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ABSTRACT OF THE DISSERTATION
Sizing up the Competition: Quantifying the Influence of the Mental Lexicon on Auditory,
Visual, and Audiovisual Spoken Word Recognition
by
Julia Elise Feld
Doctor of Philosophy in Psychology
Washington University in St. Louis, 2010

Professor Mitchell Sommers, Chairperson

A central question in research on spoken word recognition is whether spoken words are
recognized relationally, in the context of other words in the mental lexicon (McClelland &
Elman, 1986; Norris, 1994; Luce & Pisoni, 1998). The current research evaluated metrics for
measuring the influence of the mental lexicon on spoken word recognition in auditory-only (A-
only), visual-only (V-only) and audiovisual (AV) conditions, and assessed the extent to which
lexical properties influence recognition similarly across modality of input. Lexical competition
(the extent to which perceptually similar words influence recognition of a stimulus word) was
quantified using metrics that are well-established in the literature, as well as a novel statistical
method for calculating perceptual confusability, based on the Phi-square statistic.

The Phi-square statistic proved an effective measure for assessing lexical competition and
explained significant variance in A-only and V-only spoken word identification beyond that
accounted for by traditional metrics. Because these values include the influence of all words in
the lexicon (rather than only perceptually very similar words), it suggests that even perceptually

distant words may receive some activation, and therefore provide competition, during spoken
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word recognition. Spoken word recognition in A-only, V-only, and AV was sensitive to
modality-specific lexical competition and stimulus frequency. These findings extend the scope of
activation-competition models of spoken word recognition and suggest that the perceptual and

lexical properties underlying spoken word recognition are not unique to the A-only domain.
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CHAPTER 1: INTRODUCTION & LITERATURE REVIEW

A long-standing question in research on spoken word recognition has been how
humans are able to map stimulus information about speech onto meaningful lexical
representations in memory. Given the enormity of the mental lexicon [minimum
estimates suggest at least 40,000 words in the average adult lexicon (Aitchison, 2003)],
discriminating between the appropriate lexical item and all other items in memory is a
large and complex task. Remarkably, we manage to complete this task in an almost
instantaneous and effortless fashion. A wealth of research has sought to describe the
process by which stimulus information from the speech signal activates words in
memory, how a specific word is selected from among the activated words, and how the
properties of words influence this process.

The speed and accuracy of spoken word recognition seems only attainable if there
is an efficient means of searching a highly organized lexicon. There is a growing
consensus that the way that words are organized in memory influences our ability to
recognize them (see Jusczyk & Luce, 2002, for a review). Although the majority of
research on the influence of lexical properties on spoken word recognition has been done
within the realm of auditory (A-only) speech, there is growing evidence that lipread, or
visually (V-only) perceived speech is also influenced by lexical organization (Auer,
2002; Mattys, Bernstein, & Auer, 2002). Only two studies (Kaiser, Kirk, Lachs & Pisoni,
2003; Tye-Murray, Sommers, & Spehar, 2007a) have investigated how the lexical
properties of words identified in an audiovisual (AV) setting influence recognition. Their

results were in general accord with the findings in A-only and V-only spoken word



recognition, namely that spoken word recognition is sensitive to the lexical properties of
the stimulus input.

In the sections that follow, I will review pertinent research on A-only spoken
word recognition, including how the structure of the mental lexicon and lexical properties
like frequency of occurrence influence recognition accuracy. Then, I will review parallel
findings in the V-only and AV spoken word recognition literature. Next, I will discuss
the methods by which lexical competition has been quantified in past research and review
possible limitations with these methods. Finally, I will discuss a novel method for
quantifying lexical competition that may be applied to A-only, V-only, and AV spoken

word recognition.

Auditory Spoken Word Recognition

Most current models of auditory spoken word recognition [Neighborhood
Activation Model (Luce 1986; Luce & Pisoni, 1998); TRACE (McClelland & Elman,
1986), Shortlist (Norris, 1994)] propose that acoustic-phonetic input from a stimulus
word activates a set of perceptually similar lexical candidates in memory, and that these
lexical candidates compete for recognition. These activation-competition models propose
that the amount of activation a lexical item receives depends on the degree of perceptual
similarity between the input and the memory representation (Luce & Pisoni, 1998;
Marslen-Wilson, 1995). The models further propose that perceptually similar words
(called competitors) receive some activation from the stimulus input and provide
competition to the stimulus. For example, following the presentation of stimulus word
/cat/, the lexical representation for /kit/ receives more activation than the perceptually less

similar representation for /bog/. Because each perceptually similar word provides
2



competition for the stimulus word, words with more competitors should be more difficult
to recognize than stimulus words with fewer competitors. Activation-competition models
have been empirically supported by findings that the number of words that are
perceptually similar to the stimulus word influences the speed and accuracy of word
recognition: experiments using perceptual identification, lexical decision, and auditory
naming tasks have all demonstrated that words with many competitors are recognized
more slowly and less accurately than words with few competitors (Goldinger, Luce, &
Pisoni, 1989; Luce & Pisoni, 1998; Vitevitch & Luce, 1998).

In addition to the amount of competition a word encounters, the frequency with
which a stimulus word occurs in the language also influences spoken word recognition.
Word frequency has been well established as a significant predictor of word identification
accuracy: high-frequency words are identified more quickly and with greater accuracy
than low-frequency words (Savin, 1963; Luce & Pisoni, 1998). Although there is not a
clear consensus about the specific mechanism by which word frequency effects operate,
most theorists concur that frequency serves to bias or weight activation levels to
influence the identification decision (Luce & Pisoni, 1998; Marslen-Wilson, 1995;
Morton, 1979).

To account for the roles of both lexical competitors and frequency of occurrence,
Luce & Pisoni (1998) proposed a model of spoken word recognition called the
Neighborhood Activation Model (NAM). The NAM posits that stimulus input from the
speech signal activates a set of acoustic-phonetic patterns in memory. These acoustic-
phonetic patterns then activate a set of word decision units that are tuned to particular

patterns of input. These word decision units begin monitoring higher-level lexical



information (such as word frequency) that is relevant to the words to which they
correspond. Therefore, word units serve as an intermediary between acoustic-phonetic
(bottom-up) and lexical (top-down) information and are responsible for monitoring both
sources of information. In addition, word units are assumed to be interconnected so that
they are able to influence activation levels of other word decision units as well as monitor
the overall level of activity in the system of units. Word recognition occurs once the
word decision unit for a given acoustic phonetic pattern surpasses a criterion relative to
activation in the rest of the lexicon. Figure 1 shows a schematic of the architecture and

dynamics of word recognition within the NAM.
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Figure 1. Flow chart of the Neighborhood Activation Model (Luce & Pisoni, 1998)



In order to explicitly quantify the influences of both perceptual and higher-order
lexical information on spoken word recognition, the NAM includes a quantitative account
of lexical competition that predicts the likelihood of choosing a stimulus word from
among its competitors, based on Luce’s Choice Rule (1959). Luce’s Choice Rule states
that the probability of selecting a given item i is equal to the probability of item 7 divided
by the probability of 7 plus the sum of the probabilities of j other items. Luce and Pisoni
(1998) applied this to the problem of predicting spoken word identification, assuming
that the probability of identifying the stimulus word is equal to the probability of the
stimulus word divided by the probability of the stimulus word plus the probabilities of
identifying the competitor words. This, referred to as the Neighborhood Choice Rule

(NCR), is mathematically expressed as:

S
p(iD) = 2

p(s) + Z};(Ni)
i

[1]
where p(ID) is the probability of correctly identifying the stimulus word, p(S) is the

probability of the stimulus word and p(N;) is the probability of the jth neighbor.

In the numerator of the NCR, Luce & Pisoni (1998) included one perceptual and
one lexical factor thought to influence the likelihood of accurately identifying a stimulus
word. The perceptual factor is referred to as the Stimulus Word Probability (SWP) and
quantifies the likelihood of identifying the acoustic-phonetic pattern of the stimulus word
when it is presented. SWP may be thought of as a measure of intelligibility (Auer, 2002),
because it measures the probability of recognition, independent of other factors such as

lexical competition or frequency. Importantly, SWP is sensitive to only the bottom-up,



perceptual support for a word and is independent from the amount of competition a word

experiences. SWP is mathematically expressed as:

n
SWP = [Ip(PSi|PS))
1

where (PS;|PS;) is the conditional probability of accurately identifying phoneme i in a .
forced-choice phoneme identification task. For example, the SWP of the word /bat/is
p(bb) * p(aja) * p(t|t). The NAM assumes that the decision units of words containing
easily identified segments receive more support from the acoustic-phonetic input of that
word than words containing segments that are difficult to identify. For example, if the
phoneme /tJ/ is correctly identified 80% of the time and the phoneme /f/ is correctly
identified only 40% of the time, the word /chat/ will have a higher SWP than the word
/fat/. Thus, SWP reflects the likelihood of correctly identifying a stimulus word’s
segments, independently of its similarity to other words in the lexicon. In addition to the
bottom-up SWP, the numerator of the NCR also contains a top-down, lexical component:
stimulus word frequency. The NAM assumes that, initially, the word recognition system
is driven completely by the stimulus input. However, once the acoustic-phonetic input
has activated a given word decision unit (and many such units will be initially activated),
frequency biases the incremental activation for those word decision unit as it accumulates
activation.

Because word decision units also monitor the activity of other units in the system,
the NAM also requires a metric for assessing the amount of support competitor words
receive from the acoustic-phonetic input of a stimulus word, expressed in the

denominator of the NCR. To calculate the perceptual similarity of a stimulus word and a
7



competitor word, a measure called Neighborhood Word Probability (NWP) is employed.
NWPs predict the likelihood that a stimulus word will be confused with a competitor
word by comparing the perceptual similarity of the stimulus word’s segments to its
competitor’s segments. These similarities are approximated using the probability that
phonemes will be confused with one another based on results from a forced-choice
identification task. To calculate the confusability of two words, the probabilities that a
stimulus word’s position-specific phonemes will be confused with its competitor’s
position-specific phonemes are multiplied. The NWP is mathematically expressed as:

n
NWP = []p(PNi[PS;)
=1

where PN; is the ith phoneme of the neighbor and PS; is the ith phoneme of the stimulu?l
word. For example, the probability of responding /mad/ given that the actual stimulus
presentation was /mat/ is given by madjmat = p(m|m) * p(aja) * p(d|t). This method
provides a method for assessing the perceptual similarity of two words on a continuous
scale. To incorporate higher-level information about the competitor words, along with
the perceptual information from the NWP, each NWP value is weighted by the frequency
with which that word occurs in the language.

Thus, to combine information about segmental intelligibility and frequency with

competitor confusability and frequency, the NCR is altered to render:

n

[ [p(PS/|PS,)*Freq,

i=1

p(ID) = . (s
{{ HP(PSi|PSi)] *FreqH] + Z[ { HP(PN:‘J'|PS§)

i=1 j=1lLi=1

*FreqNJ}
[4]



referred to as the Frequency-Weighted Neighborhood Probability Rule (FWNPR).

The Frequency-weighted SWP appears both in the numerator and the denominator. The
denominator also contains the sum of the frequency weighted NWPs. The output of the
FWNPR predicts performance on word identification, with correlations between FWNPR
and A-only word identification accuracy ranging from » = .23 to » = .47 (Luce, 1986;
Luce & Pisoni, 1998).

A coarser (but mathematically simpler) method for quantifying the amount of
competition that a word encounters is to define competitors (called neighbors by the
NAM) ! as words that may be formed by the addition, deletion, or subtraction of one
phoneme of the stimulus. For instance, neighbors of /cat/ include /cot/ (a substitution),
/at/ (a deletion) and /cast/ (an addition). This procedure, sometimes referred to as the one-
phoneme shortcut method (Dahan & Magnuson, 2006), is appealing because of its
computational simplicity, and because it may be used when appropriate confusion
matrices are not available or appropriate to calculate similarity continuously. For
example, when stimulus materials are presented without background noise (as is often
done during lexical decision tasks), using phoneme confusion matrices based on syllable
identification tasks in masked noise is not an accurate index of perceptual similarity.
Neighborhood density (number of neighbors) has been demonstrated to predict word
identification accuracy: words with few neighbors are identified more quickly and
accurately than those with many neighbors (Kaiser et al., 2003; Luce, 1986; Vitevitch &

Luce, 1998).

! Some research uses the term neighbor to refer to any perceptually similar word, while some use it only for
words obtained using the one-phoneme shortcut method. To avoid confusion, here the term neighbor refers
to the latter. The term competitor is used when comparing a stimulus word to all words in the lexicon.

9



A common method for simultaneously including the influences of word
frequency, competitor similarity, and competitor frequency on spoken word identification
has been to group words into lexically easy and hard clusters (Luce, 1986). Lexically
easy words are high in frequency and have few low-frequency neighbors, whereas
lexically difficult words are low in frequency and have many high-frequency neighbors.
Lexically easy words are identified more quickly and accurately than hard words (Kaiser
et al., 2003; Luce, 1986; Vitevitch & Luce, 1998). These results have been demonstrated
in many populations, including children (Eisenberg, Martinez, Holowecky, Pogorelsky,
2002), middle-aged (Dirks, Takayana, & Moshfegh, 2001) and older adults (Dirks et al.,
2001; Sommers, 1996), pediatric cochlear implant users (Kirk, Pisoni, & Osberger, 1995;
Kirk, Hay-McCutcheon, Holt, Gao, Qi, & Gerlain, 2007), and adults with cochlear
implants (Kaiser et al., 2003). These findings strongly suggest that the lexical properties
of a stimulus word, including its frequency and the perceptual similarity and frequency of
its competitors, are important factors in predicting accuracy at A-only spoken word

1dentification.

Visual Spoken Word Recognition
Although spoken word recognition is generally thought of as an auditory
phenomenon, speech may also be perceived visually, through observation of the
speaker’s articulators, including the lips, tongue, teeth, and face. Lipreading has been
recognized as a method for perceiving speech by hearing impaired populations for
hundreds of years (Johnson, 1775), but more recent behavioral and neurophysiological
evidence argues that normal-hearing people incorporate visual information about speech

automatically and early in perception (McGurk & McDonald, 1976; see Woodhouse,
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Hickson, & Dodd, 2009 for a review). Although some compelling evidence exists that
similar cortical substrates are employed for the perception of heard and seen speech
(Calvert et al., 1997), A-only and V-only speech signals differ in that some physical
information about the speech signal is not easily accessible to the lipreader. Certain
movements that distinguish between phonemes are obscured within the mouth of a talker,
such as whether the vocal folds are vibrating. As a result, phonemes that differ only with
respect to voicing, such as /d/ and /t/, are often difficult to distinguish visually. Therefore,
there is no one-to-one correspondence between phoneme and lip movement, rendering
the visual speech signal more ambiguous than the auditory speech signal (Summerfield,
1992). Unlike the auditory signal, which may be transmitted in the dark or if the speaker
is obscured from view, visual speech perception requires more controlled conditions: the
speaker must be well lit and located at a distance and angle where the lipreader may
easily see his or her movements (Jackson, 1988). Despite the difficulties associated with
V-only speech, however, it is possible to attain high levels of accuracy at lipreading.
Some lipreading tests show scores for the proportion of words accurately identified up to
89% (Hall, Fussell, & Summerfield, 2005).

There are large individual differences in lipreading ability, with at least one study
obtaining a performance range of 7% to 89% accuracy across a relatively homogenous
participant sample (Hall et al., 2005). The correlates of these large differences have been
the focus of much research. Perhaps surprisingly, numerous studies have found that there
is little relationship between lipreading and hearing ability for individuals who have
postlingual hearing loss (Clouser, 1977; Farrimond, 1959; Lyxell & Ronnberg, 1989;

Lyxell & Ronnberg, 1991; Owens & Blazek, 1985; Ronnberg, 1990; but see Bernstein,
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Demorest, and Tucker, 2000 for evidence of improved lipreading in congenitally
deafened individuals). In some studies (Dancer, Krain, Thompson, Davis, & Glen, 1994;
Johnson, Hicks, Goldberg, & Myslobodsky, 1988) females showed better lipreading
performance than males, but these effects are usually small and often fail to reach
significance (Aloufy, Lapidot, & Myslobodsky, 1996; Irwin, Whalen, & Fowler, 2006;
Tye-Murray, Sommers, & Spehar, 2007b). In addition to the studies that have
investigated the influence of demographic factors on lipreading abilities, numerous
studies have sought to explain the large individual differences with cognitive predictors,
often with limited success (see Jeffers & Barley, 1971; Woodhouse et al., 2009, for
reviews). Several studies have reported that overall intelligence is a relatively poor
predictor of lipreading ability (Elphick, 1996; see Jeffers & Barley, 1971 for a review), as
are verbal reasoning abilities (Jeffers & Barley, 1971; Summerfield, 1991), vocabulary
(Lyxell & Ronnberg, 1992; Simmons, 1959), and education level (Dancer et al., 1994).
Working memory and speed of processing have most consistently been identified as
predictors of lipreading performance (Feld & Sommers, 2009; Lidestam, Lyxell, &
Andersson 1999; Lyxell & Holmberg, 2000).

Following work in the A-only domain showing that the speed and accuracy of
word identification depends on the lexical properties of the stimulus (e.g., stimulus word
frequency and neighborhood density), several studies have explored whether the lexical
properties of a stimulus word influence recognition accuracy similarly in the V-only
domain (Auer, 2002; Mattys et al., 2002; Tye-Murray et al., 2007a). Within the A-only
domain, the amount of competition a stimulus word encounters depends in part on its

acoustic-phonetic similarity to other words. Therefore, within the V-only domain, the
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amount of competition should depend upon the visual similarity of a target word and its
competitor words.

Importantly, there is reason to expect that the extent to which two words are
perceptually similar may differ depending on the modality of presentation. Because of
the nature of the A-only and V-only signals, phonemic contrasts that are difficult to
discriminate in one modality may be easily differentiated in the other (Iverson, Bernstein,
& Auer, 1998). For example, acoustic cues to place of articulation for consonants are
often difficult to perceive in noisy environments, but the shape of the mouth and
articulatory movements that correspond to those consonants are often visually clear
(Summerfield, 1992). Therefore, words that are perceptually similar in one modality may
not be in the other. For example, aurally, /pin/ (which begins with a voiceless bilabial) is
more likely to be confused with /tin/ (which begins with a voiceless alveolar) than with
/bin/ (which begins with a voiced bilabial), because the contrast of voicing is not
disrupted by noise, whereas the contrast of place of articulation is (Binnie, Montgomery,
& Jackson, 1974). Visually, however, /pin/ is more likely to be confused with /bin/ than
with /tin/, because the bilabial gesture is visibly apparent, but information about voicing
is not available (Mattys et al., 2002). Therefore, to investigate lexical competition in V-
only speech, it is necessary to quantify perceptual similarity between words using a
method that takes into account the perceptual information available to a lipreader.

