean and median concentrations are commonly used to describe 

variability.  Another commonly used metric is the Pearson correlation coefficient (r or PCC) 

which gauges the strength of association between two distributions.  PCC is defined in equation 

(2-1) where,     is the concentration for sample i at site j;  ̅  is the average concentration at site j; 

j and k are the two sampling sites; and, p is the number of paired observations.  PCC is the ratio 

of covariance between the two datasets to the product of their respective standard deviations and 

is bounded by [-1, +1].  The coefficient gauges association between concentrations at two sites 

over the entire sampling duration, with greater correlation indicated by values closer to ±1 and 

low correlation expressed by values closer to zero (DeGaetano et al., 2004; Sajani et al., 2004).  

While being a good reference metric, it is not a robust measure of spatial variability as it tracks 

temporal similarity between paired sites, and can have a weak association with the actual spatial 

homogeneity of concentrations (Pinto et al., 2004).  Coefficient of Divergence (COD), defined in 

equation (2-2), is another commonly used statistical metric (Wongphatarakul et al., 1998).  COD 

utilizes daily inter-site differences to gauge the concentration variability between two sites.  

COD < 0.20 is often associated with spatial homogeneity while higher values are associated with 

spatial heterogeneity (Wilson et al., 2005).   
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PCC and COD can be interpreted either individually or together to understand temporal and 

spatial variations in species concentrations (Krudysz et al., 2008).  A background monitoring 
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station with ideally no contributions from local source(s) could provide a reference concentration 

time series to gauge variability across a network.  In the absence of a well characterized 

background site, variability using PCC and COD is typically interpreted in a relative sense 

between site-pairs (Pinto et al., 2004).  These metrics are impacted by several factors influencing 

the measured concentrations at a site, including the mix of source emissions occurring on one or 

more spatial scales (e.g. local point sources, urban-scale sources such as traffic, and regionally 

transported emissions).  If concentration levels are dominated by regional transport, there might 

be only minor variations in the metrics between site-pairs.  While this does capture the true 

concentration relationship between the sites, it also obscures the use of such metrics to gain 

deeper insights into the drivers for the differences that do exist.    

The increasing influence of local source contributions could result in greater variability in 

concentrations between sites within an urban region.  To constrain the geographic location of the 

local sources, surface winds are typically utilized to identify the bearings of emission source 

regions.  Graphical tools, such as the Conditional Probability Function (CPF) and Nonparametric 

Wind Regression (NWR) plots, have been used for identifying point source locations in various 

studies (Henry et al., 2002; Kim et al., 2003; Begum et al., 2004; Lee et al., 2006; Turner 2008).  

The CPF plot graphs the fraction of samples having a measured concentration higher than a 

predetermined threshold concentration for each discrete wind sector (Wang et al., 2011).  It 

provides insight into the bearings of emission sources impacting the monitoring site from a 

perspective that is not biased by the prevailing wind patterns.   

To examine the spatial variability in arsenic and other air toxic metals across the Missouri 

portion of Metropolitan St. Louis, a four site monitoring network was established during the year 

2008 under the United States Environmental Protection Agency (USEPA) funded Community 
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Air Toxics program.  In this study (hereafter called the Air Toxics Study), the concentration data 

are examined to identify local point source(s) contributing to spatiotemporal variability.  

Exploratory tools are investigated to take advantage of PCC’s ability to track temporal similarity 

and COD’s ability to gauge concentration homogeneity between site-pairs.  Concentrations 

measured across the network are utilized to construct a time series for a network-wide baseline 

concentration to differentiate the relative contribution of local sources from larger-scale sources 

that impact the entire network.  Site-specific peak arsenic concentrations are then combined with 

meteorological data to identify the local emission source regions using CPF plots, and are 

evaluated against known arsenic source locations listed in the 2008 National Emission Inventory 

(NEI) (USEPA, 2008).  Other air toxic metals measured during the study are also examined to 

investigate the strengths and limitations of the proposed methodology for gauging spatiotemporal 

variability in species concentration and to identify emission source regions using a network of 

sites. 

2.3. Method 

2.3.1. Sample Collection and Analysis 

Figure 2-1 shows the four site monitoring network where PM10 samples were collected at one-in-

three day frequency during 2008.  Two urban sites, Blair St. and Hall St., were located in the 

City of St. Louis at ~3 and 7 km north of the urban core, respectively, near the industrialized 

Mississippi Riverfront.  The two suburban sites, Washington University in St. Louis (WUSTL) 

and Arnold, were located ~10 km west and 25 km southwest of the urban core, respectively.  24-

hour integrated ambient particulate matter was collected onto 8”×10” quartz fiber filter sheets 

(Whatman
®
, P/N QMA) using PM10 HiVol samplers (Graseby Andersen GMW Model 1200) 

operated at 1.13 m
3
/min.  Filters folded in half with the deposit side facing inwards were mailed 
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to WUSTL with no special handling (e.g. no cold shipping) and stored in freezers at the 

laboratory for analytical analysis.  A 1”×8” filter strip sectioned from each filter was immersed 

in a 70 mL polypropylene vial (Capitol Vial, Inc., Auburn, AL, P/N 03EDM33) with 16 mL of 

the extraction solution (16% nitric acid and 4% hydrochloric acid) and digested using a 

MODBlock
TM

 (CPI, Santa Rosa, CA) operated at 95C for 90 minutes.  Samples were cooled for 

30 minutes with 10 mL deionized water (DI) and the extract was subsequently diluted to 50 mL.  

Approximately 12 mL was filtered using nylon syringes with Acrodisk
®
 25 mm syringe filters 

(0.45µm nylon membrane, Pall Corporation, P/N 4438) into 15 mL polystyrene conical tubes for 

analysis.  Calibration standards were prepared by diluting concentrated stock solutions (P/N 

4400-ICP-MSCS, CPI International) with reagent water (5% nitric acid and 1.25% hydrochloric 

acid in DI water).   

 

Figure 2-1. The four site monitoring network for the Air Toxics Study during 2008 across 

the St. Louis Metropolitan area (population density map from 2000). 



26 

 

The extracts were analyzed using an Agilent 7500ce Inductively Coupled Plasma/Mass 

Spectrometer (ICP/MS).  ICP/MS analyses were performed using three quantitative modes with 

carrier gases Ar/He, Ar/H2, and Ar only.  Interferences by polyatomic ions originating from the 

carrier gases and sample matrices were corrected as appropriate (Agilent, 2007).  For example, 

arsenic quantification can be confounded by isobaric polyatomic ion interference from argon 

chloride, with the chlorine originating from complex sample and/or extraction acid matrices 

(Brown et al., 2004).  The ICP/MS instrument used in this work is equipped with a reaction cell 

(Octopole Reaction System) to suppress such interferences.  Quality control measures included 

field blanks collected every month; method blanks (clean filters); reagent blanks for each batch 

of samples digested; calibration verification using NIST-traceable multi-element standards from 

a source separate from the calibration standards; check standards run every ten samples; and 

internal standards.  Ambient PM10 elemental concentrations were calculated from the solution 

concentrations measured by ICP/MS using the total air volume sampled and are reported as 

ng/m
3
 at standard conditions of 25C and 1 atm.  While the analytical method was optimized for 

arsenic, other air toxic metals (antimony, beryllium, cadmium, chromium, cobalt, lead, 

manganese, nickel and selenium) measured by ICP/MS were also investigated.   

Method recoveries were examined by analyzing NIST standard reference material (SRM) for 

urban particulate matter (1648a) and coal fly ash (1633b) for air toxic metals measured by 

ICP/MS.  With coal fly ash, arsenic and selenium had 100-105% recoveries, while other metals 

had recoveries from 45 to 75%.  Recoveries for urban particulate matter mass loadings, 

consistent with the concentration range of the ambient samples, ranged between 115 and 120% 

for arsenic.  The higher recoveries for arsenic could not be explained but the potential for 

multipath complex reactions cautions that the reaction cell may be subject to a new breed of 
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isobaric interferences (Baranov et al., 1999).  Chromium, cobalt and nickel are excluded from 

further analysis because of extremely low or unrealistically high recoveries, while other air toxic 

metals had 90-105% recoveries.  Beryllium is not quantified in either SRM and therefore, is also 

excluded.  Instrument detection limits (IDL), used as proxy for the method detection limit, were 

calculated as three times the standard deviation of seven-to-ten replicate spiked reagent blanks 

analyzed by ICP/MS on different sample analysis days.  Concentration values below the IDL 

were replaced by 1/2 IDL unless otherwise noted. 

2.3.2. Data Characteristics 

Routinely collected NATTS air toxic metals data from Blair St., at 1-in-6 day frequency using a 

separate HiVol sampler, provided an independent check of our data.  Analysis of these samples 

at the Eastern Research Group, Inc. involved filter extraction with 4% nitric acid via sonication 

for 3 hours followed by ICP/MS (USEPA, 2009).  Table 2-1 tabulates the Reduced Major Axes 

(RMA) regression statistics for metals from the Air Toxics Study against the corresponding 

Table 2-1. Reduced Major Axes (RMA) regression statistics for the Air Toxics Study 

dataset against NATTS dataset analyzed by ICP/MS with 95% confidence intervals for 

slope and intercept (total 60 concentration pairs).  Intercepts and detection limits are in 

ng/m
3
 

  
Slope Intercept 

R
2
 

NATTS  Air Toxics Study 

± 95% C.I. ± 95% C.I. MDL
a
 N < MDL IDL N < IDL 

As 1.02 ± 0.12 0.29 ± 0.15 0.80 0.15 0 0.04 0 

Cd 1.50 ± 0.10 -0.15 ± 0.14 0.94 0.09 0 0.99 44 

Mn
b
 1.13 ± 0.13 0.50 ± 1.58 0.81 0.14 0 0.20 0 

Pb 0.95 ± 0.04 0.47 ± 0.79 0.98 0.19 0 1.87 2 

Se 1.26 ± 0.07 -0.03 ± 0.08 0.96 - - 0.03 0 

Sb 1.30 ± 0.06 0.24 ± 0.18 0.97 - - 0.66 11 
a
 NATTS nation-wide average species MDL (USEPA, 2010) 

   b
 Excludes one high concentration pair to prevent bias 

  (Air Toxics Study, Mn = 584 ng/m
3
; NATTS, Mn = 734 ng/m

3
) 
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NATTS samples.  For this comparison, values below the MDL (NATTS) and IDL (Air Toxics 

Study) were used as reported.  Despite statistically significant biases in the slopes and intercepts 

(based on 95% confidence intervals) for many elements, high coefficients of determination (R
2
) 

between the two independently evaluated datasets validates the sample-to-sample variability in 

the Air Toxics Study data which are exploited in this analysis for examining local source 

impacts.   

All sites had at least 95% data completeness for the 122 scheduled sampling events.  Table 2-2 

tabulates for each element the site-specific number of valid samples, annual mean and median 

concentrations, the estimated IDL, and the number of samples below one and three times the 

IDL.  Arsenic, manganese and selenium concentrations at all sites are above 3×IDL for all 

samples and about 65% of the lead concentrations are above 3×IDL.  In contrast, about 77% of 

antimony concentration values are below 3×IDL and nearly 95% of the cadmium concentrations 

are below 3×IDL.  For cadmium, the few high concentration values coincided with high lead 

concentrations which suggest a similar emission source or source region(s).  The remainder of 

the analysis focuses on elements with at least 50% of data greater than 3×IDL, i.e. arsenic, lead, 

manganese and selenium. 

2.3.3. Spatiotemporal Analysis 

Variability in air toxic metals across St. Louis is examined by comparing summary statistics of 

concentrations between the sites.  Inter-site spatial and temporal relationships are further 

investigated by calculating PCC and COD.  However, calculating these metrics for species with 

concentrations near or below the detection limit downgrades PCC and inflates COD because of 

the large uncertainty associated with such concentrations.  Further, inclusion of such samples as 

imputed concentrations breaks the spatial and temporal correlations across the sites and can  
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Table 2-2. Summary statistics of metal measurements from the Air Toxics Study.  All concentrations are in ng/m
3
. 

        Arsenic (As)   Selenium (Se) 

  
  

Mean Annual 

Median 

# < IDL # < 3xIDL 

 

Mean Annual 

Median 

# < IDL # < 3xIDL 

  

Count 
 

± Std. Dev.  (%)  (%) 

 

± Std. Dev.  (%)  (%) 

Urban 
Blair St. 120 

 
1.34 ± 0.81 1.15 0 0 

 

1.21 ± 0.85 0.99 0 0 

Hall St. 119 
 

1.05 ± 0.56 0.89 0 0 

 

1.28 ± 0.80 1.15 0 0 

Suburban 
Arnold 122 

 
1.01 ± 1.20 0.68 0 0 

 

0.95 ± 0.55 0.74 0 0 

WUSTL 116   0.80 ± 0.63 0.62 0 0   1.00 ± 0.68 0.80 0 0 

    

Lead (Pb) 

 

Manganese (Mn) 

  
  

Mean Annual 

Median 

# < IDL # < 3xIDL 

 

Mean Annual 

Median 

# < IDL # < 3xIDL 

  

Count 
 

± Std. Dev.  (%)  (%) 

 

± Std. Dev.  (%)  (%) 

Urban 
Blair St. 120 

 
14.50 ± 16.00 8.96 2 (2) 25 (21) 

 

19.30 ± 55.40 10.06 0 0 

Hall St. 119 
 

10.40 ± 10.40 7.41 5 (4) 40 (34) 

 

15.10 ± 18.30 11.04 0 0 

Suburban 
Arnold 122 

 
14.00 ± 21.90 6.67 8 (7) 49 (40) 

 

6.81 ± 4.86 4.98 0 0 

WUSTL 116 
 

8.72 ± 10.10 6.01 15 (13) 53 (46) 

 

8.28 ± 7.13 6.25 0 0 

        Cadmium (Cd)   Antimony (Sb) 

  
  

Mean Annual 

Median 

# < IDL # < 3xIDL 

 

Mean Annual 

Median 

# < IDL # < 3xIDL 

  

Count 
 

± Std. Dev.  (%)  (%) 

 

± Std. Dev.  (%)  (%) 

Urban 
Blair St. 120 

 
1.02 ± 1.64 0.50 89 (74) 115 (96) 

 

2.32 ± 3.07 1.36 14 (12) 78 (65) 

Hall St. 119 
 

1.04 ± 1.48 0.50 90 (76) 111 (93) 

 

2.10 ± 3.12 1.50 22 (18) 83 (70) 

Suburban 
Arnold 122 

 
1.47 ± 3.99 0.50 91 (75) 115 (94) 

 

1.18 ± 2.12 0.90 39 (32) 110 (90) 

WUSTL 116   1.03 ± 2.36 0.50 98 (85) 110 (95)   1.50 ± 1.33 1.16 25 (22) 96 (83) 
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result in biased values of such metrics.  Consequently, only days with concentrations above the 

IDL at all four sites are utilized in this analysis.  This corresponds to 113 sample days for 

arsenic, selenium and manganese, and 95 sample days for lead for the inter-site comparisons.   

If species concentrations across the network are impacted by large-scale sources located far away 

from the network with no significant local sources within/near the network, the spatiotemporal 

homogeneity between site-pairs will be indicated by high PCC and low COD.  In contrast, the 

presence of local sources within/near the network leads to varying site-specific contributions and 

the resulting spatiotemporal heterogeneity will be represented as lower PCC and/or higher COD 

between site-pairs.  However, the interpretation of such inter-site metrics for a network with a 

large number of monitoring sites can be cumbersome because a network with n sites (n>1) will 

result in ∑       
    site-pairs.  Calculating these metrics for each site with respect to a 

reference concentration time series results in a single value per site for each metric and 

elucidates the spatiotemporal variability across the network relative to the selected reference.     

The selected reference time series influences the PCC and COD values and their interpretation 

and hence needs to be well understood.  One approach is to select a central monitoring site that is 

commonly used to represent air quality conditions across the area.  Another approach is to select 

a well-characterized background monitoring site, if available, to focus on the network behavior 

relative to a site that presumably captures regional- and larger-scale impacts.  In the absence of a 

representative background site, the network itself can be utilized to generate a baseline 

concentration to semi-quantitatively differentiate local-scale emission sources from urban- and 

larger-scale contributions.  If emission sources located far away from the network domain 

equally impact all sites, additional concentrations measured at each site can be attributed to local  
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Figure 2-2. Conceptual representation of spatial variability over St. Louis as captured by 

a four site monitoring network on a particular day. Total concentrations measured at the 

sites (dotted line) capture contributions from local point sources in addition to the 

network-wide contributions from larger-scale emission sources.  Defining the minimum 

concentration (Site 4) across the network as baseline (dashed line) enables estimation of 

local source contributions by at the other sites (Sites 1-3). 

sources (Figure 2-2).  In principle, local and/or area sources could impact all sites on any day and 

result in an overestimation of urban/larger-scale contributions, but emissions of air toxic metals 

are typically associated with point sources.  Hence, a baseline concentration can be subjectively 

defined as the minimum or x
th

 minimum concentration across the sites based on the network 

characteristics to best capture well-understood/interpretable trends in measured concentrations.   

The difference between the measured daily concentration at each site and the corresponding 

baseline (i.e. daily excess) is now attributed to contributions from local source(s) impacting the 

site on that particular day.  Hence, site-specific measured or total concentrations are apportioned 

into baseline and site-specific excess concentrations, which semi-quantitatively represent the 

upper bound for urban/larger-scale contributions and the lower bound for local-scale 

contributions, respectively.  This baseline-excess apportionment approach is applied to the four 



32 

 

site Air Toxics Study network by defining the daily minimum concentration as the baseline 

concentration for that day.  Comparing PCC and COD computed between the baseline and site-

specific total concentrations now results in a single pair of metrics for each site in the network.  

A scattergram of PCC and COD (i.e., PCC-COD plot) can be utilized as a graphical tool for 

gauging spatiotemporal variability in species concentrations - either between site-pairs (a site-

site plot) or for site-specific concentrations against a reference time series (a site-baseline plot).  

This tool combines the temporal tracking ability of PCC with COD’s ability to gauge spatial 

variability across site-pairs.  General characteristics of the PCC-COD plot are shown in Figure 

2-3.  The presented analysis is confined to PCC ≥ 0 for visual clarity because negative 

correlations were not observed in this dataset, though the methodology can be extended to 

include negative correlations.  A relative measure of inter-site spatiotemporal variability can be 

gauged based on the sites’ position away from absolute spatiotemporal homogeneity (PCC = 1  

 

Figure 2-3. A PCC-COD plot highlighting the key characteristics of the plot: variability 

line, which spans absolute spatiotemporal homogeneity (PCC = 1 and COD = 0) and 

absolute spatiotemporal heterogeneity (PCC = 0 and COD = 1). 
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and COD = 0), in reference to the line spanning absolute homogeneity and absolute 

spatiotemporal heterogeneity (PCC = 0 and COD = 1) i.e. the ‘variability line’.  If the 

concentration time series at two sites are dominated by larger-scale contributions, then the site-

pair will be positioned closer to the homogeneity end of the plot.  The position of the sites that 

are impacted by local sources can depend on many factors, but in general will be further away 

from the homogeneity end.  For example, concentrations measured at two sites impacted 

simultaneously by the same sources will display higher correlation but the COD will increase 

with increasing spatial separation between the sites; thereby placing the sites to the right of the 

variability line.  In contrast, if the sources are located between the two sites, the concentrations 

measured will display lower correlation with COD varying based on the concentration 

differences.  Overall, local source contributions to the ambient concentrations (site-specific total, 

excess or even baseline) depend on many factors including but not limited to, the number of 

sources, their spatial extent of influence, emission patterns of the sources, location of monitoring 

sites and, meteorological conditions (Pinto et al., 2004).  Thus, the positioning of the sites on the 

PCC-COD plot represents the admixing of such influences, while the variability line provides a 

reference for gauging inter-site variability in the context of absolute spatiotemporal homogeneity 

and heterogeneity.   

The site-baseline PCC-COD plot enables a particularly manageable inter-site comparison 

because each site in the network is now represented by a single data point on the plot.  Further, 

this plot also provides insight into the factors defining the baseline concentrations and thus lends 

to meaningful interpretation of spatiotemporal variability relative to the baseline.  For species 

characterized by impacts from large-scale sources located far away from the network, the site 

with least impact from local sources within/near the network will chiefly define the baseline 
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concentrations and hence will be positioned closer to the homogeneity end of the variability line.  

Sites with greater variability in species concentrations, e.g. resulting from the increasing 

influence of local source contributions, will be positioned further towards the heterogeneity end 

of the variability line and can be used to estimate the location of emission sources.  

2.3.4. Source Region Identification 

To identify the bearings of local sources of air toxic metals, CPF plots are constructed using site-

specific total concentration and compared with the corresponding plots for excess concentrations.  

The threshold for defining a “high concentration day” is chosen as the top 25
th

 percentile of the 

concentration distribution.  By using data from the top 25
th

 percentile, CPF plots avoid the noise 

associated with including data closer to detection limit as well as the increased uncertainty in 

excess concentration resulting from the difference of two measurements.  Hourly metrological 

data for Saint Louis Lambert International Airport was obtained from the National Climatic Data 

Center (NCDC/NOAA).  For computing the conditional probability, the daily averaged species 

concentration value is assigned to each hourly wind direction for that respective day.  Such 

assignment and confounding by high concentrations caused by stagnant conditions can result in 

smearing of a given source impact across off-plume wind directions that also occur on days with 

high concentration plume impacts.  Nonetheless, these plots can be a powerful tool to determine 

the bearing of sources leading to high concentration days.  The CPF plots are geo-referenced in 

Google Earth® to triangulate the source emission regions and are evaluated against known 

source locations of air toxic metals from the 2008 NEI. 
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2.4. Results and Discussions 

2.4.1. Arsenic  

Annual average arsenic at the two urban sites is generally higher than the suburban sites (Table 

2-2).  The annual mean arsenic at Blair St. is ~67% higher than at WUSTL and ~30% higher 

than at Hall St. and Arnold.  While the annual medians at the urban sites are also higher than that 

the suburban sites, the medians at the suburban sites are similar with 0.62 ng/m
3
 at WUSTL and 

0.68 ng/m
3
 at Arnold.  Such differences, which lead to different interpretations of spatial 

variability, are investigated in Figure 2-4 (a) by plotting site-specific excess arsenic against the 

baseline concentrations.  Excess arsenic at the urban sites is considerably higher than at the 

suburban sites and is also uniformly distributed across the entire range of baseline 

concentrations.  Nearly 50% of the annual average excess arsenic at WUSTL arises from only 

five high concentration days.  Despite the relatively large geographic separation between the 

suburban sites, arsenic at Arnold and WUSTL is well correlated (PCC = 0.79) and primarily 

defines the baseline concentrations.  In contrast, arsenic concentrations at the Blair St. and Hall 

St. urban sites, which are separated by only ~4 km, display greater variability (PCC = 0.49).  

These trends are also captured in the site-site PCC-COD plot with the suburban site-pair 

positioned closer to the homogeneity end than the urban pair (Figure 2-5 (a)).  However, 

variations between the site-pairs can be meaningfully interpreted from these metrics for any three 

sites only in reference to the fourth site.  For instance, with respect to WUSTL, Arnold has 

higher PCC (0.80) and lower COD (0.19) than the corresponding values for Blair St. (PCC = 

0.43 and COD = 0.36) and Hall St. (PCC = 0.65 and COD = 0.25), indicating greater 

homogeneity between WUSTL and Arnold than between WUSTL and the urban sites.  However, 

with respect to Hall St., the other three sites have similar CODs (0.25-0.26) and varying
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Figure 2-4. Distribution of site-specific excess concentrations with respect to corresponding baseline concentrations at urban 

(top panel) and suburban (bottom panel) sites for (a) arsenic, (b) selenium, (c) manganese and (d) lead.  Concentrations beyond 

the axis range are plotted on the graph edges.  
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Figure 2-5. PCC-COD plots for concentrations between the site-pairs (top panel) and for site-specific total concentrations 

against the baseline concentrations (bottom panel) for (a) arsenic, (b) selenium, (c) manganese and (d) lead. 
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correlation, confounding the interpretation of arsenic variability across the network.  In contrast, 

the site-baseline PCC-COD plot provides a more accessible understanding of spatiotemporal 

variability.  WUSTL is positioned closest to the homogeneity end of the variability line, as the 

baseline is primarily defined by arsenic measured at WUSTL.  Arnold, Hall St. and Blair St. are 

incrementally positioned further away from the homogeneity end of the variability line, 

indicating higher spatiotemporal variability from the increasing influence of local arsenic 

emission sources at these sites.  

CPF plots of baseline and site-specific excess arsenic are shown in Figure 2-6 (a).  CPF plots of 

total arsenic at each site (urban sites shown in Figure 2-7 (a)) collectively indicate emission 

source bearings to the east of St. Louis Metropolitan area, consistent with the regional transport 

of arsenic from the eastern United States including coal-fired power plants located along the 

Ohio River Valley (Allen et al., 2008).  These eastward bearings are also captured by the CPF 

plot of the baseline concentration, which accounts for almost 90% of the arsenic at WUSTL, but 

only 50-70% at the remaining sites.  CPF plots constructed using excess concentrations provide 

better resolution of putative local arsenic emission source bearings.   For example, Figure 2-7 

shows the CPF plots of total and excess arsenic at the two urban sites.  While the CPF plots for 

total arsenic at the these sites are dominated by bearings consistent with regional transport, 

excess concentrations at the urban sites triangulate to an emission source zone near the 

industrialized Mississippi Riverfront that is north/northeast of Blair and southeast of Hall. 

Arsenic sources consistent with this zone, and listed in the 2008 NEI, include a chemical 

manufacturing plant with a coal-fired industrial boiler and a municipal wastewater treatment 

plant with a sludge incinerator.  Another resolved emission source zone - northwest of Blair St.   
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Figure 2-6. CPF plots of the network-wide baseline and site-specific excess 

concentrations for (a) arsenic, (b) selenium, (c) manganese and, (d) lead. 

 

Figure 2-7. CPF plots of (a) total and (b) excess arsenic at the urban sites.  The plots and 

arsenic point sources listed in 2008 NEI are geo-referenced in Google Earth
TM

. 
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and southwest of Hall St. - is not matched to any known arsenic source in the 2008 NEI and will 

be discussed in Section 2.4.3.  Additional bearings from the CPF plot of excess arsenic at Arnold 

are also consistent with a large coal-fired electric utility power plant located ~40 km west of 

Arnold and listed as an arsenic source in the 2008 NEI.   

2.4.2. Selenium 

Arsenic and selenium emitted during coal pyrolysis and combustion are often used as markers 

for long-range transport of emissions from coal-fired power plants (Zeng et al., 2001).  Similar to 

the arsenic variability across the network, annual median selenium at Blair St. and Hall St. urban 

sites are ~30% and 50% higher than at the suburban sites, respectively (Table 2-2).  The excess 

selenium at the urban sites are also uniformly scattered across the entire range of baseline 

concentrations which are primarily defined by selenium measured at the suburban sites (Figure 

2-4 (b)).   But unlike arsenic, the relatively high PCC (0.7-0.9) and low COD (0.15-0.25) 

between selenium across all site-pairs leads to tight clustering towards the homogeneity end of 

the variability line in the site-site PCC-COD plot (Figure 2-5 (b)).  This pattern suggests a 

dominant impact from urban- and larger-scale emission sources which masks the subtle 

differences between the urban and suburban sites.  In the site-baseline PCC-COD plot, the 

positions of the suburban sites towards the homogeneity extreme of the variability line further 

confirms that the selenium baseline is predominantly defined by the suburban sites.  However, 

relatively higher variability at the urban sites is now emphasized by their positions farther away 

from the homogeneity end of the variability line, indicating the presence of local selenium 

source(s) in the urban core.   

CPF plots of baseline and excess selenium at all four sites are shown in Figure 2-6 (b).  Similar 

to arsenic, CPF plots of total and baseline selenium concentrations again indicate bearings 
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consistent with the regional transport from the eastern United States.  Selenium apportioned to 

the baseline is ~90% of the selenium measured at the suburban sites but only ~70% at the urban 

sites.  CPF plots using excess concentrations at the Blair St. and Hall St. sites again provide 

better resolution of local emission source bearings that triangulate to the zone with the coal-fired 

industrial boiler and the municipal wastewater treatment plant incinerator.  While arsenic and 

selenium share similar emission source regions, differences in species emission profiles from 

individual sources could lead to the observed differences in spatiotemporal variability.  Overall, 

the uniformity in selenium concentrations across the network provides insight into the efficacy of 

PCC-COD plots at capturing the behavior of regionally transported species, as well the 

advantage of using the baseline-excess apportionment approach for identifying local emission 

source regions. 

2.4.3. Manganese  

Manganese exhibits a different intraurban variability pattern than that of arsenic and selenium 

which have discernible contributions from both local and larger-scale sources.  Annual median 

manganese concentrations at Blair St., Hall St. and WUSTL are higher than at Arnold by ~102%, 

121% and 25%, respectively (Table 2-2).  Excess manganese concentrations at the urban sites 

and WUSTL are higher and more uniformly distributed than at Arnold, with maximum excess at 

the urban sites exceeding 100 ng/m
3
 in contrast to a maximum excess of 5 ng/m

3
 at Arnold 

(Figure 2-4 (c)).  In addition, Arnold defines the baseline for ~70% of the sampling days which 

suggests it is effectively the reference site for manganese measurements across this network.  

This behavior is again better captured by the site-baseline PCC-COD plot than the site-site PCC-

COD plot (Figure 2-5 (c)).  With respect to the network-wide baseline, Arnold is positioned at 

the homogeneity extreme of the variability line (PCC = 0.98, COD = 0.07) with increased 
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variability at WUSTL and the urban sites.  Similar COD but varying PCC between the two urban 

sites indicates these sites experience temporally different but on average spatially similar impacts 

from local manganese source(s).  

Figure 2-6 (c) shows the CPF plots of baseline and site-specific excess manganese.  The CPF 

plots of baseline and total manganese at Arnold lack clear directionality and do not provide 

discernible bearings for larger-scale emission contributions.  While the CPF plots of excess 

concentration at Arnold has distinct features, this excess is on average only 7% higher than the 

baseline and thus its interpretation is confounded by the relatively high propagated measurement 

uncertainty.  CPF plots constructed using the site-specific excess manganese at the remaining 

sites indicate the same source bearings as the corresponding total concentrations because high 

manganese contributions at these sites are governed primarily by local emission sources.  

Bearings from the CPF plots at Blair St. and Hall St. triangulate towards Granite City, IL which 

is the location of a large steelworks facility and other associated emission source(s).  

Additionally, both manganese and arsenic CPF plots for the urban sites also triangulate a region 

north/northwest of Blair St. and south/southwest of Hall St., though no corresponding sources are 

listed in 2008 NEI for the region.  Perhaps one or more small industrial facilities, such as a 

metals workshop, located in the triangulated zone sporadically emit metals but may not have 

sufficient annual emissions to be captured in the NEI.  Further, CPF plots constructed using 24-

hour integrated mass against hourly meteorological dataset results in smearing of impacts along 

the bearings corresponding to changing wind direction on days with peak metal concentrations.  

Using high time resolution concentration measurements (e.g. hourly) can reduce the smearing 

associated with variations in the surface winds for better estimation of local source bearings.  For 

example, two-hour integrated arsenic measurements at Blair St. also identified this 
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north/northwest bearing with impacts only during daytime hours on weekdays (Yadav et al., 

2009).   

2.4.4. Lead 

The urban sites also display elevated lead concentrations with the lowest values observed at 

WUSTL.  However, total lead at Arnold are comparable to those at the two urban sites, with the 

excess at Arnold frequently higher than at the urban sites (Figure 2-4 (d)).  The site-site PCC-

COD plot demonstrates a narrow range of spatial variability and a broad range of temporal 

variability, but lacks the distinguishing feature exhibited by other air toxic metals of greater 

spatiotemporal homogeneity between the suburban site-pair than the urban site-pair (Figure 2-5 

(d)).  However, the site-baseline PCC-COD plot - where the baseline defined by ~50% samples 

from WUSTL and 15-25% each from the remaining three sites - aligns the sites along the 

variability line and provides insight into the minor spatiotemporal variations in lead across this 

network.  WUSTL now lies relatively closer to the homogeneity end of the variability line, while 

the remaining sites display marginally higher heterogeneity.  Further, the CPF plots of 

concentrations at all four sites (total, excess or baseline; the latter two are shown in Figure 2-6 

(d)) indicate a major lead source south of the network, consistent with the location of a large 

primary lead smelter listed in the 2008 NEI.  It is among the world’s largest lead smelting 

facilities and its location only ~20 km south of Arnold (i.e., ~30 km south of the St. Louis urban 

core) leads to a spatial gradient in its contribution across the network.  Depending on 

meteorological conditions, the smelter plume impacts one or more sites with high lead 

concentrations which are captured by both the baseline and site-specific total concentrations.  

Hence, CPF plots using excess lead at all sites are still dominated by the southward bearings of 

the smelter and could mask the bearings of local sources in the urban core.  Additional bearings 
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at Blair St. and WUSTL indicate another source due east of the network, but its bearings at Hall 

St. are masked by the southward bearings of the lead smelter.  In regards to this network, high 

lead contributions from the smelter are neither near enough to be characterized as local nor far 

enough from the network to result in network-wide uniform contributions.  This case violates the 

assumptions inherent to the baseline-excess apportionment approach and prevents identification 

of any local lead source(s) in the urban core.   

2.5. Conclusions  

24-hour integrated PM10 samples were collected at four sites across the St. Louis Metropolitan 

region during 2008, on a 1-in-6 day schedule and analyzed for air toxic metals.  Spatiotemporal 

variability in arsenic and other air toxic metals was examined by developing intuitive tools for 

data analysis.  The PCC-COD plot graphically merges the temporal and spatial tracking ability 

of these metrics.  The cautions that should be applied to the calculation and interpretation of PCC 

and COD also apply to these plots.  For example, concentration values near or below the 

detection limit must be carefully handled because they can dramatically influence these metrics 

and result in misinterpretation.  Relative spatiotemporal variability between the sites is gauged 

by their positions on the plot in reference to the variability line, which spans absolute 

homogeneity to absolute heterogeneity.  While the PCC and COD for these site-pairs are the 

intrinsic measures of variability, a network of n sites results in ∑       
    site-pairs which 

complicates their interpretation.  This dimensionality was reduced to one data point per site by 

calculating the PCC and COD for the concentrations measured at each site compared to a 

reference concentration time series.  Concentrations measured at each site were apportioned into 

daily network-wide baseline and site-specific excess concentrations to semi-quantitatively 

represent contributions from urban- and larger-scale emission sources and local-scale emission 
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sources, respectively.  It is crucial to have an understanding of the network-wide baseline to 

meaningfully interpret the drivers of variability at each site compared to the baseline.  The 

resulting site-baseline PCC-COD plot provides a framework for interpreting inter-site 

spatiotemporal uniformity relative to this baseline time series.  For most air toxic metals, the 

suburban sites were closer to the homogeneity end of the variability line than the urban sites.  

