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ABSTRACT OF THE DISSERTATION 

Regulation and Inhibition of Pro-Tumorigenic Microenvironments 
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Age is the number one risk factor for the development of cancer. While accumulation of 

epithelial cell mutations is a driving factor for this risk, the role that the tumor 

microenvironment plays in this process is now well established. Indeed, seminal work 

has shown that tumorigenic cells unable to grow in xenografts can form tumors when 

supportive stromal cells are present. Work by many laboratories has demonstrated that 

a wide variety of cells including endothelial cells, immune cells, the extracellular matrix 

and fibroblasts can all assume a pro-tumorigenic phenotype. 

 

Like cancer-associated fibroblasts (CAFs), senescent cells promote all stages of tumor 

development and progression. We and others have demonstrated that senescent 

fibroblasts have an altered expression profile known as the senescence-associated 

secretory phenotype (SASP). The SASP is composed of pro-angiogenic, pro-

inflammatory, pro-growth and extracellular matrix remodeling proteins. Through the 



 ix 

SASP, senescent cells promote all stages of tumorigenesis.  Interestingly, senescent 

fibroblasts accumulate in human tissues with age, making them potential players in 

increasing cancer incidences. 

 

Given the profound impact the SASP has on nearly every step in the tumorigenic 

process I investigated how it is regulated. Furthermore, identification of SASP regulatory 

pathways will identify targets for anti-cancer therapies aimed at inhibiting the pro-

tumorigenic microenvironment. I have investigated the regulation of the SASP on 

several different levels. My work has uncovered a novel transcriptional regulator of 

SASP factor expression, c-myb. I have also identified a post-transcriptional regulatory 

network composed of p38MAPK and the RNA-binding protein AUF1, which regulates 

SASP mRNA stability and sustains SASP expression after the induction of senescence. 

Finally, I have demonstrated that p38MAPK is a viable stromal-specific therapeutic 

target for the inhibition of tumor-promoting microenvironments in general, not just those 

containing senescent fibroblasts. Indeed, cancer-associated fibroblasts (CAFs), which 

promote tumor growth through an altered gene expression profile similar to the SASP, 

are dependent upon p38MAPK activity. Inactivation of p38MAPK using an orally 

administered small molecule inhibitor results in significant blunting of both senescent 

fibroblast-driven and CAF-driven epithelial cell growth.  
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CHAPTER 1 

INTRODUCTION AND SIGNIFICANCE 

 

 

 

 

 

 

 

 

 

 

Portions of this chapter were published in 2013 in Critical Reviews in Oncogenesis 

18(6): 549-58 
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Tumors as organs: the importance of the tumor microenvironment 

The different cellular compartments that comprise normal tissues are constantly in 

communication with one another. The same is true for cancerous lesions, where the 

surrounding normal tissue (the microenvironment) plays a role in cancer progression.  

The first indication of the importance of the microenvironment to tumor development 

came from the observation that tumors in a xenograft setting could not grow in the 

absence of cancer-derived stromal tissue (1, 2).  

 

Different cell types within the microenvironment as well as the extra cellular matrix can 

influence every step of tumorigenesis. Cancer cells promote the growth and generation 

of new blood vessels (3-5), a process known as angiogenesis, which provides the 

growing tumor with oxygen and nutrients from circulating blood. The extracellular matrix 

provides migrating cancer cells with structure upon which to migrate. Furthermore, 

cancer cells activate proteases embedded in the extracellular matrix, which enables the 

remodeling of the extracellular matrix to aid in cancer cell invasion (6). Immune cells 

infiltrating into the tumor microenvironment create chronic inflammation, which 

correlates with increased cancer risk in a wide variety of tissues including the stomach 

and intestines (7, 8). Indeed, the role of the immune system in tumorigenesis is the topic 

of much investigation in recent years.  It has been shown that tumors can reprogram 

anti-tumorigenic infiltrating immune cells to pro-tumorigenic immune cells capable of 

inhibiting antitumor immunity and facilitating the escape of tumor detection by the 

immune system (9). Finally, stromal fibroblasts promote the growth of epithelial cells by 
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secreting factors that promote extracellular matrix remodeling, angiogenesis and 

reprogramming of the immune system (1, 10, 11). The role of stromal fibroblasts in 

tumorigenesis and how these cells promote all aspects of cancer growth and 

development will be discussed in detail in the following sections.  

 

Stromal fibroblasts in tumorigenesis: two flavors with similar functions 

Senescent fibroblasts increase the risk for cancer with age 

Age is the number one risk factor for the development of cancer (12). While traditionally 

this has been thought to occur because of the accumulation of mutations within the 

epithelial compartment, age-related changes in the microenvironment are now 

considered a contributor to this age-related risk factor.  

Specifically, the presence of senescent fibroblasts in the stroma is hypothesized to drive 

changes in the microenvironment that enable the growth and progression of cancer 

lesions.  

 

A primer on cellular senescence 

Cellular senescence was first described in vitro with the observation that primary cells 

have a finite replicative lifespan.  When cells reach the end of their replicative lifespan 

they are unable to reenter the cell cycle, yet remain metabolically active (13).  

Investigation into the mechanisms governing this finite replicative lifespan revealed that 

telomeres, the nucleo-protein structures located at the ends of the chromosomes, 

controlled replicative lifespan.   
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Senescent fibroblasts have several characteristics that distinguish them from actively 

dividing and quiescent cells (Fig 1.1).  Growth arrest is the most readily observed 

characteristic of senescent cells. Senescent cells typically arrest with a G1 DNA content 

(14) and display an enlarged and flattened morphology.  The growth arrest is permanent 

and senescent cells do not respond to strong mitogenic stimuli (15).  Growth arrest in 

senescent cells is mediated through activation of the senescence effector proteins Rb 

and p53 and results in the upregulation of cell-cycle inhibitors, including p21 and p16 

(16-18).  In contrast to quiescent cells, senescent cells are generally resistant to 

apoptosis (19).  

 

As alluded to earlier, senescence was originally characterized as being mediated by 

telomere dysfunction. In addition to this telomere dysfunction, it is now well accepted 

that senescence can be induced by a wide variety of stimuli.  Oxidative stress that 

arises from mitochondrial dysfunction and subsequent accumulation of reactive oxygen 

species (ROS) induces cellular senescence (20, 21).  Overexpression of oncogenes can 

also result in cellular senescence due to persistent DNA damage caused by over 

replication of the genome and uncontrolled cellular division (22, 23).  Other forms of 

DNA damage, including those induced by chemotherapy drugs (24-26) and irradiation 

(27) also result in cellular senescence.  Indeed, persistent DNA damage is a reoccurring 

theme in senescence-inducing stimuli, and one marker of senescent cells is the 

appearance of large, unresolved DNA-damage foci (28).  Interestingly, several groups 

have recently shown that these persistent damage foci are localized to telomeres, 
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regardless of whether the senescence-inducing stimulus was specific to telomeres or 

affected the whole genome (29, 30).  How these foci form and what function they play in 

the maintenance of the senescent phenotype is unclear.     

 

Senescent cells accumulate in tissues with age 

The accumulation of senescent cells within tissues is hypothesized to contribute to age-

related diseases and degeneration, possibly through the depletion of stem cell 

populations or through alterations of the tissue architecture through an altered secretory 

profile.  The putative importance of these cells in the degeneration of tissue was shown 

when they were selectively removed from mice.  Indeed, removal of senescent cells in 

these mouse models abrogated the development of a wide variety of age-related 

phenotypes, including sarcopenia and loss of adipose tissue (31).  The presence of 

senescent cells in human tissues has been documented in a variety of human tissues 

including kidney, prostate, skin, and liver (32-37).  Evidence that senescent cells 

accumulate in tissues with age comes from observational studies of primate and human 

tissue.  Indeed, skin biopsies from human donors revealed that in the skin dermal layer, 

very few senescent fibroblasts (identified by senescence-associated β-galactosidase 

staining) are present in donors under the age of 40, while readily detectable senescent 

fibroblasts were identified in donors over age 60 (32).  Perhaps the most stunning data 

was derived from baboons where senescent cells were found to increase over the life 

span of individual animals (38).  Together these data clearly demonstrated an age 



6	  

related increase in senescent cells in primates and humans and suggests that they 

contribute to a wide variety of pathologies. 

 

Senescent cells promote tumorigenesis through the senescence-associated secretory 

phenotype 

The description of a limited replicative lifespan in the 1960’s provided the basis for the 

hypothesis that senescence was a potent tumor suppressive mechanism (13).  The 

argument that was proposed was that because cancer cells were immortal, senescence 

represented a hurdle that would need to be overcome if an incipient tumor cell was 

going to progress to a fully neoplastic cell.  This original hypothesis was validated 

decades later by investigators examining human tissues and animal models.  Indeed, 

senescent cells were found in premalignant melanocytic naevi in humans that arose as 

a result of a mutation in the BRAF gene (BRAFE600) that created a constitutively active 

protein (39).  Importantly, progression to neoplastic disease was associated with loss of 

senescent cells.  In addition, senescent cells were found in a mouse prostate model.  In 

this model, analysis of premalignant lesions of the prostate generated by loss of the 

tumor suppressor Pten (40) demonstrated that the lesions harbored senescent cells.  

Importantly, senescent cells were lost upon progression to malignancy (40, 41).  

Furthermore, inactivation of senescence-inducing pathways, either through inactivation 

of p53 or through inactivation of the DNA damage response (a critical driver of 

senescence induction) in the Pten model as well as others, results in a more rapid 

progression from premalignancy to malignancy and larger tumor size (40, 41).  Finally, 
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restoration of p53 activity in sarcomas results in senescence induction and regression of 

the tumor (42).  

 

In contrast to the tumor-inhibiting effects that senescence mediates in transformed cells, 

senescence of normal cells in the surrounding microenvironment is tumor-promoting.  

Senescent human prostate fibroblasts stimulate the growth of epithelial cells harboring 

mutations that create preneoplastic cells in co-culture experiments while they have no 

effect on normal checkpoint competent cells (43).  Furthermore, senescent human lung 

fibroblasts stimulate preneoplastic epithelial cell growth in xenograft experiments in both 

the mammary fat pad and subcutaneous skin (44).  Senescent fibroblasts also promote 

epithelial-to-mesenchymal transition and invasion in preneoplastic breast cells (45), 

indicating the ability of senescent fibroblasts to promote not only the growth of pre-

neoplastic cells, but also the progression from pre-cancerous to cancerous lesions.  

Thus, it is important to place senescence into the tissue context where it arises.  When 

senescence arises in an incipient tumor cell that has begun its journey toward 

neoplasia, it is a potent tumor suppressor mechanism.  However, when senescence 

occurs in surrounding cells it can stimulate tumorigenesis (Fig 1.2).   

 

How do senescent cells within the microenvironment promote tumorigenesis?  Work 

from Campisi and colleagues demonstrated that senescent cells promote tumorigenesis 

through the upregulation and secretion of a wide variety of pro-tumorigenic proteins into 

the microenvironment ((44) (reviewed in (46)).  These proteins are collectively referred 
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to as the senescence-associated secretory phenotype (SASP) (24).  SASP is enriched 

in proteins involved in inflammation (e.g. interleukins, cytokines and chemokines), 

alteration of the extracellular matrix (e.g. matrix metalloproteinases), and cell division 

(e.g. growth factors) (24, 43, 47).  

 

The SASP’s pro-tumorigenic nature has been demonstrated extensively both in vitro 

and in vivo.  Senescent fibroblasts stimulate the invasiveness of human umbilical 

vascular endothelial cells (HUVECs) in vitro and increase vascularization of tumors in 

xenograft experiments through secretion of vascular endothelial growth factor (VEGF) 

(48).  Osteopontin (OPN) expression level is elevated in senescent fibroblasts and is 

necessary for the stimulation of pre-neoplastic cell growth induced by senescent 

fibroblasts in vivo (47).  Down-regulation of OPN in senescent mammary fibroblasts also 

inhibits the invasion and migration of associated epithelial cells in vitro (49).  Interleukins 

IL6 and IL8 promote breast cancer epithelial cell growth.  Indeed, treatment of co-

cultures of senescent cells and preneoplastic epithelial cells with neutralizing antibodies 

against IL6 and IL8 results in decreased growth-promotion (24).  Furthermore, treatment 

of breast cancer epithelial cells with recombinant IL6 and IL8 is sufficient to promote 

growth (24).   Finally, matrix metalloproteinase 3 (MMP3) from senescent cells promotes 

branching and proliferation of breast epithelial cell organoids as well as the growth of 

breast cancer epithelial cells in xenograft experiments (45, 50).  These results 

demonstrate that senescent cells promote the establishment of primary tumors through 

the expression of SASP factors.    
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In addition to promoting primary tumors, senescent cells have been hypothesized to 

promote later stages of tumor progression through expression of SASP. Indeed, 

senescent cells can promote epithelial-to-mesenchymal transition (EMT) (24), a crucial 

step in tumor cell metastasis.  It has been shown that treatment of human breast cancer 

cell lines with conditioned medium from senescent fibroblasts resulted in decreased 

expression of cytokeratin and E-cadherin, hallmarks of EMT (24).  This promotion of 

EMT by senescent cells was mediated by MMP3 (45).  Recent work has also focused 

on identifying and elucidating the mechanisms that drive the emergence of cancer 

initiating cells or cancer stem cells (CSC), which appear to be responsible for forming 

distant metastasis (51).  While the identification of surface markers that precisely define 

CSCs has remained elusive, emerging data suggests that the tumor microenvironment 

can influence their prevalence (52, 53).  Intriguingly, chemokines secreted by senescent 

cells select for CSCs (52).  IL6, one of the most highly expressed SASP factors, can 

play an important role in regulating breast CSC self-renewal (54). 

 

Cancer cells activate cancer-associated fibroblasts to aid in tumor progression 

In addition to fibroblast senescence, non-senescent fibroblasts also promote the growth 

and progression of tumor cells. The presence of these “activated”, cancer-associated 

fibroblasts or CAFs was first made in the 1990’s. Indeed, genetically normal fibroblasts 

isolated from prostate lesions promote preneoplastic prostate epithelial cell growth and 

invasive characteristics both in co-culture and in in vivo settings (1). CAFs have been 
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shown to be instrumental in other tissues as well, including breast and endometrial 

cancers.  

 

Unlike senescent fibroblasts, which accumulate in the microenvironment through cell-

intrinsic processes, CAFs are generated by the tumor through paracrine signaling (Fig 

1.2). Work to elucidate that factors secreted by cancer cells to activate CAFs uncovered 

transforming growth factor β (TGFβ) as a primary player. For example, co-cultures of 

pancreas carcinoma cells made to over express TGFβ and fibroblasts resulted in 

increased growth and increased expression of growth factors and matrix proteins in the 

fibroblasts (55). Furthermore, activation of an inducible TGFβ in a mouse skin papilloma 

model resulted in increased expression of MMP2 and MMP9 within the tumor stroma 

(56). More recent work has implicated granulin from cancer cells in the activation of 

CAFs. Indeed, treatment of breast fibroblasts with granulin resulted in upregulation of 

many inflammatory cytokines including IL6, IL8, CXCLs and CCLs (57). These granulin-

treated fibroblasts were capable of promoting breast cancer cell growth in a xenograft 

model (57).  

 

Like senescent fibroblasts, CAFs promote tumorigenesis through an altered gene 

expression profile, which is very reminiscent of the SASP (Fig 1.2). Indeed, cancer-

associated stromal cells isolated by laser-capture micro-dissection and subjected to 

microarray analysis revealed an expression profile enriched in many SASP factors, 

including IL6, IL8, CXCLs and MMPs (58-60). The important role that the factors 
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secreted by CAFs play in tumorigenesis has been demonstrated experimentally. For 

example, inhibition of CAF-secreted CXCL12 prevented CAF-driven growth of breast 

epithelial cells (10). The similarities between the expression profiles of senescent 

fibroblasts and CAFs raises the intriguing question of whether the regulatory 

mechanisms elucidated for these shared factors in one pro-tumorigenic cell type could 

be applicable in the other. If true, the therapeutic targets identified for one tumor-

promoting fibroblast could be applicable to a wide variety of tumor-promoting stroma. 

Furthermore, I suggest that SASP expression is a trait of tumor-promoting 

microenvironments in general, and is not restricted to cells that have undergone 

senescence.  

 

SASP expression is subject to complex regulation 

In an attempt to identify potential therapeutic targets for the inhibition of pro-tumorigenic 

microenvironments, many laboratories have worked at elucidating how the SASP is 

initiated and maintained. As discussed previously, persistent activation of the DNA-

damage response is an important inducer of senescence, and ATM activity is required 

for expression of a wide variety of SASP factors (61).  Indeed, shRNA directed depletion 

of ATM from cells inhibits expression of the vast majority of SASP factors in senescent 

cells (61).  However, not all SASP factors are dependent on ATM for their expression; 

ATM-dependency is predominantly a characteristic of the inflammatory SASP factors 

(61).  The SASP is also transcriptionally regulated by NFκB and C/EBPβ (62-64).  

Interestingly, NFκB activity in senescent cells is decreased in response to ATM 
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depletion, suggesting that ATM and NFκB function within the same signaling pathway 

(62).  Similar to ATM depletion, inhibition of NFκB or C/EBPβ results in an inability of 

senescent cells to activate a subset of SASP factors (62, 64).  

 

In addition to DNA-damage response signaling, mitogen-activated protein kinase  

(MAPK) signaling is also an important regulator of SASP factor activation (62). 

p38MAPK inhibition, either through expression of shRNA directed at p38MAPKα or 

through treatment with small molecule inhibitors of p38MAPK, results in decreased 

expression of SASP in response to senescence (62).  Similar to the effects of ATM 

depletion, inhibition of p38MAPK activity reduces the activity of NFκB (62).  

Furthermore, constitutive activation of the p38MAPK-signaling pathway results in SASP 

activation even in the absence of ATM.   ATM, however, is not required for p38MAPK 

activation in response to senescence, suggesting that p38MAPK and ATM function in 

parallel pathways, both of which end in NFκB activation and SASP factor expression 

(62).  As with ATM and NFκB, p38MAPK is predominantly involved in the activation of 

the inflammatory SASP components.  How p38MAPK is activated in response to 

senescence is not understood, but the slow kinetics of its activation suggests a non-

canonical mechanism.  As indicated previously, many of the SASP regulatory pathways 

elucidated thus far do not control the expression of all SASP factors, and p38MAPK is 

no exception.  There remains much to be uncovered regarding the regulation of non-

inflammatory SASP factors.  Furthermore, no central SASP regulator capable of 
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coordinating upregulation of this diverse array of pro-tumorigenic factors has been 

identified.  

 

Finally, it is important to note that SASP does not require activation of senescence for 

expression.  Cells defective in the p53 and pRb pathways, both central regulators of the 

senescent phenotype, either singularly or in combination retain the ability to express 

SASP factors in response to stress and persistent DNA damage signaling (24, 65).  This 

uncoupling of SASP expression and the senescent phenotype is further demonstrated 

by cells induced to senesce through over-expression of the cell cycle inhibitors p16 and 

p21 (66).  Senescence induced by ectopic expression of p16 or p21 fails to activate the 

SASP despite these cells displaying the hallmark cell cycle arrest and cellular 

morphologies of senescence (66).  Thus, senescence represents merely one way to 

achieve expression of SASP factors.  This concept parallels closely with our suggestion 

that SASP is a characteristic of tumor-promoting stromal cells in general regardless of 

whether they are senescent. Therefore, further characterization of SASP regulatory 

pathways in senescent cells and CAFs is critical to our understanding of these 

mechanisms and to future therapeutic approaches.  Indeed, NFκB, a central 

transcriptional regulator of SASP expression in senescent cells, is also the mediator of 

expression of pro-inflammatory factors expressed by CAFs (67).  This observation 

suggests that therapeutic targets identified in SASP factor expression will be applicable 

to wide variety of cancer-promoting microenvironments.  
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My thesis work has focused on further elucidating unique SASP regulatory mechanisms. 

