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ABSTRACT OF THE DISSERTATION 

cis-Regulation in the Mammalian Rod Photoreceptor 

By 

Jamie C Kwasnieski 

Doctor of Philosophy in Molecular Genetics and Genomics 

Washington University in St. Louis, 2014 

Professor Barak A. Cohen, Chair 

	
  

Transcription factors regulate the expression level of target genes by binding to cis-regulatory 

elements (CREs) present in gene promoters. The goal of my thesis research is to define the sequence 

components of CREs that determine transcriptional output.  In order to accomplish this goal, I developed 

a method to measure the regulatory activity of thousands of CREs in a single experiment. In this method I 

insert unique barcodes in the 3’UTR of a reporter gene and multiplex expression measurements with 

RNA sequencing.  Using this technique in explanted retinas, I determined the impact of single nucleotide 

variants in a mammalian promoter by measuring expression controlled by all single nucleotide variants of 

the Rhodopsin proximal promoter.  I found that nearly all (86%) sequence variants drive significantly 

different activity than the wild-type promoter and that the mechanism of most variants can be interpreted 

as altered transcription factor binding.  In addition, we found that the largest changes in expression 

resulted from variants located in characterized transcription factor binding site sequences.  Next, I 

explored how combinations of binding sites drive particular levels of gene expression by utilizing a 

synthetic biology approach.  I generated synthetic CREs composed of various combinations of binding 

sites found in the Rhodopsin promoter and measured the expression driven by these sequences. In this 

study I found that synthetic CREs containing binding sites for transcriptional activators yielded diverse 

expression outputs, including both activation and repression of a minimal promoter. Together, these 

experiments demonstrate that interactions between binding sites and dual regulation of a single binding 

site can produce diverse gene expression patterns. I conclude that simple cis-regulatory elements can 

produce complex expression outputs due to interactions between transcriptional activators and detailed 

quantitative models will be necessary to predict expression from these sequences. 	
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CHAPTER 1: INTRODUCTION 

 

Gene Regulation Underlies Development and Cellular Response to Environment 

Changes in gene expression control the process of cell differentiation. The development of an 

organism begins when an egg is fertilized to become a zygote. These cells grow, divide, and differentiate 

from a population of identical cells to an adult organism composed of tissue and organ systems with 

distinct cell identities. Directions describing the appropriate expression levels and patterns for each gene 

are encoded in the four base pair code of the organism’s genome and cells with distinct identities interpret 

these instructions differently.  

Changes in gene expression also allow cells to respond to environmental stimuli, as 

demonstrated in the work by Francois Jacob and Jacques Monod. Jacob and Monod showed that at any 

time, not all of an organism’s genes are expressed, and the regulation of gene levels is critical for a cell’s 

ability to adapt to a changing environment (Jacob and Monod 1961). In Escherichia coli, cells altered 

expression of genes when there was a change in sugar supply or bacteriophage infection and this cellular 

response could be de-coupled from the regulation of the response. This decoupling is due to the actions 

of a class of genes that regulate the expression of other genes. Since this discovery, the field of 

transcriptional regulation has studied how regulatory proteins manage expression levels.  

The expression level of a given gene can be controlled at many steps in the process: transcription 

initiation, RNA Polymerase II (RNA Pol II) elongation, mRNA transcript stability, translation efficiency, 

protein modification, and protein degradation. Of these steps, the regulation of transcription is most 

capable of generating diverse expression levels. Transcriptional regulation is critical for key biological 

processes. Understanding how this regulation is coordinated is an important step toward understanding 

cellular behavior, particularly during development and in response to environment. 

 

Regulation of Transcription 

Transcription factors (TFs) are proteins that regulate gene expression by binding to short specific 

DNA sequences called transcription factor binding sites (TFBS). Combinations of TFBS make up DNA 

sequences that modulate transcriptional regulation, like proximal promoter sequences or distal enhancer 
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elements. In particular, cis-regulatory elements (CREs) are sequences composed of TFBS that are 

located cis to gene bodies and control expression of the nearby gene. Transcriptional activators are TFs 

that promote recruitment of the RNA Pol II complex, whereas transcriptional repressors inhibit 

recruitment. TFs bind TFBS located within CREs, TFs recruit RNA Pol II machinery and set in motion a 

series of steps that begin transcription (Ptashne and Gann 1997; Ptashne 2005). The assembly of the 

RNA Pol II complex and subsequent transcription is well-described (Lee and Young 2000), but there are 

many outstanding questions about how and when transcription factors can recruit the RNA Pol II 

complex. Sequence features such as the number or affinity of a TFBS, can impact the control of gene 

expression (Yuh et al. 2001; Arnosti 2003; Rastegar et al. 2008) but it is not clear which patterns are 

important for gene activation. The major goal of this study is to understand the characteristics and 

sequence features that allow a CRE to control gene expression  

 

Properties of cis-Regulation 

There are several well-understood examples of cis-regulatory elements that illustrate how 

eukaryotic sequences are able to generate condition-specific gene expression levels. These examples 

often utilize combinatorial regulation by multiple TFs, cooperative TF binding, and competition between 

TFs to achieve condition or cell specific expression patterns. Three such examples are described.  

Combinations of TFs are important to integrate cellular signals. As an example, we can examine 

the regulation of the Saccharomyces cerevisae galactokinase gene GAL1 (Ptashne and Gann 2002), 

which is necessary for the metabolism of galactose. Yeast prefers glucose to galactose, so Gal1 is only 

expressed when galactose is the sole sugar in the media. Transcriptional activator Gal4 is constitutively 

bound to the upstream activating sequence (UAS) of the GAL1 gene. In the presence of glucose, the 

transcriptional repressor Gal80 inhibits RNA Pol II and represses the GAL1 gene. Upon sensing 

galactose, Gal80 repression is relieved and Gal4 is able to activate transcription of GAL1. If both glucose 

and galactose are present, the transcriptional repressor Mig1 represses transcription of GAL1. Thus, the 

GAL1 gene is expressed only in the presence of galactose through the activity of condition-specific 

transcriptional repressors. This example demonstrates that several TFs are necessary to integrate 

different signals, a common feature of eukaryotic regulatory elements (Remenyi et al. 2004).  
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Cooperative TF binding is often utilized to achieve switch-like behavior for a gene that needs to 

be quickly activated (Carey 1998; Vashee et al. 1998). The human Interferon-beta (IFN-beta) gene is 

usually silenced but is activated in the presence of viral infection. Regulation of this gene utilizes TF 

cooperativity to achieve this dynamic behavior (Merika and Thanos 2001). The inputs of three signaling 

pathways activate TFs that bind to three distinct enhancer sequences. Upon TF binding, the three 

enhancers loop to the promoter of the IFN-beta gene to activate transcription. All three enhancers are 

necessary for activation of the gene and TF binding within these enhancers is highly cooperative (Carey 

1998), allowing for robust activation of the gene.  

Competitive TF binding results when TFs with overlapping specificity are expressed in the same 

cell at the same time. In the case of regulation of the battery of genes necessary to maintain pluripotency, 

paralogous TFs POU5F1 and POU2F1 are co-expressed in the same cells and bind the same DNA 

sequences (Phillips and Luisi 2000). Genome-wide studies have found that POU5F1 achieves specificity 

by binding near TFBS for the co-regulator NANOG, whereas POU2F1 achieves specificity by binding 

nearby SOX2 TFBS (Ferraris et al. 2011). Competitive binding of paralogous TFs is a side effect of the 

co-expression of TFs with overlapping specificities and binding site specificity is achieved by 

combinatorial binding with co-regulators. 

Taken together, we learn that eukaryotic transcriptional regulation involves the integration of 

multiple TF binding events, cooperative TF binding, and competitive TF binding in order to generate 

expression patterns that have spatial and temporal specificity.  

 

Developing Quantitative Models of Gene Expression 

As these examples demonstrate, there is a general understanding of how transcription is 

regulated but the field lacks a quantitative model to describe how regulatory sequence controls gene 

expression level. It would be useful to predict the level of gene expression controlled by a particular 

sequence for two main reasons. First, this model would predict how gene expression levels are altered by 

sequence mutations, aiding in the interpretation of human genetic variation. Most of the variation in the 

human genome is located in non-coding regions of the genome (Abecasis et al. 2010). In fact, a large 

fraction of GWAS hits are found in non-coding sequence, suggesting that these polymorphisms have 
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phenotypic consequences (Kasowski et al. 2010; Maurano et al. 2012). In addition, we have little intuition 

for how these variants might impact gene expression of the individual. Second, this model would predict 

the expression controlled by novel regulatory sequences, allowing for engineering of synthetic cis-

regulatory sequences that drive a gene product at desired levels and patterns. The ability to engineer 

targeted gene expression levels would be useful in a variety of applications, including the development of 

gene therapies, the modification of agricultural crops, and the production of biofuels.  

In order to formulate such predictive models, a more detailed understanding of cis-regulatory 

sequences must be established. To start, it would be useful to understand how common sequence 

properties impact gene expression. Properties including binding site affinity (Tanay 2006), binding site 

combinations (Zinzen et al. 2009; Slattery et al. 2011; Rembold et al. 2014), and DNA shape (Parker et 

al. 2009) can effect gene expression control, in addition to genomic features like nucleosome occupancy 

(Polach and Widom 1996; Lam et al. 2008; Kaplan et al. 2009). Developing a quantitative model for a 

particular sequence would require manipulating the sequence a large number of times, cataloging the 

resulting expression, and developing a framework that fits this behavior.  

There exist several commonly used quantitative frameworks to predict expression from DNA 

sequence. Methods utilizing thermodynamic principles (Shea and Ackers 1985; Buchler et al. 2003; Segal 

et al. 2008; Gertz et al. 2009; Raveh-Sadka et al. 2009; Wasson and Hartemink 2009) generate 

parameter sets that represent biophysical interactions. Other approaches use linear regression 

(Bussemaker et al. 2001), dynamical equations (Goutsias and Kim 2004), Bayesian networks (Beer and 

Tavazoie 2004), stochastic models (Paulsson 2005) and hybrid methods (Setty et al. 2003). The choice of 

a particular model framework is made based on the available type of gene expression data. 

Regardless of the specified model framework, there generally does not exist enough to fit these 

models. The Encyclopedia of DNA Elements Consortium (ENCODE) was established to catalog all active 

regulatory elements in the human genome (Birney et al. 2007; Dunham et al. 2012). As part of the 

ENCODE dataset, several labs have measured RNA-seq for many cell types, but connecting these 

expression levels to the regulatory elements that are responsible for the expression remains a difficult 

task for scientists. Thus, these efforts have gathered large datasets but they are not systematic enough to 

be useful in training many of the previously mentioned quantitative models. This study focuses on the 
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development of high throughput assay development in order to make progress toward a more detailed 

quantitative model of gene expression.  

 

High Throughput Reporter Assay Development 

At the time I began my thesis work there were a variety of high-throughput techniques that could 

be used to identify mammalian sequences with regulatory potential. These techniques include methods to 

identify open chromatin with DNase Hypersensitivity sequencing (DNase-seq) or Formaldehyde-Assisted 

Isolation of Regulatory Element sequencing (FAIRE-seq) (Giresi et al. 2007; Boyle et al. 2008), methods 

to identify genomic regions where regulating TFs are bound by chromatin immunoprecipitation 

sequencing (ChIP-seq) (Solomon et al. 1988; Harbison et al. 2004; Johnson et al. 2007; Visel et al. 

2009), RNA sequencing (RNA-seq) methods to identify transcribed portions of the genome (Mortazavi et 

al. 2008; Nagalakshmi et al. 2008; Kim et al. 2010), and chromatin capture methods to identify distal 

sequences that are looped into core promoters (Dekker et al. 2002; Dostie et al. 2006). These 

technologies are widely used in the field to identify putative enhancers. Many groups have looked for 

patterns in this compendium of enhancers, but any identified TFBS patterns are based on correlation 

between sequence and expression, rather than a result of direct manipulation. Thus, there was a gap 

between our ability to generate putative enhancers and our ability to functionally test sequences for 

activity. 

Traditionally, reporter assay techniques have been used to determine if a DNA sequence has the 

ability to control expression of a downstream gene. In this approach, a putative cis-regulatory sequence is 

cloned upstream of a minimal promoter driving expression of a visualizable reporter gene, such as Green 

Fluorescent Protein gene or Firefly Luciferase gene. This DNA construct is transfected or electroporated 

into the tissue of interest and activity is determined by how much the CRE modifies expression of the 

minimal promoter. Reporter assay analysis allows direct functional testing of cis-regulatory function. 

Reporter assays are widely used, although the need for serial construction and testing makes this 

a low throughput technique that requires large amounts of cell material. Much time and effort is required 

to develop even a modest set of reporter genes, which are necessary for a simple experiment. For 

example, if one wanted to understand how sequence mutations impact the control of gene expression, 
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one might create a series of constructs, each with a single change in the wild type sequence. Even for a 

short 10 bp sequence, examining the three possible mutations at each position would require 30 DNA 

constructs, which is time intensive when utilizing a low throughput construction approach. In addition, the 

traditional assay would require at least 30 separate cell samples for serial assay, not including those 

necessary for biological replicates.  

Despite the amount of time it takes, several groups have used this strategy to develop large 

numbers of reporter genes (Chiang et al. 2006; Ligr et al. 2006; Cox et al. 2007; Kinney et al. 2007; 

Kinkhabwala and Guet 2008; Gertz and Cohen 2009; Gertz et al. 2009; Landolin et al. 2010; Schlabach 

et al. ; Yun et al. 2012). Some groups have attempted to improve throughput by employing randomized 

libraries, but because of the random nature of the construction, these techniques do not provide a 

systematic set of constructs. In order to gain a detailed understanding of how sequence characteristics 

affect gene expression control, expression comparisons of all sequence derivatives are necessary. 

Therefore a higher throughput reporter assay technique was needed.  

 

cis-Regulation in the Mammalian Retina 

There are three main reasons why the mammalian rod photoreceptor cell is useful system for the 

development of a high throughput reporter assay. First, the mammalian retina is an accessible tissue that 

allows for nearly homogeneous cell analyses. The mouse retina is readily dissectible and it is possible to 

electroporate transgenic DNA directly into the live or explanted retinas (Matsuda and Cepko 2004; Hsiau 

et al. 2007). The retina is composed of several distinct cell types, but 70% (Carter-Dawson and LaVail 

1979; Roorda and Williams 1999) of the cells in the mammalian retina are photoreceptors and roughly 

73% of photoreceptors are rod cells. We are able to measure gene expression from rod cells specifically 

because we electroporate transgenic DNA after other common cell types have completed mitosis, but 

before rod precursor cells finish dividing (Swaroop et al. 2010). By electroporating DNA into explanted 

retinas on postnatal day 0 and harvesting RNA at postnatal day 8, we are able to accomplish this.  

Second, the transcription factors that regulate rod cell differentiation and homeostasis are well 

characterized. Rod cell gene expression is controlled by three main factors: CRX, NRL, and Nr2e3. The 

cone/rod homeobox TF, CRX, specifies photoreceptor cell fate in the retina (Freund et al. 1997; 
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Furukawa et al. 1997; Furukawa et al. 1999; Hennig et al. 2008). CRX is a transcriptional activator (Chen 

et al. 1997), that may act by recruiting chromatin remodeling enzymes (Peng and Chen 2007). The neural 

leucine zipper transcriptional activator, NRL, is both necessary and sufficient for rod cell differentiation 

(Mears et al. 2001; Oh et al. 2007). The orphan nuclear receptor transcription factor Nr2e3 is a dual 

transcriptional regulator that is important for the repression of cone genes in rod cells (Kobayashi et al. 

1999; Chen et al. 2005; Peng et al. 2005; Webber et al. 2008). 

In addition, binding specificity (Kataoka et al. 1994; Chen et al. 2005; Montana et al. 2011b) and 

genomic binding preferences (Corbo et al. 2010; Hao et al. 2012) have been characterized for these 

factors, so we have a complete understanding of in vitro and in vivo binding preferences for these TFs. 

CRX, NRL and Nr2e3 have been shown to co-regulate at rod specific genes (Rehemtulla et al. 1996; 

Cheng et al. 2004; Peng et al. 2005), signifying that they are important for transcriptional control in the rod 

cell. In addition, other experiments have been done to characterize rod cell gene expression at the 

transcriptome level (Livesey et al. 2000; Blackshaw et al. 2001; Akimoto et al. 2006; Hsiau et al. 2007). 

These studies are useful because they provide a comprehensive view of expressed genes and other 

potential regulators. 

Third, we know that gene regulation in the mammalian retina has implications for human health. 

The Rhodopsin (Rho) gene is the most highly expressed gene in the mammalian retina; it allows rod 

photoreceptors to coordinate black/white and dim light vision. Rho dysregulation can result in retinal 

degeneration and subsequent vision loss (Humphries et al. 1997). In addition, mutations in known 

regulators CRX (Freund et al. 1997; Freund et al. 1998; Sohocki et al. 1998; Rivolta et al. 2001), 

NRL(Bessant et al. 1999), and Nr2e3 (Haider et al. 2006) have been associated with retinal diseases 

such as autosomal dominant Retinitis Pigmentosa, Leber’s congenital amaurosis, and enhanced S-cone 

syndrome. Thus, study of the rod photoreceptor cell has clinical importance. 

Taken together, the mammalian retina allows for the study of cis-regulation in a well-

characterized developmental environment where the tissue is highly accessible. In addition, the findings 

of this study and the development of future quantitative models of gene expression will have important 

implications for the treatment of human diseases.  
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Scope of Thesis Work 

The central goal of my thesis is to develop a high-throughput multiplexed reporter assay that can 

be used to understand the rules governing cis-regulation in the mammalian retina. To address reporter 

assay problems related to low throughput construction and serial analysis, I set out to develop a 

technique where I could clone and measure thousands of reporter genes in a single experiment. Given 

the increasing accessibility of next-generation sequencing, I chose to read out the expression of the 

reporter gene constructs with RNA sequencing. Because every construct contains identical reporter gene 

sequences, I cloned a short barcode sequence into the 3’UTR of the reporter gene so I could differentiate 

between reporter genes by sequencing the barcoded transcript. I cloned a unique CRE upstream of the 

barcoded reporter gene to generate a library of constructs, so that each CRE controls the level of a 

particular barcoded reporter gene. I developed this technique in collaboration with Dr. Joseph Corbo’s lab 

(Washington University in St. Louis School of Medicine) for use in explanted mammalian retinal cells, but 

this technique can be generalized to study the function of any regulatory elements in most cell types or 

tissues of interest. 

In Chapter 2, I describe CRE-seq, the method we have developed for multiplexed reporter 

analysis and I use the technique to understand how every nucleotide in central portion of the Rhodopsin 

promoter contributes to the control of gene expression. In total, we measured the impact of 156 single 

nucleotide substitutions and found that the majority of these substitutions (86%) had a significant effect on 

the control of gene expression. We observed that the largest changes in expression were caused by 

those mutations located in annotated TFBS. In addition, we were able to test a subset of double 

combinations of variants (819 of 11,934). Comparison of expression driven by CREs with one and two 

variants allowed us to conclude that most (82%) combinations of variants generate complex expression 

patterns that are non-additive. These data suggest that sequence variants alter expression through 

binding site creation and nucleotide changes have the most effect in TFBS, as a result of cooperative and 

competitive interactions between regulating TFs. Taken together, we find that most substitutions have a 

significant impact on the control of expression and combinations of substitutions often control expression 

that is not predicted from single substitution expression levels.  
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In Chapter 3, I discuss my ongoing work to understand how combinations of TFBS control gene 

expression. To answer this question we constructed synthetic CREs from combinations of CRX and NRL 

TFBS and measured expression controlled by 1300 of these synthetic elements. This set includes all 

CREs composed of one, two, or three TFBS and a subset of the possible CREs composed of four TFBS. 

We find that synthetic elements composed of binding sites for both TFs drive the highest expression 

levels in this library, suggesting that CRX and NRL TFs may interact cooperatively. Surprisingly, we find 

that combinations of CRX binding sites control low levels of expression and can even repress expression 

below the promoter alone. From expression measurements made in CRX null retinas, we conclude that 

this repression is caused by CRX itself, rather than another TF that can recognize the CRX binding site. 