Greater spatiotemporal variability at the urban sites with respect to the baseline reflects the 

stronger influences of local sources at these sites. 

This apportionment, together with the CPF plots, demonstrated that arsenic and selenium in St. 

Louis are dominated by urban- and larger-scale influences such as regional transport from coal-

fired power plants in the eastern United States.  Large contributions from urban/larger-scale 

influences confounded the use of CPF plots constructed using measured concentrations to 

identify the bearings of local sources.  However, the bearings of local sources were better 

resolved using CPF plots based on the excess concentrations and triangulated to an area along 

the industrialized Mississippi Riverfront as a source of arsenic and selenium emissions.  The 

baseline-excess apportionment approach was less useful for lead because a very large point 

source located outside the network boundary causes spatial gradient in lead contributions across 

the network and masks the bearings of any local lead sources.  Resolving local emission source 

zones could be further refined by using measurements at high time resolution (e.g., hourly) to 

reduce the smearing associated with changing wind direction.  Overall, the monitoring network 

enabled better understanding of intraurban variability in arsenic and other air toxic metals over 

the St. Louis region that could not be characterized by measurements at a single site.   
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Chapter 3 :Estimating local emission source zones using high-time 

resolution carbon measurements across a monitoring network in a 

multi-source industrial area. 

3.1. Abstract 

Carbon measurements conducted at a three site monitoring network in an industrial area of 

Dearborn, MI during fall 2008 were examined for identifying local emission sources.  Elemental 

carbon (EC) concentrations, measured using a Sunset Labs ECOC Analyzer, at the two sites 

Dearborn and Miller, separated by ~400 m, were on average more than 50% higher than at the 

Ten Eyck site located ~6.5 km southwest of the Dearborn site.  Organic carbon (OC) 

concentrations were generally uniform across the network and only 8-9% higher at the two sites 

compared to those at Ten Eyck.  For better estimation of the directionality of the local EC 

sources contributing to such variability, nonparametric wind regression (NWR) plots were 

constructed for EC concentrations at the two sites, Dearborn and Miller in excess of that at Ten 

Eyck using hourly wind directions measured at the Dearborn site.  These plots were fitted with a 

series of Gaussian curves to estimate the locations of the concentration peaks in the NWR plots.  

The bearings estimated were assigned an uncertainty corresponding to the optimized soothing 

parameter used for the NWR plots.  Triangulation of the resolved bearings of peak 

concentrations from the two sites, in some cases, identified multiple emission zones 

corresponding to each resolved bearing for a site.  Such ambiguities can result from various 

factors such as the presence of multiple nearby sources or sources aligned in corridors, 

intermittent source emissions, and a lack of sufficient data for certain wind sectors.  Other 
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challenges in estimating emission source zones using high time resolution ambient 

measurements across a network of monitoring sites in a multi-source industrial area are also 

investigated.  Despite these limitations, the approach does to some extent constrain the location 

of putative emission sources. 

3.2. Introduction 

A multi-county area in Southeast Michigan was in nonattainment of the annual-average PM2.5 

National Ambient Air Quality Standards (NAAQS) in 2008, with a compliance monitoring 

station at Dearborn, MI exhibiting the highest design values for both the 24-hour and annual 

average PM2.5 NAAQS (MDEQ, 2008).  Compared to other monitoring stations in the area, 

similar concentrations were observed for species characterized by regional transport (sulfate, 

nitrate, and ammonium) but higher concentrations at Dearborn station were observed for 

carbonaceous particulate matter and metal oxides that could result from local emission sources 

(Buzcu-Guven et al., 2007; Gildemeister et al., 2007; Turner, 2008).  Hourly PM carbon 

measurements at two additional temporary monitoring sites within 6.5 km of the Dearborn 

station were commissioned to provide insights into the spatial variability and source locations of 

carbon fractions at neighborhood- and finer-scales (operationally < 5km spatial scale, Watson 

and Chow, 2001).  This dataset provided an opportunity to evaluate strategies to estimate the 

local emission source locations using high time resolution concentration data collected across a 

monitoring network in an industrial area with multiple emission sources. 

A variety of approaches are used to identify the directionality of the sources resulting in high 

concentrations at the receptor sites.  One such tool is the Conditional probability Function (CPF) 

plot, which displays the fraction of samples from each discrete wind sector (usually set to 15) 
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that lead to concentrations at the receptor site to be higher than a predetermined threshold 

concentration (Kim et al., 2003) based on a condition probability framework described by 

Ashbaugh et al. (1985).  These plots have been used to identify source locations in various 

ambient particulate matter and source apportionment studies (Kim et al., 2003; Begum et al., 

2004).  Another commonly used approach is the Nonparametric Wind Regression (NWR) plot, 

which quantifies the relationship between wind direction and concentrations without making any 

assumptions about the functional form of the relationship or the statistical distribution of the 

dataset (Henry et al., 2002).  NWR plots utilize a Gaussian smoothing kernel as a non-subjective 

alternative to the discretized wind sectors for estimating the directionality of the sources 

resulting in peak concentrations at the receptor site.  NWR plots are often used for resolving the 

directionality of the sources estimated from source apportionment and monitoring studies (Kim 

and Hopke, 2004; Wang et al., 2011).  For example, Henry et al. (2002) identified a major source 

of cyclohexane by triangulating the NWR bearings from two sites located within 6 kilometer of 

the source.  However, these plots were constructed for isolating the impacts of the particular 

source by selectively restricting the dataset to wind speeds greater than 5 mile/hour where direct 

plume hits should be most evident.  The challenges in extending such a triangulation approach to 

ambient concentrations measured at receptor sites located in areas with intermittently emitting 

multiple sources are explored in this chapter. 

3.3. Datasets 

3.3.1. Field campaign  

As part of the Midwest Rail Study, the Michigan Department of Environmental Quality (MDEQ) 

conducted air quality measurements at three sites in Dearborn, MI (Turner et al., 2009).  The 

Dearborn air monitoring station (USEPA AQS ID 26-163-0033) is an MDEQ compliance  
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Figure 3-1. Site map of the three-site neighborhood-scale monitoring network for hourly 

EC and OC measurements in Dearborn, MI.   

monitoring station and includes routine semi-continuous measurement of thermal-optical organic 

carbon (OC) and elemental carbon (EC) by the Sunset Laboratory Semi-continuous Carbon 

Aerosol Analyzer, and black carbon (BC) by the Magee Scientific Aethalometer.  Two special 

purposes monitoring stations within the City of Dearborn were commissioned, shown in Figure 

3-1, for the measurement of OC, EC, and BC during a three month field campaign in 2008.  The 

Miller site (USEPA AQS ID 26-163-0044) was only 400 meters southwest of the Dearborn 

station with a rail yard and public roadway between these sites.  The Ten Eyck site (USEPA 

AQS ID 26-163-0043) was located ~ 6.5 km southwest of the Dearborn station in a residential 

neighborhood with a major steelmaking plant located along the path between these sites.   

The three monitoring sites were aligned in an approximate straight line oriented ~240/60N 

(from Ten Eyck in the southwest to Dearborn in the northeast).  Two-wavelength Aethalometers 

and Field OCEC Analyzers were operated from 9/12/2008 to 12/16/2008 at all three sites.  At the 

end of the field campaign all of the instruments were collocated at the Dearborn station from 

12/16/2008 to 1/20/2009 to document measurement precision and identify any instrument-to-
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instrument biases.  Meteorological measurements (hourly wind speed and wind direction) used in 

this study were also collected at the Dearborn site.  The analysis presented in this chapter is 

based on the EC and OC data collected by the Sunset OCEC Analyzers 

3.3.2. Data characteristics 

The Sunset OCEC analyzer reports total carbon (TC) from the thermal analysis, and carbonic 

and EC from the thermal-optical analysis (ThOC, ThEC).  In addition, the OptEC/TC mode of 

operation reports EC from a purely optical (light transmission) measurement (OptEC) and also 

thermal TC.  OptOC is calculated as the difference between TC and OptEC.  ThOC and ThEC 

are the conventionally reported carbon fractions, but the thermal-optical EC/OC split was poorly 

identified for a large number of the samples in this study with virtually all of the carbon assigned 

to ThOC.  24-hour averages of the hourly OptEC measurements were compared to routinely 

collected 24-hour integrated EC measurements from the Chemical Speciation Network (CSN) 

sampler at Dearborn station.  The filter-based on-site CSN sampler, which operates on a 1-in-6 

day schedule, utilizes the IMPROVE_A thermal-optical protocol for EC measurements.  OptEC 

measurements from this study were in excellent agreement with IMPROVE_A EC measured by 

thermal-optical transmittance, TOT (Reduced Major Axes, RMA (Bohonak, 2004) slope: 0.99 ± 

0.08 and intercept: 0.02 ± 0.06 μg/m
3
 at 95% confidence interval).  The agreement in OptEC 

measurements from this study and EC/TOT from the filter-based speciation network data adds 

confidence to the data quality and confirms the observed sample-to-sample variability in carbon 

measurements which are utilized in this study.  OptEC and OptOC were utilized in this study and 

are used interchangeably with the terms OC and EC in the remainder of the chapter. 

To facilitate comparison of hour-specific differences across the three sites, collocated datasets 

were used to examine and remove bias between instruments.  Such bias can result in systematic 
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errors between the two concentration time series and confound the interpretation of 

spatiotemporal variability between the sites.  The ECOC analyzer at Dearborn was used as the 

reference instrument as it is a routine monitoring station and continues to operate beyond this 

study period.  Miller and Ten Eyck instrument datasets were adjusted to remove any bias relative 

to the Dearborn instrument data using RMA regression which accounts for measurement error in 

both datasets.  Table 3-1 summarizes the performance of the collocated EC and OC data.  For 

both Miller and Ten Eyck measurements against Dearbon OC, the slopes were statistically 

different from unity and intercepts were statistically different from zero at 95% confidence 

interval.  For EC, both slopes were also statistically different from unity but both intercepts were 

statistically indistinguishable from zero.  Miller EC was biased high compared to Dearborn EC, 

while Ten Eyck EC was biased low compared to Dearborn EC.  The collocated precision, after 

adjusting for instrument-to-instrument bias, was 9-14 % for OC and 5-6 % for EC.   

Table 3-1. Summary statistics for collocated hourly data collected by Sunset OCEC field 

analyzer used at Miller and Ten Eyck stations with the instrument at Dearborn station.  

  EC   OC 

  Miller Ten Eyck   Miller Ten Eyck 

Number of samples 244 259 
 

185 254 

Slope
a
 1.08 ± 0.01 0.81 ± 0.01 

 
0.93 ± 0.05 0.87 ± 0.05 

Intercept
a
 (μg/m

3
) 0.00 ± 0.01 -0.01 ± 0.01 

 
-0.31 ± 0.16 -0.28 ± 0.18 

R
2
 0.99 0.98 

 
0.88 0.75 

Collocated precision
b
 (μg/m

3
) 0.024 0.028 

 
0.29 0.42 

Collocated precision
c
 (%) 4.9 6.0 

 
9.4 13.5 

a. Coefficients for the reduced major axis regression (Bohonak, 2007) of Miller or Ten Eyck 

data on Dearborn data.  Slopes and intercepts are reported along with their 95% confidence 

intervals. 

b. Collocated precision after transforming the Miller and Ten Eyck data using the 

regressions. 

c. Absolute collocated precision divided by the arithmetic mean concentration. 
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EC and OC concentrations measured at the three site monitoring network during the study period 

are summarized in Table 3-2.  Out of a total 2275 hours of measurements, EC and OC 

concentrations were measured at 71-77% and 61-77% completeness respectively, depending on 

the site.  High hourly concentrations at all sites were frequently measured during calm conditions 

i.e., wind speeds of ≤ 1 m/s.  Interpretation of inter-site variability can be confounded by higher 

concentrations resulting from reduced dispersion of ambient PM matter during calm conditions 

(Bathmanabhan et al., 2010).  Thus, concentrations measured only during advective conditions 

(i.e., wind speed ≥ 1 m/s) were retained in this analysis.  The dataset was further screened to 

include only the hours when concentrations were concurrently measured at all three sites for 

evaluating inter-site differences across the network and resulted in a total of 694 hours (31%) of 

EC and OC measurements for the study period. 

Table 3-2. Summary statistics for hourly EC and OC concentrations (Total 2275 hours) 

collected at the three sites, after adjusting measurements at Miller and Ten Eyck against 

Dearborn measurements to remove sampler-to-sampler bias.  All concentrations are in 

μg/m
3
. 

  EC   OC 

 

Number of 

samples (%) 

Mean ± 

Std. Dev. 
Median   

Number of 

samples (%) 

Mean ± 

Std. Dev. 
Median 

  Measurements during field campaign  

Dearborn 77 0.74 ± 0.76 0.50 
 

77 3.97 ± 2.26 3.31 

Miller 71 0.78 ± 0.82 0.53 
 

61 3.71 ± 2.50 3.22 

Ten Eyck 74 0.56 ± 0.60 0.36 
 

74 4.03 ± 3.12 3.15 

  Measurements during calm conditions (wind speed ≤ 1 m/s) 

Dearborn 26 1.10 ± 1.06 0.74 
 

26 5.05 ± 2.75 4.22 

Miller 19 1.29 ± 1.21 0.95 
 

18 4.78 ± 3.83 4.09 

Ten Eyck 23 0.93 ± 0.82 0.68 
 

23 5.72 ± 4.19 4.41 

  Concurrent measurements during advective conditions (wind speed > 1 m/s) 

Dearborn   0.55 ± 0.41 0.43 
 

  3.23 ± 1.70 2.75 

Miller 31 0.63 ± 0.50 0.48 
 

31 3.25 ± 1.47 2.90 

Ten Eyck   0.38 ± 0.37 0.26     2.99 ± 1.88 2.33 
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3.4. Methodology 

3.4.1. Spatiotemporal variability 

Spatial variability was examined by comparing summary statistics of concurrently measured 

concentrations during advective conditions.  Inter-site variability in species concentrations were 

also examined using the methodology presented in Yadav et al. (2013) for gauging 

spatiotemporal variability using data from a network of monitoring sites.  Based on this 

approach, concentrations measured at each site were apportioned into hourly baseline and site-

specific excess concentrations to semi-quantitatively represent contributions from urban- and 

larger-scale emission sources (spatial range > ~5 km) and neighborhood- and finer-scale (or 

local-scale) emission sources (spatial range < 5 km).  The minimum hourly concentration 

observed across the three sites in this network was defined as the hourly baseline concentration 

and concentrations at each site in excess of the baseline were defined as the hourly site-specific 

excess concentrations.  The defined baseline does not strictly represent the urban- and larger-

scale influences because it can capture neighborhood- and finer-scale contributions 

simultaneously occurring at all three sites.  For example, sources located outside the network that 

are aligned with this linear monitoring network and are sufficiently close to the study area for 

plume dispersion can result in differential impact across all three sites.  Therefore, excess 

concentrations do not necessarily provide an estimate of the absolute source contributions, but 

utilize the spatial variability in concentrations across the network that results from local source 

impacts.  The scattergram of Pearson’s correlation coefficient (PCC) and coefficient of 

divergence (COD) calculated between the site-specific measured concentrations and the baseline 

concentrations (i.e., PCC-COD plot) can provide insight into the sites contributing to the 

baseline and hence the sites with least impact from local sources (Yadav et al., 2013).  Sites with 
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greater variability in concentrations compared to the baseline, resulting from the increasing 

influence of local source contributions, will be positioned further away from the homogeneity 

end (PCC = 1 and COD = 0) of the plot and can be utilized for identification of local source 

regions.   

3.4.2. Estimating local emission source zones 

The NWR plots were constructed using hourly concentration time series with the hourly wind 

direction to estimate the directionality of the emission source zones.  The kernel regression in 

NWR utilizes a Gaussian fit to find the bearings of peaks in ambient concentrations (Henry et al., 

2002).  The locations of the peaks in these NWR plots are sensitive to the chosen smoothing 

parameter ( or width of the discrete wind angle) and thus the peaks cannot be estimated better 

than ±.  A larger smoothing parameter provides a smoother curve and can result in peaks 

being merged or unresolved while a smaller smoothing parameter can result in multiple peaks 

that are caused by either measurement noise or of the splitting of a single larger peak into 

multiple false peaks.  The cross validation method for optimizing smoothing parameter, 

described in Henry et al., 2002, was utilized to obtain the smoothing parameters.  Confidence 

intervals for NWR plots generated based on the asymptotic normal distribution of the kernel 

estimate are recommended by Henry et al., 2002 to examine the validity of the NWR peaks. 

NWR plots provide the wind direction bearings that result in elevated average concentrations at 

the receptor site.  To refine the estimation of emission source zones, the NWR curves were fitted 

with a series of Gaussian curves using the Multi-peak Fitting feature in IGOR Pro™ software.  

The goodness of multi-peak curve fitting was gauged by utilizing residual plots.  The uncertainty 

in number and amplitude of peaks resolved is subject to the noise and peak-fitting smoothing 

parameter utilized by the auto peak finder tool.  Since the locations of the resolved peaks are 
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subject to a maximum uncertainty of NWR smoothing parameter, each resolved bearing was 

represented by a triangular emission source zone radiating out from the receptor site.  The 

resolved triangular zones for each bearing at a particular site were matched with triangular zones 

resolved for other sites to triangulate the probable emission source zones.  There can be 

ambiguity in estimating such zones as a bearing from one site can match to one-or-more bearings 

from another site.  Despite such limitations, this approach enables narrowing down the likely 

locations of emission sources which can then be validated with sources listed in archived 

emission inventories when such information is available. 

3.5. Results and Discussion  

3.5.1. Elemental carbon 

Summary statistics of concurrently measured EC concentrations during advective conditions, 

shown in Table 3-2, indicate that the lowest concentrations across this network are observed at 

Ten Eyck.  EC concentrations at Dearborn and Miller are on average 45 and 66%, respectively, 

higher than at Ten Eyck.  The PCC-COD plot constructed using site-specific measured 

concentrations against the baseline concentrations indicates that EC baseline is chiefly defined 

by concentrations at Ten Eyck (Figure 3-2 (a)) which is consistent with 78% of the EC 

measurements at Ten Eyck being apportioned to the baseline.  Only 14 and 7% of the EC 

measurements at Dearborn and Miller, respectively, contribute to the baseline and hence display 

relatively greater variability than Ten Eyck with respect to this baseline in the plot.  The 

distribution of median hourly baseline and site-specific excess EC concentrations over for the 

study period, with 24 to 35 concentration values for each hour, are shown in Figure 3-3 (a).  EC 

at Ten Eyck is almost exclusively captured by the baseline for all hours of the day resulting in 

Ten Eyck being an effective background site for EC measurements across this network.  The  
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Figure 3-2. The PCC-COD plot or scattergram of Pearson’s correlation coefficient (PCC) 

and coefficient of divergence (COD) calculated for (a) EC and (b) OC concentrations 

measured at each of the three sites with respect to the baseline concentrations.  
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Figure 3-3. Hourly median baseline and site-specific excess (a) EC and (b) OC 

concentrations trends over the entire study period. 

baseline EC varies between 0.15 to 0.35 μg/m
3
, with highest EC observed between 6-11 am and 

3-8 pm.  In addition, excess EC at Dearborn and Miller also peak during the morning hours and 

remain relatively low during mid-to-late afternoon.  The EC trends at these sites are consistent 

with their respective proximity to roadways with substantial traffic volumes but other local 

emissions sources could also contribute to such inter-site differences.  The EC concentrations at 
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Dearborn and Miller in excess of Ten Eyck will be further examined for local source influences 

that arise from sources in the vicinity of these sites. 

Figure 3-4 shows NWR plots for hourly EC concentrations constructed using hourly wind 

direction from Dearborn station with an optimized smoothing parameter of 8.  The plots of site-

specific EC concentrations also confirm the higher EC burdens at Dearborn and Miller compared 

to Ten Eyck (Figure 3-4 (a), (b) and (c)).  Mean EC concentrations  1 μg/m
3
 were observed at 

Dearborn for winds from ~190 and at Miller for winds from ~190 and ~240.  The large 

confidence intervals observed in these plots will be discussed later in this section.  NWR plots 

for hourly EC concentrations at Dearborn and Miller in excess of Ten Eyck are shown in Figure 

3-4 (d) and (e), respectively.  The NWR curves based on difference of two measurements may be 

subject to higher uncertainty.  However, maximum inter-site EC concentration differences are at 

least an order of magnitude higher that the propagated absolute uncertainty of ~0.04 μg/m
3
 from 

collocated precision.  Thus, the larger peaks should be relatively insensitive to noise from the 

propagated uncertainties.  The locations of peaks resolved from the peak-fitting exercise suggest 

that multiple sources may be influencing the excess concentrations observed at the receptor sites.  

Further, the three peaks identified for winds from southwest (180-270) using this approach 

could not be resolved from the site-specific NWR plots.  Presence of multiple sources and/or 

intermittent emission profiles of the sources can result in large variations in the measured 

concentrations at the receptor site and can lead to relatively large confidence intervals observed 

in the NWR plots of site-specific concentrations.  Thus, confidence intervals of bearings in NWR 

plots may not be a robust metrics for evaluating if the peaks are real in this dataset. 
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Figure 3-4. 1-D nonparametric wind regression (NWR) plots for EC 

concentrations at (a) Dearborn, (b) Miller and (c) Ten Eyck with confidence 

intervals (dashed lines). All radial axes range from 0-2 μg/m
3
.  NWR plots of EC 

at (d) Dearborn and (e) Miller in excess of Ten Eyck (solid grey line), along with 

individual Gaussian peaks (dashed lines) and reconstructed NWR plots (dotted 

line) obtained from peak-fitting of inter-site NWR plots.  The bearings of the 

individual peaks obtained are also shown (dash-dot-dot).  NWR for all EC 

concentration series were performed using smoothing parameters of 8.  Positive 

peaks correspond to excess at either Dearborn or Miller while negative peaks 

correspond to excess at Ten Eyck. 

Peaks resolved from peak-fitting exercise of EC concentrations at Dearborn in excess of 

Ten Eyck that converge with the corresponding peaks at Miller are tabulated in Table 3-3 

(a).  Emission zones are triangulated for the converging bearings by utilizing the 

smoothing parameter of 8 for EC as the maximum uncertainty in NWR peaks.  Almost 

all the bearings converged to two-or-more potential emission zones and the sources  
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Table 3-3. Wind direction bearings (N) of peaks resolved from peak-fitting of 

NWR plots of (a) EC and (b) OC concentrations at Dearborn and Miller in excess 

of Ten Eyck for the triangulated zones (DXMY), corresponding to the 

convergence of Dearborn bearing, DX with Miller bearing, MY.  Emission 

sources identified in the triangulated zones are also listed. Peaks and sources 

identified for wind sectors with sparse datasets are italicized. 

(a) EC 

Dearborn Miller Zone Sources in triangulated zone 

141 
108 D1M3 Roadway 

139 D1M4 Industrial area near Zug Island, MI 

189 

108 D2M3 Rail yard 

139 D2M4 Rail yard and Power generating station 

186 D2M5 Industrial area south of Rouge River, MI 

212 

108 D3M3 Rail yard 

139 D3M4 Integrated steelworks 

186 D3M5 Integrated steelworks 

240 

108 D4M3 - 

139 D4M4 - 

186 D4M5 - 

220 D4M6 Integrated steelworks 

242 D4M7 Integrated steelworks 

281 

 14 D5M1 Rail yard 

 33 D5M2 Rail yard 

326 D5M8 Roadway  

323 

 14 D6M1 Roadway 

 33 D6M2 Roadway 

326 D6M8 - 

 
   (b) OC 

Dearborn Miller Zone Sources in triangulated zone 

 50  52 D1M1 Industrial area northeast of Dearborn, MI 

198 
 98 D2M2 Rail yard  

198 D2M3 Industrial area south of Rouge River, MI 

233 

 98 D3M2 Rail yard  

198 D3M3 Integrated steelworks 

233 D3M4 Integrated steelworks 

287 
 52 D4M1 - 

319 D4M5 Vehicle manufacturing plant 

329  52 D5M1 - 
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identified in these zones are also listed in Table 3-3 (a).  Some of the triangulated zones 

did not correspond to known EC emission sources and could be rejected.  Depending on 

the location of the emission zones and meteorological conditions, the hours of EC impact 

at Dearborn may be different from those at Miller.  Ambiguities in the estimation of 

emission source locations can also result from factors such as the presence of multiple 

sources in the same area or corridor, and intermittent source emissions.    The 

triangulation approach requires that both receptor sites be impacted by EC burdens from 

the same source which may not occur if the data are sparse for certain wind directions or 

the impact at a receptor site is caused by an exceptional event that may not occur during 

hours when the wind direction can cause simultaneous impacts on both sites. 

Some of the nearby emission zones, labeled as DXMY corresponding to the resolved 

bearings of excess concentrations at Dearborn (DX) and Miller (MY) compared to Ten 

Eyck, are also shown in Figure 3-5 (a).  Bearings to the southwest of both Dearborn and 

Miller sites triangulate to various sectors of the integrated steelworks such as zones 

D3M5, D4M6, D4M7 and may correspond to different EC point sources within the 

facility.  Southeastern bearings (D2M5, not shown) triangulate to the industrial corridor 

south of Rouge River which includes a refinery and other industrial sources.  

Triangulated zones on the rail yard footprint correspond to known locations of switcher 

operations (D2M3, D5M1 and D5M2) and refueling (D2M4 and D3M3) where high PM 

emissions can occur from idling of locomotives (Feinberg et al., 2012), but such peaks 

cannot be validated due to sparse concentrations dataset with the associated wind sectors.  

There are only 1 to 11 concentration values in the 10 sectors for 0-140 and 330-360 

in contrast to 14 to 44 values in the 10 sectors for 140 to 330.  Thus, the large 
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confidence intervals for 0-140 wind sectors in the NWR plots of site-specific 

concentrations (Figure 3-4 (a), (b) and (c)) results from lack of sufficient frequency in 

concentrations from these directions during the study period and prevents meaningful 

interpretation of the wind direction-concentration relationship for these bearings.  Despite 

such limitations, the peak-fitting exercise enabled narrowing down the probable EC 

emission source zones that can be further examined through other approaches such as 

dispersion modeling and/or a micro-emissions inventory. 

 

Figure 3-5. Estimated emission source zones based on triangulation of bearings 

for (a) EC and (b) OC concentrations at the Dearborn and Miller in excess of Ten 

Eyck. Emission zone DXMY represents the area triangulated by convergence of 

Dearborn bearing, DX and Miller bearing, MY with the maximum allowed 

variation in bearings based on the NWR smoothing parameter of 8 and 15 for 

EC and OC, respectively. 



65 

 

3.5.2. Organic carbon 

OC concentrations at Dearborn and Miller are only 8-9% higher than OC at Ten Eyck 

(Table 3-2).  The general uniformity in OC concentrations across the network is also 

captured by the tight clustering of all three sites in the PCC-COD plot (Figure 3-2 (b)) 

towards the homogeneity end of the plot (PCC=1 and COD=0).  53% of measurements 

from Ten Eyck and 23-24% from each of the remaining two sites contributes to the OC 

baseline, which on average ranges between 2-4 μg/m
3
.  OC excess concentrations at 

Dearborn and Miller display marginally greater variability than at Ten Eyck, but these 

variations could be confounded by the higher measurement uncertainty associated with 

using the difference of two concentrations (propagated absolute uncertainty of ~0.5 

μg/m
3
 from collocated precision).  The distribution of median hourly site-specific excess 

and baseline OC concentrations for the study period are also shown in Figure 3-3 (b).  

The median hourly OC baseline typically ranged between 2 to 2.5 μg/m
3
 and accounts for 

~79-83% of the OC measured across the network, with no clear hourly trend.  Excess OC 

at Dearborn and Miller are typically ~0.6-0.9 μg/m
3
 higher than at Ten Eyck during 

morning to mid-afternoon.  Thus, OC concentrations at Dearborn and Miller in excess of 

Ten Eyck are examined for local emission source influences that lead to the marginally 

higher variability at these sites. 

The NWR plots for hourly OC concentrations constructed using hourly wind directions 

from the Dearborn station with optimized smoothing parameter of 15 are shown in 

Figure 3-6.  The general uniformity of OC concentrations across this network prevents 

identification of local sources using NWR plots of site-specific OC concentrations 

(Figure 3-6 (a), (b) and (c)).  Despite the low measurement precision and higher  
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Figure 3-6. 1-D nonparametric wind regression (NWR) plots for OC 

concentrations at (a) Dearborn, (b) Miller and (c) Ten Eyck with confidence 

intervals (dashed lines).  All radial axes range from 0-6 μg/m
3
.  NWR plots of OC 

at (d) Dearborn and (e) Miller in excess of Ten Eyck (solid grey line), along with 

individual Gaussian peaks (dashed lines) and reconstructed NWR plots (dotted 

line) obtained from peak-fitting of inter-site NWR plots.  The bearings of the 

individual peaks obtained are also shown (dash-dot-dot).  NWR for all OC 

concentration series were performed using smoothing parameters of 15.  Positive 

peaks correspond to excess at either Dearborn or Miller while negative peaks 

correspond to excess at Ten Eyck. 

uncertainty of inter-site differences, the peak-fitting of NWR plots for OC concentrations 

at Dearborn and Miller in excess of Ten Eyck (Figure 3-6 (d) and (e)) identified bearings 

of OC impacts that could explain the marginally greater variability at these sites.  Peaks 

resolved from peak-fitting of OC concentrations at Dearborn in excess of Ten Eyck that 

converge with the corresponding peaks at Miller are tabulated in Table 3-3 (b).  
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Triangulation of the converging bearings, subject to uncertainty of 15, results in broader 

emission zones for OC than EC.  A few emission zones triangulated in the vicinity of 

Dearborn, shown in  Figure 3-5 (b), include various sections of the integrated steelworks 

(D3M3 and D3M4) and the rail yard (D2M2 and D2M3).  Similar to EC, the lack of 

sufficient frequency in OC concentrations from wind directions corresponding to the rail 

yard prevent meaningful interpretation of the wind direction-concentration relationship 

for these bearings.  Thus, a larger dataset with sufficient frequency in concentrations 

associated with all wind directions is needed for better characterization of the emission 

source zones.   

3.6. Conclusions 

Hourly EC and OC concentrations, collected using ECOC Sunset Analyzer during a three 

month study period, at a three site monitoring network in the industrial area in Dearborn, 

MI were examined for local emission source influences.  While OC concentrations were 

generally uniform across the network, EC concentrations at the Dearborn and Miller sites 

were on average 50% higher than at Ten Eyck.  Wind direction dependence of hourly 

carbon concentrations at Dearborn and Miller sites in excess of that at Ten Eyck were 

examined using NWR plots.  Peak-fitting of the NWR plots with a series of Gaussian 

peaks enabled estimation of locations of peak concentrations.  While the 

representativeness of the bearings resolved from the peak-fitting of NWR plots needs to 

be evaluated, for the preliminary triangulation of emission source zones, the estimated 

bearings for each site were given conservative uncertainty estimates based on the 

optimized NWR smoothing parameter.  The resolved bearings from the two sites 

triangulated to multiple emission zones for each bearing at a site.  While few zones with 
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no known sources could be rejected, elimination of triangulated zones with known 

sources through deductive reasoning is challenging.  Various sectors of the integrated 

steelworks facility, located in the vicinity of Dearborn and Miller monitoring sites, 

identified from the triangulation approach could correspond to various intermittently 

emitting point sources in the industrial facilities.  Other emission sources zones 

identified, such as the rail yard located between Dearborn and Miller sites and various 

roadways, are subject to higher uncertainty in the NWR plots because of lack of 

sufficient concentration data from wind sectors corresponding to their bearings.  A larger 

data with sufficient frequency in concentrations associated with all wind directions could 

enable better characterization of the emission zones.  Furthermore, the presence of 

multiple or intermittent sources can also result in relatively large confidence intervals in 

the NWR plots.  Henry et al. (2002) proposed using the confidence intervals to evaluate 

whether peaks are real, but this approach is valid only if the source(s) are continuously 

emitting at a nearly constant rate. Despite such limitations, this data-driven approach 

assists in narrowing down the spatial extent of emission zones that could lead to elevated 

receptor concentrations. 
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Chapter 4 :A weight of evidence approach using network 

datasets to characterize drivers of ambient particulate matter 

air quality in Hong Kong. 

4.1. Abstract 

Despite numerous emission control measures implemented within Hong Kong during 

1998-2008, air quality conditions remained relatively constant or degraded across the 

region.  This motivated a detailed examination of various particulate matter (PM) datasets 

to understand the drivers of observed air quality trends.  PM datasets collected by the 

Hong Kong Environmental Protection Department at multiple sites included 24-hour 

integrated PM10 and PM2.5 speciation mass concentrations and also hourly PM10 mass 

measured by Tapered Element Oscillating Microbalance (TEOM) monitors.  This chapter 

extends the source apportionment of the PM10 speciation data presented in Yuan et al. 

(2013) to provide insights obtained from the other datasets.  Positive Matrix Factorization 

(PMF) on the PM2.5 and PM10 speciation datasets yield consistent source contribution 

estimates for the two dominant factors – vehicle exhaust and secondary sulfate.  

Spatiotemporal variability in TEOM mass is examined by developing day-specific semi-

quantitative estimates of regional- and larger-scale contributions that uniformly impact 

most of the network.  PMF-resolved source contributions for the speciation datasets 

provide a context to understand the observed spatial and temporal patterns for PM10 

TEOM mass.  Temporal variations in TEOM mass and PMF-resolved source 

contributions are examined by categorizing air mass back trajectories into trajectory 
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classes.  The decrease in vehicle exhaust contributions over the decade is demonstrated 

by improvement or stasis of air quality during summer months at monitoring stations 

located even in heavily urbanized regions of Hong Kong.  In contrast, such improvements 

from reductions in vehicular emissions are being offset by the increased transport of 

particulate matter from mainland China during the winter months, resulting in the stasis 

in air quality.  Analysis of the distinct PM datasets provide a weight of evidence for the 

drivers leading to recent trends in Hong Kong PM air quality.  

4.2. Introduction 

In 1987, Hong Kong Air Quality Objectives (AQO) was established for seven widespread 

air pollutants.  Respirable Suspended Particulates (RSP or PM10) objectives include an 

annual arithmetic mean concentration of 55 μg/m
3
 and a 24-hour concentration of 180 

μg/m
3
 not to be exceeded once a year.  The annual average PM10 AQO was achieved at 

all ten neighborhood-scale monitoring stations in 2009 with highest value of 51 μg/m
3
 

(93% of AQO) observed at Yuen Long (YL).  In contrast, this AQO was not met at the 

three roadside monitoring stations with highest value of 71 μg/m
3
 (129% of AQO) 

observed at Causeway Bay (CB).  Proposed revisions to the Hong Kong AQO, expected 

to take effect in 2014, would decrease the PM10 AQO and establish AQO for fine PM 

(PM2.5).  Based on the PM10 levels in 2009, all sites within Hong Kong will be in 

exceedance of the proposed annual average PM10 AQO of 50 μg/m
3
.  While PM and 

pollutant concentrations across the region have decreased by almost 13% between 2006 

to 2011 (Zhong et al., 2013), in the decade prior to 2009 the PM10 concentrations 

remained relatively constant at most monitoring sites in Hong Kong despite numerous 

emission control measures implemented within the Hong Kong Special Administrative 
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Region (HKSAR).  For instance, Figure 4-1 shows average concentrations over the five-

year periods 1999-2003 and 2004-2008.  Significant reductions were observed at only the 

CB roadside station while the remaining stations exhibited virtually no change or even an 

increase in PM10 mass concentration.  The drivers leading to such stasis/degradation of 

air quality conditions are examined though a detailed analysis of various particulate 

matter (PM) datasets routinely collected across the Hong Kong region.   

