
Washington University in St. Louis
Washington University Open Scholarship

All Theses and Dissertations (ETDs)

Spring 4-25-2013

Molecular Design and Photophysical
Characterization of Synthetic Bacteriochlorins for
Solar Energy Conversion and Photodynamic
Therapy
Eunkyung Yang
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/etd

Part of the Chemistry Commons

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All
Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact
digital@wumail.wustl.edu.

Recommended Citation
Yang, Eunkyung, "Molecular Design and Photophysical Characterization of Synthetic Bacteriochlorins for Solar Energy Conversion
and Photodynamic Therapy" (2013). All Theses and Dissertations (ETDs). 1074.
https://openscholarship.wustl.edu/etd/1074

https://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Fetd%2F1074&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F1074&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F1074&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=openscholarship.wustl.edu%2Fetd%2F1074&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/1074?utm_source=openscholarship.wustl.edu%2Fetd%2F1074&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


 

 

 

 

WASHINGTON UNIVERSITY IN ST. LOUIS 

 

 

Department of Chemistry 

 

Dissertation Examination Committee: 

Dewey Holten, Chair 

Mikhail Y. Berezin 

Robert Blankenship 

Richard A. Loomis 

Liviu Mirica 

Yan Mei Wang 

 

 

Molecular Design and Photophysical Characterization of Synthetic Bacteriochlorins for Solar 

Energy Conversion and Photodynamic Therapy 

 

by 

 

Eunkyung Yang 

 

 

 

A dissertation presented to the 

Graduate School of Arts and Sciences 

of Washington University in 

partial fulfillment of the 

requirements for the degree 

of Doctor of Philosophy 

 

 

 

 

May 2013 

 

St. Louis, Missouri 
 



ii 

 

Table of Contents 

List of Figures ........................................................................................................................vii 

List of Tables .........................................................................................................................x 

List of Charts  ........................................................................................................................xii 

Acknowledgements  ...............................................................................................................xiv 

Abstract ..................................................................................................................................xv   

  

Section 1: Introduction  

     

 Chapter 1: Background, Overview and Methods 

Background on the study of bacteriochlorins ............................................................2 

Electronic and photophysical characteristics of porphyrins ......................................3 

Electronic and photophysical characteristics of bacteriochlorins ..............................7 

Rate constantsfor excited-state process in monomeric bacteriochlorins ...................10 

Rate constants for quenching of the excited-state......................................................11 

Photodynamic therapy ...............................................................................................12 

Experimental methods ...............................................................................................15 

Overview of the thesis ...............................................................................................18 

Collaborations ............................................................................................................20 

            References ..................................................................................................................22 

 

Section 2: Molecular design and photophysical characterization of synthetic 

bacteriochlorins 



iii 

 

Chapter 2: De Novo Synthesis and Photophysical Characterization of Annulated 

Bacteriochlorins. Mimicking and Extending the Properties of Bacteriochlorophylls 

            Abstract ......................................................................................................................25 

Introduction ................................................................................................................26 

Experimental methods ...............................................................................................28 

Results and Discussion ..............................................................................................29 

References ..................................................................................................................42 

Chapter 3: Photophysical Properties and Electronic Structure of Stable, Tunable 

Synthetic Bacteriochlorins: Extending the Features of Native Photosynthetic Pigments 

Abstract ......................................................................................................................48 

Introduction ................................................................................................................49 

Experimental methods  ..............................................................................................55 

Results ........................................................................................................................56 

Discussion ..................................................................................................................66 

References  .................................................................................................................89 

 

Chapter 4: Synthesis and Photophysical Characterization of Stable Indium 

Bacteriochlorins 

Abstract ......................................................................................................................95 

Introduction ................................................................................................................96 

Experimental methods ...............................................................................................100 

Results and Discussion ..............................................................................................102 

References  .................................................................................................................118 



iv 

 

Chapter 5: Synthesis and Photophysical Properties of Metallobacteriochlorins  

Abstract ......................................................................................................................124 

Introduction  ...............................................................................................................125 

Experimental methods ...............................................................................................128 

Results ........................................................................................................................130 

Conclusion and outlook .............................................................................................145 

References ..................................................................................................................148 

 

Chapter 6: Photophysical Properties and Electronic Structure of Bacteriochlorin–

Chalcones with Extended Near-Infrared Absorption 

      Abstract ......................................................................................................................155 

Introduction  ...............................................................................................................156 

Experimental methods ...............................................................................................160 

Results  .......................................................................................................................163 

Discussion  .................................................................................................................189 

Overview ....................................................................................................................189 

References ..................................................................................................................204 

 

Section 3: Study of Synthetic Bacteriochlorins as Photosensitizer for Photodynamic 

Therapy 

Chapter 7: In Vitro Photodynamic Therapy and Quantitative Structure-Activity 

Relationship Studies with Stable Synthetic Near-Infrared-Absorbing Bacteriochlorin 

Photosensitizers 



v 

 

Abstract ......................................................................................................................212 

Introduction ................................................................................................................213 

Experimental methods ...............................................................................................216 

Results  .......................................................................................................................216 

Discussion ..................................................................................................................222 

References ..................................................................................................................223 

 

Chapter 8: Stable Synthetic Bacteriochlorins Overcome the Resistance of Melanoma to 

Photodynamic Therapy 

Abstract ......................................................................................................................228 

Introduction ................................................................................................................229 

Experimental methods ...............................................................................................232 

Results ........................................................................................................................232 

Discussion ..................................................................................................................238 

References ..................................................................................................................240 

Supplementary materials ............................................................................................245 

 

Chapter 9: Stable Synthetic Bacteriochlorins for Photodynamic Therapy: Role of 

Dicyano Peripheral Groups, Central Metal Substitution (2H, Zn, Pd), and Cremophor 

EL Delivery 

Abstract ......................................................................................................................250 

Introduction ................................................................................................................251 

Experimental methods ...............................................................................................254 



vi 

 

Results ........................................................................................................................254 

Discussion ..................................................................................................................262 

References ..................................................................................................................264 

 

Chapter 10: Stable Synthetic Cationic Bacteriochlorins as Selective Anitimicrobial 

Photosensitizers 

Abstract ......................................................................................................................267 

Introduction ................................................................................................................268 

Experimental methods ...............................................................................................271 

Results  .......................................................................................................................272 

Discussion ..................................................................................................................282 

References ..................................................................................................................287 

 

Chapter 11: Molecular Electronic Tuning of Photosensitizers to Enhance Photodynamic   

Therapy: Synthetic Dicyanobacteriochlorins as a Case Study 

      Abstract ......................................................................................................................293 

Introduction  ...............................................................................................................294 

Experimental methods ...............................................................................................299 

Results and Discussion  .............................................................................................302 

References ..................................................................................................................335 

  



vii 

 

List of Figures 

Chapter 1 

Figure 1.  Naturally occurring tetrapyrrole chromophores. .......................................2 

Figure 2. Basic porphyrin skeleton ............................................................................3 

            Figure 3. Absorption spectra of FbTPP and ZnTPP ..................................................4 

Figure 4. The highest energy occupied orbitals .........................................................6 

Figure 5. Structure and absorption spectrum  ............................................................8 

Figure 6. Schematic energy level diagram  ................................................................9 

Figure 7. Jablonski energy level diagram ..................................................................10  

Figure 8. Modified Jablonski diagram to show mechanism ......................................13 

Chapter 2 

Figure 1. Absorption ( solid lines) and emission ...................................................31 

Figure 2. Orbital energies, energy gaps, singlet excited-state lifetime ......................34 

Chapter 3 

Figure 1.  Absorption ( solid lines) and emission  .................................................58 

Figure 2.  Integrated intensity ratio of the Qy and B absorption ...............................65 

Figure 3.  Singlet excited-state lifetime (S) ..............................................................71 

Figure 4.  Molecular orbital energies (A) and energy gaps  ......................................79 

Figure 5. Frontier molecular orbital energies (A)  .....................................................80 

Figure 6.  Transition-dipole-moment directions  .......................................................87 

Figure 7.  Energy (and wavelength) of the Qx(0,0) absorption .................................88 

Chapter 4 

Figure 1. Spectra in toluene at room temperature ......................................................105 



viii 

 

Figure 2. LUMO  HOMO energy gap  ....................................................................115 

Chapter 5 

Figure 1. Summary of metalation of synthetic bacteriochlorins. ...............................131 

Figure 2. ORTEP drawing of (A) free base bacteriochlorin  .....................................132 

Figure 3. Comparison of core structural  ...................................................................134 

Figure 4.  Absorption spectra in toluene  ...................................................................135 

Figure 5.  Absorption spectra in toluene  ...................................................................135 

Figure 6.  The effect of the number ...........................................................................143 

Chapter 6 

Figure 1.Absorption spectra of representative ...........................................................158 

Figure 2. Absorption spectra in toluene  ....................................................................168 

Figure 3. Qy absorption (A) and fluorescence (B) ....................................................169 

Figure 4. Transient absorption difference spectra ......................................................176 

Figure 5. Characteristics ............................................................................................180 

Figure 6. Characteristics ............................................................................................182 

Figure 7. Characteristics ............................................................................................184 

Figure 8. Characteristics ............................................................................................186 

Figure 9.  HOMO  LUMO energy gap ....................................................................198 

Chapter 7 

Figure1.(A)Octanol-water partition coefficients.  Calculated LogP (cLogP) ...........219 

Chapter 8 

Figure 1. Molecular structures ...................................................................................233 

Figure 2. (A) In vitro PDT effectiveness ...................................................................237 



ix 

 

Supplementary Figure 1.TEM micrographs  .............................................................245 

Supplementary Figure 2. Visible absorption spectra  ................................................246 

Chapter 9 

Figure 1. Absorption spectra of the four bacteriochlorins. ........................................258 

Figure 2. Relative effectiveness .................................................................................259 

Figure 3. Effect of incubation time ............................................................................260 

Chapter 10 

Figure 1. Bacteriochlorin photosensitizer ..................................................................269 

Figure 2. Absorption spectra of bacteriochlorins .......................................................272 

Figure 3. Survival fraction against photosensitizer ...................................................273 

Figure 4. Survival fraction against photosensitizer....................................................274 

Figure 5. Survival fraction against photosensitizer....................................................276 

Figure 6. Two color confocal fluorescence micrographs...........................................277 

Figure7. Survival fraction against photosensitizer.....................................................279 

Chapter 11 

Figure 1.  Absorption spectra .....................................................................................307 

Figure 2.  Emission spectrum ....................................................................................311 

Figure 3.  Photobleaching studies ..............................................................................314 

Figure 4.  Photostability of bacteriochlorins ..............................................................316 

Figure 5.  Photobleaching studies ..............................................................................318 

Figure 6.  Photobleaching studies  .............................................................................319 

Figure 7.  Electron densities ......................................................................................331 

Figure 8. Electronic properties  ..................................................................................332 



x 

 

List of Tables 

Chapter 2 

Table 1. Photophysical Properties of Bacteriochlorin Compounds.a  .......................33 

Table 2.  Molecular-orbital energies ..........................................................................36 

Chapter 3 

Table 1.  Structures of Bacteriochlorins  ...................................................................53 

Table 2.  Structures of Bacteriochlorins, Bacteriochlorinimides,  .............................54 

Table 3.  Spectral Characteristics of Bacteriochlorins  ..............................................60 

Table 4.  Photophysical Properties of Bacteriochlorins  ..........................................68  

Table 5.  Molecular Orbital Energies and Energy Gaps for Bacteriochlorins. ..........72 

Table 6.  Molecular-orbital Energies ............................................................................... 77 

Chapter 4 

Table 1.  Spectral Characteristics of Indium ..............................................................106 

Table 2.  Photophysical and Molecular Orbital Properties ........................................110 

Table 3.  Molecular-Orbital Characteristics  ..............................................................114 

Chapter 5 

Table 1.  Spectral Properties of Bacteriochlorins. .....................................................136 

Table 2.  Photophysical, Redox,  ...............................................................................141 

      Chapter 6 

Table 1.  Spectral properties of bacteriochlorins .......................................................171 

Table 2.  Photophysical properties of bacteriochlorins ..............................................175 

Table 3. Molecular-orbital energies of bacteriochlorins ............................................188 

 



xi 

 

Chapter 7 

Table 1.  Chemical structures of bacteriochlorins .....................................................215 

Table 2. Properties of Bacteriochlorins .....................................................................218  

     Chapter 8 

Table S1. Photophysical Properties  ..........................................................................247 

Chapter 9 

Table 1. PDT activity and photostability of the bacteriochlorins. .............................257 

Chapter 10 

Table 1. Chemical and photophysical properties of bacteriochlorins ........................280 

Chapter 11 

Table 1. PDT activity, photostability  ........................................................................306 

Table 2. Absorption and fluorescence  ......................................................................308 

Table 3. Spectral, state-energy, redox, .......................................................................324 

  



xii 

 

List of Charts 

Chapter 2 

Chart 1.  (A) Naturally occurring bacteriochlorophylls .............................................27 

Chart 2.  Structures of MeOBOP, HBC-I, and MeOBC-I .........................................29 

Chart 3.  Benchmark bacteriochlorins. ......................................................................29 

Chart 4.  Fictive bacteriochlorin for which DFT .......................................................35 

Chapter 3 

Chart 1.  Naturally occurring bacteriochlorophylls (top) ...........................................49 

Chapter 4 

Chart 1. .......................................................................................................................97 

Chart 2. .......................................................................................................................102 

Chart 3. .......................................................................................................................102 

Chart 4. .......................................................................................................................103 

Chapter 6 

Chart 1.  Representative bacteriochlorins studied ......................................................157 

Chart 2.  Bacteriochlorin–chalcones prepared  ..........................................................165 

Chart 3.  Push-pull chalcone architecture ..................................................................191 

Chart 4.  Benchmark extended chalcones ..................................................................192 

Chapter 11 

Chart 1. Representative native bacteriochlorin ..........................................................296 

Chart 2. Representative synthetic bacteriochlorins  ...................................................297 

Chart 3. Imidazole-substituted  ..................................................................................298 

Chart 4. Synthetic bacteriochlorins  ...........................................................................298 



xiii 

 

Chart 5. Two sets of  ..................................................................................................305 

  



xiv 

 

Acknowledgements 

 

I cannot find words to express my gratitude to my committee chair Professor Dewey 

Holten for his valuable guidance, patience, kindness, and encouragement throughout my 

graduate school career. I have been extremely lucky to have a supervisor who cared so much 

about my work. Without his guidance and persistent help my graduate career would not have 

been possible.  

I am also indebted to the members of my dissertation committee Professors Loomis, 

Blankenship, Mirica, Berezin, and Wang. They have generously given their time and expertise to 

better my work. I thank them for their contribution and their good-natured support. 

I would like to thank current and former members of Holten group. Dr. Christine 

Kirmaier provided experimental assistance and was willing to listen and offer valuable feedback. 

My colleagues, Joey Springer, Michelle Harris and Kaitlyn Faries have all extended their support 

in a very special way and I gained a lot from them through their personal and scholarly 

interaction, their suggestion at various points of my research program. I am also grateful to Dr. 

Darek Niedzwiedzki in PARC ultrafast facility for his help with TA experiments. 

I consider it an honor to work with the groups of Professor Lindsey at North Carolina 

State University for providing me with numerous samples of bacteriochlorins, Professor David 

Bocian at the University of California, Riverside for offering DFT calculations, and Professor 

Michael R. Hamblin at Harvard medical school for performing photodynamic therapy activities. 

I am pleased to have been part of such a fruitful collaboration. 

I wish to thank my family and friends for their faith in me. I especially thank my parents 

for their material and spiritual support and encouragements in all aspects of my life. 

 



xv 

 

ABSTRACT OF THE DISSERTATION 

Molecular Design and Photophysical Characterization of Synthetic Bacteriochlorins for Solar 

Energy Conversion and Photodynamic Therapy 

By 

Eunkyung Yang 

Doctor of Philosophy in Chemistry 

Washington University in St. Louis, 2013 

Professor Dewey Holten, Chairperson. 

 

  The design, photophysical characteristics and some potential applications of synthetic 

bacteriochlorins are discussed. Bacteriochlorins (e.g., bacteriochlorophylls) are tetrapyrrole 

macrocycles with two reduced pyrrole rings, whereas chlorins (e.g., chlorophylls) and porphyrins 

(e.g., hemes) have one and zero reduced pyrrole rings. Molecular design characteristics are 

revealed by understanding the effects of substituent types and patterns and the central metal ion 

on the photophysical properties and electronic structure.  These effects are elucidated via studies 

of the optical absorption and emission spectra and excited-state decay pathways, and analysis of 

the molecular-orbital characteristics within the four-orbital model. The studies also encompass 

analysis of the properties of bacteriochlorins as photosensitizers for photodynamic therapy 

(PDT).  The factors studied and correlated include photostability, redox potentials, photophysical 

properties, electrochemical and molecular-orbital characteristics, reactive-oxygen-species 

production, photosensitizer cellular uptake and distribution. Collectively, the studies address the 

design of synthetic bacteriochlorins for solar-energy conversion and photomedicine. 
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Section 1. Introduction 

 

 

 

 

 

 

 

 

Chapter 1 

Background, Methods, and Overview 
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Background on the study of bacteriochlorins 

Tetrapyrrole macrocycles play important roles that serve nature in various ways. They are 

the active sites of numerous proteins whose functions range from oxygen transport and storage to 

electron transfer to energy conversion. Such molecules include the heme group of hemoglobin, 

the chlorophylls of plants and cyanobacteria and the bacteriochlorophylls of photosynthetic 

bacteria. In addition, they have proven to be efficient sensitizers and catalysts in a number of 

chemical and photochemical systems.
1 

 Tetrapyrrole molecules can be divided to three major 

classes.  The classes are porphyrin, chlorin and bacteriochlorin, which have zero, one or two 

reduced pyrrole rings, respectively (Figure 1).  

 

Figure 1.  Naturally occurring tetrapyrrole chromophores. 

All three chromophore classes are characterized by strong absorption in the near-

ultraviolet region but weak absorption in the green-orange region; chlorins also afford 

moderately strong absorption in the red region whereas bacteriochlorins afford intense 

absorption in the near-infrared (NIR) region, the latter of comparable strength to the near-

ultraviolet features. The strong NIR absorption characteristics of bacteriochlorins have been 

applied to diverse systems such as artificial photosynthetic light-harvesting, optical imaging, 
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photodynamic therapy of soft tissue, and fluorescent markers in clinical diagnostics. As such, 

investigations of fundamental properties of bacteriochlorins are needed to elucidate the design 

principles that relate molecular composition, photophysical properties and electronic structure to 

allow a wide range of photochemical applications. 

Electronic and photophysical characteristics of porphyrins 

A basic porphyrin consists of four pyrrole rings linked by methane bridges as shown in 

Figure 2. The electronic structure of a porphyrin is an inner 16-membered ring with 

18electrons. When protons are bound to two of the central nitrogen atoms the molecule is 

called a free base (Fb) porphyrin. When the two protons are replaced by one of among various 

metal  ions, it is called as metalloporphyrin. 

. 

Figure 2. Basic porphyrin skeleton.
2
 

 

Figure 3 shows the absorption spectra of two different porphyrins, in this case 

tetraphenylporphyrins (TPP). The major features are referred to as the Soret or B band around 

400 nm in the near-UV region, and the Q bands around 500-700 nm in the visible region.  The 

features denoted Q(0,0), Q(1,0), Q(2,0) refer to the excitation of no, one or two vibrational 
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quanta accompanying the electronic transition.  Metalloporphyrins have D4h symmetry and as 

such, the absorption transitions have Eu symmetry. Eu symmetry consists of two equivalent 

dipole transitions in the x- and y- directions (Figure 2); the B and Q bands of a typical 

metalloporphyrin are shown in Figure 3B.   

   

Figure 3. Absorption spectra of FbTPP and ZnTPP 

 

In the free base porphyrin, the D4h symmetry of metalloporphyrin is changed to D2h 

symmetry because of the presence of the two central protons. Because the x and y axes of Eu 

symmetry are no longer equivalent, the B band is split into the Bx and the By bands and the Q 
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band is split into the Qx and the Qy bands.  These features are labeled as Qx, Qy, Bx and By for 

individual components of the transition pairs (Figure 3A).  As in the case of metalloporphryins, 

each (0,0) origin transition is usually accompanied by a (1,0) vibronic transition.  Thus in Figure 

3A the four Q bands are indicated as Qx(0,0), Qx(1,0), Qy(0,0) and Qy(1,0) in the visible 

region.
2.3

 

These spectral and electronic characteristics of porphyrins can be interpreted by 

Gouterman’s four-orbital model shown in Figure 4. Because the visible bands are ascribed to the 

* transition, the  orbitals of metalloporphyrin have a1u, a2u, eg, b1u, and b2u symmetry.  

According to the Hückel calculations, the two highest occupied molecular orbitals, a1u(
*
) and 

a2u(
*
), and the lowest empty (and degenerate) molecular orbitals, egx() and egy(), are obtained 

and assigned (Figure 4). The a1u() and a2u() orbitals are close in energy (they are often called 

“accidentally” degenerate), and their energy ordering depends on the substituents (or metallation 

state).  For many porphyrins (such as metallotetraphenylporphyrins) the a1u() orbital is lower in 

energy than the a2u() orbital. Therefore, early models (before the four-orbital model) would 

assign the (a1u  eg) one-electron promotion to the Q band and the (a2u  eg) one-electron 

promtion to the B band. However, this simplified assignment does not account for the fact that 

the intensity of the Q band is much (about 30-fold) lower than the B band intensity. Gouterman 

addressed this discrepancy by proposing that because the top filled orbitals, a1u() and a2u(), are 

nearly degenerate, and the two lowest unoccupied orbitals, egx() and egx(), are rigorously 

degenerate (in D4h metalloporphyrins) the electronic transitions and optical spectra of porphyrins 

are described as a linear combination of (a1ueg) and (a2ueg) one-electron promotions (orbital 

configurations), as given by Eq(1).
 2.3

 

 



6 

 

  
 

  
   (     )  (     )     

                                                                                                                                          (1) 

  
 

  
   (     )  (     )     

 

Here, Q
0
 and B

0
 respectively denote the Q and B states of an arbitrary porphyrin assuming 

exactly 50:50 mixtures of the one-electron promotions, as would occur if the a1u and a2u are 

degenerate and egx and egy  are degenerate.  

 

 

Figure 4. The highest energy occupied orbitals and the two lowest energy unoccupied orbitals of 

the Gouterman four-orbital model. The orbital coefficients are proportional to the size of the 

circles. Solid or dashed circles indicate sign. Symmetry nodes are indicated by solid lines.
2
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Electronic and photophysical characteristics of bacteriochlorins 

Bacteriochlorin has a tetrapyrrole macrocycle structure with two reduced pyrrole rings. 

The absorption spectrum of a typical bacteriochlorin is shown in Figure 5.  The B bands, 

especially the By band, is hypsochromically shifted from those of porphyrin, and the Qy band, the 

lowest energy transition, shows a large bathochromic shift. This result can be understood in 

terms of the energies of the HOMO and LUMO configurations in Figure 6. In progressing from 

porphyrin to chlorin to bacteriochlorin, the energies of the filled a1u() and empty egy(*) orbitals 

are raised in energy as a result of the reduction of two pyrrole rings.  One the other hand, the 

energies of the filled a2u() and empty egx(*) orbitals do not change nearly as much (Figure 6). 

Therefore, the energy of the lowest one-electron promotion (configuration), a1u()egx(*) or 

HOMOLUMO, decreases in the following order: porphyrin > chlorin > bacteriochlorin.  As 

such, following the description in Eq. 1, in this series this configuration makes an increasing 

contribution to the nature of the Qy state and optical transition, and a decreasing contribution to 

the By state and optical transition.  Modern density functional theory calculations suggest that the 

a1u()egx(*) makes about a 50% contribution to Qy for porphyrins and about 90% for 

bacteriochlorins, in agreement with the simple four-orbital model.  The intensity of the lowest 

transition energy increases in the same order because the cancellation of the transition dipole 

moments associated with a1u()egx(*) and a2u()egy(*) associated with the high symmetry 

of porphyrins is dramatically lowered for bacteriochlorin. In addition, the redox properties are 

affected because the increase in the energy of HOMO gives a greater ease of oxidization along 

the series porphyrin < chlorin < bacteriochlorin.
4
 According to Figure 6, the reduction potential 

(associated with the LUMO) does not change nearly as much), also in agreement with 

observation.
4
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Figure 5. Structure and absorption spectrum of 8,8,18,18 –tetramethyl bacteriochlorin in toluene 
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Figure 6. Schematic energy level diagram for highest occupied orbitals and lowest unoccupied 

orbitals of porphyrin, chlorin and bacteriochlorin (zinc complexes).
4
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 Rate constants for excited-state processes in monomeric bacteriochlorins 

 The photophysical processes in bacteriochlorins, like most chromophores, can be 

understood using the Jablonski diagram shown in Figure 7. 

 

Figure 7. Jablonski energy level diagram 

 

The observables (measured in the research described in this thesis) are lifetime (S) and 

yield (f) of fluorescence of the lowest singlet excited state (S1) and the yield (isc) of 

intersystem crossing to the lowest triplet excited state (T1), often called the triplet yield (T).  

These observables are connected to the rate constants of the three decay processes of the S1 

excited state (e.g., the Qy excited state of bacteriochlorins), namely S1S0 spontaneous 

fluorescence (kf), S1S0 internal conversion (kic), and S1T1 intersystem crossing (kisc), via Eqs. 

(2) to (4).   

 S = (kf + kic + kisc)
1 

(2) 

 f = kf / (kf + kic + kisc) (3) 
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 isc = kisc / ( kf + kic + kisc) (4) 

The internal conversion yield can be calculated from Eq. (5). 

 ic = 1 - f - isc  (5) 

The radiative, intersystem-crossing, and internal-conversion rate constants can be calculated 

from the above quantities via Eq. (6), where i = f, isc or ic.  

 ki = i /S  (6) 

The ic, kic, kf, and kisc values are obtained using Eqs. 2-6, along with the measured values of 

S, f, isc for the bacteriochlorins. 

The triplet lifetime is given by Eq. 7, where kp is the rate constant for phosophorescence 

emission and kisc1 is the rate constant for T1S0 intersystem crossing 

 T = (kp+kisc1)  (7) 

 

Rate constants for quenching of the excited state  

The lifetime of the S1 excited state and the fluorescence yield in the presence of a 

quencher (q) are given by Eqs. (8) and (9).   


q

Sτ  = (kf + kic + kisc +kq)
1 

(8) 


q

fΦ  = kf /( kf + kic + kisc +kq) (9) 

If the quencher is covalently attached to the bacteriochlorin, kq is a first order process such as 

charge (electron or hole) transfer or energy transfer.  If the quencher is not attached to the 

bacteriochlorin and has high concentration, then kq reflects a pseudo first-order process and 

is given by Eq. 10, where kdiff is the second order rate constant for diffusion (units M
1

sec
1

) 

and [Q] is the molar concentration of the quencher. 
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 kq = kdiff [Q] (10) 

In this diffusive process, such as is caused by quenching by molecular oxygen, the quenching 

rate constant is connected to the fluorescence yield and singlet excited state lifetime via the 

Stern-Volmer equation, indicated in Figure 11. 

                     
0

fΦ /
q

fΦ  =
0

Sτ  /
q

Sτ  = 1 + kq0 [Q]                                                                          (11) 

Similarly, quenching of the triplet excited state, and reduction in the lifetime (T) of that state, by 

diffusible molecular oxygen can occur, via energy transfer or charge-transfer mechanisms. 

  

Photodynamic therapy 

Overview  

Photodynamic therapy (PDT) is a phototherapy treatment in which living tissues are 

damaged or destroyed by using visible or NIR light in the presence of a photoactivatable dye and 

oxygen. Figure 8 shows the general mechanisms of PDT.  An excited photosensitizer absorbing 

visible or NIR light generates a reactive oxygen species by transferring energy or electrons to 

ground state oxygen, and the reactive oxygen species in turn can damage living tissues .
5.6
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Figure 8. Modified Jablonski diagram to show mechanism of photodynamic therapy via Type 1 

and Type 2 mechanisms.
5
 

 

Photosensitizing agents 

A photosensitizer is a critical element in the PDT process because following photon 

absorption, the photosensitizer provides the energy required to generate the reactive oxygen 

species. Therefore, a photosensitizer must satisfy several important requirements to be suitable 

for use. It should have absorption in the visible or NIR region because in this region penetrates 

more deeply into tissue and is less harmful than UV light.   In addition, the photosensitizer’s 

triplet-state energy should be higher than 94 kJ mol
-1

,
 
which corresponds to the singlet oxygen 

energy (1274 nm). It finally should have a highly efficient yield of intersystem crossing. Many 

types of photosensitizers have explored.  For tetrapyrroles, three general classes that have been 
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examined include: porphyrin (Photofrin, BPD-MA), chlorophyll-based photosensitizers (chlorin, 

bacteriochlorin, purpurins) and dyes (phtalocyanine, napthalocyanine).
7
  Bacteriochlorins are 

particularly attractive because of they absorb light in the NIR region where absorption by 

endogenous species (such as blood) is minimial.  They also have favorable and tunable 

photophysical properties and chemical characteristics that can affect photostability and 

deliverability to the target site.  

 

Reactive oxygen species 

 It is generally thought that two basic types of reactive oxygen species are produced: 

superoxide radical anion produced by direct electron transfer from agents or substrates through 

sensitizers and singlet oxygen produced by energy transfer.  The production of these two general 

types of reactive oxygen species is respectively referred to as Types 1 and 2 processes, as shown 

in Figure 8. In the Type 1 photoreaction, a photosensitizer generates superoxide radical anions 

directly via by electron exchange with an organic substrate to produced reduced photosensitizer. 

This reduced agent reacts with ground state oxygen to generate a superoxide anion (Eq. 13).  

Another possible reaction is that an excited photosensitizer directly reacts with oxygen to 

generate superoxide radical anion by transferring electrons (Eq. 14).
6.8

 

3
P* + S  P


 + S

+
          (12) 

P


 + O2  P + O2


          (13) 

3
P* + 

3
O2  P

+
 + O2


         (14) 

In the Type 2 photoreaction, the excited triplet-state energy of a photosensitizer is transferred to 

ground state oxygen to produce reactive singlet oxygen (Eq. 15).
8
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3
P* + 

3
O2  

1
P + 

1
O2          (15)  

There is considerable debate concerning which type of reaction is the most effective.  

Traditionally the Type 2 process has been reported to be dominant during PDT.  A great deal of 

recent work suggests that the Type 1 process can be particularly effective, and a number of 

reactive oxygen species including superoxide, hydroxyl radicals, and other entities have been 

discussed.  The PDT action depends on many other factors such as the photophysical properties 

of the photosensitizer, localization, aggregation, and solvent (including pH).  As such, the 

mechanism of action may differ depending on such variables.   In the later chapters, these factors 

are investigated by the use of synthetic bacteriochlorins, a suitable candidate as a  

photosensitizer.
6
 

Experimental methods 

The following methods were generally employed in the studies described in this thesis.  

Specific conditions are described as appropriate in the individual chapters. 

Static ground state absorption measurements 

Static ground state absorption spectra were obtained using a Shimazu UV-1800 UV-VIS 

spectrophotometer. The spectra were scanned with 2-nm intervals in the range of 300-900 nm. 

The spectra were acquired using either 1 cm or 2 mm glass or quartz cuvettes and were corrected 

against a solvent blank. 

 

Static fluorescence measurements 

Static fluorescence measurements were performed on a Spex Fluorolog Tau2 

spectrofluorometer. Excitation light provided by a 450W Xenon lamp passed through a single 
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grating monochromator (500 nm blaze, 1200 grooves/mm, 3.7 nm/mm) to the sample. The 

fluorescence signal was detected by a Hamamatsu R928 photomultiplier tube operating in photon 

counting mode and corrected for the detection-system spectral response. Most samples were 

contained in a 1 cm glass or quartz cuvette and studied at room temperature. Samples were 

typically prepared with absorption <0.2 in the Qy band region to minimize the inner filter effect 

and were Ar-purged for 30 min. FbTPP (Φf = 0.07 nondegassed toluene)
9
 and 8,8,18,18-

tetramethylbacteriochlorin  (Φf = 0.14 Ar-purged toluene)
10

 were used as reference samples for 

the fluorescence yields.   

 

Singlet-excited state lifetimes 

The lifetime of the singlet excited state of bacteriochlorins was generally measured by a 

time-correlated single photon counting (TCSPC) instrument that employed Soret excitation 

flashes derived from a nitrogen pumped dye laser (PTI LaserStrobe) and a Gaussian instrument 

response function of 0.6 ns. The sample preparation procedure was the same as used for the static 

state measurements. The singlet excited-state lifetime (s < 1ns) wase also measured by transient 

absorption spectroscopy, using the transient absorption (TA) system described below in the 

section on measurement of intersystem crossing yields. 

 

Triplet lifetimes 

The triplet lifetime was obtained using a nanosecond to second time-resolved absorption 

spectrometer system. The excitation light was provided by either a 532 nm Q-switched Nd:YAG 

laser (YG400, Quantel) or a dye laser pumped by the Nd:YAG laser in the Q band with 5 ns 

pulses. The probe light was provided by a filtered 100W CW quartz tungsten halogen lamp 
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(Spectra-physics). The probe light passed through the excited sample and monochromator 

(Jarrell-Ash Monospec27) to arrive at the detection system. The signal was typically detected by 

an R928 PMT followed by a current to voltage amplifier and recorded on an oscilloscope 

(Tektronix).  The overall instrument response of the detection system was adjustable depending 

on the set up, but typically was set to ~100 ns to ~1 s.  Samples were prepared in 

tetrahydrofuran (THF) or 2Me-THF and Ar-purged for 3060 min in a 1 cm glass cuvette.  

Yields of intersystem crossing 

The Φisc value for each compound was obtained using a TA technique in which the extent 

of bleaching of the ground-state Qx (1,0) band due to the lowest singlet excited state was 

measured immediately following a 130 fs flash in the Qy(0,0) band and compared with bleaching 

due to formation of the lowest triplet excited state at the asymptote of the singlet excited-state 

decay. TA measurement was performed at the PARC ultrafast laser facility (with the assistance 

of Dr. Dariusz Niedzwiedki). The TA system consists of a kilohertz femtosecond amplified 

Ti:sapphire laser (MaiTai oscillator and Empower pumped amplifier; Spectra-physics), and 

optical parametric amplifier (TOPAS; Light Conversion) and transition absorption system 

(Helios, Ultrafast Systems).  Most bacteriochlorin samples were measured using excitation 

pulses 0.5 J per pulse in the Soret or Qy bands regions (NUV to NIR) focused to a size of about 

1 mm at the sample. The samples were prepared in a 2 mm glass cell with an absorbance of 0.4-

0.5 in the Qy band region and were Ar-purged for 30 min.   Samples were stirred with a small 

magnetic stir bar during the measurements. 
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Photobleaching studies 

The excitation light obtained from a 300W xenon lamp (Model R300-3 lamp and PS300-

1 power supply; ILC Technologies, Sunnyvale, CA) passed through a 70 cm path cell containing 

deionized water followed by the monochromator with 10 nm bandpass to arrive at a sample. The 

sample was exposed to continuous illumination during the fixed time as calculated from the light 

intensity using an optometer (ModelS471, United Detector Technologies, San Diego, CA). 

Samples in organic solvents were Ar-purged for at least 30 min.  Samples in polar solvents such 

as micelles in deionized water and DMSO were subject to a repeated freeze-pump-thaw cycles 

on a high vacuum system to remove oxygen.  During illumination, the samples were stirred using 

a magnetic bar at the bottom of the cuvette to avoid light exposure to only one side of the sample.  

 

Phosphorescence spectra 

Phosphorescence spectra were obtained using a QuantaMaster™40 spectrofluorometer  

attached to an InGaSA NIR detection system (Photon Technology International). The samples 

were prepared in 2MeTHF or THF and Ar-purged for 2h. 

 

Overview of the thesis 

The overall goal of this research is to (1) understand the electronic structure and the 

photophysical properties of synthetic bacteriochlorins and to elucidate design principles for 

tuning the spectra and photophysical characteristics for applications in solar-conversion systems, 

optical imaging, and PDT (as described in Chapters 26), and to (2) analyze various parameters 

of photodynamic action with synthetic bacteriochlorins as a new photosensitizer for PDT (as 

described in Chapters 7-11). All eleven chapters have been published in the scientific literature 

http://www.pti-nj.com/products/Steady-State-Spectrofluorometer/
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and contain some results from collaborative work. The details of the collaborative studies are 

described below. This thesis focuses on the photophysical properties of the bacteriochlorins, their 

electronic structure as revealed by analysis of the optical and redox properties using molecular 

orbital characteristics, and how these fundamental properties may impact utilization in solar 

conversion and photomedical studies.        

