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Methods and Mechanisms of DNA methylation in Development and Disease 

By 

Maximiliaan A Schillebeeckx 

Doctor of Philosophy in Biology and Biomedical Sciences 

 Molecular Genetics and Genomics 

Washington University in St. Louis, 2014 

Professor Robi D. Mitra, Chair 

	  

DNA methylation is a mechanism for long-term transcriptional regulation and is required for 

normal cellular differentiation. Failure to properly establish or maintain DNA methylation patterns leads to 

cell dysfunction and diseases such as cancer and neurological disorders. The goal of this thesis is to 

understand the role of DNA methylation in oncological cellular transformation and in normal development. 

To achieve this goal, I have developed a novel method for mapping genome-wide DNA methylation 

patterns and have applied the method to gonadectomy-induced adrenocortical neoplasms and to 

maturing motor neurons. The novel method, called Laser Capture Microdissected-Reduced 

Representation Bisulfite Sequencing (LCM-RRBS), accurately and reproducibly profiles genome-wide 

methylation of DNA extracted from microdissected fresh frozen or formalin-fixed paraffin-embedded 

tissue samples. Using this method, I find that significant DNA methylation changes, associated with 

attendant expression changes, occur in transformed adrenocortical cells. My work has also uncovered 

significant DNA methylation configuration in maturing motor neurons associated with dramatic expression 

changes. I show that demethylated regions are enriched for known neuron-specific transcription factor 

binding sites and that genetic disruption of the active demethylation machinery significantly inhibits motor 

neuron differentiation and maturation. Together, these experiments demonstrate that DNA methylation 

plays a role in the transformation of normal cells to cancer cells and that DNA methylation is critical to 

proper motor neuron formation. I conclude that aberrant DNA methylation controls gene expression in 

gonadectomy-induced adrenocortical neoplasms and that neuron-specific transcription factors could 

recruit demethylating enzymes to regions that lose DNA methylation in motor neurons upon maturation.
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CHAPTER 1: INTRODUCTION 

 

OVERVIEW 

 The genetic code of life is incredibly static and robust. From one cell, with two genome copies, 

results a multi-cellular organism made of over 100 distinct cell types (Gilbert 2013). Each cell contains an 

(almost) exact copy of that original genome present in the first cell, yet can exhibit unique cellular 

morphologies and functions (Gilbert 2013; Lodish 2013). What’s more, scientists have observed that as a 

fertilized egg develops into a mature embryo, daughter cells of the first, totipotent cell gradually lose the 

ability to differentiate into any cell type. Indeed, as early cells differentiate toward one of three germ 

layers, which specialize into different cell types, cells lose the potential to revert to a different germ layer 

and become committed to the lineage. As a blastocyst develops, these intermediate progenitor cells 

further differentiate to the terminal states of fully formed, specialized adult cells. These seemingly 

contradictory observations have long perplexed scientists: How could such a diverse cadre of functionally 

and morphologically distinct cell types result from genetically identical cells? How does a dividing cell 

(e.g. liver) know to replicate into the same cell type (another liver cell)? 

 Conrad Waddington first introduced the concept of an “epigenetic landscape” to describe this 

phenomenon in which differentiating cells lose the ability to return to a more pluripotent state (Waddington 

1940; Gilbert 2012). Waddington’s use of “epigenesis” or “epigenetics” referred to the path cells take 

during development from genotype to phenotype and also incorporated the understanding that 

neighboring cells influence the differentiation of each other (Waddington 1939). The contributions of 

neighboring cells (e.g. Shh signaling), or ‘extrinsic’ factors, have since been expanded to include any 

environmental effects both ex vivo and in vivo. Modern definitions of “epigenetics” try to include the notion 

of non-genetic heritability, traversing either cell divisions or generations, of such factors or phenomenon 

to evoke the notion of cell identity “memory” (Hemberger et al. 2009). 

 In my opinion, the term “epigenetics” is highly sensationalized and used to describe observations 

that go beyond the intention of its original definition, which has led to confusion and over use. For these 

reasons, I avoid the use of the word “epigenetics,” but instead describe my observations and 

understanding of the literature in the most concrete manner possible. On those occasions I do use the 
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term “epigenetics,” I broadly refer to any modification of DNA or DNA architecture that does not change 

the nucleic acid sequence. This work focuses on one of these modifications of DNA, the methylation of 

cytosine residues, which plays an important role in bringing a cell from “genotype to phenotype” and in 

determining cellular identity. 

 

DNA METHYLTRANSFERASES CATALYZE THE METHYLATION OF CYTOSINE RESIDUES 

 The existence of methyl-modified cytosine (5mC) in nature was first discovered in 1925 by 

Johnson and Coghill as a structural unit of nucleic acids isolated from tubercle bacillus (Johnson and 

Coghill 1925) as anticipated by Wheeler and Johnson, the first to synthesize 5-methyl-cytosine in 1904 

(Wheeler and Johnson 1904). More than two decades after Johnson and Coghill’s discovery, G. R. Wyatt 

showed that 5mC occurred in the nucleic acids of higher animals and plants (Wyatt 1950). Studies would 

later show that, unlike in plants (Gruenbaum et al. 1981), most animal 5mC occurs at the cytosine of a 

cytosine-guanidine dinucleotide known as a CpG (Grippo et al. 1968). The only mammalian 5mC 

occurring outside the CpG context was observed in embryonic stem cells and thought to be lost in adult 

tissues (Ramsahoye et al. 2000; Meissner et al. 2008) until methylation studies of the developing mouse 

and human brain revealed the presence of potentially biologically relevant levels of CpH (H = A, C, T) 

methylation in neuronal cell types (Xie et al. 2012; Lister et al. 2013). The role of non-CpG methylation, 

however, is still unclear. Mammalian genomes are depleted of CpG dinucleotides due to the propensity of 

5mC to deaminate to thymine (Coulondre et al. 1978). This deamination has resulted in genomes 

containing unmethylated CpG-rich regions, known as CpG Islands, primarily located in gene promoters 

(Bird et al. 1985). CpGs outside of CGIs are typically methylated.  

 A family of proteins, known as the DNA methyltransferases (DNMTs), catalyzes the transfer of a 

methyl group from S-adenosylmethionine to a cytosine residue (Gold et al. 1963; Grippo et al. 1968). 

Four known DNMT proteins exist in mammals: Dnmt1 (Bestor et al. 1988), Dnmt3A/B (Okano et al. 1998), 

and Dnmt3l (Aapola et al. 2000).  

 Work by Bessman et al. in 1958 characterizing the function of DNA polymerase showed that the 

enzyme cannot distinguish between the methylated and unmethylated cytosine nucleotide (Bessman et 

al. 1958) prompting the possibility for the existence of a methyltransferase responsible for propagating 
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5mC through DNA replication. Dnmt1 serves this role due to its high affinity for hemi-methylated, newly 

synthesized DNA (Gruenbaum et al. 1982; Bestor and Ingram 1983) and is primarily responsible for 

faithfully copying the parental-strand methylation pattern onto the daughter strand after each round of 

DNA replication (Stein et al. 1982), though some evidence exists that suggests Dnmt1 may have some de 

novo methylase activity (Vertino et al. 1996). The localization of Dnmt1 to DNA replication foci (Leonhardt 

et al. 1992) and its interaction with PCNA (Chuang et al. 1997), a protein that stabilizes the binding of 

DNA polymerase to DNA, further strengthen the role it plays in maintaining DNA methylation states 

through cellular division. 

 Dntm3a and Dnmt3b are responsible for the de novo methylation of unmethylated DNA (Okano et 

al. 1998; Okano et al. 1999) and have both overlapping and disparate DNA sequence affinities. Although 

somatic tissues show very little expression of Dnmt3a or Dnmt3b, Dnmt3a is ubiquitously expressed 

throughout the early embryo while Dnmt3b expression is specific to the forebrain and eyes (Okano et al. 

1999). The primarily role of Dnmt3b is to methylate minor satellite repeats of pericentric regions (Okano et 

al. 1999) while Dnmt3a has been shown to methylate all CpGs regardless of genomic context (Shirane et 

al. 2013). Beyond their role as de novo methylases, Dnmt3a and Dnmt3b seem to play a role in 

methylation maintenance. Early knockout studies showed that embryonic stem cells lacking Dnmt3a and 

Dnmt3b enzymes lose nearly all 5mC over progressive cell divisions, indicating Dnmt1 is insufficient to 

fully maintain 5mC (Jackson et al. 2004). The most striking evidence of maintenance capability was 

shown in Dnmt1 null colorectal carcinoma cells: even after 300 cell generations the cancer cells retained 

~60% of their global 5mC (Rhee et al. 2000). A similar study using the same cell line but shRNA 

knockdown, however, showed a dramatic loss of global and gene-specific methylation (Robert et al. 

2003).  

 Dnmt3l has no active methylase domain but seems to play a role in ensuring proper methylation 

of imprinted loci and transposable elements through the interaction with Dnmt3a and Dnmt3b. The 

expression of Dnmt3l is confined to germ cells where it regulates the methylation status of the maternally 

imprinted regions Snrpn, Necdin, Zfp127, Kcnq1ot1, and Peg3 (Bourc'his et al. 2001). Furthermore, 

Dnmt3l has been shown to ensure methylation of transposons in male but not female germ cells 

(Bourc'his and Bestor 2004). Dnmt3l directly binds to each of the catalytic domains of Dnmt3a and 
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Dnmt3b, which increases their de novo methylation activity and ability to bind DNA (Gowher et al. 2005), 

and directly binds histone modifications to recruit Dnmt3a to imprinted regions (Ooi et al. 2007). More 

recently, Dnmt3l together with Dnmt3a have been shown to be responsible for CpG and non-CpG 

methylation in oocytes (Shirane et al. 2013)  

 

DNA METHYLATION IS IMPORTANT FOR MAINTAINING CELLULAR IDENTITY 

 The symmetry of a CpG dinucleotide on the forward and reverse strand provides a natural means 

for ensuring 5mC states are faithfully inherited across DNA replication. Hence, DNA methylation is 

thought to be the predominant mechanism by which cells maintain their cellular identity through cellular 

divisions. The first evidence for a role of 5mC in maintaining cellular identity came two decades after 

Wyatt’s discovery of vertebrae 5mC when Vanyushin et al. showed slight differences in the total 5mC 

content of DNA between various animal tissues (Vanyushin et al. 1970). Using methylation sensitive and 

insensitive enzymes, Waalwiik and Flavell showed significant 5mC difference between rabbit sperm, 

brain, and liver DNA at an intron of the beta-globin gene locus (Waalwijk and Flavell 1978). Ehlrich et al. 

would definitively demonstrate that global 5mC levels varied between tissue and cell types a few years 

later (Ehrlich et al. 1982). These studies laid down the foundation for understanding the role of DNA 

methylation in maintaining and determining cellular identify.  

 Several recent 5mC mapping studies at base pair resolution have demonstrated that cell types 

show tissue-specific 5mC and are characterized by unique 5mC profiles that overlap among tissues of 

similar origin. Varley et al. mapped the genome-wide distribution of 5mC across a diverse collection of 82 

human cell lines and tissues and showed that individual cell types have very distinct 5mC profiles. They 

show in vitro propagation of cell lines can cause a divergence from primary tissue 5mC levels (Varley et 

al. 2013). This observation suggests loci that change 5mC levels in culture are dispensable, since these 

cultured cells maintain their cellular identity. Ziller et al. mapped the entire 5mC landscape of 30 cell and 

tissue types (Ziller et al. 2013); they find that roughly 22% of 5mC loci differ among normal cell types and 

that tissues originating of similar origin share similar 5mC signatures. 

 The turn of the century saw the ushering in of cell reprogramming and induced pluripotent stem 

(iPS) cells whereby somatic cells regain the capacity to differentiate into various germ cell types 
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(Robinton and Daley 2012). The ability to restore pluripotency to somatic cells has provided significant 

insight into the epigenetic mechanisms that underlie reprogramming and has shown that DNA methylation 

plays a part in fixing a cell’s differentiated state and in conferring cellular memory (Kim et al. 2010; Polo et 

al. 2010). Kim et al. rigorously showed that the cell type of origin influences the differentiation potential of 

iPS cells (Kim et al. 2010). They showed that neural progenitor-derived iPS cells (NP-iPSCs) differentiate 

much less efficiently into cells of hematopoietic lineage than iPS cells derived from bone marrow cells 

(blood-derived; B-iPSCs), which are responsible for producing hematopoietic cells. The few 

hematopoietic progeny that were differentiated from NP-iPSCs were reprogrammed to iPS cells (NP-

derived-blood-derived; B-NP-iPSCs), which subsequently were able to differentiate to hematopoietic 

lineages at a very high efficiency. The poor blood forming potential of NP-iPSCs suggests that NPs either 

have epigenetic marks that restrict the differentiation into blood fates or lack the epigenetic marks that 

enable blood formation. Furthermore, Kim et al. demonstrated that treatment during differentiation of NP-

iPS cells with 5-azacytidine, a DNA methylation inhibitor, and TSA, a histone deacetylase inhibitor, 

dramatically enhanced hematopoietic lineage formation. Most interestingly, derived iPS cells retained 

residual DNA methylation that was indicative of their tissue of origin. Polo et al. also showed that iPSCs 

derived from various cell types exhibited distinguishing DNA methylation signatures representative of their 

cell type of origin (Polo et al. 2010). They expanded upon this understanding and showed that continuous 

passaging erased these DNA methylation signatures to attenuate cell of origin effects. 

 Loss-of-function experiments in mice further support the important role of 5mC and the 

methyltransferase machinery in maintaining cell identity (Broske et al. 2009; Sen et al. 2010; Dhawan et 

al. 2011b). A study of the epidermal progenitor population showed that Dnmt1 is necessary for proper 

differentiation into keratinocytes and for maintaining a self-renewing state (Sen et al. 2010). Dnmt1 

knockdown with shRNAs in progenitors resulted in induced differentiation and a loss of self-renewal 

ability. Wild-type DNMT1, but not a catalytically inactive mutant, reversed the observed proliferation 

defects, suggesting that the methylation of DNA controls proliferation and differentiation induction in 

epidermal progenitors. Furthermore, differentiation induction also occurred in human muscle progenitors 

upon Dnmt1 knockdown.  
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 The functional disruption of Dnmt1 in mice was shown to abrogate the differentiation of 

hematopoietic stem cells (HSCs) into myeloerythroid and lymphoid lineages (Broske et al. 2009). Broske 

et al. show that Dnmt1 maintains high methylation levels at myeloerythroid-specific genes to repress 

transcription. Failure to maintain methylation at these genes in HSCs prevents the differentiation into 

lymphoid progeny. Indeed, Dnmt1-depleted HSCs differentiated only down the myeloid lineage 

suggesting hypermethylation of myeloerythroid genes is necessary for proper differentiation into lymphoid 

cells. Interesting, the removal of Dnmt1 from committed lymphoid cells did not disrupt lymphoid identity or 

maturation, suggesting the maintenance of methylation is only necessary for lymphoid differentiation and 

not necessary for the maintenance of lymphoid cellular identity.  

 Most striking is a study demonstrating that pancreatic β cells, which produce insulin, undergo 

transdifferentiation to glucagon-producing α cells upon the conditional disruption of Dnmt1 (Dhawan et al. 

2011b). Using a genome-wide profiling method, they found that a short region upstream of Arx, a gene 

expressed specifically in α cells, lost methylation in Dnmt1-null β cells. Upon demethylation of Arx, β cells 

began to downregulate β cell markers and upregulate α cell markers. The inhibition of DNA methylation 

with 5-azacytidine also induced an upregulation of Arx de-repression, α cell marker activation, and 

glucagon production demonstrating that the methylation state of Arx determines the cellular identity of 

pancreatic β cells. 

 

DNA METHYLATION AS A MECHANSIM OF STABLE GENE SILENCING 

 The mechanistic function of 5mC did not become apparent until 1977 when Christman et al. 

observed gene expression increases of globin genes in erythroleukemia cells cultured in the presence of 

L-ethionine (Christman et al. 1977). They showed that L-ethionine resulted in a loss of global 5mC. Using 

methylation sensitive endonucleases, McGhee and Ginder were the first to interrogate the 5mC levels of 

a specific locus to understand its correlation with gene expression (McGhee and Ginder 1979). By 

assessing 5mC and expression levels of the β globin gene in normal chicken tissues, they showed 

tissues that expressed or that had expressed β globin had sites at the ends of the gene sequence that 

were fully unmethylated; the same sites were at least partially methylated in tissues that did not express β 

globin. Desrosiers et al. documented a similar observation in virus producing and non-producing cells 
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(Desrosiers et al. 1979). Gene transfection experiments further showed that in vitro methylation of gene 

constructs inhibits their expression (Fradin et al. 1982) while many endogenous genes can be activated 

from a repressed state by treatment with 5-azacytidine, an inducer of demethylation (Jones and Taylor 

1980). Global methylation and gene expression profiling would eventually show that the methylation of 

CpGs upstream of genes results in their down-regulation (Walsh et al. 1998; Bird and Wolffe 1999) and 

would establish 5mC as a transcription regulator.  

 The effects of DNA methylation, however, are strongly dependent on genomic context. Although 

5mC in gene promoters and enhancers are correlated with gene silencing, gene body methylation is 

associated with transcriptionally active genes (Hellman and Chess 2007; Ball et al. 2009). Many genome-

wide studies have shown poor overall correlations of 5mC with gene expression (Eckhardt et al. 2006; 

Zilberman et al. 2007; Brenet et al. 2011; Hartung et al. 2012). These inconsistencies are most likely a 

result of our inability to accurately identify the regulatory regions for all genes, as most can occur very 

distal to transcription start sites.  

 The covalent bond attaching the methyl group to the 5` carbon of a cytosine ensures methyl 

markers are stable and not easily lost. The durable nature of DNA methylation allows for the long-term 

silencing of genes and other genomic elements within specific cellular contexts. Dormant transposable 

elements pose a threat to the stability of the genome if reactivated. DNA methylation functions to silence 

transposable elements and maintain chromosomal integrity (Slotkin and Martienssen 2007) by preventing 

the reactivation of endoparasitic sequence that cause translocations and gene disruptions (Esteller 2007). 

DNA methylation is also responsible for silencing the inactive X chromosome during female X inactivation 

(Mohandas et al. 1981) and for ensuring allele-specific expression from paternal or maternal copies at 

imprinted regions (Reik et al. 1987; Sapienza et al. 1987). 

 The mechanism by which DNA methylation represses transcription can be direct, by excluding 

the binding of proteins that affect transcription (Watt and Molloy 1988), or indirect, by recruiting methyl-

CpG-binding proteins and their associated repressive chromatin remodelers (Robertson 2005). 

The chromatin boundary element binding protein, CTCF, acts to insulate the effects of enhancer regions 

from gene promoters by binding between these genomic elements. Its DNA binding sequence contains a 

CpG which when methylated inhibits (Ohlsson et al. 2001) CTCF from binding DNA. The imprinted gene 
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H19 is repressed on the paternal chromosome through the methylation of an imprinted-control region 2 

kilobases from its transcription start site. The same imprinted-control region is unmethylated on the 

maternal chromosome where CTCF binds to block the effects of a H19 enhancer on the Igf2 gene and 

maternally repress the Igf2 gene (Hark et al. 2000). Other methylation sensitive and insensitive binding 

proteins abound, but their role in regulating expression is unclear (Tate and Bird 1993). While CTCF is 

inhibited by 5mC, several proteins explicitly bind 5mC. Mecp-1 (now known as Mecp2) was the first 

protein shown to bind specifically to methylated DNA sequences (Boyes and Bird 1991), but several 

others have since been described (Wade 2001). Methyl-binding proteins mediate gene silencing by 

recruiting histone-modifying factors that shift the chromatin architecture to a closed, inaccessible, and, 

therefore, repressed state (Jones et al. 1998; Nan et al. 1998). MECP2, for example, recruits the arginine 

methyltransferase, PRMT6, among others, to add repressive chromatin marks and remove activating 

chromatin marks at the Arx locus to repress transcription (Dhawan et al. 2011b).  

 

DNA METHYLATION AND NEURONAL DEVELOPMENT AND FUNCTION 

 The past decade has accumulated significant insights into the role DNA methylation plays in 

neuronal development and postnatal function. Lister et al have shown that the mouse and human brain 

undergo significant methylation reconfiguring during development and highlight the potential importance 

of non-CpG methylation (Lister et al. 2013). They show that the fetal cortex is practically devoid of CpH 

methylation but rapidly gains global methylation at CpH dinucleotides shortly after birth during a time of 

high synaptogenesis. CpH methylation in gene bodies was inversely correlated with gene expression 

which is consistent with the role of 5mC in repressing transcription. Large, non-centromeric megabase 

regions of the genome, however, were resistant to CpH methylation gains and contained genes that 

encode receptors required for sensory neuron function and immune function. This study suggests 

neurons of the brain undergo significant gene repression via 5mC gains in the CpH context between fetal 

and adult stages. Several studies characterizing 5mC levels show that the human cerebral cortex 

undergoes significant 5mC changes throughout an individual’s lifespan showing gradual as well as sharp 

gains in 5mC levels at various promoters (Siegmund et al. 2007). Many 5mC changes were associated 

with transcriptional decline, though the consequences, if any, of these changes are not clear (Hernandez 
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et al. 2011). Contrary to these studies, Lister et al showed CpG and CpH methylation declines with age 

post-adolescence. The discordance of these studies most likely lies in the fact that Lister et al 

interrogated the whole genome while the previous studies were much less comprehensive. 

 The adult brain can undergo significant neurogenesis in response to external stimuli resulting in 

advanced structural plasticity. The methylation of DNA plays an important role in this observed plasticity, 

including in synaptic formation (Levenson et al. 2006), learning and memory (Day and Sweatt 2010; Miller 

et al. 2010; Zovkic et al. 2013), emotional behavior (Lubin et al. 2008; LaPlant et al. 2010), adult 

neurogenesis (Ma et al. 2009), and age-related cognitive decline (Oliveira et al. 2012). Most interestingly, 

is the role of 5mC in neural plasticity and neurogenesis, as various studies have shown that neuronal 

activity leads to significant gains and losses of 5mC in the brain (Nelson et al. 2008; Miller et al. 2010).  

For example, the promoter of Bdnf, a gene important for adult neurogenesis, is regulated in an activity-

dependent manner (Martinowich et al. 2003; Ma et al. 2009). Upon synchronized electro-convulsion of the 

hippocampus, the Bdnf promoter is demethylated by Gadd45b within 4 hours, which causes a release of 

the MECP2 repressor complex and increased expression of Bdnf. The study further shows that Gadd45b 

is essential for neural progenitor proliferation and activity-induced dendritic development (Ma et al. 2009). 

Global profiling studies have revealed the plasticity of 5mC in the brain across several genes (Guo et al. 

2011a). Persistent activity in neurons, as occurs during electroconvulsive stimulation or exercise, leads to 

subtle yet significant 5mC losses at Per2, Crebbp, and Grip1 and also 5mC gains at Zfhx2 and Ccdc44. 

Most of these 5mC changes occur at exonic and intronic regions, which may explain why these 5mC 

alternations do not correlate well with gene expression. These studies showing that significant 5mC 

configuration occurs after neuronal activity are helping to expel the belief that DNA methylation is highly 

stable in terminally differentiated cells. 

 Glial cells (i.e. astrocytes, oligodendrocytes, and microglia) and neurons are both derived from 

the same neuron progenitor cell population. Proper DNA methylation establishment seems to play an 

important role in the fate determination of neural progenitor cells into neurons and glial cells. Neuron and 

non-neuron cells display unique global methylation profiles, which ensures the regulation of neuronal- and 

glial-specific transcription (Iwamoto et al. 2011). Glial cells support the viability of neurons and therefore 

arise after the formation of neurons from the same neuronal progenitor cells (NPCs) (Qian et al. 2000). 
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Indeed, during development, NPCs gradually acquire competence for gliogenesis (Sauvageot and Stiles 

2002). Once NPCs are gliogenic, they simultaneously lose the ability to differentiate into neurons, 

suggesting the existence of a neurogenic to gliogenic switch that occurs during central nervous system 

development. Indeed, neurons appear at embryo day 11.5 (E11.5) while astrocytes begin to appear at 

E14.5. This switch in differentiation ability is regulated by 5mC. Before E14.5, the promoter of Gfap, an 

astrocyte marker, is methylated at a Stat3 binding site in neuroepithelial (progenitor) cells (Takizawa et al. 

2001). At E14.5, neuroprogenitor cells lose methylation at this site which leads to Stat3 binding, Gfap 

activation, and astrocyte differentiation. Studies of conditional Dnmt1 knockout mice further validate the 

role of 5mC in neuron/glial differentiation. Fan et al. show that Dnmt1-deficient NPCs are marked by 

hypomethylation at the Gfap promoter and spontaneously differentiate into glial cells (Fan et al. 2005). 

Upon Dnmt1 inactivation, glia-associated transcription factors, but not neuronal-specific genes are 

activated. 

 Direct experimental findings have shown that the DNA methyltransferases Dnmt1 and Dnmt3a 

are important for learning, memory, and synaptic plasticity. Conditional mutant mice lacking Dnmt3a in 

the entire central nervous system develop normally but have significant neuromuscular defects, reduced 

number of motor neurons in the brain stem, and shortened life spans (Nguyen et al. 2007). Because the 

knockout induction occurrs in neuron progenitor cells, these experiments highlight the importance of 

Dnmt3a in neuron differentiation. Exclusive conditional knockout of Dnmt1 and Dnmt3a in post-mitotic 

neurons of mice results in learning and memory deficits (Feng et al. 2010). Here, Dnmt gene deletion only 

occurs in mature, post-mitotic neurons of the central nervous system allowing researchers to understand 

their role in mature neuron function. Dnmt1 and Dnmt3a single knockout mice did not show an 

appreciable phenotype while double knockout animals had normal lifespans but smaller hippocampi. 

