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CHAPTER 1 

Introduction 
 

1.1 Overview: Lower-extremity complications of diabetes mellitus 
 

Diabetes mellitus (DM) is a major health issue worldwide, with more than 346 

million people affected based on recent estimates by the World Health Organization 

(World Health Organization, 2011). In the U.S., there were 25.8 million people with 

diabetes in 2011, with an estimated 1.9 million new cases every year in people 20 years 

and older (Centers for Disease Control, 2011). More than 60% of non-traumatic lower-

limb amputations that are performed in the U.S. occur in individuals with diabetes, which 

amounted to more than 65,000 non-traumatic lower-limb amputations in 2006 (Centers 

for Disease Control, 2011). Lower-limb amputation in individuals with diabetes is 

strongly related to the development and progression of diabetic foot disease, a group of 

related lower-extremity conditions that includes peripheral neuropathy (PN), plantar 

ulceration, and Charcot neuropathic osteoarthropathy (CN).  

 

1.2 Charcot neuropathic osteoarthropathy 

Acute CN is suspected when an individual with DM and PN presents clinically 

with a warm, inflamed, erythematous foot (Chantelau, 2005). Existence of CN is 

generally confirmed by X-ray evidence of pedal bone fracture or pronounced joint 

subluxation or dislocation. Unfortunately, plain radiographs are often unable to detect 

incipient Charcot development due to difficulty visualizing the injured bony region or 

subtle articular mal-alignment (Yu and Hudson, 2002). As a result, progression of CN 

often continues until more serious events occur. 
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 Mal-alignment and degradation of the bony components of a denervated, inflamed 

joint are the hallmark symptoms of CN (Frykberg and Belczyk, 2008). Though CN has 

been found in a variety of patient populations – e.g. leprosy, syphilis, multiple sclerosis, 

poliomyelitis, and rheumatoid arthritis – DM with concomitant PN is the most common 

cause of CN (Sanders and Fryberg, 2005).  The incidence of CN has been reported to be 

as low as 1 in 680 diabetic patients (Sinha et al., 1972) though CN occurs eventually in 

up to 29% of diabetics with PN (Cofield et al., 1983).  

 Individuals with DM and PN have an elevated risk of plantar ulceration due to a 

distal polyneuropathy that includes an absence of protective sensation (Rogers et al., 

2011). In a sensate individual, pain and inflammation would typically lead to a self-

reduction in weight-bearing activity, but an individual with DM and PN can cause plantar 

soft tissue damage due to continued repetitive loading (Sinacore et al., 2008). Still, 

whether or not an individual develops the superficial skin and soft tissue breakdown 

characteristic of plantar ulceration, the combined effects of DM and PN – sensory and 

motor neural decrements, atrophied pedal musculature, ligament laxity, and pedal bone 

degradation – can lead to the types of joint subluxation, dislocation, and pedal bone 

fractures that characterize CN (Crews and Wrobel, 2008). These CN symptoms, in turn, 

can put the diabetic neuropathic patient at further risk for ulceration and more serious 

sequelae of diabetic foot disease, including infection and amputation (Wukich and Sung, 

2009; Wukich et al., 2011). 
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1.3 Bone degradation in CN 

Herbst and colleagues (Herbst et al., 2004) hypothesized that the clinical 

manifestation of CN depends upon bone mineral density (BMD): pedal fractures 

predominate in individuals with low BMD, whereas pedal bone subluxations and 

dislocations are more common in those with normal or high BMD. The authors 

prospectively assessed 55 consecutive individuals with DM and a newly-diagnosed CN 

of the foot or ankle. Of the 55 patients, there was an equal representation of fractures and 

subluxations/dislocations: 23 had fractures, 23 had subluxations/dislocations, and 9 had 

both. The contralateral (non-CN) femoral neck was scanned using dual-energy X-ray 

absorptiometry (DXA) to assess BMD, and the results showed an odds ratio of 9.5 for 

having a fracture rather than subluxation/dislocation among individuals with BMD levels 

classified as osteopenic by World Health Organization standards.  

However, it is possible that pedal bone BMD could be dissociated from femoral 

neck BMD in the distal polyneuropathy common in individuals with DM and PN, and 

thus it would be useful to determine whether pedal BMD and strength-related geometric 

properties are reduced in those with a fracture pattern of CN. Evidence of focal 

reductions in pedal BMD following CN diagnosis and subsequent off-loading has been 

shown recently (Sinacore et al., 2008). The authors sought to assess the relationship 

between acute inflammation and tarsal BMD. Thirty-two individuals with DM, PN, and 

CN and 64 age-, sex-, and race-matched controls were assessed by measuring foot 

temperatures at 7 plantar locations and calcaneal BMD via quantitative ultrasound 

(QUS). The amount of focal inflammation – assessed as the temperature difference 

between feet – mirrored reductions in calcaneal BMD as measured by QUS. The involved 
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feet of the DM+PN+CN subjects were warmer than the uninvolved feet (average 

difference 3.8 °C) while the control subjects had no temperature difference. Calcaneal 

BMD averaged 384, 467, and 545 mg/cm2, respectively for the involved, uninvolved, and 

control feet. Thus, the inflammation seen in CN is associated with a focal reduction in 

pedal BMD, though the observed reduction in BMD for the uninvolved foot makes it 

unclear whether the focal bone loss is the cause or effect of the incipient CN (Sinacore et 

al., 2008).  

 

1.4 Image-based bone strength indices 

Recent advances have provided a means to measure BMD of individual bones of 

the foot using volumetric quantitative computed tomography (vQCT) rather than less 

precise methods such as QUS or DXA (Commean et al., 2009; Hastings et al., 2008). 

Commean et al (Commean et al., 2009) used a semiautomatic bone segmentation 

technique to separate the 7 tarsals and 5 metatarsals from each other and from the 

surrounding soft tissue before computing whole-bone and subregional bone volumes and 

BMD. Results showed high reproducibility and low measurement error, with root-mean 

square coefficients of variation (RMS-CV) equal to 0.8% and 0.9% for whole-bone 

volume and BMD, respectively. Hastings et al. (Hastings et al., 2008) applied this vQCT-

based BMD assessment to a case study of a young healthy female recovering from an 

ankle injury and showed that marked increases in bone-specific BMD were related to 

locations of higher peak pressures during gait. Thus the vQCT-based BMD measures are 

not only reproducible, but also responsive to changes in loading pattern. 
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Though the ability to assess BMD of individual foot bones is a significant 

advancement, the role of BMD as a prospective risk factor for acute or overuse-related 

fracture is unclear. Numerous studies suggest that a reduction in BMD alone may not 

lead to an increased risk of fracture, and that strength-related bone geometric properties 

provide an improved index of fracture risk (Brudvig et al., 1983; Pester and Smith, 1992; 

Evans et al., 2008; Warden et al., 2005; Silva et al., 2009). For example, while female 

military recruits have a 2 to 6 times higher risk of developing a tibial stress fracture (SF) 

than males (Brudvig et al., 1983; Pester and Smith, 1992) a recent study comparing bone 

strength parameters showed that females had 2.0% to 2.7% higher cortical BMD in the 

tibia than males (Evans et al., 2008). The higher SF incidence can be explained by 

females’ significantly lower values for cross-sectional diameter, area, and cross-sectional 

second moment of area (Evans et al., 2008). Cross-sectional moment of area, a measure 

of the distribution of a bone’s mass around its centroid, is an index of structural rigidity, 

especially for loading that involves bending moments, as evidenced by rodent studies 

linking minimum cross-sectional moment of area to fracture strength (Warden et al., 

2005; Silva et al., 2009).  

Bone geometric parameters have also been related to tibial SF in male runners and 

military recruits. In a study matching 23 male runners with prior tibial SF to 23 non-SF 

matched controls, tibial cross-sectional area measured using either vQCT or DXA was 

significantly lower in the SF cohort than in the non-SF group after adjusting for height 

and weight (Crossley et al., 1999). These results support earlier findings using tibial X-

rays (Milgrom et al., 1989) and DXA scans (Beck et al., 1996). Milgrom et al (Milgrom 

et al., 1989) computed cross-sectional bone-width, area, and second moment of area (the 
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binary analog of mass moment of inertia) based on X-ray scans of the tibial mid-

diaphysis of 295 Israeli infantry recruits. Recruits who developed tibial SF had 

significantly narrower tibias (corroborating earlier findings by Giladi et al (Giladi et al., 

1987)), lower cross-sectional area, and lower second moment of area. The moment of 

area around an anterior-posterior axis had the greatest predictive capacity for 

development of tibial SF. This high predictive capacity is possibly explained by the fact 

that for the human tibia, the anterior-posterior axis is roughly collinear with both the 

minimum second moment of area and the axis of greatest bending during compressive 

loading. In rodent studies, the minimum cross-sectional moment of area has been shown 

to have the highest predictive capacity for both monotonic fracture force (Silva et al., 

2009; Robling et al., 2002; Turner and Robling, 2003) and resistance to fatigue fracture 

(Warden et al., 2005; Silva et al., 2009).  

Cadaver specimens have been used to assess geometric properties of individual 

pedal bones (Largey et al., 2007) and bone orientation angles (Camacho et al., 2002). 

Largey et al (Largey et al., 2007) performed individual high-resolution vQCT scans on 

excised metatarsals from 7 cadaver specimens, with the scan slice plane perpendicular to 

the longitudinal axis of each metatarsal. The authors used the resulting stack of planar 

vQCT images to measure bone lengths, cross-sectional diameter, intrinsic bone torsion, 

and cross-sectional area in the proximal, mid-diaphysis, and distal regions of each bone. 

For comparison, bone dimensions and torsion angles were also assessed manually. While 

the in vitro nature of the vQCT scans prevented assessment of the bone-to-bone 

orientation angles, and the authors elected to not measure some relevant strength-related 

geometric properties (such as MOI), the authors did report high ICC values (>0.98) for 
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their vQCT-derived measures, exceeding the ICC values for all of their manual measures 

(Largey et al., 2007). These high ICC values suggest utility as a research and clinical tool 

for vQCT-derived measures of pedal bone dimensions. 

 

1.5 Radiographic measures of foot deformity 

Computed tomography scans have been used increasingly to measure foot 

morphology. Non-weight bearing CT scans have shown that diabetic subjects exhibit 

hyperextension at the first, second, and third metatarso-phalangeal joints, defined 

clinically as hammer toe deformity (Robertson et al., 2002). In a related study, Mueller et 

al (Mueller et al., 2003) showed that hammer toe deformity had the highest predictive 

capacity for peak plantar pressures under the metatarsal heads. Thus, not only is CT 

capable of providing important morphological information about the bones of the diabetic 

foot, but altered joint orientations are related to known biomechanical risk factors (such 

as hammer toe deformity) for soft tissue damage leading to plantar ulceration. However, 

one weakness of these studies is that both relied on planar representations of CT data in 

order to make the joint angle calculations. The measurement of three-dimensional (3D) 

bone-to-bone orientation angles will provide a more complete and accurate assessment of 

foot morphology in diabetic subjects. 

Camacho et al (Camacho et al., 2002) described an assessment of selected bone-

to-bone orientation angles using a 3D reconstruction of a single human cadaver foot. 

Each tarsal and metatarsal was segmented from the raw CT images, and the principal 

axes of each bone were calculated using PCA. Bone-to-bone orientation angles were 

defined using Euler rotation sequences of the principal axes for bones of interest 
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(Camacho et al., 2002). Following on the work of Camacho et al, Ledoux et al (Ledoux et 

al., 2006) conducted 3D CT scans on 65 live subjects in order to compare pedal 

orientation angles to each subject’s clinical foot type classification (e.g. pes planus, 

neutral, or pes cavus). The authors utilized Cardan angles to define 24 bone-to-bone 

orientation angles for the 65 feet, then conducted a classification tree analysis to 

determine orientation angles that best discriminated among the foot type classifications 

(Ledoux et al., 2006).  

In summary, vQCT provides a means to detect early signs of CN before fracture, 

bone resorption, or subluxation is evident on X-ray. Earlier diagnosis of CN will facilitate 

appropriate off-loading strategies to minimize fracture risk, bony degradation, and joint 

deformity that would otherwise lead to significant morbidity and risk of further diabetic 

foot disease sequelae.  

 

1.6 Specific Aims, Hypotheses, and Rationale 

 The goal of this dissertation research is to use vQCT to assess foot bone strength 

and foot deformity as indices of CN development and progression. Aim 1 relates to 

method development and validation of BMD and geometric bone strength indices for the 

metatarsals. Aim 2 provides group comparisons of vQCT-derived bone strength indices 

between CN and non-CN individuals. Aim 3 presents method development and reliability 

assessment of novel 3D methods to assess foot deformities. Aim 4 is a comparison of 

vQCT-derived foot deformity measures in CN and non-CN individuals.  
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SPECIFIC AIM 1: 

To assess the ability of vQCT-derived BMD and bone geometric strength indices to 

predict ex vivo ultimate loads in metatarsals excised from cadavers using maximal 

monotonic three-point loading in materials-testing apparatus. 

 
AIM 1 HYPOTHESES: 

.BMD and geometric strength indices will be directly and significantly correlated to 

ultimate loads, and geometric strength indices will be retained in the final regression 

model predicting ultimate force. 

 
 

 
SPECIFIC AIM 2: 

To compare vQCT-derived geometric strength indices of subjects with diabetes mellitus 

(DM), peripheral neuropathy (PN), and Charcot neuropathic osteoarthropathy (CN) to 

subjects with DM and PN but without CN. 

 
AIM 2 HYPOTHESES: 

For the metatarsals, individuals with CN will exhibit reduced BMD and lower values for 

geometric strength indices in the mid-diaphysis in the involved foot compared to the 

uninvolved foot and compared to individuals with DM+PN. 
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SPECIFIC AIM 3: 

To develop an anatomic landmark-based method of defining 3D bone orientation axes for 

foot bones using segmented vQCT surface images, and to assess intra-tester and inter-

tester reliability for 3D bone-to-bone orientation angle.  

AIM 3 HYPOTHESES: 

An anatomic landmark-based method to define 3D foot bone orientation axes will have 

equivalent intra- and inter-tester reliability as uni-planar measures from X-ray.  

 
 

SPECIFIC AIM 4: 

To use the atlas-based, automated vQCT methods to characterize 3D bone and joint mal-

alignments in subjects with acute CN compared to two control cohorts: a matched group 

of non-CN individuals with DM and PN, and an unimpaired control (UC) group without 

DM, PN, CN, or pathology of the foot and ankle.  

AIM 4 HYPOTHESES: 

(1) Atlas-based, automated vQCT technique will confirm mal-alignments observed in CN 

using uni-planar (lateral) X-rays. Specifically, sagittal plane bone orientation angles 

of CN subjects will have decreased cuboid height, decreased calcaneal pitch, and 

increased talar declination angle. 

(2) There will be additional group differences in hindfoot bones and hindfoot:forefoot 

coupling, including frontal plane mal-alignments undetectable using X-rays.  
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CHAPTER 2 

 

Predicting ex vivo failure loads in human metatarsals using bone 
strength indices derived from volumetric quantitative computed 
tomography 
 
Status of resulting manuscript: in review, Journal of Biomechanics 

 
Authors: David J. Gutekunst, Tarpit K. Patel, Kirk E. Smith, Paul K. Commean, 
Matthew J. Silva, and David R. Sinacore.  
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2.1 ABSTRACT 

 The purpose of this study was to investigate whether bone mineral density and 

bone geometric strength indices predict ultimate force in the human second metatarsal 

(Met2) and third metatarsal (Met3). Intact lower extremity cadaver samples were 

measured using clinical vQCT with positioning and parameters applicable to in vivo 

scanning. During processing, raw voxel data (0.4mm isotropic voxels) were converted 

from Hounsfield units (HU) to apparent BMD using hydroxyapatite (HA) calibration 

phantoms to allow direct volumetric assessment of whole-bone and subregional 

metatarsal BMD. Voxel data were realigned to produce cross-sectional slices 

perpendicular to the longitudinal axes of the metatarsals. Average mid-diaphyseal BMD, 

bone thickness, and buckling ratio were measured using an optimized threshold to 

distinguish bone from non-bone material. Minimum and maximum moments of inertia 

and section moduli were measured in the mid-diaphysis region using both a binary 

threshold for areal, unit-density measures and a novel technique for density-weighted 

measures.  

BMD and geometric strength indices were strongly correlated to ultimate force 

measured by ex vivo 3-point bending. Geometric indices were more highly correlated to 

ultimate force than was BMD; bone thickness and density-weighted minimum section 

modulus had the highest individual correlations to ultimate force. Density-weighted 

geometric indices explained more variance than their binary analogs. Multiple regression 

analyses defined models that predicted 83-89% of variance in ultimate force in Met2 and 

Met3 using bone thickness and minimum section modulus in the mid-diaphysis. These 
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results have implications for future in vivo imaging to non-invasively assess bone 

strength and metatarsal fracture risk.  

 

2.2 INTRODUCTION 

The metatarsals are a frequent site of foot fracture, particularly stress fractures 

(SF) occurring without an acute traumatic event. In athletes, roughly 20% of SF occur in 

the metatarsals, with the majority (14-18%) occurring in either Met2 or Met3 (Hulkko 

and Orava, 1987; McBryde, Jr., 1985). Additionally, diabetes mellitus with concomitant 

peripheral neuropathy has been linked to focal osteopenia in the feet and an increased risk 

of metatarsal fracture (Cundy et al., 1985; Gill et al., 1997) and “silent” bone stress 

injuries (Chantelau et al., 2007). 

BMD in the metatarsal mid-diaphysis correlates with ex vivo bone strength 

measured via mechanical testing (Courtney et al., 1997; Muehleman et al., 2000). Image-

based, in vivo assessment of BMD is more challenging in the metatarsals than in other 

long bones (e.g. femur or tibia) due to the smaller size, numerous articulations, and 

obstructed views of foot bones. As a result, previous investigations of metatarsal BMD 

and bone dimensions (Courtney et al., 1997; Fleischli et al., 1998; Muehleman et al., 

2000) have utilized cadaver bones that were excised before making measurements. 