Chapter 2 describes the route and photophysical properties of synthetic bacteriochlorins, 

bearing a germinal dimethyl group in each pyrroline ring with extension to include a bacterio-13-

oxophorbine and bacteriochlorin-13,15 dicarboximides. This study shows that the absorption of 

these bacteriochlorins can be tuned in the NIR spectral region out to 818 nm, which extends the 

spectral coverage beyond that obtained previously with synthetic bacteriochlorins lacking a fifth 

ring. 

Chapter 3 analyzes the spectroscopic and photophysical properties of 33 synthetic 

bacteriochlorins by fluorescence quantum yields, singlet-excited lifetimes, intersystem crossing 

yields, triplet lifetimes and density functional theory (DFT) calculations. According to this 

analysis, design principles are presented for tuning the spectral and photophysical characteristics 

for various photochemical applications. 

Chapter 4 and 5 describe the synthesis and characterization of bacteriochlorins containing 

magnesium, indium, zinc, palladium and copper. An approach is described to reduce the 

difficulty of the metallation of tetrapyrrole macrocycles by increasing the number of electron-

withdrawing groups.  In addition, comparison of the photophysical characteristics of free base 

and metallobacteriochlorins is presented.  The yield of the intersystem crossing of 
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metallobacteriochlorins is determined to be higher than that of free base bacteriochlorins by the 

heavy metal enhancement of the spin-orbit coupling. 

Chapter 6 focuses on the study of bacteriochlorins that contain various chalcone (3-

phenyl-oxo-1-enyl)  substituents at the 3,13-positions. The discussion includes the spectral, and 

photophysical properties (f, s, T, T, kf, kic, kisc) and analysis of the spectral properties using 

the four-orbital model and molecular-orbital characteristics provided by density functional theory 

(DFT) calculations. Bacteriochlorins with chalcone substituents extend the NIR absorption range 

of the Qy band, and in some of the molecules have excited state charge-transfer (CT) 

characteristics.  

Chapter 7, 8, 9, and 10 discuss effectiveness of PDT with stable synthetic 

bacteriochlorins against malignant melanoma cancer cells, and HeLa Cells, and for antimicrobial 

treatment. The results of PDT killing survival fractions, localization, reactive oxygen type 

detection, cell uptake, photostability, and photophysical properties of various synthetic 

bacteriochlorins used as photosensitizers are presented.  

Chapter 11 analyzes these results to determine significant factors that influence the PDT 

activity.  These results are interpreted using the reactive oxygen mechanism that is described in 

terms of excited-state redox potentials and photophysical properties. Collectively this analysis 

suggests important parameters that should be considered in developing next-generation 

photosensitizers, especially those based on bacteriochlorins, which appear quite promising. 
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Collaborations 

All synthetic bacteriochlorins were synthesized in the laboratory of Dr. Jonathan Lindsey 

at the North Carolina State University.  The DFT calculations to obtain molecular orbital 

characteristics, and the ground-state redox potential measurements were performed in the 

laboratory of Dr. David Bocian at the University of California, Riverside. The PDT activity 

studies such as the in vitro PDT experiments, in vivo fluorescence imaging, photosensitizer 

uptake, localization, and reactive oxygen species detection were performed in the laboratory of 

Dr. Michael R. Hamblin at the Harvard Medical School (Chapters 7-11).   

In this dissertation, I collaborated with these researchers and the coworkers in their 

laboratories via my studies of the photophysical properties (including absorption, fluorescence 

and phosphorescence spectra, excited-state lifetimes, yields and rate constants of the excited-

state decay pathways), four-orbital analyses of the optical spectra, photostability studies of 

bacteriochlorins for PDT, and analysis and correlation of these properties.  These studies provide 

a broad fundamental understanding of the photophysical properties and electronic structure of 

bacteriochlorins that is relevant to their roles in natural photosynthesis, artificial systems for 

solar energy conversion, and potential use in photomedicine.     
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Section 2 

Molecular design and photophysical characterization of synthetic bacteriochlorins 

 

Collaborations 

 

All synthetic bacteriochlorins were synthesized in the laboratory of Dr. Jonathan Lindsey 

at the North Carolina State University. The DFT calculations to obtain molecular orbital 

characteristics, and the redox potential measurements were performed in the laboratory of Dr. 

David Bocian at the University of California, Riverside. I collaborated with these researchers and 

the coworkers in their laboratories via my studies of the photophysical properties (including 

absorption, fluorescence and phosphorescence spectra, excited-state lifetimes, yields and rate 

constants of the excited-state decay pathways), four-orbital analyses of the optical spectra, and 

analysis and correlation of these properties.   
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Chapter 2 

De Novo Synthesis and Photophysical Characterization of Annulated Bacteriochlorins. 

Mimicking and Extending the Properties of Bacteriochlorophylls 
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Abstract 

 Bacteriochlorophylls contain the bacteriochlorin chromophore and a fifth, five-membered 

oxopentano ring that encompasses positions 13–15 known as the “isocyclic” ring E.  Such 

bacterio-13
1
-oxophorbines have heretofore only been available in the naturally occurring 

compounds, and analogues bearing six-membered rings have only been available by 

derivatization of bacteriochlorophylls.  A de novo route to synthetic bacteriochlorins, which bear 

a geminal dimethyl group in each pyrroline ring, has been extended to gain access to a bacterio-

13
1
-oxophorbine and bacteriochlorin-13,15-dicarboximides.  The route relies on acid-catalyzed 

condensation of a dihydrodipyrrin–acetal to form the bacteriochlorin, which then is subjected to 

regioselective 15-bromination.  Pd-mediated cyclization of the 15-bromobacteriochlorin bearing 

a 13-acetyl group (intramolecular -arylation) or 13-ethoxycarbonyl group (carbamoylation and 

intramolecular imidation) gives the bacterio-13
1
-oxophorbine or bacteriochlorin-13,15-

dicarboximide, respectively.  The resulting macrocycles exhibit absorption in the near-infrared 

spectral region (733–818 nm), which extends the spectral coverage beyond that obtained 

previously with synthetic bacteriochlorins that lack a fifth ring.  The macrocycles also exhibit 

excited singlet-state lifetimes (1.9–4.6 ns) comparable to or longer than those of natural 

photosynthetic pigments.  Density functional theory calculations predict that the red-shifted 

absorption is primarily due to lowering of the energy of the lowest unoccupied molecular orbital.  

The new route complements existing semisynthetic routes and should enable fundamental 

spectroscopic studies and diverse photochemical applications. 
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Introduction 

Bacteriochlorins absorb strongly in the near-infrared spectral region
1
 and hence are 

attractive candidates for a wide variety of photochemical studies, including artificial 

photosynthesis,
2-9

 photodynamic therapy (PDT),
10-23

 optical imaging,
24-26

 and perhaps flow 

cytometry.
24,27

  Naturally occurring bacteriochlorophylls a, b, and g contain the bacteriochlorin 

chromophore and provide the basis for light-harvesting processes and electron-transfer reactions 

in bacterial photosynthesis (Chart 1, panel A).
28

  Bacteriochlorophylls also possess a five-

membered ring (ring E) that encompasses the 13- and 15-positions; the ring contains a 13
1
-oxo 

moiety and a 13
2
-methoxycarbonyl substituent.  Synthetic manipulation of bacteriochlorophylls 

has afforded a number of derivatives including (i) bacteriopyropheophorbides, which lack the 

13
2
-methoxycarbonyl substituent, the phytyl-like chain, and the central magnesium

2-4,29,30
, and (ii) 

bacteriopurpurinimides (hereafter referred to as bacteriochlorin–imides), which bear a six-

membered imide ring (Chart 1, panel B).
6,12,16,17,31-37

   

The presence of the imide ring in bacteriochlorin–imides provides a number of attractions 

including (1) a hyperchromic and bathochromic shift of the long-wavelength absorption band; (2) 

the ability to introduce diverse groups at the nitrogen of the imide ring;
38

 and (3) increased 

stability of the macrocycle toward routine handling due to the presence of the second carbonyl 

group at the 15-position.  So far, bacteriochlorins bearing the five membered oxopentano or six-

membered imide ring have only been available from the natural compounds or upon 

semisynthesis therefrom, respectively, although synthetic porphyrins and chlorins with a wide 

variety of annulated rings have been prepared.
39,40

  Two significant problems in the preparation 

of derivatives of bacteriochlorophylls include limited stability
36,41,42

 and poor synthetic 

malleability owing to the presence of a nearly full complement of substituents about the 
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perimeter of the macrocycle.
13,18

  The synthesis of bacteriochlorins by reduction or addition of 

porphyrins or chlorins is appropriate for a number of applications but generally suffers from a 

lack of regiocontrol.
43 

 

Chart 1.  (A) Naturally occurring bacteriochlorophylls.  (B) Derivatives of naturally occurring 

bacteriochlorophylls.  (C) Nomenclature of the core macrocycles. 
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Over the past decade we have been developing a de novo synthesis of bacteriochlorins.
44-

46
  The route affords bacteriochlorins wherein each pyrroline ring contains a geminal dimethyl 

group rather than the trans-dialkyl and exo-ethylidene moieties of the naturally occurring 

bacteriochlorophylls.  The geminal dimethyl group has the attractive feature of stabilizing the 

macrocycle toward adventitious dehydrogenation.  Synthetic bacteriochlorins bearing diverse 

substituents at specific sites in the pyrrolic units have been prepared, and selected derivatization 

processes of the bacteriochlorins have been examined (including regioselective bromination); 

however, no annulated rings have yet been introduced.
44-51

  Here we extend the de novo route to 

create stable, tailorable analogues of the fundamental bacterio-13
1
-oxophorbine and 

bacteriochlorin-13,15-dicarboximide macrocyclic skeletons (Chart 1, panel C).
52

  The synthesis 

and spectroscopic analysis of such synthetic macrocycles is essential for understanding the 

structural features that underpin the characteristic spectral properties of the naturally occurring 

bacteriochlorophylls. 

Experimental methods 

Synthesis and DFT calculation  

Experimental methods are described in detail in elsewhere.
A 

Photophysical measurements   

Static absorption and fluorescence measurements were performed as described 

previously.
69,70

  Argon-purged solutions of the samples in toluene with an absorbance of ≤0.10 at 

the excitation wavelength were used for the fluorescence spectral, quantum yield, and lifetime 

measurements.  Fluorescence lifetimes were obtained using a phase modulation technique and 

Soret-band excitation
70

 or via decay measurements using Soret-region excitation pulses obtained 
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from a nitrogen-pumped dye laser and time-correlated-single-photon-counting detection.  

Emission measurements employed 2-4 nm excitation- and detection-monochromator bandwidths 

and 0.2 nm data intervals.  Emission spectra were corrected for detection-system spectral 

response.  Fluorescence quantum yields were determined relative to free base 

tetraphenylporphyrin (f = 0.090),
71

 chlorophyll a in benzene (f = 0.325)
72

 or chlorophyll a in 

toluene (which was found here to have the same value as in benzene).  
 

Results and Discussion 

Synthesis and characterization  

The synthesis and structure characterization shown in chart 2 and 3 of all the compounds 

investigated in this study are described in detail in elsewhere.
A 

Chart 2. Structures of MeOBOP, HBC-I, and MeOBC-I
A
 

 

Chart 3.  Benchmark bacteriochlorins.
45
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Absorption spectra  

The annulated bacteriochlorins prepared herein exhibit characteristic bacteriochlorin 

absorption spectra,
1
 with near-ultraviolet (Soret or B) bands, a long-wavelength feature, the 

Qy(0,0) band, in the near-infrared region of comparable peak intensity, and the weaker Qx bands 

in the intervening region (500–600 nm).  The position of the long wavelength absorption band of 

a photochemically active species is of central importance, defining not only the spectral region 

where absorption occurs but also the energy of the lowest singlet excited-state, which dominates 

key photophysical properties. These properties include fluorescence and, for the native 

bacteriochlorophylls, the energy- and electron-transfer reactions of photosynthesis.   

Prior studies with synthetic bacteriochlorins have shown that the position of the Qy(0,0) 

band could be tuned from 707 nm to 792 nm (typically measured in toluene).
44-46,51

  The 

synthetic bacterio-13
1
-oxophorbine MeOBOP (733 nm) absorbs in this range, to be compared 

with that of methyl bacteriopyropheophorbide a (754 nm in CH2Cl2).
29

  Bacteriopheophytin a 

(BPh-a), which differs from methyl bacteriopyropheophorbide a owing to the presence of a 13
2
-

methoxycarbonyl group and a long alkyl ester chain, also absorbs at 750–760 nm in hydrocarbon 

solvents.
64,65

  The bacteriochlorin–imides MeOBC-I (793 nm) and HBC-I (818 nm) exhibit 

Qy(0,0) bands that extend further into the near infrared.  The Qy(0,0) band of bacteriochlorin–

imides derived from bacteriochlorophyll a occurs in the same spectral range (800–830 nm).
32,33,36

   

The spectra of MeOBOP, MeOBC-I and HBC-I in toluene are shown in Figure 1.  The 

Qy(0,0) positions are listed in Table 1 along with those of a number of bacteriochlorin 

benchmarks that lack the annulated ring E.  Reference molecules for MeOBOP include a set of 

3,13-diacetylbacteriochlorins: MeOBC-MeA (743 nm), MeOBC-A (740 nm), HBC-MeA (766 
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nm) and HBC-A (768 nm).  The first three of these 3,13-diacetylbacteriochlorins were prepared 

here whereas HBC-A was synthesized previously.
45

  Comparison among the four 3,13-

diacetylbacteriochlorins shows that (1) the 5-methoxy group results in an average 25-nm 

hypsochromic shift in the Qy(0,0) position, and (2) the 2,12-dimethyl groups have little ( ≤ 3 nm) 

effect on the Qy(0,0) position.  The first point, regarding the 5-methoxy group, is also made upon 

comparison of the Qy(0,0) positions of bacteriochlorins MeOBC-EtEs (739 nm) and HBC-EtEs 

(761 nm).
46

  The latter two compounds serve as benchmarks for the two bacteriochlorin–imides 

(MeOBC-I and HBC-I): the benchmarks contain the 2,12-diethyl and 3-ester groups but lack the 

13,15-dicarboximide moiety.  The Qy(0,0) position for MeOBC-I (793 nm) and HBC-I (818 

nm), like the three pairs of bacteriochlorins noted above, shows a 25-nm hypsochromic shift due 

to the 5-methoxy group.  Interestingly, the impact of the 5-methoxy group is diminished in 

bacteriochlorins that lack a carbonyl moiety (acetyl, ester, imide) at the 3,13-positions.  This 

point is seen upon comparison of the Qy(0,0) positions of bacteriochlorins MeOBC (709 nm)
46

 

and HBC (713 nm)
45

 that bear one or no substituents, respectively, other than the geminal 

dimethyl groups. 

 

Figure 1. Absorption ( solid lines) and emission (--- dashed lines) spectra (normalized) in 

toluene at room temperature of MeOBOP (blue), MeOBC-I (green), and HBC-I (magenta) 
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Fluorescence spectra, quantum yields, and singlet excited-State lifetimes   

The fluorescence spectra of MeOBOP, MeOBC-I and HBC-I in toluene are shown in 

Figure 1 (dotted lines).  Each fluorescence spectrum is dominated by the Qy(0,0) band, which lies 

~5 nm to longer wavelength than the corresponding Qy(0,0) absorption feature.  The same is 

generally true for the benchmark bacteriochlorins listed in Table 1; exceptions include HBC-

EtEs and MeOBC-EtEs, which show larger (~15 nm) Stokes shifts, suggesting greater changes 

in structure or solvent interactions upon photoexcitation.  

The bathochromic shift of the Qy(0,0) band of MeOBOP, MeOBC-I and HBC-I (733 

nm, 793 nm, 818 nm) is accompanied by a decrease in the fluorescence yield (0.19, 0.052, 0.036) 

and shortening of the singlet excited-state lifetime (4.6 ns, 2.2 ns, 1.9 ns).  The same is true of 

the benchmark bacteriochlorins.  These data are plotted in Figures 2C and D and listed in Table 1.  

For comparison, the average singlet excited-state lifetime of bacteriopheophytin a is 2.0–2.7 ns 

and has a Qy(0,0) band at 750–760 nm in organic solvents (Table 1).
64,65

  Thus, the two synthetic 

bacteriochlorin–imides absorb at significantly longer wavelengths (by ~40 and ~70 nm) than the 

natural pigment and yet have comparable excited-state lifetime.  

Frontier molecular orbitals and electronic properties   

The energies and electron-density distributions of the frontier molecular orbitals (MOs) 

of the bacterio-13
1
-oxophorbine, bacteriochlorin–imides, and benchmark compounds were 

obtained from density functional theory (DFT) calculations.  Such methods were also applied to 

the fictive bacteriochlorin MeOBC-MeAMe
15

 (Chart 4), which differs from the benchmark 

compound MeOBC-MeA in the addition of a 15-methyl substituent.  Examination of MeOBC-

MeAMe
15

 provides deeper insight into the origin of the effects caused by the formation of the 
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fifth ring.  The four frontier molecular orbitals and energy levels for nine compounds are shown 

in Table 2. 

Table 1. Photophysical Properties of Bacteriochlorin Compounds.
a 

Compound 

Cmpd 

code 

for 

Fig. 2 

Qy
 

abs 

(nm) 

Qy
 

em 

(nm) 

IQy
/IB

b 

 
f

 c s 

(ns)
d 

HOMO  

LUMO 

(eV)
e
 

HOMO-1  

LUMO+1 

(eV)
f
 

Targets:         

HBC-I a 818 823 1.3 0.036 1.9 1.92 4.01 

MeOBC-I b 793 798 1.0 0.052 2.2 2.02 3.92 

MeOBOP h 733 739 0.93 0.19 4.6 2.18 3.86 

Benchmarks:         

HBC i 713 716 0.85 0.17 4.0 2.26 4.06 

HBC-A c 768 771 1.2 0.11
 

2.9 2.05 3.95 

HBC-MeA  766     2.02 3.94 

HBC-EtEs d 761 775 0.94 0.14 3.3 2.10 3.98 

MeOBC j 709 711 0.87 0.25 5.0 2.28 3.98 

MeOBC-A f 740 747 0.96 0.14 3.8 2.14 3.88 

MeOBC-

MeA 

e 
743 749 0.95 0.13 3.4 2.14 3.87 

MeOBC-

EtEs 

g 
739

 
749 1.1 0.17 4.3 2.16 3.91 

BPh-a
g
  758

 
768 0.69 0.10 2.7 2.03

h
 3.89

h
 

Fictive:         

MeOBC-

MeAMe
15

 

 
     2.17 3.80 

a
In toluene at room temperature unless noted otherwise.  

b
Ratio of the peak intensities of the 

Qy(0,0) and B bands.  
c
Fluorescence quantum yield (error  7%).  

d
Lifetime of the lowest singlet 

excited state measured using fluorescence techniques (error  7%).  Values for several of the 

benchmark compounds were reported in ref. 45.  
e
Energy gap between the LUMO and HOMO 

orbitals.  
f
Energy gap between the LUMO+1 and HOMO-1 orbitals.  

g
Values are in toluene.  The 

values in ethanol are abs = 750 nm, em = 768 nm, IQy
/IB = 0.39, f = 0.081, and s = 2.3 ns.  A 

value of s = 2.0 ns in acetone/methanol 7:3 was found in ref 65.  
h
DFT calculations were 

performed with the truncated phytyl tail ‐CH2CH=C(CH3)(CH2CH3). 
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Figure 2. Orbital energies, energy gaps, singlet excited-state lifetime, and fluorescence yield as a 

function of the Qy(0,0) energy (bottom axis) and wavelength (top axis).  For each plot, the solid 

symbols are for the three target compounds, MeOBOP, MeOBC-I and HBC-I, and the open 

symbols are for the benchmark bacteriochlorins.  The letter code (a–j) at the bottom of panel A 

gives the left-to-right order of the data points for each plot in the figure and identifies the 

compounds as listed in the first two columns of Table 1.   
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Chart 4.  Fictive bacteriochlorin for which DFT calculations were performed. 

 

 

The key results of the DFT calculations for MeOBOP, MeOBC-I, HBC-I and 

representative benchmark synthetic and fictive compounds are summarized in Figure 2.  This 

figure shows the characteristics of the four frontier orbitals: the highest occupied molecular 

orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), the HOMO-1, and 

LUMO+1.  The energies of these MOs are plotted as a function of the Qy(0,0) absorption-band 

energy/wavelength in Figure 2A, and analogous plots for the HOMO  LUMO energy gap and 

HOMO-1  LUMO+1 energy gap are shown in Figure 2B.  In each of these plots, the data for 

the key target compounds (MeOBOP, MeOBC-I and HBC-I) are given by closed symbols and 

those for the benchmark bacteriochlorins by open symbols.  The values for the HOMO  LUMO 

and HOMO-1  LUMO+1 energy gaps for the various compounds are listed in Table 1.  These 

two energy gaps are relevant to the spectral analysis given below. 
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   Table 2.  Molecular-orbital energies and electron-density distributions of bacteriochlorin compounds. 

 HBC-I MeOBC-I MeOBOP BPh-a
a MeOBC- 

MeAMe
15 

MeOBC-

MeA 
MeOBC-A MeOBC HBC 

Structure 

  

 

 

   

 

 

LUMO+

1 (eV) 

 

 

 

 

 

 

 

 

 

 

 1.50 1.51 1.31 1.41 1.22  1.25 1.33 0.93 0.93 

LUMO 

(eV) 

 

 

 

 

 

  

 

 

 2.99 2.89 2.63 2.84 2.50 2.56 2.70 2.20 2.20 

HOMO 

(eV) 

 

 

 

 

 

  

 

 

 4.91 4.91 4.81 4.87 4.67 4.70 4.84 4.48 4.46 

N HN

NNH

EtO2C

Et

Et

NO O

N HN

NNH

OMeEtO2C

Et

Et

NO O

N HN

NNH

O

O

OMe

N HN

NNH

O

O

RO
O O

O

N HN

NNH

OMe
O

O

N HN

NNH

OMe
O

O

N HN

NNH

OMe
O

O

N HN

NNH

OMe

N HN

NNH
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HOMO-1 

(eV) 

  

 

 

   

 
 

 

 5.51 5.43 5.17 5.30 5.02 5.12 5.21 4.91 4.99 

a
For BPh-a, calculations were performed with a truncated phytyl tail [‐CH2‐CH=C(CH3)(CH2CH3)], which is omitted in the display 

here. 
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The salient points from the DFT calculations and the relationship to the observed spectral 

properties are as follows: 

 (1) The slopes of the trend lines given in Figure 2A show that the LUMO (m = 3.2) is 

more strongly connected with the wavelength/energy of the Qy(0,0) absorption band than are the 

HOMO (m = 1.8), LUMO+1 (m = 2.3) and HOMO-1 (m = 2.4).  These differences can be traced 

to the generally greater electron density in the LUMO at the substituent sites (Table 2).  The 

most important sites in this regard are the 3,13-positions of the carbonyl substituents (acetyl, 

ester, imide) of MeOBOP, MeOBC-I, HBC-I and the benchmark bacteriochlorins.  These sites 

(and the 2,12-positions) are on the molecular y-axis, which is the axis on which the Qy optical 

transition is polarized.  

 (2) In Gouterman’s four-orbital model,
66,67

 the position of the Qy(0,0) absorption band 

depends on the average value of the HOMO  LUMO energy gap and the HOMO-1  LUMO+1 

energy gap.  Because of the trends in the individual molecular orbitals described above and 

shown in Figure 2A, there is a much greater variation in the HOMO  LUMO energy gap versus 

the HOMO-1  LUMO+1 energy gap for MeOBOP, MeOBC-I, HBC-I and the benchmark 

bacteriochlorins (Table 1). The consequence is a much greater magnitude of the slope of the 

trend line for the HOMO  LUMO energy gap (m = 1.4) versus the HOMO-1  LUMO+1 

energy gap (m = 0.05) plotted against the Qy(0,0) wavelength/energy (Figure 2B).  

Consequently, the wavelength/position of the Qy(0,0) band is dominated by the HOMO  LUMO 

energy gap for the bacterio-13
1
-oxophorbine, bacteriochlorinimides, and bacteriochlorins 

described here.  In turn, following the findings given in point (1), the spectral position is dictated 

much more strongly by the dependence of the LUMO than the HOMO on the macrocycle-

substituent pattern for these molecules.  
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 (3) The DFT calculations reproduce the effect of the 5-methoxy group on the position of 

the Qy(0,0) wavelength/energy.  This can be seen by comparing the value for the Qy(0,0) 

wavelength and the HOMO  LUMO energy gap for the following pairs of 3,13-carbonyl-

containing (acetyl, ester, imide) compounds (Table 1): MeOBC-I (793 nm, 2.02 eV) versus 

HBC-I (818 nm, 1.92 eV); MeOBC-EtEs (739 nm, 2.16 eV) versus HBC-EtEs (761 nm, 2.10 

eV); MeOBC-MeA (743 nm, 2.14 eV) versus HBC-MeA (766 nm, 2.02 eV); and MeOBC-A 

(740 nm, 2.14 eV) versus HBC-A (768 nm, 2.05 eV).  For these pairs of compounds (with versus 

without the 5-methoxy group), the average bathochromic shift is 24 nm and the average shift in 

the HOMO  LUMO gap to lower energy is 0.09 eV.  By comparison, the values for MeOBC 

(709 nm, 2.28 eV) versus HBC (713 nm, 2.26 eV) reveal a much smaller spectral shift of 4 nm 

and a corresponding smaller molecular-orbital energy-gap shift of 0.02 eV.  Obviously there is 

interplay between the electron-donating ability of the 5-methoxy group and the sensitivity of the 

3,13-positions to the presence of auxochromes such as carbonyl moieties. 

 (4) The DFT calculations of the benchmark compounds reproduce the finding that the 

2,12-dimethyl groups of bacterio-13
1
-oxophorbine MeOBOP, and in analogy the 2-ethyl group 

of MeOBC-I and HBC-I, have little effect.  This result is shown by the Qy(0,0) wavelength and 

the HOMO  LUMO energy gap for the following pairs of compounds: HBC-A (768 nm, 2.05 

eV) versus HBC-MeA (766 nm, 2.02 eV); and MeOBC-A (740 nm, 2.14 eV) versus MeOBC-

MeA (743 nm, 2.14 eV).  In both cases the presence of the 2,12-dimethyl groups results in  3 

nm spectral shift and a  0.03 eV shift in the molecular-orbital energy gap.  Collectively, these 

results suggest that the alkyl groups at the 2- or 12-positions of MeOBOP, MeOBC-I and HBC-

I, and by implication the native photosynthetic pigments such as BPh-a (Table 2), play an 

insignificant role in determining the spectral properties of these molecules.  
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 (5) The data and analysis given above (Table 1 and Figures 1 and 2) provide insights into 

which substituents are most responsible for the spectral characteristics of MeOBOP versus that 

of the benchmark bacteriochlorin MeOBC.  The Qy(0,0) position and HOMO  LUMO gap for 

MeOBC (709 nm, 2.28 eV) are strongly affected upon the addition of the 3,13-diacetyl groups 

(MeOBC-A: 740 nm, 2.14 eV), with little further effect upon addition of the 2,12-dimethyl 

groups (MeOBC-MeA: 743 nm, 2.14 eV).  The final step to obtain MeOBOP (733 nm, 2.18 eV) 

is closure to form the five-membered ring.  The latter can be thought of as first, placement of a 

substituent at the 15-methyl group, and second, ring closure accompanied by structural/electronic 

effects such as ring strain and shift toward planarity.  To gain insights into the effect of the 15-

substituent, DFT calculations were carried out on the fictive bacteriochlorin MeOBC-MeAMe
15

, 

wherein a methyl group is placed at the 15-position (Tables 1 and 2).  The HOMO  LUMO 

energy gap (2.17 eV) for this fictive compound is between those for MeOBC-MeA (2.14 eV) 

and MeOBOP (2.18 eV), consistent with a modest effect of substitution at the 15-position. 

Given the small (0.03–0.04 eV) energy shifts involved, however, the effects of 15-substitution 

versus ring closure (once the 13-acetyl group is in place) are of uncertain relative magnitude in 

dictating the ultimate spectral properties of the bacterio-13
1
-oxophorbine chromophores.  

 

Outlook 

Bacteriochlorophylls are Nature’s pigments for absorption of sunlight in the near-infrared 

region.  The ability to utilize such compounds in diverse artificial systems – such as artificial 

photosynthesis, clinical diagnostics, and photomedicine – depends on versatile synthetic methods 

that afford stable macrocycles and that enable the spectral properties to be tuned at will.  The 

designs we have chosen employ a geminal dimethyl group in each pyrroline ring to ensure 
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stability toward adventitious dehydrogenation.  The resulting synthetic bacteriochlorins thus 

differ slightly in structure from the natural pigments, yet are more robust toward routine handling 

and synthetic manipulation.  Here we have explored the ability to install an exocyclic ring, either 

the five-membered “ring E” as occurs in all bacteriochlorophylls, or the six-membered imide 

ring characteristic of derivatives of bacteriochlorophylls commonly known as 

bacteriopurpurinimides.  

Of the de novo synthesized bacteriochlorins that we have prepared to date, MeOBC
46

 and 

HBC
45

 are at the shorter wavelength end of the range of Qy(0,0) absorption positions while the 

two bacteriochlorin–imides MeOBC-I and HBC-I are at the longer extreme.  A naturally 

occurring bacteriochlorin (wherein each pyrroline ring bears a geminal dialkyl unit and an oxo 

group) known as tolyporphin A absorbs at 678 nm.
68

  The ability to tune the absorption band 

almost at will from ~680–820 nm bodes well for the use of synthetic bacteriochlorins, bacterio-

13
1
-oxophorbines, and bacteriochlorin-13,15-dicarboximides in diverse photochemical 

applications.  The pursuit of such applications will be facilitated by the fluorescence yields 

(0.036–0.19), singlet excited-state lifetimes (1.9–4.6 ns), and photostability of the bacterio-13
1
-

oxophorbine and bacteriochlorin-13,15-dicarboximides prepared herein, as well as the obvious 

sites for synthetic elaboration provided by the keto and N-imide groups of the annulated ring E. 
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Abstract 

Bacteriochlorins, which are tetrapyrrole macrocycles with two reduced pyrrole rings, are 

Nature’s near-infrared (NIR) absorbers (700 – 900 nm).  The strong absorption in the NIR region 

renders bacteriochlorins excellent candidates for a variety of applications including solar light 

harvesting, flow cytometry, molecular imaging, and photodynamic therapy.  Regardless, natural 

bacteriochlorins are inherently unstable due to oxidative conversion to the chlorin (one reduced 

pyrrole ring) or the porphyrin.  The natural pigments are also only modestly amenable to 

synthetic manipulation, owing to a near full complement of substituents on the macrocycle.  

Recently, new synthetic methodology has afforded access to stable synthetic bacteriochlorins 

wherein a wide variety of substituents can be appended to the macrocycle at preselected 

locations.  Herein, the spectroscopic and photophysical properties of 33 synthetic 

bacteriochlorins are investigated.  The NIR absorption bands of the chromophores range from 

~700 to ~820 nm; the lifetimes of the lowest excited singlet state range from ~2 to ~6 ns; the 

fluorescence quantum yields range from ~0.05 to ~0.25; the average yield of the lowest triplet 

excited state is ~0.5. The spectroscopic/photophysical studies of the bacteriochlorins are 

accompanied by density functional theory (DFT) calculations that probe the characteristics of the 

frontier molecular orbitals.  The DFT calculations indicate that the impact of substituents on the 

spectral properties of the molecules derives primarily from effects on the lowest unoccupied 

molecular orbital.  Collectively, the studies show how the palette of synthetic bacteriochlorins 

extends the properties of the native photosynthetic pigments (bacteriochlorophylls).  The studies 

have also elucidated design principles for tunability of spectral and photophysical characteristics 

as required for a wide variety of photochemical applications. 
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Introduction 

The centrality of chlorophylls in plant photosynthesis is well appreciated and has led to 

numerous studies of the spectroscopic and photophysical properties of chlorophylls and their 

synthetic analogues.  Less studied but equally important are the bacteriochlorophylls, which 

underpin bacterial photosynthesis.  Bacteriochlorophylls are tetrahydroporphyrins wherein two 

reduced pyrrole rings are located at opposite sides of the macrocycle, to be compared with the 

single reduced ring of chlorophylls (which are dihydroporphyrins).  The structures of 

bacteriochlorophylls a, b, and g are shown in Chart 1 (bacteriochlorophylls c-f contain the 

dihydroporphyrin chromophore and hence are misnamed).  The increased saturation of the 

macrocycle leads to strong absorption in the near-infrared (NIR) spectral region: 

bacteriochlorophylls a, b, and g (in dioxane) absorb at 772, 794, and 762 nm, respectively, to be 

compared with absorption at 662 and 644 nm for chlorophylls a and b.
1
   

 

Chart 1. Naturally occurring bacteriochlorophylls (top) and synthetic bacteriochlorins (bottom) 

Two major impediments to studies of bacteriochlorophylls have entailed (i) instability of 

the naturally occurring macrocycles (including susceptibility toward adventitious 
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dehydrogenation thereby forming the corresponding chlorin),
2
 and (ii) a nearly full complement 

of substituents about the perimeter of the macrocycles, thereby limiting semisynthetic 

transformations.
3,4

  Synthetic bacteriochlorins in principle offer an attractive alternative to the 

bacteriochlorins derived semisynthetically from bacteriochlorophylls.  Traditional methods for 

the synthesis of bacteriochlorins involve subjecting a chlorin or porphyrin to hydrogenation or 

addition (e.g., vicinal dihydroxylation).
5
  While operationally simple, both methods can yield 

regioisomers depending on the substituents about the perimeter of the macrocycle, and the 

former method leaves the bacteriochlorin susceptible toward aerobic dehydrogenation.   

 The limited bacteriochlorin architectures available have precluded addressing a number 

of fundamental questions concerning the relation between molecular structure and photophysical 

features.  Chief among the structural questions include the effects of substituents arrayed about 

the perimeter of the macrocycle (including the presence of the isocyclic ring and variants thereof) 

on the spectra and photophysical properties.  Because bacteriochlorophylls are Nature’s NIR 

absorbers par excellence, a related question concerns the extent to which synthetic manipulations 

can shift the long-wavelength absorption band deeper into the NIR while retaining a singlet 

excited-state lifetime of sufficient duration for viable photochemical reactions.  The position of 

the long-wavelength absorption band is important not only with regards to light-harvesting but 

also in establishing an upper limit on the energy level of the first singlet excited state.  Finally, it 

warrants emphasis that photosynthetic phenomena stem from large numbers of pigments 

working in concert.  In that regard, synthetic multichromophore arrays have been widely used to 

good effect to delineate molecular factors that affect electron-transfer and energy-transfer 

phenomena.  Such arrays have largely employed porphyrins and to lesser extent chlorins despite 

the absence of NIR absorption for both types of chromophores.
6
  Very few synthetic arrays have 
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incorporated bacteriochlorins.
7
  Indeed, the studies to date of bacteriochlorins tend to encompass 

the bacteriochlorophylls either as monomers or as part of natural protein assemblies.
8
  Thus, a 

large body of important studies concerning bacteriochlorins has remained unaddressed. 

 In addition to fundamental studies, bacteriochlorins are of interest for a number of 

applications wherein capture of NIR light is of paramount importance.  Exemplary applications 

include (i) bioinspired solar energy conversion, given the abundance of solar radiation in the NIR 

region;
9
 (ii) polychromatic flow cytometry, given the dearth of spectroscopically distinct 

fluorescent markers in the virtually unexplored NIR region, thereby complementing the 

numerous markers for the visible spectral region;
10,11

 and (iii) molecular imaging
11-19

 and 

photodynamic therapy (PDT),
3,4,12,19-26

 given the deep penetration in soft tissue afforded by NIR 

light.  Porphyrins annulated with conjugated rings have recently been found to shift the long-

wavelength absorption band into the NIR,
27,28

 but in one case that has been studied, the excited-

state lifetime was dramatically shortened (to ~13 ps).
28

  Maintaining a singlet excited-state 

lifetime of reasonable magnitude ( ≥ 1 ns) is important for achieving a number of efficient 

photochemical processes such as energy transfer and electron transfer. 
 

 To gain access to stable bacteriochlorins and retain the synthetic versatility required to 

address fundamental questions and diverse applications, we have been working to develop a de 

novo synthesis that affords bacteriochlorins equipped with a geminal dimethyl group in both 

reduced rings.  The geminal dimethyl group blocks adventitious dehydrogenation and thereby 

affords a stable tetrahydroporphyrin chromophore.  The core structure of the synthetic 

bacteriochlorins is shown in Chart 1.  Synthetic manipulations have provided access to 

bacteriochlorins bearing diverse substituents at the 2,3,12,13 positions.  One such class of 

bacteriochlorins also contains a methoxy group at the 5-position (termed “MeOBC” series) 
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whereas a second class lacks the 5-methoxy substituent (termed “HBC” series).  Table 1 shows 

10 members of the former class and 17 members of the latter class.  Further synthetic 

transformations have provided access to six bacteriochlorins wherein the 15-substituent is altered, 

affording three distinct classes as shown in Table 2.  The classes include the “15-substituted” 

series and two series wherein a fifth ring has been annulated to the macrocycle.  The rings 

include the five-membered isocyclic ring characteristic of naturally occurring 

bacteriochlorophylls (i.e., a bacterio-13
1
-oxophorbine) and a six-membered imide ring 

(bacteriochlorin-13,15-dicarboximide) for which there are no natural counterparts.  The imide 

motif has been accessed in (bacterio)chlorophyll chemistry (by base-mediated treatment of the 

natural macrocycles) as a means of achieving a more stable construct with bathochromically 

shifted absorption.  