Furthermore, double knockout mice showed an appreciable loss of neuronal DNA methylation, induction 

of immune genes, and impaired synaptic plasticity. As we continue to profile the methylation and 

transcriptional landscapes of neurons under various conditions, the role of 5mC in neuron function will 

only become more evident. Furthermore, the reversibility and ability to regulate gene expression makes 

DNA methylation an attractive target for therapies that may be able to activate aberrant gene silencing or 

silence aberrant expression profiles. 
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DNA METHYLATION IN HUMAN HEALTH 

 The importance of DNA methylation in development has been well describing using transgenic 

and knockout mice. Deletion of Dnmt1 is lethal to embryonic development (Li et al. 1992); Dnmt3b-

deficient mice do not reach full term while mice lacking Dnmt3a die within 4 weeks of birth (Okano et al. 

1999). Dnmt3l-null mice are viable and develop normally (Bourc'his et al. 2001); The heterozygous 

offspring of female mice lacking Dnmt3l, however, die before the mid-gestation period from the biallelic 

expression of imprinted genes normally methylated and silenced on the allele of maternal origin while 

male mice lacking Dnmt3l are sterile due to a lack of germ cells in the adult. The importance of DNA 

methylation is further emphasized by the growing number of human diseases that are known to occur 

when 5mC is not properly established and/or maintained (Robertson 2005; Jakovcevski and Akbarian 

2012). Indeed, aberrant DNA methylation has been broadly implicated in cancer and in numerous 

neurological diseases. 

 

Cancer 

 DNA methylation was first implicated in cancer by Feinberg and Vogelstein in 1983 when they 

observed significant 5mC differences at specific loci between normal and diseased tissues of four cancer 

types (Feinberg and Vogelstein 1983). They also found the lowest level of 5mC in the metastasis of a 

lung tumor, first demonstrating that cancer cells lose methylation as they progress. The aberrant 

methylation patterns observed in cancers have since been well documented (Portela and Esteller 2010; 

Sharma et al. 2010; Taby and Issa 2010). Tumors are often characterized by global hypomethylation 

(Goelz et al. 1985; Wilson et al. 2007) as well as by locus-specific hypermethylation of genes involved in 

the main cellular pathways (Portela and Esteller 2010). The global hypomethylation, which can occur in 

large megabase regions and unmethylates repetitive regions (Hansen et al. 2011), is thought to 

destabilize the genome and result in transposon-mediated rearrangements. Loss of methylation also 

causes the aberrant activation of growth promoting genes (Wilson et al. 2007) and the loss of imprinting 

(Reik and Lewis 2005). Hypermethylation primarily at CGIs of promoters, on the other hand, contributes 

to tumorigenesis by silencing tumor suppressor and DNA repair genes and could thus serve as the 

second hit in Knudson’s two-hit model (Suzuki et al. 2004; Weinberg 2007). Roughly 5-10% of CGIs that 
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are constitutively unmethylated in adult tissues are hypermethylated in cancer (Bird 2002; Weinberg 

2007). The aberrant methylation of normally unmethylated tumor-suppressor genes can causes loss of 

heterozygosity and uncontrolled cell division and proliferation in countless cancers (Jones and Baylin 

2002; Chen et al. 2003). Today, hypermethylation events are being used as biomarkers to screen for 

colorectal cancer, among others (Lofton-Day et al. 2008). Abnormal 5mC in conjunction with disruptions 

in histone modifications may be key initiating events in some forms of cancer (Feinberg et al. 2006a). 

 The onset of whole genome and exome sequencing efforts have revealed the presence of 

mutations in chromatin modifying proteins as well as DNA methyltransferases across many tumor types 

suggesting the aforementioned methylation aberrations could be downstream of genetic abnormalities. To 

date, over 15% of hematopoietic and lymphoid cancers catalogued in the COSMIC database show 

mutations in the de novo methyltransferase DNMT3A, with enrichment in patients with de novo acute 

myeloid leukemia (AML) (Ley et al. 2010). Mutations in DNMT3A were correlated with poor patient 

survival, suggesting DNMT3A is involved in AML disease progression. Despite most mutations occurring 

in the methylase domain of DNMT3A, genome-wide 5mC analysis of AML genomes with and without 

DNMT3A mutations did not reveal an appreciable difference in 5mC between the two samples. 

Furthermore, the few differences that were observed did not result in an expression change of the nearest 

genes. These observations suggest that the function of DNMT3A in cancer progression may not be due 

to altered DNA methylation, but rather related to its ability to bind DNA and recruit histone modifiers (Ley 

et al. 2010). Few mutations are observed in DNMT3B for any cancer type, highlighting the primarily role 

of DNMT3B in early development. Similarly, very few mutations have been observed in DNMT3L of 

tumors catalogues in the COSMIC database. Over 50% of lung cancers, however, show copy number 

variations of DNMT1 and most non-small cell lung cancer tumors show an over-expression of DNMT1, 

DNMT3A, and DNMT3B protein and show increases in 5mC at tumor suppressor genes (Lin et al. 2007). 

 The observation that pharmacological DNA methylation inhibitors, such as 5-azacytidine, results 

in gene activation (Venolia et al. 1982) demonstrated that 5mC is reversible and has since ushered in 

DNA methylation inhibitors as potent cancer therapies. Several DNA methyltransferase inhibitors have 

been approved in the past decade by the FDA for the treatment of patients with AML or myelodysplastic 

syndrome (Kaminskas et al. 2005). The response rates to the drugs, however, are low and highly variable 
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among patients. Furthermore, it is unclear whether the beneficial effects of treatment are associated with 

DNA methylation (Silverman et al. 2002; Figueroa et al. 2009).  

 

Neurological Diseases 

 DNA methylation has been strongly implicated in diseases affecting the nervous system either 

directly, by the aberrant methylation of DNA (Kumari and Usdin 2009; Buiting 2010), or indirectly, through 

functional loss of the DNA methyltransferases machinery (Jin et al. 2008; Chestnut et al. 2011; de Greef 

et al. 2011; Klein et al. 2011) or through the disruption of methyl-binding proteins (Amir et al. 1999). 

Fragile X Syndrome, a form of mental retardation, is caused by inactivation of the FMR1 gene through 

aberrant methylation of its promoter sequence. Aberrant methylation is also responsible for loss of 

imprinting in Prader-Willi Syndrome and Angelman Syndrome, which disrupts cognitive development in 

childhood. Mutations in DNMT3B and DNMT1 and the resultant disruption of proper methylation is the 

cause of two rare neuropathies Immunodeficiency, Centromere instability and Facial anomalies 

Syndrome 1/2 (ICF1/2) and Hereditary Sensory and Autonomic Neuropathy type 1, respectively, while all 

three methyltransferases have recently been implicated in Amyotrophic Lateral Sclerosis (ALS), the motor 

neuron degenerative disease. Finally, Rett Syndrome, one of the most studied neurological diseases, is 

caused by the disruption of the methyl-CpG-binding protein, MECP2, and characterized by early-stage 

cognitive decline. 

 Several neurological diseases are directly caused by the aberrant loss or gain of 5mC at a single 

locus including repeat-instability disease (Kumari and Usdin 2009) and imprinting disorders (Robertson 

2005). Fragile X Syndrome, a common form of mental retardation (Martin and Bell 1943), is caused when 

the CGG trinucleotide-repeat within the 5`-UTR of the FMR1 gene extends beyond 200 repeats. At this 

length, the CGG-repeat becomes methylated and the FMR1 gene is silenced leading to improper 

synthesis of neuron-specific proteins (Penagarikano et al. 2007). Recent work has shown that repression 

occurs because FMR1 mRNA hybridizes to the complementary CGG-repeat portion of the FMR1 gene 

(Colak et al. 2014). Future work will reveal how the DNA methyltransferase machinery is recruited to the 

RNA·DNA duplex and whether the hypermethylation can be permanently reversed. Two forms of mental 

impairment can occur when a single imprinted locus is not properly methylated and regulated. Prader-
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Willi Syndrome and Angelman Syndrome are caused by a loss of imprinting either through chromosomal 

loss or by aberrant methylation at the 15q11q13 chromosomal region (Buiting 2010). Prader-Willi occurs 

when imprinting is lost on the paternal allele while Angelman occurs when imprinting is lost from the 

maternal allele (Glenn et al. 1993).  

 Hereditary sensory and autonomic neuropathy type 1 (HSAN1) is the only disease known to be 

caused by mutations in the DNA targeting domain of DNMT1 (Klein et al. 2011). Patients with HSAN1 

suffer from late onset dementia, hearing loss, and loss of pain sensation due to peripheral and central 

neuron degeneration. The disruption of this domain results in premature protein degradation, reduced 

methyltransferase activity, and impaired heterochromatin binding during the G2 cell cycle phase which 

leads to a moderate global loss of methylation, primarily in repetitive satellite elements, and modest site-

specific hypermethylation (Klein et al. 2011). Although DNMT1 is primarily considered to only function in 

dividing cells, these studies ascribe a novel function to DNMT1 in post-mitotic neurons, namely in 

ensuring the proper methylation of pericentric and other condensed portions of the genome (Easwaran et 

al. 2004). 

 The ICF syndromes affect multiple organs and are characterized by mental retardation and 

defective brain development. ICF1 is caused by partial loss-of-function mutations in the catalytic domain 

of DNMT3B and the attendant loss of 5mC at pericentric repeats and gene promoters, which leads to 

dysregulation of genes involved in neurogenesis, immune function, and development (Jin et al. 2008). 

Interestingly, patients with ICF2, a syndrome with identical pathologies as ICF1, have completely 

functional DNA methyltransferase proteins but lack functional copies of the putative transcriptional 

repressor, ZBTB24 (de Greef et al. 2011). Hypomethylation defects are also present in ICF2 patients but 

occur at slightly different pericentric satellites, which implicates ZBTB24 in regulating DNA methylation.  

 ALS is one of a handful of neurodegenerative diseases that results as a consequence of motor 

neuron axonal degradation. Unlike the previously discussed neurological disorders, ALS is an affliction of 

the upper and lower somatic motor neurons located in the spinal cord that enervate skeletal muscles to 

control movement and locomotion. Although less well established, DNA methylation may be associated 

with ALS. One recent study showed that DNA methyltransferases play a role in regulating apoptosis in 

motor neurons, which suggests a novel function for the methyltransferase machinery (Chestnut et al. 
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2011). They show that Dnmt3a mediates apoptosis in chemically or physically challenged motor neurons 

through interactions with the mitochondria and through increasing genomic and mitochondrion 5mC. 

Inhibition of the methyltransferases prevents the induction of apoptosis demonstrating their role in 

maintaining motor neuron viability. Remarkably, motor neurons affected by ALS showed a significant 

overexpression of Dnmt3a as well as hypermethylation of genomic and mitochondrion DNA. This study 

alludes to the possibility of treating ALS with methyltransferase inhibitors. 

 The early onset autism spectrum disorder, Rett Syndrome, is caused by dysfunction of the 

aminergic neurons of the brainstem. The X-linked gene methyl-CpG-binding protein, MECP2, is 

responsible for regulating a cadre of genes involved in neurogenesis and neuron function. MECP2 has 

been shown to act by binding 5mC and recruiting chromatin-modifying factors that reorganize the 

chromatin into a closed and repressive state (Amir et al. 1999) although various studies have suggested 

an activating role of MECP2 (Li et al. 2011). Mutations in MECP2 preclude effective binding to methylated 

cytosines and recruitment of these repressive factors (Chahrour et al. 2008). Encouragingly, the 

restoration of Mecp2 in the post-mitotic neurons of Mecp2-deficient mice recovers most Rett syndrome 

symptoms (Guy et al. 2007) demonstrating that the lack of Mecp2 does not irreversibly damage neurons 

and that Rett is not strictly a neurodevelopment disorder.  

 The occurrence of DNA methylation-associated neurological diseases highlights an under-

appreciated role of DNA methylation, namely in ensuring proper function of post-mitotic cells. Previously, 

DNA methylation was only thought of in the context of cell division and early development. These 

diseases – and the ability to recover normal function in the case of Rett Syndrome – have shifted the 

notion of 5mC as a static, permanent mark, important only in development, to a dynamic mark of 

significant relevance to the human postnatal and adult brain. As we continue to explore the role of 5mC in 

post-mitotic neurons, we will undoubtedly uncover new regulatory functions of the DNA methylation 

machinery and associated binding partners.  

 

TECHNOLOGICAL CHALLENGES AND LIMITATIONS FOR MAPPING DNA METHYLATION  

 Current technologies that measure DNA methylation are limited by cost, sample throughput, the 

requirement for a large amount of starting material, and the inability to analyze DNA methylation of 
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complex tissues. Because PCR amplification erases DNA methylation patterns, a methylation-dependent 

treatment is required before methylation readout. The two main approaches to determining methylation 

patterns or profiles are affinity enrichment and bisulfite treatment. Where previous technologies limited 

DNA methylation analysis to a single locus, the introduction of microarray hybridization experiments and 

next-generation sequencing has permitted the profiling of 5mC at the genomic scale (Laird 2010a). Many 

of the earliest techniques used to measure DNA methylation have been supplanted by next-generation 

sequencing approaches (Esteller 2007). Today, discovery and profiling studies use genome-wide 

approaches while validation and targeted experiments use locus-specific approaches to determine the 

methylation status of the genome in disease and development. 

 

Genome-wide approaches 

 Current genome-wide sequencing-based approaches for DNA methylation analysis vary in 

resolution, coverage, and accuracy (Bock et al. 2010; Harris et al. 2010). Affinity enrichment-based 

techniques (e.g. MeDIP-seq, MethylCap-seq, and MBD-seq) can theoretically cover 100% of the genome 

but at a 100-1,000 base pair resolution. The actual 1x and 10x coverage of affinity enrichment published 

experiments is about 60-67% and 10-20% respectively, which indicates that increased coverage would 

require significant sequencing to reach saturation (Beck 2010). Furthermore, 70-80% of reads of whole 

genome sequencing provide no information of CpG methylation due to the non-uniform distribution of 

CpG dinucleotides (Ziller et al. 2013). Recently developed algorithms when coupled with the methylation-

depletion technique MRE-seq have increased the resolution of these tools to CpG resolution (Stevens et 

al. 2013). The benefit of these methods is the unbiased representation of the genome to include inter- 

and intragenic regions, promoters, and repetitive regions. An alternative whole genome approach to 

methyl-affinity enrichment is whole genome bisulfite shotgun sequencing (MethylC-seq)(Lister et al. 

2009). The treatment of DNA with sodium bisulfite transforms the epigenetic methylation mark into a 

genetic mark by only converting unmethylated Cs to Ts (by uracil)(Frommer et al. 1992) and can 

therefore be translated using sequencing. Bisulfite approaches have quickly become the gold standard for 

methylation analysis because of its single base pair resolution, independence of CpG methylation status, 
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and ability to interrogate almost any region in the genome. The most inclusive platform, MethylC-seq, 

however costs an estimated $30,000 per sample (personal calculation).  

 A more economical alternative to MethylC-seq is reduced representation bisulfite sequencing 

(RRBS), which capitalizes on the non-uniform distribution of CpGs across the genome (Meissner et al. 

2008). Most CpGs are concentrated in CpG Islands (CGI). CGI appear in 60% of promoters and often 

show aberrant methylation in cancer (Jones and Baylin 2007). RRBS enriches for these regions with high 

CpG content, so that, instead of covering the entire genome, RRBS effectively reduces the portion of the 

genome that is sequenced to ~10% (Bock et al. 2010). Furthermore, when detecting differentially 

methylated regions (DMR) between two embryonic stem cell lines, RRBS was able to detect 1,000 DMRs 

with only 15 million reads per sample whereas MeDIP-seq required more than 30 million reads to detect 

1,000 DMRs (Bock et al. 2010). RRBS is an attractive choice for analyzing promoter and CGI 

methylation, which play an important role in regulating genes in human cancers (Jones and Baylin 2007). 

 Until recently, genome-scale DNAme profiling technologies requires a significant amount of 

starting DNA. Targeted padlock probes require >200 ng of bisulfite treated DNA (Deng et al. 2009); 

MeDIP-seq has been optimized for 30-120 ng (Borgel et al. 2010); and MethylC-seq requires several 

micrograms of DNA (Lister et al. 2009). New innovations in Illumina library preparations using 

transposon-mediated adapter insertions, however, have allowed for whole genome bisulfite sequencing 

on 10 ng of DNA (Adey and Shendure 2012). At present, RRBS can be reproducibly performed on <1 ng 

of purified input DNA (Smith et al. 2012). Furthermore, LCM-RRBS, presented in this thesis, functions on 

<2 ng of DNA extracted from laser capture microdissected tissues (Schillebeeckx et al. 2013).  

 

Locus-specific approaches 

 Low-throughput validation assays are common for interrogating the 5mC status of a limited 

number of genomic loci. Whole genome or genome-wide discovery studies identify differentially 

methylated regions, which must be validated independently by orthogonal methods. Various locus-

specific methods exist that vary in complexity, labor, quantitative resolution, and number of CpGs 

interrogated. The most useful and most commonly used techniques fall into three categories: 
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endonuclease techniques, methylation-specific PCR techniques, and bisulfite sequencing techniques. 

Each category has many variations of the basic assay; the basic principals are described here. 

 Methods leveraging the specificity of endonucleases are able to interrogate the qualitative level of 

5mC at one specific CpG or CpH (Xiong and Laird 1997). In this method, broadly referred to as COBRA, 

bisulfite-treated DNA is amplified using primers specific to converted DNA. The DNA is then digested with 

the endonucleases, BstUI and TaqI, which contain a converted or unconverted CG sequence in their 

binding sites. Methylated DNA would prevent bisulfite conversion and therefore eliminate the binding site 

whereby preventing digestion, whereas unmethylated DNA would allow digestion. Various methods 

employ different endonucleases depending on the sequence of the site of interest. The HELP assay does 

not rely on bisulfite conversion (Khulan et al. 2006). Instead, the methylation sensitive and insensitive 

enzyme, HpaII and MspI, are used to digest DNA. The HpaII-digested DNA fraction represents 

unmethylated DNA while the MspI-digested fraction serves as the background, “input” control. Digested 

DNA can either be amplified with site-specific primers or ligated with universal oligonucleotides and 

hybrized to microarrays. COBRA provides a fairly quick qualitative assessment of 5mC at one or two 

specific sites, but is limited by interrogating 5mC at sites with an endonuclease’s sequence recognition 

motif. 

 Methylation-specific PCR techniques also rely on bisulfite conversion to translate 5mC into a 

nucleic acid mark. One such assay, called MethylLight, is quantitative and highly sensitive, capable of 

detecting methylated alleles in the presence of 10,000-fold excess unmethylated alleles (Eads et al. 

2000). In the MethylLight assay, genomic DNA is first bisulfite treated to create methylation-dependent 

sequence differences. Quantitative PCR is next performed using primers that overlap CpG regions and 

only anneal if methylated (unconverted). The PCR reaction can also be done under non-quantitative 

conditions and visualized on an agarose gel to qualitatively assess methylation levels. Like restriction-

based assays, methylation-specific PCR only interrogates one CpG per reaction, which significantly limits 

the assay’s throughput and utility. 

 The most common locus-specific methylation mapping method, bisulfite-specific PCR, consists of 

bisulfite conversion, PCR amplification, and sequencing (Sasaki et al. 2003). Bisulfite conversion of DNA 

can result in the creation of abasic DNA backbones resulting in brittle DNA that easily degrades or 
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sheers. Large amplicons are, therefore, difficult to amplify by bisulfite-specific PCR. Nonetheless, 600-

1,000 base pair amplicons can readily be amplified from bisulfite converted DNA using primers designed 

to anneal to converted DNA. Here, the primers do not contain any CpG sequence which allows for 

unbiased, methylation-agnostic amplification. Amplified products can be sequenced using next-gen (e.g. 

Illumina) sequencing, Sanger sequencing, or pyrosequencing. For Illumina sequencing, primers are 

typically designed with Illumina adapters in the tails; amplicons can also be sequenced using standard 

library preparation methods. Percent methylation is calculated by determining the fraction of total reads 

that are methylated. Sanger sequencing requires that amplicons be ligated into a vector and individual 

clones sequenced. Because each clone represents an individual molecule, 10-15 clones must be 

sequenced to accurately quantify the percent methylation. Finally, if a biotinylated primer is used during 

the PCR amplification, the amplicon can be sequenced using a pyrosequencing machine. Here, additional 

primers designed roughly 30 base pairs from a CpG are annealed to complete the sequencing reaction. 

Because pyrosequencing is inherently quantitative, percent methylation can be directly calculated from 

the reaction. Successful bisulfite-specific PCR on a single locus has been performed on as little as 8 cells 

collected from an embryo and laser capture microdissected tissue samples. (Millar et al. 2002). Bisulfite-

specific PCR is robust, sensitive, and allows for the interrogation of all CpGs within an individual 

amplicon. 

 

SCOPE OF THESIS WORK 

 Although often considered homogenous, tumors consist of histologically diverse tissues 

(Weinberg 2007) that display intratumor heterogeneity in gene expression, genotype, and metastatic and 

proliferative potential (Fidler et al. 1979; Heppner 1984). This heterogeneity impedes the investigation 

and treatment of tumors because tissue samples may not be representative of the entire tumor (Michor 

and Polyak 2010). Therefore, the ability to profile methylation genome-wide in a small number of cells is 

crucial to analyzing 5mC in complex tissues like tumors. Such a tool would enable the use of laser 

capture microdissection to separate heterogeneous cell types from one another. This thesis describes a 

novel method, called Laser Capture Microdissection-Reduced Representation Bisulfite Sequencing (LCM-

RRBS), that accurately maps genome-wide 5mC of cells isolated using laser capture microdissection. 
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The method was applied to understand what 5mC changes, if any, occur in gonadectomy-induced 

adrenocortical neoplasias in mice. Furthermore, LCM-RRBS was applied to pure motor neuron cultures at 

early and late stages to elucidate the role of 5mC in motor neuron maturation. 

 Chapter 2 addresses the need for a novel technique that can map 5mC genome-wide of very few 

cells. I show that LCM-RRBS accurately and reproducibly profiles genome-wide methylation of DNA 

extracted from microdissected fresh frozen or formalin-fixed paraffin-embedded tissue samples. The 

LCM-RRBS method adapts Illumina library preparation techniques to minimize sample loss and to pool 

multiple samples together and uses laser capture microdissection (LCM) to isolate specific populations of 

cells. I applied LCM-RRBS to character the methylation of adrenocortical neoplasias and was able to map 

genome-wide 5mC of isolated neoplastic and adjacent normal tissue using less than 10 mm2 of fresh 

frozen tissue. In one multiplexed experiment, we interrogated the methylation status of >13,000 

promoters and >13,000 CpG Islands of 6 tissue samples (3 neoplastic and 3 normal representing 3 

different mice) across an average of >800,000 CpGs per sample. We identified 37 and 8 promoters of 

genes implicated in adrenal and gonadal function that showed significant loss or gain of 5mC, 

respectively, in neoplastic relative to normal tissues. This chapter is the proof-of-concept for LCM-RRBS 

and demonstrates the method’s utility. 

 Chapter 3 is a follow-up to the study described in Chapter 2. We hypothesized that adrenocortical 

neoplasms that result from gonadectomy develop a gonadal phenotype. To test this hypothesis, we took 

several approaches. First, we show that Igfbp6 and Foxs1, which are differentially methylated, are also 

differentially expressed at the transcript and protein level between neoplastic and normal adrenal tissues. 

Second, we applied transcriptome profiling to identify three novel gonadal markers that were upregulated 

in adrenocortical neoplasms. Finally, enrichment analysis demonstrated that genes upregulated in the 

adrenal glands of gonadectomized mice were more likely to be highly expressed in ovary or testis but not 

in the non-steroidogenic tissue brain. Furthermore, genes downregulated in the adrenal glands of 

gonadectomized mice were more likely to be highly expressed in the normal adrenal tissue. Together, 

these findings suggest that adrenal neoplasms exhibit mixed characteristics of male and female gonadal 

somatic cells and, therefore, represent a possible example of cell type transformation involving 5mC 

configuration. 
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 In Chapter 4, I describe the 5mC profiles of early and late stage maturing motor neurons using 

LCM-RRBS. The Hb9-puro RW4 mouse embryonic stem cells have a puromycin transgene driven by the 

Hb9 enhancer. Hb9 is exclusively expressed in motor neuron precursors and early differentiated motor 

neurons allowing for the selection of pure populations of motor neurons in culture. We find that motor 

neurons lose and gain 5mC at 2,894 and 1,147 CpGs, respectively, between 24 hours and four days after 

selection with puromycin. Many of the hypomethylated CpGs were near genes important for motor neuron 

function that showed a gain in expression over time. I show that hypomethylated regions are enriched for 

known motor neuron-specific transcription factors like Isl1, Lhx3, Phox2a, and Tbx20. Furthermore, we 

show that motor neurons gain 5-hydroxymethylation (5hmC) as they mature. Because Hb9-expressing 

cells are post-mitotic, this configuration in 5mC is due to active pathways suggesting a role for Dnmt3a, 

Dnmt3b, and the Tet family of proteins. To test this hypothesis, we derived Tet1, Tet2, and Tet3 single, 

double, and triple knockout Hb9-puro lines using the CRISPR/Cas9 genome engineering system. We find 

that individual Tet genes are dispensable for motor neuron differentiation and maturation and, therefore, 

play redundant roles. Knockout of Tet1 and Tet2 together significantly reduced differentiation potential but 

resulted in mature motor neurons and normal 5hmC gains over time. Finally, knockout of all three Tet 

genes prevented efficient differentiation and resulted in the differentiation of very few mature motor 

neurons. Together, our findings highlight a new role for 5mC and 5hmC in motor neurons suggesting 

5mC and 5hmC configuration during motor neuron development is necessary for proper functional 

maturation. 

 This body of work makes several contributions to the field of DNA methylation. First, the 

development of LCM-RRBS allows for genome-wide 5mC mapping of laser capture microdissected 

tissues and of limited DNA input. Second, this study provides the first detailed examination of 5mC 

patterns in gonadectomy-induced adrenocortical neoplasms. Finally, this study provides the first 

evaluation of 5mC and 5hmC in maturing motor neurons and provides the first evidence of an important 

role for the Tet demethylation machinery in normal motor neuron maturation.   
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CHAPTER 2: LASER CAPTURE MICRODISSECTION-REDUCED REPRESENTATION BISULFITE 

SEQUENCING (LCM-RRBS) MAPS CHANGES IN DNA METHYLATION ASSOCIATED WITH 

GONADECTOMY-INDUCED ADRENOCORTICAL NEOPLASIA IN THE MOUSE 

Published in Nucleic Acids Research (2013). 