The perceptual similarity of phonemes is generally approximated by categorizing

honemes into visually similar groupings called visemes” (Fisher, 1968; Owens &
p y

2 The terms viseme group and Phonemic Equivalence Class (PEC) are synonymous, as are homophene
group, Lexical Equivalence Class (LEC), and visual neighborhood. Here, the terms viseme and homophene
are used because of their established place in the literature.
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Blazek, 1985; Walden, Prosek, Montgomery, Scherr, & Jones, 1977). These viseme
groups are intended to represent speech sounds that are visually very similar or
indistinguishable. Although viseme groupings depend upon speaker idiosyncrasies,
stimulus materials, and participant population, there are commonalities across groupings,
and place of articulation is the strongest defining feature (Jackson, 1988). For instance,
the bilabial phonemes /b/, /m/, and /p/ generally belong to the same viseme group. There
are less consistent visematic groupings for vowels than for consonants because every
vowel is produced with a distinct oral cavity shape, so none are truly identical (Jackson,
1988). A common criterion for defining viseme membership is to establish a cut-off
point at which perceptually similar phonemes are grouped. Previously, a within-group
identification rate of 75% (Walden et al., 1977) has been used. For example, /s/, /t/, and
/z/ constitute a viseme group if 75% of presentations of /s/, t/, and /z/ result in a response
of /s/, /t/, or /z/. Based on this criterion, consonants and vowels may each be categorized
by 5-8 viseme groups (see Jackson, 1988, for a review). Table 1 contains viseme groups
determined by Iverson et al. (1998) using the 75% within-group identification rate

procedure.

14



Table 1.

Viseme Groupings, determined by Iverson et al. (1998)

Consonants: {b, m, p} {f, v} {0, 8} {w} {r} {tf,d3,3, L d} {t,s,z} {k, g h,n,j} {n} {1}

Vowels: {i, I, eI, aI, &, &, A} { 3%, 0U, DI, U, u} {a} { au}

15



From these viseme groups, clusters of visually similar words, called homophenes,
may be derived (Mattys et al., 2002; Nitchie, 1930; Tye-Murray et al., 2007a). Words
that differ only by phonemes within the same viseme groups are members of the same
homophene group. For example, because /b/, /m/, and /p/ are members of the same
viseme group, /bat/, /mat/, and /pat/ are homophenes. Although within-viseme group
substitutions are possible for any word, not all substitutions result in lexically valid
outcomes. For instance, /bog/ will have fewer homophenes than /bat/, because /mog/ and
/pog/ are nonwords, and therefore don’t serve as competitors.

If homophenes truly represent perceptually indistinguishable units, then using
them as a measure of lexical competition is somewhat suspect. If homophenes cannot be
distinguished based on the physical properties of the input alone, then density effects
could be statistical artifacts. That is, selecting from among a small set of identical
options will result in more correct answers simply by chance, than will selecting from
among a large set of identical options. If homophenes are truly visually identical, then
they are more similar to auditory homophones (/right/ and /write/) than they are to
auditory neighbors. If, however, homophenes represent words that are perceptually
similar, but not identical, to the stimulus word, they are more similar to auditory
neighbors. Support for this second possibility has been demonstrated in that that
lipreaders show sensitivity to within-homophene distinctions: Bernstein, Iverson, and
Auer (1997) reported that lipreaders are able to distinguish between members of a
homophene group (/bite/ and /mite/). This suggests that visemes and homophenes may
underestimate the perceptual information available to a lipreader. Therefore, although

the 75% within-group identification rate is a convenient method for grouping similar
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phonemes into visemes, viseme groupings should not be rigidly interpreted as
perceptually identical sets of phonemes.

In parallel to neighborhood density effects in A-only, the size of a stimulus
word’s homophene group has been shown to influence V-only word recognition; i.e.,
stimulus words with few homophenes were identified more accurately than words with
many (Auer, 2009; Mattys et al., 2002; Tye-Murray et al. 2007a). Also in accord with
A-only findings, high-frequency stimulus words were accurately lipread more often than
low-frequency words (Auer, 2009; Mattys et al., 2002). These findings, suggesting that
V-only speech is sensitive to the some of the same lexical properties as is A-only speech,
led Mattys et al. (2002) to propose the existence of a modality-independent spoken word
recognition mechanism that is sensitive to the perceptual properties of the input.

Based on the findings that V-only speech appears to be sensitive to the lexical
properties of the stimuli, Auer (2002) applied the NAM to the problem of predicting V-
only spoken word identification. Although the NAM was designed to model A-only
spoken word recognition, it is readily applicable to V-only perception. The only input
required for calculating perceptual similarity in the NAM are confusion matrices
displaying the frequency with which pairs of phonemes are (mis)identified as one another
in a specific modality. From these matrices, SWPs and NWPs may be easily calculated
to quantify the amount of stimulus-based support and competition for a particular
stimulus word. This allows competition in V-only to be modeled using a continuous
scale, and allows the influence of multiple lexical properties to be evaluated

simultaneously.
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Using an existing set of V-only phoneme confusions, Auer (2002) calculated V-
only NWPs that represent the perceptual similarity (and by extension, amount of
competition) of a stimulus word and an individual competitor word. Following the
protocol of Luce & Pisoni, all the individual V-only NWPs were weighted by their
frequency of occurrence and summed to quantify the total amount of competition exerted
by all competitor words on the stimulus word. Auer found that this visually-based lexical
density predicted word identification accuracy, in that words with less competition were
identified more accurately than words with more competition. Auer also calculated V-
only FWNPRs values to include information about the intelligibility of the stimulus
word’s segments, its frequency of occurrence, its perceptual similarity to other words in
the lexicon, and the frequency of those words. Auer (2002) reported a correlation
between FWNPR and V-only word identification accuracy of » = .44, (p < .01). This
correlation is of a comparable size to the correlation between A-only accuracy and A-
only FWNPR (r = .23 to » = .47; Luce & Pisoni, 1998). These findings provide evidence
that both A-only and V-only spoken word recognition are sensitive to the lexical

properties of the input.

Audiovisual Spoken Word Recognition
Although speech may be perceived unimodally, as in A-only and V-only
conditions, a majority of speech perception occurs audiovisually, in situations where the
perceiver may both see and hear the speaker. Seminal work by Sumby & Pollack (1954)
showed that AV word recognition is more resistant to background noise than is
recognition in the A-only domain. This was the first evidence that watching a speaker

may serve to augment and enhance auditory perception. McGurk & McDonald (1976)
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argued that when both auditory and visual information about a speaker are available to a
listener, integration of the two channels of information is obligatory and unconscious. In
this study, participants were simultaneously presented with a visual signal of a speaker
saying /ga/ while they heard /ba/. Participants overwhelmingly reported perceiving a
/da/, which is a fusion of the features perceived visually and acoustically.” This finding
has been replicated many times and holds in languages other than English (Sekiyama &
Tohkura, 1991), when participants are explicitly instructed to ignore the visual or
auditory signal (Massaro, 1987) when the speaker that is heard and the speaker that is
seen are different genders (Green, Kuhl, Meltzoff, & Stevens, 1991), and has even been
demonstrated in 5-month old infants (Rosenblum, Schmuckler, Johnson, 1997) using a
habituation paradigm. Evidence that the combination of auditory and visual information
is mandatory and occurs early in processing has led some researchers to argue that
multimodal speech is the primary mode of speech perception: “. . .the operations,
neurophysiology, information, and evolution of speech perception are based on primitives
which are not tied to any single modality” (Rosenblum, 2004, pp. 51).

In natural speech settings, visual information about speech is usually congruent
with the auditory information (rather than incongruent, as in the McGurk paradigm). In
these cases, when acoustic information about speech is degraded, seeing a speaker as well
as hearing them significantly increases intelligibility compared with listening alone
(Erber, 1969; Grant, Walden, & Seitz, 1998; Sumby & Pollack, 1954). This improvement

in performance is partially due to the fact that visual information about speech (such as

3 Not all McGurk presentations result in the illusion of perceiving a third, fused phoneme. However, lip
kinematics of participants repeating aloud the phoneme they perceived suggests that even when the
participant reports only the visual or auditory channel, features of both signals contribute to the response
(Gentilucci & Cattaneo, 2005).
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identifying place of articulation) can complement auditory information, especially in
noisy or reverberant settings (MacLeod & Summerfield, 1987), where information about
place of articulation may be lost (Binnie et al., 1974). Thus, visual speech can
compensate for reductions in auditory information by providing an alternative modality
to obtain phonetic and temporal information about speech. Middleweerd and Plomp
(1987) demonstrated that adding visual speech information to an auditory signal was, on
average, equivalent to a 4.3 dB improvement in signal-to-noise (S/N) ratio. Based on a
7.4% per dB increase (MacLeod & Summerfield, 1990), this translates to about a 32%
improvement in speech perception.

The process by which visual and auditory information about the speech signal are
combined is not well understood. At least two groups of researchers (Grant & Seitz,
1998; Massaro & Cohen, 2000) concur that the process of extracting information from
the A and V signals (referred to as cue extraction) is distinct from the process of
integrating the information derived from A and V signals (referred to as integration). It is
clear that there are individual differences in cue extraction ability (evidenced by
individual differences in performance on V-only and A-only speech perception tasks), but
disagreements persist about whether individuals differ in their ability to efficiently
integrate speech information. Grant and collaborators (Grant, 2002; Grant & Seitz, 1998;
Grant, Walden & Seitz, 1998) reported that individual participants differ with respect to
their ability to efficiently integrate cues from A-only and V-only speech. In contrast,
Massaro and Cohen (2000) found that a model assuming optimal or maximally efficient
integration accurately predicts human performance, and therefore concluded that there is

no evidence that individuals differ in their ability to integrate efficiently. These
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conflicting findings are difficult to reconcile, given the lack of consensus on how to
quantify integration, an absence of correlations between different measures thereof (see
Grant & Seitz, 1998 for a review), and observed differences within an individual for
measures of integration as a function of unimodal performance [i.e. finding that
integration performance differs as a function of the ability to extract unimodal
information (Sommers, Spehar, & Tye-Murray, 2005)].

Given the robust findings linking lexical competition and recognition accuracy in
A-only and V-only speech, it is somewhat surprising that little work has explored how
the lexical properties of stimuli influence AV word recognition. Only two studies
(Kaiser, et al., 2003; Tye-Murray, et al., 2007a) have investigated the influence of lexical
properties on AV word recognition. Kaiser et al. (2003) presented participants (both
normal hearing and cochlear implant users) with lexically easy and hard words to
identify in A-only, V-only, and AV conditions. Lexically easy words were high
frequency words with few, low frequency neighbors whereas lexically hard words were
low frequency words with many high frequency neighbors. Importantly, Kaiser et al.
computed perceptual similarity using exclusively A-only confusion data rather than
calculating perceptual similarity separately for each modality. That is, the number of A-
only neighbors (here quantified using the one-phoneme shortcut method) was used to
quantify the amount of competition a word encounters in A-only, V-only, and AV
domains. Because it has been well established that patterns of phoneme confusion differ
significantly in visual and auditory conditions (Iverson et al., 1998; Summerfield, 1992),
knowing the number of words that are aurally similar to a stimulus word should not

necessarily be expected to predict the number of words to which it is visually similar, and
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therefore, the amount of competition it undergoes during recognition. Despite this,
Kaiser et al. found that easy words were identified more accurately than hard words in A-
only, V-only, and AV modalities. However, because three variables (frequency,
neighborhood size, and neighborhood frequency) were used to create the easy and hard
groupings, it is not clear the extent to which the different lexical properties influenced
identification rates.

Another method for quantifying lexical competition in AV word recognition was
devised by Tye-Murray et al. (2007a). In this study, the investigators proposed the
existence of AV neighborhoods that incorporate the influence of both A-only and V-only
neighborhoods. Unlike the Kaiser et al. (2003) study, this involved determining
neighborhoods separately for A-only and V-only domains based on the phonetic
characteristics of each modality. To determine the number of AV neighbors, the number
of one-phoneme substitution neighbors (for A-only) and homophenes (in V-only) were
determined for each stimulus word. Audiovisual neighbors were defined as the words

that were present in the intersection of both modalities (see Figure 2).
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FORK

FISH fudge

FORK FISH fib

farce

for force )
forth fort ] ) wish . fetch vetch
pork cork fierce wish _ C_laﬁsh vouch
folk forge ford force ford _ fizz ﬁll_
fissure fig

torque verge

fort fir fin

AV

fib wish fudge
wish oafish

fizz  Afill fetch vetch
fissure vouch

fig
fir fin

verge

Figure 2. Schematic depicting the interaction of auditory and visual neighbors. The
upper half shows the A-only and V-only neighborhoods for the stimulus word /fork/ and
/fish/. Both words have a similar number of neighbors in A-only and V-only, but /fork/
has more words in the intersection of A-only and V-only. From Tye-Murray et al.

(2007a).
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Tye-Murray et al. (2007a) found that stimulus words with fewer words in the
overlap of the A and V neighborhoods were identified more accurately than words with
many words in the overlap. Due to stimulus constraints, it was not possible to
investigate the effects of word frequency and neighborhood frequency on identification
accuracy. This study provides initial support for the hypothesis that AV spoken word
recognition, like that in A-only and V-only, depends upon the lexical properties of the

stimuli.

Quantifying Lexical Competition in Spoken Word Recognition.

In the studies described above, researchers have employed various metrics to
approximate the perceptual similarity of phonemes, and by extension, the amount of
competition a word encounters. These metrics include the NWP and FWNPR values
(Luce & Pisoni) and the one-phoneme short cut method for A-only, the homophene
grouping method (Mattys et al., 2002; Tye-Murray et al. 2007a) and NWP method (Auer,
2002) for V-only, and the neighborhood intersection method for AV (Tye-Murray et al.
2007a). These metrics were intended to measure the same construct (form-based lexical
similarity), but employed different methods to quantify it. Although each method has
shown success at predicting performance in word identification, each has potential

limitations.

Categorical Measures

One disadvantage to using viseme and homophene groups to quantify similarity
between phonemes and words is that it reduces the range of perceptual similarity between

items to binary. For instance, phonemes that share a viseme group are interpreted as
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perceptually identical, and phonemes across viseme groups are functionally completely
distinct. By extension, words are interpreted as either identical (homophenes) or wholly
dissimilar (not homophenes). The rigidity of this system has been questioned previously,
“. .. although these [viseme] approaches to lipreading have proved informative, they
probably remain a coarse approximation of the perceptual experience involved in
lipreading” (Mattys et al., 2002, p. 676). Although viseme and homophene groupings
certainly capture information about perceptual similarity, it may be that the experience of
perceiving speech is better approximated through a more flexible, continuous system.

In the A-only one-phoneme shortcut method, neighbors are considered
perceptually similar, but perceptually distinguishable from the target. Like the
homophene system, however, the one-phoneme shortcut system also does not allow for
differences in the perceptual similarity of neighbors to be assessed. Although some
words may be more confusable (perceptually similar to the target) than others, all
neighbors are treated as providing the same amount of competition to the stimulus word.
For example, two words may have the same number of neighbors, but one may have
many neighbors that differ by place of articulation (a feature easily lost in noise or
reverberation), while the other may have a majority of neighbors that differ by voicing (a
feature that is very resistant to interference). The one-phoneme shortcut method assumes
that both words receive similar levels of competition, despite the fact that the phonetic
characteristics of the second example word make it perceptually more distinctive.

Also described above is the practice of grouping words into easy and hard
categories, based on the influences of several lexical properties. Although these

categories predict spoken word recognition across many populations, there are two
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disadvantages to this approach. First, as described above, when a continuous measure
(lexical difficulty) is treated as categorical, it results in information loss. Second, if only
the easy/hard grouping is used, it is unclear to what extent each of the lexical properties
(frequency, neighborhood density, neighborhood frequency) is driving the effects in

identification accuracy.

Continuous Measures

Instead of quantifying perceptual similarity and competition categorically,
continuous measures including the application of the NWP calculation method for both
A-only (Luce & Pisoni, 1998) and V-only (Auer, 2002) domains have been employed.
However, a potential limitation with these methods rests in their use of probability of
confusion as an estimate of perceptual similarity. Although the likelihood that two
phonemes will be confused seems a reasonable proxy for how perceptually similar they
are, this has a limitation: response percentages depend upon the number of perceptually
similar alternatives (Iverson et al. 1998). For example, the phonemes /f/ and /v/ look very

similar on the face, and will, in general, be confused on roughly 50% of V-only trials.
The phonemes / tf/, /d3/, /I/, and /3/ are also visually very similar, so any of the four

will be confused with another on roughly 25% of trials. In this case, the response

percentages give the erroneous impression that /f/ and /v/ are twice as similar as, for
instance, / tf/ and /d3/, despite the fact that, in both cases, they are nearly identical.

To overcome the confound of using probability of confusion as a similarity

estimate, Iverson et al. (1998) introduced the Phi-square statistic to the speech perception
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literature. The Phi-square statistic, a normalized version of the chi-squared test,

quantifies the similarity of two response distributions and is mathematically expressed as:

p(ID) = IN e T &EJZLM

[5]
where x; and y; are the frequencies with which phonemes x and y were identified as
category 1, E,; and E; are the expected frequencies of response for x; and y; if the two
phonemes are perceptually identical, and N is the total number of responses to phonemes
xi and yi. The expected values (Ey; and Ey;) are determined by summing the frequency
with which phoneme x was identified as category i and the frequency with which
phoneme y was identified as category i, divided by two. The rationale for this method is
that if phonemes x and y are perceptually identical, they should be identified as members
of a given category with equal frequency. The Phi-square statistic reaches a value of one
when the distributions of responses for two phonemes are identical (participants select
each response alternative equally for both phonemes), and reaches a value of zero when
the distributions have no overlap (that is, participants did not use any of the same
response categories for the two stimulus words).* Because the statistic compares the
response distributions across all categories, the magnitude of the output is independent of

the number of similar alternatives.