 Herein, we first describe the spectral properties of the 33 synthetic bacteriochlorins 

shown in Tables 1 and 2.  The syntheses of all compounds except one (see Supporting 

Information) have been reported.
29-36

  The compounds exhibit a range of long-wavelength 

absorption that spans 709–818 nm.  We report measurements of the singlet excited-state lifetime, 

triplet excited-state lifetime, and quantum yields of all three decay processes of the singlet 

excited state (fluorescence, intersystem crossing, and internal conversion), from which the rate 

constants for these fundamental processes are derived.  Density functional theoretical 

calculations have been carried out to assess the energy and composition of the four frontier 

molecular orbitals.  Finally, we draw insights concerning the relation between diverse 

substituents in various patterns, observed spectral and photophysical properties, and molecular 

orbital characteristics.  Taken together, the studies provide a foundation for the rational design of 

bacteriochlorin-containing molecular architectures that capture NIR light. 
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Table 1.  Structures of Bacteriochlorins with Substituents at the 2,3,12,13-Positions. 

 

 Ref R
2 

R
12

 R
3 

R
13 

HBC series      

HBC-H 32 H H H H 

HBC-Swt
2,12

 33 Swt Swt H H 

HBC-M
3,13

 31 H H M M 

HBC-Re
3,13

 34 H H Re Re 

HBC-F
3
 34 H H F H 

HBC-T
2,12 29 T T H H 

HBC-P
3,13

 32 H H P P 

HBC-C
3,13

 34 H H C C 

HBC-CN
3,13 34 H H CN CN 

HBC-V
3,13 32 H H V V 

HBC-MEs
3,13 34 H H MEs MEs 

HBC-Me
2,12

EEs
3,13 35 Me Me EEs EEs 

HBC-Et
2,12

EEs
3,13 35 Et Et EEs EEs 

HBC-PE
3,13

 32 H H PE PE 

HBC-T
2,12

EEs
3,13 See SI T T EEs EEs 

HBC-A
3,13 32 H H A A 

HBC-F
3,13 32 H H F F 

MeOBC series      

MeOBC-H 35 H H H H 

MeOBC-T
2,12 29 T T H H 

MeOBC-Py
3,13

 35 H H Py Py 
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2,12

EEs
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35 Me Me EEs EEs 
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Et
2,12

EEs
3,13 

35 Et Et EEs EEs 

MeOBC-A
3,13 36 H H A A 

MeOBC-Me
2,12

A
3,13

 36 Me Me A A 

MeOBC-

An
2,12

EEs
3,13

 

35 An An EEs EEs 

MeOBC-EEs
2,3,12,13

 35 EEs EEs EEs EEs 
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Table 2.  Structures of Bacteriochlorins, Bacteriochlorinimides, and Bacteriooxophorbine. 

 

 
Ref. R

2 
R

12
 R

3 
R

13 
R

5 
R

15 

15-substituted series        

MeOBC-OMe
15 35 H H H H OMe OMe 

MeOBC-T
2,12

Bza
15

 30 T T H H OMe Bza 
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15 30 T T H H OMe PE 

Bacteriooxophorbine        

MeOBOP 36 Me Me A – OMe – 
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HBC-I 36 Et Et EEs – H – 
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Experimental methods  

Photophysical measurements 

Static and time-resolved photophysical measurements were performed as described 

previously.
37

  Measurement of the fluorescence (f) and triplet-excited-state (isc) quantum 

yields and singlet (S) and triplet (T) lifetimes utilized, unless noted otherwise, dilute (M) Ar-

purged toluene solutions at room temperature.  Samples for f measurements had an absorbance 

<0.12 at the excitation wavelength.  The f values were generally determined with respect to two 

standards and the results averaged.  The standards (deoxygenated solutions) were (1) free base 

meso-tetraphenylporphyrin (FbTPP) in nondegassed toluene, for which f = 0.070 was 

established with respect to the zinc chelate ZnTPP in nondegassed toluene (f = 0.030),
38

 

consistent with prior results on FbTPP,
39

 and (2) 8,8,18,18-tetramethylbacteriochlorin
32

 in Ar-

purged toluene, for which f = 0.14 was established with respect to FbTPP and chlorophyll a 

(Chl a) in deoxygenated benzene
40

 (f = 0.325).  

 The S value for each bacteriochlorin was first probed using a time-correlated single 

photon counting (TCSPC) instrument that employed Soret excitation flashes derived from a 

nitrogen-pumped dye laser (PTI LaserStrobe) and a Gaussian instrument response function of 0.6 

ns.  The values were in good agreement with those obtained for select compounds using a 

fluorescence modulation technique (Spex Tau2).
41

   

 The isc values were obtained using a transient-absorption technique in which the extent 

of bleaching of the ground-state Q(1,0) band due to the lowest singlet excited state was measured 

immediately following a 130 fs flash in the Qy(0,0) band and compared with that due to the 
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lowest triplet excited state at the asymptote of the singlet excited-state decay.
37

  The bleaching 

signals are referenced to a relatively featureless Qx-region transient absorption that is generally 

not substantially different for the S1 and S0 excited states of the free base bacteriochlorins. 

Density Functional Theory calculations   

DFT calculations were performed with Spartan ’08 for Windows version 1.2.0 in parallel 

mode
42

 on a PC equipped with an Intel i7-975 cpu, 24 GB ram, and three 300 GB, 10k rpm hard 

drives.  The hybrid B3LYP functional and the LACVP basis set were employed.  The 

equilibrium geometries were fully optimized using the default parameters of the Spartan ‘08 

program. 

Results  

Absorption spectra  

Electronic ground-state absorption spectra of representative bacteriochlorins are shown in 

Figure 1.  The absorption spectrum of each bacteriochlorin contains four main features with 

maxima in the following spectral ranges: By (0,0) (340371 nm), Bx(0,0) (357408 nm), Qx(0,0) 

(489550 nm), and Qy(0,0) (707818 nm).  For each of these four origin bands, a weaker (1,0) 

vibronic satellite feature can be seen roughly 1300 cm
1

 to higher energy.  [Note that the Bx and 

By bands may each have contributions from x- and y-polarized transitions, and for some 

bacteriochlorins are substantially spectrally overlapped.]  The Qy(0,0) bands have a full width at 

half maximum (FWHM) in the range 1125 nm.  The absorption characteristics of all the 

synthetic bacteriochlorins along with those of the natural photosynthetic pigment 

bacteriopheophytin a (BPh a) are listed in Table 3.  
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The Qy(0,0) band is of interest because it represents absorption of light to produce the 

lowest singlet excited state, which is key to much of the photophysical behavior.  The two 

bacteriochlorinimides have Qy (0,0) bands at the longer wavelength (lower energy) end of the 

range: HBC-I (818 nm) and MeOBC-I (793 nm).  The two analogues that have no substituents 

at the -pyrrole positions absorb near the shorter wavelength end of the range: HBC-H (713 nm) 

and MeOBC-H (709 nm).  Other analogues, such as those bearing 3,13-diacetyl groups, absorb 

at intermediate wavelengths: HBC-A
3,13

 (768 nm) and MeOBC-A
3,13

 (740 nm).  These pairs of 

compounds also illustrate the effect of the 5-OMe group to modestly shift the Qy(0,0) band 

hypsochromically compared to analogues bearing a 5-hydrogen substituent (Table 3).   

Because of uncertainties associated with determination of molecular absorption 

(extinction) coefficients (e.g., weighing small amounts of material), it has been common in the 

literature on photosynthetic pigments (chlorophylls and bacteriochlorophylls) to examine how 

changes in molecular characteristics affect the intensity of the Qy(0,0) band relative to the Soret 

(By, Bx) maximum.
43

  This peak-intensity ratio (IQy/IB) is listed in Table 3.  It deserves mention 

that where molar absorption coefficients have been measured (e.g., MeOBC-T
2,12

 or HBC-T
2,12

, 

Qy = 120,000 or 130,000 M
1

cm
1

, respectively),
29

 the magnitude is fully in line with those 

reported for naturally occurring bacteriochlorophylls.
1,8

  Because of variations in absorption 

bandwidths and in spectral overlap, trends in the oscillator strengths of the transitions are more 

faithfully gauged using integrated band intensities.  For this purpose, Table 3 also includes the 

integrated intensity of the Qy manifold [Qy(0,0) + Qy(1,0) bands] relative to the integrated 

intensity of the entire B manifold [By(0,0) + By(1,0) + Bx(0,0) + Bx(1,0) bands].  The table also 

lists analogous intensity ratios for the Qx(0,0) band relative to the Qx(1,0) band, which normally 
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has a relatively constant extinction coefficient for a series of related tetrapyrroles (because its 

intensity is derived from vibronic borrowing with the Bx transition).   

 

 

Figure 1.  Absorption ( solid lines) and emission (--- dashed lines) spectra in toluene at room 

temperature of bacteriochlorins (normalized at the Qy(0,0) absorption bands); (top left) entire 

spectra, (middle left) magnification of the Soret (Bx and By) region, (middle right) magnification 

of the Qx region, and (bottom) magnification of the Qy region.  The labels in the bottom and top 

panels and the colors in all panels are as follows: MeOBC-OMe
15

 (a, black), HBC-H (b, blue), 

HBC-Swt
2,12

 (c, cyan), HBC-M
3,13

 (d, orange), HBC-P
3,13

 (e, purple), MeOBC-Me
2,12

A
3,13

 (f, 

royal), HBC-V
3,13

 (g, violet), MeOBC-EEs
2,3,12,13

 (h, wine), HBC-PE
3,13

 (i, dark yellow), HBC-

T
2,12

EEs
3,13

 (j, dark cyan), HBC-F
3,13

 (k, magenta),  MeOBC-I (l, olive), and HBC-I (m, red).  
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Figure 2A plots the Qy/B integrated intensity ratio versus the Qy(0,0) energy (and 

wavelength).  With the exception of the bacteriochlorinimides (HBC-I and MeOBC-I), there is a 

good linear relationship between these two quantities for all the synthetic bacteriochlorins (and 

natural photosynthetic pigment BPh a).  The greatest effect of the 5-OMe group on the intensity 

of the Qy(0,0) band occurs for bacteriochlorins containing a 3,13-carbonyl (acetyl, ester, imide) 

moiety, including a 30% increase for MeOBC-I versus HBC-I.  These results are analyzed 

below in terms of the connection between the spectral properties and molecular-orbital (MO) 

characteristics.  
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Table 3.  Spectral Characteristics of Bacteriochlorins
a
  

Compound 
By(0,0)

b
 abs   

(nm) 

Bx(0,0)
b
 abs   

(nm) 

Qx(0,0) 

abs   

(nm) 

Qy(0,0)
c
 abs   

(nm) 

Qy(0,0)
 d
 

abs 

FWHM 

(nm) 

Qy(0,0)
e
 

em   

(nm) 

Qy(0,0)
 d
 

em 

FWHM 

(nm)
 

Qy 
g 

abs-em 

(cm
-1

) 

IQy/ 

IB
h
 

IQx(0,0)/ 

IQx(1,0)
 i Qy

/B 
j
 

HBC Series            

HBC-H 340 365 489 713 12 716 16 59 0.85

9 

7.86 0.111 

HBC-Swt
2,12

 344 364 492 720 13 722 17 38 1.00 6.09 0.122 

HBC-M
3,13

 345 370 493 725 14 727 18 38 0.99

3 

5.81 0.134 

HBC-Re
3,13 346 368 496 731 14 737 23 111 0.71

2 

3.46 0.133 

HBC-F
3
 352 359 513 733 22 739 23 111 0.91

3 

4.74 0.157 

HBC-T
2,12

 351 374 499 736 20 742 23 110 1.00 6.11 0.143 

HBC-P
3,13

 351 373 498 736 20 742 26 110 0.98

1 

6.41 0.146 

HBC-C
3,13  k

 344 371 506 734 19 737 20 55 0.76

6 

5.48 0.135 

HBC-CN
3,13

 347 372 515 748 14 752 17 71 1.33 10.2 0.156 

HBC-V
3,13

 352 377 507 750 21 754 20 71 0.94

8 

6.82 0.171 

HBC-MEs
3,13

 352 377 523 754 17 757 19 53 1.06 7.83 0.165 

HBC-Me
2,12

EEs
3,13 354 384 520 760 19 764 20 69 0.97

8 

8.20 0.186 

HBC-Et
2,12

EEs
3,13

 354 383 521 761 20 764 21 52 0.94 8.32 0.165 

HBC-PE
3,13

 363 380 511 763 18 766 20 51 1.72 8.60 0.173 

HBC-T
2,12

EEs
3,13

 349 357 548 767 25 773 29 101 0.92

4 

6.06 0.179 

HBC-A
3,13

 360 389 533 768 19 771 20 51 1.19 5.84 0.194 

HBC-F
3,13

 363 393 536 771 22 775 21 67 0.80 7.29 0.204 

MeOBC Series            

MeOBC-H 345 367 501 709 11 711 18 40 0.87 8.07 0.112 
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MeOBC-T
2,12 356 373 511 731 20 736 23 93 0.89

1 

5.86 0.144 

MeOBC-Py
3,13 

 364 364 515 734 22 741 21 129 0.89

9 

5.33 0.138 

MeOBC-EEs
3,13

 355 375 525 735 20 740 24 92 1.01 6.10 0.142 

MeOBC-Me
2,12

EEs
3,13 357 380 520 738 18 741 21 55 0.96

3 

6.48 0.129 

MeOBC-Et
2,12

EEs
3,13

 357 379 521 739 18 749 21 37 1.10 6.50 0.149 

MeOBC-A
3,13  

 363 363 529 740 23 748 27 145 0.96 3.68 0.151 

MeOBC-Me
2,12

A
3,13  

 363 363 523 743 24 749 26 108 0.95 3.36 0.166 

MeOBC-An
2,12

EEs
3,13 360 376 527 749 23 755 26 106 1.09 5.99 0.164 

MeOBC-EEs
2,3,1213

 361 368 550 759 20 763 23 69 1.21 4.63 0.182 

15-substituted series            

MeOBC-OMe
15

 359 368 511 707 12 713 16 119 0.54

6 

7.856 0.087 

MeOBC-T
2,12

Bza
15

 358 378 519 736 20 741 23 92 0.87 6.26 0.142 

MeOBC-T
2,12

PE
15  

 387 387 551 754 22 759 24 87 0.95 3.92 0.145 

Bacteriooxophorbine            

MeOBOP 359 376 530 733 19 739 26 111 0.93

4 

4.89 0.138 

Bacteriochlorinimides            

MeOBC-I 371 407 550 793 22 798 26 79 1.02 7.25 0.142 

HBC-I 358 408 544 818 24 823 24 74 1.28 8.40 0.185 

Standard            

BPh a 362 389 532 758 31 768 27 172 0.69 4.17 0.153 

a
Obtained in toluene at room temperature unless noted otherwise.  

b
The two Soret features are labeled Bx(0,0) and By(0,0) but the bands 

may be of mixed parentage.  
c
Position (nm) of the Qy(0,0) absorption band.  

d
FWHM (in nm) of the Qy(0,0) absorption band.  

e
Position 

(nm) of the Qy(0,0) fluorescence emission band.  
f
FWHM (in nm) of the Qy(0,0) fluorescence band.  

g
Difference in energy (cm

-1
) 

between the peak positions of the Qy(0,0) absorption and fluorescence bands.  
h
Ratio of the peak intensities of the Qy(0,0) band to the 

Soret (B) maximum, which could be either Bx(0,0) or By(0,0).  
i
Ratio of the peak intensities of the Qx(0,0) and Qx(1,0) bands.  

j
Ratio of 

the integrated intensities of the Qy manifold [Qy(0,0), Qy(1,0)] to the Soret manifold [By(0,0), By(1,0), Bx(0,0), Bx(1,0)], for spectra 

plotted in cm
-1

.  
k
Spectra measured in methanol.
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Fluorescence spectra 

The fluorescence emission spectra of representative bacteriochlorins in toluene are shown 

in Figure 1 (dashed lines).  The fluorescence spectrum of each bacteriochlorin is dominated by 

the Qy(0,0) band, which is positioned on the average 6 nm to longer wavelength (80 cm
1

 to 

lower energy) than the Qy(0,0) absorption maximum (Table 3).  This rather small “Stokes” shift 

indicates little change in bacteriochlorin structure or solvent interactions upon photoexcitation.  

The Qy(0,0) fluorescence bands have a FWHM in the range 1629 nm.   

Fluorescence quantum yields and singlet excited-state lifetimes  

The fluorescence quantum yields (f) of the bacteriochlorins are in the range 0.040.25 

with an average value of 0.15.  The singlet excited-state lifetimes (S) are in the range 1.96.2 ns 

with an average value of 3.8 ns.  These values and other photophysical parameters are collected 

in Table 4.   

Close examination of the Table 4 reveals two trends:  (i) The f and S values modestly 

decrease as the Qy(0,0) absorption band shifts to longer wavelength (lower singlet excited-state 

energy).  These trends are shown for representative bacteriochlorins in Figure 3.  (ii) The average 

f and S value for the bacteriochlorins containing a 5-OMe substituent (“MeOBC series”) (0.18, 

4.3 ns) are modestly larger than those of the analogues bearing a 5-H substituent (“HBC series”) 

(0.13, 3.6 ns).  The same is true for the respective bacteriochlorinimides (Table 4).  These trends 

are illustrated by comparison of the Qy, f, and S values for six representative compounds (and 

three 5-OMe versus 5-H pairs) in order of increasing Qy(0,0) wavelength (decreasing excited-

state energy): MeOBC-H (709 nm, 0.25, 5.0 ns) > HBC-H (713 nm, 0.13, 4.0 ns) > MeOBC-

A
3,13

 (740 nm, 0.14, 3.8 ns ) > HBC-A
3,13

 (768 nm, 0.11, 2.9 ns) > MeOBC-I (793 nm, 0.05, 2.2 
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ns) > HBC-I (818 nm, 0.04, 1.9 ns).  Similarly, the average f and S values for the 

bacteriochlorins containing a 5-OMe substituent plus a 15-substituent (“15-substituted series”) 

(0.19, 5.4 ns) are modestly larger than those containing only a 5-OMe group (MeOBC series) 

(0.18, 4.3 ns).  Selected members of these sets allow comparison of Qy, f, and S values for 

bacteriochlorins containing 5,15-OMe, 5-OMe, and no OMe group:  MeOBC-OMe
15

 (707 nm, 

0.16, 6.2 ns) > MeOBC-H (709 nm, 0.25, 5.0 ns) > HBC-H (713 nm, 0.13, 4.0 ns).  For 

comparison, typical (solvent dependent) values for the native photosynthetic pigment BPh a are 

750 nm, 0.10 and 2.7 ns (Table 4).
44

  

Yields and lifetimes of the triplet excited state   

The quantum yield of intersystem crossing from the lowest singlet excited state to the 

lowest triplet excited state (isc), commonly referred to as the triplet yield, is in the range 0.24 to 

0.80.  All but four of the 33 bacteriochlorins have triplet yields in the range 0.40 to 0.65 despite a 

substantial variation in the nature and pattern of substituents.  Furthermore, the average value 

and standard deviation is 0.5  0.1 for both the HBC series (17 compounds) and MeOBC series 

(10 compounds).  These isc values of the synthetic bacteriochlorins are in general comparable to 

the value of 0.57 for BPh a (Table 4). On the other hand, the lifetimes of the lowest triplet 

excited state (T) for the synthetic bacteriochlorins (35233 s) are generally significantly longer 

than those (1630 s) for BPh a in several solvents (Table 4).
44 

Excited-state decay pathways and rate constants  
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The observables S, f, and isc (Table 4) for decay of the lowest-energy singlet excited 

state (S1) are connected to the rate constants for S1S0 spontaneous fluorescence (kf), S1S0 

internal conversion (kic), and S1T1 intersystem crossing (kisc) via Eqs. (1) to (3).   

 S = (kf + kic + kisc)
1 

(1) 

 f = kf / (kf + kic + kisc) (2) 

 isc = kisc / ( kf + kic + kisc) (3) 

The internal conversion yield can be calculated from Eq. (4). 

 ic = 1 - f - isc  (4) 

The radiative, intersystem-crossing, and internal-conversion rate constants can be calculated 

from the above quantities via Eq. (5), where i = f, isc or ic.  

 ki = i /S  (5) 

The Fic, kf, kisc, and kic values obtained using Eqs. 3-5, along with the measured values of S, 

f, isc for the bacteriochlorins are given in Table 4.   

 The S1  S0 radiative rate constants are in the range (18 ns)
-1

 to (48 ns)
-1

.  The rate 

constant for S1  S0 internal conversion are the range (4 ns)
-1

 to (27 ns)
-1

 and increases 

weakly with decreasing S1 excited-state energy (based on the Qy(0,0) position), which is 

consistent with the energy-gap law for nonradiative decay.
45

  The rate constant for S1  T1 

intersystem crossing is in the range (3 ns)
-1

 to (18 ns)
-1

.  The average values of kf, kisc, and kic 

for the HBC series are comparable to those for the MeOBC series.  

Molecular orbital characteristics   

To gain insights into the trends in the spectral and photophysical properties of the 

bacteriochlorins as a function of molecular characteristics, DFT calculations were performed.
42
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These calculations provide the energies and electron-density distributions of the frontier MOs.  

The principal orbitals of interest are the highest occupied molecular orbital (HOMO), the lowest 

unoccupied molecular orbital (LUMO), and the HOMO-1 and LUMO+1.  The energies of these 

orbitals and various energy gaps relevant to the photophysical properties are given in Table 5.  

Table 6 shows electron density plots of the MOs for representative bacteriochlorins.   

 

Figure 2.  Integrated intensity ratio of the Qy and B absorption manifolds versus (A) the Qy(0,0) 

absorption energy (and wavelength) and (B) the LUMO – HOMO energy gap.   For both panels, 

the symbols designate the compounds as follows: 5-H bacteriochlorins (closed circles), 5-OMe 

bacteriochlorins and bacteriooxophorbine (open circles), bacteriochlorinimides HBC-I (closed 

triangle) and MeOBC-I (open triangle), and photosynthetic pigment BPh a (open circle 

containing an “x”).  The dashed line in each panel is the fit of the data for the synthetic 

bacteriochlorins and in (A) does not include the two bacteriochlorinimides.  
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The energies of the four frontier MOs are plotted as a function of the Qy(0,0) absorption-

band wavelength/energy in Figure 4A, and analogous plots for the LUMO  HOMO energy gap 

and LUMO+1  HOMO-1 energy gap are shown in Figure 4B.  In each of these plots, the data 

for bacteriochlorins containing 5-H and 5-OMe substituents are given by closed and open 

symbols, respectively.  The data for the photosynthetic pigment BPh a are given by the open 

symbol containing an “x”.  The HOMO – LUMO versus Qy (0,0) energy plot is reproduced in 

Figure 2B for direct comparison with the spectral data in Figure 2A (and the data for the two 

bacteriochlorinimides indicated by triangles).  In analogy to Figure 4 for the Qy(0,0) band, the 

energies of the four frontier MOs are plotted as a function of the Qx(0,0) absorption-band 

wavelength/energy in Figure 5A, and analogous plots for the LUMO+1  HOMO energy gap 

and LUMO  HOMO-1 energy gap are shown in Figure 5B.  The relationships depicted in these 

various plots are discussed as part of the spectral analysis given below.   

 

Discussion 

The elucidation of the relationships between structural/MO characteristics and 

spectral/photophysical properties provides a foundation for the design of bacteriochlorins and 

extended analogues with desired properties for diverse applications.  The variations in the MO 

characteristics reflect the nature and positions of the peripheral substituents on the 

bacteriochlorin.  Access to diverse substituted bacteriochlorins is now under synthetic control.  

The MO characteristics in turn influence the photophysical properties (excited-state lifetimes, 

and yields and rate constants of excited-state decay routes).  The subsections below discuss the 
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observed spectral and photophysical properties of the bacteriochlorins and the correlation of 

these properties with the calculated MO characteristics of the molecules.   

General characteristics of the Qy(0,0) absorption band   

The Qy(0,0) transition is of particular interest because it corresponds to absorption of 

light to produce the lowest singlet excited state, which dominates much of the photophysical 

behavior.  For applications, such behavior includes fluorescence (molecular imaging and flow 

cytometry) and energy/electron transfer (solar-energy conversion).  Thus, understanding the 

impact of molecular factors that can be manipulated via synthesis is of great value toward the 

design of bacteriochlorins and related macrocycles with tunable properties. 

The bacteriochlorins described herein span a large range of NIR positions of the Qy(0,0) 

absorption band (Figure 1 and Table 3), primarily due to the effects of 2,3,12,13-substituents 

(Tables 1 and 2).  These positions are on the molecular y-axis, which is the axis along which the 

Qy optical transition is polarized.  This fact is illustrated by the results of time-dependent DFT 

calculations for representative bacteriochlorins shown in Figure 6.  These calculations show that 

the transition-dipole-moment direction for absorption to the lowest singlet excited state (the Qy 

state) essentially bisects the pyrrole rings (which contain the 2,3,12,13-positions).  The Qy(0,0) 

band varies from 818 nm for imide HBC-I to 707 nm for MeOBC-MeO
15

.  Analogues bearing a 

variety of 2,3,12,13 substituents, and with hydrogen or methoxy at the 5-position, provide 

coverage in relatively fine increments across the 700–800 nm spectral region (Figure 1).   
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Table 4.  Photophysical Properties of Bacteriochlorins
a
 

Compound 

Qy(0,0)
b
 

energy   

(cm
1

) 

S
c 

(ns) 
f

 d
 isc 

e
 ic 

f
 (kf)

1 g 
(ns)  (kisc)

1 h
 (ns)  (kic)

1 i
(ns) T  

j 
(µs)  

HBC Series          

HBC-H 13996 4.0 0.14 0.62 0.24 29 6.5 17 169 

HBC-Swt
2,12

 13870 3.6 0.11 0.40 0.49 33 9.0 7 190 

HBC-M
3,13

 13774 3.5 0.15 0.65 0.20 23 5.4 18 233 

HBC-Re
3,13 13624 3.0 0.08 0.56 0.36 38 5.4 8.3 198 

HBC-F
3
 13615 3.4 0.12 0.80 0.08 28 4.2 42 66 

HBC-T
2,12

 13532 3.3 0.18 0.55 0.27 18 6.0 12 163 

HBC-P
3,13

 13532 3.3 0.13 0.68 0.19 25 4.9 17 118 

HBC-C
3,13

  
k
 13596 3.7 0.09 0.41 0.50 41 9.0 7 70 

HBC-CN
3,13

 13333 4.1 0.15 0.43 0.42 27 9.5 9.8 84 

HBC-V
3,13

 13298 3.3 0.17 0.55 0.28 19 6.0 12 108 

HBC-MEs
3,13

 13236 3.9 0.14 0.40 0.46 28 9.8 9 76 

HBC-Me
2,12

EEs
3,13 13123 3.0 0.13 0.52 0.35 23 5.8 9 64 

HBC-Et
2,12

EEs
3,13

 13115 3.3 0.14 0.55 0.31 24 6.0 11 110 

HBC-PE
3,13

 13080 3.3 0.15 0.63 0.22 22 5.2 15 95 

HBC-T
2,12

EEs
3,13

 12987 3.4 0.13 0.40 0.47 26 8.5 7 92 

HBC-A
3,13

 12996 2.9 0.11 0.49 0.40 26 5.9 7 55 

HBC-F
3,13

 12937 2.9 0.11 0.52 0.37 26 5.6 7 60 

MeOBC Series          

MeOBC-H 14085 5.0 0.25 0.55 0.20 20 9.1 25 107 

MeOBC-T
2,12 13633 4.5 0.20 0.42 0.38 23 10.7 12 107 
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MeOBC-Py
3,13  k

 13560 4.0 0.13 0.51 0.36 31 7.8 11 96 

MeOBC-EEs
3,13

 13559 4.8 0.19 0.52 0.29 25 9.2 17 51 

MeOBC-Me
2,12

EEs
3,13 13523 4.4 0.17 0.53 0.30 26 8.3 15 85 

MeOBC-Et
2,12

EEs
3,13

 13514 4.3 0.17 0.63 0.20 25 6.8 22 83 

MeOBC-A
3,13  k

 13441 3.8 0.14 0.48 0.38 27 7.9 10 38 

MeOBC-Me
2,12

A
3,13  k

 13405 3.4 0.13 0.48 0.39 26 7.1 9 78 

MeOBC-An
2,12

EEs
3,13 13298 4.1 0.22 0.43 0.35 19 9.5 12 83 

MeOBC-EEs
2,312,13

 13141 4.3 0.16 0.24 0.60 27 17.9 7 46 

15-substituted  series          

MeOBC-OMe
15

 14124 6.2 0.16 0.71 0.13 39 8.7 48 103 

MeOBC-T
2,12

Bza
15

 13541 4.6 0.20 0.54 0.26 23 8.5 18 111 

MeOBC-T
2,12

PE
15  k

 13219 5.3 0.19 0.62 0.19 28 8.5 28 96 

Bacteriooxophorbine          

MeOBOP 13587 4.6 0.19 0.31 0.50 24 15 9 36 

Bacteriochlorinimides          

MeOBC-I 12571 2.2 0.05 0.76 0.19 44 2.9 12 72 

HBC-I 12188 1.9 0.04 0.51 0.45 48 3.7 4.2 85 

Standard          

BPh a 
l 

13107 2.7 0.10 0.57
 

0.33 27 4.7 8 25
 

a
Measured in toluene at room temperature unless noted otherwise.  

b
Average energy of the Qy(0,0) absorption and emission bands 

(Table 3).  
c
Lifetime of the lowest singlet excited state measured using fluorescence techniques (7%).  

d 
Fluorescence quantum yield 

(5%).  
e
Intersystem crossing (triplet) yield (0.09).  

f
Internal conversion yield calculated via Eq. (4).  

g
Inverse of the radiative 

(fluorescence) rate constant obtained via Eq. (5).  
h
Inverse of the intersystem crossing rate constant obtained via Eq. (5). 

i
Inverse of the 

internal conversion rate constant obtained via Eq. (5).  
j
Lifetime of the lowest triplet excited state in Ar-purged 2-

methyltetrahydrofuran measured via transient absorption spectroscopy  (10%).  
k
Properties except isc measured in methanol.  

l
Values in toluene.  The values in ethanol are f = 0.081, and s = 2.3 ns, T = 30 s.  The values from ref 44 in acetone/methanol (7:3) 

are s = 2.0 ns, S = 16 s, and isc = 0.57 (average of 0.54 and 0.60 from two methods). 
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Although there is significant tunability in the position of the Qy(0,0) absorption band (and 

in the analogous Qy(0,0) fluorescence band), the band retains its rather narrow bandwidth more 

or less independent of wavelength.  The typical FWHM is 15 nm (Table 3).  Such narrow 

absorption bandwidths are important for selective excitation in multi-color applications in optical 

molecular imaging or flow cytometry.  The analogous narrow fluorescence bandwidths are 

similarly useful for selective detection in multi-chromophore imaging and cytometry protocols.  

For example, we have utilized these narrow bandwidths to illustrate the favorable properties of 

bacteriochlorins (in chlorin–bacteriochlorin dyads) versus common commercial dyes for optical 

molecular imaging
15,16

 including in mouse models.
46
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Figure 3.  Singlet excited-state lifetime (S) and fluorescence yield (f) versus the 

Qy(0,0) absorption energy (and wavelength) for representative bacteriochlorins, the 

bacteriochlorinimides, and MeOBOP (BOP).  The closed symbols designate compounds 

containing a 5-H substituent and the open symbols compounds containing a 5-OMe group.  The 

open and closed symbols represent the same compounds in both panels, but the legends for one 

type (5-H vs 5-OMe) are shown in only one panel due to space limitations.  The trend lines 

represent fits to all of the data shown in each panel. 



72 

 

Table 5.  Molecular Orbital Energies and Energy Gaps for Bacteriochlorins.   

Compound 
HOMO-1 

(eV) 

HOMO 

(eV) 

LUMO 

(eV) 

LUMO+1 

(eV) 

LUMO - 

HOMO 

(eV) 

LUMO+1 

- HOMO-1 

(eV) 

LUMO - 

HOMO-1 

(eV)
 

LUMO+1 

- HOMO 

(eV) 

HBC series         

HBC-H -4.99 4.46 2.20 0.93 2.26 4.06 2.79 3.53 

HBC-Swt
2,12

 4.92 4.36 2.12 0.89 2.24 4.03 2.8 3.47 

HBC-M
3,13

 4.98 4.43 2.19 0.95 2.24 4.03 2.79 3.48 

HBC-Re
3,13 

5.01 4.46 2.28 1.01 2.18 4.00 2.73 3.45 

HBC-F
3
 5.21 4.73 2.58 1.26 2.15 3.95 2.63 3.47 

HBC-T
2,12

 4.95 4.40 2.22 0.96 2.18 3.99 2.73 3.44 

HBC-P
3,13

 5.00 4.45 2.28 1.00 2.17 4.00 2.72 3.45 

HBC-C
3,13

 5.28 4.86 2.77 1.30 2.09 3.98 2.51 3.56 

HBC-CN
3,13

 5.68 5.22 3.10 1.65 2.12 4.03 2.58 3.57 

HBC-V
3,13

 5.03 4.48 2.37 1.04 2.11 3.99 2.66 3.44 

HBC-MEs
3,13

 5.20 4.77 2.67 1.21 2.10 3.99 2.53 3.56 

HBC-Me
2,12

EEs
3,13 

5.17 4.67 2.57 1.19 2.1 3.98 2.6 3.48 

HBC-Et
2,12

EEs
3,13

 5.18 4.68 2.58 1.20 2.10 3.98 2.60 3.48 

HBC-PE
3,13

 5.11 4.53 2.51 1.17 2.02 3.94 2.60 3.36 

HBC-T
2,12

EEs
3,13

 5.27 4.75 2.64 1.30 2.11 3.97 2.63 3.45 

HBC-A
3,13

 5.26 4.83 2.78 1.31 2.05 3.95 2.48 3.52 

HBC-F
3,13

 5.41 4.97 2.94 1.49 2.03 3.92 2.47 3.48 

MeOBC series         

MeOBC-H 4.91 4.48 2.20 0.93 2.28 3.98 2.71 3.55 

MeOBC-T
2,12 

4.88 4.42 2.23 0.96 2.19 3.92 2.65 3.46 
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MeOBC-Py
3,13

 5.21 4.78 2.60 1.31 2.18 3.90 2.61 3.47 

MeOBC-EEs
3,13

 5.09 4.75 2.60 1.21 2.15 3.88 2.49 3.54 

MeOBC-Me
2,12

EEs
3,13 

5.02 4.61 2.45 1.12 2.16 3.90 2.57 3.49 

MeOBC-Et
2,12

EEs
3,13

 5.02 4.60 2.44 1.11 2.16 3.91 2.58 3.49 

MeOBC-A
3,13

 5.21 4.84 2.70 1.33 2.14 3.88 2.51 3.51 

MeOBC-Me
2,12

A
3,13

 5.12 4.70 2.56 1.25 2.14 3.87 2.56 3.45 

MeOBC-An
2,12

EEs
3,13 

4.96 4.56 2.43 1.08 2.13 3.88 2.53 3.48 

MeOBC-EEs
2,3,12,13

 5.32 5.00 2.95 1.53 2.05 3.79 2.37 3.47 

15-substituted series         

MeOBC-OMe
15

 4.84 4.50 2.21 0.94 2.29 3.90 2.63 3.56 

MeOBC-T
2,12

Bza
15

 4.89 4.47 2.30 1.01 2.17 3.88 2.59 3.46 

MeOBC-T
2,12

PE
15

 4.78 4.51 2.40 1.18 2.11 3.60 2.38 3.33 

Bacteriooxophorbine         

MeOBOP 5.17 4.81 2.63 1.31 2.18 3.86 2.54 3.5 

Bacteriochlorinimides
 

        

MeOBC-I 5.43 4.91 2.89 1.51 2.02 3.92 2.54 3.4 

HBC-I 5.51 4.91 2.99 1.50 1.92 4.01 2.52 3.41 

Standard         

BPh a 5.30 4.87 2.84 1.41 2.03 3.89 2.46 3.46 
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Factors affecting the wavelength/energy of the Qy(0,0) absorption band  

The one-electron configuration resulting from light-induced promotion of an electron 

from the HOMO to the LUMO normally makes a significant contribution to the electronic 

characteristics of the lowest singlet excited state (S1) of most molecules.  According to 

Gouterman’s four-orbital model,
47

 this configuration as well as that derived from electron 

promotion from the HOMO-1 to LUMO+1, define the wavefunction for the S1 excited-state and 

thus, key characteristics (wavelength and intensity) of the Qy(0,0) absorption band of tetrapyrrole 

chromophores (including porphyrins, chlorins, and bacteriochlorins).  We have previously 

applied this model to a series of about two dozen zinc chlorins.
48-50

  

In Gouterman’s description, the HOMO  LUMO and HOMO-1  LUMO+1 one-

electron configurations make roughly equal contributions to the S1 wavefunction for porphyrins, 

with a proportionately greater contribution of HOMO  LUMO configurations along the 

following series: porphyrin < chlorin < bacteriochlorin.
47

  Indeed, time-dependent DFT 

calculations show that S1 excited state of bacteriochlorins is comprised of roughly 75% HOMO 

 LUMO, with most of the remainder due to HOMO-1  LUMO+1.  These contributions can 

be seen from the following examples: HBC-H (71%, 27%); MeOBC-H (71%, 28%); MeOBOP 

(73%, 25%); HBC-I (78%, 18%); MeOBC-I (76%, 20%); MeOBC-A
3,13

 (72%, 24%).  These 

results are in keeping with those obtained from prior DFT
51

 and ab initio
52

 calculations.   