I have investigated SASP regulation at multiple levels including chromatin-based 

regulation, transcription and post-transcriptional stabilization of SASP mRNA. My work 

has uncovered a central role for p38MAPK in SASP factor regulation in not only 

senescent fibroblasts but also in the tumor-promoting activity of CAFs. 
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Fig 1.1: Characteristics of tumor-promoting fibroblasts. While differences exist 

between them, senescent and cancer-associated fibroblasts both promote 

tumorigenesis through similar altered gene expression profiles.  
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Fig 1.2: the presence of senescent fibroblasts within the tumor 

microenvironment promotes tumorigenesis. The accumulation of senescent 

fibroblasts within the tumor microenvironment promotes tumor progression through 

secretion of SASP components that mediate alteration of the ECM, recruitment of 

inflammatory cells and growth of epithelial cells. Adapted from E. Pazolli et al., Curr 

Opin Genet Dev, 2008, 18(1):42-7. 
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INTRODUCTION  
Senescent cells promote tumorigenesis through expression of the senescence-

associate secretory phenotype (SASP). Investigation into the cellular signaling 

pathways that activate the SASP has revealed that a persistent DNA damage response 

(DDR) is sufficient to activate some SASP factors.  Indeed, signaling downstream of 

ATM (including NBS1 and Chk2) controls a subset of SASP factors, including IL6 and 

IL8 (1).  The mechanisms linking DDR to SASP activation remain unclear but it is known 

that DDR leads to chromatin alterations that impact numerous transcription pathways.  

Therefore, transcriptional changes observed in senescent cells may result from specific 

chromatin modulations.  Mounting evidence implicates chromatin remodeling in the 

establishment of the senescent state.  Several studies have reported the appearance of 

SAHFs in senescent cells and have shown that they occur at E2F promoters and 

functionally repress cellular proliferation (2).  Conversely, senescence is associated with 

transcriptional activation generally attributed to chromatin decondensation.  For 

example, loss of heterochromatin is associated with aging in yeast (3) and other model 

organisms (4), and is observed in cells from patients with premature aging syndromes 

such as Hutchinson–Gilford Progeria Syndrome (HGPS) (5). In replicative senescence, 

histone deacetylase (HDAC) activity diminishes (6) corresponding with an increase in 

histone acetylation.  Additionally, a decline in global DNA methylation has been reported 

((7) and references therein).  Interestingly, treatment with HDAC inhibitors including 

sodium butyrate (NaB) or trichostatin A (TSA) induces senescence, further supporting 

the hypothesis that chromatin relaxation plays a causative role in senescence (6, 8).  
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A role for transcriptional control in the regulation of SASP factors has also been 

suggested by recent work, particularly for inflammation-related members of the SASP 

including IL6, IL8 and CXCR2. Transcriptional regulation of such chemokines in other 

biological settings by NF-κB and C/EBPβ applies to senescence as well.  In fact, these 

transcription factors occupy the promoters of several cytokines in senescent cells (9, 

10).  However, it is unknown how these factors are activated in response to 

senescence-inducing stimuli and subsequently direct transcriptional changes in 

senescence. 

 

Osteopontin (OPN), also known as secreted phosphoprotein 1 (SPP1), is a 

multifunctional signaling molecule (11).  Originally identified in cancer cells (12), the 

physiological function of OPN is linked to matrix integrity and bone maintenance (13).  

Since its initial identification, OPN has been implicated in every stage of tumorigenesis 

and is a prognostic factor for several malignancies (14).  We previously reported that 

OPN levels increase in senescent cells and showed that it is a critical mediator of 

stromal-epithelial interactions in tumorigenesis (15).  In addition, OPN expression in the 

stromal compartment of human skin coincides with senescent markers, raising the 

possibility that it plays an important role in the early stages of tumorigenesis (16).  

Despite the importance of senescence-derived OPN, its regulation in senescent cells 

remains unknown.  Here we report that following senescence-inducing stimuli, OPN 

upregulation occurs independent of the senescence effector pathways p53 and Rb, 

similar to what has been shown for other SASP members including IL6 and IL8 (17).  
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This finding demonstrates that SASP activation occurs in response to cellular stress 

insults and that senescence-inducing stimuli produce sufficient stress to induce SASP.  

Further investigation revealed that contrary to the signature SASP members, IL6 and 

IL8, OPN expression is insensitive to NF-κB and ATM signaling.  Together our results 

indicate that SASP is controlled by at least two independent transcription programs. 

Importantly, agents capable of directly perturbing chromatin structure without inducing 

DNA breaks were potent inducers of SASP including OPN expression.  Specifically, 

ectopic expression of a dominant negative form of HDAC1 leads to OPN mRNA 

upregulation.    Furthermore, treatment of fibroblasts with HDAC inhibitors led to a 

significant paracrine stimulation of tumor growth, which suggests that these inhibitors 

may adversely impact the stromal compartment in the therapeutic setting.   

 

METHODS 

Cell lines and treatments   

Human foreskin BJ fibroblasts and 293T cells were grown as previously described (15).  

These cell lines were originally obtained from Dr. Robert Weinberg’s laboratory and 

were not recently reauthenticated.  Human AT fibroblasts (GM09607) were purchased 

from Coriell Institute (Camden, NJ), used within six months of receipt and grown in MEM 

media supplemented with 15% non-heat inactivated FBS (Sigma, St. Louis, MO).  WI38 

fetal lung fibroblasts were grown in DME media supplemented with 10% heat-

inactivated FBS (Sigma, St. Louis, MO) and transduced with telomerase (pBabe vector 

with hygromycin selection) and human papilloma virus 16 proteins E6 and E7 
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(expressed from the LXSN vector (18)).  Fibroblasts were mock- or bleomycin sulfate-

treated (100 μg/ml, Sigma, St. Louis, MO) for 24 hrs.  After 72 hr serum-starvation, RNA 

was collected using TRI Reagent (Ambion/Applied Biosystems, Foster City, CA).  Cells 

were incubated with two fresh changes of 4 mM sodium butyrate (Sigma) for 72 or 144 

hr, 6 μM MS-275 (Santa Cruz Biotechnologies, Santa Cruz, CA) for 6 days, 3 μM of 

suberoylanilide hydroxamic acid (SAHA) or vorinostat (Selleck, Houston, TX) for 6 days, 

or 1 mM TSA (Sigma, St. Louis, MO) for 3 days.  

Plasmids 

The IκBα-mut in a pBabe construct (19) was purchased from Addgene (Boston, MA 

plasmid 15291).  The NF-κB promoter luciferase construct, pκB5-Fluc (Stratagene, La 

Jolla, CA) and pRL-CMV (Promega, Madison, WI) were used in transient transfections.  

Two shRNA sequences targeting the human ATM gene (shATM-

1:CCTTTCATTCAGCCTTTAGAA; shATM-2: TGATGGTCTTAAGGAACATCT) were 

provided in the pLKO.1 plasmid by the Washington University in St. Louis Children’s 

Discovery Institute and the RNAi Consortium.  The p53-DD and DK constructs (18) were 

kindly provided by Robert Weinberg (Whitehead Institute, Boston, MA). The HDAC1-

H140A cDNA in pBabe-puro (20) was kindly provided by Tso-Pang Yao (Duke 

University, Durham, NC). The HDAC3mut (HDAC3 1-401) cDNA (21) was kindly 

provided by Edward Seto (Moffit Cancer Center, Tampa, FL) and was subcloned into 

the EcoRI/PacI sites of pBabe-hygro-3xFLAG vector.  
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Quantitative PCR (qPCR) 

Standard protocol was followed for cDNA and quantitative PCR (as previously reported 

in (15)) using the following primers (IDT, Coralville, IA):  

OPN, F 5ʹ′-TTGCAGCCTTCTCAGCCAA-3ʹ′, R 5ʹ′-CAAAAGCAAATCACTGCAATTCTC-

3ʹ′; GAPDH, F 5ʹ′-GCATGGCCTTCCGTGTCC-3ʹ′, R 5ʹ′-AATGCCAGCCCCAGCGTCAAA-

3ʹ′; IL6, F 5ʹ′-ACATCCTCGACGGCATCTCA-3ʹ′, R 5ʹ′-TCACCAGGCAAGTCTCCTCA-3ʹ′; 

IL8, F 5ʹ′-GCTCTGTGTGAAGGTGCAGT-3ʹ′, R 5ʹ′-TGCACCCAGTTTTCCTTGGG-3ʹ′; 

ATM (Taqman, Applied Biosystems, Carlsbad, CA cat.# Hs01112317-g1).  All qPCR 

results were analyzed using the method reported in Livak et al., (22). 

Western Blot Analysis 

Fibroblast cell pellets were lysed in 100 μl of lysis buffer (50 mM HEPES pH 7.4, 150 

mM NaCl, 1% Triton X-100, 1 M EDTA, 10% (v/v) glycerol) and protein was quantified 

by the Bradford Protein Assay (Bio-Rad, Hercules, CA). The following primary 

antibodies were used: p421, a p53 hybridoma supernatant kindly provided by Robert 

Weinberg (Whitehead Institute, Cambridge, MA) at 1:100; Cdk4 (Santa Cruz 

Biotechnologies, Santa Cruz, CA) at 1:200; β-actin (Sigma, St. Louis, MO) at 1:10,000; 

γ-actin (Novus, St. Louis, MO) at 1:5000; γH2AX (Millipore/Upstate, Billerica, MA) at 

1:1000; FLAG (Sigma, St. Louis, MO) at 1:1000.  All primary antibodies were detected 

by the appropriate HRP-conjugated secondary antibodies (Sigma, St. Louis, MO). 

Virus production and retroviral infections 

Virus was produced and target cells transduced as previously described (15).  
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Senescence-associated β-galactosidase (SA-βgal) staining 

SA-βgal staining on cells was performed as previously described (4).  

Xenograft model 

All animal procedures were approved by the Washington University School of Medicine 

Animal Studies Committee.  5x105 BJ fibroblasts treated as described above and 5x105 

HaCaTCBR were injected subcutaneously into the flanks of female NOD/SCID mice (NCI-

Fredrick).  In vivo imaging was performed on days 10 and 12 on an IVIS50 (Caliper; 

Living Image 3.2, 60 s exposure, binning 8, FOV 12cm, f/stop 1, open filter).  For 

analysis, total photon flux (photons/sec) was measured from a fixed region of interest 

over the xenografts using Living Image 2.6.  

HDAC1 IP and deacetylase assay 

Vehicle and bleomycin-treated fibroblasts were lysed as described (5) and 2 mg of 

protein was immunoprecipitated with an antibody against HDAC1 (ab7028, Abcam, 

Cambridge, MA or a negative control antibody (β-galactosidase, ab616, Abcam, 

Cambridge, MA) as described (5).  HDAC activity was measured with the Fluor-de-Lys 

HDAC Activity Assay Kit (Enzo Life Sciences, Farmingdale, NY) per manufacturer’s 

recommendations.    

Expression Analysis 

Comparison of HDAC1 mRNA levels in normal vs. invasive breast cancer-associated 

stroma was exported from Oncomine (23) as extracted from the Finak et al. study (24).  

Expression values are log-transformed and median-centered per array.  Differential 
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expression is identified by a permutation test and p-values are calculated by t-test and 

corrected for multiple comparisons by the method of false discovery rates (23).  

Statistical analysis 

Data are presented as the mean ± STDEV or SEM.  Statistical significance was 

calculated using Student’s t-test. Values of p < 0.05 were considered significant.  

 

RESULTS 

The senescence effector pathways p53 and Rb are not required to activate OPN  

Activation of senescence is accompanied by upregulation of pro-tumorigenic factors 

collectively referred to as SASP (17).  Our previous work revealed that one member of 

this group, OPN, stimulates preneoplastic keratinocyte growth and is a critical stromal-

derived pro-tumorigenic factor in a xenograft model (15).  Given the significance of OPN 

in this model and the importance of the other senescent secreted proteins, we 

investigated OPN’s regulation in senescence.  We initially turned our attention to the 

senescence effector and tumor-suppressor proteins p53 and Rb.  Importantly, in human 

cells, inhibition of the p53 or Rb pathways alone is insufficient to bypass senescence 

while concomitant abrogation of these pathways allows cells to bypass senescence 

(25).  However, previous work has shown that p53 and Rb actively suppress the 

activation of some SASP factors including IL6 and IL8 (17).  However, p53 regulates 

OPN expression in mouse embryonic fibroblasts, raising the possibility that it plays a 

role in the regulation of OPN in senescence (26).  To investigate the requirement for 

p53 and Rb activity in senescence-associated OPN regulation, we ectopically 
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expressed a well-characterized dominant negative p53 cDNA (p53-DD) (18) or a cDNA 

expressing a fusion protein consisting of a mutant form of cyclin dependent kinase 4R24C 

(Cdk4) and cyclin D1 (DK) that inhibits Rb (18) (Fig 2.1A).  Abrogation of the p53 or Rb 

pathway alone had no impact on the induction of senescence.  Indeed, exposure of 

control cells or cells expressing p53-DD or DK to bleomycin induced robust senescence 

as evidenced by growth inhibition, the appearance of large flattened cells and the 

induction of senescence associated β-galactosidase (SA-βgal) (data not shown and Fig 

2.1B).   We found that neither abrogation of p53 nor Rb reduced OPN transcripts upon 

activation of senescence (Fig 2.2C).  On the contrary, in the absence of p53 or Rb, 

OPN basal levels in vehicle-treated cells increased (Fig S2.1B and C) and they were 

further augmented upon bleomycin treatment and the induction of senescence, arguing 

that p53 and Rb are not only dispensable for the senescence-associated stimulation of 

OPN expression, but that they suppress it.  As previously reported, IL6 and IL8 levels 

were also increased in senescent cells when p53 and Rb function was compromised 

(Fig S2.1A and (17)), indicating that the p53 and Rb pathways actively suppress a wide 

range of SASP members.   

 

Previous work had indicated that while SASP factors are robustly activated in senescent 

cells, the induction of senescence was dispensable for SASP activation (1, 17).  We 

next wished to address whether OPN expression was dependent on senescence 

activation or if it was instead the cellular stress associated with senescence that 

activated SASP.  To address this question, we treated immortalized WI38 fibroblasts 
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expressing the papilloma virus E6 and E7 proteins, which abrogate p53 and Rb, 

respectively with bleomycin.  As expected, bleomycin treatment of E6/E7-expressing 

cells did not induce senescence (Fig S2.1D).  We found that these cells continued to 

divide and failed to acquire the flattened cellular morphology of senescent cells and did 

not stain positive for SA-βgal (Fig S2.1D).  Despite the fact that E6/E7 cells failed to 

enter senescence, analysis of OPN, IL6, and IL8 revealed that these cells retained the 

ability to activate SASP (Fig S2.1E), indicating that SASP expression does not require 

the activation of the senescence effector proteins p53 and Rb nor entry into 

senescence.  Thus, cellular stresses capable of inducing senescence activate SASP, 

regardless of the status of the senescence effector proteins or the induction of 

senescence itself. 

 

SASP is controlled by distinct regulatory mechanisms 

NF-κB is a master regulator of cytokine production in inflammatory responses (27) and 

was recently invoked in the transcriptional control of some SASP members, including 

IL6 and IL8 (10, 28).  Like IL6, OPN can participate in cellular responses characterized 

by chronic inflammation (11) and NF-κB can directly activate OPN transcription under 

certain conditions (29).  Therefore, we investigated whether NF-κB activates OPN 

transcription in senescent cells.  NF-κB canonically resides in a complex with IκBα, 

which sequesters it in the cytoplasm.  Upon stimulation, IκBα is phosphorylated and 

subsequently degraded, allowing NF-κB to translocate to the nucleus where it activates 

target gene transcription (27).  We successfully blocked NF-κB signaling by stably 
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expressing a mutant of IκBα that cannot be phosphorylated (IκBα-mut), thus trapping 

NF-κB in the cytoplasm (19).  To confirm that the mutant was active, we examined its 

impact on an NF-κB reporter plasmid containing five tandem NF-κB binding elements.  

BJ fibroblasts were transduced with the NF-κB reporter plasmid or a vector alone.  As 

expected, we found that expression of the reporter plasmid was inhibited in IκBα-mut 

cells compared to cells expressing a vector control (Fig. 2.2A).   

 

To determine whether NF-κB activity was required to activate OPN in senescent cells, 

BJ fibroblasts expressing a control vector or the IκBα mutant (IκBα-mut) were treated 

with bleomycin.  We found that bleomycin treatment induced robust senescence in the 

control and IκBα mutant-expressing cells as evidenced by the induction of a flattened 

morphology and the induction of SA-βGal (Fig 2.2B), indicating that this mode of NF-κB 

inhibition does not abrogate the induction of senescence in these cells.  In agreement 

with previous reports (10), we found that NF-κB activation is essential for the 

upregulation of IL6 and IL8 in senescence (Fig 2.2C).  Indeed, we found that IκBα-mut 

cells treated with bleomycin failed to upregulate IL6 and IL8.  In contrast, OPN levels 

remained unperturbed in IκBα-mut cells treated with bleomycin (Fig 2.2C).  Because the 

expression of the IκBα mutant precedes the exposure to bleomycin, our findings 

indicate that NF-κB signaling is neither required for the initiation nor maintenance of 

OPN levels in response to DNA damage.  Together these findings also indicate that 

SASP is regulated by at least two distinct transcriptional pathways. 



39	  

Having established that neither the p53 or Rb pathways nor activation of NF-κB plays a 

role in OPN regulation following bleomycin treatment and SASP activation, we next 

turned our attention to the putative role of the DNA damage response (DDR).  

Senescence is characterized by a robust and persistent DNA damage response (30) 

that includes the activation of the ATM kinase, which has been implicated in SASP 

activation (1).  To address whether ATM activation was required for OPN upregulation in 

senescent cells, we utilized ATM-specific short hairpin (shRNA) constructs to deplete 

cells of ATM to greater than 80% (Fig 2.2D).  As expected (1), ATM depletion had no 

impact on the induction of senescence (Fig 2.2E) but resulted in a significant reduction 

in IL6 and IL8 levels (Fig 2.2F).  In contrast, ATM depletion had no impact on OPN 

expression following bleomycin treatment (Fig 2.2F).  These results indicate that OPN 

expression, unlike IL6 and IL8, is not controlled by DDR or NF-κB signaling in 

senescence, but instead is regulated by a distinct mechanism.  