Recent work by our group allows in vivo measurement of BMD of all foot bones using 

vQCT (Commean et al., 2009; Hastings et al., 2008; Commean et al., 2011). The vQCT 

method uses a semiautomatic bone segmentation technique to separate the tarsals and 
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metatarsals from each other and the surrounding soft tissue to compute whole-bone and 

subregional bone volumes and BMD (Commean et al., 2009).  

Though the ability to assess volumetric BMD of foot bones in vivo is a significant 

technical advancement, the role of BMD as a prospective risk factor for acute or overuse-

related pedal fracture is unclear. Research in the tibia and femur suggests a reduction in 

BMD alone may not lead to increased fracture risk, and that bone geometric strength 

indices provide an improved index of fracture risk (Brudvig et al., 1983; Evans et al., 

2008; Pester and Smith, 1992). For example, while female military recruits have a 2 to 6 

times higher risk of developing a tibial SF than males (Pester and Smith, 1992; Brudvig 

et al., 1983) a recent study showed that females had 2.0% to 2.7% higher cortical BMD 

in the tibia than males (Evans et al., 2008). The disproportionately higher SF incidence 

despite higher cortical BMD may be explained by females’ significantly lower values for 

indices of compressive and bending strength: cross-sectional diameter, area, and 

minimum moment of inertia (Imin) (Evans et al., 2008).  

To offset a general age-related decline in BMD, long bones minimize reductions 

in bending strength by adding bone material to the periosteal surface while a 

concomitant, larger expansion of the endosteal surface leads to reductions in cortical 

thickness (Ct.Th) (Sigurdsson et al., 2006; Ward et al., 2011). This homeostatic 

expansion leaves bones at elevated risk for focal cortical shell weakness and fractures 

(Beck, 2007; Kaptoge et al., 2008). Both decreased Ct.Th and increased buckling ratio 

(BR = periosteal radius/Ct.Th) in the femoral neck have been related to an increased risk 

of hip fracture (LaCroix et al., 2010; Melton, III et al., 2005; Szulc et al., 2006). 



 

15 

The purpose of this study was to develop geometric strength indices as predictors 

of ex vivo failure loads in human Met2 and Met3 samples using techniques directly 

applicable to in vivo clinical imaging by collecting vQCT data from intact cadaver lower-

extremity specimens before excising metatarsals and subjecting the bones to failure 

testing. We hypothesized that BMD and geometric indices would correlate to metatarsal 

strength, and that geometric strength indices would be retained in stepwise regression 

models predicting metatarsal strength.  

 

2.3 MATERIALS AND METHODS  

Measuring BMD and bone geometric strength indices in the metatarsals using a 

method applicable to in vivo scanning poses unique challenges. Whereas the femur and 

tibia can easily be aligned axially within an imaging modality such as high resolution 

peripheral quantitative computed tomography (HR-pQCT) to produce cross-sectional 

slices, the metatarsals cannot be simultaneously aligned in true axial position within a 

vQCT scanner. Using excised cadaver metatarsal samples obviates the need for 

segmentation or axis realignment but limits clinical relevance. Any method capable of 

assessing bone geometry in human metatarsals in vivo requires bone segmentation and 

realignment of image data along the primary axis of each metatarsal in order to produce 

anatomically relevant cross-sectional image slices. 

2.3.1 Cadaver preparation and vQCT testing 

Ten unpaired fresh-frozen cadaver lower limbs were received from the Human 

Body Donation Program at the Washington University School of Medicine. All samples 
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were right limbs. After thawing (24-36 hours), limbs were disarticulated at the knee and 

transported to the Center for Clinical Imaging Research for clinical vQCT scans. Cadaver 

samples were placed in a radiolucent Styrofoam holding apparatus to ensure consistent 

positioning. The ankle joint was held in a neutral position (90°) with the foot and shank 

both 45° above the horizontal (Figure 2.1). This position kept the metatarsals as close to 

horizontal as possible while allowing clearance of the proximal tibia within the vQCT 

scanner tube. Additionally, the cadaver positioning closely matches the standard 

orientation of the lower limb for patients and research subjects at our institution 

(Commean et al., 2011; Commean et al., 2009). Table height was adjusted so the volume 

isocenter was approximately at the height of the mid-diaphyseal region of the metatarsals. 

A QCT Bone Mineral™ HA calibration phantom (Image Analysis Inc., Columbia, KY, 

USA) was placed in series with each sample at the same height as the scanner isocenter to 

allow conversion of HU  to apparent BMD (mg/cm3 of HA). (Smith et al., 2011)  
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Figure 2.1: Position and orientation of lower extremity sample in Styrofoam fixture during vQCT 
scanning. Hydroxyapatite calibration phantom is shown in front of the foot, at the height of the 
talus. 

 

Foot images were acquired using a Siemens SOMATOM Definition CT scanner 

(Siemens Medical Systems, Malvern, PA, USA) with acquisition parameters of 220 

mA·s, 120 kVp, pitch = 1, rotation time 0.33s, and a 512x512 matrix. Raw data were 

reconstructed at 0.4mm slice reconstruction intervals using a B70f kernel to create vQCT 

images. Prior to reconstruction, the in-plane field of view was cropped to roughly 200mm 

x 200mm, resulting in an in-plane resolution of approximately 0.4mm x 0.4mm.  

2.3.2 Bone Segmentation Processing 

Reconstructed vQCT images were loaded in Digital Imaging and 

Communications in Medicine (DICOM) format into Analyze® software (Biomedical 

Imaging Resource, Mayo Clinic, Rochester, MN). Image data were interpolated to 

isotropic voxels with 0.4mm dimension using a cubic spline function. Full details of the 
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bone segmentation process are described elsewhere (Liu et al., 2008; Commean et al., 

2011). In brief, bones were segmented from the surrounding soft tissue using density-

based filtering algorithms employed as custom ImageJ plugins (NIH Research Services 

Branch, rsbweb.nih.gov), Analyze® software to further segment bones from soft tissue 

(e.g. high density tissues such as tendon and ligament), and a custom graph-cut method to 

segment bones at their articulating surfaces and create volume-filled object maps (Liu et 

al., 2008) as shown in Figure 2.2. Following segmentation, bone object maps were 

overlaid on the original grayscale volumetric data so that the Met2 and Met3 voxel 

datasets could be exported for further analysis.  

 

 

Figure 2.2: Bone segmentation processing. (A) photograph of cadaver sample; (B) raw vQCT 
image; (C) filtered vQCT image to remove soft tissue; (D) segmented, filled bone object maps for 
tarsals and metatarsals. 
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2.3.3 Bone Axis Realignment 

Grayscale voxel data for each bone produced during bone segmentation were 

exported to ImageJ, where the BoneJ plugin (Doube et al., 2010) was used to compute a 

density-weighted principal components analysis and realign the voxel data perpendicular 

to each bone’s longitudinal axis. This transformation realigned voxel data from the vQCT 

scanner coordinate axes into anatomically relevant cross-sectional slices perpendicular to 

each metatarsal’s longitudinal axis. Realigned data retained 0.4mm isotropic voxel 

dimensions. Subsequent calculations of BMD and bone geometric strength indices were 

completed with BoneJ and custom macros in Excel (Microsoft) using the voxel data 

(XYZ positions and HU values) from realigned cross-sectional slices. 

2.3.4 Bone Geometric Strength Indices 

HU values were converted to equivalent BMD using the cadaver-specific HA 

calibration coefficients. For each realigned slice, total equivalent bone mineral content 

(mg) was computed as the product of all positive voxel BMD values multiplied by each 

voxel’s volume. Total bone mineral content was then divided by the total volume within 

the periosteal window, i.e. the volume of the positive BMD voxels and the volume of any 

negative voxels (representing marrow tissue) within the medullary cavity, meaning that 

the BMD values reported here represent the average BMD over the total tissue volume. 

Measuring Ct.Th and BR requires a threshold-based binary definition of bone and 

non-bone material, and Otsu thresholding (Otsu, 1979) of the 20 metatarsals revealed 

optimal thresholds between 150 and 300 mg/cm3. To maintain consistency across 

specimens and also reduce the likelihood of overestimating bone material by choosing an 
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erroneously low bone threshold (Hangartner, 2007), a universal threshold of 300 mg/cm3 

was applied to all bones to distinguish between bone and non-bone material. The spatial 

resolution of vQCT scanning limits the ability to distinguish trabecular and cortical bone 

material due to spatial averaging. In lieu of measuring Ct.Th directly, average Ct.Th and 

BR were computed using an assumption that the metatarsal mid-diaphysis is roughly a 

circular annulus. Total cross-sectional area (Tt.Ar) was computed by summing the entire 

area (including the medullary cavity) and cortical bone area (Ct.Ar) was computed by 

summing the area of voxels with BMD > 300 mg/cm3. Ct.Th and BR were then 

calculated based on the outer (Ro) and inner (Ri) radii, as follows: 

𝑇𝑡.𝐴𝑟 =  𝜋 ∗ 𝑅𝑜2 

𝑇𝑡.𝐴𝑟 −  𝐶𝑡.𝐴𝑟 = 𝜋 ∗ 𝑅𝑖2 

𝐶𝑡.𝑇ℎ = 𝑅𝑜 −  𝑅𝑖 

𝐵𝑅 = 𝑅𝑜/𝐶𝑡.𝑇ℎ 

Minimum and maximum moments of inertia (I) and section moduli (S) were 

computed as indices of bending strength using the BoneJ plugin (Doube et al., 2010) in 

ImageJ. BoneJ computes I and S as areal measures (IArea.min, IArea.max, SArea.min, SArea.max) 

using an assumption of unit density and a threshold-based binary definition of bone and 

non-bone material, as has been done previously using other analysis software (Courtney 

et al., 1997; Evans et al., 2008; Muehleman et al., 2000). This binary definition of bone 

material can be problematic if the threshold is suboptimal (Hangartner, 2007), especially 

for clinical scanning of small bones such as metatarsals. A density-weighted approach 

may lessen the effects of limited spatial resolution by improving the density resolution. 
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Thus, in addition to the standard area-based bending strength indices, we also computed 

novel density-weighted measures (Iρ.min, Iρ.max, Sρ.min, and Sρ.max) using all voxel data 

exceeding the 300 mg/cm3 threshold. Computations of the areal and density-weighted 

measures are provided in Appendix A. It should be noted that the density-weighted 

measures of I and S require a bone volume rather than a cross-sectional area; to allow 

future comparison to imaging data with differing voxel thickness, all I and S measures 

are expressed relative to a 1mm axial thickness. 

2.3.5 Bone Fracture Testing 

After vQCT scanning, Met2 and Met3 were excised from the cadaver limbs, 

taking care to avoid damage to the periosteal surface while denuding the bones of 

surrounding soft tissue. The metatarsals were wrapped in gauze that had been soaked in 

0.9% NaCl solution, then stored in 75mL specimen tubes at -20°C until being thawed 

prior to fracture testing. Samples were loaded monotonically to failure in three-point 

bending using an Instron 8841 materials testing machine (Instron, Canton, MA, USA). 

The span length (L) of 33mm was chosen because it was the longest distance that ensured 

the vertical loading posts would be located within the metatarsal shaft for all bones 

tested. The central force was applied at the span midpoint on the (inverted) dorsal side of 

the metatarsal; the two other forces were applied at equal distances from the midpoint on 

the plantar side of the metatarsal to mimic the predominant loading mode during push-off 

(Arndt et al., 2002; Donahue and Sharkey, 1999) as shown in Figure 2.3. Fixture posts 

for 3-point bending were machined to have a rounded tip with 3mm diameter to minimize 

the effect of local cortical buckling at the fixture sites and thus help ensure that failure 

would occur due to bending loads rather than local contact stress.  
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Figure 2.3: Cadaver Met2 sample in 3-point loading configuration. Red line denotes the mid-
diaphysis as determined from caliper measurements.  

Pre-load was 10N, displacement rate was 0.1 mm/s, and force-displacement data 

were sampled at 60 Hz. The ultimate force (Fult, in N) was defined as the maximum force 

registered between the onset of loading and fracture. To allow for comparison to other 

loading modes (e.g. 4-point bending or cantilever loading) or differing span lengths, we 

also report the ultimate bending moment (Mult in N·m), computed using the equation for 

bending moment in a 3-point configuration with loading at the mid-diaphysis: 

𝑀𝑢𝑙𝑡 =
𝐹𝑢𝑙𝑡 ∗ 𝐿

4
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2.3.6 Statistical Analysis 

All statistical analyses were completed using IBM SPSS Statistics 20.0 [IBM, 

Chicago, IL]. A linear regression comparing the Fult between Met2 and Met3 showed that 

bones from the same individual were highly correlated. Therefore we report separate 

regression analyses for Met2 and Met3. Linear regression analyses were performed 

between Fult and the independent variables:  BMD; Ct.Th; BR; and areal (IArea.min, 

IArea.max, SArea.min, and SArea.max) and density-weighted (Iρ.min, Iρ.max, Sρ.min, and Sρ.max) 

indices of bending strength. Lastly, a stepwise multiple regression analysis (α ≤ 0.05 for 

inclusion, α ≥ 0.10 for removal) was performed to assess the relative roles of potential 

strength indices in determining Fult.   

 

2.4 RESULTS 

Cadaver specimens came from 7 females and 3 males who had an average age of 

83 years (SD 13, range 56-99) at death. Table 2.1 shows the average values for ultimate 

loads, bone quantity, size, and distribution parameters for Met2 and Met3. Univariate 

correlation coefficients with Fult are also reported. For both Met2 and Met3, Ct.Th was 

the highest correlate of Fult, and the density-weighted geometric indices of bending 

strength accounted for a higher proportion of the variance in Fult than did the unit density 

analogs of bending strength.  
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Table 2.1: Bone quantity, size, and bending strength parameters. R values represent 
correlation coefficient with ultimate loads (Fult or Mult). 

  Met2 Met3 

 Units Mean ± SD R Mean ± SD R 

Ultimate loads      

     Fult N 572 ± 299 n/a 406 ± 244 n/a 

     Mult N*m 4.72 ± 2.47 n/a 3.36 ± 2.01 n/a 

      

Bone quantity parameters      

     Whole-bone BMD mg/cm3 403 ± 91 0.77 367 ± 91 0.73 

     Mid-diaphysis BMD mg/cm3 806 ± 205 0.71 725 ± 195 0.62 

      

Mid-diaphysis size parameters 

     Total Area (Tt.Ar) mm2 50.9 ± 11.5 0.46 49.0 ± 9.5 0.71 

     Buckling Ratio (BR) unitless 2.29 ± 0.54 -0.80 2.50 ± 0.55 -0.62 

     Average thickness (Ct.Th) mm 1.84 ± 0.49 0.92 1.64 ± 0.40 0.83 

      

Areal, unit density bending strength parameters 

     IArea.min mm4 156.7 ± 70.0 0.72 133.6 ± 65.3 0.79 

     IArea.max mm4 253.3 ± 143.8 0.40 236.1 ± 92.5 0.70 

     SArea.min mm3 39.9 ± 13.9 0.70 35.2 ± 13.2 0.82 

     SArea.max mm3 50.4 ± 20.9 0.44 47.3 ± 14.1 0.70 

      

Density-weighted bending strength parameters 

     Iρ.min mg·mm2 73.7 ± 35.2 0.76 58.9 ± 34.3 0.85 

     Iρ.max mg·mm2 119.7 ± 71.6 0.43 108.5 ± 47.0 0.72 

     Sρ.min mg·mm 17.8 ± 6.7 0.82 14.5 ± 6.9 0.87 

     Sρ.max mg·mm 28.7 ± 13.4 0.46 27.0 ± 10.1 0.68 

 

For Met2, all bone quantity and geometric strength parameters except for mid-

diaphysis area and bending strength maxima (Imax and Smax) were significantly correlated 

with Fult. The strongest individual predictor was mid-diaphysis Ct.Th (r2 = 0.85). Two 

other variables (BR and Sρ.min) had univariate values of r2 > 0.64. The stepwise multiple 
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regression analysis for Met2 yielded a model that included only mid-diaphysis Ct.Th 

(Table 2.2).  

For Met3, all bone quantity and geometric strength parameters were significantly 

correlated with Fult. Univariate regression analyses revealed that Iρ.min and Sρ.min explained 

72% and 75% of variance in Fult, respectively; mid-diaphysis Ct.Th explained 69%. The 

final stepwise model for Fult included Sρ.min and mid-diaphysis Ct.Th and predicted a total 

of 89% of the variance in Fult (Table 2.2).  

 

Table 2.2: Results of stepwise multiple regressions for Fult in Met2 and Met3. SEE = 
standard error of estimate. 

 Fult regression equation R2 Adjusted R2 SEE (in N) 

Met 2     

    Model 1: Fult = 559 * Ct.Th – 458 N 0.852 0.834 122 

Met3     

    Model 1: Fult = 30.5 * Sρ.min – 34 N 0.752 0.721 129 

    Model 2: Fult = 20.5 * Sρ.min + 302 * Ct.Th – 386 N 0.914 0.889 81 
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2.5 DISCUSSION 

Using vQCT scanning and processing methods directly applicable to in vivo 

testing, we produced findings that compare favorably with previous investigations using 

excised bones to predict bending strength in human metatarsals. To our knowledge, this 

is the first attempt to implement bone axis realignment of human vQCT image data, as 

well as the first use of buckling ratio and density-weighted bending strength indices in 

foot bones.  

In contrast to previous research using metatarsals (Courtney et al., 1997; 

Muehleman et al., 2000), we found that geometric bending strength indices (Iρ.min and 

Sρ.min) were more predictive of ex vivo ultimate force than BMD. Courtney et al used 

DXA to compute areal BMD at the mid-diaphysis in 11 pairs of excised Met2 and Met3 

samples, then conducted fracture testing in a 4-point loading configuration. Fult values for 

3-point and 4-point loading are not directly comparable, but computing Mult allows 

comparison between the testing techniques. Our results for Mult (Met2 = 4.72 ± 2.47 

N*m, Met3 = 3.36 ± 2.01 N*m for Met3) are roughly 30% lower for Met2 and 40% 

lower for Met3 than values computed based on Fult data in Courtney et al (Met2 = 6.5 ± 

3.8 N*m, Met3 = 5.5 ± 3.0 N*m), which can attributed in part to the older age of our 

cadaver samples (83 ± 13 yrs) compared to an average age of 63 yrs in Courtney et al. 