We also find that repression by CRX is dependent on the absence of NRL binding sites. Taken together, 

we observe complex patterns of gene expression driven by simple synthetic CREs and we hypothesize 

that TF cooperativity and dual regulation underlie these patterns. 

In addition to the main focus of my thesis, Appendices 1 and 2 describe collaborative work to 

develop and apply this technique in new biological systems. In Appendix 1, I describe our work to develop 

CRE-seq in S. cerevisiae in order to interrogate the impact of TFBS affinity on transcriptional regulation. 

To accomplish this, we constructed synthetic promoters composed of TFBS with various affinities, used 

CRE-seq to measure the expression driven by these synthetic elements in the yeast genome, and 

modeled the resulting expression with a statistical thermodynamic model of gene expression. We found 

that a thermodynamic framework can accurately estimate the in vivo affinity of TFBS and that TFBS 

affinity can have unpredicted effects on control of gene expression due to altered affinity for cognate and 

non-cognate TF binding.  

In Appendix 2, I describe my work to use CRE-seq to test ENCODE Consortium enhancer 

predictions (Dunham et al. 2012; Hoffman et al. 2013). As part of the ENCODE project the human 

genome was annotated with functional classes, including Enhancer, Weak Enhancer and Repressed 

predicted activities. We chose a subset of these predictions and tested for the ability of these sequences 

to drive gene expression in the K562 cell line. We found that ENCODE Enhancer and Weak Enhancer 

predictions drive expression that is different from negative controls, whereas Repressed and H1-hESC 

Enhancer sequences controlled expression that was indistinguishable from controls. Based on linear 
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regression models we found that the presence of TFBS motifs, rather than levels of histone modifications, 

were most predictive of active sequences. We concluded that ENCODE enhancer predictions identify 

active enhancers, but the TF binding preferences are most predictive of cis-regulatory activity. 

This body of work makes several contributions to the field of transcriptional regulation. First, the 

development of CRE-seq allows for high throughput reporter gene analysis. This technique makes the 

study of cis-regulatory sequences considerably faster and easier than previous methods. Second, this 

study provides the first detailed examination of how sequence variants impact the activity of a mammalian 

promoter. In particular, the Rho promoter is relevant to human health and this study serves as a first step 

toward the interpretation of variation in this sequence.  Finally, this study adds to our knowledge of how 

TFBS regulate expression, particularly in the mammalian rod photoreceptor cell.  
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ABSTRACT 

Cis-regulatory elements (CREs) control gene expression by recruiting transcription factors and 

other DNA binding proteins. We aim to understand how individual nucleotides contribute to the function of 

CREs. Here we introduce CRE-seq, a high-throughput method for producing and testing large numbers of 

reporter genes in mammalian cells. We used CRE-seq to assay over 1000 single and double nucleotide 

mutations in a 52-bp CRE in the Rhodopsin promoter that drives strong and specific expression in 

mammalian photoreceptors. We find that this particular CRE is remarkably complex. The majority (86%) 

of single nucleotide substitutions in this sequence exert significant effects on regulatory activity. While 

changes in the affinity of known transcription factor binding sites (TFBS) explain some of these 

expression changes, we present evidence for complex phenomena including binding site turnover and TF 

competition. Analysis of double mutants revealed complex, nucleotide-specific interactions between 

residues in different TFBS. We conclude that some mammalian CREs are finely tuned by evolution, and 

function through complex, non-additive interactions between bound TFs. CRE-seq will be an important 

tool to uncover the rules that govern these interactions. 
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INTRODUCTION 

Mutations in cis-regulatory elements (CREs) often have unexpected effects on gene regulation. 

We lack models with the predictive power to accurately interpret the functional consequences of non-

coding polymorphisms. More generally, we do not understand the nucleotide-level architecture that 

distinguishes true CREs from non-functional groupings of transcription factor binding sites. While 

consortium-driven efforts continue to predict that large numbers of mammalian sequences are CREs 

(Birney et al. 2007; Bernstein et al. 2010), we lack a corresponding high-throughput method for 

functionally analyzing the consequences of variants in these elements. Addressing these problems 

requires fine structure mutational analysis of mammalian CREs on a large scale, experiments which are 

difficult to perform using traditional assays. To facilitate such experiments we developed CRE-seq (cis-

regulatory element analysis by sequencing) a high-throughput reporter gene assay for mammalian cells. 

CRE-seq leverages recent advances in oligonucleotide (oligo) synthesis (LeProust et al. 2010) 

and high-throughput sequencing (Mardis 2008). Using array based oligo synthesis we construct large 

numbers of reporter genes with unique sequence barcodes in their 3’ UTRs. These libraries of barcoded 

reporter genes are then transfected, en masse, into mammalian cells and quantified by performing RNA-

seq (Mortazavi et al. 2008) on the sequence barcodes. Here we present a study using CRE-seq to 

dissect a cis-regulatory element in mouse Rhodopsin (Rho), a gene that is expressed strongly and 

specifically in the mammalian retina. 

Tight control of Rho expression is critical for the function of mammalian retinas (Olsson et al. 

1992; Humphries et al. 1997). Rho expression is regulated in mice by multiple CREs located at varying 

distances from the transcription start site (Hsiau et al. 2007; Corbo et al. 2010). These elements are 

occupied in vivo by CRX, a retinal homeodomain TF (Corbo et al. 2010). One of these CREs, RhoCRE3, 

is located immediately upstream of the TSS and is sufficient to drive high levels of expression in rod 

photoreceptors (Lem et al. 1991; Zack et al. 1991). This element contains binding sites for CRX, and for 

NRL, a retina-specific basic-leucine-zipper protein (Chen and Zack 1996; Rehemtulla et al. 1996). How 

individual nucleotides within RhoCRE3 contribute to its function is not clear. To elucidate the functional 

architecture of RhoCRE3 we used CRE-seq to analyze the effects of more than 1000 variants of this 

element.   
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RESULTS 

We developed CRE-seq, a method that parallelizes the construction and measurement of 

mammalian reporter genes. Using high-throughput oligo synthesis (LeProust et al. 2010) we created 

1,040 variants of RhoCRE3, including all possible single nucleotide substitutions (156 mutations), and a 

large number of double substitutions (819 mutations). We also synthesized the wild type RhoCRE3 

sequence 65 times to include as controls. Each mutant RhoCRE3 was synthesized adjacent to a unique 9 

bp sequence barcode. To provide redundancy in the experiment, each single mutant was attached to ten 

different unique barcodes and each double mutant was attached to five unique barcodes. We then cloned 

the native Rho minimal promoter driving the fluorescent protein DsRed between the RhoCRE3 variants 

and their identifying barcodes. In the final plasmid library RhoCRE3 variants were located in a position 

immediately upstream of the TSS, surrounded by the same context sequence as in the endogenous Rho 

gene. The library contains 5,720 distinct reporter genes, each with a unique sequence barcode in the 3’ 

UTR of the DsRed gene (Fig. 2.1A). We electroporated this library into explanted newborn mouse retinas 

(Hsiau et al. 2007). Using DsRed to monitor the progression of the experiment we confirmed that library 

expression was specific to rod photoreceptors (Fig. 2.1B), the cell type in which Rho is expressed. 

We measured the expression of all library members using high throughput sequencing. After 

growing the electroporated retinal explants in culture we extracted both RNA and DNA, and sequenced 

the barcodes from both samples. The expression level of each barcoded reporter gene was calculated as 

the cDNA barcode sequence counts normalized to the DNA barcode counts (Table 2.S1). To test the 

reliability of CRE-seq, we compared the expression of twelve RhoCRE3 variants measured by both CRE-

seq and by a standard fluorescence reporter assay (Lee et al. 2010). We observed strong correlation 

between both measurements (R2=0.95, Fig. 2.1C), providing evidence that CRE-seq accurately quantifies 

gene expression in this system.  

In a previously reported in vitro multiplex reporter gene assay (Patwardhan et al. 2009), sequence 

barcodes were placed adjacent to the transcription start site and had large effects on reporter gene 

expression. To ameliorate this problem we placed our barcodes in the 3’ UTR of DsRed, far from the start 

site of transcription. To demonstrate that the barcodes do not interfere with our assay, we performed an 

experiment in which we fused more than 100,000 different barcodes to a single promoter, the wild-type 
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RhoCRE3, and measured the expression of this control library in electroporated retinas. If barcodes 

exerted a consistent effect on expression, we would expect to observe a correlation between replicates of 

this control library as barcodes with an activating effect would reproducibly increase expression while 

barcodes with a repressive effect would reproducibly decrease expression. No such correlation was found 

(R2=0.04, Fig. 2.S1A), which suggests that the variation between members of the control library resulted 

from experimental noise rather than the barcode sequences. In contrast, the correlation between 

replicates of our library of RhoCRE3 mutants was high (R2=0.95, Fig. 2.S1B, Table 2.S2). Taken together 

our results suggest that the 3’ UTR barcodes have little effect in our assay, and that there are strong and 

reproducible differences between RhoCRE3 variants in our library. 

 

Analysis of Single Mutants 

We first analyzed expression data from single nucleotide substitutions in RhoCRE3. We found 

that 86% of single nucleotide substitutions significantly alter expression (Welch’s t-test, p<0.05), with 

many substitutions causing large changes (>30-fold) in expression (Fig. 2.2A). For 98% (51/52) of the 

positions in RhoCRE3 at least one of the three possible substitutions had a significant effect on reporter 

gene expression. At 20% of positions different substitutions showed opposite effects on expression 

depending on the identity (A, G, C, or T) of the substituted base. Our results suggest that RhoCRE3 is an 

element whose function is finely tuned and that the majority of single nucleotide substitutions alter this 

function.  

This finding differs dramatically from those of Melnikov et al. (Melnikov et al. 2012) and 

Patwardhan et al. (Patwardhan et al. 2012), two recent studies which use methods similar to CRE-seq to 

analyze mammalian enhancers. In these studies very few single nucleotide substitutions resulted in 

significant changes in expression. All single nucleotide changes in Melnikov et al. and Patwardhan et al. 

showed changes less than 3.5-fold, with the vast majority of effects less than 1.5-fold. In contrast, 49% of 

the single nucleotide substitutions we measured had effects between 3.5-fold and 30-fold. This sharp 

difference in results may reflect functional differences between the CREs in each study, or may be due to 

differences in the technologies employed by the different groups.  
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Single mutants with significant effects delineate five distinct regions across RhoCRE3 (Fig. 2.2A). 

Regions A and E contain known CRX sites and region D contains a known NRL site (Chen and Zack 

1996; Rehemtulla et al. 1996). Regions B and C do not correspond to previously identified regulatory 

sequences in RhoCRE3. Regions of RhoCRE3 that show evolutionary conservation in mammalian 

lineages coincide with regions that have strong effects on expression (Fig. 2.2B). However, the modest 

correlation between effect size and conservation (R2=0.31) shows that the degree of conservation does 

not quantitatively predict the effect size of individual mutations, though it does delineate functional 

regions. 

 

Binding Site Mutations 

We examined the behavior of mutations in regions A and E, the known CRX binding sites, as well 

as region D, the region that contains the known NRL binding site. We generated activity logos (Shin et al. 

2000) for these regions using the single nucleotide substitution data (Figs. 2.S2A-C). Using the average 

log-likelihood ratio (ALLR) test (Wang and Stormo 2003) we found that the activity logos for regions A and 

D are similar (p<0.05) to Position Weight Matrices (PWMs) generated for these TFs in previous studies 

(Kataoka et al. 1994; Lee et al. 2010). Although there is a validated CRX site in region E, the activity logo 

made from region E does not show statistically significant similarity to the CRX PWM (p=0.22), but does 

show qualitative similarity. This finding suggests that the effect of mutations on expression do not depend 

solely on their effects on TF binding affinity, an issue we next addressed in more detail. 

 We examined the quantitative relationship between the predicted affinity of sequences for CRX 

or NRL and gene expression levels. Using a Position Weight Matrix (PWM) model of CRX specificity 

derived from quantitative in vitro gel shift assays (Lee et al. 2010) we computed the predicted change in 

affinity for each mutation in regions A and E for CRX. We then compared the predicted effect of each 

mutation on CRX affinity to its observed effect on expression (Fig. 2.2C). We performed a similar analysis 

for region D using a PWM that describes NRL binding specificity (Kataoka et al. 1994). For all three sites 

the wild-type sequence was predicted to have high relative affinity and drove high expression. However, 

while mutations that decrease predicted affinity tended to have lower expression, overall the correlation 

between predicted affinity and observed expression was modest (R2 = 0.22 CRX(1); R2 = 0.10 CRX(2); R2 
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= 0.41 NRL). In all three regions several mutations that create sequences with predicted affinity as high 

as the wild-type sequence exhibit markedly decreased expression. Our data suggest that variables 

besides the affinities of CRX and NRL also help determine the in vivo activity of RhoCRE3 variants. 

Mutations in the binding sites for CRX and NRL may have effects on the binding of other TFs. 

Regions A, D and E of RhoCRE3 contain binding sites for known transcriptional activators (CRX, 

NRL), and accordingly these regions contain dense clusters of single nucleotide substitutions that 

decrease expression (Fig. 2.2A). Because region C shows a similar pattern of variants with decreased 

expression, we hypothesize that it also represents a TFBS. Using the single mutant expression data we 

created an activity logo of this sequence (Fig. 2.S2D). The activity logo generated for region C does not 

match any of the sequence logos in the Transfac database (Wingender et al. 1996), which suggests that 

if these mutants effect the binding of a TF, it is a TF whose binding specificity has yet to be determined. 

However, the activity logo for the region overlapping with region B does show similarity to the CRX PWM 

(p<0.05, ALLR test), which suggests that many mutations in region B exert their effects by creating a CRX 

site (Fig. 2.S2E).  

Region B is qualitatively different from the other regions of RhoCRE3 in that substitutions in 

region B often increase, rather than decrease expression. This finding suggests that mutations in region B 

either disrupt a binding site for a repressor or create new binding sites for activators. Because the density 

of mutations with large effects in this region is less than the density in regions with known TFBS, we favor 

the hypothesis that these mutations create binding sites for an activator. An obvious candidate for this 

activator is CRX. 

To identify mutations that create CRX binding sites, we searched the entire library of single 

nucleotide mutants for matches to the CRX PWM. Mutations that create sequences with low predicted 

affinity to CRX are marked with an asterisk in Figure 2.2A. Surprisingly, mutations that create putative 

CRX sites, as defined by a PWM score threshold, are not distributed randomly throughout RhoCRE3; 

rather, these mutations cluster in regions B and D. This finding suggests that both regions B and D 

contain sequences that are very close to CRX binding sites. We analyzed these sequences in more 

detail. 
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Region B corresponds to a region of high evolutionary conservation in vertebrates. We scanned 

the orthologous regions from multiple vertebrate species with our CRX PWM and found that in most other 

mammals region B contains a sequence with a low affinity match to CRX PWM (Fig. 2.S3). The presence 

of this putative low affinity CRX site in most mammals accounts for the strong evolutionary conservation 

of region B. However, neither the rat nor the mouse genome has a potential CRX site in region B as 

defined by the same PWM score threshold. Using a neutral rate of 0.233 substitutions/site (Chun and Fay 

2009) the three observed differences between mouse and rat in region B are not significantly different 

from the 2.33 that are expected under neutrality. This finding suggests that these two species are 

accumulating substitutions in region B at a rate consistent with neutral evolution, and that there has been 

recent turnover of CRX sites in region B in the rodent lineage. Taken together these results suggest that 

mutations in region B that create CRX sites increase expression by re-creating sequences that resemble 

the ancestral form of RhoCRE3. 

In contrast to region B, all mutations that create sequences matching CRX sites in region D 

decrease expression. In region D these new hypothetical CRX sites disrupt the known NRL site. These 

overlapping CRX and NRL binding sites create complex expression patterns that suggest competition 

between the two factors. For example, mutations at position 36 suggest competition between NRL and 

CRX binding. All three substitutions at position 36 increase the predicted affinity of NRL, but only the two 

substitutions that also decrease the predicted affinity of CRX increase expression (Fig. 2.3). Only some 

mutations in region D support the competition model suggesting that other factors play a role in regulation 

of region D (Fig. 2.S4). Further experiments are needed to determine whether CRX and NRL actually 

compete for binding to the sequence in region D.  

 Other position specific effects on expression cannot be explained by CRX and NRL site affinity. 

For example, mutations at position 42 have a dramatic effect on expression but a relatively minor effect 

on predicted NRL or CRX affinity. Mutations at position 42 may create a new TFBS (Fig. 2.S2F) or alter 

the DNA helix structure (Fig. 2.S5) (Parker et al. 2009; Bishop et al.).  
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Analysis of Double Mutant CRE Variants 

Our library also contained all possible double mutations between the NRL site in region D and the 

CRX site in region E. On average, the double mutant RhoCRE3 variants have lower expression than the 

single mutants (p<0.05, Wilcoxon). In addition, many (58%) double mutants have effect sizes that are 

larger than either of their component single mutations. We used linear modeling (Methods) to identify 

significant non-additive interactions between mutations, and if present, to determine the strength and 

direction of such interactions. Using ANOVA we found that 82% of double mutants have a significant 

interaction between positions that cannot be explained by an additive model of single mutant expression 

values (p<0.01, F-test). Our results contrast with those of Melnikov et al. (18) and Patwardhan et al. (19), 

who found very few interactions between mutations in enhancers. Our data show that some positions 

have interactions with many other positions, while other positions do not participate in any interactions 

(Fig. 2.4A). For some positions a particular substitution can have an interaction that is either more or less 

than additive, depending on the position of the second mutation (Fig. 2.4B).  

In addition we observed that interactions between pairs of mutations are usually nucleotide-

specific, rather than position specific. Most models are improved with the addition of some, but not all of 

the nine possible interaction terms (p<0.01, F-test). Mutations at two particular residues can combine to 

be either more or less than additive, depending on the specific identities of the substituted nucleotides 

(Fig. 2.4C). Combinations of mutations give rise to expression levels that cannot easily be predicted given 

the expression levels of single mutants. Physical interactions between NRL and CRX (Mitton et al. 2000) 

likely underlie some of the complexity we observe, but more detailed physical models will be required to 

unravel the molecular basis of these non-linear genetic interactions. 

 

DISCUSSION 

Using CRE-seq we found that single nucleotide substitutions in RhoCRE3 often result in large 

increases or decreases in expression, suggesting that this element may be highly constrained as to which 

mutations it tolerates through evolution, a hypothesis supported by the strong evolutionary conservation 

of this region. Changes in the predicted affinity of TFBS to known TFs partially explain the effects of these 

mutations, but cannot explain the full in vivo activity of substitutions. More complex phenomena such as 
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recent binding site turnover as well as competition between CRX and NRL may help explain the effects of 

some substitutions. The fact that the majority of double mutants have expression levels consistent with a 

non-additive model between positions suggests that interactions between CRX and NRL underlie some of 

the complex behaviors of RhoCRE3 mutants. Consistent with the many other studies, our results suggest 

that the interpretation of non-coding polymorphisms will require consideration of both low affinity sites and 

the creation of novel sites. Overall our results paint a picture of CREs as complex regulatory elements 

whose function can easily be altered by subtle changes to their nucleotide sequences.  

In contrast, Melnikov et al. (18) and Patwardhan et al. (19) conclude that cis-regulatory elements 

are largely redundant at the nucleotide level, such that few mutations create large changes in expression. 

Our results showing large effects of single nucleotide substitutions agree with many detailed studies of 

single reporter genes, for example (Weiher et al. 1983; Myers et al. 1986; Goodbourn and Maniatis 1988; 

Singh et al. 1989; Smith et al. 1990; Shimell et al. 1994; Gurnett et al. 2007; Lettice et al. 2012; Yun et al. 

2012). We also show evidence for extensive non-linear interactions between CRE mutations, while both 

Melnikov et al. (18) and Patwardhan et al. (19) conclude that mutations in enhancers act independently of 

each other. What might account for these dramatic differences in conclusions? 

