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ABSTRACT

Quasiparticle Energy and Excitons in Two-Dimensional Structures

by

Yufeng Liang

Doctor of Philosophy in Physics,

Washington University in St. Louis, August, 2014.

Professor Li Yang, Chair

Two-dimensional materials, such as graphene-related structures, transition metal

dichalcogenides, are attracting enormous interest in nowadays condensed matter physics.

They not only serve as ideal testbeds for rich physics in reduced-dimensional electron

systems but are also of particular importance in nanoelectronic technology. Their

electronic, transport, and optical properties are largely determined by the nature of

excited states, such as quasiparticles and excitons. Understanding how these excited

states emerge from a many-electron system is an intriguing intellectual process, which

gives insight into experimental observation and sheds light on manipulating the ma-

terials’ properties. From this aspect, it is highly desirable to introduce many-body

perturbation theories, which do not rely on data from experiments, to study these

excited-state properties and their relations to experimental measurements. In this
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thesis, I will present a comprehensive study on a variety of two-dimensional materials

using first-principles calculation with many-body effects taken into account. Partic-

ular attention is given to the impact of electrical gating, stacking order, and doping

on the quasiparticle and excitonic properties.

In chapter 3, we obtain the accurate quasiparticle (QP) band gap and optical

absorption spectra of gated bilayer graphene (GBLG), which is a prototypical 2D

field effect transistor. Enhanced electron-electron interactions dramatically enlarge

the QP band gap; infrared optical absorption spectra are dictated by bright bound

excitons. In particular, the energies of these excited states can be tuned in a substan-

tially wider range, by the gate field, than previous predictions. Our results clearly

explain recent experiments and satisfactorily resolve the inconsistency between exper-

imentally measured transport and optical band gaps. Moreover, we predict that the

most deeply bound exciton is a dark exciton which is qualitatively different from the

hydrogenic model, and its electron and hole are condensed onto opposite graphene

layers, respectively. This unique dark exciton will not only impact the exciton dy-

namics but also provide an exciting opportunity to study entangling exchange effects

of many-body physics.

In chapter 4, we study the excitonic effects in twisted bilayer graphene and reveal

a novel mechanism for bound exciton formation in a metallic system. Common wis-

dom asserts that bound excitons cannot form in high-dimensional (d > 1) metallic

structures because of their overwhelming screening and unavoidable resonance with

nearby continuous bands. However, we will illustrate that this prevalent assumption

ix



is not true. A key ingredient that has been overlooked is the destructive interference

effect that thwarts the formation of resonances. We use twisted bilayer graphene as an

example to investigate the possibility of this exciton formation mechanism. Excitonic

effects in the system are examined by both first-principles methods and a low-energy

effective model.

In the following chapters, we turn to study the excited properties in transition

metal dichalcogenides. In chapter 5, we report on the quasiparticle band-edge energy

of monolayer of molybdenum and tungsten dichalcogenides, MX2 (M=Mo,W; X = S,

Se, Te). Beyond calculating bandgaps, we have achieved converged absolute band-

edge energies relative to the vacuum level. Compared with the results from other

approaches, the GW calculation reveals substantially larger bandgaps and different

absolute quasiparticle energies because of enhanced many-electron effects. Interest-

ingly, our GW calculations ratify the band-gap-center approximation, making it a

convenient way to estimate band-edge energy. The absolute band-edge energies and

band offsets obtained in this work are important for designing heterojunction devices

and chemical catalysts based on monolayer dichalcogenides.

In chapter 6,we report on a first-principles study of the band gap renormalization,

using the doped MoS2 monolayer as a test material. A parameter-free generalized

plasmon pole model is proposed to capture the low-frequency dynamical screening

that is featured by the carrier plasmon arising from intraband transitions. Our cal-

culations show that the quasiparticle band gap of monolayer MoS2 exhibits a unique

evolution according to the doping density; it drops quickly at the low doping den-

x



sity but saturated at 2.3 eV, which is around 300 to 400 meV smaller than that

of undoped MoS2. This result is crucial for understanding and explaining current

experimental measurements and our proposed approach can be employed to general

doped 2D semiconductors. Meanwhile, this tunable band gap via doping may work

as an efficient tool to tailor the electronic and optical properties of two-dimensional

semiconductors for broad applications.
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1. INTRODUCTION

Ever since the discovery of intriguing low-dimensional physics in monolayer graphene

[1] in 2004, there has been a fast-growing interest in exploring the remarkably var-

ied and exotic properties of two-dimensional (2D) materials among the physics and

engineering society. Not only did the fabrication of monolayer graphene defy the

famous Mermin-Wagner theorem [2], asserting that exact 2D materials are impossi-

ble to exist, but it also gave way to an amazing class of excitations in solids, Dirac

fermions, that mimic massless relativistic particles by virtue of graphene’s honey-

comb lattice structure [3–5]. The massless fermions possesses a very high mobility

(up to µ = 200, 000cm2V−1s−1 at room temperature), making graphene a particu-

larly attractive candidate for realizing high-speed integrated circuit that hopefully

outperforms the silicon-based circuit widely used nowadays [6]. This also ignites a

journey off searching for materials that have comparable intriguing properties. Along

the route are the discoveries of a series of graphene-like structures, such as silicene

[7, 8] and phosphorene [9].

Despite its high carrier mobility, monolayer graphene does not have a sizeable

electronic band gap, making the structure unsuitable for use in bipolar junction tran-

sistors or photovoltaic applications. Substantial efforts have been made towards gen-
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erating a band gap in graphene-related structures by breaking the lattice symmetry.

Such efforts include passivating graphene’s surface with alien atoms, leading to the

formation of graphane [10] and fluorographene [11] atoms, and applying voltage bi-

ases a Bernal-stacking bilayer graphene sheet [12–14]. Unfortunately, the size of the

band gap in these materials are either too large or too small, which is less desirable

compared with the traditional bulk semiconductors.

The isolation of monolayer molybdenum disulfide (MoS2) [15] in 2010 started

a new paradigm using layered transition metal dichalcogenides for naonelectronic

applications. Unlike graphene, monolayer MoS2 is an intrinsic 2D semiconductor with

a direct band gap, as verified by means of photoluminescence spectroscopy [15, 16].

By contrast, strong photoluminescence does not emerge in a bulk of MoS2 that has

an indirect band gap. Furthermore, it is mechanically stable. These properties make

monolayer MoS2 an excellent candidate for optoelectronic application in the visible-

light region. More excitingly, this mateiral has already been used to create field-effect

transistors with high on/off ratio and appreciable mobility MoS2 [17–20]. Similar

electronic and optical properties have been experimentally demonstrated in other 2D

dichalcogenides, such as monolayer WS2, WSe2, and MoSe2 [21, 22].

The electronic, transport, and optical properties of the aforementioned materials

are determined by a family of elementary excitations that arise in complex many-

electron systems. For example, an electron travelling a solid can interact with other

electrons, forming an electron quasiparticle excitation that behaves like noninteracting

electrons but with modified properties, such as carrying a different effective mass and
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gaining an additional amount of interaction energy. Likewise, a hole quasiparticle

results from a vacant state in the valence band. The energies of quasiparticles in a

semiconductor determine the size of its band gap, and control the band alignment at

a bipolar junction structure. An exciton is produced when an electron is kicked out

from the valence band by incident photons, and is attracted by the positively charged

hole that was left behind. This electron-hole pairing is an important mediator between

electricity and light. A plasmon is a many-body excitation in which the electrons in

a crystalline structure oscillate collectively. Just like the exciton, a plasmon can also

resonate with the electromagnetic field of light, which represents another underlying

mechanism for optoelectronics via light-matter interactions [23–25].

The aforementioned excitations are a consequence of complicated many-electron

interactions that are governed by the laws of quantum mechanics. Solving a many-

body system is a persistent and difficult problem even on the level of classical me-

chanics, not to mention the complex quantum entanglement in the world of quantum

mechanics. However, remarkable simplifications to many-body systems that pre-

cisely describes the nature of excited states are available and readily utilized. The

landau-fermi liquid theory provides a convenient means for describing quasiparticles

[26, 27]. It states that a weakly interacting electron system can be mapped onto a

non-interacting system, which is conceptually simple. In an exciton, although elec-

tron and hole are correlated through delicate many-body effects, their motion and

energy spectrum can often times be understood through a mapping to the hydrogen

model [28, 29]. This is true in many semiconductors. The two kinds of excitations,

3



quasiparticles and excitons, play key roles in understanding most of the electronic and

optical properties of solids and are the main themes of this thesis. It is of particular

importance to these excited states to understand how screening effects, which arise

from the migration of the charge inside the material, impact these excited states.

When electrons are confined in a low-dimensional material, many-body effects

can be profoundly enhanced. For example, while the exciton binding energies are

of a few tens of meV in bulk semiconductors, it can reach a few hundred to several

thousand meV in reduced-dimensional structures. Such structures include a series

of 1D materials, such as carbon nanotubes [30–32], boron nitride tubes [33, 34], and

graphene nanoribbons [35–37] as well as a number of 2D materials, such as layered

boron nitride [38], graphane [39, 40], fluorographene [41], graphyne [42], silicene [43],

germanene [44], silicane, germanane (passivated silicene and germanene respectively)

[44, 45], and a variety of dichacogenides [46–50]. The enhancement of excitonic ef-

fects is partially due to a reduction in screening effects in low-dimensional structures

because of their surrounding vacuum. Additionally, the density of states (DOS) at

the band edges for 1D and 2D semiconductors are proportional to 1√
E
and roughly a

constant respectively, which are significantly larger than the bulk case (
√
E). This

also leads to enhanced many-body interactions because quantum states that are close

in energy tend to correlate.

The divergence in the DOS of 1√
E

in a 1D system is a kind of van Hove sin-

gularity (vHs) and is an important indicator of possible enhanced excitonic effects.

Interestingly, this divergence in DOS can also occur in a 2D system. For example,
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the saddle-point in the band structure of graphene [5] produces a vHs, which man-

ifests itself as a prominent absorption peak in the optical spectrum. In spite of the

semimetallic nature of graphene, the redshift of the absorption peak due to excitonic

effects can be as large as 600meV [51,52]; this is even comparable to excitonic redshifts

in semiconducting nanotubes. Very intriguing examples of vHs in 2D systems are also

discovered in multilayered graphene structures. Bilayer graphene systems produced

via chemical vapor deposition (CVD) may have two graphene layers that are stacked

in different orientations. This has given rise to a new class of materials called twisted

bilayer graphene (tBLG) [53, 54]. The band structure of the respective layers do not

lay on the top of each other; their energy band intersection yields to new vHs’. De-

pending on how far apart one layer is twisted away from the other, the energy level

and the strength of these vHs’s can be tuned in reference to the Fermi level. This

enables one to control the many-body effects in a 2D system via simply manipulating

the stacking order, which is less likely to achieve in a bulk structure. Together with

the original saddle-point, these band intersections form a complex system of vHs that

can not be explained within the simple hydrogen model.

When a bulk material is exfoliated into a few-atom-thick layer, electrical gating

provides an important means of controlling its electronic and optical properties be-

cause the gate field is not as effectively screened as in the bulk case. While the electric

field can modify the band structure via symmetry breaking [12,55–58], they can also

shift the fermi level from the charge neutral point, doping the material with free charge

carriers. Doping introduces new intraband transitions that can bolster the screen-
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ing considerably. This offers a special opportunity for modifying the many-electron

effects that are dictated by screened Coulomb interactions. More importantly, the

electrons that occupy the doped band behave like a 2D electron gas that hosts a plas-

mon excitation. This excitation is markedly different from a 3D one: the plasmon

oscillation is quenched at the long-wavelength limit in a 2D case whereas it persists in

a 3D case. The 2D plasmon dispersion relation scales as ω ∼ √
q which has the same

small-momentum limit with the quasiparticle dispersion relation ω ∼ q2 [27, 59, 60].

The energy proximity of the dispersion relation implies that there could be a strong

coupling between the quasiparticle and the carrier plasmon in a doped 2D material

that can largely reshape the excited-state properties.

In this thesis, I will present a theoretical and computational study of the excited

states in a variety of new 2D materials that are potentially viable for incorporation in

optoelectronic or transistor devices. Our calculations are mainly based on the first-

principles methodologies [61–65, 65] , which do not rely on fitting parameters from

experiments. The density functional theory (DFT) provides a very accurate descrip-

tion of the ground-state properties of materials, including realistic crystal structures,

electronic charge density, and non-interacting electron wavefunctions. However, it

is well known that the DFT systematically underestimates the band gap of a semi-

conductor [62, 64, 66], To obtain reliable band gaps, which is quasiparticle property,

electron-electron (e-e) interactions need to be captured by many-body perturbation

theory. The widely used GW approximation [62, 64, 67] is a successful treatment of

the e-e interaction for many medium correlated materials. The approximation is an
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aptly named one: the self-energy is a product of green function G and the screened

Coulomb interaction W , meaning that the electron propagating in a solid is dressed

by the screening effects of the background as formed by the other electrons. The

exciton is a two-body excitation that substantially impacts the optical responses of

materials. This excitation is not described by the DFT or GW levels of approxima-

tion. The Bethe-Salpeter equation (BSE) [63], which was originally formulated for

electron-positron bound pairs, is used to include e-h pairing in the theoretical model.

On a personal note, what quantum many-body physics brings to my mind is the

Starry Night Over the Rhone painted by Vincent van Gogh in 1888. I have long

imagined that the richness of physics in an interacting particle system that resembles

the beautiful scene that the artist painted on the canvas with his boundless imagi-

nation. This bolstered my motivation for investigating the ”fine art” of many-body

physics. That being said, the goal of this study is not only to provide benchmark

parameters to futher the intense study of reduced-dimensional materials but also ex-

plore new interesting excited-state properties in these materials within the framework

of the GW+BSE method. I will demonstrate two examples of excitonic states that

can not be simply understood by the hydrogen model. The first one occurs in the

gated bilayer graphene, which possesses a mexican-hat dispersion feature in its band

structure, leading to the failure of the effective mass approximation that is essential

in the hydrogen model. The unique band structure gives rise to an exotic excitonic

state in which electrons and holes are separated onto opposite layers. The second

example occurs in twisted bilayer graphene, which is semimetallic and has multiple

7



Figure 1.1. Starry Night over the Rhone, Vincent van Gogh, 1888

8



vHs’s. For the first time, we predict that a strongly bound exciton state can exist in

this gapless 2D system in spite of its semimetallic screening. This is made possible by

virtue of quantum coherence, an effect that is not captured by the ordinary hydrogen

model. The other part of the thesis will focus on the excited-state properties of metal

dichalcogenides. Monolayer MoS2, which is naturally n-doped in experiments, will be

used as a test material to tackle the challenging band gap renomalization problem

in doped 2D systems whose many-body interactions are exhibited by quasiparticle-

plasmon coupling.
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2. THEORETICAL FRAMEWORK

All the physics in an interacting many-electron system can be described within

the full Hamiltonian [68, 69]

Ĥel = − h̄

2me

∑

i

∇2
i +

∑

i

Vext(ri) +
1

2

∑

i 6=j

e2

|ri − rj|
(2.1)

where i goes over all the electrons in the system. The first two terms are the kinetic

energy and external potential of independent electrons respectively whereas the third

therm is the Coulomb interaction between all pairs of electrons. The external potential

Vext incorporates the electron-ion interaction in a crystal as well as the effect of an

external electric field.

Solving the all-electron Hamiltonian by brute-force is a formidable computational

task since for a system with N electrons the Hamiltonian gives 3N partial differential

equations. The density functional theory (DFT) which emerged in the 60s [61, 70] is

a remarkable breakthrough for dramatically simplifying the many-electron problem

and lays the foundation for a variety of modern excited-state calculations based on

supercomputers. The success of the DFT started with the two Hohenberg-Kohn

theorems [61] on the total electron density in a many-electron system.
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2.1 Density Functional Theory (DFT)

2.1.1 Hohenberg-Kohn Theorems

The first Hohenberg-Kohn theorem states that the external potential Vext(r) is

uniquely determined by the corresponding ground-state charge density n(r), except

for an additive constant. This means all the ground-state properties are merely a

functional of n(r), which profoundly simplifies the N -electron problem with 3N de-

grees of freedom into a problem with only 3 spatial degrees of freedom. The second

Hohenberg-Kohn theorem states that for any external potential Vext, there is a uni-

versal energy functional E[n], which is minimized at the correct ground-state charge

density distribution n(r). Kohn and Sham proposed an ansatz to find the n(r) that

assumes the many-electron system can be mapped onto an auxiliary non-interacting-

electron system with orthogonal Kohn-Sham orbits φnk that has the same set of good

quantum numbers nk. The auxiliary system has the same number of valence orbits

as the system without e-e interactions. Thus, the total charge density can be viewed

as the summation of the charge density contributed by each occupied Kohn-Sham

orbit φnk: n(r) =
occ∑
nk

φ∗
nk(r)φnk(r). A general form of the energy functional is given

by

E[n] = T [n] +

∫
drVext(r)n(r) + EHartree + EII + Exc[n] (2.2)

where e-e interaction functional breaks down into a Hartree term EHartree and a

exchange-correlation term Exc and EII is the ion-ion interactions.
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2.1.2 Kohn-Sham Equation

The procedure of solving the many-electron problem is substantially advanced

by another ambitious approximation over the exchange-correlation functional Exc,

presuming that Exc is only dependent on the charge density at each point in space

Exc[n] =

∫
n(r)ǫxc(n(r))dr, (2.3)

which is the local density approximation (LDA) [61]. Minimizing the energy func-

tional 2.2 with LDA yields a Schrödinger-like equation for the auxiliary electron sys-

tem

{−1

2
∇2 + [V (r) + µxc(n(r))]}φnk(r) = ǫnkφnk(r) (2.4)

where V (r) is the summation of the external (ionic) potential and the Hartree energy.