The authors also computed areal bone geometric measures (thickness, IArea.min, and 

IArea.max) using a binary definition of bone and non-bone material based on a digital 

photograph of a single cross-section near the mid-diaphysis. BMD was a strong predictor 

of metatarsal strength (r2 = 0.81-0.83) whereas geometric properties neither correlated 

significantly with strength nor contributed additional significance in stepwise multiple 
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regression (Courtney et al., 1997). Another study (Muehleman et al., 2000) compared 

DXA and pQCT measures of BMD and bone geometry as predictors of failure strength of 

excised Met2 samples in a cantilever loading configuration and found similar results: 

BMD was the strongest correlate of failure load for both DXA (r2 = 0.40) and pQCT (r2 = 

0.46), and geometric strength indices did not correlate significantly to bone failure 

strength.  

These previous analyses used areal measures of bending strength based on an 

assumption of unit density in bone material. Our findings suggest that density-weighted 

geometric bending parameters were more highly correlated to Fult than areal measures. A 

density-weighted approach may lessen the effects of suboptimal spatial resolution by 

improving the density resolution. Additionally, both papers utilized cadaver metatarsals 

that were excised before imaging. It is not clear that similar accuracy and precision of 

BMD and geometric indices would be achieved using in vivo techniques. Future clinical 

utility of DXA or pQCT rests on the ability to replicate findings using a technique 

applicable to in vivo testing. Our novel technique allows measurement of cross-sectional 

strength properties using vQCT scanning and post-processing bone axis realignment.  

Numerous bone quantity and geometric strength parameters measured with the 

novel vQCT method relate strongly to Fult. For both bones, vQCT-based indices of 

bending strength accounted for more variance in Fult than BMD, and density-weighted 

indices of bending strength were superior to areal unit density indices. Some caution 

should be taken regarding the findings from the regression analyses, as correlation 

coefficients are potentially volatile with such a small number of samples relative to the 

number of independent variables included. The single highest correlate of Fult in Met2 
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and Met3 was mid-diaphysis Ct.Th. The strong relationship between mid-diaphysis Ct.Th 

and Fult is highly relevant to changes that occur due to aging, as bones maintain measures 

of bending strength (despite age-related loss in BMD) through a process of homeostatic 

expansion that leaves bones at elevated risk for focal cortical shell weakness and 

fractures (Beck, 2007). Future analyses may assess whether the strong relationship 

between Ct.Th and Fult persists for younger or athletic populations.  

One limitation of this study is that clinical vQCT spatial resolution (0.4mm 

isotropic) leads to partial volume effects that limit the ability to determine Ct.Th directly 

(Beck, 2007). To adequately distinguish cortical and trabecular bone would require voxel 

spatial resolution of roughly 100 μm (0.1 mm) (Beck, 2007) which is currently limited to 

HR-pQCT and micro-computed tomography (μCT) and thus not applicable to in vivo 

scanning of foot bones. Future investigations using cadaver samples may validate the 

vQCT-based methods using high resolution μCT (spatial resolution 10-30 μm) as a gold 

standard to optimize vQCT thresholds and study changes in cortical porosity (Zebaze et 

al., 2010). Similarly, μCT validation of vQCT measures could be used in future research 

to assess bone quality and fracture risk in tarsal bones, which have predominantly 

trabecular bone and are subjected to different loading modes than the metatarsals 

(Diederichs et al., 2009). 

A potential future direction using vQCT-based assessment of metatarsal strength 

indices is to relate the predicted ultimate loading capacity to in vivo loading calculated 

using plantar pressure measurement. Stokes et al (Stokes et al., 1979) estimated 

compressive force, shear force, and bending moments in metatarsals using plantar 

pressure mapping, videographic assessment, and cadaver-based estimates of bone 



 

29 

geometry. The methods we report here could be used as direct measures of bone quantity 

and geometry, in lieu of the estimated geometry calculated by Stokes et al. Furthermore, 

vQCT-based assessment of metatarsal strength indices could be combined with direct in 

vivo assessment of metatarsal strain (Arndt et al., 2002) to provide a full representation of 

the interplay among bone structure, loading, and deformation.  

In conclusion, this study represents the novel development and ex vivo validation 

of a clinically applicable vQCT-based method to assess human metatarsal strength. The 

methods can be used for in vivo imaging to non-invasively estimate bone strength and 

fracture risk by providing direct, volumetric measurement of BMD and bone geometric 

strength indices. Our findings suggest that average mid-diaphysis bone thickness, 

buckling ratio, minimal moment of inertia and minimal section modulus may be 

important indices of metatarsal strength in future in vivo studies. 

 
  



 

30 

 
CHAPTER 3 

 

Impact of Charcot neuropathic osteoarthropathy on metatarsal 

bone mineral density and geometric strength indices 

Status of resulting manuscript: in review, Bone 
 
Authors: David J. Gutekunst, Kirk E. Smith, Paul K. Commean, Kathryn L. Bohnert, 
Fred W. Prior, and David R. Sinacore 

 
  



 

31 

3.1 ABSTRACT  

Charcot neuropathic osteoarthropathy (CN), an inflammatory condition characterized by 

rapid and progressive destruction of pedal bones and joints, is a common precursor to 

deformity and ulceration in individuals with diabetes mellitus (DM) and peripheral 

neuropathy (PN). Repetitive, unperceived joint trauma may trigger initial CN damage, 

leading to a proinflammatory cascade that can result in osteolysis and contribute to 

subsequent neuropathic fracture. The purpose of this study was to characterize osteolytic 

changes related to development and progression of CN by comparing BMD and bone 

geometric strength indices derived from volumetric quantitative computed tomography in 

twenty individuals with DM+PN to twenty age-, sex-, and race-matched individuals with 

DM+PN and acute CN. We hypothesized that individuals with acute CN would have 

decreased BMD and decreased Tt.Ar, Ct.Ar, Smin, and Ct.Th in the proximal, central, and 

distal diaphyseal regions of Met2 and the fifth metatarsal (Met5). Results showed that bone 

mineral density was lower at all diaphyseal regions in both involved and uninvolved feet of 

CN participants compared to DM+PN participants, with greater reductions in involved CN 

feet compared to uninvolved CN feet. There was a non-significant increase in total area and 

cortical area in the CN metatarsals, which helps explain the finding of similar minimum 

section modulus in DM+PN and CN subjects despite the CN group’s significantly lower 

BMD. Larger cortical area and minimum section modulus are typically considered signs of 

greater bone strength due to higher resistance to compressive and bending loads, respectively. 

In CN metatarsals, however, these findings may reflect periosteal woven bone apposition, i.e. 

a hypertrophic response to injury rather than increased fracture resistance. 
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3.2 INTRODUCTION  

Diabetes mellitus (DM) and peripheral neuropathy (PN) are the most common 

precursors of Charcot neuropathic osteoarthropathy (CN) (Lee et al., 2003), a 

progressive, inflammation-mediated destruction of bones and joints leading to fracture, 

subluxation, and dislocation, which in turn result in progressive foot deformities that 

increase the risk of plantar ulceration, infection, and ultimately amputation (Frykberg and 

Belczyk, 2008; Rogers et al., 2011; Thompson, Jr. and Clohisy, 1993). The etiology of 

CN remains incompletely understood, though previous research suggests that 

development and progression of CN are related to elevated biomechanical loading 

(Armstrong and Lavery, 1998), joint mal-alignment (Sinacore et al., 2008; Armstrong et 

al., 1997; Cavanagh et al., 1994; Chantelau, 2005) and focal bone loss (Sinacore et al., 

2008; Bem et al., 2010; Chantelau, 2005). BMD may also affect the clinical 

manifestation of CN: a clinical presentation of pedal fracture is more common in 

individuals classified as osteopenic or osteoporotic using DXA at the hip, whereas pedal 

subluxations and dislocations are more common in those with normal or high BMD 

(Herbst et al., 2004). Acute CN patients have reduced DXA-derived BMD in the lower 

leg compared to control subjects with neuropathy (Young et al., 1995). Sinacore et al. 

used quantitative ultrasound and found lower estimated calcaneal BMD in CN patients 

compared to matched non-diabetic controls (Sinacore et al., 2008), though Petrova et al. 

found lower BMD only in CN patients with Type 1 but not Type 2 DM (Petrova et al., 

2005).  

The metatarsals are the most frequent site of foot fracture (Cundy et al., 1985; 

Weinfeld et al., 1997; Wolf, 1998), and a link has been suggested between focal 
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osteopenia in the feet and an increased risk of metatarsal fracture (Cundy et al., 1985; 

Gill et al., 1997) and “silent” bone stress injuries (Chantelau et al., 2007) in individuals 

with DM and PN. However, neither DXA nor calcaneal QUS provides a direct, 

quantitative assessment of BMD in the pedal bones most prone to fracture. A semi-

automated bone segmentation technique using vQCT to compute bone volumes and 

BMD for the tarsals and metatarsals has been recently developed (Commean et al., 2009; 

Commean et al., 2011), though the importance of BMD as a predictor of acute or overuse 

metatarsal fracture remains unclear. In other long bones, geometric strength indices have 

been more highly correlated to fracture risk than has BMD alone. For example, in the 

tibia, the strongest predictors of fracture include geometric indices that reflect resistance 

to compression, such as Ct.Ar, and resistance to bending loads, such as minimum 

moment of inertia (Imin) and minimum section modulus (Smin) (Evans et al., 2008; 

Brudvig et al., 1983; Kontulainen et al., 2008; Liu et al., 2007; Manske et al., 2006). In 

the femoral neck, cortical shell weakness plays a larger role in fracture risk. Increased hip 

fracture risk is associated with decreased Ct.Th and increased BR (LaCroix et al., 2010; 

Melton, III et al., 2005; Szulc et al., 2006), thought to be caused by an age-related 

homeostatic expansion of the periosteal surface with a concomitant larger expansion of 

the endosteal cavity (Sigurdsson et al., 2006; Ward et al., 2011) which helps to maintain 

bending strength despite declining bone mineral content (Beck, 2007; LaCroix et al., 

2010). The relationship between fracture risk and bone geometry has not been studied in 

detail in human metatarsals, though cadaver studies have shown strong relationships 

between ex vivo ultimate bending loads and BMD (Courtney et al., 1997; Muehleman et 
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al., 2000) and indices of bending strength (Imin, Smin) and cortical shell integrity (Ct.Th) 

(Gutekunst et al., 2012).  

The purpose of this study was to characterize bony changes that may lead to 

increased fracture risk due to CN by comparing BMD and bone geometric strength 

indices in the metatarsals of individuals with DM, PN, and acute CN to a matched group 

with DM and PN. Bone geometric strength indices reflect resistance to fracture in 

compressive (Tt.Ar, Ct.Ar), bending (Smin), and local buckling (Ct.Th) fracture loading 

modes. Met2 and Met5 were chosen because they are representative medial and lateral 

column bones, as well as common sites of neuropathic fracture (Cundy et al., 1985; 

Chantelau et al., 2007). Since Met2 and Met5 may be prone to highly focal 

inflammation-mediated osteolysis, BMD and geometric strength indices were assessed in 

discrete locations representing the proximal, central, and distal diaphyseal regions. 

 
3.3 MATERIALS AND METHODS 

3.3.1 Subjects 

Subjects were recruited from the clinical population receiving orthopedic and 

physical therapy treatment for foot and ankle complications at Barnes-Jewish Hospital 

and the Washington University School of Medicine in St Louis, Missouri. Twenty 

individuals with acute onset CN and twenty individuals with DM and PN who did not 

have CN agreed to participate and provided written informed consent in accordance with 

the guidelines of the Institutional Review Board and the Human Research Protection 

Office. Three individuals in the CN group (2 females, 1 male) were excluded from the 

analysis due to severe joint inflammation in the CN-Involved foot that prevented bone 
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segmentation processing. Demographic data for the 17 remaining CN subjects and the 20 

DM+PN subjects are presented in Table 3.1. 

Table 3.1: Demographic and physical information for bone strength comparison. 

 DM+PN CN 

N 20 17 

Sex (F/M) 11/9 9/8 

Ethnicity 13 White 
7 African-American 

 

12 White 
4 African-American 

1 Hispanic 

Age (years) 57.6 ± 10.8 54.9 ± 9.7 

Height (cm) 171.7 ± 8.4 174.2 ± 7.5 

Mass (kg) 94.9 ± 25.7 109.6 ± 26.0 

Body mass index 
(kg/m2) 

32.0 ± 8.1 36.0 ± 7.7 

Diabetes Type 
(Type1/Type2) 

2/18 3/14 

HbA1c (%) 7.8 ± 1.4 7.8 ± 1.8 

DM duration (years) 13.9 ± 12.6 17.4 ± 10.8 

PN duration (years) 5.2 ± 3.5 7.4 ± 4.8 

Met2 length (mm) 79.4 ± 4.2 78.7 ± 5.7 

Met5 length (mm) 

 

75.4 ± 3.7 73.8 ± 4.5 

3.3.2 vQCT Scans and Bone Segmentation Processing 

Volumetric QCT scans were taken at the Center for Clinical Imaging and 

Research at the Washington University School of Medicine using a Siemens SOMATOM 

Definition CT scanner (Siemens Medical Systems, Malvern, PA, USA) with acquisition 

parameters of 220 mA·s, 120 kVp, pitch = 1, rotation time 0.33s, and a 512x512 matrix. 
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A B70f reconstruction kernel was used to create vQCT images at 0.6mm slice interval 

with in-plane resolution of 0.4-0.55mm (Commean et al., 2011; Smith et al., 2011). A 

bone calibration phantom (Image Analysis Inc., Columbia, KY, USA) was included with 

each scan to allow conversion from X-ray absorptiometry in HU to equivalent calcium 

HA concentration in mg/cm3. The bone segmentation process, which leads to a series of 

bone object maps (Figure 3.1), has been described in detail elsewhere (Liu et al., 2008; 

Commean et al., 2011). In brief, a density-based filtering algorithm was used to 

distinguish bone tissue from surrounding soft tissue using ImageJ (NIH Research 

Services Branch, Bethesda, MD), then bones were segmented from each other at their 

articulating surfaces using Analyze software (Biomedical Imaging Resource, Mayo 

Clinic, Rochester, MN) and a custom graph-cut software tool (Liu et al., 2008).  
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Figure 3.1: Bone segmentation processing. Raw vQCT image and filtered, segmented, filled 
bone object maps for tarsals and metatarsals for (A) CN-Involved foot and (B) CN-Uninvolved 
foot. 

 

3.3.3 Bone Mineral Density and Geometric Strength Indices 

Full methods for bone geometric strength processing are provided in Chapter 2 

and in the literature (Gutekunst et al., 2012). In brief, the segmented bone object maps 

were overlaid on the raw grayscale voxel data, and the resulting voxel datasets (XYZ 

position and HU values) were transformed along each bone’s longitudinal axis using the 

BoneJ plug-in (Doube et al., 2010) within ImageJ. Realigned voxel data were 

interpolated to isotropic voxels (0.5mm dimension) in Analyze® software, then exported 

to custom Excel (Microsoft) macros. In the processing macros, HU values were 

converted to equivalent BMD (mg/cm3) using scan-specific HA calibration phantoms.  

Calculations of bone geometric strength indices were modeled after guidelines for 

μCT (Bouxsein et al., 2010). For each realigned slice, BMD (mg/cm3) was computed by 

A B 



 

38 

first summing the total equivalent bone mineral content (mg), i.e. the product of all 

positive voxel BMD values and each voxel’s volume, then dividing the bone mineral 

content by the total volume within the periosteal window. Thus the BMD values reported 

here represent the average BMD over the total tissue volume within each diaphyseal 

region. Smin (mg*mm), which is inversely proportional to bending stress within the bone 

(Turner and Burr, 1993). Smin was measured by computing the density-weighted 

minimum cross-sectional Imin (mg*mm2) and dividing by the distance from the density-

weighted center of mass to the periosteal edge, as described in Chapter 2 and in the 

literature (Gutekunst et al., 2012). Tt.Ar was computed by summing total cross-sectional 

area within the periosteal envelope, including the medullary cavity, whereas Ct.Ar was 

computing by summing the cross-sectional area of voxels exceeding a threshold of 300 

mg/cm3. The spatial resolution of the vQCT scans prevented direct measurement of 

Ct.Th, and instead the average Ct.Th was computed using Tt.Ar and Ct.Ar with the 

assumption that the metatarsal diaphysis is roughly a circular annulus. Bone length was 

computed by multiplying the slice thickness (0.5 mm) by the total number of slices. 

Proximal, central, and distal diaphyseal regions were defined as 33%, 50%, and 67%, 

respectively, of the distance from the most proximal slice to the most distal slice of the 

realigned bones (Figure 3.2). For each region, BMD and geometric strength indices were 

averaged over five slices (2.5 mm) to reduce noise.  
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Figure 3.2: Exemplar sample of a segmented second metatarsal showing diaphyseal regions (top) 
and associated bone mineral density profile along the bone’s longitudinal axis (bottom) 

3.3.4 Statistical Analyses 

 Subject sex, ethnicity, and DM type were compared between groups using chi-

square tests. Age, height, weight, body mass index, DM duration, and PN duration were 

compared using the Student’s t-test. Additionally, a two-way ANOVA (Group * Foot) 

was used to compare the lengths of Met2 and Met5 to ensure that any differences in bone 

geometric strength indices (especially Tt.Ar, Ct.Ar and Smin) were not due to differences 

in overall bone size. For each dependent variable (BMD, Smin, Tt.Ar, Ct.Ar, and Ct.Th), a 

three-way analysis of variance was used to test the effects of Group, Foot, and Region. 
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For CN subjects, foot was coded as Involved or Uninvolved. For DM+PN subjects, 

neither foot was affected by CN, but for statistical comparisons between the two groups it 

was necessary to designate one foot per subject as “involved.” We arbitrarily chose the 

right feet of DM+PN subjects as “involved” and then tested the hypothesis that there 

would be no side-to-side differences in DM+PN subjects. Planned comparisons at each 

bone region included (a) group comparisons for matched feet (CN-Involved versus 

DM+PN Right), and (b) side-to-side comparisons within Group (Involved versus 

Uninvolved for CN subjects and Right versus Left for DM+PN subjects). The 

significance level was set at α < 0.05, with Bonferroni adjustments for multiple post-hoc 

comparisons. All statistical analyses were completed in SPSS version 20.0 (IBM Corp., 

Chicago, IL, USA).  