ABSTRACT 

 DNA methylation is a mechanism for long-term transcriptional regulation and is required for 

normal cellular differentiation. Failure to properly establish or maintain DNA methylation patterns leads to 

cell dysfunction and diseases such as cancer. Identifying DNA methylation signatures in complex tissues 

can be challenging due to inaccurate cell enrichment methods and low DNA yields. We have developed a 

technique called Laser Capture Microdissection-Reduced Representation Bisulfite Sequencing (LCM-

RRBS) for the multiplexed interrogation of the DNA methylation status of CpG Islands and promoters. 

LCM-RRBS accurately and reproducibly profiles genome-wide methylation of DNA extracted from 

microdissected fresh frozen or formalin-fixed paraffin-embedded tissue samples. To demonstrate the 

utility of LCM-RRBS, we characterized changes in DNA methylation associated with gonadectomy-

induced adrenocortical neoplasia in the mouse. Compared to adjacent normal tissue, the adrenocortical 

tumors showed reproducible gains and losses of DNA methylation at genes involved in cell differentiation 

and organ development. LCM-RRBS is a rapid, cost-effective, and sensitive technique for analyzing DNA 

methylation in heterogeneous tissues and will facilitate the investigation of DNA methylation in cancer and 

organ development. 
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INTRODUCTION 

 DNA methylation has long been recognized to play a role in normal cellular differentiation and 

development. Methylation most often occurs at the cytosine of a cytosine-guanine dinucleotide (CpG) and 

acts to down-regulate gene expression (Bird and Wolffe 1999). Disruption of the DNA methylation 

machinery can lead to imprinting disorders (Robertson 2005), repeat-instability disease (Kumari and 

Usdin 2009), and neurological defects (Chahrour et al. 2008; Jin et al. 2008). 

 DNA methylation has been shown to play an important role in cancer progression. Tumors often 

display a global loss of methylation, or hypomethylation, at repetitive elements, which is thought to 

destabilize the genome through transposon-mediated rearrangements (Goelz et al. 1985; Wilson et al. 

2007), activate growth promoting oncogenes (Wilson et al. 2007), and cause de-differentiation through 

the loss of imprinting (Reik and Lewis 2005). An abnormal gain of methylation, or hypermethylation, at 

gene regulatory elements also contributes to tumorigenesis by silencing tumor suppressor genes involved 

in DNA damage repair, cell cycle control and other processes (Jones and Baylin 2002). This aberrant 

methylation may be due, at least in part, to recurring mutations in genes that are involved in epigenetic 

regulation (Stratton 2011; Ryan and Bernstein 2012), such as DNA methyltransferases, which are 

commonly mutated in acute myeloid leukemia (Ley et al. 2010), and chromatin remodeling enzymes, 

which are frequently mutated in renal carcinomas and pancreatic neuroendocrine tumors (Dalgliesh et al. 

2010; Jiao et al. 2011). 

 Accurate analysis of DNA methylation is complicated by the heterogeneous nature of normal and 

diseased tissues. Normal tissues contain cells at different stages of differentiation/maturity. Tumors also 

consist of histologically diverse cell types (Weinberg 2007; Shackleton et al. 2009) and display intratumor 

heterogeneity in gene expression (Dalerba et al. 2011), genotype (Navin et al. 2010; Navin et al. 2011), 

and metastatic and proliferative potential (Fidler et al. 1979; Heppner 1984). Therefore, the analysis of 

gross tumor samples often obscures the diverse cell types that comprise the entire tumor (Michor and 

Polyak 2010). To assess cell type specific DNA methylation of complex tissues, cell isolation techniques 

must be used. Laser capture microdissection (LCM) has enabled researchers to separate specific cell 

types from heterogeneous tissues (Espina et al. 2006). DNA yields from such samples, however, are too 

small to use with current methods for genome-wide DNA methylation analysis. Moreover, clinical samples 
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are typically fixed in formalin and embedded in paraffin, further compromising DNA quality. For these 

reasons, the genome-wide mapping of DNA methylation in LCM samples has not been previously 

demonstrated. 

 Current DNA methylation analysis methods are limited by the number of loci interrogated, 

quantity and quality of DNA input required, and sample throughput (Laird 2010b). Methods that function 

on a very small number of cells interrogate only a few genomic loci and are challenging to implement 

(Dietrich et al. 2009; Herrmann et al. 2011). Furthermore, few methods function on clinical samples that 

are formalin-fixed and paraffin-embedded (FFPE) (Dietrich et al. 2009). Genome-wide DNA methylation 

methods are limited by the input of DNA. Affinity enrichment techniques like MeDIP-Seq (Taiwo et al. 

2012), MDB-seq (Serre et al. 2010), MethylCap-seq (Brinkman et al. 2010) require 0.16 – 5 µg of DNA 

input and are limited to a 150- to 200-bp resolution. Other global methods, like CHARM (Irizarry et al. 

2008) and padlock probes (Ball et al. 2009; Diep et al. 2012) also require large DNA inputs. MethylC-seq, 

the only truly whole genome approach (Lister et al. 2009), is prohibitively expensive when many samples 

need to be analyzed. Reduced Representation Bisulfite Sequencing (RRBS) can map genome-wide DNA 

methylation of limited DNA samples (Smith et al. 2012), but has not been demonstrated to function on 

small amounts of DNA recovered from FFPE samples or on samples collected by LCM. 

 Here, we describe a new technique termed Laser Capture Microdissection-Reduced 

Representation Bisulfite Sequencing (LCM-RRBS) that can interrogate genome-wide DNA methylation 

patterns in samples collected from complex heterogeneous tissues. As a proof of principle, we have used 

LCM-RRBS to analyze global DNA methylation changes associated with adrenocortical neoplasia in the 

mouse. In response to gonadectomy (GDX) and the ensuing rise in serum gonadotropin levels, sex 

steroid-producing neoplasms accumulate in the subcapsular region of the adrenal cortex of certain strains 

of mice, including DBA/2J (Bielinska et al. 2006b). This phenomenon is thought to reflect gonadotropin-

induced metaplasia of stem/progenitor cells in the adrenal cortex, although the term neoplasia is used 

more often than metaplasia to describe the process (Bielinska et al. 2006b).The molecular basis of GDX-

induced adrenocortical neoplasia is unknown (Bernichtein et al. 2008b; Krachulec et al. 2012), but it has 

been hypothesized that DNA methylation and other epigenetic modifications may impact the phenotypic 

plasticity of adrenocortical stem/progenitor cells allowing them to respond to the rise in circulating 
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gonadotropins (Bielinska et al. 2009). GDX-induced adrenocortical neoplasia in the mouse is an ideal 

phenomenon to study using LCM-RRBS because of the limited amounts of tissue that can be collected. 

 

RESULTS 

LCM-RRBS 

 Reduced Representation Bisulfite Sequencing (RRBS) is an established methylation analysis 

method that can interrogate most CGIs and promoters across the entire genome. Current RRBS 

protocols however, do not allow for multiplexing and have not been demonstrated on samples isolated by 

LCM. Furthermore, although RRBS has been used to analyze small amounts of high quality DNA (Smith 

et al. 2012), it has not been applied to less than 1 µg of DNA extracted from formalin-fixed paraffin-

embedded (FFPE) samples (Gu et al. 2010), the most common method used to preserve clinical tissue 

samples. We therefore sought to develop a method to analyze small amounts (1 ng) of DNA from laser 

capture microdissected samples and from FFPE-preserved samples and to interrogate multiple samples 

in parallel.  

 Our protocol removes most clean-up steps, which ensures DNA samples are not lost, and 

leverages the capabilities of Illumina indexing to pool samples prior to size selection and sequencing, 

thus dramatically increasing the number of samples that can be processed in parallel (Figure 2.1). LCM-

RRBS digests genomic DNA with MspI to create fragments with a 5` CpG end. Digested fragments are 

blunted, adenylated, and ligated with methylated sequencing adapters then column purified to remove 

excess adapters. To convert the epigenetic methylation mark into a genetic mark that can be read 

through genomic sequencing, adapter-ligated fragments are treated with bisulfite. At this stage, converted 

DNA is amplified with a low-cycle PCR to introduce sample-specific indexes. Once each sample is 

‘indexed,’ samples are pooled prior to gel electrophoreses and the isolation of 40-220 base pair 

fragments. The purified, pooled library is PCR enriched using universal primers and sequenced on the 

Illumina platform to generate 42 base pair reads. Using our modified method, we can interrogate CpGs 

genome-wide from laser capture microdissected samples freshly frozen or previously preserved through 

formalin-fixing and paraffin-embedding. 
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LCM-RRBS accurately measures genome-wide DNA methylation of fresh frozen and formalin-fixed 

paraffin-embedded samples 

 To evaluate the performance of LCM-RRBS, we benchmarked it against RRBS. Using 1 ng and 

400 ng for LCM-RRBS and RRBS, respectively, we compared the genome-wide DNA methylation status 

of DNA isolated from human blood leukocytes. We did not do LCM on the 1 ng of purified DNA; instead, 

we only applied the downstream library preparation of the LCM-RRBS protocol (Figure 2.1). LCM-RRBS 

was able to interrogate >75% of CGIs and >65% of gene promoters, results that were similar to those 

obtained by RRBS (Figure 2.S1). LCM-RRBS was able to accurately measure the DNA methylation levels 

of CGIs and core promoters (Figure 2.2A) as well as individual CpG dinucleotides (Figure 2.S2). 

Increasing the required coverage for each CpG considered for CGI methylation did not significantly alter 

the concordance between RRBS and LCM-RRBS (Figure 2.S3). For CGIs (n = 18,448) and promoters (n 

= 8,500) having at least 50 methylation measurements, we observed a Pearson correlation of 0.98 and 

0.94, respectively, between 1 ng and 400 ng (Figure 2.2A). Most CGIs are either highly methylated (80-

100%) or highly unmethylated (0-20%). We therefore sought to test how well LCM-RRBS could call a CGI 

as methylated or unmethylated. For CGIs with at least 50 high-quality CpG measurements, LCM-RRBS 

identified methylated CGIs with 91% sensitivity and 99% specificity and unmethylated CGIs with 97% 

sensitivity and 94% specificity when compared to the RRBS dataset. We therefore conclude that LCM-

RRBS functions on as little as 1 ng of genomic DNA, interrogates most CGIs and promoters, and is very 

accurate. 

 Human clinical samples are usually stored as either fresh frozen or FFPE specimens. Mapping 

DNA methylation in the latter, however, can be challenging because formalin fixation degrades DNA. 

Most DNA methylation techniques that have been used on FFPE samples require greater than 1 µg of 

DNA or can only interrogate a few loci. To validate the reproducibility of LCM-RRBS and demonstrate its 

universal clinical applicability, we performed methylation profiling on 1 ng samples of DNA from a primary 

endometrial carcinoma, half of which was fresh frozen and the remainder which was formalin-fixed and 

paraffin-embedded. Methylation of CGIs and promoters was highly concordant between fresh frozen and 

FFPE samples (Pearson correlation 0.98 and 0.97, respectively; Figure 2.2B). CGI and promoter 

methylation correlated strongly between FFPE technical replicates (Pearson correlation 0.97 and 0.95, 
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respectively; Figure 2.S4). We also observed high concordance across individual CpGs between fresh 

frozen and FFPE tumor samples with a Pearson correlation of 0.96 (Figure 2.S2). LCM-RRBS, therefore, 

can accurately interrogate genome-wide methylation of 1 ng extracted from FFPE samples. 

 

LCM-RRBS is robust across fresh frozen and formalin-fixed paraffin-embedded laser capture 

microdissected samples 

 In situ analysis of DNA methylation is challenging due to the heterogeneous nature of complex 

tissues. In order to interrogate only cells of interest in biological and clinical samples, LCM techniques 

must be used to enrich for a specific cell type. Current genome-wide DNA methylation methods, however, 

have not been demonstrated to function on LCM-collected samples. We therefore set out to evaluate the 

performance of LCM-RRBS on fresh frozen and FFPE samples collected by LCM.  

 Because the cellular architecture of a normal liver is homogeneous, the methylation state should 

be very similar throughout the organ. Thus, the liver serves as the ideal tissue for benchmarking the LCM-

RRBS method against the RRBS gold standard, since each microdissected region should have a very 

similar methylation pattern to that of the bulk tissue. We harvested the liver of C57BL/6J mice and 

prepared the liver using standard preservation techniques. Separate regions of the liver were either 

directly snap frozen, preserved in Tissue-Tek O.C.T. compound and then snap frozen, or preserved using 

formalin-fixation and paraffin-embedding. Bulk DNA was extracted from the snap frozen sample and used 

for downstream RRBS analysis. To determine whether the process of LCM alters the methylation of DNA 

and to assess the lower limits of LCM-RRBS, we applied LCM-RRBS to samples collected from 20 mm2, 

10 mm2, 5 mm2, and 2 mm2 of the fresh frozen and FFPE mouse liver and compared the DNA 

methylation patterns to those determined by performing RRBS on 400 ng of DNA extracted from the bulk 

fresh frozen liver tissue. As observed with 1 ng of DNA, most CGIs and promoters were represented even 

when only 2 mm2 of tissue was collected (Figure 2.S5). Furthermore, CGI (mean Pearson = 0.98) and 

promoter (mean Pearson = 0.96) methylation showed high concordance across all fresh frozen samples 

(Figure 2.3A) when compared to 400 ng of DNA. For samples collected from 2 mm2 of microdissected 

tissue, LCM-RRBS identified unmethylated (0-20%) CGIs with 88% sensitivity and 99% specificity and 

methylated (80-100%) CGIs with 99% specificity and 87% sensitivity. While the interrogation of DNA 
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methylation of 2 mm2 of fresh frozen tissue was robust, 20 mm2 of FFPE tissue was required for accurate 

analysis. Using 20 mm2 of FFPE starting material, LCM-RRBS showed 79% sensitivity and 99% 

specificity for calling unmethylated (0-20%) CGIs and 99% sensitivity and 78% specificity for calling 

methylated (80-100%) CGIs with a Pearson correlation of 0.95 (Figure 2.3B). Samples collected from less 

than 20 mm2 of FFPE tissue, however, showed poor CGI, promoter, and CpG correlations as compared 

to 400 ng (data not shown). We conclude that the process of LCM does not alter DNA methylation and 

that LCM-RRBS accurately determines methylation patterns from as little as 2 mm2 of fresh frozen tissue. 

FFPE tissue is more problematic requiring an area of at least 20 mm2 to achieve acceptable, but not 

exceptional performance. 

 

Evaluation of PCR Bias 

 PCR amplification of small amounts of bisulfite-treated DNA can result in PCR bias and 

inaccurate DNA methylation calling (Warnecke et al. 1997). In DNA samples obtained from females, the X 

chromosome serves as a good internal control for assessing PCR bias, since X inactivation methylates 

one copy of the X chromosome at most loci. To determine if LCM-RRBS suffers from PCR bias, we 

analyzed the fraction of molecules that were methylated at loci known to be affected by X inactivation.   

As expected, the majority (>70%) of CGIs on the X chromosome showed an intermediate level (30-70%) 

of DNA methylation across all fresh frozen samples and the 20 mm2 FFPE sample (Figure 2.S6), 

demonstrating that LCM-RRBS shows little PCR bias. We conclude that LCM-RRBS shows little PCR 

bias across 2 mm2 of fresh frozen tissue and 20 mm2 of FFPE tissue. 

 

Analysis of GDX-induced adrenocortical neoplasia in the mouse using LCM-RRBS 

 To demonstrate the utility of LCM-RRBS in a biological setting, we applied the method to analyze 

the DNA methylation of neoplasms that arise in the adrenal cortex of DBA/2J mice after GDX. Although 

genetic factors have been identified that influence susceptibility to GDX (Bernichtein et al. 2008b; 

Krachulec et al. 2012), little is known about the role DNA methylation plays in the formation of GDX-

induced neoplasia. Molecular characterization is further complicated because mice adrenal glands are 

only 0.1 cm2 in size and neoplasms arise among normal tissues requiring LCM enrichment methods for 
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tissue isolation. We therefore applied LCM-RRBS to neoplastic and adjacent normal mouse adrenal 

tissues (Figure 2.4). 

 In one multiplexed experiment, we interrogated the methylation status of >13,000 promoters and 

>13,000 CGIs of 6 tissue samples (3 neoplastic and 3 normal representing 3 different mice) across an 

average of >800,000 CpGs per sample (Figure 2.4 and Table 2.S1). Using a threshold difference of at 

least 10%, 37 promoters were significantly hypomethylated and 8 promoters were significantly 

hypermethylated (P < 0.05, FDR adjusted; Table 2.1 and Table 2.S2) in the neoplasms compared to 

adjacent normal tissue. Many of the top hypo- and hypermethylated genes have been implicated in cell 

fate determination and differentiation, including adrenocortical formation (Tinagl1), gonad development 

(Foxs1, Wdr63, Tmem184a), pancreas development (Nsmce1), kidney development (Hoxc10, Dpep1), 

prostate development (Il17rc, Ano7), and muscle and skeletal development (Myo18b, Trim63, Lmod3, 

Meox1). The observed methylation changes suggest the neoplastic tissue may arise due to aberrant gene 

expression of genes normally silent in adrenocortical cells or the silencing of adrenal-specific markers. To 

validate our findings, we performed bisulfite-specific polymerase chain reaction (BSP) followed by 

sequencing of 3 hypomethylated promoters and 1 hypermethylated promoter on neoplastic and normal 

tissues isolated by LCM. For all promoters tested, BSP showed a significant difference (Fisher’s exact 

test, P < 10-15) in DNA methylation between the neoplasia and normal tissue as predicted by LCM-RRBS 

(Figure 2.5). Taken together, these results demonstrate that LCM-RRBS can identify differentially 

methylated genes in a complex tissue and reveal functionally relevant epigenetic effects. 

 

DISCUSSION 

 Current DNA methylation mapping techniques are limited by input and the number of loci 

interrogated. RRBS, a genome-wide DNA methylation mapping technique, was recently shown to function 

on 0.5 to 10 ng of genomic DNA isolated from mouse embryos (Smith et al. 2012). RRBS, however, has 

not been demonstrated to function on LCM samples collected from FFPE tissue nor is it amenable to 

large scale sample processing. We have developed a new method, LCM-RRBS, which can accurately 

profile genome-wide DNA methylation of many LCM samples in parallel at single base pair resolution. 
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 Our method can be implemented in 3-4 days, and the bulk of the protocol can be automated for 

high-throughput 96-well experiments. While traditional RRBS requires each processed sample to undergo 

gel extraction, a laborious process when processing more than a few samples, our method pools all 

samples together prior to gel extraction, reducing the required number of gel extractions to one. Thus, a 

large number of samples can be easily processed at a single time. Furthermore, because high DNA loss 

results from gel extraction, pooling samples prior to gel extraction allows the use of low (1 ng) DNA 

inputs. 

 The LCM-RRBS protocol affords a significant reduction in sequencing costs compared to whole 

genome bisulfite sequencing.  We typically collect 1.5 gigabases (GB) per sample, which is considerably 

less than the ~60 GB needed for 20x coverage of a whole genome bisulfite library. The sequencing cost 

per sample can be reduced further if fewer CpGs are interrogated. For example, if a smaller size fraction 

is isolated during gel extraction, only about 0.75 GB are required per sample. 

 We found that although formalin-fixation and paraffin-embedding does not alter DNA methylation 

per se, at least 20 mm2 of tissue must be isolated for accurate DNA methylation profiling. We were able to 

create LCM-RRBS libraries from 10 mm2, 5 mm2, and 2 mm2 of FFPE tissue and obtained similar 

numbers of sequencing reads as with fresh frozen samples, but overall mapping quality was very low 

(~30% aligned) in the FFPE samples, precluding an accurate analysis of DNA methylation. On the other 

hand, LCM-RRBS generated high quality methylation maps from 2 mm2 of microdissected fresh frozen 

tissue, as demonstrated by our analysis of mouse liver. 

 To demonstrate the utility of LCM-RRBS, we analyzed the DNA methylation patterns of GDX-

induced adrenocortical neoplasms using an average of 5.5 mm2 of fresh frozen tissue. We hypothesized 

that aberrant DNA methylation changes could be involved in the formation of these neoplastic tissues. 

Indeed, recent studies have shown that altered DNA methylation can redirect cell fate in endocrine 

tissues (Dhawan et al. 2011a).  Conditional mutagenesis of the mouse Dnmt1 gene, which encodes the 

maintenance DNA methyltransferase, converts insulin-producing pancreatic β-cells into glucagon-

producing α-cells (Dhawan et al. 2011a).  It is thought that because of a common developmental origin, β- 

and α-cells share general epigenetic programs that provide a compatible environment for cell fate 

conversions (Akerman et al. 2011). GDX-induced adrenocortical neoplasia may be another example of 
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DNA methylation-regulated cell fate conversion in an endocrine tissue; in this case, adrenocorticoid-

producing cells become sex-steroid producing cells (Bielinska et al. 2003b; Bielinska et al. 2005; Johnsen 

et al. 2006b).  The changes in DNA methylation we observe around the transcription start site (TSS) 

could lead to changes in gene expression (Brenet et al. 2011; Hartung et al. 2012). Several of the genes 

we found to be differentially methylated in GDX-induced adrenocortical neoplasms have established roles 

in adrenocortical or gonadal development.  For example, Tinagl1, a gene implicated in adrenal zonation 

(Mukai et al. 2003; Li et al. 2007), showed a gain in DNA methylation, which could lead to down-

regulation. Wdr63, Foxs1, and Tmem184a, genes involved in gonadal development (Svingen et al. 2007; 

Best et al. 2008; Bonilla and Xu 2008; Sato et al. 2008), showed a loss of DNA methylation, which could 

lead to the aberrant expression of these gonadal-like markers in the adrenal cortex. Furthermore, Srd5a3, 

a gene involved in the biosynthesis of the potent androgen 5α-dihydrotestosterone (Uemura et al. 2008), 

showed a loss of DNA methylation, which could enhance the ectopic production of sex steroids in the 

adrenal gland (Payne and Hales 2004). Future studies will explore the role of these methylation changes 

in the pathogenesis of GDX-induced adrenocortical neoplasia. 

 In conclusion, LCM-RRBS is a robust, cost-effective method for the DNA methylation analysis of 

heterogeneous tissues. This technique allows the study of tumor evolution and epigenetic heterogeneity 

in situ of less than 1 ng (~150 cells) and can also be applied to investigate the role of DNA methylation in 

cell fate specification during tissue development. LCM-RRBS is an important milestone toward highly 

parallel in situ analysis of single cells. We anticipate that this protocol will greatly facilitate the analysis of 

any sample that contains multiple cell types. 
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MATERIALS AND METHODS 

 

Experimental mice 

 Procedures involving mice were approved by an institutional committee for laboratory animal care 

and were conducted in accordance with NIH guidelines for the care and use of experimental animals. 

C57BL/6J and DBA/2J mice were purchased from Jackson Laboratories (Bar Harbor, ME).  Mice were 

anesthetized and ovariectomized at 3-4 weeks of age (Bielinska et al. 2005). 

 

DNA extraction 

 Human tumor specimens were collected under an Institutional Review Board (IRB)-approved 

protocol. Immediately after surgery, a human endometrial tumor was divided in half. One half was fresh 

frozen while the other was formalin-fixed and paraffin-embedded (FFPE). 50 mg of fresh frozen 

endometrial tumor was cut into small pieces with a sterile scalpel blade and DNA extracted using the 

Maxwell 16 Tissue DNA Purification Kit (AS1030, Promega). The formalin-fixed paraffin-embedded 

preserved portion was cut into 6-µm sections onto microscope slides. Four 4 mm2 slices were scratched 

off the slide with a sterile scalpel blade, combined in 80 µl buffer and proteinase K (740901.50, Clontech), 

and incubated overnight at 65°C. Liver tissue was harvested from C57BL/6J mice and divided in half. One 

half was preserved in Tissue-tek optimal cutting temperature (O.C.T.) compound (25608-930, VWR) and 

snap frozen, while the other half was formalin-fixed and paraffin-embedded for downstream bulk DNA 

extraction and LCM. Fresh frozen, FFPE, and LCM samples were purified using NucleoSpin Tissue XS 

columns (740901.5, Clontech) following the protocol for laser-microdissected tissue and eluted in 20 µl of 

nuclease-free water. Genomic DNA was quantified using the Quant-it dsDNA High Sensitivity kit 

(Invitrogen) and the Qubit fluorometer (Invitrogen). 

 

Laser Capture Microdissection 

 Adrenal glands were harvested from mice 3 months after ovariectomy. Liver and adrenal 

cryosections (10 µm) were collected on membrane slides (PEN-Membrane 2.0 µm; Leica) designed to 

free the dissectate from the remainder of the tissue section.  Adrenal tissue sections were fixed in 
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acetone (5 sec, -20°C), stained with hematoxylin and eosin (H&E) or crystal violet, and dehydrated by 

passage through successively higher concentrations of ethanol followed by xylene. FFPE livers sections 

were deparaffinised and dehydrated using standard methods.  LCM was performed using a Leica 

LMD6000 microscope.  Dissectates were collected in SDS/proteinase K for genomic DNA isolation 

(740901.5, Clontech). 