* In Iverson (1998), Phi-square values were not subtracted from one. The change is made here for two
reasons. First, if Phi-square values are not subtracted from one, the value of any phoneme, given itself is 0.
This confounds analyses that involve the calculation of conditional probabilities (described below). A
second reason for this transformation is ease of interpretation: it makes the scale of Phi-square values the
same direction as probability of confusion (higher numbers represent greater similarity)
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Figure 3 displays a graphical representation of response distributions to three
consonant stimuli. The horizontal axis shows all possible response alternatives, and the
vertical axis shows the frequency with which these responses occur to stimuli /b/, /m/, and
/s/. For example, when the visual stimulus /b/ is presented, participants most frequently
identify it as /b/ or /p/, and rarely identify it as /g/. From this graph, it is clear that the
response distributions of /b/ and /m/ are much more similar to one another than they are to
/s/. That is, participants show more similar patterns of responding to /b/ and /m/ than to
/b/ and /s/ or /m/ and /s/. The similarity between /b/ and /m/ is quantified as ®*= .87,

while the similarity of /b/ and /s/ and of /m/ and /s/ are ®*=.03, and ®*=.01, respectively.
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Figure 3. Graphical representation of responses to visually presented /b/, /m/, and /s/.
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Another advantage outlined in Iverson et al. (1998) to using the Phi-square
statistic instead of probability of confusion values is that it negates the influence of
response biases and asymmetries in the data set. For example, a participant in a visual-
only phoneme identification task may select response /b/ at a disproportionate rate for a
reason that is unrelated to signal information (e.g., their name begins with /b/). In this
case, the probability of confusion will result in artificially deflated relationships between
/m/ and /p/ (which are visually very similar to /b/). This occurs because when /m/ or /p/
are presented, the response bias of choosing /b/ reduces the frequency with which the
other option is chosen. The problem of addressing response biases in phoneme confusion
data has been raised before: “Response biases frequently observed in confusion matrices
of this type may introduce significant sources of noise in predicting confusions among
real words” (Luce & Pisoni, 1998, p. 10). The Phi-square statistic overcomes the
problems associated with response biases because it compares overall response
distributions without taking into account which response options are selected.

Iverson et al. (1998) used the Phi-square statistic to provide a mathematical basis
for categorizing sounds into viseme groups while overcoming the problems associated
with the probability of confusion metric. However, because the statistic renders a value
quantifying the similarity of every pair of phonemes, it is also possible to use these values
directly as a measure of perceptual similarity, rather than using them as a basis for
discrete groupings. Using the Phi-square statistic in this manner overcomes both the
limitations of a homophene based system and the confounds of using probability of
confusion as a proxy for similarity. The Phi-square statistic also provides an elegant

solution to the difficulties of comparing V-only homophene groups to A-only
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neighborhoods described above. Given that the only input necessary to derive Phi-square
values is syllable confusion matrices, perceptual similarities may be readily calculated for
any pair of phonemes in any modality. This allows the opportunity to directly compare

processes of lexical competition in different perceptual modalities.

Overview of Experiments

Word and syllable identification data were collected in A-only, V-only, and AV
modalities. The first objective of this research was to evaluate the efficacy of existing
metrics at calculating perceptual similarity against a new metric, based on the Phi-square
statistic. This will be the first time the Phi-square statistic has been used directly as a
measure of perceptual similarity in any modality. It is hypothesized that metrics based on
Phi-square will better predict spoken word identification accuracy than those based on
probability of confusion.

The second objective is to explore the processes underlying spoken word
recognition by examining how lexical properties, including the frequency and
intelligibility of the stimulus word and the confusability and frequency of its competitors
influence recognition in A-only, V-only, and AV domains. No investigations thus far
have compared the influence of lexical properties on spoken word identification in all
three modalities. If spoken word recognition depends on similar processes of activation
and competition, regardless of the modality of the stimuli, it is expected that the lexical
properties of the stimuli would influence recognition similarly in all modalities. The

methods by which these questions are tested are described below.
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CHAPTER 2: METHODS

Participants
Seventy-two native English speakers with self-reported normal hearing and
normal or corrected-to normal vision were recruited from Washington University’s
undergraduate participant pool. Participants (55 female) ranged in age from 18 to 22 (M
=19.1, SD = 1.07). Testing took approximately 3 hours, which was split into two 1.5
hour sessions. Participants were awarded course credit for their participation, and all
procedures were approved by the Human Research Protection Office of Washington

University in St. Louis.

Stimuli

The stimuli were recordings of words and syllables produced by six talkers (three

male, three female). The stimuli consisted of 24 consonants (b, tf, d, f, g, h, d3, k, 1, m, n,

n,p,1,Ss, L t,0,0,v,w,],z3,), 14 vowels (i, I, €, eI, &, a, au, aI, A, DI, oU, U, u, 3*), and

540 Consonant-Vowel-Consonant (CVC) words. To select the stimulus words, a corpus
of all CVC words in English was compiled, using the English Lexicon Project (ELP:
Balota et al., 2007). This list of 1590 words was pruned to include homophones only
once.” The list was further trimmed to exclude proper nouns and taboo or profane
words.® This resulted in 1306 possible stimulus words. From this list, iterations of three

sets of 180 words were randomly selected until all three lists met the following criteria:

> For homophones, the lexical information of the most frequent member was used.

® Although these words were excluded from the list of possible stimulus words, they are included as
potential competitors in the neighbor analyses.
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lists were matched on Hal,o, frequency (p > .92 for all contrasts), mean lexical decision
reaction times on the ELP (p > .41 for all contrasts), orthographic length (p > .35 for all
contrasts), and number of substitution-only phonological neighbors (p > .29 for all
contrasts). Additionally, lists were checked against one another to ensure that they had
equivalent numbers of each part of speech and similar representations of each phoneme
in each position. The three lists were randomly assigned to be used for A, V, and AV
identification tasks. These analyses were conducted to ensure that the lists were
equivalent on critical measures that may influence the speed and accuracy with which
they are processed, that they are representative of English CVCs in general, and that they
contain a large range of values on all variables of potential interest.

Both syllable and word stimuli were recorded with a Cannon Elura 85 digital
video camera connected to a Dell Precision PC and recorded at a 16-bit resolution and
sampling rate of 48000. Digital capture and editing was done in Adobe Premiere
Elements 1.0. Each talker sat in front of a neutral grey background and spoke the stimuli
into the camera as they appeared on a teleprompter. The audio portions of the stimuli
were equated for RMS amplitude using Adobe Audition. Auditory and visual information
was recorded for all stimuli, but only the visual signal was presented for the V-only tasks,
and only the auditory signal was presented for the A-only tasks.

For all A-only and AV identification tasks, background noise (six-talker babble)
was set at 60dB SPL. Audio stimuli were presented through a Maico MA42 audiometer
over two loudspeakers orientated +/- 45 degrees in front of the participant. Amplitude
levels were checked daily to ensure calibration using a handheld sound meter (Quest

Technologies Model 2004 Sound Meter). Pilot testing revealed that a consistent signal to
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noise ratio (SNR) was not appropriate for all tasks: a SNR of -12 resulted in floor-level
performance on the A-only word and consonant identification tasks and ceiling-level
performance on the AV vowel task. Accordingly, the amplitude at which the signal was
presented was manipulated from SNR = -12 until performance was off floor and ceiling
for all tasks. Within a modality, consonant and word stimuli were presented at the same
SNR, and the vowel task signal was 8dB quieter. The levels and signal to noise ratios are

listed in Table 2.
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Table 2.

SNR at which stimuli were presented for each task

A-only Words
A-only Consonants
A-only Vowels
AV Words

AV Consonants

AV Vowels

Signal (dB SPL)  Babble (dB SPL) SNR
56 60 4
56 60 4
48 60 12
52 60 -8
52 60 -8
44 60 -16
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Procedures

Participants read an information sheet, gave verbal consent, and were seated in a
sound-proof booth (IAC 120A) approximately 0.5m from a 17-inch Touchsystems
monitor (ELO-170C) running Superlab presentation software (Version 4.0.7b, Cedrus
Corporation, 2009). Participants were presented with short audio and video clips of
consonants, vowels, and single syllable words in A-only, V-only, and AV conditions.
They responded to the stimuli via touchscreen button presses or keyboard input. Order of
completion of the nine tasks (A-only, V-only, and AV versions of consonant, vowel, and
word identification) was randomly determined for each participant. Within each task,

speakers were blocked, but across tasks, neither modality nor stimulus type were blocked.

Syllable Identification.

Participants were presented with a series of audio and video clips of a speaker
producing a syllable, followed by a response screen listing each phoneme and an example
word that contains it. Phonemic contexts (/hVd/ for vowels and /aCa/ for consonants)
were selected to minimize co-articulation. Participants made their identification

responses by touching the button with the appropriate phoneme (see Figure 4).

36



aaFaa aaG aa
fit get
aaLaa aaM aa
lit met
aaRaa aaSaa
rid sit
aa Haa aaVaa
then vet

Figure 4. Response screen for A.) Consonant

identification and B.) Vowel identification
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There were two presentations of each phoneme, spoken by each talker, resulting
in 288 consonant trials and 168 vowel trials per participant, per modality. Consonant and
vowel tokens were identified in separate blocks and presented in a randomized order,
blocked by speaker’. Before each participant performed the consonant or syllable task
the first time, an experimenter spoke aloud each of the syllable sounds, and participants
demonstrated familiarity with them by repeating them aloud in the presence of the
experimenter. Participants completed practice trials that consisted of one presentation of

each token by a different speaker than was used in the test trials.

Word Identification.
Participants were presented with 180 clips of speakers producing a CVC word,

2

embedded in the carrier phrase “Say the word . . .”. They identified the words by typing
their responses on a keyboard, and were encouraged to guess when they were unsure.
The 180 words consisted of six sets of 30 words, and each set was spoken by a different
talker. The word sets were counterbalanced across six participant groups (N = 12 in
each), so that each of the words was identified for every speaker. Different sets of words
were used for each modality, so although each participant identified 540 words, each
modality had a unique list of 180 words (see Appendix A for word lists). Participants

completed 6 practice trials in each condition spoken by a different talker than the test

trials.

7 Evidence exists that there may be a processing cost associated with switching talkers in speech
identification tasks. Accuracy rates in phoneme identification in conditions in which speakers are blocked
are higher than in conditions where speaker order is randomized (Macchi, 1980). To avoid this, speakers
were blocked and changes in speaker were preceded by a screen that read “Next Speaker.”
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CHAPTER 3: LEXICAL VARIABLES
In order to estimate neighborhood structure, a phonetically coded lexicon was
obtained from the English Lexicon Project (ELP; Balota et al, 2007). This list, referred to
here as the ELP master list, consists of 40,000 English words and contains information
about lexical variables such as frequency. Using this list, values for stimulus word
frequency, segmental intelligibility, competitor density, and competitor frequency were

obtained for all stimulus words.

Stimulus Word Frequency

Two measures of stimulus word frequency were obtained from the English
lexicon project. HALRg,y refers to the Hyperspace Analogue to Language (HAL) raw
frequency counts reported by Lund & Burgess (1996). These frequency counts are based
on 131 million words gathered across 3,000 usenet newsgroups in 1995, and values
represent the number of times a given word appeared in the corpus. HAL are the log-
transformed HA LR,y values. Although it would be preferable to use frequency norms of
spoken, rather than written speech, a large database of spoken word frequencies is not
available. Despite this limitation, written word frequency has been shown to predict
spoken word accuracy both in A-only (Luce & Pisoni, 1998; Savin, 1963) and V-only

(Auer, 2009; Mattys et al., 2002).

Stimulus Word Intelligibility
SWP values were derived from the modality-appropriate confusion matrices for
A-only, V-only, and AV. Probability SWPs were calculated using the conditional

probability of accurately identifying the stimulus word’s phonemes, following the
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procedure described in the introduction (as a reminder, this involves multiplying the
probabilities of accurately identifying the phonemes of the stimulus word). To calculate
Phi-square SWPs, a slightly different method is necessary because the Phi-square value
of any phoneme, given itself, is meaningless. It is, in effect, comparing the response
distribution for that phoneme to itself. Therefore, intelligibility values are calculated by
averaging all Phi-square values comparing a target phoneme to all other phonemes®. For
example, the Phi-square SWP of /b/ is the average of (®” dJb), (@ flb), (. . .|b). This
serves as a metric for intelligibility because a stimulus phoneme that has many phonemes
to which it is similar will tend to have a higher average value than a phoneme that has
few other similar phonemes. For example, in V-only presentation, /w/ is not similar to
many other phonemes, so has an average Phi-square value of 0.94 whereas /y/ is similar
to more phonemes, so has an average Phi-square value of 0.73. In the spirit of
calculating a conditional probability, these values are multiplied to reach the Phi-square

SWP of a stimulus word.

Competitor density: Established metrics of competition
Auditory-only.
Two measures of phonological neighborhood size were calculated for each
stimulus word; Density B and Density A. Density B is the number of words that are only
one phoneme addition, subtraction, or deletion away from the stimulus word. For

example, for the stimulus word /cat/, Density B neighbors include /scat/, /at/, and /bat/.

¥ Here, the Phi-square values used are not subtracted from 1 as they are for the NWP analyses. This
manipulation does not change the outcome of the results, but is done for ease of interpretation. In
Probability SWPs, higher numbers indicate greater perceptual support for the stimulus. When Phi-square
SWPs are not subtracted from 1, the direction of the relationship is the same; higher values indicate greater
intelligibility.
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Density A is the number of words that may be formed by a one-phoneme substitution
only. For example, Density A neighbors of /cat/ are /bat/, /cot/, and /cap/. Density
values were generated manually from the ELP master list using the following process.
All stimulus words were phonetically coded and compared to the phonetically coded ELP
master list. The number of words requiring only a one-phoneme substitution (Density A)
was calculated, as was the number requiring a one-phoneme addition, subtraction, or
substitution (Density B). Following the procedure used in Luce & Pisoni (1998), plurals
and inflected forms of the stimulus were not included as neighbors.

Although values for Density A and B are available elsewhere (Balota et al, 2007;
WUSTL Neighborhood Search), neighborhood size was calculated manually for two
reasons. First, calculating neighborhoods from a single lexicon ensures that
computations are consistent across A-only, V-only, and AV neighborhood calculations.
If available values for A neighborhood size are based on a 20,000 word lexicon, and V
neighborhoods are calculated using the 40,000 word lexicon, differences in A and V
density effects could be due either to different processes of word recognition in different
modalities, or differences in how density is calculated. Second, if there are differences in
the predictive power of discrete measures of competition and continuous measures, but
the measures were calculated using different lexicons, it is unclear to what extent the
differences are due to measurement and not to the size and nature of the words being
compared. Therefore, measures of competition for each modality were calculated using

the same methods and same lexicon’.

? It is worth noting that using this method produces neighborhood sizes that are very similar to those
available elsewhere. The correlation between density measures obtained from ELP and those generated
using the above process correlate at » = .89 (p <.001).
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Competitor density was also calculated for each word using the probabilities from
the A-only syllable identification confusion matrices following the procedure described
in the Introduction. The phoneme confusion matrices were collapsed across speakers,
and the input values for the NWPs were the probabilities of confusing any given pair of
phonemes in an A-only condition. The sum of all NWPs served as a continuous measure
for lexicon competition, and is referred to as A-only Probability ) NWP (the word
probability is included to differentiate these values from a parallel analysis using the Phi-

square values, described below).

Visual-only.

Viseme groupings for consonants and vowels were determined based on the
procedures of Walden et al. (1977) and Iverson (1998). First, V-only phoneme confusion
matrices were submitted to a hierarchical cluster analysis. This procedure generated a
tree structure that grouped phonemes by confusability. At the lowest level of the
structure, each phoneme is in a unique class, and at each successive level, the most
similar phoneme pair is joined until, at the highest level, all phonemes belong to a single
class. Viseme groupings were defined operationally as the lowest level at which 70%'°
of responses are within viseme class. For example, when presented with /b/, /m/, and /p/,
if 70% of responses are either are /b/, /m/, or /p/, they constitute a viseme group.
Although viseme groupings have been published previously, (Iverson, 1998; Owens &

Blazek, 1985; Walden et al., 1977)), speaker idiosyncrasies can result in differing

' Walden and Iverson previously defined a viseme cluster as one within which 75% of responses occur.
However, this criterion has proved too rigid in some investigations (Owens & Blazek, 1985; Binnie,
Jackson, & Montgomery, 1976), as it did in this one. One consonant cluster (t, d, s, z) showed 72% within
viseme responses and one vowel cluster (a, A) showed 70% within viseme responses. Because these two
clusters were otherwise unclassifiable, the criterion was relaxed to 70%.
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patterns of phoneme confusion (Jackson, 1988). Because of this, a quantitative method
for building talker-specific viseme groups has the advantage of more specifically
measuring the speech patterns of a given set of talkers. The resulting viseme groups are
presented in Table 3. Although viseme groups do vary across studies (presumably due to
differences in speakers and materials), these groupings are similar to others in the

literature (see Jackson et al., 1988 for other examples).
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Table 3.

Viseme groupings derived from V-only phoneme confusions

Consonants: {b, m, p} {f,r,v} {t,d3, ], 3} {g hk Ln,n, vy} {dstz {0,0} {w}

Vowels: {1, 1} {e, e, &, I} {3,0} {a,a} {ce,0} {u} {A}
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To build homophene groups, all stimulus words and all CVC words from the ELP
master list were coded into viseme groups. Next, homophenes for each stimulus word
were identified by selecting all CVC words in the ELP master list that had identical
viseme strings. The size of the homophene group serves as a categorical measure of
neighborhood density.

Competitor density was also calculated with a continuous metric, using the sum of
all V-only NWPs. This (referred to as V-only probability > NWP) was calculated for
each stimulus word, using the probabilities from the V-only syllable identification

confusion matrices.

Audiovisual.

Following the procedure of Tye-Murray et al. (2007a), the number of words that
appear in both the A-only neighborhood (using Density A) and the V-only homophene
group for each stimulus word was determined. Because homophene groups include
substitution-only neighbors, Density B (which includes words that may be formed from
single phoneme additions and subtractions as neighbors) was not used. This “overlap” in
A and V neighborhoods represents the number of words that are perceptually similar to
the stimulus word in both A-only and V-only modalities. Although, depending on what
visemes are understood to represent, this overlap may be characterized as words that are
perceptually similar to the stimulus in A-only and perceptually similar or

indistinguishable in V-only.
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Competitor density: Phi-square metrics of competition

To calculate Phi-square measures of competition, a common method was used for
A-only, V-only, and AV domains, but using the appropriate modality of phoneme
confusions as the input. For each modality, responses for the vowel and consonant
identification task were collapsed across speakers and participants, rendering 6 confusion
matrices: one each for consonants and vowels in A-only, V-only, and AV. These
matrices display the frequency with which each phoneme is identified as every other
phoneme in that modality. To calculate Phi-square values for every phoneme pair, the
raw frequency confusion matrices for modality-specific vowel and consonant
identification were converted to Phi-square values using SPSS (SPSS for Windows,
version 18.0), following the procedure described in Iverson (1998). This rendered 6 new
matrices that contain Phi-square values rather than frequency of confusion (see Appendix
B).