 

3.4 RESULTS 

The two groups did not differ in any demographic or physical characteristics 

(Table 3.1). Table 3.2 shows the mean and standard deviation for each combination of 

group and foot, averaged across the three diaphyseal regions. Control DM+PN subjects 

had no side-to-side differences for BMD or any bone geometric strength measure. BMD 

showed a significant main effect of group, as CN subjects had 14% lower BMD in Met2 

(p = 0.002) and 11% lower BMD in Met5 (p = 0.019). The CN subjects had significantly 

lower BMD in the Involved foot compared to the Uninvolved foot, roughly 7% lower for 

both Met2 and Met5. Both Tt.Ar and Ct.Ar were nominally higher (roughly 10-15%) in 

CN subjects compared to DM+PN, though neither reached statistical significance for 
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either Met2 or Met5, and there were no side-to-side differences in either areal measure in 

the CN subjects. Smin was not different between CN and DM+PN, though in Met2 there 

was a trend for lower Smin in the CN-Involved foot compared to CN-Uninvolved (9% 

lower, p = 0.06) and in Met5 there was a significant 14% reduction in CN-Involved 

compared to CN-Uninvolved (p = 0.004).  
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Table 3.2: Bone mineral density and bone geometric strength indices, averaged across diaphyseal regions 

 Diabetes Mellitus Peripheral Neuropathy 
(DM+PN) 

Charcot Neuroarthropathy (CN) 

 

 

Main effect: 

DM+PN vs CN Left (L) Right (R) L vs R Uninvolved (U) Involved (I) U vs I 

BMD (mg/cm3) 

       Met2 

       Met5 

 

1117 ± 141 

946 ± 147 

 

1105 ± 134 

962 ± 137 

 

p = 0.60 

p = 0.54 

 

997 ± 157 

877 ± 131 

 

923 ± 155 

814 ± 162 

 

p = 0.005 

p = 0.026 

 

p = 0.002 

p = 0.019 

Tt.Ar (mm2) 
       Met2 
       Met5 

 
62.1 ± 10.2 
86.2 ± 19.2  

 
64.1 ± 12.7  
86.5 ± 18.0  

 
p = 0.20 
p = 0.83 

 
73.7 ± 19.8 
95.1 ± 26.7  

 
72.8 ± 25.0 
95.8 ± 24.7  

 
p = 0.79 
p = 0.80 

 
p = 0.07 
p = 0.21 

Ct.Ar (mm2) 
       Met2 
       Met5 

 
43.6 ± 7.1 
53.2 ± 10.5 

 
45.0 ± 9.4 
54.6 ± 10.7 

 
p = 0.52 
p = 0.36 

 
51.6 ± 13.1 
61.8 ± 17.0 

 
51.1 ± 21.3 
59.4 ± 15.4 

 
p = 0.83 
p = 0.17 

 
p = 0.10 
p = 0.13 

Smin (mg*mm) 
       Met2 
       Met5 

 
28.5 ± 5.8 
31.1 ± 11.6 

 
29.6 ± 7.7 
32.7 ± 10.7 

 
p = 0.36 
p = 0.31 

 
31.4 ± 10.7 
37.3 ± 16.7 

 
28.8 ± 11.6 
32.0 ± 14.6 

 
p = 0.061 
p = 0.004 

 
p = 0.72 
p = 0.52 

Ct.Th (mm) 
       Met2 
       Met5 

 
2.05 ± 0.28 
2.02 ± 0.27 

 
2.06 ± 0.33 
2.08 ± 0.28 

 
p = 0.80 
p = 0.29 

 
2.17 ± 0.37 
2.23 ± 0.40 

 
2.15 ± 0.62 
2.14 ± 0.39 

 
p = 0.86 
p = 0.22 

 
p = 0.51 
p = 0.19 
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When the proximal, central, and distal regions were considered individually, there 

were no side-to-side differences in DM+PN subjects for BMD or bone geometric strength 

indices in any region. Thus, DM+PN values are averaged across left and right feet in 

Figures 3.3 – 3.7. As shown in Figure 3.3, BMD was significantly lower in CN 

individuals than DM+PN controls at all regions in both Met2 and Met5. In Met2, the CN-

Involved feet had 20% lower BMD than the DM+PN subjects at the proximal region (p < 

0.001), 16% lower BMD in the central region (p = 0.001), and 14% in the distal region (p 

= 0.006). The CN-Involved feet also had 9% lower BMD compared to the CN-

Uninvolved feet in the proximal region and central regions (both p < 0.01). In Met5, the 

CN-Involved feet had 16% lower BMD than the DM+PN subjects at the proximal region, 

11% lower in the central region, and 20% lower in the distal region. DM+PN controls 

showed no side-to-side differences, whereas CN individuals had 8% lower BMD in their 

involved feet compared to uninvolved feet. Regional comparisons showed 5-6% lower 

BMD in the proximal and central regions of CN-Involved feet compared to Uninvolved 

(p > 0.05), and 14% lower BMD in the distal region (p = 0.008).  
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Figure 3.3: Group mean ± standard error for bone mineral density (mg/cm3) in the proximal, 
central, and distal diaphyseal regions of (A) Metatarsal 2, and (B) Metatarsal 5. * p < 0.01 for CN 
foot compared to DM PN feet. †† p < 0.01 for CN-Involved compared to CN-Uninvolved.  

 

As shown in Figures 3.4 and 3.5, compared to DM+PN subjects, the CN subjects 

had nominally larger (p > 0.05) cross-sectional Tt.Ar and Ct.Ar across all regions. The 

CN subjects had 11-18% higher Tt.Ar in Met2 and 8-20% higher Tt.Ar in Met5, though 
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only the proximal region of Met2 and the distal region of Met5 showed a trend toward 

statistical significance, with 20% larger Tt.Ar in the proximal region of Met2 (82 mm2 

versus 98 mm2, p = 0.055) and 18% larger Tt.Ar in the distal region of Met5, (62 mm2 

versus 73 mm2, p = 0.095).  

 

 

Figure 3.4: Group mean ± standard error for total cross-sectional area, Tt.Ar (mm2) in the 
proximal, central, and distal diaphyseal regions of (A) Metatarsal 2, and (B) Metatarsal 5.  
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Figure 3.5: Group mean ± standard error for cortical cross-sectional area, Ct.Ar (mm2) in the 
proximal, central, and distal diaphyseal regions of (A) Metatarsal 2, and (B) Metatarsal 5.  
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lower for the proximal region of Met2 (p = 0.029), 14% lower for the proximal region of 

Met5 (p = 0.008), 13% lower in the central region of Met5 (p = 0.010), and 17% lower in 

the distal region of Met5 (p = 0.010). There were no group differences or side-to-side 

differences for Ct.Th in any region (Figure 3.7).  

 

 

Figure 3.6: Group mean ± standard error for minimum section modulus, Smin (mg*mm2) in the 
proximal, central, and distal diaphyseal regions of (A) Metatarsal 2, and (B) Metatarsal 5. † p < 
0.05 for CN-Involved compared to CN-Uninvolved;  †† p < 0.01 for CN-Involved compared to 
CN-Uninvolved. 
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Figure 3.7: Group mean ± standard error for average cortical thickness, Ct.Th (mm) in the 
proximal, central, and distal diaphyseal regions of (A) Metatarsal 2, and (B) Metatarsal 5.  
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3.5 DISCUSSION 

This is the first study to quantify the effects of acute CN on BMD and bone 

strength-related indices in the metatarsals using vQCT. In both Met2 and Met5, which are 

common sites of foot fracture (Wolf, 1998; Weinfeld et al., 1997), we report decreased 

BMD throughout the diaphysis. The lower BMD in the CN uninvolved feet compared to 

DM+PN controls suggests a systemic effect of inflammation, with an additional focal 

effect of inflammation in the CN involved foot. These results reinforce and clarify a 

previous finding of significant reductions in calcaneal BMD (estimated by QUS) in 

involved CN feet compared to uninvolved CN feet, with both lower than matched non-

DM controls (Sinacore et al., 2008). The observed reduction in calcaneal BMD was 

related to inflammation, assessed via pedal skin temperature measurements that showed a 

4°C elevation in the involved CN feet (Sinacore et al., 2008). 

Elevation of pedal temperature provides a clinically observable sign of 

inflammation and reflects upregulation of inflammatory pathways in the circulation. 

Jeffcoate, Game, and Cavanagh (Jeffcoate et al., 2005) first proposed that acute CN is 

initiated by a minor injury (often undetected) that triggers a cascade of proinflammatory 

cytokines, including tumor necrosis factor alpha (TNF-α) and interleukin beta (IL-β). 

Increased levels of proinflammatory cytokines in turn lead to increased expression of NF-

κB and a resulting increase in osteoclastogenesis, which further weakens the bone and 

leads to neuropathic fracture if loading continues on an insensate foot. This proposed 

inflammatory mechanism has been corroborated by a recent study comparing peripheral 

monocytes from acute CN to monocytes from DM+PN controls. Individuals with acute 

CN had increased levels of proinflammatory cytokines TNF-α, IL-β, and IL-6, as well as 
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decreased levels of anti-inflammatory cytokines IL-4 and IL-10 (Uccioli et al., 2010). 

These results support earlier findings that osteoclast activity is elevated in CN, with no 

significant change in osteoblast activity (Gough et al., 1997).  

There is strong epidemiological evidence of increased fracture risk in individuals 

with both Type 1 and Type 2 DM. In Type 1 DM, the high fracture risk is often attributed 

to lower BMD (Herbst et al., 2004), though an increased risk of foot and ankle fracture 

persists even in Type 2 DM individuals with high BMD(Schwartz et al., 2001) or when 

the effects of BMD have been accounted for statistically(Bonds et al., 2006; Melton, III 

et al., 2008). Previous research at other anatomical sites would suggest that the increased 

fracture risk observed in individuals with DM, PN, and CN would be associated with 

decreased geometric strength indices such as Smin, Tt.Ar, Ct.Ar, and Ct.Th, which have 

been predictive of fracture risk in the tibia (Brudvig et al., 1983; Evans et al., 2008; Beck 

et al., 2000), femur (Kaptoge et al., 2008; Beck et al., 2000; Melton, III et al., 2005), and 

metatarsals (Muehleman et al., 2000; Gutekunst et al., 2012). Perhaps most relevant to 

the current study is the cadaver validation of the vQCT-based techniques to quantify 

BMD and geometric strength indices presented in Chapter 2 (Gutekunst et al., 2012), in 

which Smin and Ct.Th were the strongest predictors of ex vivo bone strength, together 

accounting for 83-89% of the variance in ultimate force measured during three-point 

bending tests.  

 Results from the present analysis are mixed: we report reduced BMD in both 

Met2 and Met5 at all regions within involved and uninvolved CN feet, but with a 

maintenance of Ct.Th and non-significant elevation of Tt.Ar, Ct.Ar, and Smin. Based on 

previous research, these geometric results would suggest that CN metatarsal strength 



 
 

51 

would be maintained or even enhanced, which is unexpected given the known fracture 

risk in CN metatarsals. One explanation for the reduction in BMD with maintained 

geometric strength indices is that the CN bones are responding functionally by increasing 

resistance to bending and buckling loads, and that any increased fracture risk in CN is 

due primarily to elevated biomechanical loading rather than a reduction in bone strength. 

Another explanation for the Tt.Ar and Ct.Ar findings may be that the 

inflammatory process associated with CN leads to increased osteoclast activity and bone 

turnover, which at the periosteal border may lead to a hypertrophic response and an 

expanded, less dense region of bone callus. This would be consistent with the findings of 

reduced BMD in the CN group. Current vQCT technology does not permit precise 

quantification of parameters such as cortical porosity or woven bone formation. Thus the 

observed non-significant increase in Ct.Ar may reflect the metatarsals’ response to injury 

rather than a true cortical expansion that would impart greater mechanical strength in 

compression and bending. The spatial resolution used in this analysis (0.5 mm isotropic 

voxels), while near the current limits of clinical vQCT capabilities, leads to spatial 

averaging of bone and non-bone material. As a result, it is more difficult to set a precise 

threshold to distinguish bone from marrow, or trabecular bone from cortical bone. 

Choosing a threshold that is too low can lead to inclusion of voxels that are not 

predominantly cortical bone and an overestimation of Ct.Ar and Ct.Th, but choosing a 

threshold that is too high can lead to erroneous discontinuities in the thinning cortical 

shell. Others have encountered similar issues with spatial averaging and have chosen the 

same threshold (300 mg/cm2) to define bone and non-bone material (Borggrefe et al., 

2010). A recent study using HR-pQCT in the radius and tibia of Type 2 DM patients 
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reported higher values for geometric indices of bone strength, as we have shown here, but 

inefficient redistribution of bone mass that could result in impaired bending strength 

(Burghardt et al., 2010). Future imaging studies of CN foot bones with improved spatial 

resolution, such as in vivo HR-pQCT or cadaver studies using μCT, will limit the effects 

of spatial averaging, permit a more precise threshold to be applied, and provide a clearer 

understanding of what is occurring at the structural level of CN bone.  

In conclusion, this study presents a novel techniques to assess region-specific 

BMD and bone geometric strength indices in the neuropathic foot using clinical vQCT. In 

individuals with acute CN, reduced BMD was found at all regions in both the involved 

and uninvolved CN feet, with significantly greater bone reductions in the involved foot 

compared to uninvolved. There were non-significant elevations in CN subjects for indices 

of bone strength in compressive loading (Ct.Ar), bending (Smin), and cortical buckling 

(Ct.Th), though these findings may reflect an incomplete hypertrophic response to injury 

(Burghardt et al., 2010) rather than a true improvement in fracture resistance. Future 

research using the methodologies presented here will assess changes in BMD and 

geometric indices as CN progresses from the acute stage, as well as identify bone 

properties that may predict which individuals with DM and PN will go on to develop CN. 

Finally, future imaging studies may help elucidate the pathophysiological links between 

inflammation, altered bone morphology, and fracture risk in Charcot neuroarthropathy.  
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CHAPTER 4 
 

Development and measurement precision of anatomically relevant 
three-dimensional foot bone-to-bone orientation angles derived 
from quantitative computed tomography 
 
Status of resulting manuscript: in review, Journal of Foot and Ankle Research 
 
Authors: David J. Gutekunst, Lu Liu, Tao Ju, Fred W. Prior, and David R. Sinacore 
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4.1 ABSTRACT:  

Surgical treatment and clinical management of foot pathology require accurate, 

reliable assessment of foot deformities. Foot and ankle deformities are multi-planar and 

therefore difficult to quantify by standard uni-planar radiographs. Three-dimensional 

(3D) imaging modalities have defined bone axes based solely on bone dimensions, which 

limits biomechanical relevance. Defining 3D bone orientations using bone surface 

landmarks ensures biomechanical relevance, though quantifying measurement precision 

in bone-to-bone orientations is necessary to establish minimum clinically-relevant 

differences. Automated landmark placement method may lessen subjectivity in foot 

deformity assessment. The goal of this study was to assess measurement precision of 

landmark-based, 3D bone-to-bone orientations of hindfoot bones for expert testers and a 

template-based automated method.  

Two testers completed two repetitions each for twenty feet (10 right, 10 left), 

placing anatomic landmarks on the surfaces of calcaneus, talus, cuboid, and navicular. 

Landmarks were also recorded using the automated method. 3D bone axes were 

computed from landmark positions, and Cardan sequences produced sagittal, frontal, and 

transverse plane angles of hindfoot bone-to-bone orientations. Angular precision was 

assessed as root mean square standard deviations (RMS-SD) for intra-tester, inter-tester, 

and tester versus automated.  

RMS-SD intra-tester precision ranged from 1.4-3.6° and 2.4-6.1°, respectively, 

for the two testers, which compares favorably to uni-planar radiographic precision. 

Greatest variability was in Navicular:Talus sagittal plane angle and Cuboid:Calcaneus 
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frontal plane angle. Inter-tester reliability was comparable to intra-tester reliability of the 

less reliable tester. Precision of the automated method versus the testers was comparable 

to each tester’s internal precision, suggesting the automated method is a valid, time-

saving technique for foot deformity assessment. 

 

4.2 INTRODUCTION 

The task of describing foot deformities accurately and reliably presents a 

challenge to orthopedic surgeons, podiatrists, and rehabilitation specialists. Bony 

deformities in the foot and ankle are multi-planar and therefore difficult to quantify by 

standard uni-planar radiographic measures. Much research has focused on developing 

and validating multi-segment foot and ankle models using optoelectronic motion capture 

based on skin-mounted reflective markers placed on palpable anatomic landmarks 

(Stebbins et al., 2006; Simon et al., 2006). Three-dimensional (3D) imaging techniques 

such as magnetic resonance imaging (MRI) (Woodburn et al., 2002; Stindel et al., 1999a; 

Stindel et al., 1999b) and quantitative computed tomography (QCT) (Ledoux et al., 2006; 

Beimers et al., 2008) have been used to quantify 3D bone-to-bone orientation angles in 

vivo, though these studies use the principal components method to define bone coordinate 

axes, meaning that the bone orientation axes reflect solely the bones’ shape and may 

therefore lack anatomic relevance. A recent in vitro analysis utilized embedded bone pins 

to define and track 3D bone orientation axes using anatomically-relevant bone surface 

features (Whittaker et al., 2011), and others have proposed anatomy-based axes to track 

morphological differences in the subtalar and talocrural joints (Parr et al., 2012). To our 
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knowledge, no previous research has described methods and established bone-to-bone 

angular precision for in vivo imaging using anatomically-relevant definitions of foot bone 

axes.  

The purposes of this study were to (1) describe an anatomic landmark-based 

method of defining 3D bone orientation axes for foot bones using bone atlases derived 

from segmented vQCT surface images; (2) determine intra-tester and inter-tester angular 

precision for select hind foot angles; and (3) assess the agreement between expert testers 

and a template-based automated landmarking method.  