 

Histone deacetylase (HDAC) inhibition induces SASP 

Cellular senescence can be induced by a wide variety of cellular stresses.  Previous 

work demonstrated agents that impact histone deacetylase (HDAC) activity, including 

sodium butyrate (NaB) and trichostatin A (TSA), induce senescence or a senescence-

like state, which is typically characterized by growth arrest but a lack of SA-βgal activity 

(6, 8).  These findings raised the possibility that chromatin modulation rather than bona 

fide DNA breaks were responsible for the activation of SASP.  Therefore, we examined 

whether bona fide double strand DNA breaks were required for SASP expression.  BJ 
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fibroblasts were treated with NaB, which resulted in a robust cell cycle arrest and a 

flattened cellular morphology but failed to activate SA-βgal activity, consistent with a 

senescence-like state (Fig S2.2).  Given the morphology of the cells and the growth 

arrest observed, we ext examined whether these treatments induced DNA double 

strand breaks.  To assess the presence of DNA double strand breaks, we evaluated 

levels of γH2AX, a phosphorylated form of the histone variant H2AX that is widely 

recognized as a marker of double strand breaks and active DDR (31).  As a control for 

γH2AX induction we analyzed  irradiated cells by western blot analysis and found robust 

increase in γH2AX as expected.  In contrast, NaB treatment did not increase γH2AX 

levels compared to vehicle-treated cells (Fig 2.3A).  The comet assay, a sensitive 

technique utilized to detect DNA breaks in individual cells (32), corroborated these 

results (data not shown) in agreement with previous findings (8).  Next, we examined 

OPN mRNA levels and observed robust induction despite the lack of detectable DNA 

damage (Fig 2.3B).  In agreement with previous findings, both IL6 and IL8 also 

increased in NaB-treated cells (28).  Together these findings indicate that DNA breaks 

are not required for SASP induction. 

 

HDAC inhibition in tumor cells results in reduced cell growth and tumor cell death.  

Thus, recent work in xenografts and human clinical trials has focused on the therapeutic 

potential of HDAC inhibition (33).  These findings have led to the approval of one such 

compound, suberoylanilide hydroxamic acid (SAHA) or vorinostat, for the treatment of 

cutaneous T-cell lymphoma, with several other classes of HDAC inhibitors currently in 
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clinical trials (34).  Given the putative clinical importance of these inhibitors and our 

findings with NaB, we tested whether other HDAC inhibitors activated SASP.  Indeed, 

we found that other HDAC inhibitors including TSA, MS275 and vorinostat similarly 

increased OPN, IL6, and IL8 levels (Fig 2.3B).  We obtained identical results when we 

treated primary breast fibroblasts with NaB and vorinostat (Fig S2.3), indicating that 

HDAC inhibition also elicits a SASP response in primary stromal cells.  Together, these 

findings raise concern that HDAC inhibitors may impact the tumor microenvironment.   

 

Above we show that the SASP is induced in the absence of DNA double strand breaks; 

however, ATM is activated in cells treated with chromatin relaxers (35), raising the 

possibility that the DDR required to activate IL6 and IL8 is initiated by a more general 

mechanism such as chromatin modulation independently of physical damage.  Given 

that in bleomycin-induced senescence, ATM and NF-κB are required for IL6 and IL8 

upregulation (Fig. 2.2), we next investigated whether both ATM and NF-κB were also 

required to regulate IL6 and IL8 in NaB-treated cells.  We treated cells that express the 

IκBα-mut or AT cells (genetically deficient in ATM activity) with NaB as above.  Although 

NaB does not induce DNA double strand breaks ((8) and data not shown), we found that 

IL6 and IL8 upregulation retained the requirement for both NF-κB and ATM (Fig 2.3C 

and D).  In contrast, we observed a robust upregulation of OPN in IκBα-mut expressing 

fibroblasts and AT cells following NaB treatment (data not shown).  Together these 

findings indicate that the DNA damage signaling required for the upregulation of IL6 and 
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IL8 does not emanate from physical DNA breaks (28) and suggest instead that 

chromatin modulation is central to the regulation of SASP factors. 

 

HDAC inhibition creates a pro-tumorigenic microenvironment   

Our finding that HDAC inhibition stimulates the tumor-promoting SASP (Fig 2.3B) led us 

to investigate their impact in vivo.  To investigate this we treated BJ fibroblasts with 

NaB, which led to the robust upregulation of OPN, IL6, and IL8 (Fig S2.4A) and 

examined whether these fibroblasts promoted tumor growth in vivo.  Similar to our 

previous report, we found that bleomycin-treated fibroblasts significantly promote 

preneoplastic HaCaTCBR cell growth when co-injected in xenografts (Fig 2.4A and B).  

When cells were injected in combination with vehicle-treated fibroblasts, there was 

minimal growth.  Significantly, the presence of fibroblasts treated with NaB also led to a 

substantial enhancement of HaCATCBR cell growth compared to cells injected with 

vehicle, non-promoting fibroblasts (Fig 2.4A and B), arguing that HDAC inhibition is a 

potent SASP inducer in vivo.  To further corroborate our findings, we tested the only 

HDAC inhibitor currently used in the clinic – vorinostat.  Upon treatment with vorinostat, 

BJ fibroblasts activated SASP (Fig S2.4B) and promoted HaCATCBR cell growth 

compared to their vehicle counterparts (Fig 2.4C and D).  Together, our results indicate 

that HDAC inhibition in the stroma activates a protumorigenic profile and leads to 

increased tumor growth in vivo.  
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HDAC1 inhibition activates OPN   

There are three major groups of HDACs (excluding sirtuins) and 18 HDACs are present 

in the human genome.  Most HDAC inhibitors target multiple HDACs; therefore, we next 

examined whether a specific HDAC was critical for OPN activation.  A recent study 

analyzing stromal changes in breast cancer identified OPN as a key component of a 

stroma-derived prognostic predictor (SDPP) that successfully clustered tumors by 

clinical outcome (24).  Oncomine-based interrogation of the same dataset revealed that 

HDAC1 levels were significantly (p < 0.05) lower in breast cancer-associated stroma 

compared to normal stroma (Fig 2.5A).  Given that the SASP is reminiscent of the 

expression profile observed in cancer-associated fibroblasts and that the HDAC 

inhibitors used in our study target HDAC1, we examined whether HDAC1 played an 

important role in OPN activation. 

 

To determine whether HDAC1 levels changed in vehicle versus bleomycin-treated cells, 

we examined HDAC1 mRNA levels by quantitative PCR (qPCR).  In agreement with our 

previous microarray data (15), we observed a decrease in HDAC1 mRNA levels in 

bleomycin-treated fibroblasts compared to vehicle-treated cells (Fig 2.5B).  When we 

immunoprecipitated HDAC1 from vehicle and bleomycin-treated fibroblasts and assayed 

for deacetylase activity, we observed a consistent decrease in cells treated with 

bleomycin (Fig 2.5C), raising the possibility that loss of HDAC1 activity specifically 

contributes to OPN activation following bleomycin treatment.   
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To directly test whether HDAC1 activity was important for the increase in OPN 

expression, we ectopically expressed a dominant-negative mutant of HDAC1 (HDAC1-

DN) (20) in fibroblasts (Fig S2.5A).  While overexpression of HDAC1-DN significantly 

reduced cell proliferation it did not result in growth arrest or SA-βgal expression ((36) 

and Fig S2.5B).  However, we observed that ectopic expression of HDAC1-DN was 

sufficient to induce significant upregulation in OPN mRNA levels (Fig 2.5D), mirroring 

the response to treatments with HDAC inhibitors (Fig 2.3B).  This finding further 

demonstrates that the induction of SASP can be decoupled from the induction of 

senescence.  Importantly, this is an HDAC1-specific effect, because ectopic expression 

of an HDAC3 mutant (Fig S2.4C) did not alter OPN levels (Fig 2.5D).  Analysis of IL6 

and IL8 expression in HDAC1-DN expressing cells revealed that loss of HDAC1 activity 

was also sufficient to increase IL8 and to a lesser extent IL6 while HDAC3-DN had no 

impact on either IL6 or IL8.  Together, these findings suggest that chromatin alterations 

via manipulation of HDAC1 activity impact the regulation of SASP independent of the 

activation of senescence.  

 

DISCUSSION 

Senescent fibroblasts promote tumorigenesis in multiple models (15, 37).  In efforts to 

understand how this is accomplished, several groups have examined the expression 

profile of senescent cells and uncovered a signature secretory program enriched in 

growth factors, cytokines, and proteases termed the senescence-associated secretory 

phenotype (SASP) (9, 10, 15, 17).  Specific SASP components have been directly 
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implicated in senescent stromal-promoted tumorigenesis (9, 15, 28, 38).  However, it is 

still unclear how SASP is activated.  Initial findings demonstrated that the transcription 

factors NF-κB and C/EBPβ directly bind the promoters of some of the inflammatory 

cytokines expressed in senescent cells (9, 10, 28).  Additionally, the DNA damage 

response (DDR) was identified as an upstream SASP inducer (1).   Indeed, the above-

mentioned transcription factors can be activated in response to DNA damage (39, 40), 

although the mechanism of activation in senescence is not known.  Utilizing osteopontin 

(OPN) as a surrogate for SASP regulation, we found that the SASP is not characterized 

by a single transcriptional axis, but is instead controlled by at least two independent 

signaling cascades both of which may be activated in response to chromatin changes.   

 

OPN impacts a vast array of signaling pathways, hence its transcription is governed by 

multiple mechanisms in a tissue- and context-dependent manner (11).  We demonstrate 

that following a senescence-inducing dose of bleomycin, OPN expression is not 

controlled by p53, Rb, or NF-κB, although p53 and NF-κB binding sites are present in 

the OPN promoter and are used in some biological settings (26, 29).  The lack of p53 

and Rb involvement is in agreement with previous work showing that these essential 

senescence effector pathways are dispensable for activation of the SASP factors IL6 

and IL8 (17).  Furthermore, our work demonstrates that OPN, like other SASP factors 

including IL6 and IL8, is expressed in cells that are unable to senesce due to abrogation 

of the p53 and Rb pathways.  This finding is significant because it demonstrates that 

while senescent cells express SASP factors, the induction of senescence is not required 
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to activate SASP.  Thus, SASP activation may occur in a wide variety of stromal cells 

undergoing cellular stress.  It is interesting to note that the SASP is highly reminiscent of 

the expression profile observed in cancer associated fibroblasts (CAFs), which like 

senescent cells stimulate tumor formation in xenograft models (41).  

 

This work and that of others demonstrates p53 and Rb are uniformly dispensable for 

SASP expression, yet it is clear that SASP regulation is complex and several distinct 

mechanisms drive expression of specific SASP factors.  Indeed, we show that while NF-

κB directly activates IL6 and IL8 (Fig 2.2 and data not shown), it is not required for OPN 

upregulation in senescence (Fig 2.2 and data not shown).  Similarly, ATM knockdown 

has a profound effect on IL6 and IL8 expression, yet OPN increases to the same levels 

as in control cells (Fig 2.2).  Together, these results indicate that IL6 and IL8 are 

activated by the DDR and NF-κB as has been demonstrated (1, 28), and OPN is not.  

Therefore, it is reasonable to speculate that subsets of SASP are regulated by discrete 

signaling pathways.  In fact, SASP is defined by distinct classes of proteins such as 

growth factors, mitogens, and extracellular remodeling enzymes (15) whose activation 

may be governed by several mechanisms.  Indeed, our work demonstrates that OPN 

regulation is distinct from the inflammatory cytokines IL6 and IL8 (9, 10).  Discovery of 

putative activators of OPN and whether they control the expression of other proteins 

belonging to the extracellular matrix core of the SASP is the subject of ongoing work 

(15).  

  



47	  

Despite the fact that IL6 and IL8 are regulated independently of OPN, following the 

induction of senescence, all three factors increase at the mRNA level, arguing that there 

must be a common inducer of SASP.  Our work shows that ATM and NF-κB are not the 

sole SASP regulators, raising the possibility that an upstream stimulus initiates multiple 

signaling cascades.  Our experiments with histone deacetylase inhibitors demonstrate 

that in the absence of DNA breaks (as measured by H2AX phosphorylation and comet 

assays (see Fig 2.3 and (8)), SASP is still activated.  Interestingly, ATM and NF-κB are 

still required for the upregulation of IL6 and IL8 (Fig 2.3) in HDAC inhibitor-induced 

SASP, thus lending additional support to the argument that DNA damage signaling, but 

not breaks per se, activates SASP.  HDAC inhibition modifies the chromatin by inducing 

hyperacetylation of histone and non-histone proteins (42), resulting in sustained 

transcriptional changes (42). The data presented here fit a model wherein ATM 

activation upon bleomycin and NaB treatment occurs in response to chromatin 

alteration.  It is known that DNA breaks induce changes in the surrounding chromatin, 

which facilitates signaling and repair; conversely, chromatin modifications trigger the 

DNA damage checkpoint (43).  Indeed, because treatment with an HDAC inhibitor 

activates ATM (35), it is plausible that chromatin relaxation in senescence induces ATM 

activation and subsequent IL6 and IL8 expression.   

 

While it is unclear how chromatin changes are instituted and maintained in senescence, 

there is ample evidence for their presence (2, 44).  It is conceivable that widespread 

chromatin modifications impact promoter activity globally.  However, only two percent of 
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the genes are differentially regulated in senescence (15) making this unlikely.  

Furthermore, specific transcription factors (e.g., NF-κB and C/EBPβ) are required for 

expression of some SASP factors, pointing to a regulated mechanism of expression.  

Finally, our results demonstrate that only specific chromatin modifiers impact OPN 

expression.  Specifically, inhibition of HDAC1 but not HDAC3, upregulates OPN, IL6, 

and IL8 mRNA levels.  Furthermore, we observe a reduction in HDAC1 levels and 

activity in senescent cells compared to their vehicle-treated counterparts.  Together 

these data argue that HDAC1 containing complexes drive chromatin alterations that 

then drive OPN expression.  HDACs role in transcriptional regulation is not limited to 

SASP.  Indeed,  HDAC1 inhibition results in an altered transcriptional profile in HGPS 

cells (5).  Additionally, HDAC1 is decreased in breast cancer stroma (Fig 2.5A and 

(24)), which also undergoes profound transcriptional changes that alter the 

microenvironment and contribute to tumorigenesis.  What initiates the changes in 

chromatin in these different biological settings is currently unknown and the triggers are 

likely to vary depending on the biological context.  It is known that HDAC1 binds Rb (45) 

and interestingly, individual inhibition of either Rb or HDAC1 leads to marked 

upregulation of OPN mRNA levels (Figs 2.1 and 2.5), raising the possibility that in non-

senescent cells HDAC1 complexes occupy SASP promoters and actively repress 

transcription, but upon senescence induction, they translocate preferentially to E2F 

targets (45).  It remains to be determined if the Rb-HDAC1 complex is targeted to the 

promoters of OPN and other SASP members or whether it controls upstream regulators.   
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Our results add an additional layer of complexity to HDACs and their putative 

involvement in the tumor microenvironment.  Recently, significant effort has been 

invested in designing HDAC inhibitors as anticancer agents leading to the approval of 

one compound, vorinostat (also known as SAHA), for the treatment of cutaneous T-cell 

lymphoma (46) and several others currently in clinical trials (47).  Most studies focus on 

the antiproliferative or apoptotic effects of these reagents on tumor cells and report a 

minimal impact on normal cells (46, 48, 49).  Indeed, we and others demonstrate that 

normal cells, including fibroblasts, are relatively resistant to apoptosis (50) but can 

assume a senescence-like state following HDAC inhibitor treatment (8).  Moreover, 

regardless of the effect on cell cycle progression, all the HDAC inhibitors we tested (Fig 

2.3B) robustly upregulate SASP expression and promote tumor growth in vivo in a 

paracrine fashion (Fig 2.4).  The half-life of the HDAC inhibitors used in the clinic is 

relatively short (50), limiting the therapeutic window for solid malignancies (51).  

However, the molecular responses as measured by overall hyperacetylation are 

sustained following treatment with HDAC inhibitors.  Our results indicate that the 

transcriptional changes associated with HDAC inhibitor treatment are maintained in 

normal fibroblasts, and previous studies have demonstrated that the SASP is a chronic 

response (1).  Therefore, it will be important to assess sustained molecular changes in 

the stroma that may lead to increased tumor formation following HDAC therapy.  Our 

work underscores the importance of examining the tumor microenvironment when 

analyzing the profile of therapeutic agents.   
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Fig 2.1: The senescence effector pathways p53 and Rb are not required to 

activate OPN. A) Western blot analysis of BJ fibroblasts transduced with a p53 mutant 

(DD) or CDK4/DK fusion construct that inhibits p53 and Rb respectively. B) SA-βgal 

staining of BJ fibroblasts transduced with vector control, DD or DK treated with vehicle 

alone or bleomycin (bleo). C) qPCR analysis of OPN mRNA levels in cells described in 

A following treatment with vehicle or bleomycin. Data represent mean + SD, n=3.   
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Fig 2.2: SASP is controlled by distinct regulatory mechanisms. A) BJ fibroblasts 

were transduced with a control vector or IκBα-mut. Inhibiton of NFκB was analyzed by 

transfection with an NFκB luciferase reporter plasmid. Data represent mean + SEM, 
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n=3. B) SA-βgal staining of BJ fibroblasts transduced with either a vector control or 

IκBα-mut. Cells were treated with either vehicle or bleomycin. C) qPCR was used to 

analyzed mRNA levels of IL6, IL8 and OPN in vehicle or bleomycin-treated BJ 

fibroblasts transduced with vector control and bleomycin-treated BJ fibroblasts 

transduced with IκBα-mut. Data represent mean + SD, n=3. D) qPCR was used to 

analyze ATM depletion in BJ fibroblasts transduced with either two independent shRNA 

targeting ATM or a control shRNA (shSCR). E) SA-βgal staining of vehicle or bleomycin-

treated BJ fibroblasts transduced with shSCR and bleomycin-treated BJ fibroblasts 

transduced with shATM-1. F) qPCR was used to measure OPN, IL6 and IL8 mRNA 

levels in vehicle or bleomycin-treated BJ fibroblasts transduced with shSCR and 

bleomycin-treated BJ fibroblasts transduced with shATM-1 or shATM-2. Data represent 

mean + SD, n=3.  
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Fig 2.3: Histone deacetylase (HDAC) inhibition induces SASP. A) Western blot for 

γH2AX in vehicle or NaB-treated BJ fibroblasts. Cells were irradiated with 10 Gy (IR) to 

serve as a positive control. B) qPCR was used to measure the mRNA levels of OPN, 

IL6 and IL8 in BJ fibroblasts treated with vehicle or a variety of HDAC inhibitors. Data 

represent mean + SD, n=3. C) qPCR was used to measure IL6 and IL8 mRNA levels in 

BJ fibroblasts and AT fibroblasts treated with vehicle or NaB. Data represent mean + 

SD, n=3. D) qPCR was used to measure IL6 and IL8 mRNA levels in vehicle or NaB-

treated BJ fibroblasts transduced with vector control and NaB-treated BJ fibroblasts 

transduced with IκBα-mut. Data represent mean + SD, n=3.  
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Fig 2.4: HDAC inhibition creates a pro-tumorigenic microenvironment. A) 

bioluminescent images (day 10) of representative mice injected in the flanks with 

HaCaTCBR cells in combination with vehicle-treated (vehicle), bleomycin-treated (Bleo), 

or NaB-treated (NaB) fibroblasts. B) Quantification of the luminescence in A [measured 

as photons/second/cm2/steradian (photons/s/cm2/Sr)]. Data represent mean + SEM, 

n=8. *, P < 0.05. C) Bioluminescent images (day 12) of representative mice injected in 

the flanks with a mixture of HaCaTCBR cells with either vehicle-treated BJ fibroblasts or 

vorinostat-treated BJ fibroblasts D) Quantification of the luminescence in the groups 

described in C. Data represent mean + SEM, n=8. *, P < 0.05. 
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Fig 2.5: HDAC1 inhibition activates OPN. A) Oncomine expression analysis of 

HDAC1 levels between normal stroma and invasive breast cancer-associated stroma 

extracted from the study of Finak and colleagues. Expression values are log 

transformed and median centered per array (see Materials and Methods). B) qPCR was 

used to measure HDAC1 mRNA levels in vehicle and bleomycin-treated BJ fibroblasts. 