The perceptual similarity of a stimulus word and a competitor word was evaluated
following the procedure of calculating NWPs, but using Phi-square values in place of
probability of confusion. For instance, the Phi-square NWP of mad|bet = ®*(mb) *
®?*(ale) * ®*(d|t). For each stimulus word, the NWPs of all other words in the ELP master
list were summed to the quantify amount of competition exerted by all other words in the
lexicon. To differentiate this metric from the Probability ) NWPs described above, this
value will be referred to as Phi-square ) NWP. This process was done separately for A-
only, V-only, and AV stimulus words. These three values (A-only, V-only, and AV Phi-
square Y NWP) represent the total amount of modality-specific competition a stimulus

word encounters. These are theoretically similar to neighborhood density or homophene
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group size, but include the influence of all words in the lexicon, not just the perceptually
similar ones.

Tye-Murray et al. (2007a) suggested that high levels of AV performance on word
identification tasks might be due to the interaction between acoustic and visual lexical
neighborhoods during ongoing speech recognition. Therefore, an additional value (called
AVyp,e NWP) was calculated for the AV stimulus words that was designed to capture
information about the similarity of the stimulus word and competitor words in A-only
and V-only modalities simultaneously. This is, in theory, similar to the concept of using
the overlap of A-only and V-only neighborhoods as a predictor of AV word recognition
(Tye-Murray et al., 2007a) in that it includes information about stimulus-competitor
similarity in A-only and V-only simultaneously.

AVp,. NWPs were calculated by multiplying the A-only and V-only NWPs for
each competitor word. Using this procedure, a stimulus word that has high NWP values
in both A-only and V-only for a given competitor word will tend to have a high AVp,.
NWP value, whereas a competitor that is perceptually similar (has a high NWP) in only
one modality will tend to be lower (but is still higher than a competitor word that isn’t
perceptually similar in A-only or V-only). For example, the stimulus word /pen/ is fairly
confusable with competitor /pin/ in both A-only and V-only speech. Therefore, the AVp.e
NWP of /pin/ | /pen/ is relatively high. However, /pen/ is similar to competitor /hen/ only
in A-only presentation, but is relatively distinct in V-only. Therefore, the AVp,. NWP of
/hen/ | /pen/ is somewhat lower. Simply put, competitor words that are perceptually
similar to a stimulus word in both A-only and V-only provide more competition in AV

than do competitors that are similar in only A-only or V-only. All AVp,. NWPs were
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summed to reach AVp,. > NWP, a predicted AV density based on the unimodal
information that is theoretically parallel to the overlap of A-only and V-only

neighborhoods (Tye-Murray et al, 2007a).

Competitor frequency

Established metrics of competitor frequency

Frequency-weighted neighborhood word probabilities (FWNWP) were calculated
for each stimulus word to quantify both the similarity of a competitor word and the
frequency with which it occurs. Again, following the procedure of NWPs, these
FWNWPs were summed to reach a frequency-weighted predicted density (called
Probability > FWNWP). This was done separately for each modality, using the
appropriate probability of confusion matrices for that domain. Although ) FWNWPs are

not reported independently in Luce & Pisoni (1998), they appear in the FWNPR.

Phi-square metrics of competitor frequency
> FWNWPs will also be calculated for A-only, V-only, and AV domains using the
Phi-square matrices rather than the probability matrices. These will be referred to as Phi-

square Y FWNWPs.

CHAPTER 4: RESULTS
Prior to analysis, responses to the word identification task were hand-checked for
homophones and obvious entry errors. For homophonous stimulus words (e.g., “peace”),
all alternate spellings were counted as correct (“piece”). For entry errors, only responses
that formed nonwords were corrected, and these nonwords were only corrected in the

following circumstances: the response contained a superfluous punctuation mark (e.g.,
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“teeth]”), the response word had a letter pair reversed in a way that did not form a real
word (“cheif”), the response word had a doubled letter that did not form a real word
(“thiss”), or the response was misspelled in a phonetically probable way (“cowel”).
These corrections accounted for approximately 1.5% of responses. No other deviations
from the stimulus word (plurals, inflected forms) were counted as correct. Percent
accuracy for each stimulus item was calculated and served as the criterion variable for all
analyses described below.

Item accuracy ranged between 0-86% correct for A-only words, from 0-77%
correct for V-only, and from 0-90% correct for AV words. Because the words were not
screened to be highly intelligible in a given modality and were presented at relatively low
SNRs for both A and AV modalities, it is not surprising that some words were never
accurately identified. Although these words were few in the A-only and AV
identification tasks, they were more plentiful in the V-only. To ensure that cross-
modality comparisons would not be affected by the greater number of 0% responses in V-
only, all analyses reported below are on the remaining words that were identified
accurately by at least one participant. To test whether removing the 0% accuracy words
influenced the outcome of the results, all analyses were conducted both including these
words and excluding them and the pattern of results remained consistent. Including the
0% accuracy words increases the amount of variance accounted for in some analyses, but
not the significance level of the analyses. After excluding the words that were never
identified accurately, analyses were conducted on 171 words for A-only (range: 1% -

86%, mean accuracy = 0.30, SD = 0.19), 149 words for V-only (range: 1% - 77%, mean
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accuracy = 0.13, SD = 0.14), and 178 words for AV (range: 1% - 90%, mean accuracy =
0.45, SD =0.23).

Correlation and regression analyses were conducted to examine the influence of
lexical variables on word identification accuracy. These results are described in two
parts. First, measures of competitor density were compared to assess their effectiveness
at predicting spoken word recognition. These measures include variables that are well
established in the speech perception literature as well as metrics based on the Phi-square
statistic. Although the traditional metrics and the Phi-square metrics are concerned with
the influence of the same underlying properties, the measurement of these properties
differs.

Second, the influence of lexical properties including stimulus word frequency,
segmental intelligibility, competitor density, and competitor frequency on spoken word
identification were assessed. The amount of variance accounted for by each predictor in
each modality is compared, and the method for predicting AV density from A-only and

V-only phoneme identification is evaluated.

Quantifying Competition
One goal of this research was to compare the efficacy of different measures of
lexical competition at predicting accuracy in spoken word identification. No
investigations thus far have included the Phi-square statistic as a measure of perceptual
similarity, nor has a single investigation employed both a categorical measure of
competition (such as homophene group size) and a continuous measure (such as Y NWP).
Therefore, the abilities of these methods to quantify competitor density and predict

spoken word recognition have not been compared.
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Several aspects of these analyses warrant clarification. For statistical reasons, it
may seem obvious that a continuous measure of a continuous variable (perceptual
similarity) will be a more accurate representation of that variable than is any categorical
measure. Therefore, comparing the predictive power of categorical and continuous
measures may seem trivial. However, there are theoretical reasons to argue that the
continuous measures may fail to predict variance above and beyond the categorical
measures. Because competitors that fall into Density A and B are likely to have higher
NWPs than those that do not, it may be the case that ) NWP of all competitor words does
not explain any additional variance beyond the categorical measures. That is, knowing
the number of perceptually very similar neighbors may be all the information necessary
to quantify competition. Although the NAM predicts that words are recognized in the
context of the rest of the lexicon, it is possible that the amount of competition provided
by the closest neighbors could so overpower the influence of the more distant neighbors
as to make them insignificant. For example, for stimulus word /bar/, words like /car/,
/bat/, and /par/ are likely highly confusable, and therefore provide significant
competition. If stimulus input is processed such that only near-competitors are evaluated
in relation to it, then it would not be expected that including the perceptual similarity of a
distant neighbor such as /hit/ would add predictive value to the metric. Theoretically,
limiting competition to perceptually similar neighbors may be one way of achieving
highly efficient lexical access despite a large lexicon. This may be one reason to expect
that including the influence of the more distant neighbors may not improve predictive
power of density measures. If, however, stimulus input is evaluated in the context of the

entirety of the mental lexicon (as the NAM predicts), then knowing the perceptual

51



similarity of distant neighbors such as /hit/ would improve the predictive power of the
measure.

Although it might be argued that continuous measures of perceptual similarity
will likely account for greater variance in spoken word recognition than categorical ones
(or that the measures will be roughly equivalent), direct comparisons of these methods
are absent from the literature for any modality. This work will clarify the extent to which
computationally simple methods (categorical density) results in a loss of resolution for
differentiating between the perceptual densities of words. It is possible that the
improvement in the predictive power of using a continuous measure is small enough to
justify the computationally simplicity of discrete methods. Descriptive statistics for the

measures of competitor density are shown in Table 4.
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Table 4.

Descriptive statistics for measures of competitor density

A-only Density A

A-only Phi-square ) NWP
A-only Probability ) NWP
V-only Homophene Group Size
V-only Phi-square ) NWP
V-only Probability ) NWP

AV Overlap

AV Phi-square ) NWP

AV Probability Y NWP

Range Mean SD
7.00 -37.00 21.53 6.67
439-3042 15.00 5.62
0.06 - 0.68 0.26 0.11

1.0-42.0 1529  10.67
1.52-43.81 17.64  10.33
0.02 - 0.59 0.26 0.13
1.0-10.0 4.11 2.17
0.74 - 6.61 2.64 1.20
0.01 - 0.55 0.20 0.13
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A-only Competitor Density

Correlation analyses were conducted to determine the relationship between A-
only word identification and Density A'', A-only Probability YNWP, and A-only Phi-
square ) NWP. These correlations are shown in Table 5, below the diagonal. A-only
word identification accuracy was significantly correlated with Density A and A-only Phi-
square ) NWP, but the correlation with A-only Probability ) NWP was small and failed
to reach significance. Given previous findings, it is surprising that A-only Probability
> NWP failed to significantly predicted A-only word identification accuracy. However,
the correlations may be influenced by the simultaneous influence of other lexical
properties on identification accuracy. For example, words that are in sparse regions of
the lexicon but are also very low in frequency will be recognized at lower rates than
equivalently sparse words that are high in frequency. Therefore, the partial correlations
between measures of competitor density and accuracy, controlling for stimulus word
frequency, are also presented. After controlling for the frequency of the stimulus word,
the magnitude of all correlations increased, and the correlations between A-only accuracy
and all measures of density reached significance. The partial correlations, controlling for
frequency are shown above the diagonal in Table 5. All measures of competitor density
are negatively correlated with identification accuracy, indicating that words with less
similar competitors are identified more accurately. Table 5 also reveals that all measures

of competitor density are significantly correlated with one another.

1 Although Density A is reported here, all analyses also were conducted using Density B, and showed very
similar patterns of correlation and variation explained. Density A was used because it is a more similar to
measures of categorical V-only density (homophene group size), and is the measure that is applied in
calculating AV overlap.
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Table 5.

Correlations between A-only accuracy and measures of lexical density. Values

below the diagonal are Pearson correlation coefficients. Those above the

diagonal are the partial correlations, controlling for stimulus word frequency.

1 2. 3 4.
1. A-only Identification Accuracy - -21* -.16* - 33%*
2. Density A -.16%* - 64%* S
3. A-only Probability ) NWP -12 64+ - A42H*
4. A-only Phi-square ) NWP -28%* 33wk A43%* -

*p <.05, **p <.01
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In order to assess the amount of unique variance in A-only spoken word
identification accounted for by each measure, four regressions were conducted. For these
analyses, the criterion variable is the probability of stimulus word identification. Table
6A and 6B compare the amount of unique variance accounted for by Density A and A-
only Phi-square ) NWP. Analyses 6C and 6D compare A-only Probability > NWP and
A-only Phi-square ) NWP. Although these regressions do not include frequency, the
patterns of results are unchanged whether frequency is included or not. The results of

these regressions are displayed in Table 6'2.

"2 For all regressions shown, the Beta values are the weights of a particular variable when all variables are
included in the regression (ie, at the final step)
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Table 6.

Comparing the influence of Density A, A-only Probability Y NWP, and A-only Phi-square Y NWP on A-only word identification

Comparing Density A and Phi-square ) NWP

Comparing Probability ) NWP and Phi-square ) NWP

6A: Density A precedes Phi-square ) NWP

6C: Probability ) NWP precedes Phi-square > NWP

B R’ AR? B R? AR?
Step 1: Density A -.08 .03 .03 Step 1: A-only Probability Y NWP .01 .02 .02
Step 2: A-only Phi-square ) NWP  -.25 .08 5% Step 2: A-only Phi-square ) NWP -27 .08 06%*
6B: Phi-square ) NWP precedes Density A 6D: Phi-square ) NWP precedes Probability Y NWP

B R? AR? B R AR?
Step 1: A-only Phi-square ) NWP  -25 .08 08** Step 1: A-only Phi-square ) NWP -27 .08 08**
Step 2: Density A -.08 .08 .00 Step 2: A-only Probability > NWP -.01 .08 .00

*Ep <.01
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Table 6 shows that A-only Phi-square ) NWP accounts for significant variance above and
beyond that accounted for by Density A or A-only Probability > NWP. However, the
inverse is not true: After accounting for A-only Phi-square ) NWP, both Density A and
A-only Probability > NWP fail to explain additional variance in A-only spoken word
identification. Taken together, these analyses demonstrate that A-only Phi-square > NWP
accounts for more variance in spoken word identification accuracy than existing

measures and captures unique aspects of the lexical competition process.

V-only Competitor Density

A parallel set of analyses was conducted for V-only word identification accuracy,
using homophene group size, V-only Probability ) NWP, and V-only Phi-square ) NWP.
Table 7 shows the correlations between V-only word identification accuracy and
measures of density (below the diagonal), as well as the partial correlations controlling

for stimulus word frequency (above the diagonal).
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Table 7.
Correlations between V-only accuracy and measures of competitor density. Values
below the diagonal are Pearson correlation coefficients. Those above the diagonal

are the partial correlations, controlling for stimulus word frequency.

1 2 3. 4
1. V-only Identification Accuracy - - 41%* - 40%* - STH*
2. Homophene Group Size - 35%* - .60%* 83**
3. V-only Probability ) NWP - 35%* O1%* - S9%*
4. V-only Phi-square ) NWP - 48%* 84k 617%* -

**p <.01
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Homophene group size, V-only Probability ) NWP, and V-only Phi-square
> NWP were negatively correlated with V-only spoken word identification and were
positively correlated with one another. Following the procedure of A-only analyses, a
series of regressions was conducted to examine the amount of unique variance accounted

for by each measure. These results are presented in Table 8.
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Table 8.

Comparing the influence of Homophene group size, V-only Probability Y NWP, and V-only Phi-square > NWP on V-only accuracy

Comparing Homophene group size and Phi-square ) NWP

Comparing Probability ) NWP and Phi-square ) NWP

8 A: Homophene group size precedes Phi-square ) NWP

8C: Probability Y NWP precedes Phi-square Y NWP

B R’ AR? B R* AR’
Step 1: Homophene Group Size .16 13 3k Step 1: V-only Probability > NWP -.09 A2 2%
Step 2: V-only Phi-square ) NWP -.61 24 A1 Step 2: V-only Phi-square ) NWP -43 24 2%
8B: Phi-square > NWP precedes homophene group size 8D: Phi-square ) NWP precedes Probability Y NWP
B R? AR? B R AR
Step 1: V-only Phi-square ) NWP  -.61 23 23k Step 1: V-only Phi-square ) NWP -43 23 23k
Step 2: Homophene Group size .16 24 .01 Step 2: V-only Probability > NWP -.09 24 .01

**p <.01
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Following the pattern of results in the A-only analyses, these regressions reveal that V-
only Phi-square ) NWP accounts for additional unique variance in V-only word
identification after controlling for homophene group size or V-only Probability ) NWP.
Indeed, the variance accounted for by homophene group size and V-only Probability

> NWP is redundant to that explained by V-only Phi-square ) NWP.

AV Competitor Density

The relationship between measures of AV lexical density and AV word
identification was evaluated next. Correlations between AV word identification accuracy
and AV overlap size, AV Probability Y NWP, AVp,. Probability Y NWP and AVp,. Phi-

square Y NWP are presented in Table 9.
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Table 9.
Correlations between AV accuracy and measures of competitor density. Values below the diagonal are
Pearson correlation coefficients. Those above the diagonal are the partial correlations, controlling for

stimulus word frequency.

1 2 3 4. 5 6
1. AV Accuracy - -2]%* - 17*% =21 - 19%* -26%*
2. AV Overlap size -.13 - 2% WA O1%* .68%*
3. AV Probability Y NWP -.12 63%* - T3 T6** J78*E
4. AVpgg Probability Y NWP - 15% 2% Rl - 0% JI5**
5. AV Phi-square ) NWP - 14* 62%% JTTEE J1EE - 89**
6. AVprg Phi-square Y NWP - 19%** 69** JJ9xE JT6** 90** -

*p <.05, **p <.01
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Again, to assess the amount of unique variance accounted for by each measure of
competitor density, a series of regressions was done to compare the predictive power of
AV overlap size, AV Probability ) NWP , and AV Phi-square ) NWP. The results of

these regressions are presented in Table 10.
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Table 10.

Comparing the influence of A and V neighborhood overlap, AV Probability Y NWP, and AV Phi-square > NWP on AV identification.

Comparing A & V overlap and AV Phi-square ) NWP

10A: A&V overlap precedes AV Phi-square ) NWP

B R? AR’
Step 1: A & V Overlap -.05 .02 .02
Step 2: AV Phi-square ) NWP -.12 .02 .02

10B: AV Phi-square > NWP precedes A&V overlap

B R’ AR?
Step 1: AV Phi-square Y NWP -.12 .02 .02%
Step 2: A & V Overlap -.05 .02 .00

*p <.05

Comparing AV Probability ) NWP and AV Phi-square ) NWP
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10C: AV Probability > NWP precedes AV Phi-square ) NWP

B R? AR?

Step 1: AV Probability Y NWP -.03 .01 .01

Step 2: AV Phi-square ) NWP -.11 .02 .01

10D: AV Phi-square ) NWP precedes AV Probability Y NWP

B R? AR?

Step 1: AV Phi-square Y NWP -.11 .02 02%

Step 2: AV Probability ) NWP -.03 .00 .00




Given the more robust correlations between A-only and V-only accuracy and
measures of competitor density, the relatively weaker relationship between AV accuracy
and measures of AV density is somewhat unexpected. However, there may be a simple
mathematical (rather than theoretical) explanation. Accuracy for AV syllable
identification matrices was high, with average accuracy levels of 70% for the consonant
identification task and 75% for the vowel task. This poses a problem for modeling the
perceptual space surrounding phonemes. For example, if a given syllable is accurately
identified 90% of the time, the similarity it bears to other phonemes will be represented
by only a handful of incorrect responses. These may be too few observations to
accurately map the similarity of pairs of phonemes. Because accuracy levels were lower
in A-only and V-only syllable identification task, they may be a better representation of
general phoneme similarity. When AVp,. Y NWPs (3 NWPs based on A-only and V-only
confusions, see Chapter 3) was used instead, the magnitude of the correlations between
lexical density and accuracy rose slightly. The correlations increase further when
frequency is controlled (see Table 9). Table 9 also shows that AVp,. > NWP measures are
highly correlated with obtained AV Y NWP values, (» = .90, p <.001) suggesting that the
perceptual information in the AV signal may be well-represented by a multiplicative
combination of the A-only and V-only signals.