The experimental results and MO calculations presented here are fully consistent with a 

dominant contribution of the HOMO  LUMO configuration for the bacteriochlorins, and give 

insights into the underlying molecular origin.  The slopes of the trend lines given in Figure 4A 

show that the LUMO (m = 3.8) is more strongly connected with the wavelength/energy of the 



75 

 

Qy(0,0) absorption band than the HOMO (m = 2.3), LUMO+1 (m = 2.9) and HOMO-1 (m = 2.8).  

The slopes for the latter two orbitals are about equal.  The result is a much greater magnitude of 

the slope of the trend line for the LUMO  HOMO energy gap (m = 1.5) versus the LUMO+1  

HOMO-1 energy gap (m = 0.09) plotted against the Qy(0,0) wavelength/energy (Figure 4B).  

Consequently, the wavelength/position of the Qy(0,0) band is dominated by the LUMO  HOMO 

energy gap. 

The greater dependence of the Qy(0,0) wavelength/energy on the LUMO (rather than the 

HOMO) can be traced to the generally greater electron-density in the LUMO at the 2,3,12,13-

positions, which are the locations of most of the substituents in the bacteriochlorins studied here 

(Tables 1, 2 and 6).  [Note that for porphyrins the HOMO is an analogue of the HOMO-1 orbital 

of the bacteriochlorins and thus the substituent effect on the LUMO  HOMO energy gap 

derives more from both orbitals rather than primarily from the LUMO.]  For the molecules 

depicted in Table 6, these are the positions of the 2,12-p-tolyl groups of HBC-T and of the 3,13-

carbonyl substituents (acetyl, ester, imide) of MeOBC-A
3,13

, MeOBC-I and MeOBOP.  As 

noted above, the 2,3,12,13-positions are on the molecular y-axis, which is the axis on which the 

Qy optical transition is polarized.   

Effect of a 5-Methoxy group on the position of the Qy(0,0) band   

The 5-OMe group causes a hypsochromic shift in the Qy(0,0) band.  The shift in the (i) 

Qy wavelength, (ii) Qy energy, and (iii) LUMO – HOMO energy gap upon replacing 5-H with 5-

OMe for six pairs of bacteriochlorins are as follows (Tables 3 and 5): MeOBC-I vs HBC-I (25 

nm, 0.05 eV, 0.10 eV); MeOBCEtEs vs HBC-EtEs (22 nm, 0.05 eV, 0.06 eV); MeOBCMeEs 

vs HBC-MeEs (22 nm, 0.05 eV, 0.06 eV); MeOBC-A
3,13

 vs HBC-A
3,13

 (28 nm, 0.06 eV, 
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0.09 eV);  MeOBC-T
2,12

 vs HBC-T
2,12

 (5 nm, 0.01 eV, 0.01 eV); MeOBC-H vs HBC-H (4 

nm, 0.02 eV, 0.01 eV).  The calculated shift in the MO energy gap parallels the observed shift in 

Qy(0,0) energy.  There is a greater shift in both quantities for compounds containing 3,13-

carbonyl moieties (acetyl, ester, imide) compared to 3,13-H, even with 2,12-di-p-tolyl groups 

present.  Furthermore, with no 2,3,12,13-substituents, the incorporation of a second meso-

methoxy group in MeOBC-OMe
15

 (707 nm) gives a modest incremental hypsochromic shift of 

the Qy(0,0) wavelength compared to one in MeOBC-H (709 nm), versus none in HBC-H (713 

nm).   
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Table 6.  Molecular-orbital Energies and Electron-density Distributions of Bacteriochlorins  

 HBC-T
2,12

 HBC-H MeOBC-H MeOBC-A
3,13 

MeOBC-I MeOBOP BPh a
a 

Structure 

   

    

LUMO+1 

(eV) 
   

    
 -0.96 0.93 0.93 1.33 1.51 1.31 1.41 

LUMO 

(eV) 
  

 
  

 
 

 2.22 2.20 2.20 2.70 2.89 2.63 2.84 

HOMO 

(eV) 
  

   
 

 
 -4.40 -4.46 -4.48 -4.84 -4.91 -4.81 -4.87 

HOMO-1 

(eV) 

 

 
   

 
 

 -4.95 -4.99 -4.91 -5.21 -5.43 -5.17 -5.3 
a
Calculations for BPh a were performed with a truncated phytyl tail [‐CH2‐CH=C(CH3)(CH2CH3)], which is omitted in the display 

here
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  Close examination of the frontier MOs of the above-noted six pairs of compounds 

containing 5-OMe versus 5-H reveals an average effect on the orbital energies (E5-OMe – E5-H) in 

the following order: HOMO (+0.01 eV) < LUMO+1 (+0.02 eV) < LUMO (+0.07 eV) < HOMO-

1 (+0.10 eV).  This ordering is consistent with the relative electron densities of the four frontier 

MOs at the 5-position (Table 6).  These average orbital-energy values in turn give rise to average 

effects on the orbital-energy-gaps (E5-OMe – E5-H) that are positive for the HOMO  LUMO 

configuration (+0.06 eV) and negative for the HOMO-1  LUMO+1 (0.08 eV).  Given that the 

HOMO  LUMO configuration dominates the properties of the Qy(0,0) band, these 

considerations correctly predict the hypsochromic shift (i.e., to higher energy) in the position of 

the band upon replacement of 5-H with 5-OMe.  In turn, because the 5-OMe group does not 

strongly affect the HOMO energy, the spectral effect on the Qy(0,0) band derives primarily from 

the impact on the LUMO.  Similar arguments should apply to bacteriochlorins with and without 

a 15-methoxy group and various 2,3,12,13 substituents because of the similar electron densities 

for each frontier MO at the 5- and 15-positions.  

 The effect of the 5-OMe group to reduce electron density in the bacteriochlorin -

system in the S1 excited state is exacerbated by an increased contribution of the HOMO-1  

LUMO+1 configuration in the S1 wavefunction within the four-orbital model.  The LUMO+1  

HOMO-1 energy gap is reduced, and becomes closer to the LUMO  HOMO energy gap 

(thereby increasing mixing of the two configurations), when a 5-OMe group is present (Table 5).  

This result derives primarily from the destabilizing effect of the 5-OMe group on the HOMO-1 

orbital, which places considerable electron density at the 5 position, and then onto the OMe 

group itself (Table 6).  
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Figure 4.  Molecular orbital energies (A) and energy gaps corresponding to the two y-polarized 

one-electron configurations (B) versus Qy(0,0) absorption energy (and wavelength).  For each 

plot, the symbols designate the compounds as follows: 5-H bacteriochlorins and 

bacteriochlorinimide HBC-I (closed symbols); 5-OMe bacteriochlorins, bacteriochlorinimide 

MeOBC-I and bacteriooxophorbine MeOBOP (open symbols); BPh a (open circle containing 

an “x”).  The slopes (m) of the trendlines are shown.  



 80 

 

Figure 5. Frontier molecular orbital energies (A) and energy gaps corresponding to the two x-

polarized one-electron configurations (B) versus Qy(0,0) absorption energy (and wavelength).  

For each plot, the symbols designate the compounds as follows: 5-H bacteriochlorins and 

bacteriochlorinimide HBC-I (closed symbols); 5-OMe bacteriochlorins, bacteriochlorinimide 

MeOBC-I and bacteriooxophorbine MeOBOP (open symbols); BPh a (open circle containing 

an “x”).  The slopes (m) of the trend lines are shown.  
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The hypsochromic shift imparted by the 5-OMe group thus provides a design feature, 

along with placement of groups at the 2,3,12,13-positions, to obtain a palette of NIR absorbing 

bacteriochlorins with finely spaced bands.  The 5-OMe group also allows modest control of 

excited-state lifetimes and fluorescence yields.  This group also is quite useful for synthetic 

purposes in affording regioselective 15-bromination
30

 and thereby enabling access to 

bacteriochlorinimides and a bacteriooxophorbine.
36

   

Intensity of the Qy(0,0) absorption band 

Figure 2A shows that the Qy(0,0) band increases in relative intensity with a shift to longer 

wavelength (lower energy).  In the four-orbital description, the Qy-band intensity is related to the 

difference in energy of the LUMO  HOMO and LUMO+1  HOMO-1 energy gaps.
47

  As can 

be seen from Figure 4B, the LUMO  HOMO energy gap changes substantially with Qy(0,0) 

wavelength/energy whereas the LUMO+1  HOMO-1 energy gap does not.  Thus, the intensity 

of the Qy(0,0) band is expected to track the LUMO  HOMO energy gap, as is observed (Figure 

2B).  Because the LUMO  HOMO energy gap also tracks the Qy(0,0) wavelength/energy 

(Figure 4B), the positive correlation of Qy(0,0) energy/wavelength and intensity can be 

understood (Figure 2A).  In turn, because the variation in LUMO  HOMO energy gap is 

associated substantially with the LUMO (Figure 4A), bacteriochlorin substituents that 

preferentially alter the LUMO versus HOMO energy (e.g., at the 2,3,12,13-positions) will 

change the intensity (like the wavelength) of the Qy(0,0) band in a predictable manner. 

The position of the Qx(0,0) absorption band   

The Qx(0,0) band reflects absorption to the second singlet excited state, which occurs in 

the blue-green spectral region (Figure 1 and Table 3).  The analysis of substituent effects on the 

Qx(0,0) band closely parallels that given above concerning the Qy(0,0) band.  The key findings 
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are as follows:  (i) The LUMO energy shows a much greater connection with Qx(0,0) 

energy/wavelength than the other frontier MOs (Figure 5A).  (ii) Of the two electronic 

configurations that contribute to the Qx wavefunction within the four-orbital model, the LUMO  

HOMO-1 energy gap correlates with the Qx(0,0) energy/wavelength while the LUMO+1  

HOMO energy gap is essentially invariant (Figure 5B).  (iii) It follows that the dependence of the 

LUMO on 2,3,12,13-substituents dominates the variation in the position of the Qx(0,0) band for 

the bacteriochlorins studied here, which again is derived from the generally greater electron-

density in the LUMO at these positions (Tables 1, 2 and 6).  (iv) Similarly, because the intensity 

of the Qx(0,0) band, as reflected in the Qx(0,0)/ Qx(1,0) intensity ratio in Table 3, is expected to 

track the difference in the LUMO  HOMO-1 and LUMO+1  HOMO energy gaps, the Qx(0,0) 

intensity primarily tracks the LUMO  HOMO-1 gap and thus the LUMO energy.  (v) The 

conclusion in (iii) along with the above-noted dominance of the LUMO in the substituent-

dependence of the Qy(0,0) band implies a correlation between the energy/wavelength of the two 

bands, as is observed (Figure 7).  (vi) The offset parallel trend lines for bacteriochlorins 

containing 5-H substituents, 5-OMe groups, and 5,15-OMe (or 5-OMe plus the oxophorbine) 

(Figure 6) are related to the different (often reversed) effects of these substituents on the two 

bands (Table 3).  For example, of the six pairs of bacteriochlorins that have a 5-OMe versus 5-H 

substituent, the greatest 5-OMe effect on the Qx(0,0) band is found for the -H, -T
2,12

 compounds 

(a 12 nm bathochromic shift), whereas the greatest effect on the Qy(0,0) band is found for the 

carbonyl-containing (-A
3,13

, -MeEs, -EtEs, imide) analogues (24–28 nm bathochromic shift).  

These differences are related to the electron densities in the MOs involved in the respective 

transitions.   

Yields and Rate Constants of the excited-state decay pathways   
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For all the (free base) bacteriochlorins under study, the average yields of fluorescence, 

intersystem crossing, and internal conversion are f = 0.15, isc = 0.52, and ic = 0.33.  The 

associated average rate constants are kf = (27 ns)
1

, kisc = (8 ns)
1

, and kic = (12 ns)
1

, which are 

in concert with the average singlet excited-state lifetime of S = 3.8 ns.  For comparison, typical 

values obtained from the photophysical data for free base meso-tetraphenylporphyrin are f = 

0.10, isc = 0.70, ic = 0.20, and S = 13 ns.
39,53-56

  Using Eq 5, these values give corresponding 

rate constants of kf = (130 ns)
1

, kisc = (19 ns)
1

, and kic = (65 ns)
1

.  The roughly 5-fold greater 

rate constant for S1  S0 (spontaneous) fluorescence (kf) for bacteriochlorins versus porphyrins 

is paralleled by stronger (stimulated) S0  S1 absorption, namely the integrated intensity of the 

Qy absorption manifold [Qy(0,0), Qy(1,0), etc]; these two quantities are connected by the 

respective Einstein coefficients. 

Although the average yield for S1  T1 intersystem crossing for the bacteriochlorins is 

about 30% lower for bacteriochlorins versus porphyrins (0.5 versus 0.7), the average rate 

constant for the process is about two-fold greater [(8 ns)
1

 versus (19 ns)
1

].  Thus, spin-orbit 

coupling is actually enhanced in the bacteriochlorins versus porphyrins.  Furthermore, the typical 

values of isc ~ 0.5 for free base bacteriochlorins, along with triplet excited-state lifetimes of tens 

of microseconds to over one hundred microseconds (in the absence of O2), is ample to support 

efficient sensitization in PDT,
20-22

 a process that is initiated via the triplet excited state.  A key 

factor for the efficacy of the bacteriochlorins as PDT sensitizers is that their appropriate 

photophysical properties are coupled with (i) absorption in the NIR region, for which penetration 

into animal tissues is greater than for shorter wavelength (UV-Vis) or longer wavelength 

(infrared) radiation and (ii) the synthetic amenability to allow tailoring of the chromophores for 

cell uptake and delivery to diverse target sites.
20-22
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Turning to the third decay process of the S1 excited state, there is a five-fold enhanced 

average rate constant for S1  S0 internal conversion for bacteriochlorins versus the typical free 

base porphyrin [(12 ns)
1

 versus (65 ns)
1

].  There is also a modest, yet less dramatic general 

increase in kic with decreasing S1 [i.e., Qy(0,0)] energy among the bacteriochlorins themselves 

(Table 4).  These trends are expected on the basis of the energy-gap law for nonradiative decay.
45

  

In particular, the rate constant for internal conversion is expected to increase exponentially as the 

S1 – S0 energy gap decreases, via the typical energy-gap dependence of a Franck-Condon factor.  

Nonetheless, the average yield of the internal conversion process increases only from about 0.2 

for free base porphyrins to 0.3 for the free base bacteriochlorins.  Furthermore, the enhancement 

of this nonradiative decay process occurs to such a modest degree that average bacteriochlorin 

singlet excited-state lifetime of ~4 ns is still quite long, and more than sufficient to drive efficient 

energy/charge-transfer processes in solar-energy and other applications.  Relatively long S1 

lifetimes are retained even for the longest wavelength-absorbing bacteriochlorins studied here, 

namely the bacteriochlorinimides MeOBC-I (Qy(0,0) = 793 nm; S = 2.2 ns) and HBC-I (Qy(0,0) 

= 818 nm; S = 1.9 ns).  These synthetic bacteriochlorins absorb at longer wavelength than the 

native photosynthetic free base bacteriochlorin BPh a (by ~40 and ~70 nm, respectively) yet 

have comparable excited-state lifetimes.  Such characteristics bode well for the use of tunable 

synthetic bacteriochlorins to extend the properties available in the native photosynthetic 

pigments for diverse applications.  

Outlook 

The studies reported herein delineate the spectral and photophysical properties of about 

three dozen synthetic bacteriochlorins and elucidate the origin of the variations in these 

properties as a function of substituent type and position on the macrocycle.  The palette of 
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synthetic bacteriochlorins represents a significant extension of the properties of the native 

photosynthetic pigments (bacteriochlorophylls).  Understanding the design principles for tuning 

the spectral and photophysical characteristics establishes a path forward for utilizing the 

synthetic bacteriochlorins in a wide variety of photochemical applications.  A result that deserves 

emphasis is that the wavelength tunability (achieved by introduction of diverse -pyrrole 

substituents) stems largely from interaction of the auxochromes with the LUMO of the 

bacteriochlorin.  The interaction of the auxochromes with the LUMO is also expected to alter the 

reduction potential with little effect on the oxidation potential of the bacteriochlorin.  The lowest 

singlet excited-state lifetimes (from ~2 to ~6 ns) augur well for a wide variety of photochemical 

applications. 

 The types of applications that might be envisioned for the synthetic bacteriochlorins 

include the following:   

(1) Effective molecular imaging requires bright fluorophores in the NIR spectral region 

with avoidance of spectral overlap and light scattering.  Brightness stems from the product of 

illumination intensity, absorption intensity, and fluorescence quantum yield; spectral overlap and 

light scattering are mitigated with sharp absorption/emission bands and relatively long excited-

state lifetimes.  The choice of NIR-active compound ultimately depends on a large number of 

factors including the aforementioned photophysical features as well as synthetic accessibility, 

solubility, toxicity, and amenability toward alteration of the molecular design.  A malleable 

molecular design is essential, for example, to accommodate incorporation of diverse targeting 

agents.  Versatility in molecular design depends in turn on the robustness of the synthetic plan 

and intrinsic features of the molecular architecture.  While the diversity of NIR imaging 

applications undoubtedly requires diverse chromophores,
19,20

 the intrinsic photophysical features 
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delineated herein and the molecular tailoring achieved to date (for the related topic of PDT)
20-22

 

together indicate the synthetic bacteriochlorins appear well suited for such applications.  

 (2) Enhanced sorting capabilities of cellular components require molecular tags with 

absorption that extends beyond the visible region.  The strong and relatively narrow (as well as 

tunable) NIR absorption feature of the synthetic bacteriochlorins suggests utility as individually 

addressable dye markers in flow cytometry.   

(3) Enhanced capabilities for PDT applications require high triplet excited-state 

(intersystem crossing) yields.  The synthetic bacteriochlorins exhibit this capability, in addition 

to the amenability toward synthetic tailoring for cell uptake and delivery to diverse target sites. 

(4) Efficient solar energy conversion requires the capability to capture NIR light because 

a significant fraction of the solar spectrum falls to the red of 600 nm.  Bacteriochlorophyll a and 

its metal free analogue BPh a typically absorb near 780 nm and 750 nm, respectively, as 

monomers in organic solvents yet exhibit longer wavelength absorption (e.g., 800, 850, 870 nm) 

in many native photosynthetic antenna systems owing to interactions between 

bacteriochlorophylls in oligomeric assemblies.
1
  The synthetic free base bacteriochlorins 

reported herein extend the accessible spectral range as monomers to encompass ~700 to ~820 nm.  

The fine tuning of the wavelength maximum of the lowest energy absorption band across a 

significant portion of the NIR spectral region should enable enhanced collection of solar 

radiation, and the design of energy-cascade systems wherein excitons are delivered in a 

controlled manner to a designated site.  The wavelength tunability demonstrated here combined 

with the rich synthetic chemistry affords versatile building blocks for biomimetic construction of 

multi-pigment architectures in artificial photosynthesis, and should facilitate the rational design 
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of a wide variety of photochemical systems that function upon illumination in the NIR spectral 

region. 

Figure 6.  Transition-dipole-moment directions from time-dependent DFT calculations 
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MeOBC-H 
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MeOBC-I 

 

MeOBC-A
3,13

 

 

MeOBOP 
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Figure 7.  Energy (and wavelength) of the Qx(0,0) absorption band versus the energy (and 

wavelength) of the Qx(0,0) absorption band.  The symbols designate the compounds as follows: 

5-H bacteriochlorins (closed circles), 5-OMe bacteriochlorins (open circles), bacteriochlorins 

containing 5-OMe plus a 15-substituent (open squares), and bacteriooxophorbine MeOBOP 

(open star).  The trend lines are fits to the data sets as follows: 5-H bacteriochlorins (solid), 5-

OMe bacteriochlorins (dashed), 5,15-bacteriochlorins plus bacteriooxophorbine (dotted).  
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Abstract 

Bacteriochlorins have wide potential in photochemistry due to their strong absorption of 

near-infrared light, yet metallobacteriochlorins traditionally have been accessed with difficulty.  

Established acid-catalysis conditions [BF3·OEt2 in CH3CN or TMSOTf/2,6-di-tert-butylpyridine 

in CH2Cl2] for the self-condensation of dihydrodipyrrin-acetals (bearing a geminal dimethyl 

group in the pyrroline ring) afford stable free base bacteriochlorins.  Here, InBr3 in CH3CN at 

room temperature was found to give directly the corresponding indium bacteriochlorin.  

Application of the new acid catalysis conditions has afforded four indium bacteriochlorins 

bearing aryl, alkyl/ester, or no substituents at the -pyrrolic positions.  The indium 

bacteriochlorins exhibit (i) a long-wavelength absorption band in the 741–782 nm range, which 

is shifted bathochromically by 23–31 nm versus the analogous free base species, (ii) fluorescence 

quantum yields (0.011–0.026) and average singlet lifetime (270 ps), which are diminished by an 

order of magnitude versus that (0.13–0.25; 4.0 ns) for the free base analogues, and (iii) higher 

average yield (0.9 versus 0.5) yet shorter average lifetime (30 vs 105 s) of the lowest triplet 

excited state compared to the free base compounds.  The differences in the excited-state 

properties of the indium chelates versus free base bacteriochlorins derive primarily from a 30-

fold greater rate constant for S1  T1 intersystem crossing, which stems from the heavy-atom 

effect on spin-orbit coupling.  The trends in optical properties of the indium bacteriochlorins 

versus free base analogues, and the effects of 5-OMe versus 5-H substituents, correlate well with 

frontier molecular-orbital energies and energy gaps derived from density functional theory 

calculations.  Collectively the synthesis, photophysical properties, and electronic characteristics 

of the indium bacteriochlorins and free base analogues reported herein should aid in the further 

design of such chromophores for diverse applications. 
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Introduction 

 Bacteriochlorins are an important class of tetrapyrrolic macrocycles owing to their strong 

near-infrared absorption band.
1,2

  This feature makes these pigments attractive candidates for a 

wide variety of applications, including photodynamic therapy (PDT),
3-12

 optical imaging,
3,13-19

 

flow cytometry,
19,20

 and artificial photosynthesis.
21-23

  Naturally occurring bacteriochlorins such 

as bacteriochlorophylls (Chart 1) provide the basis for bacterial photosynthesis.
1
  Palladium-

containing bacteriochlorins such as WST-9
24,25

 and WST-11,
26

 which are derived from 

bacteriochlorophyll a (Chart 1), are particularly interesting for a number of reasons when 

compared to their free base analogues.  First, palladium bacteriochlorins readily undergo 

intersystem crossing to give higher yields of the triplet excited state.  Second, 

metallobacteriochlorins in general have a bathochromically shifted long-wavelength absorption 

band.
2
 Near-infrared light absorption and high triplet excited-state yields are valuable for 

effective photosensitization in PDT.  However, the repertoire of metallobacteriochlorins prepared 

to date is quite limited relative to that of metalloporphyrins and metallochlorins.  The dearth 

stems from limitations in access to and stability of the bacteriochlorin macrocycles, which serve 

as tetradendate ligands to the metal, as well as limitations in approaches for metalation. 

 The primary source of bacteriochlorins has stemmed from semisynthesis beginning with 

the bacterial photosynthetic pigment bacteriochlorophyll a.
8,11

  Two significant problems with 

derivatives of the bacteriochlorophylls include limited stability
25,27

 and poor synthetic 

malleability owing to the presence of a nearly full complement of substituents about the 

perimeter of the macrocycle.
8,11

  Nonetheless, macrocycles derived from bacteriochlorophylls 

have been metalated with a number of divalent metals (Mn
2+

, Co
2+

, Ni
2+

, Cu
2+

, Zn
2+

, Pd
2+

, and 

Cd
2+

).
2
  The methods for preparing such metallobacteriochlorins include conversion of the free 
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base macrocycle to a Cd
2+

 chelate followed by transmetalation,
28

 magnesiation of the free base 

macrocycle with a hindered Grignard reagent,
29

 or, for selected derivatives, direct treatment with 

a metal salt.
30

  The photodynamics of such divalent metallobacteriochlorins have been 

examined.
31

  On the other hand, fewer metals (Ni
2+

, Cu
2+

, Zn
2+

) have been inserted into wholly 

synthetic bacteriochlorins.  The set of these ligands is also very limited and includes meso-

tetraarylbacteriochlorins,
32-35

 1,5-dihydroxy-1,5-dimethyloctaethylbacteriochlorin,
36

 and 3,13-

dicyano-8,8,18,18-tetramethylbacteriochlorin.
37

  The scarcity of synthetic 

metallobacteriochlorins reflects the dual problems of preparing and metalating the 

bacteriochlorin ligand. 

 

Chart 1. 

 

Bacteriochlorophyll a
R = phytyl

Bacteriochlorophyll b 

R = phytyl, R3 = acetyl

Bacteriochlorophyll g

R = phytyl analogue, R3 = vinyl

N N

NN
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O

O
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O

N N
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O O
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Recently, we developed a concise route to stable bacteriochlorins that entails self-

condensation of a dihydrodipyrrin-acetal (Scheme 1).
38

  Investigation of a wide variety of Lewis 

acids for the self-condensation revealed two acid conditions that give free base bacteriochlorin 

formation: BF3·OEt2 in CH3CN and TMSOTf/2,6-di-tert-butylpyridine (2,6-DTBP) in 

CH2Cl2.
38,39

  Use of BF3·OEt2 in CH3CN for the p-tolyl-substituted dihydrodipyrrin-acetal 

(DHDPA-T) results in a mixture of a free base 5-unsubstituted bacteriochlorin (Fb-HBC-T), a 

free base 5-methoxybacteriochlorin (Fb-MeOBC-T), and a free base B,D-tetradehydrocorrin 

(TDC-T), with Fb-HBC-T being the predominant macrocycle at the optimized conditions.
38

  

Use of TMSOTf/2,6-DTBP in CH2Cl2 exclusively gives Fb-MeOBC-T.
39,40

  Other acids 

investigated resulted either in lower yields of free base bacteriochlorins, preferential formation of 

TDC-T, or gave no macrocycle.  One exception was InCl3 in CH3CN, which resulted in an 

indium bacteriochlorin (In-MeOBC-T) along with free base Fb-MeOBC-T and TDC-T.   

To our knowledge, no indium bacteriochlorins have been reported.  An indium 

isobacteriochlorin has been reported by Buchler et al.
41

  Indium chlorins derived from natural 

chlorophylls have been extensively used in photodynamic therapy studies due to their high yield 

of excited triplet state.
42

  The reported indium chlorins result from metalation of the 

corresponding free base chlorin.  Indium porphyrins have also been used for PDT as well as 

photophysical applications,
43-45

 yet also are derived from the free base analogues (except an 

indium ABCD-porphyrin, which was synthesized via a bilane
46

).  In addition to the expected 

bathochromic shift of the long-wavelength absorption band and the high yield of triplet state, the 

presence of a tricationic metal chelate introduces a polar site at the core of the macrocycle, 

providing a more hydrophilic bacteriochlorin, which may be attractive for a number of 

photobiological studies.   



 99 

 

Scheme 1. 

 

 

Herein, we report the results of an investigation of InX3-mediated catalysis of the 

conversion of dihydrodipyrrin-acetals to the corresponding metallobacteriochlorins.  The paper is 
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divided into three parts.  Part 1 concerns the identification, optimization and scope of application 

of the reaction conditions for the in situ formation of indium bacteriochlorins.  Part 2 provides a 

comprehensive study of the spectral (absorption, fluorescence) and photophysical properties of 

the indium bacteriochlorins.  Finally, part 3 correlates the molecular orbital characteristics 

(energies and electron density distributions) and the photophysical properties of the 

bacteriochlorin owing to the metalation state (indium versus free base) and substituents at the 

perimeter of the macrocycle.   

Experimental methods 

Synthesis and general procedures  

Experimental methods are described in detail in elsewhere.
A 

Photophysical measurements  

Static and time-resolved photophysical measurements were performed as described 

previously.
44

 Measurement of the fluorescence (f) and triplet-excited-state (isc) quantum 

yields and singlet (S) and triplet (T) lifetimes utilized, unless noted otherwise, utilized dilute 

(M) Ar-purged toluene solutions at room temperature.  Samples for f measurements had an 

absorbance <0.12 at the excitation wavelength.  The f values were generally determined with 

respect to two standards and the results averaged.  The standards were (1) free base meso-

tetraphenylporphyrin (FbTPP) in nondegassed toluene, for which f = 0.070 was established 

with respect to the zinc chelate ZnTPP in nondegassed toluene (f = 0.030),
59

 consistent with 

prior results on FbTPP,
60

 and (2) 8,8,18,18-tetramethylbacteriochlorin
22

 in Ar-purged toluene, 
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for which f = 0.14 was established with respect to FbTPP and chlorophyll a (Chl a) in 

deoxygenated benzene
61

 or toluene
62

 (f = 0.325).  

The S value for each indium bacteriochlorin was first probed using a time-correlated 

single photon counting (TCSPC) instrument that employed Soret excitation flashes derived from 

a nitrogen-pumped dye laser (PTI LaserStrobe) and a Gaussian instrument response function of 

0.6 ns.  These measurements indicated that the S values were within the instrument response and 

likely in the range 0.20.4 ns.  The lifetimes were then determined using ultrafast pump-probe 

absorption spectroscopy employing 130 fs excitation pulses in the Qy band and probing from 

440–660 nm.  Global analysis of the data set yielded the reported values.  The S values for the 

free base bacteriochlorins were determined using the above-mentioned TCSPC apparatus as well 

as a fluorescence modulation technique (Spex Tau2);
63

 the results from the two techniques were 

generally averaged. 

 The isc values were obtained using a transient-absorption technique in which the extent 

of bleaching of the ground-state Q(1,0) band due to the lowest singlet excited state was measured 

immediately following a 130 fs flash in the Qx(0,0) or Qy(0,0) bands and compared with that due 

to the lowest triplet excited state at the asymptote of the singlet excited-state decay.
44

  For the 

free base bacteriochlorins, the bleaching signals are referenced to a relatively featureless 

transient absorption, which are not substantially different for the S1 and S0 excited states.  In the 

case of the indium chelates, the spectra are more featured and show larger differences between 

the two states.  Thus, Gaussian fitting of the spectra (as well as more routine linear interpolation 

of the excited-state absorption across the ground-state bleaching region) was utilized to 
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encompass a reasonable range of spectral shapes; an average value of the triplet yields obtained 

by these methods is reported for each bacteriochlorin.  

Density Functional Theory calculations   

DFT calculations were performed with Spartan ’08 for Windows version 1.2.0 in parallel 

mode
64

 on a PC equipped with an Intel i7-975 cpu, 24 GB ram, and three 300 GB, 10 k rpm hard 

drives.  The hybrid B3LYP functional and the LACVP basis set were employed.  The 

equilibrium geometries were fully optimized using the default parameters of the Spartan ‘08 

program. 

Results and Discussion  

                                  Chart 2                                                                            Chart 3 
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Chart 4 

 

In situ synthesis of indium bacteriochlorins  

The synthesis and structure characterization of all the compounds investigated in this 

study are described in detail in elsewhere.
A 

 The structures of compounds are shown in Chart 2-4. 

Spectral and Photophysical 

Absorption spectra   

The ground state electronic absorption spectra of the four indium bacteriochlorins In-

MeOBC-H, In-MeOBC-T, In-MeOBC-MeEs, and In-HBC-MeEs in toluene are shown in 

Figure 1 (solid lines).  The spectral data for these four indium bacteriochlorins, and for In-HBC-
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T (Chart 3; Fan, D.; Lindsey, J. S. unpublished data), are listed in Table 1.  For comparison, 

Table 2 also lists spectral data for the base analogues Fb-MeOBC-H (Chart 4); Fb-MeOBC-T 

(Scheme 1); Fb-MeOBC-MeEs and Fb-HBC-MeEs and Fb-HBC-T (Scheme 1).
38,39

  The table 

also includes spectral data for two literature reference compounds, zinc meso-

tetraphenylbacteriochlorin (ZnTPBC)
33,35

 and zinc bacteriochlorophyll a (ZnBChl a),
28

 as well 

as the two naturally occurring pigments, bacteriochlorophyll a (BChl a)
1
 and bacteriopheophytin 

a (BPh a)
1
 (Charts 1 and 4). 

The absorption spectrum of each bacteriochlorin contains four main features with 

maxima generally in the following spectral ranges: By(0,0) (350360 nm), Bx(0,0) (365395 nm), 

Qx(0,0) (495570 nm), and Qy(0,0) (700800 nm).  Each of these four origin transitions has a 

weaker (1,0) vibronic satellite feature roughly 1250 cm
1

 to higher energy.  [Note that the Bx and 

By transitions may have mixed x and y polarization and for some compounds are spectrally 

overlapped.]  The absorption spectrum of In-MeOBC-T (355, 388, 553, 760 nm) in toluene is 

quite similar to that of ZnTPBC (350, 385, 540, and 760 nm)
35

 in CH2Cl2, and of ZnBChl a 

(353, 389, 558, and 762 nm)
28

 in diethyl ether (Table 1).   

The Qy(0,0) transition is of particular interest because it corresponds to absorption of 

light to produce the lowest singlet excited state, which dominates much of the photophysical 

behavior.  The Qy(0,0) band for the five indium bacteriochlorins is positioned on the average 27 

nm (2232 nm) to longer wavelength than those for the free base analogues.  Similarly, the 

Qx(0,0) band for the indium chelates lies on the average 43 nm (3951 nm) to longer wavelength 

than those for the free base compounds.  The average value of the full-width-at-half-maximum 
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(FWHM) of the Qy(0,0) absorption band of the indium bacteriochlorins is 21 nm, which is only 

slightly greater than the value of 17 nm for the free base analogues.  

 

 

Figure 1. Spectra in toluene at room temperature of indium bacteriochlorins (normalized at the 

Qy bands).  (A) Absorption spectra.  (B) Magnification of Qy region showing absorption (–– 

solid lines) and emission (--- dashed lines) spectra.  The labels and the colors are as follows: In-

MeOBC-H (a, blue), In-MeOBC-T (b, black), In-MeOBC-MeEs (c, orange), In-HBC-MeEs 

(d, magenta). 
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 Table 1.  Spectral Characteristics of Indium, Free Base, and Reference Bacteriochlorins.
a
   

Compound 

By(0,0)
b
 

abs   

(nm) 

Bx(0,0)
b
 

abs   

(nm) 

Qx(0,0) 

abs   

(nm) 

Qy(0,0)
c
 abs   

(nm) 

Qy
 d

 

abs 

FWHM 

(nm) 

Qy(0,0)
e
 

em   

(nm) 

Qy 
f
 

em 

FWHM 

(nm)
 

Qy 
g 

abs-em 

(cm
-1

) 

IQy/IB
h
 Qy

/B
i
 

Indium Bacteriochlorins 

  In-MeOBC-H 352 384 552 741 [+32] 19 747  24 108 1.1 0.13 

  In-MeOBC-T 355 388 553 760 [+29] 23 767  30 120 0.91 0.14 

  In-HBC-T 350 388 539 763 [+27]  23 769  31 102 1.1 0.15 

  In-MeOBC-

MeEs 

358 393 563 762 [+24] 20 768  27 103 1.6 0.23 

  In-HBC-MeEs 354 395 559 782 [+22] 

[+22] 

21 785  23 49 1.3 0.17 

Free Base Bacteriochlorins 

  Fb-MeOBC-H 354 367 501 709 11 711 18 40 0.87 0.11 

  Fb-MeOBC-T 356 380 511 731 20 736 23 93 0.89 0.14 

  Fb-HBC-T 351 374 499 736 20 742 23 110 1.0 0.14 

  Fb-MeOBC-

MeEs 

357 398 520 738 18 741 21 217 0.96 0.13 

  Fb-HBC-MeEs 354 384 520 760 18 764 20 69 0.98 0.19 

Reference Bacteriochlorins 

  ZnTPBC 
j
 350 385 540 760       

  ZnBChl a 
k
 353 389 558 762       

  BChl a 
l
 363 396 581 781 32 789 29 130 1.39 0.23 

  BPh a 362 389 532 758 31 768 27 172 0.69 0.15 

a
Obtained in toluene at room temperature.  

b
The two Soret features are labeled Bx(0,0) and By(0,0) but the bands may be of mixed 

parentage.  
c
Position (nm) of the Qy(0,0) absorption band.  The value in brackets is the difference in wavelength of the Qy(0,0) band of 

the indium bacteriochlorin versus the free base analogue.  
d
Full-width-at-half-maxium (FWHM in nm) of the Qy(0,0) absorption band.  

e
Position (nm) of the Qy(0,0) fluorescence emission band. 

f
FWHM of the Qy(0,0) fluorescence band.  

g
Difference in energy (cm

-1
) 

between the peak positions of the Qy(0,0) absorption and fluorescence bands.  
h
Ratio of the peak intensities of the Qy(0,0) band to the 

Soret (B) maximum, which could be either Bx(0,0) or By(0,0).  
i
Ratio of the integrated intensities of the Qy manifold [Qy(0,0), Qy(1,0)] 

to the Soret manifold [By(0,0), By(1,0), Bx(0,0), Bx(1,0)], for spectra plotted in cm
-1

.  
j
Reference 35 in CH2Cl2.  

k
Reference 28 in 

diethyl ether.  
l
In benzene.   
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Fluorescence spectra   

The fluorescence emission spectra of the four indium bacteriochlorins In-MeOBC-H, In-

MeOBC-T, In-MeOBC-MeEs, and In-HBC-MeEs in toluene are shown in Figure 1 (dashed 

lines).  The emission spectral characteristics for these four compounds, In-HBC-T, the free base 

analogues, and several synthetic reference and naturally occurring bacteriochlorins are listed in 

Table 1.  The fluorescence spectrum of each bacteriochlorin is dominated by the Qy(0,0) band.  