 

4.3 METHODS 

4.3.1  vQCT Processing and Bone Atlases 

Ten subjects underwent bilateral vQCT scans of the foot and ankle. Bones were 

segmented from surrounding soft tissues and from each other using ImageJ filtering plug-

ins, Analyze® software (Biomedical Imaging Resource, Mayo Clinic, Rochester, MN), 

and custom semi-automated graph cut software (Liu et al., 2008; Commean et al., 2011; 

Commean et al., 2009). The end result of segmentation is a set of binary, filled object 

maps which define the vQCT voxel coordinates for each bone. The segmented object 

maps and grayscale voxel data were imported into a custom Bone Measurement Tool, a 

fully automated pipeline for registering subdivision-based anatomical atlases (Liu et al., 

2012). The Bone Measurement Tool allows either manual placement of user-defined 

anatomic landmarks on the bone surfaces in a graphical user interface, or automated 
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landmark placement based on a template set of landmarks embedded in the underlying 

bone atlas (Liu et al., 2012).  

4.3.2  Selection of Anatomical Landmarks 

 All 7 tarsal and 5 metatarsal bones were included in the atlas-based landmark 

template, but in the current analysis only the calcaneus, talus, cuboid, and navicular were 

assessed for intra-tester and inter-tester precision of landmark placement and for 

agreement between manual and automated landmarking methods. The two hindfoot 

(calcaneus, talus) and two lesser tarsal (navicular, cuboid) bones were chosen for 

precision analysis because of their importance in foot deformities associated with 

rheumatoid arthritis (Woodburn et al., 2002) and Charcot neuroarthropathy (Schon et al., 

1998; Hastings et al., 2011). Moreover, these four bones influence arch height and foot 

function, and subtalar and mid-tarsal joint deformities frequently lead to mal-alignments 

in the tarso-metatarsal joints and in hindfoot:forefoot coupling (Stebbins et al., 2010). 

Finally, pilot testing of our landmark-based methods suggested that angular 

measurements of hindfoot bones were least reliable, both within and between testers, 

largely because mimicking anatomically-based orientation axes used in radiographic 

measures (Hastings et al., 2011) necessitates identifying bone surface features that are not 

located at bony edges. For example, replicating lateral X-ray measures of talo-calcaneal 

angle or Meary’s angle (Schwend and Drennan, 2003) require placing a landmark on the 

curved surfaces of the calcaneus and talus, which can be challenging to reliably replicate 

on volume-rendered bone surfaces from vQCT. The placement of surface landmarks on 

planar radiographs is very dependent on the technician positioning the foot and ankle 



 
 

58 

relative to the X-ray beam during image acquisition. Therefore, foot positioning 

influences X-ray measures. 

4.3.3  Bone Orientation Axes 

Each bone’s 3D axes were defined based on the locations of 3-4 anatomic 

landmarks. Landmarks were chosen by expert consensus to ensure anatomic relevance 

and consistency with established planar bone axis designations from the orthopedics 

literature (Schon et al., 1998; Steel, III et al., 1980) to produce bone axes in clinically 

relevant anatomical planes. Anatomical landmarks and their spatial precision are 

presented in Table 4.1. The resulting +X axis for each bone was directed roughly to the 

right (medial for left feet and lateral for right feet), +Y was defined as pointing axially 

(primarily anterior), and +Z was directed in a quasi-vertical direction. For all bones 

except navicular, the Y axis was the first axis defined, as the unit vector connecting two 

anatomical landmarks representing the proximal and distal termini of the main 

longitudinal axis of the bone. The second axis was defined as the cross-product of the 

first axis and a temporary (‘dummy’) axis, and the third axis was defined by crossing the 

first and second axes. Bone axis computations for each bone are provided in Table 4.2, 

and a schematic showing landmark placement and bone axes is shown in Figure 4.1. 
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Table 4.1: Anatomic landmarks and marker placement precision 
 
Bone Landmarks Description 

Calcaneus 1. Posterior calcaneus Midpoint of calcaneus posterior facet, centered both medial-laterally and vertically. 

 2.Anterior calcaneus Center of the anterior surface of calcaneus, where calcaneus articulates with cuboid. 

 3.Inferior calcaneus Medial-lateral midline of calcaneus posterior facet, along the inferior border. 

 4.Superior calcaneus Medial-lateral midline of the calcaneus posterior facet, along the superior border. 

Talus 5. Posterior talus At medial-lateral midline of the posterior aspect of talus 
 6. Anterior talus Center of talar head (i.e. centered both medial-laterally and vertically) 

 7. Medial talus Medial edge of dorsum of talus, centered anterior-posteriorly 

 8. Lateral talus Lateral edge of the dorsum of talus, centered anterior-posteriorly 

Cuboid 9. Posterior cuboid Center of proximal cuboid articular surface (articulation with calcaneus) 
 10. Anterior cuboid Center of distal cuboid articular surface (articulation with fifth metatarsal) 

 11. Inferior cuboid Inferior-lateral edge of the tuberosity of cuboid 

 12. Superior cuboid Superior “point” of cuboid, at intersection of lateral, medial, & posterior facets  

Navicular 13. Medial navicular Medial aspect of navicular, centered in the anterior-posterior direction 
 14. Lateral navicular Lateral aspect of navicular; centered in the anterior-poster direction 

 15. Superior navicular Superior surface of navicular; in line with medial-lateral center of the head of talus 
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Table 4.2: Hindfoot bone orientation definitions based on anatomical landmarks (right foot). 

Bone First axis Temporary axis Second axis Third axis 

Calcaneus Ycalc = | 1  → 2 | tcalc = | 3 → 4 | Xcalc = Ycalc X tcalc Zcalc = Xcalc X Ycalc 

Talus Ytal = | 5 → 6 | ttal = | 7 → 8 | Ztal = ttal X Ytal Xtal = Ytal X Ztal 

Cuboid Ycub = | 9 → 10 | tcub = | 11 → 12 | Xcub = Ycub X tcub Zcub = Xcub X Ycub 

Navicular Xnav = | 13 → 14 | tnav = | 13 → 15 | Ynav = tnav X Xnav Znav = Xnav X Ynav 

 

 

Figure 4.1: Atlas-based vQCT surface maps showing (a) all 7 tarsal and 5 metatarsal bones; (b) expanded view of hindfoot bones with labeled 

anatomic landmarks; (c) bone orientation axes derived from anatomical landmarks.
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4.3.4  Angular Precision Assessment 

Two expert testers completed two repetitions each for twenty feet, placing 

anatomic landmarks on the atlas-derived surfaces of calcaneus, talus, cuboid, and 

navicular. Landmarks were also recorded using the automated method based on a 

landmark template embedded within the bone atlases (Liu et al., 2012). Cardan rotation 

sequences (XY’Z”) of bone axes were used to produce sagittal (α), frontal (β), and 

transverse (γ) plane angles of the cuboid with respect to the calcaneus (Cub:Calc), talus 

with respect to the calcaneus (Tal:Calc), navicular with respect to the talus (Nav:Tal), and 

navicular with respect to calcaneus (Nav:Calc). Angular precision for each bone-to-bone 

angular rotation was assessed as root mean square standard deviations (RMS-SD) for 

intra-tester, inter-tester, and each tester versus the automated method.  

 
 

4.4 RESULTS 

 Across sagittal, frontal, and transverse angles for the four bone-to-bone 

orientations analyzed, Tester 1 had lower RMS-SD than Tester 2 (Table 4.3). The single 

highest intra-tester RMS-SD for Tester 2 (Cub:Calc frontal plane angle) was 6.1°, and the 

highest average angular RMS-SD (for Nav:Calc) was 4.9°. Averaged across all planes 

and bone-to-bone orientations, intra-tester precision was 2.3° for Tester 1 and 4.1° for 

Tester 2. Inter-tester precision was slightly lower than the intra-tester precision for Tester 

2, with highest inter-tester variability in the frontal plane angle of Cub:Calc (7.1° RMS-

SD) and the frontal plane angle of Nav:Tal (6.1° RMS-SD). For both testers, precision 

values between manual placement of landmarks and the atlas-based automated method of 
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landmark placement were comparable to intra-tester precision. The average RMS-SD 

values between Tester 1 and the automated method (2.7°) were lower than the average 

RMS-SD values between Tester 1 and Tester 2 (3.7°).  
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Table 4.3: Root-mean square standard deviations (degrees) in sagittal (α), frontal (β), and transverse (γ) bone-to-bone orientation angles for 
manual and automated anatomical landmark placement.  
 
 Intra-tester RMS-SD (°) Inter-tester RMS-SD (°) 

 Tester 1 Tester 2 Tester 1 vs Tester 2 Tester 1 vs Auto Tester 2 vs Auto 

Sagittal plane (α)      

   Cuboid:Calcaneus 1.9° 3.4° 2.0° 2.1° 2.4° 

   Talus:Calcaneus 3.3° 3.7° 4.4° 2.3° 5.9° 

   Navicular:Talus 3.6° 5.7° 3.5° 3.5° 3.3° 

   Navicular:Calcaneus 2.4° 5.9° 5.1° 2.3° 4.9° 
      

Frontal plane (β)      

   Cuboid:Calcaneus 2.9° 6.1° 7.1° 4.4° 6.4° 

   Talus:Calcaneus 1.9° 3.1° 2.7° 3.0° 3.3° 

   Navicular:Talus 2.3° 4.7° 6.1° 1.3° 6.2° 

   Navicular:Calcaneus 2.7° 5.6° 4.9° 3.3° 6.0° 
      

Transverse plane (γ)      

   Cuboid:Calcaneus 1.7° 2.7° 1.6° 2.9° 3.9° 

   Talus:Calcaneus 1.4° 2.4° 1.5° 2.7° 2.9° 

   Navicular:Talus 1.6° 2.9° 2.4° 2.4° 3.8° 

   Navicular:Calcaneus 2.1° 3.1° 2.8° 2.7° 3.8° 
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4.5 DISCUSSION 

In this study, 3D angular precision was computed for two expert testers and an 

automated template method to determine anatomically-relevant bone orientations from 

vQCT scans of the foot. In contrast to previous 3D imaging methods to define foot bone 

orientation axes using the shape-dependent bone inertial axes (Woodburn et al., 2002; 

Ledoux et al., 2006), the methods presented here define 3D bone axes using anatomical 

landmarks, which provides added clinical relevance.  

Intra-tester angular precision averaged 2.3° and 4.1° for the two expert testers, 

and inter-tester angular precision averaged 3.7°. Thus, the present study suggests that 

atlas-based automated landmark methods can replicate landmark locations with 

equivalent precision as an expert tester. Moreover, these precision results are comparable 

to uni-planar radiographic precision (Hastings et al., 2011) and have the advantage of 

providing a full 3D representation of static bone-to-bone angles, especially in the frontal 

plane and for bone-to-bone angles that are obscured during planar X-rays. To achieve the 

level of intra-tester and inter-tester precision observed in this study, the testers required 

roughly 6-8 minutes per bone in order to manipulate bone surface maps within the 

graphical user interface and place landmarks. The automated method results in equivalent 

angular precision with negligible processing time, thus an additional advantage of the 

atlas-based automated method is a significant time savings. 

The variability observed in bone-to-bone orientation angles can likely be 

improved by assessing which individual landmarks had the highest spatial variability 

(Brown et al., 2009). Results from the present study would suggest that the atlas-based 

automated landmark method can replicate landmarks with equivalent or superior 
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precision as an expert tester, and future studies are readily adaptable to using different 

definitions of bone axes, especially if a landmark position with higher test-retest 

precision can be adopted. A possible long-term improvement may follow techniques of 

optoelectronic motion capture by choosing the most reliable anatomical landmarks, then 

creating virtual landmarks to define bone axes in the most anatomically relevant manner. 

Doing so could maximize both angular precision and clinical relevance.  

 One potential limitation of the present study is that the 3D bone-to-bone 

orientation methods utilize vQCT, which imparts a low amount of radiation to the 

subject. Future research may replicate these methods using non-radiating 3D imaging 

modalities such as MRI, which would help extend the technique’s utility to pediatric 

populations with foot deformities such as club foot in individuals with cerebral palsy. 

Additionally, future application of these methods may extend to clinical populations who 

experience foot and ankle deformity, such as rheumatoid arthritis, diabetic neuropathy 

(including Charcot neuroarthropathy), and Charcot-Marie-Tooth disease, or to quantify 

joint motions using vQCT-derived bone orientations co-registered to multi-plane 

fluoroscopy.  
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CHAPTER 5 

Effects of Charcot neuropathic osteoarthropathy on three-

dimensional foot bone-to-bone orientation angles measured using 

quantitative computed tomography 

Status of resulting manuscript: to be submitted to Journal of Biomechanics 
 
Authors: David J. Gutekunst, Lu Liu, Tao Ju, Fred W. Prior, Mary K. Hastings, and 
David R. Sinacore 
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5.1        INTRODUCTION  

As noted in Chapters 1 and 3, the etiology of Charcot neuropathic 

osteoarthropathy (CN) remains incompletely understood, but is likely due to focal bone 

loss and pedal joint mal-alignment (Sinacore et al., 2008; Armstrong et al., 1997) which, 

in the presence of peripheral neuropathy, can lead to repetitive unperceived trauma 

during weight-bearing. Bone injury and subtle articular damage characteristic of incipient 

CN are difficult to visualize with planar radiographs (Yu and Hudson, 2002). As a result, 

CN often progresses until more serious, clinically obvious events occur. Even when CN 

is diagnosed early, X-ray measures such as cuboid height, calcaneal pitch, and Meary’s 

angle are abnormal at baseline and continue to worsen over time (Hastings et al., 2012). 

Increasingly, 3D imaging has been used to measure foot morphology in 

neuropathy and overcome inherent limitations of X-ray, such as obscured views and out-

of-plane rotations. Hammer toe deformity of the first three rays has been shown to predict 

high peak plantar pressures under the metatarsal heads (Mueller et al., 2003; Robertson et 

al., 2002), though it should be noted that these studies utilized uni-planar reconstructions 

of vQCT images, and it is unknown whether full volume-rendered vQCT images will 

yield even more diagnostic information. Techniques such as those described in the 

previous chapter utilize the full ability of vQCT to measure joint angles and quantify 

structural morphology in all three anatomical planes, including the frontal plane (Ledoux 

et al., 2006).  

Early recognition and quantification of evolving foot mal-alignments is important 

because if left unchecked, CN mal-alignments may consolidate into fixed foot 

deformities as the initial inflammatory phase of CN subsides. Fixed foot deformities lead 
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to elevated peak plantar pressure (Armstrong and Lavery, 1998) , which has been linked 

to neuropathic foot ulcers retrospectively (Stokes et al., 1975; Boulton et al., 1983; 

Armstrong et al., 1998b) and prospectively (Lavery et al., 2003; Veves et al., 1992). 

Elevated plantar pressure has also been identified as a factor contributing to prolonged 

healing time and higher risk of re-ulceration (Armstrong et al., 1998a). Applying 3D 

techniques to measure foot bone and joint orientations in individuals with neuropathic 

foot deformities may aid in diagnosis, surgical treatment, and rehabilitation. 

The purpose of this study was to use the atlas-based, automated vQCT methods 

described in the previous chapter to characterize 3D bone and joint mal-alignments in 

subjects with acute CN compared to two control cohorts: a matched group of non-CN 

individuals with DM and PN, and a unimpaired control (UC) group without DM, PN, or 

any pathology of the foot and ankle. Primary hypotheses were that the atlas-based, 

automated vQCT technique would confirm mal-alignments observed in CN using uni-

planar (lateral) X-rays. Specifically, it was hypothesized that the sagittal plane bone 

orientation angles of CN subjects would have decreased cuboid height, decreased 

calcaneal pitch (i.e. a less dorsiflexed calcaneus), increased talar declination angle (i.e. a 

more plantarflexed talus), and decreased Meary’s angle (i.e., increased dorsiflexion of 

Met1 with respect to Talus). The secondary hypothesis was that there would be additional 

group differences in hindfoot and lesser tarsal bones and hindfoot:forefoot coupling, 

including frontal plane mal-alignments that are undetectable using X-rays.  
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5.2  MATERIALS AND METHODS 

5.2.1  Subjects 

Subjects recruited into the CN and DM+PN groups were identical to those studied 

in the project described in Chapter 3. Additionally, 16 UC individuals without DM or PN 

agreed to participate and provided written informed consent in accordance with the 

guidelines of the Institutional Review Board and the Human Research Protection Office 

at Washington University School of Medicine. Six individuals in the CN group (2 

females, 4 males) were excluded from the analysis due to severe joint inflammation and 

bone resorption in the CN-Involved foot that prevented bone segmentation processing 

and assessment of foot bone orientations. Demographic data for the 14 remaining CN 

subjects, 20 DM+PN subjects, and 16 UC subjects are presented in Table 5.1. 
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Table 5.1: Demographic and physical information for bone orientation comparisons. 

 DM+PN CN UC 

N 20 14 16 

Sex (F/M) 11/9 8/6 8/8 

Ethnicity 13 White 
7 African-American 

 

11 White 
3 African-American 

 

12 White 
1 African-American 
1 Indian-American 
2 Asian-American 

Age (years) 57.6 ± 10.8 55.1 ± 10.3 27 ± 5.0 

Height (cm) 171.7 ± 8.4 174.4 ± 7.8 173.0 ± 11.0 

Mass (kg) 94.9 ± 25.7 108.9 ± 26.0 76.5 ± 18.1 

Body mass 
index (kg/m2) 

32.0 ± 8.1 35.6 ± 8.0 25.3 ± 4.4 

Diabetes Type 
(Type1/Type2) 

2/18 1/13 n/a 

HbA1c (%) 7.8 ± 1.4 7.7 ± 1.6 n/a 

DM duration 
(years) 

13.9 ± 12.6 18.4 ± 11.1 n/a 

PN duration 
(years) 

5.2 ± 3.5 7.3 ± 4.6 n/a 

 

5.2.2 Bone-to-bone 3D orientation angles 

vQCT scan parameters and bone segmentation processing were completed as 

summarized in Section 3.3.2 and described in detail in previous publications (Liu et al., 

2008; Commean et al., 2011; Commean et al., 2009). The resulting segmented bone 

object maps and grayscale voxel datasets were imported into the custom Bone 

Measurement Tool (Liu et al., 2012). Anatomical landmarks used to define the bone 

orientation axes for the calcaneus, talus, cuboid, and navicular followed the conventions 
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described in Section 4.3.3 and shown in Table 4.1, Table 4.2, and Figure 4.1. 