Hong Kong is located within one of the most densely populated urban regions in the 

world with nearly 50 million people residing in the Pearl River Delta (PRD) region.  

Located along the southeastern coastline of China, the region has transformed from once 

agricultural hinterland to one of the largest manufacturing and shipping hubs in the 

world.  For development of efficient air quality control strategies, a refined understanding 

of the emission sources, meteorology and atmospheric processes modulating the observed  

 

Figure 4-1. Average PM10 TEOM mass concentrations for the five-year periods 

1999-2003 and 2004-2008 by monitoring sites spanning west to east of Hong 

Kong.  
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particulate matter burdens is needed.  The Hong Kong Environmental Protection 

Department (HKEPD) has operated a network of monitoring stations collecting PM mass 

and speciation data to gauge air quality over the region (Figure 4-2).  Studies using 

speciation data collected prior to 1998 (Fung and Wong, 1995; Qin et al., 1997, Lee et al., 

1999; Qin et al., 2002) excluded key species such as carbon fractions/nitrates and/or 

included species with measurement/analysis artifacts (Yuan et al., 2006).  Adjustments 

were made to the speciation methods in 1998 and later studies have typically focused on 

1998-and-later data.  These contemporary datasets include more than ten years of 24-hour 

integrated PM10 speciation mass collected at up to ten sites; three years of 24-hour  

 

Figure 4-2. Geographical distribution of the Air Quality Monitoring Stations 

(AQMS) in Hong Kong. 
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integrated PM2.5 speciation mass collected at up to four sites; and more than ten years of 

hourly PM10 mass concentrations collected at up to fourteen sites.  Subsets of these 

datasets have been analyzed and updated as more data was made available (Ho et al., 

2003b; Yu et al., 2004; Hagler et al., 2006; Huang et al., 2009; Cheng et al., 2010).   

Ho et al. (2003a) examined the characteristics of PM10 and PM2.5 species collected during 

November 2000 to February 2001 across three sites in Hong Kong and attributed most of 

the PM10 mass to PM2.5 (60-80% depending on the site).  From the yearlong PM2.5 

campaign data, Louie et al. (2005a) deduced carbonaceous species to be the largest 

contributor to PM2.5 mass (50–75% at urban sites) followed by ammonium sulfate.  

Highest PM2.5 concentrations were observed during winter for air masses arriving from 

north/northeast of HKSAR (Louie et al., 2005b).  Guo et al. (2009) applied Principal 

Component Analysis (PCA) to PM2.5 speciation datasets collected during 2000-2001 and 

2004-2005.  Secondary sulfate and vehicle exhaust factors were identified as the major 

contributors to the PM2.5 mass.  However, the vehicle exhaust factor was admixed with 

species associated with biomass burning and nitrate was smeared over various factors.  

Yuan et al. (2006) applied Positive Matrix Factorization (PMF) and Unmix receptor 

models to 24-hour integrated PM10 speciation data collected at eleven sites during 1998-

2002 to identify sources and quantify their contributions.   

Source apportionment of the PM10 speciation data was updated to include the time period 

from 1998 to 2008 (Yuan et al., 2013).  Nine source categories resolved through PMF 

were split into local (operationally within HKSAR jurisdiction) and non-local sources, 

although the close proximity of the highly industrialized PRD region to HKSAR could 

prevent these ‘non-local’ sources from exhibiting characteristics of a regional source (i.e. 
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homogeneous impacts across the HKSAR).  Vehicle exhaust, residual oil combustion, 

fresh and aged sea salt were categorized as local sources, while non-local sources were 

comprised of secondary sulfate, secondary nitrate, coal combustion/biomass burning, 

trace metals and soil/dust.  Contributions from the local and non-local source categories 

were similar during summer, but during the winter the non-local source contributions 

were higher (77%) than the local source contributions (22%).  From 1998 to 2008, the 

annual average contributions from secondary sulfate and nitrate, the dominant non-local 

sources, increased by ~ 8 μg/m
3
.  At the same time, annual average contributions from 

vehicle emissions, the dominant local source, decreased by ~ 6 μg/m
3
 and were linearly 

correlated with the HKEPD road transport PM emission inventory, providing evidence 

for the reduction of vehicle emissions from the numerous emission controls implemented 

within the HKSAR.  

In addition to the PM speciation data, HKEPD has also collected hourly PM10 mass since 

1997 using Tapered Element Oscillating Microbalance (TEOM) monitors at a network of 

fourteen sites across HKSAR.  Man and Shih (2001) used TEOM data collected at 11 

sites during 1997-1999 to analyze seasonal trends in PM mass by classifying air masses 

into seven distinct patterns.  The highest observed concentrations were attributed to 

wintertime air masses originating over the Asian continent and lowest for oceanic air 

masses in summer.  Such seasonality of the air masses in the region is governed by the 

East Asian Monsoon and characterized by a long winter and summer with a relatively 

short spring and fall (Murakami and Nakazawa, 1985).  In summer, the rising 

temperature over the continent develops a low-pressure system and drives the 

south/southwestern cyclonic winds to bring oceanic air masses to Hong Kong.  During 
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winter, the prevailing north/northeastern anti-cyclonic winds over the continent bring air 

masses from mainland China to the Hong Kong region.  The transition seasons of spring 

and fall are characterized by weak winds over the coastal region.   

Synoptic-scale air mass transport patterns have been frequently utilized to identify and 

interpret relationships between observed air quality parameters and air mass history 

(Ashbaugh et al., 1985; Cheng and Lin, 2001; Lupu and Maenhaut, 2002; Hsu et al., 

2003; Louis et al., 2005b).  In general, each observed concentration at a given receptor 

location is assigned to every grid in the spatial domain along the corresponding back 

trajectory and combined using some statistical measure to obtain a conditional probability 

field based on the residence time of air masses (Stohl, 1998).  Various approaches have 

been used to identify source regions for particulate matter over continental scales (Stohl, 

1996; Keeler and Samson, 1989; Zhou et al., 2004; Scheifinger and Kaiser, 2007).   

Application of such tools to the Hong Kong region can be challenging because the 

heavily industrialized PRD region in Guangdong Province, China, is adjacent to the 

HKSAR.  The spatial dimension of this region (~200 km) is on the order of the spatial 

resolution of meteorology data typically used for trajectory generation (~100 km).  

Hence, PRD-scale impacts cannot be resolved from larger-scale transport impacts.  Air 

mass trajectory fields at much finer spatial resolution than routinely available are needed 

to meaningfully gauge impacts from source regions located at such close proximity but 

beyond HKSAR jurisdiction.   

In this chapter, source apportionment results for the HKEPD PM2.5 speciation dataset are 

compared and contrasted with the PM10 source apportionment presented in Yuan et al. 

(2013).  In addition, hourly PM10 TEOM mass data, collected continuously at fourteen 
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sites, is used to examine spatiotemporal variability by developing day-specific semi-

quantitative estimates of regional- and larger-scale contributions that uniformly impact 

most of the network.  The site-specific seasonal and temporal patterns are interpreted by 

applying the methodology for analyzing monitoring network data presented in Yadav et 

al. (2013).  PMF-resolved source contributions are used to interpret the spatial and 

temporal variability in PM10 TEOM mass collected across the network.  Air mass back 

trajectories are clustered and used to interpret the trends in the TEOM data and PMF-

resolved source contribution estimates.   These analyses of the PM2.5 speciation data and 

PM10 TEOM mass data, together with the PM10 source apportionment by Yuan et al. 

(2013), collectively provide a weight of evidence for the drivers leading to recent trends 

in Hong Kong PM air quality.   

4.3. Datasets 

Figure 4-2 shows the network of Air Quality Monitoring Stations (AQMS) collecting 

multiple particulate matter datasets across the HKSAR.  Monitoring stations are 

categorized as: general stations, located in urban/commercial/residential areas to gauge 

neighborhood exposure; roadside stations, located at vehicle traffic-heavy intersections; 

and remote stations, located in regions typically isolated from urban development.  Table 

4-1 lists the valid sampling periods for each dataset from 1998 to 2009. Additional details 

on the monitoring network and data characteristics are presented in Section C.1 of the 

Appendix C.   

PM10 speciation data were collected at up to ten sites from 1998 to 2008.  24-hour 

integrated samples were collected at 1-in-6 day frequency onto quartz filters and analyzed 
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Table 4-1. Overview of Hong Kong air quality monitoring stations, PM datasets, and the valid sampling periods used in this 

study.   

Site 

Characteristics 
Monitoring Station 

PM10 (24 hour integrated) PM2.5 (24 hour integrated) TEOM PM10 (hourly) 

Sampling Period Count Sampling Period Count Sampling Period Count 

Urban/ 

Residential/ 

Commercial 

Central/Western CW Jan. 1998 - Dec. 2008 641 - - Jan. 1998 - Dec. 2008 92427 

Eastern EN - - - - Jan. 1999 – Dec. 2008 86512 

Kwai Chung KC Jan. 1998 - Dec. 2000 178 - - Jan. 1999 - Dec. 2008 86292 

Kwun Tong KT Jan. 1998 - Dec. 2008 598 - - Jan. 1998 - Dec. 2008 87871 

Sham Shui Po SSP Jan. 1998 - Dec. 2008 586 - - Jan. 1998 - Dec. 2008 92680 

Sha Tin ST Jan. 1998 - Dec. 2000 173 - - Jan. 1998 - Dec. 2008 93434 

Tung Chung TC Apr. 1999 - Dec. 2008 575 - - Apr. 1999 - Dec. 2008 83523 

Tai Po TP Jan. 1998 - Dec. 2000 181 - - Jan. 1998 - Dec. 2008 87768 

Tsuen Wan TW Jan. 1998 - Dec. 2008 631 

Nov. 2000 - Oct. 2001 

Nov. 2004 - Oct. 2005 

Dec. 2008 - Dec. 2009 

184 Jan. 1998 - Dec. 2008 90750 

Yuen Long YL Jan. 1998 - Dec. 2008 649 
Nov. 2004 - Oct. 2005 

Dec. 2008 - Dec. 2009 
129 Jan. 1998 - Dec. 2008 94446 

Roadside 

Causeway Bay CB - - - - Jan. 1998 - Dec. 2008 93839 

Central CL - - - - Jan. 1999 - Dec. 2008 84430 

Mong Kok MK Jan. 1998 - Dec. 2008 640 

Nov. 2000 - Oct. 2001 

Nov. 2004 - Oct. 2005 

Dec. 2008 - Dec. 2009 

183 Jan. 2001 - Dec. 2008 69280 

Remote 
Hok Tsui HT - - 

Nov. 2000 - Oct. 2001 

Nov. 2004 - Oct. 2005 

Dec. 2008 - Dec. 2009 

180 - - 

Tap Mun TM - - - - Apr. 1998 - Dec. 2008 90829 
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for gravimetric mass, elements, ions, organic carbon and elemental carbon.  PM2.5 

speciation data were collected at up to four sites during three one-year campaigns (2000-

2001, 2004-2005 and 2008-2009).  Samples were collected at 1-in-6 day frequency onto 

quartz and Teflon filters that were analyzed for gravimetric mass and the aforementioned 

components.  In addition to these PM speciation datasets, TEOM monitors have been 

operated at fourteen sites to provide hourly PM10 mass.  Data from 1998 to 2008 are used 

in this study.  The TEOM units were operated at 50
o
C to remove particle-bound water 

and consequently other volatile species, thereby representing the non-volatile component 

of the ambient particulate matter.  Hourly mass data were converted to daily averages 

with data gaps of one-to-two hours imputed by linear interpolation.  For each site, only 

those days with 24 hours of measured/imputed data were retained resulting in 84-95% 

daily data completeness depending on the site. 

Air mass back trajectories were obtained from www.sharedair.org, which includes an 

archive for several cities worldwide, as compiled by the University of Michigan for U.S. 

Environmental Protection Agency (USEPA).  The seven-day air mass back trajectory 

dataset used in this study spans the period  January 1, 2000 through December 31, 2009 

and includes four trajectories per day (arrival times of 00, 06, 12, and 18 UTC) generated 

using Revision 4.9 of the NOAA HYSPLIT4 Model (Draxler, 1999).    Meteorological 

data sets used to generate the trajectories were FNL (2000-2003) and GDAS1 (2004-

2009; 1 resolution which corresponds to ~100 km x 100 km).  The trajectory arrival 

height was fixed at 500 m and back trajectory endpoints were generated for every two 

hours for up to seven days duration.  Trajectories generated for the Central/Western (CW) 

station on Hong Kong Island were utilized in this study with 99.6% completeness (14,546 
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trajectories out of a possible 14,608 trajectories). 70% of the trajectories spanned the 

entire seven day duration while the reminder exited the modeled spatial domain prior to 

seven days. 

4.4. Methodology 

4.4.1. Source Apportionment of PM Speciation Dataset 

Receptor modeling of the PM speciation datasets was performed to gain insights into the 

emission sources and atmospheric processes driving air quality conditions.  Several 

receptor models were used and the results obtained using EPA PMF 3.0 are utilized in 

this chapter.  Source apportionment of the Hong Kong PM10 speciation dataset from 1998 

to 2008 was presented in Yuan et al. (2013).  Source apportionment of the PM2.5 dataset 

was performed by combining data from the three one-year campaigns and the four sites.  

Details are presented in Section C.2 of the Appendix C.  Sample-specific uncertainties 

were developed using collocated samples as described by the Supplementary Information 

in Yuan et al. (2013) and these uncertainty estimates were used in the source 

apportionment modeling.  Solutions for six to ten factors were examined and the eight 

factor solution was deemed optimal and mapped to source categories based on their tracer 

species (Yuan et al., 2013).    

4.4.2. Examining spatiotemporal variability in TEOM mass 

The extensive hourly PM10 TEOM mass collected at up to 14 sites from 1998 to 2008 

was used to examine spatiotemporal variability by developing day-specific semi-

quantitative estimates of regional- and larger-scale (i.e. synoptic) contributions that 

uniformly impact most of the network.  Similar approaches have been utilized for multi-
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site monitoring networks to understand spatiotemporal trends in high PM days and to 

identify putative local source locations (Turner, 2008; Turner, 2009; Yadav et al., 2009; 

Yadav et al., 2013).  Depending on the monitoring station locations, the sites experience 

differential PM impacts from urban- and finer-scale (i.e. local) sources in addition to the 

presumed homogeneous regional- and larger-scale impacts.  Non-local PM impacts in 

this study are collectively labeled as synoptic-scale even though synoptic-scale (i.e. 

spatial domain > 1000 km) PM impacts may be admixed with regional-scale (~50-1000 

km) PM burdens from PRD source emissions.  The PM mass data measured across the 

network can be utilized to construct a time series for a network-wide baseline to 

differentiate the network-wide, uniform behavior from the site-specific PM impacts.  

Despite the limitations posed by this simplified representation of a complex system, this 

conceptualization dampens fluctuations in synoptic-scale impacts arising from year-to-

year variations in synoptic weather patterns and thereby enables a refined interpretation 

of the spatiotemporal patterns.   

The 5
th

-lowest daily average TEOM mass across the 14 site network was chosen as the 

daily baseline in this study to capture the behavior broadly representative of the general 

stations.  Daily average mass at each site in excess of the baseline was assigned as the 

site-specific excess mass.  The daily excess mass with respect to the defined baseline can 

be negative at some sites yet are operationally referred to as excess as well in this 

chapter.  Additional details on this approach, including the rationale and application to 

the TEOM monitoring network in Hong Kong, are presented in Section C.3 of the 

Appendix C.  Homogeneity in mass measured across a network of monitoring sites is 

gauged using a scattergram of Pearson’s correlation coefficient (PCC) and the coefficient 
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of divergence (COD) i.e., a PCC-COD plot, for the site-specific daily average TEOM 

mass against the network-wide baseline (Yadav et al., 2013).  Annual and monthly 

distributions in daily average baseline and site-specific excess TEOM mass were 

examined towards understanding the drivers of PM variability across the region. 

4.4.3. Clustering of Air Mass Trajectories 

To understand the drivers of spatiotemporal patterns in both TEOM mass and PMF-

resolved source contributions, synoptic-scale air mass back trajectories are clustered into 

groups with similar transport patterns.  Air masses with similar transport histories are 

presumably exposed to similar emission fields but could have different atmospheric 

processing capacity, depending on various factors such as moisture content, pollutant 

composition, etc.  The clustering approach used in this study assigns each trajectory to an 

air mass transport pattern independent of the air quality data parameter, enabling 

examination of any parameter of interest such as concentration metrics or modeled source 

contribution estimates.  By simply relating the observed concentrations to air mass 

transport patterns, this approach makes no inference whether the pollutant is regionally 

transported or the transport pattern is a proxy for local meteorological conditions that 

modulate local source impacts (e.g. atmospheric ventilation).   

Air mass trajectories for the Hong Kong region spanning 2000 to 2009 are grouped into 

clusters based on refinements to the methodology of Dorling et al. (1992) as described in 

Section C.4 of the Appendix C.  A subset of N trajectories is chosen as seeds – each 

representing one cluster – and the individual trajectories are matched to the seed which 

has the minimum trajectory-seed separation distance along the trajectory path.  After the 

first iteration the seeds are replaced with the cluster-mean trajectories and the entire set of 
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trajectories are iteratively reassigned to clusters until there is no change in the trajectory-

cluster matching with each update. The cluster set for which an increase in number of 

clusters does not appreciably reduce a global measure of separation distances between the 

trajectories and their respective cluster-mean trajectories is chosen as the final set of 

clusters.  A ten trajectory subset (N = 10 seeds) was used to obtain a five cluster solution 

with each individual trajectory assigned to a particular cluster.   

The five resolved air mass transport patterns (i.e. clusters), shown in Figure 4-3, have the 

following characteristics: (1) Slow ECC – relatively slow moving air masses transported 

from the north with the cluster-centroid trajectory located along the Eastern Coast of 

China (ECC); (2) Fast ECC – relatively fast moving air masses transported from the north 

with the cluster-centroid trajectory located along the ECC; (3) Stagnant/circulating – air 

masses residing over the HKSAR region for much of the seven day period; (4) S/SW – 

south/southwesterly air masses arriving from the Indian Ocean across Southeast Asia; 

and (5) East – air masses arriving from the Pacific Ocean due east of Hong Kong.  

The trajectory clusters also corroborate the seasonal patterns observed over the region as 

described in Section C.4 of the Appendix C.  Synoptic conditions during winter months 

are dominated by northerly air masses transecting the eastern region of mainland China.  

Summer monsoon months are characterized by prevailing south/southwesterly and 

easterly oceanic air masses.  The transitions between these two seasons feature a mix of 

air masses with higher frequency of the stagnant/circulating air masses.  These seasonal 

behaviors are generally consistent over the ten year period examined in the study, with 

30-40% annual frequency of Slow ECC except in 2004 (44%).  The annual frequency of 

oceanic  air masses (S/SW and East) is ~30% with highest frequency in 2005 (34%)
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Figure 4-3. Air mass patterns resolved by cluster assignment of seven-day air mass back trajectories from 2000-2009 for Hong Kong: 

(1) Slow ECC, (2) Fast ECC, (3) Stagnant/circulating (4) S/SW and, (5) East. The graphs show the normalized number density of 

trajectories passing over each grid (on a scale of 0-100) and the cluster-mean trajectories for every cluster except the 

Stagnant/circulating cluster. 

(1) (2) (3) 

(5) (4) 
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and lowest in 2004 (21%).  Such year-to-year variability in the relative frequency of the 

air mass transport patterns could influence the temporal trends observed for air quality 

parameters.  To associate daily averaged mass or species concentrations with the 

representative air mass trajectory cluster, a single cluster is selected to represent the day 

if at least three of the four daily trajectories are assigned to the same cluster.  The 

remaining days are deemed to have transitional conditions and no air mass patterns are 

assigned to such days.  This approach results in an air mass cluster designation for 82% 

of days over 2000 to 2009 which are used to interpret temporal trends in PM burdens. 

4.5. Results and Discussions 

4.5.1. Source Apportionment of PM2.5 Speciation Dataset 

Source apportionment modeling results for the PM2.5 speciation dataset are presented in 

detail in Section C.2 of Appendix C.  Secondary sulfate and vehicular exhaust factors 

were the dominant contributors to total PM2.5 mass at 32% and 26%, respectively.  

Secondary nitrate and biomass burning factors contribute 13% and 11%, respectively, 

while contributions from each of the remaining factors – trace metals, residual oil 

combustion, crustal/soil and chlorine/fresh sea salt – were generally less than 7% of the 

total PM2.5 mass.  The secondary sulfate factor shows consistent mass contributions at all 

sites irrespective of the site characteristics, with its contribution to PM2.5 mass increasing 

from 24% in 2001 to 33% in 2009.  Vehicular exhaust contributions, although highest at 

the MK roadside station and lowest at the TM remote station, consistently decreased by 

~50-58% depending on the site.  Secondary nitrate factor contributions also decreased at 

all sites over the decade, but the highest contributions were observed at the YL general 

station and the MK roadside station.   
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4.5.2. Comparison between PM2.5 and PM10 factor contributions 

PMF-resolved source contribution estimates (SCE) from source apportionment of the 

PM2.5 (this study) and PM10 (Yuan et al., 2013) datasets are compared in Figure 4-4.  

Annual average SCEs are calculated using the matched PM2.5-PM10 sampling days for 

TW and YL.  PM2.5 and PM10 sampling days were not synchronized at MK.  Thus the 

annual average SCEs for MK were calculated using the respective year-long field 

campaign data and could explain the higher PM2.5 annual SCEs than PM10.   

 

 

Figure 4-4. Annual average PM2.5 and PM10 source contribution estimates (SCEs) 

for each of the eight PMF-resolved factors by site and year: TW (2001, 2005), YL 

(2005), and MK (2001, 2005).  The solid line is the 1:1 line; the dashed lines are 

2:1and 1:2 lines.  
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In general, there is good quantitative agreement between the PM2.5 and PM10 SCEs for 

both the secondary sulfate and vehicle exhaust factors, which is consistent with emissions 

from these source categories being dominated by fine PM.  PM2.5 secondary nitrate 

contributions are about 50% of the PM10 factor, suggesting that considerable nitrate is in 

the coarse particle fraction, although the nitrate data might be prone to sampling artifacts.  

The unexplained mass in the PM2.5 and PM10 secondary nitrate factors are nearly 

identical and thus cannot explain the difference.  Soil/dust contributions are 

predominantly in the coarse particle size range, as expected.  PM2.5 coal/biomass burning 

contributions are about 30% of the PM10 factor possibly because of re-suspension of soil 

associated with biomass burning.  Fresh sea salt contributions are scattered about the 1:1 

line but the PM2.5 factor contributions are likely unreliable as sodium data was excluded 

from modeling.  Trace metals contributions are scattered possibly because of the large 

unexplained mass in the PM10 factor (9% and 68% for PM2.5 and PM10, respectively).  

Residual oil combustion contributions to PM2.5 are almost twice the corresponding PM10 

factor because of the higher loading of EC and OC onto the PM2.5 factor profile.  Overall, 

despite differences in sampling and analysis techniques, the PM10 and PM2.5 

apportionments are generally consistent with how source contributions are expected to 

distribute between fine and coarse fractions with all of the secondary sulfate and vehicle 

exhaust in fine PM.   

Temporal changes in PM2.5 SCEs are not clearly apparent with the dataset limited to three 

one-year campaigns.  However, temporal trends in PMF-resolved PM2.5 and PM10 

secondary sulfate and vehicular exhaust factors, shown in Figure 4-5, are consistent.  The 

annual average PM2.5 secondary sulfate factor SCEs track the increase in annual average  
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Figure 4-5. Temporal trends for annual average PM10 and PM2.5 factor 

contributions for general and roadside stations for PMF-resolved (a) secondary 

sulfate and (b) vehicle exhaust factors. 

PM10 sulfate factor SCEs. The drastic decrease in secondary sulfate contributions in 

2009, observed only for PM2.5 because 2009 PM10 data were not available when this 

analysis was conducted, corroborates the trend in PM burdens observed across the PRD 

region during 2006-2012 (Zhong et al., 2013).  The decrease could result from the 

decrease in economic activity following the global recession in 2008 as well as from 

implementation of stringent pollution control policies in PRD region such as 

desulfurization measures in power plants (Zhong et al., 2013).   

Similar secondary sulfate SCEs at general and roadside stations further strengthens its 

non-local emission scale characteristic.  On the contrary, vehicle emissions contributions 

at the roadside station are significantly higher than at general stations and both have 

monotonically decreased for PM2.5 and PM10.  Roadside station PM2.5 vehicle exhaust 

SCEs are greater than the PM10 contributions possibly due to the aforementioned 

mismatch in PM2.5 and PM10 sampling days at MK roadside station and/or higher EC/OC 

ratio in PM2.5 factor which might be driven by differences in EC measurement method 

between the two datasets (see Section C.1 of the Appendix C).  Overall, source 
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apportionment of the PM2.5 data corroborates the PM10 source apportionment by Yuan et 

al. (2013) and adds to the weight of evidence for the sources influencing PM air quality 

in Hong Kong.     

4.5.3. Spatial and Temporal Trends in TEOM PM10 mass 

Spatiotemporal variability in the PM10 TEOM network data is first examined by 

comparing the site-specific daily average mass against the network-wide baseline. This 

approach could not be taken for the PM10 speciation data because speciation sampling 

days were not synchronized across the network.   Figure 4-6 shows the PM10 TEOM data 

PCC-COD plot where high PCC and low COD for a site with respect to the baseline 

indicate spatial/temporal homogeneity between the two time series.  Tight clustering of 

most general stations (with the exception of TC and YL) towards the homogeneity end of 

the plot (i.e., towards PCC = 1 and COD = 0) indicates that the baseline is indeed 

 

Figure 4-6. Scatter plot of Pearson’s correlation coefficient and coefficient of 

divergence (PCC-COD plot) for the daily-averagePM10 concentration time series 

at each site and the daily-average baseline concentration time series.  The right 

panel is an expanded view of the left panel. 
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characterized by the mass measured at these general stations.  In contrast, the positioning 

of the TC and YL general stations, the TM remote station, and the three roadside stations 

on the PCC-COD plot indicates greater variability and hence different or additional 

drivers for PM burdens than at the other general stations such as local sources, 

meteorology and/or geographic factors.  The factors contributing to such site-specific PM 

burdens are explored by examining patterns for the daily average excess mass at each 

site.   

To meaningfully interpret the patterns in site-specific excess mass, it is pertinent to 

understand the trends in baseline mass against which the excess are quantified.  Figure 

4-7 shows the annual and monthly mass distributions for the baseline along with the 

excess mass at two general stations – TW and YL; each characteristic of general stations 

defining the baseline (CW, EN, KC, KT, SSP, ST, TP and TW) and distinct from the 

baseline (TC and YL).  Over the entire eleven year period (Figure 4-7 (a)), the bottom 5
th

 

and 25
th

 percentiles of the baseline, representative of the cleanest days, are nearly the 

same.  In contrast, the higher concentration metrics (95
th

and 75
th

 percentiles, mean and 

median values) are greater for 2004-2008 than 1999-2003.  These metrics are more than 

twofold higher during winter months compared to the summer months (Figure 4-7 (b)).  

Thus, PM levels on the cleanest days – usually occurring during summer months – have 

remained unchanged, but in recent years there has been an increased frequency of higher 

wintertime PM observed across the entire network.  The excess mass at the general 

stations which contribute to defining the baseline, such as TW, display no discernible 

annual (Figure 4-7 (c)) or seasonal (Figure 4-7 (d)) patterns.  Hence, the baseline in this 



92 
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(b) Baseline: Monthly
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(c) TW Excess: Annual
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(d) TW Excess: Monthly
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(e) YL Excess: Annual
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(f) YL Excess: Monthly
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Figure 4-7. Annual and monthly distributions of daily-averaged PM10 TEOM mass 

concentrations for baseline (left column) and for excess mass concentrations at the TW 

and YL general stations. All box plots in this chapter are formatted as: open circles are 5
th

 

and 95
th

 percentile values; the bottom and top of the boxes are 25
th

 and 75
th

 percentile 

values; and the interior dotted and solid lines are mean and median values, respectively. 
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study is again confirmed to broadly represent the mass measured at general stations that 

could result from the combined influence of synoptic -scale PM impacts as well as the 

PM burdens from increasing urbanization in Hong Kong.  The contrasting PM trend at 

the YL (and TC) general station is characterized by higher annual excess mass (Figure 

4-7 (e)) – particularly during winter months (Figure 4-7 (f)) – than at other general 

stations and are discussed later in this section.  

PM trends for the CB roadside station and TM remote station, shown in Figure 4-8, 

further illustrate the advantage of using site-specific excess mass to understand the 

factors impacting spatiotemporal variability.  The measured mass at CB (Figure 4-8 (a)) 

decreased during 1998-2003 and then remained generally constant during the latter half 

of the decade albeit with some year-to-year variability.  With the baseline removed 

(Figure 4-8 (b)), these two patterns become sharper and the year-to-year variability is 

suppressed.  Measured PM10 mass at TM (Figure 4-8 (d)) follows the modestly increasing 

temporal pattern exhibited by the baseline.  In contrast to all other stations, excess mass 

at TM (Figure 4-8 (e)) monotonically increased over the decade.  Similar to the seasonal 

patterns for the baseline (Figure 4-7 (b)), there is greater variability in excess mass 

stratified by month across 1998 to 2008 at TM during winter months compared to the 

summer months (Figure 4-8 (f)).  This indicates that the monotonic increase primarily 

results from the long-term (inter-annual) increase in PM burdens from synoptic- and/or 

local-scale source contributions occurring during winter months.  Relationships between 

seasonal air mass patterns and site-specific excess mass are discussed further in Section 

4.5.4. 
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(a) CB Measured: Annual
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(b) CB Excess: Annual
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(c) CB Excess: Monthly
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(d) TM Measured: Annual
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(e) TM Excess: Annual
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(f) TM Excess: Monthly
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Figure 4-8. Daily-averaged PM10 mass concentration distributions at the CB roadside station (top) and TM remote station (bottom) 

for: measured mass by year (left); excess mass by year (center); and excess mass by month (right). 
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Figure 4-9 shows the seasonal distribution of PM10 excess mass at each site for the five 

year periods 1999-2003 and 2004-2008 during peak summer (June-July) and winter 

(Nov-Dec) months.  The three categories of monitoring stations are arranged in the order 

of increasing distance from west to east of Hong Kong.  Excess mass at the roadside 

stations are insensitive to season and have decreased from the earlier to latter half of the 

decade.  Excess mass distributions at general stations display distinct patterns based on 

their location.  General stations located on the southeastern side of the mountains ranging 

from northeast to southwest of Hong Kong i.e., TW, KC, CW, SSP, TP, ST, EN and KT 

general stations do not display discernible spatial patterns.  The excess mass distributions 

are nearly identical across the two five-year periods and the site-to-site variability likely 

reflects the spatially varying impacts of local sources.  In contrast, excess mass at sites on 

the western side of the mountains i.e., TC and YL general stations are significantly higher 

during winter months than summer for both the five-year periods.  During winter of 2004 

(the only year common among all three datasets for YL), the highest TEOM mass among 

the general stations was also observed at YL, which is also consistent with the higher 

contributions of PMF-resolved secondary nitrate, soil/dust and biomass burning factors at 

YL in both PM10 and PM2.5 datasets.   

Higher PM burdens at YL (and TC) could result from the combined influence of various 

factors discussed in this paragraph.  The YL station, located on the northwestern edge of 

The New Territories, is exposed to the heavily industrialized PRD region and the Port of 

Shekou to the northwest and has 800-1000 m high mountains immediately to the east and 

south.  Likewise, the TC station is located on the northwestern edge of Lantau Island and 

is exposed to the PRD region to northwest with 700-950 m high mountains to the east and  
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(b) Summer, 1999-2003
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(c) Winter, 2004-2008
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(d) Summer, 2004-2008
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Figure 4-9. Spatial distributions of daily–average PM10 excess mass concentrations during winter (Nov-Jan) and summer (Jun-

Jul) months over two five year periods (1999-2003 and 2004-2008) for the three categories of monitoring stations spanning 

west to east across Hong Kong.  
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south.  The influence of such geographical features, seasonal air masses and location of 

major emission zones in close proximity to these sites are further examined by 

contrasting the seasonal distribution of hourly mass measured at YL in excess of that at 

TW, a general station located on the southeastern side of the mountains, over the two five 

year periods 1999-2003 and 2004-2008 (Figure 4-10).  During the winter months (Nov-

Jan) when air masses from north/northeast transect the PRD region, the median hourly 

mass observed between 7 am to 1 pm are ~67% higher than at other hours for both 

periods.  In contrast, mass measured at YL and TW are similar during the summer 

months (June-July) when oceanic air masses prevail.  Additionally, mixing layer height 

measurements at YL by Lidar at 30 minute resolution over the six year period 2003-2009 

(Yang et al., 2013) indicates that the mixing layer depth grows from ~0.6 km at 8 am to 

~1.0-1.2 km at noon during summer and from ~0.5 km to ~0.9-1.0 km during winter 

months.  The combined influence of these factors could result in the larger excess mass 

observed at YL and TC than at general stations located on the southeastern side of the 

mountains.  While PRD source region contributions to PM burdens in the HKSAR cannot 

be accurately quantified because of its proximity, they can influence the spatial 

variability of PM across Hong Kong.  

4.5.4. Relationships between PM Burdens and Synoptic Air Mass Patterns  

The temporal trend in PM datasets are further interpreted using the daily air mass back 

trajectory cluster assignments.  Site-specific PM10 TEOM mass have high daily data 

completeness and thus the trajectory assignments are made for each site in the network.  

PM2.5 speciation samples collected at 1-in-6 day frequency at three-to-four sites over 

three one-year campaigns account for only 5% of days overlapping with cluster 
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Figure 4-10. Hourly distributions of PM10 mass at YL in excess of TW (i.e. YL-TW) 

during winter (Nov-Jan) and summer (Jun-Jul) for two five-year periods: 1999-2003 and 

2004-2008. 

assignments for the period 2000-2008 and thus the PM2.5 speciation dataset is excluded 

from this analysis.  PM10 speciation samples were collected at 1-in-6 day frequency 

across the entire period 2000-2008.  Sampling across the network of ten sites is not 

synchronized but rather occurs on different days of the week.  Given that the SCEs for 

PMF-resolved factors are largely consistent across the general stations, especially for the 

secondary sulfate and vehicle exhaust factors, the non-synchronized sampling schedule is 

exploited to construct a time series with maximum data completeness.  In this case, the 

PMF-modeled factor SCEs for concurrently sampling general stations are averaged to 

represent a network-wide SCE for each day.  This approach is also consistent with the 1 

resolution of the meteorological dataset used to generate the trajectories and yields a 

daily time series with 67% completeness over 2000-2008 as compared to a maximum 
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completeness of 17% for a single station.  Key results are presented in the remainder of 

this section with additional details provided in Section C.5 of the Appendix C. 