Table 11 presents two regressions to compare the influence of AVy,. Probability
> NWP and AVyp,. Phi-square > NWP on predicting AV spoken word identification.

Here, AVyp. Phi-square > NWP accounts for a small, but significant, amount of variance
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in AV spoken word recognition beyond that accounted for by AVp,. Probability

YNWP. "

" The pattern of results is the same whether frequency is included in the regression or not, but the
magnitude of variance accounted for by the measures of density is greater when frequency is controlled.
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Table 11.

Comparing the variance in AV word identification accuracy accounted for by Frequency,

AVp,e Probability Y NWP, and AVp,. Phi-square Y NWP

AVp,. Probability > NWP Precedes AVp,. Phi-square ) NWP

B R’ AR?
Step 1. Halog Freq 38 1 d1**
Step 2. AVp. Probability ) NWP -.04 15 .04%*
Step 3. AVp. Phi-square Y NWP =22 .17 .02%*

AVp.. Phi-square ) NWP Precedes AVyp,. Probability > NWP

B R’ AR?
Step 1. Halog Freq 38 1 d1**
Step 2. AVp. Phi-square Y NWP =22 .17 06**
Step 3. AVp, Probability Y NWP -.04 17 .00

*p <.05, ** p<.01
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Only one previous investigation (Tye-Murray et al, 2007a) has considered the
simultaneous influence of A-only and V-only perceptual similarity on spoken word
recognition in AV. This study made (and found support for) three hypotheses, based on
the principles of the NAM and assuming that visual and acoustic information influence
AV word recognition. The first of these hypotheses was that stimulus words with few
items in the AV overlap would have a greater likelihood of being recognized. The
current project found support for this hypothesis. AVp, Phi-square ) NWP (a theoretical
counterpart to AV overlap) accounted for a significant (albeit small) amount variance in
AV word identification accuracy, as did AV overlap size when stimulus word frequency
was controlled. The second hypothesis of Tye-Murray et al. (2007a) was that unimodal
lexical density would predict AV word identification accuracy. Support was also found
for this hypothesis. Here, A-only Phi-square ) NWP and V-only Phi-square ) NWP both
account for a small but significant amount of unique variance in AV word identification
accuracy (6% for A-only, 3% for V-only, p <.01 for both).

The third hypothesis was that A-only density should be predictive of A-only
accuracy but not of V-only accuracy, and that V-only density should be predictive of V-
only accuracy, but not A-only accuracy. An important assumption of the NAM is that
competitor effects are the result of the perceptual similarity of the target to its
competitors. Therefore, because density depends on perceptually defined similarity
within a given modality, confusions from one modality should not be expected to

correlate with accuracy in another modality (see also Auer, 2002)."* That is, the amount

' Importantly, this rests on the assumption that perceptual similarity in the two modalities is not
necessarily correlated. That is, words that have many similar competitors in A-only should not be expected
to have many similar competitors in V-only. Indeed, A-only and V-only Phi-square > NWPs are not
significantly correlated (» = .08, p < .05)
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of competition a word encounters in the visual modality should not predict A-only
recognition accuracy. Phi-square ) NWP values reveal exactly this pattern: A-only Phi-
square Y NWP values of words do not predict identification accuracy in V-only (r = -.08,
p =.33), nor do V-only Y NWP values predict A-only identification accuracy (r = .11, p =
16)." Simply put, the perceptually density of a neighborhood in one modality does not
predict identification accuracy in the other modality, supporting the NAM’s prediction

that the density effects depend on perceptually-derived similarity of the competitors.

Extent of competition

As discussed above, the NAM predicts that words are evaluated in the context of
all other words in the lexicon. It would, therefore, predict that quantifying the perceptual
similarity of a stimulus word to every other word in the lexicon would offer greater
predictive power than quantifying its similarity to only the most perceptually similar
words. In order to test this prediction, the Phi-square NWPs of the categorically defined
neighbors (those in Density A for A-only, homophene group for V-only, and AV overlap
for AV) were calculated. This accounts for different levels of perceptual similarity
within a categorical cluster. If word recognition depends upon each stimulus word being
evaluated in the context of every word in the lexicon, it would be expected that these
measures (which include only relatively close competitors) would account for less

variance in word identification accuracy than do Phi-square ) NWPs, which include all

'3 Probability > NWP values show roughly the same pattern, though are somewhat harder to interpret
because the correlation between A-only Probability ) NWP and A-only identification accuracy failed to
reach significance. However, like the Phi-square Y NWPs, A-only Probability Y NWP do not predict V-
only Accuracy (» = .10, p = .13), nor do V-only Probability Y NWP values predict A-only accuracy (r = -
A2, p=.11)
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words in the lexicon. Correlations between spoken word identification and the above

measures of density are shown in Table 12.
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Table 12.
Correlations between word identification accuracy and measures of density,

controlling for frequency

A-only V-only AV
Categorical Density -.16* -41%* -21%
Phi-square ) NWP of categorical density -.18* - 47%* -.16%*
Phi-square ) NWP - 33k -57%* - 26%*

*p <.05, ** p<.01

Note: All measures of density are calculated separately for A-only, V-only, and AV. Categorical
density is Density A for A-only, homophene group size for V-only, and A-only and V-only overlap
size for AV. Phi-square ) NWP of categorical density is the sum of the NWP values within each

measure of categorical density. For AV, AVpgg values are shown.
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For all modalities, Phi-square ) NWP accounts for a significant amount of variance
beyond that accounted for by the Phi-square ) NWP of categorical density. This suggests
that, even when the similarity of categorical members is measured continuously,
comparing a stimulus word to all words in the lexicon accounts for greater variance in

word identification than does comparing it to its closest competitors.

Summary

The above analyses demonstrate that the amount of modality-specific competition
a stimulus word encounters influences the likelihood that it will be recognized. These
analyses also support the value of using Phi-square values as a measure of lexical
competition, and support the theoretical construct of modality-specific auditory and
visual competition. Metrics based on the Phi-square statistic are as effective (in the case
of AV) or more effective (as in A-only, V-only, and AVp,.) than similarity estimates
derived from identification probability values. In addition, comparing a stimulus word to
all other words in the lexicon accounts for greater variance in identification accuracy than

does comparing it to only a subset of perceptually similar competitors.

Activation and competition across modalities
In addition to evaluating how well different metrics are able to model lexical
density, this project is also concerned with assessing whether metrics of lexical properties
have similar predictive abilities across modalities. Four lexical properties are examined
first independently and then in concert: stimulus word frequency, segmental
intelligibility, neighborhood density, and neighborhood frequency. Table 13 contains

descriptive statistics for stimulus word frequency and intelligibility.
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Table 13.

Descriptive statistics for stimulus frequency and stimulus word intelligibility (SWP)

Range Mean SD
HAL,, Frequency 2.56 - 15.48 8.63 2.19
HALR,w Frequency 13-5,262,331 85,792.05 424,491.52
A-only Probability SWP 0.01-0.44 0.17 0.10
A-only Phi-square SWP 0.33-0.58 0.46 0.05
V-only Probability SWP 0.01-0.18 0.05 0.04
V-only Phi-square SWP 0.39-0.68 0.51 0.06
AV Probability SWP 0.13-0.75 0.38 0.14
AV Phi-square SWP 0.64 -0.78 0.70 0.03

Note: Because A-only, V-only, and AV lists were matched on frequency, the

frequency values for all lists combined are displayed.
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Frequency

Consistent with earlier findings, the frequency of the stimulus word predicted a
significant amount of variance in spoken word identification accuracy both in A-only
(Landauer & Streeter, 1973; Luce & Pisoni, 1998) and in V-only (Auer, 2009; Mattys et
al., 2002). HAL,, was a significant predictor of word identification accuracy in all
domains; it accounted for 7% of the variance in word identification accuracy in A-only
word recognition, 5% in V, and 11% in AV (p <.001 for all).

Interestingly, HALg,w values predicted stimulus word identification accuracy less
effectively than did HAL o, values. HALR,w accounted for no variance in A-only, 4% of
the variance in V-only (p <.01), and 2% (ns) in AV. Although these values are still
significant for V-only, they are lower in magnitude than the correlations with HAL ., and
the correlation disappears completely for A-only and AV. The difference between
HAL; s and HALR,, may explained by the distribution of frequency values. HALRaw
values have a large range but a very skewed distribution, with 90% of responses falling
below 100,000, and the tail stretching to 5 million. Because the NAM assumes that word
decision units are initially activated exclusively by the perceptual input and only later
weighted by frequency, it is reasonable to expect that words with high competitor density
may be difficult to recognize, even if they are high frequency. Therefore, when a
frequency distribution is extremely skewed and the high frequency outliers are able to
exert strong influence on the correlation, high frequency, high density words may deflate
the relationship between accuracy and frequency. HAL,, values avoid this issue

because they have a smaller, more normally distributed range.
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Stimulus Word Intelligibility
Descriptive statistics for SWP values, derived from modality-appropriate
confusion matrices are shown in Table 13. Table 14 shows the correlations between

these SWP values and identification accuracy for each modality.
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Table 14.

Correlations between measures of intelligibility and word identification accuracy

A-only V-only AV

Probability SWP A7 A5%* 3%
19%* (AVpre)
Phi-square SWP 19%* S2H* .05

32%% (AVpy)

**p<.01
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A series of regressions revealed that neither probability SWPs nor Phi-square
SWPs account for significantly greater unique variance than the other. Indeed, Phi-
square SWPs and Probability SWPs are highly correlated within each modality (r = .85
for A-only, » = .61 for V-only, and = .84 for AV, all p <.001). This suggests that using
the average Phi-square value for a given phoneme captures similar information about
intelligibility as does using the probability that a phoneme will be accurately identified as
itself.

Despite mulitcollinearity between Probability SWP and Phi-square SWP, the
correlation between AV accuracy and Phi-square SWP was small and failed to reach
significance. Given the correlations between SWP and accuracy in A-only and V-only,
this finding is somewhat surprising. This may, again, be due to very high accuracy levels
in AV phoneme confusion matrices. To attempt to overcome this, an AVp,. SWP was
calculated by multiplying the A-only SWP and V-only SWP of a word, both for
Probability SWPs and Phi-square SWPs. Using this method, words that are perceptually
intelligible in both A-only and V-only will have higher values than words that are
perceptually intelligible in only one (or neither) domain. These values showed stronger

correlations with AV word recognition accuracy (see Table 14).

Frequency Weighted Competitor Density

In the NAM, frequency effects are assumed to both weight the word decision unit
tuned to the stimulus word, and also weight the activation of decision units tuned to
competitor words. To examine how the frequency of the competitor words (as well as the

perceptual similarity thereof) influence recognition, FWNWPs were calculated. For each
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stimulus word, the NWP of every competitor was weighted by its frequency of
occurrence. Then, all frequency-weighted NWPs were summed. These > FWNWPs
were calculated for all stimulus words, using both Phi-square values and probability
values. The fundamental assumption of this analysis is that high frequency competitors
should provide more competition for a given stimulus word than low frequency
competitors, controlling for perceptual similarity. If a given competitor word is both high
frequency and perceptually very similar to a stimulus word, the FWNWP will be inflated
to reflect a high level of competition. Therefore, words whose close competitors tend to
be high frequency will have higher overall ) FWNWP values than words whose close
competitors are infrequent.

The initial frequency weighting analyses employed HAL; ., values, as were used
in the stimulus word frequency analyses. However, these values caused an unexpected
statistical confound. When > FWNWPs were calculated using the HAL; o, values, it
resulted in a correlation of » = 0.999 between the ) FWNWP and the unweighted ) NWP
of a stimulus word. This indicates that weighting each of the competitor word by its
frequency did not change the rank order of the unweighted Y NWP. An examination of
the frequency distributions of competitor words reveals the cause of this confound (see

Figure 5).
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Figure 5. Distribution of frequency values of all competitor words in ELP Master

Lexicon. The histogram on the left shows HAL; ., values, and on the right, HALga

values. Some, but very few, HA LR,y values extend to as high as 5,000,000.
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The HAL,, values of the competitor words follow the pattern of normal
distribution, whereas the HALg,,, values are very skewed with most values being less
than 100,000 and only a handful stretching up to 5,000,000 or more. Because the HAL; oo
are normally distributed, most competitors are clustered around the mean, with few in the
tails. Even if the most similar neighbor is a high frequency one, the difference between
the highest frequency value and lowest frequency value isn’t large enough to significantly
influence the distribution. Indeed, the result of weighting all > NWPs by the appropriate
frequency was, in effect, to simply multiply the unweighted > NWPs by the average
frequency of the lexicon, yielding an almost perfect correlation.

To overcome this confound, the HA LR, frequencies of competitor words were
used in the weighting. HALR,,, frequency values have a much larger range, so the large
values of high frequency words are able to exert enough influence on NWP values to
alter the Y FWNWP. Using HALg,y values makes it possible to distinguish between
stimulus words that are, on average, more perceptually similar to high frequency words
from those that are, on average, more similar to low frequency words. Correlations

between > FWNWP and word identification accuracy are shown in Table 15.
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Table 15.
Correlations between word identification accuracy and Probability and Phi-square

FWNWPs in A-only, V-only and AV domains.

A-only V-only AV
Probability FWNWPs -.12 -.15 -.16*
Phi-square FWNWPs -24%% =37 -.09

*p<.05,** p<01
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After controlling for Probability > FWNWPs, Phi-square ) FWNWPs accounted for
additional unique variance in identification accuracy in A-only and V-only tasks. In the
AV domain, the correlation between Phi-square ) FWNWP and word identification
accuracy failed to reach significance.

Unexpectedly, for all modalities, > FWNWPs accounted for no additional
variance above that accounted for by the unweighted ) NWPs. In fact, for A-only and V-
only, the unweighted > NWPs accounted for significantly more unique variance in
predicting accuracy than did their frequency-weighted counterparts. This finding is
surprising given the importance placed on both the similarity and the frequency of the
competitor words by the NAM. However, neither Luce & Pisoni (1998) nor Auer (2002)
reported Y NWPs and ) FWNWPs separately, so it is unclear whether this finding is
novel. It is possible that the lack of competitor frequency effects is due to the frequency
measures used. HAL frequency counts (Lund & Burgess, 1996) were obtained from
written, rather than spoken speech. The argument against competitor frequency effects
would be strengthened by a similar demonstration, but using improved measures of word

frequency (both more recent and derived from spoken, rather than written speech).

Frequency-Weighted Neighborhood Probability Rule

To simultaneously include the influence of multiple lexical properties on
identification accuracy, FWNPRs were calculated for each modality. This followed the
procedure described in the introduction. Because the ) FWNWP showed smaller

correlations with accuracy than did the ) NWPs, the unweighted > NWPs were used in
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the denominator. Both Probability values and Phi-square values were used, and the

correlations of each with accuracy are shown in Table 16.
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Table 16.

Correlations between FWNPR and identification accuracy in A-only, V-only and AV

A v AV

Probability FWNPR 32% 55% 23
31%% (AVpre)

Phi-square FWNPR 34 66%* 30%*
39%* (AVpre)

¥ p<.01
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In all three domains, Phi-square FWNPRs accounted for significant additional
variance beyond that explained by probability FWNPRs. In the A-only condition, the
Phi-square FWNPR accounted for a small but significant additional 2% (p < .05) of the
variance in identification accuracy. For V-only, it was an additional 14% percent (p <
.001) and for AV, 4% (p <.01). Using AVp, values improved the predictive power of
both AV Probability FWNPR and AV Phi-square FWNPRs. AVp, Phi-square FWNPR
accounted for an additional 7% (p < .01) of variance in AV word recognition after
accounting for AVyp,. Probability FWNPR.

The correlation between A-only Probability FWNPR and accuracy is very similar
to what has been found previously and for A-only [» = .23 to » = .47 (Luce & Pisoni,
1998)]. The correlation between V-only FWNPR and accuracy is stronger than has been
reported previously [7 = .44 to r = .48 (Auer, 2002)]. This may be the result of a
methodological difference between the two investigations. Auer (2002) used an existing
set of phoneme confusions that were obtained from different talkers than the word
identification task, and were identified by a different population group (hearing-impaired
vs. normal-hearing). Because phoneme confusions differ as a function of speaker
idiosyncrasies, it may be Auer (2002)’s FWNPR values are lower than they would be

given speaker consistency across tasks.

Individual contributions of lexical properties across modalities
Although the FWNPR assesses the simultaneous influence of multiple lexical
properties, further analyses are required to assess the independent influence of each

property. To determine the amount of variance accounted for by each lexical property
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(and how patterns of variance explained differ across modalities), a series of regressions
was conducted. Stepwise regressions revealed that frequency and Phi-square ) NWP
were the strongest predictors of identification accuracy. For V-only (but not A-only or
AV), Phi-square SWP accounted for significant variance beyond frequency and Phi-
square Y NWP. A hierarchical regression, with order specified based on the stepwise
analysis is presented in Table 17. This does not imply that Phi-square SWP does not
predict word identification accuracy in A-only and AV, however. Indeed, forcing Phi-
square SWP in the second step (after frequency) accounts for significant variance in
identification accuracy, and entering Phi-square ) NWP as the third step accounts for

additional variance beyond that in both A-only and AV modalities.
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Table 17.

Comparing the influence of lexical variables on spoken word identification in A-only, V-only, and AV domains

A-only V-only AV
B R? AR? B R? AR? B R? AR?
Step 1: HAL,, Freq .30 .07 O7#* 37 .05 5% 36 .11 Jd1EE
Step 2: Phi-square ) NWP -33 .16 1% -25 36 31 -22 15 04%*
Step 3: Phi-square SWP -.03 .16 .00 19 40 04+ -05 .15 .00

*Ep <01
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Summary

These results reveal that spoken word recognition is sensitive to similar lexical
properties whether the input is auditory, visual, or both, although some differences
between modalities do exist. In all three domains, higher frequency stimulus words and
those with less similar competitors tend to be identified more accurately than low
frequency words, or those with highly similar competitors. For V-only (but not A-only or
AV), stimulus intelligibility predicted significant additional variance in word
identification accuracy, after controlling for stimulus word frequency and competitor

density. The implications of these findings are discussed below.
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CHAPTER 5: DISCUSSION
The current research was designed to evaluate methods of quantifying perceptual
similarity and lexical competition in A-only, V-only, and AV domains, and to assess the
extent to which lexical properties influence spoken word recognition similarly across
input modality. The findings, along with clinical applications and possible limitations of

the work, are discussed below.