 

RRBS and LCM-RRBS 

 RRBS was performed on 400 ng of commercially purchased leukocyte genomic DNA (D1234148, 

Amsbio) and genomic DNA extracted from a mouse liver as previously described (Gertz et al. 2011). For 

LCM-RRBS, leukocyte genomic DNA (1 ng), extracted endometrial tumor genomic DNA (1 ng), and LCM 

DNA samples were incubated overnight at 37°C with 20 U of the methylation insensitive restriction 

enzyme MspI (R0106S, NEB) and 2 µl of 10 x NEBuffer 2 in a 18 µl reaction. Without subsequent 

purification, fragment ends were filled in and an adenosine added with 10 U of Klenow Fragment (3` à 5` 

exo-, M0212L, NEB), 0.04 mM dGTP, 0.04 mM dCTP, 0.4 mM dATP, and 1x NEB Buffer 2 in a final 

volume of 22.4 µl. The reaction was incubated at 30°C for 20 min, 37°C for 20 min, and heat inactivated 

at 75°C for 20 min. Pre-annealed methylated paired-end Illumina indexing adapters (Adap1: 

ACACTCTTTCCCTACACGACGCTCTTCCGATCT, Adap2: P-

GATCGGAAGAGCACACGTCTGAACTCCAGTCAC; P = phosphate) at a concentration of 0.26 mM were 

ligated overnight at 16°C to the ends of the DNA fragments using 1200 U of T4 DNA Ligase (M0202L, 

NEB) in 1x Ligase Buffer at a final volume of 28.9 µl. These adapter oligonucleotides are only 

complementary at 13 bases which, after annealing, form a “Y” structure. Because excess adapters 

prevent the complete conversion of CpGs at the MspI digestion site, adapter-ligated fragments are 

purified using MinElute columns (Qiagen) and eluted twice with 11 µl of warm EB buffer. The purified 

products were treated using the EZ DNA Methylation Gold Kit (D5005, Zymo). Samples were eluted in 11 

µl of M-Elution buffer. To incorporate the sample-specific index, 3 µl of each bisulfite treated sample was 

amplified in triplicate with 0.2 µM of indexed primers (PCR1: 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT; PCR2: 

CAAGCAGAAGACGGCATACGAGATNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTCCGA, 
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N=index), 5 U of Platinum Taq Polymerase (10966-034, Invitrogen), 1x PCR buffer, 2 mM MgCl2, 0.5 M 

betaine (B0300, Sigma), 1 mM dNTP, in a 10 µl reaction using the following cycling conditions: 98°C for 2 

min, 12 cycles of 98°C for 30 sec and 65°C for 2 min. All PCR products and replicates were pooled and 

analyzed by electrophoresis on a 3% 1X Tris-acetate-EDTA (TAE) NuSieve agarose gel (50090, Lonza) 

using a voltage of 5 V/cm until the blue loading dye was 6-7 cm away from the loading well. Fragments 

between 150 bp and 350 bp were extracted and purified using MinElute columns (Qiagen) and 15 µl of 

warmed EB buffer. Prior to final library PCR enrichment, the minimum cycle number must be determined 

to ensure no PCR bias. Using 2 µl of eluted product and 0.2 µM universal primers (Pool1: 

CAAGCAGAAGACGGCATACGAGAT, Pool2: AATGATACGGCGACCACCGAGATCT), multiple PCR 

reactions with a final volume of 50 µl are set up using the previous conditions but varying the cycle 

number from 10 – 16 cycles. 10 µl of each PCR product is analyzed through electrophoresis on a 4-20% 

Precast TBE gel (3450059, BioRad) and stained with Sybr Gold (S-11494, Invitrogen) for 15 min and 

imaged. In order to minimize PCR bias, the final PCR library is amplified in quadruplicate using the 

previous PCR conditions and the minimum cycle number (typically ~14) that shows amplification only 

within the 150-350 bp range on the Sybr Gold stained TBE gel. The four replicates are pooled and gel 

extracted as previously mentioned to remove remaining adapter dimers and primers, then purified, and 

sequenced on Illumina HiSeq 2000 machines.  

 

Bisulfite-specific PCR 

 Neoplastic and adjacent normal mouse adrenocortical tissue was collected and bisulfite treated 

using the EZ DNA Methylation-Direct kit following the manufacturer’s instructions for LCM samples eluting 

with 15 µl of Nuclease-free water (D5020, Zymo). Bisulfite-specific PCR primers were designed using 

MethPrimer (http://www.urogene.org/methprimer/). To amplify the promoter regions of interest, 2 µl of 

bisulfite-treated DNA was combined with 2.5 U of Jumpstart Taq (Sigma), 1x PCR buffer, 1 M betaine 

(B0300, Sigma), 0.2 mM dNTP, and 0.4 µM of each primer in a total reaction volume of 25 µl. The 

reaction was incubated at 95°C for 5 min, followed by 5 cycles of 94°C for 30 sec, 60°C for 30 sec, and 

72°C for 90 sec, followed by 5 cycles of 94°C for 30 sec, 55°C for 30 sec, and 72°C for 90 sec, followed 

by 30-33 cycles of 94°C for 30 sec, 50°C for 30 sec, and 72°C for 90 sec, followed by 72°C for 5 min. 
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PCR products were prepared for sequencing on the MiSeq following the manufacturer’s protocol 

(Illumina). 

 

Sequence alignment and methylation calling 

 All analysis was performed using the February 2009 (GrCh37/hg19) build of the human genome 

and the July 2007 (NCBI37/mm9) build of the mouse genome. On average 25 million single-end 42-bp 

raw high quality reads per sample were either aligned to the cytosine-poor strand reference using the 

bisulfite mode of MAQ (Li et al. 2008a) or aligned to the reduced reference using RRBSMAP (Xi et al. 

2012) filtering against reads that contain adapter sequence. Reads that showed less than 90% bisulfite 

conversion (~1 unconverted non-CpG cytosine per read) were filtered to remove those that resulted from 

incomplete bisulfite converted molecules. Aligned reads with a mapping quality of zero were also 

discarded. The resulting high quality uniquely mapped reads were used for methylation calling. We 

identified the genomic coordinates of all CpGs in the reference sequence and assessed percent DNA 

methylation by calculating the fraction of reads that had an unconverted cytosine at the CpG position 

relative to the total reads. We required that each read have either a “TG” or “CG” dinucleotide at the 

expected CpG coordinate to be considered for analysis. 

 

Genomic feature annotation and statistical analysis 

 Cytosine methylation levels were determined for two classes of genomic features downloaded 

from the UCSC genome browser (Rhead et al. 2010). CpG Islands (CGIs) were defined as a region 

greater than 200 base pairs with a GC content of 50% or greater and observed-to-expected ratio of CG 

dinucleotides greater than 0.6 (Gardiner-Garden and Frommer 1987). Promoters were defined as a 2 kb 

region centered on the annotated transcription start site of RefSeq genes (Pruitt et al. 2012). For LCM-

RRBS, RRBS, fresh frozen, and FFPE comparisons, only genomic features with at least 100 methylation 

measurements in each pairwise comparison were considered for analysis. 

 To identify differentially methylated promoters in adrenocortical neoplasia and normal samples, 

the DNA methylation status of all CpGs within a 2 kb region of all RefSeq annotated transcription start 

sites were compared. Those promoters with at least 50 methylation measurements that showed greater 
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than 10% methylation difference were considered for statistical analysis. Promoters were considered 

statistically significant with a P < 0.05 using Student’s t-test after p-values were adjusted using a false-

discovery rate (FDR) of 5%. Statistical significance across bisulfite-specific PCR samples was determined 

using the Fisher’s exact test. All statistical analysis was performed using R. 

 

Data Release 

 The DNA methylation data generated for this study can be found under the NCBI Gene 

Expression Omnibus (GEO) accession number GSE45361. DNA methylation and raw sequence data are 

also publically available at the Center for Genome Sciences (www.cgs.wustl.edu/~maxim/). 
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FIGURE 2.1 

 

Figure 2.1 LCM-RRBS workflow. A complex tissue is dissected using LCM. Extracted DNA is digested 

by the methylation insensitive enzyme MspI, end repaired, and ligated with methylated Illumina adapters. 

After bisulfite conversion, each sample is ’barcoded’ by introducing a sample-specific index (shown as 

green, blue, or violet boxes) through low cycle PCR. Samples are pooled and loaded onto a high 

percentage gel for fragment separation and size selection. Using universal primers, the final library is 

amplified and sequenced on the Illumina platform. 
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FIGURE 2.2 

 

Figure 2.2 LCM-RRBS is reproducible and robust across 1 ng extracted from bulk fresh frozen and 

formalin-fixed paraffin embedded (FFPE) samples. CpG Island methylation (top panels) and the 

methylation at 2 kb regions flanking the transcription start site (bottom panels) were compared between 

(A) 1 ng (LCM-RRBS) and 400 ng of purified leukocyte genomic DNA (RRBS); and (B) 1 ng of FFPE 

DNA and 1 ng of fresh frozen genomic DNA extracted from the same endometrial tumor (LCM-RRBS). 
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FIGURE 2.3 

 
Figure 2.3 LCM-RRBS is robust across microdissected samples collected from fresh frozen and 

FFPE tissues. Fresh frozen and formalin-fixed paraffin-embedded (FFPE) mouse liver was collected for 

DNA methylation profiling. LCM was used to collect tissue from areas ranging in size from 20 to 2 mm2. 

CpG Island methylation (top panels) and methylation at 2 kb regions flanking the transcription start site 

(bottom panels) were compared between (A) fresh frozen samples (LCM-RRBS) and 400 ng of purified 

mouse liver genomic DNA (RRBS); and (B) FFPE samples (LCM-RRBS) and 400 ng of purified mouse 

liver genomic DNA (RRBS). 
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FIGURE 2.4 

 
 

Figure 2.4 DNA methylation profiling of GDX-induced adrenocortical neoplasms and adjacent 

normal tissue using LCM-RRBS. The adrenal glands of 3 ovariectomized DBA/2J mice were fresh 

frozen in Tissue-tek O.C.T. compound, cryosectioned, and stained. Shown are representative 

cryosections pre- and post-LCM. Normal cells in the zona fasciculata (ZF) contain large lipid droplets that 

are easily recognized. In contrast, neoplastic cells distort the normal adrenal zonal architecture and 

contain relatively few lipid droplets. The microdissected normal tissue included zona glomerulosa and 

zona fasciculata cells; care was taken to avoid dissection of X-zone (X), medulla (M), or capsule cells, as 

these cell types have distinct developmental origins (Morohashi and Zubair 2011) and therefore may have 

different epigenetic fingerprints. An average of 5.5 mm2 of neoplastic (red) and normal (green) tissue per 

adrenal pair was collected and analyzed using LCM-RRBS.  
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FIGURE 2.5 

 
Figure 2.5 Validation of differentially methylated promoters. The DNA methylation of one 

hypermethylated and three hypomethylated promoters was interrogated by bisulfite-specific PCR (BSP) 

and sequencing across enriched neoplastic and normal samples. All genes show a statistically significant 

difference (Fisher’s exact test, P < 10-15) in DNA methylation using bisulfite-specific PCR. Each colored 

box represents an individual CpG dinucleotide within a 2 kb region centered around the transcription start 

site. High (yellow), moderate (black), low (blue), and undetermined methylation levels are shown for each 

CpG. The mean methylation of each region interrogated is shown to the right of each heatmap. The red 

box indicates the region of the promoter that was interrogated by LCM-RRBS and BSP. 
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TABLE 2.1 

 
 

Table 2.1 Top hypermethylated and hypomethylated genes in GDX-induced adrenocortical 

neoplasms of the mouse. 
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SUPPLEMENTARY FIGURES AND TABLES 

FIGURE 2.S1 

 

Figure 2.S1 LCM-RRBS can interrogate the DNA methylation status of most CpG Islands and core 

promoters. For all UCSC annotated CpG Islands and core promoters, defined as a 2 kb region centered 

on the transcription start site, we determined the read coverage. Coverage is defined as the total number 

of reads covering a CpG within a given genomic interval. 
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FIGURE 2.S2 

 

Figure 2.S2 LCM-RRBS is reproducible and robust at the CpG level across 1 ng of formalin-fixed 

paraffin-embedded DNA. LCM-RRBS and RRBS were applied to 1 ng and 400 ng of commercially 

purchased leukocyte genomic DNA, respectively, and showed a high concordance across individual 

CpGs (Pearson, 0.93). LCM-RRBS was applied to 1 ng of DNA extracted from fresh frozen or formalin-

fixed paraffin-embedded endometrial tumor tissue. CpG methylation was highly concordant between fresh 

frozen and FFPE samples and FFPE technical replicates (Pearson, 0.96 and 0.94, respectively). Only 

CpGs covered by at least 20 reads in each sample were considered. 
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FIGURE 2.S3 

        

Figure 2.S3 Increasing individual CpG coverage does not significantly alter the concordance of 

CGI methylation between data collected by RRBS (400 ng) and LCM-RRBS (1 ng). The methylation 

of each CGI was calculated by determining the mean methylation of only those CpGs within the region 

that were covered by at least 10 reads in both datasets. Only CGIs that were covered by a total of 100 

reads were considered for concordance analysis. 
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FIGURE 2.S4 

   

Figure 2.S4. LCM-RRBS is reproducible and robust across 1 ng extracted from bulk FFPE 

samples. CpG Island methylation (top panels) and the methylation at 2 kb regions flanking the 

transcription start site (bottom panels) were compared between two technical replicates of 1 ng of FFPE 

endometrial tumor DNA using LCM-RRBS.  
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FIGURE 2.S5 

 

Figure 2.S5 LCM-RRBS interrogates most CpG Islands and core promoters of liver mouse 

samples collected by laser capture microdissection (LCM). For CpG Islands and core promoters, 

defined as a 2 kb region centered on the RefSeq transcription start site, we determined the mean read 

coverage of samples collected by LCM from fresh frozen and FFPE tissues. Coverage is defined as the 

total number of reads covering a CpG within a given genomic interval.  
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FIGURE 2.S6 

 

Figure 2.S6 DNA methylation distribution of CpG Islands on chromosome X. The DNA methylation 

status of all UCSC annotated CpG islands across the X chromosome was determined for 1 ng of fresh 

frozen DNA extracted from bulk liver tissue and fresh frozen and FFPE samples collected by LCM to 

assess the presence of PCR bias. Due to X-inactivation, we expect the majority of CpG Islands to be 

moderately methylated (30-70%), as observed, confirming that LCM-RRBS is largely immune to PCR 

bias down to 2 mm2 of fresh frozen and 20 mm2 of FFPE tissue. 
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TABLE 2.S1 

http://nar.oxfordjournals.org/content/suppl/2013/03/27/gkt230.DC1/nar-01911-met-h-2012-File009.xlsx 

Table 2.S1 DNA Methylation of core promoters (2kb centered around the TSS) across normal and 

neoplasia adrenocortical samples. Percent DNA methylation of annotated CpG Islands. ND: Not 

determined. The URL address above contains a link to Table 2.1S. 

 

 

TABLE 2.S2 

http://nar.oxfordjournals.org/content/suppl/2013/03/27/gkt230.DC1/nar-01911-met-h-2012-File010.xlsx 

Table 2.S2 Gene promoter DNA methylation analysis of normal and neoplasia tissue. Promoters are 

defined as the regions within 1 kb upstream and downstream of the transcription start site. This table lists 

the genes and respective DNA methylation levels for those that pasted multiple hypothesis corrections 

(FDR adjusted). The URL address above contains a link to Table 2.2S. 
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CHAPTER 3: NOVEL MARKERS OF GONADECTOMY-INDUCED ADRENOCROTICAL NEOPLASIA 

IN THE MOUSE AND FERRET 

In review at Molecular Cellular Endocrinology (2014). 

ABSTRACT 

 Gonadectomy (GDX) induces sex steroid-producing adrenocortical tumors in certain mouse 

strains and in the domestic ferret.  Complementary approaches, including DNA methylation mapping and 

microarray expression profiling, were used to identify novel genetic and epigenetic markers of GDX-

induced adrenocortical neoplasia in female DBA/2J mice.  Markers were validated using a combination of 

laser capture microdissection, quantitative RT-PCR, in situ hybridization, and immunohistochemistry.  

Two genes with hypomethylated promoters, Igfbp6 and Foxs1, were upregulated in post-GDX 

adrenocortical neoplasms.  The neoplastic cells also exhibited hypomethylation of the fetal adrenal 

enhancer of Sf1, an epigenetic signature that typifies descendants of fetal adrenal cells.  Expression 

profiling demonstrated upregulation of gonadal-like genes, including Spinlw1, Insl3, and Foxl2, in GDX-

induced adrenocortical tumors of the mouse.  One of these markers, FOXL2, was detected in 

adrenocortical tumor specimens from gonadectomized ferrets.  These new markers may prove useful for 

studies of steroidogenic cell development and for diagnostic testing. 
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INTRODUCTION 

 Steroidogenic cells in the adrenal cortex and gonads arise from a common pool of progenitors in 

the adrenogonadal primordia, but the mechanisms that determine whether a given precursor cell adopts 

an adrenocortical or gonadal phenotype are not fully understood (Val et al. 2006; Hu et al. 2007; 

Morohashi and Zubair 2011; Wood and Hammer 2011; Laufer et al. 2012; Shima et al. 2012; Simon and 

Hammer 2012; Bandiera et al. 2013; Pihlajoki et al. 2013b; Wood et al. 2013).  One experimentally 

tractable model for the study of steroidogenic cell fate determination is gonadectomy (GDX)-induced 

adrenocortical neoplasia.  In response to GDX and the ensuing changes in serum hormone levels [↑ 

luteinizing hormone (LH), ↓ inhibins, etc.], sex steroid-producing tumors arise in the adrenal glands of 

certain mouse strains and ferrets (Bielinska et al. 2005; Bielinska et al. 2006a; Johnsen et al. 2006a; 

Bernichtein et al. 2007; Bernichtein et al. 2008a; Bernichtein et al. 2009; Doghman and Lalli 2009; 

Beuschlein et al. 2012; Miller et al. 2013).  This phenomenon is thought to reflect gonadotropin-induced 

metaplasia of stem/progenitor cells in the adrenal capsule or cortex, although the term “neoplasia” is used 

more often than “metaplasia” to describe the process (Bielinska et al. 2006a).  The neoplastic tissue 

resembles luteinized ovarian stroma and expresses gonadal-like differentiation markers, including LH 

receptor (Lhcgr), anti-Müllerian hormone (Amh) and its receptor (Amhr2), inhibin-α (Inha), transcription 

factors Gata4 and Wt1, and enzymes required for sex steroid biosynthesis (Cyp17a1, Cyp19a1) 

(Bielinska et al. 2003a; Bielinska et al. 2005; Bielinska et al. 2006a; Johnsen et al. 2006a; Krachulec et al. 

2012; Bandiera et al. 2013).  Prototypical markers of adrenocortical cell differentiation, such as the ACTH 

receptor (Mc2r) or corticoid biosynthetic enzymes (Cyp21, Cyp11b1, Cyp11b2), are not expressed in the 

neoplastic tissue (Bielinska et al. 2003a; Bielinska et al. 2005; Bielinska et al. 2006a; Johnsen et al. 

2006a).   

 The genetic basis of GDX-induced adrenocortical neoplasia has been investigated in the mouse.  

Hypophysectomy, parabiosis, and transplantation experiments have shown that the adrenal glands of 

susceptible strains of mice exhibit an inherent predisposition to develop tumors in response to 

gonadotropin stimulation [reviewed in (Bielinska et al. 2005; Bielinska et al. 2006a)].  Linkage analysis of 

crosses between susceptible (DBA/2J) and non-susceptible (C57Bl/6) inbred strains has established that 

post-GDX adrenocortical neoplasia is a complex trait influenced by multiple genetic loci (Bernichtein et al. 
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2007; Bernichtein et al. 2008a; Bernichtein et al. 2009).  Targeted mutagenesis of Gata4, a gene normally 

expressed in gonadal but not adrenal steroidogenic cells of the adult mouse, attenuates post-GDX 

adrenocortical tumor formation in susceptible strains (Krachulec et al. 2012), and transgenic expression 

of Gata4 induces adrenocortical neoplasia in a non-susceptible strain (Chrusciel et al. 2013). 

In addition to genetic factors, epigenetic changes such as DNA methylation may contribute to the 

pathogenesis of GDX-induced adrenocortical neoplasia.  Altered methylation of cytosine residues in CpG 

dinucleotides has been shown to modulate gene expression and progenitor cell fate in various tissues, 

including endocrine organs (Aranda et al. 2009; Hoivik et al. 2011).  For example, conditional 

mutagenesis of the mouse Dnmt1 gene, which encodes the maintenance DNA methyl-transferase, 

causes reprogramming of pancreatic β-cells into α-cells (Akerman et al. 2011; Dhawan et al. 2011a).  It 

has been suggested that GDX-induced adrenocortical neoplasia may be another example of DNA 

methylation-regulated cell fate interconversion in an endocrine tissue (Bielinska et al. 2009; Schillebeeckx 

et al. 2013).  According to this hypothesis, epigenetic alterations affect the phenotypic plasticity of 

adrenocortical stem/progenitor cells, allowing them to respond to the hormonal changes associated with 

GDX (Feinberg et al. 2006b; Bielinska et al. 2009).  

 The current study was undertaken to identify novel genetic and epigenetic markers of GDX-

induced adrenocortical neoplasia, so as to gain a better foothold for investigations into the mechanistic 

basis of tumorigenesis.  Complementary approaches, including genome-wide DNA methylation mapping 

and microarray expression profiling, were used to screen for genes that are hypomethylated and/or 

overexpressed in post-GDX adrenocortical neoplasms of the mouse.  Candidate genes were validated 

using a combination of laser capture microdissection (LCM), quantitative RT-PCR (qRT-PCR), and in situ 

hybridization or immunohistochemistry.  One of the validated genes was found to be a marker of post-

GDX adrenocortical neoplasia in not only mice but also ferrets. 

 
RESULTS AND DISCUSSION 

Genes identified as hypomethylated by genome-wide analysis are upregulated in GDX-induced 

adrenocortical neoplasms of the mouse   

 In a prior report, we used a highly sensitive method of global DNA methylation analysis, termed 

LCM-RRBS, to identify gene promoters that are differentially methylated in neoplastic vs. normal 
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adrenocortical tissue from ovariectomized DBA/2J mice (Schillebeeckx et al. 2013).  We reasoned that 

promoters that are hypomethylated in the neoplastic tissue could be novel markers of GDX-induced 

adrenocortical tumorigenesis.  In the current study, we subjected these hypomethylated candidate genes 

to a series of validation studies.  To be considered a bona fide marker of GDX-induced adrenocortical 

neoplasia, we stipulated that three criteria had to be met: 1) qRT-PCR analysis of mRNA isolated from 

whole adrenal glands had to show a significant increase in expression of the gene in gonadectomized vs. 

intact mice, 2) qRT-PCR analysis of mRNA isolated by LCM had to show a significant increase in 

expression of the gene in neoplastic vs. adjacent normal adrenocortical tissue, and 3) in situ hybridization 

or immunohistochemistry of adrenal tissue from gonadectomized mice had to demonstrate expression in 

the neoplastic cells.  Of the 37 hypomethylated genes identified in the genome-wide screen, we assessed 

the expression difference for 31 genes using whole adrenal qRT-PCR (criteria 1), 6 genes using LCM 

qRT-PCR (criteria 2), and 5 genes using in situ staining or immunohistochemistry (criteria 3).  Two 

hypomethylated genes, Igfbp6 and Foxs1, fulfilled all three criteria (Figure 3.1A-F).   

 Igfbp6 encodes a member of a family of insulin-related growth factor binding proteins (IGFBPs), 

which modulate the interaction of insulin-related growth factors (IGFs) with their cell surface receptors.  

IGFBP6 differs from the other 5 members of the IGFBP family in that it has a 30- to 100-fold preferential 

binding affinity for IGF2 over IGF1 (Bach et al. 1993).  Both IGF2 and IGF1 impact the growth, 

differentiation, and function of adrenocortical cells (Weber et al. 1999), and IGFBP6 has been shown to 

inhibit the actions of IGF2 in experimental systems (Bach et al. 1994).  Hormone-dependent Igfbp6 

expression has been documented in somatic cells of the rodent ovary (Rohan et al. 1993).  It is 

conceivable that IGFBP6 produced in post-GDX adrenocortical neoplasms serves an insulator function by 

blocking the activity of IGF2, thereby favoring gonadal-like differentiation over adrenocortical 

differentiation.   

 Foxs1 (Fkhl18) encodes a forkhead-domain transcription factor that is expressed in Sertoli cells 

and periendothelial cells of the developing mouse fetal testis (Sato et al. 2008).  Male and female Foxs1 

knockout mice are viable and fertile, but the mutant males accumulate blood in the fetal testis, 

presumably due to apoptosis of periendothelial cells (Sato et al. 2008).  Foxs1 is also expressed in 

gonadal-like cells that accumulate in the adrenal subcapsule of Gata6flox/flox; Sf1-cre mice (Pihlajoki et al. 
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2013a).  In addition to gonadal(-like) cells, Foxs1 is expressed in neural crest derivatives (Heglind et al. 

2005; Montelius et al. 2007); consistent with this notion, in situ hybridization showed strong Foxs1 

expression in the neoplastic adrenocortical cells and weak expression in chromaffin cells of the adrenal 

medulla (Figure 3.1E). 

 That only two of the hypomethylated genes identified in the original screen fulfilled all three 

validation criteria is not surprising.  Hypermethylation is correlated with increased gene expression, but 

the relationship is not absolute.  Whole adrenal qRT-PCR may not detect small, but significant, 

expression differences.  The small amounts of RNA isolated by LCM precluded qRT-PCR validation of a 

large number of genes.   

 

Locus-specific DNA methylation analysis of a fetal adrenal enhancer in GDX-induced 

adrenocortical neoplasms 

 LCM-RRBS does not interrogate all methylated loci. To supplement the genome-wide screen, we 

performed locus-specific DNA methylation analysis of an intronic enhancer of steroidogenic factor-1 (Sf1, 

AdBP4, Nr5a1), a transcription factor that regulates steroidogenic cell differentiation in the adrenal cortex 

and gonads (Buaas et al. 2012).  The fetal adrenal enhancer (FAdE) of Sf1 (Zubair et al. 2006; Zubair et 

al. 2008; Morohashi and Zubair 2011) is hypomethylated both in the fetal adrenal and adult adrenal cortex 

(Hoivik et al. 2011; Hoivik et al. 2013).  In contrast, the FAdE is hypermethylated in other tissue types, 

including tissues that express Sf1 (ventromedial nucleus of the hypothalamus, pituitary gonadotropes) 

and those that do not (pituitary nongonadotropes, liver) (Hoivik et al. 2011).  The adrenal cortex of the 

adult mouse is derived from fetal adrenal cells in which the FAdE was transiently active during 

development (Zubair et al. 2008; Morohashi and Zubair 2011), implying that once demethylation has 

occurred in the fetal adrenal, the methylation pattern is maintained during subsequent cell divisions and 

conserved in the adult cortex.  We hypothesized that the methylation status of the Sf1 FAdE in post-GDX 

adrenocortical neoplastic cells could serve as an epigenetic marker for the neoplastic tissue. To assess 

the DNA methylation status of the Sf1 FAdE, we performed bisulfite-specific PCR on tissue isolated by 

LCM (Figure 3.2).  Consistent with published reports (Hoivik et al. 2011; Hoivik et al. 2013), the FAdE was 

hypermethylated in the liver and hypomethylated in both the adrenal X-zone [a remnant of the fetal 
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adrenal (Morohashi and Zubair 2011)] and the adult adrenal cortex (zF + zG).  Importantly, the FAdE was 

also hypomethylated in post-GDX adrenocortical neoplasms.  