The spectra shown in Figure 1 reveal very weak features ~25 nm to shorter wavelength than the 

Qy(0,0) fluorescence band of the indium bacteriochlorins.  These weak, higher-energy features 

are at the positions expected for the free base analogues.  Weak emission from the free base is 

visible even with this material is present in trace amounts because the free base bacteriochlorin 

has a fluorescence quantum yield roughly an order of magnitude greater than that for the indium 

chelate (see below).  

The Qy(0,0) fluorescence maximum of the indium bacteriochlorins lies on the average 6 

nm to longer wavelength (96 cm
1

 to lower energy) than the Qy(0,0) absorption maximum (Table 

1).  A similar small “Stokes” shift is generally observed for the free base bacteriochlorins (except 

for Fb-MeOBC-MeEs).  The average bandwidth (FWHM) of the Qy(0,0) fluorescence feature of 

the indium bacteriochlorins is 27 nm, which is about 25% larger than the value of 21 nm 

observed for the Qy(0,0) absorption band.  The Qy(0,0) emission feature of the free base analogs 

is similarly larger than that of the absorption band (21 versus 17 nm).   

Fluorescence quantum yields 

The fluorescence quantum yields (f) of the five indium bacteriochlorins are in the range 

0.0110.026 with an average value of 0.018.  The f values for the free base species are in the 
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range 0.130.25 with an average of 0.19.  Thus, the fluorescence yields for the indium 

bacteriochlorins are on the average 10-fold lower than those for the free base analogues (Table 2).  

The data can be compared with those of Bchl a and Bph a.
50,51

  

Singlet excited-state lifetimes 

The lifetime of the lowest singlet excited state (S) of each indium bacteriochlorin was 

determined using ultrafast transient absorption spectroscopy and found to be in the range 210–

330 ps with an average value of 270 ps (Table 2).  The S values for the free base 

bacteriochlorins were measured using time-resolved fluorescence spectroscopy and found to be 

in the range 3.0–5.0 ns with an average value of 4.0 ns (Table 2).  Thus, the singlet excited-state 

lifetimes of the indium bacteriochlorins are about 20-fold shorter than those for the free base 

analogues. 

Triplet excited-state lifetimes 

The lifetime of the lowest triplet excited state (T) of each indium and free base 

bacteriochlorin was measured at room temperature using transient absorption spectroscopy.  The 

T values for the indium bacteriochlorins were found to be in the range 2544 s with an average 

value of 30 s.  The triplet excited-state lifetime for each indium chelate is shorter than that for 

the free base bacteriochlorin, which were found to be in the range 64163 s with an average 

value of 105 s (Table 2). 

Triplet excited-state quantum yields  

The quantum yield of intersystem crossing from the lowest singlet excited state to the 

lowest triplet excited state (isc), also known as the triplet yield, was determined using transient 
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absorption spectroscopy.
44

  The isc values for the indium chelates were found to be 0.9 ± 0.1.  

These values are considerably greater than those for the free base analogues, which were found 

to lie in the range 0.42–0.55 (± 0.08) with an average value of 0.51.  
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Table 2.  Photophysical and Molecular Orbital Properties of Indium, Free Base, and Reference Bacteriochlorins.
a
   

Compound Qy(0,0) 
b
 

energy   (eV) 
S

c 
(ns) f

 d
 isc 

e
 T 

f
 (µs) HOMO (eV) LUMO (eV) LUMO – HOMO (eV) 

Indium Bacteriochlorins 

  In-MeOBC-H 1.67 0.33 0.011 0.9 40 4.62 2.56 2.06 

  In-MeOBC-T 1.63 0.26 0.020 0.9 32 4.54 2.53 2.01 

  In-HBC-T 1.62 0.21 0.016 0.9 44 4.52 2.52 2.00 

  In-MeOBC-MeEs 1.63 0.32 0.026 0.9 25 4.84 2.85 1.99 

  In-HBC-MeEs 1.59 0.25 0.015 0.9 30 4.74 2.82 1.92 

  In -BC average 1.63 0.27 0.018 0.9 30 4.65 2.66 2.00 

Free Base Bacteriochlorins 

  Fb-MeOBC-H 1.75 5.0 0.25 0.55 107 4.48 2.20 2.28 

  Fb-MeOBC-T 1.70 4.5 0.20 0.42 107 4.42 2.23 2.19 

  Fb-HBC-T 1.68 3.3 0.18 0.55 163 4.40 2.22 2.18 

  Fb-MeOBC-MeEs 1.68 4.4 0.17 0.53 85 4.61 2.45 2.16 

  Fb-HBC-MeEs 1.69 3.0 0.13 0.52 64 4.67 2.57 2.10 

  Fb-BC average 1.69 4.0 0.19 0.51 105 4.52 2.34 2.18 

Reference Bacteriochlorins 

  BChl a
g
 1.59 3.1 0.12 0.33
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4.75 2.86 1.89 

  BPh a
h
 1.64 2.7 0.10 0.54

 
25

 
4.87 2.84 2.03 

a
Obtained in toluene at room temperature unless noted otherwise.  The molecular orbital energies were obtained from DFT 

calculations. 
b
Energy of the Qy(0,0) absorption band (see Table 2).  

c
Lifetime of the lowest singlet excited state measured via transient 

absorption spectroscopy for indium bacteriochlorins (20 ps) and by fluorescence techniques for the free base bacteriochorins (5%).  
d
Fluorescence quantum yield 15% for the indium bacteriochlorins and 5% for the free base bacteriochorins.  

e
Yield of the lowest 

triplet excited state measured via transient absorption spectroscopy (0.1 for indium bacteriochlorins and 0.08 for the free base 

bacteriochlorins).  
f
Lifetime of the lowest triplet excited state measured via transient absorption spectroscopy for compounds in Ar-

purged 2-methyltetrahydrofuran (10%).  
g
The absorption and emission spectral properties, f , and S were acquired here in benzene 

and T in pyridine.  The value of T = 0.32 was measured in toluene.  Values of 0.44 and 0.41 were measured in acetonitrile and 

pyridine, respectively.  Values of T = 0.32 and T
 
~ 60 s (mixed first and second order decay) have been reported and are the 

average of values measured in acetonitrile, dimethylsulfoxide and pyridine.
50

  
h
The values found here in ethanol are f = 0.081, s = 

2.3 ns, and T = 30 s.  The values in acetone/methanol (7:3) are s = 2.0 ns, S = 16 s, and isc = 0.57 (average of 0.54 and 0.60 from 

two methods).
51
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Excited-state decay pathways and rate constants   

The observables S, f, and isc (Table 2) for decay of the lowest-energy singlet excited 

state (S1) are connected to the rate constants for S1S0 spontaneous fluorescence (kf), S1S0 

internal conversion (kic), and S1T1 intersystem crossing (kisc) via Eqs. (1) to (3).   

S = (kf + kic + kisc)
1 

(1) 

 f = kf / (kf + kic + kisc) (2) 

 isc = kisc / ( kf + kic + kisc) (3) 

The internal conversion yield can be calculated from Eq. (4). 

 ic = 1 - f - isc  (4) 

The radiative, intersystem-crossing, and internal-conversion rate constants can be calculated 

from the above quantities via Eq. (5), where i = f, isc or ic.  

ki = i /S                                                                                                                            (5) 

 The average radiative rate constant of kf = (17 ns)
-1

 for the indium bacteriochlorins is 

slightly greater than that of (22 ns)
-1

 for the free base analogue, indicating a comparable or 

slightly higher fluorescence probability.  Nevertheless, the average fluorescence yield is 

about 10-fold smaller for indium versus free base bacteriochlorins (0.018 versus 0.19) 

because of enhanced rate constants for the two nonradiative processes (internal conversion 

and intersystem crossing) in the indium chelates, as described below.   

The average yields of S1  T1 intersystem crossing of 0.9 for indium bacteriochlorins 

and 0.51 ns for the free base analogues, together with the average S1 lifetimes of 0.27 ns and 

4.0 ns, respectively, translate via Eq. 5 into average intersystm-crossing rate constant of kisc 

= (0.3 ns)
-1

 for the indium bacteriochlorins being roughly 25-fold greater than that of (8 ns)
-1 
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for the free base analogues.  This substantial difference in rates lie well outside the error 

limits largely associated with the determination of the individual intersystem-crossing yields.  

The enhancment in kisc for indium versus free base bacteriochlorins almost certainly derives 

from the effect of the heavy indium ion on spin-orbit coupling, which drives the spin flips 

underlying the intersystem-crossing process.  

The yields of S1  S0 internal conversion calculated via Eq. 4 for the five indium 

bacteriochlorins (0.09, 0.08, 0.08, 0.07, 0.09) have an average value of ic = 0.08 that is 

about 25% of that of ic = 0.3 derived from the individual values for the five free base 

bacteriochlorins (0.2, 0.4, 0.3, 0.3, 0.4).  These average yields give rise to  a typical rate 

constant of kic = (3 ns)
-1

 for the indium bacteriochlorins and (14 ns)
-1

 for the free base 

analogues.  A somewhat greater kisc for indium versus free base bacteriochlorins can be 

rationalized for two reasons.  First, on the basis of the energy-law for nonradiative decay,
52

 

kic is expected to be somewhat greater for the indium versus free base bacteriochlorins 

because the average energy of the S1 excited state of the indium bacteriochlorins(13086 cm
-1

, 

1.62 eV) is lower than that for the free base analogues (13543 cm
-1

, 1.68 eV) (Table 2).  

Second, greater kic values for indium versus free base bacteriochlorins also may result from 

an improved Franck-Condon factor derived from nuclear-coordinate displacements involving 

the central In
3+

 ion, the apical counterion, and solvent interactions in the S1 versus S0 states.  

Such coordinate displacements should be enhanced because the In
3+

 ion and the apical 

counterion are displaced toward one side of the bacteriochlorin framework, which itself 

should be distorted from planarity.  Nonplanar macrocycle distortions in tetrapyrrole 

complexes are thought to open up additional channels for conformational excursions 

(particularly in the excited state), which enhance internal conversion.
53
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Correlation of photophysical and molecular orbital characteristics  

Molecular orbitals   

To gain insights into the trends in the photophysical properties of the bacteriochlorins as 

a function of molecular characteristics, density functional theory (DFT) calculations were 

performed.  These calculations provide the energies and electron-density distributions of the 

frontier molecular orbitals.  The principal orbitals of interest are the highest occupied molecular 

orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), and the HOMO-1 and 

LUMO+1.  Table 3 gives electron density plots (and energies) for these four orbitals for two 

representative indium bacteriochlorins (In-HBC-T and In-MeOBC-T) and the free base 

analogues (Fb-HBC-T and Fb-MeOBC-T).   

Attention is focused on the HOMO and LUMO, for which the individual energies and 

energy gap are listed in Table 2.  In the following subsections, these orbital characteristics are 

correlated with (B) the wavelength (energy) of the Qy(0,0) absorption band of the indium and 

free base bacteriochlorins, (C) the wavelength (energy) of the Qy(0,0) absorption band of 

bacteriochlorins containing a 5-OMe versus 5-H substituent, (D) the effects of a 5-OMe versus 

5-H substituent on the various photophysical properties of the bacteriochlorins, and (E) the 

anticipated redox properties of the molecules.   

Absorption spectra of indium versus Free Base bacteriochlorin 

The one-electron configuration resulting from light-induced promotion of an electron 

from the HOMO to the LUMO normally makes a significant contribution to the electronic 

characteristics of the lowest singlet excited state of most molecules.  Thus, for a series of related 

tetrapyrroles, the LUMO – HOMO energy gap may be expected to reasonably track the energy 
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of the S0  S1 electronic transition, namely the Qy(0,0) band.  This behavior is expected for 

bacteriochlorins because the wavefunction of the S1 excited state is expected to be comprised of 

roughly 75% of the HOMO  LUMO one-electron configuration, with the remainder due to the 

HOMO-1  LUMO+1 configuration.
54-56

  For example, time-dependent DFT calculations on 

Fb-MeOBC-H  give percentages of 71% and 28%, respectively. 

Table 3.  Molecular-Orbital Characteristics of Indium and Free Base Bacteriochlorins.
a
 

Molecule In-HBC-T In-MeOBC-T Fb-HBC-T Fb-MeOBC-T 

LUMO+1 
    

1.07 1.07 0.96 0.96 

LUMO 
   

 

2.52 2.53 2.22 2.23 

HOMO 
    

4.52 4.54 4.40 4.42 

HOMO-1 
    

5.26 5.18 4.95 4.88 

a
Obtained from DFT calculations. 
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Figure 2 plots the LUMO – HOMO energy versus the energy (and wavelength) of the 

Qy(0,0) band for the indium bacteriochlorins and free base analogues.  Both sets of molecules 

show good correlations, with similar slopes of the trend lines.  It is expected that the trend lines 

for the indium and free base bacteriochlorins would be displaced along the transition-energy 

(horizontal) axis because the Qy(0,0) band for each indium bacteriochlorin is bathochromically 

shifted from the position for the free base species (Table 1).  The displacement between the two 

sets of data and trend lines along the HOMO – LUMO (vertical) axis can be related to several 

factors derived from the formation of the indium(III) chelate from the free base analogue.  These 

differential effects include (1) the positions of greater electron density from the metal ion (Table 

2) and (2) structural changes in the macrocycle, including a distortion from planarity.   

 

 

 Figure 2. LUMO  HOMO energy gap versus the energy (and wavelength) of the Qy(0,0) 

absorption band for indium bacteriochlorins (squares and solid line) and free base 

bacteriochlorins (circles and dashed line).  The slopes (m) of the trend lines are shown.   



116 

As noted above, the Qy(0,0) bands of the indium bacteriochlorins are positioned on the 

average 27 nm (0.06 eV) to longer wavelength (lower energy) than those of the free base species.  

The indium bacteriochlorins have an average HOMO energy 0.014 eV more negative than the 

free base form (4.65 vs 4.52 eV) and an average LUMO energy 0.032 eV more negative than 

the free base form (2.66 vs 2.34 eV) resulting in a smaller LUMO – HOMO energy gap (2.00 

vs 2.18 eV).  These comparisons show that the smaller LUMO – HOMO gap and thus, the 

bathochromic shift in the Qy band, derive from a more substantial metal-derived effect on the 

LUMO than the HOMO. 

Effects of a 5-OMe group on absorption spectra  

The MO energies from the DFT calculations also track the effects of the 5-OMe versus 5-

H substituent on the electronic spectra of various bacteriochlorins.  For each pair of 

bacteriochlorins, the 5-OMe group results in a shift of the Qy(0,0) band to higher energy (shorter 

wavelength).  The pairwise comparisons for the 5-MeO versus 5-H bacteriochlorins (Qy energy 

shift, LUMO – HOMO energy-gap shift) are as follows: In-MeOBC-T versus In-HBC-T (0.01 

eV, 0.01 eV); Fb-MeOBC-T versus Fb-HBC-T (0.02 eV, 0.01 eV); In-MeOBC-MeEs versus 

In-HBC-MeEs (0.04 eV, 0.07 eV); Fb-MeOBC-T versus Fb-HBC-T (0.05 eV, 0.06 eV).  Thus, 

the calculations reproduce the small (0.01–0.02 eV; 3–5 nm) effect of the methoxy group for 

indium and free base bacteriochlorins containing 2,12-di-p-tolyl groups, and the larger (0.04–

0.05 eV; 10–13 nm) effect of the methoxy group for indium and free base bacteriochlorins 

containing 2,12-dimethyl and 3,13-diester groups.  Close examination of the HOMO and LUMO 

energies indicates that the greater effect on the -MeEs versus -T complexes is associated with a 

greater effect of the 5-OMe group on the HOMO than the LUMO for the indium chelates and the 

opposite effect for the free base compounds.  We have previously noted such interplay between 
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the 5-OMe substituent and the influence of the 2,3,12,13-substituents on the MO energies and 

spectral characteristics of the bacteriochlorins.
57

 

Predictions of redox properties of indium bacteriochlorins  

A prior study of two dozen zinc chlorins showed a good correlation between the 

measured oxidation potential and the HOMO energy, and also between the measured reduction 

potential and the LUMO energy.
58

  It would be difficult to use those correlations to predict the 

exact change in redox potentials from the changes in orbital energies, but the trends should be 

reliable (i.e., whether a given compound in a set will be easier to oxidize or harder to reduce than 

another).  On the basis of such considerations, the data in Table 3 suggest the following.  The 

average HOMO energy of 4.65 eV for the indium bacteriochlorins compared to 4.52 eV for 

the free base analogues indicates that the indium chelates will be harder to oxidize.  Similarly, 

the average LUMO energy of 2.66 eV for the indium bacteriochlorins versus 2.34 eV for the 

free base analogues indicates that the indium chelates will be easier to reduce.  Such predictions 

are valuable in potential applications of the bacteriochlorins where redox processes are desired 

(or to be avoided).  For example, the relative redox properties are important in the mechanisms 

(Type I versus II) for forming reactive oxygen species in photodynamic therapy, as has been 

shown for free base bacteriochlorins
4-6

 and for various metalloporphyrin species including 

indium chelates.
43,44

  Collectively, comparisons and correlations such as those given above 

between the molecular orbital characteristics, substituent and metal effects, optical properties, 

and redox potentials facilitates the design of bacteriochlorins for diverse applications.   
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Abstract 

Access to metallobacteriochlorins is essential for investigation of a wide variety of 

fundamental photochemical processes, yet relatively few synthetic metallobacteriochlorins have 

been prepared.  Members of a set of synthetic bacteriochlorins bearing 0-4 carbonyl groups 

(including the fully unsubstituted bacteriochlorin) were examined under two conditions: (i) 

standard conditions for zincation of porphyrins [Zn(OAc)2·2H2O in DMF at 60–80 °C], and (ii) 

treatment in THF with a strong base (e.g., NaH or LDA) following by a metal reagent MXn.  

Zincation of bacteriochlorins that bear 2-4 carbonyl groups proceeded under the former method 

whereas those with 0-2 carbonyl groups proceeded with NaH or 

LDA/THF followed by Zn(OTf)2.  The scope of metalation (via NaH or 

LDA in THF) is as follows: (a) for bacteriochlorins that bear two 

electron-releasing aryl groups, M = Cu, Zn, Pd, and InCl (but not Mg, Al, 

Ni, Sn, or Au); (b) for bacteriochlorins that bear two carbonyl groups, M 

= Ni, Cu, Zn, Pd, Cd, InCl, and Sn (but not Mg, Al or Au); and (c) a bacteriochlorin with four 

carbonyl groups was metalated with Mg (other metals were not examined).  Altogether, 15 

metallobacteriochlorins were isolated and characterized.  Single-crystal X-ray analysis of 

8,8,18,18-tetramethylbacteriochlorin reveals the core geometry provided by the four nitrogen 

atoms is rectangular; the difference in length of the two sides is ~0.08 Å.  Electronic 

characteristics of (metal-free) bacteriochlorins were probed through electrochemical 

measurements along with density functional theory calculation of the energies of the frontier 

molecular orbitals.  The photophysical properties (fluorescence yields, triplet yields, singlet and 

triplet excited-state lifetimes) of the zinc bacteriochlorins are generally similar to those of the 

metal-free analogues, and to those of the native chromophores bacteriochlorophyll a and 
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bacteriopheophytin a.  The availability of diverse metallobacteriochlorins should prove useful in 

a variety of fundamental photochemical studies and applications. 

 Introduction 

Naturally occurring chlorophylls and bacteriochlorophylls are essential constituents in 

plant and bacterial photosynthesis.  Both types of hydroporphyrins contain magnesium as the 

central metal.
1
  The introduction of different metals in tetrapyrrole macrocycles can alter the 

electronic,
2
 axial-ligation,

3
 and photophysical

4-6
 properties of the coordination complex.  The 

effect of metals can be seen by comparing the properties of metalloporphyrins containing 

magnesium, zinc, copper, or palladium, each of which is a divalent metal.  Magnesium is five or 

six coordinate, and gives a reasonable yield of fluorescence (f ~ 0.1), a long-lived excited 

singlet state (s ~10 ns), and a good yield of intersystem crossing to the triplet state.
4
  Zinc is 

four or five coordinate, and gives a lower yield of fluorescence (f ~ 0.03), a shorter excited 

singlet state (s ~2 ns), and a higher yield of intersystem crossing to the triplet state.
4
  Copper is 

four coordinate and gives essentially no detectable fluorescence, a very short-lived nominal 

excited singlet state, and highly temperature-dependent properties of two excited-states borne 

from the coupling of the porphyrin triplet with the unpaired metal electron.
5
  Palladium is four 

coordinate and gives no detectable fluorescence, a unity yield of intersystem crossing, and a 

short-lived excited triplet state.
6
  

A further distinction caused by metals concerns the change in optical properties.  The 

introduction of a metal in a porphyrin typically increases the symmetry (e.g., D2h to D4h) and 

causes the spectral features in the visible region to collapse from primarily four bands (due to 

partially overlapping x and y transitions) to a two-banded spectrum (wherein the x and y 
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transitions are degenerate).
7
  The two main bands are the Q(0,0) and Q(1,0) transitions.  (Weaker 

additional vibronic overtone bands also contribute to the spectra with or without a metal ion.)  

The resulting absorption of the metalloporphyrin occurs at shorter wavelength than for that of the 

free base porphyrin.  For a chlorin, insertion of a metal does not alter the symmetry but does 

typically cause a hypsochromic shift in the position of the long-wavelength absorption band.  An 

example is provided by chlorophyll a and pheophytin a, which absorb at 662 and 667 nm, 

respectively.
1
  For a bacteriochlorin, insertion of a metal also does not alter the symmetry but 

typically causes a bathochromic shift in the position of the long-wavelength absorption band.  An 

example is provided by bacteriochlorophyll a (Bchl a) and bacteriopheophytin a (Bph a), which 

absorb at 772 and 749 nm, respectively.
1
  The ability to shift the absorption to longer wavelength 

upon metalation is quite attractive given the multiple motivations for access to chromophores 

with strong absorption in the near-infrared (NIR) spectral region.  The relatively low energy of 

photons in NIR region (1.76–1.23 eV, 700–1000 nm) enables photochemical studies in an energy 

regime that has been comparatively unexplored versus studies of organic photochemistry in the 

ultraviolet (6.17–3.09 eV, 200–400 nm) or visible regions.  Applications of NIR-active 

bacteriochlorins include light-harvesting for artificial photosynthesis,
8
 optical imaging

9,10
 and 

photodynamic therapy
11

 of soft tissues, and fluorescent markers in clinical diagnostics.
12

  In 

addition, selected photosynthetic organisms are now known to employ zinc-containing analogues 

of bacteriochlorophylls (rather than the expected magnesium).
13

  For all of these reasons, 

fundamental studies of diverse metallobacteriochlorins are warranted.   

Despite the range of physical behavior that can be elicited with metalloporphyrins, 

relatively few metallobacteriochlorins have been prepared, and most that have been prepared are 

derived from Bchl a.
14,15

  While data from the naturally derived macrocycles are quite valuable, 
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lack of access to diverse synthetic metallobacteriochlorins has precluded wide-ranging studies of 

effects of peripheral substituents on spectral and photophysical properties, an approach that has 

been extensively pursued with porphyrins and chlorins.  We have been working to develop a 

rational, de novo synthesis of bacteriochlorins.
16-19

  The resulting bacteriochlorins bear a geminal 

dimethyl group in each reduced, pyrroline ring to resist adventitious oxidants that otherwise 

could result in dehydrogenation.  We recently characterized the photophysical properties of a 

large set of free base bacteriochlorins
20

 derived from this synthetic approach, and also examined 

several indium(III) chelates thereof,
21

 but relatively few metal chelates of the synthetic 

bacteriochlorins have heretofore been prepared. 

The metalation of bacteriochlorins – an ostensibly simple reaction – has proved more 

difficult than for porphyrins and chlorins.  As one illustration, treatment of a chlorin–

bacteriochlorin dyad with zinc acetate in CHCl3/methanol at room temperature for four hours 

afforded selective metalation of the chlorin; the resulting zinc chlorin – free base bacteriochlorin 

was isolated in nearly quantitative yield.
9
  As a second illustration, conditions that afford smooth 

zincation of the chlorin pheophytin a (Zn(OTf)2 in methanol or acetonitrile at room temperature) 

upon application to Bph a resulted in decomposition rather than metalation.
22

  The origin of the 

difficulty of metalation of bacteriochlorins remains unclear, but has been attributed to (1) 

diminished nucleophilicity, which decreases with increased saturation of the macrocycle 

(porphyrin < chlorin < bacteriochlorin),
22

 and (2) diminished acidity of the N-H protons, which 

decreases with increasing electron-richness of the ligand (porphyrin < chlorin < 

bacteriochlorin).
23

  A factor that complicates interpretation is that many bacteriochlorins 

examined in metalation studies to date are derived from natural ligands of somewhat limited 
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stability.  Regardless, the dearth of synthetic bacteriochlorins that withstand a broad range of 

reaction conditions has impeded a thorough investigation of these issues. 

In this paper, we first summarize methods that have been used to date for metalation of 

bacteriochlorins, and identify correlations between methods and structural features of the 

bacteriochlorins.  We then describe the development and application of a new method for 

metalation of synthetic bacteriochlorins.  We then report the spectral and photophysical features 

of a set of metallobacteriochlorins.  While no metalation procedure has yet been developed that 

is generically applicable to all bacteriochlorins, the present work should expand the availability 

of a variety of metallobacteriochlorins that have heretofore been inaccessible. 

Experimental methods 

Synthesis and general procedures  

Experimental methods are described in detail in elsewhere.
A 

Optical and photophysical characterization  

Static absorption (Varian Cary 100 or Shimadzu UV-1800) and fluorescence (Spex 

Fluorolog Tau 2 or PTI Quantamaster 40) measurements were performed at room temperature, as 

were all other studies.  Measurement of the fluorescence quantum yield (f) and singlet excited-

state lifetimes (S) and triplet yields (T) utilized dilute (M) Ar-purged toluene and methanol 

solutions.  Measurements of the triplet lifetimes (T) lifetimes utilized Ar-purged 2-methyl 

tetrahydrofuran (2-MeTHF) solutions.  Samples for f measurements had an absorbance 0.1 at 

the excitation wavelength to minimize front-face effects and similarly low absorbance in the 

Qy(0,0) band to minimize inner-filter effects. 
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Static emission measurements employed 2-4 nm excitation- and detection-

monochromator bandwidths and 0.2 nm data intervals.  Emission spectra were corrected for 

detection-system spectral response.  Fluorescence quantum yields were determined relative to 

several different standards.  These standards are (i) chlorophyll a in deoxygenated toluene (f = 

0.325),
87

 which is the value measured in benzene,
88

 and (ii) free base meso-tetraphenylporphyrin 

(FbTPP) in nondegassed toluene, for which f = 0.070 was established with respect to the zinc 

chelate ZnTPP in nondegassed toluene (f = 0.030),
88

 consistent with prior results on FbTPP,
89

 

and (iii) 8,8,18,18-tetramethylbacteriochlorin
90

 in Ar-purged toluene, for which f = 0.14 was 

established with respect to chlorophyll a in benzene and FbTPP in toluene. 

Fluorescence lifetimes were obtained using time-correlated-single-photon-counting 

detection on an apparatus with an approximately Gaussian instrument response function with a 

full-width-at-half-maximum of ~1 ns (Photon Technology International LaserStrobe TM-3).  

Samples were excited in the Soret or Q regions using excitation pulses at 337 nm from a nitrogen 

laser or in the blue to green spectral regions from a dye laser pumped by the nitrogen laser.   

The isc values (triplet yields) were obtained using transient absorption spectroscopy. 

The extent of bleaching of the ground-state Qx bands due to the formation of the lowest singlet 

excited state was measured immediately following a 130 fs flash in the Qy(0,0) band and 

compared with that due to the formation of the lowest triplet excited state at the asymptote of the 

singlet excited-state decay.
20,91

  

Electrochemistry   

The electrochemical studies were performed in butyronitrile (Burdick and Jackson) using 

previously described instrumentation.
92

  The supporting electrolyte was 0.1 M 
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tetrabutylammonium hexafluorophosphate (Aldrich; recrystallized three times from methanol 

and dried at 110 °C in vacuo).  The electrochemical cell was housed in a Vacuum Atmospheres 

glovebox (Model HE-93) equipped with a Dri-Train (Model 493).  The E½ values were obtained 

with square wave voltammetry (frequency 10 Hz) under conditions where the ferrocene couple 

has a potential of +0.19 V. 

Density Functional Theory calculations   

Calculations were performed with Spartan ’08 for Windows version 1.2.0 in parallel 

mode
93

 on a PC equipped with an Intel i7-975 cpu, 24 GB ram, and three 300 GB, 10k rpm hard 

drives.   The calculations employed the hybrid B3LYP functional and 6-31G* basis set.  The 

equilibrium geometries were fully optimized using the default parameters of the Spartan 

program.   

Results 

Bacteriochlorin synthesis and Bacteriochlorin metalation   

The synthesis and structure characterization of all the compounds investigated in this study are 

described in detail in elsewhere.
A 

 A summary of observation concerning metalation of synthetic 

bacteriochlorin is shown in Figure 1.  
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Figure 1. Summary of metalation of synthetic bacteriochlorins.
A
 

 

Structure and Physicochemical Characteristics 

Structural analysis  

The single-crystal X-ray structures of bacteriochlorins BC0, BC0-2M, and CuBC0-2T 

are shown in Figure 2.  Note that BC0-2M contains 3,13-dimesityl groups whereas CuBC0-2T 

contains 2,12-di-p-tolyl groups.  While a sizable number of photosynthetic proteins containing 

bacteriochlorophylls have been examined by X-ray crystallography, relatively few single-crystal 

X-ray studies have been carried out of bacteriochlorins.  These include synthetic free base 

bacteriochlorins,
65

 synthetic metallobacteriochlorins,
42,52,66

 and naturally derived (free base) 

bacteriopheophorbides.
67
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Figure 2. ORTEP drawing of (A) free base bacteriochlorin BC0, (B) free base bacteriochlorin 

BC0-2M, and (C) copper bacteriochlorin CuBC0-2T (one molecule from the unit cell).   

 

The core shape of porphyrin (porphine), chlorin (FbC), and bacteriochlorins (BC0 and 

BC0-2M) are shown in Figure 3.  The core shape of porphine is close to square,
68

 while that of 

chlorin FbC is slightly kite-shaped due to the presence of one pyrroline ring (D) and three 

pyrrole rings (A, B, and C).
69,70

  The core shape of bacteriochlorin BC0 is slightly rectangular.  

The two pyrrole rings and two pyrroline rings that constitute a bacteriochlorin alternate upon 

circumambulating the macrocycle; thus, the two pyrroline rings occupy opposite corners, as do 

the two pyrrole rings.  Introduction of two mesityl substituents at the 2- and 12-positions in BC0-
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2M does not alter the size and shape of the core, as no significant substituent effects are observed.  

The core size can be evaluated by the comparison of the average distances between each of the 

nitrogen atoms and their centroid.
71

  The order of average nitrogen-centroid distances is porphine 

(2.055 Å) < chlorin (2.074 Å) < bacteriochlorin (2.096 Å for BC0, 2.095 Å for BC0-2M). 

The core shape of the copper bacteriochlorin CuBC0-2T is shown in the Supporting 

Information (Figure S1).  Copper bacteriochlorin CuBC0-2T is fairly planar, with the copper 

atom located on the least-square plane defined by the four nitrogen atoms.  The average copper–

centroid distance is 2.005 Å, which is shorter than that of free base bacteriochlorins BC0 and 

BC0-2M (~2.095 Å). 
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Figure 3. Comparison of core structural parameters across porphyrin, chlorin, and 

bacteriochlorin macrocycles. 

 

Spectra properties 

The ground-state electronic absorption spectra of the metallobacteriochlorins and the free 

base bacteriochlorins in toluene are shown in Figure 4 (Zn series) and Figure 5 (BC0-2T series).  

The spectral data including the position, intensity, and full-width at half maximum (fwhm) of the 
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long-wavelength absorption band (Qy); the shift () in the position of the Qy band with respect 

to the free base bacteriochlorins; and intensity ratios of the Qy to By bands (IQy/IBy ratio) are 

listed in Table 1.  Table 1 also gives spectral data for the native bacteriochlorins.  In general, the 

absorption spectra of the synthetic metallobacteriochlorins resemble that of the Bchl a, just as the 

spectra of the synthetic free base bacteriochlorins resemble that of the native free-base (Mg-less) 

analogue Bphe a. 

 

Figure 4.  Absorption spectra in toluene at room temperature of bacteriochlorins (normalized at 

the Qy bands).  The labels in the graph are as follows: (a) ZnBC0 (black), (b) ZnBC0-2T (red), 

(c) ZnBC2-2H-MeO (orange), (d) ZnBC2-2M-MeO (yellow), (e) ZnBC4-MeO (green), (f) 

ZnBC2-2E (blue), (g) ZnBC2-2H (dark blue), and (h) ZnBC3-2E (purple). 