The daily network-average SCEs derived from the PM10 PMF modeling are grouped by 

cluster and scaled such that, over the entire dataset, the average SCE for each factor is 

unity.  This scaling facilitates comparisons across different source categories.  For each 

air mass cluster the scaled annual median factor contributions are regressed on year using 

a linear-least squares regression.  Thus, the regression slope for each cluster represents 

the corresponding linearized rate of change in scaled factor contribution per year over 

2000-2008.  The slopes are presented in Table 4-2 for those cases where the change is 

statistically distinguishable from zero at the 95% confidence interval.  The vehicle 

exhaust factor exhibits a statistically significant decrease for each of the air mass clusters.  

For example, the median scaled vehicle exhaust contributions decreased by 0.12 per year, 

i.e. 0.71g/m
3
 per year for the Slow ECC cluster.  This pattern is consistent with a local 

source that has been the focus of emission reduction programs.  Variations in the rate of 

change across the air mass transport patterns for this local source factor likely reflects the 

coupling between synoptic weather and the local atmospheric ventilation conditions.  

Secondary sulfate contributions increased for the Slow ECC and Fast ECC clusters and 

are statistically indistinguishable from zero for the remaining clusters.  This pattern of a 

significant change for only the ECC clusters is consistent with increasing impacts from 

the eastern portion of China.  Further, for such air masses the increase in secondary 

sulfate factor contributions is nearly identical to the decrease in the vehicle exhaust 

contributions.   
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Table 4-2. Annualized rate of change in the scaled annual median PM10 source 

contributions obtained from PMF modeling. The reported change is from a linear 

least-squares regression against year for each air mass transport cluster.  Values 

are presented only for those cases with changes that are statistically 

distinguishable from zero at the 95% confidence level.  

Air Mass Vehicle Exhaust Crustal/Soil Smelting (Zn) Secondary Sulfate 

Slow ECC -0.12 ± 0.06 -0.04 ± 0.03  0.14 ± 0.06 

Fast ECC -0.11 ± 0.05   0.10 ± 0.05 

Stagnant -0.06 ± 0.05    

S/SW -0.08 ± 0.04  -0.02 ± 0.01  

East -0.08 ± 0.04    

 

The site-specific daily average PM10 TEOM mass data are also stratified by air mass 

cluster and for each cluster the annual median mass is regressed on year using a linear-

least squares regression.  Thus, the regression slope represents a linearized rate of site-

specific change in PM10 mass per year over 2000-2008.  Figure 4-11 shows the temporal 

changes in PM10 mass across the network for the Slow ECC and East air mass clusters.  

These two clusters highlight the association of seasonal air mass transport patterns with 

PM burdens across the region.  For air masses arriving from the eastern portion of China, 

which predominantly occurs during the wintertime, only those sites located along the 

periphery of the HKSAR (TC, YL, and TM) have experienced a degradation of air 

quality.  At YL and TC, the compounding effects of PRD-scale emissions from close 

proximity and the wintertime accumulation due to geographic barriers also contribute to 

the increase in PM10 mass at these sites.  The TM remote station, located on an island to 

the northeast of Hong Kong, is directly impacted by winter air masses arriving from the  
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Figure 4-11. Site-specific rate of change in annual median PM10 mass over 2000-2008 

for: (a) slow moving air masses along the Eastern coast of China (Slow ECC); and (b) air 

masses from the Pacific Ocean (East).  Changes represented as: Black (˄) – Degradation 

of air quality; Grey (=) – Statistically indistinguishable change; and, White (˅) – 

Improvement in air quality. 
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eastern portion of China.  Additionally, local marine activities at the Yantian Port, located 

10 km northwest of TM have also increased over the study period (Ng et al., 2013).  The 

observed degradation of air quality at TM corroborates with the increase in PM burdens 

on multiple spatial scales and raise concern about the representativeness of TM as a 

remote station.  At sites located in the urban core of Hong Kong (SSP, KT, EN, MK, CL 

and CB), the increase in synoptically transported PM offsets the reduction from vehicle 

exhaust contributions resulting in overall statistically indistinguishable changes in air 

quality.  However, when summertime oceanic air masses impact the region, such as the 

East trajectory cluster, an improvement in air quality over 2000-2008 is observed at all 

sites in the urban core, whether general or roadside.  Hence, consistent with vehicle 

emission control measures, urban-scale motor vehicle contributions to PM10 reduced over 

the decade while the synoptically transported secondary sulfate and associated PM from 

mainland China have increased resulting in the observed stasis/degradation of air quality 

in Hong Kong.  

4.6. Conclusions 

Source apportionment of PM2.5 speciation data from three one year field campaigns at 

three-to-four sites across Hong Kong was performed using PMF and compared to 

previously-published PMF modeling results for PM10 speciation data from 1998 to 2008.  

In both cases the secondary sulfate and vehicle exhaust factors are the main contributors 

to PM mass burdens observed in Hong Kong.  For each of these factors the contributions 

to PM2.5 and PM10 are quite similar which demonstrates the PM is in the fine fraction.  

Further, PMF-resolved PM2.5 and PM10 secondary sulfate factor contributions increased 

over 2000-2008 irrespective of the site characteristics.  In contrast, vehicle emission 



103 

 

contributions are significantly higher at the roadside station than at the general stations 

and have monotonically decreased for both PM2.5 and PM10.  Overall, the PM2.5 source 

apportionment results corroborate the PM10 source apportionment results. 

Analysis of PM10 TEOM hourly mass measured at fourteen sites across the HKSAR from 

1998-2008 complements the findings from the PM speciation source apportionments.  

The intuitive model based on daily average baseline and site-specific excess mass 

provides insight into the temporal behavior of PM burdens.  The baseline as defined in 

this analysis captures the temporal patterns observed at most of the general stations with 

influences from synoptic-scale contributions and also urban-scale contributions resulting 

from increasing urban development within Hong Kong over the decade.  Removal of the 

baseline amplifies the key trends in site-specific measured mass and enables gauging PM 

variability across the network.  The monotonic decrease in excess TEOM mass at all 

roadside stations validates the observed decrease in PMF-resolved vehicle exhaust 

contributions.  The increase in contributions from non-local sources arriving with air 

masses from the eastern portion of China during winter months, such as the PMF-

resolved secondary sulfate factor, is also captured by the temporal increase in excess 

mass measured at the TM remote station.   

The proximity of the heavily industrialized PRD region limits the use of air mass 

trajectories generated at ~100 km spatial resolution to isolate long-range transport 

impacts.  However, the cluster-specific PM spatial and temporal patterns do provide 

insights into source contributions.  For each cluster, the temporal variation in the PMF-

resolved factor contributions composited across all general stations and in the site-

specific PM10 TEOM mass provides complementary information.  Air masses arriving 



104 

 

from the eastern portion of China exhibit an increase in PMF-resolved secondary sulfate 

contributions over the past decade that is nearly identical to the decrease in the vehicle 

emission contribution.  Air quality has degraded at stations located along the HKSAR 

periphery for the two air mass clusters arriving from eastern portion of China, while the 

changes have been insignificant for the other three air mass transport patterns.  Admixing 

of PRD-scale emissions with larger-scale contributions add to the spatial variability of 

PM across the region.  The geographic locations of the TC and YL monitoring stations 

exposes them most strongly to PRD-scale impacts from north/northwest and the local 

topography promotes seasonal accumulation of pollutants.  The change in PM 

concentrations over 2000-2008 at sites located in the urban core of Hong Kong are 

insignificant for air masses arriving from the eastern region of mainland China because 

the decrease in PM from Hong Kong motor vehicle emission control programs is offset 

by the increase in long-range transport of secondary sulfate and associated PM sources.  

This weight of evidence analysis of long term trends in the various PM datasets provides 

insight towards development of air pollution control strategies, both within the Hong 

Kong territory and in collaboration with other regions including but not limited to 

Guangdong Province. 

4.7. Disclaimer 

The content of this chapter does not necessarily reflect the views and policies of the Hong 

Kong Special Administrative Region (HKSAR) Government, nor does mention of trade 

names or commercial products constitute an endorsement or recommendation of their 

use. 
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Chapter 5 :Assessing measurement error using collocated ambient 

particulate matter speciation datasets from Hong Kong.  

5.1. Abstract 

Environmental data should be analyzed and interpreted within the context of the corresponding 

data quality.  Some models that apportion air quality and other environmental data to emission 

sources or environmental processes can exploit, or even require, uncertainty estimates for these 

data.  Various approaches have been taken to generate sample-specific uncertainties for source 

apportionment modeling.  Collocated data offers the opportunity to integrate uncertainties from 

several aspects of the measurement process.  In this chapter, collocated data collected for two 

ambient particulate matter (PM) speciation networks operated by the Hong Kong Environmental 

Protection Department (HKEPD) are assessed with emphasis on generating error structures for 

source apportionment modeling.  The concentration dependence of measurement precision is 

evaluated including the influence of outliers and the number of digits retained in data reporting.  

Additive and multiplicative coefficients for the error structure are generated by first binning the 

data by concentration intervals and then using a weighted regression to estimate the coefficients.  

While the analysis of collocated data suggests the overall data quality is good, improvements to 

the data reporting could be made to permit a more robust assessment of measurement precision. 

For example, the current approach to retaining significant digits leads to a false improvement in 

the collocated precision.  The analysis methodology presented in this chapter provides a 

framework for analyzing collocated data from other networks. 
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5.2. Introduction 

Precision in environmental – and especially air quality – datasets in the form of sample-specific 

uncertainties are used in various multi-linear receptor models such as Positive Matrix 

Factorization (PMF) and Chemical Mass Balance (CMB) to identify emission sources and 

atmospheric processes contributing to air pollution impacts.  The evolution of source 

apportionment modeling by tools such as PMF has driven the need for robust uncertainty 

estimates.  A variety of equations have been employed to estimate uncertainties as functions of 

concentration, analytical uncertainty and/or detection limits (Reff et al., 2007).  Propagated 

sampling and analytical uncertainties, when available, have been the convention to construct 

sample-specific uncertainty estimates.  Uncertainty in concentrations measured by Inductively 

Coupled Plasma-Mass Spectrometry (ICP-MS) have been estimated based on propagation of 

uncertainty in instrument drift, bias in the calibration standard recovery, sample dilution etc. 

(Barwick et al., 1999; Karakas, 2007).   In the absence of reported uncertainty estimates, such as 

for data from the early years of the U.S. ambient fine particulate matter (PM2.5) Chemical 

Speciation Network (CSN; which includes the Speciation Trends Network, STN), Ito et al. 

(2004) assumed sample-specific uncertainties to be 5% of the concentration value to construct 

the inputs needed for PMF modeling.  Kim et al. (2005) used more-recent STN data with 

reported sample-specific uncertainties to develop error structures for the early data.  

Uncertainties, when available, were determined to be 5-20% of the measured concentrations.  

For some species no uncertainty estimates were reported and in these cases fractional errors of 5-

30% were tested to obtain interpretable PMF solutions.  Sample-specific uncertainties for the 

early CSN data were eventually backfilled by the U.S. Environmental Protection Agency. 
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Uncertainty or precision in measurement is defined by the International Standardization 

Organization (ISO) as “the closeness of agreement between quantity values obtained by 

replicating measurements of a quantity, under specified conditions […] precision is usually 

expressed numerically by measures of imprecision, such as standard deviation, variance, or 

coefficient of variation under specified conditions of measurement” (ISO, 2004).  Ideally, to 

estimate precision in the measured value, repetitive measurements at the same concentration 

must be conducted to assess whether sample-specific deviations from the mean follows a normal 

distribution (Taylor, 1982).  However, the expense involved with field measurements and 

laboratory analysis for air quality monitoring usually renders this approach practically infeasible.  

Hence, precision is often estimated from measurements with two collocated samplers at one or 

more sites over multiple time periods.  Collocated data from the two nationwide U.S. PM2.5 

monitoring networks – CSN and the Interagency Monitoring of Protected Visual Environments 

(IMPROVE) network – have recently been examined, including comparisons of collocated 

precision to reported analytical uncertainty estimates (Flanagan et al., 2006; Hyslop and White, 

2011).  For both networks, X-Ray Fluorescence (XRF) is the analytical method used for trace 

elements.  While this approach based on using performance parameters of standardized methods 

provides a comprehensive evaluation across all aspects of sampling, it could complicate the 

interpretation of the results because the absolute concentration difference can vary with 

concentration.  However, the ratio of the concentration difference to the average of the two 

collocated measurements (i.e. the relative differences) are assumed to be homogenous across the 

concentration range and modeled by a normal distribution (Hyslop and White, 2009).   

Precision estimates can also be strongly influenced by outliers that could arise from any number 

of sporadic errors such as contamination, mishandling, or analytical interference and from 
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exceptional events such as micro-scale emissions leading to actual differences in concentrations 

at the two samplers.  The removal of outliers from precision calculations is controversial.  

Outliers do not conform to the normal distribution of errors that we seek to characterize using 

collocated data.  Therefore, they may be rejected with the understanding that such errors will be 

present – and not characterized – in the overall data set.  Systematic errors in the extraction (if 

warranted) and chemical analysis steps for samples processed in the same batch cannot be 

captured from the analysis of collocated data.  Despite such limitations, it is a valuable quality 

assurance measure and an attractive yet underutilized approach to generating error structures for 

air quality measurements used in source apportionment applications.   

Collocated ambient PM10 and PM2.5 species mass datasets utilized in this study were collected by 

the Hong Kong Environmental Protection Department (HKEPD) as part of routine ambient air 

quality monitoring network.  Routine PM10 speciation datasets are collected at up to ten sites 

across the Hong Kong Special Administrative Region on a 1-in-6 day schedule using High 

Volume PM10 samplers with quartz filters and analyzed for gravimetric mass, elements by ICP-

OES, ions by Ion Chromatography (IC), and Elemental Carbon (EC) and Organic Carbon (OC) 

by the NIOSH Thermal/Optical Transmittance (TOT) method.  Preliminary PMF modeling of 

1998-2008 PM10 speciation data used relative expanded uncertainty values (NIST, 1994) 

estimated as a function of ambient concentration and laboratory reported method detection limit 

values reported for each species (Lau et al., 2010).  HKEPD also collected PM2.5 speciation 

datasets at three-to-four-sites for three one-year periods over the past decade.  Samples were 

collected on a 1-in-6 day schedule using Low Volume PM2.5 samplers with Teflon filters that 

were analyzed for gravimetric mass and elements by X-Ray Fluorescence (XRF); and quartz 

filters that were analyzed for gravimetric mass, ions by IC, and EC and OC by the IMPROVE 
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Thermal/Optical Reflectance (TOR) method.  The record-specific uncertainties provided with the 

PM2.5 dataset exhibited large variations between analysis batches for some species.  For example, 

record-specific uncertainties provided for 2009-2010 PM2.5 lead data, shown in Figure 5-1, 

stratifies into four groups that precisely align with the analysis batches, with the uncertainty for a 

given concentration varying by nearly a factor of five across the analysis batches.  Such concerns 

motivated the use of alternative approaches to generate uncertainty estimates for source 

apportionment modeling of these datasets.   

In this chapter, collocated ambient PM10 and PM2.5 species mass data from the Hong Kong  

networks were analyzed to evaluate measurement precision and the covariance in measurement 

errors between species.  The quality of the collocated datasets were assessed based on the  

 

Figure 5-1. Error structures for Pb reported by the contracted analytical laboratory for the 

four analysis batches of 2009 PM2.5 samples (markers) and the error structure derived 

from analysis of collocated precision data for 2009 (dashed line). 
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methodologies developed for examining collocated precision for the IMPROVE network dataset 

by Hyslop and White (2008); (2009); and (2011).  The error structures from collocated data were 

generated using the methodology of Wade et al. (2008).  With the species concentrations varying 

over multiple orders of magnitude, this dataset also enabled examination of concentration 

dependence of collocated precision.   

The importance of quality data reporting and impact of outliers on constructing species-specific 

error structures representative of the entire concentration range are also discussed.  A 

methodology for estimating sample-specific uncertainties is demonstrated using the PM10 dataset 

and is also applied to the PM2.5 dataset.  The estimated sample-specific uncertainties have been 

utilized for PMF (Yuan et al., 2013; Yadav et al., 2013) and CMB (Yuan et al., 2013) source 

apportionment modeling.  

5.3. Datasets 

Collocated PM10 samples collected from 1998 to 2008 at two sites in the Hong Kong – Sham 

Shui Po (SSP) and Tsuen Wan (TW) – were utilized in this study to assess measurement 

precision for the Hong Kong PM10 speciation network.  Collocated species data for SSP (517 

sample pairs) was used to generate error structures, and then evaluated using the corresponding 

TW dataset (517 most recent sample pairs for consistency with SSP dataset).  Field blanks data 

was not available and thus the MDL values provided by the analytical laboratory could not be 

independently examined.  SSP data characteristics for various PM10 species are listed in Table 

5-1.  MDLs for PM10 species in this study were estimated as:  (i) the arithmetic mean of the 

actual concentration values reported below the MDL in SSP primary sampler data; (ii) for 

species with no concentration values below the MDL, the average of laboratory-reported 
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analytical detection limit provided by HKEPD; and (iii) for aluminum, the only species with no 

data below the MDL nor a laboratory-reported analytical detection limit, the MDL value used in 

earlier source apportionment study (Lau et al., 2010).  Arsenic, cadmium, manganese, nickel, 

lead, vanadium and potassium ion had 28-60% of the data below MDL.  Aluminum, chlorine, 

sodium and zinc each had less than 5% of the data below MDL, while all the concentration 

values for the remaining species were above MDL. 

Table 5-1. Characteristics of the SSP site collocated PM10 dataset utilized for estimating 

error structures.  Total number of sample pairs is 517.  ‘N < MDL (%)’ represents the 

number of sample pairs with one-or-both values below minimum detection limit 

(percentage).  

Species Analysis Method Reported MDL (μg/m
3
) N < MDL (%) 

Al ICP 0.0190
a
 1 (0) 

As ICP 0.0009
b
 164 (32) 

Ca ICP 0.0449
c
 0 (0) 

Cd ICP 0.0004
b
 182 (35) 

Fe ICP 0.0225
c
 0 (0) 

Mg ICP 0.0225
c
 2 (0) 

Mn ICP 0.0092
b
 188 (36) 

Ni ICP 0.0031
b
 224 (43) 

Pb ICP 0.0090
b
 144 (28) 

V ICP 0.0090
b
 310 (60) 

Zn ICP 0.0225
b
 39 (8) 

Cl
-
 IC 0.0276

b
 18 (3) 

K
+
 IC 0.3143

b
 234 (45) 

Na
+
 IC 0.2991

c
 40 (8) 

NH4
+
 IC 0.0553

b
 7 (1) 

NO3
-
 IC 0.0662

c
 0 (0) 

SO4
2-

 IC 0.1496
c
 0 (0) 

EC TOT 0.2500
c
 0 (0) 

OC TOT 0.2500
c
 0 (0) 

a
 Reported MDL value in Lau et al., 2010. 

b
 MDL estimated as average of values reported as "<XX". 

c
 Average of Laboratory MDL range reported by HKEPD. 
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Collocated PM2.5 samples were collected in 2009 at all four sites of the PM2.5 network, 

resulting in 10-13 collocated samples per site.  Combining data from all four sites 

resulted in 47 sample pairs for elements and 40 sample pairs for ions and carbon 

fractions.  Chromium, magnesium, strontium and tin had 40-85% of the data below MDL 

and were excluded from this analysis, while sodium and copper were excluded because of 

measurement artifacts associated with these species.  Concentrations below the detection 

limit for the remaining PM2.5 species were the values as reported by the analytical 

laboratory and were retained for the preliminary estimation of the error structures from 

this limited dataset.  Characteristics of the collected PM2.5 species data examined in this 

study are presented in Table 5-2.   

Table 5-2. Characteristics of the multi-site collocated PM2.5 dataset with estimated error 

structures coefficients (aj,bj) from the linear weighted regression after removing outliers.  

LQL is the lower quantifiable limit. 

Species 
Analysis 

Method 
N 

MDL 

(μg/m3) 

N < MDL 

(%) 

LQL 

(μg/m3) 

N < LQL 

(%) 

Rejected 

N (%) 

Regression Coefficient 

aj bj 

Al XRF 47 0.0186 9 (19) 0.0262 14 (30) 0 (0) 0.0055 0.0859 

Ca XRF 47 0.0030 0 (0) 0.0139 0 (0) 3 (6) 0.0015 0.0470 

Cl  XRF 47 0.0020 4 (9) 0.0115 11 (23) 1 (2) 0.0012 0.1255 

Fe XRF 47 0.0032 1 (2) 0.0126 2 (4) 1 (2) 0.0015 0.0362 

K XRF 47 0.0019 0 (0) 0.0049 0 (0)  0 (0) 0.0005 0.0295 

Mn XRF 47 0.0035 10 (12) 0.0032 10 (21) 4 (9) 0.0010 0.0365 

Ni XRF 47 0.0005 1 (2) 0.0007 1 (2) 0 (0) 0.0005 0.0265 

Pb XRF 47 0.0039 12 (26) 0.0031 12 (26) 0 (0) 0.0012 0.0612 

Si XRF 47 0.0150 3 (6) 0.0463 8 (17) 1 (2) 0.0013 0.0673 

Ti XRF 47 0.0014 7 (15) 0.0028 12 (26) 0 (0) 0.0005 0.1123 

V XRF 47 0.0003 0 (0) 0.0005 0 (0) 0 (0) 0.0005 0.0201 

Zn XRF 47 0.0016 1 (2) 0.0035 3 (6) 1 (2) 0.0008 0.0304 

NH4
+ IC 40 0.0623 1 (3) 0.0415 1 (3) 3 (8) 0.0493 0.0171 

NO3
- IC 40 0.0623 0 (0) 0.1074 0 (0) 0 (0) 0.0380 0.0566 

SO4
2- IC 40 0.0623 0 (0) 1.4417 0 (0) 8 (20) 0.3993 -0.0052 

EC TOR 40 0.0054 0 (0) 0.0634 0 (0) 0 (0) -0.0144 0.0883 

OC TOR 40 0.2088 0 (0) 0.5241 0 (0) 3 (8) 0.0995 0.0456 
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5.4. Methodology and Results 

5.4.1. Data quality assessment  

The collocated PM10 data from SSP site was first examined for any systematic bias that could 

result from flow rate mismatch, miscalibration or other such differences between the two 

samplers, by plotting scattergrams (not shown) and performing Reduced Major Axes (RMA) 

regression (Bohonak, 2007).  No significant sampler-to-sampler bias was detected from these 

metrics for PM10 species.  To evaluate concentration dependence of measurement differences, 

scaled arithmetic differences (i.e. difference between sample pair concentrations divided by 2) 

and scaled relative differences (i.e. ratio of scaled arithmetic difference to the mean 

concentration for the sample pair) were plotted against the corresponding sample pair mean 

concentrations (Hyslop and White, 2008).  Such plots for each of the three classes of PM10 

species are shown: elements (arsenic, Figure 5-2); ions (sulfate, Figure 5-3); and carbon (organic 

carbon, Figure 5-4).  In each figure, panels (a) and (b) are the scaled arithmetic differences and 

panels (c) and (d) are the scaled relative differences using a linear and logarithmic concentration 

axis, respectively, to emphasize the high- and low-ends of the concentration ranges.  As 

concentration values approached the detection limit, the relative concentration differences 

increased but remained within ~20% for all species (including those not shown).  At 

concentrations much greater than the MDL (over 3-to-5 times the MDL), the relative differences 

decreased with increasing concentration values and for many species approached an asymptotic 

value.  These patterns indicate that a concentration dependent error structure is justified.  For the 

remainder of the analysis, the dataset was screened to exclude all sample pairs with one-or-both 

concentration values below the detection limit for estimation of the error structures applicable 

over the entire detectable concentration range.  
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Figure 5-2. SSP collocated PM10 data for arsenic: scaled arithmetic difference, (a) linear 

and (b) logarithmic concentration scale; scaled relative difference, (c) linear and (d) 

logarithmic concentration scale; (e) binned absolute collocated precision; and (f) binned 

relative collocated precision.  The x-axis of all graphs is the average concentrations and 

the dashed vertical line is the MDL.  Extreme values lying beyond the y-axis range are 

placed on the border.   
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Figure 5-3.  SSP collocated PM10 data for sulfate: scaled arithmetic difference, (a) linear 

and (b) logarithmic concentration scale; scaled relative difference, (c) linear and (d) 

logarithmic concentration scale; (e) binned absolute collocated precision; and (f) binned 

relative collocated precision.  The x-axis of all graphs is the average concentrations and 

the dashed vertical line is the MDL.  Extreme values lying beyond the y-axis range are 

placed on the border.  
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Figure 5-4.  SSP collocated PM10 data for organic carbon: scaled arithmetic difference, 

(a) linear and (b) logarithmic concentration scale; scaled relative difference, (c) linear 

and (d) logarithmic concentration scale; (e) binned absolute collocated precision; and (f) 

binned relative collocated precision.  The x-axis of all graphs is the average 

concentrations and the dashed vertical line is the MDL.  Extreme values lying beyond 

the y-axis range are placed on the border. 
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5.4.2. Estimating error structures 

The concentration dependence of collocated precision was quantified using the methodology of 

Wade et al. (2008).  For each species j, the sample pairs were ordered by decreasing sample pair 

mean concentrations and grouped into bins (15 bins; each with nominally 34 data pairs).  The 

collocated precision was calculated for each bin of concentration values using equation (5-1) 

where kj is the absolute collocated precision for the Nkj sample pairs in bin k, and C1ij and C2ij 

are the primary and secondary sampler concentrations, respectively, for sample i.   ̂   in 

equation (5-2) is the arithmetic mean concentration for the Nkj samples pairs in bin k.  For each 

bin, the relative collocated precision was calculated as the ratio of the absolute collocated 

precision to the average concentration (i.e.     ̂   .   

    √
 

     
∑ (         )

    
   

         (5-1) 

 ̂   
 

   
∑ (

         

 
)

   

   
         (5-2) 

Based on an inspection of binned collocated precision plots, a linear error structure was 

determined to be representative for most species and thus was used for the remainder of the 

analysis. Equation (5-3) shows the assumed error structure where Uij = uncertainty for species j 

in sample i; aj = additive (constant) error term for species j; bj = multiplicative error term for 

species j; and Cij = concentration value for species j in sample i.  The multiplicative term governs 

the uncertainty for high concentration values while the additive term dominates the uncertainty 

for low concentration values.   

                          (5-3) 
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Several approaches were used to estimate the additive and multiplicative error terms in equation 

(5-3) and four cases are presented which differ in the data conditioning and error term estimation 

strategy.  The error terms were estimated using an approach inspired by Polissar et al. (1998) 

(Polissar) and also by weighted linear least squares regression (Weighted).  The Polissar 

approach sets the uncertainty (Uij) to (5/6)×MDL for concentration values below the MDL and 

sets the additive error term (aj) to MDL/3 for concentration values above the MDL (Polissar et 

al., 1998).  The multiplicative error term (bj) was calculated using the mean of the binned 

relative collocated precision for the six bins with highest concentrations; this approach is 

generally consistent with the recommendation of Hyslop and White (2008) to estimate the 

relative precision using concentrations much greater than the MDL, such as 3-to-5 times MDL, 

to avoid being influenced by the additive term’s uncertainty contribution at low concentration 

values.  The Weighted approach used a weighted linear regression where the weight for each bin, 

wkj, was calculated as the inverse squared absolute collocated precision (kj) for the sample pairs 

in bin k as shown in equation (5-4). The weighted error structure coefficients were then 

calculated using equations (5-5) and (5-6) (Taylor, 1982).  To measure the goodness of 

regression fits, the mean square error, MSE (Taylor, 1982), of the residual between the binned 

relative collocated precision and the estimated precision from the fitted error structures were 

evaluated for each species.   

         
            (5-4) 

   
 ∑      

   ∑         ∑        ∑          

 ∑     ∑      
    ∑       

       (5-5) 

   
 ∑     ∑            ∑        ∑       

 ∑     ∑      
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       (5-6) 
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Figure 5-5.  SSP collocated PM10 data for nitrate: (a) scatter plot with conditioned data 

used in precision estimation (open circles) and rejected outliers (closed circles); and (b) 

binned relative collocated precision with all data (cross) and outliers rejected (circles) 

along with error bars representing 5
th

 and 95
th

 percentile values from the Monte Carlo-

type simulations adding an addition, randomly-generated significant figure to each 

concentration value.  The dashed vertical line is the MDL. 

The Polissar and Weighted linear regression approaches were first applied to data sets with all 

sample pair concentrations above the detection limit (unconditioned) and then to data sets 

screened for sample pairs deemed as outliers (conditioned).  A scattergram of primary and 

secondary sampler concentrations, such as PM10 nitrate shown in Figure 5-5 (a), demonstrates 

the presence of such sample pairs.  The outliers were iteratively removed through sequential 

application of the Grubb’s Test (Grubbs, 1969) with the goal of minimizing the MSE with least 

number of sample pairs removed for each species.  The number of sample pairs rejected as 

outliers are tabulated in Table 5-3.  Less than 2% of the sample pairs were rejected as outliers 

from the PM10 species dataset.  MSE values for each of the four cases and for all species are 

tabulated in Table 5-3.  For the unconditioned data, the quality of fit is not consistently better for 

one estimation approach compared to the other (i.e. Polissar versus Weighted) because the 

outliers destabilize the multiplicative term estimates. For the Polissar method, conditioning the 
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data reduces the MSE for most but not all species.  In contrast, for the Weighted method the MSE 

decreases for all species upon conditioning the data and in most cases the improvement is 

dramatic. Overall, the Conditioned Weighted case provides the best fit when using the MSE as 

the figure of merit; the error terms for this case are tabulated in Table 5-3.  The absolute and 

relative precisions for the conditioned binned data few species are also shown in Figure 5-2-4 

panels (e) and (f), respectively.  The trends are not strictly monotonic and the factors influencing 

such behavior are examined in Section 5.4.4.   

Table 5-3. Error structure coefficients (aj, bj) derived by weighted linear regression of 

refined SSP site collocated PM10 dataset i.e., after removing outliers and values below 

MDL.  Mean square errors (MSE) for regression fits derived for the four estimation 

approaches described in the text.  ‘Rejected N (%)’ is number of data pairs deemed as 

outliers that are excluded from estimation of error structure coefficients.   

Species 
Rejected 

N (%) 

Mean Square Error (MSE) 
 

Regression Coefficient 

Polissar Weighted 
Conditioned 

Polissar 

Conditioned 

Weighted  
aj (μg/m3) bj 

Al 9 (2) 2.1 E-4 3.1 E-4 0.9 E-4 0.2 E-4 
 

0.0046 0.071 

As 5 (1) 10.1 E-8 1.0 E-8 10.4 E-8 0.2 E-8 
 

0.0001 0.050 

Ca 2 (0) 11.4 E-3 17.0 E-3 0.5 E-3 0.1 E-3 
 

0.0217 0.043 

Cd 3 (1) 26.7 E-9 0.8 E-9 25.2 E-9 0.2 E-9 
 

0.00002 0.058 

Fe 7 (1) 11.1 E-4 16.2 E-4 0.5 E-4 0.2 E-4 
 

0.0044 0.030 

Mg 4 (1) 20.0 E-5 19.7 E-5 6.5 E-5 0.3 E-5 
 

0.0049 0.020 

Mn 2 (0) 11.8 E-6 1.23 E-6 11.2 E-6 0.0 E-6 
 

0.0002 0.029 

Ni 1 (0) 162.0 E-8 2.6 E-8 156.0 E-8 0.9 E-8 
 

0.0003 0.050 

Pb 3 (1) 9.4 E-6 6.5 E-6 9.8 E-6 0.5 E-6 
 

0.0002 0.035 

V 3 (1) 14.1 E-6 0.5 E-6 14.4 E-6 0.2 E-6 
 

0.00001 0.047 

Zn 8 (2) 24.0 E-5 14.4 E-5 5.3 E-5 0.2 E-5 
 

0.0016 0.032 

Cl- 3 (1) 3.2 E-3 2.9 E-3 0.9 E-3 0.4 E-3 
 

0.0141 0.047 

K+ 3 (1) 156.0 E-4 13.6 E-4 133.0 E-4 0.5 E-4 
 

0.0118 0.028 

Na+ 4 (1) 348.0 E-3 479.0 E-3 11.5 E-3 0.3 E-3 
 

0.0264 0.018 

NH4
+ 3 (1) 3.0 E-3 2.1 E-3 0.5 E-3 0.4 E-3 

 
0.0169 0.028 

NO3
- 6 (1) 48.8 E-3 96.1 E-3 1.5 E-3 0.6 E-3 

 
0.0429 0.026 

SO4
2- 4 (1) 5.6 E-2 4.0 E-2 1.1 E-2 0.7 E-2 

 
0.0597 0.025 

EC 9 (2) 14.6 E-3 12.4 E-3 6.0 E-3 0.7 E-3 
 

0.1148 0.023 

OC 4 (1) 5.8 E-2 6.9 E-2 1.3 E-2 0.8 E-2   0.1117 0.032 
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5.4.3. Evaluation of error structures using collocated TW dataset 

Collocated PM10 data from the TW site, spanning 1999-2008 (517 most recent sample pairs for 

consistency with SSP dataset) were used as an independent check of the modeled error 

structures.  Reported MDL values provided (or estimated) and the effective MDL, estimated as 

three times the additive error coefficient (aj) (Polissar et al., 1998) based on the Conditioned 

Weighted regression analysis of the collocated SSP data, are compared in Table 5-4.   

Table 5-4. Metrics for the TW site collocated PM10 dataset with 517 total number of 

sample pairs.  Effective MDL refers to the MDL values estimated from analysis of SSP 

site collocated PM10 dataset.  N < MDL (%) is the number of sample pairs with one-or-

both values below the laboratory-reported MDL.  Rejected N (%) is the number of 

sample pairs deemed as outliers and excluded from collocated precision calculations.  

Mean square error (MSE) for Unconditioned (excludes values below MDL) and 

Conditioned (excludes outliers and values below MDL) TW collocated dataset regressed 

on the estimated error structures derived for SSP collocated dataset are also presented. 