Some differences between these studies and our study are likely due to the CREs each group 

chose to examine. We chose to study an extensively validated CRE (Hsiau et al. 2007; Corbo et al. 2010) 

that drives the expression of Rhodopsin, the most highly expressed gene in the mammalian retina. This 

element shows strong evolutionary conservation throughout the vertebrate lineage and lies proximal to 

the start site of transcription. These features may make RhoCRE3 activity in CRE-seq susceptible to 

substitutions in ways that other cis-regulatory elements are not.  

Technical differences between protocols probably contribute to some of the differences between 

these studies. Template switching during the PCR cycles used for library preparation can result in high 

rates of chimerism (Stemmer 1994), which can disrupt the unique correspondence between CRE variants 

and barcodes. Chimerism decreases both the accuracy and the dynamic range of the assay. In Melnikov 

et al. (18) and Patwardhan et al. (19) limited dynamic range due to the extensive use of PCR may have 

made it appear that enhancers are robust to mutation. In contrast, our method makes limited use of PCR 

amplification (Methods) to avoid the creation of chimeras. Finally, we chose to focus on only 1,040 
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mutations in a single experiment, which allowed us to obtain very high sequence coverage of our library. 

Both Melnikov et al. (18) and Patwardhan et al. (19) assayed much larger numbers of mutant promoters, 

making low sequence coverage and the resulting loss of statistical power a significant issue in these 

studies. In Patwardhan et al. (19) low sequence coverage of their library necessitated the use of an 

indirect measure of barcode counts as the metric of expression. 

 We have demonstrated that CRE-seq is a robust technology for assaying large numbers of CRE 

mutations. CRE-seq has a large dynamic range, nucleotide level resolution, and excellent reproducibility. 

Our analyses revealed a surprising amount of previously unknown complexity in RhoCRE3, an element 

that has been extensively studied. Our results demonstrate that nucleotides within CREs interact in 

complex, and often non-intuitive ways to produce regulated patterns of gene expression. We anticipate 

that CRE-seq will be an important tool for unraveling the rules that govern the function of CREs.  
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MATERIALS AND METHODS 

 

CRE-seq Library Construction 

To create the CRE-seq library plasmid backbone, we replaced the NotI site in plasmid 

Rho_minprox-DsRed (Hsiau et al. 2007; Corbo et al. 2010) with an EagI-XhoI-ClaI polylinker, creating 

plasmid pJK01. We then engineered sites for MfeI at position 25 and KasI at position 102 (following the 

numbering in (Hsiau et al. 2007; Corbo et al. 2010)), creating pJK02.  

The wild type RhoCRE3 sequence spans positions 115,881,830-115,881,881 on mouse 

chromosome 6 (NCBI37/mm9). This region corresponds to the sequence between positions 68 and 120. 

A pool of 5720 unique 150-mer oligonucleotides (oligos) was ordered through a limited licensing 

agreement with Agilent Technologies. Oligos were designed with the following structure: JKP1F, MfeI 

site, RhoCRE3 variant, KasI site, EcoRI site, EagI site, 9 bp barcode, ClaI site, and JKP1R (Table 2.S1). 

RhoCRE3 variants were designed between positions 68 and 120.  

We amplified the oligo pool using 4 cycles of PCR with Phusion High-Fidelity polymerase (New 

England Biolabs, Beverley, MA) and primers JKP1F and JKP1R(Table 2.S1). We cloned the amplicon 

into pJK02 using MfeI and ClaI. We prepared DNA from 48,000 colonies to generate library PL5_1. We 

then cloned the minimal Rho promoter driving DsRed into PL5_1. A cassette containing the Rho minimal 

promoter fused to DsRed was amplified from pJK02 with primers JKP2F and JKP2R (Table 2.S1). The 

PCR amplicon was cloned into library PL5_1 using KasI and EagI, creating library PL5_2. To select for 

library members with full-length RhoCRE3 variants, we linearized PL5_2 with HindIII, gel purified the 

library, and re-circularized to create library PL5_3. 

We created library (BL_1) to determine the effect of barcode sequences on reporter gene 

expression. Barcode sequence inserts, JKP5F and JKP5R (Table 2.S1), were annealed and cloned into 

pJK01 using EagI and ClaI. We prepared library DNA from 100,000 colonies. 

 

Retinal Electroporation 

Electroporations and explant cultures were performed as previously described (Hsiau et al. 2007) 

using 0.5 µg/ml of library PL5_3 as well as 0.5 µg/ml Rho minimal promoter driving GFP for visualization 
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of electroporation efficiency (Lee et al. 2010) . After 8 days in culture retinas were washed twice in sterile 

HBSS (Gibco, Life Technologies, Grand Island, NY), and total RNA and DNA were extracted using Trizol 

according to manufacturer's instructions (Ambion, Life Technologies, Grand Island, NY).  

 

Comparison Between a Fluorescence Assay and CRE-seq 

Twelve previously characterized RhoCRE3 variants (Lee et al. 2010; Montana et al. 2011b) were 

excised from their respective vectors with XbaI and KpnI and cloned into the barcode library BL_1. For 

each variant we isolated ten uniquely barcoded constructs. We mixed all 120 constructs together for 

CRE-seq analysis. 

 

Preparing Samples for RNA-Seq 

Isolated RNA was treated with DNAseI (Ambion) to eliminate potential genomic DNA 

contamination. The first strand of cDNA was synthesized with Invitrogen Superscript II reverse 

transcriptase using oligo-dT primers. After first strand synthesis, the reaction was treated with RNAse H 

(NEB) to remove RNA. The 3’ UTR of the DsRed gene including the barcode sequence, was amplified 

from both cDNA and isolated plasmid DNA samples. Amplification (98°C for 1min, 21 cycles: 98°C for 

10s, 58°C for 30s, 72°C for 30s, and 72°C for 5 min, NEB HF Phusion MM) of the cDNA and plasmid 

DNA samples isolated by PCR using primers JKP3F and JKP3R (Table 2.S1) yielded barcode sequences 

that are flanked with EagI and EcoRI restriction enzyme sites. The products were purified with Qiagen 

QIAquick PCR Purification kit and digested with EagI and EcoRI. Illumina adapter sequences were ligated 

onto these overhangs. This product was amplified (98°C for 1 min, 21 cycles: 98°C for 30s, 65°C for 30s, 

72°C for 30s, and 72°C for 5 min) with HF Phusion MM using primers JKP4F and JKP4R (Table 2.S1) to 

enrich for molecules that contain both adapter sequences. 

To measure expression of the barcoded library, electroporation replicates were multiplexed and 

run on two lanes of an Illumina HiSeq machine which generated 48.2 million sequence reads 

corresponding to cDNA and 48.8 million reads corresponding to DNA. Sequencing reads that matched 

the first 20 nucleotides of designed sequence were counted, regardless of quality score. Only barcodes 

with more than 10 reads in either cDNA or DNA pools were used for analysis.  
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Determination of Expression Levels of Rho Variants 

We determined the expression levels of each RhoCRE3 variant by computing the average 

cDNA/DNA ratio for all barcodes that marked the same RhoCRE3 variant (Table 

 2.S2). We also computed the standard error of the mean (SEM) for each average in each 

replicate. We then averaged the averages from the three replicates and propagated the standard error 

using the formula:  

!"
!!
!

=   
!" !!
!

!

 

The propagation of standard error when computing the ratio of mutant to wild-type expression levels was 

calculated as: 
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Analysis of Binding Site Mutations 

The CRX position weight matrix was derived from quantitative binding affinity data (Lee et al. 

2010) according to (Stormo and Fields 1998). Similarly, a NRL position weight matrix was derived from 

sequence data from (Kataoka et al. 1994). The two TF matrices were scored against every position of 

each CRE variant using patser (Stormo et al. 1982). 

 

Non-additive Model for Variants with Two Substitutions 

Linear regression was used to determine the extent of non-additive expression in the variants 

with two substitutions. First, the following two models were generated for each combination of positions 

and compared using an ANOVA (p<0.01).  

!!,! = !" +   !!!"!! + !!!"#! 

!!,! = !" +   !!!"#! + !!!"#! +   !!!"#!,!   

Models that were significantly improved (82%, 75/91) by the addition of the interaction term were 

further analyzed for base-specific interactions. After selecting positions with significant non-additive 
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expression, we used ANOVA (p<0.01) to test each of the nine possible base-specific interactions 

between positions.  

All experiments were conducted in accordance with the Guide for the Care and Use of Laboratory 

Animals and the Animal Welfare Act and were approved by the Washington University in St. Louis 

Institutional Care and Use Committee. 
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FIGURE 2.1 

 

Figure 2.1 (A) Schematic of the CRE-seq method. Each CRE variant in the library is fused to a reporter 
gene marked by a unique DNA barcode in the 3’ UTR of DsRed. The library is electroporated into 
newborn mouse retinas, which are cultured as explants for eight days. Barcodes are then sequenced 
from harvested mRNA and DNA. The cDNA/DNA ratio of each barcode is a quantitative measure of the 
expression levels driven by each CRE variant in the library. (B) Cell type specificity of the CRE-seq 
library. A cross section of an electroporated retina shows DsRed expression in rod photoreceptors 
residing in the outer nuclear layer (ONL). Green fluorescence driven by a ubiquitously expressing CAG-
GFP construct is observed in all layers including the inner nuclear layer (INL) and the granular cell layer 
(GCL). (C) Correlation between CRE-seq and fluorescent reporter genes. Twelve RhoCRE3 variants 
were quantified using a standard dual color fluorescent reporter gene assay (Lee et al. 2010; Montana et 
al. 2011b) and also using CRE-seq. X-axis, CRE-seq expression, log2(variant RhoCRE3/wild-type 
RhoCRE3); Y-axis, fluorescent reporter gene expression, log2(fluorescence of variant 
RhoCRE3/fluorescence of wild-type RhoCRE3). 
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FIGURE 2.2

 

Figure 2.2 (A) Effects of single nucleotide mutations on reporter expression. X-axis, nucleotide position in 
RhoCRE3; Y-axis, relative expression by CRE-seq quantified as the log2(variant RhoCRE3/wild-type 
RhoCRE3). Colored bars represent substitutions whose expression was significantly different from wild-
type (Welch’s t-test, p<0.05). Gray bars represent substitutions that are not significantly different from 
wild-type. Each position has three bars representing the three possible substitutions at that position. For 
analysis we divided RhoCRE3 into five regions (A-E). Experimentally validated binding sites for CRX and 
NRL are shaded in gray. Asterisks mark the locations of substitutions that create new CRX binding sites 
(≥2% predicted affinity relative to consensus). (B) Phylogenetic conservation of nucleotides in RhoCRE3. 
X-axis, position in RhoCRE3; Y-axis PhastCons score derived from a multiple alignment of twenty-eight 
mammalian sequences (Miller et al. 2007). (C) Relationship between the effects of mutations on the 
predicted binding affinity of TFs versus the mutations’ effects on gene expression. X-axis, predicted 
affinity of RhoCRE3 mutations for CRX or NRL; Y-axis, observed effects of mutations on gene 
expression. In each graph the red dot represents the wild type sequence of RhoCRE3 and the blue line 
represents the linear regression model.  



28 

FIGURE 2.3 

 
 
Figure 2.3 Complex interactions between CRX and NRL in region D. The effects of mutations at 
position 36 support a model of competition between NRL and CRX. The X-axis shows the identity of the 
base at position 36. Red bars, relative affinity of CRX normalized to the wild type sequence. Blue bars, 
relative affinity of NRL normalized to the wild type sequence. Green bars, expression normalized to the 
wild type sequence. Errors bars represent the standard error of the mean.  
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FIGURE 2.4 

 
 
Figure 2.4 Interactions between mutations in TFBS within regions D and E. (A) Pattern of 
interactions. Each arc connects two nucleotides that have a significant interaction term by ANOVA 
(Methods). The height of the arc represents the magnitude of the interaction term. Only interactions 
greater than 3 or less than -3 are shown. (B) The magnitude and direction of interactions are position 
specific. The interaction between mutations 40A (CRX) and 49A (NRL) is significantly more than additive 
and greater than the effect of either single mutant, while the interaction between mutations 40A and 47C 
(NRL) is less than additive and greater than the effect of either single mutant. (C) Interactions between 
the same positions are base specific. The interaction between 41A (CRX) and 46A (NRL) is significantly 
more than additive, while the interaction between 41T and 46A is less than additive.   
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SUPPLEMENTARY FIGURES AND TABLES 

TABLE 2.S1 

 

 

Table 2.S1 Primer sequences used in this study. 

 

 

 

Name Primer sequence 

JKP1F TGCAAGCCAATTGGGCCCCGGT 

JKP1R GGAGTGCGGCCATCGATGCG 

JKP2F ATATCTCGCGGATGCTGAAT 

JKP2R TATTTGTGAGCCAGGGCATT 

JKP3F TGTTCCTGTAGCGGCCGACG 

JKP3R GAATTCTAGCCAGAAGTCAGATGCTCAAG 

JKP4F AATGATACGGCGACCACCGAG 

JKP4R CAAGCAGAAGACGGCATACGA 

JKP5F GGCCGACGNNNNNNNNNNCGCAT 

JKP5R CGATGCGNNNNNNNNNNCGTC 
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FIGURE 2.S1

 

 
Figure 2.S1 Correlation between replicate experiments. (A) Barcodes do not impact expression. More 
than 100,000 distinct barcodes were fused to the wild-type RhoCRE3 sequence. Measurements in 
replicate experiments showed no correlation (R2=0.04) indicating that different barcodes do not have 
significant effects on reporter gene expression. (B) Mutant RhoCRE3 variants have strong effects on 
expression. The correlation between replicate experiments measuring the 1,040 RhoCRE3 variants is 
high (R2=0.95) indicating that the mutations have strong and reproducible effects on expression. 
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FIGURE 2.S2 

 

Figure 2.S2 Activity logos of known and hypothesized transcription factor binding sites. The 
activity logos of (A) region A and (B) region E correspond to the known sequence logo for CRX (depicted 
here in 'reverse' orientation). (C) The activity logo of region D corresponds to the known sequence logo 
for NRL (Kataoka et al. 1994). (D) Activity logo of region C. (E) Activity logo of the sequence joining 
regions D and E.  
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FIGURE 2.S3 

 

Figure 2.S3 RhoCRE3 sequence in mammals. The sequence of the RhoCRE3 element in 21 mammals 
and the platypus is shown. Red, sequences that match the CRX position weight matrix model. Blue, 
sequences that match the NRL position weight matrix model. Many of the species have a low affinity CRX 
site directly adjacent to the first known CRX site.  
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FIGURE 2.S4 

 

 
Figure 2.S4 The effects of mutations in region D. For each mutation in region D we plotted its effect on 
the predicted affinity of the NRL site (X-axis) and the CRX site (Y-axis). Each circle represents a single 
mutation in region D. The size and color of the circles show the effect on reporter gene expression. The 
square represents the wild-type sequence. 
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FIGURE 2.S5 

 

Figure 2.S5 Structural analysis of mutations at position 42. We used the program ORChID2 (Bishop 
et al.) to generate structural plots of the RhoCRE3 sequence between positions 30 and 52. We generated 
these plots for the wild-type sequence as well as the sequence containing the three possible substitutions 
at position 42. We computed the Euclidean distance between each sequence and the wild-type (x-axis) 
and compared these distances to the expression level driven by each variant (y-axis). Mutant 42G, which 
has the largest effect on expression, also has the largest predicted effect on DNA structure.  
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ABSTRACT 

The ability to predict gene expression from sequence is an unsolved problem in the field of the 

genetics. Successful prediction of gene expression levels will aid in the interpretation of human non-

coding sequence variation and allow us to engineer novel regulatory elements with desired expression 

patterns. There are a variety of methods to identify functional transcription factor binding sites (TFBS), but 

little understanding of how these binding sites combine to control gene expression. In the developing 

mammalian retina, transcriptional activators CRX and NRL regulate rod photoreceptor cell differentiation 

and homeostasis. In order to determine the rules that govern combinatorial regulation by CRX and NRL, 

we have examined the expression controlled by synthetic promoters composed of NRL and CRX TFBSs. 

We have used cis-regulatory element sequencing (CRE-seq), a high throughput reporter assay, to 

measure the expression controlled by these synthetic cis-regulatory elements (CREs) in explanted retinal 

cells.  We find there is a strong synergistic interaction between NRL and CRX binding sites and that CRX 

binding sites can switch from activating to repressing in different contexts. These results have major 

implications for our ability to interpret cis-regulatory sequence and will improve our ability to predict 

expression from genomic sequence. 
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INTRODUCTION 

cis-regulatory elements (CREs) are DNA sequences that regulate the expression of a nearby 

gene. CREs are composed of combinations of short transcription factor binding sites (TFBS), which are 

recognized by regulating transcription factors (TFs). TFs bind these sites and recruit RNA Polymerase II 

(RNA Pol II) machinery to initiate transcription. Transcriptional activators promote the recruitment of the 

polymerase machinery, whereas transcriptional repressors inhibit this recruitment. A major goal in the 

field of transcriptional regulation is to develop a quantitative understanding of how functional 

combinations of binding sites drive gene expression. 

There are a variety of methods to identify functional TFBS in a genome: directly measuring TF 

binding with chromatin immunoprecipitation (ChIP) (Harbison et al. 2004; Johnson et al. 2007; Visel et al. 

2009); identifying clusters of TFBS in co-expressed sequences (Beer and Tavazoie 2004; Elemento et al. 

2007); and transcriptional profiling of cells mutant for the TF of interest (Hu et al. 2007). These techniques 

provide insight into the genomic locations of functional TFBSs and are a first step in classifying 

combinations of binding sites that regulate a specific gene. The identification of binding sites alone does 

not provide information about how sequences control the level of gene expression, or how this expression 

might change as a result of removing, adding, or rearranging these binding sites.  In order to understand 

how these variables impact the control of expression, one needs to examine how systematic 

combinations of TFBS regulate gene expression levels. 

Generally speaking, scientists understand how combinations of binding sites control gene 

expression, but the field lacks a quantitative model to predict how much expression is produced by a 

sequence. In fact, we have little ability to predict the level of expression that is controlled by even a single 

DNA sequence. It would be useful to develop a quantitative model to predict expression for two reasons. 

First, the model would predict how gene expression level is modulated as a result of sequence 

perturbation. This would be useful in the interpretation of human non-coding variation, which can change 

affinity or number of regulating binding sites. Second, this model would predict the level of gene 

expression controlled by a synthetic DNA sequence. This would be useful when engineering a regulatory 

sequence to express at a desired level.  In order to develop quantitative models, we first need to deepen 

our understanding of how DNA sequence properties impact expression regulation. 
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Our approach is to gain an understanding of how simple CRE sequences control gene 

expression. In this study we examine gene expression controlled by CREs composed of only four 

different TFBS. This design allows us to characterize the relationship between expression controlled by a 

CRE and the properties of the TFBS in that CRE sequence. We vary TFBS identity, number, affinity, 

order and orientation but keep other variables constant, such as TFBS spacing and surrounding 

sequence. We anticipate that patterns found in the study of regulation by simple CREs will be relevant 

when predicting expression driven by complex regulatory elements that are composed of the same TFBS 

(Gotea et al. 2010).  

The mammalian retina is an ideal system for cis-regulatory analysis because it is an accessible 

tissue with well-characterized transcriptional regulators. The majority of cells in the mammalian retina are 

photoreceptors that express cascades of TFs to define cell identity during differentiation. Cone/Rod 

homeobox transcriptional activator CRX is expressed in the early stages of photoreceptor differentiation 

(Furukawa et al. 1999). In rod photoreceptor cells CRX activates expression of neural retina leucine 

zipper transcriptional activator NRL (Kautzmann et al. 2011; Montana et al. 2011a). CRX and NRL 

combine to transcriptionally regulate the level of photoreceptor genes that are critical for rod 

photoreceptor cell differentiation and homeostasis (Furukawa et al. 1999; Mears et al. 2001; Hsiau et al. 

2007). CRX and NRL have been shown to directly interact and regulate synergistically (Chen et al. 1997; 

Mitton et al. 2000), suggesting that the two TFs may cooperatively regulate expression. We anticipate that 

this study will not only inform our understanding of rod cell-specific gene regulation, but will also provide 

use as a general model of mammalian gene regulation.  