Quantifying Competition

It was expected that continuous measures of lexical competition would be more
successful at predicting spoken word recognition than would those that measure
perceptual density categorically. This was seen as likely for several reasons. The NAM
(Luce & Pisoni, 1998) proposes that activation of competitor words occurs as a function
of their perceptual similarity to the stimulus word. Competitors that are very perceptually
similar to the stimulus word receive more activation than those that are less similar.
Metrics that calculate perceptual density categorically (like one-phoneme shortcut
neighbors or homophenes) do not distinguish between the perceptually similarity of
competitors. That is, competitor status is treated as a categorical, rather than a
continuous variable. Treating a continuous variable (like perceptual similarity) as
categorical results in information loss, so a continuous measurement is likely to be more
predictive. The continuous/categorical comparison was also reported here due to the
prevalence of categorical measures in the literature. Although there are statistical reasons
to expect that continuous measures would have greater predictive power than categorical

measures, a direct comparison is, thus far, absent from the literature.
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The main measurement question posed here was whether the measures of lexical
density that are based on the Phi-square statistic would have greater predictive power for
spoken word identification than would measures of lexical density based on confusion
probabilities. Although this is the first investigation to use the Phi-square statistic as a
continuous measure of perceptual similarity, it might be expected to be a more predictive
measure than a parallel analysis that uses confusion probabilities, based on several
confounds associated with confusion probability methods (described in the Introduction;
see Iverson et al., 1998). Overcoming these confounds may result in a more valid
measure of perceptual similarity, and therefore, lexical density.

The results of the current investigation support these predictions and demonstrate
that quantifying lexical competition using metrics based on the Phi-square statistic are as
effective or more effective at predicting spoken word identification than are metrics that
have been used previously. Indeed, Phi-square density accounted for additional variance
in spoken word recognition beyond that accounted for by discrete metrics or those based
on confusion probability values in A-only and V-only spoken word recognition. In AV,
the amount of variance accounted for by all measures of lexical density was relatively
small. When a predicted AV density was calculated (using the conditional probabilities
of unimodal confusion), the measures based on Phi-square values accounted for

additional variance beyond confusion probability measures.

Activation and competition across modalities
Because the Phi-square statistic enables lexical competition to be assessed on the
same scale in A-only, V-only, and AV speech, the influence of lexical properties on

recognition in each modality may be directly compared. It was expected that A-only, V-
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only, and AV spoken word recognition would be similarly influenced by lexical
properties. This prediction stems from some similar findings in the three domains with
respect to the influence of competitor density (Mattys et al., 2002; Auer et al., 2002; Tye-
Murray et al., 2007) and frequency (Auer et al., 2002; Mattys et al., 2002) on spoken
word identification. However, this marked the first investigation in which lexical
properties were measured using the same method for A-only, V-only, and AV speech.

Frequency of the target word accounted for a significant proportion of the
variance in A-only, V-only, and AV spoken word recognition, and the amount of
variance accounted for was relatively similar across modalities. Competitor density also
accounted for a significant amount of unique variance in all modalities, beyond that
accounted for by target word frequency. For V-only, but not the other modalities,
segmental intelligibility accounted for further additional variance in word identification
accuracy.

Although the patterns of variance in spoken word recognition accounted for by
the lexical properties are reasonably consistent across modalities, several differences
warrant further discussion. First, the total predictive power of lexical properties at
accounting for variance in spoken word identification differs by modality. In total,
lexical properties account for 16% of the variance in A-only, 40% in V-only, and 15% in
AV. 1Itis possible that the stronger correlations observed between V-only word
identification and measures of perceptual similarity are stronger than the A-only and AV
counterparts because in the V-only condition, both vowel and consonant tasks were
presented in identical conditions (see Possible limitations in quantifying competition

section for more details).
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Another way in which patterns of explained variance differ across modalities is
that V-only word recognition is more influenced by the segmental intelligibility of the
stimulus (SWP), after controlling for competitor density. Given that there is not a one-to-
one correspondence between phoneme and mouth gesture in V-only speech, it may be
that intelligibility plays a larger role in identifying words than in A-only, where each
phoneme, at least in an ideal listening situation, is unique. These findings are counter to
those reported by Auer (2002). In that study, segmental intelligibility didn’t account for
additional variance in spoken word identification after accounting for competitor density.
Auer found this finding surprising and attributed it to the fact that the phoneme
identification scores were obtained from a different population of participants (hearing-
impaired vs. normal-hearing) identifying sounds from different speakers than were used
in the word identification task. Therefore, he suggested that the phoneme confusions
used might not accurately capture the segmental intelligibility of the words. He
suggested that other ongoing studies in their lab that avoided these confounds (as the
current investigation did) did find an effect of segmental intelligibility after controlling

for density.

Theoretical Implications and Future Directions
The NAM was originally designed specifically to describe A-only spoken word
recognition. However, the finding that V-only and AV spoken word recognition are also
sensitive to lexical properties suggests that the scope of the NAM may be extended to
include other modalities of speech perception. These results suggest that similar
processes of activation and competition occur for spoken word recognition, whether the

signal is seen, heard, or seen and heard. It is especially interesting that measures of
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density within a unimodal condition (e.g., A-only Phi-square density) do not predict
spoken word recognition in another unimodal condition (e.g., V-only spoken word
identification accuracy). This suggests that lexical density is not an inherent property of
a word, but rather, depends upon the nature of the perceptual signal through which it is
perceived. It should, therefore, not be surprising that AV word recognition is sensitive to
the properties of both the A-only and V-only channels (Tye-Murray et al., 2007a).
Disagreements persist about whether individuals differ in their ability to
efficiently integrate auditory and visual information in AV spoken word recognition (see
Grant, 2002 and Massaro & Cohen, 2000). Although this research was not designed to
resolve this debate, it supports that AV recognition does depend, in part, upon the
perceptual and lexical properties of the stimuli. Some methods of assessing integration
performance include calculating predicted AV accuracy from A-only and V-only error
rates, such that errors are expected in AV only when errors occur in both A-only and V-
only identification (Blamey, Cowan, Alcantara, Whitford, Clark, 1989). For example, if a
participant misidentifies a word in both V-only and A-only, that word is expected to be
misidentified in AV. However, these values are binary (stimuli are either identified or
misidentified), so they fail to describe what perceptual information the perceiver extracts.
If place of articulation for a critical phoneme is accurately identified in V-only (eg., /bad/
is identified as /pad/) and voicing is accurately identified in A-only (eg., /bad/ is
identified as /dad/), then the probability of identification in AV seems much higher than
if the information extracted is redundant in the two modalities. It may be that participants
differ in the features they are able to extract in a given modality, suggesting that general

measures of perceptual competition (eg., A-only neighborhood size) may not accurately
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describe the perceptual experience of a given individual. Therefore, when quantifying
integration, it may be necessary to consider the perceptual properties of the words, which
may depend upon the participants identifying them (see Grant, 2002 and Clinical
Applications, below).

Although the NAM assumes that words are recognized in the context of all other
words in the lexicon, this research serves as the first test of whether evaluating a stimulus
word in relation to all other words in the lexicon accounts for greater variance in
identification accuracy than does comparing a word to perceptually similar words only.
The results support the NAM’s predictions: Phi-square ) NWP (which includes the
influence of all words in the lexicon) accounts for more variance in spoken word
identification accuracy than does a summed density of perceptually similar competitors
(e.g., those in Density A). This supports the proposal that the stimulus input may activate
a large set of candidate items in memory, and that the resulting competition of these units
influences the likelihood of word recognition. Had both measures accounted for similar
amounts of explained variance, it would have suggested that a threshold of perceptual
similarity would need to be reached in order for a competitor’s word decision unit to
provide competition for the stimulus word’s decision unit.

The finding that frequency weighted competitor density predicted word
identification less effectively than competitor density alone was unexpected. The NAM
assumes that word decision units (both those of the stimulus word and of all competitor
words) are sensitive to higher-level lexical information like word frequency. It also
assumes that word decision units are interconnected such that they can monitor the level

of activity of other units in the system. Therefore, competitors that are both perceptually
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similar and occur frequently should provide more competition than words that are
perceptually similar and occur infrequently. This hypothesis was not supported in the
current study. Indeed, for all three modalities, competitor density predicted spoken word
identification more effectively than did frequency weighted competitor density (but see
above discussion on potential implications of using frequency norms based on written,
rather than spoken, language).

Because the NAM proposes that word decision units are initially activated based
solely on their perceptual similarity to the input, and only later influenced by higher level
lexical information like frequency, it could be argued that only the frequencies of
perceptually similar competitors should be evaluated. Based on the model, the word
decision unit that corresponds to a highly frequent but perceptually dissimilar competitor
will initially receive very little or no activation, so frequency information about that
competitor may not influence recognition of the stimulus word at all. Weighting
perceptual similarity by competitor frequency should theoretically address this issue
(words that are perceptually dissimilar, when multiplied by frequency, still render small
values). However, it is possible that, given the large number of these competitors, the
combined influence may have a significant influence on the FWNWP outcome. Given
this possibility, a follow-up analysis was conducted in which only the most perceptually
similar competitors (both the 10 and the 50 most similar competitors)'® were weighted by
their frequency. This analysis renders a value that first evaluates perceptual similarity,

and then, given high enough similarity, weights by frequency. However, this analysis

e Although these specific values were selected somewhat arbitrarily, they were chosen to reflect the
influence of the most similar cluster of competitors (10) as well as a larger cluster of less similar words, but
still potentially confusable words (50).
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also failed to account for significant variance beyond that accounted for by unweighted
competitor density in any modality.

This finding cannot be easily interpreted in the framework for the NAM.
Although frequency-weighting neighbor similarity has been used previously (Luce &
Pisoni, 1998; Auer, 2002), these studies failed to report the correlation between
competitor similarity and identification accuracy as well as the correlation between
frequency-weighted competitor similarity and identification accuracy separately. Instead,
only frequency-weighted competitor similarity was reported. Therefore, it is unclear
whether the current results are novel. It is also be possible that frequency effects take
time to develop. In that case, responses made quickly may be less susceptible to
frequency effects. To address this in future studies, measures of reaction time (in
addition to identification accuracy scores) could be collected. If frequency effects do
take time to develop, words that are responded to quickly would be expected to show less
sensitivity to word frequency than would slowly responded to words.

An alternative to the mechanisms of competition described by the NAM is offered
by Exemplar models (see Nosofsky, 1988). Proponents of these models maintain that
classification and recognition judgments are based on similarity comparisons with stored
exemplars. A key distinction between models of this type and Activation-Competition
models is that Activation-Competition models include a mechanism for lateral inhibition
or competition between words. Instead, exemplar models propose that differences in
recognition performance are due to varying degrees of correspondence between the input
and the exemplar. Evidence against this position comes from the finding that semantic

context can influence recognition accuracy: the addition of semantic context to word
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recognition tests increases performance, particularly for words with high-frequency
neighbors (Sommers & Danielson, 1999). Exemplar models, which stress the degree of
perceptual match between the input and the lexical representation, have difficulty
accounting for these findings. The NAM, however, can explain these results by positing
that semantic information increases activation levels on word decision units that are
consistent with the context without increasing activation on word decision units that are

inconsistent with context.

Potential Limitations in Quantifying Competition

These results support the use of measures of lexical density based on the Phi-
square statistic and provide additional evidence that the NAM successfully models
human performance in A-only, V-only, and AV word recognition. Given that the NAM
proposes that the amount of competition a word provides depends on its perceptual
similarity to the stimulus word, it is not surprising that overcoming confounds in
measuring similarity will increase the predictive power of the measures. There are
several other issues pertaining to quantifying perceptual similarity that, if properly
addressed, may increase the predictive power further.

In the current study, syllable identification tasks consisted of identifying
individual phonemes, embedded in a consistent phonemic context. However, it is
possible that the patterns of confusion observed could vary if the phonemic context were
different, due to coarticulation. In that case, the single phoneme identifications may not
entirely represent the confusability of phoneme strings that appear in real words. As an
extreme example, it may be that a given pair of vowels is very confusable when they

follow a stop consonant, but if they follow a fricative consonant, they are more clearly
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distinguishable. The current system of confusions does not allow for such nuanced
distinctions.

Another limitation of using single phoneme identifications as a metric for
similarity is that it is not possible to assess the similarity of individual phonemes and
phoneme clusters. Some investigations (Auer, 2009) have included consonant clusters in
viseme groups with single consonants. If two perceptually similar consonants occur in
succession, it could be that a CCVC word could be perceptually similar to, and therefore
provide strong competition for, a CVC stimulus word. For example, in a visual
presentation, /stop/ and /top/ may be easily confused. Because the current investigation
only includes CVC competitors (i.e., /top/ is compared to /tip/ and /hop/, but not /stop/ or
/trip/), it may over or underestimate the average competitor density of a stimulus word,
based on whether it has perceptually similar words that are not CVCs.

This analysis reveals another area that should be addressed in future
investigations: how can the perceptual similarity of a stimulus word and a competitor
word of different lengths (i.e., those that differ by the addition or subtraction of a
phoneme) be quantified? For example, to assess the similarity of the stimulus word /top/
to /step/, if the words are lined up at the vowels, the /t/ of the stimulus word is aligned
with the /t/ of the competitor word. However, the /s/ of the competitor words does not
align with any phoneme of the stimulus word. In this case, the probability of the
phoneme /s/ is, conceptually, the probability of identifying /s/ when no phoneme was
presented. Luce (1986) resolved this issue by including a “null” phoneme in the syllable
identification tasks. In some phoneme identification trials, no phoneme was presented,

but participants were still forced to make a decision about what they heard. Participants
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also had the option of making the response that no phoneme had been presented. This
enabled calculating conditional probabilities of identifying a specific phoneme when
none was identified [e.g., p(s|@)] or the probability of failing to detect that a given
phoneme had been presented [e.g., p(o|s)]. Using this method, Luce could calculate
perceptual similarity for competitors that were longer or shorter than the stimulus words.
The method of including a null response works well for the A-only domain, when
phonemes are masked and the background noise is perceptually similar to the signal.
However, it is difficult to translate to the V-only modality where task difficulty stems not
from similarity between signal and noise, but from an underspecified signal. The
detection of a mouth movement is very salient, even if the identification of that mouth
movement is difficult. Therefore, it seems extremely unlikely that a participant would
ever fail to notice a speaker opening their mouth (choose the null response) or identify an
unmoving face as a speaker producing a specific phoneme. Therefore, another method
seems necessary for calculating the perceptual similarity of two words of differing length.
Finally, another possible limitation of the methods used here lies in the fact that
different SNRs were used for the vowel identification task and the consonant and word
tasks. Based on pilot testing, an appropriate SNR for consonant and word identification
resulted in ceiling level performance for vowel identification. If patterns of syllable
confusions differ by SNR, it is possible that the confusions obtained from the vowel
identification task at one SNR do not ideally reflect the perceptual experience of
perceiving vowels in words at another SNR (but see Miller & Nicely, 1955 for evidence

that feature confusions are relatively stable across SNR). Given that these issues remain
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and likely add statistical noise to the data, the amount of variance accounted for by

measures of perceptual density become more impressive.

Clinical Applications

Measuring lexical density using Phi-square values has several interesting clinical
applications. First, understanding the manner by which lexical units are activated and
compete with one another may have implications for how spoken word recognition may
trained. Lipreading is notoriously hard to train (Tye-Murray, 2008) and methods of
instruction have met with only limited success. Established methods for measuring
lexical density could inform these training programs by revealing the types of words that
are perceptually most distinct, and therefore, a potential starting place for training
regimens. They could also inform which phonemic distinctions (e.g., /t/ vs /d/) would be
most helpful at differentiating between most words, and therefore, worth the most
aggressive instruction.

Additionally, because the only input necessary to calculate lexical densities is
phoneme confusion matrices, it is possible to map the density of lexical space for specific
population group. For example, the perceptual information about speech that cochlear
implant users have access to is very different than that received by normal-hearing
individuals. Therefore, it would not be surprising to find that patterns of confusion, and
therefore lexical densities, may differ between population groups. If this is the case,
spoken word identification could likely be best predicted by patterns of confusability
generated by individuals of the same population.

Population-specific measures of lexical density may also inform research on word

recognition in older adults. Evidence exists that older adults may be especially impaired
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at recognizing words from regions of the lexicon that are perceptually dense [as
quantified by the one-phoneme shortcut method (Sommers, 1996)]. However, it is
possible that older adults are less able to make distinctions between phonemic contrasts
than are younger adults, due to either sensory deficits (i.e., presbycusis) or age-related
cognitive changes (see Pichora-Fuller, 2003). Therefore, for any given stimulus word,
there may be more words that serve as potential competitors for older adults than for
younger adults, assuming that older adults will show impaired phoneme discrimination,
compared with younger adults. It may be that the observed interaction between age and
lexical difficulty is due to age-related changes in lexical density instead of (or, more

likely, in addition to) age related cognitive changes (e.g., inhibitory deficits).