 

Figure 5.  Absorption spectra in toluene at room temperature of bacteriochlorins (normalized at 

the Qy bands).  The labels in the graph are as follows: (a) BC0-2T (black), (b) PdBC0-2T (blue), 

(c) ZnBC0-2T (red), (d) CuBC0-2T (green), and (e) ClInBC0-2T (orange). 
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Table 1.  Spectral Properties of Bacteriochlorins.
a
  

Compound By(0,0) 
b 

abs 

(nm) 

Bx(0,0)
 b

 

abs  

(nm) 

Qx(0,0) 

abs   

(nm) 

Qy(0,0) 

abs 

(nm) 

Qy(0,0) 

abs 

fwhm 

(nm) 

Qy(0,0) 

em 

(nm) 

Qy(0,0) 

em 

fwhm 

(nm) 

Qx 
c
 

 
(nm) 

Qy 
c
 

 
(nm) 

IQy/IBy 

Zn-BCs           

ZnBC0-2T 344 384 521 749 23 756 26 22 13 1.3 

ZnBC2-2M-MeO 353 389 565 773 25 780 26 27 15 1.6 

ZnBC4-MeO 354 385 581 774 22 782 27 31 15 2.0 

ZnBC3-2E 356 419 564 830 27 835 23 20 12 1.7 

ZnBC2-2E 347 391 546 773 24 778 25 25 12 1.6 

ZnBC2-2H 347 391 547 775 23 780 24 26 13 1.2 

ZnBC2-2H-MeO 353 389 548 750 26 758 26 26 10 1.3 

ZnBC0 336 375 514 723 14 725 18 25 10 1.7 

Pd-BCs           

PdBC0-2T 330 379 499 739 21 745 25 0 3 1.7 

PdBC2-2M-MeO 337 382 538 758 20 765 23 0 0 2.8 

Cu-BCs           

CuBC0-2T 337 383 512 755 29 -- -- 13 18 1.2 

CuBC2-2M-MeO 348 390 556 780 37 -- -- 18 22 1.5 

CuBC0 332 378 507 728 19 -- -- 18 15 1.7 

FbBCs           

BC0-2T 351 374 499 736 20 742 23 0 0 1.0 

BC2-2M-MeO
 361 383 538 758 22 765 23 0 0 1.0 

BC4-MeO 
d
 361 368 550 759 20 763 23 0 0 1.2 
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BC3-2E 
d
 358 408 544 818 24 823 24 0 0 1.3 

BC2-2E 
d
 354 383 521 761 20 764 21 0 0 0.9 

BC2-2H
 354 383 521 762 20 766 21 0 0 0.9 

BC2-2H-MeO 357 379 522 740 18 746 21 0 0 1.1 

BC0 
d
 340 365 489 713 12 716 16 0 0 0.9 

In-ClBCs           

ClInBC0-2T 
e
 350 388 539 763 23 769 31 40 27 1.1 

MgBCs           

MgBC4-MeO 360 380 599 776 31 780 33 49 17 0.9 

Native BCs           

BChl a 363 396 581 781 28 789 29 49 21 1.4 

BPhe a 
d
 362 389 532 758 31 768 27 0 0 0.7 

a
In toluene at room temperature. 

b
The nominal Bx(0,0) and By(0,0) absorption bands may alternate order with 

compound and have mixed x and y polarization.  
c
The shift of the band relative to that of the free base analogue.  

d
Data 

from ref 20.  
e
Data from ref 21.   
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The spectrum of each bacteriochlorin exhibits four absorption bands generally 

categorized as By(0,0), Bx(0,0), Qx(0,0), and Qy(0,0) from short to long wavelength.  (By(0,0) and 

Bx(0,0) may reverse positions depending on the bacteriochlorin and have mixed x and y 

polarizations.)  In general, the B bands of all bacteriochlorins examined herein fall in the region 

330 to 419 nm.  The Q bands of the BC0-2T series including the free base and all metal chelates 

lie at shorter wavelength (Qx 499 to 536 nm; Qy 737 to 763 nm) versus those of the BC2-2M-

MeO series (Qx 524 to 556 nm; Qy 758 to 779 nm).  For the Zn series, the Q bands are located at 

longer wavelength compared to the corresponding free base bacteriochlorins.  The shifts in Qx 

bands (19–34 nm) are generally more significant than those of Qy bands (12–16 nm).  The Qy 

bands of the synthetic bacteriochlorins are quite intense.  For BC0-2T, the long-wavelength 

maximum (732 nm) has a molar absorptivity of ~120,000 M
-1

cm
-1

.
16

   

Within the same bacteriochlorin series, the extent of the Qx band shift increases in order 

of Pd < Cu < Zn (< ClIn) chelates, while that of Qy increases in order of Pd < Zn < Cu (< ClIn).  

Each bacteriochlorin features a sharp Qy band with fwhm in the range of 20–24 nm, except for 

the Cu chelates which exhibit broadened Qy band in the range of 29–40 nm.  The intensity ratios 

of the Qy to By bands of the metallobacteriochlorins increase inversely with the increase of the 

wavelength shift () with respect to the free base bacteriochlorins in order of (ClIn) < Cu < Zn 

< Pd.  For the Zn series, the intensity ratios of the Qy to By bands fall in the range of 1.3–1.9. 

The fluorescence spectrum of each zinc bacteriochlorin is dominated by a Qy(0,0) band 

that is only modestly (5–10 nm) shifted to longer wavelength than the Qy(0,0) absorption band 

and has a comparable spectral width (Table 1).  This behavior is analogous to that observed for 

free base bacteriochlorins (Table 1 and ref 20).  Similar fluorescence spectra are found for the 

indium chelates, as we have reported previously,
21

 and for the palladium bacteriochlorins.  
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However, compared to the zinc and free base bacteriochorins, the fluorescence intensities are 

much weaker for the indium complexes and weaker still for the palladium complexes as 

described in the following. 

Photophysical properties 

Table 2 lists the photophysical properities of the zinc and palladium bacteriochlorins, 

along with representative data for the free base and indium analogues.  The table also gives data 

for the native chromophores Bchl a and Bphe a in toluene.  In comparing exact values of the 

photophysical characteristics of the zinc and free base bacteriochlorins, one must take into 

account that some of the zinc chelates may be axially ligated because they, like a few Fb 

complexes, were studied in THF rather than toluene for greater solubility (as indicated in Table 2 

footnotes). 

The zinc bacteriochlorins are quite fluorescent, with fluorescence quantum yields (f) 

generally in the range 0.08–0.20 with an average value of 0.13 that is comparable to that (0.15) 

for the free base analogues studied here or previously.
20

  The exception is f = 0.033 for the 

bacteriochlorin–imide ZnBC3-2E, which like that (0.040)
20

 for the free base analogue is reduced 

due to the lower energy (Qy > 800 nm; Table 1) of the singlet excited state resulting in more 

facile nonradiative internal conversion.  The lifetimes (S) of the singlet excited state for the zinc 

bacteriochlorins (except ZnBC3-2E) are in the range 2.2–4.4 ns, with an average value of 3.5 ns.  

These lifetimes are also similar to those for the free base analogues (3.3–4.4 ns; average 3.8 ns).  

The typical yield of intersystem crossing to the triplet excited state (isc) for the zinc 

bacteriochlorins is ~0.7, which is somewhat greater than the average value of ~0.5 for the free 

base analogues due to a modest effect of the metal ion on spin-orbit coupling.  The typical f 
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and S values for the indium chelates (0.02 and ~0.3 ns)
21

 are reduced and the isc values (~0.9) 

increased from those for the zinc chelates due to greater heavy metal enhancement of spin-orbit 

coupling.   

The heavy metal effect (and potential d-orbital contribution) is greater still for the 

palladium bacteriochlorins, resulting in essentially quantitative singlet-to-triplet intersystem 

crossing.  The consequence for PdBC2-2M-MeO is a very low fluorescence yield (f = 0.006) 

and singlet lifetime (S = 15 ps).  The two values are somewhat greater for PdBC0-2T for 

reasons that are not clear.  Enhanced spin-orbit coupling also results in a progressive shortening 

of the lifetime of the lowest triplet excited state (T) from a typical value of ~100 s for the zinc 

and free base bacteriochlorins to ~30 s for the indium chelates and to ~10 s for the palladium 

chelates.  

In the case of copper bacteriochlorins (CuBC0, CuBC0-2T, CuBC2-2M-MeO), 

interactions involving the unpaired metal electron associated with the d
9
 configuration of Cu(II) 

transform the macrocycle singlet excited state into a “singdoublet” and split the macrocycle 

triplet excited state into “tripdoublet” and “quartet” excited states that are close in energy, in 

analogy to copper porphyrins.
7
  Normal fluorescence is not expected (and none is found in the 

case of CuBC2-2M-MeO).  Transient absorption studies of CuBC0, CuBC0-2T, and CuBC2-

2M-MeO indicate essentially complete decay to the ground state with time constants of 0.3, 0.5, 

and 1.7 ns in THF.  This time evolution likely represents deactivation of the tripdoublet/quartet 

excited-state manifold via a ring-to-metal charge-transfer state that has been implicated in the 

excited-state dynamics of copper porphyrins,
72

 but which now lies at lower energy in the 

corresponding bacteriochlorins due to the greater ease of macrocycle oxidation.  
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Table 2.  Photophysical, Redox, and Molecular-Orbital Properties of Bacteriochlorins. 

Compound 
S

 

(ns) 
f isc 

T 
c
 

(µs) 

Eox 
b
 

(V) 

Ered 
b
 

(V) 

HOMO 

(eV) 

LUMO 

(eV) 

Zn-BCs         

ZnBC0-2T 2.9 0.11 0.83 161 0.04 1.60 4.26 2.20 

ZnBC2-2M-MeO 2.9 0.12 0.71 120 +0.45 1.38 4.55 2.51 

ZnBC4-MeO 4.4 0.13 0.80 38 +0.16 1.10 4.87 2.92 

ZnBC3-2E 2.2 0.033 0.28 94 +0.02 1.12 4.78 2.94 

ZnBC2-2E 2.6 0.08 0.71 149 0.12 1.42 4.48 2.53 

ZnBC2-2H 3.5 0.14 0.60 191   0.00 1.42 4.47 2.52 

ZnBC2-2H-MeO 4.3 0.20 0.70 187 0.14 1.47 4.48 2.46 

ZnBC0 3.4 0.10 0.67 151 0.12 1.68 4.30 2.16 
Pd-BCs         

PdBC0-2T 0.35 0.020 >0.99 12 +0.43 1.14 4.36 2.26 

PdBC2-2M-MeO 0.015 0.006 >0.99 5.8 +0.29 1.29 4.63 2.54 
Cu-BCs         

CuBC0-2T    0.5 ns
c
 0.04 1.53 4.25 2.25 

CuBC2-2M-MeO    1.7 ns
c
 +0.18 1.32 4.53 2.55 

CuBC0    0.3 ns
c
 0.04 1.60 4.27 2.18 

FbBCs         

BC0-2T 
d
 3.3 0.18 0.55 163 +0.21 1.49 4.40 2.22 

BC2-2M-MeO
 3.9 0.15 0.35 52 +0.38 1.29 4.65 2.48 

BC4-MeO 
d
 4.3 0.16 0.24 46 +0.57 1.05 5.00 2.95 

BC3-2E 
d
 1.9 0.04 0.51 85 +0.45 0.98 4.91 2.99 

BC2-2E 
d
 3.3 0.14 0.55 110 +0.29 1.32 4.68 2.58 

BC2-2H
 3.3 0.10 0.45 110 +0.29 1.33 4.59 2.52 

BC2-2H-MeO 4.4 0.17 0.49 86 +0.28 1.43 4.60 2.45 
BC0 

d
 3.9 0.14 0.24 169 +0.45 0.99 4.46 2.20 

In-ClBCs         

ClInBC0-2T 
e
 0.21 0.016 0.9 44 +0.31 1.25 4.52 2.52 

MgBCs         

MgBC4-MeO 5.4 0.16 0.60 90   4.86 2.94 
Native BCs         

BChl a 3.1 0.12
 

0.30
 

50
 

  4.75 2.86 
BPhe a 

d
 2.7 0.10 0.57 25   4.87 2.84 

a
In toluene at room temperature except as follows: the T values for all compounds and the f, 

isc, and S values for BC2-2H, BC2-2H-MeO, ZnBC0, ZnBC2-2H, ZnBC2-2H-MeO and 

MgBC4-MeO were determined in tetrahydrofuran. 
b
First oxidation (Eox) and first reduction (Ered) 

potentials measured in 0.1 M tetrabutylammonium hexafluorophosphate in which the ferrocene 

couple has an E1/2 of 0.19 V.  
c
Decay of the tripdoublet/quartet excited-state manifold in 

nanoseconds.  
d
Data from ref 20.  

e
Data from ref 21. 
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Zinc tetrapyrroles (generally porphyins and chlorins until the present) are often exploited 

in photophysical and photochemical applications compared to the corresponding magnesium 

complexes due to a reduced propensity for demetalation.  In the case of porphyrins, a sacrifice is 

a shorter singlet excited-state lifetime (e.g., ~2 versus ~6 ns) and fluorescence yield (~0.03 

versus ~0.13).  Here we have found that the zinc bacteriochlorin ZnBC4-MeO has f, S, isc, 

and T values comparable to those of the corresponding magnesium bacteriochorin MgBC4-

MeO.  In this regard, compared to the native magnesium bacteriochlorin, Bchl a (Table 1),
73-75

 

the zinc bacteriochlorins generally have similar f, comparable or greater S, comparable isc, 

and longer T values.  This comparison is similar to that for the free base bacteriochlorins relative 

to the native metal-free bacteriochlorin Bphe a (Table 1).
20

  In summary, the synthetic zinc 

bacteriochlorins (and the indium and palladium analogues), like the free base bacteriochlorins, 

exhibit photophysical characteristics suitable for a range of applications in solar-energy 

conversion and photomedicine.   

Electrochemical and molecular orbital characteristics.   

The redox properties (reduction potentials) and energies of the frontier MOs of the 

bacteriochlorins are listed in Table 2.  Only the potentials for the first oxidation (Eox) and 

reduction (Ered) (which are both reversible) are presented in the table, as these are most germane 

for the discussion below.  It should be noted, however, that the molecules also exhibit redox 

processes corresponding to second oxidations and reductions.  Differences in the Eox and Ered 

values among the the different metallobacteriochlorins and free base analogues generally parallel 

those for porphyrin systems.
2
  In prior work on a large number of chlorins,

76
 good correlations 

were found between the Eox and the HOMO energy and between the Ered and the LUMO energy.  
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Such a correlation is generally found in Table 2 and in Figure 6 , which plots the redox potentials 

and MO energies versus the number of electron-withdrawing groups on the bacteriochlorin.   

 

 

Figure 6.  The effect of the number of electron-withdrawing (carbonyl) groups on the redox 

potentials and frontier MO energies. 

 

Comparison of HOMO and LUMO energies of compounds BC0, BC0-2T, and BC3-2E 

listed in Table 2 with the values for their counterparts studied previously
20

 that contain a 5-

methoxy group shows that the 5-methoxy group shifts the MO energies by a relatively small 

amount (0.08 eV).  When there is a shift in the MO energies, the shift is to slightly more 

negative values, indicating that the compound should be slightly harder to oxidize and easier to 

reduce.  The data in Table 2 and Figure 6 further show that an increasing number of electron-

withdrawing groups on the bacteriochlorin (affording greater ease of metalation) is reflected in a 

more positive Eox (harder to oxidize) and a less negative Ered (more difficult to reduce).  The one 
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compound that is an outlier is BC0.  Along the same set of compounds, an increasing number of 

electron-withdrawing groups is reflected in shifts in the HOMO energy to more negative values 

(harder to oxidize) and the LUMO energy to more negative values (easier to reduce).  Here, 

compound BC0 is not an outlier and has essentially the same MO energies as compound BC0-

2T.  Thus, the fact that BC0 is an outlier in the redox data may be in part a solvation (electrolyte) 

effect.  

As expected, an increasing number of electron-withdrawing groups shifts the redox 

potentials and MO energies so as to make it harder to remove an electron (or electron density) 

and easier to add an electron (or electron density).  Because metalation involves replacing two 

protons of the free base with a divalent metal ion, and a pair of protons is typically more 

electropositive than the metal ion, metalation effectively involves a net addition of electron 

density to the macrocycle.  This property results in the correlation between the ease of metalation 

and the redox and MO energies.   

The above comparisons are made for a set of bacteriochlorins that differ in the number 

and types of substituents at the same macrocycle positions.  These changes cause shifts in the 

energies and electron densities of the HOMO and LUMO, but do not alter the identities of these 

two orbitals.  The finding of such correlations, or even the interpretation if they are found, may 

be more difficult if the set of molecules differ in the sites of macrocycle substitution, and 

particularly if different macrocycles are involved.  For example, depending on the substituent 

pattern, in progressing from porphyrin to chlorin (and then to bacteriochlorin), the HOMO may 

change from the a2u() orbital that has substantial electron density at the central nitrogens (and 

metal ion once incorporated) to the a1u()-like orbital that has far less electron density or even 

nodes at these positions.  Such a switch would need to be taken into account in assessing 
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relationships between the ease (kinetics and thermodynamics) of metalation versus the MO and 

redox properties.  

Conclusions and Outlook   

The ability to prepare synthetic metallobacteriochlorins is essential for biomimetic 

studies pertaining to the roles of bacteriochlorophylls in bacterial photosynthesis and to probe the 

electronic interplay of peripheral substituents and central metal on photophysical properties.  In 

this regard, the metalation of bacteriochlorins over the years has in some cases proceeded 

uneventfully and in other cases proved extremely difficult.  In general, the reaction course for 

metalation of tetrapyrrole macrocycles has been interpreted in terms of a variety of parameters, 

including macrocycle conformation, molecular rigidity (ability to distort from a planar 

conformation to accommodate the incoming metal ion), nucleophilicity of the nitrogens toward 

the incoming metal ion, and solvent interactions that entail deprotonation of the pyrrolic NH 

bonds as well as coordination to the metal ion.
22

  Related to the ease of preparing a metal chelate 

is the stability of the resulting metal chelate toward demetalation.  The difficulty of metalation 

upon moving to hydroporphyrins (porphyrin < chlorin < bacteriochlorin) has been attributed to 

the diminution of ligand nucleophilicity that accompanies saturation of the pyrrole rings.
22

  On 

the other hand, a careful study by Saga et al. of identically substituted macrocycles revealed that 

the ease of zinc demetalation decreased along the series porphyrin ~> chlorin >> 

bacteriochlorin.
77

  In contrast to porphyrins, where the availability of collections of diverse 

macrocycles in ample quantities have enabled systematic studies of metalation and demetalation 

chemistry, comparable studies with bacteriochlorins to assess kinetics and thermodynamics have 

largely remained out of reach.   
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A de novo route to bacteriochlorins has provided a suite of macrocycles that differ in 

number (0-4 carbonyl groups) and type of substituents.  The macrocycles provide the foundation 

for initiation of systematic studies of metalation methods.  While a full matrix defined by 

metalation conditions, metal types, metal ligands, and bacteriochlorin substrates has not been 

performed, attempts to metalate the set of synthetic bacteriochlorins examined herein has led to 

the following observations:  

 The difficulty of metalation of tetrapyrrole macrocycles decreases for bacteriochlorins 

with increasing number of electron-withdrawing groups. 

 Metalation of a bacteriochlorin occurs upon treatment with a strong base (e.g., NaH or 

LDA) in THF followed by MXn: (a) for bacteriochlorins that bear electron-releasing 

groups, M = Cu, Zn, Pd, and InCl; (b) for bacteriochlorins that bear two carboethoxy 

(electron-withdrawing) groups, M = Ni, Cu, Zn, Pd, Cd, InCl, and Sn (but not Al or Au); 

and (c) a bacteriochlorin with four carboethoxy groups was metalated with Mg.   

 Bacteriochlorins that bear ≥2 carbonyl groups typically can be zincated by standard 

porphyrin metalation conditions [Zn(OAc)2·2H2O in DMF at 60–80 °C] 

Scheer has suggested that the rate-determining step of bacteriochlorin metalation consists 

of deprotonation of the pyrrole N-H protons.
23

  The use of a very strong base overcomes this 

limitation, and resembles the method developed by Arnold for preparing early transition metal 

chelates of porphyrins.  The Arnold method entails formation and isolation of the dilithium 

derivative of the porphyrin as the reactive species for transmetalation upon treatment with a 

metal reagent.
53,54

  Such method has been applied by Stolzenberg with tetra-p-

tolylbacteriochlorin to prepare the oxotitanyl chelate.
55

  The deprotonation of the N-H protons 
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would be facilitated with increasing number of electron-withdrawing groups located on the 

pyrrole units, as observed here. 

In comparing the above results with other types of tetrapyrrole macrocycles, it warrants 

emphasis that the (up to four) carbonyl groups were located exclusively in the pyrrole (rings A 

and C) and not in the pyrroline (rings B and D) units of the bacteriochlorins.  By contrast, studies 

of chlorins can incorporate groups in the pyrrole (rings A and C), pyrrolenine (ring B), and 

pyrroline (ring D) units.  In porphyrins, both pyrrole and pyrrolenine groups are present yet 

facile tautomerization typically precludes localization of a substituent in a particular heterocycle.   

The studies reported herein concerning metalation of diverse synthetic bacteriochlorins – 

an ostensibly simple reaction – provide access to a number of the corresponding 

metallobacteriochlorins.  One area of particular interest is the examination of dyadic (and larger) 

arrays comprised of free base and metallobacteriochlorins.  In this regard, a review of all 

covalently linked arrays that contain one or more bacteriochlorins reveals only ~20 dyads 

prepared to date, and most of the bacteriochlorins incorporated therein have been free base 

species.
8
  Thus, the study of heterometalated arrays, an approach that has been widely used to 

probe photosynthetic-like mechanisms in synthetic multipigment architectures,
78

 has largely 

resided outside the scope of experimentation for bacteriochlorins (but has been accessible via 

computational means
79

).  The straightforward access described herein should open the door to 

the study of fundamental properties, tuning NIR spectral properties, and pursuit of a range of 

photochemical applications of synthetic metallobacteriochlorins. 
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Chapter 6 

Photophysical Properties and Electronic Structure of Bacteriochlorin–Chalcones with 

Extended Near-Infrared Absorption 
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Abstract 

Synthetic bacteriochlorins enable systematic tailoring of substituents about the 

bacteriochlorins chromophore and thereby provide insights concerning the native 

bacteriochlorophylls of bacterial photosynthesis. Nine free base bacteriochlorins (eight prepared 

previously and one prepared here) have been examined that bear diverse substituents at the 13- 

or 3,13-positions. The substituents include chalcone (3-phenylprop-2-en-1-onyl) derivatives with 

groups attached to the phenyl moiety, a “reverse chalcone” (3-phenyl-3-oxo-1-enyl), and 

extended chalcones (5-phenylpenta-2,4-dien-1-onyl, retinylidenonyl). The spectral and 

photophysical properties (s, f, ic, isc, T, kf, kic, kisc) of the bacteriochlorins have been 

characterized. The bacteriochlorins absorb strongly in the 780–800 nm region and have 

fluorescence quantum yields (Φf) in the range 0.05–0.11 in toluene and dimethylsulfoxide. Light-

induced electron promotions between orbitals with predominantly substituent or macrocycle 

character or both may give rise to some net macrocycle ↔ substituent charge-transfer character 

in the lowest and higher singlet excited states as indicated by density functional theory (DFT) 

and time-dependent DFT calculations. Such calculations indicated significant participation of 

molecular orbitals beyond those (HOMO-1 to LUMO+1) in the Gouterman four-orbital model. 

Taken together, the studies provide insight into the fundamental properties of bacteriochlorins 

and illustrate designs for tuning the spectral and photophysical features of these NIR-absorbing 

tetrapyrrole chromophores.  
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Introduction 

The development of chromophores with tunable absorption across the near-infrared (NIR) 

spectral region is essential for diverse applications.  Light in the NIR region affords the deepest 

penetration in soft tissue and hence is ideal for use in photomedicine.
1–4

  Absorption that can be 

stepped across the NIR region would complement absorption of fluorophores in the near-UV and 

visible regions and thereby enhance multicolor protocols.
5,6

  The ability to capture sunlight in the 

photon rich NIR region is essential for highly efficient bioinspired and biohybrid photosynthetic 

solar-conversion systems. 
7–9

   

Bacteriochlorophylls are nature’s chromophores for absorbing sunlight in the NIR region.  

The native chromophores and analogs derived therefrom have limited synthetic malleability due 

to a nearly full complement of substituents about the perimeter of the macrocycle and 

susceptibility to adventitious dehydrogenation.  De novo syntheses have recently begun to 

provide access to bacteriochlorins that can be tailored in a variety of ways and that are stable 

toward such macrocycle oxidation.
10–13

 Our own work has focused on creation of the 

bacteriochlorin skeleton wherein a geminal dimethyl group is placed in each reduced, pyrroline 

ring, thereby blocking adventitious pathways leading to dehydrogenated products (i.e., chlorins 

and porphyrins).
14,15

 The incorporation of auxochromes
16

 such as phenyl, vinyl and acetyl groups 

at select positions allows wavelength tuning of the strong NIR absorption band
17–20

, known as 

the Qy band.
21

  Chart 1 shows representative free base (metal-free) bacteriochlorins B1–B11
14,17–

20
 that bear such auxochromes at the 3-position, 13-position, or both positions.  Other synthetic 

approaches to impart a bathochromic shift of the long-wavelength band of bacteriochlorins 

include attachment of auxochromes 
22

 and modification of the macrocycle skeleton .
23 
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The NIR absorption spectra of representative members of B1–B11 are provided in Figure 

1.  In each case, a prominent fluorescence feature is found ~5 nm to longer wavelength than the 

Qy absorption maximum (not shown).  The free base bacteriochlorins and zinc or magnesium 

chelates (where available) have modest fluorescence yields (0.10.2), relatively long singlet 

excited-state lifetimes (35 ns), high yields of the triplet excited state (0.5–0.7) and relatively 

long triplet excited-state lifetimes (50150 s).
17,18,20,24

  

 

 

 

Chart 1.  Representative bacteriochlorins studied previously.  The position of the Qy absorption 

band is indicated 
14,17–20
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Figure 1. Absorption spectra of representative bacteriochlorins, bacteriooxophorbine, and 

bacteriochlorin imided studied previously, normalized in the Qy band.  The compounds (Chart 1) 

are B1 (a, black), B3 (b, orange), B5 (c, purple), B7 (d, blue), B9 (e, red), B10 (f, green), and 

B11 (g, magenta). 

 

The parent synthetic bacteriochlorin (B3) that bears no substituents (other than the 

geminal dimethyl group in each pyrroline ring) has the Qy absorption band at 713 nm (and 

fluorescence at 716 nm).  A substantial (58 nm) bathochromic shift to 771 nm is attained in the 

3,13-diformylbacteriochlorin (B9).  Other auxochromes (e.g., phenyl, vinyl, ethynyl, ester, acetyl) 

give shifts of intermediate magnitude.  For a given set of 3,13-substituents, a 5-methoxy group 

gives a hypsochromic shift in the Qy band of up to ~20 nm (e.g., B6 vs B8, Chart 1).  

Combinations of these substituents afford a palette of stable synthetic bacteriochlorins with a 

strong, relatively sharp 1520 nm full-width-at-half-maximum (FWHM) NIR absorption that can 

be stepped in ~10 nm increments from 690 to 770 nm (Figure 1).  Absorption farther into the 
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NIR region has been obtained by incorporation of a 5-membered imide ring that spans the 12- to 

15-positions of the macrocycle.
18

  Two representative bacteriochlorin–imides (B10 and B11), 

with or without a 5-methoxy group, are shown in Chart 1 and have the Qy band at 793 or 818 nm, 

respectively (Figure 1). 

For fundamental studies as well as applications, it would be desirable to complement the 

existing set of 3,13-substituted bacteriochlorins that absorb in the 690770 nm region with 

analogs that incorporate alternate auxochromes at the same two substituent sites to give even 

more bathochromic absorption shifts (similar to or exceeding those of an imide ring).  One 

approach has been to utilize condensation reactions involving acetyl-substituted bacteriochlorins 

and a variety of aldehydes to prepare bacteriochlorin–Chalcones. 
25 

 The name “chalcone” (Gk 

chalkos, copper ore) was given by Kostanecki and Tambor to the red-yellow condensation 

product of benzaldehyde and acetophenone (i.e., benzylideneacetophenone) in keeping with the 

names of other colored aryl ketones such as flavone and xanthone.
26

 The enone 

benzylideneacetophenone is the parent member of the family of chalcones.  The literature 

concerning chalcones is now vast; a Web of Science search on “chalcone” elicits >5000 citations 

owing to the importance of this motif in plant biochemistry (polyketides, flavonoids, 

anthocyanines)
27–30

, and in medicinal chemistry. 
31–35

 We chose chalcones as a bacteriochlorin 

substituent that could both be readily formed
35-36

 and might impart a bathochromic shift in the 

bacteriochlorin absorption spectrum. 
25

   

Here we have performed a condensation of a formyl-substituted bacteriochlorin with 

acetophenone to prepare a reverse chalcone.  The photophysical properties (in both polar and 

nonpolar media) and molecular-orbital (MO) characteristics of the reverse chalcone as well as 

the previously synthesized bacteriochlorin–chalcones are described.  Collectively these studies 
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afford 3,13-substituted bacteriochlorins with extended NIR absorption and photophysical 

properties suitable for use in solar light-harvesting systems and photomedical research. 

Experiment methods 

3,13-Bis[(E)-3-phenylprop-1-en-2-onyl]-8,8,18,18-tetramethylbacteriochlorin (B-REV-chPh).  

Following an established procedure
25

, the reaction was carried out using a CEM Discover 

Synthesis Unit (CEM Corp., Matthews, NC), which was equipped with an infrared sensor for 

temperature monitoring.  The reactions were carried out in an open vessel.  Thus, a mixture of 

B9 (15 mg, 0.035 mmol), acetophenone (16 μL, 0.14 mmol), and NaOH (28 mg, 0.70 mmol) in 

absolute ethanol (17 mL) was reacted in an open vessel (long neck 125 mL round bottom flask) 

equipped with magnetic stirring and a reflux condenser and subjected to microwave irradiation at 

300 W.  The protocol was as follows: (1) heat from room temperature to reflux, (2) continue 

heating to hold at reflux for 30 min, (3) allow to cool to room temperature (~2 min), (4) check 

the reaction mixture by TLC analysis, and (5) repeat steps 1-4 until most of the starting material 

has disappeared.  In so doing, the reaction mixture was heated for 2 h.  The crude mixture was 

transferred to a round bottom flask and concentrated.  The resulting crude product was dissolved 

in CH2Cl2 and washed with a saturated aqueous solution of NH4Cl.  The organic layer was 

separated, dried over Na2SO4, concentrated under reduced pressure, and chromatographed [silica, 

hexanes/CH2Cl2 (1:1) → (1:9)] to afford an orange solid (<1 mg, ~4%): 
1
H NMR (CDCl3, 300 

MHz),  –1.29 (brs, 2H), 1.97 (s, 12H), 4.44 (s, 4H), 7.58–7.75 (m, 6H), 8.19–8.35 (m, 6H), 8.63 

(s, 2H), 8.99 (s, 2H), 9.07 (s, 2H), 9.25 (d, J = 15.0 Hz, 2H); laser-desorption mass spectrometry 

in the absence of a matrix
37

 obsd 630.5; ESI-MS obsd 631.3064, calcd 631.3068 (C42H38N4O2); 

λabs (CH2Cl2) 333, 351, 395, 543, 800 nm. 
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Photophysical measurements   

Measurement of the fluorescence (f) and triplet-excited-state (isc) quantum yields, 

singlet (S) and triplet (T) lifetimes, and transient-absorption studies unless noted otherwise, 

utilized dilute (M) Ar-purged solutions at room temperature.  Samples for f measurements had 

an absorbance <0.1 at the excitation wavelength.  The f values (± 0.01) were generally 

determined as described previously
17

 with respect to two standards and the results averaged.  The 

standards were (1) free base meso-tetraphenylporphyrin (FbTPP) in nondegassed toluene, for 

which f = 0.070 was established with respect to the zinc chelate ZnTPP in nondegassed 

toluene (f = 0.030)
38

, consistent with prior results on FbTPP
39

, and (2) 8,8,18,18-

tetramethylbacteriochlorin in Ar-purged toluene, for which f = 0.14 was established with 

respect to FbTPP and chlorophyll a (Chl a) in deoxygenated benzene
40

 or  toluene (f = 0.325).  

The S value (± 0.1 ns) for most of the bacteriochlorins (S ~ 1 ns or longer) was first 

probed using a time-correlated single photon counting instrument that employed Soret excitation 

flashes derived from a nitrogen-pumped dye laser (PTI LaserStrobe) and a Gaussian instrument 

response function of 0.6 ns.  The S values measured by transient absorption are consistent with 

those determined via fluorescence.  The T values were determined using a conventional flash 

photolysis setup. The apparatus utilized excitation flashes (∼5 ns, ∼10mJ, 490550 nm) from a 

dye laser pumped by a Q-switched Nd:YAG laser (Cobra-INDI, Spectra-Physics), continuous 

probe light filtered by monochromators, and a photomultiplier tube detector followed by an 

amplifier and digital oscilloscope with an overall instrument response function of ~0.1 ns. 

  The isc (triplet yield) values ( 0.07) were obtained using a transient-absorption 

technique in which the extent of bleaching of the ground-state Qx and Qy bands due to the lowest 
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singlet excited state was measured immediately following a ~100 fs flash (in the Qx or Qy bands) 

and compared with that due to the lowest triplet excited state at the asymptote of the singlet 

excited-state decay.  For the Qy region, the contribution of stimulated emission was taken into 

account.  For both states and spectral regions, the extent of bleaching in the presence of excited-

state absorption in the transient difference spectra was determined by various methods (to 

encompass a reasonable range of spectral shapes) including Gaussian fitting, integrations, and 

linear interpolation of the excited-state absorption across the ground-state bleaching region.  An 

average value of the triplet yields obtained by these methods is reported for each bacteriochlorin.  

Molecular orbital calculations 

 DFT calculations were performed with Spartan ’10 for Windows version 1.2.0
41

 in 

parallel mode on a PC equipped with an Intel i7-975 cpu, 24 GB ram, and three 300 GB, 10k 

rpm hard drives.  The calculations employed the hybrid B3LYP functional and basis set 6-31G*.  

The equilibrium geometries were fully optimized using the default parameters of the Spartan 

program.  Molecular-orbital (MO) images were plotted from Spartan using an isovalue of 0.016.   

TDDFT calculations were performed in parallel mode
42

 with Gaussian ’09 version B.01 

64-bit for linux using OpenSUSE version 11.4 or 12.1.  One of two PC systems was used for 

Gaussian runs.  The hardware for the first PC system used for Gaussian runs is the same as that 

used for the Spartan calculations and the second is a PC equipped with an intel i7-980 cpu, 24 

GB ram and two 600 GB 10k rpm hard drives.  Geometries used for the TDDFT calculations 

were from optimizations at the B3LYP/6-31G* level.  TDDFT single point calculations were 

performed at the B3LYP/6-31G* level.   
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Results 

Synthesis   

We previously synthesized a 3,13-dibromobacteriochlorin
20

, which provided a valuable substrate 

for conversion to the corresponding 3,13-diacetylbacteriochlorin B8
20

 and 3,13-

diformylbacteriochlorin B9.
19

 We found that treatment of the 3,13-diacetylbacteriochlorin with 

an aldehyde under microwave irradiation resulted in facile formation of the condensation product, 

namely the bacteriochlorin–chalcone B-chPh as shown in Scheme 1. 
25

   

  

Scheme 1. Synthesis of a bacteriochlorin–chalcone. 

The scope of the reaction encompassed a wide variety of aldehydes.  The aldehydes and 

resulting products include the following: (1) 1,3-bis(methoxymethoxy)benzaldehyde afforded the 

MOM-substituted bacteriochlorin–chalcones B-chM1 and B-chM2 (MOM = methoxymethoxy); 

cleavage of the MOM group of B-chM2 gave resorcinol-substituted bacteriochlorin–chalcone B-
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chRsc.  (2) p-N,N-dimethylaminobenzaldehyde afforded B-chDma.  (3) Cinnamaldehyde 

afforded B-chCin, the vinylog of B-chPh.  (4) Retinal afforded the retinyl-substituted 

bacteriochlorin–chalcones B-chRet1 and B-chRet2.  The bacteriochlorin–chalcones (Chart 2) 

exhibited a bathochromic shift of the long-wavelength absorption band (Qy) of up to 24 nm from 

that of the parent 3,13-diacetylbacteriochlorin (B8).
25

 
 

The availability of diformylbacteriochlorin B9 suggested analogous elaboration via 

condensation with a methyl ketone.  Thus, the condensation of B9 and acetophenone was carried 

out to give the bacteriochlorin–chalcone wherein the vinyl group is attached to the 

bacteriochlorin macrocycle and the carbonyl group is attached to the phenyl unit (Scheme 2).  

Such arrangement is the reverse of that for the bacteriochlorin–chalcone B-chPh in Scheme 1.  

Hence, the product shown in Scheme 2 is termed a reversed bacteriochlorin–chalcone, termed B-

REV-chPh.  The yields of the bacteriochlorin–chalcones shown in Scheme 1 and Chart 2 were 

quite reasonable, reaching as high as 58%.  However, the reaction to form the reverse chalcone 

proceeded in low yield, with both starting material and monosubstituted bacteriochlorin 

(observed by laser-desorption mass spectrometry) remaining in the crude reaction mixture even 

after prolonged reaction time.  The isolated yield of the desired B-REV-chPh was low (~4%), 

but sufficient material was obtained for spectroscopic studies (vide infra).  The photophysical 

and molecular-orbital characteristics of the entire set of molecules are now described. 
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Chart 2.  Bacteriochlorin–chalcones prepared previously.
25
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Scheme 2. Synthesis of a reverse bacteriochlorin–chalcone. 