 

RESULTS 

 

CRE-seq Library and Measurements 

In order to understand how combinations of CRX and NRL transcription factor binding sites 

combine to regulate gene expression, we created a library of synthetic CREs (Ligr et al. 2006; Gertz and 

Cohen 2009; Gertz et al. 2009; Mogno et al. 2010; Sharon et al. 2012; Smith et al. 2013). These synthetic 

CREs are composed of: a high affinity CRX1 site, a low affinity CRX2 site, a predicted lower affinity CRX3 
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site (Lee et al. 2010), and a high affinity NRL site (Kataoka et al. 1994). Previous studies have shown that 

CRX binds the CRX1 and CRX2 binding sites in vitro (Lee et al. 2010) and that regulation of these binding 

sites in the Rhodopsin (Rho) promoter is critical for appropriate expression (Kwasnieski et al. 2012). In 

addition, we hypothesize that CRX can bind the CRX3 site based on evidence of TF competition 

(Kwasnieski et al. 2012) even though CRX3 has very low predicted affinity. Short constant buffer 

sequences were added to each binding site to maintain the helical spacing when binding sites were 

combined. Using these 4 TFBS, we generated all possible synthetic CREs that contain one, two, or three 

binding sites in both orientations. In addition, we generated 715 of the possible 4096 synthetic elements 

that are composed of four binding sites.  

We used CRE-seq, a high-throughput multiplexed reporter assay, to measure the expression 

controlled by these synthetic CREs (Kwasnieski et al. 2012). The library of CREs were cloned upstream 

of the rod cell-specific Rho proximal promoter driving the DsRed reporter gene. The expression of each 

synthetic CRE was measured by five unique barcodes to average any barcode-specific effects on 

expression. The library was electroporated into retinal explants and RNA was harvested after 8 days in 

culture. Expression was calculated as the number of times each barcode was sequenced from the RNA 

pool normalized to the number of times each barcode was sequenced from the original plasmid pool. We 

conducted four biological replicates of library expression (Figure 3.1A, R2 range=0.97 – 0.99). 

 

Synthetic CREs Control Diverse Expression Levels 

The library of synthetic CREs was composed of TFBS for transcriptional activators. We 

anticipated that expression controlled by long CREs would be higher than expression controlled by short 

CREs because we thought more activator binding sites would result in higher expression. Surprisingly, we 

observe that for every length CRE, some synthetic elements drive expression that is activated above the 

Rho proximal promoter, while other synthetic elements drive expression that is repressed below the Rho 

proximal promoter (Figure 3.1B). The range in expression levels is surprising given that the library was 

constructed with binding sites for transcriptional activators that are not predicted to repress gene activity. 

These data show that even simple combinations of TFBS can generate complex gene expression 

patterns that are not the additive expression of component parts.  
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Patterns in Regulation by CRX and NRL 

In order to understand how these TFBS could generate such a large range in expression values, 

we sought to identify the combinations of motifs that controlled high expression. Upon examination of 

synthetic CREs that are two TFBS in length, we find that CREs composed of CRX1 and NRL binding sites 

have significantly higher expression than CREs composed of only CRX1 or only NRL TFBS (Welch’s t 

test, P<0.01, Figure 3.2A). We observe the same relationship when we examine synthetic CREs 

composed of three TFBSs (Welch’s t test, P<0.01, Figure 3.2B). These data suggest that CRX and NRL 

synergistically regulate expression because combinations of CRX1 and NRL binding sites drive 

significantly higher expression than CRX1 or NRL binding sites alone. This result is supported by previous 

studies demonstrating that CRX and NRL synergistically regulate (Chen et al. 1997) and directly interact 

(Mitton et al. 2000). 

We sought to identify combinations of TFBS that control expression levels lower than the 

expression of the proximal promoter alone. By examining the lowest expressing CREs, we found that 

synthetic CREs composed of multiple CRX binding sites and few NRL binding sites drive expression that 

is repressed below the basal promoter alone (Figure 3.3A). This observation is not simply the absence of 

the CRX and NRL synergism because the addition of NRL binding sites increases expression level but 

does not relieve the trend that adding more CRX1 sites lowers expression (Figure 3.3B). Interestingly, we 

observe similar behavior for NRL binding sites where many NRL TFBS drive low expression (Figure 

3.S1), but these synthetic CREs are unable to repress the proximal promoter. There is little evidence to 

support CRX regulating as both an activator and a repressor (White et al. 2013). Previous studies (Smith 

et al. 2013) have observed low expression driven by homopolymers of binding sites and that 

homopolymers are capable of initiating heterochromatin formation (Bulut-Karslioglu et al. 2012).  

 

Repression is Dependent on CRX 

To determine whether CRX itself was regulating at the CRX binding site, or if another TF with 

similar specificity was responsible for this repression, we measured expression of the library in CRX-null 

retinas. We previously used CD wild-type mice for our experiments but the CRX null mouse was created 
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in a B6 background, so we measured expression of the library in the B6 wild-type mouse to retina ensure 

a proper wild-type control for the CRX null mouse (Figure 3.S2). High correlation (R2=0.96) between the 

wild-type expression measurements suggests that the genetic variation between the two mouse strain 

backgrounds does not impact library expression. 

Expression measurements from CRX null retinas have two striking patterns when compared to 

wild-type expression. First, we observe a population of synthetic elements that has relatively consistent 

expression between the wild-type and null mice and thus lies near the diagonal when wild-type and null 

expression measurements are compared (Figure 3.4). It has been suggested that the CRX null mouse 

has a milder phenotype than expected in part because Otx2, or another homeodomain transcription 

factor, is capable of compensating for CRX in the CRX null retina (Bovolenta et al. 1997; Furukawa et al. 

1999; Hennig et al. 2008). This regulatory compensation would explain why many synthetic CREs are still 

expressed in the null retina. Second, we observe a population of synthetic elements that drive low 

expression in the wild-type retina but increased expression in the CRX null retina. This population is 

largely composed of synthetic CREs that contain three or four CRX binding sites (Figure 3.4). These data 

suggest that the repression we observe in the wild-type mouse is driven by CRX, rather than another 

homeodomain TF, because we see expression increases when CRX is not present. These data also 

suggest that CRX repression is dependent on the absence of NRL TFBS because we see that synthetic 

CREs composed of NRL TFBS are consistently expressed between the wild-type and null conditions. 

 

DISCUSSION 

In this study we found that combinations of transcriptional activator binding sites generate diverse 

expression levels, where synergism between CRX and NRL binding sites drives high expression and 

CRX-dependent repression drives low expression. We were surprised to see that combinations of CRX 

binding sites not only drive low expression, but can also repress the Rho proximal promoter itself.  

We have developed two working models that might explain this observation.  

In our first model, we hypothesize that the proximal promoter needs to be occupied by NRL in 

order to activate transcription. In this model, interactions between CRX bound in the CRE and NRL bound 

in the proximal promoter would lower the NRL promoter occupancy and decrease the promoter’s ability to 
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recruit polymerase. This model predicts that if only NRL is required at the proximal promoter, rather than 

both CRX and NRL, CRX binding sites will not be able to repress the Rho proximal promoter with a 

mutant NRL binding site. This model also predicts that CRX binding sites will not repress a promoter that 

is not regulated by NRL. Previous studies have found that CRX has very little trans-activation potency but 

NRL can interact with TATA-binding protein (Chen et al. 1997; Friedman et al. 2004), which adds 

molecular support to this model.  

 In our second model, we hypothesize that there is some appropriate ratio of bound CRX to bound 

NRL that is necessary for expression activation. In this model, the presence of many CRX TFBS 

increases the occupancy of CRX, disrupting this stoichiometric relationship, and gene activity is 

repressed. This model predicts that synthetic CREs composed of many CRX TFBS would not repress if 

the appropriate number of NRL TFBS were included. These two models represent our ideas for how CRX 

TFBS would be able to repress the proximal promoter activity; we are conducting experiments and 

developing computational models to distinguish between these two scenarios.  

Previously, we have used a statistical thermodynamic framework to develop quantitative models 

of gene expression (Shea and Ackers 1985; Buchler et al. 2003; Gertz et al. 2009). This framework is 

powerful because it predicts expression with parameters that represent biophysical interactions, allowing 

us to gauge whether our understanding of the system is able to mathematically predict the behavior. In 

this study, we attempted to apply the thermodynamic framework in order to distinguish between the 

previously described working models. Given the our current data set, this framework is unable to capture 

the behavior of this library (data not shown) because the CRX binding sites have the ability to at as 

activating or repressing sites depending on the context. This framework assumes every TFBS behaves in 

a consistent regulatory manner. In order to model this behavior we would need to add major assumptions 

to the thermodynamic framework, and before we add these assumptions we need more information about 

the mechanism of CRX repression.  

In order to constrain quantitative models and to understand the TFBS grammar that underlies 

these complex expression patterns, we are conducting several experiments and analyses. First, we are 

measuring expression controlled by a library of synthetic CREs upstream of the Hsp68 promoter, rather 

than the Rho proximal promoter. This experiment will tell us if homopolymers of CRX TFBS can repress 
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an unrelated promoter element. Second, we are measuring the expression controlled by a library of 

synthetic CREs upstream of a mutated Rho proximal promoter, rather than the wild-type Rho proximal 

promoter. This mutant Rho promoter contains two mutations in the annotated NRL binding site. These 

expression measurements will tell us if CRX repression depends on NRL binding in the proximal 

promoter. Finally, we are adapting ChIP to our synthetic CREs in order to measure the occupancy of CRX 

on the synthetic elements. This experiment will tell us if CRX has higher occupancy when there are more 

CRX binding sites and whether the presence of NRL binding sites increases CRX occupancy.  

We conclude that combinations of TFBS for transcriptional activators can generate diverse gene 

expression patterns and even repress the activity of the proximal promoter alone. We find that 

combinations of CRX and NRL sites drive high expression, suggesting a synergistic interaction between 

the two regulators. We also conclude that CRX is capable of acting as a repressor or an activator, 

depending on the sequence context. CRX sites repress when clustered with other CRX TFBS, but CRX 

sites activate when NRL sites are present. In general, interactions between TFs and the dual regulatory 

capacity of TFs can underlie these complex expression patterns. Further genetic and biochemical 

experiments, paired with the development of quantitative models, will aid in the understanding of the 

sequence features that make this possible. 
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MATERIALS AND METHODS 

 

Synthetic CRE Library Design 

Synthetic CREs are composed of three CRX binding site variants and one NRL binding site. 

Short constant buffer sequences were added to each binding site to maintain the helical spacing when 

binding sites were combined (Table 3.1). Using these 4 TFBS sequences, we computationally generated 

all possible synthetic CREs that contain one, two, or three binding sites in both orientations. We 

computationally generated all possible combinations of synthetic elements with four binding sites (4096 

total) and randomly chose 715 of these. In addition, the CREs were designed so that after cloning, the 

basal promoter alone was a part of the library. 

 

CRE-seq Library Construction 

A pool of 6,500 unique 150-mer oligos was ordered through a limited licensing agreement with 

Agilent Technologies. Oligos were structured as follows: 5’ priming sequence 

(GTAGCGTCTGTCCGTC)/XbaI site/CRE/SphI site/randomly generated sequence/EagI 

site/buffer(ACG)/9 bp barcode/buffer(CGC)/ClaI site/3’ priming sequence (GCAACTACTACTACAG).  

Using this method of synthesis, every oligo must be 150 bp in length so the random sequence length was 

determined for each CRE length. The random sequence is removed in the second cloning step and only 

serves to pad the oligo length for synthesis. Barcode sequences were generated as described 

(Kwasnieski et al. 2012). 

The plasmid library was prepared as described (Kwasnieski et al. 2012), except using primers 

JKP6F and JKP6R (Table 3.S1) and an annealing temperature of 55C. The amplified library product was 

purified on a polyacrylamide gel as described (White et al. 2013). Purified library amplicons were cloned 

into pJK01 (Kwasnieski et al. 2012) using XbaI and ClaI. We prepared DNA from 54,000 colonies to 

generate PL6_1. We then cloned the Rho proximal promoter driving DsRed into PL6_1. A cassette 

containing the Rho promoter fused to DsRed was amplified from pJK01 with primers JKP7F and JKP7R 

(Table 3.S1) and cloned into library PL6_1 by using SphI and EagI, creating library PL6_2. To decrease 
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background in our library, we linearized PL6_2 with HindIII, gel purified the library, and re-circularized to 

create library PL6_3.  

 

Retinal Electroporation 

Electroporations and explant cultures were performed as described (Hsiau et al. 2007) by using 

0.5 µg/mL library PL6_3 as well as 0.5 µg/mL CAG promoter driving GFP for visualization of 

electroporation efficiency (Lee et al. 2010). After 8 d in culture, retinas were washed twice in sterile HBSS 

(Gibco, Life Technologies), and total RNA was extracted by using TRIzol according to manufacturer’s 

instructions (Ambion, Life Technologies). 

 

Preparing Samples for RNA-Seq 

Excess DNA was removed from extracted RNA using the TURBO DNA-free kit (Applied 

Biosystems), following manufacturer’s instructions. First strand cDNA was synthesized from the RNA 

using SuperScript II Reverse Transcriptase (Life Technologies). Both the cDNA samples and the DNA 

from the original plasmid library were prepared for sequencing using a custom protocol as described 

(Kwasnieski et al. 2012). Briefly, we used PCR amplification of the sequence surrounding the barcode in 

the RNA transcript or plasmid using primers JKP3F and JKP3R (Table 3.S1). We then digested the PCR 

product using EagI and EcoRI and ligated Illumina adapter sequences (Kwasnieski et al. 2012) to these 

amplified sequences. Libraries were sequenced using the Illumina HiSeq platform. Reads that perfectly 

matched the first 13 expected nucleotides were counted, regardless of quality score. This resulted in 77.5 

million reads from the cDNA, across 4 biological replicates, and 34.8 million reads from the DNA. Only 

barcodes with >=50 reads in the DNA pool and >=3 reads in the cDNA pool were used for downstream 

analysis. The expression of each barcode was calculated as (cDNA reads)/(DNA reads) and then 

normalized to the expression of the basal promoter alone. The expression of each CRE was calculated as 

the mean of the expression of each BC associated with it. 
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Figure 3.1 

 

Figure 3.1 Synthetic CREs have strong and reproducible effects on expression. A) Biological 
replicates of the expression driven by synthetic CREs are highly reproducible. Each dot represents the 
expression controlled of a single CRE. Blue line is the best fit (R2=0.99). B) Every length of synthetic 
elements controls a range of expression levels.  Histogram shows CRE expression (log 2) normalized to 
the expression of the basal Rho promoter alone. Dotted line is expression that is identical to the basal 
promoter. Panels separate CREs by length, or number of component TFBS.  
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Figure 3.2 

 

Figure 3.2 Synergistic regulation of CRX1 and NRL binding sites. Synthetic CREs with both CRX1 
and NRL binding sites drive significantly higher expression than synthetic CREs with only CRX1 or NRL 
binding sites. X-axis lists component TFBS, regardless of order and orientation.  Y-axis measures CRE 
expression. A) Synthetic CREs with two TFBS. B) Synthetic CREs with three TFBS.  
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Figure 3.3 

 

 

Figure 3.3 Synthetic CREs with many CRX binding sites repress the basal promoter. A) Synthetic 
CREs composed of many CRX sites drive low expression and can even repress the basal promoter.  
Boxplot shows CRE-seq expression (log 2 scale) separated by the number of CRX1, CRX2, and CRX3 
TFBS in each CRE.  B) CRX1 homopolymers can repress the basal promoter level. Adding NRL binding 
sites increases total expression but does not counteract the trend that adding CRX1 sites decreases 
expression. Boxplot shows CRE-seq expression (log 2 scale) driven by synthetic CREs that are only 
composed of CRX1 and NRL TFBS. X-axis denotes the number of CRX1 and NRL TFBS in each CRE.   
  

!

!

!

0

WT 1CRX 2CRX 4CRX 1CRX
1NRL

2CRX
1NRL 1NRL

number binding sites

lo
g 2(e

xp
re

ss
io

n)

!

!

!

!

!
!

!

!

!

!

!

!

0

0 1 2 4
CRX site number

lo
g 2(e

xp
r/b

as
al

)

A B



50 

Figure 3.4 

 

Figure 3.4 Synthetic CREs display CRX-dependent repression but only in the absence of NRL 
TFBS. Scatterplot compares expression driven by synthetic CREs in the wild-type (x-axis) and the CRX 
null (y-axis) mouse retinas. Each dot represents the expression controlled by a single CRE. Panels 
separate expression by the number of CRX1, CRX2, and CRX3 TFBS in each CRE. Dot color denotes 
number of NRL TFBS in each CRE. 
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Table 3.1 

CRX1 GCTAATCCCA 
CRX2 GCTAAGCCAA 
CRX3 GCTGATTCAA 
NRL GACTGCTGACTCAGCATCA 

 
Table 3.1 Sequences of binding sites that were used in this study. 
  



52 

 
SUPPLEMENTARY FIGURES AND TABLES 

Table 3.S1 

JKP3F TGTTCCTGTAGCGGCCGACG 
JKP3R GAATTCTAGCCAGAAGTCAGATGCTCAAG 
JKP6F GTAGCGTCTGTCCGTCTCTAG 
JKP6R CTGTAGTAGTAGTTGCATCGATG 
JKP7F TAGCATGCATGTCACCTTGGCCCCTC 
JKP7R GGCCATCGATCTCGAGTAAC 
JKP8F TCTCTAGACTCCTCCGGCTCGCTGATTG 
JKP8R CAGGTACCCCATGGCGCCGCGCTC 
JKP9F TAGCATGCCTCCTCCGGCTCGCTG 
JKP9R AGCCTGCACCTGAGGAGT 

 
Table 3.S1 Primer sequences used in this study. 
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Figure 3.S1 

 

Figure 3.S1 Synthetic CREs with many NRL binding sites drive low expression. Synthetic CREs 
composed of many NRL TFBS drive low expression.  Boxplot shows CRE-seq expression (log 2 scale) 
separated by the number of NRL TFBS in each CRE.   
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Figure 3.S2 

 

Figure 3.S2 Synthetic CREs control similar expression levels in two wild-type mouse 
backgrounds. Comparison of expression driven by synthetic CREs in wild-type B6 (x-axis) and wild-type 
CD (y-axis) mice backgrounds shows high correlation (R2=0.96).  
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CHAPTER 4: DISCUSSION 

 

There are three main aims of my thesis: to develop a high-throughput multiplexed reporter assay 

technique, to use this method to understand how nucleotides contribute to the control of gene expression, 

and to use this method to understand how combinations of transcription factor binding sites (TFBS) 

regulate expression. Toward the first aim, I developed a method for cis-regulatory element (CRE) 

sequencing (CRE-seq) that allows high throughput construction and assay of thousands of CREs in a 

single experiment.  This method produces reproducible gene expression measurements that have a high 

correlation with traditional reporter assay measurements.  Toward the second aim, I utilized this method 

to understand the impact of each nucleotide in the Rhodopsin (Rho) promoter.  I found that most single 

nucleotide variants have a significant impact on gene expression levels and that most combinations of 

variants drive expression that is not an additive sum of the single variant expression levels.  Toward the 

third aim, I tested combinations of CRX and NRL TFBS to understand how they drive expression.  I found 

that seemingly simple synthetic CREs generated diverse expression levels due to dual regulation and TF 

synergy.  These findings have broad impacts for the study of mammalian cis-regulation, as I discuss 

below. 

 

Comparison of Methods for High Throughput Reporter Analysis 

Early methods for high throughput reporter analysis used in vitro transcription (Patwardhan et al. 

2009) or quantitative PCR (q-PCR) for expression measurement (Nam et al. 2010).  Our CRE-seq 

method was published along side several other studies (Melnikov et al. 2012; Patwardhan et al. 2012; 

Sharon et al. 2012; Arnold et al. 2013) developing similar methods. All of these methods multiplex 

reporter gene expression measurements by barcoding the reporter gene 3’ UTR, but each has 

differences, mainly in the process of library construction. Here I compare the methods that multiplex 

reporter expression measurements in eukaryotic cells with next-generation sequencing.  