 To determine whether FAdE methylation status could distinguish the embryonic origin of the 

neoplastic cells (fetal adrenal vs. ectopic ovarian cells), we measured FAdE methylation in whole ovary.  

Ovarian tissue exhibited an intermediate level of FAdE methylation that was statistically greater than that 

of adult adrenal cortex (P < 0.01) and X-zone (P < 0.005) but not that of post-GDX tumors (P = 0.085, not 

significant).  We conclude that GDX-induced tumor cells, like adjacent normal adrenocortical cells, carry 

an epigenetic mark (FAdE hypomethylation) that typifies descendants of fetal adrenal cells; however, the 

methylation status of this locus cannot exclude a gonadal origin for the neoplastic cells. 

 

RNA expression profiling identifies novel markers of GDX-induced adrenocortical neoplasia in the 

mouse 

 Since differential DNA methylation is only one of several mechanisms that can influence gene 

expression, we performed microarray hybridization to screen for additional transcripts that are 

upregulated during GDX-induced adrenocortical tumorigenesis.  For this analysis we used mRNA isolated 

from whole adrenal glands of ovariectomized vs. intact DBA/2J mice.  We identified 89 and 38 genes that 

were upregulated and downregulated, respectively, in adrenal glands from gonadectomized mice 

(Supplemental Table 1).  We hypothesized that the upregulated genes were enriched for markers of 

gonadal tissue. To test this hypothesis, genes that were differentially expressed in the adrenal glands of 

gonadectomized mice were compared to pooled GEO microarray data for different mouse tissues, using 

an established algorithm (Chen et al. 2013).  Enrichment analysis demonstrated that genes upregulated 

in the adrenal glands of gonadectomized mice were more likely to be highly expressed in ovary (Figure 

3.3A; P = 2.01 x 10-8) or testis (Figure 3.3B; P = 2.16 x 10-7) but not in the non-steroidogenic tissue brain 

(Figure 3.3D; P = 0.90).  Genes downregulated in the adrenal glands of gonadectomized mice were more 

likely to be highly expressed in the normal adrenal tissue (Figure 3.3C; P = 7.83 x 10-4) than in brain 

(Figure 3.3E; P = 1.00).  This systematic, transcriptomic comparison reinforces the longstanding tenet 

that GDX induces the selective accumulation of gonadal-like cells in the adrenal glands of DBA/2J mice.  
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 Among the genes upregulated in the microarray analysis were gonadal-like markers known to be 

expressed in post-GDX adrenocortical neoplasms, such as Cyp17a1 (460-fold), Lhcgr (43-fold), Inha (17-

fold), and Amhr2 (6.2- to 9.1-fold on different microarray probes) (Bielinska et al. 2006a).  Two well-

documented markers of GDX-induced adrenocortical neoplasia, Gata4 and Amh (Bielinska et al. 2006a), 

were not upregulated, underscoring the inherent limitations of microarray technology (each of these 

genes was represented by a single probe on the microarray and showed a non-significant expression 

change of ~0.5-fold).  Two genes identified in the microarray screen, Spinlw1 and Insl3, were validated as 

novel markers of GDX-induced adrenocortical neoplasia in the mouse, using the same rigorous criteria 

described above (Figure 3.4A-E).   

 Spinlw1, which was upregulated 16- to 51-fold on different microarray probes, encodes EPPIN, a 

serine protease inhibitor secreted by Sertoli cells and epididymal epithelial cells (O'Rand et al. 2011) but 

not by cells of the ovary or uterus (Sivashanmugam et al. 2003; Silva et al. 2012).  Thus, EPPIN is 

generally considered to be a “male-specific” marker.  Consistent with this notion, expression of Spinlw1 

has been shown to be androgen-dependent (Denolet et al. 2006; Schauwaers et al. 2007; Willems et al. 

2010; Silva et al. 2012).   

 Insl3, which was upregulated 50-fold on the microarray, encodes insulin-like 3, a hormone that is 

secreted by fetal Leydig cells.  INSL3 mediates the trans-abdominal phase of testicular descent (Ivell et 

al. 2013), and loss-of-function mutations in Insl3 cause cryptorchidism (Ivell and Anand-Ivell 2011).  

Additionally, INSL3 is constitutively secreted by adult Leydig cells and serves as a serum biomarker of 

this cell type (Anand-Ivell et al. 2009), although the function of INSL3 in the adult testis remains unclear 

(Ivell et al. 2013).  Insl3 is also expressed in the ovary, particularly in theca interna cells of the maturing 

follicle (Satchell et al. 2013), where it induces androgen production (Glister et al. 2013).  It is conceivable 

that serum levels of INSL3 could be a biomarker of post-GDX adrenocortical neoplasms, and future 

experiments will explore this possibility. 

 Foxl2, a gene that was marginally upregulated (1.3-fold) in the microarray analysis, was found to 

be another bona fide marker of GDX-induced adrenocortical neoplasia in the mouse (Figure 3.5A-F).  

Foxl2 encodes a forkhead transcription factor that is expressed in granulosa and interstitial cells of the 

ovary (Schmidt et al. 2004; Mork et al. 2012).  Consequently, FOXL2 is generally considered to be a 
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“female-specific” marker (Georges et al. 2013).  Mice harboring null mutations in Foxl2 develop ovaries 

that express testicular differentiation markers (Schmidt et al. 2004; Uda et al. 2004; Ottolenghi et al. 2005; 

Garcia-Ortiz et al. 2009; Uhlenhaut et al. 2009).  Of note, extracts of adrenal glands from non-

gonadectomized mice have been shown to contain FOXL2 mRNA and protein at levels 40-50 times lower 

than extracts of ovary (Yang et al. 2010).  The significance of this low level expression of Foxl2 in non-

neoplastic adrenal glands is unclear. 

 None of these validated, gonadal-like genes showed evidence of differential methylation in the 

LCM-RRBS analysis (Schillebeeckx et al. 2013).  The degree of methylation of the Foxl2 promoter was 

<1% in both neoplastic and normal tissue, and the degree of methylation of the Insl3 promoter was 

comparable in neoplastic and normal tissue (13% vs. 16%; σ = 4.1 and σ = 5.3, respectively).  Coverage 

of the Spinlw1 promoter was inadequate for quantification of its methylation status.  

In addition to gonadal-like markers, 3 mast cell enzyme genes, Cma1, Cma2, and Cpa3, were 

upregulated (2.5- to 8.4-fold) in the adrenal glands of gonadectomized mice (Supplemental Table 1).  This 

finding is consistent with the well-documented phenomenon of mast cell infiltration of post-GDX 

adrenocortical neoplasms (Kim et al. 1997; Bielinska et al. 2005). 

 

FOXL2 is a marker of adrenocortical neoplasia in gonadectomized ferrets 

Sex steroid-producing neoplasms arise in up to 20% of gonadectomized ferrets and are a major cause of 

morbidity and mortality in this species (Bielinska et al. 2006a; Beuschlein et al. 2012).  Immunostaining of 

archival veterinary pathology specimens showed that FOXL2 is a marker of post-GDX adrenocortical 

neoplasia in the ferret (Figure 3.6A-F; Figure 3.S1).  The specimens were obtained from gonadectomized 

ferrets with signs of ectopic sex steroid production (e.g., alopecia, vulvar hyperplasia, or stranguria) and 

included examples of adrenocortical carcinoma, adenoma, and nodular hyperplasia.  Several of the 

specimens contained residual normal cortex, which served as a negative control (Figure 3.6A, C, E).  

Nuclear FOXL2 immunoreactivity was detected in 50% of the specimens examined [4 of 10 cases of 

adrenocortical carcinoma, 4 of 6 cases of adrenocortical adenoma, and 1 of 2 cases of nodular 

hyperplasia].  FOXL2-positive tumors were seen in both female (Figure 3.6) and male (Figure 3.S1) 

ferrets.  Only a minority of the cells within a given tumor reacted with FOXL2 antibody (Figure 3.6D; 
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Figure 3.S1).  By comparison, nuclear GATA4 immunoreactivity has been observed in >90% of ferret 

adrenocortical tumors (Peterson et al. 2004), and GATA4 antibody typically stains a higher percentage of 

cells within a given tumor (Figure 3.6F).   

 We conclude that FOXL2 is a marker of GDX-induced adrenocortical tumors in not only the 

mouse but also the ferret.  This observation expands the list of genes known to be expressed in sex 

steroidogenic adrenocortical neoplasms of the ferret (Schoemaker et al. 2002; Peterson et al. 2003; 

Peterson et al. 2004; Bielinska et al. 2006a; Wagner et al. 2008; de Jong et al. 2013; de Jong et al. 2014).  

The relatively low percentage of FOXL2 immunoreactive cells within ferret adrenocortical tumors may limit 

the diagnostic utility of this marker.  It remains to be determined whether the other markers of 

adrenocortical neoplasia that emerged from our screens of gonadectomized mice are also markers of 

tumorigenesis in ferrets.  

 

Summary 

 Using complementary approaches, including DNA methylation analysis and microarray 

expression profiling, we have identified novel epigenetic (Igfbp6, Foxs1) and genetic (Spinlw1, Insl3, 

Foxl2) markers of GDX-induced adrenocortical neoplasia in the mouse.  That both “male-specific” 

(Spinlw1) and “female-specific” (Foxl2) markers were detected is noteworthy and implies that the 

neoplasms exhibit mixed characteristics of male and female gonadal somatic cells.  Such indeterminate 

steroidogenic cell phenotypes have been reported in other experimental models (Heikkila et al. 2002; Val 

et al. 2006).  One of the markers, FOXL2, was observed in adrenocortical tumor specimens from 

gonadectomized ferrets.  These new markers may prove useful for studies of steroidogenic cell 

development and for tumor classification. 

 

Highlights 

• Igfbp6 & Foxs1 are hypomethylated and upregulated in murine post-GDX adrenocortical tumors. 

• The Sf1 FAdE is hypomethylated in murine post-GDX adrenocortical tumors. 

• Spinlw1, Insl3, & Foxl2 are upregulated in murine post-GDX adrenocortical tumors. 

• FOXL2 immunoreactivity is evident in adrenocortical tumors from gonadectomized ferrets.  
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• Post-GDX adrenocortical tumors exhibit properties of female and male gonadal cells. 
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MATERIALS AND METHODS 

 

Experimental animals 

 Procedures involving mice were approved by an institutional committee for laboratory animal care 

and were conducted in accordance with NIH guidelines for the care and use of experimental animals.  

DBA/2J mice were purchased from Jackson Laboratories (Bar Harbor, ME).  Female mice were 

anesthetized and gonadectomized at 3-4 weeks of age (Bielinska et al. 2005).  We limited our analysis to 

females because they develop post-GDX adrenocortical neoplasms more readily than their male 

counterparts (Bielinska et al. 2006a; Beuschlein et al. 2012).  Adrenal tissue was harvested for analysis 3 

months later. 

 

Isolation of neoplastic and normal tissue using LCM 

 Cryosections (10 µm) of adrenal glands from ovariectomized or intact mice were collected on 

membrane slides (PEN-Membrane 2.0 µm; Leica), fixed in acetone (for collecting DNA) or ethanol (for 

collecting RNA) at -20º C, stained with hematoxylin and eosin (H&E) or crystal violet, and then 

dehydrated by passage through successively higher concentrations of ethanol followed by xylene 

(Pihlajoki et al. 2013a; Schillebeeckx et al. 2013).  LCM was used to isolate samples from GDX-induced 

adrenocortical neoplasms, adjacent normal adrenocortical tissue [zona glomerulosa (zG) + zona 

fasciculata (zF) cells], and the adrenal X-zone.  Dissectates were collected in SDS/proteinase K for 

genomic DNA isolation or in RNA extraction buffer (RNeasy Mini Kit, Qiagen, Valencia, CA).  

 

Global and locus-specific DNA methylation analyses 

 DNA from neoplastic or normal adrenocortical tissue was subjected to genome-wide methylation 

analysis using LCM-reduced representation bisulfite sequencing (LCM-RRBS) (Schillebeeckx et al. 

2013).  Locus-specific DNA methylation of the Sf1 enhancer locus was measured via bisulfite-specific 

PCR and pyrosequencing as described previously (Schillebeeckx et al. 2013).  
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Microarray expression profiling 

 RNA was isolated from whole adrenal glands of intact, virgin (n = 3) or ovariectomized (n = 3) 

female DBA/2J mice using RNeasy® Mini Kit (Qiagen, Valencia, CA), amplified using the TotalPrep RNA 

amplification kit (Illumina, San Diego, CA), and hybridized on an Illumina Mouse6v2 oligonucleotide array.  

Array hybridization was performed by the GTAC Microarray Core facility at Washington University 

according to standard protocols.  Probes with a hybridization signal less than signal background were 

excluded from the analysis, leaving 15,066 probes.  Probes that did not show at least a 2-fold change in 

either direction were then excluded, leaving 628 probes (Table 3.S1).  Finally, we determined statistical 

significance using the Student’s t test and correcting for multiple hypothesis testing using the Benjamini-

Hochberg method, leaving a total of 127 probes (q-value < 0.05). Statistically significant upregulated (n = 

89) and downregulated (n = 38) probes correspond to 85 and 36 genes, respectively (Table 3.S1).  

 Genes that were differentially expressed in adrenal glands from gonadectomized vs. intact mice 

were compared to pooled Gene Expression Omnibus (GEO) data for different mouse tissues, using non-

parametric statistical testing (Chen et al. 2013).  Genes with a statistically significant expression 

specificity (q-value < 0.01; Benjamini-Hochberg corrected) for adrenal, brain, ovary, or testis tissues were 

considered to be tissue-specific (Table 3.S2).  Enrichment for upregulated or downregulated genes within 

the tissue-specific gene dataset was determined using the Fisher’s Exact Test. 

 

qRT-PCR 

 Total RNA was isolated and subjected to qRT-PCR analysis as described (Slott et al. 1993).  

Expression was normalized to the housekeeping genes Actb and Gapdh. Primer pairs are listed in Table 

3.3S.   

 

In situ hybridization 

 Nonradioactive in situ hybridization was performed (Val et al. 2006) using paraformaldehyde-

fixed, paraffin-embedded adrenal sections (5 µm).  To prepare riboprobes, cDNA fragments of Igfbp6, 

Foxs1, Spinlw1, and Foxl2 were amplified by RT-PCR (annealing temperature = 52º C) and cloned into 

the vector pCRII-TOPO (Invitrogen, Carlsbad, CA) using the manufacturer’s guidelines.  RT-PCR primers 
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and cDNA fragment sizes are specified in Table 3.S4.  Digoxygenin-labeled antisense riboprobes were 

synthesized from EcoRV-linearized plasmids using Sp6 RNA polymerase (Heikinheimo et al. 1994).  

Bound riboprobe was detected using an alkaline phosphatase conjugated anti-digoxigenin antibody, as 

described (Val et al. 2006).  Sections were subsequently counterstained with nuclear fast red. 

 

Immunohistochemistry 

 Mouse tissues were fixed overnight in 4% paraformaldehyde in PBS, embedded in paraffin, 

sectioned (5 µm), and subjected to immunoperoxidase staining (Anttonen et al. 2003).  Formalin-fixed, 

paraffin-embedded, adrenocortical neoplasms from gonadectomized ferrets were obtained from the 

archives of a veterinary diagnostic laboratory, as reported previously (Peterson et al. 2003; Peterson et 

al. 2004; Wagner et al. 2008); included were cases of adrenocortical carcinoma, adenoma, and nodular 

hyperplasia.  Criteria for classification of these tumors are listed elsewhere (Peterson et al. 2003).  The 

primary antibodies were: a) rabbit anti-INSL3 (sc-134587; Santa Cruz Biotechnology, Santa Cruz, CA; 

1:200 dilution), b) goat anti-GATA4 (sc-1237, Santa Cruz Biotechnology; 1:200 dilution), and c) goat anti-

FOXL2 (IMG-3228; Imgenex, San Diego, CA; 1:400 dilution).  Secondary antibodies were: a) goat anti-

rabbit biotinylated IgG (NEF-813, NEN Life Science, Boston, MA; 1:2000 dilution) and b) donkey anti-goat 

biotinylated IgG (Jackson Immunoresearch, West Grove, PA; 1:1000 dilution).  The avidin-biotin 

immunoperoxidase system (Vectastain Elite ABC Kit, Vector Laboratories, Inc., Burlingame, CA) and 

diaminobenzidine were used to visualize the bound antibody. The analysis included negative control 

studies in which the primary antibodies were omitted.   

 

Data Release 

 The DNA methylation data generated for the study can be found under GEO accession number 

GSE45361. DNA methylation and raw sequence data are also publically available at the Center for 

Genome Sciences (www.cgs.wustl.edu/~maxim/). The microarray hybridization data has been 

deposited under GEO accession number GSE54393. 
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FIGURE 3.1 

 

Figure 3.1 Two genes identified as hypomethylated by genome-wide mapping, Igfbp6 and Foxs1, 

are upregulated in GDX-induced adrenocortical neoplasms of the mouse.  (A) qRT-PCR analysis of 

Igfbp6 and Foxs1 in whole adrenal mRNA from non-gonadectomized (nGDX) or gonadectomized (GDX) 

female DBA/2J mice (n = 4 per group).  (B) qRT-PCR analysis of Igfbp6 and Foxs1 in normal or tumor 

tissue isolated by LCM from the adrenal cortex of ovariectomized DBA/2J mice (n = 4 per group).  qRT-
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PCR results were normalized to expression of Actb (*, P < 0.05); normalization to Gapdh yielded similar 

results. Statistical significance was determined using the Student’s t test. (C) In situ hybridization of 

adrenal tissue from an ovariectomized DBA/2J mouse using an Igfbp6 antisense riboprobe.  (D) H&E 

staining of an adjacent tissue section.  Igfbp6 mRNA localized to neoplastic cells in the subcapsular 

region.  (E) In situ hybridization of adrenal tissue from an ovariectomized DBA/2J mouse using a Foxs1 

antisense riboprobe.  (F) H&E staining of an adjacent tissue section.  Foxs1 mRNA localized to neoplastic 

tissue in the subcapsular region and to cells in the medulla (m).  Bars = 50 µm.   
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FIGURE 3.2 

 

Figure 3.2 The Sf1 FAdE is hypomethylated in normal and neoplastic adrenocortical cells.  Tissue 

from female DBA/2J mice was subjected to DNA methylation analysis using bisulfite-specific PCR.  (A) 

The graph compares the level of methylation across 7 of 8 CpG dinucleotides in the Sf1 FAdE for various 

tissues.  The 8th CpG (CpG-2) was omitted from the analysis because the data did not pass quality control 

measures for pyrosequencing. (B) The inset shows P values for paired t-tests among the different tissue 

types.  Synthetic DNA is included as a negative control.  Note that the FAdE is hypomethylated in the X-

zone, normal cells of the zona fasciculata + zona glomerulosa (zF + zG), and post-GDX adrenocortical 

tumor tissue. 
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FIGURE 3.3 

 

Figure 3.3 Systematic transcriptome analysis shows that genes upregulated in the adrenal glands 

of gonadectomized mice are more likely to be highly expressed in ovary or testis than in other 

tissues.  Probes that were differentially expressed in microarrays of whole adrenal glands from 

gonadectomized vs. non-gonadectomized female DBA/2J mice were compared to pooled GEO 

microarray data for different mouse tissues using an established rank sum algorithm (Chen et al. 2013).  

Probes specific for ovary, testis, adrenal or brain are shown as yellow circles. Probes that were 

upregulated in adrenal glands from gonadectomzied mice are shown as red circles (↑ GDX).  Probes that 

were downregulated in adrenal glands from gonadectomzied mice are shown as blue circles (↓ GDX).  

Enrichment analysis demonstrated that genes upregulated in the adrenal glands of gonadectomized mice 

were more likely to be highly expressed in ovary (A) or testis (B) than in brain (D).  Genes downregulated 

in the adrenal glands of gonadectomized mice were more likely to be highly expressed in the normal 

adrenal tissue (C) than in brain (E). 
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FIGURE 3.4 

 

Figure 3.4 Two genes identified by microarray expression profiling, Spinlw1 and Insl3, are 

upregulated in GDX-induced adrenocortical neoplasms of the mouse.  (A) qRT-PCR analysis of 

Spinlw1 and Insl3 in whole adrenal mRNA from non-gonadectomized (nGDX) or gonadectomized (GDX) 

female DBA/2J mice (n = 4 per group). (B) qRT-PCR analysis of Spinlw1 and Insl3 in normal or tumor 
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tissue isolated by LCM from the adrenal cortex of ovariectomized DBA/2J mice (n = 4 per group).  qRT-

PCR results were normalized to expression of the housekeeping gene Actb (*, P < 0.05); normalization to 

Gapdh yielded similar results. Statistical significance was determined using the Student’s t test. (C) In situ 

hybridization of adrenal tissue from an ovariectomized DBA/2J mouse using a Spinlw1 antisense 

riboprobe.  (D) H&E staining of an adjacent tissue section.  Spinlw1 mRNA localized to neoplastic cells in 

the subcapsular region. (C) Immunoperoxidase staining of adrenal tissue from an ovariectomized DBA/2J 

mouse using anti-INSL3.  (D) H&E staining of an adjacent tissue section.  INSL3 immunoreactivity was 

evident in lipid-laden type B neoplastic cells [see (Bielinska et al. 2006a) for a description of this cell type].  

Control experiments demonstrated INSL3 immunoreactivity in Leydig cells of the adult testis (data not 

shown).  Bars = 50 µm.   
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FIGURE 3.5 

 

Figure 3.5 Foxl2 is upregulated in GDX-induced adrenocortical neoplasms of the mouse.  (A) qRT-

PCR analysis of Foxl2 in whole adrenal mRNA from non-gonadectomized (nGDX) or gonadectomized 

(GDX) female DBA/2J mice (n = 4 per group).  (B) qRT-PCR analysis of Foxl2 in normal or tumor tissue 

isolated by LCM from the adrenal cortex of ovariectomized DBA/2J mice (n = 4 per group).  qRT-PCR 

results were normalized to expression of the housekeeping gene Actb (*, P < 0.05); normalization to 

Gapdh yielded similar results. Statistical significance was determined using the Student’s t test.  (C) In 

situ hybridization of adrenal tissue from an ovariectomized DBA/2J mouse using a Foxl2 antisense 

riboprobe.  (D) H&E staining of an adjacent tissue section.  Bar = 50 µm.  (E) Immunoperoxidase staining 

of adrenal tissue from an ovariectomized DBA/2J mouse using anti-FOXL2.  (F) H&E staining of an 

adjacent tissue section.  Nuclear FOXL2 immunoreactivity was evident in both small, basophilic type A 

neoplastic cells and large, lipid-laden type B neoplastic cells [see (Bielinska et al. 2006a) for a description 

of these cell types].  Control stainings demonstrated nuclear FOXL2 immunoreactivity in granulosa cells 

of the adult ovary (data not shown).  Bar = 50 µm.    
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FIGURE 3.6 

 

Figure 3.6 FOXL2 immunoreactivity in neoplastic adrenocortical cells from a gonadectomized 

female ferret with clinical evidence of ectopic sex steroid production.  Sections of normal (A,C,E) or 

neoplastic (B,D,F) adrenal cortex were subjected to H&E staining (A,B) or to immunoperoxidase staining 

with anti-FOXL2 (C,D) or anti-GATA4 (E,F).  The neoplastic tissue contained a mixture of small, 

basophilic cells and large, polyhedral cells. Nuclear GATA4 immunoreactivity was evident in both the 

small and large neoplastic cells, whereas nuclear FOXL2 immunoreactivity was limited to the large 

neoplastic cells in this specimen.  Bar = 50 µm.  Abbreviations: c, capsule; zF, zona fasciculata; zG, zona 

glomerulosa; zI, zona intermedia [a zone characteristic of ferrets and other carnivores (Holmes 1961)]. 
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SUPPLEMENTARY FIGURES AND TABLES 

FIGURE 3.S1 

 

Figure 3.S1 FOXL2 immunoreactivity in an adrenocortical tumor from a gonadectomized male 

ferret with clinical signs of ectopic sex steroid production.  Nuclear FOXL2 staining is evident a 

subset of the neoplastic cells (arrowheads) but not in normal adrenocortical cells (arrow). Bar = 50 µm.   
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TABLE 3.S1 

https://cgs.wustl.edu/~maxim/Thesis/Chapter3/Table3.S1.xlsx 

Table 3.S1 Microarray expression profiling of adrenal glands from gonadectomized (GDX) vs. non-

gonadectomized (nGDX) female DBA/2J mice.  Genes that were significantly upregulated or 

downregulated (> 2-fold) are listed in the first tab.  Genes that survived the Benjamini-Hochberg 

correction are listed in the second tab.  See Materials and Methods for details. 

 

TABLE 3.S2 

https://cgs.wustl.edu/~maxim/Thesis/Chapter3/Table3.S2.xlsx 

Table 3.S2 Genes deemed tissue-specific for adrenal, brain, ovary, and testis based on analysis of 

pooled GEO microarray data.  See Materials and Methods for details. 