V (r) = Vext(r) +

∫
dr′

n(r′)

|r− r′| (2.5)

and µxc the exchange-correlation potential as a functional of charge density

µxc(n) =
d(nǫxc(n))

dn
(2.6)

Eq. 2.4 is the famous Kohn-Sham equation, which can be solved by a self-consistent

computational scheme. For example, using the atomic orbital wavefunctions to con-

struct the initial charge density and thus the potential functional. And then keep
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solving the equation and updating the orbital energies and wavefunction until the

total energy converges. The final orbital energy ǫnk will be the DFT-LDA energies.

The Kohn-Sham equation can be used to accurately determine a number of ground-

state properties [66,71–73], such as charge density distribution, total energies, atomic

forces, and equilibrium crystal structures that are in excellent agreement with exper-

iments. However, the Kohn-Sham equation is inadequate for predicting the band gap

of semiconductors which is a quasiparticle property [63, 71]. Neither can the Kohn-

Sham equation be used for studying the excitonic effects for optical properties, which

is a two-body excitation. In general, there is no such “Hohenberg-Kohn”theorems cor-

responding to these excited states so that density functional theory can be extended

straightforwardly to solving these problems. To precisely capture the nature of quasi-

particle and excitonic states, it is essential to incorporate many-body perturbation

theory [62, 63] as introduced in the following sections.

2.2 Modeling Dielectric Functions

The key to the understanding the excited states is the screened Coulomb inter-

action W which reflects how strongly electrons are correlated. W is the product of

the inverse dielectric function ǫ−1 and the bare Coulomb interaction W = ǫ−1v. It is

very important to accurately model the dielectric function before it is finally plugged
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into the excited-state calculation. From the basis relations in electromagnetism, the

dielectric function can be expressed in terms of the polarizability P [27]

ǫ = 1− vP (2.7)

The polarizability P is a measure of how strong an electron system is polarized in the

presence of an electric field. The full expression of the dielectric function for a crystal

structure should take lattice symmetry and local field effects [74,75] into account and

incorporate frequency-dependence

ǫGG′(q, ω) = δGG′ − v(q+G)PGG′(q, ω) (2.8)

Now ǫ and P are two-point correlation functions relating the scattering process be-

tween the momentum q+G and q+G′, where G is a reciprocal-lattice vector. The

scattering process between q+G and q′+G′ with q 6= q′ is forbidden by lattice sym-

metry and hence is not present in Eq. 2.8. The problem of modelling the dielectric

function is thus converted into formulating the polarizability PGG′ for crystals.
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2.2.1 Polarizability

The polarizability can be calculated within the random phase approximation

(RPA) [27,69,74,75], which is a successful theory for describing the crystal screening

effect on a microscopic level. The polarizability given by RPA reads

PGG′(q, ω) =
1

V

∑

nn′k

M∗
nn′(k,q,G)Mnn′(k,q,G′)

fnk − fn′k+q

ω + ǫnk − ǫn′k+q

(2.9)

where fnk is the occupation number, and ǫnk is the single-particle energy. Mnn′(k,q,G) =

(nk + q|eiG·r|n′k) with|nk) being the envelope function of a Bloch state nk (This is

equivalent to the notationMnn′(k,q,G) = 〈nk+q|eiG·r|n′k〉, where |nk〉 = eiq·r |nk)).

It is intuitive to understand the expression of the polarizability. It sums over all possi-

ble transitions from occupied states to unoccupied states that can contribute screening

effects. The contribution of a particular transition to screening is determined by the

transition amplitude between the initial state and the final state, namely the matrix

element Mnn′(k,q,G), as well as the inverse transition energy 1/(ω + ǫnk − ǫn′k+q),

which is the price it takes for that transition to occur.

2.2.2 Asymptotic Behaviors

The asymptotic behavior of ǫ−1(q) in the long-wavelength limit q → 0 is crucial

for determining the excited-state property. The Coulomb potential v(q) diverges

at q = 0, making the value of ǫ−1(q) near q = 0 very important for deciding the

screened Coulomb interaction W = ǫ−1v. Moreover, ǫ−1((q)) may vary too rapidly
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near q = 0 for a discrete sampling grid to capture. From this perspective, one can

greatly improve the numerical accuracy by performing the so-called mini-BZ average

[62, 65] near q = 0 based on the asymptotic behavior of ǫ−1(q). It can be ruled out

by analyzing all the q-dependence ingredients involved in the dielectric functions,

including the Coulomb interaction v(q), the matrix elements Mnn′(k,q,G), and the

energy gap ǫnk − ǫn′k+q. For the Coulomb interaction, while the bulk case is

v (q) =
4π

q2
(2.10)

the 2D one is truncated to avoid spurious interaction between unit cell images. In

real space, it reads

V t
2D (r) =

θ (Lz/2− z)

r
(2.11)

This truncation results in a weaker divergence in the long-wavelength limit q → 0.

When transformed into the momentum space, it takes the form

vt2D (q) =
4π

q2
[
1− e−qxyLz/2 cos (qzLz/2)

]
(2.12)

where qxy is the in-plane component of q and Lz is unit cell parameter perpendicular

to the 2D material being investigated. It should be noted that the 2D-truncated
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Table 2.1
Asymptotic behavior of the inverse dielectric function ǫ−1

00

versus the crystal momentum q.

semiconductor metallic
Bulk Const. ∝ q2

Two − Dimensional 1 ∝ q

Coulomb interaction scales as ∼ 2π
q

[76, 77], significantly slower than the 3D case.

The asymptotic behavior of the transition amplitude is given by

Mnn′(k,q, 0) = (nk + q|n′k) =






1 n = n′

∝ q n 6= n′
(2.13)

Therefore, dependent on whether the system is semiconducting or metallic and whether

it is a bulk material or a reduced-dimensional one, the asymptotic behavior of ǫ−1
00

varies. The limits can be evaluated by the formula

ǫ−1
00 (q) ∝

1

1 + veff(q)M(q)2
(2.14)

where veff(q) is effective Coulomb interaction dependent on dimensionality. M(q) = 1

for semiconductors whereas M(q) ∝ q for metals. Under different circumstances, the

limits of ǫ−1
00 are compared in Table 2.1 [65].
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2.3 Quasiparticle Properties

A quasiparticle is a one-particle excitation in which an electron is dressed by the

screened Coulomb interaction. Its energy is solved from the Dyson equation [27,62,69],

which is a one-body Green function method

[−1

2
∇2 + V (r)]Φnk(r) +

∫
dr′Σ(r, r′;Enk)Φnk(r

′) = EnkΦnk(r) (2.15)

The Dyson equation is highly analogous to the Kohn-Sham equation Eq. 2.4 ex-

cept that the exchange-correlation functional is replaced by the non-local, energy-

dependent self-energy operator Σ. The formulation of the self-energy plays an impor-

tant role in determining quasiparticle energies.

2.3.1 GW approximation

According to Hedin [67], the full self-energy can be expressed in terms of a per-

turbation series of propagator G and screened Coulomb interaction W . Taking the

first-order in the series leading to the GW approximation to the self-energy operator

Σ = iGW (2.16)

For practical use in calculation, one can represent the self-energy operator in real

space [62]

Σ(r, r′;E) = i

∫
dE ′

2π
e−iδE′

G(r, r′;E − E ′)W (r, r′;E ′), (2.17)
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with the propagator constructed from the single-particle energies ǫnk and wavefunc-

tions φnk(r)

G(r, r′;E) =
∑

n,k

φnk(r)φ
∗
nk(r

′)

E − ǫnk − iδnk
, (2.18)

where δnk is positive (negative) infinitesimal for occupied (unoccupied) state nk. In

real space, the screened Coulomb interaction W can be expressed as

W (r, r′;E) =
∑

q,G,G′

ei(q+G)·rWGG′(q, E)e−i(q+G′)·r′ (2.19)

The screened Coulomb interaction is related to the dielectric function previously

obtained (Eq. 2.8) via

WGG′(q, ω) = ǫ−1
GG′(q, ω)υ(q+G′), (2.20)

The real part of self-energy Σ can be decomposed into two parts

ReΣ = ΣSX + ΣCH (2.21)

where the screened-exchange (SX) term ΣSX stems from the poles in the Green’s

function and the Coulomb-hole (CH) part ΣCH from the poles in the screened Coulomb

interaction. Therefore, the SX part involves the summation over all occupied states

ΣSX(r, r
′;E) = −

occ∑

n,k

φnk(r)φ
∗
nk(r

′)W (r, r′;E − ǫnk) (2.22)
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whereas the CH part involves the “hole”part of W

ΣCH(r, r
′;E) =

∑

n,k

φnk(r)φ
∗
nk(r

′)P

∫ ∞

0

dE ′ B(r, r′;E ′)

E − ǫnk − E ′ (2.23)

where B(r, r′;E) = 1
π
Im[W (r, r′;E)] is the spectral function. Here, the SX term is

analogous to the bare exchange energy

ΣX(r, r
′) = −

occ∑

n,k

φnk(r)φ
∗
nk(r

′)v(r− r′) (2.24)

except the screened Coulomb interaction W is replaced by the bare Coulomb inter-

action v. It is more convenient to express the self-energy in terms of the Bloch states

that are compatible with the Dyson Equation as given by Eq. (2.15)

〈nk |ΣSX(E)|n′k〉 =−
occ∑

n1

∑

q,G,G′

M∗
n1n(k,−q,−G)Mn1n′(k,−q,−G′)

× ǫ−1
GG′(q, E − ǫn1k−q)v(q+G′)

(2.25)

〈nk |ΣCH(E)|n′k〉 =
∑

n1

∑

q,G,G′

M∗
n1n(k,−q,−G)Mn1n′(k,−q,−G′)

× [ǫ−1
GG′ ]

h(q, E − ǫn1k−q)v(q+G′)

(2.26)

where [ǫ−1
GG′ ]h only contains the positive poles in the inverse dielectric function

[ǫ−1
GG′(q, E)]

h =
1

π
P

∫ ∞

0

dE ′ Imǫ
−1
GG′(E ′)

E −E ′ (2.27)
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In practice, it has been proved sufficient to just use the diagonal term to estimate the

self-energy correction. Then the Dyson equation for a specific state nk boils down to

a single-variable equation with respect to Enk

Enk = ǫnk − 〈nk|Vxc|nk〉+ 〈nk|Σ(Enk)|nk〉 (2.28)

From this expression, it can be seen that the quasiparticle energy Enk is determined

based on the single-particle energy ǫnk. The exchange-correlation energy from the

DFT is now replaced by the self-energy that incorporates many-body correlations.

In principle, Eq. (6.17) is nonlinear and needs to be solved iteratively. However,

for a semiconductor, the self-energy is typically linear near the single-particle energy

ǫnk and the quasiparticle energy Enk is not too far away from ǫnk. Therefore, it is

legitimate to expand the self-energy to the first-order so that the quasiparticle energy

can be solved from a linear equation.

Enk = E0
nk +

dΣnk(ǫnk)/dE

1− dΣnk(ǫnk)/dE
(E0

nk − ǫnk) (2.29)

where

E0
nk = ǫnk − 〈nk|Vxc|nk〉+ 〈nk|Σ(ǫnk)|nk〉 (2.30)

It has to be pointed out that this first-order expansion does not apply to the

situation in which the self-energy exhibits strong nonlinearity near the solutions. For

example, as will be shown in Chapter 7, doping can cause a fluctuation near the
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energy range of interest. In that circumstance, a numerical root-finding scheme has

to be employed instead.

2.3.2 Generalized Plasmon-Pole Model

The inverse dielectric function ǫ−1
GG′(q, ω) does not only depend on momentum but

also depend on the frequency. Calculating and storing the full ǫ−1
GG′(q, ω) requires a

large amount of computational resources. It would be more convenient if ǫ−1
GG′(q, ω)

is first calculated in the static limit ω = 0 and then extended to finite frequencies.

To simplify the energy-dependence, Hybertsen and Louie [62] proposed a general-

ized plasmon-pole (GPP) model that yields very little error from the full-frequency

calculation.

In the GPP model, the inverse dielectric function is assumed to be a single-simple-

pole function, the real part of which can be represented by

Reǫ−1
GG′(q, ω) = δGG′ +

Ω2
GG′(q)

ω2 − ω̃2
GG′(q)

(2.31)

There are two parameters in the model, ω̃GG′(q), the plasmon-pole frequency, and

ΩGG′(q), the plasmon-pole strength. The two parameters can be determined by two

constraints. One is the inverse dielectric function in the static limit, which gives

ǫ−1
GG′(q, ω = 0) = δGG′ − Ω2

GG′(q)/ω̃2
GG′(q) . The other constraint comes from the
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f -sum rule which relates the integration properties of the dielectric function to the

plasma frequency ωP =
√

4πnee2

me
and the crystalline charge density ρ

Ω2
GG′(q) = ω2

P

(q+G) · (q +G′)

|q+G|2
ρ(G−G′)

ρ(0)
. (2.32)

Together with the previous condition

ω̃2
GG′(q) =

Ω2
GG′(q)

δGG′ − ǫ−1
GG′(q, ω = 0)

. (2.33)

these relations completely fix the two parameters in the GPP model so that it is ready

to be used in the self-energy calculation in Eq. (2.25). Meanwhile, with the GPP

model [ǫ−1
GG′ ]h in Eq. (2.26) can be expressed as

[ǫ−1
GG′]

h(q, ω) =
1

2

Ω2
GG′(q)

ω̃GG′(q)[ω − ω̃GG′(q)]
(2.34)

2.3.3 Self-Consistency

In the most widely used GW calculation, the single-particle energies and wave-

functions are directly taken from a mean-field calculation, such as DFT-LDA [62], to

construct the Green function G (Eq. (2.18)) and the screened Coulomb interaction

W (Eq. (2.8), (2.9), and (2.20)). But this is not the original GW approximation

proposed by Hedin. The full GW approximation require that the Green function G

should represent the motion of the dressed particle and the screening effects, which

is embedded in W, is also contributed by dressed particles rather than bare particles.

24



Typically, this requires further iterations in the GW calculation: keep substituting the

band energies ǫnk in G and W with the solved ones until self-consistency is achieved.

But this iteration procedure is not affordable for most of the materials. A calculation

scheme with partial self-consistency could be used instead, in which only the energies

in the Green function are updated. This is the so-called GW0 approximation, which

saves us from recalculating the time-consuming dielectric function. It is more reliable

when there is low-energy plasmon excitations in which one need to align the plasmon

resonance profile with the whole band structure. This self-consistency problem will

be encountered in Chapter 7.

2.4 Optical Properties and Excitons

The optical properties are strongly reshaped by the excitonic effects. When elec-

trons are excited onto conduction bands, they can bind with the holes left in the

valence bands via the attractive Coulomb interaction between opposite charge, lead-

ing to the formation of excitons. In general, the resulting excitonic state is not a single

e-h pair but a coherent superposition of a number of such pairs. The excitonic state

is a two-body excitation which can not be described by the previous theoretical for-

malism. The Bethe-Salpeter equation (BSE) based on the many-body perturbation

theory [63, 64] is very powerful tool for quantitatively studying these excitations.
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2.4.1 Bethe-Salpeter Equation

Just like the Schrödinger equation, the BSE is also an eigenvalue problem [78]

but the “single-particle”state is now a vertical transition from a valence state vk to

a conduction state ck.

(Eck − Evk)A
S
vck +

∑

v′c′k

Keh
vck,v′c′k′(ΩS)A

S
v′c′k′ = ΩSA

S
vck. (2.35)

where Eck and Evk is the quasi-electron and quasi-hole energy, Keh the e-h interaction

kernel. ΩS and Avck are the exciton energy and amplitude of a state S respectively.

According to the Tamm-Dancoff approximation [78], an exciton state S is expressed

in terms of the linear superposition of e-h pair states

|S〉 =
occ∑

v

empty∑

c

∑

k

AS
vck|vck〉 (2.36)

The rich physics of e-h correlations is embedded in the interaction kernel Keh. It

can be separated into a direct term Kd and an exchange term Kx. Kd describes

e-h attractive interactions, which is captured by the previously formulated screened

Coulomb interactions W . Kx describes the repulsive exchange energy arising from

the cross transition process v → c′, v′ → c and is only related to bare Coulomb inter-

actions. It is the origin of the exciton singlet-triplet splitting. For a semiconductor,

dynamical effects are unimportant for determining the excitonic effects because the
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plasmon frequency is generally much larger than the exciton binding energy. The

above two terms are then represented by

〈vc|Kd|v′c′〉 = −
∫
dxdx′ψ∗

c (x)ψc′(x)ψv(x
′)ψ∗

v′(x
′)W (r, r′, ω = 0)

〈vc|Kx|v′c′〉 =
∫
dxdx′ψ∗

c (x)ψv(x)v(r− r′)ψc′(x
′)ψ∗

v′(x
′)

(2.37)

Including the exchange term Kx in the BSE or not decide whether the solutions are

singlet or triplet states. From the expression of Kx, one can see the magnitude of

the singlet-triplet splitting of a certain exciton is closely tied to the wavefunction

overlap integral between the involved valence and conduction state, v and c. If the

most important valence and conduction state have a very weak overlap, then the

singlet-triplet splitting will be very small and Kx can be omitted in the calculating

the exciton energy.