Conclusions

The present study evaluated methods of quantifying the perceptual similarity of
speech sounds and explored the processes of activation and competition in A-only, V-
only and AV spoken word recognition. Overall, the results suggest that measures of
perceptual similarity based on the Phi-square statistic are effective at modeling the
structure of the lexicon and predicting spoken word identification. In addition, the results
demonstrate some similarities in the processes underlying spoken word recognition
across modalities. Namely, stimulus word frequency and competitor density account for
significant unique variance in spoken word recognition in each modality. These findings
support and extend the scope of Activation-Competition models like the NAM and
suggest that the processes underlying spoken word recognition are not specific to the A-

only domain.
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APPENDIX A: STIMULUS LISTS

A-only list V-only List AV List
bad lurk bag knit bade mace
balm main balk knot badge mad
bar mat ban known | bail mar
bead meal bash lab bait mass
bees mime beak lame base match
bide mole beat leap beam mike
bing mooch bet leer beck mill
bird mud bib lick bed moon
boat muff big long beige move
bob mum birch lose bell mug
boon near bole maim bike mutt
botch node booth man bit myth
both noise bull mead biz name
boys noun bun meat boil nap
burrs page cad merge boot nib
buys peace calf mice buck niche
cage peal calm midge bud nick
can peck cap miff bus nil
caught peg case mirth cab pack
cease pile chalk mock came pearl
chase pine chap mode cane peas
cheek pit check mom catch peep
chill pole cheer mood cheap pen
chock poof chief moor chive perk
choke poor chip moss comb pick
chug pun chore mouse cone pill
chum purse chute mouth core pith
coach race cob net cowl poke
code rain cog newt cut pope
coin ram cook nip dash pull
cup rang cop null dead rag
curse rate COWS pail dear rave
deal ream cuff pall deep rig
dean rear cull peeve dell ring
debt rife curb perm ditch room
died riff curl pet dock rouge
dip roar date pies dodge rough
done role daub pin dose royal
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dowel rule deck pouch dove rug
dude rune den psalm down said
dug ruse did puff dual sake
fad rut dies pup face sass
fade sage dig rail fed seep
fair sail dill rev feel seethe
fall sate din rice fine serve
fang says dive rim fish shake
fell scene doll roam foal shell
fib search dot robe fudge shin
fief shack doze roof gage shod
foes share duck rook gave shop
fog shed fab root gem showed
fun she'd fain rope get shun
gal shirt femme rouse gneiss sick
gauze should fill sat goat sign
gawk sill foam seal goes sip
gear size folk shame gosh sob
gene soothe for shone guide soil
gin soup fuss shout heap soon
gnash sour gab shove hers soot
gong serge gall sin him Sop
hail teach gang sing hiss sued
half that gape SIirs hitch tang
heave thatch girth suit hook tech
heck they'll gob tab hung teeth
hem thick good tack jade terse
highs thud Goth tail jeer their
hub tic gull tan jib thin
hutch tide gush ten jock this
jab tile gym than join tomb
jaws toes hall they'd josh tome
joke tooth hat thought | keel ton
kiss tote hawk thyme kit tongue
kneel touch heal tire knave veer
knees towel hedge toil knoll veg
knife tune hid tout lad vies
lac use hill voice late wack
lace vague hip waive learn wade
laid vied hole ways ledge was
league wain home wick lies wash
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lean weed hull wire lip white
leash whig Hun wood loaf who've
leave win hush wooed | loam wile
lied wipe jeep wool loathe womb
load with jewel worm loose writhe
lobe woke jig worse loss yak
look wrath joss wren lot yawn
loud writ juke yet louse yin
luck yap ken yoke lurch yore
lug yowl keyed yore lure youth
lull zone knight Zip liar zap
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APPENDIX B: PHONEME CONFUSION MATRICES

A-only % accuracy consonant confusion matrix

Target Phoneme

W N E <Dt —n mDBS 838 —~& o0 oo

b

tf

d

f

g

h

d3

k

1

m

Response Choice

n

0

p

T

S

I

t

0

)

\4

w

y

V4

3

713
.00
.01
23
.00
.01
.00
.00
.10
18
.00
.01
.02
.02
.07
.00
.05
13
.09
18
.01
.00
.04
.00

.01
.84
.00
.00
.00
.00
.02
.00
.00
.00
.00
.00
.00
.00
.00
.07
.01
.01
.00
.00
.00
.00
.00
.02

.00
.00
1
.00
.04
.00
13
.00
.00
.00
.05
.00
.00
01
.01
01
.02
.02
.30
.02
.00
.06
A2
.02

.02
.00
.00
41
.00
.04
.00
.01
.00
.02
.00
.00
.02
.01
.05
.01
.07
A2
.01
.03
.00
.00
.00
.00

.00
.00
.09
.00
.81
.00
.04
.00
.00
.00
01
.03
.00
.03
.03
01
.00
.02
.09
01
.00
13
.04
01

.00
.00
.00
.02
.00
81
.00
.01
.00
.00
.01
.00
.08
.01
.01
.00
.04
.04
.00
.00
.00
.00
.00
.00

.00
.04
.02
.00
.00
.00
47
.00
.00
.00
.00
.00
.00
.00
.00
.05
.00
.01
.00
01
.00
.03
.02
.20

.00
.01
.00
.00
.01
.04
.00
.80
.00
.00
.02
.00
.07
01
.02
.00
.06
.01
01
.00
.00
.00
.00
.00

.00
.00
.00
.03
.02
.00
.01
.00
.62
.06
.00
.08
.00
17
.00
.00
.00
.02
.01
.10
.10
13
.04
.00

01
.00
.00
.02
.00
.00
.00
.00
.07
57
.00
12
.00
.03
.00
.00
.00
.01
.00
01
.01
.00
.00
.00

.00
.00
.00
.02
.01
.00
.00
.00
.00
.04
73
27
.00
.01
.00
.00
.01
.02
.02
.02
.00
.01
.01
.00

.00
.00
.00
01
.02
.00
.00
.00
.01
01
.05
40
.00
01
.00
.00
.02
.01
.00
01
.00
.02
01
01

.00
.00
.00
.05
.00
.06
.00
.04
.00
.01
.00
.00
73
.00
.01
.00
A2
.02
.00
.01
.00
.00
.00
.00

.00
.00
.01
.00
.00
.00
.00
.00
.02
.00
.00
.01
.00
52
.02
.00
.00
.01
.02
.03
.01
.05
.01
.00

.00
.00
.00
.05
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
29
.02
.00
.09
.00
.00
.00
.00
01
.00

.00
.05
.00
.01
.00
.00
.01
.00
.00
.00
.00
.00
.00
.00
.02
.60
.00
.00
.00
.00
.00
.00
.00
.02

.00
.02
.02
.00
.00
01
01
.10
.00
.00
.08
.01
.05
.00
.01
01
.50
.03
01
.00
.00
01
.00
.00

.00
.01
.01
.05
.01
.01
.01
.00
.00
.01
.00
.01
.00
.00
.09
.01
.04
23
.06
.02
.00
.00
.07
.00

.00
.00
.02
01
.00
.00
.02
.00
.00
.00
.00
.02
.00
01
.07
01
.03
.09
14
.02
.00
01
16
01

.19
.00
.00
.06
.00
01
01
.00
.04
.07
.00
.00
.00
13
.05
.00
01
.06
.10
48
.02
.00
.04
.00

.00
.00
.00
.00
.00
.00
.00
.00
A1
.00
.00
.00
.00
.04
.00
.00
.00
.00
.00
.01
.83
.09
.01
.00

.00
.00
.00
.02
.00
.09
.00
.02
.00
01
.01
.00
.00
.00
.00
.00
.00
.00
.00
.00
42
.04
.06

.00
.08
.00
.03
.00
01
.00
.00
01
01
.01
.00
.00
.20
01
.00
.03
12
.02
.00
01
36
.03

.02
.00
.00
01
.00
16
.00
.00
.00
.00
.00
.00
.00
.02
17
.00
01
.00
.02
.00
.02
.02
.60
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A-only Phi-square values consonant confusion matrix

Target Phoneme

W N S < XD+ —n m TS B8 —~~& o0 —-ao o

b

il

d

f

g

h

d3

k

|

m

Response Choice

n

0

p

r

S

]

t

0

)

v

W

y

V4

3

1

.03
.04
32
.02
.05
.04
.03
A5
27
.02
.04
.05
14
16
.04
A1
24
.19
41
.05
.03
A1
.03

.03

1

.05
.04
.03
.03
.10
.05
.03
.03
.04
.03
.04
.02
.06
19
.06
.06
.04
.05
01
.05
.05
11

.04
.05

1

.07
.19
.04
24
.05
.04
.06
A1
.09
.04
.07
18
.09
.10
.16
.50
A1
.02
18
32
10

32
.04
.07

1

.06
13
.06
.07
18
28
.07
13
14
A5
.30
.08
26
49
21
32
.07
.08
17
.05

.02
.03
.19
.06

1

.03
13
.04
.06
.06
.10
A2
.03
.10
A1
.06
.07
A2
21
.10
.04
25
18
.08

.05
.03
.04
13
.03

1

.03
A1
.04
.06
.05
.04
22
.05
.10
.04
.19
A5
.05
.06
.02
.03
.04

.02

.04
.10
24
.06
13
.03

1

.04
.06
.05
.10
.09
.03
.07
A2
22
.09
14
22
A2
.04
27
24
48

.03
.05
.05
.07
.04
A1

.04

1

.02
.04
.09
.04
18
.04
.09
.05
24
.10
.05
.05
.01
.04
.04

.03

A5
.03
.04
18
.06
.04
.06
.02

1

.26
.04
.19
.04
31
.10
.03
.08
16
12
26
27
25
14
.04

27
.03
.06
28
.06
.06
.05
.04
.26

1

.08
24
.06
.19
A5
.04
13
24
18
.30
.09
.09
A5

.04

.02
.04
A1
.07
.10
.05
.10
.09
.04
.08

1

35
.07
.06
.08
.06
16
13
12
.08
.02
A1
12

.07

.04
.03
.09
13
A2
.04
.09
.04
.19
24
35
1
.04
18
.10
.05
.09
16
13
16
.09
A7
A5
.07

.05
.04
.04
14
.03
22

.03
18
.04
.06
.07
.04

1

.05
.10
.03
.30
14
.06
.07
.02
.03
.04

.02

14
.02
.07
A5
.10
.05
.07
.04
31
19
.06
18
.05

1

14
.04
.09
18
18
32
16
24
16

.04

.16
.06
18
.30
A1
.10
A2
.09
.10
15
.08
.10
.10
14

13
21
52
38
.26
.04
A1
44

A1

.04
.19
.09
.08
.06
.04
22
.05
.03
.04
.06
.05
.03
.04
13

.07
12
.09
.09
01
.09
A1

29

A1
.06
.10
.26
.07
.19
.09
24
.08
13
.16
.09
.30
.09
21
.07

31
17
.16
.03
.08
14

.06

24
.06
16
49
A2
15
14
.10
.16
24
13
.16
14
18
52
A2
31

.39
.36
.07
14
35

10

.19
.04
.50
21
21
.05
22
.05
A2
18
A2
13
.06
18
38
.09
17
.39

32
.05
.20
57
10

41
.05
A1
32
.10
.06
A2
.05
.26
.30
.08
.16
.07
32
.26
.09
.16
.36
32

A2
18
.26
.09

05
01
02
07
04
02
04
01
27
.09
02
09
02
16
04
01
03
07
05
12

18
.08
.02

.03
.05
18
.08
25
.03
27
.04
25
.09
A1
17
.03
24
A1
.09
.08
14
.20
18
18

24
16

A1
.05
32
17
18
.04
24
.04
14
15
A2
A5
.04
.16
44
A1
14
35
57
.26
.08
24

16

.03
A1
.10
.05
.08
.02
48
.03
.04
.04
.07
.07
.02
.04
A1
.29
.06
.10
.10
.09
.02
16
16
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V-only % accuracy consonant confusion matrix

Target Phoneme

W NY E<OXDr—nw TS 38 —x& 50 oo

b

tf

d

f

g

h

d3

k

1

m

Response Choice

n

LY

p

T

S

[

t

0

)

\'%

w

y

zZ

3

45
.00
.00
.00
.00
.01
.00
.00
.00
46
.00
.00
47
01
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

.00
.20
.01
.00
.00
.00
14
.00
.00
.00
.00
.00
.00
.01
.02
15
.01
.00
.00
.00
.00
.00
.01
16

.00
.00
14
.00
.01
.00
.02
.01
.07
.00
.07
.00
.00
.01
.08
.00
15
.01
.00
.00
.00
.07
A2

.01

.00
.00
.01
.64
.00
.00
.00
.00
.00
.00
.00
.00
.00
18
.06
.00
.00
.00
.00
Sl
.00
.00
.02
.00

.00
.00
.02
.00
21
.08

.01
.20
.02
.00
.06
.19
.00
.02
.01
.00
.01
.00
.00
.00
.00
.09
.01

.00

.00
.00
.00
.00
.04
.60
.00
.06
.00
.00
.00
A1
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

.00
29
.05
.00
.00
.00
28
.01
.00
.00
.00
.00
.00
.02
.03
27
.02
.00
.00
.00
.00
.01
.02
25

.00
.00
.02
.00
18
.09
.00
18
.02
.00
.05
14
.00
.01
.01
.00
.01
.00
.00
.00
.00
.08
.02
.00

.00
.00
01
.00
.09
.03
.00
A1
41
.00
22
19
.00
.01
.00
.00
.01
.09
.07
.00
.00
.09
.01
.00

24
.00
.00
.00
.00
.01
.00
.00
.00
.30
.00
.00
21
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

.00
.00
.04
.00
.07
.01
.00
.07
12
.00
.20
.07
.00
.01
.02
.00
.03
.00
.00
.00
.00
11
.02
.00

.00
.00
.01
.00
.09
.06
.00
.07
.02
.00
.05
.09
.00
.02
.01
.00
.02
.00
.00
.00
.00
.04
.01
.00

28
.00
.00
.00
.00
.01
.00
.01
.00
23
.00
.00
.29
.01
.00
.00
.01
.00
.00
.00
.00
.01
.00
.00

.01
.00
01
.01
.01
01
.00
.01
.00
.00
.01
.01
.00
28
.00
.00
.01
.00
.00
.01
.01
01
.00
.00

.00
.00
.07
.00
.00
.00
.02
.00
.02
.00
.01
.00
.00
.00
17
.02
.09
.00
.00
.00
.00
.02
14

.02

.00
15
.02
.00
.00
.00
16
.00
.00
.00
.00
.00
.00
.01
.01
19
.02
.00
.00
.00
.00
.00
.01
17

.00
.01
33
.00
.02
.01
.03
.01
.07
.00
.07
.01
.00
.01
.19
.01
.30
.01
.01
.01
.00
.10
23
.03

.00
.00
.01
.00
.00
.00
.00
.00
.05
.00
.02
.00
.00
.01
.01
.00
.02
43
42
.01
.00
.01
.02
.00

.00
.00
.01
.00
.00
.00
.00
.00
.05
.00
.02
.00
.00
.00
.01
.00
.01
44
48
.01
.00
.02
.02
.00

.00
.00
.01
.34
.00
.00
.00
.00
.00
.00
.00
.00
.00
23
.04
.00
.01
.00
.00
44
.00
.00
.02
.00

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
d1
.00
.00
.00
.00
.00
.00
.96
.00
.00
.00

.01
.05
.00
25
.07
.00
23
.08
.00
17
18
.00
.01
.02
.00
.04
.00
.00
.00
.01
28
.03
.00

.00
15
.00
.00
.00
.03
.01
.03
.00
.02
.00
.00
.01
28
.02
21
.00
.00
.00
.00
.05
.26
.01

32
.03
.00
.00
.00
.29
.00
.00
.00
.00
.00
.00
.01
.03
32
.03
.00
.00
.00
.00
.01
.03
33
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V -only Phi-square values consonant confusion matrix

Target Phoneme

W N S < XD+ —n m TS B8 —~~& o0 —-aoo

b

tf

d

f

g

h

d3

k

|

m

Response Choice

n

0

p

r

S

]

t

0

)

v

W

y

V4

3

1

.02
.03
.01
.03
.05
.02
.03
.03
.87
.02
.03
.90
.05
.03
.02
.03
.01
01
.02
.02
.04
.03
.02

.02

1

15
01
.04
.03
79
.05
.05
.01
.05
.03
.02
.08
13
.85
12
.02
.02
.03
01
.06
A1
.85

.03
A5

1

.03
.20
13
22
.20
.34
.02
35
.16
.03
.16
.65
17
.84
.07
.06
.06
.02
42
5
19

01
01
.03

1

.02
.02
.01
.02
.02
.00
01
.02
.01
36
.10
.01
.02
01
.01
.82
01
.02
.05
01

.03
.04
.20
.02

1

.36
.05
.90
35
.02
Sl
7
.03
13
13
.04
17
.08
.07
.04
.02
.61
A5
.05

.05
.03
13
.02
.36

1

.04
.39
17
.03
23
43
.04
A2
.09
.03
A1
.04
.04
.03
.03
.26
.10
.03

.02
.79
22
01
.05
.04

1

.06
.09
.01
.08
.04
.02
.09
.20
.86
.19
.03
.02
.03
01
A1
.19

.89

.03
.05
.20
.02
.90
.39

.06

1

.36
.02
52
.82
.03
13
13
.05
17
.08
.07
.04
.02
.60
A5

.05

.03
.05
34
.02
35
A7
.09
36

1

.02
.70
.39
.03
13
26
.06
32
22
19
.05
.02
52
31

.08

.87
.01
.02
.00
.02
.03
.01
.02
.02

1

.01
.01
.84
.03
.01
.01
.02
.01
.01
.01
.02
.02
.02

.01

.02
.05
35
01
Sl
23
.08
52
.70
.01

1

Sl
.02
13
24
.06
31
A5
12
.04
.02
71
28

.07

.03
.03
16
.02
17
43
.04
.82
.39
.01
Sl
1
.03
A2
.10
.03
14
.09
.07
.03
.02
52
12
.03

.90
.02
.03
.01
.03
.04
.02
.03
.03
.84
.02
.03

1

.05
.02
.02
.03
.01
.02
.02
.02
.03
.03

.02

.05
.08
16
36
13
12

.09
13
13
.03
13
12
.05

1

.20
.08
14
.05
.04
41
14
15
16
.09

.03
13
.65
.10
13
.09
.20
13
.26
.01
24
.10
.02
.20

15
.70
.05
.04
13
.02
31
81

17

.02
.85
A7
01
.04
.03
.86
.05
.06
.01
.06
.03
.02
.08
A5

14
.02
.02
.03
01
.07
14

.88

.03
A2
.84
.02
17
A1
.19
17
32
.02
31
14
.03
14
.70
14

.07
.06
.05
.02
.39
.82

16

.01
.02
.07
.01
.08
.04
.03
.08
22
.01
A5
.09
.01
.05
.05
.02
.07

91
.03
.01
A1
.08

.03

01
.02
.06
01
.07
.04
.02
.07
.19
.01
A2
.07
.02
.04
.04
.02
.06
91

.03
01
.09
.07

.02

.02
.03
.06
.82
.04
.03
.03
.04
.05
.01
.04
.03
.02
41
13
.03
.05
.03
.03

.02
.05
.08
.03

.02
01
.02
01
.02
.03
.01
.02
.02
.02
.02
.02
.02
14
.02
.01
.02
01
.01
.02

.03
.02

01

.06
42
.02
.61
.26
A1
.60
52
.02
71
52
.03
A5
31
.07
.39
A1
.09
.05
.03

35
.09

A1
75
.05
A5
.10
19
A5
31
.02
28
A2
.03
16
81
14
.82
.08
.07
.08
.02
35

16

.85
.19
.01
.05
.03
.89
.05
.08
.01
.07
.03
.02
.09
17
.88
.16
.03
.02
.03
.01
.09
.16
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AV % accuracy consonant confusion matrix

Target Phoneme

W N S < XD+ —w m TS B8 —~~& o0 —-as o

b

tf

d

f

g

h

d3

k

|

m

Response Choice

n

0

p

r

S

]

t

0

)

v

W

y

V4

3

.83
.00
.00
.00
.00
.00
.00
.00
.00
23
.00
.00
.07
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

.01
.66
.01
.00
.00
.00
.02
.01
.00
.00
.00
.00
.00
.00
.00
.09
.01
.00
.00
.00
.00
.00
.00
.07

.00
.00
48
.00
.04
.00
.02
.00
.00
.00
.04
.01
.00
.00
.05
.00
.01
.00
.01
.01
.00
.03
A1
.00

.00
.00
.01
.88
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.01
.00
07
.00
.00
.00
.00

.00
.00
.03
.00
.79
.01
.01
.01
.00
.00
.02
.30
.00
.00
.00
.00
.00
.00
.01
.00
.00
.08
.01
.00

.00
.00
.00
.00
.00
.87
.00
.04
.00
.00
.01
.04
.00
.00
.00
.00
.01
.00
.00
.00
.00
.00
.00
.00