  Two of these methods utilize random construction strategies so they do not have limitations on 

CRE length or library complexity.  First, in the Starr-seq (Arnold et al. 2013) method the enhancer 

sequence is cloned into the 3’ UTR and it serves as the CRE as well as the barcode. Studies have shown 
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that 3’ UTR sequences can have large effects on gene expression outside of transcriptional control 

(Shalem et al. 2013), so the accuracy of Starr-seq approach is limited.  

Second, In the Massively Parallel Functional Dissection (MPFD) (Patwardhan et al. 2012) 

method, stitching PCR and random library construction is paired with a PCR-based subassembly method 

to match CRE and barcode sequences. Expression is calculated as the fraction of biological replicates 

where a barcoded mRNA is detected, which is in contrast to most other methods that use the abundance 

of barcoded mRNA. Published uses of this method have measured expression from very complex library 

pools, which require large amounts of sequencing coverage and are therefore expensive.   

Two other methods use array-based oligo synthesis for library construction, as does CRE-seq. 

This approach is advantageous because it allows construction of a high fidelity CRE library with 

systematically designed sequence derivatives. First, the Massively Parallel Reporter Assay (MPRA) 

(Melnikov et al. 2012) method is most similar to CRE-seq. The main difference between MPRA and CRE-

seq is that MPRA sequences DNA barcodes from the original plasmid pool, rather than from the 

transfected cells.  Our work has shown these approaches result in similar DNA counts and therefore we 

have switched to sequencing the plasmid pool to reduce sequencing costs.  

Second, the Segal lab (Sharon et al. 2012) method measures fluorescence, separates cells 

based on expression, and sequences barcodes from the binned pools.  Expression is calculated as the 

abundance in each expression pool, which results in a more course-grained measurement of gene 

expression than the other methods.  

Taken together, these methods primarily differ in library construction strategies, which allows the 

user to choose a method based on CRE design constraints. In particular, measuring the abundance of 

mRNA barcodes is very quantitative and I recommend methods that take advantage of this.  Potential 

improvements to CRE-seq could include the integration of the reporter gene constructs the genome, or 

the potential to read out spatial or temporal expression patterns with the method.   

 

Potential Improvements to CRE-seq  

The limitations of this technology are twofold: the plasmid expression system is transient and 

CRE-seq does not currently support the measurement of temporal and spatial expression patterns. 
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Technique improvements could address these issues. Currently, the number of divisions that the 

transfected cell population undergoes can limit the duration of CRE-seq experiments because the plasmid 

library is diluted in the cell population.  Integrating the CRE-seq libraries with lentiviral transduction or 

CRISPR editing technologies would allow expression profiling in a stable cell population, expanding the 

number of tissues amenable to CRE-seq analysis.  Genes are expressed in temporal and spatial patterns 

that are important for appropriate cell function but current CRE-seq methodology can only measure 

expression from a homogeneous cell population.  Harvesting RNA across different time points or isolating 

single cell RNA with laser capture micro-dissection would allow CRE-seq to measure expression in 

relevant temporal and spatial patterns. 

 

Phenotypic Interpretation of Mutagenesis Study 

In Chapter 2, we found that most sequence variants have a significant impact on expression.  

This result is surprising because nearly all mutations, even those located in sequences that are not 

thought to bind a TF, drove expression that was significantly different than wild-type expression. In 

addition, we concluded that combinations of these variants drove expression that was not accurately 

predicted from single variant expression levels.  Together, these results imply that for non-coding 

variation in promoter sequences, most variants will have functional consequences for expression control, 

and many of these variant combinations will generate non-additive expression levels.  

To my knowledge, no other studies have examined the activity of a mammalian promoter in such 

detail. We know that Rho is a highly expressed gene and its precise expression is critical for homeostasis 

of the retina. It is possible that this promoter is precisely tuned so that correct activity is easily disrupted. 

Two studies (Melnikov et al. 2012; Patwardhan et al. 2012) have tested the impact of enhancer variants 

on gene expression and found that few sequence variants drove significantly different expression than 

wild-type levels. There are several biological reasons to explain the differences in these results; technical 

reasons are discussed in Chapter 2.  First, sequence variants in enhancers may be less likely to disrupt 

gene expression control than sequence variants located in promoter sequences.  Second, the activity of 

these specific enhancers may be less affected by sequence variants than the activity of the Rho 

promoter.  Third, it may be that this reporter assay design, where all regulatory sequences are cloned 
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fewer than 500 base pairs upstream of the transcription start site, is more sensitive to expression 

changes in promoters than enhancers.  To further test these ideas, one could use CRE-seq to examine 

the impact of sequence variants on enhancer activity.  

The conclusion that most variants significantly impact expression is based on the results of 

statistical tests that determined mutant expression measurements were significantly different than wild-

type expression levels.  A large fraction of variants drove significantly different mean levels of expression, 

but it was not clear whether this number of significant changes was more or less than expected. There is 

no established null model for predicting how regulatory sequence activity changes upon mutation. To 

develop a null model that describes the frequency that of variants that impact expression, one could 

conduct a similar study, but compare expression of random genomic sequences against their mutated 

versions. The results of this experiment would further develop our understanding of how sequence 

variants impact expression control. 

It is clear from this mutagenesis study that sequence variants in the Rho promoter can have large 

effects on the expression level of the gene.  Future work should characterize these sequence variants in 

the context of other genomic elements and at a phenotypic level.  We see large expression changes 

when the mutated promoter drives expression in isolation, but in the mouse genome there are many 

regulatory elements that control expression of the Rho gene.  Experiments to measure the expression 

changes of these promoter mutations in the Rho locus would develop our understanding of whether 

sequence variants are buffered in a genomic context. We observed sequence variants that control 

expression 60-fold lower than wild-type levels and I hypothesize this Rho dysregulation would be 

sufficient to induce a phenotype. Experiments to generate transgenic mice with single Rho promoter 

mutations and assay the transgenic retinas for structure and function would answer this question. These 

experiments will help us understand how expression studies of isolated genomic elements can translate 

into interpretation of the impact of human non-coding variation. 

This study is one of the first detailed examinations of how sequence variants impact the activity of 

a mammalian promoter.  It demonstrates that mammalian promoters are precisely tuned and therefore 

subject to significant expression changes upon mutation.  These results imply that human non-coding 

variation in promoter sequences will likely have functional consequences for gene expression control. 
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Complex Expression Controlled by Simple cis-Regulatory Elements 

In Chapter 3, I discussed our work to understand how combinations of TFBS control expression.  

The main conclusion of this study is that simple regulatory elements, only containing TFBS for 

transcription activators, generate diverse expression levels. These simple elements can drive expression 

levels that are activated above the basal promoter and expression levels that are repressed below the 

basal promoter. This result motivates the continued study of cis-regulation in controlled model systems 

where annotated transcriptional regulators have measured binding specificity because we are surprised 

by the complexity in expression that is controlled by simple regulatory elements. 

Synthetic regulatory elements provide a useful paradigm for the study of cis-regulation because 

they allow TFBS interrogation while minimizing the number of confounding variables. The simplicity of 

these reporter constructs allows for the detection of cis-regulatory patterns but it can also limit the study.  

For example, if TFs are regulating synthetic CREs differently than genomic CREs, due to the design of 

synthetic CREs, discovered patterns may not be useful in studying genomic CREs.  Developing a hybrid 

approach where one may study the expression controlled by CREs that are rooted in genomic sequences 

but have synthetic attributes, would allow for statistical power while maintaining relevant CRE design. 

This might include genomic sequences where TFBS identity and/or orientation are swapped. The results 

of this experiment would continue to build our understanding of how TFBS control expression, but easily 

translate into conclusions about genomic elements. 

This work contributes to the study of cis-regulation in the mammalian rod photoreceptor cell 

because we have learned new principles that govern how combinations of NRL and CRX binding sites 

regulate gene expression. Future work, as discussed in Chapter 3, will generate data for the development 

of a quantitative framework. This model will be used to describe regulation by CRX and NRL, and this 

model will improve expression predictions for rod-cell specific genes. 
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ABSTRACT 

Gene promoters typically contain multiple transcription factor binding sites (TFBS), which may vary in 

affinity for their cognate transcription factors (TF).  One major challenge in studying cis-regulation is to 

understand how TFBS variants affect gene expression. We studied the in vivo effects of TFBS variants on 

cis-regulation using synthetic promoters coupled with a thermodynamic model of TF binding. We 

measured expression driven by each promoter with RNA-seq of transcribed sequence barcodes. This 

allowed reporter genes to be highly multiplexed and increased our statistical power to detect the effects of 

TFBS variants. We analyzed the effects of TFBS variants using a thermodynamic framework that models 

both TF-DNA interactions and TF-TF interactions. We found that this system accurately estimates the in 

vivo relative affinities of TFBS and predicts unexpected interactions between several TFBS. Our results 

reveal that binding site variants can have complex effects on gene expression due to differences in TFBS 

affinity for cognate TFs and differences in TFBS specificity for non-cognate TFs. 
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INTRODUCTION 

Transcription factors (TFs) orchestrate programs of gene expression by binding promoters and 

interacting with the core transcriptional machinery.  Promoters typically contain multiple transcription 

factor binding sites (TFBS) with varying affinities for their cognate TFs.  Analyses of TFBS variants must 

account for the effects of low affinity sites, which often have important and surprising roles in gene 

regulation, especially when TFs bind cooperatively (Driever et al. 1989; Jiang and Levine 1993; Wharton 

et al. 2004; Gertz et al. 2009; Parker et al. 2011; Peterson et al. 2012).  Position weight matrix (PWM) 

models (Stormo 2000) of binding affinities facilitate the study of TFBS variants; however, these models 

are often developed in vitro and offer a limited picture of the in vivo effects of variants on gene 

expression. The effect of a TFBS variant on gene expression is a function of the sum of its effects on 

binding by, potentially all, other TFs present in the nucleus. In support of this model, recent genome-wide 

binding studies show a striking overlap of TF binding profiles (Neph et al. 2012). Therefore, given all the 

possible interactions between TFs and between TFs and DNA, it is difficult to model and predict the in 

vivo effects of TFBS variants. The analysis of TFBS variants is particularly relevant in light of studies of 

human genetic variation (Abecasis et al. 2012) and the role of non-coding polymorphisms in complex 

traits and disease (Degner et al. 2012; Maurano et al. 2012). Progress in this field requires methods to 

study the effects of combinations of TFBS variants inside cells.    

Synthetic promoters are powerful tools for studying cis-regulation (Cox et al. 2007; Gertz and 

Cohen 2009; Gertz et al. 2009; Mogno et al. 2010; Raveh-Sadka et al. 2012). Recent advances in DNA 

synthesis and high-throughput sequencing have driven the development of novel techniques for 

measuring large numbers of synthetic promoters (Kwasnieski et al. 2012; Melnikov et al. 2012; 

Patwardhan et al. 2012; Sharon et al. 2012; Arnold et al. 2013). These techniques add transcribed 

sequence barcodes to traditional fluorescent reporter genes, allowing reporter genes to be highly 

multiplexed and assayed by RNA-seq. To date, all of these methods rely on plasmid-based reporter gene 

libraries.  Limitations in the length of synthesized DNA restrict some of these techniques to assaying 

relatively short synthetic regulatory elements.  Here we present a method to assay large numbers of 

chromosomally-integrated synthetic promoters of arbitrary size. We implemented the method in the yeast 

S. cerevisiae and used it to study the effects of TFBS variants on cis-regulation. 
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The method we developed is a variant of CRE-seq (Kwasnieski et al. 2012), a technique created 

to transiently assay large numbers of cis-regulatory elements in mammalian cells. The modifications we 

made to this technique allow us to sample large numbers of chromosomally-integrated synthetic 

promoters consisting of combinations of TFBS with differing affinity. This large sampling was necessary to 

obtain the statistical power necessary to model the effects of TFBS variants on cis-regulation.  We fit a 

thermodynamic model to the resulting data, which provides a formal framework to describe the system in 

terms of TF binding to DNA, and interactions between TFs. We found that binding site variants have 

complex effects on gene expression that are due to both differences in affinity for their cognate TFs, and 

differences in specificity for non-cognate TFs.  

 
RESULTS 

 

Construction Of A Barcoded Synthetic Promoter Library 

We sought to understand how sequence variants of TFBSs affect gene expression. We 

previously used libraries of fluorescent reporter genes to study cis-regulatory interactions between four 

TFBSs, which correspond to binding sites for Mig1, Reb1, Rap1, and Gcr1 (Gertz et al. 2009; Mogno et 

al.). To build on our previous results with consensus TFBS, we chose to create libraries consisting of 

variants of these same four sites.  For each of the four TFs we chose three variants, with differing 

predicted affinity, for a total of twelve TFBS (e.g. Mig11, Mig12, and Mig13 denote three variants of the 

Mig1 TFBS).  Table A1.1 shows the specific sequences we chose and the estimated affinities to their 

cognate TFs as calculated with a position weight matrix (PWM) model (Stormo and Fields 1998; 

MacIsaac et al. 2006) based on ChIP data (Harbison et al. 2004). We tested TFBS with a wide variety of 

predicted affinities, from very high (Mig11), to very low predicted affinity (Reb13 and Rap12). Because the 

increase from four to twelve TFBSs entails an exponential increase of the number of possible synthetic 

cis-regulatory elements (CREs), we implemented CRE-seq technology to multiplex our expression 

measurements. 

We built a CRE-seq reporter library in which each synthetic CRE reporter gene contained a 

unique sequence barcode in its 3’ UTR.  We first synthesized double-stranded oligonucleotides (oligos) 

corresponding to each of the three TFBS variants for each TF: Mig1, Reb1, Rap1 and Gcr1 (Table A1.1). 
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These oligos were pooled and then randomly ligated to form a library of synthetic CREs (Figure A1.1 

panel A, Supplementary Figure A1.S1), which was cloned into a plasmid. We then inserted a library of 

random fifteen nucleotide barcodes downstream of the CREs, such that each barcode uniquely identified 

a specific CRE.  We performed this cloning step in such a way that each CRE was attached to more than 

one unique barcode: our final library contained 7289 BCs representing 2534 unique CREs 

(Supplementary Figure A1.S2). This redundancy increases our statistical power by providing multiple 

expression readouts for any specific CRE.  

We matched the barcodes to their specific CRE using paired-end sequencing of the plasmid 

library containing the CREs and barcodes (Figure A1.1 panel B, Supplementary Figure A1.S1), coupled 

with a naïve clustering algorithm (Methods). We were careful not to use PCR to prepare the library for 

sequencing as we found that PCR amplification creates chimeric products that scramble the CRE-

barcode associations.  After determining the CRE-barcode associations we cloned a cassette containing 

a basal promoter (TSA1) driving Yellow Fluorescent Protein (YFP) into the library, between the CREs and 

the barcodes. The entire library cassette was then excised and inserted into the S. cerevisiae genome at 

the TRP1 locus (Figure A1.1 panel C). 

 To measure, in parallel, the expression driven by each CRE, we grew the integrated yeast 

library, and then sequenced the barcodes from harvested RNA and genomic DNA (gDNA). We computed 

the cDNA/gDNA ratio of each barcode and used the median ratio for all barcodes corresponding to a 

particular CRE as the expression of that CRE.  

 

CRE-Seq Accurately Measures Gene Expression  

To test the accuracy of the CRE-seq method in S. cerevisiae, we compared expression 

measurements made by CRE-seq to those made by flow cytometry. We picked 337 CREs containing 

sites for Mig11, Reb11, Rap11 and Gcr11 and measured their expression in glucose minimal media by flow 

cytometry. We then pooled all strains and measured their expression in glucose minimal media by CRE-

seq. The high correlation (r=0.92) between pooled CRE-seq measurements and individual flow cytometer 

measurements confirms that CRE-seq accurately measures gene expression in our system (Figure A1.2 

panel A).  
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To verify that the fifteen base pair barcodes in the 3’UTR of the reporter genes do not affect our 

measurements, we assayed the effects of barcode sequences on expression.  Using CRE-seq we 

assayed the expression of 602 clones of the same promoter, in which each clone contained a different 

barcode sequence in its 3’ UTR. We performed two replicates of this experiment. If the barcodes have an 

effect on gene expression we expect to see a positive correlation between the two replicates, as 

barcodes that increased reporter expression would be correlated between replicates. However, we 

observed a low correlation between the two replicates (r=0.04). The lack of correlation demonstrates that 

the random barcodes in the 3’UTR do not have reproducible effects on expression (Figure A1.2 panel B).  

 

Model Selection 

After verifying the accuracy of our assay, we analyzed the full library, composed of 7289 BCs for 

2534 CREs. To understand the rules of combinatorial regulation we applied a thermodynamic model to 

our data. This model is a formal framework that describes the data in terms of TF binding to DNA, and 

interactions between TFs, and provides an automated method to detect the effects of TFBS in large sets 

of promoters (Gertz and Cohen 2009; Gertz et al. 2009; Mogno et al. 2010).  Because the differences in 

expression between members of our library were not correlated with predicted nucleosome occupancy 

(R2=0.033), we did not explicitly model interactions with nucleosomes (Kaplan et al. 2009).  

We first analyzed CREs containing only Mig11, Reb11, Rap11, and Gcr11 sites, and recapitulated 

the results in (Gertz et al. 2009; Mogno et al. 2010) (Supplementary Table A1.S1), showing that Mig11 

sites act cooperatively to repress expression, while the Reb11, Rap11, and Gcr11 sites all have activating 

effects. We therefore demonstrated that the trends in expression data from CRE-seq recapitulate the 

trends in expression measured by traditional reporter gene assays.  

To explore different potential mechanisms that could account for the effects of TFBS variants we 

applied several thermodynamic architectures to the full data set with all twelve TFBSs. We started with 

the simplest set of hypotheses: each TF binds at its three cognate TFBS with different affinities (Figure 

A1.3 panel A). We also included a parameter to represent the Mig1-Mig1 cooperative interaction that was 

found in Gertz et al (Gertz et al. 2009) and verified in our data.  
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We then asked whether our data supported a model with additional interactions. We started by 

generating a list of additional features (hypotheses) that were not present in the initial simple model, 

including: 1) an interaction term between Rap1 and Gcr1, as suggested by (Scott and Baker 1993; 

Tornow et al. 1993), 2) a cooperativity term for Gcr1, as suggested by our expression data 

(Supplementary Figure A1.S3) and by (Scott and Baker 1993), 3) a term allowing a protein (X) other than 

Reb1 to bind the Reb13 site, and 4) a term allowing a protein (Y) other than Rap1 to bind the Rap12 site. 

We included features 3) and 4) because Reb13 and Rap12 had strong effects on expression even though 

PWM analysis of these sites indicates that they have very low affinities for their TFs, which suggests that 

their effects may be mediated through the binding of other TFs.   

After identifying a set of features that might improve the simple model, we constructed several 

model architectures including these additional features in various combinations. Each model was fit to the 

measured expression values and scored based on the sum of squares of the residuals (RSS) and the 

number of free parameters needed for the fit, introducing a greater penalty for models with more free 

parameters. When we rank our models based on this score, a clear pattern appears (Figure A1.4 panel 

A): the addition of the Rap1-Gcr1 interaction consistently lowers the model score (worse model), while 

adding Gcr1 cooperativity always results in a higher score (better model). Moreover, allowing unknown 

proteins to bind the Reb13 and Rap12 sites (6 TFs in total), results in a better model even after 

penalization for increased parameter number.  The best performing model includes parameters 

representing Mig1 self-cooperativity, Gcr1 self-cooperativity, a protein (X) other than Reb1 binding at site 

Reb13, and a protein (Y) other that Rap1 binding at site Rap12 (Figure A1.3 panel B). Scoring Reb13 and 

Rap12 against PWMs for known TFs (Spivak and Stormo 2012) suggests that Reb13 may be bound by 

Rtg1 (p= 0.0032) and that Rap12 may be bound by Yer130C (p=0.0059). This result is not surprising 

given that the PWM models for these two sites (Reb13 and Rap12) predicted extremely low affinity for 

their cognate TFs (see Table A1.1). It is therefore reasonable to expect other TFs to bind to these 

particular sites.  