For a plane-wave basis calculation, the e-h interaction Kernel can be represented

with the reciprocal lattice vectors G. According to different degree of divergence, the

direct term Kd is decomposed into three terms

〈vck|Kd
eh|v′c′k′〉 = avck,v′c′k′

q2
+
bvck,v′c′k′

q
+ cvck,v′c′k′ (2.38)

where

avck,v′c′k′ =Mcc′(k,q, 0)ǫ
−1
00 (q)[Mvv′(k,q, 0)]

∗ (2.39)
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bvck,v′c′k′ =
∑

G

{Mcc′(k,q,G)
ǫ−1
G,0(q)

|q+G| [Mvv′(k,q, 0)]
∗

+Mcc′(k,q, 0)
ǫ−1
0,G(q)

|q+G| [Mvv′(k,q,G)]∗}
(2.40)

cvck,v′c′k′ =
∑

G 6=0

∑

G’6=0

Mcc′(k,q,G)
ǫ−1
GG′(q)

|q+G||q+G′| [Mvv′(k,q,G
′)]∗ (2.41)

They are called the “head”, “wing”, and “body”term respectively, which reflect the

location of the involved dielectric matrix elements relative to the whole dielectric

matrix. Likewise, the crystal representation of the exchange term Kx is

〈vck|Kx
eh|v′c′k〉 =

∑

G 6=0

∑

G′ 6=0

Mcv(k,q,G)
1

|q+G||q+G′| [Mc′v′(k,q,G
′)]∗ (2.42)

In this case, there is no need to decompose the Kernel. It has no singular behavior

near q → 0 because the wavefunction matrix elementMcv(k,q, 0) vanishes as ∝ q and

will eventually cancel out the divergence in the Coulomb interaction. The absence of

divergence also indicates that Kx
eh is a less prominent contribution compared to Kd

eh.

2.4.2 Optical Spectra and Excitonic Wavefunctions

Without excitonic effects, the absorption spectra are given by summing up the

oscillator strength from independent vertical transitions

ǫ02(ω) =
16πe2

ω2

∑

v,c

|~λ · 〈v|~v|c〉|2δ(ω − (Ec − Ev)), (2.43)
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where the oscillator strength is derived from the well-known Fermi Golden rule. λ

points to the light polarization direction and v is the single-particle velocity operator.

When excitonic effects are taken into account, the coherent superposition of e-h pairs

needs to be considered.

ǫ2(ω) =
16πe2

ω2

∑

S

|~λ · 〈0|~v|S〉|2δ(ω − ΩS). (2.44)

For 2D materials, in order to obtain an optical absorption spectrum that can be

directly compared with experiments, one may convert ǫ2 into optical absorbance A(ω)

via the relation.

A(ω) = ωǫ2(ω)d/c (2.45)

where d is the vacuum distance in the 2D supercel configuration and c is speed of

light. This quantity reflects the fraction of incident photon energy absorbed by a 2D

material.

The BSE also yields detailed information about how the electron and hole are

spatially correlated that is important for understanding the nature of the exciton.

From Eq. (2.36), an exciton wavefunction is expressed in terms of single-particle

wavefunctions

χ(xe,xh) =

occ∑

v

empty∑

c

AS
vcφc(xe)φ

∗
v(xh) (2.46)

In general, this exciton wavefunction is a six-dimensional function which is not very

intuitive to understand. In practice, it is more convenient to visualize the exci-
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ton wavefunction by fixing the hole xh at its most probable position xmax
h and plot

χ(xe,x
max
h ).

2.4.3 Hydrogen Model of Excitons

The electron orbiting around the hole is very similar to a situation in which a

single-particle is travelling near a a scattering, attractive center. This can be reflected

by the formalism of BSE. Although the equation is sophisticated at a first glance, for

a direct-band-gap semiconductor it can be boiled down to the ordinary Schrödinger

equation for an electron in a hydrogen atom, which is analytically solvable.

The simplification procedure of the BSE will be carried out in several steps. First,

using the effective-mass approximation to the band edged where excitons are most

likely to form, one can replace the kinetic term in the BSE with the quadratic terms

Eck − Evk = (
k2

2me

+ Eg)− (− k2

2mh

)

=
k2

2µ
+ Eg

(2.47)

where me and mh (positive) are the conduction and valence effective masses respec-

tively, Eg the direct band gap. The reduced effective mass of the e-h pair is naturally

introduced here: 1
µ
= 1

me
+ 1

mh
.

The second step is to approximate the e-h interaction Kernel. The momentum-

space representation from Eq. (2.39) to (2.42) has provided a convenient starting-

point for the approximation. In many crystalline materials, the excitons typically
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span over a decent number of primitive cells. For example, the radius of the wannier

exciton in bulk semiconductors can reach up to several nanometers. This means

the higher-order contributions from shorter wavelength (large q, finite G), bvck,v′c′k′

and cvck,v′c′k′, are averaged out on the exciton-radius scale. The most prominent

contribution to the e-h binding is from the “head ”term (Eq. 2.39) at small q, which

scales up most rapidly at longer wavelengths q → 0. Neglecting the exchange term

for simplicity, we can approximate the Kernel with only the “head”contribution

〈vck|Keh|v′c′k′〉 ≈ Mcc′(k,q, 0)[Mvv′(k,q, 0)]
∗ ǫ

−1
00 (q)

q2
(2.48)

Again, for small q, we may replace ǫ−1
00 (q) with the inverse dielectric constant 1/ǫ.

Meanwhile, the wavefunction overlap matrices have well known limits as given by Eq.

(2.13). The kernel is further simplified into

〈vck|Keh|v′c′k′〉 ≈ δvv′δcc′
1

ǫq2
(2.49)

This approximation decouples the transitions that are originated from different va-

lence band or conduction band. Thus the full BSE matrix is divide up into many

non-interacting subsystems according to the valence and conduction band index. For

a specific pair of v and c, the approximated BSE now reads

(
k2

2µ
+ Eg) +

∫
d3k′ 1

ǫ|k′ − k|2Ak = ΩAk (2.50)
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When Fourier-transformed into real space, it is quite obvious that this becomes the

Schrödinger equation of a hydrogen atom with screened Coulomb interaction 1/ǫr.

The exciton binding energy is then easily given the Rydberg Series

Eb =
µ

ǫn2
(2.51)

It can be seen clearly how strong the excitonic effect depends on two factors: the

reduced effective mass and the dielectric screening. Flatter bands will give large

effective masses and strongly bound excitons. A set of parallel bands, such as in

silicon and the twisted bilayer graphene that will be discussed in Chapter 4, can also

result in a very large reduced effective mass µ and hence significant excitonic effects.

One the other hand, a stronger dielectric screening will reduce the effective Coulomb

interaction and weaken the e-h binding, leading to a depressed excitonic effect.
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3. QUASIPARTICLE AND EXCITONIC PROPERTIES OF

GATED BILAYER GRAPHENE

3.1 Introduction

Despite its intriguing electronic, thermal and optical properties [4, 5, 12], intrin-

sic graphene is a gapless semimetal, impeding its utility in bipolar devices, high-

performance field-effect transistors and subsequent broad applications. Therefore,

huge efforts have been made to overcome this barrier by generating a finite band gap

in graphene or its derivatives [11,55,56,79]. One promising approach is to apply the

gate electric field perpendicular to the AB (Bernal) stacked bilayer graphene (BLG)

to break the inversion symmetry of sublattices [12, 14, 55, 56, 80]. Such an induced

band gap of GBLG can be tuned in a wide range by field strength [12–14,81], offering

an important degree of freedom to optimize performance of graphene devices.

A satisfactory understanding of fundamental properties of GBLG is still lacking

, such as its QP band gap and optical excitations. For instance, electrical conduc-

tance experiments [13, 14, 81] have confirmed the existence of a finite QP band gap

but their measured value is disturbed by many extrinsic factors, e.g., the inevitable
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contact resistance between the electrodes and graphene sheet. While noncontacting

optical measurements [12, 80, 82] have revealed a tunable band gap in GBLG, these

results are indirect because the optical absorption peak (edge) is not conceptually

equivalent to the QP band gap [63,64]. Particularly, enhanced excitonic effects often

dramatically shift the optical absorption peak as we have seen in many other reduced

dimensional semiconductors [30–32], making this inconsistency even more serious.

Therefore, an accurate calculation with many-electron effects is crucial for settling

the above inconsistency.

Conventional density functional theory (DFT) simulations cannot answer the

above questions because of their known deficiencies of handling excited-state prop-

erties [62–64]. Tight-binding models [83] have revealed appealing properties of ex-

citons in GBLG, but it must rely on parameters. In particular, recent ab initio

GW-BSE simulation has successfully predicted enhanced many-electron effects on

intrinsic graphene [52], which are confirmed by subsequent experiments [51, 84, 85].

Therefore, a reliable first-principles calculation with many-electron effects included is

also promising.

More importantly, beyond providing reliable parameters for device design, learn-

ing about the excited states of GBLG and how they evolve with gate field will be of

fundamental interest because it will fill our knowledge gap on many-electron interac-

tions in two-dimension (2-D) narrow-gap semiconductors, a field that has not been

well understood yet. In fact, it is challenging for first-principles simulations to accu-

rately capture the nearly metallic electronic screening of narrow-gap semiconductors.
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For this purpose, an improved algorithm has to be developed and shall be of broad

interest for the electronic-structure community.

In this chapter, we employ the modified model to accurately describe the screening

and conclude four important remarks about the excited states of GBLG: 1) The

QP band gap and its dependence on the gate field are obtained. The self-energy

correction is significant because of the enhanced electron-electron (e-e) interactions;

the calculated QP band gaps and their tunable range are more than 150 % of previous

DFT predictions [86, 87], which are beneficial for device applications since a wider

band gap implies higher working temperature. 2) Optical absorption spectra of GBLG

are dominated by excitonic effects. With electron-hole (e-h) interactions included, our

calculated absorption peaks are in excellent agreement with recent experiments [12],

explaining the inconsistency between QP gap and optical gap. 3) e-h interactions are

so sensitive to the gate field that we can efficiently tune the exciton binding energies

and even the order of exciton levels by the gate field. 4) Excitons in GBLG exhibit a

number of unusual features. For example, the electron and hole of the lowest-energy

dark exciton are completely separated onto opposite layers of graphene, giving rise

to an optical approach to polarize BLG. Moreover, this separation of electron and

hole offers a neat opportunity to evaluate entangling effects, such as the exchange

interaction, of many-electron systems.

35



3.2 Methods and Computational Settings

To reveal the significance of many-body correlations in GBLG, we calculate the

excited states using the following procedure. First, ground-state energy and wavefunc-

tions are obtained by DFT within the local density approximation (LDA). Secondly,

the QP energy is calculated within the single-shot G0W0 approximation [62]. Finally

we obtain the exciton energy, wavefunctions and optical absorption spectra by solving

the following BSE [63]

(Eck − Evk)A
S
vck +

∑

v′c′k′

〈vck|Keh|v′c′k′〉AS
v′c′k′ = ΩSAS

vck (3.1)

where AS
vck is the amplitude of excitonic state S, consisting of single-particle hole state

|vk〉 and electron state |ck〉. Keh is the e-h interaction kernel and ΩS is the exciton

excitation energy. Eck and Evk are QP energy of electrons and holes, respectively.

All calculations are based on a plane-wave basis and norm-conserving pseudopo-

tential approximations with a 60-Ry energy cutoff. To eliminate the spurious in-

teraction between neighboring BLG, the slab-truncation scheme is applied to mimic

isolated GBLG [76,77]. The electric field is applied, via periodic sawtooth potential,

perpendicular to graphene layers.

The crucial part of describing many-electron interactions is to obtain the dielectric

function. For GBLG with the truncated Coulomb interaction, the inverse static

dielectric function ǫ−1(q) rapidly changes within the long wave-length regime q → 0,

which is similar to what has been noticed in recent first-principles simulations of
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carbon nanotubes (CNTs) [31, 32]. A brute-force way to capture this feature is to

use a dense q-grid, which demands formidable computational resources. To solve this

problem, we deliberately employ the mini Brillouin zone (BZ) sampling scheme to

account for this sharply-varying character as motivated by Refs. [76, 77], and use it

to both evaluate the QP energies and solve the BSE (see the supplementary material

for details). As a result, a 72× 72× 1 coarse k-grid sampling is adequate for the GW

calculation. In addition, we employ a partial 1440 × 1440 × 1 fine k-grid sampling

around the Dirac cone for a dependable BSE calculation.

3.3 Quasiparticle Properties

The LDA and GW band structures near the BZ corner (the K point) are plotted

in Fig. 3.1 (a) for GBLG, respectively. The applied gate field induces a finite band

gap and changes the band dispersion to the Mexican-hat feature. After including

the self-energy correction via the GW calculation, the Mexican-hat-shaped feature

remains intact; nevertheless, the fundamental band gap is significantly enlarged due

to the depressed screening of isolated GBLG. Moreover, the slope of band dispersion

is sharpened by the self-energy correction, implying a smaller effective mass of free

carriers.

We also investigate the QP band gap dependence on the applied gate field as

shown in Fig. 3.1 (b). The QP band gap can be varied from zero up to 300 meV

under experimentally reachable gate field, which is also more than 150% of previous

DFT predictions. These features are desired for device applications because a wider
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Figure 3.1. (Color online) (a) DFT/LDA and GW calculated band struc-
tures around the Dirac point of BLG under a gate field of 2 V/nm. (b)
Comparison of the ”gap” values obtained from different approaches and
their dependence on the gate electric field. The value of the optical gap
is defined by the position of the first bright peak of the optical absorption
spectrum. The experimental values are extracted from Ref. [12]

gap means a higher working temperature and lower noise. Moreover, when listing the

ratio of the self-energy correction to their DFT/LDA value, we see the progression,

56%, 67%, 78%, and 81%, respectively, as the applied field is decreased. This growing

trend of the correction ratio for the smaller gap is of particular interest because recent

experiments [81] shows a possible small band gap (around a few meV) even for BLG

in the absence of gate field. However, due to the limited accuracy of our numerical

simulation, we cannot resolve those energy differences below 10 meV and hence a

more advanced simulation technique needs to be developed.
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3.4 Optical Properties and Absorbance

Additionally, the recent optical measurements of the optical gap are plotted in Fig.

3.1 (b) as well. The key feature is that the QP gap is substantially larger than both

previous DFT predictions [86,87] and measurements from optical experiments, [12,88].

The inconsistency of the QP band gap with the optical measurements has also been

observed in several other semiconducting nanostructures [30–32], which manifests

enhanced excitonic effects and motivates the following calculation on optical spectra

of GBLG.

Fig. 3.2 depicts the optical absorption spectrum and its evolution subject to the

increasing field magnitude. We first focus on absorption spectra in the absence of the

e-h interactions (blue lines in Figs. 3.2 (a)). In the low-energy regime, the absorption

is mostly contributed to by the transition from the highest valence band (v1) and the

lowest conduction band (c1). As expected, the absorption onset displays a blueshift

as the electric field increases the band gap magnitude. Meanwhile, the prominent

absorption feature is gradually broadened and split into a double-peak structure (I1

and I2) which stems from the two one-dimensional-like von-Hove singularities [83,89]

at opposite “Mexican-hat brims”(Fig. 3.1 (a)), which is consistent with previous DFT

results [86].

Surprisingly, the von-Hove singularity at the K point does not contribute greatly to

the absorption and therefore is not resolved in the spectra. This is because the relevant

valence state |vk〉 and the conduction state |ck〉 at the Dirac point K are strongly
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localized on different layers upon field-induced symmetry breaking. Therefore, the

overlap of wavefunctions is very small and thus leads to a negligible oscillator strength.

This can be seen in Fig. 3.3 (a), in which we present the contour plot of the oscillator

strength around the corner of the first BZ. The strongest oscillator strength is actually

from the “Mexican-hat brims”regime while it is almost zero at the K point.

With e-h interactions included, a different optical absorption picture emerges. As

shown in Figs. 3.2 (a), the exciton effect dramatically reshapes the spectra; the broad

asymmetric, absorption peak in the single-particle picture is replaced by a symmetric

prominent absorption peak. This peak lies below the QP band gap, indicating the

existence of bound e-h pairs. The binding energy vary significantly with the gate volt-

age. They are 35, 54, 76 and 80meV under four sampling voltages, respectively, fairly

close to previous tight-binding calculations [83]. Remarkably, these peak positions

are in excellent agreement with the previous infrared microspectroscopy experiment

[12] as shown in Fig. 3.1 (b). Under realistic experimental setups, both self-energy

corrections and e-h interactions will be reduced by the screening effect of dielectric

substrates. Additionall, these reductions may cancel each other more or less [90].

This yields an excellent agreement of our calculations with experimental data.