Data represent mean + SD, n=3. C) HDAC1 activity was measured in lysates from 

vehicle or bleomycin-treated cells after immunoprecipitation of HDAC1 with an HDAC1 

antibody. Data represent mean + SEM, n=3. *, P < 0.05. D) qPCR was used to measure 

OPN, IL6 and IL8 mRNA levels in BJ fibroblasts transduced with vector control (pBp or 

pBh), HDAC1-DN or HDAC3-DN. Data represent mean + SD, n=3.  
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Fig S2.1: The senescence effectors are dispensable for SASP activation. A) qPCR 

was used to measure OPN mRNA levels in vehicle-treated BJ fibroblasts transduced 

with vector control, DD or DK. Data represent mean + SD, n=3. B) qPCR was used to 

measure IL6 and IL8 mRNA levels in vehicle or bleomycin (bleo)-treated BJ fibroblasts 

transduced with vector control and bleo-treated BJ fibroblasts transduced with DD or 

DK. Data represent mean + SD, n=3. C) SA-βgal staining of BJ fibroblasts transduced 

with DD or DK. D) SA-βgal staining of WI38tert-E6/7 fibroblasts treated with bleomycin 

(bleo). E) qPCR was used to measure OPN, IL6 and IL8 mRNA levels in WI38TH-E6E7 

fibroblasts treated with vehicle or bleomycin (bleo). Data represent mean + SD, n=3.  
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Fig S2.2: SA-βgal staining of BJ fibroblasts treated with vehicle, NaB or vorinostat.  
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Fig S2.3: SASP activation in primary breast fibroblasts. qPCR was used to measure 

mRNA levels of OPN, IL6 and IL8 in breast fibroblasts treated with vehicle, NaB or 

vorinostat.  
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Fig S2.4: SASP activation in cells used in xenografts. A) qPCR was used to 

measure OPN, IL6 and IL8 mRNA levels in BJ fibroblasts treated with vehicle, 

bleomycin (bleo) or NaB. B) qPCR was used to measure OPN, IL6 and IL8 mRNA levels 

in BJ fibroblasts treated with vehicle or vorinostat.  
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Fig S2.5: Ectopic expression of dominant negative HDAC1 and HDAC3 

constructs. A) Western blot analysis of BJ fibroblasts transduced with vector or FLAG-

tagged HDAC1-DN. B) SA-βgal staining of BJ fibroblasts transduced with vector or 

HDAC1-DN. C) Western blot analysis of BJ fibroblasts transduced with vector or FLAG-

tagged HDAC3-DN 
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INTRODUCTION 

In the past decade, the microenvironment’s role in tumorigenesis has become well 

established. Indeed, in xenograft models, preneoplastic cells from a variety of tissues 

fail to grow in the absence of associated stroma	   (1, 2). Senescent fibroblasts, which 

accumulate with age (3, 4), are hypothesized to contribute to stroma-mediated tumor 

support. Interestingly, senescent fibroblasts stimulate preneoplastic cell growth in co-

culture and xenograft settings (5-7). The induction of senescence results in an altered 

gene expression profile known as the senescence-associated secretory phenotype 

(SASP) (8). The SASP is enriched in proteins involved in extracellular-matrix 

remodeling, promotion of proliferation, immune cell recruitment and angiogenesis--

processes that are critical for the establishment and progression of tumors (9, 10). 

Because senescent cells accumulate in tissues with age and have a pro-tumorigenic 

secretory profile, the presence of senescent cells in the tumor microenvironment is 

hypothesized to contribute to age-related increases in cancer risk.  

 

The SASP factor osteopontin (OPN) is a secreted phospho-protein with multiple cell-

signaling roles. We have documented the pro-tumorigenic nature of OPN secreted from 

senescent cells (10). Indeed, depletion of OPN from senescent cells through expression 

of short hairpin RNA (shRNA) molecules results in an inability of senescent fibroblasts 

to promote the growth of preneoplastic keratinocytes in vivo (10). Furthermore, 

treatment of preneoplastic keratinocytes with recombinant OPN is sufficient to promote 
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their growth (10). These data indicate that senescent fibroblast-derived OPN is an 

important driver of SASP-mediated tumorigenesis.  

 

Given the pro-tumorigenic nature of OPN, understanding its regulation is important in 

elucidating therapeutic targets that will be utilized to inhibit its expression. IL6, IL8, and 

many other SASP factors are regulated by a pathway involving the transcription factor 

NFκB and the DNA damage response protein ATM (11-14).   In contrast, little is known 

about how OPN is activated in response to senescence. Previous work by our 

laboratory has implicated the histone deacetylase complex 1 (HDAC1) in OPN 

expression in senescent cells (13). Treatment of fibroblasts with HDAC inhibitors like 

sodium butyrate is sufficient to induce the expression of OPN and other SASP factors 

(13). Furthermore, expression of an HDAC1 dominant negative construct in young 

fibroblasts is sufficient to drive the upregulation of OPN (13). This effect is specific to 

HDAC1, as expression of an HDAC3 dominant negative construct does not increase 

OPN expression (13). These data indicate that HDAC1 is a negative regulator of OPN 

regulation and must be inactivated to achieve OPN upregulation. Positive regulators of 

OPN in senescent cells, however, remain to be elucidated.  

 

The transcription factor c-myb has well characterized roles in hematopoietic cells, where 

it regulates growth and differentiation	   (15). C-myb has also been implicated in 

oncogenesis in various tissues including breast and colon (16, 17). The transcriptional 

activation of targets by c-myb can occur in both DNA binding-dependent and 
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independent mechanisms (18, 19). C-myb activity often requires the cooperation of co-

activators, the most characterized of which is C/EBPβ (20, 15). Interestingly, c-myb has 

been shown to transcriptionally activate OPN in other settings (21, 22), although a role 

for c-myb in activating OPN in response to senescence has not been investigated.  

 

Here, through analysis of the OPN promoter, we find that c-myb plays a key role in OPN 

regulation in response to senescence. 

 

METHODS 

Cells and reagents 

BJ skin fibroblasts were grown under standard culture conditions in DMEM 

supplemented with 15% FBS, 15% M199 and penicillin/streptomycin. 293T kidney 

epithelial cells were cultured in DMEM supplemented with 10% FBS and 

penicillin/streptomycin. WI38 lung fibroblasts were cultured in DMEM supplemented with 

10% FBS and penicillin/streptomycin. The OPN promoter reporter constructs were a gift 

from Dr. Paul Kuo (Duke University, Durham, NC). The pCDNA-myb overexpression 

construct was a gift from Dr. Robert Rosenberg (Harvard Medical School, Boston, MA). 

The pLXSN-mybENER construct was a gift from Dr. Linda Wolff (National Cancer 

Institute, Bethesda, MD). Senescence was induced with a 24 hour treatment of 

bleomycin (100 µg/mL, Sigma Aldrich, St. Louis, MO). For c-myb dominant negative 

studies, cells were treated with tamoxifen for 24 hours (20µM, Sigma Aldrich, St. Louis, 

MO). shmyb #1 (5’-GAAATACGGTCCGAAAC-3, (23)) was subcloned in to pLKO using 
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the AgeI and EcoRI sites. shmyb #2 was purchased from Addgene (plasmid #25790, 

Cambridge, MA).  

Luciferase Assay 

Cells were transiently transfected with OPN promoter constructs and pGL3 Renilla 

plasmid control using Lipofectamine2000 following manufacturers protocols (Life 

Technologies, Carlsbad, CA). Luciferase activity was measured with the Dual-

Luciferase Reporter Assay (Promega, Madison, WI). 

qRT-PCR 

Total RNA was isolated using the Ribopure RNA isolation kit (Life Technologies, 

Carlsbad, CA). cDNA was synthesized using previously published protocols (10). OPN 

mRNA was amplified with the following primers: F- TTGCAGCCTTCTCAGCCAA and R- 

AAGCAAATCACTGCAATTCTC. GAPDH mRNA was amplified with the following 

primers: F- GCATGGCCTTCCGTGTCC and R- ATGCCAGCCCCAGCGTCAAA.  The 

endogenous OPN promoter was amplified with a custom Taqman probe designed to sit 

at the transcription start site (Assay ID AJRR84A, Life Technologies, Carlsbad, CA). c-

myb mRNA was amplified using a Taqman probe (Hs00920556_m1, Life Technologies, 

Carlsbad, CA).  

Virus Production 

Virus was produced as previously published (10).  

Chromatin Immunoprecipitation (ChIP) 

Cells were fixed 48 hours after transfection using 1% formaldehyde in PBS for 10 

minutes.  Fixation was quenched with 125mM glycine for 5 minutes with gentle rotation. 
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Cells were lysed in lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris pH 8.1) for 15 

minutes.  The lysate was sonicated at 50 Amps with 30 s on, 30 s off for 6 rounds to 

achieve DNA fragments approximately 300-500 bp in length.  1 mg protein was used for 

each immunoprecipitation. Immunoprecipitation was performed with rabbit anti human c-

myb (sc517, Santa Cruz Biotechnology, Dallas, TX) or normal rabbit IgG (Cell Signaling 

Technologies, Danvers, MA).  OPN190 and OPN190mut were amplified by PCR with 

the following primers: F- CTTTATGTTTTTGCGTCTTCCA and R- 

CTAGCAAAATAGGCTGTCCC. 

Immunofluorescence 

Cells were fixed with 4% paraformaldehyde for 20 minutes. Cells were blocked and 

permeabilized with 8% BSA/0.1% triton-X for 20 minutes. Visualization of mybENER 

was done with rabbit anti engrailed (sc28640, Santa Cruz Biotechnology, Dallas, TX).  

Site-directed mutagenesis of OPN190 

The OPN190 luciferase reporter was mutagenized to remove the c-myb binding site 

using the QuikChange site-directed mutagenesis kit (Agilent Technologies, Santa Clara, 

CA). The sequence of the OPN promoter was changed from 

ATGTTTTAACTGTAGATTGTGTG to ATGTTTTGCTAGTAGACTGTGTG (the c-myb 

binding site is shaded and the changed nucleotides are in bold).  
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RESULTS 

The senescence-responsive region of the OPN promoter contains a c-myb 

binding site 

To identify senescence-specific transcriptional regulators of OPN, we first sought to 

identify the region of the OPN promoter that was activated in response to senescence 

induction. To do so, regions of the OPN promoter ranging from 80 base pairs upstream 

of the transcriptional start site (TSS) to 2 kb upstream of the TSS were used to drive 

expression of a luciferase reporter. These OPN reporter constructs were then transiently 

transfected into young fibroblasts or fibroblasts made senescent though treatment with 

the DNA damaging agent bleomycin (referred to as stress-induced premature 

senescence or SIPS).  Following transduction luciferase activity was measured to 

assess the transcriptional activity of the OPN promoter.  We observed that a region 190 

base pairs upstream of the TSS (OPN190) was consistently activated in response to 

senescence compared to the level of activity observed in young fibroblasts (Fig 3.1A). 

We then subjected OPN190 to transcription factor binding site analysis using Transfac®. 

A perfectly conserved binding site for the c-myb transcription factor (TAACTGT) was 

identified in this region (Fig 3.1B). These results suggest that the transcription factor c-

myb is responsible for activation of the OPN promoter in response to senescence. 

 

c-myb is required for activation of OPN in response to senescence 

The presence of a c-myb binding site within the senescence-responsive region of the 

OPN promoter implicated c-myb in OPN activation. To determine if c-myb is required for 
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the transcriptional activation of OPN in response to senescence, BJ fibroblasts were 

depleted of c-myb using two independent shRNA (shmyb #1 and shmyb #2). Depletion 

of c-myb was verified by quantitative real-time PCR (qRT-PCR) (Fig 3.2A). In response 

to c-myb depletion, senescence-dependent OPN expression was significantly reduced 

(Fig 3.2B), indicating that c-myb activity is required for the activation of OPN in the 

senescent context. 

 

To further verify the results of c-myb depletion using shRNA, we used a c-myb dominant 

negative construct consisting of the c-myb DNA binding domain fused to the engrailed 

trans-repressor domain and the estrogen receptor (mybENER). When cells are treated 

with tamoxifen, the mybENER construct translocates to the nucleus, binds c-myb 

binding sequences and represses gene expression (24). Senescent WI38 lung 

fibroblasts stably expressing mybENER were treated with vehicle or tamoxifen to induce 

translocation of the construct (Fig 3.2C) and OPN levels were analyzed by qRT-PCR. In 

contrast to vehicle treated senescent fibroblasts, activation of mybENER in senescent 

fibroblasts resulted in a significant decrease in OPN expression (Fig 3.2D), 

recapitulating the results observed in response to depletion of c-myb through the 

expression of shRNA. These data further indicate that transcriptional activation by c-

myb is required for the activation of OPN in response to senescence.  
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c-myb DNA binding is required for OPN activation 

C-myb can activate its transcriptional targets through both DNA binding-dependent and 

independent mechanisms (18, 19). To determine if c-myb directly controlled OPN 

expression in response to senescence, we utilized site-directed mutagenesis to mutate 

the c-myb binding region of the OPN190 reporter (OPN190mut). Senescent BJ 

fibroblasts were transiently transfected with either the wild-type OPN190 or OPN190mut 

construct and luciferase activity was used to measure the transcriptional activity of the 

OPN promoter. Compared to senescent fibroblasts transfected with wild-type OPN190, 

senescent fibroblasts transfected with OPN190mut displayed significantly reduced 

luciferase activity (Fig 3.3A) indicating that the c-myb binding site is required for OPN 

promoter responsiveness to senescence induction.   

 

To further verify that the putative c-myb binding site identified in the OPN promoter was 

bound by c-myb we performed chromatin immunoprecipitation (ChIP) of c-myb from 

wild-type OPN190 or OPN190mut. Briefly, 293T kidney epithelial cells were transfected 

with a c-myb overexpression construct and either OPN190 or OPN190mut. 293T cell 

lysates were used for ChIP using a c-myb specific antibody or IgG control, and PCR 

was used to visualize the presence of either OPN190 or OPN190mut in the 

immunoprecipitations. We observed that while c-myb was capable of binding the 

OPN190 construct over the IgG control, it was unable to bind the OPN190mut construct 

(Fig 3.3B). This data indicates that c-myb binds directly to the OPN promoter and 
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suggests that the inability of the OPN190mut reporter to activate in response to 

senescence is due to the absence of c-myb binding. 

 

Finally, we wanted to verify that c-myb binds the endogenous OPN promoter. 293T cells 

were transiently transfected with a c-myb expression construct followed by ChIP with an 

antibody specific for c-myb or an IgG control. qPCR using primers spanning the c-myb 

binding site was used to measure levels of the endogenous OPN promoter present in 

the immunoprecipitations. Compared to the IgG control, there was significantly more 

OPN promoter present in the c-myb immunoprecipitations (Fig 3.3B). These data 

indicate that c-myb binds directly to the endogenous OPN promoter.  

 

DISCUSSION 

Through expression of SASP, senescent cells promote the growth and progression of 

cancerous lesions	   (5-7). Previous work in our laboratory has demonstrated that the 

SASP factor OPN is a critical driver of senescent-stroma driven preneoplastic 

keratinocyte cell growth (10). The transcriptional regulators that activate OPN 

expression in response to senescence have, however, remained elusive. Our work 

demonstrates that the transcription factor c-myb is required for the activation of OPN in 

response to senescence. Using an OPN promoter-reporter, we show that mutation of 

the c-myb binding site and inhibition of c-myb binding to the OPN promoter prevents 

promoter activation in senescent cells (Fig 3.3). We further show that depletion of c-myb 

through expression of c-myb-specfic shRNA or a dominant-negative c-myb construct 
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prevents OPN expression in response to senescence (Fig 3.2). These data indicate that 

c-myb is a direct transcriptional activator of OPN in the senescent context.  

 

What activates c-myb in response to senescence remains to be elucidated. Preliminary 

work in our laboratory to uncover the mechanism that drives c-myb activation has 

shown that neither protein levels nor localization of c-myb change in response to 

senescence (data not shown). Ongoing work is focused on the roles of c-myb co-

activators, specifically C/EBPβ plays in OPN expression in response to senescence. 

Elucidation of a more complete pathway that results in OPN activation in senescent 

cells will provide further therapeutic targets that can be used to inhibit its expression. 

Furthermore, we are interested in investigating if other SASP factors are regulated by c-

myb. As mentioned previously, OPN is not regulated via the ATM-NFκB pathway that 

regulates SASP factors like IL6 and IL8 (13). It will be interesting to see how pervasive 

c-myb regulation of SASP expression is because the ideal therapeutic target against 

SASP expression is one that inhibits the expression of a wide variety of SASP factors, 

thereby inhibiting multiple different tumor-promoting factors at once.   

 

 

 

 



80	  

	  
 

Fig 3.1: The senescence-responsive region of the OPN promoter contains a c-

myb binding site. A) Young or senescent BJ fibroblasts were transiently transfected 

with OPN promoter-luciferase reporters. Luciferase activity was measured to analyze 

OPN promoter activity. Data represent mean + SEM, n=3. B) Transcription factor 

binding site analysis performed on the OPN190 region identified a putative c-myb 

binding site, denoted in red. The sequence of the c-myb binding site is shown. SIPS: 

stress-induced premature senescence.  
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Fig 3.2: c-myb is required for activation of OPN in response to senescence. A) BJ 

fibroblasts were transduced with shmyb #1, shmyb #2 or a control hairpin (shluc) and c-

myb levels were analyzed using qRT-PCR, n=2. B) qRT-PCR was used to measure 

OPN expression level in senescent BJ fibroblasts transduced with the indicated hairpin, 

n=2. C) WI38 fibroblasts were transduced with myb ENER and immunofluorescence 

imaging was used to detect translocation of the construct in to the nucleus following 

treatment with tamoxifen. D) qRT-PCR was used to measure OPN expression level in 

young WI38 fibroblasts or senescent WI38 fibroblasts treated with vehicle or tamoxifen, 

n=3. Data represent mean + SD. SIPS: stress-induced premature senescence, tam: 

tamoxifen. * indicates p<0.05.    
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Fig 3.3: c-myb DNA binding is required for activation of OPN. A) Young or 

senescent BJ fibroblasts were transiently transfected with OPN190 or OPN190mut and 

luciferase activity was used to measure OPN promoter activation. n=4. B) 293T kidney 

epithelial cells were transiently transfected with a c-myb overexpression construct and 

either OPN190 or OPN190mut. ChIP was performed using a c-myb specific antibody or 

IgG control. PCR was used to measure the amount of OPN190 or OPN190mut in the 

immunoprecipitations. qRT-PCR was used to measure the presence of the endogenous 

OPN promoter in the immunoprecipitations. n=3. Data represent mean + SEM. SIPS: 

stress-induced premature senescence. * indicates p<0.05.  
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INTRODUCTION 

The critical role the tumor microenvironment (TME) plays in disease is underscored by 

findings that changes within stromal cells can predict clinical outcome (1-3).  For this 

reason, many groups have focused on how various stromal cell types impact 

tumorigenesis.  For example, activated fibroblasts isolated from carcinomas (cancer-

associated fibroblasts or CAFs) promote preneoplastic cell growth and increase tumor 

cell migration, invasion, and angiogenesis (4).  Likewise, senescent fibroblasts, which 

are also found in human tissue (5), support tumorigenesis through the promotion of 

growth, invasion, and angiogenesis (6-8).  Intriguingly, both senescent fibroblasts and 

CAFs express a plethora of pro-tumorigenic factors and in senescent cells this is 

referred to as the senescence-associated secretory phenotype (SASP) (6, 9).   