This model explains 57% (p<<0.01) of all the variance in expression in our twelve-site synthetic 

promoter library (Figure A1.4 panel B). We performed repeated random sub-sampling validation 

(Supplemental Figure A1.S5), showing that we obtain similar results with approximately 1000 unique 
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promoters. However, to obtain reliable estimates of some parameters, at least 2000 unique promoters are 

necessary.  Thus, the extra statistical power afforded by CRE-seq allowed us to identify features of this 

system that were undetectable in our previous experiments with smaller libraries (Gertz and Cohen 2009; 

Gertz et al. 2009; Mogno et al. 2010). 

 

The Thermodynamic Model Predicts In Vivo Relative Affinities Between Tfs and DNA 

We next asked whether the in vivo predicted affinities estimated from our thermodynamic model 

match the PWM predictions from ChIP-seq data. We computed DDG for pairs of binding sites. A negative 

DDG indicates a stronger TFBS (with higher affinity), while a positive DDG indicates a weaker site. When 

the PWM and our thermodynamic model are in agreement, the DDG calculated with the PWM and the 

DDG calculated with the thermodynamic model are proportional. For example, our model is in good 

agreement with the PWM model for Mig1 (Table A1.2, rows 1 and 2).  Our model also agrees with PWM 

predictions that Rap13 is stronger than Rap11 (Table A1.2, row 3). In contrast, our model predicts Reb12 

to be stronger than Reb11, while the PWM model predicts the opposite (Table A1.2, row 4).  

Our relative affinity predictions for Gcr1 do not agree with PWM models (Table A1.2, rows 5 and 

6). Our model predicts that Gcr12 is the strongest site for Gcr1, while the PWM model predicts Gcr13 to be 

the strongest site. The PWM model was generated using genome-wide chromatin immunoprecipitation 

(ChIP) data collected in a rich media (Harbison et al. 2004; MacIsaac et al. 2006); our predictions are 

estimated from measuring synthetic promoter expression in minimal media. It is possible that the 

inconsistencies in these predictions can be explained by differences in growing conditions or by 

differences between measuring binding versus activity through a gene expression based reporter assay.  

We also tried using different PWM models for Gcr1, which came from different experiments.  None of 

these PWMs for Gcr1 are in good agreement with each other, nor do they agree well with our predictions 

(Harbison et al. 2004; MacIsaac et al. 2006; Pachkov et al. 2007; Foat et al. 2008; Spivak and Stormo 

2012). The relationship between occupancy at the Gcr1 sites and the sites’ effect on gene expression 

may be complicated by condition-specific binding of Gcr1, or the binding of other factors. In the following 

analysis, we refer to Gcr12 as the strongest site and Gcr11 as the weakest site, as predicted by our 

model.  
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Gcr1 Participates In Complex TF-TF Interactions 

The Gcr1 binding sites used in this study showed the ability to enhance the activity of surrounding 

TFBS, regardless of whether activators or repressors bind to those TFBSs. When Gcr11 sites are added 

to promoters containing only Mig11 sites, their average expression decreases (Figure A1.5, panel A). In 

contrast, when Gcr11 sites are added to promoters containing only Reb11 or Rap11 sites, the expression 

of the reporter gene increases. We also observe a similar behavior when Gcr11 is added to Reb12, Reb13, 

Rap12 and Rap13. However, the ability of Gcr11 to repress is weaker when it is coupled with weaker sites 

for Mig1 (e.g. Mig12 and Mig13, 5, panel B). The data suggest that the Gcr11 site acts as an activator 

when next to any activator site, but it acts as a repressor when next to a strong Mig1 site, and has little 

effect next to a weak Mig1 site. Increasing the predicted affinity of the Gcr1 site hides this behavior: 

Gcr13, a stronger site, has a smaller effect on Mig11 site (Figure A1.5, panel C). The repressing effect 

disappears when we use Gcr12, the highest affinity site. Moreover, this effect is particularly strong in 

promoters in which Gcr11 and Mig11 sites are adjacent to each other (Supplementary Figure A1.S4). 

These data seem to suggest a role of the Gcr1 sites in facilitating the binding of other TFs, and increasing 

their regulatory potential.  

 
DISCUSSION 

We adapted CRE-seq for use with synthetic promoters of arbitrary size integrated into the 

genome of S. cerevisiae. With the development of CRE-seq we can assay thousands of integrated 

synthetic promoters, a 10-fold increase over what was previously possible with fluorescent reporter 

genes. We showed that the method is accurate and reproducible, and that the barcodes in the 3’ UTR of 

the reporter gene do not affect gene expression. As technologies for genome editing (Christian et al. 

2010; Bogdanove and Voytas 2011) become more efficient, we anticipate using CRE-seq to study 

synthetic promoters integrated into the genomes of mammalian cells. 

An advantage of CRE-seq is that it allows us to build larger libraries, since all clones are built and 

assayed in parallel. It also overcomes some of the limitations of traditional assays based on flow 

cytometry, such as limited dynamic range. CRE-seq measures the abundance of mRNA rather than 

stable fluorescent proteins, whose long half-lives could mask the true promoter activity.  
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We used CRE-seq to obtain the statistical power necessary to study cis-regulation in promoters 

containing combinations of TFBS variants. The increased power we obtained from analyzing large 

libraries revealed TFBS effects that we could not detect in smaller libraries composed of the same binding 

sites. This demonstrates the utility of CRE-seq when applied to synthetic promotes. In many cases our 

binding affinity predictions agree well with established PWM models of binding (MacIsaac et al. 2006). In 

cases where our predictions were discordant with PWM predictions, as was the case for Reb13 and 

Rap12, we found that our data supported a model in which these variant TFBSs are recognized by other 

TFs. We think the differences in these predictions stem from different experimental conditions and the 

fact that in vitro binding is not equivalent to in vivo expression potential. 

Our work uncovered an unusual interaction between Gcr1 and Mig1. Although Gcr1 sites behave 

as weak activators, when put in combination with repressive Mig1 sites, Gcr1 sites increase the 

repressive effects of Mig1. One possible explanation is that Gcr1 binding opens the locus, thus facilitating 

the binding of Mig1. This manifests as a greater repressive effect of Mig1, but only when the activating 

potential of Gcr1 is weak. 

With the increasing power and affordability of next generation sequencing technologies, we 

anticipate that CRE-seq will be a useful tool for unraveling other kinds of interactions between cis-

regulatory sequences.  

 
ACKNOWLEDGEMENTS 

We thank Chris Fiore and Robi Mitra for discussions on the CRE-seq technical details; Aaron 

Spivak for assistance with PWM analysis; Jessica Hoisington-Lopez, Henning Seedorf, Michelle Smith, 

Brian Muegge and Jeffrey Gordon for next-generation sequencing support. This work was supported by a 

grant from the National Institutes of Health (GM092910-02). 

  

  



70 

MATERIALS AND METHODS 

 

Construction of the CRE-BC Library 

 E. coli strain DH5a was used for all bacterial cloning steps. Plasmid pIM202 was derived from 

pIM102 (Mogno et al. 2010) by removing the TSA1 promoter-YFP cassette and replacing it with a multiple 

cloning site (containing sites for BglII, XmaI, BamHI, KpnI, ClaI, EagI, AvrII and XbaI restriction enzymes).  

CREs were cloned into pIM202 at the BamHI site as in (Gertz and Cohen 2009; Gertz et al. 2009; Mogno 

et al. 2010), and approximately 7000 colonies were scraped for DNA extraction using a maxiprep kit 

(Sigma GenElute HP Plasmid Maxiprep Kit).  

 To create random barcodes two oligos containing 15 random nucleotides flanked by 6 or 7 bases 

(oligos prIM01 and prIM02, Supplementary Table A1.S2), were denatured at 95C in a water bath and 

then annealed for 16 hours until the water reached room temperature. The BCs were then cloned into the 

CRE plasmid library using restriction sites EagI HF and XbaI. The ligations were digested with AvrII 

before transformation to reduce background. Roughly 20000 colonies were then scraped and 

maxiprepped (Sigma GenElute HP Plasmid Maxiprep Kit) at this step. The TSA1 promoter-YFP cassette 

was amplified from plasmid pIM102 (98°C for 1min, 5 cycles: 98°C for 15s, 56°C for 30s, 72°C for 60s, 25 

cycles: 98°C for 15s, 63°C for 30s, 72°C for 60s, and 72°C for 5 min, NEB HF Phusion MM) using primers 

prIM03 and prIM04 (Supplementary Table A1.S2) and cloned into the library using restriction enzymes 

KpnI and EagI HF. The ligation mix was digested ClaI after ligation to reduce background. About 35000 

colonies were picked at this step. The CRE-BC plasmid library was integrated into S. cerevisiae BY4742 

(MATa his3D1 leu2D0 lys2D0 ura3D0) at the TRP1 locus following the procedure described in (Gertz and 

Cohen 2009; Gertz et al. 2009; Mogno et al. 2010). Between 7000 and 8000 S. cerevisiae colonies were 

replicated into SC media with 2% glucose and 5-FAA (5-Fluoroanthranilic acid) to enrich for the colonies 

carrying the correct integration. These colonies were scraped and pooled for growth and expression 

assays.  

 

Matching CREs to BCs 

 CREs and BCs were matched after cloning the BCs into the plasmid library but before inserting the 
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TSA1 promoter -YFP cassette. The plasmid library was digested with restriction enzymes XmaI and XbaI. 

Illumina paired end adaptors were ligated, and the DNA molecules between 250 and 500 base pairs in 

length were selected on agarose gel. No PCR was performed to prevent chimeric products that mask the 

correct CRE-BC pairs. The purified DNA was then sequenced with an Illumina MiSeq using a paired-end 

250x50bp protocol to sequence the CRE and BC regions respectively. We obtained about 1 million reads. 

BCs represented by fewer than 5 reads were not used in the analysis. Occasionally, more than one CRE 

was associated with a particular BC. In this case the CRE with the highest number of reads was assigned 

to the BC if and only if it was represented by at least 90% of the total number of reads associated to the 

BC. Otherwise the BC was not included in our analysis. Subsequently, all BCs associated to the same 

CRE were analyzed. We calculated the pairwise sequence distance for all BCs representing the same 

CRE and we eliminated the ones that had similar sequences to another BC of higher rank, assuming that 

they arise from sequencing errors. 

 

Flow Cytometer Assay 

The strains used for the validation experiment, (Figure A1.2 panel A) were picked from the 

transformation plate and arrayed into 96 well microplates. The CREs and the BCs were sequenced with a 

Sanger protocol (Beckman Coulter Genomics). Cultures were grown in 500 ml of synthetic complete 

media lacking uracil with 2% glucose with shaking at 30°C in 2 ml 96-well plates for four hours. The cells 

were then fixed with paraformaldehyde as described in (Gertz and Cohen 2009; Gertz et al. 2009; Mogno 

et al. 2010). The fluorescence intensities and electronic volumes of 25000 cells from each well were 

measured on a Beckman Coulter Cell Lab Quanta SC with a multi-plate loader. Fluorescence was then 

divided by volume to obtain a normalized fluorescence value for every cell. For each well, mean and 

variance were calculated from the normalized fluorescence values for 25000 events.  

 

CRE-seq 

The S. cerevisiae library was grown in synthetic complete media lacking uracil with 2% glucose 

with shaking at 30°C. After 5 hours gDNA and total RNA were harvested. RNA was then treated with 

Turbo DNaseI (Ambion) to eliminate genomic DNA contamination and cDNA was synthesized using 
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Superscript II reverse transcriptase (Invitrogen), with oligo-dT primers (IDT).  The 3’UTR of the YFP gene, 

containing the BC, was amplified from gDNA and from cDNA (98°C for 1min, 5 cycles: 98°C for 15s, 54°C 

for 30s, 72°C for 45s, 10 cycles: 98°C for 15s, 58°C for 30s, 72°C for 45s, and 72°C for 5 min, NEB HF 

Phusion MM) using primers prIM05 and prIM06 (Supplementary Table A1.S2). We also used primers that 

amplify across the integration region, prIM05 and prIM07 (Supplementary Table A1.S2), on the gDNA to 

select for correct integrations. Only the BCs represented in this second control gDNA PCR were included 

in our analysis. The PCR products were purified with QIAquick PRC purification kit (Qiagen), digested 

with EagI HF and XhoI, and ligated to Illumina adaptor sequences. The final product was amplified (98°C 

for 1min, 12 cycles: 98°C for 15s, 63°C for 30s, 72°C for 45s, and 72°C for 5 min) with primers prIM08 

and prIM09 (Supplementary Table A1.S2) to enrich for molecules containing both adaptors sequences. 

This library was run on two lanes of Illumina HiSeq machine generating approximately 102 million reads. 

Only barcodes with >25 reads in the gDNA pool, and at least one read in the cDNA pool were used for 

the analysis, for a total of 7289 BCs. Expression associated to each BC was then calculated as the 

number of reads in the cDNA pool divided by the number of reads in the gDNA pool (for the same set of 

primers). These 7289 BCs mapped to 2633 unique CREs. Subsequently we determined that 99 of these 

CREs were likely to contain mutations that altered their expression (see Outlier Detection below). The 

distribution of BCs identifying each promoter was uneven, 16.1% of the promoters had at least 3 BCs 

associated with them, while the remaining 83.9% had 2 or fewer (Supplementary Figure A1.S2).  Finally, 

expression driven by each CRE was calculated as the median ratio of all the BCs associated to it.  

 

Thermodynamic Model 

To model gene expression, we implemented a thermodynamic model of polymerase occupancy 

originally proposed by (Shea and Ackers 1985). The model and implementation were described 

previously in (Gertz and Cohen 2009; Gertz et al. 2009; Mogno et al. 2010), and it includes parameters 

proportional to DGs of the interactions between proteins and DNA and between proteins. We did not 

model nucleosome effects. We scanned our promoter sequences with the Nucleosome Positioning 

prediction software (Kaplan et al. 2008), and found very low correlation between predicted nucleosome 

occupancy averaged across the TFBS region and the measured expression (r=0.184). Moreover, the 
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averaged nucleosome occupancy predictions were very similar across our promoter sequences 

(CV=0.06). Akaike Information Criterion (Akaike 1974), which introduces a penalty term for the number of 

parameters, was used for model selection. Repeated random sub-sampling validation was performed for 

cross-validation with training sets containing 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 

and 90% of the total number of data points. All calculations were performed using the Matlab package 

from The Mathworks, Inc. (Natick, MA).  

 

Outlier Detection 

 Given the high rate of mutations in S. cerevisiae transformants, we expect 5-6% of the colonies to 

contain mutations that could affect gene expression. The CREs and the BCs are sequenced and matched 

before inserting the basal promoter and YFP gene, and before the transformation into S. cerevisiae; 

therefore we do not detect mutations in subsequent steps. CREs represented by 3 or more BCs are not 

affected by this problem, since outlier detection is an easy task in these cases. However, our library 

contains 1806 CREs associated either with one BC only, or with multiple BCs and high variance in 

expression (CV>0.5). Replicate experiments showed that 95% of the CREs represented by only one BC 

produce an accurate measure of gene expression. Instead of eliminating all the CREs represented by a 

low number of BCs, we used the thermodynamic model in a recursive way to identify the true outliers.  

 The first step was to apply the thermodynamic model only to the 827 CREs represented by 2 or 

more BCs, and characterized by low expression variance (CV<0.5). The fit model was used to calculate 

the error for each of the excluded 1806 CREs. The excluded CREs were ranked based on the error and 

reintroduced to the model one at the time until the overall R2 dropped 10% with respect to the original 

model.  This resulted in the exclusion of about 100 CREs. Then the thermodynamic model was applied 

only to the selected CREs. The CREs excluded from our analysis represent the ones whose expression 

cannot be explained by the model. There could be two reasons for this: 1) they contain high 

measurement error, or 2) they contain a specific feature not included in the model. To test whether these 

CREs contain features that we were not capturing with our model, we looked at the sequence contents of 

these excluded CRE: they were not enriched in length (number of building blocks), they were not 

enriched in any specific TFBS, or in any pair of TFBSs. We also tested several models: we added 
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parameters to include 4 or 6 TFs, and to capture the Gcr1-Gcr1 and the Gcr1-Rap1 sites interactions. 

Each time we repeated this recursive procedure, excluding between 96 and 115 CREs, and found no 

common sequence feature in the excluded sets. Moreover, the pairwise intersections of the excluded sets 

were always between 96% and 100%, indicating a small, reproducible set of outliers. After these analyses 

we concluded that the unexplained expression for these outlier promoters must be due either to 

sequencing errors, or to secondary mutations that occurred during their transformation into S. cerevisiae. 

We excluded these outliers from our final analysis, obtaining a final set of 2534 CREs.  

 

PWM Analysis 

 PWM models for TF binding (MacIsaac et al. 2006; Pachkov et al. 2007; Foat et al. 2008; Spivak 

and Stormo 2012) were used to estimate the affinity of TFs to their cognate TFBSs. We used patser 

(Stormo et al. 1982) to calculate these scores. The PWM scores are proportional to the –DG of the 

interaction.  
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FIGURE A1.1 

 
 
Figure A1.1 Schematic of the CRE-seq method adapted for this study. A) Double stranded 
oligonucleotides encoding TFBS are mixed in a pool and ligated randomly to create a CRE library. B) 
After cloning CRE and BC sequences into a reporter plasmid, the concordance between CREs and BCs 
is determined with a paired-end next generation sequencing run. Each BC identifies a single CRE. C) The 
cassette containing the library of CREs upstream of a basal promoter driving YFP and BC is integrated 
into the S. cerevisiae genome at the TRP1 locus by selecting for URA+ cells. D) Cells are grown in liquid 
culture, and gDNA and RNA is harvested. The fraction of reads in the cDNA pool divided by the fraction 
of reads in the gDNA pool for each BC is a quantitative measurement of the expression driven by the 
corresponding CRE.  
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FIGURE A1.2 

 
 
Figure A1.2 CRE-seq accurately measures gene expression.  A) Comparison between expression 
measured by CRE-seq and flow cytometry. Each dot represents a CRE whose activity has been 
measured with a traditional fluorescent assay (y-axis) and with CRE-seq (x-axis). The high correlation 
indicates that CRE-seq expression measurements are as accurate as those measured by traditional 
fluorescent assay. The red line represents the perfect model (r=1). B) Biological replicates of a CRE-seq 
library where expression is controlled by one CRE matched to 602 different BCs. The library was grown 
and harvested two times; CRE-seq was performed independently on each replicate. Replicate 
measurements of BC expression are plotted on the x-axis (replicate 1) and on the y-axis (replicate 2). The 
absence of correlation reveals that the BCs have no reproducible effects on gene expression.  
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FIGURE A1.3 

 
 
Figure A1.3 The thermodynamic model consists of a set of interactions that govern TF-DNA and 
TF-TF binding. Each arrow represents an interaction included in the model in the form of a parameter 
proportional to the DG. Black arrows represent the free parameters. A) The set of interactions allowed in 
the simplest model: each TF is allowed to bind to its cognate TFBSs, and to interact with polymerase. 
Mig1 is allowed to interact with itself when two or more Mig1 sites are present in the same promoter. B) 
The set of interactions applied to the model with the highest score: a protein X other than Reb1 is allowed 
to bind at site Reb13, and a protein Y other than Rap1 is allowed to bind at site Rap12. Both Mig1 and 
Gcr1 are allowed to interact with themselves when two or more of their sites are present in the same 
promoter.   
  