Additionally, the embedded template bone atlas was expanded to include anatomical 

landmarks for the remaining 3 tarsals (the cuneiform bones) and the 5 metatarsals. This 

expanded landmark template included a total of 47 anatomical landmarks to describe the 

3D orientations of all 7 tarsal and 5 metatarsal bones, as shown in Figure 5.1 below.

 

Figure 5.1: Atlas-based automated anatomical landmarks for all 7 tarsal and 5 metatarsal bones 
in (A) medial view, (B) oblique view, and (C) anterior-posterior view 

 

Anatomical landmarks on the calcaneus, Met5, and Met2 were used to define 

orientation axes for the foot as a whole. Whereas sagittal plane weight-bearing X-rays 

allow measurement of bone positions and angles with respect to the horizontal axis 

(Figure 5.2), the non-weight-bearing vQCT scans do not provide a true set of reference 

coordinate axes.  
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Figure 5.2: Sagittal plane X-ray showing cuboid height, calcaneal pitch, talar declination, 
Meary’s angle, and Hibbs’ angle. (X-ray measurements courtesy of Mary Hastings, PT, DPT) 

 

To replicate X-ray measures such as cuboid height, calcaneal pitch, or talar 

declination, as well as bone-to-bone X-ray measures of Meary’s angle (Met1 with respect 

to talus) or Hibbs’ angle (Met1 with respect to calcaneus), a non-weight-bearing vQCT 

method requires the definition of local coordinate axes for the foot as a whole, including 

a definition of the horizontal plane beneath the plantar surface of the foot. The coordinate 

axes defined by the inferior calcaneus landmark and the anterior landmarks on Met2 and 

Met5 were used to create a 3D frame of reference to replicate X-ray measures such as 

cuboid height (Figure 5.3) and calcaneal pitch, talar declination, Meary’s angle, and 

Hibbs’ angle (Figure 5.4). The anatomical landmarks used to define the coordinate axes 

of Met1, Met5, and the foot segment are shown in Figure 5.4. Landmark descriptions are 

in Table 5.2; bone orientation definitions are in Table 5.3. An added benefit of the 3D 

vQCT method is the ability to make angular measurements of these bones in the frontal 

and transverse planes.   
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Figure 5.3: Landmark-based definition of the foot segment axes to measure cuboid height.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Landmark-based definition of the foot segment axes to measure calcaneal pitch, 
talar declination, Meary’s angle, and Hibbs’ angle.  
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Table 5.2: Anatomic landmarks for Met1, Met5, and the foot segment. 
 
Bone Landmarks Description 

Met1 29. Inferior Medial-lateral midline of Metatarsal 1, along inferior edge of base 
 30. Posterior Medial-lateral midline of Metatarsal 1 base, bisecting shaft in sagittal plane when connected 

to anterior landmark  

 31. Superior Medial-lateral midline of Metatarsal 1, along superior edge of base 

 32. Anterior Central aspect of distal head of Metatarsal 1 

Met5 45. Medial Medial edge of the base of Metatarsal 5 
 46. Lateral Lateral edge of the base of Metatarsal 5 

 47. Anterior Central aspect of distal head of Metatarsal 5 

Foot segment 3. Inferior calcaneus Medial-lateral midline of calcaneus posterior facet, along the inferior border. 
 36. Anterior Met2 Central aspect of distal head of Metatarsal 2 
 47. Anterior Met5 Central aspect of distal head of Metatarsal 5 

 
Table 5.3: Metatarsal and foot orientation definitions based on anatomical landmarks (right foot). 

Bone First axis Temporary axis Second axis Third axis 

Metatarsal 1 YMet1 = | 30  → 32 | tMet1 = | 29 → 31 | XMet1 = YMet1 X tMet1 ZMet1 = XMet1 X YMet1 

Metatarsal 5 YMet5 = | 45 → 46 | tMet5 = | 45→ 47 | ZMet5 = tMet5 X YMet5 XMet5 = YMet5 X ZMet5 

Foot segment Yfoot = | 3 → 36 | tfoot = | 3 → 47 | ZFoot = tfoot X Yfoot Xfoot = Yfoot X Zfoot 
     



 

75 
 

The following bone-to-bone and bone-to-foot orientation angles were compared 

between the CN, DM+PN, and UC groups: 

Hindfoot and lesser tarsal bone-to-bone angles: 

 Cuboid with respect to calcaneus (Cub:Calc) 

 Talus with respect to calcaneus (Tal:Calc) 

 Navicular with respect to calcaneus (Nav:Calc) 

 Navicular with respect to talus (Nav:Tal) 

Hindfoot:forefoot angles: 

 First metatarsal with respect to talus (Met1:Tal) 

 First metatarsal with respect to calcaneus (Met1:Calc) 

Hindfoot:foot segment angles: 

 Calcaneus with respect to whole-foot segment (Calc:Foot) 

 Talus with respect to whole-foot segment (Tal:Foot) 

For all bone-to-bone and bone-to-foot angles, a Cardan rotation sequence of XY’Z” was 

computed to reflect the sagittal (α), frontal (β), and transverse (γ) plane rotations of the 

distal segment with respect to the proximal segment. Additionally, cuboid height was 

measured as the distance between the XY plane of the whole-foot segment and the 

position of the inferior cuboid anatomical landmark (Figure 5.3). (Mathematically, 

cuboid height was computed as the dot product between the Z-axis unit vector of the 

whole-foot segment and the vector connecting the inferior calcaneus landmark to the 

inferior cuboid landmark.)   
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5.2.3 Statistical Analyses 

 Subject sex, ethnicity, and DM type were compared among the groups using chi-

square tests. Age, height, weight, body mass index, DM duration, and PN duration were 

compared using the Student’s t-test. For each bone-to-bone orientation angle, a two-way 

ANOVA was used to test the effects of Group and Foot. For CN subjects, foot was coded 

as involved (CN-Inv) or uninvolved (CN-Uninv). In DM+PN and UC subjects, neither 

foot was affected by CN, but for statistical comparisons between the two groups it was 

necessary to designate one foot per subject as “involved.” The right feet of DM+PN and 

UC subjects were arbitrarily designated as “involved.” The hypothesis was that there 

would be no side-to-side differences in DM+PN or UC subjects, while the CN-Inv feet 

were hypothesized to have significantly different bone orientation angles compared to 

CN-Uninv; The significance level was set at α < 0.05. All statistical analyses were 

completed in SPSS version 20.0 (IBM Corp., Chicago, IL). 

  

5.3 RESULTS 

The CN and DM+PN groups did not differ in any demographic or physical 

characteristics, though the UC group was significantly younger and had lower mass and 

BMI (Table 5.1). Control DM+PN and UC subjects had no side-to-side differences for 

any bone-to-bone orientation angle, thus in Table 5.4 and Table 5.5 the results show these 

groups averaged across sides.  
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5.3.1  Bone-to-bone orientations in the hindfoot and lesser tarsals 

 There were no group differences or CN side-to-side differences in any of the 

bone-to-bone orientation angles in the hindfoot and lesser tarsals. Group averages for the 

relative angle of Cub:Calc ranged from 40-46° of cuboid plantarflexion with respect to 

calcaneus, 4-6° of relative eversion, and from 3° of adduction to 3° of abduction. 

Tal:Calc angles showed low variability across groups: 34-37° of talar plantarflexion, 2-7° 

of eversion, and 12-14° of adduction with respect to calcaneus.  

 

5.3.2 Orientations of hindfoot bones to the whole-foot segment 

 The sagittal plane rotation of Calc:Foot, which represents the 3D Cardan 

equivalent of calcaneal pitch measured using lateral X-ray, showed a 7° reduction in 

calcaneal dorsiflexion in the CN-Inv feet compared to DM+PN controls (p=0.023), and a 

9° reduction compared to the UC group (p<0.01) (Table 5.4). The control subjects had no 

side-to-side differences in sagittal Calc:Foot angle, with a mean difference of 0.3° in UC 

and 0.4° in DM+PN. The CN-Inv feet had significantly lower calcaneal pitch than the   

CN-Uninv feet (mean difference = 3.4°, p<0.01). In the frontal plane, the calcaneus was 

more everted in the CN-Inv feet compared to the CN-Uninv (p=0.015) and DM+PN 

(p=0.040) feet, with a trend toward significantly greater eversion in CN-Inv feet 

compared to UC (p=0.065). 

 In the CN-Inv feet, the talus showed significantly greater talar declination 

(plantarflexion) angle, as measured by the sagittal plane rotation between talus and the 

whole-foot segment. The CN-Inv feet had roughly 3° more relative talar plantarflexion 

compared to the CN-Uninv feet (p=0.015), whereas in the DM+PN and UC subjects the 
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mean side-to-side differences were 0.5° and 0.8°, respectively (both non-significant). The 

CN-Inv feet had roughly 5° more relative talar plantarflexion compared to the DM+PN 

group (p=0.010) and 4° more talar plantarflexion than the UC group (p=0.037). There 

were no group or CN side-to-side differences in the frontal plane or transverse plane 

angles of Tal:Foot.  

 Cuboid height was significantly lower in CN-Inv feet compared to UC feet, with a 

mean difference of almost 6mm (p=0.019). There was a trend for lower cuboid height in 

CN-Inv compared to DM+PN and compared to CN-Uninv feet (both p=0.08). 

 

5.3.3 Hindfoot to forefoot bone orientation angles  

 CN-Inv feet had a less dorsiflexed, more inverted orientation of the first 

metatarsal with respect to talus (Met1:Tal). The UC, DM+PN, and CN-Uninv feet had 

12-14° of Met1 plantarflexion with respect to talus, whereas the CN-Inv feet had 5° of 

plantarflexion (Table 5.4). The CN-Inv feet had significantly lower plantarflexion of 

Met1 compared to the UC feet (p=0.025) with a trend towards lower plantarflexion 

compared to DM+PN (p=0.053). There were no side-to-side differences in the UC and 

DM+PN groups, whereas in CN subjects there was a roughly 7° reduction in relative 

Met1 plantarflexion in the CN-Inv feet compared to the CN-Uninv feet (p<0.01). In the 

frontal plane, the CN-Inv feet had roughly 6° of Met1:Tal inversion compared to 0-2° of 

eversion in the CN-Uninv, DM+PN, and UC  feet. The Met1:Tal angles CN-Inv feet were 

roughly 7.8° more inverted than he UC feet (p<0.01), 6.5° more inverted than DM+PN 

(p=0.022), and 7.2° more inverted than CN-Uninv feet (p<0.001).   
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 The 3D Cardan equivalent of Hibbs’ angle – the sagittal plane angle of Met1:Calc 

showed a significant reduction in the plantarflexion of Met1 with respect to calcaneus in 

the CN-Inv feet. Compared to the UC feet, the CN-Inv feet had 8° less Met1 

plantarflexion (p=0.039). There was no side-to-side difference in either the DM+PN or 

UC groups, but there was a 6.4° difference between the CN-Inv and CN-Uninv feet 

(p<0.01). As in the Met1:Tal orientations, the Met1:Calc frontal plane angle showed a 

more inverted relative orientation of Met1, with approximately 9° more inversion in CN-

Inv compared to CN-Uninv (p<0.001) and 10° more Met1 inversion compared to UC 

(p=0.003) and 11° more Met1 inversion compared to DM+PN (p<0.001).  
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Table 5.4: Group means ± standard deviations (degrees) for hindfoot sagittal (α), frontal (β), and transverse (γ) bone-to-bone 
orientation angles. Sign convention: +α = dorsiflexion of distal segment, +β = inversion of distal segment, +γ = adduction of distal 
segment. 
 
 
 UC DM+PN CN-Uninvolved CN-Involved 

Cuboid:Calcaneus     
    Sagittal plane (α) -42.4 ± 5.9° -40.3 ± 10.3° -46.3 ± 5.9° -44.2 ± 10.1° 
    Frontal plane (β)  -4.5 ± 5.7°  -6.0 ± 7.4°  -4.9 ± 7.4°  -5.3 ± 6.2° 
    Transverse plane (γ) -3.1 ± 5.4°  -3.0 ± 6.4°  -1.4 ± 8.5°  3.3 ± 20.1° 

 Talus:Calcaneus     
    Sagittal plane (α)  -36.7 ± 4.0°  -34.0 ± 6.7°  -35.9 ± 4.2°  -35.1 ± 7.0° 
    Frontal plane (β)  -3.2 ± 5.0°  -6.7 ± 5.8°  -2.3 ± 6.0°  -1.6 ± 7.3° 
    Transverse plane (γ)  11.7 ± 3.1°  12.3 ± 4.8°  12.8 ± 3.6°  14.1 ± 7.1° 

Navicular:Talus     
    Sagittal plane (α) -19.6 ± 4.5°  -18.5 ± 6.4°  -21.1 ± 4.4°  -16.5 ± 11.2° 
    Frontal plane (β)  -10.6 ± 4.5°  -8.8 ± 7.8° -10.3 ± 7.3°  -9.6 ± 9.4° 
    Transverse plane (γ) 0.5 ± 5.1°  2.4 ± 9.4°  3.1 ± 9.6°  -0.7 ± 11.5° 

Navicular:Calcaneus     
    Sagittal plane (α) -54.2 ± 5.1°  -50.6 ± 9.0° -54.2 ± 5.8°  -49.0 ± 12.7° 
    Frontal plane (β)  -17.3 ± 5.6°  -18.3 ± 7.4° -16.9 ± 4.7°  -14.5 ± 11.2° 
    Transverse plane (γ)  10.9 ± 6.1°  12.6 ± 6.8°  14.9 ± 8.2°  12.5 ± 9.5° 
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Table 5.5: Mean ± standard deviation (degrees) for sagittal (α), frontal (β), and transverse (γ) bone-to-bone orientation angles.  
Sign convention: +α = dorsiflexion of distal segment, +β = inversion of distal segment, +γ = adduction of distal segment. For CN-
Involved data, a = significant difference from UC group; b = significant difference from DM+PN group, and c = significant difference 
from CN-Uninvolved feet. 
 
 UC DM+PN CN-Uninvolved CN-Involved 

Cuboid Height (mm) 9.6 ± 4.2   8.2 ± 6.5 6.1 ± 7.7  3.8 ± 8.2 a 

Calc:Foot angle     
    Sagittal plane (α)  
       (Calcaneal pitch)     

21.3 ± 3.0°  20.1 ± 5.9° 18.6 ± 5.8°  15.1 ± 7.6° a,b,c 

    Frontal plane (β)  -10.6 ± 6.5°  -10.9 ± 5.0°  -11.6 ± 5.9°  -16.7 ± 6.8° b,c 
    Transverse plane (γ) -11.5 ±3.2 °  -12.0 ± 3.8° -14.3 ± 6.7°  -12.4 ± 5.3° 

Met1:Talus angle     
    Sagittal plane (α)  
      (Meary’s Angle) 

-13.7 ± 5.7° -12.4 ± 8.1° -12.2 ± 9.4° -5.1 ± 12.1° a,b,c 

    Frontal plane (β)  -1.9 ± 6.2° 0.2 ± 7.0° -1.6 ± 9.2°  5.6 ± 10.9° a,b,c 
    Transverse plane (γ) 14.1 ± 6.7°  14.4 ± 8.2°  17.7 ± 11.6°  14.9 ± 11.4° 

Met1:Calc angle     
    Sagittal plane (α) 
      (Hibbs’ angle) 

-49.6 ± 6.2°  -46.0 ± 9.8°  -47.2 ± 9.7° -40.8 ± 13.7° a,c 

    Frontal plane (β) -7.7 ± 7.0°  -8.2 ± 6.9° -6.4 ± 7.3°  2.5 ± 11.9° a,b,c 
    Transverse plane (γ) 24.8 ± 6.6°  25.3 ± 5.9° 29.6 ± 10.8°  28.1 ± 10.4° 

Talus:Foot angle     
    Sagittal plane (α)  -15.4 ± 3.0°  -14.8 ± 5.0° -16.6 ± 5.7°  -19.4 ± 5.5° a,b,c 
    Frontal plane (β)  -4.8 ± 5.8°  -8.5 ± 6.8°  -3.4 ± 7.7°  -7.2 ± 8.8° 
    Transverse plane (γ)  -3.9 ± 5.1 °  -3.8 ± 6.7°  -5.6 ± 6.7°  -4.6 ± 7.1° 
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5.4 DISCUSSION 

This study sought to quantify the effects of acute CN on 3D foot bone-to-bone 

orientation angles using a novel vQCT, atlas-based, anatomical landmarking method. In 

contrast to X-ray methods to assess foot deformities, the vQCT permits full description of 

bone-to-bone orientations in all 3 dimensions; in contrast to previous 3D imaging 

methods to define foot bone orientation axes, the results presented here are based on 

anatomically-relevant 3D bone axes rather than shape-dependent inertial axes (Woodburn 

et al., 2002; Ledoux et al., 2006).   

As hypothesized, there were numerous findings using the atlas-based anatomical 

landmark method that confirm recent results from an X-ray analysis of CN foot 

deformities (Hastings et al., 2012). As in the X-ray analyses, the 3D vQCT results show a 

reduction in the calcaneal pitch in CN-Inv feet (Hastings et al., 2012), though the present 

study also presents the novel finding of increased calcaneal eversion in CN-Inv feet, 

which is consistent with a collapse of the medial longitudinal arch. Similarly, the vQCT 

method confirmed X-ray findings of increased talar declination, decreased cuboid height, 

and increased dorsiflexion of Met1 with respect to talus (Hastings et al., 2012), while 

also showing that Met1 is more inverted with respect to talus. This increased Met1 

inversion is a frontal plane rotation that cannot be detected using X-ray methods. The 

vQCT method also produced the novel finding of a reduction in the 3D equivalent of 

Hibbs’ angle (the sagittal plane angle of Met1:Calc), which further supports the 

interpretation of the CN-Inv feet having a general, multi-joint collapse of the medial 

longitudinal arch. In the frontal plane, Met1 was more inverted in the CN-Inv feet than 

the matched CN-Uninv feet or either control group, which could not be measured using 
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uni-planar X-rays. The increased relative dorsiflexion and inversion of Met1 with respect 

to both talus and calcaneus may also lead to hallux valgus, which has been shown to be 

related to increased plantar pressure under the first metatarsal head (Mueller et al., 2003). 