 

TABLE 3.S3 

Gene Primer sequence (5' → 3') cDNA size 
(bp) Reference 

Actb F: GCGTGACATCAAAGAGAAGC 187 NM_007393.2 
R: AGGATTCCATACCCAAGAAGG 

Foxl2 F: GCAAGGGAGGCGGGACAACAC 154 NM_02020.2 
R: GAACGGGAACTTGGCTATGATGT 

Foxs1 F: TACCTCGCCCTCACCGTGCC 167 NM_010226 
R: CAAGGCCTGGGTCAGTCCCCA 

Gapdh F: GCTCACTGGCATGGCCTTCCGTG 200 NM_008084.2 
R: TGGAAGAGTGGGAGTTGCTGTTGA 

Igfbp6 F: CAGAGACCGGCAGAAGAATC 289 NM_008344 
R: GCTTCCTTGACCATCTGGAG 

Insl3 F: CACGCAGCCTGTGGAGACCC 134 NM_013564.7 
R: CGCTGGCGCTGAGAAGCCT 

Spinlw1  F: TGACTTGCTGTTTCCCAGGAG 191 NM_029325.2 
R: AAGCCATACAGTAGCCGGAG 

 

Table 3.S3 Primers used for qRT-PCR. 
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TABLE 3.S4 

Gene Primer sequence (5' → 3') Size (bp) 

Spinlw1 
F: GTGCTATTTGGCCTGCTTGC     

513 
R: TAGGACCCCACAACTGGGAA 

Foxl2 
F: CAAGTACCTGCAATCGGGGT 

490 
R: TGCGTCTCAGACACTTCGAC 

Foxs1 
F: TCACCGTGCCCAGCATTCGG 

513 
R: CCCCAAGGGACCTGCCTGACT 

Igfpb6 
F: TGTTGGTTCGTTGCGGGCTCA 

561 
R: CCTGCGAGGAACGACCTGCTG 

 
Table 3.S4 Primers used to generate riboprobes for in situ hybridization. 
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CHAPTER 4: ACTIVE METHYLATION AND DEMETHYLATION IN MOTOR NEURON MATURATION 

 

ABSTRACT 

 Cytosine methylation (5mC) and hydroxymethylation (5hmC) play important roles in 

transcriptional regulation in post-mitotic neurons. Neuronal activity-induced gene activation in the adult 

brain is mediated through the Tet oxidation of 5mC to 5hmC, which is replaced with unmodified cytosine 

by the base excision repair pathway to complete the demethylation cycle. Little is known about the 

dynamics of how 5mC and 5hmC are established in adult neurons partially owing to the difficulty of 

studying neuron maturation ex vivo. Here, we leverage a recently developed 5mC genome-wide mapping 

technique and a motor neuron puromycin-selectable transgenic embryonic stem cell line to characterize 

the DNA methylome of motor neurons (MNs) as they differentiate and mature. We show that motor 

neuron differentiation and maturation is characterized by a loss of 5mC at genes critical for neuron 

function and by a global gain in 5hmC. These changes in cytosine modification result in attendant gene 

activation and show enrichment for known sequence motifs of motor neuron-specific transcription factors. 

Furthermore, single, double, and triple knockout experiments show that individual Tet proteins are not 

required for MN maturation and that Tet3 is sufficient for proper MN differentiation and maturation, and 

that MN can differentiate and form without the presence of any TET enzymes. Our study suggests that 

transcription factor-mediated active demethylation of 5mC through the 5hmC intermediate occurs in a 

temporal manner and that the TET proteins play redundant and compensatory roles in MN differentiation 

and maturation. 

  



76 

INTRODUCTION 

 Motor neurons (MNs) connect the central nervous system and skeletal muscle to direct muscle 

contractions and movement. They are primarily located in the ventral horn of the spinal cord where axons 

extend to muscle cells at neuromuscular junctions. MN diseases, like amyotrophic lateral sclerosis (ALS), 

result in axon degeneration and eventual paralysis, organ failure, and death. In normal development, MNs 

are completely formed by embryonic day 13 (E13) in the mouse and gestation week 5.5 in humans 

(Altman J. 2001). In vivo studies have shown that MN maturation is characterized by changes in 

morphology and electrophysiology. As MNs mature, they increase in cell body size, extend peripheral 

axons, and form dendrites (Cullheim et al. 1987; Nunez-Abades and Cameron 1995; Burke and Glenn 

1996; Altman J. 2001; Carrascal et al. 2005; Li et al. 2005), and are able to fire multiple action potentials 

to propagate synaptic signaling (Ziskind-Conhaim 1988; Martin-Caraballo and Greer 1999; Carrascal et 

al. 2005). Previously, McCreedy et al. developed a transgenic mouse embryonic stem cell line that allows 

for the selection of motor neurons in culture. This in vitro differentiation method, and others, have 

demonstrated that normal cell morphology and electrophysiology can be recapitulated in cultured MNs 

(Wichterle et al. 2002; Miles et al. 2004; Wichterle and Peljto 2008; Takazawa et al. 2012).  

 The covalent modification of cytosine in the genome is associated with gene silencing and is vital 

for normal development (Reik 2007) and for maintaining cellular identity (Dhawan et al. 2011b). The 

methylation of cytosine (5mC) has been extensively studied in neurons of the brain (Iwamoto et al. 2011; 

Lister et al. 2013; Kozlenkov et al. 2014) and has been shown to influence synaptic formation (Levenson 

et al. 2006), learning and memory (Day and Sweatt 2010; Miller et al. 2010; Zovkic et al. 2013), emotional 

behavior (LaPlant et al. 2010), adult neurogenesis (Ma et al. 2009), and age-related cognitive decline 

(Oliveira et al. 2012). Although originally thought to be a permanent covalent modification in neurons, 

5mC levels change in response to external stimuli (Guo et al. 2011a). Recent studies have identified 

CpGs that are modified in postnatal neural tissues upon neuronal activity induced by voluntary exercise 

(Guo et al. 2011a), social stress conditions (McGowan et al. 2009; Elliott et al. 2010), and 

electroconvulsive stimulation (Guo et al. 2011a). The necessity for functional DNA methyltransferase and 

CpG-binding proteins in ensuring long-term neural plasticity and cognition further highlights the 

importance of 5mC in normal neuron function (Moretti et al. 2006; Feng et al. 2010). Although the 
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importance of 5mC in neurons of the brain is well established, little is know about the role 5mC plays in 

motor neuron maturation. 

 The discovery of the hydroxymethylation of cytosine (5hmC) has introduced an additional role of 

cytosine modification in the brain (Penn et al. 1972; Tahiliani et al. 2009). 5hmC occurs primarily at gene 

bodies and is associated with gene activation (Branco et al. 2012). The presence of 5hmC varies across 

tissue types but is highest in the hypothalamus and cerebral cortex (Globisch et al. 2010) suggesting it 

plays an important role in neuron function. 5hmC is an intermediate for the demethylation of 5mC 

(Tahiliani et al. 2009; Guo et al. 2011b) and knockout experiments have shown that the oxidation of 5mC 

to 5hmC by TET1 is necessary for neuronal activity-induced active DNA demethylation in the adult mouse 

brain (Guo et al. 2011b). Although significant progress has been made in understanding the role of 5mC 

and 5hmC in neurons of the developing brain, it is unknown whether 5hmC is present in motor neurons 

and whether the Tet demethylating machinery is necessary for normal motor neuron function. 

 In this study, we used Laser Capture Microdissection-Reduced Representation Bisulfite 

Sequencing (LCM-RRBS) to profile the genome-wide 5mC and used immunocytochemistry to profile 

global 5hmC of a pure population of differentiating and maturing MNs in vitro. We show that post-mitotic 

MNs undergo significant methylome remodeling upon differentiation and functional and morphological 

maturation. The observed methylation changes are associated with transcriptional changes of genes 

important for motor neuron function. Furthermore, we show that the presence of 5hmC in MNs occurs 

post-differentiation upon cellular maturation and that the Tet demethylation machinery is necessary for 

proper motor neuron differentiation and maturation. We provide the first global view of the changing DNA 

methylation landscape at base pair resolution in developing motor neurons. 

 

RESULTS 

In vitro selected motor neurons model morphological and electrophysiological motor neuron 

maturation in culture 

 Current in vitro studies of MN maturation are limited by the presence of proliferating glial cells that 

prevent the isolation of individual neurons. Previously, McCreedy et al. characterized a transgenic Hb9-

driving puromycin (Hb9-puro) transgenic embryonic stem cell line that, upon retinoic acid and sonic 
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hedgehog induction, differentiates into physiologically normal MNs. Induced neural progenitor cells 

(NPCs) express the spinal motor neuron-specific transcription factor, Hb9, and therefore also express 

Puromycin N-acetyltransferase, which can be used to select for MNs (Figure 4.1). To better understand 

the utility of the Hb9-puro line as a model for studying MN maturation, we characterized the morphology 

and electrophysiology of maturing MNs at 24 hours (D0), two days (D2), and four days (D4) after 

differentiation and selection. We first assessed the formation of neurites, branch points, neuronal 

networks, cell area, and neurite length as a function of time. β-tubulin class III staining, imaging, and 

quantification showed a statistically significant increase (ANOVA, P<0.05) in neurite number, neurite 

length, neurite branch points, and cell body area from D0 to D4 (Figure 4.2 and 4.3). Furthermore, as 

MNs developed neurites, they formed an increasing number of contacts with neighboring cells to 

establish closed networks as represented by a decrease in independent networks across time (Figure 

4.3). Most neurite growth and branching occurred from D0 to D2 after which neurite growth slowed 

(Figure 4.2 and 4.3). We conclude that cultured MNs are morphologically mature at four days after 

differentiation. 

 We next investigated the electrophysiological properties of D0, D2, and D4 MNs. Previous work 

by McCreedy et al. showed that D4 MNs have the ability to fire multiple action potentials during periods of 

prolonged depolarization and exhibit adaptation in both spike frequency and amplitude. To evaluate the 

functional properties of selected MNs over time, we performed whole-cell current-clamp recordings 

between 0 and 6 days after differentiation (puromycin selection; Figure 4.4). To test for expression of 

functional neurotransmitter receptors, we exposed cells to selective agonists for AMPA/kainate, NMDA, 

glycine, and GABA receptors and recorded the resulting inward current. Figure 4.4 (top panel) shows that 

the amplitude of agonist-evoked total whole-cell current density increases with time (Pearson, P<10-4) 

after puromycin selection, suggesting the number of channels expressed on the surface of each cell 

increases over time. Interestingly, currents evoked by AMPA/kainite, NMDA, and glycine agonists showed 

the greatest increase from D2 to D4 while the largest increase in current density evoked by the GABA 

agonists was observed between D0 and D2, suggesting GABA receptor expression occurs earlier than 

AMPA/kainite, NMDA, and glycine receptors. Furthermore, whole-cell capacitance, which is proportional 

to surface area, significantly increased from 22.6 ± 1.5 pF (n=11) at D0 to 61.2 ± 4.0 pF (n=16) at D6 
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(ANOVA, P<10-4) while input resistance decreased significantly between D0 and D2 but not between D2 

and D4 or D6 (ANOVA, P<10-4), which confirms our morphology experiments that a significant increase in 

cell size occurs between D0 and D4 (Figure 4.4, bottom panel). Our results and those from McCreedy et 

al. together demonstrate that selected MNs mature into functional neurons by four days after puromycin 

selection.  

 

Maturing motor neurons show active gains and losses in DNA methylation at genes implicated in 

neurogenesis 

 Little is known about the role DNA methylation plays in MN maturation. To determine whether 

DNA methylation changes occur in maturing MNs, we applied LCM-RRBS (Schillebeeckx et al. 2013) to 

three biological replicates of D0, D2, and D4 MNs. Using LCM-RRBS, we were able to interrogate the 

DNA methylation status of 1,074,439 CpGs at all three time points. Although >99% of CpGs did not show 

a significant change in DNA methylation from D0 to D4, 2,894 CpGs and 1,147 CpGs showed a 

statistically significant loss and gain of at least 25 percent methylation, respectively (Figure 4.5, left panel; 

Table 4.S1). Although LCM-RRBS enriches for CpGs in promoter regions (Figure 4.S1; top left panel), we 

observed that most CpG changes occurred >10 kilobases from the nearest gene (Figure 4.S1; bottom 

panel). We, therefore, assessed whether there was an enrichment at introns, exons, promoters, or 

intergenic regions. We see a significant depletion of differentially methylated CpGs in promoters (p-

value<10-16; OR<0.32) and a significant enrichment for differentially methylated CpGs at introns (p-

value<10-9; OR>1.49) and intergenic regions (p-value<10-9; OR>1.46) (Figure 4.S1). Furthermore, 

hypomethylated CpGs were highly enriched for CpGs distal to the nearest gene (Welch’s t test; p-

value<10-5) while hypermethylated CpGs had a slight enrichment for distal CpGs (Welch’s t test; p-

value<0.039) with a mean distance of 17,709 bp and 14,264 bp, respectively, to the nearest transcription 

start site (TSS)(Figure 4.S1). Taken together, we conclude that significant changes in CpG methylation 

occur at putative regulatory regions distal to TSSs. 

 To determine whether the differentially methylated CpGs regulate genes important for motor 

neuron function, we identified the nearest gene to each differentially methylated CpG and performed 

Gene Ontology enrichment analysis. Hypomethylated CpGs were associated with genes enriched for 
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neuronaI function, including neuron projection guidance, axon guidance, and neuron differentiation while 

hypermethylated CpGs were associated with genes enriched for cell differentiation, including embryonic 

morphogenesis, regulation of cell development, and multicellular organismal development (q-value<10-6; 

FDR-adjusted; Table 4.1). Interestingly, changes in DNA methylation occurred at various stages in MN 

maturation. Roughly 65% of hypomethylated CpGs lost more methylation between D0 and D2 than 

between D2 and D4 while roughly 65% of hypermethylated CpGs gained more methylation between D2 

and D4 than between D0 and D2 (Figure 4.5, right panel; Table 4.S1), suggesting gene activation occurs 

earlier than gene silencing. We conclude that hypomethylated CpGs are associated with genes important 

for motor neuron maturation and that the loss of CpG methylation occurs within two days after 

differentiation. 

 To assess whether the observed loss of methylation is specific to MNs, we determined the 

methylation states of hypomethylated CpGs for astrocytes, a glial cell type. Astrocytes and MNs share a 

common progenitor and, therefore, have a close epigenetic origin in which they stem from one DNA 

methylation profile. We find that CpGs hypomethylated in MNs are enriched for CpGs that are highly 

methylated in astrocytes (Figure 4.6; Fisher’s Exact Test, p-value<10-16). Indeed, 82% of hypomethylated 

CpGs are highly methylated in astrocytes with a percent methylation of 75% or greater, suggesting the 

observed loss of DNA methylation is specific to MNs. Together, we conclude that maturing MNs show 

significant gains and losses of DNA methylation at CpGs associated with genes implicated in neuronal 

functions and cellular differentiation and that the loss of DNA methylation is specific to motor neurons.  

 

Motor neurons show a significant increase in expression of genes associated with active 

demethylation 

 DNA methylation at gene promoters acts to silence genes by recruiting chromatin modifying 

proteins or by preventing transcription factor binding and is therefore negatively correlated with gene 

expression (Watt and Molloy 1988; Robertson 2005). We hypothesized that the observed gains and 

losses of DNA methylation would be associated with gene silencing and gene activation, respectively. To 

test this hypothesis, we performed gene expression profiling of neural progenitor cells (NPC) and 

selected MNs at D0, D2, and D4 (Table 4.S2). We found 142 and 50 genes that showed a statistically 
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significant (q-value<0.05; FDR-adjusted) increase or decrease in expression between D0 and D4 MNs, 

respectively (Figure 4.7; left panel). Upregulated genes were enriched (q-value<0.05; FDR-adjusted) for 

neuronal function, including cell signaling, synaptic transmission, and neuromuscular process while 

downregulated genes were enriched (q-value<0.05; FDR-adjusted) for various biological processes 

including apoptosis and biosynthesis (Table 4.2). Furthermore, upregulated genes were enriched (q-

value<0.05; FDR-adjusted) for ion channels, transporters, and neurotransmitter receptors (Table 4.3). 

Unsupervised hierarchical clustering of differentially expressed genes suggests that the majority of 

expression changes occur with two days of MN differentiation with fewer changes occurring between D2 

and D4 than between D0 and D2 (Figure 4.7; right panel). Therefore, within two days of differentiation, 

motor neurons undergo significant gene activation and gene silencing as they mature into functioning 

neurons. 

 To assess whether differentially methylated CpGs were associated with an expression change, 

we determined the expression level of genes associated with hypomethylated and hypermethylated CpGs 

across NPCs, D0 MNs, D2 MNs, and D4 MNs. We found that 82 and 21 genes upregulated and 

downregulated in D4 MNs, respectively, were associated with differentially methylated CpGs (Fisher’s 

Exact; p-value<10-16; Figure 4.8). Of the 82 upregulated genes, 64 were associated with a distal CpG that 

significantly lost DNA methylation between D0 and D4 MNs (Figure 4.S2) while 13 downregulated genes 

were associated with a distal CpG that gained DNA methylation (data not shown). Taken together, we 

find that as they mature, MNs undergo significant expression changes that correlate with concomitant 

changes in DNA methylation. 

 

Motif scanning identifies factors associated with active gains and losses of DNA methylation in 

maturing motor neurons 

 DNA methylation can prevent the binding of transcription factors (TFs) to DNA by directly 

occluding binding sites or by recruiting methyl-binding proteins (Watt and Molloy 1988). We hypothesize 

that differentially methylated CpGs may lie within gene regulatory regions important for MN maturation 

and differentiation and that the methylation status of these CpGs may regulate TF binding and gene 

regulation. To elucidate whether differentially methylated regions are associated with TF binding, we 
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evaluated 100 bp regions flanking hypomethylated and hypermethylated CpGs for the enrichment of 

known TFs using the Hypergeometric Optimization of Motif EnRichment (HOMER) suite of tools (Heinz et 

al. 2010). We find 96 and 9 predicted motifs corresponding to known cognate TFs that were enriched in 

hypomethylated and hypermethylated regions, respectively (q-value<0.01; FDR-adjusted). To elucidate 

which TFs may contribute to MN function, we performed gene ontology enrichment analysis on the TFs 

that were found predicted by HOMER to bind hypomethylated and hypermethylated regions. We found 

that 14 TFs associated with hypomethylation are enriched for neuronal function (Table 4.4). Indeed, the 

TFs Isl1, Phox2a, Lhx3, Tbx20 are known to play critical roles in spinal and cranial MN differentiation 

(Mazzoni et al. 2013). Of these 14 TFs, 10 show a statistically significant (p-value<0.05; FDR-adjusted) 

expression difference between NPCs and D0 MNs as assessed by microarray analysis (Figure 4.S3). Isl1 

and Lhx3 had the highest increase and decrease in expression, respectively, from NPCs to D0 MNs. We 

also find that hypermethylated regions were enriched for Oct4, a pluripotency factor, and Olig2, a neuro-

oligodendrocyte cell-type specification factor. These findings suggest Isl1 may direct demethylation of 

CpGs during motor neuron maturation while Lhx3 may play a role in maintaining CpGs in a methylated 

state prior to differentiation. 

 

Maturing motor neurons gain 5-hydroxymethylation over time 

 We previously demonstrated that MNs lose DNA methylation at 2,894 CpGs as they mature. 

Because MNs no longer undergo cell division after selection (D0), the loss of DNA methylation we 

observe between D0 and D4 is indicative of an active demethylation pathway, independent of cell 

division. Several mechanisms for active demethylation have been proposed (Branco et al. 2012; Kohli 

and Zhang 2013) but all require the active oxidation of 5-methylcytosine (5mC) to a 5-

hydroxymethylcytosine (5hmC) intermediate by the Ten-eleven translocation (Tet) family of proteins. We 

hypothesized that the loss of 5mC in maturing MNs occurs with a concomitant gain of 5hmC. To test this 

hypothesis, we performed immunocytochemistry on fixed D0, D2, and D4 MNs with an antibody directed 

at 5hmC. Immunocytochemistry showed very little positive staining for 5hmC at D0 and strong 5hmC 

signal at D2 and D4 (Figure 4.9). We conclude that MNs gain significant 5hmC as they mature to 

functional neurons. 
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TET proteins are necessary for proper motor neuron differentiation and maturation 

 Our microarray expression analysis shows a statistically significant increase in Tet2 and Tet3 

expression in D0 MNs as compared to NPCs (Student’s t test; p-value<0.05; Figure 4.S4). Furthermore, 

qRT-PCR analysis of ES cells shows an increase in Tet3 expression as they differentiate into NPCs 

(Figure 4.S5). The observed changes in gene expression of the TET proteins and the observed increase 

in 5hmC in maturing MNs (Figure 4.9) prompted us to hypothesize that the Tet family plays a role in MN 

differentiation and maturation. To determine whether the Tet family members are necessary for MN cell-

type specification and maturation, we created Tet1, Tet2, and Tet3 single knockout, Tet1/Tet2 double 

knockout (DKO), and Tet1/Tet2/Tet3 triple knockout (TKO) Hb9-puro ES cells using the CRISPR/Cas9 

genome engineering system (Figure 4.S6). Similar to wildtype cells, all knockout cell lines formed EBs 

and NPCs when ES cells were induced to differentiate with retinoic acid and sonic hedgehog agonist 

(data not shown). Tet1, Tet2, and Tet3 single knockout NPCs developed into normal MNs and showed 

normal gains of 5hmC by D4 (Figure 4.10). Interestingly, single knockout MNs, unlike wildtype MNs 

showed the presence of 5hmC at D0 as well (Figure 4.10). Immunocytochemistry staining showed a 

dramatic reduction in MN differentiation in DKO cells compared to wildtype cells but showed normal gains 

of 5hmC in the viable MNs that formed (Figure 4.11). TKO cells showed an almost complete inability to 

differentiate into MNs; curiously, the few MNs that did differentiate and mature showed strong 5hmC 

staining (Figure 4.11).  

 Differentiation experiments with single knockout ES cells suggest all three TET proteins can 

convert 5mC to 5hmC and play redundant roles in MN maturation. The presence of viable Tet1/Tet2 DKO 

MNs suggests Tet3 is sufficient for MN differentiation and can compensate for the lack of TET1 and TET2 

protein, which is consistent with experiments showing that Tet1/Tet2 DKO ES cells form viable and 

grossly normal mice (Dawlaty et al. 2013). The significant reduction in differentiation potential of 

Tet1/Tet2/Tet3 knockout NPCs suggests the TET proteins are necessary for normal differentiation. A few 

TKO MNs, however, did successfully differentiate and mature. These TKO MNs seem morphologically 

normal and show strong 5hmC staining. The presence of 5hmC in MNs that completely lack any Tet 
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machinery suggests the TET proteins are not necessary for MN maturation and that an as of unknown 

protein can mediate the hydroxymethylation of cytosine. 

  

DISCUSSION 

 In this study, we show that MNs undergo significant epigenetic and gene expression changes as 

they mature. We leverage an Hb9-puro cell line to culture pure populations of spinal MNs and leverage 

the LCM-RRBS method to interrogate genome-wide DNA methylation of the limited genomic material. We 

find that MN maturation is characterized by a loss of cytosine methylation (5mC) and a gain of cytosine 

hydroxymethylation (5hmC) although gains of cytosine methylation are also observed. We find that the 

majority of methylation loss results in an increase in expression of the nearest gene. Interestingly, 

methylation and expression changes did not always co-occur. Indeed, we find CpGs that require four 

days to become fully demethylated but the CpG’s nearest gene is significantly activated within one or two 

days after differentiation. For example, methylation loss of a CpG near the App gene occurs 2-4 days 

after differentiation yet App expression significantly increases within one day of differentiation (Figure 

4.S7). In most cases, however, CpG methylation correlates well with expression change (Table 4.S3). For 

example, CpGs associated with Ret, on the other hand, show a loss of DNA methylation at Day 2 with a 

concomitant increase in Ret expression (Figure 4.S7). The difference in transcriptional timing and loss of 

DNA methylation suggests other epigenetics factors could be regulating the activation of MN-specific 

transcriptional profiles.  

 Combinatorial TF expression defines a cell’s identify. Isl1, Lhx3, and Hb9 expression characterize 

spinal MNs while Isl1, Phox2a, and Tbx20 expression characterize branchiomotor and visceromotor 

(cranial) neurons (Mazzoni et al. 2013). Interestingly, motif scanning of hypomethylated regions revealed 

the enrichment of putative binding motifs for both spinal (Isl1 and Lhx3) and cranial (Phox2a and Tbx20) 

MN TFs (Table 4.4). Mazzoni et al. showed that Isl1 directly interacts with Lhx3 and Phox2a in a cell-type 

dependent manner, which may explain the enrichment for Phox2a binding motifs. We predict that known 

Isl1-Phox2a binding sites of cranial MNs show an enrichment for hypomethylated regions relative to 

NPCs in cranial MNs. Furthermore, the hypomethylated regions we have identified may also be important 

for proper differentiation and maturation of cranial motor neurons. 
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 We also evaluated the presence of genome-wide cytosine hydroxymethylation (5hmC) in 

maturing MN cultures by immunocytochemistry. We find that MNs have very little 5hmC 24 hours after 

differentiation (Day 0) but gain genome-wide 5hmC within two days of maturation (Figure 4.9). Whole-

genome 5hmC mapping techniques will elucidate where in the genome the 5hmC increases as MNs 

mature and whether the gain of 5hmC correlates with gene expression as is suggested by recent studies 

(Jin et al. 2011; Tan et al. 2013). Hb9 expression peaks during NPC differentiation 4 days after EBs are 

induced with retinoic acid/Shh agonist and marks post-mitotic cells (Li et al. 2008b). Hb9-expressing 

NPCs, therefore, do not undergo any cell division during puromycin selection or maturation. Surprisingly, 

despite seeing no 5hmC in NPCs (Tan et al. 2013) or D0 MNs (Figure 4.9), we observe active 

demethylation at over 23,000 CpGs between NPCs and D0 MNs (data not shown), suggesting the active 

loss of methylation from NPCs to D0 MNs does not occur through the Tet pathway. Because NPCs 

consist of heterogeneous cells expressing different neuronal markers, DNA methylation analysis of Hb9+ 

FACS-enriched NPCs along with genome mapping of 5hmC in Hb9+ NPCs and D0 MNs would validate 

whether the aforementioned hypomethylated events are due to active demethylation mediated by the Tet 

machinery or due to other active demethylating pathways. 