78 

FIGURE A1.4 

 
Figure A1.4 A) Several model structures with different sets of rules have been applied to the data. Each 
dot represents a specific model, whose score is on the y-axis. The score is plotted as the absolute value 
of the AIC score, calculated taking into account the RSS and a penalty term for the number of free 
parameters (Methods). An increase in the plotted score (thus a decrease in the AIC score) indicates a 
better model. Increasing the number of TFs included in the model from 4 to 6 increases the score. The 
addition of the Gcr1-Gcr1 (GG) interaction always results in a better score. The addition of the Gcr1-Rap1 
(GP) interaction always results in a worse score. The model with the best score is the one with 6 TFs and 
the Gcr1-Gcr1 interaction. All model represented in this plot include the Mig1-Mig1 interaction.  B) The 
thermodynamic model with 6TFs and Gcr1-Gcr1 interaction accurately predicts synthetic promoter gene 
expression. Each dot represents expression driven by one of the 2534 CREs we assayed in this study. 
The measured CRE-seq expression is on the x-axis, while the predicted expression from the 
thermodynamic model is shown on the y-axis. R2=0.57 shows that our model explains 57% of the 
variance in the data. The red line represents the perfect model (R2=1). 
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FIGURE A1.5 

 
 
Figure A1.5 Gcr1 binding sites have complex effects on expression.  A) When Gcr11 sites are added 
to promoters containing only Reb11 or Rap11 TFBSs, their effect is to increase the activation of gene 
expression.  However, when Gcr11 sites are added to promoters containing only Mig11 sites their effect 
on gene expression is repressive. B) Gcr11 TFBS has a weaker repressive effect when added to low 
affinity Mig1 sites (Mig12 and Mig13). C) Gcr1 TFBS with low affinity (Gcr13 and Gcr12) have weak 
repressive interactions when combined with high affinity Mig1 sites (Mig11). 
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TABLE A1.1 

TFBS Sequence Promoter MacIsaac PWM score 
Mig11 CCCCGGATTT SUC2 10.4 
Mig12 CCCCACAAAT MAL61 9.82 
Mig13 CCCCAGGTAT GAL3 6.69 
Reb11 TTACCCGT TPI 8.68 
Reb12 TCACCCGT TRPI 6.15 
Reb13 CAGCCCTT GALI -3.11 
Rap11 ACACCTGGACAT TPI 7.66 
Rap12 ACCCCTTTTTAC TPI -3 
Rap13 ACACCCAAGCAT TPFI 9.95 
Gcr11 CAGCTTCCT TPI 2.88 
Gcr12 CGGCATCCA TPI 7.7 
Gcr13 CGACTTCCT ADH1 8.76 

 
Table A1.1 Summary of binding sites used in this study. This table reports the 12 TFBS sequences in 
our library, including S. cerevisiae promoters where they are present and the PWM score (MacIsaac et al. 
2006). 
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TABLE A1.2 

TFBS A TFBS B PWM DGB - DGA Thermodynamic model DGB - DGA 
Mig11 Mig12 0.58 1.10 ± 0.12 
Mig11 Mig13 3.71 4.40 ± 1.88 
Rap11 Rap13 -2.29 -1.52 ± 0.51 
Reb11 Reb12 2.53 -0.14 ± 0.11 
Gcr11 Gcr12 -4.82 -0.86 ± 0.24 
Gcr11 Gcr13 -5.88 -0.37 ± 0.30 

 
Table A1.2 Comparison between TFBS affinities predicted by thermodynamic modeling and PWM 
analysis. For each combination of variant binding sites (columns 1 and 2), we show PWM predicted 
relative affinities (column 3) and thermodynamic modeled relative affinities (column 4). Each numeric 
value represents the change in DG for the variant in the second column with respect to the variant in the 
first column (DDG). A positive number predicts that site B has a weaker affinity than site A, while a 
negative number predicts site B has a stronger affinity than site A.  
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SUPPLEMENTARY FIGURES AND TABLES 

 
TABLE A1.S1 

 
Parameter Values ±95% CI 
DGMig1-RNAP 3.76±1.95 
DGMig1(R)-RNAP 3.95±2.68 
DGReb1-RNAP -0.14±0.08 
DGReb1(R)-RNAP -0.05±0.11 
DGRap1-RNAP -0.35±0.11 
DGRap1(R)-RNAP -0.21±0.11 
DGGcr1-RNAP -0.27±0.10 
DGGcr1(R)-RNAP -0.37±0.08 
DGX-RNAP -0.24±0.08 
DGX(R)-RNAP -0.13±0.07 
DGY-RNAP -0.18±0.06 
DGY(R)-RNAP -0.20±0.06 
DGMig1-Mig1 -0.68±0.33 
DGGcr1-Gcr1 -0.15±0.12 
DGMig12-DNA - DGMig11-DNA 1.10 ± 0.12 
DGMig13-DNA - DGMig11-DNA 4.40 ± 1.88 
DGRap13-DNA - DGRap11-DNA -1.52 ± 0.51 
DGReb12-DNA - DGReb11-DNA -0.14 ± 0.11 
DGGcr12-DNA - DGGcr11-DNA -0.86 ± 0.24 
DGGcr13-DNA - DGGcr11-DNA -0.37 ± 0.30 
R2 0.57 

 
Table A1.S1 This table reports the estimated parameters of our thermodynamic model as proportional to 
DG or the difference of DGs (DDG). X and Y denote the unknown TFs predicted to bind at site Reb13 and 
Rap12 respectively. (R) denotes the TFBS in the reverse orientation. A negative value for DG between TF 
and RNAP or TF-TF indicates a favorable interaction, while a positive value indicates an unfavorable 
interaction.  A negative value for the difference of DGs between TF and DNA indicates a stronger site 
(higher affinity), while a positive value indicates a weaker site (lower affinity).  
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TABLE A1.S2 

 
Primer 
name 

Sequence 

prIM01 GGCCGAANNNNWNNNNWNNNNNAGCTCGT 
prIM02 CTAGACGAGCTNNNNNWNNNNWNNNNTTC 
prIM03 TATAGGTACCGGCTCGGGTTGGCAAA 
prIM04 GTTCCGGCCGTTATTTGTACAATTCATCCATACCATGGGT 
prIM05 TGAATTGTACAAATAAGCGGCCGAA 
prIM06 TTAACTCGAGAAGTAGATAAAGTCAGTGCTTAAACAC 
prIM07 ATATCTCGAGCCTGCGATGTATATTTTCCTGTAC 
prIM08 CAAGCAGAAGACGGCATACGAGCTCTTCCGATCT 
prIM09 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT 
 
Table A1.S2 Primer sequences used in this study.  
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FIGURE A1.S1 

 
 
Figure A1.S1 The complete CRE-seq cloning strategy with chromosomal integration. First, we 
cloned the CREs into a plasmid creating a library of CRE sequences.  Into this library we then cloned a 
library of BCs downstream of the CREs. To match CREs to BCs we digested away the plasmid 
backbone, ligated Illumina adapters, and sequenced the DNA with a paired end run. We then inserted the 
basal promoter and YFP gene between the CREs and the BCs. Finally, we integrated the library cassette 
into S. cerevisiae at the TRP1 locus, and pooled colonies for use in the CRE-seq assay.  
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FIGURE A1.S2 

 
 
Figure A1.S2 Distribution of BC number per CRE. 66.7% of the CREs are represented by 1 BC only, 
and 16.1% of the CREs are represented by 3 or more BCs. 
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FIGURE A1.S3 

 
 
Figure A1.S3 The effect of 0, 1 and 2 Gcr1, Reb1 and Rap1 sites on gene expression. While 
expression (y-axis) grows linearly with the number of Reb1 and Rap1 sites (x-axis, panels B and C), Gcr1 
shows a different behavior (panel A). We observe no increase over basal expression until two Gcr1 sites 
are present. This plot includes all promoters containing 0, 1, or 2 sites of interest, among other sites. 
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FIGURE A1.S4 

 
 
Figure A1.S4 Expression of promoters composed of the same TFBSs. The expression driven by 
CREs containing adjacent Gcr11 and Mig11 sites (y-axis), is, in general, lower than the expression driven 
by CREs with the same TFBS content but non-adjacent Gcr11 and Mig11 TFBSs (x-axis).  
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FIGURE A1.S5 

 
 
Figure A1.S5 Repeated random sub-sampling validation results. The 2534 data points were split in 
two sets, a training set and a validation set. The size of the training set varied; sets were defined by 
randomly picking 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80% or 90% of the total number of 
data points. The model was fit on the training set and then applied to the validation sets. R2 values were 
estimated for the two sets. The R2 values reported in the first panel of the figure are averaged across the 
20 trials of this procedure. The figure shows that with 1000 unique data points (CREs), we have similar 
performances in the training set as in the validation set. With fewer data points the model is over-fit and 
predicts the validation set less well. The second panel shows that the number of significant parameters 
increases with the number of data points. When we include fewer than 2000 promoters we lose significant 
parameters, while the values of the others do not change significantly. This suggests that in order to 
recover weak behaviors we need to have a large number of unique promoters.  
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ABSTRACT 

The histone modification state of genomic regions is hypothesized to reflect the regulatory activity 

of the underlying genomic DNA. Based on this hypothesis, the ENCODE consortium measured the status 

of multiple histone modifications across the genome in several cell types and used this data to segment 

the genome into regions with different predicted regulatory activities (Dunham et al. 2012; Hoffman et al. 

2013). We measured the cis-regulatory activity of more than 2000 of these predictions in the K562 

leukemia cell line. We tested genomic segments predicted to be Enhancers, Weak Enhancers, or 

Repressed elements in K562 cells, along with other sequences predicted to be Enhancers specific to the 

H1 human embryonic stem cell (H1-hESC) line. Regions annotated as Repressed in K562 cells and 

Enhancer elements in H1-hESC did not show cis-regulatory activity in K562 cells greater than that 

produced by negative controls. In contrast, both Enhancer and Weak Enhancer sequences in K562 cells 

were more active than negative controls, although surprisingly, Weak Enhancer segmentations drove 

higher expression than Enhancer segmentations. Lower levels of the covalent histone modifications 

H3K36me3 and H3K27ac, thought to mark active enhancers and transcribed gene bodies, associate with 

higher expression and partly explain the higher activity of Weak Enhancers over Enhancer predictions, 

suggesting that our understanding of these particular modifications is incomplete.  While DNase 

hypersensitivity (HS) is a good predictor of active sequences in our assay, transcription factor (TF) 

binding models need to be included in order to accurately identify highly expressed sequences. Overall 

our results support the notion that histone modification states reflect the cis-regulatory activity of 

sequences across the genome, but also suggest that specific sequence preferences such as transcription 

factor binding sites are the causal determinants of cis-regulatory activity.  
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INTRODUCTION 

It is widely reported that specific combinations of covalent histone modifications reflect the 

regulatory function of underlying genomic DNA sequence (Strahl and Allis 2000). As part of the ENCODE 

project the genomic locations of a variety of covalent histone modifications were determined by chromatin 

immunoprecipitation sequencing (ChIP-seq) in a number of cell types and cell lines. Two studies used 

these data to train computational models that predict different functional regions of the human genome. 

These unsupervised learning algorithms, Segway (Hoffman et al. 2012) and ChromHMM (Ernst and Kellis 

2010; Ernst and Kellis 2012), take functional genomics data as input (DNase-seq; FAIRE-seq; and ChIP-

seq of histone modifications, RNA Polymerase II, and CTCF) and return segmentation classes, which are 

then assigned a hypothesized function using current knowledge of histone modification function. As part 

of the ENCODE project, these two sets of predictions were consolidated to create a unified annotation of 

the entire human genome with seven functional classes in multiple cell types. These segmentations 

include Transcription Start Site, Promoter Flanking, Transcribed, CTCF-bound, Enhancer, Weak 

Enhancer, and Repressed or Inactive segments (Dunham et al. 2012; Hoffman et al. 2013). If histone 

modifications accurately reflect the regulatory activity of their associated DNA, then these segmentation 

classes should have measurably different cis-regulatory activities.  

In this study we tested whether the segmentation classes determined by ENCODE have different 

effects on gene regulation in their predicted cell type. We used CRE-seq, a massively parallel reporter 

assay, to determine whether 1) sequences in the Enhancer, Weak Enhancer and Repressed classes 

drive expression that is different from that produced by negative controls, 2) sequences in different 

segmentation classes drive different levels of gene expression, and 3) sequences control gene 

expression level consistent with their predicted segmentation labels. We find that segmentation 

predictions drive distinct levels of expression.  In particular, enhancer predictions drive expression that is 

different than the expression levels driven by negative control sequences.  We find that chromatin 

features can distinguish highly expressed sequences with some accuracy, but transcription factor binding 

preferences better identify the most highly expressed sequences.  

 

RESULTS 
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CRE-seq Library and Measurements 

We used a high-throughput multiplexed reporter assay (Kwasnieski et al. 2012; Melnikov et al. 

2012; Patwardhan et al. 2012) to characterize the regulatory activity of 2100 randomly chosen sequences 

annotated as Enhancer, Weak Enhancer, or Repressed. Specifically, we tested sequences with the 

following annotations in the K562 cell line: 600 Enhancer regions, 600 Weak Enhancer regions, and 300 

Repressed regions. In order to test the cell-type specificity of the segmentation predictions, we also 

tested 600 Enhancer predictions from the H1-hESC cell line that are not annotated as Weak Enhancers 

or Enhancers in K562 cells. 

We sought to establish an empirical null distribution as a negative control for activity in this assay, 

against which to compare the activities of sequences from the different segmentation classes. We 

randomly selected 284 sequences from each class of predictions and scrambled the nucleotide sequence 

of each while maintaining dinucleotide content, in order to preserve basic sequence features of the 

segment such as CpG frequency and nucleosome favoring signals. We designed our experiment to 

compare the expression distribution for each segmentation class to the expression distributions from their 

corresponding scrambled negative controls. Including predicted cis-regulatory elements (CREs) and 

scrambled negative controls, our final experimental design included 3237 distinct reporter gene 

constructs.  

We used CRE-seq, a massively parallel reporter gene assay (Kwasnieski et al. 2012) to 

simultaneously measure the expression of all constructs. We first synthesized 13,000 unique 200-mer 

DNA sequences using array-based oligonucleotide (oligo) synthesis (LeProust et al. 2010). Each 

predicted CRE was replicated four times on the array, and each replicate was tagged with a unique nine 

basepair (bp) barcode, providing redundancy in the expression measurements. The 200 bp limit of 

oligonucleotide synthesis, along with the requirement to include priming sites and restriction enzyme sites, 

limited our tested CREs to 130 bp of each segmentation prediction. For the Enhancer and Weak 

Enhancer classes, we selected the entire region of 300 short (121-130 bp) genomic segments, and the 

central 130 bp of 300 longer genomic segments (>130 bp). As only a small fraction of Repressed 

segments are less than 130 bp in length, we tested only central sequences from this class. We chose the 
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center because it is an unbiased portion that does not incorporate additional histone or sequence features 

beyond the algorithms’ output. This allows us to appropriately test the predictive power of the 

segmentations. Finally, we used the array-synthesized oligos to create a library of these CREs cloned 

upstream of the Hsp68 minimal promoter in which each reporter construct contains a unique sequence 

barcode in its 3’ UTR (Kwasnieski et al. 2012). The resulting plasmid library was then transfected into 

K562 cells, and RNA was isolated after 22 hours.  

To measure CRE activity, we quantified the level of each barcode in the transfected cells using 

RNA-seq, and normalized the RNA barcode counts by the abundance of each barcode in the plasmid 

DNA pool. The RNA/DNA ratio of barcode counts is a quantitative measure of the expression driven by 

each CRE in the library (Kwasnieski et al. 2012). We performed four independent transfections in K562 

cells and found that our expression measurements are precise, displaying high reproducibility between 

biological replicates (Figure A2.1A, R2 range: 0.95-0.97). 

 

Expression of Segmentation Classes 

We compared the activity of each class of segmentation prediction to the activity controlled by its 

matched scrambled distribution. We used two independent metrics to classify individual segmentations as 

“active” or “inactive”. First, we computed the fraction of CREs within a segmentation class that drive 

expression higher than that of the 95th percentile of the matched scrambled expression distribution. 

Second, for each CRE we compared its sixteen replicate measurements (four barcodes per CRE in four 

independent experiments) with the distribution of the scrambled controls (Wilcoxon Rank Sum Test, 

p<0.05, Bonferroni correction with N=2100). Using these metrics, a significant number of Enhancer and 

Weak Enhancer CRE predictions are active (Figure A2.1B, A2.1C, Table A2.1). In contrast, neither the 

K562 Repressed regions nor the H1-hESC Enhancer regions show activity that is significantly different 

from their scrambled negative controls (Figure A2.1D, A2.1E, Table A2.1). Enhancer and Weak Enhancer 

regions show distinct levels of activity from both the K562 Repressed and H1-hESC Enhancer regions 

(Wilcoxon Rank Sum, P<0.01).  Moreover, segmentations from the Repressed category did not repress 

expression below the 5th percentile of their matched scrambled controls, suggesting that these sequences 

are transcriptionally inactive and not repressive. We get the same results regardless of whether the 
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sequences are short segmentations included in their entirety, or longer predictions from which we 

included only the central 130 bp (Supplemental Figure A2.S1), indicating that our results are not biased 

by the method of choosing 130 bp sequences for testing. Taken together, we conclude that sequences 

annotated as Enhancer and Weak Enhancer segments have increased levels of activity over their 

corresponding null distributions, and that different segmentation classes produce distinct median levels of 

activity in our assay.  

Unexpectedly, we found that sequences classified as Weak Enhancers drive a higher median 

level of activity than sequences classified as Enhancers (Supplemental Figure A2.S2, P=3.7e-4 by 

Wilcoxon Rank Sum). The difference between the two classes is even greater when comparing the 

fraction of CREs we designated as “active” relative to their matched scrambled sequences. (Table A2.1). 

Compared to Weak Enhancers, segmentations in the Enhancer class have higher GC content 

(Supplementary Figure A2.S3B), a sequence feature associated with higher cis-regulatory activity 

(Landolin et al. 2010; Lidor Nili et al. 2010; White et al. 2013).  Indeed scrambled sequences derived from 

the Enhancer class drive higher expression than scrambled sequences from the Weak Enhancer class 

(Supplementary Figure A2.S3A). Therefore, despite having higher GC content, a feature associated with 

higher expression, the Enhancer predictions drive lower expression than the Weak Enhancer predictions. 

This suggests that some additional determinant is responsible for the higher activation of segments 

labeled as Weak Enhancers. 

We asked whether differences in covalent histone modifications might explain the difference in 

expression between Weak Enhancers and Enhancers. We compared the levels of all histone 

modifications (Hoffman et al. 2013) that were measured in K562 cells between the two classes. Weak 

Enhancers were segmented from Enhancers by their lower levels of the histone modification H3K27ac 

(Creyghton et al. 2010) (Figure A2.2B), thought to signify active enhancers, and H3K36me3 (Barski et al. 

2007) (Figure A2.2D), often thought to signify a transcribed gene body but recently also found in silenced 

genes (Chantalat et al. 2011). Surprisingly, lower levels of both of these covalent histone modifications 

are associated with higher expression of enhancers in our assay (Wilcoxon Rank Sum Test, p<10-5, 

Figure A2.2A, A2.2C), even within the Enhancer or Weak Enhancer classes (Supplemental Figure A2.S4). 

We did not find an association of H3K27ac signal in the larger context (up to 500bp surrounding the 
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selected regions) or H3K27ac dip score with active enhancers (Kheradpour et al. 2013) (data not shown). 

Thus, Weak Enhancers may have more activity than Enhancers in part because they have lower 

enrichment of H3K27ac and H3K36me3, which associate with higher activity in our assay. These histone 

modifications do not fully explain the expression differences between these two classes indicating that 

other sequence features must explain the higher activity of Weak Enhancers. 

 

Sequence and Chromatin Features 

We searched for sequence and chromatin features that could predict activity across all 

segmentation classes in our assay. Two primary sequence features (GC content and minor groove width 

as estimated by ORChID2 (Rohs et al. 2009; Bishop et al. 2011) score) and six chromatin features 

(Dunham et al. 2012; Hoffman et al. 2013) (DNase HS from Duke; DNase HS from University of 

Washington [UW]; Faire-seq; and ChIP-seq of H3K4me1, H3K36me3, and RNA Pol2) are significantly 

enriched in sequences that drive high expression in our assay (Wilcoxon Rank Sum test, P<0.05 

corrected with Bonferroni method, N=16). We used these data to develop a quantitative model that 

distinguishes active CREs from inactive CREs. Of these eight features, DNase HS (UW) signal best 

separated the active from inactive sequences (Figure A2.3A, A2.3B, AUC=0.685), suggesting that DNA 

accessibility is a good indicator of the cis-regulatory potential of a sequence (Thurman et al. 2012). No 

other single feature performed as well as DNase HS signal. A logistic regression model with the above-

mentioned six chromatin features and two primary sequence features (PSF), improves the classification 

of active sequences (Figure A2.3A, AUC=0.733), but only marginally above that of DNase HS alone. We 

therefore hypothesized that additional sequence-specific binding features, such transcription factor 

binding motifs, may better explain expression.  