However, the current vQCT method did not include the phalanges, which would allow 

assessment of hallux valgus and also hammer toe deformity. Future atlas-based vQCT 

foot deformity assessment may include the phalanges to further expand the ability to 

detect deformities leading to plantar ulceration and/or Charcot progression. 

The atlas-based vQCT method is not without limitations. The vQCT scans were 

recorded with subjects in a non-weight-bearing posture, thus the results presented here 

may not represent the bone orientation angles that would be observed during standing. 

However, it is likely that the deformities shown in non-weight-bearing would only be 

more pronounced during weight-bearing, meaning that it is unlikely that the significant 

findings presented here would persist. Future research using the atlas-based vQCT 

method will include partial weight-bearing as performed previously by our lab (Smith et 

al., 2000; Smith et al., 2001) with modifications of the foot loading fixture to allow 

simultaneous measurement of BMD and bone strength indices such as those described in 

Chapters 2 and 3. Future investigations may also utilize MRI scans to produce segmented 

bone object maps, which could be used in a similar manner in the atlas-based Bone 

Measurement Tool to produce anatomically-relevant bone orientation angles.  

 In conclusion, this study has presented results showing foot deformities in three 

dimensions, defined using anatomically-relevant bone orientation axes that mimic 

established orthopedic measures used previously in uni-planar X-rays. This study has the 

potential to improve the ability of surgeons, podiatrists, and rehabilitation specialists to 
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diagnose and quantify evolving foot mal-alignments in individuals at risk of developing 

more serious fixed foot deformities. Future work will assess the time course of foot 

morphological changes in the Charcot foot, and attempt to identify deformity-based 

biomarkers that may identify individuals with DM and PN who are at risk of developing 

CN.  
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CHAPTER 6 
 

Summary and Conclusions 
 
 

The goal of this dissertation research has been to use vQCT to assess foot bone 

strength and foot deformity as indices of CN development and progression. In the process 

of developing and validating these measures of bone strength and foot deformity, we 

have built tools that will be used in future research spanning orthopedic biomechanics, 

physical therapy, and radiology.  

A key finding of Aim 1 (Chapter 2) was that metatarsal BMD and bone geometric 

strength indices derived from vQCT scans are highly correlated to ultimate loading in ex 

vivo materials testing. The methods we utilized to measure BMD and the strength indices 

were directly applicable to in vivo testing, as we performed vQCT scanning using intact 

cadaver lower-extremity specimens before excising the metatarsals and performing 

maximal monotonic loading. Previously, all studies of metatarsal bone strength (Courtney 

et al., 1997; Fleischli et al., 1998; Lidtke et al., 2000; Muehleman et al., 2000) have 

utilized methods that are not applicable to in vivo testing. In addition, the methods 

developed in Aim 1 showed that a novel density-weighting procedure may result in bone 

geometric strength indices that have greater predictive capacity for ultimate bone 

strength. Current vQCT technology invariably leads to some spatial averaging of bone 

and non-bone material, meaning that previous assessments may have inherent 

imprecision in their estimates of geometric strength parameters. Our method provides 

improved density resolution to help counteract the limitations in vQCT spatial resolution.  
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Having shown strong correlations between vQCT-derived geometric strength 

indices and ex vivo ultimate loads in Aim 1, we then applied the vQCT methods to 

individuals with acute CN in order to test whether these individuals have reduced 

geometric strength indices. Surprisingly, we found that while BMD was significantly 

lower in CN individuals throughout the diaphysis of the Met2 and Met5 compared to 

matched subjects with DM and PN, bone geometric strength indices such as Ct.Ar, Smin, 

and Ct.Th were maintained or increased in CN subjects. While unexpected, this finding 

may reflect inflammatory damage to CN bones rather than a true maintenance of bone 

strength. The work done in Aims 1 and 2 contributed directly to a successful grant 

application (NICHD R03 HD068660) that will allow future investigation with μCT to 

assess whether the periosteal expansion observed using vQCT reflects apposition of 

cortical bone, or if it may reflect incompletely mineralized woven bone that was 

deposited in response to bone injury.  

Aim 3 (Chapter 4) involved methodological development and reliability 

assessment of novel 3D methods to assess foot deformities. We sought to mimic 

established X-ray measures of deformity by producing anatomically-relevant 3D foot 

bone orientation axes. Intra- and inter-tester reliability was comparable to uni-planar 

measures from X-ray, and agreement between expert testers and a fully automated 

method of placing anatomical landmarks using an atlas-based landmark template. Aim 4 

(Chapter 5) then applied the atlas-based automated method to compare 3D foot bone 

orientations in subjects with acute CN to control groups of matched DM+PN subjects and 

unmatched, unimpaired subjects. The results confirmed recent X-ray findings of foot 

deformities in acute CN, and also provided novel information regarding bone deformities 
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in the frontal plane. These 3D foot deformity measures may provide important indices of 

CN development, progression, and future risk of ulceration and neuropathic fracture, and 

in particular the frontal plane orientation angles are not possible to measure using X-ray.  

An example of possible future directions utilizing the techniques described in this 

dissertation is provided in Appendix B. Two case reports over a 12-month period are 

presented of subjects in the CN group who experienced mid-diaphyseal fracture of Met5 

between 6 and 12 months after enrollment in our study. At enrollment and 3, 6, and 12 

months post-enrollment, the subjects underwent vQCT scans and plantar pressure 

assessment. Our results showed that while both subjects presented with low values for 

metatarsal BMD and bone geometric strength indices, between enrollment and the 6 

month follow-up test their BMD and geometric indices declined slightly at 3 months and 

then rebounded to baseline levels by 6 months. Thus, the fractures that occurred between 

6 months and 12 months post-enrollment were not preceded by further reductions in our 

measures of bone strength. However, during the period preceding fracture, both subjects 

experienced increases in peak plantar pressure and maximum force recorded during 

barefoot walking in their lateral midfoot region (including the base and head of Met5). 

Thus, while BMD and bone strength indices did not decrease, the loads applied to the 

lateral column bones did increase. Furthermore, our measures of foot deformity – 

specifically, bone-to-bone orientation angles of the lateral metatarsals with respect to the 

calcaneus – showed evidence of evolving equinovarus foot deformity which help explain 

the higher biomechanical loads. So, in summary, the tools developed during this 

dissertation have immediate utility in understanding risk for deleterious sequelae of CN, 

such as metatarsal fracture. 
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In conclusion, the research presented in this dissertation, undertaken as an 

interdisciplinary effort among physical therapists, biomedical engineers, radiologists, and 

orthopedic surgeons, provides new information regarding bone strength and foot 

deformities in Charcot neuropathic osteoarthropathy. Moreover, the tools developed to 

conduct this research will lead to future research and new insights on the 

pathophysiological pathways linking diabetes, peripheral neuropathy, foot deformities, 

and the development and progression of Charcot neuropathic osteoarthropathy. 
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Appendix A: Calculations for areal and density-weighted bending strength indices: 
moment of inertia (Imin, Imax) and section modulus (Smin, Smax). 
Step 1: determine center of mass (COM) positions for each cross-sectional 

slice.Areal bending strength indices: 

𝑋𝐶𝑂𝑀 = ∑ (𝑥𝑖∗𝐴𝑖)𝑖
∑ 𝐴𝑖𝑖

  

 𝑌𝐶𝑂𝑀 = ∑ (𝑦𝑖∗𝐴𝑖)𝑖
∑ 𝐴𝑖𝑖

 

Density-weighted bending strength indices: 

𝑋𝐶𝑂𝑀 = ∑ (𝑥𝑖∗𝐵𝑀𝐷𝑖∗𝐴𝑖)𝑖
∑ 𝐵𝑀𝐷𝑖∗𝐴𝑖𝑖

  

 𝑌𝐶𝑂𝑀 = ∑ (𝑦𝑖∗𝐵𝑀𝐷𝑖∗ 𝐴𝑖)𝑖
∑ 𝐵𝑀𝐷𝑖∗ 𝐴𝑖𝑖

 

Step 2: determine moments of inertia (I) using the X-Y axes for each cross-sectional slice. 
Areal bending strength indices: 

𝐼𝑥𝑥 =  �(𝑌𝑖 − 𝑌𝐶𝑂𝑀)2 ∗ 𝐴𝑖 

𝐼𝑦𝑦 =  �(𝑋𝑖 − 𝑋𝐶𝑂𝑀)2 ∗ 𝐴𝑖
𝑖

 

𝐼𝑥𝑦 = �(𝑋𝑖 − 𝑋𝐶𝑂𝑀)(𝑌𝑖 − 𝑌𝐶𝑂𝑀) ∗ 𝐴𝑖
𝑖

 

Density-weighted bending strength indices: 

𝐼𝑥𝑥 =  �(𝑌𝑖 − 𝑌𝐶𝑂𝑀)2 ∗ 𝐵𝑀𝐷𝑖 ∗ 𝐴𝑖
𝑖

 

𝐼𝑦𝑦 =  �(𝑋𝑖 − 𝑋𝐶𝑂𝑀)2 ∗ 𝐵𝑀𝐷𝑖 ∗ 𝐴𝑖
𝑖

 

𝐼𝑥𝑦𝐼𝑥𝑦 = �(𝑋𝑖 − 𝑋𝐶𝑂𝑀)(𝑌𝑖 − 𝑌𝐶𝑂𝑀) ∗ 𝐵𝑀𝐷𝑖 ∗ 𝐴𝑖
𝑖

Step 3: compute minimum (Imin) and maximum (Imax) moments of inertia from Ixx , Iyy, and Ixy: 

𝐼𝑚𝑎𝑥,𝑚𝑖𝑛 =
𝐼𝑥𝑥 + 𝐼𝑦𝑦

2
± ��

𝐼𝑥𝑥 − 𝐼𝑦𝑦
2

�
2

+ 𝐼𝑥𝑦2  

Step 4: calculate the minimum (Smin) and maximum (Smax) section moduli from Imin, Imax, and the 
periosteal radius (Ro). 
 
 

Smin =
𝐼𝑚𝑖𝑛

𝑅𝑜
 

 

Smax =
𝐼𝑚𝑎𝑥
𝑅𝑜
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Appendix B.  
 
Two case reports of pedal bone quantity, geometric strength 

indices, bone-to-bone orientations, and plantar loads preceding 

incipient metatarsal fracture 

 
Status of resulting manuscript: in review, Journal of Orthopaedic and Sports Physical 
Therapy 
 
Authors: David J. Gutekunst and David R. Sinacore 
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Abstract 

Study Design: case reports (2) 

Background: Charcot neuroarthropathy (CN) is a progressive, non-infective, 

inflammatory destruction of bones and joints that can lead to progressive foot deformities 

and plantar ulceration. Though individuals with CN typically have low BMD, little is 

known regarding changes in BMD, bone quality, joint mal-alignment, and biomechanics 

preceding fracture. 

Case Description: Two females, aged 45 and 54 years at the onset of an acute non-

fracture CN event, received regular physical therapy with wound care and off-loading 

treatment (total contact casting). Both enrolled in a larger research study that included 

plantar pressure assessment and quantitative computed tomography at enrollment and 3, 

6, and 12 months later. Both women sustained new mid-diaphyseal Met5 fracture 

between 6 and 12 months. Image processing techniques were used to measure BMD, 

geometric strength indices, and three-dimensional bone-to-bone orientation angles. 

Outcomes: Met5 BMD decreased during off-loading treatment from 0-3 months, then 

rebounded by 6 months. All geometric strength indices improved from baseline through 6 

months. Plantar loading in the lateral midfoot increased preceding fracture, concomitant 

with alterations in bone orientation angles which suggest progressive development of 

metatarsus adductus and equinovarus foot deformity.  

Discussion: Fractures may occur when bone strength decreases or when biomechanical 

loading increases. Though bone quality was low at baseline, incipient fracture was 

preceded by increased loading in the lateral midfoot, but not by reductions in BMD or 

geometric strength indices, suggests that loading played a central role in fracture. 

Moreover, the progression of foot deformities may be causally linked to the increased 

plantar loading. 
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1. Background 

Charcot neuropathic osteoarthropathy (CN) is a progressive, inflammation-

mediated destruction of bones and joints leading to fracture, subluxation, and dislocation, 

which in turn result in progressive foot deformities that increase the risk of plantar 

ulceration (Frykberg and Belczyk, 2008; Rogers et al., 2011; Thompson, Jr. and Clohisy, 

1993). Diabetes mellitus (DM) and peripheral neuropathy (PN) are the most common 

precursors of CN (Lee et al., 2003). The etiology of CN remains incompletely 

understood, but is likely due to a combination of repetitive unperceived trauma during 

weight-bearing, focal bone loss, and pedal joint mal-alignment (Sinacore et al., 2008; 

Armstrong et al., 1997). Bone injury and subtle articular damage characteristic of 

incipient CN are difficult to visualize with planar radiographs (Yu and Hudson, 2002). As 

a result, CN progresses until more serious, clinically obvious events occur.  

Previous cross-sectional studies reinforce the importance of bone loss (Sinacore et 

al., 2008; Bem et al., 2010; Chantelau, 2005), foot deformity (Chantelau, 2005; 

Cavanagh et al., 1994), and elevated biomechanical loading (Armstrong and Lavery, 

1998) in the development and progression of CN. Individuals with acute CN have lower 

calcaneal BMD than matched non-CN subjects with DM and PN (Sinacore et al., 2008). 

Moreover, the clinical manifestation of CN may depend upon BMD: pedal fractures 

predominate in individuals with osteopenia (as measured by dual-energy X-ray 

absorptiometry at the hip), whereas pedal subluxations and dislocations are more 

common in those with normal or high BMD (Herbst et al., 2004). Recent advances in 

vQCT image processing allow direct quantitative measurement of BMD in foot bones. 

Commean et al developed a semi-automated bone segmentation technique to compute 

bone volumes and BMD for the 7 tarsals and 5 metatarsals with high precision 
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(Commean et al., 2009; Commean et al., 2011). Still, the importance of BMD as a 

prospective risk factor for incipient fracture is unclear. At other anatomical sites, bone 

geometric strength indices have been more highly correlated to fracture risk than has 

BMD alone (Evans et al., 2008; Brudvig et al., 1983; Kontulainen et al., 2008; Liu et al., 

2007; Manske et al., 2006). The ex vivo validation of cadaver metatarsals described in 

Chapter 2 showed that mid-diaphyseal indices of bending strength (minimum moment of 

inertia, Imin, and section modulus, Smin) and cortical integrity (Ct.Th and BR) were more 

highly correlated than BMD to metatarsal breaking loads (Gutekunst et al., 2012). 

Ultimate force was directly related to Imin, Smin, and Ct.Th, and inversely related to BR 

(where BR = periosteal radius divided by Ct.Th). 

vQCT has been used increasingly to measure foot morphology in neuropathy. 

vQCT can overcome inherent limitations of X-ray, such as obscured views and out-of-

plane rotations. Hammer toe deformity of the first three rays has been shown to predict 

high peak plantar pressures under the metatarsal heads (Mueller et al., 2003; Robertson et 

al., 2002), though these studies utilized planar reconstructions of vQCT images. New 

techniques take full advantage of the ability of vQCT to measure joint angles and 

quantify structural morphology in all three anatomical planes, including the frontal plane 

(Ledoux et al., 2006), but no vQCT study has measured three dimensional (3D) foot bone 

and joint orientations in individuals with DM, PN, or CN.  

Elevated plantar pressure has been linked to neuropathic foot ulcers 

retrospectively (Stokes et al., 1975; Boulton et al., 1983; Armstrong et al., 1998b) and 

prospectively (Lavery et al., 2003; Veves et al., 1992), and has been identified as a factor 

contributing to prolonged healing time and higher risk of re-ulceration (Armstrong et al., 
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1998a). Fixed foot deformities resulting from CN play a role in many neuropathic ulcers, 

but even in the absence of ulceration, CN is associated with elevated peak pressure 

(Armstrong and Lavery, 1998). No previous research has assessed plantar loads over time 

following an acute CN event, or assessed the relationship between plantar loads and 

incipient fracture risk.  

As part of a prospective study of individuals with acute CN, we assessed plantar 

pressure and acquired vQCT scans at enrollment and 3, 6, and 12 months later. Image 

processing techniques were used to measure BMD, bone geometric strength indices, and 

3D bone-to-bone orientation angles. Two of the volunteers incidentally experienced mid-

diaphyseal fractures of Met5 between 6 and 12 months after study enrollment. These 

serial data collections allowed a unique prospective assessment of changes in bone 

strength, foot deformity, and applied loads leading to eventual metatarsal fracture.  

2. Description of Cases 

Volunteer A is a Caucasian 45 year-old female who was diagnosed with Type 1 

DM at age 21. She was diagnosed with PN at age 38 based on clinical evidence of 

impaired sensation to pressure, vibration, and light touch, and reported regular tingling 

and numbness in her feet. She had palpable pulses bilaterally in the dorsal pedal and 

posterior tibial regions. At the time of enrollment, she had plantar flexed first rays and 

prominent first metatarsal heads bilaterally, and a bunion on the head of the right-side 

Met5. She had sustained CN-related fractures to Met3, Met4, and Met5 of her left foot 

one year prior to enrollment in the present study (which prevents use of the left foot as a 

comparison in this case report). She had prior history of plantar ulceration at the right 

Met5 and right great toe sulcus, and was receiving offloading and wound care treatments 



 

95 
 

to heal a plantar ulcer at the base of the left Met5 when a diagnosis was made of an acute 

CN event located at the right first cuneiform with possible secondary CN in the proximal 

region of the right Met5. 

Volunteer B is a Caucasian 54 year-old female with no prior diagnosis of DM. 