 

There is significant overlap between the pro-tumorigenic factors expressed in CAFs and 

senescent cells.  Expression array analyses of human fibroblasts treated with granulin, 

which renders a CAF-like phenotype (10), and fibroblasts isolated from human tumors 

reveal that both populations express SASP factors ((11, 12) and reviewed in (13)).  In 

addition, CAFs isolated by laser capture micro-dissection (LCM) or via cell surface 

marker expression similarly display SASP factor expression (1-4, 14).  Finally, cells that 

fail to enter senescence following exposure to a senescence-inducing stress robustly 

express SASP factors (15, 16), indicating that entrance into senescence is not a 

prerequisite for SASP expression.  Together, these observations raise the possibility 

that the mechanisms that govern SASP expression are conserved in many tumor-
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promoting fibroblasts and are not dependent upon the induction of senescence.  Thus, 

identifying mechanisms that activate and sustain SASP expression will have a profound 

impact on our understanding of the development of a pro-tumorigenic TME and the 

identification of novel therapeutic targets.   

 

Despite the profound impact the pro-tumorigenic SASP has on tumor cell growth and 

progression, the mechanisms that lead to its activation and maintenance remain poorly 

understood.  The majority of regulatory pathways elucidated thus far have focused on 

SASP factor transcription, specifically by NFκB and C/EBPβ (15-19). NFκB’s 

transcriptional activation of the SASP is dependent on the mitogen-activated protein 

kinase p38 (p38MAPK) and the DNA-damage response protein ATM (19). However, in 

other systems p38MAPK facilitates expression of cytokines including IL6 by impacting 

post-transcriptional mRNA stability, possibly through the RNA binding-protein AUF1 (20-

22).  Post-transcriptional regulation of the SASP by p38MAPK has yet to be 

investigated.  

 

Given the importance of the SASP on stromal-supported tumorigenesis, we investigated 

the impact of p38MAPK on SASP-mediated tumor promotion.  We demonstrate that 

inhibition of p38MAPK activity abrogates the tumor promoting capacity of senescent 

fibroblasts.  Furthermore, inhibiting p38MAPK in CAFs inhibits their tumor promoting 

abilities, demonstrating for the first time that regulatory mechanisms elucidated in 

senescent stroma are applicable in CAFs.  Finally, we elucidate a p38MAPK-dependent 
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post-transcriptional SASP regulatory pathway that modulates RNA-binding protein 

activity.  

 

METHODS	  

Cell lines and treatments 

BJ human foreskin fibroblasts were obtained from Dr. Robert Weinberg (Massachusetts 

Institute of Technology, Cambridge, MA) and were cultured as previously described 

(23).  IMR90 human lung fibroblasts were purchased from ATCC (Manassas, VA) and 

were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% 

FBS (Sigma, St. Louis, MO) and 1% penicillin/streptomycin.  Patient-derived breast 

cancer-associated fibroblasts were purchased from Asterand (Detroit, MI) and cultured 

in DMEM supplemented with 10% FBS, 1 μg/mL hydrocortisone, 5 μg/mL transferrin, 5 

μg/mL insulin, and 1% penicillin/streptomycin.  Fibroblasts were treated with bleomycin 

sulfate (100 μg/mL, Sigma, St. Louis, MO) for 24 hours, followed by incubation in normal 

culture medium for the time points indicated.  Fibroblasts were treated with actinomycin 

D (10 μg/mL, Sigma, St. Louis, MO) for 24 hours, SB203580 (10 μM, Millipore, Billerica, 

MA) for 48 hours, or CDD-111 (also referred to as SP-006, 1 μM, Confluence Life 

Sciences, St. Louis, MO) for 48 hours unless indicated otherwise. SB203580 and CDD-

111 were replenished daily. Fibroblasts were treated with 2 fresh changes of 4 mM 

sodium butyrate (NaB, Sigma, St. Louis, MO) for 72 or 120 hours.  RNA was isolated 

using TRI Reagent (Life Technologies, Carlsbad, CA) at the time points indicated.  

HaCaT preneoplastic keratinocyte cells (obtained from Dr. Norbert E. Fusenig, German 
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Cancer Research Center, Heidelberg, Germany) stably expressing click beetle red 

(CBR) luciferase (HaCat-CBR) (16) were grown in DMEM supplemented with 10% heat-

inactivated FBS and 1% penicillin/streptomycin (Sigma, St. Louis, MO). BPH1 

preneoplastic prostate epithelial cells (obtained from Dr. Robert Weinberg, 

Massachusetts Institute of Technology, Cambridge, MA) stably expressing CBR 

luciferase (BPH1-CBR) were growth in DMEM supplemented with 10% non-heat 

inactivated FBS and 1% penicillin/streptomycin.  All cells were cultured at 37 °C in 5% 

carbon dioxide and 5% oxygen. No cell lines used were authenticated.  

Plasmids 

The luciferase reporter construct fused to the 3’ UTR of IL6 (lucIL6) was a gift from Dr. 

Nicholas Davidson (Washington University School of Medicine, St. Louis, MO) and was 

subcloned into the EcoRI site of pBABE-hygro.  Luciferase reporter constructs fused to 

the 3’ UTR of GMCSF or GAPDH were purchased from Switch Gear Genomics (Menlo 

Park, CA) and were subcloned in to pBABE-hygro using the SnabI and SalI restriction 

sites.  Short hairpin RNA sequences targeting human AUF1 (shAUF1A: 5’-

AGAGTGGTTATGGGAAGGTAT-3’, shAUF1B: 5’-AGTAAGAACGAGGAGGATGAA-3’), 

p38 (5’-GCCGTATAGGATGTCAGACAA-3’) and Hsp27 (5-

CCCGGACGAGCTGACGGTCAA-3’) were obtained from the Children’s Discovery 

Institute’s viral vector-based RNAi core at Washington University in St. Louis, and were 

supplied in the pLKO.1-puro backbone.  Luciferase reporter assays were performed 

using a plasmid containing an NFκB-responsive promoter driving expression of firefly 

luciferase (NFκB-luc) and a plasmid encoding Renilla luciferase driven by the thymidine 
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kinase promoter, obtained from Dr. David Piwnica-Worms (Washington University 

School of Medicine, St. Louis, MO). 

Senescence-associated β-galactosidase (SA-β-gal) staining 

SA-β-gal staining was carried out as described previously (23). 

Quantitative PCR 

cDNA synthesis and quantitative PCR was performed using previously published 

protocols and manufacturers’ instructions (42) (SYBR Green, Life Technologies, 

Carlsbad, CA).  Primers for GAPDH (F: 5’-GCATGGCCTTCGGTGTCC-3’, R: 5’-

AATGCCAGCCCCAGCGTCAAA-3’), IL6 (F: 5’-ACATCCTCGACGGCATCTCA-3’, R: 5’-

TCACCAGGCAAGTCTCCTCA-3’), IL8 (F:  5’-GCTCTGTGTGAAGGTGCAGT-3’, R: 5’-

TGCACCCAGTTTTCCTTGGG-3’), MMP3 (F: 5’-GTTTTGGCCCATGCCTATGCCCC-3’, 

R: 5’-GGAGTCAGGGGGAGGTCCATAGAGG-3’), CCL20 (F: 5’-

CTGCGGCGAATCAGAAGCAGC-3’, R: 5’-CCTTCATTGGCCAGCTGCCGT-3’), lucIL6 

(F: 5’-CGGGCGCGGTCGGTAAAGTT-3’, R: 5’-AAACAACAACGGCGGCGGGA-3’), and 

lucGMCSF and lucGAP (F: 5’-GAGAAACATGCGGAGAACGC-3’, R: 5’-

AGCATGCACGATAGCCTTGA-3’) were purchased from IDT.  GMCSF cDNA was 

amplified using a Taqman probe/primer set (catalog number Hs00929873_m1, Life 

Technologies, Carlsbad, CA).  

ELISA 

Conditioned medium was generated by incubating cells for 24 hours in serum-free 

medium.  Following collection, secreted IL6 protein levels were measured using the 
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human IL6 Quantikine ELISA kit (catalog number D6050, R&D Systems, Minneapolis, 

MN).   

Western blot analysis 

Cell pellets were lysed in buffer containing 50 mM Tris pH 8.0, 5 mM EDTA, 0.5% NP40 

and 100 mM sodium chloride for 20 minutes at 4 °C.  Protein concentration was 

quantified using the Bradford Protein Assay (Bio-Rad, Berkeley, CA). The primary 

antibodies used were: polyclonal AUF1 (Millipore, Billerica, MA, catalog number 

07260MI) at 1:3000, polyclonal p-p38 (PhosphoSolutions, Aurora, CO, catalog number 

p190-1802) at 1:1000, polyclonal p38 (Cell Signaling, Boston, MA, catalog number 

9218) at 1:1000, monoclonal β-catenin (BD Biosciences, San Jose, CA, catalog number 

610153) at 1:5000, and monoclonal α-tubulin (Abcam, Cambridge, MA, product number 

ab6160) at 1:1000.  All secondary antibodies from the appropriate species were 

horseradish peroxidase-conjugated (Jackson Laboratories, Bar Harbor, ME) and diluted 

1:10000.  

Virus Production 

Virus was produced as described previously (23).  

RNA-binding protein immunoprecipitation (RIP) 

Cell pellets from 7x107 BJ fibroblasts were lysed in the same buffer used for western 

blot analysis.  Protein concentration was analyzed using the Bradford Protein Assay 

(Bio-Rad, Berkeley, CA).  3 mg of protein was used for each immunoprecipitation.  The 

following primary antibody was used: 30 μg of polyclonal AUF1 (Millipore, Billerica, MA, 

catalog number 07260MI).  Equivalent amounts of normal IgG antibody (Cell Signaling, 
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Boston, MA) were used to control for specific immunoprecipitation.  Cell lysates were 

pre-cleared with 20 μL protein A Dynabeads (Life Technologies, Carlsbad, CA) for 30 

minutes at 4 °C prior to immunoprecipitation.  100 μL Protein A Dynabeads were used 

for each immunoprecipitation.  Beads were washed 3 times in 0.1 M monosodium 

phosphate and then incubated in 0.1 M monosodium phosphate with the appropriate 

antibody for at least 1 hour at room temperature.  Beads were then washed 3 times in 

Buffer A (1x PBS, 0.1% SDS, 0.3% sodium deoxycholate, 0.3% NP40), followed by 

incubation for 30 minutes at room temperature in NT2 buffer (50 mM Tris pH 7.4, 150 

mM sodium chloride, 1 mM magnesium chloride).  Antibody-bound beads were then 

added to pre-cleared cell lysates, and immunoprecipitated overnight at 4 °C.  100 μL of 

cell lysate was removed from the IgG immunoprecipitation to be used for input controls.  

Immunoprecipitated beads were washed 2 times with each of the following buffers: 

Buffer A, Buffer B (5x PBS, 0.1% SDS, 0.5% sodium deoxycholate, 0.5% NP40) and 

Buffer C  (50 mM Tris pH 7.4, 10 mM magnesium chloride, 0.5% NP40).  Beads were 

then resuspended in NT2 containing 0.1% SDS, 80 U RNase OUT (Life Technologies, 

Carlsbad, CA), and 30 μg Proteinase K and incubated at 55 °C for 30 minutes.  RNA 

was isolated from the beads by adding 1 mL of TRI Reagent (Life Technologies, 

Carlsbad, CA).  Following cDNA synthesis, mRNA levels of SASP factors were analyzed 

by qPCR using the primers and procedures described above.  

Luciferase reporter assay 

BJ fibroblasts were transiently transfected with plasmids encoding NFκB-luc and Renilla 

luciferase. Renilla luciferase expression was used to standardize for transfection 
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efficiency. Transfection was performed using manufacturer’s protocol for the 

Lipofectamine 2000 reagent (Life Technologies, Carlsbad, CA).  Luciferase activities 

were measured 48 hours post-transfection using live cell imaging as described (43). 

Co-culture 

Co-culture experiments were performed as previously described with the following 

modifications (23).  1.3×104 fibroblasts were plated in black-walled 96 well plates 

(Fisher Scientific, Pittsburgh, PA).  Cells were incubated in starve medium (DMEM + 1% 

penicllin/streptomycin) for 3 days before the addition of HaCat-CBR cells. SB203580 

was refreshed daily until HaCaT-CBR plating.  HaCat-CBR cells were cultured in starve 

medium for 24 hours prior to plating on fibroblasts.  1.0×103 HaCat-CBR cells were 

plated on fibroblasts and incubated for the indicated length of time.  At the times 

indicated, D-luciferin (Biosynth, Naperville, IL) was added to a final concentration of 150 

μg/mL.  After ten minutes, plates were imaged using an IVIS 100 camera (PerkinElmer, 

Downers Grove, IL) using the following settings: exposure=10 s–5 min, field of view=15, 

binning=16, f/stop=1, open filter. 

Xenografts 

1x106 BPH1-CBR preneoplastic prostate epithelial cells were co-injected with 1x106 BJ 

human foreskin fibroblasts.  Cells were injected subcutaneously in a 50:50 mixture of 

DMEM:growth factor-reduced Matrigel (BD Biosciences, San Jose, CA) into the rear 

flanks of female NcR nude mice (Taconic, Germantown, NY).  In vivo bioluminescence 

imaging was performed on the days indicated on an IVIS 100 (PerkinElmer, Downers 

Grove, IL; Living Image 3.2, 1–60 s exposures, binning 4, 8 or, 16, FOV 15 cm, f/stop 1, 
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open filter) following IP injection of D-luciferin (150 mg/kg; Biosynth, Naperville, IL).  For 

analysis, total photon flux (photons/sec) was measured from a fixed region of interest 

over the xenografts using Living Image 2.6 (PerkinElmer, Downers Grove, IL). 

RNA Sequence Analysis 

Total RNA was isolated using TRI Reagent (Life Technologies, Carlsbad, CA) and the 

RiboPure RNA isolation kit (Life Technologies, Carlsbad, CA) following the 

manufacturer’s instructions.  Ribosomal RNA was removed by poly-A selection using 

oligo-dT beads.  mRNA was then fragmented and reverse transcribed to yield double 

stranded cDNA using random hexamers.  cDNA was blunt ended, had an A base added 

to the 3’ ends, and then had Illumina sequencing adapters ligated to the ends.  Ligated 

fragments were then amplified for 12 cycles using primers incorporating unique index 

tags.  Fragments were sequenced on an Illumina HiSeq-2000 (San Diego, CA) using 

single reads extending 50 bases.  Raw data was de-multiplexed and aligned to the 

reference genome using TopHat.  Transcript abundances were then estimated from the 

alignment files using Cufflinks.  EdgeR was used for differential expression analysis.  

Generation of CAFs 

Primary breast tissue was collected without patient identifiers in compliance with a 

protocol approved by the Brigham and Women’s Hospital (Institutional Review Board 

93-085).  Fibroblasts were isolated (10, 11) and immortalized through expression of 

hTERT-GFP (44) as previously described.  

 



97	  

To generate cancer-associated fibroblasts (CAFs), 3x106 human mammary fibroblasts 

were co-injected with 1x106 MCF7-Ras tumor cells subcutaneously into nude mice.  

After tumors reached 1 cm, mice were euthanized and CAFs were re-isolated by 

digesting tissues in 1 mg/ml collagenase A for 1-4 hours at 37 °C with continuous 

rotation.  Resulting cell suspensions were dispersed with an 18-gauge needle, washed 

2 times with resuspension buffer (2% heat-inactivated fetal calf serum in sterile Hank’s 

Balanced Salt Solution (HBSS)), and filtered through 70 mm nylon mesh.  GFP+ CAFs 

were then isolated by fluorescence-activated cell sorting and maintained under their 

standard culture conditions.  CAFs were confirmed to be human by staining with human 

specific mitochondrial DNA (data not shown). 

Oral dosage of p38MAPK inhibitor 

The p38MAPK small molecule inhibitor CDD-111 (Confluence Life Sciences, Inc, St. 

Louis, MO) was compounded at 516 ppm with Purina Rodent Chow #5001 (St. Louis, 

MO) to generate a daily exposure of 80 mg/kg/day.  Female NcR nude mice (Taconic, 

Germantown, NY) were fed ad libitum. 

LPS challenge and TNFα ELISA 

Female NcR nude mice (Taconic, Germantown, NY) were fed ad libitum for 3 days. 100 

ng lipopolysaccharide (LPS) (Sigma, St. Louis, MO) was then administered by IP 

injection.  Serum was collected 1 hour after LPS dosage.  TNFα levels were analyzed 

by ELISA (R&D Systems, Minneapolis, MN) 

 

 



98	  

Staining of xenograft tumors 

Following excision, tumors were fixed in 10% formalin and embedded in paraffin for 

sectioning.  Standard H&E technique was used for all sections.  Serial sections were 

stained for Ki67 (1:50, catalog number 550609, BD Bioscience, San Jose, CA), p16 

(1:100, catalog number sc-1661, Santa Cruz Biotechnology, Dallas, TX) and vimentin 

(1:700, catalog number ab45939, Abcam, Cambridge, MA). 

Statistical Analysis 

Data is presented as the mean ± SEM. Statistical significance was determined using the 

Student’s t test, with a p value < 0.05 considered significant.  Percent mRNA remaining 

was calculated as the fold mRNA in ActD-treated SIPS cells over untreated SIPS cells. 

Overrepresented gene ontology terms in the expression data were identified using a 

Fisher’s exact test, with a significance threshold of p < 0.05 as implemented in GOstat 

(45). 

 

RESULTS 

p38MAPK activity controls the pro-tumorigenic properties of the SASP 

SASP factors promote preneoplastic cell growth (6-8, 23, 24) and p38MAPK contributes 

significantly to the initiation of SASP factor expression (25).  To confirm this, senescent 

fibroblasts (fibroblasts staining positive for senescence-associated β-gal, 

Supplemental Fig. 4.1A) were treated with a highly specific small-molecule inhibitor of 

p38MAPK (SB203580) (26).  Hsp27 is a direct downstream target of p38MAPK.  