Species 
Effective 

MDL (μg/m3) 

Reported 

MDL (μg/m3) 

N < MDL 

(%) 

Rejected N 

(%) 

Mean Square Error 

Unconditioned Conditioned 

Al 0.0137 0.0190 3 (1) 2 (0) 1.5 E-4 0.5 E-4 

As 0.0002 0.0009 141 (27) 0 (0) 0.2 E-7 0.2 E-7 

Ca 0.0651 0.0449 1 (0) 1 (0) 0.2 E-3 0.1 E-3 

Cd 0.0001 0.0004 153 (30) 0 (0) 0.3 E-8 0.3 E-8 

Fe 0.0133 0.0225 0 (0) 7 (1) 2.0 E-4 0.3 E-4 

Mg 0.0146 0.0225 1 (0) 5 (1) 1.8 E-5 0.4 E-5 

Mn 0.0007 0.0092 166 (32) 1 (0) 3.0 E-6 0.1 E-6 

Ni 0.0008 0.0031 184 (36) 0 (0) 0.2 E-7 0.2 E-7 

Pb 0.0006 0.0090 115 (22) 1 (0) 4.5 E-6 0.4 E-6 

V 0.00002 0.0090 241 (47) 0 (0) 0.1 E-6 0.1 E-6 

Zn 0.0048 0.0225 18 (3) 2 (0) 19.8 E-4 0.0 E-4 

Cl- 0.0424 0.0276 31 (6) 0 (0) 0.1 E-3 0.1 E-3 

K+ 0.0354 0.3143 219 (42) 0 (0) 0.1 E-3 0.1 E-3 

Na+ 0.0792 0.2991 34 (7) 5 (1) 0.9 E-3 0.2 E-3 

NH4
+ 0.0508 0.0553 3 (1) 1 (0) 1.5 E-3 0.2 E-3 

NO3
- 0.1286 0.0662 0 (0) 1 (0) 1.4 E-3 0.6 E-3 

SO4
2- 0.1792 0.1496 0 (0) 4 (1) 5.0 E-2 0.9 E-2 

EC 0.3443 0.2500 0 (0) 9 (2) 1.5 E-2 0.2 E-2 

OC 0.3352 0.2500 0 (0) 14 (3) 9.6 E-1 0.2 E-1 
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The effective MDL values are typically lower than the reported MDLs, suggesting that the 

reported MDL values are generally conservative for generating error structures for the source 

apportionment modeling.  The collocated precision estimated using TW dataset is generally 

fitted well by the error structure estimated using SSP dataset, such as As shown in Figure 5-6 (a).  

Some species had one or two concentration bins that were not well characterized by the 

estimated error structure. In few such cases, the regression fit for the TW PM10 species improved 

with the exclusion of few sample pairs, such as four sample pairs for SO4
2-

 (Figure 5-6 (d)), one 

sample pair for Pb (Figure 5-6 (b)) and 3% each for EC (Figure 5-6 (e)) and OC (Figure 5-6 (f)).  

The characteristics of TW dataset and the MSEs for collocated precision calculated using 

unconditioned (all reported samples above MDL) and conditioned (dataset screened for outliers) 

collocated TW dataset gauged against the Conditioned Weighted error structure derived from 

collocated SSP dataset are also summarized in Table 5-4.  Overall, favorable comparisons across 

these datasets add confidence towards using the Conditioned Weighted error structures from 

Table 5-3 for source apportionment modeling of the Hong Kong speciation dataset.   

PM10 collocated species data from both sites were also examined for covariance in measurement 

errors across the species.  Measurement error in concentration values should ideally be random 

and independent of errors measured across different species, but Hyslop and White (2011) 

observed correlation in measurement error for a few species in IMPROVE and STN datasets.  To 

check for such relationships in Hong Kong collocated PM10 dataset, a scatterplot matrix of the 

observed species concentration differences, defined as              ⁄   for species j, were 

plotted for all species. For both SSP and TW collocated datasets, the inter-species correlation 

coefficients for measurement differences were typically below 0.15 indicating no significant  
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Figure 5-6.  Binned absolute collocated precision calculated using unconditioned (open circles) 

and conditioned (shaded circles) TW collocated PM10 dataset along with the error structures 

estimated derived from SSP collocated data (dashed lines). The dot-do-dash vertical lines are the 

MDL values. 

 



128 

 

 

Figure 5-7. Scatterplot matrix of observed differences,              ⁄  , where j= Al, 

Ca, Fe, Mg and Mn for collocated PM10 data from TW.  Off the diagonal are scatterplots 

of the observed differences in one species verses the other.  Along the diagonal are 

histograms of the observed differences for each species. 

covariance in measurement errors.  However, stronger associations in measurement errors were 

observed across species typically associated with soil/dust profile.  For example, Figure 5-7 

shows the scatterplot matrix of measurement differences for collocated TW species when 

correlation coefficients across Al, Ca, Fe, Mg and Mn ranged between 0.25 to 0.64, with highest 

correlation coefficients for Fe-Mn (0.64), Ca-Mg (0.56) and Mg-Mn (0.52).  The implications of 

covariance in species measurement errors on source apportionment modeling is beyond the scope 

of this study, however this analysis furthers the concerns regarding data quality of ambient air 

quality monitoring networks presented in Hyslop and White (2011).  
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5.4.4. Influence of precision in data reporting and outliers  

Figure 5-2 - 5-4 also demonstrates stratification or banding of scaled arithmetic and relative 

differences across certain concentration ranges.  For example, in panel (b) of Figure 5-3, sulfate 

concentrations greater than 10 g/m
3
 were stratified into three bands, at 0 and  0.707 g/m

3
 

corresponding to 0 and  1 g/m
3
 differences in sample pair concentrations respectively.  

Similarly, between 1 to 10 g/m
3
 the bands corresponded to concentration differences of 0.0,  

0.1,  0.2 g/m
3
 and so on.  This behavior arises from the number of significant figures retained 

in reporting the measured species concentration.  For most species, the laboratory reported the 

data as two significant digits regardless of the range of the concentration values i.e., X.X × 10
Y
 

g/m
3
 (or 0.0XX, 0.XX, X.X, XX.).  In the case of NO3

-
 and NH4

+
, data for the secondary 

sampler were reported with several significant digits (XX.XXXX g/m
3
) while data from the 

primary sampler were reported up to two significant digits after the decimal point i.e., XX.XX 

g/m
3
 (or 0.XX, X.XX, XX.XX).  For EC and OC, the samples were analyzed by different 

laboratories during the study period and resulted in 90% of the data being reported as two 

significant digits (X.X × 10
Y
 g/m

3
) and the remained reported with several significant digits 

(XX.XXXX g/m
3
).  The differences in number of significant digits retained for specie-specific 

reported concentration values enables contrasting the influence of precision in data reporting 

towards the generation of uncertainty estimates.  Implications of stratifications in concentration 

differences were examined by performing Monte Carlo-type stimulations i.e., by gauging the 

variability in collocated precisions estimated for a distribution of pseudo collocated datasets 

generated by assigning additional significant digits to the reported concentration values. 
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For conditioned SSP species concentrations reported as two significant digits (X.X × 10
Y
 g/m

3
), 

additional significant digits were assigned such that concentrations greater than 10 μg/m
3
, which 

were originally reported as integers (XX.), were replaced by a random real number in the interval 

[XX. - 0.5, XX. + 0.5].  Similarly, concentrations between 1 to 10 μg/m
3
, reported as one digit 

after the decimal point (X.X), were replaced with a random real number in the interval [X.X – 

0.05, X.X + 0.05] and so on, for concentrations between 0.1 to 1 μg/m
3
, 0.01 to 0.1 μg/m

3
 etc.  In 

accordance with the precision in reported concentration values, concentrations at the transition 

points reported as 10 μg/m
3
 was assigned a random real number in the interval [9.95, 10.5];1 

μg/m
3
 reported concentration was assigned a random real number in the interval [0.995, 1.05]; 

and so on.  The influence of one such randomization on collocated PM10 sulfate concentrations at 

the 10 μg/m
3
 transition point is shown in Figure 5-8.  Concentrations greater than 10 μg/m

3
 in the 

original dataset were reported in the increments of  1 μg/m
3
, while concentrations between 1  
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Figure 5-8.  Scatter plot of conditioned SSP collocated PM10 sulfate data: (a) original 

data; and (b) one example of randomized concentration values at the transition point of 

10 μg/m
3
. Dashed line is the 1-to-1 line. 
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and 10 μg/m
3
 were reported in  0.1 μg/m

3
 increments.  The randomization breaks the 

discretized reported values (Figure 5-8 (a)) to generate a pseudo dataset representative of 

ambient concentrations (Figure 5-8 (b)).  For each species, this randomization was repeated fifty 

times and the binned collocated precision were recalculated for each pseudo dataset generated to 

obtain a distribution of precision estimates. 

The 5
th

 and the 95
th

 percentile of these fifty precision estimates are also plotted in panels (e) and 

(f) of Figure 5-2 - 5-4, as error bars representing the range of variation in estimated binned 

precision.  At the points of transition, such as 10 μg/m
3
 in Figure 5-3 (f) for sulfate, the error bars 

are broader for bins corresponding to average concentrations > 10 μg/m
3
 than for bins 

corresponding to average concentrations < 10 μg/m
3
 because of the difference in precision of 

reporting concentrations across 10 μg/m
3
.  Further, the collocated precision estimated using the 

reported concentrations are generally positioned below the 10
th

 percentile of the precision range 

estimated from the pseudo datasets.  This indicates that the rounding of concentrations results in 

the measurement error to be underestimated.  Reporting concentrations > 10 μg/m
3
 as values 

rounded to two digits (XX. μg/m
3
) results in nearly one-third of the data within the 

corresponding bins to have identical concentrations for both samplers.  Thus, the value of binned 

collocated precision (absolute/relative) calculated as shown in equation (5-1) are reduced and 

result in false improvement in measurement error than would be expected if the concentrations 

were not reported as two significant digits.  In contrast to sulfate and carbon fractions, the 

reported nitrate and ammonium ion concentrations for the secondary sampler were not rounded 

and the primary sampler concentrations were rounded up to two digits after the decimal point 

(XX.XX g/m
3
).  Thus, the pseudo datasets for these two species were generated by replacing 

the concentrations from only the primary sampler with a random real number between [XX.XX – 
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0.005, XX.XX + 0.005].  The error bars in Figure 5-5 (b), representing the 5
th

 and 95
th

 

percentiles of the collocated precision distribution estimated from the fifty pseudo PM10 nitrate 

datasets, are indistinguishable from the collocated precision calculated from the reported 

concentrations.  The nitrate concentrations ranged between 1.08 to 6.64 g/m
3
 (10

th
 and 90

th
 

percentile, respectively).  Reporting high-end concentrations as decimal numbers with up to two 

significant digits (XX.XX g/m
3
) allows the concentrations to be deterministic and results in 

robust collocated precision, while reporting such concentrations as only two significant digits 

(X.X × 10
Y
 g/m

3
) can result in less precise high-end concentration values.  In contrast, such 

differences in reporting concentrations at the low-end of the concentration range have 

insignificant influence on the collocated precision as the concentration differences at the low-end 

are governed by the detectability rather than the absolute concentration values.   

Banding of the concentration values alone does not explain the deviations in monotonic behavior 

of the binned precision as a function of concentration.  Outliers also have significant influence on 

the concentration dependence of precision.  For example, Figure 5-5 (a) shows the SSP PM10 

nitrate sample pairs rejected as outliers from the collocated precision estimation and Figure 5-5 

(b) shows the binned relative collocated precision before and after removing the outliers.  In the 

presence of outliers and/or bins with a high number of samples deviating from the 1-to-1 line in 

the scattergram, the binned precision containing the outliers deviates from the monotonic trend 

observed over the entire concentration range.  Examination of rejected sample pairs across 

different species and analysis methods can provide further insight into the characteristics of the 

outliers.  For example, rejection of the same sample pair irrespective of the species and analytical 

method (such as SSP sample pair collected on 02/11/1999) suggests contamination or a sampling 

artifact.  Rejection of a sample pair for several species that share the same analytical method 
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(e.g. species measured by IC for SSP sample pair collected on 03/01/2000) indicates an artifact 

in analytical measurement.  Such errors from contamination or mishandling are isolated cases 

that are not characterized by the central tendency of measurement uncertainty.  While such cases 

typically cannot be identified from the concentration time series of a single sampler, collocated 

datasets provide information about the frequency of such outliers that should be taken into 

consideration when interpreting single sampler datasets from the same network.  

5.5. PM2.5 Speciation Dataset Uncertainty 

A preliminary estimation of error structures for the PM2.5 dataset was also generated for source 

apportionment modeling by following the methodology used for the PM10 dataset.  Collocated 

data collected at all four sites in the PM2.5 monitoring network, comprising one remote, one 

roadside and two urban/neighborhood stations, was combined to obtain 40 ion and carbon 

fraction each and 47 metal sample pairs.  No significant bias was observed between data 

collected by primary and secondary samplers for all species, with an exception of PM2.5 EC 

(RMA metrics for data from secondary sampler against the primary sampler: slope 0.880 ± 

0.038, intercept 0.236 ± 0.246 and R
2
 = 0.984).  Site-specific EC concentrations, typically 

contributed by vehicle exhaust, vary over distinct concentration ranges depending on the site 

characteristics.  The bias resulting from high EC concentrations at roadside station cannot be 

corrected for sampler-to-sampler bias due to limited site-specific dataset.  The site-specific or 

multi-site aggregated collocated EC concentrations should be examined further when a larger 

dataset is available.  Collocated precision was calculated by grouping the paired concentrations 

into five to six bins with nominally eight sample pairs per bin.  Due to the limited dataset, the 

PM2.5 dataset was conditioned to remove only the outliers but not the values below the MDL as 

all concentrations values were as reported by the analytical laboratory.  For few species up to 4  
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Figure 5-9.  Examples of the binned absolute collocated precision for the PM2.5 data set 

using unconditioned data (open circles) and conditioned data with outliers excluded 

(shaded circles); and the error structures estimated using Conditioned Weighted (dashed 

lines) regressions.  The dash-dot-dash vertical lines are the MDL values. 

sample pairs were excluded as outliers with an exception of 8 sample pairs for sulfate.  Among 

the four approaches for estimating the error structure utilized for PM10 dataset, the Conditioned 

Weighted linear regression provided the least MSEs and hence, the best regression fit.  The 

coefficients for error structure (aj, bj) are tabulated in Table 5-2 and the estimated error structures 

are plotted against the binned absolute collocated precision for few species are shown in Figure 

5-9.  Concentration dependence of collocated precision of sulfate (Figure 5-9 (b)) is confounded 

by the lack of sufficient data and/or issues with analytical measurements.  In contrast, collocated 

precisions for other species, even with concentrations below the MDL, are well captured by the 

estimated error structure.  The relationship between the additive error terms (aj) derived from the 

collocated data and the MDL and limit of quantification (LOQ) values provided by analytical  
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Figure 5-10. Additive term (aj) calculated from the weighted regression of binned collocated 

precision on conditioned PM2.5 concentrations versus: (a) reported MDL; and (b) LQL. 

laboratory are examined in Figure 5-10.  In each case aj, was multiplied by a single-valued 

parameter that was adjusted to minimize the sum-of-squares difference between the datasets after 

log-transforming the data.  For the MDL, the best-fit relationship was aj = MDL/2.8, which is in 

excellent agreement with the value of 3 assumed by Polissar et al. (1998).  High correlation was 

also observed between aj and the LQL with best-fit relationship aj = LOQ/5.5.  For a more robust 

assessment of error structures for the HK PM2.5 dataset, a larger collocated PM2.5 dataset, when 

available, should be examined. 

5.6. Conclusion 

PM10 collocated species data from the Hong Kong air quality network was used to assess 

measurement precision and generate error structures for source apportionment modeling.  The 

error structure was determined to be concentration dependent.  Error structures representative of 

the entire concentration range were generated using weighted linear regression of the binned 

collocated precision for concentrations above the MDL.  Outliers resulting from occasional 
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artifacts in sampling or analytical procedures are encountered in routine ambient sampling, but 

are not characterized by the measurement uncertainty of the general dataset.  Removal of a few 

sample pairs that are deemed outliers resulted in well-behaved trends in precision over the entire 

concentration range.  The scaled and relative difference plots also highlight banding on 

concentration differences that result from precision in reporting concentration values.  To gauge 

the impact of banding of concentration differences resulting from precision in data reporting on 

precision estimation, Monte-Carlo-type simulations were performed by systematically 

randomizing the discreet concentration values.  Rounding of concentrations for data reporting 

can result in less precise values at the high end of the concentration range.  Air quality data 

encompasses many species, each varying over different concentration ranges.  One plausible 

approach is to report each concentration value to the same degree of confidence, i.e. number of 

significant digits, as the method detection limit which is, the smallest acceptable measured 

concentration value for the species, assuming it is appropriately characterized. 
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Chapter 6 : Summary  

As part of this dissertation work, data analysis strategies were developed and evaluated for 

interpreting intraurban spatiotemporal variability in concentrations measured across a network of 

monitoring sites.  The application of the proposed strategies to networks with varying 

characteristics provided insights into the unifying aspects of the approach and also highlighted 

those aspects that needed to be customized to accommodate the distinctive features of the 

specific datasets.  In this chapter, the advantages, limitations and recommendations for future 

work on these interconnected approaches are discussed.   

6.1. Measurement error 

Data quality can profoundly impact the variability metrics and their interpretation.  An analysis 

to generate error structures for the Hong Kong PM10 speciation network using collocated data 

revealed structural issues in the data reporting that led to false representation of measurement 

precision.  This finding also has implications to variability assessments.  For example, a data 

reporting convention based on fixed digit scientific notation (e.g., X.X*10
Y
) could lead to 

concentration differences of 0.1 being reported as 1.4 versus 1.5 in one decadal range but in the 

next higher decadal range values that are 11.4 and 11.5 would be reported as 11 and 12, 

respectively.  These concentration differences could strongly influence the variability metrics.  

One possible way to avoid such misrepresentation of variability is to report all concentrations to 

the same degree of accuracy as the detection limit of the species and provide appropriate 

uncertainty estimates.   

Another issue encountered in several of the data analyses was that concentrations near or below 

the detection limit can dramatically influence the variability metrics.  In particular, metrics that 
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are based on relative differences, such as the COD, can appear to exhibit heterogeneity which 

actually stems from the relatively increased noise for concentrations near or below the MDL. 

The common approach of imputing concentration values below the MDL with ½ the MDL can 

lead to a false increase in homogeneity.  While the data can be censored to remove such cases, 

the resulting variability metrics no longer represent the behavior of the entire dataset.  

Furthermore, outliers in measured concentrations can also skew the interpretation of variability 

and can be very challenging to isolate.  While there are no clear solutions to these issues, it is 

important to identify cases where such issues arise and clearly document how they are handled.  

Analytical uncertainty of concentrations typically provided by analytical laboratories only 

evaluates the precision in the estimated sample concentration.  The factors contributing to the 

occurrence of covariance in measurement error across species and its influences on the 

representativeness of measurement uncertainty estimates needs to be further evaluated.  

Collocated measurements, if available, aid in evaluating measurement precision for the 

combined sampling and analysis protocol.  Further, COD for collocated data is a measure of 

precision and it could be used, alone or as a PCC-COD plot, to provide a context for interpreting 

inter-site COD values.  However, on-site collocated measurements are resource-intensive and 

may or may not be conducted, depending on the project resources and objectives.  In the absence 

of such datasets, the variability in measured concentrations may be evaluated using similar 

datasets that were collected and analyzed by other agencies as part of routine monitoring.   

6.2. Interpretation of statistical metrics for gauging variability 

The interpretation of PCC and COD, in a relative sense across sites in a monitoring network, is 

graphically aided by the PCC-COD plot, which merges the temporal and spatial tracking ability 
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of the individual metrics.  In the PCC-COD plot using measured concentrations, a clustering of 

site pairs towards the homogeneity end of the variability line indicates general uniformity in 

species concentrations across the monitoring network.  Plots constructed using site-specific 

measured and baseline concentrations can have several advantages.  First, the sites that track the 

baseline are clustered near the homogeneity end of the variability line and thus the plot aids in 

better understanding of both the site-specific and baseline time series.  Second, there is a 

reduction in dimensionality because each site appears only once in the plot rather than all the 

possible site pair combinations.  Third, by comparing the site-specific measured concentrations 

to a common baseline, which can be a significant portion of the measured concentrations, the 

inter-site variability is amplified and sites displaying greater spatiotemporal variability can be 

better categorized.  The cautions that are applied to the interpretation of the individual metrics 

extend to this plot as well.  As previously stated, the presence of concentrations near/below the 

MDL or outliers in the dataset can drastically influence these metrics.  

In many but not all cases the sites tend to cluster along the variability line that spans the (COD, 

PCC) range from absolute homogeneity (0, 1) to absolute heterogeneity (1, 0).  Further work is 

needed to explain why this pattern is often observed as well as to improve the interpretation of a 

site-pair/sites’ position on the plot.  One possible approach is to perform dispersion modeling for 

emission sources(s) to create modeled concentration fields and examine the influence of receptor 

locations on PCC and COD.  While such exercises may provide insights on the various regimes 

of the PCC-COD plot, interpreting the variability in observed ambient concentrations based on 

modeled concentrations can be challenging.  Ambient concentrations in each network are 

dependent on various factors such as the spatial scale of the network, zone of influence of the 

emission sources, emission source profiles, meteorological conditions etc.  Despite such issues 
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regarding the interpretation of the variability line, it does provide a reference to gauge the 

relative spatiotemporal variability across the sites.   

6.3. Baseline-excess apportionment 

The most significant advantage, and the limitation, of the baseline-excess apportionment is that 

the baseline can be subjectively defined by the researcher depending on the objectives of the 

study and in this regard is similar to other conventional tools typically used such as receptor 

modeling tools where the user subjectively decides on the number of factors (sources) 

representative for the dataset.  The baseline can be any reference concentration time series, such 

as concentrations from a background site or other site with well understood concentration trends.  

In the absence of such a reference, the variability inherent to the concentrations measured across 

the network can be utilized to estimate a baseline concentration time series.  For monitoring 

networks with just a few sites, the selection of the baseline was restricted to the minimum 

concentration measured across the network.  However, networks with a large number of sites 

provide greater flexibility to choose the baseline to establish the general characteristics of the 

network-wide uniform contributions.  The foremost requirement for meaningful interpretation of 

variability with respect to the defined baseline is to understand the baseline and the factors 

contributing to it.  The PCC-COD plot (constructed using site-specific measured and baseline 

concentrations) along with examination of summary statistics of the baseline and site-specific 

excess concentrations aid in identifying the sites contributing to the baseline as well as 

establishing the representativeness of the background site, if available.   

One of the key assumptions of this approach relies on network-wide uniform concentration 

burdens from emission sources located far away from the network.  Interpreting variability will 
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be challenging for networks with sources located outside the network yet close enough to result 

in spatially differential impacts across the network.  The applicability of this approach is also 

questionable for species that have the potential to chemically react over the spatial domain of the 

network.  The baseline-excess apportionment does not provide the absolute local- (for the 

particular network) or large-scale source emission contributions but it does utilize the inherent 

concentration variability across the network to establish semi-quantitative estimates of network-

scale and larger-scale emission source contributions.  Thus, this approach can be particularly 

useful for monitoring networks with significant and temporally varying larger-scale contributions 

because it can isolate deviations resulting from local source impacts.  For networks with 

dominant local-scale contributions, this approach still provides insights for the sites that display 

relatively high variability.  In either case, the sites with higher variability are distinguished and 

can be examined to identify the underlying drivers, whether anthropogenic, natural (geographic 

barriers, meteorology etc.) or both.  With a clear understanding of such constraints, the baseline-

excess apportionment, when applicable, can significantly improve evaluation of spatiotemporal 

variability. 

6.4. Estimating emission source zones 

Extending the application of the baseline-excess apportionment to pollution rose-type graphical 

tools, such as the CPF and NWR plots, also aids in refined estimation of the directionality of 

local emission sources.  Using concentration differences (either with respect to the defined 

baseline or between sites) focuses on the bearings that correspond to the observed excess 

concentrations.  However, such concentration difference time series are prone to higher 

propagated uncertainty than the measured concentrations.  Collocated data, if available, can be 

used to evaluate if the concentration differences are merely noise or truly represent ambient 
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variability. More work is needed to evaluate the efficacy of estimating source bearings through 

exercises such as peak-fitting of the NWR plots.  In particular, uncertainty estimates for the 

resolved bearings are needed.  Furthermore, the measured ambient concentrations at the receptor 

sites are affected by various attributes of the contributing sources, such as the number of sources, 

their spatial and temporal scales of influence, fluctuations in emission rates, etc.  In the absence 

of refined uncertainties for the resolved bearings, large conservative uncertainties, such as the 

optimized smoothing parameter of the NWR plot, can be used for the triangulation of emission 

source zones.   

Source bearings resolved for ambient concentrations at each site may triangulate to multiple 

emission zones.  Such ambiguities in estimation of emission source locations can result from 

factors such as the presence of closely sited sources or sources in corridors, intermittent source 

emissions, and from errors in measurements or modeling.  The deduction approach requires that 

multiple receptor sites be impacted by concentrations from the same source which may not occur 

if the data is sparse for certain wind directions or if the impact at a receptor site is caused by an 

exceptional event that occurs during periods when the wind direction causes only one site to be 

affected.  Furthermore, the efficacy of meteorological parameters at evaluating concentration-

wind direction relationships also depends on having sufficient frequency of concentration values 

with varying wind directions.  Despite such limitations, the approach narrows down the spatial 

extent of the emission zones which contribute to elevated receptor concentrations.  The sources 

identified in such triangulated zones should be evaluated using emission inventories, if available.  

Their impact at the receptor sites can be further validated using other tools such as dispersion 

modeling (AERMOD, CALPUFF etc.). 
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6.5. Concluding remarks 

The data analysis strategies developed and evaluated as part of this dissertation contribute to 

various aspects of air quality data assessment.  While monitoring networks have distinctive 

features and are designed for different objectives, the data-driven approach exploits the unifying 

characteristics of the network data structure to aid in understanding the factors contributing to 

variability across a variety of monitoring networks.  The most significant contribution of these 

strategies is the opportunity to combine their results with other, conventional tools into a weight-

of-evidence towards gauging spatiotemporal variability for effective air quality management.   
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Appendix A: Summary of tasks performed for this dissertation. 

St. Louis Community Air Toxics Project 

 Operated a PM10HiVol sampler at Washington University in St. Louis during 2008. 

 Optimized a sample digestion and ICP-MS analysis protocol for arsenic and certain other 

air toxics metals.  Extensive QA/QC characterization of blank levels, interferences, 

recoveries (using NIST standard reference materials), etc. 

 Performed filter digestion by hot acid digestion using a ModBlock, elemental analysis by 

ICP-MS and archived more than five hundred PM samples from the four site network in 

Missouri and additional samples provided by Illinois EPA. 

 Performed preliminary intraurban variability analysis of air toxics metals in St. Louis. 

 Developed approach to interpret scattergram of Pearson’s correlation coefficient (PCC) 

and coefficient of divergence (COD) (i.e., PCC-COD plot) to combine temporal tracking 

ability of PCC with COD’s ability to gauge spatial variability. 

 Developed the baseline-excess approach to utilize the variability inherent to the data 

structure for gauging intraurban variability.  

 Refined triangulation approach to identify putative emission sources using Conditional 

Probability Function (CPF) plots of site-specific excess concentrations and validated 

resolved emission zones with the National Emission Inventory, 2008.   

Dearborn Midwest Rail Study 

 Developed and implemented a comprehensive dispersion modeling framework for PM 

emissions generating activities at the Rougemere Rail Yard.  (Emission inventory 

prepared by Sierra Research, Inc.)  

 Developed modeling strategies and input files for dispersion modeling (AERMOD) and 

interpreted the modeling results. 

 Performed spatial variability analyses of hourly carbon measurements from a three month 

field-campaign at a three-site monitoring network in Dearborn, MI.  

 Extended the PCC-COD plot and baseline-excess approach to gauge variability and 

identify the background sites for this field campaign.  
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 Performed Non-parametric wind regression (NWR) and Peak-fitting (using IGOR-

PRO
TM

 software) of inter-site concentration differences to examine concentration-wind 

direction relationship.  

 Refined emission source zones estimation by systematic triangulation of resolved NWR 

peaks.    

Variability of Sulfur Di-oxide over Southeast Michigan 

 Extended the baseline-excess approach to gauge variability in sulfur di-oxide 

measurements at a three-site monitoring network in Detroit, MI. 

 Identified the industrial area around Zug Island, MI as the sulfur dioxide emission zone 

causing exceedances, leading the Michigan Department of Environmental Quality to 

develop a detailed emission inventory for the area.   

 This analysis was included in the State of Michigan’s attainment designation request as 

part of their weight-of-evidence for where the nonattainment area boundary should be 

drawn 

Hong Kong Air Quality Study 

 Developed sample-specific uncertainty estimates using collocated precision for source 

apportionment studies. 

 Identified issues with precision in data reporting and performed sensitivity tests to 

examine the impact of rounding of reported concentrations and outliers on uncertainty 

estimation. 

 Performed source apportionment of PM10 and PM2.5 speciation data collected at ten sites 

using EPA Positive Matrix Factorization (PMF), EPA UNMIX and Absolute Principle 

Component Analysis (APCA).   

 Compared and contrasted source apportionment models through sensitivity studies.  

 Examined long-term temporal and seasonal variability in derived source contributions. 

 Extended the PCC-COD plot and baseline-excess approach to gauge variability in hourly 

mass measured over 1998-2008 by Tapered Element Oscillating Microbalance (TEOM) 

monitors at fourteen sites. 

 Identified meteorological and geographic factors modulating spatial variability of PM  
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Coarse PM Speciation Pilot Study 

 Managed a year-long field campaign during 2010-2011 at the East St. Louis site.   

 Responsible for all routine operation, maintenance and extensive troubleshooting of two 

sequential FRM samplers, two sequential dichotomous samplers, and a MOUDI cascade 

impactor.  

Evaluation of Cooper Environmental’s Xact 620 semi-continuous field XRF monitor  

 Performed digestion and elemental analysis by ICP-MS of HiVol filter samples collected 

concurrently with Xact 620. 

 Evaluated Xact 620 bias against filter-based sampling and precision using collocated 

data.   

Mongolia Air Quality Project 

 Performed filter digestion by hot acid digestion using ModBlock and elemental analysis 

by ICP-MS for ~160 PM10 samples collected in Mongolia.  

Federal Equivalent Method (FEM) testing  

 Performed Federal Equivalent Method (FEM) testing of Teledyne-Advanced Pollution 

Instrumentations’ Model 602 Beta Particle Measurement System during two-month long 

field campaign in 2011-2012. 

 Responsible for daily routine operations and maintenance of three Model 602 Beta and 

six BGI PM10 samplers.  
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Appendix B: Long-term trends of ambient particulate matter 

emission source contributions and the accountability of control 

strategies – A case study in Hong Kong over a decade (1998-2008)

. 

B.1. Abstract 

Despite extensive emission control measures targeting motor vehicles and to a lesser extent other 

sources, annual-average PM10 mass concentrations in Hong Kong have remained relatively 

constant for the past several years and for some air quality metrics, such as the frequency of poor 

visibility days, conditions have degraded.  The underlying drivers for these long-term trends 

were examined by performing source apportionment on eleven years (1998-2008) of data for 

seven monitoring sites in the Hong Kong PM10 chemical speciation network.  Nine factors were 

resolved using Positive Matrix Factorization.  These factors were assigned to emission source 

categories that were classified as local (operationally defined as within the Hong Kong Special 

Administrative Region) or non-local based on temporal and spatial patterns in the source 

contribution estimates.  This data-driven analysis provides strong evidence that local controls on 

motor vehicle emissions have been effective in reducing motor vehicle-related ambient PM10 

burdens with annual-average contributions at neighborhood- and larger-scale monitoring stations 

decreasing by ~6 μg/m
3
 over the eleven year period.  However, this improvement has been offset 

by an increase in annual-average contributions from non-local contributions, especially 

secondary sulfate and nitrate, of ~8 μg/m
3
 over the same time period.  As a result, non-local 

                                                      

 Published paper: “Yuan, Z.; Yadav, V.; Turner, J.R.; Louie, P.K.K.; Lau, A.K.H.; Long-term trends of ambient 

particulate matter emission source contributions and the accountability of control strategies – A case study in Hong 

Kong over a decade (1998-2008), Atmospheric Environment, 2013, 76, 21-31.” 
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source contributions to urban-scale PM10 have increased from 58% in 1998 to 70% in 2008.  

Most of the motor vehicle-related decrease and non-local source driven increase occurred over 

the period 1998-2004 with more modest changes thereafter.  Non-local contributions increased 

most dramatically for the secondary sulfate and secondary nitrate factors and thus combustion-

related control strategies, including but not limited to power plants, are needed for sources 

located in the Pearl River Delta and more distant regions to improve air quality conditions in 

Hong Kong.  PMF-resolved source contribution estimates were also used to examine differential 

contributions of emission source categories during high PM episodes compared to study-average 

behavior.  While contributions from all source categories increased to some extent on high PM 

days, the increases were disproportionately high for the non-local sources.  Thus, controls on 

emission sources located outside the Hong Kong Special Administrative Region will be needed 

to effectively decrease the frequency and severity of high PM episodes.   

B.2. Introduction 

During the past twenty years, the environmental authorities in Hong Kong have undertaken a 

series of air pollution control measures including but not limited to requirements for low-sulfur 

diesel fuel, lead-free gasoline, three-way catalytic converters, conversion of diesel taxis and 

minibuses to liquefied petroleum gas, and capping the VOC content of some solvents and 

consumer products.  Despite these measures, the long-term trends for various ambient air quality 

metrics show either no improvement or a worsening of conditions.  For example, the open circles 

in Figure B-1 show the annual-average PM10 mass concentration composited over six monitoring 

stations that collectively represent urban-scale conditions (these sites are described later in this 

chapter).  Hourly data from the PM10 monitoring network were used to construct the annual  
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Figure B-1. Historical trends for visibility impairment and PM10 mass, sulfate and total carbon.  

Data sources and calculation methodology are described in the text. 

averages.  Annual-average PM10 mass was relatively constant over the period from 1998-2008 

with a 9% increase in mass for the five years starting in 2004 compared to the five year period 

starting in 1998.  The solid circles in Figure B-1 show the percentage of hours with poor 

visibility (visibility less than 8 km with relative humidity less than or equal to 80%) measured at 

the Hong Kong Observatory (HKO, 2012).  The frequency of poor visibility days increased 

throughout the 1990s with more dramatic increases during first half of the 2000s.  A local 

maximum was observed in 2004 (18% of hours) with the frequency of poor visibility hours 

decreasing through 2008 and then increasing again through 2011.  The frequency of hours with 

poor visibility increased by 47% for the five years starting in 2004 compared to the five year 

period starting in 1998.  The substantially greater worsening of visibility compared to the more 

modest increase in PM10 mass has been driven by changes in chemical composition of the PM10 

aerosol.  Figure B-1 also shows that over the period from 1998 to about 2004, for the same six 

sites used to construct the PM10 TEOM mass trend, the annual average total carbon dramatically 
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decreased while annual average sulfate significantly increased.  Thus, while there was little 

change in PM10 mass during this period, the composition shifted towards an aerosol with higher 

light extinction efficiency that degraded the visibility more efficiently (Andreae et al., 2008).   