In the higher energy regime (around 0.4 eV) next to the first optical active peak,

the absorbance maintains a constant on the whole (∼ 3%), which is significantly

smaller than 4.6%, which is the ideal value of the optical absorbance of BLG [91,92].

This is due to the sum rule of oscillator strength [63] in that e-h interactions drain

the absorbance from the high-energy regime to enhance the exciton peak.
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Figure 3.2. (Color online) (a) Optical absorption spectra of GBLG. The
vertical black dashed line indicates the GW fundamental gap. The inci-
dent light is polarized parallel to the graphene plane. A 10 meV Gaus-
sian smearing is applied. (b) Optical activity and eigenenergy of exci-
tons. Each bar represents one exciton state and its height (plotted in
the logarithmic scale) indicates the corresponding optical activity. The
lowest-energy dark exciton D and the prominent exciton A are particu-
larly outlined by widened dark and red bars, respectively.
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Figure 3.3. (Color online) (a) The distribution of single-particle oscillator
strength in the reciprocal space. We only include transitions from the
highest valence band to the lowest conduction band. (b) and (c) The
distributions of the square of the exciton amplitude (|AS

vck|2) of the dark
exciton D and bright exciton A in the reciprocal space. The square black
dots mark the three identical locations of the minimum energy gap.

It has to be pointed out that electron-phonon coupling is another important factor

in determining the infrared optical spectra of GBLG. For example, a G-mode phonon

at 195meV has been found to be in Fano interference coupled with e-h excitations in

GBLG [93]. Therefore, we may expect this dip feature from such a G-mode phonon

may impact the lineshape of our studied exciton absorption peaks.

3.5 Exotic Excitonic States

A close inspection of solutions of the BSE reveals an intriguing exciton picture

that has not been observed by experiments. We plot the oscillator strength of excitons

in a logarithmic scale in Figs. 3.2 (b). The isolated exciton state with the largest

oscillator strength, A, is responsible for the symmetric, prominent absorption peaks

in the spectra. Surprisingly, there is one lower-lying excion, D, with a much weaker
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oscillator strength for most gated fields (except 4V/nm). This is contrary to the usual

effective-mass model, in which the lowest singlet exciton shall be the brightest one

involved with two bands.

Furthermore, we observe that both the position and oscillator strength of this

dark exciton D are more sensitive to the gate field than those of bright exciton A.

As plotted in Figs. 3.2 (b), the energy of D progressively approaches that of A with

an increasing gate field strength and its optical activity is strongly quenched simul-

taneously. In particular, when the gate field is more than 3V/nm, the order of the

bright and dark excitons is switched as shown in Fig. 3.1 (b). This tunable energy

difference can surely affect the thermal population of exciton states and their lumi-

nescent performance. The tunability of the order of exciton energies is in qualitative

agreement with previous tight-binding studies [83].

To understand the brightness of these exciton states, we need to further investigate

the origin of their optical activity. For a typical field strength (2 V/nm), Figs. 3.3

(b) and (c) display the distribution of the square of exciton amplitude AS
vck for the

excitons A and D. Since the optical activity of an exciton i [63] is

|〈0|~v|i〉|2 = |
∑

vck

Ai
vck〈vk|~v|ck〉|2, (3.2)

which is roughly the product of the single-particle oscillator strength shown in Fig.

3.3 (a) and exciton amplitude shown in Figs. 3.3 (b) or (c), we immediately see
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Figure 3.4. (Color online) (a) and (b) Side views of the isosurface plot of
the square of wavefunctions of the excitons D and A. (c) to (f) Top view
of these exciton wavefunctions for top and bottom layers, respectively.
The hole position is marked by the open circle in (a) and (b) while it is
located at the center of the bottom layer in (d) and (f).

the product of exciton D is much bigger than exciton A, suggesting their markedly

different brightness.

Fig. 3.4 visualizes the exciton wavefunctions in the real space. As is readily

seen, both excitons A and D are strong charge transfer excitons but with distinct

characters. In particular, the electron and hole of the dark exciton D almost be-

come disentangled. As shown in Figs. 3.4 (a), (c) and (d), the electron and hole
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wavefunctions of exciton D are nearly completely separated into two layers. This

is very dissimilar to the e-h correlation in other 2-D semiconductors [39, 52]. From

the perspective of optoelectronic applications, exciton D could yield the interesting

possibility of efficient e-h separation and polarize BLG by optical excitations. For

the exciton A, the degree of e-h separation is much lower. In Figs. 3.4 (b), (e) and

(f), the electron distributes over a ring on the top layer while on the bottom layer the

electron distributes on a disk centered at the hole.

Moreover, these excitonic wavefunctions will be crucial to understand why the

dark exciton D and the dark exciton A respond very differently to the electric field.

As concluded in Fig. 3.1 (b), the energy level of exciton D exhibits an approximately

linear relationship with the field strength, whereas that of exciton A shows a nonlinear

behavior. This can be rationalized by the fact that exciton D can be viewed as a

plane of dipoles composed of dissociated electron and hole, as revealed in Fig .3.4 (a),

whose energy levels of the positive and negative poles linearly depend on the applied

gate field. In contrast, the electron and hole for the exciton A are spatially entangled

and therefore the energy level is less sensitive to the gate field and does not follow

a simple linear trend. This explains the origin of the energy order switch when the

applied gate field is more than 3 V/nm.

3.6 Conclusions

In conclusion, we have provided first-principles calculations for the QP energy

and excitonic effects of GBLG. e-e and e-h interactions are significant and must be
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considered to understand the electronic structure and optical excitations of GBLG.

Moreover, our calculation clearly explains recent experiments and reveals more of the

physics associated with many-electron effects. Finally, we have observed an exotic

dark exciton structure that is not likely to present itself in conventional direct band

gap semiconductors. The different degree of charge transfer for different exciton states

may be useful in optoelectronic applications.
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4. STRONGLY BOUND EXCITONS IN TWISTED

BILAYER GRAPHENE

4.1 Introduction

Bound excitons, electron-hole (e-h) pairs, are of particular interest because of

their neat physics picture and intrinsic long lifetime that makes broad applications,

including photovoltaic and photocatalytics [30, 94–96]. However, the formation of

bound e-h pairs had been thought to be impossible in metallic (gapless) systems due

to their overwhelming screening effects. Moreover, e-h pairs in gapless structures

tend to hybridize with continuous transitions nearby, forming resonant states, whose

intrinsic lifetime is substantially shorter. To date, the only exception was found in

metallic carbon nanotubes (mCNTs), in which the depressed one-dimensional (1D)

screening together with the unique optical symmetry gap lead to the formation of a

bound e-h pair [31,32,97,98]. Meanwhile, these studies ignite many obvious but fun-

damental questions: besides 1D metals, can we observe bound excitons in structures

with stronger dielectric screening, e.g., higher dimensional (d > 2) gapless materials?

47



In addition to the symmetry-related reason revealed in mCNTs, are there any other

general mechanisms responsible for bound exciton formation in gapless systems?

Graphene, as a 2D semimetal, may serve as an excellent testbed to answer these

outstanding questions. Unfortunately, due to a broad Fano resonance [51, 85, 90,

90, 99], no evidence of bound excitons has been observed, despite the presence of

significant e-h interactions in graphene. Recently, twisted bilayer graphene (tBLG)

[53,54,100–108], a 2D semimetal, has ignited substantial interest since a twist between

graphene sheets introduces new van Hove singularities(vHSs) [53,54,105,108,109] that

emerge at the intersections of Dirac cones on opposite layers. From the perspective of

excitons, this unique band structure with several vHSs (see Fig. 4.1) has a particular

implication for unusual excitonic effects. As shown in Fig. 4.1 (b) and (c), the

outlined bands in each schematic are parallel to each other, due to the proximate

group velocities of electrons and holes, which lead to a large joint density of states

(JDOS). This special band topology enhances e-h interactions and therefore sheds

new light on the potential existence of bound e-h pairs in 2D metallic systems.

In this chapter, we predict the existence of strongly bound excitons in higher-

dimensional gapless structures by a new decoherent effect, the Ghost Fano resonance.

As an example of realistic material, we focus on excitonic effects of tBLG. Through

first-principles GW-Bethe Salpeter Equation (BSE) simulations, we successfully ob-

serve a bound (though less bright) exciton with a significant binding energy of 0.5

eV in tBLG, which is an order of magnitude larger than that found in mCNTs

[31, 32, 96–98] and is even comparable to those in semiconducting nanostructures
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Figure 4.1. (a) Low-energy band structure of tBLG. α (light red) is the
plane passing both axes of the Dirac cones whereas β (light blue) is the
bisector plane of the two cones. (b)(c) Schematic formation of exciton
X13(b) and X24(c) illustrated on the α-plane. The energy bands are la-
beled with 1 to 4 in ascending energy order. The involved bands are
outlined in black while the states that mainly compose the exciton are en-
closed by the ellipses. (d) Bands plotted on the β-plane. ET

G = h̄vF|∆K|
is the transition energy gap between 1st (2nd) and 3rd (4th) band.
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[31,32,34,35,37,110,111]. With the help of the low-energy effective model, we found

that the formation of this unusual bound exciton is explained by the ghost Fano res-

onance [112,113], a unique destructive coherence between two sets of resonant states

with similar energies. This represents a new mechanism for forming bound excitons

in gapless systems. In particular, because of its coherent origin, our proposed mech-

anism gives hope to creating bound excitons in many other metallic systems, despite

their strong screening.

4.2 Structural Properties

For a AB-stacking bilayer graphene, if one layer is twisted away from the other

around the c-axis of system, a sophisticated moire pattern will emerge, leading to

a novel multilayered graphene structure called twisted bilayer graphene. Dependent

on the resulting structure is periodic or not, it is called a commensurate structure

or a incommensurate structure. The commensurate structures can be viewed as a

honeycomb superlattice and it has all the point-group symmetries as graphene except

for the inversion operation. Because of their periodicity, they are compatible with

the first-principles calculations using plane-wave basis. Fig. 4.2 lists two examples of

commensurate structures with the smallest number of atoms in their unit cells.
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Figure 4.2. (Color online) Two example of commensurate structures with
the rotation angle θ = 21.8◦ and 32.2◦. The red parallelograms mark the
unit cells in the two commensurate structures.
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4.3 Computational Settings

We perform first-principles calculations by employing the many-body Greens func-

tion theory for tBLG. We focus on two commensurate structures [15] with 21.8◦ and

32.2◦ rotated from the AB-stacking order. Our study begins with a density-functional-

theory (DFT) calculation within the local density approximation (LDA) [61] Next,

the dielectric function is calculated using the random-phase approximation with a

30 × 30 × 1 (18 × 18 × 1) k-grid [108] over the first Brillouin zone. Meanwhile a

slab-Coulomb-truncation scheme [76,77] is also employed. We then obtain the quasi-

particle (QP) band energies within the G0W0 approximation [62]. The vital step

in describing the many-body excitonic effects is to solve the BSE [63]. To ensure a

smooth and accurate optical spectrum, we incorporated a fine 60×60×1 (36×36×1)

k-grid in solving the BSE. Seven (Twelve) valence bands and seven (twelve) conduc-

tion bands are included to cover a broad range of the optical absorption spectrum up

to 6.0eV.

4.4 Optical Spectra

Both optical spectra with and without e-h interactions are presented in Figs. 2 (a)

and (b) with three distinct peaks (marked by E1, E2, and E3 in non-interacting spec-

tra). Our calculation yields an excellent agreement with recent optical conductivity

measurements [101, 108]; the first two peaks, E1 and E2, stem from the two inter-

sections between the Dirac cones from opposite layers, and the third one, E3, results
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Figure 4.3. (Color online) (a)(b) Optical absorbance obtained by the
GW+BSE method. The blue dash-dotted curves are the non-interacting
spectra while the red solid ones are the spectra with the e-h interactions
included. (c)(d) e-h attractive energy ES

a (blue bars, in arbitrary unit)
plotted versus the exciton energy ΩS for graphene (c) and tBLG (d) within
an identical energy window from 2.2-5.0eV. For references, the absorbance
spectra of both structures are also plotted (red dashed curves).

from the perturbed saddle-point vHSs intrinsic to monolayer graphene [106,108]. We

observe enhanced excitonic effects in the absorbance. e-h interactions cause peaks E1

and E2 to redshift by ∼ 0.2eV for both twist angles.
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4.5 New Mechanism for Strongly Bound Excitons in Gapless 2D Struc-

tures: Ghost Fano Resonance

The fundamental mechanism forming the corresponding excitonic states in these

new prominent peaks in tBLG (E1 and E2), however, may be substantially different

from our knowledge learned from usual BLG [52, 114]. At the band intersection

between two Dirac cones, only two sets of optical transitions with similar energies are

allowed due to the selection rule, as shown in Fig. 4.1(b) and (c), producing double

resonance [104,105]. From the point view of two-particle excitations, the parallel sets

of bands give rise to significant JDOS and potentially unusual bound e-h pairs.

The most direct approach to examine whether an excitonic state is bound or

resonant is to investigate its wave function in real space. We plot the wave functions of

two typical bright excitons, R and S, located around peak E1 (marked in Fig. 4.3(a)).

Here, R is the brightest excitonic states around the absorption peak. However, as

shown in Figs. 4.4 (a) and (b), the electron is distributed loosely around the hole and

even extends beyond our simulation range. These wave functions manifest a signature

of resonant states, as observed in graphene [52] and CNTs [31, 32, 97]; the binding

feature of excitons is substantially weakened by hybridization with continuous Bloch

states that are spatially periodic and extended. In conclusion, these prominent peaks

in Fig. 4.3 are dominated by resonant excitons, instead of bound ones.

So far we have focused on the brightest exciton, which often corresponds to the

most bound state. However, bound states are not necessarily bright [115]. In order
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Figure 4.4. (Color online) |χS(xe,xh)|2 of excitons R, S, and A in 21.8◦

-tBLG plotted on the top layer (a1) (c1) and the bottom layer (a2) (c2)
with the hole fixed at the most-probable position on the top sheet. The
distribution of the electron is normalized to the maximal probability of
the two layers so that it ranges from 0 (blue) to 1 (red). The details within
the primitive cell are less important and thus have been smoothened out.
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to find possible bound exciton states that are not optically active, we have to, in

principle, scan all excitonic states solved by BSE and inspect their real-space wave

functions, which is implausible because of a huge number of excitonic states (more

than 170, 000). Motivated by the fact that e-h interactions of bound excitons are

typically more significant than those of resonant ones, we evaluate the e-h attractive

energy for a given excitonic state S, by calculating ES
a , expectation value of the e-h

interaction kernel Keh sandwiched by that state S

ES
a = 〈S|Keh|S〉 =

∑

vck

(Eck − Evk)|AS
vck|2 − ΩS (4.1)

Although ES
a is not the binding energy, it can be understood as the difference between

the excitons “kinetic energy ”and its eigenenergy, roughly reflecting the degree of e-h

attractions.

Using this e-h attractive energy analysis, an intriguing comparison can be made

between monolayer graphene and tBLG. For both cases, we plot the e-h attractive

energy spectra (ES
a versus ΩS) for all exciton states in Fig. 4.3 (c) and (d). Surpris-

ingly, the ES
a spectrum of graphene (see the blue-bar plot in Fig. 4.3 (c)) exhibits

no distinct features up to 5.0eV, even for the prominent absorption peak at 4.6eV.

This indicates that all its excitonic states are broadly resonant [52]; however, the ES
a

spectrum of tBLG (Fig. 4.3 (d)) clearly shows several distinct spikes over a broad

energy range, implying the existence of excitonic states with stronger e-h interactions.

Following this idea, we select the most bound excitonic state, A (marked by an arrow
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in Fig. 4.3(d)), and plot its real-space wave function in Fig. 4.4(c1) and (c2). For

this case, we obtain an isotropic distribution with significant localization. For the

first time, our calculation predicts the presence of a bound exciton state in tBLG, a

2D gapless material.

More questions are raised regarding exciton A. First, its energy is not at the

prominent absorption peak (E1) but approximately 0.38eV below it. Moreover, its

optical oscillator strength is weak, roughly one fifth of that of brightest excitonic

state R. These are in conflict with the conventional wisdom; the most bound state is

usually the most optically active one according to the hydrogen model. Second, since

the position of the peak E1 in the non-interacting spectrum indicates the transition

energy ET
G between the valence and conduction vHSs, the bound exciton A emerges

0.49eV below the energy ET
G in Fig. 4.3(a). Such a surprisingly large binding energy

is an order of magnitude larger than that found in mCNTs [31, 32, 97] and it is

even comparable to those exciton binding energies of semiconducting nanostructures.

[31, 32, 34, 35, 37, 110, 111].