Absorption spectra 

The absorption spectrum of a typical bacteriochlorin
21

 such as the 3,13-substituted free 

base bacteriochlorins studied previously (Chart 1) is normally comprised of four main features 

(Figure 1).  Progressing from longer to shorter wavelength these bands (and typical spectral 

ranges) are Qy (690770 nm), Qx (520580 nm), Bx (360400 nm), and By (340360 nm).  The 

Bx and By features are also known as the Soret bands.  Each of these main features is the origin 

transition [Qy(0,0), Qx(0,0), Bx(0,0), By(0,0)], for which hereafter the (0,0) designator will not be 

indicated for ease of presentation.  A much weaker (1,0) vibronic overtone feature can be found 

10001500 cm
1

 to high energy than the Qy and Qx origin transitions.  Features in the Soret 

region that represent the (1,0) vibronic overtones of Bx and By are often partially overlapped with 

the origin transitions.  Additional features may also contribute to the Soret-region absorption.  
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The Qy absorption band is intense, with an extinction coefficient on the order of 100,000 

M
1

cm
1

 .
15 

The absorption spectra of the 3,13-substituted bacteriochlorin–chalcones studied here 

have similar overall absorption characteristics as the simpler 3,13-substituted analogs, with 

notable differences in detail.  Spectra obtained in toluene are shown in Figures 13.  The spectra 

are similar to those measured in dimethylsulfoxide (DMSO).  Spectral characteristics are 

summarized in Table 1.  The Qy absorption band of each bacteriochlorin–chalcone bearing a 

single vinyl group shown in Chart 2 (i.e., except B-chCin) lies in the range 777800 nm, which 

represents a significant bathochromic shift from the positions (690771 nm) of the 3,13-

bacteriochlorins studied previously.  The latter positions include 713 nm for the unsubstituted 

parent B3 and 768 nm for the diacetylbacteriochlorin B8 (Figures 1 and 2A).  The Qy absorption 

bands of the bacteriochlorin–chalcones have a FWHM in the range 2234 nm (26 nm average) in 

toluene and (2638 nm) (32 nm average) in DMSO.  These Qy FWHM are greater than those of 

~20 previously studied 3,13-substituted bacteriochlorins, which have widths in the range 1225 

nm (19 nm average).
17

  The greater FWHM in DMSO versus toluene is paralleled by a 

corresponding decrease in Qy peak intensity (relative to the Soret maximum) in DMSO versus 

toluene.  The compensating effects on bandwidth and peak height indicate that the integrated 

intensity (oscillator strength) of the Qy band generally does not change appreciably with solvent.  

The Qx bands lie in the range 540550 nm (Figure 2B and 2C), which represents a bathochromic 

shift from the range of 489536 nm found
17

 for the simpler 3,13-disubstituted analogs.  The 

near-UV Soret absorption characteristics of the bacteriochlorin–chalcones also have notable 

differences compared to the simpler 3,13-substituted counterparts.  For example, the Soret-region 
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absorption both of B-chDma and B-chRet1 show overlapping features in the 330400 region to 

which the By and Bx origin transitions contribute, plus a substantial 

 

Figure 2. Absorption spectra in toluene at room temperature of reference bacteriochlorins (A) 

and bacteriochlorin–chalcones (B, C), normalized at the Qy band.  The insets show an expanded 

view of the Qy region.   
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Figure 3. Qy absorption (A) and fluorescence (B) spectra of the set of bacteriochlorin–chalcones 

in toluene at room temperature.   

 

 

tail that contains several partially resolved features that extends into the Qx region (Figure 2B).  

The general similarity of the near-UV spectra of B-chDma and B-chRet1, and the fact that the 

spectrum for B-chRet1 in this region is more complex than might be expected by the simple sum 

of the absorptions of a retinyl moiety plus an acetyl-containing reference bacteriochlorin (Figure 

2B) has implications regarding the nature of the excited states and transitions.  In particular, the 

macrocycle and the retinyl moiety (like the other chalcone substituents) are likely not 
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independent units but instead possess (higher energy) excited states of mixed parentage that give 

rise to the complex near-UV absorption spectrum.  This point will be explored further below in 

conjunction with the MO calculations.   

The Soret absorption of B-chM1, B-chPh, and B-REV-chPh do not show such a tailing 

absorption between the normal B and Qx regions, but show three features (near 330, 350 and 400 

nm).  Clearly one or more transitions in addition to the nominal By and Bx contribute to the near-

UV Soret absorption of the bacteriochlorin–chalcones, and the relative positions of all these 

bands depends on the complex.  Such new contributions likely involve excited states that result 

from electron promotions between orbitals that have electron density on the chalcone 

substituents (and macrocycle), perhaps with some net charge-transfer (CT) character.  Such 

possibilities (discussed below) make tenuous the assignment of the standard By and Bx 

tetrapyrrole transitions.  For this reason, the prominent wavelength maxima (or distinct shoulders) 

in the Soret region are listed in Table 1 as B1, B2 and B3.  

In the way of a specific comparison, Figures 2B and 3A and Table 1 reveal that the Qy 

band of the reverse chalcone B-REV-chPh is shifted 15 nm to longer wavelength than that of the 

normal counterpart B-chPh (800 versus 785 nm in both toluene and DMSO).  The bathochromic 

shift of the Qy band in the reverse versus normal bacteriochlorin–chalcone is accompanied by (i) 

an increase in intensity of the Qy band relative to the Soret absorption and (ii) a small (~5 nm) 

hypsochromic shift in the Qx band (Figure 2B).  Another specific comparison indicates that the 

incorporation of one additional double bond in the 3,13-chalcone substituents in B-chCin versus 

B-chPh results in only a 2 nm bathochromic shift in the Qy absorption band (787 versus 785 nm; 

Table 1).  
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Table 1.  Spectral properties of bacteriochlorins.
a
 

Cmpd 

 

Solvent 

  

B1  

abs  

(nm) 

B2  

abs  

(nm) 

B3 

abs  

(nm) 

Qx 

 abs  

(nm) 

Qy 

 abs  

(nm) 

Qy   

abs 

FWHM  

(nm) 

IQy/

IBm

ax 

Qy 

 em  

(nm) 

Qy  

em 

FWHM  

(nm) 

B3
b
 Toluene 340 365  489 713 12 0.8

49 

716 16 

B8
b
 Toluene 360 389  533 768 19 1.1

9 

771 20 

B-chRsc
c
 MeOH 346 388 325 

sh 

544 781 20 1.6

4 

795 27 

B-chM1 Toluene 350 391 330 

sh 

550 786 25 1.6

7 

792 26 

 DSMO 350 391 330 

sh 

546 787 31 1.3

0 

798 33 

B-chM2 Toluene 350 363 380 

sh 

542 777 22 1.9

0 

781 23 

 DMSO 350 365 380 

sh 

538 778 28 1.4

3 

787 29 

B-chDma Toluene 355 391  547 782 29 1.3

0 

787 28 

B-chPh Toluene 350 388 330 

sh 

549 785 26 1.5

9 

791 25 

 DMSO 349 389 330 

sh 

546 785 31 1.3

8 

798 33 

B-chCin Toluene 354 399 336 

sh 

550 787 26 1.4

8 

794 26 

 DMSO 353 400 336 

sh 

548 787 32 1.1

5 

798 34 

B-REV-chPh Toluene 350 394 332 542 800 26 2.1

8 

808 28 

 DMSO 353 396 333 542 800 33 1.5

6 

813 34 

B-chRet1 Toluene 360 381 420 545 780 23 1.7

5 

786 24 

 DMSO 361 378 419 543 780 29 1.5

0 

790 32 

B-chRet2 Toluene 352 378 420 555 792 34 0.5

1 

796 30 

 DMSO 351 379 421 551 790 38 0.4

0 

802 38 

a
 Data acquired at room temperature.  “sh” = shoulder.  

b
 From ref 17.  

c
 From ref 43. 
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Fluorescence spectra 

The fluorescence spectrum of each bacteriochlorin–chalcone is dominated by the Qy 

origin band.  For most compounds, the Qy fluorescence maximum is 4–7 nm to longer 

wavelength in DMSO than in toluene, although the Qy absorption maximum for each complex is 

the same to within 1 nm in the two media.  Relative to the Qy absorption maximum (Figure 3A), 

the Qy emission feature (Figure 3B) lies on the average 6 nm to longer wavelength (90 cm
1

 to 

lower energy) in toluene and 10 nm to longer wavelength (160 cm
1

 to lower energy) in DMSO.  

The Qy fluorescence bands have a FWHM in the range 2330 nm (26 nm average) in toluene and 

2738 nm (33 nm average) in DMSO, similar to the Qy absorption band (Table 1).  The FWHM 

of fluorescence band of the bacteriochlorin–chalcones is modestly greater than the value of 21 

nm for ~20 simpler (non-chalcone) 3,13-substituted bacteriochlorins studied previously
17

, which 

have the Qy emission feature at shorter wavelength.  

Fluorescence quantum yields 

The fluorescence quantum yields (f) of several bacteriochlorin–chalcones (B-chM1, B-

chM2, B-chDma, B-chPh and B-chCin) and reverse chalcone B-REV-chPh are in the range 

0.07–0.11 in toluene and DMSO, with an average value of 0.09 (Table 2).  These values are 

smaller than the average f of 0.15 reported for the set of ~20 bacteriochlorins (in toluene) 

bearing simple 3,13 substituents (e.g., acetyl, formyl, ester, phenyl).
17

 The f values for 

bacteriochlorin–chalcones B-chM1, B-chM2, and B-chDma are effectively the same in DMSO 

versus toluene.  Bacteriochlorin B-chPh indicates a ~30% reduction in f in DMSO versus 

toluene (0.08 versus 0.11).  Similarly, cinnamyl derivative B-chCin (one additional double bond 

in the chalcone substituents) has an apparent ~20% reduction in f in DMSO versus toluene 
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(0.09 versus 0.11).  A more prominent (about two-fold) reduction in f in DMSO versus toluene 

(0.05 versus 0.11) is observed for 13-retinyl-containing B-chRet1.  

The fluorescence spectra shown in Figure 3B were generally obtained using at least three 

different excitation wavelengths across the Soret region (345435 nm) to encompass the main 

spectral features and ensure that the same emission shape was obtained for each bacteriochlorins 

as was the case.  The fluorescence yields obtained using the different excitation wavelengths 

were generally the same to within the experimental uncertainty.  Because the different absorption 

features may arise from excited states that have variations in macrocycle-substituent character, 

these observation suggest that, independent of parentage, the energy flows in high yield to the 

lowest singlet excited state of the bacteriochlorin macrocycle, from which fluorescence occurs.  

This finding includes the retinyl-containing bacteriochlorin B-chRet1, which has the most 

extended chalcone substituent. For the latter complex, the f values in both toluene and DMSO 

are the same using Qx and Soret excitation.  

Singlet excited-state decay characteristics 

The singlet excited-state lifetimes (S) were measured by fluorescence decay (and are 

consistent with transient-absorption time profiles).  The values for several bacteriochlorin–

chalcones (B-chM1, B-chM2, B-chDma, and B-chPh) and reverse chalcone B-REV-chPh are 

in the range 2.22.6 ns in toluene and DMSO, with an average value of 2.5 ns (Table 2).  These 

values are shorter than the average S of 3.9 ns reported for the set of ~20 simpler (non-chalcone) 

3,13-substituted bacteriochlorins.
17

 For several bacteriochlorin–chalcones (B-chM1, B-chM2, B-

chDma, B-chPh and B-chCin) and reverse chalcone B-REV-chPh, the S value is ~10% smaller 

in DMSO versus toluene (e.g., 2.3 ns in DMSO versus 2.5 ns in toluene for B-chPh).  The 
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reduction in excited-state lifetime in a polar versus nonpolar medium is even more pronounced 

for the mono-retinyl–bacteriochlorin B-chRet1 (1.5 ns in DMSO versus 2.6 ns in toluene); the 

approximately two-fold reduction in S parallels the reduction in f noted above. 

The enhanced excited-state decay of B-chRet1 in DMSO versus toluene was explored 

further using the transient absorption studies using a ~100 fs excitation pulse (780 nm) and 

probing to 7.5 ns after the flash.  Figure 4 shows that in both toluene and DMSO there is a 

smooth decay of the excited singlet state (1 ps spectrum) to form the excited triplet state (7 ns 

spectrum) along with ground-state recovery.  There is no clear indication of any intermediates 

such as CT excited states along competitive decay of the singlet excited state to the ground state 

in DMSO.  Nonetheless such states could contribute to the shorter S in the polar solvent without 

being sufficiently populated to easily observe or could contribute directly to the singlet excited 

state by mixing with the normal (,*) electronic configurations of the bacteriochlorin 

macrocycle.   
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Table 2.  Photophysical properties of bacteriochlorins.
a
 

Cmpd Solvent 
S

 

(ns) 

T
 

(µs) 
f isc ic

 
kf
1 

(ns) 

kisc
1 

(ns) 

kic
1

 

(ns) 

B3
b
 toluene 4.0 169 0.14 0.62 0.24 29 6.5 17 

B8
b
 toluene 2.9 55 0.11 0.49 0.40 26 5.9 7.3 

B-chRsc
c
 MeOH 3.4 78 0.02 0.66 0.32 170 5.2 10.6 

B-chM1 toluene 2.4 54 0.08 0.44 0.48 30 5.5 5.0 

 DSMO 2.2  0.07 0.42 0.51 31 5.2 4.3 

B-chM2 toluene 2.6 72 0.08 0.60 0.32 33 4.3 8.1 

 DMSO 2.6  0.07   38   

B-chDma toluene 2.2 64 0.10 0.50 0.40 22 4.4 5.5 

B-chPh toluene 2.5 58 0.11 0.49 0.40 23 5.1 6.3 

 DMSO 2.3  0.08 0.45 0.47 29 5.1 4.9 

B-chCin toluene 2.4  0.10 0.41 0.49 24 5.9 4.9 

 DMSO 2.2  0.09 0.37 0.54 24 5.9 4.1 

B-REV-chPh toluene 2.4 51 0.08 0.44 0.48 30 5.5 5.0 

 DMSO 2.2  0.08      

B-chRet1 toluene 2.6 65 0.11 0.48 0.41 24 5.4 6.3 

 DMSO 1.5  0.05 0.36 0.59 30 4.2 2.5 

a
Data acquired at room temperature in Ar-purged solutions.  The experimental error is ± 0.01 

for the f values, ± 0.07 for isc values, and ± 0.1 ns for S values.  Triplet lifetimes were 

determined in tetrahydrofuran or 2-methyltetrahydrofuran.  
b
From ref 17.  

c
From ref 43.   
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Figure 4. Transient absorption difference spectra obtained following excitation of 

bacteriochlorin B-chRet1 in toluene (A) and DMSO (B) with a 120-fs excitation flash at 780 nm.  

 

Triplet excited-state quantum yields and lifetimes 

The yield of intersystem crossing from the lowest singlet to triplet excited state (isc), 

also commonly called the triplet yield (T), of each of several bacteriochlorin–chalcones (B-

chM1, B-chM2, B-chDma, B-chPh and B-chCin) and reverse chalcone B-REV-chPh in 
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toluene is in the range 0.410.62 with average value of 0.48.  This value is slightly lower than 

the average value of 0.53 for ~20 analogs bearing simple 3,13-substituents studied in toluene.
17

 

A subgroup of the same bacteriochlorin–chalcones (B-chM1, B-chPh and B-chCin) in DMSO 

have isc values in the range 0.37 to 0.42 with an average value of 0.41.  In particular, although 

within experimental uncertainty, there is consistently a ~10% lower intersystem crossing yield 

for the same bacteriochlorin–chalcones in DMSO versus toluene (e.g., 0.45 vs 0.49 for B-chPh 

and 0.37 versus 0.41 for B-chCin).  The effect is greater for retinyl–bacteriochlorin B-chRet1, 

wherein isc drops from 0.48 in toluene to 0.36 in DMSO.  These solvent effects on isc 

generally parallel reductions in S values and therefore derive from the solvent dependence not of 

the intersystem crossing rate constant but of that for internal conversion (vide infra).  

The lifetime of the lowest triplet excited state of select bacteriochlorin–chalcones (in 

deoxygenated THF or 2-MeTHF) was measured at room temperature using transient absorption 

spectroscopy. The T values are in the range 51–78 s with an average of 61 s.  These values 

are somewhat lower than those results found previously for a large set of bacteriochlorins 

bearing simple 3,13-substituents, in which the T values were found to be in the range 46–190 s 

with an average of 90 s.  Shorter triplet lifetimes are expected as the energy of the lowest triplet 

excited state moves to lower energy (in parallel with the energy of the lowest singlet excited state; 

Table 1).  This expectation derives from the energy gap law for nonradiative decay.
43

 

Singlet excited-state decay rate constants 

The observables S, f, and isc (Table 2) for decay of the lowest-energy singlet excited 

state (S1) are connected to the rate constants for S1S0 spontaneous fluorescence (kf), S1S0 

internal conversion (kic), and S1T1 intersystem crossing (kisc) via Eqs. (1) to (3).   
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 S = (kf + kic + kisc)
1 

(1) 

 f = kf / (kf + kic + kisc) (2) 

 isc = kisc / ( kf + kic + kisc) (3) 

The internal conversion yield can be calculated from Eq. (4). 

 ic = 1 - f - isc  (4) 

The radiative, intersystem-crossing, and internal-conversion rate constants can be calculated 

from the above quantities via Eq. (5), where i = f, isc or ic.  

 ki = i /S  (5) 

The ic, kf, kisc, and kic values obtained using Eqs. (3) to (5), along with the measured values 

of S, f, isc for the bacteriochlorins are collected in Table 2. 

Molecular-orbital characteristics 

 The energies and electron-density distributions of the frontier MOs of the 

bacteriochlorin–chalcones (standard, reverse, extended) and reference bacteriochlorins 

[unsubstituted parent (B3) and 3,13-diacetyl complex (B8)] were obtained from density 

functional theory (DFT) calculations.  Figures 58 show the electron-density maps and energies 

of the MOs spanning HOMO-5 to LUMO+4.  The MO energies for all the bacteriochlorins are 

collected in Table 3 to facilitate comparisons. 

 Time-dependent DFT (TDDFT) calculations were also performed.  These calculations (at 

the B3LYP/6-31G* level) were not used as predictors of the exact energies/wavelengths or 

oscillator strengths of the features spanning the near-UV to NIR absorption spectrum of the 

bacteriochlorins.  In particular, the calculations underestimate the energies of the electronic states 

responsible for the main transitions by amounts typically in the range 0.20.6 eV.  In addition, 

while the relative oscillator strengths of the Soret (B), Qx and Qy features are predicted 
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reasonably well for some of the bacteriochlorins, this is not true in all cases including the 

structurally least complex parent bacteriochlorin (B3).  For this molecule, the predicted Qy/B 

intensity ratio is off ~10-fold.
 

Owing to the above considerations, the TDDFT calculations were utilized qualitatively 

for aiding in the understanding of the likely one-electron promotions that comprise the Qy 

excited state, the Qx excited state, and the higher-energy excited states that give rise to the more 

complex Soret-region absorption of the bacteriochlorin–chalcones compared with the simpler 

bacteriochlorins.  The contributors to the excited-states that are likely responsible for near-UV 

(Soret, B) and NIR (Qy) absorption of the bacteriochlorin–chalcones are generally apparent via 

inspection of the MOs that are in energy proximity to the standard frontier MOs of simple 

bacteriochlorins (the MO set that underlies the four-orbital model described below).  The 

TDDFT calculations generally identify the same contributors to the excited-state compositions.  

Together the MO characteristics and TDDFT predictions afford a self-consistent assessment of 

the physical basis for key differences and similarities in the optical properties and some 

photophysical characteristics of the bacteriochlorin–chalcones versus analogs that bear simple 

substituents at the same 3,13-positions of the macrocycle.  
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Cmpd B3 B8 B-chPh B-chM1 B-chM2 B-chRsc 

Structure 

 
 

 
 

  

LUMO+4 

  
  

 
 

 +1.57 +0.63 0.32 +0.67 0.18 0.25 

LUMO+3 

  
  

 
 

 +0.96 0.40 1.05 0.68 0.98 1.03 
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Figure 5. Characteristics of the five lowest unoccupied molecular orbitals of bacteriochlorins.  The DFT calculations for B-chM1 and 

B-chM2 used –OCH3 rather than –OCH2OCH3 (OMOM).  The orbitals with energies indicated in red have the closest electron-density 

distributions to the normal macrocycle LUMO and LUMO+1 (see B3 and B8). 

  

LUMO+2 

 
 

  
 

 

 +0.65 1.06 1.74 1.20 1.65 1.73 

LUMO+1 

  
  

  

 0.93 1.31 1.90 1.78 1.80 1.89 

LUMO 

  
  

  

 2.20 2.78 2.75 2.73 2.68 2.74 
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Cmpd B3 B8 B-chPh B-chM1 B-chM2 B-chRsc 

Structure 

 
 

 
 

  

HOMO 

  

 
 

  

 4.46 4.83  4.73 4.74 4.67 4.71 

HOMO-1 

  

 
 

  

 4.99 5.26 5.16 5.18 5.10 5.15 

HOMO-2 

 
 

 

 

  

 6.67 6.64 6.25 5.88 5.84 6.02 
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HOMO-3 

 
 

 
 

  

 6.85 6.64 6.25 6.09 5.84 6.02 

HOMO-4 

 
 

 
 

  

 6.87 6.89 6.58 6.57 6.04 6.16 

HOMO-5 

 
 

 
 

  

 7.04 7.21 6.58 6.57 6.05 6.17 

Figure 6. Characteristics of the five highest occupied molecular orbitals of bacteriochlorins.  The DFT calculations for B-chM1 and 

B-chM2 used –OCH3 rather than –OCH2OCH3 (OMOM).  The orbitals with energies indicated in red have the closest electron-density 

distributions to the normal macrocycle HOMO-1 and HOMO (see B3 and B8).   
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Cmpd B-chDma B-chCin B-REV-chPh B-chRet1 B-chRet2 

Structure 

 
 

 
  

LUMO+4 

     

 +0.01 0.60 0.41 0.57 0.78 

LUMO+3 

   
  

 0.77 1.08 1.20 1.05 1.05 



 

185 

 

LUMO+2 

   
  

 1.35 1.91 1.65 1.19 1.96 

LUMO+1 

    
 

 1.47 2.08 1.89 2.21 2.14 

LUMO 

 
   

 

 2.44 2.71 2.90 2.69 2.64 

Figure 7.  Characteristics of the five lowest unoccupied molecular orbitals of bacteriochlorins.  The orbitals with energies indicated in 

red have the closest electron-density distributions to the normal macrocycle LUMO and LUMO+1 (see B3 and B8 of Figure 5). 
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Cmpd B-chDma B-chCin B-REV-chPh B-chRet1 B-chRet2 

Structure 

 
 

 
  

HOMO 

   
  

 4.46 4.67 4.83 4.68 4.59 

HOMO-1 

 
 

 
  

 4.89 5.11 5.33 4.92 5.01 

HOMO-2 

   
 

 

 5.10 5.81 6.33 5.13 5.19 
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HOMO-3 

   
 

 

 5.13 5.82 6.43 6.06 5.21 

HOMO-4 

   
 

 

 6.20 6.50 6.58 6.44 6.25 

HOMO-5 

   
 

 

 6.21 6.50 6.58 6.51 6.26 

Figure 8. Characteristics of the five highest occupied molecular orbitals of bacteriochlorins.  The orbitals with energies indicated in 

red have the closest electron-density distributions to the normal macrocycle HOMO-1 and HOMO (see B3 and B8 of Figure 6). 
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Table 3. Molecular-orbital energies of bacteriochlorins.
a
 

Cmpd 
HOMO

-5 

HOMO

-4 

HOMO

-3 

HOMO

-2 

HOMO

-1 

HOMO LUMO LUMO

+1 

LUMO

+2 

LUMO

+3 

LUMO

+4 
HL 

B3 7.04 6.87 6.85 6.67 4.99 4.46 2.20 0.93 +0.65 +0.96 +1.57 2.26 

B8 7.21 6.89 6.64 6.64 5.26 4.83 2.78 1.31 1.06 0.40 +0.63 2.05 

B-chRsc 6.17 6.16 6.02 6.02 5.15 4.71 2.74 1.89 1.73 1.03 0.25 1.97 

B-chM1 6.57 6.57 6.09 5.88 5.18 4.74 2.73 1.78 1.20 0.68 +0.67 2.01 

B-chM2 6.05 6.04 5.84 5.84 5.10 4.67 2.68 1.80 1.65 0.98 0.18 1.99 

B-chDma 6.21 6.20 5.13 5.10 4.89 4.46 2.44 1.47 1.35 0.77 +0.01 2.02 

B-chPh 6.58 6.58 6.25 6.25 5.16 4.73 2.75 1.90 1.74 1.05 0.32 1.98 

B-chCin 6.50 6.50 5.82 5.81 5.11 4.67 2.71 2.08 1.91 1.08 0.60 1.96 

B-REV-chPh 6.58 6.58 6.43 6.33 5.33 4.83 2.90 1.89 1.65 1.20 0.41 1.93 

B-chRet1 6.51 6.44 6.06 5.13 4.92 4.68 2.69 2.21 1.19 1.05 0.57 1.99 

B-chRet2 6.26 6.25 5.21 5.19 5.01 4.59 2.64 2.14 1.96 1.05 0.78 1.95 

a
DFT calculations utilized the structures shown in Charts 1 and 2 except for the following: For B-chM1 and B-chM2, –OCH3 was 

used rather than –OCH2OCH3 (OMOM) as the terminal group on the chalcone substituent.  The orbitals with energies indicated in 

bold italics have the closest electron-density distributions to the normal macrocycle frontier MOs, which in the four-orbital model are 

HOMO-1, HOMO, LUMO, and LUMO+1 (see B3 and B8).  The last column (HL) lists the energy gap between the HOMO and 

LUMO. 
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Discussion 

In the following sections, we first describe the context and rationale for the studies 

described herein.  We then discuss the singlet excited-state properties of the diverse 

bacteriochlorins.  The properties are then interpreted with insights gained from molecular-orbital 

calculations.  

Overview 

Our objectives in bacteriochlorin chemistry have been multifold.  One goal is to prepare 

diverse substituted bacteriochlorins and learn how the nature and pattern of substituents alters the 

spectral and photophysical properties of these NIR absorbing tetrapyrrole chromophores.
14,15,17–

20,24,25
 The knowledge gained in so doing should provide insight into the properties of native 

photosynthetic chromophores, but cannot readily be achieved with the native 

bacteriochlorophylls given their nearly full complement of substituents.  A second and somewhat 

related goal is to learn how to tune the long-wavelength absorption band across the NIR region.  

The availability of a palette of such wavelength-tunable bacteriochlorins could be used in diverse 

studies and applications in solar-energy conversion and in photomedicine.  A third goal is to 

develop a building block toolkit for rapid assembly of multipigment architectures that contain 

diverse bacteriochlorins.  In contrast to the almost bewildering assortment of arrays that contain 

porphyrins 
44,45

,  relatively few (<20) bacteriochlorin-containing arrays have been prepared. 
46

  

 The family of bacteriochlorins examined herein, which contain chalcones, extended 

chalcones and reverse chalcones figures prominently in each of the aforementioned objectives.  

The possible roles in tuning spectral properties are apparent; the possible role in a modular 

building block strategy resides in the fact that all such compounds can be formed via chemistry 
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that (1) employs basic conditions (to which the bacteriochlorins are stable), and (2) complements 

the most prevalent methods employed at present, which typically rely on palladium-mediated 

coupling reactions.  Although the precursor bacteriochlorins B8 and B9 here were prepared using 

palladium-mediated reactions, chalcone chemistry may provide general advantages in various 

approaches to the preparation of tandem conjugates or multipigment arrays.  The synthesis of 

normal chalcones proved substantially more efficient than that of the single reverse chalcone 

prepared herein.  The condensation approach may be most convenient for use with polyenals 

such as retinal, which is available in multigram quantities yet can be sensitive to handle.
47

 Other 

approaches to synthetic polyenes of the retinoid or carotenoid family can entail elaborate 

synthesis.
48

 
 

 To our knowledge, only two other types of tetrapyrrole–chalcones have been prepared.  

One type consists of mono-chalcone analogs of B-chPh, B-chCin, and B-chRet2 wherein a 

synthetic chlorin is employed in lieu of the bacteriochlorin.
25

 A second type consists of meso-

tetraarylporphyrins bearing one or four chalcone moieties appended via alkoxy or ester linkages 

to the para-positions of the meso-aryl groups.
49

 The porphyrin–chalcones have been examined 

for cellular uptake, cytotoxicity and phototoxicity.  A family of coumarin–chalcones also has 

been prepared and characterized spectroscopically 
50

, and also studied by computation.
51

 

 The inherent color yet relatively small size of chalcones has prompted a large number of 

synthetic
35,36

, photophysical
52–58

, and computational
33,59–61

 studies, predominantly of “push-pull” 

chalcones.  As one relatively recent example, Rurack et al. described the synthesis and 

photophysical characterization of a family of push-pull chalcones of the general form shown in 

Chart 3.
53

  Typical electron-donating “push” substituents included p-N,N-dimethylaniline 

whereas electron-withdrawing “pull” units included benzothiazole.  Unlike the parent chalcone 
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(benzylideneacetophenone, A = D = phenyl), which absorbs broadly in the UV (max = 312 nm,  

= 26,700 M
1

cm
1

) in 95% ethanol
62

, the push-pull chalcones exhibit absorption in the visible 

region ( ~20,000 M
1

cm
1

) and, in polar solvents, a strong Stokes’-shifted emission in the NIR 

region.
53

  The s-cis configuration of the enone moiety (as displayed in each diagram herein) of 

the chalcones is believed to be more stable than other configurations.
33

  The bacteriochlorin–

chalcones examined herein include those with the bacteriochlorin attached directly to the 

carbonyl moiety (A site, Chart 3) and those attached to the alkene unit (D site) of the chalcone 

framework.  

 

 

Chart 3.  Push-pull chalcone architecture. 

 

 A second variation of the chalcone unit concerns extended conjugation of the alkenyl 

system.  Thus, the extended chalcone in B-chCin is a conjugated dienone.  A benchmark for this 

auxochrome – (E,E)-cinnamylideneacetophenone (derived from condensation of cinnamaldehyde 

and acetophenone) – is yellow and absorbs broadly with max = 342 nm ( = 39,000 M
-1

cm
-1

) in 

methanol.
63,64

  The extended chalcones B-chRet1 and B-chRet2 are derived by reaction of the 

visual chromophore retinal with the bacteriochlorin containing an acetyl group.  A non-

bacteriochlorin analog (Ret-Ind), derived from retinal and indan-1,3-dione, is shown in Chart 4. 

65
  Ret-Ind absorbs strongly in the region near 500 nm and exhibits rapid (multistep depending 
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on excitation energy/wavelength) excited-state decay to the ground state in < 50 ps with an 

overall time constant that depends on solvent polarity. 
66

   

 

Chart 4.  Benchmark extended chalcones. 

 

Pathways and rate constants for decay of the singlet excited-state. 

The measured quantities S, f, and isc for decay of the lowest-energy singlet excited 

state were used to obtain values for ic and the rate constants for the three decay pathways of the 

lowest singlet excited state (kf, kisc and kic), as described in the Results section.  The values for 

all of these fundamental photophysical properties are collected in Table 2.  Here we discuss the 

excited-state decay rate constants for the bacteriochlorins bearing different types of substituents.  

 The S1  S0 radiative rate constants (kf) for several bacteriochlorin–chalcones (B-

chM1, B-chM2, B-chDma, B-chPh, B-chCin, B-chRet1) and reverse chalcone B-REV-

chPh are in the range (24 ns)
1

 to (38 ns)
1

.  The average value of (26 ns)
1

 for these 

compounds in toluene is effectively the same as the value of (28 ns)
1

 obtained in DMSO.  

These values are comparable to the average value of (27 ns)
1

 found previously for 

bacteriochlorins bearing simple 3,13-substituents.
17
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The S1  T1 intersystem-crossing rate constants for several bacteriochlorin–chalcones 

(B-chM1, B-chM2, B-chDma, B-chPh, B-chCin, and B-chRet1) and reverse chalcone B-REV-

chPh are in the range (4.2 ns)
-1

 to (5.9 ns)
-1

.  There is no systematic difference in the values for a 

given bacteriochlorin in toluene versus DMSO, except for retinyl–bacteriochlorin B-chRet1 

(Table 2) for which the kisc value appears to modestly increase from (5.4 ns)
-1

 in toluene to (4.2 

ns)
-1

 in DMSO.  The latter effect can be understood if the lowest singlet excited state develops 

(more) macrocycle  substituent CT character in the polar versus nonpolar solvent as a result of 

stabilization of contributing CT excited-state electronic configurations.  A modest shift of 

electron density from the substituent to the macrocycle in the excited state could result in a 

modest increase in spin-orbit coupling, which underlies the intersystem-crossing process.  In this 

regard, the average kisc value for the 3,13-chalcone-substituted and retinyl–bacteriochlorins of (5 

ns)
1

 is modestly greater than the value of (8 ns)
1

 found previously for the 3,13-substituted 

bacteriochlorins bearing simple substituents (e.g., acetyl, formyl, phenyl).
17

 The possible 

contribution of such CT character to the excited states is described below in conjunction with the 

molecular-orbital characteristics. 

The third pathway for decay of the lowest singlet excited state is nonradiative internal 

conversion to the ground state.  The rate constants for S1  S0 internal conversion (kic) for 

several bacteriochlorin–chalcones (B-chM1, B-chM2, B-chDma, B-chPh, B-chCin, and B-

chRet1) and reverse chalcone B-REV-chPh are in the range (2.4 ns)
-1

 to (6.3 ns)
-1

.  The average 

value for these compounds in toluene is (5.9 ns)
-1

 and that in DMSO is (3.6 ns)
-1

.  The difference 

in average values reflects a systematic reduction in kic for the compounds in DMSO versus 

toluene.  These differences can be seen in the following comparisons (Table 2): (4.3 ns)
-1

 versus 

(5.0 ns)
-1

 for B-chM1, (4.9 ns)
-1

 versus (6.3 ns)
-1

 for B-chPh, (4.1 ns)
-1

 versus (4.9 ns)
-1

 for B-
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chCin, (2.4 ns)
-1

 versus (5.0 ns)
-1

 for B-REV-chPh, and (2.5 ns)
-1

 versus (6.3 ns)
-1

 for B-chRet1.  

The solvent effect is greatest for the latter compound, which is the retinyl-substituted 

bacteriochlorin.  Such effects also may be connected with an increase in excited-state CT 

character in the polar versus nonpolar solvent associated with stabilization of CT configurations 

and greater mixing with macrocycle (,*) configurations in giving rise to the wavefunction for 

the lowest singlet excited state.  Such CT configurations may enhance nonradiative deactivation 

by a number of mechanisms.  Such mechanisms include solvent-induced displacement of the 

excited- versus ground-state potential-energy surfaces and enhanced Franck-Condon factors 

involving the internal molecular coordinates. 
43

  Such involvement of the chalcone or retinyl 

moiety in the lowest singlet excited state could additionally enhance nonradiative decay via 

isomerization or other motions of the substituent that alter interactions with the bacteriochlorin 

macrocycle and thus the excited-state electron-density distribution.  

Molecular orbital characteristics and electronic structure 

Gouterman’s four-orbital model
67–69

 is a useful framework for understanding the effects 

of substituents on the optical properties of tetrapyrrole chromophores.  We have applied this 

model to synthetic chlorins
16,70,71

 and bacteriochlorins
17,24,72

 bearing simple substituents (e.g., 

acetyl, formyl, vinyl, ester, ethynyl, phenyl) in various patterns about the periphery of the 

macrocycles.  All that is required to implement this model are the energies of the four frontier 

MOs (HOMO-1, HOMO, LUMO, LUMO+1), which can be obtained from DFT calculations.  

The four-orbital model does not give absolute energies or oscillator strengths of the absorption 

features, but does well in assessing trends in the relative positions and relative intensities of the 

main optical features (Qy, Qx, Bx, By) as a function of substituent types and macrocycle sites.   
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Here, we use the four-orbital framework to provide a physical basis for understanding the 

manner in which the chalcone (normal, reverse, extended) substituents affect the absorption 

spectra and photophysical properties of the bacterochlorins.  As will be seen, these substituents 

require the consideration of additional MOs beyond the normal four-orbital set.  These orbitals 

may place considerable electron density on the substituents, in addition to the macrocycle, and 

the excited states resulting from electron promotion may involve shifting of electron density 

between the macrocycle and the substituents.   

Within the four-orbital model, the By and Qy excited states are comprised of linear 

combinations of the (y-polarized) electronic configurations that result from HOMO  LUMO 

and HOMO-1  LUMO+1 one-electron promotions.  The By state reflects the symmetric 

combination and the Qy state the antisymmetric combination of the configurations.  For 

porphyrins, the By and Bx states have roughly 50/50 contributions of the HOMO  LUMO and 

HOMO-1  LUMO+1 configurations.  The respective constructive versus destructive 

interference of the two associated transition dipole moments (which have comparable strength) 

results in a strong By band in the near-UV (390430 nm) region a very weak Qy band in the 

visible (500600 nm) region.  The reduction of one pyrrole ring in chlorins and a second pyrrole 

ring in bacteriochlorins progressively and predominantly increases the energy of one of the two 

filled orbitals (the original porphyrin HOMO or HOMO-1) and the energy of one of the two 

unfilled orbitals (the original porphyrin LUMO or LUMO+1).  Consequently, for 

bacteriochlorins, the Qy state has primarily (7090% based on TDDFT calculations) the 

character of the HOMO  LUMO configuration (and 1030% HOMO-1  LUMO+1) and vice 

versa for By.  In parallel, the Qy band moves to lower energy and gains intensity at the expense of 

the By band.   
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The excited states Bx and Qx are similarly derived (within the four-orbital model) from 

configurations resulting from the (x-polarized) one-electron promotions HOMO  LUMO+1 

and HOMO-1  LUMO.  Again, for porphyrins the Bx and Qx states have roughly equal 

contributions of the two electronic configurations, resulting in strong Bx and weak Qx bands that 

are in the same spectral region as (and may substantially overlap) the Qy and Bx bands depending 

on the porphyrin and its metalation state.  However, unlike the y-polarized states, upon 

progressing to chlorin and then to bacteriochlorin the energies (spectral positions) and intensities 

of the Bx and Qx bands are expected to be far less affected (by pyrrole-ring reduction).  