 Finally, we show that Tet1, Tet2, and Tet3 play redundant, compensatory roles in MN 

differentiation and maturation, which is consistent with single knockout mice studies (Dawlaty et al. 2011). 

Expression analysis shows an increase in Tet2 and Tet3 expression between NPCs and D0 MNs (Figure 

4.S4) as well as high expression of Tet3 in whole mouse spinal cords (Figure 4.S5) suggesting Tet2 and 

Tet3 are important for MN function. We find that single knockout ES cells can be induced to differentiate 

into normal MNs that show normal 5hmC gains demonstrating that no single Tet is required for MN 

differentiation and maturation. Furthermore, we find that Tet1/Tet2 double knockout cells also differentiate 

into MNs, albeit less efficiently than wildtype cells, and show normal 5hmC gains, demonstrating that Tet3 

is sufficient for MN differentiation and maturation. Tet1/Tet2/Tet3 triple knockout cells show a striking 

reduction in ability to differentiate but are able to form mature MNs, demonstrating that the presence of 

Tet is necessary for normal differentiation of MNs. Significant validation of the lack of Tet protein as well 

as quantification of morphology, differentiation, and 5hmC levels is necessary to support the experiments 

herein. Tet1/Tet3 and Tet2/Tet3 double knockout studies along with DNA methylation analysis of all 
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knockouts will further elucidate the overlapping role and genome specificity of each of the Tet proteins in 

MN maturation. 

 

Model for active DNA methylation and gene activation in motor neuron differentiation 

 Our findings support a model where neuron-specific transcription factors recruit the Tet 

machinery to actively demethylate enhancer regions and activate genes critical to normal MN function 

(Figure 4.12). In this model, Isl1 binding sites at distal regulatory regions are methylated in NPCs (1). 

Upon NPC differentiation into MNs, Isl1 expression increases, binds at these regions, and recruits the Tet 

demethylases and other factors to remove DNA methylation (2). Upon demethylation by Tet, MN-specific 

target genes (e.g. Ret) are activated (3). Co-immunoprecipitation experiments of Isl1 and Tet will directly 

test whether they interact and form a DNA-binding complex. 

 In conclusion, we present the first known evidence of active demethylation in maturing spinal 

MNs and report the derivation of Tet1, Tet2, and Tet2 single, Tet1/Tet2 double, and Tet1/Tet2/Tet3 triple 

ES knockouts that can be differentiated and selected to create pure MN cultures. We show that all 

knockouts are able to form morphologically mature MNs and that the double and triple knockout lines 

have a significantly reduced ability to differentiate into MNs. The DNA methylation (5mC and 5hmC) and 

gene expression data from this study will inform future experiments to help elucidate the role of cytosine 

methylation in MN differentiation, maturation, and viability. Furthermore, the knockout embryonic stem cell 

lines derived in this study will facilitate research on dissecting the role of Tet family members in the 

differentiation of many other cell types as well as their roles in MN maturation.  
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MATERIALS AND METHODS 

 

Embryonic stem cell cultures 

 Mouse ES cells were cultured on gelatin-coated T75 flasks in complete media consisting of 

Dulbecco’s Modified Eagle Medium (DMEM; Life Technologies, Carlsbad, CA) containing 10% newborn 

calf serum (Life Technologies), 10% fetal bovine serum (Life Technologies), and 30 µM of each of the 

following nucleosides (Sigma): adenosine, cytosine, guanosine, and uridine. For routine culture, ES cells 

were passaged every two days. Briefly, ES cells were washed with DMEM containing 25 mM HEPES 

(Life Technologies) and dissociated with 0.25% trypsin-EDTA (Life Technologies) for 5 min. Trypsin was 

quenched with fresh complete media and cells were transferred to a new gelatin-coated flask at a 1:5 

ratio in fresh complete media containing 1000 U/mL leukemia inhibitory factor (LIF; Millipore, Bellerica, 

MA) and 100 µM β-mercaptoethanol (BME; Life Technologies). All cells were cultured at 37°C in the 

presence of 5% CO2. 

 

Derivation of Tet1, Tet2, Tet3 knockout Hb9-puro embryonic stem cells 

 Plasmids containing the Cas9 open reading frame or a guide RNA (gRNA) targeting Tet1, Tet2, 

or Tet3 were obtained from the Genome Editing Core at Washington University in St. Louis. Hb9-puro 

mouse ES cells were transfected with 0.5 µg of pPB_donor plasmid (which contains a neomycin and 

dsRed construct), 1 µg Cas9 plasmid, and 1 µg of gRNA plasmid directed at Tet1, Tet2, and/or Tet3 

depending on the intended line using lipofectamine 2000 (Life Technologies) one day after passaging to a 

6-well gelatinized plate. One day after transfection, cells were trypsinized and 10% of cells transferred to 

a 10 cm gelatinized dish. After incubating for one day, the neomycin analog, G-418, was added at a 

concentration of 1-0.5 mg/ml. Two days later, media was replaced with fresh complete media containing 

0.5 mg/ml and cultures left to expand for an additional 6 days. Following a media change, individual 

colonies were expanded in individual wells of a gelatinized, 96-well, flat-bottom plate and screening by 

PCR and Illumina sequencing for insertions or deletions in the target position. Putative knockout lines 

were expanded and validated using Sanger sequencing.  
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Motor neuron differentiation 

 Transgenic ES cells were differentiated into MNs using a 2-/4+ RA and smoothened agonist (SAG, 

Millipore) induction protocol as previously described (McCreedy et al. 2012). Approximately 1 x 106
 ES 

cells were cultured in suspension on 150 mm petri dishes in modified DFK5 media consisting of 

DMEM/F12 base media (Life Technologies) containing 5% knockout serum replacement (Life 

Technologies), 1x insulin transferrin selenium (ITS; Life Technologies), 50 µM nonessential amino acids 

(Life Technologies), 100 µM β-mercaptoethanol, 5 µM thymidine, and 15 µM of the following nucleosides: 

adenosine, cytosine, guanosine, and uridine. During this process, ES cells aggregate into multi-cellular 

EBs. After the first two days (2-), the EBs were moved to a 15 mL conical and allowed to settle for 5 min. 

The media was aspirated and replaced with 10 mL fresh DFK5 containing 2 µM RA and 600 nM 

Smoothen agonist (SAG). EBs were then cultured for an additional 4 days (4+) with media replaced every 

2 days. 

 

Motor neuron maturation 

 After 2-/4+ RA and SAG induction, cell were dissociated in 0.25% Trypsin-EDTA for 15 minutes 

and quenched with complete media. Dissociated cells were counted and centrifuged at 240 x g for 5 

minutes. Cells were resuspended in DFK5 media containing 5 ng/mL glial-derived neurotrophic factor 

(GDNF; Peprotech, Rocky Hill, NJ), 5 ng/mL brain derived neurotrophic factor (BDNF; Peprotech, Rocky 

Hill, NJ), 5 ng/mL neurotrophin-3 (NT-3; Peprotech, Rocky Hill, NJ), 4 µg/mL puromycin in water (Sigma) 

and plated at ~6 x 104
 cells/cm2

 in individual wells of a poly-ornithine-coated (Sigma) 6-well plate for 24 

hours. In parallel, for control cultures not receiving puromycin, cells were resuspended in DFK5 media 

with the growth factor cocktail and plated at ~6 x 104
 cells/cm2

 in individual wells of a poly-ornithine-coated 

coated 6-well plate for 24 hours. Following selection, cells were fixed for immunofluorescence or media 

was replaced with modified DFKNB media consisting of DFK5 and Neurobasal (NB) media (Life 

Technologies) mixed at a 1:1 ratio and supplemented with 1x B27, 5 ng/mL GDNF, 5 ng/mL BDNF, and 5 

ng/mL NT-3. Cells were cultured in DFKNB media for up to 4 additional days. 
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Immunohistochemistry 

 Cells were fixed in 4% (w/v) paraformaldehyde (Sigma) in phosphate buffered saline (PBS) for 15 

minutes at room temperature. Fixed cultures were washed once with PBS and permeabilized with 0.2% 

triton-X in PBS for 10 minutes. Cultures were then blocked for 1 hour at room temperature with 5% 

normal goat serum (NGS; Sigma) in PBS. Primary antibodies were added to blocked cultures overnight at 

4°C at the following dilutions in 2% NGS in PBS: class III β-tubulin (Tuj1, 1:5000, Covance) or 5-

hydroxymethylation (5hmC, 1:250, Active Motif). Primary antibodies were labeled with the appropriate 

AlexaFluor conjugated goat antibodies (Life Technologies) at a 1:1000 dilution in PBS for 1 hours. All 

wells were counterstained with DAPI (1:10000; Sigma) to label cell nuclei. Following 

immunofluorescence, phase contrast and fluorescent images were captured. 

 

Quantification of motor neuron neurite formation 

 Five biological replicates of D0, D2, and D4 wildtype MNs were fixed and stained with class III β-

tubulin as described above (see “Immunohistochemistry). For each time point, 60 images with a ~1/3 

overlap at 10x magnification were taken and combined into one image using the photomerge tool in 

Adobe Photoshop. Each sample image was then cropped to form images of equal size. Cropped images 

were uploaded to the WimNuerite (Wimasis) software for neurite morphology quantification. Student’s t 

test was applied to determine statistical significance. 

 

Electrophysiology 

 D0, D2, D4, and D6 MN cultures were bath perfused with Tyrode’s solution (in mM): 150 NaCl, 4 

KCl, 2 MgCl2, 2 CaCl2, 10 glucose, 10 HEPES, pH adjusted to 7.4 with NaOH. Whole-cell electrodes 

pulled from borosilicate glass capillaries had an open tip resistance of 2 to 5 MOhm when filled with one 

of the following internal solutions (in mM): (1) 140 K-glucuronate, 10 NaCl, 5 MgCl2, 0.2 EGTA, 5 Na-ATP, 

1 Na-GTP, 10 HEPES, pH adjusted to 7.4 with KOH; or (2) 140 Cs-glucuronate, 5 CsCl, 5 MgCl2, 10 

EGTA, 5 Na-ATP, 1 Na-GTP, 10 HEPES, pH adjusted to 7.4 with CsOH. Current and voltage were 

recorded with an Axopatch 200A amplifier, filtered at 1 kHz, digitized at 10 kHz and analyzed off-line with 
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Clampfit software (pClamp 9.2). Ligand-gated channel agonists were dissolved in 160 NaCl, 10 HEPES, 

2 CaCl2 and applied by local perfusion (Kim et al. 2009). 

 

DNA extraction 

 Selected cultures contain viable MNs as well as dead cells adhering to the well which can 

confound DNA methylation analysis. To degrade non-MN DNA, cells were treated with cell-impermeable 

DNase as follows: cells were washed three times with PBS to remove dead cells, 160 µl of DNase 

(10mg/ml; Sigma) in 1 ml of DFK5 and 10mM MgCl2 were added to each well and incubated for 2 hours 

at 37°C, then stained with DAPI or Hoechst to verify complete degradation of non-MN DNA. Cells were 

then washed three times with PBS and scraped off with a rubber scraper and transferred to a 1.5 ml 

Eppendorf tube. Collected cells were spun at 16000 rpm for 10 minutes and the supernatant removed 

with a pipet. DNA samples were purified using NucleoSpin Tissue XS columns (Clontech) following the 

protocol for cultured cells and eluted in 20 µl of nuclease-free water. Genomic DNA was quantified using 

the Quant-it dsDNA High Sensitivity kit (Invitrogen) and the Qubit fluorometer (Invitrogen). 

 

LCM-RRBS 

 LCM-RRBS was performed on three biological replicates of D0, D2, and D4 MNs as described 

previously (Schillebeeckx et al. 2013). Briefly, 10 ng of DNA from each of the nine samples was digested 

with MspI (NEB), end-repaired, and ligated with pre-annealed methylated paired-end Illumina adapters. 

Adapter-ligated fragments were purified using MinElute columns (Qiagen) and bisulfite treated using the 

EZ DNA Methylation Gold Kit (Zymo). Each sample was PCR amplified in triplicate using sample-specific 

indexed primers using Platinum Taq Polymerase (Invitrogen) and 10 melting-annealing-extension cycles. 

All PCR products and replicates were pooled and analyzed by electrophoresis on a 3% 1X Tris-acetate-

EDTA (TAE) NuSieve agarose gel (Lonza). Fragments between 150 bp and 350 bp were gel extracted 

and purified using MinElute columns (Qiagen). To minimize PCR bias, the final PCR library was amplified 

in quadruplicate using 11 PCR cycles. The four replicates are pooled and gel extracted to remove 

remaining adapter dimers and primers, then purified, and sequenced on Illumina HiSeq 2000 machines.  
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Sequence alignment and methylation calling 

 All analysis was performed using the July 2007 (NCBI37/mm9) build of the mouse genome. On 

average 25 million single-end 42-bp raw high quality reads per sample were aligned to the reduced 

reference using RRBSMAP (Xi et al. 2012) filtering against reads that contain adapter sequence. Reads 

that showed less than 90% bisulfite conversion (~1 unconverted non-CpG cytosine per read) were filtered 

to remove those that resulted from incomplete bisulfite converted molecules. Aligned reads with a 

mapping quality of zero were also discarded. The resulting high quality uniquely mapped reads were used 

for methylation calling. We identified the genomic coordinates of all CpGs in the reference sequence and 

assessed percent DNA methylation by calculating the fraction of reads that had an unconverted cytosine 

at the CpG position relative to the total reads. We required that each read have either a “TG” or “CG” 

dinucleotide at the expected CpG coordinate to be considered for analysis. Differentially methylated 

CpGs were determined using a Fisher’s Exact Test comparing the ratio of methylated versus 

unmethylated read for each sample. CpGs were considered hypomethylated or hypermethylated if they 

showed a statistically significant decrease or increase of at least 25% between D0 and D4 MNs, 

respectively. 

 

Microarray expression profiling 

 RNA was extracted from 2-/4+ RA and SAG induced embryonic stem cells (neural progenitor 

cells), D0 MNs, D2 MNs, and D4 MNs using the QIAGEN RNeasy kit. Briefly, cells were resuspended in 

lysis buffer RLT (cat no. 79216, QIAGEN) and β-mercaptoethanol, and then disrupted and lysed using a 

QIAshredder column (cat no. 79656, QIAGEN). RNA was extracted using a QIAGEN RNeasy Mini kit (cat 

no. 74104, QIAGEN) with on-column DNase treatment (cat no. 79254, QIAGEN). Approximately 2 mg of 

total RNA per sample was used to prepare cDNA using SuperScript® III, First-strand Synthesis system 

(cat no. 18080-051, Invitrogen). Array hybridization was performed by the GTAC Microarray Core facility 

at Washington University. Briefly, 50ng of total RNA was used to generate biotinylated cDNA, according 

to the standard NuGen WT-Ovation Pico RNA Amplification kit. Following fragmentation with NuGen 

Encore Biotin Module, 2.5 ug of cDNA were hybridized onto Mouse Gene 1.0 ST Arrays (Affymetrix) in 

the GeneChip Hybridization Oven 640 for 18 hr at 45°C. GeneChips were then washed and stained in the 
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Affymetrix Fluidics Station 450 and were scanned using the Affymetrix GeneChip 7G 3000 Scanner. The 

scanned raw .CEL files were analyzed to export signal intensity values, using Affymetrix Expression 

Console software with Affymetrix default RMA Gene analysis settings. Probe summarization (Robust 

Multichip Analysis, RMA), quality control analysis, and probe annotation were performed according to 

recommended guidelines (Expression Console Software, Affymetrix). We determined statistical 

significance using the Student’s t test and corrected for multiple hypothesis testing using the Benjamini & 

Hochberg’s method, leaving a total of 252 probes (q-value < 0.05). Statistically significant upregulated 

and downregulated probes correspond to 142 and 50 genes, respectively (Table 4.S2).  

 

Motif scanning analysis 

 Differentially methylated regions were defined as 200 bp genomic windows flanking a 

hypomethylated or hypermethylated CpG. If the CpGs were in a cluster separated by less than  

200 bp, then the window was defined to be 100 bp upstream of the first CpG and 100 bp downstream of 

the second CpG. Motif scanning was performed on hypomethylated and hypermethylated regions 

independently by using the Hypergeometric Optimization of Motif EnRichment (HOMER) suite of tools 

HOMER to identify enrichment of known TFs (Heinz et al. 2010). Only motifs with q-values < 0.01 

(Benjamini-Hochberg corrected) were considered enriched. We found 92 and 9 sequence motifs enriched 

in hypomethylated and hypermethylated regions, respectively, which were used for gene ontology (GO) 

enrichment analysis using HOMER tools. GO terms associated with biological processes were Bonferonni 

corrected for multiple hypotheses, filtered to remove those with a corrected p-value > 0.01, and ranked 

according to fold enrichment leaving 149 GO terms. Biological processes associated with neuronal 

function are listed in Table 4.4. 

 

Quantitative Reverse Transcription Polymerase Chain Reaction 

 Tet1, Tet2, and Tet3 expression of Hb9-puro embryonic stem cells, embryoid bodies, 2-/2+ 

embryoid bodies, and neural progenitor cells was determined by qRT-PCR using pre-validated TaqMan 

probes (Life Technologies) (Figure 4.S5). RNA was extracted following the protocol mentioned above and 

1.5 ml of cDNA was used to run Taq-Man qPCR reactions, using TaqMan® Universal Master Mix II, 
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without UNG (cat no. 4440043, Life Technologies), plus commercially available TaqMan primers to Tet1 

(Mm01169087_m1), Tet2 (Mm00524395_m1) and Tet3 (Mm00805756_m1) genes. All data were 

normalized to the endogenous control 18S ribosomal RNA (Rn18S, Mm03928990_g1) (Life 

Technologies) and quantitative measurements determined using the ΔΔCΤ approach. 

 

DNA Methylation Datasets 

 Embryonic stem cell, neuronal progenitor cell, and astrocyte processed DNA methylation calls 

were downloaded from NCBI Gene Expression Omnibus repository under accession numbers GSE30206 

and GSE11034 (Meissner et al. 2008; Stadler et al. 2011). 
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FIGURE 4.1 

 

 
Figure 4.1 Schematic of in vitro differentiation protocol for creating pure motor neuron 

populations. Embryonic stem cells are differentiated into embryoid bodies (EBs) in DFK5 media for two 

days and further induced down the neural lineage with retinoic acid and sonic hedgehog agonist for four 

days to form cell aggregates that express neural progenitor markers Olig2 and Hb9/MNR2. Neural 

progenitor cells (NPCs) are dissociated and plated on poly-ornithine plates in DFK5 media containing 

puromycin and neurotrophic factors. Twenty-four hours after selection (Day 0), media is replaced and 

cells cultured for four days (Day 4). Gray boxes represents one day. See Materials and Methods for 

additional culturing details. 
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FIGURE 4.2 

 

Figure 4.2 Immunocytochemistry of motor neurons after puromycin selection. Cultures were fixed 

with paraformaldehyde and stained with class III β-tubulin (β-tubIII, recognized by Tuj1 antibody) at 24 

hours (Day 0), two days (Day 2), or four days (Day 4) after puromycin selection to visualize neurite 

growth.  
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FIGURE 4.3 

 

Figure 4.3 Quantification of the morphological features of motor neurons over time. Motor neurons 

exhibit the growth of processes from Day 0 to Day 4 as quantified by total networks (top left), cell area 

(top right), number of neurite branching points (middle left), total length of neurites (middle right), and 

number of total neurites (bottom). Each time point represents the average of five biological replicates. 

Error bars show the standard error of the mean. * p-value < 0.05; ** p-value <0.01; ****p-value <0.001. 
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FIGURE 4.4 

 

Figure 4.4 Quantification of electrophysiological features of motor neurons over time. (Top row) 

Whole-cell current density (pA/pF) was recorded of D0, D2, D4, and D6 motorneurons in response to 

agonists for specific ligand-gate ion channels; K: AMPA/kainate, N: NMDA, Gly: glycine, and Gaba: 

GABA receptors. (Bottom row) Left panel shows whole-cell capacitance (pF) of motor neurons at D0, D2, 

D4, and D6 post-selection and the right panel shows whole-cell input resistance across D0, D2, D4, and 

D6 time points. 
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FIGURE 4.5 

 

Figure 4.5 Motor neurons gain and lose DNA methylation with time. DNA methylation changes 

between D0 and D4 motorneurons was assessed using a Fisher’s Exact Test. (Left panel) Dot plot of the 

inverse log2 p-value as a function of percent methylation difference between D0 and D4 motor neurons. 

CpGs passing Bonferonni multiple-hypothesis corrections with a percent methylation change of less than 

-25 or greater than 25 were considered as hypomethylated (blue) and hypermethylated (yellow), 

respectively. Horizontal dotted line represents the Bonferonni corrected p-value cutoff and the vertical 

dotted lines show a -25 and 25 percent methylation difference cutoff. (Right panel) Unsupervised 

hierarchical clustering heatmap of percent methylation for the 2,896 hypomethylated and the 1,153 

hypermethylated CpGs in D0, D2, and D4 motor neurons. Each row represents an individual CpG. Yellow 

denotes high (e.g. 100) percent methylation levels and blue denotes low (e.g. 0) percent methylation 

levels at a particular time point. 
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TABLE 4.1 

GO	  Term Description P-‐value FDR	  q-‐value Enrichment 
GO:0097485 neuron	  projection	  guidance 5.77E-‐10 2.58E-‐07 3.05 
GO:0007411 axon	  guidance 5.77E-‐10 2.49E-‐07 3.05 
GO:0001525 angiogenesis 1.06E-‐08 2.73E-‐06 2.54 
GO:0010975 regulation	  of	  neuron	  projection	  development 3.18E-‐08 7.88E-‐06 2.27 
GO:0045664 regulation	  of	  neuron	  differentiation 1.04E-‐10 5.78E-‐08 2.2 
GO:0051960 regulation	  of	  nervous	  system	  development 7.45E-‐13 9.64E-‐10 2.13 
GO:0016477 cell	  migration 2.62E-‐11 1.91E-‐08 2.13 
GO:0031344 regulation	  of	  cell	  projection	  organization 3.70E-‐08 8.61E-‐06 2.13 
GO:0050767 regulation	  of	  neurogenesis 1.77E-‐11 1.47E-‐08 2.12 
GO:0051270 regulation	  of	  cellular	  component	  movement 8.85E-‐11 5.15E-‐08 2.09 
GO:0048598 embryonic	  morphogenesis 5.28E-‐11 2.56E-‐08 2.75 
GO:0007389 pattern	  specification	  process 2.16E-‐08 4.57E-‐06 2.5 
GO:0048731 system	  development 4.49E-‐11 2.28E-‐08 2.37 
GO:0045597 positive	  regulation	  of	  cell	  differentiation 5.12E-‐09 1.32E-‐06 2.27 
GO:0051960 regulation	  of	  nervous	  system	  development 7.15E-‐09 1.66E-‐06 2.25 
GO:0007275 multicellular	  organismal	  development 2.56E-‐14 9.94E-‐11 2.24 
GO:0051094 positive	  regulation	  of	  developmental	  process 1.04E-‐10 4.64E-‐08 2.17 
GO:0000122 

negative	  regulation	  of	  transcription	  from	  RNA	  polymerase	  II	  
promoter 5.45E-‐08 9.91E-‐06 2.17 

GO:0060284 regulation	  of	  cell	  development 5.27E-‐08 9.74E-‐06 2.09 
GO:0045892 negative	  regulation	  of	  transcription,	  DNA-‐dependent 1.78E-‐09 5.30E-‐07 2.04 

 

Table 4.1 Gene Ontology (GO) enrichment analysis of the genes nearest to differentially 

methylated CpGs. GO term p-values were adjusted for multiple hypothesis (FDR<5%) and ranked 

according to enrichment. The top ten GO terms of genes associated with hypomethylated (upper) and 

hypermethylated CpGs (lower) are shown. 
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FIGURE 4.6 

 

Figure 4.6 CpGs hypomethylated in motorneurons are hypermethylated in NPCs and astrocytes. 

Unsupervised hierarchical clustering of the methylation status of hypomethylated CpGs in NPCs, D0 

motor neurons, D2 motor neurons, D4 motor neurons, and astrocytes. The heatmap shows that 87% and 

82% of hypomethylated CpGs are highly methylated (>=75%) in NPCs and astrocytes, respectively. The 

colored bar in the lower portion represents the expected result for motor neuron-specific methylation loss. 

Each row of the heatmap represents an individual CpG. Yellow denotes high (e.g. 100) percent 

methylation levels and blue denotes low (e.g. 0) percent methylation levels. 
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FIGURE 4.7 

 

 
FIGURE 4.7 Gene expression profiling of neural progenitors and motor neurons. Microarray 

hybridization was performed on RNA isolated from neural progenitor cells (NPC), day 0 motor neurons 

(D0), day 2 motor neurons (D2), and day 4 motor neurons (D4). Genes differentially expressed between 

D0 and D4 motor neurons were identified using Student’s t test and corrected for multiple hypothesis 

using Benjamini & Hochberg’s (FDR) method. (Left panel) Dot plot of the inverse log2 p-value as a 

function of the log2 ratio of D0 and D4 expression. Red dots represent statistically significant upregulated 

probes and green dots represent statistically significant downregulated probes. Horizontal dotted line 

represents the multiple hypothesis corrected significant cutoff (q-value<0.05). (Right panel) Unsupervised 

hierarchical clustering heatmap of all probes differentially expressed between D0 and D4 motor neurons. 