Unfortunately, it is challenging to directly analyze the results of our above first-

principles simulation. Here, we use a low-energy effective model [116] for simplifying

the analysis:

H(k) =




H0(k, 0) T †

T H0(k−∆K, θ)


 (4.2)
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where the intralayer dispersion and the interlayer interaction are respectively

H0(k, θ) = h̄vF




0 e−iθ(kx−iky)

eiθ(kx+iky) 0


 , T =




0 1

1 0


 (4.3)

The factor eiθ creates a rotation of the crystal momentum k. H0 has been estab-

lished as a reasonably good approximation for each layer. The matrix T describes

the average interlayer interaction between AB and BA stacking order, where ∆ is

the interlayer coupling strength. Previous works [116] have shown that the matrix

with dominant off-diagonal terms represents a more realistic interlayer interaction

than does the all-ones matrix. With this low-energy effective model, we are able to

reproduce the energy bands and the wave functions needed for solving the BSE. To

proceed, we approximate the screened Coulomb interaction in the direct term Keh
d

with the 2D Coulomb potential vc(q) =
2π
q
but drop the exchange term Keh

x because

of its lessened importance in the graphene-related systems [83]. The solution to the

BSE is obtained on a uniform k-grid with approximately 2000 k-points in proximity

of the two Dirac cones, so that all the states with energy ranging from −ET
G to ET

G

are included in the calculation. As an example, we choose a tBLG with 5◦-rotation

with interlayer coupling strength ∆ of 130meV.

Following the analysis via Eq. 4.1, we scan the e-h attractive energy spectrum

obtained by our model BSE calculations. Now, the transition energy gap ET
G is

1.05eV and the energy regime below it will be of primary interest. Interestingly, as

displayed in Fig. 4.5(a), a series of discrete excitonic states Xn(n = 1, 2, · · · ) are
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found with distinct e-h attractive energies ES
a alongside a background of resonant

excitons (marked by grey bars). The energy spectrum of Xn exhibits a few important

characteristics. For instance, with ascending exciton energy, their population becomes

denser towards ET
G whereas ES

a decreases monotonically. If ET
G and ES

a are regarded

as a “band gap”and “binding energies”, respectively, they exhibit standard features

of bound excitons in a semiconductor. The corresponding wave functions of the

lowest few states are plotted in the reciprocal space, as shown in Fig. 4(b), which

evidently exhibit features of bound excitonic states. For example, the distribution of

X1 is highly analogous to 1s state as solved by the hydrogen model. Also given the

fact that X1 possesses the largest e-h attractive energy, it can be inferred that X1

corresponds to exciton A in our first-principles simulations.

To further explain the emergence of bound exciton seris, Xn, in tBLG, one can

analyze the BSE solution given by the low-energy effective model. Surprisingly, it can

be shown that each state Xn is only composed of two branches of double-resonant

transitions (1 → 3 and 2 → 4), indicating that the exciton state is free of resonance

with the Dirac continuum transition (2 → 3) occurring at low energies.

The above observation also inspires further investigation into the relation of Xn to

the excitonic states solved on the (1 → 3)- and (2 → 4)-transition subspaces. For each

subspace, we respectively obtain a set of subband bound excitons X13,n (Fig. 4.1(b))

and X24,n (Fig. 4.1(c)), emerging at identical energies ΩX13,n = ΩX24,n . For each n,
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Figure 4.5. (Color online) (a) e-h attractive energy from the low-energy
effective model. The blue bars mark the exciton states with prominent
e-h attractive energies whereas the gray bars represent the background
states of less interest. (b1) (b3) Modulus squared wavefunction of exciton
X1, X2, and X3.
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our calculation shown the state Xn are in fact purely antisymmetric superposition of

two subspace excitons X13,n and X24,n

|Xn〉 =
1√
2
(|X13,n〉 − |X24,n〉) (4.4)

Because of the anti-phase coherence between |X13,n〉 and |X24,n〉 , the optical

oscillator strength of Xn is largely diminished. Additionally, the symmetrically su-

perposed states between X13,n and X24,n contribute to a set of higher-energy states,

which are resonant and bright excitons. This insight can be evidenced by Fig. 4.6(a),

in which we present the projected density of states (PDOS) of the subband exciton

X13,1 (or X24,1) over the full space Xf . Both X13,1 and X24,1 found near 0.78eV have

50%-overlap with X1 occuring around 0.74eV, which is seen as a single spike in the

PDOS. Meanwhile, they overlaps with a number of excitonic states at higher energy

(around Ω1 = 0.82eV), suggesting they have resonant components there. Moreover,

although the oscillator strengths of X13,n and X24,n are individually bright, the de-

structive interference of the two components in exciton A renders its net oscillator

strength relatively weak compared to the optically active higher-energy excitons, such

as R and S.

The above model calculation provides a surprising picture of excitonic interfer-

ence as displayed in Fig. 4.6(b), in analogy with the so-called Ghost Fano resonance

discovered in the model of quantum dot molecules [112,113]. First, although subband

excitons X13,1 and X24,1 might hybridize with the (1 → 4) and (2 → 3)-transition
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Figure 4.6. (Color online) (a) PDOS |〈X13,1|Xf〉|2 (|〈X24,1|Xf〉|2) where
Xf spans over the full exciton space. (b) Exciton hybridization diagram
in tBLG. The outlined circles represent the excitons formed on either the
(1 → 3)- or (2 → 4)-transition subspace while the grey ellipses repre-
sent the continua. The plus (minus) sign indicates the symmetric (anti-
symmetric) superposition of exciton states. (c) Coupling scheme of a
quantum dot molecule with two leads (left and right) as introduced by
[112].
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continua, they are also subject to mutual hybridization and are thrown into a sym-

metric state and an antisymmetric one. In the symmetric state, the coupling of X13,n

and X24,n with the two transition continua interfere constructively, broadening into a

group of bright excitonic states at higher energies via a conventional Fano resonance.

Meanwhile, in the antisymmetric state, the couplings with the two continua cancel

each other exactly, resulting in a dark and localized state Xn at lower energy via the

so-called Ghost Fano resonanc [112, 113]. It should be noted that the above model

is appropriate for small twist angle, and it may not be fully compatible with the

quantitative results of our first-principles simulation, in which the twist angles are

large (21.8◦ and 32.2◦). However, the essential physics, such as the double resonance

of transitions and the related destructive interference should still play an important

role in shaping the strongly bound exciton A, even though the imperfect symmetry

of conduction and valence bands could weaken the deconstructive coherent effect,

making exciton A not completely dark and not perfectly bound.

4.6 Conclusions

In conclusion, we have demonstrated a novel mechanism for the formation of

strongly bound excitons in 2D (semi-) metallic nanostructures via the Ghost Fano

effect. We introduce the analysis of the e-h attractive energy for locating these bound

excitons in gapless systems and show that they can be efficiently identified in the

continuous exciton spectrum, even through the scope of first-principles simulations.

A strongly bound exciton with a 0.5eV binding energy is identified in tBLG with a

63



twisting angle of 21.8◦. Our results also reveal a class of exotic excitations in the

graphene related system, paving the path for a new degree of freedom for protecting

the e-h correlations in solids.

The experimental confirmation of the above bound excitons in tBLG is challeng-

ing because of their weak optical activity. Other factors might need to be included

to break the selection rules for observing them. Two-photon techniques or applying

magnetic field may provide a means to detect them, as what had been done to observe

dark excitons in CNTs [117,118]. In particular, the double-resonant picture holds bet-

ter for tBLG with small twist angles because of the better e-h symmetry. Therefore,

we expect the lifetime of these bound excitons will become longer as the twist angle

is reduced. Despite these, the coherent formation mechanism of bound excitons in

gapless systems is conceptually important and it should be possibly observed in many

other band structures characterized with double resonance. More importantly, this

formation mechanism is a coherent effect that is not strongly affected by the screening

and e-h interaction strength. Therefore, we expect this phenomenon to be robust in

many other metallic systems.
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5. QUASIPARTICLE ENERGIES IN TRANSITION

METAL DICHALCOGENIDES

5.1 Introduction

Recently, two-dimensional (2D) semiconducting monolayer and few-layer dichalco-

genides have drawn significant interest from researchers in light of the materials’ ex-

citing chemical, electrical, and optical properties [3, 15–17, 119–123]. For example,

enhanced spin-orbital coupling and unique optical selection rules make these ma-

terials promising for spintronics applications [124–127]. Accordingly, the electronic

structure and, in particular, the quasiparticle energy of 2D dichalcogenides have been

intensively studied to date. It is of particular interest that first-principles GW cal-

culations have shown that enhanced many-electron effects dictate bandgaps of these

2D semiconductors [47, 50, 128, 129].

Many important properties of semiconductors are not solely decided by the bandgap.

For instance, the relative band-edge energies between different semiconductors and

corresponding band offsets are of fundamental interest in solid state physics and are

indispensable for the design of heterojunction devices [130–132]. Dichalcogenides have
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been known catalysts for years [121–123]. Understanding the ways in which quantum

confinement modifies the absolute band-edge energy and associated charge-transfer

processes of chemical reactions in these monolayer or few-layer semiconductors is of

critical importance for their catalytical applications. Recently, substantial advances

have been achieved in obtaining qualitative band offsets [133,134], but there has been

extremely limited progress towards overcoming the bandgap problem and including

enhanced many-electron effects in order to achieve accurate quasiparticle energies in

monolayer dichalcogenides.

In this chapter, we employ the well-established first-principles GW approach to

solve the aforementioned problems. Usually obtaining the absolute band-edge energy

and band offsets of semiconductors requires, at least, two conditions: 1) a reference

energy level and 2) an accurate quasiparticle energy. Because we are considering

isolated samples of these 2D dichalcogenides, it is natural to choose the surrounding

vacuum as the reference energy. The more sophisticated challenge, however, is obtain-

ing the quasiparticle energy. In particular, we must ensure that the absolute energies

are well-converged; this process is significantly more costly than is the bandgap cal-

culation [135,136]. In this vein, approximations that estimate the absolute band-edge

energy but avoid a fully-converged GW calculation have been proposed [137] but their

validity has not yet been verified in dichalcogenides. Given this context, the simple

atomic structures and relatively inexpensive cost of fully-converged GW calculations

for monolayer dichalcogenides make these systems excellent vehicles for obtaining
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reliable absolute band-edge energies and, moreover, ratifying the aforementioned ap-

proximations.

5.2 Computational Settings

In this study, our calculation provides the quasiparticle energy and corresponding

band offsets of monolayer dichalcogenides via the single-shot G0W0 calculation. The

enhanced many-electron interactions in such confined 2D semiconductors significantly

enlarge the bandgap and change the absolute band-edge energy accordingly. The ab-

solute band-edge energy and band offsets from the GW calculation are substantially

different from those of density functional theory (DFT) and hybrid functional the-

ory (HFT). On the other hand, the types of band alignments from DFT and HFT

qualitatively agree with the GW results, meaning DFT and HFT are valuable for

band-alignment estimations, especially given their inexpensive simulation costs. In-

terestingly, we find that the band-gap-center model gives a surprisingly accurate abso-

lute band-edge energy without requiring a converged GW calculation. Ultimately, the

absolute quasiparticle band-edge energies and band offsets obtained in this work will

be helpful for designing heterojunctions and catalysts comprised of these materials.

We apply the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof

(PBE) as the exchange-correlation functional in the DFT calculation [138]. The

single-shot G0W0 calculation is employed to obtain the quasiparticle energy. The

spin-orbital coupling is not considered in this study. The plane-wave cutoff for the

DFT calculation is set to be 80 Rys. The norm-conserving pseudopotentials [139]
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of molybdenum and tungsten include the 4s4p and 5s5p semi-core electrons, respec-

tively. The k-point sampling is 12x12x1 for both DFT and GW calculations. The

dielectric-function energy cutoff is set to be 10 Rys and the generalized plasmon-pole

model (GPP) is applied to obtain the dynamical screening [62]. A slab Coulomb

truncation is applied to mimic the isolated monolayer structure with a vacuum spac-

ing of 23 Å between adjacent layers. All structures are fully relaxed according to the

force and stress by the DFT/PBE calculation. Their relaxed lattice constants, listed

in Table 5.1, are well consistent with previous results [128, 133].

5.3 Results and Discussions

The general features of the band structures of studied monolayer molybdenum and

tungsten dichalcogenides are similar. As an example, we plot the bandstructure of

MoS2, which exhibits a direct bandgap, via DFT calculation in Fig. 5.1. As revealed

by many other works, there is another local maximum of the valence band at the

Γ point, whose energy is very close to the valence band maximum (VBM) at the K

point. Interestingly, this local maximum at the Γ point will increase to become the

VBM in few-layer MoS2 and thus the overall band structure turns out to possess an

indirect bandgap, which dramatically changes the photoluminescence. [16] In order to

track the change of this subtle but important change in band structure, we denote the

energy difference as ∆v, which is marked in Fig. 5.1, and list its values in Table 5.1.

For most monolayer dichalcogenides, ∆DFT
v is positive and larger than 20 meV. The

only exception is WS2, whose ∆
DFT
v is almost zero. However, the further inclusion of

68



-2

0

2

4

 

E
ne

rg
y 

(e
V

)

K M T

c

v

Wave Vector

Figure 5.1. (Color online) DFT-calculated band structure of monolayer
MoS2. The top of valence band is set to be zero. The energy difference
between the conduction band minimum at the K point and the local min-
imum at the Σ point is denoted by ∆c. The energy difference between the
valence band maximum at the K point and the local maximum at the Γ
point is denoted by ∆v.
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Table 5.1
Structure and electronic properties of calculated monolayer dichalco-

genides: lattice constant a, band gap Eg, the energy difference ∆v and
∆c defined in Fig. 5.1. All the energies are in the unit of eV. (The HSE
result is read from Reference [133].)

a (Å) EDFT
g EHSE

g EGW
g ∆DFT

v ∆GW
v ∆DFT

c ∆GW
c

MoS2 3.18 1.69 2.02 2.75 0.02 0.16 0.25 0.23
MoSe2 3.31 1.43 1.72 2.33 0.23 0.34 0.23 0.33
MoTe2 3.51 1.10 1.28 1.82 0.59 0.83 0.15 0.34
WS2 3.20 1.78 1.98 2.88 <0.002 0.06 0.25 0.25
WSe2 3.33 1.50 1.63 2.38 0.26 0.34 0.21 0.36
WTe2 3.52 1.10 1.03 1.77 0.65 0.79 0.45 0.39

the spin-orbital coupling usually increases the VBM at the K point [133], preserving

monolayer WS2 as a direct bandgap semiconductor. Moreover, from Table 5.1, we

can see that the value of ∆DFT
v increases as the group-VI element of dichalcogenides

changes from S, Se, to Te. Meanwhile, we have marked the energy difference, ∆c,

between the lowest conduction band at the K point, which is the CBM, and that at

the Σ point. The corresponding data are also listed in Table 5.1. At the DFT level,

∆c is around a few hundreds meVs for all studied monolayer dichalcogenides. Having

applied the single-shot G0W0 approach to calculate the quasiparticle energy of those

six monolayer dichalcogenides, the results are summarized in Table 5.1. First, the

GW correction significantly enlarges the bandgap for all studied dichalcogenides. This

enhanced many-electron effect has been widely observed in many reduced dimensional

semiconductors as a result of depressed screening and stronger electron-electron (e-e)

interactions [31, 32, 35]. Our GW calculated bandgaps are in good agreement with
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previous results [47, 128]. Meanwhile, we have listed the bandgaps as calculated by

HFT with the HSE functional [140] read from Ref. [133]. It can be seen that the GW

bandgaps are significantly larger than those from HFT/HSE.

From Table 5.1, one can see that the direct bandgap feature is preserved for all

of our calculated monolayer dichalcogenides: the signs of all energy differences, ∆v

and ∆c , remain unchanged after GW corrections. We find that the inclusion of the

4s and 5s semi-core electrons is crucial for preserving the direct bandgap feature in

the GW calculation; otherwise, the local minimum of the lowest conduction band

at the Σ point would be the CBM, resulting in an indirect band gap. Our result is

also slightly different from another previous work, in which an indirect bandgap of

the WSe2 structure is observed. [128] This difference could be from the spin-orbital

coupling.

Beyond the quasiparticle bandgap, we have calculated the absolute band-edge en-

ergy relative to the vacuum level [134, 136]. The absolute band-edge energy at the

DFT level is referred to the vacuum level that is defined by the potential energy in the

vacuum between dichalcogenide monolayers in our supercell arrangement, as shown

in Fig. 5.2. Then we preform the GW calculation and superpose the self-energy cor-

rections to the DFT eigenvalues, obtaining the absolute quasiparticle energy relative

to the vacuum level. In Fig. 5.2, the final absolute quasiparticle band-edge energies

are EQP
c and EQP

v for the CBM and VBM, respectively. Unlike the bandgap calcu-

lation, the convergence of the absolute quasiparticle band-edge energy with respect

to the number of unoccupied conduction states included in the self-energy calcula-
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Figure 5.2. (Color online) Schematic illustration of the absolute band
energy at the DFT and GW levels, respectively, relative to the vacuum
level.
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Figure 5.3. (Color online) The convergence of the quasiparticle energy of
the CBM and the VBM, respectively, according to the number of conduc-
tion band included in the GW calculation.

tion is very slow. For example, we present the convergence of the CBM and VBM

of monolayer MoS2 in Fig. 5.3. Although the quasiparticle bandgap is reasonably

converged at a value of 2.75 eV after including around 200 conduction bands, the

absolute values of CBM and VBM do not reach their converged values until we in-

clude around 1500 conduction bands. In order to understand the slow convergence of

73



the absolute quasiparticle energy, we must examine the details of self-energy in the

GW calculation. Usually, the self-energy correction is comprised of two contributions

according to their physical origins, the Coulomb-hole (COH) term and the screened-

exchange (SEX) term [62]. The aforementioned slow convergence is mainly due to the

COH term that involves the summation of an infinite number of conduction bands, in

principle [62]. We find that the SEX term also converges slowly, although it is faster

than the COH term. Thus we use around 500 conduction bands for the calculation

of the static screening and around 1500 conduction bands for the final self-energy

calculation.