Therefore, to confirm that our treatment inhibited the kinase activity of p38MAPK, we 
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measured Hsp27 phosphorylation by western blot analysis.  We found that SB203580 

treatment led to a reduction in Hsp27 phosphorylation, indicating successful inhibition of 

p38MAPK activity (Fig. 4.1A).  As expected, SB203580 treatment of senescent 

fibroblasts resulted in a significant reduction in the expression of SASP factors IL6, IL8, 

and GMCSF (Fig. 4.1B).  To determine if p38MAPK activity was responsible for the 

tumor-promoting activities of senescent cells, we performed co-culture experiments with 

normal human fibroblasts induced to senesce by treatment with bleomycin (referred to 

throughout as stress-induced premature senescence, SIPS) and preneoplastic HaCaT 

keratinocyte cells expressing click beetle red (CBR) luciferase (HaCaT-CBR) (23).  Prior 

to the addition of HaCAT-CBR cells, fibroblasts were treated with vehicle or SB203580 

as indicated in Fig. 4.1C.  Senescent fibroblasts treated with vehicle increased the 

growth of HaCaT-CBR cells compared to HaCaT-CBR cells cultured with young 

fibroblasts (Fig. 4.1D), recapitulating our previously published observations (15, 23).  

However, while inhibition of p38MAPK had no effect on HaCAT-CBR cells grown in the 

absence of fibroblasts (Supplemental Fig. 4.1B), we found that p38MAPK inhibition 

reduced the pro-tumorigenic activity of senescent fibroblasts by significantly reducing 

HaCaT-CBR cell growth (Fig. 4.1D).  

 

Given the potent impact of p38MAPK inhibition in co-culture experiments, we next 

examined the impact of p38MAPK depletion on preneoplastic cell growth in xenograft 

experiments.  p38MAPK was depleted from senescent fibroblasts (Fig. 4.1E), resulting 

in a significant reduction in the level of p38MAPK-dependent SASP factor IL8 (Fig. 
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4.1F).  To assess the impact of p38MAPK loss in vivo, young, senescent, or p38MAPK-

depleted senescent fibroblasts were admixed with the preneoplastic epithelial cell line 

BPH1 expressing CBR luciferase (BPH1-CBR) and injected subcutaneously into nude 

mice.  Tumor growth was analyzed by bioluminescence imaging.  As expected, 

senescent fibroblasts increased BPH1-CBR cell growth relative to young fibroblasts 

(Fig. 4.1G).  However, depletion of p38MAPK and subsequent reduction in p38MAPK-

dependent SASP factor expression reduced tumor growth to the level observed when 

BPH1-CBR cells were co-injected with young fibroblasts (Fig. 4.1G).  These results 

indicate that expression of p38MAPK-dependent SASP factors within the TME plays a 

pivotal role in preneoplastic cell growth in vivo.  

 

The pro-tumorigenic SASP is subject to post-transcriptional regulation 

We next sought to elucidate the mechanism by which p38MAPK regulates pro-

tumorigenic SASP factor expression.  Previous work demonstrated that p38MAPK 

modulates NFκB-driven transcription of SASP factors including IL6 and IL8 (19).  To 

determine that the effects of p38MAPK inhibition were transcriptionally based, 

senescent fibroblasts were treated with the transcription inhibitor actinomycin D (ActD) 

at several time points following bleomycin treatment.  SASP factor expression was 

significantly inhibited when cells were treated with ActD 24 hours after bleomycin 

treatment (Fig. 4.2A), a time point at which SASP factor mRNA was increased 

(Supplemental Fig. 4.2A) but cells were not yet senescent (Supplemental Fig. 4.1A).  

These results indicate that at this time point SASP factor expression is dependent on 
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transcription.  Surprisingly, at 96 hours after bleomycin treatment, when cells displayed 

morphological features characteristic of senescence including staining positive for SA-β-

gal (Supplemental Fig. 4.1A), treatment with ActD failed to reduce SASP factor mRNA 

levels (Fig. 4.2A).  These changes in mRNA were also reflected at the protein level.  

Indeed, we found that IL6 protein levels in conditioned medium collected from cells 

treated with ActD at 24 hours fell drastically compared to untreated cells.  In contrast, 

when cells were treated with ActD at 96 hours, IL6 protein levels remained high (Fig. 

4.2B).  Given p38MAPK inhibition at the later time point significantly reduced SASP 

expression (Fig. 4.1B), these findings raised the possibility that p38MAPK impacts 

SASP factor mRNA stability rather than NFκB-driven transcriptional activation upon the 

acquisition of senescence.  To confirm that p38MAPK had no effect on NFκB-driven 

transcription at the later time point, normal human fibroblasts were transduced with an 

NFκB transcription reporter plasmid driving expression of luciferase (NFκB-luc).  

Transduced cells were treated with bleomycin, and 72 hours later senescent cells were 

treated with the p38MAPK inhibitor SB203580 for an additional 48 hours.  As expected, 

when SB203580 treatment was initiated 72 hours after bleomycin treatment, there was 

no significant effect on NFκB transcriptional activity (Fig. 4.2C).  These results indicate 

that after the establishment of senescence, p38MAPK has a profound effect on SASP 

factor mRNA stability.  

 

To address whether SASP factor mRNA stability was affected in cells undergoing 

replicative senescence or other types of stress-induced senescence, normal human 
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fibroblasts were induced to senesce through telomere dysfunction (replicative 

senescence, RS) or treatment with the histone deacetylase inhibitor sodium butyrate 

(NaB).  Cells undergoing RS or NaB-induced senescence robustly induced expression 

of SASP factors, including IL6 and IL8 (Supplemental Fig 4.2B and Supplemental Fig 

4.2C, respectively).  Further, we found that SASP factor mRNAs were significantly 

stabilized in cells that had undergone RS or NaB-induced senescence (Fig. 4.2D and 

Supplemental Fig. 4.2D, respectively).  Significantly, SASP factor mRNA stabilization 

was not limited to skin fibroblasts; when IMR90 human lung fibroblasts were treated with 

bleomycin, they displayed a similar increase in SASP factor mRNA stability 96 hours 

post-bleomycin treatment (Supplemental Fig. 4.2E).  Together, these data indicate that 

SASP factor mRNAs are stabilized by a post-transcriptional regulatory program that is 

active in fibroblasts from diverse tissues, regardless of the mechanism through which 

senescence is induced. 

 

p38MAPK post-transcriptionally regulates the SASP 

Our results indicate that p38MAPK inhibition reduces SASP expression and TME-

dependent promotion of tumorigenesis but does not affect the activity of the primary 

transcriptional regulator of the SASP, NFκB, following induction of senescence.  

Interestingly, p38MAPK post-transcriptionally regulates IL6 and IL8 in other contexts 

(20, 21).  Thus, we investigated p38MAPK’s role in stabilizing SASP factor mRNA.  We 

first examined whether p38MAPK was active throughout the time course under 

investigation.  To assess p38MAPK activation, lysates were prepared from cells 24 or 
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96 hours after bleomycin treatment and examined for phosphorylated p38MAPK (p-p38) 

by western blot analysis.  In agreement with previous findings (19), we observed that 

phosphorylated p38MAPK increased from 24 to 96 hours following bleomycin treatment 

(Supplemental Fig. 4.2F).  These kinetics were consistent with SASP factor mRNA 

stabilization, suggesting that p38MAPK activation regulates SASP factor mRNA 

stability.  

 

To elucidate p38MAPK’s role in regulating SASP factor mRNA stabilization, normal 

human fibroblasts depleted of p38MAPK (shp38) were treated with ActD 24 or 96 hours 

after bleomycin treatment (Fig. 4.2E).  When treated with ActD 24 hours after bleomycin 

treatment, cells expressing shSCR or shp38 displayed decreased SASP mRNA stability, 

indicating that p38MAPK does not post-transcriptionally regulate SASP mRNAs at this 

time point.  As expected, both IL6 and IL8 mRNA stability increased when shSCR 

control cells were treated with ActD 96 hours after bleomycin treatment, although not to 

the same extent as that observed in non-transduced fibroblasts.  In contrast, when 

shp38 cells were treated with ActD 96 hours post-bleomycin treatment, they displayed 

significantly reduced IL6 and IL8 mRNA stability when compared to cells expressing the 

control hairpin (shSCR) (Fig. 4.2E).  Similar results were obtained with a second 

independent shRNA targeting p38MAPK (data not shown).   
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The 3’ UTRs of SASP factor transcripts control mRNA stabilization in stromal 

cells 

We next examined the mechanisms by which SASP factor mRNA was stabilized.  The 

3’ untranslated region (UTR) of many mRNAs contains protein binding motifs that alter 

mRNA stability under diverse biological stimuli (27).  To determine whether the 3’ UTRs 

of SASP factor mRNAs govern post-transcriptional regulation, we utilized a luciferase 

reporter cDNA fused to the 3’ UTR of IL6 (lucIL6) or GMCSF (lucGMCSF).  A luciferase 

reporter cDNA fused to the 3’ UTR of GAPDH (lucGAP) was used as a control.  Normal 

human fibroblasts were stably transduced with the luciferase reporter constructs and 

luciferase mRNA levels were monitored in response to ActD at the time points indicated 

(Fig. 4.3A).  Similar to our observations with the endogenous IL6 and GMCSF 

transcripts, we observed that the stability of the lucIL6 and lucGMCSF transcripts 

increased significantly when treated with ActD 96 hours compared to 24 hours after 

bleomycin treatment (Fig. 4.3A).  As expected, there was no significant change in the 

stability of the lucGAP transcript (Fig. 4.3A), indicating that 3’ UTR-dependent mRNA 

stabilization was specific for SASP factor mRNA and did not extend to all mRNAs in 

response to senescence.  These results indicate that the 3’ UTR of SASP factor 

transcripts mediates increases in mRNA stability. 

 

AUF1 directly binds to SASP factor mRNA and modulates their stabilization 

AUF1 is a protein that binds the 3’ UTRs of many mRNAs including IL6, IL8, and 

GMCSF and reduces their stability (28-30).  Furthermore, p38MAPK is known to impact 
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AUF1 activity in other settings (22), although a link between AUF1 and p38MAPK in the 

post-transcriptional regulation of IL6 and IL8 has not been demonstrated.  To examine 

AUF1 binding to SASP factor mRNA in response to senescence, we utilized RNA-

binding protein immunoprecipitation (RIP) to examine AUF1 binding to SASP factor 

mRNAs in response to senescence.  Cell lysates were collected 24 and 96 hours after 

bleomycin treatment and subjected to immunoprecipitation with either an AUF1-specific 

antibody or a nonspecific IgG; mRNA levels were normalized to the levels of each 

transcript measured in the input fractions. We observed that AUF1 occupancy on IL6 

and IL8 mRNAs significantly decreased from 24 to 96 hours after bleomycin treatment 

(Fig. 4.3B), corresponding with the increase in mRNA stability observed in Fig. 4.2.  We 

observed similar results for GMCSF and CCL20 mRNA, indicating that this mechanism 

impacts many SASP factor mRNAs (Fig. 4.3B).  This observation suggests that 

decreased AUF1 binding leads to increased mRNA stability once senescence is 

established.  

 

We next sought to determine whether AUF1 was required to destabilize SASP mRNAs. 

To address this question, we stably transduced normal human fibroblasts with two 

independent short-hairpin RNA (shRNA) constructs targeting AUF1 (shAUF1a and 

shAUF1b) (Fig. 4.3C).  AUF1-depleted cells were treated with bleomycin and 24 hours 

later treated with ActD, a time at which AUF1 is bound to SASP factor mRNAs 

displaying reduced stability (Fig. 4.3B).  In contrast to control cells, we found that AUF1 

depletion significantly increased the stability of IL6 and IL8 mRNA at the early time point 
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when these mRNAs are normally unstable (Fig. 4.3D).  These data demonstrate that 

before senescence is established, AUF1 destabilizes SASP mRNAs by binding to their 

3’ UTRs.  

 

To address whether the impact of p38MAPK on SASP mRNA stabilization was due to 

modulation of AUF1–SASP mRNA binding, we carried out RIP analysis.  Following 

bleomycin treatment, normal human fibroblasts were treated with SB203580 or vehicle 

control as described in Fig. 4.3E.  In contrast to control cells in which AUF1 occupancy 

decreased at the late time point, there was no decrease in AUF1 occupancy on IL8 

mRNA in p38MAPK-inhibited cells collected 96 hours after bleomycin treatment (Fig. 

4.3E).  Similar results were obtained for IL6 (data not shown).  These observations 

indicate that p38MAPK activation is required to release AUF1 from SASP factor mRNA.  

Further, these studies suggest that loss of SASP factor mRNA stabilization in p38MAPK 

inhibited cells (Fig. 4.2) is the result of a failure to remove AUF1 from SASP factor 

transcripts. 

 

p38MAPK-dependent factors are expressed in the TME of breast cancer lesions 

The TME plays a pivotal role in tumor progression, and recent expression analyses 

indicate that TME-specific expression changes are predictive of clinical outcome (1-3).  

Both senescent fibroblasts and CAFs express pro-tumorigenic SASP factors, raising the 

intriguing possibility that the regulatory mechanisms that control SASP expression in 

senescent cells also operate in cancer-associated stroma.  Given the importance of 
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p38MAPK in SASP factor expression, we carried out a meta-analysis to establish a list 

of p38MAPK-regulated genes in senescent fibroblasts and evaluated their expression in 

the TME of human breast cancers (Fig. 4.4A).  We performed RNA sequence analysis 

(RNA-seq) of young, senescent, and p38MAPK-inhibited senescent human fibroblasts 

and observed that IL6 and IL8 expression was p38MAPK-dependent.  Along with 

previously identified factors, we found that 50 additional SASP factors were p38MAPK-

dependent, including GMCSF, GCSF, IL1α, IL1β, CXCL1, CXCL2, CXCL5, CCL20, 

MMP1, and MMP7 (Supplemental Table 4.1, Fig. 4.4A).  A subset of these factors 

was validated by qRT-PCR (Supplemental Fig. 4.3A).  Gene ontology (GO) process 

analysis performed on the p38MAPK-dependent factors demonstrated that genes 

related to the regulation of inflammation, chemotaxis, cell adhesion, angiogenesis, and 

proliferation were significantly enriched in this gene set (Fig. 4.4B).  

 

We next compared our p38MAPK-dependent SASP list to factors significantly over-

expressed in the TME of breast cancer (BC) lesions.  We examined three data sets 

generated from microarray analyses of normal stroma versus cancer-associated stroma 

that had been obtained by laser capture micro-dissection of breast tissue (1-3) (Fig. 

4.4A).  Of the 50 p38MAPK-dependent factors identified in senescent fibroblasts, we 

found that 29 were expressed in the stroma of the Finak breast cancer dataset (1), 

including CXCL2 and IL24.  Seventeen factors were expressed in the TME of the Ma 

breast cancer data set (2), including IL1β.  Finally, 7 factors overlapped with the 

Karnoub breast cancer data set (3), including CCL20 (Supplemental Table 4.1).  
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Furthermore, CCL20, CXCL5, IL11, IL1β, IRAK3, MMP1, MPP7, and SOD2 were 

expressed in the BC-associated stromal compartment of at least two studies (Fig. 

4.4C).  Of note, CCL20, CXCL5, IL11, IL1β, and MMP1 are factors with known pro-

tumorigenic activities (31-35).  We observed that BC-associated stromal genes 

compose a large percentage of the total number of p38MAPK-dependent SASP factors 

involved in the regulation of inflammation, chemotaxis, angiogenesis, and cell adhesion 

based on GO process analyses (Fig. 4.4B).  Given that these factors are associated 

with disease progression, our findings raise the possibility that anti-p38MAPK therapy 

could significantly impact tumor progression in humans.   

 

Inhibition of p38MAPK abrogates the pro-tumorigenic activities of CAFs 

Expression of p38MAPK-dependent factors within the stroma of breast cancer lesions 

raised the possibility that they contribute to the tumor promoting activities of CAFs.  

Therefore, we examined whether inhibition of p38MAPK would abrogate the tumor-

promoting activities of CAFs as it did for senescent fibroblasts.  To generate CAFs, we 

obtained normal human mammary fibroblasts from reduction mammoplasty (NMF), 

admixed them with MCF7-Ras breast carcinoma cells and injected the cell mixture into 

immunocompromised mice and allowed tumors to grow.  Human CAFs were isolated 

from these tumors and we assessed their tumor-promoting potential by co-culturing 

them with preneoplastic HaCaT skin keratinocytes expressing CBR luciferase (HaCaT-

CBR).  As expected, CAFs significantly stimulated HaCaT-CBR cell growth compared to 

HaCaT-CBR cells cultured with parental NMF fibroblasts (Fig. 4.4D).  To investigate the 
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importance of p38MAPK-dependent CAF factors, we inhibited p38MAPK in CAFs with 

SB203580 and assessed their ability to promote preneoplastic cell growth.  Similar to 

what we observed when senescent fibroblasts were treated with the p38MAPK inhibitor 

SB203580 (Fig. 4.1C), CAFs treated with SB203580 failed to promote HaCaT-CBR cell 

growth (Fig. 4.4D).  These results indicate that p38MAPK regulates the tumor-

promoting activity of CAFs.  Together with our meta-analysis and expression of 

p38MAPK-dependent genes in the stromal compartment of human breast cancer 

lesions, these observations suggest that p38MAPK plays a central role in sustaining the 

expression of tumor-promoting factors.  Thus, stromal p38MAPK represents a novel 

therapeutic target for senescent and non-senescent cancer-associated stromal 

compartments in breast cancer.  

 

p38MAPK inhibition compromises the tumor-promoting capacity of the 

microenvironment 

The critical importance of SASP factor expression in our tumor models and our work to 

uncover the mechanisms that sustain SASP factor expression identified p38MAPK as a 

central player in SASP expression in senescent cells as well as in CAFs.  Given our 

findings that p38MAPK-dependent factors are expressed in human breast cancer 

lesions, we evaluated the feasibility of targeting p38MAPK in a preventative and 

therapeutic setting.  Several p38MAPK inhibitors have entered phase II clinical trails for 

rheumatoid arthritis and thus have proven safe in a nonlethal disease (36, 37).  We 

obtained a p38MAPK inhibitor (CDD-111, also referred to as SD-0006 (38), Confluence 
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Life Sciences) and compounded it into mouse chow.  CDD-111 was chosen because it 

can be orally administered and shows high specificity for the p38MAPK α subunit (38).  

Indeed, extensive analysis of CDD-111 revealed that it is selective for p38MAPK α over 

fifty other kinases including p38MAPK β, γ, and δ.  Furthermore, the IC50 for inhibiting 

tumor necrosis factor-α (TNFα) release in vitro and in vivo was less than 200 nM (38).   

Treatment of senescent cells with CDD-111 in vitro revealed that it effectively reduced 

SASP expression as evidenced by a significant reduction in IL6 and IL8 levels (data not 

shown).   

 

To establish the impact of orally administered CDD-111 on p38MAPK activity in our 

system, mice were placed on CDD-111 (p38i) or control chow for three days, challenged 

with LPS, and serum TNFα levels were measured.  We found that mice receiving oral 

p38i failed to mount a robust TNFα response following an LPS challenge compared to 

animals receiving control chow (Supplemental Fig. 4.3B).  We also verified that p38i 

inhibited SASP expression in vivo.  Senescent normal human fibroblasts were injected 

subcutaneously into the rear flanks of nude mice maintained on control or p38i chow.  

Ten days after injection the cells were removed, RNA was isolated, and the levels of 

human IL8 were analyzed by qRT-PCR.  Senescent fibroblasts isolated from mice on 

p38i had significantly less IL8 mRNA than senescent fibroblasts isolated from mice on 

control chow (Fig. 4E), demonstrating that CDD-111 inhibited SASP expression in vivo.   
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We next evaluated the p38MAPK inhibitor’s efficacy in a xenograft setting.  BPH1-CBR 

cells admixed with young or senescent fibroblasts were subcutaneously injected into 

mice maintained on control or p38i chow (Fig. 4.4F).  Bioluminescence analysis of 

tumor growth revealed that p38i significantly reduced the growth of BPH1-CBR cells co-

injected with senescent fibroblasts (Fig. 4.4G & H).  Analysis of cellular proliferation 

(Ki67 staining) revealed that senescent fibroblasts significantly increased BPH1 cell 

proliferation compared to when BPH1 cells were co-injected with young fibroblasts (Fig. 