Red and green indicate low and high expression levels, respectively. (A.U.) Arbitrary Units. Each sample 

represents the average of three biological replicates. 
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TABLE 4.2 

GO	  Term Description P-‐value FDR	  q-‐value Enrichment 

GO:0035235 ionotropic	  glutamate	  receptor	  signaling	  pathway 5.07E-‐06 4.91E-‐03 33.82 

GO:0035249 synaptic	  transmission,	  glutamatergic 1.71E-‐05 1.04E-‐02 25.37 

GO:0007215 glutamate	  receptor	  signaling	  pathway 5.55E-‐05 2.80E-‐02 19.02 

GO:0051966 regulation	  of	  synaptic	  transmission,	  glutamatergic 7.09E-‐05 3.05E-‐02 17.90 

GO:0007270 neuron-‐neuron	  synaptic	  transmission 1.00E-‐05 7.28E-‐03 17.29 

GO:0050905 neuromuscular	  process 1.35E-‐05 8.69E-‐03 11.56 

GO:0007268 synaptic	  transmission 8.73E-‐10 1.01E-‐05 11.14 

GO:0007267 cell-‐cell	  signaling 1.65E-‐08 6.41E-‐05 7.64 

GO:0044700 single	  organism	  signaling 7.35E-‐08 2.14E-‐04 6.73 

GO:0023052 signaling 7.35E-‐08 1.71E-‐04 6.73 

GO:0034645 negative	  regulation	  of	  muscle	  cell	  apoptotic	  process 2.24E-‐05 4.34E-‐02 54.17 

GO:0009059 cellular	  macromolecule	  biosynthetic	  process 3.02E-‐06 3.51E-‐02 3.43 

GO:0044249 macromolecule	  biosynthetic	  process 3.93E-‐06 2.28E-‐02 3.36 

GO:1901576 cellular	  biosynthetic	  process 7.35E-‐06 2.85E-‐02 2.91 

GO:0009058 organic	  substance	  biosynthetic	  process 1.09E-‐05 3.17E-‐02 2.83 

GO:0010656 biosynthetic	  process 1.51E-‐05 3.52E-‐02 2.77 
 

Table 4.2 Gene Ontology enrichment of biological processes for genes differentially expressed 

between D0 and D4 motorneurons. GO term p-values were adjusted for multiple hypotheses (FDR<5%) 

and ranked according to enrichment. All GO categories that pass multiple hypothesis corrections are 

shown for upregulated (top) and downregulated (bottom) genes. 
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TABLE 4.3 

GO	  Term Description P-‐value FDR	  q-‐value Enrichment 

GO:0005219 ryanodine-‐sensitive	  calcium-‐release	  channel	  activity 4.28E-‐05 7.62E-‐03 152.19 

GO:0048763 calcium-‐induced	  calcium	  release	  activity 1.28E-‐04 2.09E-‐02 101.46 
GO:0004971 alpha-‐amino-‐3-‐hydroxy-‐5-‐methyl-‐4-‐isoxazole	  propionate	  

glutamate	  receptor	  activity 
2.55E-‐04 3.69E-‐02 76.1 

GO:0005234 extracellular-‐glutamate-‐gated	  ion	  channel	  activity 1.69E-‐06 4.41E-‐04 43.48 

GO:0004970 ionotropic	  glutamate	  receptor	  activity 2.30E-‐06 5.61E-‐04 40.58 

GO:0008066 glutamate	  receptor	  activity 9.77E-‐06 2.25E-‐03 28.99 

GO:0004890 GABA-‐A	  receptor	  activity 2.10E-‐04 3.29E-‐02 25.37 

GO:0016917 GABA	  receptor	  activity 3.38E-‐04 4.72E-‐02 21.74 

GO:0005230 extracellular	  ligand-‐gated	  ion	  channel	  activity 2.05E-‐07 6.16E-‐05 16.65 

GO:0005231 excitatory	  extracellular	  ligand-‐gated	  ion	  channel	  activity 2.15E-‐04 3.24E-‐02 13.53 
 

Table 4.3 Gene Ontology enrichment analysis of functional categories for genes upregulated 

between D0 and D4 motorneurons. GO term p-values were adjusted for multiple hypotheses (FDR<5%) 

and ranked according to enrichment. The top ten GO terms of upregulated genes are shown. 
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FIGURE 4.8 

 

 
Figure 4.8 Differentially methylated CpGs are associated with differentially expressed genes. For 

all differentially methylated CpGs, the expression level of the nearest gene was compared between D0 

and D4 motorneurons. The plot shows the expression change relative to the difference in DNA 

methylation between D0 and D4 motorneurons. Red dots represent upregulated genes and green dots 

represent downregulated genes (p-value<0.05, Student’s t test).  
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TABLE 4.4 

GO	  Term	   Description	   Genes	   P-‐value	   FDR	  q-‐value	   Enrichment	   Rank	  
GO:48665	   neuron	  fate	  specification	   Isl1,	  Lhx3,	  Atoh1,	  Foxa2	   2.08E-‐07	   2.52E-‐03	   76.37	   6	  

GO:21522	  
spinal	  cord	  motor	  neuron	  
differentiation	   Isl1,	  Phox2a,	  Lhx3,	  Tbx20	   4.61E-‐07	   5.58E-‐03	   63.01	   7	  

GO:21517	   ventral	  spinal	  cord	  development	   Isl1,	  Phox2a,	  Lhx3,	  Tbx20	   7.48E-‐07	   9.04E-‐03	   56.01	   10	  
GO:48663	   neuron	  fate	  commitment	   Isl1,	  Smad4,	  Lhx3,	  Atoh1,	  Pax7,	  Foxa2	   1.01E-‐09	   1.22E-‐05	   55.59	   11	  
GO:21515	   cell	  differentiation	  in	  spinal	  cord	   Isl1,	  Phox2a,	  Lhx3,	  Pax7,	  Tbx20	   2.90E-‐08	   3.50E-‐04	   55.27	   12	  
GO:21510	   spinal	  cord	  development	   Isl1,	  Phox2a,	  Lhx3,	  Pbx3,	  Pax7,	  Tbx20	   2.53E-‐09	   3.06E-‐05	   47.85	   13	  
GO:30182	   neuron	  differentiation	   Isl1,	  Phox2a,	  Smad4,	  Pbx3,	  Stat3,	  

Pax7,	  Mef2c,	  Tbx20,	  Foxa2,	  Lhx2,	  
Lhx3,	  Atoh1	  

5.96E-‐10	   7.21E-‐06	   10.33	   62	  

GO:48699	   generation	  of	  neurons	   Isl1,	  Phox2a,	  Smad4,	  Pbx3,	  Atf1,	  
Stat3,	  Pax7,	  Mef2c,	  Tbx20,	  Foxa2,	  
Lhx2,	  Tcf3,	  Lhx3,	  Atoh1	  

3.81E-‐10	   4.60E-‐06	   8.04	   88	  

GO:22008	   neurogenesis	   Isl1,	  Phox2a,	  Smad4,	  Pbx3,	  Atf1,	  
Stat3,	  Pax7,	  Mef2c,	  Tbx20,	  Foxa2,	  
Lhx2,	  Tcf3,	  Lhx3,	  Atoh1	  

8.26E-‐10	   9.99E-‐06	   7.58	   95	  

 

Table 4.4 Gene Ontology (GO) enrichment analysis on transcription factors enriched for a 

sequence motif in hypomethylated regions. We identified 149 statistically enriched GO terms (q-

value<0.01; FDR-adjusted) associated with hypomethylated regions and ranked them according to 

enrichment fold. Table 4.4 presents those GO terms and TFs associated with neuronal function. No GO 

terms were found to be enriched for hypermethylated regions. 
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FIGURE 4.9 

 

Figure 4.9 Motor neurons gain 5-hydroxymethylation with time. Puromycin-selected cultures were 

fixed and stained with β-tubulin class III (β-tubIII) and an antibody targeting 5-hydroxymethylation (5hmC) 

at 24 hours (Day 0), two days (Day 2), or four days (Day 4) after selection to visualize neurite growth and 

the presence of 5hmC. 
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FIGURE 4.10 

 
 
Figure 4.10 Tet single knockout motor neurons show 5-hydroxymethylation. Puromycin-selected 

cultures were fixed and stained with β-tubulin class III (β-tubIII) and an antibody targeting 5-

hydroxymethylation (5hmC) at 24 hours (Day 0), two days (Day 2), or four days (Day 4) after selection to 

visualize neurite growth and the presence of 5hmC. Single knockout NPCs differentiate into normal motor 

neurons that look morphologically normal through Day 4. Single knockout lines also show normal gains in 

5hmC by Day 4. 
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FIGURE 4.11 

 

Figure 4.11 Tet double and triple knockout motor neurons show 5-hydroxymethylation. Unselected 

cultures were fixed and stained with β-tubulin class III (β-tubIII) and an antibody targeting 5-

hydroxymethylation (5hmC) at 24 hours (Day 0), two days (Day 2), or four days (Day 4) after puromycin 

selection to visualize neurite growth and the presence of 5hmC. Double knockout (DKO) and triple 

knockout (TKO) show a significantly reduced ability to differentiate into motor neurons (MNs) as 

demonstrated by the lower number of normal MNs at Day 0, Day 2, and Day 4. DKO and TKO MNs also 

show 5hmC staining by Day 4 as demonstrated by the co-staining of β-tubulin class III (white) and 5hmC 

(red). Cells not positive for β-tubulin class III, presumably glial precursors, showed significant 5hmC 

staining in wildtype, DKO, and TKO cultures as shown by the large 5hmC positive areas (red). Note that 

5hmC staining for DKO Day 0 failed.  
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FIGURE 4.12 

 

Figure 4.12 Model for active demethylation and gene activation. Our study finds motor neuron-

specific transcription factor (TF) binding sites are actively demethylated during motor neuron 

differentiation and maturation. These findings support a model in which regions that regulate motor 

neuron-specific genes (e.g. Ret) contain TFs binding sites (e.g. Isl1) that are methylated in neuron 

progenitor cells (1). During differentiation, Isl1 binds these regulatory regions and recruits the Tet 

demethylation machinery, which removes the DNA methylation (2). Upon demethylation, the target gene 

is activated (3).   
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SUPPLEMENTARY FIGURES AND TABLES 

FIGURE 4.S1 

 

 
Figure 4.S1 Genomic distribution of differentially methylated CpGs. (Top panel) Background (left), 

hypomethylated (middle), and hypermethylated (right) CpGs were classified as located in promoters, 

exons, introns, or intergenic regions. (Bottom panel) Histogram of the distance to the nearest UCSC 

defined transcription start site for background (left), hypomethylated (middle), and hypermethylated (right) 

CpGs. Background, hypomethylated, and hypermethylated CpGs are located at a mean distance of 5,740 

bp, 17,709 bp, and 14,262 bp from the nearest transcription start site (TSS), respectively.  
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FIGURE 4.S2 

 

Figure 4.S2 Hypomethylated CpGs and attendant gene expression. Unsupervised hierarchical 

clustering was performed on the methylation status of hypomethylated CpGs across NPCs, D0, D2, and 

D4 motorneurons (left). The absolute expression level of the gene nearest to the hypomethylated CpG is 

plotted across NPCs, D0, D2, and D4 motorneurons (right). Yellow denotes high (e.g. 100) percent 

methylation levels and blue denotes low (e.g. 0) percent methylation levels. Red and green indicate low 

and high expression levels, respectively. (A.U.) Arbitrary Units. Each sample represents the average of 

three biological replicates. 
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FIGURE 4.S3 

 
 
Figure 4.S3 Expression of transcription factors with enriched sequence motifs at hypomethylated 

regions. Heatmap of the absolute expression level of each transcription factor across NPC, D0, D2, and 

D4 timepoints. Rows are sorted on the ratio of NPC to D0 expression. Isl1, Pbx3, Stat3, and Smad4 show 

a statistically significant increase in expression from NPC to D0 while Foxa2, Tbx20, Tcf3, Atf1, Phox2a, 

and Lhx3 show a statistically significant decrease in expression. A.U.: arbitrary units.  
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FIGURE 4.S4 

 

 
Figure 4.S4 Absolute expression of Tet and Dnmt families across NPC, D0, D2, and D4. Expression 

levels were determined by Affymetrix Mouse Gene 1.0 ST microarray. (A.U.) Arbitrary Units. * p-

value<0.05; *** p-value<0.005 (Student’s t test).  
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FIGURE 4.S5 

 

Figure 4.S5 Wildtype expression of Tet1, Tet2, and Tet3 across various tissues. qRT-PCR analysis 

of Tet expression in wildtype embryonic stem cells (ES), embryoid bodies (EB), EBs induced with retinoic 

acid/shh agonist for two days (NPC (2-/2+)), EBs induced with retinoic acid/ssh agonist for four days 

(NPC (2-/4+)), and various tissues. Values are normalized to ES expression. (a.u.); arbitrary units. ns, not 

significant; ** p-value <0.01; *** p-value < 0.05; ****p-value <0.001.   
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FIGURE 4.S6 

 
 
 
Figure 4.S6 Sanger sequence validation of knockout alleles. A portion of the wildtype and knockout 

Tet1, Tet2, or Tet3 allele is represented for either (A) Tet1, Tet2, or Tet3 single knockouts, (B) Tet1/Tet2 

double knockout, or (C) Tet1/Tet2/Tet3 triple knockout.  
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FIGURE 4.S7 

 

 
Figure 4.S7 DNA methylation and expression of putative Isl1-regulated genes App and Ret. (Left 

panel) DNA methylation heatmap of hypomethylated CpGs associated with App (1 CpG) and Ret (3 

CpGs) were found to be enriched for the Isl1 sequence motif. All CpGs show significant loss of DNA 

methylation by D4 after differentiation and are specific to motor neurons. (Right Panel) Heatmap of App 

and Ret absolute expression across time shows App is activated upon differentiation (D0) while Ret is 

gradually activated through D2 and D4 after differentiation. Yellow denotes high (e.g. 100) percent 

methylation levels and blue denotes low (e.g. 0) percent methylation. White denotes missing data. Red 

and green indicate low and high expression levels, respectively. (A.U.) Arbitrary Units. Each sample 

represents the average of three biological replicates. 
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TABLE 4.S1 

https://cgs.wustl.edu/~maxim/Thesis/Chapter4/Table4.S1.xlsx 

Table 4.S1 List of CpGs that show a statistically significant gain or loss of DNA methylation 

between D0 and D4 motor neurons. The table contains the DNA methylation status and read coverage 

for each CpG across embryonic stem cells, neural progenitor cells, D0 motor neurons, D2 motor neurons, 

D4 motor neurons, and astrocytes as well as categorizes each CpG as changing early (from D0 to D2) or 

late (from D2 to D4). The URL address above contains a link to Table 4.S1. 

 

TABLE 4.S2 

https://cgs.wustl.edu/~maxim/Thesis/Chapter4/Table4.S2.xlsx 

Table 4.S2 List of differentially expressed probes. The table contains a tab with normalized 

expression levels of all probes (“Expression_Master”), a tab listing the probes that are differentially 

expressed between NPCs and D0 motor neurons (“NPCvD0”), a tab listing the probes that are 

differentially expressed between D0 and D4 motor neurons (“D0vD4”), a tab listing probes downregulated 

from D0 to D4 motor neurons, and a tab listing probes upregulated from D0 to D4 motor neurons. The 

URL address above contains a link to Table 4.S2. 

  

TABLE 4.S3 

https://cgs.wustl.edu/~maxim/Thesis/Chapter4/Table4.S3.xlsx 

Table 4.S3 List of CpGs that show a statistically significant gain of DNA methylation and are 

associated with genes that increase in expression and CpGs that show a statistically significant 

loss of DNA methylation and are associated with genes that decrease in expression between D0 

and D4 motorneurons. The table contains the DNA methylation status and expression of its associated 

gene of ES cells, NPCs, D0 motor neurons, D2 motor neurons, and D4 motor neurons. The URL address 

above contains a link to Table 4.S3. 
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CHAPTER 5: CONCLUDING REMARKS AND DISCUSSION 

 

 The onset of next-generation massively paralleled sequencing as a commoditized tool has 

significantly advanced our understanding of the role of DNA methylation in normal development, health, 

and disease. Before the start of this thesis, whole genome or genome-wide methylation maps were non-

existent. Researchers dissected the methylation patterns of single loci under various conditions or in 

various cell states. Currently, whole genome patterns of 5-methylcytosine (5mC) is being catalogued 

across human tissues and disease states. What’s more, within the past five years the field has 

established the importance of 5-hydroxymethylcytosine (5hmC), a novel genomic mark, in early 

development and has elucidated several mechanisms of active DNA demethylation. We now have a more 

complete understanding of the factors involved in establishing, maintaining, reading, and erasing DNA 

methylation. Several questions (among many) are still outstanding in the field. 

 

What is the informative unit of DNA methylation? 

 A question that has always been at the forefront of the DNA methylation field is whether individual 

CpGs or multiple CpGs together account for functional regulation. In other words, can each individual 

CpG inform biology or does a region have to reach a methylation threshold to effect its role in a cell? Until 

recently, Differentially Methylated Regions (DMRs) and the average methylation status of all CpGs within 

a CpG Island (CGI), were thought to be the only informative unit for transcriptional regulation. The high 

density of CpGs within 200-500 base pair CGIs alluded to a mechanism in which the absolute level of 

CpG methylation across the entire region dictated gene regulation. Furthermore, because CGIs are 

enriched at gene promoters, the natural inclination has been to ascribe the CGI unit with a regulatory 

function controlled by CpG methylation. The focus on CGIs is an unintended consequence of the 

introduction of genome sequencing and the desire to interrogate as many CpG dinucleotides as possible 

relative to experimental costs. Naturally, focusing on has CGIs allowed for a fairly comprehensive, 

genome-wide evaluation but biased the field toward interrogating promoter methylation. Covariance 

analysis of the methylation status of CpGs and their nearest neighborhoods has strengthened the notion 

that the CpGs within large genome regions have a similar methylation status. These studies have shown 
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that if a CpG is highly methylated, the probability is high that its nearest neighbor is also methylated. 

Furthermore, many studies have shown that entire CGIs can show differential methylation between 

normal cell types and that cancer, in particular, loses methylation boundaries which results in large, 

megabase blocks of hypomethylated regions. The methylation profiling of adrenocortical neoplasias 

featured in this thesis, also demonstrates that larger regions, namely CGIs, can exhibit large methylation 

changes in disease models. 

 On the other hand, many examples abound from the 1980s and 1990s showing that the 

methylation status of an individual CpG is sufficient to disrupt the binding of transcription factors or to 

recruit methyl-binding proteins. Although the entire region could often not be analyzed, it is now clear that 

individual CpGs can affect transcription. The DNA-binding factor CTCF insulates the effects of distal 

enhancers from promoters to regulate expression and contains multiple potential CpG sites within its 

binding motif. The methylation of one of these CpG sites prevents DNA binding and gene repression. The 

methylation of a single CpG can also recruit proteins with methyl-binding domains. Their binding to 

methylated DNA recruits histone modifying proteins to establish repressive chromatin states. My study on 

the changing methylation landscape of maturing motor neurons provides evidence for both models 

suggesting individual CpGs can be informative and that the DNA methylation state of a cluster of CpGs 

confers biological information. Many of the CpGs I observed to gain or lose methylation between D0 and 

D4 motor neurons were the only differentially methylated CpG associated with a gene. The dramatic 

change in methylation observed (>25%) as well as the importance of many of the nearest genes suggests 

these CpGs are biologically important and play a regulatory role. Many other differentially methylated 

CpGs, however, were located within 200 base pairs of each other (clustered). Most often, these CpGs all 

showed a change in methylation status in the same direction though some instances were observed in 

which one CpG gained methylation and its nearest neighbor lost methylation. The former case supports 

the idea that large genomic regions are the informative unit while the later case suggests each CpG plays 

a unique role. Why nearby CpGs would both gain and lose methylation, however, is yet to be determined. 

From my studies, it is evident that single CpG and multi-CpG methylation changes occur and both are 

most likely biologically relevant. 
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Why does CpG methylation not correlate with expression on the global level? 

 The first studies of the functional role of DNA methylation definitively showed that methylation is 

associated with a transcriptionally repressive state. We have since come to better understand the 

dynamic interplay between chromatin state and DNA methylation state, but still are unable to predict 

transcriptional expression based on DNA methylation. What’s more, global methylome and transcriptome 

studies show very poor correlation between DNA methylation and expression. The poor overall 

correlation could be due to several reason, all of which reflect a gap in our understanding and represent 

unique opportunities for future discovery. 

 One explanation for the poor correlation between methylation and expression could simply be 

due to our limited knowledge of the information content of each CpG. In other words, we still are unsure 

which CpGs regulate which genes. 3D chromatin mapping experiments have shown that the genome 

forms complex physical interactions between distal genomic regions. For example, enhancers have been 

shown to interact with gene prompters tens of thousands of kilobases away. Similarly, proximal CpGs 

may not provide the most predictive power for determining expression. The genomic description of the 

differentially methylated CpGs identified in my study of maturing motor neurons (Figure 4.S1) shows that 

most methylation changes occur 10-15 kilobases from transcription start sites (TSSs). Most putative 

enhancers are also found at roughly the same distance from TSSs as these differentially methylated 

CpGs. As more whole genome datasets across multiple cell types become available, correlations can be 

made between the methylation status of every CpG and the expression level of every gene to identify 

regulatory CpGs. 

 Moreover, the biologically significance of methylation levels further confounds our interpretation of 

DNA methylation and precludes correlative studies. In theory, because of the binary nature of DNA 

methylation, the methylation of a CpG within one cell can exist in only one of three states: 100% 

methylated (both alleles methylated), 50% methylated (one allele methylated, one allele unmethylated), or 

0% methylated (both alleles unmethylated). Empirically, CpG methylation is bimodally distributed between 

fully methylated (100%) and fully unmethylated (0%) states. Imprinted loci that are 50% methylated are 

the exception. Furthermore, intermediate methylation states, percent methylation that is not 0, 50, or 

100%, are also observed. The observation of intermediate methylation states (e.g. 30% or 70%) could 
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mean the presence of technical artifacts. Since all studies to date are not single cell and, therefore 

percent methylation of a CpG is the average methylation of all alleles in all cells, the observation of 

intermediate methylation most likely suggests the CpG methylation state varies among cells. The lack of 

correlation between methylation and expression could, therefore, be due to the fact that methylation is a 

binary variable while gene expression is a discrete variable. Single-cell transcription and methylation 

mapping experiments are necessary to more accurately describe the relationship between individual CpG 

methylation and gene expression.  

 

What is the role of CpH methylation? 

 The methylation of cytosine outside of the CpG context was first demonstrated to occur in 

embryonic stem (ES) cells and subsequently lost upon differentiation. Recently, the presence of CpH 

(H=A, C, or T) methylation was discovered in the mammalian brain. CpH methylation occurs primarily 

within the gene body, whereas CpG methylation is distributed across the genome. Like methylation at 

CpGs, CpH methylation in the brain is negatively correlated to gene transcript abundance. In ES cells 

however, CpH methylation is positively correlated to gene transcript abundance.  

 The key to understanding the role of CpH methylation may lie in its asymmetry. Because the 

CpA, CpC, and CpT nucleotide pairs do not contain a cytosine on its opposite strand, methylation can 

only occur on one strand. When a cell with CpH methylation divides, one cell could inherit the hemi-

methylated chromosome pairs while another cell could inherit the completely unmethylated 

chromosomes, effectively erasing the CpH methylation. Stem cells are known to undergo obligatory 

asymmetrical replication in which one pluripotent or multipotent cell divides into one mother cell that is 

identical to the original stem cell and into one daughter cell that is differentiated. The asymmetric division 

of CpH methylation may be a marker for stemness and instruct the dividing cell to remain in the 

pluripotent or multipotent state. The daughter cell that receives the unmethylated DNA strands would be 

signaled to differentiate due to the lack of CpH methylation. Experiments that can specifically disrupt CpH 

methylation in ES cells or synthetically introduce CpH methyl marks are necessary to test this hypothesis 

and elucidate CpH function.  
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How is DNA methylation directed? 

 Although we have a thorough understanding of the methyltransferase machinery, we have yet to 

determine how DNA methylation is directed to specific genomic sequences. Dnmt1 is primarily 

responsible for maintaining DNA methylation states through cell divisions by faithfully adding a methyl 

group to the cytosines of hemi-methylated, recently replicated, DNA. Dnmt3b is active early in 

development where it adds methyl groups to completely unmethylated pericentric regions and some 

repetitive elements. Dnmt3a more broadly methylates DNA across various genomic features throughout 

development and in adult tissues. Dnmt3l confers some specificity to direct Dnmt3a to imprinted loci and 

repetitive elements. The general specificity of each of the de novo methyltransferases can be explained 

by differences in their DNA binding domains or interaction with Dnmt3l, but factors that determine cell 

type-specific deposition of methyl groups is still unclear. 

 An important question underlying how DNA methylation status is determined is to understand 

what is the default methylation state of DNA: is the natural tendency of the methyltransferase machinery 

to methylate all cytosines with some sequences excluding the Dnmts or is the default state of the cell to 

be unmethylated with Dnmts directed to specific sequences by chaperones or cofactors? This question is 

further complicated when considering the process of cell division and the process of passive versus 

active demethylation. Studies have shown that Sp1 is associated with unmethylated sequences, 

especially CGIs. The additional of Sp1 binding sites to DNA that is methylated results in the prevention 

(or loss) of methylation while the mutation of Sp1 binding sites in unmethylated DNA results in gains of 

methylation within that region. Experiments with the Epstein-Barr virus suggest that binding of 

transcription factors alone is sufficient to prevent methylation of DNA in the case of replication-dependent 

mechanisms. These studies suggest a model where DNA-binding factors exclude the methyltransferase 

machinery from binding and methylating DNA.  

 Studies of the Oct4 and p15 promoters, however, suggest a different model in which specific 

factors direct the addition of methylation at unmethylated regions. In this case, the Oct4 promoter 

acquires methylation upon differentiation. The methylation state in differentiated cells results from the 

binding of G9A and subsequent recruitment of DNMT3A and DNMT3B to the Oct4 promoter.  
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Aberrant methylation gains in cancer can also teach us about the default state of DNA. p15, a 

tumor-suppressor genes, is highly methylated in the breast cancer cell line, MCF7. This methylation 

seems to be due to DNMT3A and mediated by ZNF217. Knockdown of ZNF217 by siRNA results in 

complete loss of methylation at the p15 promoter suggesting that ZNF217 directs the methylation at the 

p15 promoter by recruiting DNMT3A.  

 Most likely, depending on the cellular context, both models described occur. My work in mapping 

methylation in maturing motor neuron suggests that specific factors can direct the removal and additional 

of DNA methylation at specific loci in an active, non-replication-dependent manner. 
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