Finally, our calculated absolute quasiparticle band-edge energies are summarized

in Fig. 5.4 (a), in which the DFT results are also listed for reference. The enhanced

many-electron interactions in monolayer dichalcogenides substantially changes the

absolute band-edge energy from the DFT results. However, the general trend of

the evolution of the band-edge energies are similar for both DFT and GW results.

For instance, the band-edge energy of MX2 gradually increases as X varies from

S to Te or M varies from Mo to W. A particularly interesting point is that the

self-energy corrections modify both valence band and conduction band-edge energies

similarly, as seen from Fig. 5.4 (a). This is substantially different from the corrections

found by previous HFT studies, in which the corrections mainly affect the VBM

[133]. The band alignments in Fig. 5.4 exhibit several unusual features. First, even

after the costly GW calculation, except the WSe2/WTe2 interface, the qualitative

types of band alignments for these materials from DFT and HFT/HSE have not
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Figure 5.4. (Color online) The absolute band-edge energy of calculated
monolayer dichalcogenides relative to the vacuum level to the vacuum
level. (a) The blue and red dashed lines stand for the DFT/PBE results
while the grey-shadow regions stand for the GW results. The water reduc-
tion (H+/H2) and oxidation (H2O/O2) are marked by the cyan dashed
lines, respectively. (b) The absolute band-edge energies by the fully con-
verged GW simulation (grey-shadow regions) and the band-gap-center
approximation (solid dark lines).
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changed. For example, all of these calculations consistently predict that the interface

of MoS2 and MoSe2 has a type II (staggered) band alignment. Secondly, the values

of GW-calculated band offsets are larger than those from DFT or HFT, mainly due

to larger bandgap corrections. Therefore, a sophisticated calculation, such as the

GW method, may be necessary in order to obtain the quantitative band offset for

heterojunctions of 2D chalcogenides, while DFT or HFT calculation can be convenient

when assessing the type of the band alignment or other properties [141]. On the other

hand, for heterojunctions of our studied 2D chalcogenides with other semiconductors,

our calculated absolute band-edge energy shall be crucial to decide the band offsets

and even alignments.

Earlier work predicts that monolayer MoS2 and WS2 may work for water splitting

[133]. Hereby we have marked the energy levels for the oxidation and reduction

processes of water splitting in Fig. 5.4 (a). The GW calculation yields a similar

conclusion although the VBMs are usually lower and the CBMs are generally higher

than those of DFT and HFT results.

Previously, in order to avoid the slowly converging absolute band energy, the band-

gap-center approximation was proposed to estimate the absolute band-edge energy

with the assumption that the self-energy correction shifts both CBM and VBM by

similar amounts but in inverse directions [134,137]. Interestingly, we find this model

works very well for our studied monolayer dichalcogenides. As shown in Fig. 5.4

(b), the band-gap-center approximation gives nearly the same band-edge energy as

the costly direct GW calculation. As discussed above, the reason for this agreement
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is that our converged GW calculation yields similar corrections for both the DFT-

calculated VBM and CBM. Therefore, this band-gap-center approximation may be

particularly useful for estimating the band offset of 2D dichalcogenides because it

only requires the quasiparticle bandgap.

One must to be cautious when applying our absolute band-edge energy towards

realistic applications. Here we only consider the isolated monolayer structures sur-

rounded by vacuum. However, for realistic conditions, the environmental effects will

be extremely important for these ultra-thin layer of semiconductors. For example,

the background dielectric response may substantially reduce the self-energy correc-

tions, affecting the band gap and band offset dramatically [135, 142]. Moreover, for

photocatalytic processes, such as water splitting, excitonic effects must be included

since such processes are driven by optically-excited excitons. In particular, electron-

hole (e-h) interactions are known to be enhanced in monolayer chalcogenides and

in many other reduced-dimensional semiconductors [114, 128]. Thus e-h interactions

will substantially reduced the energy of the optical absorption edge, making it sig-

nificantly different from the quasiparticle bandgap. In this sense, more sophisticated

calculations including the environment effects and the impact of excitons are desir-

able, which is a major thrust in the field nanotechnologies as well. However, our

calculation serves as a valuable foundation for such studies.
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5.4 Conclusions

In conclusion, we have employed a first-principles GW calculation to obtained the

quasiparticle band structure and absolute band-edge energy of monolayer dichalco-

genides. Our converged GW simulation not only produces the bandgaps but also

provides the band offsets of relevant heterojunctions. Both the bandgap and abso-

lute band-edge energy are substantially different from previous DFT and HFT/HSE

results. Surprisingly, the band-gap-center model works very well for obtaining the ab-

solute band-edge energy without a fully-converged GW simulation, making it a con-

venient way to estimate the band offsets and chemical activity of monolayer dichalco-

genides.
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6. TOWARDS MANY-ELECTRON EFFECTS IN

ELECTROSTATICALLY DOPED

REDUCED-DIMENSIONAL STRUCTURES

6.1 Introduction

It is computationally challenging to quantitatively obtain the QP properties and

excitonic effects for doped materials. For doping density typically involved in ex-

periments, one might have to employ unrealistically dense k-grid to sample the tiny

fraction of BZ that is occupied by extra carriers introduced from doping. We can use

monolayer MoS2, whose unit cell area is ∼ 8.8 Å2 , to exemplify this smallness. Even

a relatively high doping density of n = 1011cm−2 means there is only ∼ 10−4 extra

charge carrier in a single unit cell, which at least requires a 100 × 100 × 1 uniform

k-grid to sample the BZ in order to capture the doping effects. Performing ab initio

many-body calculations on such a k-grid has already challenged the limits of nowaday

supercomputers.

When turn to reduced-dimensional structures, the dynamical screening features

introduced by doping leads to additional heavy computational effort. First, Dynami-

cal screening effects have to be taken into accounted for correctly understanding the

impact of doping on the many-body effects of materials or it will lead a paradox-
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ical conclusion as follow. In the static limit, we can infer the screening is roughly

proportional to DOS at the fermi level because higher DOS provides more electronic

transitions to screen electric field. Also from the expression of static polarizability,

P (q, ω = 0) =
1

V

∑

k

n(ǫk)− n(ǫk+q)

ǫk − ǫk+q

(6.1)

we immediately see transitions with smaller energies have larger contribution to

screening effects. As the system is doped away from the neutral point, the fermi

level comes across the band edge and enters the doped band. This gives arise to new

intraband transitions, which should dominate the static screening effects. Since both

the DOS in a 1D (∼ 1√
E
) and a 2D (∼ C) semiconductor increase sharply at band

edges, one will conclude that both screening effects and the properties of excitations

are impacted abruptly once the system is doped, regardless of the doping density.

The 1D-case is even more catastrophic due to the divergence of DOS at band edges:

the smaller the doping density is, the more the system will deviate from the intrinsic

one. Of course, these conclusions violate our common sense of perturbation theory.

The key to solve the paradox is to consider the dynamical screening effects. Viewed

from the full expression of the dynamical polarizability Eq. [6.1], a large frequency ω

in the denominator ω + ǫk − ǫk+q can in fact slight the contribution of the intraband

transitions from k to k+ q to the screening of the system.

Upon doping, the emergence of low-energy acoustic plasmons also complicates the

treatment of dynamical effects of reduced-dimensional structures. In these structures,
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the electrons experience more quantum confinement than in bulk systems and can

not move freely in every direction. The restoring Coulomb force for the collective

oscillation of electron liquid is significantly weakened due to low dimensionality. As

a consequence, a new branch of softened plasmon mode emerges in the low-energy

region, whose frequency ω approaches zero in the zero-wavevector limit q → 0. While

this plasmon dispersion relation differs substantially from a 3D one, whose plasmon

frequency varies slowly with different wavevectors,it is highly analogous to the acoustic

phonon mode in solids and sometimes referred to as “acoustic plasmon” [143, 144].

From previous results on a low-dimensional gas, the acoustic plasmon mode for a

1DEG

ωp (q) ∝ q

√
N

m∗ |log (q)| (6.2)

and for a 2DEG [59, 60]

ωp (q) =

√
2πNe2

m∗ q (6.3)

For most reduced-dimension structures, one may estimate that the plasmon-pole en-

ergy varies within 1 eV with various crystal momentums. This is far below the promi-

nent spectral feature in dielelectric response due to interband transitions, which is

typically above 10 eV [62].

While a routine calculation with dense uniform grids on momentum and frequency

space demands huge computational resources, effort can be made to specifically deal

with the region that is mostly affected by doping. In fact, it can shown that the doping

effects are highly concentrated in the small-momentum and low-frequency dielectric
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response. One can combine the normal first-principles methods with ultra fine grids

over the “doped”q-ω region to efficiently calculate the excited-state properties for

reduced-dimensional materials. Using this philosophy, Catalin [143,144] have studied

the QP doping-renormalized band gap in carbon nanotubes. However, their calcula-

tion scheme of the self-energy is still expensive because it relies on a dense k-grid and

a huge number of conduction bands, which is even less feasible when extended to a

2D system.

In this chapter, we systematically study the impact of electrical doping on the

dielectric response of reduced-dimensional systems and propose efficient calculation

methods that combine first-principle simulations and analytical approaches. We con-

sider the extra charge carriers from the view of perturbation theory. For instant, the

self-energy in doped systems can be expressed in terms of quantities of intrinsic ones

perturbed by doping:

Σ = iGW =i(Gint + δG)(Wint + δW ) (6.4)

=i(GintWint + δGWint +GintδW + δGδW ) (6.5)

where the subscript “int”and “δ ”represents the charge neutral point and the vari-

ation caused by doping respectively. In section 6.2, we analyze the doping effects

on the screened Coulomb interaction δW in q-space and frequency domain, which

lays the foundation for further excited-state calculation. In section 6.2.2, we will em-
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ploy the modelled screened Coulomb interaction to actually calculate the self-energy

corrections for doped 2D systems.

6.2 Doping-Induced Variation in Screening Effects

Our discussion begins with the variation in screened Coulomb interaction δW =

δǫ−1v as introduced by doping. Since the Coulomb interaction v remained the same

after doping, the goal is to find the variation in dielectric function δ[ǫGG′(q, ω = 0)]−1

for crystal structures. In order to quantitatively describe the aforementioned acoustic

plasmon, it is essential to perform first-principle simulations to study a realistic 2D

systems. Monolayer MoS2 has been chosen because it has a direct band gap at

the K point and excellent isotropy near band edges. The system is of particular

interest for potential devices applications and would undoubtedly be an ideal test

bed for further analytical treatment. At this stage, only the case of n-doping is

considered and the issue of spin-orbital splitting in the valence band is set aside for

simplicity. To understand the evolution of the screening properties related to doping

level, five electron-doping densities N = 0.002, 0.005, 0.01, 0.02, and 0.03e/unit cell

are examined. Several key parameters are listed in Table 6.1 to assist further analysis.

Given the number of spins, Ns = 2, the number of valleys in monolayer MoS2, Nv = 2,

and the BZ area A =
√
3
2
b21, the corresponding fermi wave-vectors are evaluated by

kF =
√

NA
πNsNv

. The dimensionless Wigner-Seitz radii rs are obtained by rs = ( 1
πn
)
1
2
m∗

κ

[27] with the electron effective mass m∗ = 0.54 and the dielectric constant κ = 4.2

[47].
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Table 6.1
Fermi wave-vectors kF for the doping densities examined (in the unit of
b1).

N (per unit cell) 0.002 0.005 0.010 0.020 0.030
N (per 1012cm2) 2.28 5.71 11.4 22.8 34.3

kF 0.012 0.019 0.026 0.037 0.045
2kF 0.023 0.037 0.052 0.074 0.091
rs 9.1 5.7 4.1 2.9 2.3

The ground-state calculation is performed within the DFT using the GGA PBE

exchange correlation functional [138]. The wavefunctions are expanded in a plane-

wave basis with a 80 Ry energy cutoff. The intrinsic and doped atomic structures

are relaxed until forces are less than 0.02eV/Å and the unit cell pressure is less than

1kbar. For the highest doping level N = 0.03/unit cell, the extra charge carriers cause

the lattice constant of MoS2 sheet to dilate by 0.5%, which in turn causes the whole

band structure to shift upwards almost rigidly by 300meV relative to the vacuum

level except that the band gap is lowered by 50meV. The effect of dilation is similar

to tensile biaxial strain [46, 145, 146] and the band gap remains direct at this doping

level.

As below, we demonstrate how fast the convergence of δǫ−1 can be achieved by

varying different parameters, followed by the simulation results that lead to a dramatic

simplification of treatment on the dynamical screening effects.
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Figure 6.1. (Color online) Convergence of polarizability versus the num-
ber of conduction bands. The static polarizability of two momenta,
q = (0.0, 0.1, 0.0)b1 and (0.0, 0.2, 0.0)b1 has been evaluated.

6.2.1 The static dielectric function

To obtain accurate occupation number on the conduction band, a 120×120×1 k-

point sampling has been employed over the entire BZ, which gives 28
1202

≈ 0.001944e/unit

cell for the lowest doping level at 0.002e/unit cell. As is shown in Fig. 6.1, the con-

vergence of the static polarizability for modestly small momenta (q0 = q ≤ 0.2b1 and

G = G′ = 0) can be achieved by including only a few tens (∼ 20) of conduction

bands in the calculation, where b1 is the length of the reciprocal lattice vector. Fig.

6.2 compares several leading-order matrix elements for the intrinsic system and the

0.03e-doped one. The inverse dielectric function ǫ−1
GG′(q, ω = 0) are evaluated within
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a sufficiently high energy-cutoff of 15 Ry. The head ǫ−1
00 (q, ω = 0) is largely depressed

and exhibit a markedly different asymptotic behavior as q → 0 upon doping. In

that limit, the ǫ−1
00 (q, ω = 0) approaches to 1 in a undoped 2D system whereas it

vanishes in a doped one. The large discrepancy reflects the strengthened screening

introduced by doping in the long-wavelength limit. On the other hand, all the other

matrix elements, ǫ−1
GG′(q, ω) with G 6= 0 or G′ 6= 0, changed by ∼ 0.01 at most for

a wide range of q after doping, which means the change can be safely neglected and

only δǫ−1
00 (q, ω) needs to be considered in further treatment of doping effects. This is

because the extra charge only plays a dominant role on a long-wavelength scale that

is much larger than the unit-cell size.

Also, it can be demonstrated that in MoS2 the dielectric function is highly isotropic

for small enough q. Fig. 6.3 compares the dielectric functions calculated along two

perpendicular directions, which differ by < 0.001 for every q examined. Provided this

excellent isotropy, it should be sufficient to investigate the dielectric function along

one-dimension instead of over a 2D-plane. This leads to a substantial reduction in

computational cost and further facilitates the description of the screened Coulomb

interaction in the system.

To understand how the static screening varies with increasing doping levels, ǫ−1
00 (q, ω =

0) are calculated and plot in Fig. 6.4. From q = 0, ǫ−1
00 (q, ω = 0) rises as αq with the

same slope α for all doping densities since the 2DEG polarizability of remains a con-

stant that is independent of kF for q ≤ 2kF (see Table 6.1 for the actual values). As

the momentum q increases and comes across 2kF , ǫ
−1
00 (q, ω = 0) begins to rise faster
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Figure 6.2. (Color online) Comparison of the dielectric matrix elements
for the intrinsic (solid line) and 0.03e-doped system (dashed-dot line).
ǫ−1
GG′(q, ω = 0) with q along the (0,1,0)-direction in crystal coordinates are
computed and matrix elements with different combinations of G-vectors
are plot in different colors.
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Figure 6.3. (Color online) Comparison of the dielectric matrix elements
ǫ−1
00 (q, ω = 0) evaluated along b1 (solid curves) and perpendicular to b1

(solid squares).
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Figure 6.4. Dielectric matrix elements ǫ−1
00 (q, ω = 0) for various doping

densities ranging from 0.002 to 0.03e/unit cell.

and merge into the dielectric function for the undoped system, which results from the

rapid decay of the 2DEG polarizability for q > 2kF . These results are in consistence

with the discontinuity in the Lindhard function of a 2D electron gas. The above

discussions indicate that for the static screening the doping effects are dominantly

concentrated on the head dielectric function ǫ−1
00 (q, ω = 0) in the small-momentum

region, which enables one to efficiently obtain the static dielectric function for doped

2D systems.
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6.2.2 The dynamical dielectric function

Another primary concern regarding doping in low-dimensional structures is its im-

pact on the dynamical screening effects. To fully study its effects, dielectric functions

ǫ−1
00 (q, ω) are directly calculated within the RPA approximation for a broad frequency

range.

A coarse calculation is performed on a 12×12×1 k-grid and a uniform frequency-

grid from 0 to 40eV for yielding an overall spectrum feature. In light of a huge number

of interband transitions within this energy regime, more than 100 conduction bands

are included to ensure the convergence. Fig. 6.5 contrasts the calculated dielectric

functions before and after 0.03 electron is added to the bottom conduction band.