4.5A).  Importantly, the increase BPH1 proliferation that was noted in the presence of 

senescent fibroblasts was markedly reduced when mice were maintained on p38i 

versus control chow (Fig. 4.5A).  These data demonstrate that the reduced tumor size 

observed in response to p38i administration was a result of decreased epithelial cell 

proliferation.  Importantly, the difference in epithelial cell proliferation between tumors 

containing senescent stroma from p38i- and control-fed mice was not due to differences 

in stromal composition between these tumor types, as staining for a senescence 

marker, p16, and a fibroblast marker, vimentin, demonstrated that 1) senescent 

fibroblasts persisted throughout the time course of the experiment regardless of 

p38MAPK inhibition and 2) the stromal composition of treated and untreated tumors was 

similar.  Vascularity and myeloid infiltration were also investigated in these tumors.  No 

significant differences in either vascularity or leukocyte infiltration were noted (data not 

shown).  Administration of CDD-111 to mice injected with BPH1 cells admixed with 

young fibroblasts also resulted in a decrease in epithelial cell growth, although not to the 

same extent as that observed in tumors containing senescent fibroblasts.  Oral 
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administration of CDD-111 had no significant impact on BPH1-CBR cells injected alone 

(data not shown).     

 

To address the effectiveness of p38MAPK inhibition in a therapeutic setting, mice were 

injected with BPH1-CBR cells admixed with senescent fibroblasts and tumors were 

allowed to grow for one week until the average tumor volume reached 74 mm3.  Mice 

were then administered control or p38i chow and bioluminescence imaging was used to 

monitor tumor growth.  Significantly, tumor growth was arrested in mice receiving p38i.  

In contrast, tumors in mice receiving control chow continued to show significant growth 

(Fig. 4.5B).   

 

To investigate the applicability of orally administered p38i in CAF-containing 

microenvironments, we obtained primary CAFs (pCAFs) from a lesion removed from a 

patient with invasive breast cancer.  We subcutaneously injected BPH1 cells alone or 

BPH1 cells admixed with pCAFs into nude mice fed either control or p38i chow as 

described for the experiments in Fig 4.4F.  As expected, there was no difference in 

BPH1 cell growth whether mice were fed control or p38i chow (Fig. 4.5C).  Importantly, 

in mice receiving control chow, BPH1 cells admixed with pCAFs grew significantly more 

than BPH1 cells injected alone, verifying that our patient-derived fibroblasts were bona 

fide CAFs (Fig. 4.5C).  pCAF-mediated BPH1 growth was significantly inhibited in mice 

receiving p38i (Fig. 4.5C), similar to what was observed with senescent fibroblast-

mediated BPH1 growth (Fig 4.4G and H). These findings, combined with those from 
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p38MAPK inhibition of senescent-fibroblast driven tumors, suggest that p38MAPK is a 

viable, stromal specific therapeutic target that may show efficacy in diverse tumor 

microenvironments and diverse tumor types 

 

DISCUSSION 

The regulation of SASP expression is complex, involving the DNA damage response 

(16), HDAC1 activity (15), and transcriptional regulation by NFκB and C/EBPβ (17-19).  

p38MAPK perhaps best exemplifies the complexity of SASP regulation.  Previous 

reports have shown that p38MAPK impacts NFκB-driven transcriptional control of SASP 

expression immediately following exposure to a senescence-inducing signal (19).  In our 

system, p38MAPK inhibition had no effect on NFκB transcriptional activity when it was 

initiated after cells acquired the senescent phenotype as evidenced by SA-β-gal 

staining.  However, p38MAPK inhibition did have a significant impact on SASP factor 

mRNA stability.  Our data are consistent with p38MAPK playing a dual role in SASP 

factor expression.  We hypothesize that SASP factor expression is achieved through 

early rounds of transcription followed by post-transcriptional mRNA stabilization, both of 

which require distinct p38MAPK functions.  

 

Inhibiting the SASP represents a novel stromal-specific therapeutic cancer modality that 

could be beneficial at multiple stages of tumorigenesis.  We have demonstrated that 

senescent cells are present in the microenvironment before the formation of 

preneoplastic lesions and that SASP factors promote preneoplastic cell growth (15, 23).  



114	  

The SASP also promotes more aggressive malignancies by increasing angiogenesis 

and invasion (9, 39).  Finally, the SASP is hypothesized to promote later events in 

cancer progression including metastasis and recurrence through its promotion of cancer 

stem cell formation and chemo-resistant niches (7, 40, 41).  Together, these findings 

suggest that inhibition of the SASP will prevent the development and/or progression of 

malignancies.  p38MAPK could provide an ideal target as it impacts both the 

transcriptional and post-transcriptional regulation of SASP (19) and may be particularly 

effective because it can inhibit SASP expression after the stabilization of SASP mRNAs 

has already occurred.   

 

Our findings that oral administration of a p38MAPK inhibitor dramatically inhibits SASP-

mediated tumor growth driven by senescent fibroblasts and CAFs indicates for the first 

time that the tumor-promoting capabilities of senescent and cancer-associated 

fibroblasts are mediated through similar signaling pathways.  Furthermore, these 

findings suggest that p38MAPK is an important therapeutic target with wide applicability 

in a variety of tumor-promoting microenvironments.  This is strengthened by our in silico 

analysis of the stromal compartment of breast cancer lesions, which we show express 

many p38MAPK-dependent genes.  These data are intriguing in light of the fact that 

p38MAPK inhibitors have moved into phase II and III clinical trials for inflammatory 

diseases including rheumatoid arthritis, Crohn’s disease, and psoriasis, demonstrating 

their tolerability in patients (36, 37).  Given our findings, we suggest that p38MAPK 

inhibitors warrant investigation for use as anti-neoplastic therapy. 
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Fig 4.1: p38MAPK activity controls the pro-tumorigenic properties of the SASP A) 

Western blot analysis demonstrating that SB203580 treatment inhibits p38MAPK 

activity. SB203580 treatment significantly impacts phosphorylation of p38MAPK’s direct 

downstream target, Hsp27. B) Schematic of protocol to generate SIPS in BJ fibroblasts.  
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Cells were treated with bleomycin for 24 hours.  SB203580 (SB) treatment or vehicle 

control was initiated 48 hours after removal of bleomycin (bleo).  96 hours after 

bleomycin treatment, cells were collected for expression analysis of IL6, IL8, and 

GMCSF by qRT-PCR. Representative experiment, n=4. C) Timeline of bleomycin (bleo) 

and SB203580 treatment of BJ fibroblasts in (D).  SB203580 was replenished daily until 

co-culture with HaCAT-CBR cells was initiated. D) Growth of human keratinocytes 

expressing click beetle red (HaCaT-CBR) measured 8 days following initiation of co-

culture with indicated fibroblast populations. Representative experiment, n=3. E) BJ 

fibroblasts were depleted of p38MAPK through the expression of shRNA (shp38) or 

control shRNA (shSCR).  p38 depletion was verified by western blot analysis. F) 

Expression of IL8 was analyzed by qRT-PCR 96 hours following bleomycin treatment in 

p38MAPK-depleted (shp38) or control (shSCR) fibroblasts and represented relative to 

young fibroblasts expressing shSCR control.  Representative experiment, n=3. G) BJ 

fibroblasts expressing shp38 or shSCR were treated with bleomycin for 72 hours prior to 

injection. Indicated fibroblast populations were admixed with preneoplastic epithelial 

cells expressing click beetle red (BPH1-CBR cells) and injected subcutaneously into the 

rear flanks of female NcR nude mice.  Luciferase activity was measured using live, 

whole-animal imaging to monitor BPH1 cell growth relative to baseline signal.  Data 

represents mean + SEM, n=8. Data represents mean + SD unless otherwise stated.  * 

indicates p<0.05.  SIPS: stress induced premature senescence. 
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Fig 4.2: p38MAPK post-transcriptionally regulates the SASP A) Schematic of 

protocol to generate SIPS in BJ fibroblasts.  Cells were treated with bleomycin for 24 

hours.  Cells were subsequently treated with actinomycin D (ActD) for 24 hours.  The 
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ActD treatment was initiated 24 or 96 hours after the completion of bleomycin treatment.  

IL6, IL8, GMCSF, and CCL20 mRNA levels were analyzed by qRT-PCR.  To account for 

changes in gene expression, levels mRNA in ActD-treated cells were normalized to the 

levels observed in untreated cells from the respective time points (% mRNA remaining).  

Representative experiment, n=3. B) ELISA analysis of IL6 protein levels in conditioned 

media from cells treated as in (A). Representative experiment, n=4. C) BJ fibroblasts 

were treated with bleomycin (bleo) for 24 hours and with SB203580 (SB) as indicated.  

96 hours post bleomycin treatment cells were transiently transfected with an NFκB 

activity luciferase reporter.  Luciferase activity was measured by live-cell imaging 48 

hours post transfection.  Representative experiment, n=2. D) Young BJ fibroblasts (35 

population doublings, PD) or replicatively senescent BJ fibroblasts (PD97) were stained 

for senescence-associated β-galactosidase to confirm senescent phenotype (left).  Cells 

were treated with ActD and IL6 mRNA levels were analyzed by qRT-PCR.  

Representative experiment, n=3. E) BJ fibroblasts expressing a control hairpin (shSCR) 

or shp38 were treated for 24 hours with ActD at 24 or 96 hours after the completion of 

bleomycin treatment.  IL6 and IL8 mRNA levels were analyzed by qRT-PCR.  

Representative experiment, n=2. 

Data represent mean + SD.  * indicates p<0.05. SIPS: stress-induced premature 

senescence. 
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Fig 4.3: AUF1 directly binds to SASP factor mRNA and modulates SASP factor 

stabilization A) BJ fibroblasts were stably transduced with luciferase constructs fused 

to the 3’ untranslated regions (UTR) of IL6, GMCSF, and GAPDH (lucIL6, lucGMCSF, 

and lucGAP).  Cells were treated with ActD at 24 or 96 hours following bleomycin 

treatment.  Luciferase mRNA levels were analyzed by qRT-PCR.  Representative 

experiment, n=3. B) RNA immunoprecipitation was performed for AUF1 using BJ 

fibroblast cell lysates collected 24 or 96 hours after bleomycin treatment.  IL6, IL8, 

GMCSF, and CCL20 mRNA levels in immunoprecipitations were analyzed by qRT-PCR.  

Representative experiment, n=4. C) BJ fibroblasts were transduced with shRNAs to 

deplete AUF1 (shAUF1A and shAUF1B) or a control shRNA (shSCR).  Protein levels 
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were analyzed by western blot analysis.  Note: there are four AUF1 isoforms present 

and α-tubulin was used as a loading control. D) 24 hours following bleomycin treatment, 

BJ fibroblasts expressing a control hairpin shSCR, shAUF1A, or shAUF1B were treated 

with ActD for 1 hour.  IL6 and IL8 mRNA levels were analyzed by qRT-PCR.  

Representative experiment, n=2. E) RNA immunoprecipitation for AUF1 was performed 

on BJ fibroblasts treated with bleomycin (bleo) and SB203580 (SB) as indicated.  The 

level of IL8 mRNA in the AUF1 immunoprecipitation was measured by qRT-PCR.  

Representative experiment, n=3.  Data represent mean + SD. * indicates p<0.05. 
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Fig 4.4: p38MAPK-dependent factors are expressed in the TME of breast cancer 

lesions A) RNA-seq analysis was performed on young fibroblasts, senescent 

fibroblasts, and senescent fibroblasts treated with SB203580.  RNA-seq results were 
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analyzed to determine the number of factors upregulated in response to senescence 

(SASP factors) and the number of p38MAPK-dependent factors.  These results were 

also analyzed for overlap with the expression profiles of breast cancer (BC)-associated 

stroma. B) GO processes analysis was performed on p38MAPK-dependent SASP 

factors. Results are presented as the percent of p38MAPK-depenedent genes assigned 

to the processes shown.  Black regions of the bars represent the percent of p38MAPK-

dependent SASP factors assigned to each process that are also expressed in BC-

associated stroma.  The significance threshold was set at p < 0.05. C) p38MAPK-

dependent SASP factors that are expressed in more than one BC-associated stroma 

data set.  **indicates expression in 2 BC-associated stroma datasets, ***indicates 

expression in 3 BC-associated stroma datasets. D) Tumor-educated human CAFs and 

their normal isogenic counterparts (NMF) were treated with SB203580 (SB) or vehicle 

as indicated and replenished daily until co-culture with HaCAT-CBR preneoplastic 

keratinocytes was initiated.  Luciferase activity was measured using live-cell imaging 4 

days following initiation of co-culture to monitor HaCaT cell growth.  Representative 

experiment, n=2. E) Senescent BJ fibroblasts in matrigel were injected subcutaneously 

into the rear flanks of nude mice fed either control or p38i chow.  Cells were removed 10 

days after injection and IL8 mRNA levels were measured using qRT-PCR. 

Representative experiment, n=4. F,G and H) Xenografts of BPH1-CBR cells co-injected 

with senescent BJ fibroblasts (SIPS) into female NcR nude mice.  Control or the p38i 

compounded chow were performed as outlined in (F).  Tumor are shown in (G).  Tumor 
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growth was analyzed by bioluminescence imaging (H). Data represent mean + SEM, 

n=8.  

Data represent mean + SD unless otherwise stated. * indicates p<0.05. SIPS: stress 

induced premature senescence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



124	  

 

Fig 4.5: p38MAPK inhibition is effective in both senescent fibroblast and CAF-

driven tumors A) Tumors were removed at the endpoint of the experiment described in 

(Fig 4.4F) and stained for Ki67 (dashed line demarks the margin between the mouse 
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and xenograft), p16, and vimentin.  H&E images were captured with a 10X objective, all 

other images were captured with a 20X objective.  Representative images, n=2. B) 

Xenograft growth of BPH1-CBR cells co-injected with senescent BJ fibroblasts (SIPS) 

into female NcR nude mice.  Tumors were allowed to grow for 1 week after injection, at 

which time mice were placed on control or p38i-compounded chow.  Tumor growth was 

analyzed by bioluminescence imaging.  Data represent mean + SEM, n=16. * indicates 

significance between 1 and 3 weeks post-injection in mice fed control chow. C)  

Xenografts of BPH1-CBR cells co-injected with pCAFs into female NcR nude mice. Mice 

were fed control or p38i chow as outlined for the experiment in Fig 4.4F.  Tumor growth 

was analyzed by bioluminescence imaging.  Data represent mean + SEM, n is indicated 

for each sample. * indicates p<0.05. NS: not significant. 
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Supplemental Fig. 4.1: p38MAPK activity controls the pro-tumorigenic properties 

of the SASP A) BJ fibroblasts were fixed for senescence-associated β-galactosidase 24 

or 96 hours after treatment with bleomycin. n=3. B) HaCAT-CBR preneoplastic skin 

keratinocytes were treated with SB203580 or vehicle for 72 hours. Representative 

experiment, n=3. Data is presented as mean ± SD. * indicates p ≤ 0.05. 
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Supplemental Fig. 4.2: p38MAPK post-transcriptionally regulates the SASP A) BJ 

fibroblasts were treated with bleomycin for 24 hours. Cells were collected either 24 or 96 

hours after treatment with bleomycin and upregulation of SASP factors IL6, IL8 and 

GMCSF was verified by qRT-PCR. Representative experiment, n=3. B) BJ fibroblasts 



129	  

were induced to senesce through telomere attrition (replicative senescence, RS). 

Upregulation of SASP factors IL6 and IL8 was verified by qRT-PCR. Representative 

experiment, n=3. C) BJ fibroblasts were treated with sodium butyrate (NaB) for 120 

hours. Upregulation of SASP factors IL6 and IL8 was verified by qRT-PCR. 

Representative experiment, n=3. D) BJ fibroblasts were treated with NaB for 72 or 120 

hours followed by actinomycin D (ActD) at the time points indicated. IL6 and IL8 

expression was quantified by qRT-PCR. Representative experiment, n=3. E) IMR90 

human lung fibroblasts were treated with bleomycin and ActD as described in Fig. 4.2B. 

IL6 and IL8 expression was quantified by qRT-PCR. Representative experiment, n=2. F) 

BJ fibroblast cell lysates 24 or 96 hours post bleomycin treatment were analyzed for 

phosphorylation of p38MAPK (p-p38). Total p38MAPK was used as a loading control. 

Representative experiment, n=3. Data is presented as mean + SD. * indicates p ≤ 0.05. 

SIPS: stress-induced premature senescence. 
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Supplemental Fig. 4.3: p38MAPK-dependent factors are expressed in the stromal 

compartment of breast cancer lesions A) A subset of p38MAPK-dependent SASP 

factors was validated by qRT-PCR in young, senescent or senescent fibroblasts treated 

with SB203580. Data represent mean + SD. B) Female NcR nude mice were given 
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control or p38i chow for 3 days prior to challenging with 100ng LPS.	  1 hour post LPS 

injection, mice were sacrificed and serum was collected for analysis by TNFα ELISA. 

Data represent mean + SEM, n=3. * indicates p ≤ 0.05. SIPS: stress-induced premature 

senescence. 
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The role the tumor microenvironment plays in tumor progression has become well 

established (1, 2). Indeed, the tumor-promoting cell types within the microenvironment 

have been identified and how these different cellular compartments impact 

tumorigenesis is beginning to be well understood (3-6). The identification of the 

mechanisms through which the microenvironment facilitates tumor growth and 

progression is important for the development of stroma-targeting therapies. Such 

therapies are critical for the treatment of cancer because not only do they provide 

another treatment avenue in addition to a direct assault on the cancer cells themselves, 

but also because the genetically “normal” nature of the microenvironment is 

hypothesized to produce less resistance to therapies than those geared towards the 

genetically unstable, easily mutagenized (and therefore resistance-generating) nature of 

cancer cells.  Finally, there is growing evidence that the TME provides chemo-protective 

niches that shelter incipient tumor cells during chemotherapy (7).  Thus, if we are to 

access these protective shelters therapies are needed that directly target the stromal 

niche. 

 

The work outlined in the previous chapters has investigated how two types of tumor-

promoting fibroblasts (senescent fibroblasts and CAFs) impact tumorigenesis. These 

tumor-promoting fibroblasts can impact every step in the tumorigenic process including 

tumor cell growth, angiogenesis, inflammatory cell recruitment, remodeling of the extra-

cellular matrix and invasion (1, 8, 9).  Expression array analyses revealed that these cell 

types are remarkably similar (10, 11) and in senescent fibroblasts this expression profile 
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has become known as the senescence-associated secretory phenotype or SASP (10).  

My work suggests that similar mechanisms may be responsible for expression of many 

pro-tumorigenic factors in these two cell types.  Indeed, the work described herein has 

elucidated several novel regulatory pathways that govern SASP expression, and 

demonstrate that one such regulatory pathway is also involved in tumor-promotion by 

CAFs. This investigation has also yielded at least one therapeutic target capable of 

preventing tumor-promotion by both senescent fibroblasts and CAFs. 