We investigated whether the inclusion of transcription factor (TF) binding specificities improved 

our ability to explain the expression differences we observed in our assay. Using several libraries of TF 

binding models (Newburger and Bulyk 2009; Jolma et al. 2013; Mathelier et al. 2013), we searched for 

motifs enriched or depleted in activated CREs and found 50 significant, non-redundant motifs. A logistic 

regression model that incorporated these binding models performs better at distinguishing active 

sequences than the chromatin and PSF model (Figure A2.3A, AIC (Akaike 1974): 1881 vs. 1729 for 
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model with motifs; AUC=0.802). We performed 5-fold cross-validation on all of the models and observed 

little decrease in predictive power, suggesting that our model is not over-fit (Supplemental Table A2.S2). 

The predicted motif for Activator Protein 1 (AP1), a heterodimer of TFs in the FOS and JUN families(Hess 

et al. 2004), is the most significantly enriched motif in highly expressed CREs. The expression driven by 

CREs with predicted AP1 motifs is significantly higher than the expression driven by sequences without 

the motif (Figure A2.3C, log2 ratio of 0.96, p<2.2x10-16). Furthermore, highly expressing CREs are 

significantly enriched for sequences that are bound by FOS and JUN family TFs in K562 cells 

(Consortium 2011). (Figure A2.3D; p=8.8x10-10 by Fisher’s exact test, odds ratio=4.2). These data 

suggest that AP1 is responsible for the activity of many enhancers in K562 cells, as previously reported 

(Muthukrishnan and Skalnik 2009; Kheradpour et al. 2013), and, as a consequence, the enhancers’ 

histone modification state.   

DISCUSSION  

In this study we directly tested the cis-regulatory activity of segmentation predictions based on 

histone modification data from the ENCODE project. We found that these predictions were cell type-

specific in K562 cells and could accurately distinguish enhancer sequences from non-enhancer 

sequences. Our results suggest that combinations of TF binding preferences, not histone modifications 

alone, are most predictive of actively expressing genomic sequences, a result supported by other 

attempts to define the sequence features of enhancers (Heinz et al. 2010; Lee et al. 2011; Arvey et al. 

2012; Gorkin et al. 2012; Smith et al. 2013). These results support a model where TF binding and 

subsequent transcriptional regulation configure the immediate chromatin environment (Struhl and Segal 

2013), leading to the constellation of histone modifications observed in segments with high cis-regulatory 

activity. However, even our model incorporating all of the available features is only moderately predictive 

(AUC=0.84) and cannot quantitatively predict expression level. This suggests that more complex features 

determine the quantitative expression levels controlled by enhancers.  

We conclude that the Repressed segmentation class consists mostly of sequences with no 

transcriptional activity rather than cis-regulatory sequences that actively repress transcription. We have 

previously shown transcriptional repression by short enhancers (White et al. 2013), indicating that the 

length of CREs we tested cannot explain this result. There are two possible explanations for why we did 
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not see repression in this assay. First, the Repressed segmentation class contains mostly sequences with 

predicted low activity by either the ChromHMM or Segway algorithms, with only a small fraction of the 

sequences predicted to have repressive activity by these algorithms. Second, it is possible that we are 

unable to predict combinations of histone modifications that signal repression such that no segmentation 

successfully defines repressive activity. Because a large fraction of regulated gene expression works 

through the activity of transcriptional repressors, identifying combinations of histone modifications that 

reflect repression is still an important challenge. 

Finally, we conclude that combinations of histone modifications identify functional enhancers, but 

our interpretation of these combinations needs to be refined. In particular, high levels of the covalent 

histone modifications H3K27ac and H3K36me3 are thought to mark active enhancers and transcribed 

gene bodies or even heterochromatic regions (Barski et al. 2007; Creyghton et al. 2010; Chantalat et al. 

2011). Among segments marked as Enhancers or Weak Enhancers, lower enrichment of these 

modifications is found at segments with high activity in this assay. This finding suggests that the precise 

function of these modifications needs to be explored, as it is clear that there is no simple linear 

relationship between the level of these modifications and expression.  
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MATERIALS AND METHODS 

 

CRE-seq Library Construction 

A pool of 13,000 unique 200-mer oligos was ordered through a limited licensing agreement with 

Agilent Technologies. Oligos were structured as follows: 5’ priming sequence (GTAGCATCTGTCC)/NheI 

site/CRE/HindIII site/XhoI site/SphI site/ barcode/SacI site/3’ priming sequence (CGACTACTACTACG). A 

more detailed diagram of array sequence is provided in Supplemental Figure A2.5. 

The plasmid library was prepared as described (Kwasnieski et al. 2012), except using primers 

CF166 and CF167 (Supplemental Table 1) and an annealing temperature of 57C. The amplified library 

product was purified on a polyacrylamide gel as described (White et al. 2013). The library plasmid 

backbone, CF10, was created from the plasmid pGL4.23, by cloning dsRed-Express2 between the 

Acc65I and FseI sites. Purified library amplicons were cloned into CF10 using NheI and SacI. We 

prepared DNA from 100,000 colonies to generate PL7_1. We then cloned the Hsp68 promoter driving 

DsRed into PL7_1. A cassette containing the Hsp68 promoter was amplified from pGL-hsp68 with 

primers CF121 and CF168 (Supplemental Table 1). pGL-hsp68 was created by amplifying the hsp68 

promoter from hsp68LacZ (kind gift of M. de Bruijn, Oxford Stem Cell Institute, Oxford, UK) using primers 

JKO25F and JKO25R (Supplemental Table 1). The hsp68 DsRed amplicon was cloned into library PL7_1 

by using HindIII and SphI, creating library PL7_2. 

 

Cell culture and Transfection 

K562 cells were maintained in Iscove's Modified Dulbecco's Medium (IMDM) medium with 10% 

Fetal Bovine Serum and 1% Amino Acids (Life technologies). The plasmid library was purified by phenol-

chloroform extraction and ethanol precipitation before transfection. The Neon transfection system (Life 

technologies) was used to transfect the plasmid library. For each replicate, 1.2 million cells were pelleted 

by centrifugation, washed with PBS and resuspended in 100µl of Buffer R. 27µg plasmid library DNA 

along with 3 µg of pMax-GFP as a positive control was transfected into the cells by using three 10ms 

pulses at 1450V. The transfected cells were seeded into T-25 flasks with 5ml of the growth medium and 

incubated at standard conditions. Transfection efficiency was greater than 90% (data not shown). 
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Selection of Segmentation Predictions  

 Segmentation predictions (Dunham et al. 2012; Hoffman et al. 2013) were downloaded from the 

ENSEMBL genome browser and converted to UCSC notation. We filtered predictions that overlapped 

with the ENCODE DAC Blacklisted Regions (http://moma.ki.au.dk/genome-mirror/cgi-

bin/hgFileUi?db=hg19&g=wgEncodeMapability) or Repeat Masker regions 

(http://www.repeatmasker.org/species/homSap.html).  

We also removed predictions that contained restrictions site sequences that we intended to use 

for cloning sequences into a plasmid library. To select H1-hESC Enhancer predictions, we removed H1-

hESC Enhancer predictions that overlapped with K562 Enhancer or Weak Enhancer predictions. Next we 

sorted predictions by chromosome, and separated them by length into long (>130 bp) and short (121-130 

bp). To choose the predictions to test, we selected lines of this file at regular intervals, so the tested 

CREs span all chromosomes of the human genome.  

 

Preparing Samples for RNA-Seq 

RNA was extracted from K562 cells 22 hours after transfection using the PureLink RNA mini kit 

(Life Technologies) and then excess DNA was removed using the TURBO DNA-free kit (Applied 

Biosystems), following manufacturer’s instructions. First strand cDNA was synthesized from the RNA 

using SuperScript II Reverse Transcriptase (Life Technologies). Both the cDNA samples and the DNA 

from the original plasmid library were prepared for sequencing using a custom protocol as 

described(Kwasnieski et al. 2012). Briefly, we used PCR amplification of the sequence surrounding the 

barcode in the RNA transcript or plasmid using primers CF150 and CF151b (Supplemental Table 1). We 

then digested the PCR product using SphI and XhoI and ligated Illumina adapter sequences (MO576/582, 

MO577/583, MO578/584, MO579/585, Supplemental Table 1) to these amplified sequences. Two lanes 

of the Illumina HiSeq machine were used to sequence this barcode region from the cDNA and DNA, and 

reads that perfectly matched the first 13 expected nucleotides were counted, regardless of quality score. 

This resulted in 77.5 million reads from the cDNA, across 4 biological replicates, and 34.8 million reads 

from the DNA. Only barcodes with >=50 reads in the DNA pool and >=3 reads in the cDNA pool were 
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used for downstream analysis. The expression of each barcode was calculated as (cDNA reads)/(DNA 

reads) and then normalized to the expression of the basal promoter alone. The expression of each CRE 

was calculated as the mean of the expression of each BC associated with it. 

 

Data sources 

We used the normalized chromatin ChIP-seq, Faire-seq, and DNase-seq data used in the 

integrated segmentation of the genome by Hoffman et al. (Hoffman et al. 2013), which can be accessed 

at https://sites.google.com/site/anshulkundaje/projects/wiggler. These included (all from K562 cell line): 

CTCF, Duke DNase, UW DNase, Faire, H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2, 

H3K4me3, H3K9ac, H4K20me1, Pol2, and Control. This data was produced by the ENCODE consortium 

(Dunham et al. 2012). The signal associated with each CRE we analyzed was the average signal over 

that segment. 

The TF binding matrices were taken from three databases: JASPAR vertebrate (146 matrices) 

(Mathelier et al. 2013), uniPROBE (757 matrices) (Newburger and Bulyk 2009), and high-throughput 

SELEX (820 matrices) (Jolma et al. 2013). FIMO (Grant et al. 2011) was used to find binding sites in the 

CREs used in the assay (both genomic and scrambled), using the default options with a p-value threshold 

of 10-4. The AP-1 binding matrix that was enriched in highly expressed sequences in our assay was from 

JASPAR (MA0099.2). 

TF ChIP-seq data was obtained from 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegTfbsClustered/. 

GC-content and ORChID2 (Rohs et al. 2009; Bishop et al. 2011) scores were calculated from the 

nucleotide sequences of the CREs.  

 

Logistic regression models 

A logistic regression model was developed to predict sequences activated over the scrambled 

90th percentile. The parameters for the model were chosen from a filtered list of available genomic data 

and sequence features. Each of the three sets of parameters was filtered separately: histone data 

including primary sequence features (GC-content and ORChID2 scores), binding matrices, and a set of 



101 

peaks from TF ChIP-seq. Those scores that had a significantly different distribution of values in the active 

CREs (expression greater than the 90th percentile of the matched scrambled distribution) vs. the inactive 

CREs passed the filter. For the parameter set with histone data and primary sequence features (PSF) 

and the parameter set with binding matrices we used Wilcoxon rank sum test (p<0.05, corrected using 

Bonferroni with N=16 for histone and N=1687 for binding matrices). For the TF ChIP-seq peak data 

(which is in binary form) we used Fisher’s exact test (p<0.05, corrected using Bonferroni with N=16). 73 

binding matrices, 8 histone with PSF parameters (including GC-content and ORChID2 scores), and 8 TF 

ChIP-seq parameters passed the filter. The binding matrices were further filtered to remove ones that 

showed nearly identical binding patterns across the CREs (>=99% similar), resulting in 50 binding 

matrices.  

A logistic regression model for predicting actively expressed CREs was created for each of the 

three sets of parameters separately and with all sets of parameters together (66 total parameters). Only 

additive terms were used. We then created receiver operating characteristic (ROC) curves attempting to 

correctly predict the activated CREs (over 90th percentile of the matched scrambled distribution). The area 

under the curve (AUC) was calculated for each model as well as the best performing histone parameter 

(UW DNase), GC-content, and ORChID2 scores. Additionally, five-fold cross validation was used to 

ensure our models were not over-fit. The CREs were split into five training groups, and the model was 

trained on the data holding out each group in turn (beginning with the filtering of the parameters) and 

tested on the group held out. AUC was calculated for each of these sets, and the mean AUC from the five 

sets was calculated (Supplementary Table 2). 
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Figure A2.1 

 

Figure A2.1. Reproducible expression measurements show differences in expression by 
segmentation class. A) Representative scatterplot showing expression of each CRE in two biological 
replicates (R2=0.95, range of R2 between all replicates: 0.95-0.97). Dashed black line is line of equality 
and blue line is best fit. B-E) Histograms of genomic CRE expression measurements in K562 cells. Each 
class is compared to scrambled controls with equivalent GC and dinucleotide content (grey). Dashed 
lines are the 5th and 95th percentiles of the scrambled distributions. B) K562 Enhancer class (blue), C) 
K562 Weak Enhancer class (green), D) K562 Repressed class (red), E) H1-hESC Enhancer class 
(orange). 
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Figure A2.2 

 
Figure A2.2. Lower H3K27ac and H3K36me3 signal are associated with higher Weak Enhancer 
expression. Boxplots showing that A) H3K27ac signal and C) H3K36me3 signal are depleted in active 
CREs compared to inactive CREs. B) H3K27ac signal and D) H3K36me3 signal are also depleted in 
Weak Enhancers (green) compared to Enhancers (blue). Active CREs are those above 95th percentile of 
scrambled distribution (Table 1).  
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Figure A2.3 

 

Figure A2.3. Chromatin features and sequence-specific binding identify active sequences.  
A) Receiver operating characteristic (ROC) curve shows that a logistic regression model (“Model 
comprehensive”) incorporating sequence-specific binding motifs, chromatin features, primary sequence 
features (PSF), and TF ChIP data is best able to identify active sequences. Of logistic regression models 
with fewer features, one with sequence-specific binding motifs (“Model motifs”) does best, followed by a 
model incorporating chromatin and primary sequence features (“Model chromatin and PSF”), a model 
with only significant TF-ChIP features (“Model TF-ChIP”). Minor groove width as predicted by ORChID2 
score, GC content and DNase HS are also shown. Area under the curve (AUC) is indicated in legend. B) 
Boxplot showing that active CREs are enriched in high DNase HS signal over inactive CREs. C) Boxplot 
showing that CREs with at least 1 predicted AP-1 motif drive higher expression than CREs with no AP-1 
predicted motifs. D) CREs overlapping with ChIP-seq peaks for a FOS (FOS or FOSL1) family member 
and a JUN (JUNB or JUND) family member, the constituent proteins of AP-1, drive higher expression 
than unbound CREs. 
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Table A2.1 

Segmentation Prediction Active over 95% scrambled Active by Wilcoxon 
K562 Enhancer 11.3% [5%] 26.8% [13.4%] 
K562 Weak Enhancer 25.7% [5%] 39.7% [15.5%] 
K562 Repressed 5.35% [5%] 7.00% [8.45%] 
H1-hESC Enhancer 4.34% [5%] 12.0% [16.6%] 
 
Table A2.1. Percentage of active CREs by segmentation class. For each ENCODE segmentation 
class, the table shows the percentage of all genomic CREs that are active with the percentage of 
matched scrambled controls that are active in square brackets. Activation was determined by comparing 
CRE expression to the 95th percentile of matched scrambled controls (Active over 95% scrambled) or by 
statistically comparing replicate measurements of expression to matched scrambled control distribution 
(Active by Wilcoxon, Wilcoxon Rank Sum test, P<0.05, corrected using Bonferroni method with N=2100 
for genomic CREs and N=1136 for scrambled control CREs). 
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SUPPLEMENTARY FIGURES AND TABLES 

 
Table A2.S1 

Name Sequence 
Primer CF121 TAGCGTCGAGGACATCAAGA 
Primer CF150 TACACCGTGGTGGAGCAGTA 
Primer CF151b AGCGTACTCGAGTTGTTAACTTGTTTATTGCAGCTT 
Primer CF168 ATGCATGCCTAGAATTACTACTGGAACA 
Primer JKO25F CATCAAGCTTCTCCTCCGGCTCGCT 
Primter JKO25R CGTTGTAAAACGACGGGATC 
Adapter MO576 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGC

TCTTCCGATCTGCTCGATCATG 
Adapter MO577 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGC

TCTTCCGATCTTAGACTATCATG 
Adapter MO578 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGC

TCTTCCGATCTCGCTACCCTCATG 
Adapter MO579 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGC

TCTTCCGATCTATAGTGGACACATG 
Adapter MO582 ATCGAGCAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCT

CGGTGGTCGCCGTATCATT 
Adapter MO583 ATAGTCTAAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATC

TCGGTGGTCGCCGTATCATT 
Adapter MO584 AGGGTAGCGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGAT

CTCGGTGGTCGCCGTATCATT 
Adapter MO585 TGTCCACTATAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGA

TCTCGGTGGTCGCCGTATCATT 
 
Supplemental Table A2.S1: Oligonucleotide sequences used in this study. 
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Table A2.S2 

 
Model Num of Parameters AIC AUC CV mean AUC 
Histone and PSF 8 1881.5 0.733 0.722 
TF ChIP 8 2007 0.622 0.5974 
Binding 50 1728.9 0.802 0.758 
Comprehensive 66 1643.3 0.841 0.798 
 
Supplemental Table A2.S2: Logistic Regression Models. The four logistic regression models used to 
predict active CREs from our assay: Histone and primary sequence features (PSF) included histone 
features, GC-content, and ORChID2 score; TF ChIP included peaks from TF ChIP-seq; binding included 
predicted binding models for TFs; and comprehensive included parameters from all of the models. Akaike 
Information Criteria (AIC), area under the curve (AUC) using the full data for training and testing, and the 
mean AUC from 5-fold cross-validation (CV) is listed for each model.  
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Figure A2.S1 

 

Supplementary Figure A2.S1. Computing the fraction of active sequences does not depend on the 
method of choosing short segments. Histograms showing the distribution of expression for each class; 
A) Enhancers (blue), B) Weak Enhancers (green), C) H1-hESC Enhancers (orange); either for the 
sequences from the center of longer segments (“Center”), or from whole short segments (“Short”), 
compared to their matched scrambled controls (grey). The dashed lines indicate the 5th and 95th 
percentiles of the scrambled distribution. The percentage of elements with expression greater than the 
scrambled 95th percentile is indicated. 
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Figure A2.S2 

 

 
Supplementary Figure A2.S2. Weak Enhancers control higher median expression than Enhancers. 
Histogram of expression measurements, showing the distribution of Weak Enhancers (green) shifted to 
the right of that of Enhancers (blue). Lines show median expression for Enhancers (dotted) and Weak 
Enhancers (dashed). 
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Figure A2.S3 

 

Supplementary Figure A2.S3. Expression and GC Fraction of Scrambled CREs. A) Histograms 
showing the expression controlled by each set of scrambled sequences. B) Boxplots show the distribution 
of GC fraction for each category of scrambled sequences.  
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Figure A2.S4 

 

Supplementary Figure A2.S4. Active Weak Enhancer and Enhancer CREs have lower levels of 
H3K36me3 and H3K27ac. Boxplots showing that H3K27ac signal and H3K36me3 signal are depleted in 
active CREs compared to inactive CREs. Plots are similar to 2A and 2C except data is separated by 
segmentation class. Active CREs are those above the 95th percentile of the scrambled distribution (Table 
1).  
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Figure A2.S5 

 

Supplementary Figure A2.S5. Diagram of 200-mer Oligos Used to Construct the CRE-seq Library. 
Red sequences are used for PCR priming and blue sequences are restriction enzyme sites. The CRE is 
the 121-130bp sequence from the genomic predictions or scrambled controls. The FILL is 0-9bp of 
random sequence to bring the length of the whole oligo sequence up to 200bp. The length of the FILL 
sequence is calculated as 130-length of CRE. The BARCODE is a 9bp sequence that will label the 3’ 
UTR of the mRNA transcript. 
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