Even at this doping level, the high-energy feature(> 2eV) yet remains intact and

thus one can extend the previous plasmon-pole model for the undoped systems to

treat the dynamical effects in this region. Meanwhile, major changes to the screening

effects are exclusively concentrated in the lower energy region, which is manifested

by the emergence of distinctly new plasmon poles in ℑ[ǫ−1
00 (q, ω)], as displayed in the

inset of Fig. 6.5(b).

Substantial computational effort can now be focused on the low-energy region

where doping effects dominate. In order to obtain a reliable, highly resolved dielectric

function, a 120 × 120 × 1 k-grid and a 30meV-broadening is employed whereas the

energy region between 0 to 0.6eV is sampled with a 0.01eV-spacing grid. The inclusion

of large number of bands is, however, not necessary in this case because intraband
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Figure 6.5. (Color online) Real (a) and imaginary (b) of ǫ−1
00 (q, ω) calcu-

lated for the intrinsic (black solid lines) and doped (blue squares) mono-
layer MoS2 with five representative momenta q. The low-energy region of
most interest is magnified and showed in each inset.
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transitions play a prominent role in this energy region. Also given the fact that the

doping effects are effectively damped at large momentum, neither a large number

of G vectors are needed. To testify this fast convergence with respect to the band

number and energy cutoff of G vectors, calculations are done with two schemes with

different combinations of parameters. In scheme 1 (2), 26 (4) conduction bands and

a energy cutoff of 8 Ry(2 Ry) are used. Fig .6.6 demonstrates that although scheme

2 is much more computationally inexpensive, it still reproduces very close results,

particularly the pole positions, as scheme 1. Therefore, one can employ scheme 2 to

obtain the low-energy dielectric response for all the doping levels with low cost. For

doping density n = 0.03e/unit cell, the calculated dielectric functions with different

q are showed in Fig. 6.7 and the imaginary part can be directly compared with the

corresponding electron energy loss spectroscopy.

The plasmon dispersion relation at different doping levels are summarized in Fig.

6.8. With increasing doping density, the blue-shift of the plasmon frequency ω̃d(q)

is clearly observed in the simulation. At a fixed doping density, the plasmon fre-

quency increases monotonically with larger momentum q and converges to ∼ 0.5eV

at q = 0.2b1. It has to be pointed out that this plasmon dispersion relation apparently

deviates from the “
√
q-law”for the perfect 2DEG given by Eq. (6.3). Although at long

wavelength the plasmon energies obtained from the ab initio calculation are roughly

proportional to
√
q, they are still considerably lower than the prediction from Eq.

(6.3), as is shown in Fig. 6.8(b). There are multiple reasons that can cause the devi-

ation. First, Eq. (6.3) is derived from a classical treatment of electron gas and does
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Figure 6.6. (Color online) Fast convergence of the dielectric function with
respect to band number and energy cutoff. Scheme 2 yields highly similar
ℑ[ǫ−1

00 (q, ω)] as the scheme 1, which is much more costly.
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Figure 6.7. (Color online) Real and imaginary part of the RPA dielectric
function calculated with different momentum q at doping density n =
0.03e/unit cell.
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not account for the fast damping of the acoustic plasmon mode into the e-h contin-

uum. Instead, one has to use a fully quantum-mechanical formula to find the correct

plasmon energy at shorter wavelength [27, 60, 147, 148]. The plasmon in monolayer

MoS2 has been studied using a effective two-band model [149], which clearly evidences

the modification of plasmon dispersion by the intraband e-h excitations. Moreover,

the interband transitions arising from crystal structures, in particular those near the

band edges, also strengthen the screening effects. This can in turn lower the energy of

the acoustic plasmon mode, which has been revealed by previous theoretical [150–152]

and experimental [153, 154] work on 2D electron systems. The above dynamical cal-

culation has taken the crystal effects and all possible transitions into account and

should reproduce an accurate description of the acoustic plasmon modes introduced

by doping.

Provided the simple-pole nature of the acoustic plasmon, one can extend the

previous plasmon-pole approach to model the low-energy dynamical effects. Hence

the variation in the dielectric function due to doping can be described using a form

of response function

δǫ−1
00 (q, ω) =

Ω2
d(q)

ω2 − ω̃2
d(q)

(6.6)

where the parameter Ωd(q) and ω̃d(q) are the plasmon pole strength and position

as functions of momentum q respectively. Here, only the variation in the head

term needs to be modelled because all other δǫ−1
GG′(q, ω) is negligible, as previ-

ously discussed. To determine the two parameters, one can first find the differ-
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Figure 6.8. (Color online) (a) Acoustic plasmon energies determined from
the ab initio RPA dielectric function. (b) Comparison of the low-energy
region between the ab initio calculation and the classical electron gas
model.
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ence of the static dielectric functions of the undoped and doped system, which gives

−[Ωd(q)/ω̃d(q)]
2 = δǫ−1

00 (q, 0) = ǫ−1
00 (q, 0)− ǫ−1

int,00(q, 0). Meanwhile, the pole position

ω̃d(q) is determined from the imaginary part of ǫ−1
00 (q, 0), which can be obtained by

a fast full-frequency calculation with undemanding parameter settings. In Fig. 6.9,

it is demonstrated that the proposed plasmon-pole model is able to reproduce the di-

electric functions from the full-frequency calculation with high fidelity once the static

limit δǫ−1
GG′(q, ω = 0) and the pole-position ω̃d(q) are known. One may expect this

model greatly facilitates the numerical treatment of the dynamical effects by avoid-

ing employing a very dense frequency grid to capture the rapidly varying dielectric

function.

In summary, it has been shown in this section that the dynamical effects of electro-

statically doped reduced-dimensional materials can be modelled accurately with mod-

est computational effort. Upon doping, only the head part of the dielectric function,

ǫ−1
00 (q, ω), undergoes significant variation in the small-momentum and low-frequency

region whereas other components remain almost unaltered. The dynamical effects due

to the acoustic plasmon can be described satisfactorily with a plasmon-pole model,

which makes the numerical calculation convenient and efficient.
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Figure 6.9. (Color online) Comparison of real(a) and imaginary(b) part
of the dielectric functions obtained from a full-frequency calculation and
the proposed plasmon-pole model (PPM) at N = 0.03e/unit cell.
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6.3 Quasiparticle Properties: G0W0 Approximation

For a doped structure, the self-energy operator can be decomposed into the in-

trinsic one and the perturbation introduced by the doping effects [143,144,155], and

further grouped into three major contributions:

Σ = iGW =i(Gint + δG)(Wint + δW )

=i(GintWint + δGWint +GδW )

=Σ1 + Σ2 + Σ3

(6.7)

where Σ1 = iGintWint is the self energy of the intrinsic system, Σ2 = iδGWint arises

from purely the change of occupation number on the doped band with intrinsic screen-

ing, and Σ3 = iGδW = i(Gint + δG)δW is contributed by the change in the screening

effects induced by doping. While the first two terms only involves the intrinsic screen-

ing that is linearly varying in the energy range of interest, the third term exhibits

strong nonlinear frequency-dependence due to the emerging acoustic plasmon. Thus

these contributions of self-energy will be evaluated in distinctly different approaches.

The evaluation of Σ1 = iGintWint is straightforward. However, particular attention

should be given to its slow convergence in a reduced-dimensional structure since the

solutions to the Dyson equation depend sensitively on the absolute value of the total

self energy Σ, which is nonlinear in the doped situation. Σ1 is a primary background

contribution to Σ and is normally much large than the size of band gap. Therefore a

large number of empty states have to be included. As for monolayer MoS2, 500 and
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1500 conduction bands have been used to achieve convergence in the static screening

and self energy calculation. On the other hand, the first-principles calculations show

that the variation in Σ1 caused by the lattice dilation arising from doping is of a few

tens of meV, which is tiny.

The second term Σ2 = iδGWint can be directly obtained by subtracting the total

self energy of a undoped system from that of a doped one, both of which are evaluated

with the intrinsic dielectric function ǫ−1
int . Because in the self-energy decomposition

only the screened-exchange term involves the summation over the occupied states,

the contribution of Σ2 to a specified state |nk〉 reads

〈nk |Σ2(E)|nk〉 =−
∑

q,G,G′

fn1k−qM
∗
cn(k,−q,−G)Mcn(k,−q,−G′)

× ǫ−1
int,GG′(q, E − ǫn1k−q)v(q+G′)

(6.8)

where c is the doped band index and fnk is the occupation number of the state

|nk〉. Since the doped region is a small fraction of the BZ, the calculation has

to be performed a sufficiently dense k-grid. For n-doped monolayer MoS2, a 36 ×

36 × 1 k-grid has been employed. 〈VBM |Σ2|VBM〉 and 〈CBM |Σ2|CBM〉 are eval-

uated with on-shell energies at discrete doping densities and are displayed in Fig.

6.10. While 〈VBM |Σ2|VBM〉 almost remains a constant at various doping levels,

〈CBM |Σ2|CBM〉 drops considerably up to several hundred meV because adding elec-

trons (holes) to the doped band significantly change the amount of exchange energy.

This could lead to a major contribution to band gap narrowing. To find the Σ2 at
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other doping levels, one can use a simple power law function αNβ , where N is the

doping density, to fit the first-principles results (the solid curve in Fig. 6.10). At light

doping, one may even just keep the head dielectric function in the summation of Eq.

(6.8) for a state |nk〉 near the band edges

〈nk |Σ2(E)|nk〉 ≃ −
∑

q

fck−q |Mcn(k,−q, 0)|2ǫ−1
int,00(q, E − ǫck−q)v(q) (6.9)

because local field effects are negligible in the long-wavelength limit q → 0. Together

with other approximations used for mini-BZ averaging, Eq. (6.8) for CBM in a n-

doped system eventually boils down to an expression with a clear physical meaning

〈CBM |Σ2|CBM〉 ≃ −
∫

doped

d2q

(2π)2
ǫ−1
int,00(q, 0)v2D(q) (6.10)

which is simply the integration of the 2D screened Coulomb interaction over the

doped region. For the tiny doped region that is difficult to sample, Eq. (6.10) is

an efficacious estimation to Σ2 and it yields excellent agreement with the full first-

principles calculation for N → 0 (the dashed curve in Fig. 6.10).
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Figure 6.10. (Color online) Variation of 〈VBM |Σ2|VBM〉 and
〈CBM |Σ2|CBM〉 with doping density. The black squares and red cir-
cles denote the values from first-principles calculation for VBM and CBM
respectively. The solid curve is a fit for the drop in CBM with the power
law αnβ

d and the dashed curve is estimated using the head of the dielectric
function only.
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The third term Σ3 = iGδW comes from the contribution of both the screened-

exchange (SX) and Coulomb-hole (CH) part. The full expression reads

〈nk |Σ3,SX(E)|nk〉 =−
∑

n1

∑

q,G,G′

fn1k−qM
∗
n1n

(k,−q,G)Mn1n(k,−q,G′)

× δǫ−1
GG′(q, E − ǫn1k−q)v(q+G′)

〈nk |Σ3,CH(E)|nk〉 =
∑

n1

∑

q,G,G′

M∗
n1n(k,−q,G)Mn1n(k,−q,G′)

× [δǫ−1
GG′ ]

h(q, E − ǫn1k−q)v(q+G′)

(6.11)

Since doping effects are exclusively concentrated on the head component at small q,

the above summation can be approximated into

〈nk |Σ3,SX(E)|nk〉 ≃ −
∑

n1

∫

q<qc

d2q

(2π)2
fn1k−q |Mn1n(k,−q, 0)|2δǫ−1

00 (q, E − ǫn1k−q)v2D(q)

〈nk |Σ3,CH(E)|nk〉 ≃
∑

n1

∫

q<qc

d2q

(2π)2
|Mn1n(k,−q, 0)|2[δǫ−1

00 ]
h(q, E − ǫn1k−q)v2D(q)

(6.12)

where qc is the momentum cutoff for doing the BZ summation. In our case of doped

monolayer MoS2, excellent convergence can be achieved by choosing qc = 0.2b1 (see

Fig. 6.4).

Σ3 involves the rapidly varying dielectric function due to the low-energy acoustic

plasmon and has to be evaluated separately from Σ1 and Σ2 on a ultra dense grid.
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Thanks to the plasmon-pole model proposed by Eq. (6.6), the numerical treatment is

made simple and efficient. Substituting the δǫ−1
00 with the model in Eq. (6.12) gives

δǫ−1
00 (q, E − ǫn1k−q) =

Ω2
d(q)

(E − ǫn1k−q)2 − ω̃2
d(q)

[δǫ−1
00 ]

h(q, E − ǫn1k−q) =
Ω2

d(q)

2ω̃d(q)[E − ǫn1k−q − ω̃d(q)]

(6.13)

where the pole energy ω̃2
d(q) is now as small as a few hundred meV in the doped case.

As E approaches a certain energy band n1, both δǫ
−1
00 and [δǫ−1

00 ]
h becomes significant

and could possibly contribute a spectral feature to 〈nk |Σ3(E)|nk〉 near the energy

range of n1. Given the summation over n1, 〈nk |Σ3(E)|nk〉 should in principle exhibit

a rich spectral feature with satellites widely distributed through the entire range of

the band structure. However, the contribution from each band n1 is also weighted

by the square of wavefunction overlap integral between that band and the band of

interest, |Mn1n(k,−q, 0)|2, where Mn1n(k,−q, 0) = δn1n + O(q) at small q. For light

doping in which a small momentum qc suffices for convergence, the contribution from

the diagonal term with n1 = n will dominate the band summation in Eq. (6.12). In

contrast, the contributions from the off-diagonal terms with n1 6= n are of high order

and should be much smaller than diagonal term. Moreover, in a semiconductor with

a sizeable band gap, these off-diagonal terms will contribute minor spectral feature

far away from the energy range of interest and are thus less relevant for solving the

Dyson equation. Therefore, only the diagonal term will be preserved hereafter.
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For the n-doped case, the original valence bands are fully filled and the SX and

CH term can be combined into a simple expression, which reads

〈vk |Σ3(E)| vk〉

≃
∫

q<qc

d2q

(2π)2
|Mvv(k,−q, 0)|2 Ω2

d(q)

2ω̃d(q)[E − ǫvk−q + ω̃d(q)]
v2D(q)

(6.14)

The treatment of SX and CH term in the conduction band need to be separated

because the integration limits involved are different. The CH term of a conduction

state |ck〉, regardless whether it is occupied or not after doping, is given by

〈ck |Σ3,CH(E)| ck〉

≃
∫

q<qc

d2q

(2π)2
|Mcc(k,−q, 0)|2 Ω2

d(q)

2ω̃d(q)[E − ǫck−q − ω̃d(q)]
v2D(q)

(6.15)

The above terms are solely from the extra screening introduced by doping without

changing the occupation number, corresponding to the contribution from iGintδW .

For the bottom conduction band that is partially occupied, the SX term is evaluated

with a different momentum cutoff at the fermi wavevector kF

〈ck |Σ3,SX(E)| ck〉

≃ −
∫

q<kF

d2q

(2π)2
|Mcc(k,−q, 0)|2 Ω2

d(q)

(E − ǫck−q)2 − ω̃2
d(q)

v2D(q)
(6.16)

Since kF and δǫ vanishes in the light doping limits, the above SX term corresponds

to the second-order contribution iδGδW to the self energy.
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The two parameters in the model, Ωd(q) and ω̃d(q)(> 0), evolves smoothly with

q and are easy to interpolate and extend to the above numerical integration. The

self-energy contributions from Σ3 given by Eq. (6.14)-(6.16) are evaluated for VBM

and CBM at all the doping levels being investigated, and are displayed in Fig. 6.11,

where ω is the relative energy to band edges in a mean-field theory (E − ǫVBM or

E− ǫCBM respectively). Thus ω = 0 defines the on-shell condition and is set to be the

center of every self-energy plot. For VBM (Fig. 6.11 (a)), the fluctuation at negative

ω results from the singularities occurring at E = ǫvk−q − ω̃d(q) < EVBM − ω̃d(q) in

the integrand of Eq. (6.14). This fluctuation signals the fano resonance of a hole

quasiparticle with the dispersive acoustic plasmon branch, which occurs below the

single-particle (on-shell) energy. On the contrary, the fluctuation of the CH term

in CBM emerges at positive ω (Fig. 6.11 (b)) due to the singularities occuring at

E = ǫck−q + ω̃d(q) > ECBM + ω̃d(q). In contrast to the previous situation, this

fluctuation reflects the fano resonance of a electron quasiparticle with the acoustic

plasmon branch, which occurs above the single-particle energy, as is what happens in

the p-doped case where the conduction band is totally unoccupied.

The above two self-energy contributions arising from extra screening δW can con-

tribute to band gap narrowing, as the self energy in the valence (conduction) band is

positive (negative) definite above (below) the single-particle energies. On the other

hand, it should be noted that the resonance with the plasmon excitations also causes

the self energy in the valence (conduction) band to change sign below (above) the

single-particle energies, leading to reverse contribution to the band gap renormaliza-
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tion; As screening is strengthened by doping, the renormalized band gap actually

becomes even larger. Such an energy region is termed as “anomalous”region, versus

the aforementioned “normal”region on the other end of the energy axis, both of which

are marked in Fig. 6.11(a) and (b).