 

CONCLUSIONS 

The regulation of gene expression occurs on multiple levels, spanning from 

transcriptional control, to mRNA stability and translational control to protein stability. The 

previous chapters describe our investigation of SASP factor regulation on multiple 

levels. We have found that treatment of fibroblasts with histone deacetylase complex 

(HDAC) inhibitors results in activation of a variety of SASP factors including IL6, IL8 and 

OPN (12). Furthermore, expression of a dominant-negative HDAC1 construct was 

sufficient to increase OPN expression (and to a lesser extent IL6 and IL8) in the 

absence of senescence (12). This effect was specific to HDAC1 because an HDAC3 

dominant-negative construct was unable to recapitulate SASP activation (12). Our 

observations suggest a central role for chromatin modulation in SASP factor expression, 

as inhibition of chromatin-remodeling proteins result in SASP activation even in the 

absence of senescence induction	  (12). 
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Despite the coordinated nature of SASP factor expression, there are very few regulatory 

pathways identified to date that effect the expression of all SASP components. For 

example, our work and that of others has demonstrated that inflammatory SASP 

components are regulated by a pathway involving the DNA damage response protein 

ATM (12, 13) and transcriptional activation by NFκB (14, 15). Our work has elucidated 

an additional transcriptional regulatory mechanism that regulates the SASP factor OPN. 

OPN regulation is independent of ATM and NFκB activity (12). Through promoter 

analysis, we identified the transcription factor c-myb as an important initiator of OPN 

expression in response to senescence.  Indeed, inhibition of c-myb activity through 

expression of either shRNA targeting c-myb or a c-myb dominant-negative construct 

prevents OPN expression in senescent cells. Furthermore, we have shown that c-myb 

directly binds the endogenous OPN promoter, and that mutagenesis of the c-myb 

binding site prevents OPN upregulation. These results identify c-myb as a novel 

regulator of SASP factor expression.  

 

Our work has also identified a novel post-transcriptional regulatory pathway involved in 

the expression of SASP factors such as IL6, IL8 and GMCSF. We have found that post-

transcriptional stabilization of SASP factor mRNAs occurs after the full establishment of 

cellular senescence. Stabilization of SASP transcripts involves the activation of 

p38MAPK, and subsequent removal of the RNA-destabilizing protein AUF1 from SASP 

3’ UTRs. Interestingly, p38MAPK is also involved in the transcriptional activation of 

SASP factors through regulation of NFκB. Our work has demonstrated that p38MAPK 
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switches from transcriptional regulation of SASP factors to post-transcriptional 

regulation of SASP factors, as inhibition of p38MAPK after the full induction of 

senescence has no effect on NFκB transcriptional activity yet significantly effects the 

stabilization of SASP mRNAs. 

 

Elucidating the regulatory mechanisms that govern SASP factor expression is 

necessary for the development of stroma-targeting therapies. Our work has identified 

p38MAPK as a potential therapeutic target and represents the first time that SASP 

factors have been suppressed in vivo through the inhibition of an upstream regulator in 

order to prevent tumor growth. We have demonstrated that depletion of p38MAPK 

specifically in senescent fibroblasts results in decreased preneoplastic epithelial cell 

growth. Furthermore, p38MAPK represents an effective treatment strategy in a 

therapeutic setting, as orally administered p38MAPK inhibitors prevent further growth of 

already established, senescent fibroblast-driven tumors. 

 

Finally, we have demonstrated that p38MAPK is a target in CAF-driven 

microenvironments. CAFs function analogously to senescent fibroblasts in tumor-

promotion and have a very similar expression profile (1, 11). Indeed, our RNA-seq 

analysis has revealed that cancer-associated stromas express a large number of 

p38MAPK-dependent SASP factors. We investigated the efficacy of p38MAPK inhibition 

in CAF-driven tumorigenesis in xenograft experiments using preneoplastic epithelial 

cells and CAFs derived from invasive breast cancer patients. We observed that an orally 
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administered p38MAPK inhibitor is effective in preventing CAF-mediated epithelial cell 

growth similar to what we observed with senescent fibroblasts. These results indicate 

that p38MAPK is a therapeutic target that is effective in a variety of tumor-promoting 

microenvironments. Furthermore, we have demonstrated that a regulatory pathway that 

controls the expression of pro-tumorigenic factors in senescent cells is also operative in 

CAFs.  

 

FUTURE DIRECTIONS 

p38MAPK regulates SASP factor expression both transcriptionally through its 

involvement in NFκB activation (14) and post-transcriptionally by regulating the 

occupancy of AUF1 on SASP factor mRNAs. These different regulatory roles are 

temporally separate. Depletion of p38MAPK during the transcriptional phase of SASP 

factor expression has no effect on SASP mRNA stability, while inhibition of p38MAPK 

during the post-transcriptional phase of SASP factor expression has no effect on NFκB-

driven transcription. What regulates these separate functions of p38MAPK remains to 

be elucidated. One hypothesis is that changes in p38MAPK sub-cellular localization 

govern its separate functions, with transcriptional activation taking place in the nucleus 

and mRNA stabilization taking place in the cytoplasm. Preliminary investigations using 

immunofluorescence to track p38MAPK localization, however, have given inconclusive 

results. Given that the time point at which p38MAPK transitions from transcriptional to 

post-transcriptional regulation is not thoroughly established it may be necessary to 

investigate changes in p38MAPK localization through live-cell imaging.  
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We have demonstrated that p38MAPK is an effective therapeutic target in both 

senescent fibroblast and CAF-driven microenvironments. Our xenograft experiments 

used a prostate preneoplastic cell line. Future experiments are aimed at utilizing patient-

derived cancer cells in order to more thoroughly establish the applicability of p38MAPK 

inhibition in a patient setting. To this end, we have acquired triple negative patient-

derived cancer cells (TNBC) from breast cancer patients that have been expanded and 

carried exclusively in mice to maintain genetic similarity to the parent tumor. Indeed, 

expression analysis and genotypic analysis of these cells indicate that they retain their 

patient characteristics after many passages in the mouse.  These patient-derived 

cancer cells will be used in xenograft experiments with both senescent fibroblasts and 

CAFs. It is also of interest to investigate p38MAPK inhibition in the context of genetic 

mouse models of a variety of cancer types, which would help to establish the efficacy of 

p38MPAK inhibition in an immune competent and spontaneous tumor setting, as well as 

investigate p38MAPK’s role in a variety of tissues.  All of these experiments would aid in 

the generation of preclinical data for the ultimate movement of p38MAPK inhibitors to 

clinical trials for the treatment of human disease.  
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APPENDIX 1 

The small heat shock protein Hsp27 regulates SASP mRNA stability 
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INTRODUCTION 

As shown in the previous chapter, the RNA-destabilizing protein AUF1 post-

transcriptionally regulates the stability of senescence-associated secretory phenotype 

(SASP) factor mRNAs. We have shown that AUF1 binds to SASP factor transcripts prior 

to senescence induction, resulting in low SASP mRNA stability. After senescence is fully 

established and in response to activation of p38MAPK, AUF1 is removed from SASP 

mRNAs, resulting in increased mRNA stability. It is not known how AUF1 is removed 

from SASP factor transcripts. It is also not clear how p38MAPK results in changes in 

AUF1 occupancy because AUF1 is not a known target for phosphorylation by p38MAPK 

(1, 2). 

 

One of p38MAPK’s down-stream targets is the small heat-shock protein Hsp27. In 

addition to its activities as a heat-shock protein, Hsp27 plays a role in mRNA stability in 

response to activation by p38MAPK. Indeed, depletion of Hsp27 results in the 

stabilization of mRNAs containing AU-rich 3’ UTRs (3). Intriguingly, Hsp27 is part of 

some AUF1-containing complexes, and activation of Hsp27 through p38MAPK-

mediated phosphorylation results in proteolytic decay of AUF1 (1, 3). This work from 

other laboratories led to the hypothesis that Hsp27 was responsible for mediating AUF1 

removal from SASP mRNAs in response to p38MAPK activation.   
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METHODS 

Cells and reagents 

BJ skin fibroblasts were grown under standard culture conditions in DMEM 

supplemented with 15% FBS, 15% M199 and penicillin/streptomycin. Fibroblasts were 

treated with bleomycin sulfate (100µg/mL, Sigma) as previously described (4).  

Fibroblasts were treated with actinomycin D (10µg/mL, Sigma) and for 24 hours. RNA 

was isolated using the Tri Reagent (Life Technologies) at the time points indicated. 

Short hairpin RNA sequences in the pLKO.1 backbone were obtained from the 

Children’s Discovery Institute’s viral-vector-based RNAi core at Washington University 

in St. Louis.  The FLAG-tagged Hsp27 phosphomimetic (Hsp27 TriD) was a gift from Dr. 

Gary Brewer (1), and was subcloned into pBABE-hygro. 

Virus production 

Virus was produced as described previously (5). 

Western blot analysis 

Cells were lysed in 50mM Tris pH 8.0, 5mM EDTA, 0.5% NP40 and 100mM sodium 

chloride for 20 minutes at 4°C. Primary antibodies used were mouse-anti-human Hsp27 

(catalog number 2402, Cell Signaling) and mouse-anti-FLAG (catalog number F1804, 

Sigma Aldrich). 

cDNA synthesis and quantitative real-time PCR (qRT-PCR) 

cDNA synthesis and quantitative PCR was performed using previously published 

protocols and manufacturer’s instructions (6) (SYBR Green, Life Technologies, 

Carlsbad, CA).  Primers for GAPDH (F: 5’-GCATGGCCTTCGGTGTCC-3’, R: 5’-
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AATGCCAGCCCCAGCGTCAAA-3’), IL6 (F: 5’-ACATCCTCGACGGCATCTCA-3’, R: 5’-

TCACCAGGCAAGTCTCCTCA-3’), and IL8 (F:  5’-GCTCTGTGTGAAGGTGCAGT-3’, R: 

5’-TGCACCCAGTTTTCCTTGGG-3’) were purchased from IDT.  

RNA-binding protein immunoprecipitation (RIP) 

RIP was performed as described in CHAPTER 4. The primary antibody used for Hsp27 

immunoprecipitation was mouse-anti-human Hsp27 (catalog number 2402, Cell 

Signaling).  

 

NOTE: These experiments have been repeated with the first TriD cell line generated. 

Subsequent generation of Hsp27-TriD cells did not recapitulate the phenotypes 

 

RESULTS 

Hsp27 depletion increases SASP mRNA stability 

As mentioned previously, Hsp27 is an RNA-destabilizing factor (3). To investigate if 

Hsp27 destabilizes SASP factors, BJ fibroblasts were stably transduced with an shRNA 

targeting Hsp27 or a control shRNA (shSCR). Hsp27 depletion was assessed by 

western blot analysis (Fig A1A). Hsp27-depleated cells were treated with actinomycin D 

(ActD) 24 hours after treatment with bleomycin, a time point when SASP factors are 

unstable. We observed increased IL6 and IL8 factor mRNA stability in cells expressing 

shRNA compared to cells expressing shSCR (Fig A1B), indicating that the presence of 

Hsp27 destabilizes SASP factors at this time point. Given the similarities between 

Hsp27 and AUF1 depletion in cells 24 hours-post bleomycin treatment (Fig A1B and 
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Fig 4.3C respectively), these observations suggest that AUF1 and Hsp27 cooperate in 

destabilizing SASP mRNAs prior to senescence induction.  

 

Phosphorylation of Hsp27 by p38MAPK increases SASP mRNA stability 

A previous report indicated that phosphorylation of Hsp27 by p38MAPK results in 

stabilization of Hsp27 target mRNAs and reduces the affinity of Hsp27 for its targets (1). 

Our previous work demonstrated that p38MAPK promotes stabilization of SASP factor 

mRNAs through modulating the occupancy of AUF1 (CHAPTER 4), yet AUF1 is not a 

known target of p38MAPK (2). Therefore, we next investigated if p38MAPK’s mRNA-

stabilization activities were mediated through Hsp27. To do so, we obtained a 

phosphomimetic mutant of Hsp27 on all residues phosphorylated by p38MAPK (Hsp27-

TriD) (1). BJ fibroblasts were stably transduced with Hsp27-TriD or a vector control (Fig 

A1C) and the mRNA stability of SASP factors was measured by treating the cells with 

ActD 24 hours-post bleomycin treatment, a time point at which SASP mRNAs are 

unstable (CHAPTER 4). We observed a significant increase in IL6 and IL8 mRNA 

stability in response to expression of constitutively phosphorylated Hsp27 compared to 

the mRNA stability observed in vector control cells (Fig A1D). This data indicates that 

phosphorylation of Hsp27 by p38MAPK results in stabilization of SASP transcripts and 

further implicates Hsp27 in the previously reported p38MAPK-AUF1 post-transcriptional 

regulatory mechanism that controls SASP expression.   
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Hsp27 binds to SASP factor mRNAs 

To further support our hypothesis that Hsp27 mediates p38MAPK’s regulation of AUF1 

occupancy on SASP mRNAs, we investigated Hsp27’s occupancy on SASP transcripts. 

To do so, we performed RNA immunoprecipitation (RIP) using an antibody specific to 

Hsp27 or an IgG control, and qRT-PCR was used to determine the level of IL6 and IL8 

in the immunoprecipitations. RIP was performed in cells 24 hours-post bleomycin 

treatment, a time point at which SASP mRNAs display reduced stability, and in cells 96 

hours-post bleomycin treatment, a time point at which SASP mRNAs display increased 

stability (discussed in CHAPTER 4). We observed significantly less Hsp27 binding to 

SASP factor mRNAs 96 hours-post bleomycin treatment compared to the level observed 

in cells 24 hours-post bleomycin treatment (Fig A1E). These results are strikingly 

similar to those observed for AUF1 occupancy (Fig 4.3B), further suggesting that AUF1 

and Hsp27 bind SASP mRNAs in a complex to regulate their stability. 

 

DISCUSSION 

Our work described in CHAPTER 4 identified a post-transcriptional regulatory 

mechanism responsible for sustaining SASP expression that involves activation of 

p38MAPK and subsequent removal of the RNA-destabilizing protein AUF1 from SASP 

transcripts. Given that AUF1 is not a known target of p38MAPK (2), it remained unclear 

how p38MAPK was governing AUF1 binding capacity. The work described here 

suggests that p38MAPK activity is mediated through its downstream target Hsp27.  We 

have demonstrated that depletion of Hsp27 phenocopies the effects of AUF1 depletion, 
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resulting in enhanced SASP mRNA stability prior to the induction of senescence 

(compare Fig A1B and Fig 4.3C). Furthermore, expression of an Hsp27 

phosphomimetic construct at all residues known to be phosphorylated by p38MAPK 

results in SASP mRNA stabilization, indicating that p38MAPK activation inhibits the 

SASP mRNA destabilization mediated by Hsp27. Finally, RIP analysis of Hsp27 

occupancy on SASP factor transcripts before and after the induction of senescence 

demonstrates that Hsp27 is removed from SASP transcripts after senescence is 

established. These results also phenocopy those seen in AUF1 RIP analysis (compare 

Fig A1E and Fig 4.3B).  Taken together, or results from CHAPTER 4 and APPENDIX 1 

suggest a model where SASP mRNAs are bound by AUF1 and Hsp27, resulting in their 

destabilization. After activation of p38MAPK in response to senescence induction, 

phosphorylation of Hsp27 results in the removal of Hsp27 and AUF1 from SASP mRNA 

and the subsequent stabilization of SASP transcripts (Fig A1F). Future work in the 

laboratory will focus on elucidating whether AUF1 occupancy on SASP mRNA depends 

on the phosphorylation status of Hsp27.  
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Fig 

A1 

A-E: 

Hsp27 regulates SASP mRNA stability. A) Western blot analysis to confirm depletion 

of Hsp27 in BJ fibroblasts transduced with shHsp27 or control hairpin (shSCR). B) BJ 

fibroblasts expressing either shHsp27 or shSCR were treated with ActD or vehicle 

control 24 hours-post treatment with bleomycin. qRT-PCR was used to measure the 

mRNA stability of IL6 and IL8. Representative experiment, n=3. C) Western blot 
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analysis to detect expression of FLAG- tagged Hsp27-TriD in stably transfected BJ 

fibroblasts. D) BJ fibroblasts expressing either vector control or Hsp27-TriD were treated 

with ActD or vehicle control 24 hours-post treatment with bleomycin. qRT-PCR was 

used to measure the mRNA stability of IL6 and IL8. Representative experiment, n=3. E) 

RIP analysis was performed for Hsp27 occupancy on IL6 and IL8 mRNA either 24 or 96 

hours-post treatment with bleomycin. Representative experiment, n=2.  

Data represents mean + SD. * indicates p<0.05. 
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Fig A1F: Model of post-transcriptional SASP regulation. Prior to senescence 

induction, SASP mRNA are bound by AUF1 and Hsp27, resulting in their destabilization. 

In response to senescence and p38MAPK activation, Hsp27 is phosphorylated resulting 

in the release of both AUF1 and Hsp27 from SASP transcripts. This leads to SASP 

mRNA stabilization.  

 

 

 

 

 

 

 

 

 



160	  

REFERENCES 

1. Knapinska AM, Gratacos FM, Krause CD, Hernandez K, Jensen AG, Bradley JJ, 

Wu X, Pestka S, Brewer G. Chaperone Hsp27 modulates AUF1 proteolysis and AU-rich 

element-mediated mRNA degradation. Molecular and cellular biology. 2011;31(7):1419-

31. Epub 2011/01/20. 

2. Gratacos FM, Brewer G. The role of AUF1 in regulated mRNA decay. Wiley 

interdisciplinary reviews RNA. 2010;1(3):457-73. Epub 2011/10/01. 

3. Sinsimer KS, Gratacos FM, Knapinska AM, Lu J, Krause CD, Wierzbowski AV, 

Maher LR, Scrudato S, Rivera YM, Gupta S, Turrin DK, De La Cruz MP, Pestka S, 

Brewer G. Chaperone Hsp27, a novel subunit of AUF1 protein complexes, functions in 

AU-rich element-mediated mRNA decay. Molecular and cellular biology. 

2008;28(17):5223-37. Epub 2008/06/25. 

4. Pazolli E, Alspach E, Milczarek A, Prior J, Piwnica-Worms D, Stewart SA. 

Chromatin remodeling underlies the senescence-associated secretory phenotype of 

tumor stromal fibroblasts that supports cancer progression. Cancer research. 

2012;72(9):2251-61. Epub 2012/03/17. 

5. Pazolli E, Luo X, Brehm S, Carbery K, Chung JJ, Prior JL, Doherty J, Demehri S, 

Salavaggione L, Piwnica-Worms D, Stewart SA. Senescent Stromal-Derived 

Osteopontin Promotes Preneoplastic Cell Growth. Cancer research. 2009. 

6. Coppe JP, Boysen M, Sun CH, Wong BJ, Kang MK, Park NH, Desprez PY, 

Campisi J, Krtolica A. A role for fibroblasts in mediating the effects of tobacco-induced 



161	  

epithelial cell growth and invasion. Molecular cancer research : MCR. 2008;6(7):1085-

98. 

 

 

 

 


	Washington University in St. Louis
	Washington University Open Scholarship
	Summer 9-1-2014

	Regulation and inhibition of pro-tumorigenic microenvironments
	Elise Oster Alspach
	Recommended Citation


	Table of Contents
	all chapters