The two most pervasive air pollution issues in Hong Kong are street-level (especially near 

roadway) air quality and regional-scale air quality that affects not only Hong Kong but also the 

entire Pearl River Delta (PRD).  The emission inventory reveals gasoline and diesel vehicles to 

be the main sources of street-level pollution (Zheng et al., 2009a).  Regional-scale air pollution, 

however, is caused by the cumulative impacts from numerous emission source categories such as 

motor vehicles, marine vessel emissions, industry and power plants located in Hong Kong, the 

greater PRD region, and beyond.  As shown in Figure B-2, the PRD region of Guangdong 

Province, which historically was Hong Kong’s hinterland, has become highly urbanized and 

indeed has developed as the largest workshop in the world.  Over the past fifteen years, pollutant 

emissions within the PRD region have increased dramatically as a result of booming industrial 

activities and relatively modest pollution control regulations.  Therefore, the pollutants 

transported from the greater PRD region to Hong Kong are expected to have correspondingly 

increased.   

Effective air quality management necessarily requires setting priorities and therefore it is 

important to identify the emission source categories leading to deterioration of air quality in 

Hong Kong and quantify the long-term trends in the contributions from such sources.  To the 

extent there are large contributions from within the Hong Kong Special Administrative Region 

(HKSAR) the local government can implement additional controls on.  However, if the dominant 

contributions are from the greater PRD area and more distant regions, a regional planning 

process that involves cooperation between Hong Kong, Guangdong Province and perhaps other 
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        (a)                                                   (b) 
Figure B-2. (a) Land-use map of the Pearl River Delta in 2003, and (b) geographical distribution of the 

Air Quality Monitoring Stations in the Hong Kong Special Administrate Region. 

provinces in Mainland China will be necessary to efficiently manage air quality in Hong Kong.   

This study was commissioned to extend our previous work to apportion ambient PM10 levels in 

Hong Kong (Yuan et al., 2006; Huang et al., 2009) with emphasis on further identifying and 

quantifying the drivers for the long terms trends in Hong Kong air quality such as those features 

demonstrated in Figure B-1.  Insights were sought into whether air quality benefits from prior 

control measures could be elucidated from routine monitoring data.  This information could be 

used to frame and prioritize future control policies.  Following the methodology of the previous 

studies, receptor modeling was performed on the PM10 speciation data.   

B.3. Data collection and analysis 

For more than twenty years, the Hong Kong Environmental Protection Department (HKEPD) 

has operated a PM10 chemical speciation network (network) that has included several monitoring 

stations throughout the HKSAR.  24-hour integrated (midnight-to-midnight) samples are 

collected on a 1-in-6 day frequency using High Volume PM10 samplers with quartz filters.  The 

filters are analyzed for gravimetric mass, elements by inductively coupled plasma atomic 
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emission spectroscopy and ions by ion chromatography.  Since January 1998, a thermal/optical 

transmittance method following the NIOSH 5040 protocol (Chow et al., 2001) has been used to 

obtain organic carbon (OC) and elemental carbon (EC).  Table B-1 summarizes the valid 

sampling periods and environmental characteristics for each of the seven stations that have 

operated nearly continuously over the 1998-2008 period and were used in this study.  The first 

six stations (YL through KT) are neighborhood-scale sites and collectively are considered to 

represent urban-scale PM10 levels albeit with some underlying spatial variability.  For the 

purpose of this study they are termed “general stations” and this descriptor is used when analyses 

are presented as the average over these six sites.  General stations are typically located on 

rooftops of four- to six-story buildings with unobstructed airflow from most directions.  The 

remaining site is the MK station that is located only a few meters above the ground in a heavily 

trafficked area to gauge roadside exposures by pedestrians.  Towards the end of 2000, the MK 

station was relocated to its current location and started operation on 2 January 2001.  This 

relocation caused a discontinuity in the time series for PM10 mass and some species.  Therefore, 

data for MK is included only for the period from 2001 onward.  Detailed information about the 

network can be found in Yuan et al. (2006) and Section BS.1.   

Source apportionment modeling was performed using Positive Matrix Factorization (PMF).  

PMF is a factor analytic method that provides a parameterized convergence scheme and 

constrains all the elements in the factor score and factor loading matrices to be positive (within a 

narrow tolerance).  These features are attractive for the modeling of environmental data sets and 

PMF has been widely used for the source apportionment of different ambient pollutants, 

including particulate matter (e.g. Lee et al., 1999; Lee et al., 2003), volatile organic compounds
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Table B-1. Monitoring station characteristics 

Station 
 

Count Start Date End Date Major Data Gap Station Characteristics 

Yuen Long YL 654 Jan. 2, 1998 Dec. 26, 2008 Urban / Residential 

Tung Chung TC 575 Apr. 3, 1999 Dec. 28, 2008 New Town / Residential 

Tsuen Wan TW 631 Jan. 3, 1998 Dec. 26, 2008 Feb. 6, 2003 – Apr. 23, 2003 Urban / Residential / Commercial 

Sham Shui Po SSP 586 Jan. 11, 1998 Dec. 26, 2008 
Nov. 29, 2003 – Mar. 16, 2004; 

May 12, 2007 – Jun. 5, 2008 
Urban/ Commercial 

Central / 

Western 
CW 641 Jan. 2, 1998 Dec. 26, 2008 Nov. 9, 2001 – Mar. 27, 2002 Urban / Residential 

Kwun Tong KT 598 Jan. 4, 1998 Dec. 31, 2008 
Oct. 31, 1998 – Jan. 11, 1999; 

Apr. 13, 2002 – Feb. 1, 2003 
Commercial / Residential / Near ferry pier 

Mong Kok MK 482 Jan. 2, 2001 Dec. 27, 2008 Roadside, relocated at the end of 2000 
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 (e.g. Song et al., 2007; Lau et al., 2010), polycyclic aromatic hydrocarbons (e.g. Larsen et al., 

2003), and organic aerosols (e.g. Lanz et al., 2007).  In this study, PMF modeling was performed 

using EPA PMF Version 3.0 (USEPA, 2008).   

The goal of PMF is to identify a number of factors p, the species profile f of each source, and the 

amount of mass g contributed by each factor to each individual sample, as shown in Equation (B-

1) (USEPA, 2008).   


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where xij is the element in the data matrix with n number of samples and m chemical species 
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It is therefore important to provide plausible uncertainty estimates that can reflect the variability 

and artifact in the processes of sampling, chemical analysis and transformation of pollutant 

profiles in the air.   

In this study, concentration dependent error structures were assumed with the form Uij = aj + bj   

Cij where Uij is the uncertainty for species j in sample i, Cij is the mass concentration of species j 

in sample i, and aj and bj are the species-specific additive and multiplicative contributions, 

respectively, to the uncertainty.  For each species the aj and bj coefficients were derived from an 

analysis of collocated samples routinely collected at the SSP station and evaluated using 
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collocated samples also routinely collected at the TW station.  The methodology to develop the 

error structures from collocated data is summarized in Section BS.2.  Table B-2 lists the derived 

aj and bj values, effective MDL and percentage of samples below the effective MDL for each 

species.   

Data from all sites were combined into a single dataset of 4167 samples to generate a consistent 

set of source profiles across the sites.  The quartz fiber filter gravimetric mass (hereafter denoted 

as QTM) was used as the total mass variable.  The rationale for using QTM as the total mass 

variable is discussed in Section BS.3.  10% extra modeling uncertainty was imposed to account 

for possible temporal changes in the source profiles and other sources of variability.  Twenty 

base runs were performed and the run with the minimum Q value was selected as the base run 

solution.  100 bootstrap runs were conducted with minimum correlation R-value of 0.6 to 

examine the stability and to estimate the uncertainty of the base run solution.  All of the 

bootstrapped factors were uniquely mapped to a factor from the base solution, and no factors 

were unmapped.  For the Q values derived from the twenty base runs, the standard deviation was 

only ~0.004% of the mean, indicating a very stable solution.  For this modeling, an Fpeak value 

of zero, indicating no rotation performed, resulted in the most meaningful results.  Modeling was 

performed for four to ten factors and the nine factor solution was deemed to be most 

representative, as discussed in detail in Section BS.4.   

Putative emission source categories were mapped onto the factors by identifying the tracer(s) for 

each source which are typically the species that exclusively or largely reside in a particular 

source.  Table B-3 lists the emission source categories and corresponding tracers used for 

matching PMF-resolved factors to the sources.  It is noted that the bootstrap method accounts for  
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Table B-2. Additive (aj) and multiplicative (bj) error terms derived using collocated data, 

effective minimum detection limit (defined in the text), and the percentage of samples below the 

effective detection limit. 

Species j aj (μg/m
3
) bj 

Effective MDL 

(μg/m
3
) 

% of samples below 

Effective MDL 

Al 0.046 0.071 0.014 1% 

As 0.0001 0.050 0.0002 25% 

Ca 0.022 0.043 0.065 0% 

Cd 0.00002 0.058 0.0001 28% 

Cl
-
 0.014 0.047 0.042 0% 

Fe 0.004 0.030 0.013 0% 

K
+
 0.012 0.028 0.035 0% 

Mg 0.005 0.020 0.015 0% 

Mn 0.0002 0.029 0.001 27% 

Na
+
 0.026 0.018 0.079 0% 

NH4
+
 0.017 0.028 0.051 0% 

Ni 0.0003 0.050 0.0008 36% 

NO3
-
 0.043 0.026 0.129 0% 

Pb 0.0002 0.035 0.001 20% 

SO4
2-

 0.060 0.025 0.179 0% 

V 0.00001 0.047 0.00002 48% 

Zn 0.002 0.032 0.005 6% 

EC 0.115 0.023 0.344 0% 

OC 0.112 0.032 0.335 0% 

 

Table B-3. Tracers applied for source identification and assignment of factors as primarily of 

local (within the HKSAR) or non-local origin. 

Source Tracers Dominant Spatial Scale 

Vehicle Exhaust EC, OC local 

Residual Oil Ni, V local 

Fresh Sea Salt Na
+
, Mg

2+
, Cl

-
 local 

Aged Sea Salt Na
+
, Mg

2+
, NO3

-
, SO4

2-
 local 

Crustal Soil / Dust Al, Ca, Mg, Fe non-local 

Secondary Sulfate NH4
+
, SO4

2-
 non-local 

Secondary Nitrate NH4
+
, NO3

-
 non-local 

Trace Metals Zn non-local 

Coal Combustion / Biomass Burning As, Cd, Pb, K
+
, OC non-local 
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some but not all sources of uncertainty and thus is likely a lower bound on the true uncertainties 

in the modeling results.  The PM10 emission source categories assigned to the nine factors are 

vehicular exhaust, residual oil combustion, fresh sea salt, aged sea salt, crustal material/soil, 

secondary sulfate, secondary nitrate, trace metals from sources such as zinc smelting, and coal 

combustion admixed with biomass burning, Detailed information on source identification can be 

found in Yuan et al. (2006) and Section BS.4.   

To examine the robustness of the PMF source apportionment results, additional receptor models 

including principal components analysis with absolute principal components scores (APCA, 

Thurston and Spengler, 1985) and Unmix (USEPA, 2007) were also applied.  Generally, the 

three models yielded similar estimations for sources of vehicle exhaust, residual oil, crustal soil, 

secondary sulfate, and coal combustion / biomass burning. Considering that APCA and Unmix 

cannot resolve distinct aged sea salt and secondary nitrate factors and significant negative 

loadings onto a few factors were observed, the PMF results were considered the most reasonable 

and used for the remainder of the study.  APCA and Unmix results were provided in Section 

BS.5 for reference.   

B.4. Results and Discussion 

B.4.1. Source contributions and their seasonal and spatial variations 

As previously discussed, one objective of the source apportionment modeling was to determine 

local (again, operationally identified as sources within the HKSAR) and non-local emission 

source categories and their respective contributions because the control of local sources is fully 

within Hong Kong’s jurisdiction while controlling non-local sources requires regional 
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cooperation.  The approach largely focused on assigning sources as local or non-local based on 

seasonal and spatial patterns in the PMF-modeled source contribution estimates (SCE).   

Hong Kong is situated in the subtropics along the southeast coast of Eurasia Continent.  The 

seasonal evolution of weather in Hong Kong is closely related to and controlled by seasonal 

evolution of the East Asian Monsoon system.  In summer, a large surface low-pressure system 

develops over Asia in response to rising surface temperature over the continent.  Consequently, 

cyclonic winds flow into the Asian landmass in the lower levels, leading to southerly or 

southwesterly prevailing winds in Hong Kong bringing clean oceanic air mass from the sea.  In 

winter the temperatures inland become lower than that of the ocean, leading to anti-cyclonic flow 

over the Asian landmass.  This wintertime pattern drives mainly northerly or northeasterly 

surface and synoptic winds that transport particulate matter to Hong Kong from the PRD and 

regions further inland.  In light of these characteristics, seasonal and spatial patterns for the 

receptor modeled SCEs were examined from the perspective that local source SCEs typically 

should have relatively larger spatial variation over the network and smaller seasonal variation, 

while non-local sources should exhibit smaller spatial variation and larger seasonal variation.  

Based on the prevailing synoptic systems, for this analysis the seasons in Hong Kong were 

defined as summer from 16 May to 15 September; winter from 16 November to 15 March of 

following year; and a transitional season, including both spring and fall, from 16 March to 15 

May and from 16 September to 15 November.   

Table B-4 lists the annual-, wintertime-, summertime-, and transition season- averaged source 

contributions at general stations and roadside station during the 11-year period from 1998 to 

2008.  Based on the general station SCEs, the secondary sulfate factor is the largest contributor 

to PM10 mass and accounts for 22% of the period-average ambient PM10 in Hong Kong.  SCEs  
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Table B-4.Annual-, wintertime-, summertime-, and transition season- averaged source contribution estimates (unit: μg/m
3
) and 

contribution percentages for general stations from 1998 to 2008 and for the roadside station from 2001 to 2008 (unit: μg/m
3
) 

 
General stations (YL, TC, TW, SSP, CW & KT) Roadside station (MK) 

Annual Winter Summer Transitional Win/Sum Annual Winter Summer Transitional Win/Sum 

Vehicle Exhaust 8.5 (15%) 8.2 (11%) 8.9 (25%) 8.4 (15%) 0.92 21.3 (30%) 19.0 (22%) 23.3 (47%) 21.4 (28%) 0.82 

Residual Oil 0.2 (0.4%) 0.2 (0.3%) 0.3 (1%) 0.2 (0.4%) 0.74 0.3 (0.4%) 0.2 (0.2%) 0.3 (1%) 0.3 (0.4%) 0.57 

Fresh Sea Salt 1.8 (3%) 2.1 (3%) 1.8 (5%) 1.4 (2%) 1.2 2.3 (3%) 2.5 (3%) 2.8 (6%) 1.7 (2%) 0.90 

Aged Sea Salt 7.1 (13%) 6.2 (8%) 6.5 (19%) 8.6 (15%) 0.95 7.2 (10%) 6.5 (7%) 6.5 (13%) 8.5 (11%) 1.0 

Crustal Soil / Dust 6.7 (12%) 9.7 (13%) 3.2 (9%) 7.3 (13%) 3.0 7.5 (11%) 10.3 (12%) 4.0 (8%) 8.4 (11%) 2.6 

Secondary Sulfate 12.3 (22%) 16.1 (22%) 6.9 (20%) 14.1 (25%) 2.3 13.4 (19%) 16.4 (19%) 6.9 (14%) 17.1 (22%) 2.4 

Secondary Nitrate 8.3 (15%) 14.9 (20%) 3.1 (9%) 7.2 (13%) 4.8 11.0 (16%) 18.2 (21%) 4.5 (9%) 10.6 (14%) 4.0 

Trace Metals 2.6 (5%) 4.1 (5%) 1.0 (3%) 2.9 (5%) 4.0 2.8 (4%) 4.1 (5%) 0.9 (2%) 3.4 (4%) 4.4 

Coal Comb. / 

Biomass Burning 
7.3 (13%) 12.7 (17%) 2.6 (7%) 7.1 (12%) 5.0 6.2 (9%) 10.4 (12%) 1.7 (3%) 6.7 (9%) 6.1 

Local sources 17.6 (32%) 16.7 (22%) 17.4 (50%) 18.6 (32%) 1.0 31.0 (44%) 28.2 (33%) 32.9 (66%) 32.0 (41%) 0.86 

Non-local sources 37.2 (67%) 57.6 (77%) 16.8 (48%) 38.6 (67%) 3.4 41.0 (58%) 59.3 (69%) 18.1 (36%) 46.3 (60%) 3.3 

Residual* 0.5 (1%) 0.6 (1%) 0.8 (2%) 0.2 (0.3%)  -1.1 (-2%) -0.9 (-1%) -1.2 (-3%) -1.1 (-1%)  

Total 55.3 74.8 35.1 57.4  70.9 86.6 49.7 77.1  

 * Residual refers to particle mass that is not apportioned to the PMF-resolved factors, i.e. the total mass in the residual matrix.
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for vehicle exhaust, aged sea salt, crustal soil, secondary nitrate, and coal combustion / biomass 

burning are comparable with each emission source category responsible for ~12-15% of the 

PM10 mass.  Contributions from residual oil, fresh sea salt, crustal soil, and trace metals are 

generally below 5%.   

Seasonal and spatial variability in the SCEs are presented in Figure B-3.  The results in both 

Table B-4 and Figure B-3 show that for sources such as vehicle exhaust, residual oil, fresh sea 

salt, and aged sea salt, the summertime contributions are comparable to or even slightly higher 

than the wintertime contributions.  The weak seasonal dependence and the general lack of 

emission sources in the summertime upwind direction (i.e. SE/SW) leads to these sources being 

characterized as local.  On the other hand, general stations SCEs for the crustal/soil, secondary 

sulfate, secondary nitrate, trace metals and coal combustion / biomass burning, emission source 

categories were 3-5 times higher in winter than in summer.  With prevailing surface winds from 

NW/NE in winter bringing air masses from the PRD and regions further inland to Hong Kong, 

these sources are presumed to be non-local (i.e. from the PRD and larger regional scales).  The 

assignment of emission source categories as being predominantly local or non-local is 

summarized in Table B-3.  Sources that were assigned as local based on seasonal behavior also 

show relatively large spatial variation across the network.  In particular, the vehicle exhaust SCE 

at MK is nearly 2.5 times that at the general stations.  Non-local sources, such as crustal soil, 

secondary sulfate, secondary nitrate, and trace metals, and coal combustion / biomass burning, 

show relatively consistent SCEs across the network.  These spatial patterns are another indicator 

for the geographical nature of each emission source category.  However, when the general 

stations are ordered from northwest to southeast (Figure B-3), a spatial gradient in the SCEs is 
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Figure B-3. Site-specific PMF-resolved summer (XX-Sum) and winter (XX-Win) source contribution estimates (μg/m
3
) across the 

network, with general stations (YL to KT) from northwest to southeast (i.e., in the order of increasing distance from PRD region). 
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Figure B-4. PMF-resolved annual average source contribution estimates (g/m
3
) at general 

stations and roadside station for the period 1998-2008. 

discernible for most of the non-local sources with SCEs decreasing with increasing distance from 

the PRD.  This pattern suggests that some of the non-local sources may be sufficiently close to 

Hong Kong to result in a spatial gradient in source contributions across the network.  In contrast, 

such spatial gradients were not observed for the local sources.   

Having classified the geographic nature of each emission source category, the relative 

contributions of local and non-local sources to ambient PM10 levels observed in Hong Kong were 

calculated.  For the general stations, non-local sources contributed about 67% and local sources 

contributed about 32% to the grand-average PM10 during the period from 1998 to 2008.  Non-
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local contributions exhibited relatively higher contributions in winter (77%) compared to 

summer (48%).  At the roadside station, non-local sources contributed about 58% and local 

sources contributed about 44% to the PM10 burdens from 2001 to 2008 (there was a 2% over 

prediction in the estimates).  Non-local contributions were 69% in winter and 36% in summer.   

B.4.2. Long-term (eleven-year) trends in annual source contribution estimates 

Inter-annual trends in SCEs over the eleven-year study period were examined for the general 

stations and the roadside station.  Figure B-4 shows the trends in annual average SCEs for each 

of the nine resolved factors.  Vehicle exhaust annual-average SCEs monotonically decreased 

over the six year period from 1998 to 2003 at the general stations with similar behavior at the 

roadside station for 2001 to 2003.  Despite small rebounds in 2004 and 2006, the vehicle exhaust 

annual average SCEs at the general stations continued to decrease through 2008.  This 

decreasing trend demonstrates the efficacy of vehicular emission control measures adopted in 

Hong Kong.  For the general stations, the annual average contributions from vehicles were 

~5μg/m
3
 in 2008 which corresponds to a 54% reduction from the contribution of nearly 12 μg/m

3
 

in 1998.  Reasons for the modest SCE increases in 2004 and 2006 are not known; they might 

arise from year-to-year variations in atmospheric stability that affect pollutant dispersion or from 

increases in emissions in response to economic changes or other activity-based drivers.  For 

example, over the period 1998-2007 the Hong Kong Gross Domestic Product was lowest in 2003 

(HKEPD, 2008a) and thus 2004 was a rebound year in economic activity.  Also, the HKSAR PM 

emission inventory shows a monotonic decrease in annual PM emission road transport emissions 

from 1998 to 2007 with annual reductions averaging ~300 tonnes/year (HKEPD, 2008b).  

However, the smallest emission reduction was in 2006 (50 tonnes/year) which coincides with 

one of the years with a modest increase in the motor vehicle exhaust SCE.   
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Figure B-5. Correlation between the PMF-resolved vehicle exhaust source contribution estimates 

at general stations and estimation of PM emissions from road transport.  The emission inventory 

data are from HKEPD (2008b). The data were fitted with an ordinary least squares regression. 

Figure B-5 shows that for the years from 1998 to 2007, there is a high correlation between PMF-

modeled vehicle SCEs at the general stations and the annual PM emissions from road transport 

estimated by HKEPD (2008b).  The correlation coefficient of 0.90 increases to 0.99 if data from 

2004 and 2006 are excluded (the emission inventory was not available for 2008).  This high 

correlation adds confidence to the assignment of the motor vehicle factor and its long term trend.  

When the PM emissions from road transport decreased by 1000 tonnes per year, the annual 

average urban-scale ambient PM10 burden in Hong Kong decreased by about 1.6 μg/m
3
.  The 

correlation coefficient at roadside MK station (0.70) is lower, likely because the emission 

variations near the single roadside station respond differently to the emission control programs 

compared to the greater Hong Kong region.  The large intercept for the ordinary least squares 

regression (4.6 μg/m
3
) may result from an underestimation of Hong Kong road transport 

emission inventory, non-local motor vehicle contributions to the resolved factor, or admixing of 

contributions from other largely carbonaceous source categories into the factor assigned to 
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vehicle exhaust.  These different scenarios do not alter the interpretation of the long-term trend 

but do affect the total PM10 SCE assigned to local vehicular exhaust and thus additional work is 

needed to further refine the motor vehicle contribution estimates.   

In contrast to the decreasing trend for vehicle exhaust, annual average SCEs for residual oil 

increased from 1998 to 2004 and has been generally constant thereafter.  In terms of relative 

changes the residual oil factor increased more than any other factor over the eleven year period.  

For the general stations, the residual oil factor annual average SCE was 0.3 μg/m
3
 in 2008 which 

is threefold higher than the contribution of 0.1 μg/m
3
 in 1998.  The relatively high loading of 

sulfate onto this factor (Table BS-2) is not surprising.  In Hong Kong, residual oil is mainly used 

as marine vessel fuel and oceangoing cargo vessels are legally allowed to use fuels with sulfur 

content up to 4.5%.  In contrast, the sulfur content of motor diesel and petrol/gasoline dispensed 

in Hong Kong is currently capped at 0.005% (Gall and Van Rafelghem, 2006).  While there are 

numerous marine vessel lanes throughout the navigable waters near Hong Kong and the greater 

PRD, the highest summertime residual oil combustion SCEs are observed at TW followed by 

SSP and MK (Figure B-3).  This spatial pattern is consistent with significant emissions from the 

high density of container terminal operations located south and southwest of these three stations 

(Figure B-2).   

Sea salt factors were classified as fresh or aged with the fresh being rich in chloride and the aged 

being depleted in chloride and enriched in sulfate and nitrate.  Figure B-4 demonstrates that over 

the eleven-year period, fresh sea salt contributions to PM10 modestly decreased (2.0 g/m
3
 for 

the five year period starting 1998 and 1.6 g/m
3
 for the five year period starting 2004) while 

aged sea salt contributions increased (6.6 g/m
3
 for the five year period starting 1998 and 7.4 
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g/m
3
 for the five year period starting 2004).  The annual average sodium ion concentrations for 

the general stations data were quite stable over the eleven-year period with a maximum deviation 

from the grand mean being 11%; this local maximum, observed in 2006, is reflected in the aged 

sea salt SCE time series.  Similarly, sodium ion apportioned to the combined sea salt factors was 

stable over the study period with a maximum annual deviation from the grand mean being 12%.  

Thus, the sea salt SCE patterns indicate negligible change in the sea salt emissions but an 

increase over time in the atmospheric processing of sea salt, perhaps in response to increased 

transport of inorganic PM from non-local sources as described below.  This behavior drives an 

increase in overall sea salt SCEs because sulfate and nitrate have higher molecular weight than 

the chloride they are replacing.   

Annual-average SCEs for the crustal soil / dust factor were relatively constant over the study 

period.  Both spatial and temporal patterns suggest this factor has non-local origins.  In addition 

to re-suspended material, this factor might have contributions from industrial sources.  For 

example, a 2006 emission inventory for the PRD assigned more than half of the primary PM10 

emissions to industrial sources with the dominant sub-categories being nonmetallic mineral 

products (He et al. 2011).  This material might have composition similar to soil/dust.   

Both secondary sulfate and secondary nitrate SCEs increased from 1998 to 2004 and have been 

relatively constant thereafter through 2008.  Secondary sulfate SCEs for the general stations 

increased from 9 μg/m
3
 in 1998 to 17 μg/m

3
 in 2007, corresponding to a ~90% increase.  

Meanwhile, secondary nitrate SCEs at the general stations increased from 7 μg/m
3
 in 1998 to 

more than 9 μg/m
3
 in 2007, corresponding to a ~30% increase.  Figure B-3 demonstrates that the 

spatial variability in sulfate is relatively small across the network with a modest gradient of 

decreasing SCEs from the north to the south.  These spatial patterns and the large seasonal 
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differences strongly implicate non-local sources as the dominant contributors to secondary 

sulfate in Hong Kong.  Patterns for nitrate are generally similar to sulfate for the general stations; 

the behavior of nitrate at the MK roadside station is discussed in section B.3.3.   

Contributions from the trace metals factor increased from 1998 to 2004 and have been relatively 

constant thereafter (Figure B-4).  The local maxima in 2004 and 2007 track the secondary sulfate 

factor SCE and thus might result from inter-annual variability in synoptic transport patterns.  

This factor could represent a broad range of industrial emission sources.  A 2006 emission 

inventory for the PRD assigned 55% of the primary PM10 emissions to industrial sources with 

the dominant sub-categories being nonmetallic mineral products followed by pulp and paper 

industry and light manufacturing (He et al. 2011).  It is possible that the PM10 mass loading onto 

the trace metals factor has substantial contributions from other industrial sources, such as those 

mentioned, that are located in the same region as the metals-emitting sources and are admixed 

into the factor.   

There was no discernible trend for the SCEs of coal combustion / biomass burning factor over 

the period 1998-2008 with annual average contributions of 6.6 g/m
3
 for the five year period 

starting 1998 and 6.5 g/m
3
 for the five year period starting 2004.  Similar to the secondary 

sulfate and trace metals factors, there were local maxima in 2004 and 2007 that might reflect 

differences in synoptic transport patterns.  PRD biomass burning PM2.5 emissions, which are 

dominated by domestic biofuel burning and field burning of rice straw, decreased by ~20% over 

the period 2003-2007 (He et al. 2011).  However, a 2006 emission inventory assigned only 2% 

of the PRD primary PM10 emissions to biomass burning (Zheng et al., 2009b) and this change 

might be too small to detect in the ambient data.  The same study allocated 21% of the PRD  
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 (a)                                                         (b) 

Figure B-6. Long-term trends of relative contributions from non-local sources in winter, summer, 

and transitional seasons, and for all sampling days: (a) general stations; and (b) at roadside 

station. 

primary PM10 emissions to power plants.  Emissions from industrial combustion sources could 

also be admixed into this factor.   

Figure B-6 shows the long-term trend of relative contributions from non-local sources for winter, 

summer, transition seasons, and all sampling days.  The contribution of non-local sources at the 

general stations increased from 58% in 1998 to 72% in 2004 (~7 μg/m
3
 increase) and has been 

relatively constant thereafter albeit with some year-to-year variability.  This trend arises from the 

net effect of the decreasing contributions from vehicle emissions, driven by emission controls, 

being more than offset by the increase in contributions from non-local sources such as secondary 

sulfate, secondary nitrate, and trace metals.  Percentage contributions from non-local sources are 

highest during the wintertime and increased from 72% in the winter of 1998-1999 to 86% in the 

winter of 2007-2008.  In the latter case, contributions from local sources are estimated to be only 

1/7 of the wintertime ambient PM10 and this demonstrates the increased importance of 

controlling sources from the PRD and beyond to improve air quality conditions in Hong Kong.   
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B.4.3. General station vs. Roadside station 

As expected, contributions from vehicle exhaust are much greater at the roadside stations 

compared to the general stations with grand average (1998-2008) vehicle exhaust SCEs of 8.5 

μg/m
3
 for the general stations and 21.3 μg/m

3
 at the MK roadside station (Table B-4).  Figure B-

4 and Table B-4 demonstrate relatively similar SCEs between the general stations and the 

roadside station for all remaining emission source categories except fresh sea salt, secondary 

nitrate, and coal combustion / biomass burning.  Elevated SCEs for fresh seas salt at MK results 

from its geographical location in the center of Kowloon Peninsula; the station is relatively close 

to the sea compared with those stations in the New Territories.  Indeed, Figure B-3 shows that 

the fresh sea salt SCE at MK is quite similar to the SCEs at the nearby SSP and KT stations.  

Secondary nitrate is also elevated at the roadside station compared to the composited general 

stations, indicating that apart from non-local contribution, local contribution cannot be neglected 

at roadside.  The tall building and narrow roads in urban Hong Kong prevent the vehicle-emitting 

pollutants from dispersing, leading to a “street canyon effect” that makes nitrogen oxides have 

sufficient time to accumulate and oxidize to form secondary nitrate (Yim et al., 2009).  The coal 

combustion / biomass burning SCE is lower at the roadside station compared to the general 

stations.  In this case, there are significant SCE gradients across the network with higher SCEs to 

the north and lower SCEs to the south; the roadside station SCE is comparable to SCEs for the 

nearby SSP and KT stations.  Thus, with the exception of vehicle exhaust and secondary nitrate, 

both local and non-local sources impact the general stations and roadside stations in similar ways 

despite differences in the sampling environment including the sampling height.   

 



174 

 

B.4.4. Source characteristics during high PM days 

Synoptic weather conditions are an important driver in the occurrence of pollution episodes.  

They either stabilize the boundary layer that degrade air ventilation, or favor pollutant transport 

from high emission areas.  Adverse health effects can arise from both chronic and acute 

exposures to PM (Wang et al., 2002).  Thus, there is motivation to not only reduce average PM 

levels but also to “shave the peaks” off the highest PM concentration days.  For example, in the 

United States these objectives are operationalized through having both annual and 24-hour 

standards for PM2.5.  This issue motivates the evaluation of whether certain emission source 

categories have disproportionately high contributions on high PM days compared to average 

behavior.   

In this study, we set the threshold value for high PM to be 100 μg/m
3
, the value of World Health 

Organization (WHO)’s interim target-2 and the proposed air quality objective / index for 24-hour 

PM10 in Hong Kong.  The threshold criterion of 100 μg/m
3
 yields a total of 408 high PM sample-

days at the seven sites from 1998 to 2008.  The number of days each year exceeding the PM10 

mass measured at each station is listed in Table B-5.  For reference, a 1-in-6 day sampling 

schedule would have 61 sampling days per year for 100% data completeness.  While the annual 

average PM10 mass has remained relatively constant over the eleven year study period (Figure B-

1), the frequency of high PM days at the general stations nearly doubled for the five year period 

starting 2004 compared to the five year period starting 1998.   

Figure B-7 shows the frequencies of high PM days (numerical values provided at the bottom of 

Table B-5) and the average source contributions by the nine identified sources at individual 

stations on high PM days during 1998-2008.  Apart from the roadside station, the northern most  
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Table B-5. Year-specific number of high PM days (nominally 61 sample days per year). 

Asterisks denote years with significant data completeness gaps (Table B-1). 

No. high PM days YL TC TW SSP CW KT MK 

1998 11 
 

4 4 3 2* 
 

1999 5 0* 7 2 3 3 
 

2000 7 5 3 5 2 1 
 

2001 8 3 2 1 3* 2* 10 

2002 4 2 2 2 0* 4* 5 

2003 8 8 4 3* 4 2 8 

2004 15 5 8 1* 2 3 15 

2005 15 3 7 7 9 6 11 

2006 11 4 7 7 6 5 9 

2007 10 10 7 3 6 8 17 

2008 10 7 7 1 4 2 8 

High PM Days 104 47 58 36 42 38 83 

Total Days 654 575 631 586 641 598 482 

% High PM Days 15.9% 8.2% 9.2% 6.1% 6.6% 6.4% 17.2% 

 

 

Figure B-7. Frequencies of the high PM days by site (i.e., the number high PM samples divided 

by the total number of collected samples at each station) and the PMF-resolved source 

contribution estimates averaged over the high PM days. 
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general station in the network, YL had the highest frequency of high PM days (16%).  SSP, KT 

and CW, located in the southern portion of the HKSAR, had the lowest frequency of high PM 

days (6-7%).  Overall, the frequency of high PM days in Hong Kong was 10% during 1998-

2008.   

The average mass concentrations on high PM days were similar among all stations (Figure B-7), 

with a variation of only 2%, despite the stations being distinct in their local environments (i.e., 

residential, commercial, industrial, roadside, or near container terminal).  The highest average 

mass concentration (125 μg/m
3
) occurred at YL and the lowest average mass concentration (118 

μg/m
3
) occurred at KT.  Both the highest frequency and the highest mass concentration occurred 

at YL in the northwest, while both the lowest frequencies and lowest mass concentrations 

occurred at CW, TC and KT in the southeast.  The narrow range of average concentrations on 

high PM days and the concentration gradient from northwest to southeast suggests that the non-

local PM sources, especially in areas to the north of Hong Kong including the PRD, are 

significant contributors on high PM days.   