In an n-doped case, significant contribution to the self energy of CBM also comes

from the SX term, which is a second-order residue but becomes important at a decent

doping level. As is shown in Fig. 6.11(c), energies are largely raised near ω = 0,

resulting in a slightly asymmetric plateau region bounded by a pair of dips on each

side. The fluctuations at the dips are particularly strong because the fermi level kF

coincides with the singularities at E = ǫck−q ± ω̃d(q). To some extent, the SX term

resembles the pure exchange energy in a electron gas as it exhibits energy-independent

plateau near the single-particle energy (ω = 0). Combining the SX term with the

CH term in CBM gives the full contribution of Σ3 to CBM, which has an energy-

dependence resembling to VBM except for a difference in positive ω featured by a

partially cancelled dip. This resemblance stems from the fact that both the VBM and

CBM are now more close to a hole quasiparticle state after considerable n-doping.

With all the three terms summed up, one can solve the Dyson equation to find

the QP energies in a doped 2D system

E = ǫnk − V xc
nk + Σnk(E) (6.17)
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Figure 6.11. (Color online) Real part of the self-energy contributions
from the term Σ3 = iGδW for VBM (a) and CBM (b)-(d) in monolayer
MoS2. Results at five doping levels are compared. iGδW for VBM in (a)
is roughly inverse to the CH part of iGδW for CBM in (b). Near the
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in (a) and (b) flip, which divides whole energy range into the so-called
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and (c).
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where V xc
nk = 〈nk|V xc|nk〉 is the exchange correlation potential from a mean-field

theory and Σnk(E) = 〈nk|Σ(E)|nk〉 = 〈nk|(Σ1 + Σ2 + Σ3)(E)|nk〉 is the total self-

energy. The corresponding spectral function A(ω) is

Ank(E) =
1

π

|ImΣnk(E)|
(E − ǫnk + V xc

nk − ReΣnk(E))2 + (ImΣnk(E))2
(6.18)

Fig. 6.12 demonstrates the graphical solutions to Dyson equation and the spectral

functions for VBM and CBM. While the solution in VBM is unique, there are three

solutions in CBM due to the large fluctuation in its self energy. The situation that

there are multiple solutions to the Dyson equation indicates the strong interaction

of a QP state with a plasmon, which results in a satellite structure rather than a

single QP peak in the spectral function. Both the solution in VBM and the highest-

energy solution in CBM gain the majority of the spectral weight, which represents

the standard sharply defined QPs at the corresponding energies. The solution in the

middle for CBM is obviously spurious because the large positive slope there gives rise

to a negative QP renormalization factor that is not physical. Neither is the solution

reflected as a peak in the spectral function. The lowest-energy solution in CBM

has a relatively weak spectral weight and is seen as a smaller and broader peak in

the spectral function compared with the QP solutions. This solution locates in the

fluctuating region where the coupling of the quasiparticle to the acoustic plasmon

is prominent. This might suggest the emergence of possible plasmaron excitations.

However, the GW approximation currently employed can not accurately account for
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the electron correlations near the plasmon satellites. In principle, a more accurate

theory, GW plus cumulant approximation [156–160], should be employed to yield a

correct description to the hole-plasmon coupling in this situation. Thus the plasmaron

peak at lower energy could be averaged out from the spectral function; nevertheless,

the QP solutions remain at nearly the same energy, although with a diminished

spectral weight. Therefore, the QP peak positions from the GW approximation will

be used to determine the size of band gap.

With increasing doping level, the band gap of a 2D structure exhibits an unusual

non-monotonic scaling behavior arising from the interplay of band filling effect and

the carrier-plasmon coupling. As is marked by black solid squares in Fig. 6.13, the

band gap shrinks dramatically at small doping density but surprisingly it begins to

open up again slowly after a certain doping level is reached. The leading reason

that is responsible for the band gap narrowing for at all doping levels is a change

in the exchange energy due to filling extra charge carriers on the doped band, that

corresponds to the Σ2 = iδGWint in the self-energy operator. For the n-doped case,

the extra exchange energy in the conduction band edge is negative and its magnitude

is proportional to the Fermi wavevector kF , which is analogous to the case of a electron

gas. If only this contribution were taken into account for the QP renormalization, the

band gap would decrease monotonically with increasing doping level, as illustrated by

the dashed blue line in Fig. 6.13. For the p-doped case, removing electrons from the

top of valence band results in a less amount of negative exchange energy and hence

a similar trend of contribution to band gap narrowing.
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Figure 6.12. ((Color online) (a)(b) Graphic solutions to the Dyson equa-
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Countering to one’s intuition, the extra screening effect due to doping does not

result in a smaller band gap and has a complex influence on the band gap renormal-

ization dependent on doping level. In a undoped semiconductor, the QP band edges

typically lie outside the single-particle band gap with similar magnitude of self-energy

corrections for the valence band and conduction band, but in opposite directions, as

is true in monolayer MoS2. At a light doping density, the QP valence (conduction)

band edge remains well below (above) its single-particle counterpart. Meanwhile, the

fluctuation in the self-energy is mainly contributed by purely extra screening iGintδW

whereas the second-order residue iδGδW is quite insignificant (see Fig. 6.14). There-

fore, the QP peak will emerge in the anomalous region of the self energy, where

significant energy exchange between the QP state and the acoutic plasmon occurs,

resulting in a unusual enlargement of the QP band gap. In Fig. 6.13, it can be seen

that the actual QP band gap (solid squares) drop slower than the extra exchange

energy (the blue dashed line) and exhibit a roughly linear scaling rule, indicating the

anomalous contribution from the extra screening due to doping.

The neat physics behind is that the doping-induced intraband transitions intro-

duces two distinct types of excitations, the single-particle transitions and the collective

excitations of plasmons; While the former strengthens the screening and weakens the

effective Coulomb interactions, the latter actually makes the electron system more

correlated, leading to larger self-energy corrections. The many-body interactions in

a intrinsic system renormalizes the band energies to where the emerging low-energy
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plasmons play an important role, resulting in the anomalous enlargement of the QP

band gap.

As the doping level keeps increasing in the conduction band, the band gap ceases

to decrease and takes on a new scaling rule. On the one hand, the negative exchange

energy continues to contribute to lowering conduction band, pulling the QP solution

out of the anomalous plasmon-resonant region back to the single-particle energy. For

example, in Fig. 6.12 (b), the final QP energy EQP
CBM has almost reached the single-

particle energy ELDA
CBM. the On the other hand, the extra screened exchange energy

from iδGδW becomes dominant in the self energy and reduces the negativity of the

total exchange energy by virtue of the extra screening. When the doping level is

sufficiently high, the total exchange energy is largely screened by the doping-induced

transitions such that the QP band gap even begins to rise, although at a much slower

rate than the previous band gap narrowing. For monolayer MoS2, this band gap

reopening occurs around a doping density of 5 × 1012cm2, as is shown in Fig. 6.13.

For references, the band gap defined by the virtual plasmaron solutions are also shown

in the same figure, marked by the empty squares.

In this section, we have performed a first-principles calculation within the G0W0

approximation. We carefully model of doping effects in 2D systems to demonstrate a

abnormal scaling rule of band gap renormalization. Surprisingly, the primary contri-

bution responsible for band gap narrowing is not the extra screening due to doping

but the negative exchange energy arising from filling (withdrawing) electrons to the

doped band; the intraband transitions introduce a branch of low-energy plasmon that
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eventually strengthens the electron correlations in the system, leading to slower, linear

band gap narrowing at light doping density. After a critical doping level, the negative

exchange energy of the doped band is largely screened by the intraband transitions

and the QP band gap begins to increase at a slow rate.

6.4 Quasiparticle Properties: GW0 Approximation

It is important to point out that self-consistency has to be included in the GW

method for producing the correct QP band gap for the doped reduced-dimensional

structures. There could be multiple solutions to the Dyson equation because of the

highly nonlinear Σ3. On the G0W0 level, we take the solution with the largest spectral

weight to be the band edge energy. For the VBM, the G0W0 solution (black thin circle

in Fig. 6.15 (a)) lies far below the mean-field energy ELDA
VBM, where the contribution

of Σ3 is negative. This suggests a unphysical situation where Σ3, that stems from the

extra screening introduced by doping, is responsible for enlarging the size of the QP

band gap rather than reducing it. The dilemma can be resolved by imposing self-

consistency on the propagator G, which always requires the QP solution to coincide

with the on-shell energy of Σ3 (black thick circle in 6.15 (a) and (b)). As is shown

in Fig. 6.15 (e), the final band gaps predicted by the G0W0 are considerably larger

than by the self-consistent GW method, which is more reliable for solids [161–163].

After inclusion of the self-consistency, there are also two distinct solutions. The

other solution below the QP solution (blue circles in Fig. 6.15(a) and (b)) are known
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as a “plasmaron”excitation [164], which is believed to be spurious in a 2D electron

gas because further correlations need to be considered [160].

Our ab initio calculations reveal a unusual QP band gap scaling rule versus the

doping density n2D: at light doping, the band gap drops dramatically with n2D as

in other doped 2D structures [160, 165–169]; However, as n2D is sufficiently high

( 1013cm2), the band gap reaches a plateau, which is not found by previous calcula-

tions. We attribute the plateau region to two reasons. First, the contribution from

the band filling with intrinsic screening iδGWint and of the extra screening on intrinsic

system iGintδW are responsible for narrowing the band gap but the two term scale no

faster than
√
n2D (kF ) (see the blue dashed and red dashed curves in Fig. 6.15 (e)),

due to the 2D nature of the system. By contrast, the scaling law would roughly be

proportional to the doping density n1D (kF ) in a 1D system [143, 144]. In addition,

the amount of exchange energy due to band filling is further diminished by the extra

screening from doping. The corresponding contribution, iδGδW , is responsible for

enlarging the band gap and it becomes important and should not be overlooked at

high n2D.

It should be noted that the calculated band gap within the self-consistent GW

method is noticeably higher than the prediction of the GPP model [62]. Because the

model only includes one-single pole in the dielectric function, which can not be used

to describe the normal interband plasmon and the highly dispersive carrier plasmon

at low energies simultaneously. The doping-induced screening is overestimated by the

GPP model due to the large difference of ǫ−1
00 (q, ω) in the static limit.
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6.5 Conclusions

In conclusion, we have demonstrated a highly effective generic computational

scheme for modelling the dielectric function of the doped reduced-dimensional struc-

tures. Using this computational scheme, we have obtained the change of the QP band

gap over a wide range of doping density and find that the band gap drops to a certain

limit at sufficiently high doping level because of a delicate competition between the

exchange and correlation energy.
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7. Conclusions

In this thesis, we have performed first-principles calculations to study novel two-

dimensional structures, such as bilayer graphene and transition metal dichalcogenides.

Many-body perturbation theories, including the GW approximation and the Bethe-

Salpeter equation (BSE), have been employed to investigate the quasiparticle and

excitonic properties of these structures. Significant effort has been made to under-

stand how many-body interactions are impacted by electrical gating, doping, and

stacking order, which are commonly used experimental techniques of modifying the

physical properties of materials. The results obtained within this work can be roughly

categorized into two main themes.

One main theme is the discoveries of several unusual excitonic states that cannot

be explained by the conventional hydrogen model from semiconductor physics. For

example, according to the hydrogen model, the lowest exciton is an s-state, which

is optically active. However, we find that in the gated bilayer graphene, due to

the special Mexican-hat dispersion relation, the lowest exciton is optically inactive

whereas the second-lowest exciton is very bright. The relative energy levels of the

two excitons can be controlled by the gate voltage, suggesting that the gated bilayer

graphene can serve as the gate-tunable optoelectronic devices. More interestingly, we

have shown that this tunability stems from a sheer separation of the electron and
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the hole in the dark exciton state, making the exciton’s energy level highly sensitive

to external electric field. This gate-tunability may also lead to intriguing behaviors

of Bose-Einstein condensation of excitons that need to be further demonstrated by

experiments.

Another example of unusual excitonic states occurs in twisted bilayer graphene,

which is a gapless (semi-metallic) system. It is generally believed that bound excitons

cannot exist in such systems because excited electrons and holes can efficiently relax

to the fermi level and recombine there easily. Our first-principles study shows that

this is not true in twisted bilayer graphene. The stacking fault in the system results

in the emergence of two sets of parallel band transitions. Each set of transitions may

give rise to a branch of subband excitons, which is strongly bound. Unfortunately, the

binding feature of these excitons could be severely deteriorated by the hybridization

with the other band transitions at lower energies. By solving the BSE, we have

demonstrated that bound exciton can indeed survive in the gapless twisted bilayer

graphene. This bound exciton is free from hybridization with the e-h continuum as a

consequence of anti-symmetric superposition of the aforementioned subband excitons.

Our calculation reveals a novel mechanism for bound exciton in gapless systems by

virtue of quantum interference effects.

The other main themes in the thesis is about the many-body effects in doped

reduced-dimensional materials. Their screening is featured by a carrier plasmon whose

frequency approaches zero in the long-wavelength limit. Therefore, the corresponding

dielectric function cannot be captured by the traditional plasmon-pole approach for
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semiconductors. In principle, a full-frequency treatment, which is computationally

expensive, have to employ for the doped reduced-dimensional materials. However,

based on the analysis from our first-principles, we have shown that the dielectric

function in these systems can be modelled just by slightly modifying the plasmon-pole

approach, making the many-body calculation much more efficient. Using our modified

plasmon-pole approach, we have studied the band gap renormalization of the doped

monolayer MoS2 and revealed an unusual band gap scaling law versus the doping

level; as the doping level is sufficiently high, the band gap ceases to narrow down and

plateau due to a delicate cancellation of the exchange energy and correlation energy.

This result provides an important clue for band gap engineering of 2D materials via

doping.
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ization and band-filling effects in a homogeneous electron-hole plasma in in 0.53
ga 0.47 as/inp single quantum wells. Physical Review B, 40(11):8087, 1989.

[169] H Kalt and M Rinker. Band-gap renormalization in semiconductors with mul-
tiple inequivalent valleys. Physical Review B, 45(3):1139, 1992.

137



VITA

Yufeng Liang was born in Guangzhou, a big city no more than two-hour drive

from Hong Kong. He received his B. S. degree from the University of Science and

Technology of China, where he was specialized in theoretical physics. There he also

briefly worked with Prof. Jiangfeng Du on quantum computing based on nuclear

resonance systems. After he came to the Washington University in fall 2009, he turned

to study physics of reduced-dimensional structures under the supervision of Dr. Li

Yang, with a passion of searching for exotic phenomena in the presence of many-body

interactions. He will work as postdoctoral fellow at the Molecular Foundry located

at the Lawrence Berkeley National Laboratory, Berkeley, California.

Publications and Preprints:

[11] Yufeng Liang and Li Yang, “Quasiparticle Band Gap Renormalization of

Doped Monolayer MoS2”(2014).

[10] Vy Tran, Ryan Soklaski, Yufeng Liang, and Li Yang, “Tunable Band Gap

and Anisotropic Optical Response in Few-layer Black Phosphorus”, Phys. Rev. B

(2014), Editor’s Suggestion.

[9] Ryan Soklaski, Yufeng Liang, Changjian Zhang, Haining Wang, Farhan

Rana, and Li Yang, “Temperature Renormalization of Optical Spectra of Monolayer

MoS2”, Appl. Phys. Lett. 104, 193110 (2014).

138



[8] Yufeng Liang, Ryan Soklaski, Shouting Huang, and Li Yang, “New Mecha-

nism for Strongly Bound Excitons in Gapless Two-Dimensional Structures”, arXiv:

1401.6663.

[7] Robin W. Havener, Yufeng Liang, Lola Brown, Li Yang, and Jiwoong Park,

“Van Hove Singularities and Excitonic Effects in the Optical Conductivity of Twisted

Bilayer Graphene”, Nano. Lett. 14, 3353 (2014).

[6] Shouting Huang, Yufeng Liang, and Li Yang, “Exciton Spectra in two-

dimensional graphene derivatives”, Phys. Rev. B 88, 075441 (2013).

[5] Yufeng Liang, Shouting Huang, Ryan Soklaski, and Li Yang, “Quasiparti-

cle band-edge energy and band offsets of monolayer of molybdenum and tungsten

chalcogenides”, Appl. Phys. Lett. 103, 042106 (2013).

[4] Abolhassan Vaezi, Yufeng Liang, Darryl H. Ngai, Li Yang, and Eun-Ah Kim,

“Topological Edge States at a Tilt Boundary in Gated Multilayer Graphene”, Phys.

Rev. X 3, 021018 (2013).

[3] Yufeng Liang and Li Yang, “Enhanced Many-Electron Effects on Quasipar-

ticle Energy and Optical Excitations of Gated Bilayer Graphene”, Phys. Rev. B 86,

205423 (2012).

[2] Yufeng Liang, Shouting Huang and Li Yang, “Many-Electron Effects on

Optical Absorption Spectra of Strained Graphene”, J. Mater. Res. (Invited feature

article) 27, 403-409 (2012).

[1] Yufeng Liang and Li Yang, “Electronic Structure and Optical Absorption of

Fluorographene”, MRS Proceedings 1370, 137 (2011).

139


	Washington University in St. Louis
	Washington University Open Scholarship
	Summer 9-1-2014

	Quasiparticle Energy and Excitons in Two-Dimensional Structures
	Yufeng Liang
	Recommended Citation


	phdthesis.dvi