However, based on her HbAlc values of 5.8%, she would have been identified as pre-

diabetic using updated criteria by the American Diabetes Association (2012), and 

furthermore, she was diagnosed as diabetic at follow-up. Following a fracture of her right 

cuboid at age 50, she was diagnosed with idiopathic PN based on clinical evidence of 

bilateral impaired sensation to pressure, vibration, and light touch. She reported painful 

neuropathy bilaterally in the digits and fore foot region, had palpable pulses bilaterally in 

the dorsal pedal and posterior tibial regions, and had no history of plantar ulceration. She 

had a complete hysterectomy at age 37, and had received estrogen replacement therapy 

from age 37 to 50. Volunteer B was diagnosed with an acute CN event located at the 

junction of the right cuboid and the base of the right Met5. Detailed demographic 

characteristics are provided in Table 1.  

Both women were treated with total contact casting (TCC) that was changed 

weekly, until the acute CN event had subsided. The involved foot was cleaned, dried, and 

covered in a seamless antimicrobial stocking. A layer of low-density foam padding was 

used to cover the toes prior to applying the plaster and fiberglass wrapping of the TCC. 

Upon agreeing to participate in the research study of CN, both volunteers gave written 

informed consent in accordance with the guidelines put forth by the Institutional Review 

Board and the Human Research Protection Office at Washington University in St. Louis, 

MO. 
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Table 1: Baseline demographic characteristics 
 
 Volunteer A Volunteer B 
Age (yrs) 45 54 
Height (cm) 167.6 175.3 
Mass (kg) 101.8 83.7 
BMI (kg/m2) 36.2 27.2 
Diabetes status Type 1 None 
Diabetes duration (yrs) 24 n/a 
HbA1c 8.1 5.8 
Peripheral neuropathy (yrs) 7 (secondary to DM) 4 (idiopathic) 

 

Quantitative Computed Tomography scans 

vQCT scans were taken at the Center for Clinical Imaging and Research (CCIR) 

at the Washington University School of Medicine using a Siemens SOMATOM 

Definition CT scanner (Siemens Medical Systems, Malvern, PA, USA) with acquisition 

parameters of 220 mA·s, 120 kVp, pitch = 1, rotation time 0.33s, and a 512x512 matrix. 

Positioning was standardized across scans, with the ankle in a neutral position. Raw data 

were reconstructed at 0.6mm slice reconstruction intervals using a B70f kernel to create 

vQCT images with in-plane resolution of 0.4-0.55mm (Commean et al., 2011; Smith et 

al., 2011).  

Bone Segmentation Processing 

The bone segmentation process has been described in detail elsewhere (Liu et al., 

2008; Commean et al., 2011). In brief, a custom ImageJ (NIH Research Services Branch, 

Bethesda, MD) density-based filtering plugin was used to distinguish bone tissue from 

surrounding soft tissue, then Analyze (Biomedical Imaging Resource, Mayo Clinic, 

Rochester, MN) and a custom graph-cut software tool were used to segment bones from 

each other at their articulating surfaces. The end result of segmentation is a series of bone 
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object maps (Liu et al., 2008) as shown in Figure 2, which are then used to assess bone 

geometric strength indices or bone-to-bone orientation angles.  

 
 
 

 

 

 

 

 

 

 

 

Figure 2: Bone segmentation processing. (A) photograph of an individual with acute 
Charcot; (B) raw QCT image; (C) filtered QCT image to remove soft tissue; (D) 
segmented, filled bone object maps for tarsals and metatarsals. 

Bone Mineral Density and Geometric Strength Indices 

For each bone, segmented bone object maps were overlaid on the raw grayscale 

voxel data, and the average X-ray absorptiometry in HU was computed for each bone 

volume. The average HU values for each bone were then converted to equivalent BMD 

(mg/cm3) using scan-specific HA calibration phantoms.  

Full methods for bone geometric strength processing are provided in Chapter 2 

and in the literature (Gutekunst et al., 2012). In brief, the segmented bone object maps 

were overlaid on the raw grayscale voxel data, and the resulting Met5 voxel datasets 

(XYZ position and HU values) were transformed along each bone’s longitudinal axis 
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using the BoneJ program (Doube et al., 2010) in ImageJ. Realigned voxel data were 

interpolated to isotropic voxels (0.5mm dimension) using a cubic spline function in 

Analyze® software, then exported to custom Excel (Microsoft) macros for computation 

of regional BMD and cross-sectional Imin, Smin, average Ct.Th and BR in the central 3mm 

of the mid diaphysis. These bone geometric strength variables have been shown in 

Chapter 2 to predict ex vivo ultimate bending loads using identical image processing 

methods in cadaver samples (Gutekunst et al., 2012).  

Bone-to-bone orientations 

Segmented bone object maps for all 12 tarsal and metatarsal bones were imported 

into an in-house software tool (Liu et al., 2008) which allows placement of user-defined 

anatomic landmarks on volume-rendered surface meshes. These landmarks were chosen 

to produce anatomically-relevant 3D coordinate axes for each bone, with X directed 

laterally, Y directed axially (primarily anterior), and Z directed vertically. Bone-to-bone 

orientations were computed using XY’Z” Cardan rotation sequences, corresponding 

respectively to sagittal (α), frontal (β) and transverse (γ) angles. As the vQCT scans did 

not include an external frame of reference, individual bone angles were expressed with 

respect to calcaneus. Additionally, a number of other bone-to-bone angles were 

considered as relevant indices of deformity in the CN foot:  

 Orientation of navicular with respect to talus (Nav:Tal) 

 Orientation of first metatarsal with respect to talus (Met1:Tal) 

 Orientation of Met5 with respect to cuboid (Met5:Cub) 
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Plantar loading assessment 

Plantar pressure data were not recorded at enrollment due to the inflammation and 

injury risk associated with acute CN, but were recorded at 3, 6, and 12 months post-

enrollment. Barefoot walking trials were collected using a two-step method (Meyers-Rice 

et al., 1994) using an EMED-ST P2 pressure platform (Novel Inc., Munich, Germany) 

with a spatial resolution of 2 sensors/cm2 and sampling frequency of 50 Hz. Each 

walking trial yielded a plantar pressure map that was divided into five regions using 

Novel Percent Mask software. The hind foot region was defined as the posterior 33% of 

the anterior-posterior foot length, the mid foot region was defined from 33% to 63%, and 

the forefoot (including the toes) comprised the remaining area. An additional dividing 

line was placed at 50% of the medial-lateral axis for the mid foot and forefoot regions. 

Plantar pressure maps and foot regions at 3, 6, and 12 months are shown in Figure 3. 

Pressure-derived variables were averaged over 2-3 right steps using Novel Groupmask 

software. We report the peak pressure (kPa) and maximum force (N) for the lateral 

midfoot. 
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Figure 3. Peak plantar pressure maps for right foot at T2, T3, and T4: (a) – (c) represent 
Volunteer A, (d) – (f) represent Volunteer B. 

 

3. Outcomes 

BMD and geometric strength indices 

 For both women, whole-bone BMD of Met5 decreased during the off-loading 

TCC period from baseline to 3 months (losing 4% and 8% of baseline BMD 

respectively), as shown in Table 2. Both women’s whole-bone BMD rebounded by 6 

months, then decreased after Met5 fracture by 13% and 18%, respectively, at the 12-

(a)     (b)    (c) 

(d)    (e)    (f) 
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month follow-up measurement. Mid-diaphyseal BMD showed a similar trend, decreasing 

slightly below baseline values after TCC off-loading, rebounding to slightly above 

baseline values by the 6 month scan, then falling to roughly a quarter below baseline after 

the fracture event.  

 Mid-diaphyseal resistance to bending loads (Imin and Smin), changed differently 

over time in the two volunteers. In Volunteer A, Imin and Smin increased progressively 

from baseline through 6 months, whereas Volunteer B exhibited minor reductions at 3 

months that rebounded to slightly above baseline by 6 months. At 12 months, both 

volunteers showed large losses in bending strength following fracture and another 

prolonged period of off-loading. Mid-diaphyseal Ct.Th increased from baseline to 6 

months in both volunteers by 8-9%; this thickening of cortical shell is also reflected in 

the 6-10% reduction of BR.  

Plantar loading 

 While barefoot plantar pressure was not measured at baseline, the measurements 

at 3 months and 6 months post-enrollment showed increased peak pressure and maximum 

force in the lateral midfoot (representing the lateral metatarsals). See Table 3 for plantar 

loading results and Figure 4 for peak plantar pressure maps. Volunteer A showed greater 

load increases, with a rough doubling of peak plantar pressure between 3 and 6 months 

and an approximately 60% increase in maximum force, with further load increases at 12 

months following fracture. Volunteer B began with higher peak plantar pressure and 

maximum force in the lateral midfoot than Volunteer A and experienced smaller 

increases at 6 month and 12 month follow-up. 
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Table 2: BMD and geometric strength indices of Met5 
 
 T1 T2 T3 T4 

Whole bone BMD 
(mg/cm3)  

    

     Volunteer A 440 
 

423 
(-4%) 

444 
(+1%) 

368 
(-23%) 

     Volunteer B 446 
 

411 
(-8%) 

433 
(-3%) 

344 
(-23%) 

Mid-shaft BMD (mg/cm3)     

     Volunteer A 642 
 

631  
(-1.7%) 

668  
(+4.0%) 

475  
(-26%) 

     Volunteer B 735 
 

695  
(-5.4%) 

747  
(+1.6%) 

567  
(-23%) 

Mid-shaft Imin (mg*mm)     

     Volunteer A 
212 

 

222 

(+5%) 

250  

(+18%) 

161 

(-24%) 

     Volunteer B 86 
 

84 
(-2%) 

88 
(+2%) 

71 
(-17%) 

Mid-shaft Smin (mg*mm)     

     Volunteer A 36.8 
 

37.7 
(+2%) 

42.5 
(+16%) 

26.6 
(+-28%) 

     Volunteer B 18.1 
 

17.7 
(-2%) 

18.9 
(+4%) 

14.6 
(-19%) 

Mid-shaft Ct.Th (mm)     

     Volunteer A 2.06 
 

2.17 
(+5%) 

2.23 
(+8%) 

2.13 
(+3%) 

     Volunteer B 1.97 
 

2.09 
(+6%) 

2.14 
(+9%) 

2.01 
(+2%) 

Mid-shaft BR (unitless)     

     Volunteer A 2.80 
 

2.70 
(-4%) 

2.64 
(-6%) 

2.85 
(+2%) 

     Volunteer B 2.41 
 

2.27 
(-6%) 

2.17 
(-10%) 

2.44 
(+1%) 
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Table 3: Plantar loading in the lateral midfoot of involved foot 
 

 T2 T3 T4 

Peak Pressure (kPa)    

     Volunteer A 203 382  
(+94%) 

568  
(+182%) 

     Volunteer B 355 401 
(+13%) 

393 
(+11%) 

Maximum Force (N)    

     Volunteer A 358 568 
(+59%) 

691 
(+93%) 

     Volunteer B 465 504 
(+9%) 

535 
(+15%) 

    
Bone and joint orientations 

 In the sagittal plane, both volunteers showed progressive increases in the relative 

plantar flexion of the metatarsals with respect to the calcaneus, as shown in Table 4. 

Moreover, increases in metatarsal plantar flexion were generally larger in the lateral 

metatarsals: Met1 plantar flexion increased by 3-6°, Met2 increased by 4-7°, Met3 

increased by 6-11°, Met4 increased by 10-11°, and Met5 increased by 11-13°. No 

obvious trends occurred for the metatarsals in the frontal plane. In the transverse plane, 

the metatarsals showed greater adduction with respect to the calcaneus from baseline to 6 

months. For the other bone-to-bone orientation angles that were assessed, only a greater 

adduction of Met1 with respect to the talus (13° in Volunteer A and 9° in Volunteer B) 

showed consistent alteration preceding the new fracture.  
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Table 4: 3D bone-to-bone orientation angles derived from vQCT scans. 
 
  Sagittal angle (α) 

(positive = 
plantarflexion) 

Frontal angle (β) 
(positive = 
inversion) 

Transverse angle (γ) 
(positive = 
adduction) 

 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 
Met1:Calcaneus             
   Volunteer A 48 50 56 43 -15 -17 -23 -16 39 45 43 47 
   Volunteer B 43 42 45 41 5 15 11 15 41 47 45 49 
Met2:Calcaneus             
   Volunteer A 66 69 73 66 12 11 3 12 31 33 38 40 
   Volunteer B 56 60 59 61 27 36 32 38 38 43 48 51 
Met3:Calcaneus             
   Volunteer A 70 78 81 73 32 33 30 33 33 36 41 41 
   Volunteer B 64 69 70 73 45 51 48 51 43 53 50 59 
Met4:Calcaneus             
   Volunteer A 56 66 67 52 42 46 38 36 26 30 34 32 
   Volunteer B 58 63 68 63 56 60 59 58 39 49 49 53 
Met5:Calcaneus             
   Volunteer A 44 48 55 43 49 47 46 68 18 22 22 16 
   Volunteer B 52 63 65 64 57 62 62 62 30 43 44 48 
Cuboid:Calcaneus             
   Volunteer A 50 51 53 49 -10 -9 -11 -11 -1 2 -1 -5 
   Volunteer B 59 57 57 55 0 1 1 2 13 18 17 18 
Met5:Cuboid             
   Volunteer A 59 56 57 79 59 55 57 79 18 17 24 37 
   Volunteer B 56 60 60 60 53 58 59 58 8 9 8 12 
Met1:Talus             
   Volunteer A 9 10 16 3 -7 -10 -8 -12 13 17 26 18 
   Volunteer B 1 -1 2 -2 -2 10 5 11 24 33 26 33 
Navicular:Talus             
   Volunteer A 20 22 23 19 -9 -8 -7 -9 -21 -18 -6 -22 
   Volunteer B 26 22 22 20 -24 -20 -22 -22 1 11 6 10 
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4. Discussion 
 

The prospective design of these case reports has allowed a unique opportunity to 

assess changes in BMD, bone geometric strength indices, foot deformities, and 

biomechanical loads preceding incipient mid-diaphyseal fractures of Met5. Specifically, 

comparing the biomechanical loading to correlates of bone strength allows a 

determination of the factor of risk for fracture (Hayes and Myers, 1995): 

𝐹𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑟𝑖𝑠𝑘 (𝛷) =
𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑙𝑜𝑎𝑑
𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 𝑙𝑜𝑎𝑑

 

 Several of the bone variables reported here (BMD, Imin, Smin, Ct.Th, BR) provide 

indices of fracture load, based on previous cadaver studies by our group and others 

(Courtney et al., 1997; Muehleman et al., 2000; Gutekunst et al., 2012). Using identical 

vQCT methods as in the current case series, Gutekunst et al found Smin and Ct.Th to be 

the highest correlates of ex vivo ultimate loading of cadaver metatarsals (Gutekunst et al., 

2012). Similarly, the pressure-derived load variables provide indices of the applied loads 

responsible for the observed metatarsal fractures. Thus, this case series has permitted an 

assessment of whether proposed fracture mechanisms – namely, an increase in applied 

load or decrease in fracture load – preceded incipient Met5 fracture after CN.  

Our results suggest that in these two women studied, a reduction in fracture load 

was not the likely causal mechanism for the observed Met5 fractures. Preceding fracture, 

BMD had actually rebounded to above baseline values for both women, and changes in 

bone geometric strength indices all indicate that fracture load did not decrease and in fact 

would be predicted to increase based on the findings reported in Chapter 2 (Gutekunst et 

al., 2012). Conversely, applied load began high and rose further in the lateral midfoot in 
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both women: peak plantar pressure at baseline was 203 and 355 kPa for the two women, 

which far exceed the upper limit of the 99% confidence interval (120 kPa) for control 

subjects from a previous analysis (Sinacore et al., 2007).  

One possible explanation for the observed results is that the increased values of 

BMD and geometric strength indices – especially in Volunteer A – reflect a response to 

increased loading. Of course, causality cannot be determined from the concomitant 

increases in plantar loading and indices of bone strength; nor can the likely role of weak 

bones (Herbst et al., 2004) in neuropathic fracture be refuted by these data. Rather, we 

report only that the increases observed in BMD and geometric strength indices do not 

support the hypothesis that CN-related reductions in bone quality are a necessary 

precursor to metatarsal fracture. Furthermore, the findings reported here suggest that 

altered bone-to-bone orientation angles may help explain the link between acute CN and 

increased biomechanical loading. Increased plantar flexion and adduction of the 

metatarsals (particularly the lateral metatarsals) are consistent with the progression of a 

varus hindfoot with metatarsus adductus deformity. Hindfoot varus (Raikin et al., 2008) 

and metatarsus adductus (Theodorou et al., 1999; van der Vlies et al., 2007) have been 

previously implicated in lateral metatarsal fractures.  

One variable that may increase fracture risk is the patient’s activity level. We 

cannot rule out the role of load-bearing volume in the observed fractures, though neither 

volunteer reported an increase in walking or other load-bearing activity preceding 

incipient fracture. Future studies may utilize activity monitoring to help assess the role of 

activity on neuropathic fracture. Additionally, we recognize that our measures of barefoot 

plantar loading present an incomplete description of biomechanical loads that may 
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influence fracture. It would be most physiologically relevant to use plantar pressure data 

in conjunction with motion capture data and vQCT-derived estimates of bone strength to 

compute bending stresses applied to the metatarsals throughout a range of weight bearing 

activites. Nonetheless, we consider peak pressure and maximum force to be adequate 

qualitative measures of biomechanical loading.  

In conclusion, we assessed two individuals with CN before and after mid-

diaphyseal fracture of Met5 using plantar pressure measurement and novel vQCT 

techniques to quantify bone strength and 3D bone-to-bone orientation angles. We find 

that BMD and geometric strength indices increased mildly to moderately preceding 

fracture, which does not completely explain the possible link between weakening bone 

material properties and incident fractures. Plantar loads were high at enrollment and 

increased before incipient metatarsal fracture, which lends support to the possible causal 

role of biomechanical loading on metatarsal fractures. Finally, our results suggest that the 

progression of metatarsus adductus and equinovarus foot deformities that have been 

previously associated with lateral metatarsal fractures may lead to increased metatarsal 

loading.  
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