The source contributions on high PM days were compared with the average values over the 

1998-2008 study period to identify the sources that had elevated contributions on the high PM 

days.  Figure B-8 plots the ratios of average source contributions on high PM days to that for the 

entire study period at individual stations.  Mass contributions from the three local emissions 

source categories - vehicle exhaust, fresh and aged sea salt - did not increase significantly on 

high PM days.  While the residual oil combustion (the remaining local source) contribution on 

high PM days was at most twice the study average, the absolute value itself is less than 1 μg/m
3
 

and thus is not a major contributor to the total mass on high PM days.  In contrast, contributions 

from crustal soil, secondary sulfate, secondary nitrate, trace metals and coal combustion /  
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Figure B-8. Ratios of average source contribution estimates on high PM days to the source 

contribution estimates averaged over all samples. 

biomass burning were on average two to three times higher on high PM days.  These 

observations indicate that pollutant transport from outside Hong Kong is disproportionately 

responsible for high PM days rather than accumulation of local pollutants due to unfavorable 

atmospheric dispersion over the region.   

B.5. Conclusions and policy implications 

PM10 chemical speciation network data for Hong Kong collected from 1998 to 2008 was used to 

apportion PM10 mass to emission source categories.  Spatial and seasonal patterns in the PMF-

resolved source contribution estimates were used to classify sources as local (emissions largely 

from within the HKSAR) or non-local (emissions largely from the PRD region and more distant 

sources).  The time series of annual-average SCEs were examined for each factor.  There is 

strong evidence for the effectiveness of local control measures on vehicle exhaust with 
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contributions at the general stations decreasing more than 50% between 1998 and 2008.  Most of 

this decrease occurred prior to 2004 which is consistent with the timeline for implementation of 

measures to reduce vehicle emissions (HKEPD, 2011).  During this period, the PMF-modeled 

annual average source contribution estimates for vehicle exhaust decreased linearly with the 

HKEPD road transport PM emission inventory.  Vehicle-related emission control strategies 

implemented over the previous fifteen years has resulted in a substantial positive impact by 

decreasing ambient burdens of – and thus exposures to – vehicle exhaust.  In contrast to the late 

1990s, vehicle exhaust is no longer the dominant emission source category contributing to PM10 

burdens at the general stations, with its contribution decreased from 22% in 1998 to 10% in 

2008.   

The PM10 air quality improvements from vehicle emissions controls have been offset by 

increased contributions from non-local sources which increased from being 58% of the PM10 

burden in 1998 to 70% in 2008.  In wintertime, the season with persistently high levels of PM air 

pollution, the relative contribution from non-local sources is even higher, increasing from 72% in 

the winter of 1998-1999 to 86% in the winter of 2007-2008.  If current air quality conditions are 

maintained then on average the existing monitoring stations in Hong Kong will violate the 

proposed 24-hour PM10 AQO of 100 g/m
3
 on about 10% of days.  Future air quality conditions 

in Hong Kong will depend upon cooperation from provinces in mainland China.  Such 

cooperation is already underway with Guangdong Province and perhaps a coordinated, regional-

scale air quality management plan will best serve both the Hong Kong and neighboring 

provinces.   

Source apportionment modeling suggests that PM from residual oil combustion has increased 

over the study period.  These emissions are attributed to marine vessels and this increase is 
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generally consistent with increased marine activity in the greater PRD region over the past 

decade.  While the absolute PM mass impacts from this source category appear to be relatively 

small, residual oil combustion emissions do warrant further attention because these emissions 

tend to be rich in air toxics metals such as nickel (Lau et al., 2003).  From a public health 

standpoint there is substantial motivation to better characterize marine-related 

activities/emissions and consider the implementation of air quality management plans targeting 

this sector such as near-shore fuel switching or more stringent fuel quality specifications.  Such 

programs will require cooperation with Guangdong to be most effective.   

Residual oil combustion is not the only source of air toxics metals in Hong Kong.  For example, 

As, Cd, and Pb loaded onto the coal combustion / biomass burning factor and these same 

elements plus Mn loaded onto the trace metals factor.  These metals can have several adverse 

effects such as acting as biochemical catalysts to cause severe molecular damage and induction 

of biochemical synthesis pathways (Halliwell and Gutteridge 1999).  Ambient levels of air toxics 

metals should be evaluated from a risk perspective to assess whether targeted controls are 

warranted.   

The prominent role that emissions from sources outside the HKSAR exert on Hong Kong PM air 

quality highlights the need for regional air quality planning and management.  Hong Kong and 

Guangdong have already taken a pioneering role in establishing China’s first Regional Air 

Quality Monitoring Network.  The monitoring results are released on the web as a Regional Air 

Quality Index (GDEPB, 2012).  Since March 2012, Hong Kong and Guangdong has started 

releasing the hourly pollutant concentration data, including PM2.5, to the public.  This is the first 

city cluster in China to regularly release hourly pollutant concentration data.  In recent years, a 

series of control measures were adopted in Guangdong to reduce pollutant emissions.  Measures 
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included requiring all large-scale thermal power plants to install and operate flue gas 

desulphurization units and to install continuous emissions monitoring systems with real-time on-

line access by local authorities, closing down small power plants and other major polluting 

industries (e.g., cement plants and iron and steel plants with low production capacity), restricting 

the growth of the motorcycle populations in key cities, requiring newly registered motor vehicles 

in the PRD to comply with the National III standards (on a par with the Euro III standards), 

supplying the National III standard motor fuels, increasing use of nuclear power and natural gas, 

etc.  These actions are laudable, yet additional measures will be needed to reverse the trend of 

deteriorating air quality in Hong Kong and the greater PRD region.   

Although emissions from non-local sources have increased in relative importance, vehicle 

emissions remain among the most dominant source categories at the roadside station and further 

vehicle emission reductions within Hong Kong would be beneficial.  For example, Lau et al. 

(2007) used SO2 as a surrogate to classify daily air pollution burdens in 2006 as being dominated 

by local or regional sources.  They estimated that Hong Kong was predominantly affected 

mainly by regional sources on 132 days (or 36% of the time) and by local sources on 192 days 

(53% of the time).  The findings were significant, as it showed that people in Hong Kong were 

exposed to local pollution for longer periods of time over a year, hence measures that target local 

emissions would also greatly reduce public’s exposure to air pollutants and the health risks 

associated with them.  In addition, advances in the performance of internal combustion engines 

often results in more ultrafine particles which may have significant health impacts (Delfino et al., 

2005).  The European Union is now looking into the prospect of regulating ultrafine particles 

starting in 2013 (ECFA, 2011).  These issues should be considered when planning the next round 
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of vehicle emissions control and may motivate interest to convert the existing vehicle fleet to 

low- or no-emission models to comprehensively address the vehicle emissions problem.   
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B.S. Supplemental Information for Appendix B:” Long-term trends of 

ambient particulate matter emission source contributions and the 

accountability of control strategies – A case study in Hong Kong over a decade 

(1998-2008)”. 

B.S.1. PM10 monitoring and chemical speciation in Hong Kong 

In this study, PM10 samples were collected for 24 hours onto 8×10 in
2
 quartz fiber filters 

(without any pre-treatment) using High Volume PM10 samplers operating at the flow rate of 1.13 

m
3
/min. Chemical analyses were performed on sections taken from the quartz fiber filter.  PM 

carbon was measured using thermal / optical transmittance to obtain organic carbon (OC) and 

elemental carbon (EC) mass loadings. The analysis protocol conformed to NIOSH Method 5040 

(Birch et al., 1996) and the detailed analytical procedure was described in Sin et al. (2002). The 

OC sampling artifact issue was discussed in Yu et al. (2004). PM elements were quantified using 

USEPA Method IO-3 in conjunction with two analytical methods (USEPA, 1999). Inductively 

coupled plasma atomic emission spectroscopy (ICP-AES) was used for Al, Ba, Be, Ca, Cd, Cr, 

Cu, Fe, Mg, Mn, Ni, Pb, V and Zn, while Flow Injection Analysis – Atomic Absorption (FIA-

AA) was used for As, Hg and Se. PM ions including SO4
2-

, NO3
-
, Cl

-
, Br

-
, NH4

+
, Na

+
 and K

+
, 

were analyzed by extracting portions of the filters with waterand analyzing the extracts by ion 

chromatography (IC). It is noted that the nitrate data might have large measurement uncertainties 

because the sampling technique  - only a quartz filter and with no denuder - could lead to 

negative sampling artifacts from evaporative loss of aerosol nitrate or positive artifacts from 

gaseous nitric acid retained on the filter through adsorption or reaction with alkaline aerosol 

constituents. The PM10 analyses were subjected to the strict in-house QA/QC procedures of the 
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Hong Kong Environmental Protection Department (HKEPD, 2003). Typically, the control limits 

for the PM10 measurements are ±10% for both accuracy and precision. 

27 chemical components, including As, Be, Cd, Ni, Pb, Cr, Al, Mn, Fe, Ca, Mg, V, Zn, Ba, Cu, 

Hg, Se, Na
+
, K

+
, Cl

-
, Br

-
, SO4

2-
, BAP, NH4

+
, NO3

-
, OC, and EC, together with sample mass, were 

quantified by the aforementioned analytical methods. Following the methodology of Huang et al. 

(1999), species with more than 50% of samples below detection limit were excluded from the 

data analyses. Otherwise, values below detection limit were replaced by half of the detection 

limit. Cu was also excluded because of apparent contamination of a number of samples. All the 

species were reported in μg/m
3
, except for OC and EC, which were reported in μgC/m

3
. After 

data filtering, 19 species, including As, Cd, Ni, Pb, Al, Mn, Fe, Ca, Mg, V, Zn, Na
+
, K

+
, Cl

-
, 

SO4
2-

, NH4
+
, NO3

-
, OC, and EC, were retained for the source apportionment analysis. 

In order to provide consistent source profiles for the data collected at different stations in the 

chemical speciation network, the data from all stations were combined to construct a single 

dataset with 4167 with samples. This approach is reasonable because Hong Kong is a small 

territory with linear dimension only about 40km by 30km; within the 24-h sampling period, 

pollutants from any local or remote sources have a fair chance to impact on receptors anywhere 

within the territory. Hence, measurements from all of the monitoring stations can be considered 

as independent samples for the same set of sources and be combined in our receptor modeling 

analyses. This is not the same as combing data sets across distinct airsheds (e.g. data from Hong 

Kong and Beijing), which should not be done in receptor model analyses. The relative strength 

of impact on an individual receptor depends on its proximity to the source, the profile for the 

same source at the different receptors should remain similar if the species are stable over the time 

scales representative of transport between the stations.  
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B.S.2. Assessment of measurement error for the PM10 speciation dataset 

Collocated PM10 sampling is routinely performed at two sites in the Hong Kong network – Sham 

Shui Po (SSP) and Tsuen Wan (TW).  Although analysis of the collocated data can capture 

many, but not all, sources of measurement error, the analysis does provide valuable insights into 

the data quality by quantifying the aggregate errors from field sampling operations and analytical 

sensitivity.  The analysis adopted the methodology of Hyslop and White (2008a, b) with some 

deviations to account for differences in the information available.  Hyslop and White used field 

blanks data to estimate “critical limits” for the concentration values and compared these 

estimates to the method detection limits (MDL) reported for the IMPROVE network.  

Subsequently, they examined the collocated precision as a function of concentration.  From these 

two analyses, key derived data quality metrics were the critical limits and the collocated 

precision for the subset of data with concentration values at least three times greater than the 

method detection limit.  In our work, field blanks data were not available.  Thus, the method 

detection limit values provided by HKEPD could not be independently examined.  Well-behaved 

trends between concentrations above MDL and the estimated precision were observed to break 

down for concentrations below the MDL, with generally poor and fluctuating precision for 

concentrations below MDL. Hence, sampling days with one or both concentrations below the 

MDL were excluded from the error structure estimation (additive and multiplicative error terms 

of uncertainty).  SSP collocated data for 1998 to 2008 was used to generate error structures 

which were then evaluated using the corresponding TW collocated dataset for 1999 to 2008. 

                    (BS-1) 

Following Polissar et al. (1998), the error structure was assumed to have the form shown in 

equation (BS-1), where Uij = uncertainty for species j in sample i; aj = additive (constant) error 
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term for species j; bj = multiplicative error term for species j; and Cij = concentration value for 

species j in sample i.  The first error estimation strategy used the approach of Polissar et al. 

(1998) which sets the additive error term to MDL/3.  The multiplicative error term was first 

estimated by taking the mean of the binned relative collocated precision for the six bins with 

highest concentration values.  The additive and multiplicative errors for this approach are 

presented in the “Unweighted” columns of Table BS-1.  The regression fits using this approach 

were poor for most species and thus another approach was taken. 

Table BS-1. Additive and multiplicative error terms derived using the SSP collocated data set 

using three estimation approaches. Coefficient aj has units μg/m
3
. 

Species 
Unweighted Weighted 

Refined Weighted 

(Outliers Removed) 

aj bj aj bj aj bj 

Al 0.0063 0.095 0.0076 0.022 0.0046 0.071 

As 0.0003 0.074 0.0002 0.003 0.0001 0.050 

Ca 0.0150 0.092 0.0349 0.002 0.0217 0.043 

Cd 0.0001 0.066 0.0001 -0.006 0.00002 0.058 

Cl
-
 0.0092 0.101 0.0125 0.017 0.0141 0.047 

Fe 0.0075 0.054 0.0132 -0.003 0.0044 0.030 

K
+
 0.1048 0.084 0.0568 -0.037 0.0118 0.028 

Mg 0.0075 0.071 0.0076 0.001 0.0049 0.020 

Mn 0.0031 0.253 0.0013 -0.025 0.0002 0.029 

Na
+
 0.0997 0.144 0.0452 0.014 0.0264 0.018 

NH4
+
 0.0184 0.037 0.0219 0.014 0.0169 0.028 

Ni 0.0010 0.100 0.0007 -0.018 0.0003 0.050 

NO3
-
 0.0221 0.057 0.0242 0.034 0.0429 0.026 

Pb 0.0030 0.039 0.0020 0.005 0.0002 0.035 

SO4
2-

 0.0499 0.040 0.1261 0.009 0.0597 0.025 

V 0.0030 0.113 0.0012 -0.018 0.00001 0.047 

Zn 0.0075 0.072 0.0043 0.002 0.0016 0.032 

EC 0.0833 0.052 0.2087 -0.010 0.1148 0.023 

OC 0.0833 0.055 0.2634 -0.003 0.1117 0.032 
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The second approach used a weighted linear regression to estimate both the additive and 

multiplicative error terms using all fourteen bins.  The weight wkj for species j and bin k was 

taken as the inverse of square of the absolute collocated precision (k) for bin k (dropping the j 

subscripts on each parameter) as shown in equation (BS-2), with the coefficients for the error 

structure calculated using equations (BS-3) and (BS-4). 

       
           (BS-2) 

   
 ∑    

   ∑       ∑      ∑       

 ∑    ∑    
    ∑     

       (BS-3) 

   
 ∑    ∑         ∑      ∑     

 ∑    ∑    
    ∑     

        (BS-4) 

For most species the weighted error estimates, summarized in the “Weighted” columns of Table 

BS-1, provided better fit than the unweighted error estimates.  The weighted error estimates were 

further refined by a third approach which included removing individual sample pairs that were 

subjectively deemed outliers and significantly influenced the collocated precision for a given bin.  

These results are presented in the “Refined Weighted” columns of Table BS-1 and these values 

are recommended for the source apportionment modeling.   

Collocated data from the TW site were used as an independent check on the modeled error 

structures.  Figure BS-1 shows for several species the binned collocated precision for the TW 

data (open markers for raw data and shaded markers for data after removing outliers) and the 

error structures generated from the “Refined Weighted” regression coefficients for the SSP 

collocated data (dashed lines).  In general, the concentration-dependent collocated precision for 

the TW data is well captured by the SSP-generated error structures.  A few species had one or 

two concentration bins that were not explained by this error structure, for instance the highest  
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Figure BS-1. Six examples of the binned absolute collocated precision for the TW data set using 

raw data (open circles) and outliers removed (shaded circles); and the error structures estimated 

regressions of the SSP collocated data (dashed lines).  The dot-do-dash vertical lines are the 

MDL values. 

EC Ni 

NO
3

-
 Cl- 

Cd As 
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concentration bins for As (Figure BS-1) were not matched well by the error structure.  Overall, 

these favorable comparisons add confidence to using the “Refined Weighted” error structures of 

Table BS-1 for source apportionment modeling. 

B.S.3. Justification of using quartz filter gravimetric mass (QTM) as the sample total mass 

Traditionally, concerns have been raised about the quality of QTM data such as bias arising from 

the hygroscopic nature of quartz fiber and the possibility of losing fibers during filter handling 

between pre-weighing and after-weighing.  This measurement artifact could lead to the reported 

gravimetric mass being biased low.  However, for particle mass loadings representative of 

conditions in Hong Kong, this artifact might be relatively small.  Given that the sum-of-species 

approach on average accounts for only 62% of the QTM, a significant portion of the particulate 

matter mass is not being apportioned and this missing mass could bias the source contribution 

estimates. Therefore, we conducted an analysis to determine whether it would be more 

appropriate to apportion the sum-of-species mass or the QTM mass. 

In Hong Kong the particulate matter Air Quality Objectives (AQOs) are assessed using data from 

the network of PM10 TEOM monitors operated at 50C.  Thus, from an air quality planning and 

management perspective, the ideal case would be source apportionment of the aerosol mass as 

measured by the TEOM.  The remainder of this section focuses on comparisons of QTM mass to 

TEOM mass to evaluate the appropriateness of apportioning QTM as a proxy for the TEOM 

mass.   

For these comparisons the TEOM hourly PM10 mass data were conditioned by imputing 

concentration values for cases with missing data for only one or two consecutive hours.  These 

data gaps were filled by linear interpolation of the concentration values bounding the data gaps.  
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Subsequently, only those days with 24 hours of TEOM data (after imputing) were included for 

the comparison to the QTM data.   

For reasons noted below, data from the Yuen Long (YL) station were chosen for analysis.  

Figure BS-2a shows a scattergram of the daily-average TEOM PM10 mass versus the daily-

integrated QTM PM10 mass measured at YL.  Overall, the agreement is quite good and there is 

no clear evidence of systematic bias in the QTM mass from fibers flaking off the filter.  

Excluding the four highest data points which are truly extreme values, a reduced major axis 

regression of TEOM on QTM yields slope 0.906  0.015 (95% C.L.) and intercept 2.8  1.0 

μg/m
3
.  The grand mean TEOM and QTM concentrations were 59 and 62 μg/m

3
, respectively, 

resulting in a TEOM-to-QTM ratio of means of 0.95.  These trends suggest that, at least in an 

average sense, QTM mass is a very good proxy for TEOM mass.  Figure BS-2b shows the 

CUSUM time series for the PM10 mass difference (TEOM minus QTM) at YL.  The gross 

feature is a monotonic decay which means the QTM mass is greater than the TEOM mass, 

consistent with the above results.  CUSUM plots for most other stations exhibited notable slope 

changes along the time series which suggest changes in the QTM-TEOM mass relationship such 

as might arise from even small changes in TEOM performance. The stability of the QTM-TEOM 

mass relationship, as evidenced by the CUSUM plot, was the main criterion for choosing YL for 

this analysis.  The local maxima and minima along the CUSUM time series correspond to 

seasonal patterns in the TEOM-to-QTM relationship.  Figure BS-2c is a time series of the sample 

day specific difference (TEOM minus QTM).  In the summer the TEOM concentrations are 

modestly put persistently higher than the QTM concentrations.  In contrast, in the winter the 

QTM concentrations are often significantly higher than the TEOM concentrations. The net effect 

is a 3 μg/m
3
 difference between the two measurements but there are larger season-specific  
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(a)                                                   (b) 

  

              (c)                                                                         (d) 

Figure BS-2. Relationships between PM10 24-average TEOM mass and 24-hour integrated QTM 

mass at Yuen Long (YL): (a) scatter plot of TEOM on QTM; (b) cumulative summation 

(CUSUM) time series plot for TEOM minus QTM; (c) time series of TEOM minus QTM 

(markers) including a centered 11-sample arithmetic mean smoother (line); and (d) cumulative 

distribution of the TEOM/QTM mass ratio. 

differences that cancel to some extent when calculating the grand averages.  The reason for the 

summertime pattern is unknown.  The wintertime patterns likely arises from semivolatile 

compounds (ammonium nitrate and OC) being retained by the quartz filter to varying degrees 

depending on environmental conditions whereas the TEOM when operated at 50C is measuring 

nonvolatile mass.   
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Overall, the average difference between the daily TEOM-to-QTM mass is only 3%.  Figure S2d 

shows the cumulative distribution of the TEOM/QTM ratio.  The cumulative distribution is a 

straight line on a probability plot and thus is well represented by a normal distribution.  The 

wintertime pattern of TEOM mass being modestly higher than QTM mass coincides with 

relatively low PM10 mass concentrations, whereas the summertime pattern of QTM mass 

significantly greater than TEOM mass coincides with relatively high PM10 mass concentrations.  

Thus, the absolute value of the relative difference is nearly the same for both seasons.  While 

there is clearly some seasonal dependence in the relationships between TEOM mass and QTM 

mass, the QTM data are a reasonably good proxy for the TEOM mass which supports its use in 

the source apportionment modeling.  Furthermore, the QTM mass represents the mass on the 

filter used for the speciation analysis and therefore is internally consistent as a total variable. 

The advantages of apportioning QTM include: (i) both the gravimetric mass and all of the 

species (elements, ions, and carbon) are measured from the same filter so there is consistency 

between the gravimetric mass measurement artifacts and the species-specific artifacts; and (ii) all 

mass is being apportioned, not just the species that were measured.  Furthermore, mass closure 

for the factor loadings can be used as a quality check on the representativeness of the 

unidentified (unmeasured) mass that is assigned to each factor. 

B.S.4. PMF source identification 

PMF derived source profiles and their uncertainties are tabulated in Table BS-2, and the 

percentage explained variations (EV) are plotted in Figure BS-3. In the PMF analysis, the 

number of factors was set as 4 and increase 1 at a time until the resolved source profiles are not 

fully explainable. When the number of factor was set to 8, factors of trace metals and coal  
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Table BS-2. Source profiles and uncertainties derived by PMF. Source profiles are expressed in mass percentages.  

 
Veh. Exh. Residual Oil Fresh S.S. Aged S.S. Crustal Soil Sec. Sulfate Sec. Nitrate Trace Metal Coal Comb. 

Al 0% 2±1% 0% 0% 2% 0% 0% 1% 0% 

As 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Ca 1% 7±4% 1% 1% 6% 0% 0% 4±1% 1% 

Cd 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Cl
-
 0% 0% 44±3% 0% 0% 0% 1% 0% 0% 

Fe 1% 2±1% 0% 0% 3% 0% 0% 4±1% 0% 

K
+
 0% 3±2% 0% 1% 0% 0% 0% 0% 6% 

Mg 0% 0% 2% 2% 1% 0% 0% 0% 0% 

Mn 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Na
+
 0% 0% 19±1% 16% 0% 0% 0% 0% 0% 

NH4
+ 

0% 0±3% 2% 0% 0% 18±1% 9% 0±1% 0±1% 

Ni 0% 1±1% 0% 0% 0% 0% 0% 0% 0% 

NO3
- 

0% 0±2% 0±2% 6±1% 4±1% 0% 34±1% 0±1% 0±1% 

Pb 0% 0% 0% 0% 0% 0% 0% 1% 0% 

SO4
2- 

4% 11±11% 0% 39±1% 5±1% 51±2% 0% 11±4% 10±2% 

V 0% 4±3% 0% 0% 0% 0% 0% 0% 0% 

Zn 0% 1±1% 0% 0% 0% 0% 0% 5±1% 0% 

EC 34±1% 0±9% 7±1% 4±1% 0±1% 0±1% 0±1% 0±1% 6±2% 

OC 32±1% 31±17% 4±2% 0% 0±1% 5±1% 23±1% 5±5% 34±2% 

Unidentified 28% 38% 20% 30% 78% 25% 32% 68% 42% 
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Figure BS-3. Percentage Explained Variation (EV) for the source profiles derived by 

PMF.
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combustion / biomass burning merged together. When the number of factor was set to 10, the 

coal combustion / biomass burning factor was dissolved into two, as shown in Table BS-3 of the 

Supplemental Information. Some key species of this factor, e.g. Ca, K
+
 and SO4

2-
, were smeared 

over the two factors. OC was entirely apportioned into ‘Unresolved Factor 1’ while EC was 

entirely apportioned into ‘Unresolved Factor 2’. Both factors were not representative of emission 

profiles from any known sources. Therefore, we believe the 9-factor model generated the most 

reasonable results.  

The first source in Figure BS-3 was identified as vehicle exhaust based upon the abundances of 

EC, OC and certain amount of Fe. Both diesel- and gasoline-powered vehicles generate large 

amount of carbonaceous compounds but the ratios of OC to EC in the emission profile can be 

quite different. Therefore the EC/OC ratio in this derived source profile represents the weighted 

average of emissions from all vehicles running in Hong Kong. As discussed in the main body of 

the manuscript, there might be other carbonaceous aerosol sources admixed into this factor but 

there is strong evidence that its temporal trend is governed by motor vehicle exhaust.  The 

second source identified was distinguished by large EV values for Ni and V, which are good 

indicators for residual oil combustion (Chow and Watson, 2002). Although the relative 

contribution to the total PM10 mass is small, this factor is exceptionally stable. The third source 

was characterized by large loadings of Cl
-
, Na

+
 and Mg which collectively are a signature for 

fresh sea salt. The three species accounted for 44%, 19% and 2% of the total mass of this aerosol 

source, respectively, which is in close agreement with their corresponding percentage 

composition in seawater of 55%, 30% and 4% (Goldberg, 1963). The presence of small amount 

of OC (4%) and EC (7%) may be related to marine emissions in or around Hong Kong waters. 

Na
+
 and Mg were also found in the fourth factor, along with significant loadings of nitrate and  



197 

 

Table BS-3. Profiles of relevant factors when the number of factors was set as 8, 9 and 10 in the PMF analysis. Source profiles are 

expressed in mass percentages. 

Number of sources set in the PMF analysis 8 9 10 

Source Trace Metals + 

Coal Comb. / 

Bio. Burning 

Trace Metals Coal Comb. / 

Bio. Burning 

Trace Metals Unresolved 

Factor 1 

Unresolved 

Factor 2 

Al 1% 1% 0% 1% 0% 0% 

As 0% 0% 0% 0% 0% 0% 

Ca 2% 4% 1% 3% 1% 2% 

Cd 0% 0% 0% 0% 0% 0% 

Cl
-
 0% 0% 0% 1% 0% 0% 

Fe 1% 4% 0% 3% 0% 0% 

K
+
 5% 0% 6% 0% 6% 6% 

Mg 0% 0% 0% 0% 0% 0% 

Mn 0% 0% 0% 0% 0% 0% 

Na
+
 0% 0% 0% 0% 0% 0% 

NH4
+ 

0% 0% 0% 0% 0% 0% 

Ni 0% 0% 0% 0% 0% 0% 

NO3
- 

0% 0% 0% 0% 0% 0% 

Pb 1% 1% 0% 0% 0% 2% 

SO4
2- 

11% 11% 10% 7% 7% 23% 

V 0% 0% 0% 0% 0% 0% 

Zn 2% 5% 0% 5% 0% 1% 

EC 0% 0% 6% 0% 0% 15% 

OC 25% 5% 34% 17% 42% 0% 

Unidentified 53% 68% 42% 62% 44% 50% 
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sulfate. We assigned this factor to aged sea-salt because a lack of chloride and abundance of 

nitrate and sulfate suggests this is sea salt from which the chloride has been displaced by nitrate 

and sulfate. The fifth source has large contributions from Al, Ca, Fe and Mg, suggesting crustal 

or dust aerosols. This is mostly likely related to exposed soil, unpaved roads and construction 

activities the greater PRD region, nonmetallic mineral industries, and as well as other crustal 

materials in the background continental airmass. The sixth and seventh sources were associated 

with significant amount of ammonium and sulfate, and ammonium and nitrate, respectively, 

indicating they are secondary sulfate and nitrate aerosols. The eighth source was distinguished 

with large presence of Zn, suggesting it was mostly from trace metals processing. The ninth 

source was associated with large EV for As, Cd, Fe, K
+
, Pb, and OC, probably a mixture of 

biomass burning and coal combustion from power plants and industrial combustion sources in 

the PRD. 

B.S.5. Source apportionment by APCA and Unmix 

The results presented in this study were derived from the PMF modeling and the PMF-resolved 

source profiles are presented in Table BS-2. Source apportionment was also conducted using 

APCA and Unmix. Table BS-4 shows the source contribution estimates for 4-to-9 factor 

solutions from APCA, mapped onto the PMF-resolved source categories where appropriate.  

Results are presented for both constrained (Table BS-4a) and unconstrained (Table BS-4b) 

regressions to reconstruct source contribution estimates from the principle components analysis.  

For the unconstrained regression, the constant term should tend to zero for a good APCA 

solution.  Table BS-4b shows that a large constant was obtained for the four-factor solution and 

thus it is rejected; this is consistent with the scree plot demonstrating that at least five factors 

should be retained.  For the 5-to-9 factor solutions the constant was smallest for six and nine  
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Table BS-4. APCA-modeled source contribution estimates for 4-to-9 factor solutions, mapped onto the PMF-resolved source 

categories.  All concentration values in g/m
3
. 

(a) Constrained multivariable regression (constant term not included) 

No. of 

Factors Coal Comb. Sea Salt Residual oil Crustal Soil Veh. Exh. Sec. Sulfate Sec. Nitrate 

OC 

Factor 

Chloride 

 Factor 

 9 7.84 4.15 3.24 5.07 8.45 8.30 -0.49 4.83 -0.36 

 8 8.22 3.83 3.07 5.26 10.64 9.20 1.59 -1.03 

  7 8.99 3.78 3.10 5.14 10.26 8.41 1.16 

   6 7.08 4.01 2.91 5.27 10.43 11.26 

    5 17.09 6.53 4.63 4.18 8.23 

     4 14.62 6.50 10.45 8.25           

 
 

(b) Unconstrained multivariable regression (constant term included) 

 

No. of 

Factors Coal Comb. Sea Salt Residual oil Crustal Soil Veh. Exh. Sec. Sulfate Sec. Nitrate 

OC 

Factor 

Chloride 

 Factor Const. 

9 7.81 4.01 3.21 5.04 8.30 8.26 -0.49 4.80 -0.38 0.52 

8 8.08 3.27 2.94 5.11 9.78 8.96 1.57 -1.09 

 

2.45 

7 8.88 3.36 3.00 5.00 9.60 8.17 1.16 

  

1.92 

6 7.05 3.84 2.86 5.19 10.17 11.14 

   

0.82 

5 16.70 5.75 4.36 3.99 7.53 

    

2.75 

4 13.76 4.52 8.51 7.08           7.21 
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factors.  Unlike PMF it is possible to obtain large negative values for the factor loadings (source 

profiles) and factor scores (source contribution estimates).  The presence of negative values is 

mathematically possible but not physically realistic, and this becomes an important criterion for 

accepting or rejecting certain solutions.  The eight- and nine-factor solutions exhibit 

unacceptably large negative source contribution estimates for one or more factors and thus they 

are rejected.  The seven factor solution includes Residual Oil, Crustal/Soil, Vehicular Exhaust, 

Secondary Nitrate and Secondary Sulfate distinct factors; Coal Combustion and Biomass 

Burning source categories lumped into a single factor; and Aged Sea Salt and Fresh Sea Salt also 

lumped into a single factor.  Within the Secondary Sulfate factor, sulfate ion accounts for 37% of 

the mass assigned to that factor and chloride ion has a negative loading corresponding to 40% of 

the total observed chloride.  The Secondary Nitrate factor contains 38% nitrate ion by mass along 

with other trace metals including Fe, K, Pb, Cl, etc.  With six factors, nitrate ion is smeared over 

the resolved six factors.  The Secondary Sulfate factor still has negative chloride loading 

corresponding to 30% of the observed chloride, but now contains ~45% sulfate.  With five factor 

solution, most of the sulfate is apportioned to the Coal Combustion and Biomass Burning factor.  

Further, the Crustal/Soil factor is smeared with Biomass Burning.  Note that even with higher 

number of factors (7-9), the Coal Combustion and Biomass Burning source categories could not 

be separately resolved.  Similarly, the Aged Sea Salt and Fresh Sea Salt factors could not be 

separately resolved without allowing high negative mass for chloride in the Aged Sea Salt factor.  

The six- and seven-factor solutions seem most plausible and ultimately the six factor solution 

was selected for additional analysis. 

Six factors were also deemed as the most reasonable solution for Unmix analysis. Tables BS-5 -  

BS-6 present the source profiles derived by APCA and Unmix, respectively, expressed as mass  
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Table BS-5. Source profiles derived from APCA analysis for a six factor solution. The values are 

expressed as mass percentages. 

Species Sec.Sulfate Veh.Exh. Coal Comb. Crustal Soil Sea Salt Residual Oil 

Al 0.21 -0.09 0.64 3.26 0.32 0.25 

As 0.01 0.00 0.03 0.02 -0.01 0.02 

Ca 0.14 0.94 1.85 7.99 1.51 0.75 

Cd 0.00 0.00 0.01 0.01 0.00 0.00 

Cl
-
 -1.97 0.56 0.30 -0.50 29.69 -1.48 

Fe 0.58 1.18 1.26 4.71 0.11 0.73 

K
+
 1.03 0.64 3.49 2.56 0.26 -0.05 

Mg 0.25 -0.03 -0.06 1.87 3.46 -0.04 

Mn 0.03 0.01 0.07 0.16 -0.01 0.02 

Na
+
 2.22 0.18 -1.45 1.96 28.65 0.83 

NH4
+
 16.22 -0.20 10.59 3.63 -2.24 13.02 

Ni 0.01 0.01 0.01 0.01 0.00 0.11 

NO3
-
 10.14 3.04 8.32 8.63 24.09 7.62 

Pb 0.11 0.04 0.41 0.28 -0.10 0.10 

SO4
2-

 46.89 1.54 26.73 26.66 12.74 34.65 

V 0.01 0.02 0.01 0.00 -0.01 0.26 

EC 0.50 34.66 0.90 4.68 3.55 10.08 

OM* 23.61 57.51 46.88 34.08 -2.01 33.12 

(*) OM = organic matter, assumed to be 1.6 OC. 

percentages.  The explained mass profiles are quite similar to the PMF-derived profiles presented 

in Figure BS-3.  The key differences are: (1) nitrate ion is loaded primarily onto the Secondary 

Sulfate factor and the Sea Salt factor in APCA and Unmix whereas it was resolved as a separate 

factor using PMF. This issue might arise from the artifacts inherent to nitrate measurement using 

High Volume samplers and quartz fiber filters. Assuming significant nitrate ion is present as 

ammonium nitrate, its volatility and the artifact behavior could affect its covariance with other 

species and lead to the observed smearing across factors. However, this artifact is influenced by 

gaseous nitric acid and ammonia mixing ratios, temperature and humidity and is likely 

reproducible on a day-specific basis leading to high collocated precision as reflected in the small  
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Table BS-6. Source profiles derived from Unmix analysis for a six factor solution. The values 

are expressed as mass percentages. 