.00
.06
.07
.00
.00
.00
.60
.00
.00
.00
.00
.00
.00
.00
.00
.02
.00
.00
.00
.00
.00
.02
.05
18

.00
.00
.00
.00
.02
.10
.00
.87
.00
.00
.00
.05
.01
.00
.00
.00
.06
.00
.00
.00
.00
.00
.00
.00

.00
.00
.00
.00
.01
.00
.00
.01
.80
.00
.03
.05
.00
.03
.00
.00
.01
.01
.09
.00
.00
.00
.03
.00

13
.00
.00
.00
.00
.00
.00
.00
.01
74
.00
.00
.02
.01
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

.00
.00
.01
.00
.02
.00
.00
.01
.06
.00
73
14
.00
.00
.00
.00
.00
.00
.00
.00
.00
.02
.00
.00

.00
.00
.00
.00
.05
.00
.00
.01
.02
.00
.10
35
.00
.00
.00
.00
.00
.00
.00
.00
.00
.03
.00
.00

.01
.00
.00
.00
.00
.00
.00
.01
.00
.01
.00
.00
.88
.00
.00
.00
.01
.00
.00
.00
.00
.00
.00
.00

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
71
.00
.00
.00
.00
.00
.01
.01
.00
.00
.00

.00
.00
.02
.01
.00
.00
.00
.00
.01
.00
.00
.00
.00
.00
44
.00
.01
.01
.00
.00
.00
.00
.03
.00

.00
12
.01
.00
.00
.00
.02
.00
.00
.00
.00
.00
.00
.00
.02
78
.00
.00
.00
.00
.00
.00
.00
.04

.00
.03
.00
.00
.00
.01
.00
.02
.00
.00
.01
.00
.00
.00
18
.01
.86
16
.01
.00
.00
.01
.05
.00

.00
.00
.00
.01
.00
.00
.00
.01
.01
.00
.01
.00
.00
.00
.02
.00
.01
58
.29
.05
.00
.01
.02
.00

.00
.00
.00
.00
.00
.00
.00
.00
.02
.00
.01
.00
.00
.00
.01
.00
.00
.20
58
11
.00
.02
.04
.00

.00
.00
.03
.08
.00
.00
.00
.00
.01
.00
.00
.00
.00
13
.03
.00
.00
.00
.01
72
.00
.00
.02
.00

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.10
.00
.00
.00
.00
.00
.00
97
.00
.00
.00

.00
.00
.02
.00
.05
.00
.00
.00
.01
.00
.04
.05
.00
.00
.00
.00
.00
.00
.00
.00
.00
76
.02
.01

.00
.00
21
.00
.00
.00
.00
.00
.04
.00
.00
.00
.00
.00
21
.00
.00
.01
.00
.01
.00
.01
49
.01

.00
A2
.09
.00
.00
.00
32
.00
.00
.00
.00
.00
.00
.00
.01
.09
.00
.00
.00
.00
.00
.00
.10
.68
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AV Phi-square consonant confusion matrix

Target Phoneme

W NY E<OXDr—n mTBS 38 —x& 50 oo

b

tf

d

f

g

h

d3

k

1

m

Response Choice

n

LY

p

T

S

[

t

0

)

\'%

w

y

zZ

3

1

.03
.04
32
.02
.05
.04
.03
15
27
.02
.04
.05
14
.16
.04
A1
24
.19
41
.05
.03
A1

.03

.03

1

.05
.04
.03
.03
.10
.05
.03
.03
.04
.03
.04
.02
.06
.19
.06
.06
.04
.05
.01
.05
.05
11

.04
.05

1

.07
.19
.04
24
.05
.04
.06
A1
.09
.04
.07
18
.09
.10
16
.50
A1
.02
18
32
.10

32
.04
.07

1

.06
13
.06
.07
18
28
.07
13
14
15
.30
.08
26
49
21
32
.07
.08
A7
.05

.02
.03
.19
.06

1

.03

13
.04
.06
.06
.10
A2
.03
.10
A1
.06
.07
A2
21
.10
.04
25
18
.08

.05
.03
.04
13
.03

1

.03
A1
.04
.06
.05
.04
22
.05
.10
.04
.19
15
.05
.06
.02
.03
.04

.02

.04
.10
24
.06
13
.03

1

.04
.06
.05
.10
.09
.03
.07
12
22
.09
14
22
12
.04
27
24

48

.03
.05
.05
.07
.04
A1

.04

1

.02
.04
.09
.04
18
.04
.09
.05
24
.10
.05
.05
.01
.04
.04

.03

15
.03
.04
18
.06
.04
.06
.02

1

26
.04
19
.04
31
.10
.03
.08
16
12
26
27
25
14

.04

27
.03
.06
28
.06
.06
.05
.04
.26

1

.08
24
.06
.19
15
.04
13
24
18
.30
.09
.09
A5
.04

.02
.04
A1
.07
.10
.05
.10
.09
.04
.08

1

35
07
.06
.08
.06
16
13
A2
.08
.02
11
12

.07

.04
.03
.09
13
12
.04

.09
.04
19
24
35
1
.04
18
.10
.05
.09
16
13
16
.09
17
15
.07

.05
.04
.04
14
.03
22
.03
18
.04
.06
.07
.04

1

.05
.10
.03
.30
14
.06
.07
.02
.03
.04

.02

14
.02
.07
15
.10
.05
.07
.04
31
.19
.06
18
.05

1

14
.04
.09
18
18
32
16
24
16
.04

16
.06
18
.30
A1
.10

A2
.09
.10
15
.08
.10
.10
14

13
21
52
38
26
.04
11
44

A1

.04
19
.09
.08
.06
.04
22
.05
.03
.04
.06
.05
.03
.04
13

.07
12
.09
.09
.01
.09
A1

29

A1
.06
.10
.26
.07
.19
.09
24
.08
13
16
.09
.30
.09
21
.07

31
17
16
.03
.08
14

.06

24
.06
.16
49
A2
A5

14
.10
16
24
13
16
14
18
52
A2
31

.39
.36
.07
14
35
.10

19
.04
.50
21
21
.05

22
.05
12
18
12
13
.06
18
38
.09
A7
39

32
.05
.20
57

.10

41
.05
A1
32
.10
.06
A2
.05
.26
.30
.08
16
.07
32
.26
.09
16
.36
32

A2
18
.26
.09

.05
.01
.02
.07
.04
.02
.04
.01
27
.09
.02
.09
.02
16
.04
01
.03
.07
.05
12

18
.08
.02

.05
18
.08
25
.03
27
.04
25
.09
A1
17
.03
24
A1
.09
.08
14
.20
18
18

24
16

A1
.05
32
17
18
.04
24
.04
14
A5
A2
15
.04
16
44
A1
14
35
57
.26
.08
24

16

A1
.10
.05
.08
.02
48
.03
.04
.04
.07
.07
.02
.04
A1
.29
.06
.10
.10
.09
.02
16
16

121




A -only % accuracy vowel confusion matrix

Target Phoneme

S

a

e

€

Response Choice

3

I

oe

(0]

u

O

A

0.68
0.06
0.05
0.06
0.03
0.03
0.06
0.02
0.04
0.04
0.03
0.04
0.03

0.08

0.01
0.62
0.03
0.01
0.02
0.04
0.02
0.01
0.01
0.06
0.03
0.01
0.09

0.10

0.02
0.01
0.46
0.03
0.21
0.02
0.01
0.05
0.06
0.02
0.07
0.00
0.02

0.01

0.06
0.03
0.05
0.66
0.05
0.02
0.02
0.03
0.03
0.02
0.05
0.01
0.02

0.05

0.01
0.06
0.09
0.06
0.20
0.03
0.02
0.09
0.09
0.03
0.13
0.01
0.04

0.03

0.01
0.01
0.01
0.02
0.03
0.52
0.01
0.06
0.02
0.03
0.05
0.01
0.11

0.06

0.01
0.03
0.01
0.01
0.02
0.01
0.56
0.03
0.06
0.03
0.03
0.04
0.03

0.03

0.04
0.05
0.15
0.07
0.13
0.04
0.05
0.50
0.07
0.07
0.19
0.04
0.07

0.05

0.01
0.04
0.03
0.01
0.04
0.04
0.02
0.03
0.47
0.04
0.04
0.02
0.09

0.03

0.02
0.02
0.04
0.01
0.04
0.09
0.01
0.05
0.03
0.49
0.09
0.01
0.14

0.10

0.01
0.01
0.02
0.02
0.07
0.03
0.02
0.02
0.02
0.03
0.15
0.01
0.06

0.04

0.02
0.01
0.01
0.07
0.02
0.17
0.04
0.03
0.03
0.02
0.79
0.03

0.06

0.01
0.01
0.03
0.01
0.04
0.07
0.02
0.02
0.03
0.06
0.06
0.01
0.22

0.04

0.01
0.03
0.02
0.01
0.03
0.04
0.01
0.04
0.03
0.06
0.07
0.01
0.05

0.32
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A -only Phi-square value vowel confusion matrix
Response Choice

Target Phoneme

S

a

e

€

3

I

oe

(0]

u

O

A

1.00
0.21
0.22
0.24
0.25
0.19
0.26
0.22
0.21
0.21
0.23
0.23
0.21

0.29

0.21
1.00
0.27
0.22
0.31
0.26
0.23
0.27
0.28
0.29
0.32
0.17
0.35

0.38

022 024 025 0.19 026 0.22

0.27
1.00
0.30
0.64
0.27
0.21
0.44
0.36
0.31
0.49
0.15
0.34

0.31

0.22
0.30
1.00
0.33
0.21
0.19
0.29
0.26
0.22
0.33
0.14
0.24

0.26

0.31
0.64
0.33
1.00
0.35
0.30
0.55
0.46
0.38
0.69
0.23
0.46

0.41

0.26 0.23 0.27

0.27
0.21
0.35
1.00
0.21
0.34
0.30
0.39
0.42
0.16
0.55

0.42

0.21
0.19
0.30
0.21
1.00
0.26
0.28
0.24
0.28
0.34
0.26

0.30

0.44
0.29
0.55
0.34
0.26
1.00
0.39
0.37
0.62
0.19
0.42

0.38

0.21
0.28
0.36
0.26
0.46
0.30
0.28
0.39
1.00
0.34
0.46
0.19
0.43

0.35

0.21
0.29
0.31
0.22
0.38
0.39
0.24
0.37
0.34
1.00
0.48
0.18
0.56

0.49

0.23
0.32
0.49
0.33
0.69
0.42
0.28
0.62
0.46
0.48
1.00
0.19
0.58

0.50

0.17
0.15
0.14
0.23
0.16
0.34
0.19
0.19
0.18
0.19
1.00
0.19

0.23

0.21
0.35
0.34
0.24
0.46
0.55
0.26
0.42
0.43
0.56
0.58
0.19
1.00

0.54

0.29
0.38
0.31
0.26
0.41
0.42
0.30
0.38
0.35
0.49
0.50
0.23
0.54

1.00
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V -only % accuracy vowel confusion matrix

Target Phoneme

S

a

e

€

Response Choice

3

I

oe

(0]

u

O

A

0.57 0.02 0.12 0.15

0.02
0.26
0.34
0.02
0.02
0.33
0.04
0.02
0.01
0.01
0.03
0.02

0.05

0.58
0.01
0.01
0.00
0.01
0.04
0.00
0.00
0.00
0.00
0.00
0.01

0.27

0.01
0.38
0.12
0.04
0.00
0.05
0.05
0.00
0.00
0.00
0.01
0.00

0.02

0.00
0.23
0.31
0.03
0.00
0.10
0.10
0.00
0.00
0.00
0.00
0.01

0.03

0.01
0.00
0.01
0.02
0.56
0.00
0.01
0.33
0.00
0.00
0.00
0.00
0.02

0.03

0.00
0.07
0.00
0.00
0.00
0.58
0.00
0.00
0.00
0.01
0.01
0.00
0.23

0.01

0.05
0.00
0.03
0.05
0.01
0.00
0.40
0.01
0.00
0.00
0.00
0.00
0.00

0.06

0.06
0.02
0.06
0.13
0.29
0.02
0.05
0.45
0.01
0.02
0.01
0.02
0.05

0.09

0.00
0.05
0.00
0.00
0.01
0.02
0.00
0.00
0.64
0.08
0.04
0.00
0.04

0.00

0.00
0.04
0.00
0.00
0.00
0.02
0.00
0.00
0.11
0.69
0.04
0.01
0.01

0.01

0.00
0.00
0.00
0.00
0.00
0.06
0.00
0.00
0.17
0.13
0.82
0.01
0.11

0.00

0.01
0.00
0.00
0.01
0.00
0.01
0.00
0.00
0.03
0.01
0.91
0.01

0.01

0.00
0.08
0.00
0.00
0.00
0.25
0.00
0.00
0.03
0.03
0.05
0.00
0.43

0.03

0.00
0.10
0.00
0.01
0.00
0.03
0.02
0.01
0.00
0.00
0.00
0.00
0.06

0.39
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V -only Phi-square value vowel confusion matrix
Response Choice

Target Phoneme

S

a

e

€

3

I

oe

(0]

u

O

A

1.00
0.09
0.62
0.70
0.17
0.05
0.55
0.23
0.05
0.05
0.04
0.09
0.08

0.20

0.09
1.00
0.07
0.09
0.08
0.24
0.12
0.07
0.15
0.14
0.12
0.06
0.28

0.47

0.62 0.70 0.17 0.05 0.55 0.23

0.07
1.00
0.69
0.19
0.05
0.43
0.26
0.05
0.04
0.03
0.07
0.08

0.19

0.09
0.69
1.00
0.24
0.06
0.52
0.34
0.05
0.04
0.04
0.07
0.10

0.23

0.08
0.19
0.24
1.00
0.06
0.16
0.72
0.05
0.06
0.04
0.06
0.12

0.20

0.24 0.12 0.07

0.05
0.06
0.06
1.00
0.06
0.05
0.14
0.14
0.17
0.04
0.62

0.12

0.43
0.52
0.16
0.06
1.00
0.21
0.06
0.05
0.04
0.08
0.09

0.26

0.26
0.34
0.72
0.05
0.21
1.00
0.04
0.04
0.03
0.06
0.11

0.21

0.05
0.15
0.05
0.05
0.05
0.14
0.06
0.04
1.00
0.33
0.29
0.05
0.20

0.08

0.05
0.14
0.04
0.04
0.06
0.14
0.05
0.04
0.33
1.00
0.25
0.07
0.18

0.07

0.04
0.12
0.03
0.04
0.04
0.17
0.04
0.03
0.29
0.25
1.00
0.05
0.24

0.07

0.06
0.07
0.07
0.06
0.04
0.08
0.06
0.05
0.07
0.05
1.00
0.06

0.07

0.08
0.28
0.08
0.10
0.12
0.62
0.09
0.11
0.20
0.18
0.24
0.06
1.00

0.20

0.20
0.47
0.19
0.23
0.20
0.12
0.26
0.21
0.08
0.07
0.07
0.07
0.20

1.00
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AV % accuracy vowel confusion matrix

Target Phoneme

S

a

e

€

Response Choice

3

I

oe

(0]

u

A

(0)

A

0.87 0.00 0.01

0.01
0.07
0.12
0.01
0.02
0.15
0.03
0.02
0.01
0.01
0.03
0.01

0.05

0.94
0.01
0.00
0.00
0.00
0.01
0.01
0.01
0.00
0.00
0.01
0.00

0.18

0.01
0.68
0.08
0.01
0.00
0.01
0.15
0.01
0.00
0.00
0.00
0.00

0.02

0.06
0.00
0.10
0.74
0.01
0.00
0.01
0.05
0.00
0.00
0.00
0.00
0.00

0.07

0.00
0.00
0.07
0.00
0.84
0.00
0.00
0.21
0.00
0.00
0.00
0.00
0.01

0.01

0.00
0.00
0.00
0.00
0.00
0.65
0.00
0.00
0.00
0.00
0.00
0.00
0.10

0.00

0.03
0.00
0.01
0.00
0.00
0.00
0.78
0.01
0.00
0.00
0.00
0.00
0.00

0.11

0.02
0.01
0.07
0.05
0.12
0.02
0.03
0.52
0.02
0.02
0.02
0.01
0.03

0.05

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.80
0.02
0.04
0.00
0.05

0.00

0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.05
0.87
0.06
0.00
0.01

0.00

0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.03
0.05
0.75
0.00
0.02

0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.93
0.00

0.00

0.00
0.00
0.00
0.00
0.00
0.25
0.00
0.00
0.05
0.01
0.10
0.00
0.73

0.02

0.00
0.01
0.00
0.00
0.00
0.03
0.01
0.01
0.01
0.00
0.01
0.00
0.03

0.46
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AV Phi-square value vowel confusion matrix

Target Phoneme

S

a

e

€

Response Choice

3

I

oe

(0]

u

A

(0)

A

1.00
0.04
0.15
0.22
0.04
0.04
0.21
0.11
0.05
0.02
0.03
0.05
0.03

1.00

0.04
1.00
0.05
0.04
0.03
0.03
0.04
0.05
0.04
0.03
0.03
0.03
0.03

0.04

0.15
0.05
1.00
0.27
0.15
0.04
0.12
0.37
0.06
0.03
0.04
0.04
0.05

0.15

0.22
0.04
0.27
1.00
0.07
0.04
0.12
0.19
0.05
0.03
0.03
0.04
0.04

0.22

0.04
0.03
0.15
0.07
1.00
0.03
0.05
0.37
0.04
0.02
0.03
0.02
0.05

0.04

0.04
0.03
0.04
0.04
0.03
1.00
0.04
0.05
0.09
0.06
0.13
0.04
0.41

0.04

0.21
0.04
0.12
0.12
0.05
0.04
1.00
0.11
0.05
0.03
0.04
0.05
0.04

0.21

0.11
0.05
0.37
0.19
0.37
0.05
0.11
1.00
0.07
0.03
0.05
0.04
0.07

0.11

0.05
0.04
0.06
0.05
0.04
0.09
0.05
0.07
1.00
0.12
0.16
0.04
0.16

0.05

0.02
0.03
0.03
0.03
0.02
0.06
0.03
0.03
0.12
1.00
0.16
0.04
0.08

0.02

0.03
0.03
0.04
0.03
0.03
0.13
0.04
0.05
0.16
0.16
1.00
0.03
0.19

0.03

0.05
0.03
0.04
0.04
0.02
0.04
0.05
0.04
0.04
0.04
0.03
1.00
0.03

0.05

0.03
0.03
0.05
0.04
0.05
0.41
0.04
0.07
0.16
0.08
0.19
0.03
1.00

0.03

0.15
0.22
0.17
0.17
0.09
0.09
0.21
0.18
0.08
0.04
0.06
0.05
0.10

0.15
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