Species Sec.Sulfate Veh.Exh. Coal Comb. Crustal Soil Sea Salt Residual Oil 

Al 0.19 -0.09 0.42 4.75 0.24 0.50 

As 0.00 -0.01 0.05 0.00 0.00 0.01 

Ca 0.17 1.08 1.39 11.24 2.39 1.38 

Cd 0.00 0.00 0.01 0.00 0.00 0.00 

Cl
-
 -0.77 0.22 0.11 -0.55 53.17 -0.51 

Fe 0.62 1.16 0.99 6.57 -0.12 1.14 

K
+
 0.39 0.81 4.40 1.03 0.96 -1.38 

Mg 0.51 0.17 -0.43 3.16 4.50 0.37 

Mn 0.02 0.01 0.08 0.19 -0.01 0.01 

Na
+
 4.00 1.81 -3.24 5.67 38.07 2.87 

NH4
+
 13.97 -0.80 11.85 -1.71 -11.88 10.08 

Ni 0.01 0.01 0.00 0.01 0.00 0.12 

NO3
-
 14.34 1.08 5.22 12.89 23.01 5.98 

Pb 0.01 0.05 0.54 0.05 -0.01 -0.05 

SO4
2-

 39.57 6.50 28.74 21.80 -15.75 31.30 

V 0.01 0.01 -0.01 0.01 0.00 0.31 

EC 3.40 33.23 -0.19 9.11 9.59 18.37 

OM 23.58 54.78 50.08 25.77 -4.16 29.48 

(*) OM = organic matter, assumed to be 1.6 OC.  

multiplicative term (0.026) in the nitrate error structure (Table B-2).  PMF picks up on the 

combination of high measurement precision and a lack of covariance with other species to assign 

nitrate as a distinct factor; (2) Sea Salt was resolved as a single factor in APCA and Unmix but 

as two factors – Fresh Sea Salt and Aged Sea Salt – using PMF; and (3) a significant negative 

mass concentration of chloride ion (relative to the study-average observed chloride average 

concentration) was apportioned to the Secondary Sulfate and Residual Oil factor in both APCA 

and Unmix.  The anomalous behavior for modeled chloride ion is not surprising since it is a 

reactive species and can be displaced from sea salt by forming hydrochloric acid.  The ion 

displacement likely has high day-to-day variability which would add significant noise to the 

source profile representing true fresh sea salt emissions. 



203 

 

Qualitatively, the source profiles of Tables BS-5 (APCA) and BS-6 (Unmix) are similar tothe 

profiles presented in Table BS-2 after taking into consideration the lumping of factors in APCA 

and Unmix that were separately resolved using PMF.   
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Appendix C: Supplementary Information for Chapter 4. 

C.1. Particulate matter datasets 

Table 4-1 (in Section 4.3 of the Chapter 4) summarizes the environmental characteristics of 

various monitoring sites and the valid sampling periods for ambient particulate matter datasets 

used in this study.  ‘General station’ refers to monitoring sites located in urban areas 

(commercial/residential), usually on top of public buildings (20-80 m off the ground) to gauge 

neighborhood-level exposure.  ‘Roadside’ monitoring stations are usually located few meters 

above ground at busy intersections to gauge vehicular traffic exposure; while ‘Remote’ station 

are located in regions isolated from urban development to measure regional background 

conditions.   

PM10 speciation data was collected from 1998 to 2008 at 1-in-6 day frequency on quartz filters 

and analyzed for gravimetric mass, elements by Inductively Coupled Plasma Atomic Emission 

Spectroscopy (ICP-AMS), ions by Ion Chromatography (IC) and organic carbon (OC) and 

elemental carbon (EC) by a thermal/optical transmittance method following the NIOSH 5040 

protocol (Chow et al., 2001).  PM10 speciation sampling at various sites was conducted on 

different day of the week such that on any particular day, at most three to four different sites had 

sampling conducted on the same day.   

Three one-year 24-hour integrated PM2.5 speciation datasets were collected during 2000/01, 

2004/05 and 2008/09 at 1-in-6 day frequency.  Sampling in 2000-01 was conducted at three sites; 

Mong Kok (MK), Tsuen Wan (TW), and Hok Tsui (HT) which represent roadside, 

urban/general, and remote conditions, respectively.  During the latter two study periods, PM2.5 
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sampling was also conducted at a second urban site; Yuen Long (YL).  Unlike PM10 sampling, 

PM2.5 samples were collected on the same day across the network using Rupprecht & Patashnick 

(now Thermo) Partisol samplers on Teflon filters for gravimetric analysis and elemental analysis 

by X-Ray Fluorescence (XRF).  Samples were also collected on quartz filters for gravimetric 

analysis and anion analysis by Ion Chromatography (IC), ammonium ion by Automated 

Colorimetry, sodium and potassium ions by Atomic Absorption Spectrometry (AAS), carbon 

analysis by the IMPROVE Thermo-Optical Reflectance (TOR) method.   

While there were differences in the field sampling hardware and analytical methods for PM2.5 

and PM10 speciation datasets, comparisons between corresponding species concentrations 

provided insights into potential data quality issues and, on which species dominated the fine 

(PM2.5) or coarse fraction (PM10-2.5).  Figure C-1 shows the Reduced Major Axis (RMA) 

regression slope as proxy for PM2.5/PM10 ratio for total PM mass and measured species  

 

Figure C-1. Reduced major axis (RMA) regression slope as proxy for PM2.5 to PM10 ratio for 

total mass and species concentrations.  The marked (x) species have regression constant distinct 

from zero over its 95% confidence interval. 
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concentration utilized in this study.  Other species reported were rejected from the remainder of 

the analysis due to lack of sufficient data above the detection limit and/or due to concerns over 

the species data quality.  In general, PM2.5 mass accounted for 59% of the PM10 mass in Hong 

Kong, indicating significant fraction of particles to be in fine fraction.  Good agreement between 

PM2.5 and PM10 total carbon (TC) measurements demonstrates predominance of carbonaceous 

matter in fine fraction.  Some deviations, including PM2.5 TC greater than PM10 TC, could arise 

from measurement artifacts due to different flow rates of the samplers and/or differences in 

analytical measurement methods for carbon fractions.  PM2.5 OC values were less than or equal 

to the PM10 values while considerable PM2.5 EC values were greater than or equal to the PM10 

values.  The EC trend is not realistic for a consistent measurement methodology but in this case 

both the OC and EC trends could arise from differences in the thermo-optical analysis protocols 

– NIOSH thermo-optical transmittance (TOT) for the PM10 samples and IMPROVE TOR for the 

PM2.5 samples.  High PM2.5/PM10 ratio for SO4
2-

 and NH4
+
 indicates these species to be present 

in the fine size range with excellent agreement between the PM2.5 and PM10 data.  In contrast, 

PM10 NO3
-
 concentrations were often much higher than PM2.5 NO3

-
.  The NO3

-
 measurements 

may suffer from differential measurement artifacts; such as uncertainty in measurement due to 

volatility of NO3
-
 (Chow et al., 2002).  Al, Ca, Fe and Mn all showed significant coarse particle 

loadings.  Ca and Fe concentrations in the PM2.5 and PM10 samples were very highly correlated 

which suggests the same sources contribute to both fine and coarse size modes.  Cl
-
 was also 

overwhelmingly in the coarse fraction.  Mn, Ni, Pb and V were predominantly in the fine 

fraction; with some Mn and Pb in the coarse fraction.  V was substantially higher in PM2.5 

samples than PM10 samples, suggesting measurement artifacts with at least one of the methods. 
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On the other hand elemental PM2.5 K; measured by XRF, showed very good agreement with 

PM10 K
+
 measured by IC.  

Hourly PM10 mass collected at fourteen sites from 1998-2008 by TEOM monitors are also 

utilized in this study.  Missing values for single or two consecutive hours were imputed by linear 

interpolation of adjacent reported hourly values and the insignificant impact on the calculated 

daily averages was confirmed by performing Monte Carlo simulations using a jackknife method.  

Depending on the site, this resulted in 84-95% daily data completeness for calculating the daily 

average TEOM mass concentrations for days with all 24 hourly measured mass.   

C.2. Source apportionment of PM2.5 speciation dataset 

Positive Matrix Factorization (PMF) has been successfully applied to access particulate source 

contributions in various regions/urban environments; such as Alaska (Polissar et al., 1998), 

Phoenix (Ramadan et al., 2000), St. Louis (Wang et al., 2011) and northeastern US cities (Song 

et al., 2001), as well as for various ambient pollutants, such as fine particulate matter (Lee et al., 

2006), polycyclic aromatic hydrocarbons (Larsen and Baker, 2003) and volatile organic 

compounds (Lau et al., 2010).  General receptor modeling methodology can be stated in terms of 

the contribution from p sources to all of the species in a given sample (eq. CS-1), where, xij is the 

jth species concentration measured in the ith sample, gik is the particulate mass concentration 

from the kth source contributing to the ith sample, fkj is the jth species mass fraction from the kth 

source, eij is the residual associated with the jth species concentration measured in the ith sample, 

and p is the total number of sources.  The PMF solution utilizes sample-specific uncertainties for 

each species (uij) to minimize the objective function Q(E) (eq. CS-2). 

    ∑       
 
              (CS-1) 
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         (CS-2) 

Record-specific uncertainty estimates (uij) utilized in PMF were generated by analyzing the 

collocated data collected during the study period using the methodology presented in 

Supplementary Information of Yuan et al., 2013.  The concentration-dependent error structure 

for each species was calculated as:               (Polissar et al., 1998), where uij is the 

uncertainty of species j and sample i, Cij is the mass concentration, and aj and bj are the species-

specific additive and multiplicative coefficients respectively derived from the analysis of the 

collocated data.  

Collocated PM2.5 gravimetric mass measurement on quartz-fiber filter and Teflon-membrane 

filter showed good agreement (RMA regression slope = 1.02, intercept = 2.04 μg/m
3
 and R

2
 = 

0.99; with Teflon filter mass on x-axis).  The positive intercept could be attributed to adsorption 

of organic vapors onto quartz-fiber filter (Chow et al., 1996).  For consistency with PM10 source 

apportionment, quartz gravimetric mass is used as ‘Total Variable’.  To account for various 

sources of variability, such as temporal variation in source profiles, modeling was performed 

with 10% extra modeling uncertainty.  PM2.5 data from all four sites and three sampling years 

was combined into a single dataset.  Sensitivity studies performed by executing PMF modeling 

on subsets of the PM2.5 data include: one run for each site including all years (four runs); one run 

for each year including all sites (three runs); runs for each site and year combination (eleven 

runs).  Results from these exercises are tabulated in Table C-1 and, were generally consistent 

with the PMF analysis using the single dataset obtained by combining all sites and years.  Thus, 

the results discussed are based on the single combined dataset.  Each modeling run included 20 

base runs and the base run with minimum Q value was retained as the solution.  Solutions for six  
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Table C-1. PM2.5 mass contributions for the eight PMF-resolved factors stratified by runs based on site and sampling periods.  All 

concentrations are reported in g/m
3
 (percentages in parenthesis).   

Site & 

Period 

Secondary 

Sulfate 

Vehicle Exhaust Secondary 

Nitrate 

Biomass Burning Trace Metals Residual Oil Soil/Dust Fresh Sea Salt Total 

All Sites 12.7 (31.5) 10.4 (25.9) 5.0 (12.5) 4.3 (10.7) 2.7 (6.6) 2.2 (5.4) 1.6 (4.0) 1.4 (3.4) 40.2 

2000-01 10.2 (24.2) 16.4 (38.9) 2.3   (5.5) 6.5 (15.4) 1.4 (3.3) 1.8 (4.4) 1.9 (4.5) 1.6 (3.8) 42.1 

2004-05 15.4 (34.7) 10.2 (23.1) 5.0 (11.4) 4.6 (10.3) 3.5 (8.0) 2.5 (5.6) 1.6 (3.6) 1.4 (3.2) 44.3 

2008-09 11.7 (33.4)   6.8 (19.3) 6.7 (19.0) 2.6  (7.4) 2.6 (7.5) 2.1 (5.9) 1.4 (4.0) 1.2 (3.4) 35.1 

TW 13.2 (34.9)   7.6 (20.2) 4.6 (12.1) 4.8 (12.8) 2.7 (7.0) 2.4 (6.4) 1.6 (4.1) 0.9 (2.5) 37.9 

2000-01 11.0 (29.3)   9.6 (25.6) 3.0   (8.0) 7.3 (19.4) 1.8 (4.7) 2.0 (5.2) 1.8 (4.9) 1.0 (2.8) 37.3 

2004-05 16.0 (37.2)   8.6 (19.9) 4.3   (9.9) 4.8 (11.2) 3.6 (8.4) 3.1 (7.1) 1.7 (3.9) 1.0 (2.4) 43.1 

2008-09 12.5 (37.4)   5.1 (15.3) 6.2 (18.5) 2.8  (8.4) 2.5 (7.5) 2.3 (6.8) 1.2 (3.7) 0.8 (2.4) 33.6 

MK 11.3 (20.6) 25.4 (46.4) 5.9 (10.8) 4.0 (7.4) 2.6 (4.8) 2.1 (3.9) 1.8 (3.3) 1.5 (2.8) 54.7 

2000-01   9.1 (14.4) 37.9 (59.8) 2.9 (4.6) 6.9 (10.9) 1.3 (2.0) 1.9 (3.0) 1.8 (2.9) 1.6 (2.5) 63.4 

2004-05 14.2 (25.0) 23.1 (40.7) 6.2 (10.9) 3.9  (6.8) 3.7 (6.6) 2.4 (4.1) 1.8 (3.1) 1.6 (2.8) 56.8 

2008-09 10.3 (22.8) 16.8 (37.1) 8.3 (18.3) 1.8 (3.9) 2.8 (6.2) 2.1 (4.6) 1.8 (4.0) 1.4 (3.1) 45.3 

YL 14.6 (35.3)   5.9 (14.2) 8.2 (19.8) 4.0  (9.6) 3.5 (8.4) 2.1 (5.0) 1.5 (3.6) 1.7 (4.0) 41.3 

2000-01 -- --   -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

2004-05 16.7 (35.3)   7.3 (15.4) 8.1 (17.1) 4.9 (10.5) 4.0 (8.5) 2.5 (5.2) 1.6 (3.4) 2.2 (4.6) 47.2 

2008-09 12.7 (35.3)   4.6 (12.8) 8.3 (23.0) 3.1 (8.7) 3.0 (8.4) 1.7 (4.8) 1.4 (3.8) 1.2 (3.3) 36.0 

HT 12.1 (45.1)   1.3 (4.9) 2.2   (8.1) 4.2 (15.6) 2.1 (7.8) 2.0 (7.5) 1.5 (5.5) 1.5 (5.5) 26.9 

2000-01 10.5 (40.9)   1.6 (6.4) 1.0   (4.0) 5.4 (21.0) 1.2 (4.7) 1.7 (6.5) 2.0 (7.8) 2.2 (8.7) 25.5 

2004-05 14.5 (48.4)   2.0 (6.8) 1.6   (5.4) 4.6 (15.5) 2.8 (9.4) 2.1 (7.1) 1.3 (4.2) 1.0 (3.2) 30.0 

2008-09 11.3 (45.0)   0.3 (1.3) 3.8 (15.1) 2.7 (10.8) 2.2 (8.7) 2.2 (9.0) 1.2 (4.8) 1.3 (5.4) 25.1 
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to ten factors were examined and the eight factor solution was deemed optimal.  The factors were 

assigned to the corresponding source categories based on the tracer species (Yuan et al., 2013); 

and in the order of decreasing source contribution estimates over the three study periods were: 

Secondary Sulfate, Vehicular Exhaust, Secondary Nitrate, Biomass Burning, Trace Metals, 

Residual Oil Combustion, Soil/Dust and Chlorine/Fresh Sea Salt.  With more than eight factors, 

various trace metals apportioned to different factors and could not be related to any specific 

source categories. When the number of factors was reduced below eight, various identifiable 

factors admixed. 100 bootstrap runs with minimum correlation R-value of 0.6 on the eight factor 

PMF base solution indicated stable solution with all the bootstrapped factors uniquely mapped to 

a factor from the base solution.     

Source apportionment through additional receptor models including, principal components 

analysis with absolute principal component scores (APCA, Thurston and Spengler, 1985) and 

US-EPA Unmix 6.0 (USEPA, 2007) were also investigated with the same set of species to 

examine the robustness of PMF modeling results.  In both APCA and Unmix models, Na, Mg 

and Zn dominated separate factors with large negative values assigned to other species in the 

profile, until reducing the number of factors forced these species to merge with other factors.  

Hence, these species were iteratively rejected from the apportionment.  In APCA model, NO3
-
 

was smeared across various factors and nearly 50% of daily factor contribution estimates 

associated with secondary nitrate, sea salt and biomass burning were assigned negative values, 

leading to near-zero annual average factor contributions.  Hence, PM2.5 sources identified by 

APCA apportionment were deemed impractical.  Unmix model resulted in a seven factor 

solution with secondary sulfate, vehicle exhaust, biomass burning, secondary nitrate, residual oil 

combustion, soil/dust and sea salt identified as the main factors contributing to the PM mass.  
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The trace metal species were smeared across different factors.  Unmix factor contribution 

estimates showed good agreement with PMF estimated factor contributions.  Grand average 

contribution estimates between PMF and Unmix for the two dominant factors, secondary sulfate 

and vehicle exhaust; differed by less than 5% between the two models, despite the relatively high 

scatter in day-specific secondary sulfate factor apportionment.  Residual oil combustion also 

showed modest agreement between the models with 15% difference.  For the remaining factors, 

both the absolute and relative differences between the models were relatively larger.  The added 

value of utilizing sample-specific uncertainties and non-negativity constraint incorporated in 

PMF was subjectively preferred over the edge detection capabilities of Unmix for this study.  

Figure C-2 shows the eight PMF-resolved PM2.5 source profiles expressed as mass fraction.  

With 32% of the total mass apportioned to secondary sulfate factor, it was the dominant 

contributor to PM2.5 mass followed by vehicular exhaust and secondary nitrate at 26% and 13% 

respectively.  The sulfate factor was dominated by sulfate ion (58%) and ammonium ion (18%), 

with ammonium-to-sulfate molar ratio of 1.6, which is between the stoichiometric ratio for 

ammonium bisulfate (1.0) and ammonium sulfate (2.0).  The molar ammonium-to-nitrate ratio of 

1.5 was considerably higher than the stoichiometric ratio of 1:1 for ammonium nitrate.  Such 

discrepancies in apportionment of SO4
2-

/NO3
-
/NH4

+
 could arise from multiple scenarios; such as 

measurement/analysis artifact in SO4
2-

 values indicated by better correlation of collocated sulfur 

measured by XRF over IC measurement of SO4
2-

, volatility of NO3
-
 and/or SO4

2-
/NO3

-
 

displacement of chloride in sea salt (Russell et al., 1994; Saul et al., 2006).  Further, SO4
2-

/NO3
-

/NH4
+
 were smeared across various factors.  Sea salt factor was dominated by sulfate (14%), OC 

(11%), nitrate (8%) and EC (4%), with only 6% of the factor mass accounted by chloride.  

However, 90% of the XRF measured Cl was apportioned to the sea salt factor identified by  
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Figure C-2.  PM2.5 source profiles, expressed as mass fractions for the eight PMF-resolved factors. 
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chloride alone due to lack of quality PM2.5 sodium data.  Biomass burning factor contributing 

11% to the PM2.5 mass was dominated by OC (59%) and accounted for 63% of the measured 

potassium.  58% of Pb apportioned to this factor suggests similar source region for biomass 

burning and trace metals (or industrial emissions) factors.  Presence of various elements 

associated with crustal material (Al/Ca/Fe/Si) also indicates admixing of resuspended soil with 

biomass burning activities. The relative distribution of major crustal elements (Al, Ca, Fe and Si) 

in the ambient samples and resolved soil/dust factor indicates the PMF-resolved soil profile to be 

a composite of county park soil, urban soil, and paved road dust profiles published in Ho et al., 

2003.  PMF-resolved soil/dust factor was based on the modeling data aggregated across four 

sites each with potentially distinct soil type impacts.  Ni and V, key indicators of residual oil 

combustion, were present at low mass fractions in the corresponding factor, with factor mass 

dominated by sulfate (28%).  V/Ni ratio of 3.6 was high but plausible given PM2.5 V 

concentrations were biased high compared to PM10 V concentration.  Vehicular exhaust factor 

dominated by EC and OC had high EC/OC ratio of 1.9 in contrast to the EC/OC ratio of 1.3 for 

PM10 vehicular exhaust factor, which is expected of samples analyzed by IMPROVE TOR 

method in contrast to NIOSH TOT method used for PM10 samples. Despite the various caveats in 

apportionment of individual species, the PMF-resolved factors provided an optimal 

representation of source categories also independently identified by source apportionment 

modeling of PM10 speciation dataset.    

Site specific PM2.5 annual-average contribution estimates are plotted in Figure C-3.  Vehicle 

exhaust contribution was highest at MK roadside station and very low at HT remote station, 

which is consistent with respective site characteristics.  Further, vehicle exhausts contributions 

decreased by ~58%; from 38 μg/m
3
 in 2001 to 17 μg/m

3
 in 2009 at roadside station, as well as by  
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Figure C-3.  Distribution of annual average source contribution estimates by site and year for 

each of the eight PMF-resolved PM2.5 factors. 
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~50% at TW general station, consistent with PM10 PMF results.  Secondary sulfate factor had 

consistent patterns across the four sites with factor contribution to PM2.5 mass increasing from 

24% in 2001 to 33% in 2009, with highest contributions in 2005 irrespective of the sites 

characteristic.  Similarly, irrespective of the site characteristic, mass apportioned to secondary 

nitrate factor increased at all sites from ~10% in 2001 to ~20% in 2009.  However the nitrate 

contributions were lowest at the HT remote station and highest at the MK roadside station and 

YL general station.  Despite concerns over measurement and apportionment of NO3
-
 in this 

study, NOx emissions from vehicular and marine emissions (Kim et al., 2012) can contribute to 

spatial gradient based on site characteristics.  Biomass burning contributions monotonically 

decreased over the study period independent of sites characteristic while trace metals 

contributions modestly increased.  However, the mass apportioned to these two factors combined 

together consistently contributed to ~18% of the PM2.5 mass over the study period.  The 

remaining factors; crustal/soil, sea salt, and residual oil combustion showed neither significant 

site-specific variation nor clear temporal change.   

C.3. Estimating local- and larger-scale contributions from TEOM dataset 

Hourly PM10 TEOM mass data collected daily at up to fourteen sites during 1998 to 2008 is 

utilized by developing day-specific semi-quantitative estimates of local-versus larger-scale 

contributions.  This approach utilizes intraurban variability in PM arising from emission sources 

acting over various scales as conceptualized in Figure C-4.  Non-local PM impacts in this study 

are collectively labeled as synoptic-scale even though synoptic-scale (i.e. spatial domain > 1000 

km) PM impacts may be admixed with regional-scale (~50-1000 km) PM burdens from Pearl 

River Delta source emissions.  Depending on the monitoring station locations, the sites  
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Figure C-4.  Conceptualization of the influence of emissions on observed concentrations at 

monitoring sites over an urban area. 

experience differential PM impacts from urban- and finer-scale (i.e. local-scale or < 50 km) 

sources in addition to the presumed homogeneous synoptic-scale impacts.  The PM mass data 

measured across the network can now be utilized to construct a time series for a network-wide 

baseline to differentiate the network-wide, uniform behavior from the site-specific PM impacts.  

Despite the limitations posed by this simplified representation of a complex system, this 

approach dampens the fluctuations in synoptic-scale impacts arising from year-to-year variability 

in synoptic weather patterns and thereby enables a refined interpretation of the spatiotemporal 

patterns in site-specific PM.   

The daily average TEOM mass measured at each station over 1998-2008 was apportioned into a 

network-wide daily baseline mass and a site-specific daily excess mass to broadly capture the 

PM trends representative of the general stations.  Days with 24-hour average TEOM mass 

concentrations for at least twelve stations were defined as valid network days.  The metric used 

to estimate daily baseline concentration is subjective and can be chosen as the minimum or x
th

- 
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Figure C-5.  Change in the grand average base concentration upon increased the metric from the 

(x-1)
th

 lowest value to the x
th

-lowest value.   

ranked lowest measured concentration across the network of monitoring stations.  Figure C-5 

shows change in the grand average baseline concentration as the metric is varied from one rank 

to next (e.g. from the 4
th

-lowest to the 5
th

-lowest).  As the metric was changed from the 4
th

-

lowest to the 8
th

-lowest value, the baseline mass concentration increased by ~2 μg/m
3
 per step.  

The general uniformity in PM10 concentrations across the general stations in the network allows 

any of these metrics to represent the base concentration with no impact on the qualitative 

patterns but up to a 10 μg/m
3
 difference in the actual value assigned to the base.  Scatter plots of 

the daily 5
th

-minimum value against the daily 4
th

- and 6
th

-minimum values were clustered tightly 

about the 1:1 line, demonstrating stable concentration distribution across all general stations on a 

daily basis.  Hence, the 5
th

-lowest daily average TEOM mass measured across the network was 

chosen as the daily baseline mass concentration to represent the PM captured by the general 

stations.  The site-specific excess mass thus refers to the daily average mass measured at each 

site in excess of the baseline even if the excess mass with respect to the defined baseline is 

negative at some sites.    
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C.4. Clustering of air mass trajectories 

The trajectories were clustered based on refinements to the methodology of Dorling et al., 1992 

as shown in Figure C-6.  A subset of N trajectories was randomly chosen as seeds.  For each 

trajectory, the 2D Great Circle distance separating the trajectory from the same time stamp in 

each seed was calculated.  The separation distances were summed along the trajectory history 

and the trajectory was assigned to the seed which minimizes the separation distance accumulated 

along the trajectory path.  After assigning all trajectories to a cluster, new mean trajectories were 

calculated to represent the clusters and replace the seeds.  The entire process of assigning 

trajectories to clusters was repeated until there was no change in the trajectory-cluster matching 

with each update to the cluster-mean trajectories.   

The two spatially closest clusters were identified and the cluster with the fewer trajectories was 

removed.  The trajectory assignment and cluster pruning process was repeated to obtain results 

for sets of (N-1)2 clusters.  For each set of clusters, a global separation distance was calculated 

based on the separation of each trajectory from the mean trajectory of the respective cluster,  

 

Figure C-6. Flow chart for the cluster analysis methodology used in this study. 
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summed over all trajectories in the dataset.  The cluster set for which an increase in number of 

clusters did not significantly reduce the global separation distance was chosen as the final set of 

clusters.  The results from this clustering analysis included the assignment of each trajectory to a 

cluster, a measure of its separation distance from the mean trajectory of the respective cluster, 

and a flag indicating whether the trajectory was complete (seven days) or truncated.  In this 

study, a ten trajectory subset (N = 10 seeds) was used to eventually obtain a five trajectory 

cluster solution.  As a sensitivity check, clustering of only 2009 trajectories with sixteen seeds 

was performed and resulted in a nearly identical five-cluster solution.  Trajectory time stamps 

were converted from UTC to Hong Kong local time.   

Five air mass transport patterns were resolved with the following characteristics: (1) Slow ECC – 

relatively slow moving air masses transported from north with the centroid trajectory of the 

cluster located along the eastern coast of mainland China (ECC = East Coast of China); (2) Fast 

ECC – relatively fast moving air masses transported from north with the centroid trajectory of 

the cluster located along the eastern coast of China; (3) Stagnant/circulating – 

stagnant/circulating air masses that resided over the greater HKSAR area for much of the seven 

day period; (4) S/SW – South/southwesterly flow into Hong Kong; and (5) East – Easterly flow 

from the Pacific Ocean into Hong Kong.   

Monthly distribution of air mass transport patterns over 2000-2009 are shown in Figure C-7(a).  

During the winter months (September to March) of the study period, the synoptic conditions 

were dominated by northerly air masses nominally from the eastern portion of mainland China.  

Slow ECC most frequently occurred during the month of October (65%) while December was 

the month of most frequent occurrence of the Fast ECC (40%).  These two clusters, transecting 

the industrial/urbanized eastern region of mainland China represent the air mass trajectories  
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Figure C-7.  Distributions of the air mass back trajectory cluster assignments by (a) month and 

(b) year, 2000-2009.  Each day included four air mass back trajectories. 

associated with high pollutant levels.  Beginning in January the Stagnant/circulating air masses 

became more prevalent with relatively high frequency of occurrence in April (32%) and May 

(30%).  These months represent the seasonal transition from the wintertime north/northeasterly 
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air masses to the summertime south/southwesterly air masses.  S/SW air mass patterns prevailed 

during the monsoon/summer season (June (58%), July (54%) and August (50%)), with only 

limited occurrence of Slow and Fast ECC during June (10%), July (1%) and August (7%).  The 

summer months also experienced higher occurrences of East air masses than other months.  The 

occurrences of S/SW and East air masses during October through March were limited with the 

highest occurrence of ~13%.  These oceanic air masses represent air mass trajectories associated 

with low pollutant levels.  September was also a transition month leading into the fall/winter 

season with prevailing northerly air mass patterns.  Figure C-7(b) shows the temporal 

distribution of air mass transport patterns over 2000 to 2009.  The frequency of Slow ECC 

ranged between 30%-40% for each year with the highest frequency of occurrence in 2004 (44%).  

The occurrence frequency of Stagnant/circulating air mass was generally below 20%, but 

reached 22% in 2003 and 2004.  The frequency of S/SW and East air masses combined was 

~30% for each year during 2000-2009.  Distinct seasonal and consistent temporal patterns in the 

trajectory clusters demonstrate that the seasons in Hong Kong are good proxies for 

corresponding air mass transport patterns.   

C.5. Relationships between PM burdens and synoptic air mass patterns  

Meteorological pathways leading to the observed PM burdens over the decade can be 

meaningfully analyzed using clustered air mass trajectories for well represented mass datasets.  

Daily average PM10 TEOM mass collected during 2000-2008 at fourteen sites allowed for site-

specific PM impact assessment based on the synoptic patterns.  PM10 speciation samples 

collected every year across ten sites on different days of the week; with 2-4 general stations 

concurrently sampling on any given day provided a large dataset with well-understood emission 

source linkage.  The daily PMF-modeled PM10 contributions for each factor were averaged over 



223 

 

the concurrently sampling general stations for generating a daily network-wide factor 

contribution to exploit the uniformity in measured PM mass at general stations for maximum 

data completeness.  This approach was also consistent with the 1 resolution of the 

meteorological data set used to generate the trajectories for the cluster analysis.  Such spatial 

averaging exploits the sampling network design to yield a daily time series with 67% 

completeness compared to a maximum completeness of 17% for data from a single station.  

PM2.5 speciation dataset collected over three one-year campaigns on the same day of the week at 

only 3-4 sites across the network accounts for only 5% of days overlapping with valid cluster 

assignment during 2000-2008; and, can introduce significant uncertainty in the results.  Hence, 

only PMF-modeled network-average PM10 factor contributions and TEOM measured PM10 mass 

were analyzed using the clustered trajectories.   

Air mass trajectory cluster associations of network-average PM10 factors are examined in Figure 

C-8 by plotting the PMF-resolved factor contributions; scaled such that the average contribution 

over all samples is unity for each factor to facilitate comparison across different source 

categories.  PMF-resolved factors associated with non-local PM impacts, such as secondary 

sulfate, secondary nitrate and biomass burning exhibited similar trajectory association, with 

highest scaled factor contributions associated to Slow and Fast ECC clusters and lowest for 

S/SW.  In contrast, the distribution of scaled vehicle exhaust contributions was independent of 

the synoptic cluster class and is consistent with characteristics of a local source.  Residual oil 

combustion and aged sea salt factors also do not show any significant trajectory cluster 

association.  High association with Fast ECC for crustal/soil factor suggests transport of crustal 

matter from the continent and/or resuspension of local soil due to fast flowing air masses 

impacting Hong Kong.  To quantify synoptic cluster-specific variations in PM impacts for each  
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Figure C-8.  Distribution of PMF-modeled PM10 scaled source contributions estimates 

corresponding to each synoptic class pattern.  The interior solid line is the median, the dashed 

line is the arithmetic mean, and the circles are 5th and 95th percentiles. 
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PMF-resolved factor over 2000-2008, the annual scaled median PM10 contributions were 

regressed on year using a linear-least squares regression for each air mass cluster.  The 

regression slopes, tabulated in Table 2 of Chapter 4, represent the linearized rate of change in 

scaled annual median contribution by factor and synoptic pattern.  Minor changes were observed 

for crustal/soil and smelting factors, but no statistically significant changes were observed for 

residual oil combustion, fresh sea salt, aged sea salt, secondary nitrate and biomass burning 

factors associated with any of the trajectory clusters.  On the other hand, the two largest PM 

contributors, vehicle exhaust and secondary sulfate factors exhibited statistically significant, 

complimentary changes over the decade with very distinct air mass cluster associations and are 

discussed in Chapter 4.   

A similar analysis was also performed on the site-specific PM10 TEOM mass measurements to 

examine the changes in PM patterns on a station-by-station basis.  For each station, the daily 

average PM10 TEOM mass concentrations were stratified by air mass cluster assignments to 

calculate the annual median mass for each cluster.  For each synoptic pattern, the site-specific 

annual concentrations were regressed on year using a linear-least squares regression.  The 

regression slope, representing a linearized rate of change in PM10 mass per year over 2000-2008 

are tabulated in Table C-2 for changes larger than its 95% confidence interval.   

Table C-2. Change in PM10 TEOM mass (g/m
3
/year) from a linear least-squares regression of 

annual median concentration on year for each air mass transport cluster.  Values for only 

statistically different change from zero at the 95% confidence level are shown. 

Air Mass YL SSP KT EN TM TC MK CL CB 

Slow ECC 2.6 ± 2.1    2.7 ± 1.8 2.6 ± 1.8    

Fast ECC 1.9 ± 1.8    2.3 ± 1.3     

Stagnant  -1.4 ± 1.1 -2.5 ± 1.9      -4.0 ± 2.3 

S/SW     0.9 ± 0.6  -1.5 ± 0.8  -3.3 ± 1.4 

East  -1.6 ± 1.5 -2.2 ± 1.3 -1.4 ± 1.0   -3.1 ± 1.6 -2.0 ± 1.1 -4.5 ± 3.5 
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For example, for Slow ECC air masses, PM10 mass at the CB roadside station decreased at a 

linearized rate of 1.2 μg/m
3
/year but this change was statistically indistinguishable from zero at 

the 95% confidence level (2.6 μg/m
3
/year).  In contrast, the increase in PM10 mass during 2000-

2008 by 2.6-2.7 μg/m
3
/year at TC, YL and TM is statistically significant for the Slow ECC 

cluster.  For oceanic air masses (S/SW and East), the change in PM10 mass was either statistically 

indistinguishable from zero or decreased irrespective of the site characteristic (roadside or 

general).  The increase in PM10 mass at TM station, located to the northeastern edge of Hong 

Kong, for S/SW air masses could result from the air masses transecting the urban core of Hong 

Kong.   
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