Consequently in bacteriochlorins the large spectral splitting of the By and Qy (compared to 

chlorins or porphyrins) generally causes these two bands to spectrally sandwich the less 

perturbed Bx and Qx pair.  Thus, the spectrum of a typical bacteriochlorin has four main features 

that in progressing from higher to lower energy are By, Bx, Qx and Qy, with the Qy band in the 

NIR spectral region (Figure 1).   

Description of the effects of the incorporation of simple 3,13-acetyl groups within the 

four-orbital approach will serve as a backdrop for examining the effects of 3,13-chalcone groups.  

The HOMO-1, HOMO, LUMO and LUMO+1 orbitals of the unsubstituted parent B3 are shifted 

by 0.270.58 eV to more negative values upon incorporation of 3,13-acetyl groups in B8 

(Figures 5 and 6 and Table 3).  Electron density resides on the acetyl groups to a different degree 

depending on the orbital for B8, but the distribution on the macrocycle in each orbital is quite 

similar to that in the parent B3.  For B8 the least electron density resides on the acetyl groups in 

HOMO-1 and the most in LUMO.  The LUMO is stabilized the most of the four frontier MOs by 

addition of the 3,13-acetyl groups, resulting in a diminution of the HOMO  LUMO energy gap 

(Table 3) and a bathochromic shift in the Qy band (Table 1 and Figure 9).  The Qy spectral shift 
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occurs because within the four-orbital model the HOMO  LUMO is the major contributor to 

the Qy excited state (with a lesser contribution from HOMO-1  LUMO+1).  The TDDFT 

calculations support this picture, in which the Qy state is calculated to be comprised primarily 

(75%) HOMO  LUMO and most of the remaining being HOMO-1  LUMO+1 for both B3 

and B8.  Similarly, TDDFT indicates that the By excited state has more HOMO-1  LUMO+1 

than HOMO  LUMO character (consistent with the four-orbital model) along with other 

configurations that involve lower energy filled orbitals and/or higher energy unoccupied orbitals.  

These latter orbitals for B8 have electron density on the acetyl groups (and the macrocycle).  For 

B3 and B8, the TDDFT calculations also indicate (consistent with the four-orbital model) that 

the Qx state has >90% total contribution from HOMO-1  LUMO and HOMO  LUMO+1.  

The Bx state also has substantial contribution of the same two contributions and for B8 additional 

contributions of one-electron promotions between orbitals that have electron density on both the 

macrocycle and the acetyl groups.  The result is that these two reference compounds have 

prototypical bacteriochlorin absorption spectra (Figure 1 and Table 1). 

  



 

 198 

 

 

Figure 9.  HOMO  LUMO energy gap versus the absorption energy of the Qy origin band.  

Data are shown for compounds both in toluene and DMSO where spectra were measured in the 

two solvents (Table 1).  The solid line is a fit to all the data. 

 

The electron-density maps (Figures 58) for the normal bacteriochlorin–chalcones (B-

chPh, B-chM1, B-chM2, B-chRsc, B-chDMA), reverse chalcone (B-REV-chPh) and modestly 

extended chalcone (B-chCin) generally show similar characteristics to each other.  Similarities 

and significant differences exist for the greatly extended retinyl-containing bacteriochlorin–

chalcones (B-chRet1 and B-chRet2).   The key points are as follows:   

1. The HOMO and LUMO orbitals of the various bacteriochlorin–chalcones retain 

overall similar electron-density distributions on the macrocycle as in the reference compounds 

(B3 and B8), but with electron density now residing on the substituents, much more so for the 

LUMO than the HOMO.  The HOMO-1 orbitals of the bacteriochlorin–chalcones place little 

electron density on the substituents, just like reference bacteriochlorins B3 and B8.  Such 

considerations are relevant to potential shifting of electron density between macrocycle and 
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substituent as a result of one-electron promotions from HOMO or HOMO-1 to unoccupied MOs 

that have substantial chalcone-substituent character. 

2. The LUMO is generally stabilized by the substituents more than the HOMO, resulting 

in a decrease in the HOMO  LUMO gap to an extent that depends on the bacteriochlorin (Table 

3).  The HOMO  LUMO gap for bacteriochlorins bearing 3,13-chalcone groups (like simple 

substituents) tracks the position of the Qy absorption band (Figure 9).  Again, this correlation 

follows because the Qy state is expected to contain substantial HOMO  LUMO character 

(within the four-orbital model).  Indeed, the TDDFT calculations indicate the Qy state for most of 

the bacteriochlorin–chalcones has predominantly (75%) HOMO  LUMO character.  

3. The unoccupied orbitals LUMO+1 to LUMO+4 of the bacteriochlorin–chalcones are 

basically combinations of the normal macrocycle LUMO+1 (for B3 or B8) and orbitals that have 

electron density spread across the chalcone substituent.  Of this set (LUMO+1 to LUMO+4), the 

MO that has the most electron density on the macrocycle and the least on the substituents (and 

thus is closest in characteristics to the normal macrocycle LUMO+1) is now LUMO+3.  The 

exception is B-chM1, for which this orbital is LUMO+2.  Accordingly, the Soret-region 

absorption spectrum for the bacteriochlorin–chalcones is expected to be more complex than 

normal, given that for simple bacteriochlorins the By transition (typically the highest-energy of 

the main Soret-region features) in the four-orbital model has primarily HOMO-1  LUMO+1 

character, and the Bx transition (typically the lower energy of the main Soret-region features) has 

substantial HOMO  LUMO+1 character (along with substantial HOMO-1 to LUMO character).  

The near-UV spectrum is expected to have contributions from excited states derived in part from 

electron promotions from HOMO-1 and HOMO (and/or lower filled orbitals) to one or more of 
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the filled orbitals in the LUMO+1 to LUMO+4 set.  The contribution closest to HOMO-1  

LUMO+1 of the simple bacteriochlorins will be HOMO-1  LUMO+3 for most 

bacteriochlorin–chalcones.  The TDDFT calculations indicate that some of the contributions 

derive from electron promotions involving filled orbitals down in energy to at least HOMO-5 

and unoccupied orbitals up in energy to LUMO+4.  The resulting mixed-parentage transitions 

often have mixed x and y polarization.  Some states/transitions may have net CT character in 

shifting electron density between macrocycle and chalcone substituent.  This analysis gives a 

physical basis for the more complex, multi-featured near-UV Soret-region absorption spectra of 

the bacteriochlorin–chalcones (Figure 2) than for bacteriochlorins that bear simple substituents 

(Figure 1).  For these new NIR-absorbing compounds, the additional absorption transitions 

incorporated in the near-UV Soret region can be viewed as beneficial to the overall light-

harvesting capacity. 

4. The TDDFT calculations on the normal, reverse and modestly extended (cinnamyl) 

bacteriochlorin–chalcones indicate small (generally <10%) contributions to the Qy excited state 

of one-electron promotions beyond those expected based on the four-orbital model.  Again, the 

normal four-orbital configurations are expected to be mainly HOMO  LUMO and HOMO-1 

 LUMO+X, where LUMO+X denotes the orbital most closely analogous to the HOMO+1 of 

the reference bacteriochlorins.  The minor non-four-orbital contributions could potentially lend 

some small net substituentmacrocycle CT character to the Qy excited state depending on 

bacteriochlorin and potentially a mild solvent-polarity dependence of the photophysical 

properties.  However, as noted in the Results section (Table 2), a medium-polarity dependence is 

not apparent for most normal, reverse and modestly extended (cinnamyl) bacteriochlorin–

chalcones, and when seen is only a <15% effect.  Thus, in general the bathrochromically shifted 
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(and strong) NIR absorption attained in the synthetic bacteriochlorin–chalcones is not 

accompanied by significant deleterious or solvent-dependent effects on the lowest singlet excited 

state (Qy) and thus the key photophysical properties.  

5. For the more extended bacteriochlorin–chalcones (B-chRet1 and B-chRet2), the key 

characteristics concerning the HOMO and LUMO are noted above for the shorter-chain 

chalcones.  This parallelism includes the correlation of HOMO  LUMO energy gap with Qy 

spectral energy/wavelength (Figure 9).  B-chRet1 and B-chRet2 also share the characteristic 

noted for the shorter-chain chalcones that the LUMO+1 of reference bacteriochlorins (B3, B8) is 

effectively incorporated into four orbitals (LUMO+1 to LUMO+4) that have variations in 

electron density on the macrocycle (with the reference LUMO+1 density distribution) versus 

being spread across the chalcone (and retinyl) groups.  The unoccupied orbital that is the closest 

to the normal macrocycle LUMO+1 (with the smallest electron density on the substituents) is 

LUMO+2 for B-chRet1 and LUMO+3 for B-chRet2.  Thus, as in the case of the shorter-chain 

and reverse bacteriochlorin–chalcones, the Soret region of B-chRet1 and of B-chRet2 is more 

complex than for the reference bacterochlorins (Figures 1 and 2).  The differences again can be 

understood in terms of one-electron promotions involving molecular orbitals that have various 

degrees of macrocycle and retinyl character that replace and/or supplement characteristic 

configurations of the original four-orbital set. 

6. For B-chRet1, the macrocycle HOMO-1 of reference bacteriochlorins (and the normal, 

reverse, and slightly extended bacteriochlorin–chalcones) becomes the HOMO-2 for B-chRet1 

(which contains one acetyl and one retinyl group), which also has a small amount of electron 

density across the retinyl group.  The HOMO-1 of B-chRet1 in contrast has very little electron 

density on the macrocycle and is dominated by electron density on the retinyl moiety.  Thus, 
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electron promotions from HOMO-1 of B-chRet1 to filled orbitals that have substantial electron 

density on the macrocycle have the potential to contribute CT character to the resulting excited 

states.  

7. B-chRet2 follows a similar picture to that for B-chRet1 except that the HOMO-1 of B-

chRet2 remains closest to the normal macrocycle HOMO-1 but acquires a modest amount of 

electron density along the two retinyl groups.  The HOMO-2 of or B-chRet2 in contrast has little 

electron density on the macrocycle and a large amount of electron density on the two retinyl 

groups, analogous to HOMO-1 of the mono-retinyl analog B-chRet1.  

8. For the extended chalcone analogs (B-chRet1 and B-chRet2), TDDFT calculations 

indicate that the primary HOMO  LUMO contribution to the Qy excited state is supplemented 

by configurations that do not have simple four-orbital-model flavor.  Such one-electron 

promotions (e.g., HOMO-1 LUMO and HOMO  LUMO+1 for B-chRet1) could impart 

some macrocycleretinyl CT character on the basis of the electron-density distributions noted 

above (Figures 7 and 8).  In this regard, the retinyl-bacteriochlorins are distinct from the 

numerous, less strongly coupled carotenoid–spacer–tetrapyrrole multads pioneered by the groups 

of Gust, Moore, and Moore, where the tetrapyrrole consists of a porphyrin
73

, purpurin
74

, or 

phthalocyanine. 
75

 Inspection of Table 2 indicates that B-chRet1 has a 23-fold shorter rate 

constant for nonradiative internal conversion (kic) in toluene compared to the other 

bacteriochlorin–chalcones, and that this rate constant drops by about 3-fold again in the more 

polar DMSO.  These findings are consistent with enhanced CT character for the Qy state of B-

chRet1 versus the other bacteriochlorin–chalcones in toluene, with further enhancement in 

DMSO due to solvent stabilization of the CT configurations and thereby a greater contribution to 



 

 203 

the Qy wavefunction.  Collectively, these considerations tie the observed photophysical behavior 

of B-chRet1 to the effects of the retinyl substituents on MO characteristics and electronic 

structure.   

In summary, the bacteriochlorin–chalcones described herein are readily synthesized, 

absorb strongly in the 780–800 nm region, fluoresce with small Stokes shift and quantum yields 

(f) in the range 0.05–0.11 and have singlet excited-state lifetimes (S) in the range 1.52.6 ns in 

toluene and DMSO; the spectral features exhibit modest or no sensitivity to solvent polarity.  An 

adequate description of the near-UV (Soret) region absorption requires significant participation 

of electron promotions between occupied and unoccupied molecular orbitals beyond those in the 

Gouterman four-orbital model, with some extent of macrocycle  substituent charge-transfer 

character in the lowest and higher singlet excited depending on the nature of the chalcone 

substituent.  Accordingly, the bacteriochlorin–chalcones are of fundamental interest for 

electronic and spectroscopic studies and represent viable architectures for light-harvesting 

applications, particularly where absorption across the visible and NIR regions is desirable. 
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Section 3 

Study of Synthetic Bacteriochlorins as Photosensitizer for Photodynamic Therapy 

 

Collaborations 

 

All synthetic bacteriochlorins were synthesized in the laboratory of Dr. Jonathan Lindsey 

at the North Carolina State University.  The DFT calculations to obtain molecular orbital 

characteristics, and the redox potential measurements were performed in the laboratory of Dr. 

David Bocian at the University of California, Riverside. The PDT activity studies such as the in 

vitro PDT experiments, in vivo fluorescence imaging, photosensitizer uptake, localization, and 

reactive oxygen species detection were performed in the laboratory of Dr. Michael R. Hamblin at 

the Harvard Medical School. 

In this dissertation, I collaborated with these researchers and the coworkers in their 

laboratories via my studies of the photophysical properties (including absorption, fluorescence 

and phosphorescence spectra, excited-state lifetimes, yields and rate constants of the excited-

state decay pathways), four-orbital analyses of the optical spectra, photostability studies of 

bacteriochlorins for PDT, and analysis and correlation of these properties.  
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Chapter 7 

In Vitro Photodynamic Therapy and Quantitative Structure-Activity Realtionship Studies 

with Stable Synthetic Near-Infrared Absorbing Bacteriochlorin Photosensitizers 

 

 

 

 

 

 

 

 

 

Reproduced in part with permission from Huang, YY; Mroz, P; Zhiyentayev, T; Sharma, SK; 

Balasubramanian, T; Ruzi, C; Krayer, M; Fan, D; Borbas ,,KE; Yang, EK; Kee, HL; Kirmaier, C; 

Diers, J.R; Bocian, D.F; Holten, D; Lindsey, J.S; Hamblin, M.R. In Vitro Photodynamic Therapy 

and Quantitative Structure-Activity Relationship Studies with Stable Synthetic Near-Infrared-

Absorbing Bacteriochlorin Photosensitizers. J. Med. Chem. 2010, 53, 4018–4027. Doi: 

10.1021/jm901908s. Copyright 2010 American Chemical Society. 
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Abstract 

 Photodynamic therapy (PDT) is a rapidly developing approach to treating cancer that 

combines harmless visible and near-infrared light with a nontoxic photoactivatable dye, which 

upon encounter with molecular oxygen generates the reactive oxygen species that are toxic to 

cancer cells. Bacteriochlorins are tetrapyrrole compounds with two reduced pyrrole rings in the 

macrocycle. These molecules are characterized by strong absorption features from 700 to >800 

nm, which enable deep penetration into tissue. This report describes testing of 12 new stable 

synthetic bacteriochlorins for PDT activity. The 12 compounds possess a variety of peripheral 

substituents and are very potent in killing cancer cells in vitro after illumination. Quantitative 

structure–activity relationships were derived, and subcellular localization was determined. The 

most active compounds have both low dark toxicity and high phototoxicity. This combination 

together with near-infrared absorption gives these bacteriochlorins great potential as 

photosensitizers for treatment of cancer. 
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Introduction  

Photodynamic therapy (PDT) employs a nontoxic dye termed a photosensitizer and 

visible light, which in the presence
 
of oxygen produce reactive oxygen species, such as singlet 

oxygen, superoxide and hydroxyl radical.
1
 The reactive oxygen species produced during PDT are 

effective in killing both malignant and normal cells via necrosis, apoptosis or autophagy 

depending on the cell type, structure of the photosensitizer and the light parameters chosen.
2-4

 

PDT has the advantage
 
of dual selectivity in that the photosensitizer can be targeted to its 

destination
 
cell or tissue, and in addition the illumination can be spatially

 
directed to the lesion.  

Bacteriochlorins are tetrapyrrole compounds with two opposing pyrroline (i.e., reduced 

pyrrole) rings. The ring structure occurs naturally in photosynthetic pigments 

(bacteriochlorophylls a and b) from purple photosynthetic bacteria of the orders Rhodospirillales 

and Rhizobiales.
5
 Reduction of two pyrrolic rings in the tetrapyrrole macrocycle has a 

pronounced effect on the absorption spectra. Bacteriochlorins and bacteriopurpurins have large 

absorption bands in the region of 720-850 nm where chlorins (one reduced ring) and porphyrins 

(no reduced rings) effectively do not absorb. The characteristic absorption of bacteriochlorins 

and bacteriopurpurins in the near-infrared spectral region is considered to be ideal for 

maximizing light penetration through tissue because both absorption and scattering of light at 

these wavelengths by endogenous entities are minimal.  

During the past decade, several naturally derived bacteriochlorins have been evaluated 

for PDT and some of them have shown significant in vivo efficacy. The most frequently 

employed bacteriochlorin for PDT has been the Pd-containing bacteriopheophorbide derivative 

known as TOOKAD, padoporfin or WST09 that is in clinical trials for prostate cancer.
6
 A related 
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water soluble Pd-bacteriochlorin derivative called WST11 has been tested for PDT of mouse 

melanoma xenografts.
7
 A recent report has shown that the application of bacteriochlorin p6 is 

effective for in vitro and in vivo treatment of radiation-induced fibrosarcoma (RIF) tumors.
8
  

Unfortunately, stable bacteriochlorins and bacteriopurpurins are notoriously difficult to 

synthesize from porphyrins or other chlorin intermediates. Many naturally occurring and 

naturally derived bacteriochlorins tend to be unstable in the presence of oxygen and light and are 

rapidly converted back to porphyrins and chlorins. To overcome these limitations, we developed 

a de novo synthetic pathway to stable bacteriochlorins.
9
  A key design feature of the synthetic 

bacteriochlorins is the use of a geminal dimethyl group in each reduced, pyrroline ring (Table 1). 

This geminal dimethyl group in the pyrroline rings locks-in the bacteriochlorin chromophore and 

precludes dehydrogenation or tautomerization processes, thereby affording a stable macrocycle. 

However in addition to good optical absorption properties and stability, it is necessary for a 

photosensitizer to also possess the appropriate molecular structure that will optimize the uptake, 

subcellular localization, and PDT-induced killing of cancer cells. To this end, the synthesis is 

compatible with a variety of groups including aryl, alkyl, and halo substituents.
9,10,11

 The 

introduction of halo substituents affords building blocks that can be derivatized with peripheral 

groups that are cationic, anionic, lipophilic, or amphipathic.
10,12,13

 Furthermore, the synthesis also 

affords the ability to incorporate auxochromes that allow tuning the position of the long-

wavelength absorption band from ~700 to ~800 nm (with substituents tested to date).
14

 Taken 

together, the chemical robustness of the synthetic bacteriochlorins and the versatility of the 

synthesis provide access to the desired features of wavelength tunability and substituent 

tailorability (e.g., lipophilicity, molecular asymmetry) needed for PDT applications. 
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Table 1.  Chemical structures of bacteriochlorins
a   

 

  

a
Iodide counter ions for cationic compounds omitted for clarity. 
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The goal of the present study was to test a group of twelve bacteriochlorins (Table 1) 

with varying peripheral substituents as photosensitizers for killing HeLa human cervical cancer 

cells and to deduce quantitative structure-function relationships. Various physicochemical 

properties of the molecules were also characterized to aid in the analysis of the PDT activity.  

Experimental methods 

Experimental informations are given in Ref A.
 

Results and Discussion 

Molecular characteristics and logP values 

A de novo synthetic pathway to bacteriochlorins that contain a geminal dimethyl group in 

each pyrroline ring was recently developed.
9
 This structural attribute blocks adventitious 

dehydrogenation and thereby affords a stable macrocycle. This synthetic route has provided the 

foundation for the preparation of the 12 bacteriochlorins, which are shown in Table 1. The 12 

compounds encompass a range of polarity that extends from rather lipophilic (1, 2, 12) to more 

amphipathic (3, 4, 6, 11) to polar (5, 7, 8, 9, 10). This set of compounds is valuable for 

examination of structure–activity relationships. Bacteriochlorin 1 contains two 3,6,9,12-tetra-

oxatridecylamine groups, while bacteriochlorins 2 and 12contain symmetrically branched 1,5-

dimethoxypentyl groups for solubility in lipophilic environments. Bacteriochlorins 3, 4, 6, 

and 11 each contain four hydroxyl groups. Bacteriochlorins 4 and 11 each have four phenolic 

hydroxyl groups, whereas the hydroxyl groups are attached to more flexible alkyl chains in 

bacteriochlorins 3 and 6. The hydroxyl groups are placed closest to the macrocycle in 

bacteriochlorin4 and farthest from the macrocycle in bacteriochlorin 3. The cationic 

bacteriochlorins contain either two positive charges (5, 8, 10) or four positive charges (9). 
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Bacteriochlorins 5 and 10 have substituents that are structurally more rigid than the substituents 

on bacteriochlorins 8 and 9. In comparison to the cationic bacteriochlorins (5, 8, 9, 10), 

bacteriochlorin 7 is expected to be anionic at physiological pH. 

The measured partition coefficient (mLogP) values for relative solubility in octanol 

versus water were obtained experimentally by the stir-flask method, and the values were also 

calculated (cLogP) on the basis of the bacteriochlorin structure. A positive versus negative 

log P value reflects preferential solubilization in the octanol versus water phases, respectively. 

For bacteriochlorins 1–4, 11, and 12 there was no observable amount of bacteriochlorin in the 

water layer. The cationic bacteriochlorins 8–10exhibited negative mLogP values, whereas the 

cationic bacteriochlorin 5 gave a mLogP value of 0.9. Bacteriochlorins 6 and 7 had mLogP 

values of 2.3 and 1.4, respectively. The mLogP and cLogP values are listed in Table 2. 

The mLogP and cLogP values are plotted against one another in Figure 1A. The linear 

correlation is good (R
2
=0.78) but not perfect. Because of the lack of a perfect correlation, a 

quantitative structure–activity relationship (QSAR) was constructed for each of the experiment-

derived parameters that reflect PDT effectiveness (LD50, cellular uptake, PDT toxicity per unit 

uptake) against both cLogP and mLogP. The results of the QSAR studies along with the 

photophysical and molecular-orbital characteristics described next give insights into the factors 

most important for the relative PDT effectiveness of the diverse bacteriochlorins shown in Table 

1. 
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Table 2. Properties of Bacteriochlorins
a
.    

Cmpd LD50
a
 mlogP

b
 clogP

c
 Uptake

d
 

SF/unit  

uptake
e
 

Qy(0,0)
 f
 

absorption 

Qy(0,0)
 f
 

fluorescence 
f 

g
 S 

h
 

ref

iscΦ i
 T

j
 Orbital Energy 

 (nM) 

  
(nmol/ 

mg) 

(nmol/ 

mg) 
 

(nm) 

fwhm 

(nm) 
 

(nm) 

fwhm

(nm)
  (ns)  (s) 

HOMO 

(eV) 

LUMO 

(eV) 

1 500 ≥2.2 9.3 ± 1.6 3.9 0.1 732 21       4.39 2.20 

2 100 ≥2.5 6.9 ± 1.5 11.7 0.02 717 13 722 20 0.09

3 

4.0 0.51 189 4.36 2.12 

3 15 ≥2.2 4.7 ± 1.5 10.4 0.001 732 19 738 24 0.15 3.0 0.55 159 4.44 2.26 

4 80 ≥2.5 6.8 ± 1.5 13.5 0.01 732 21 737 26 0.12 3.7 0.52 190 4.46 2.28 

5 2000 0.9 4.2 ± 1.7 8.2 0.6 749 16 754 22 0.11 3.8 0.51 104
k
 4.77 3.31 

6 100 2.3 4.8 ± 1.5 8.2 0.04 718 18 724 23 0.09

5 

3.8 0.53 190 4.42 2.19 

7 4000 1.4 5.6 ± 1.7 0.72 0.35 734 26 742 19 0.07

7 

3.7 0.56 70 4.86 2.77 

8 3000 –0.5 –1.1 ± 

1.7 

7.7 0.88 742 23 750 25 0.13 4.0 0.48 77
k
 4.72 3.34 

9 800 –1.4 –5.3 ± 

1.7 

1.8 0.9 729 19 735 24 0.12 3.5 0.53 54
l
 5.04 3.89 

10 800 –1.0 –1.0 ± 

1.8 

1.8 1 731 21 740 28 0.12 3.8 0.50 100
k
 4.62 2.45 

11 200 ≥1.8 7.6 ± 1.7 1.8 0.23 781 35 800 40 0.02

1 

3.4 0.66 78 4.72 2.74 

12 60 ≥1.9 2.8 ± 1.7 15.0 0.02 727 20 733 27 0.10 3.3 0.57 105 4.68 2.51 
a
Values taken from Figure 3. 

b
Measured value of logP.  

c
Calculated value of logP.  

d
Values taken from Figure 3 and apply to a 

bacteriochlorin concentration of 20.5 µM.  
e
Survival fraction at uptake of 0.3 nmol/(mg protein).  The values are taken from Figures 2 

and 3 by determining the bacteriochlorin concentration in the incubation medium necessary to produce a cell uptake of 0.3 nmol/(mg 

protein), and then determining the survival fractions at these bacteriochlorin concentration values after 10 J/cm
2
 light was delivered.  

f
Peak wavelength (λ) and full width at half maximum (fwhm) of spectral feature for compound in aerated methanol unless indicated 

otherwise.  
g
Fluorescence quantum yield for compound in Ar-purged methanol. 

h
Lifetime of the lowest singlet excited state for 

compound in Ar-purged methanol determined using fluorescence detection.  
fi
Yield of the lowest triplet excited state determined using 

the expression ref
isc  = 1 – f – kicS, with kIC = (10 ns)

–1
.  

j
Lifetime of the lowest triplet excited state for the compound in Ar-purged 

2-methyltetrahydrofuran unless indicated otherwise. 
k
In freeze-pump-thaw-degassed methanol.  

l
In freeze-pump-thaw-degassed 

ethanol.   
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Figure 1. (A) Octanol-water partition coefficents.  Calculated LogP (cLogP) versus 

measured LogP (mLogP); the line is a linear least-squares fit with an R
2
 value 0.78. The data 

used to construct this plot are given in Table 2.  The values of mLogP are lower limits for 

compounds 1, 2, 3, 4, 11, and 12.  (B) Absorption spectra.  Data is shown for representative 

bacteriochlorins in methanol at 295 K. 
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Photophysical properties 

Each compound studied herein exhibits a characteristic bacteriochlorin absorption 

spectrum,
15 

with a broad near-UV Soret feature and a near-infrared Qy band of comparable 

intensity. Representative spectra (for bacteriochlorins 3, 4, and 11 in methanol) are shown in 

Figure 1B. The wavelength tunability of synthetic bacteriochlorins obtained via functionalization 

of the 3- and 13-position has been described previously.
14

 The Qy(0,0) absorption maximum 

of 1–12 in methanol ranges from 717 to 781 nm, and in each case the Qy(0,0) fluorescence peak 

is bathochromically shifted by ≤10 nm (Table2). The fluorescence quantum yields of these 

bacteriochlorins are typically 0.09–0.12. The lifetimes of the lowest singlet excited state are in 

the range 3–4 ns, and the lifetimes of the lowest triplet excited state are in the range 50–190 μs 

(both in the absence of oxygen). The triplet lifetimes are reduced to <1 μs in the presence of 

atmospheric oxygen, indicating facile excitedstate quenching. The yields of the lowest triplet 

excited state determined using a reference technique
16 

for 1–12 (Table 2) have an average value 

of 0.52 ± 0.02. This value is similar to 0.54 for bacteriopheophytin a.
17

 Overall, these results 

indicate that significant differences in phototoxicity of the bacteriochlorins must stem primarily 

from sources other than the lifetime and yield of the triplet excited state (from which the reactive 

oxygen species is produced). 

Molecular orbital characteristics 

The energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied 

molecular orbital (LUMO) of each bacteriochlorin were obtained from DFT calculations. Table 2 

shows that the HOMO energy becomes more negative along the following series: 2 (−4.36 

eV)>1 (−4.39 eV)>6 (−4.42 eV) > 3 (−4.44 eV) > 4 (−4.46 eV) > 10 (−4.62 eV) > 12 (−4.68 
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eV)>8 (−4.72 eV) ~ 11 (−4.72 eV)>5(−4.77 eV)>7 (−4.86 eV)>9 (−5.04). Along this series, the 

bacteriochlorins will be progressively harder to oxidize. Table 2 also shows that the LUMO 

energy becomes more negative along the following series:2 (−2.12 eV)>1 (−2.20 eV)>6 (−2.19 

eV) >3 (−2.26 eV)>4 (−2.28 eV)>10 (−2.45 eV)>12 (−2.51 eV)>11 (−2.74 eV)>7 (−2.77 

eV)>5 (−3.31 eV)>8 (−3.34 eV)>9 (−3.89). Along this series, the bacteriochlorins will be 

progressively easier to reduce. 

A prior study of a series of zinc chlorins showed excellent linear correlations between the 

calculated orbital energies and measured redox potentials, with a shift in the HOMO or LUMO 

energy of 100 meV giving a shift in the oxidation or reduction potential on the order of 100 

mV.
18 

These findings suggest that differences in oxidation and/or reduction potentials among the 

bacteriochlorins studied here may be substantial. One caveat is that the redox properties of a 

bacteriochlorin may differ considerably depending on the subcellular localization site. The 

second caveat is that the triplet excited state (T1) redox potentials will differ from those for the 

ground state (S0) by the T1–S0 energy gap, which typically will vary similarly to the S1–

S0 energy gaps derived from Qy(0,0) spectral positions (Table 2). 

With these considerations in mind, several points can be made. In a comparison of 

bacteriochlorins bearing aromatic alcohols, 11 will be harder to oxidize and easier to reduce 

than 4, which in turn has similar redox properties to 3. Carboxylic acid containing 7 should have 

redox properties comparable to11. Positively charged bacteriochlorins 5 and 8 will have redox 

properties similar to one another and oxidation potentials comparable to 11 but will be be 

considerably easier to reduce than 11. These anticipated differences in redox properties for this 

subset of compounds studied (3 > 4>11>5>8>7), or the entire set (1–12), show no general 

correlation with the relative PDT activities discussed below. The only possible connection is that 
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among similar bacteriochlorins (e.g., those bearing aromatic alcohols), compounds that should be 

easier to oxidize and harder to reduce tend to have higher activity (e.g., 3versus 11). 

Redox and photophysical properties contribute substantially to the photochemical 

mechanisms (type I versus type II) of PDT activity.
19,20 

The results described above indicate that 

these properties do not track activity (redox) or do not change substantially (photophysics) for 

the 12 bacteriochlorins and thus contribute only marginally if at all to the observed differences in 

phototoxicity described below. 

Photodyanamic activity      

The results of the photodynamic activity such as in Vitro PDT on HeLa cells, cellular 

uptake, subcellular localization, and PDT toxicity per unit uptake are described in Reference 

A.  

Discussion 

Twelve bacteriochlorins were designed and studied to probe electronic and chemical 

attributes that are likely to impact PDT activity. The results demonstrate that a number of these 

bacteriochlorins are extremely active photosensitizers. They are capable of killing cancer cells in 

nM concentrations (even as low as 15 nM) when combined with modest fluences (10 J/cm
2
) of 

near-infrared (732-nm or 780-nm) light.   The combination of high PDT activity with the good 

tissue-penetrating properties of near-infrared light suggest these compounds should be further 

tested in PDT especially for tumor types such as melanoma, against which traditional 

photosensitizers do not perform well. 
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Chapter 8 

Synthetic Bacteriochlorins Overcome the Resistance of Melanoma to Photodynamic 

Therapy 
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Abstract 

Cutaneous malignant melanoma remains a therapeutic challenge, and patients with 

advanced disease have limited survival. Photodynamic therapy (PDT) has been successfully used 

to treat many malignancies, and it may show promise as an antimelanoma modality. However, 

high melanin levels in melanomas can adversely affect PDT effectiveness. Herein the extent of 

melanin contribution to melanoma resistance to PDT was investigated in a set of melanoma cell 

lines that markedly differ in the levels of pigmentation; 3 new bacteriochlorins successfully 

overcame the resistance. Cell killing studies determined that bacteriochlorins are superior at 

(LD50≈0.1 μM) when compared with controls such as the FDA-approved Photofrin (LD50≈10 

μM) and clinically tested LuTex (LD50≈1 μM). The melanin content affects PDT effectiveness, 

but the degree of reduction is significantly lower for bacteriochlorins than for Photofrin. 

Microscopy reveals that the least effective bacteriochlorin localizes predominantly in lysosomes, 

while the most effective one preferentially accumulates in mitochondria. Interestingly all 

bacteriochlorins accumulate in melanosomes, and subsequent illumination leads to melanosomal 

damage shown by electron microscopy. Fluorescent probes show that the most effective 

bacteriochlorin produces significantly higher levels of hydroxyl radicals, and this is consistent 

with the redox properties suggested by molecular-orbital calculations. The best in 

vitro performing bacteriochlorin was tested in vivo in a mouse melanoma model using spectrally 

resolved fluorescence imaging and provided significant survival advantage with 20% of cures 

(P<0.01). 

Keywords: melanoma, photodynamic therapy, multidrug resistance, melanosomes, 

bacteriochlorins, electron microscopy 
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Introduction 

 Malignant melanoma is a cancer that arises from melanocytes, the specialized pigmented 

cells that are found predominantly in the skin. Although melanoma accounts for only 4% of skin 

cancer cases, it causes 79% of all skin cancer related deaths. If diagnosed early, melanoma can 

be cured by surgical resection with about 80% effectiveness for thin lesions. However, once 

metastases occur, it is largely refractory to existing therapies. The National Comprehensive 

Cancer Network
1
 recommends a plethora of treatments for stage III and local recurrence of 

melanoma that include, intralesional injection of BCG or interferon, and local ablation therapy or 

radiation therapy. Only interferon alfa-2b has been shown to have a reproducible benefit
2
. Other 

potential immunotherapies include vaccines or high-dose bolus interleukin-2 alone or in 

combination with chemotherapy
3
. Naylor et al.

4 
are used topical 5% imiquimod cream and 

irradiation of skin metastases with a continuous-wave 810-nm laser to widen the response to 

distant non-irradiated lesions.   

Photodynamic therapy (PDT) uses a non-toxic dye molecule or photosensitizer that 

absorbs a photon of an appropriate wavelength of light to form an excited triplet state
5
.  The 

excited molecule can then transfer energy to the (triplet) ground state of molecular oxygen to 

produce the highly cytotoxic singlet oxygen (Type II reaction), or undergo electron transfer 

(Type I reaction) with the ultimate formation of reactive oxygen species. Such species are the 

superoxide radical anion or hydroxyl radicals that can oxidize important biological molecules 

such as proteins, lipids and nucleic acids.  

 There are 3 main mechanisms that make PDT an effective anti-cancer procedure: (1) 

direct tumor killing by the reactive oxygen species, (2) tumor-associated vascular damage, and 
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(3) activation of anti-tumor immune response. The prevailing view is that all three mechanisms 

are necessary for the optimal tumor damage.  

 Melanins are the principal surface pigments that play a major role in photoprotection.
6.7

 

Melanin synthesis is initiated with the enzymatic hydroxylation of the L-tyrosine to L-

dihydroxyphenylalanine (L-DOPA) and oxidation of L-DOPA to DOPAquinone. DOPAquinone 

is subsequently transformed to melanin in a series of reactions accelerated by enzymes and metal 

cations. Numerous stimuli are able to alter melanogenesis or the production of melanin by 

cultured melanocytes.
8,9

 The type of melanin produced depends on the cellular genotype and 

environmental factors, resulting in the black pigment eumelanin, the reddish to yellow pigment 

pheomelanin or the mixed melanin that contains both components.
10

 Consequently melanomas 

can vary from non-pigmented tumors that have no melanin whatsoever, through moderately 

pigmented to highly pigmented tumors, and their pigmentation level is proportional to the degree 

of differentiation and inversely proportional to the growth rate.
11,12

 

 Bacteriochlorins are tetrapyrrole macrocycles that contain alternating pyrrole and 

pyrroline (i.e., reduced pyrrole) rings. The macrocycle structure occurs naturally in 

photosynthetic pigments (bacteriochlorophylls a and b) found in purple photosynthetic 

bacteria.
13

 The presence of the reduced rings in the tetrapyrrole macrocycle has a pronounced 

effect on the absorption spectra. Bacteriochlorins have intense absorption bands in the region of 

720-850 nm, allowing for deeper light penetration through tissue and bypassing the melanin 

absorption.   

During the past decade, several naturally occurring or naturally derived bacteriochlorins 

have been evaluated in PDT applications, and some of them have shown significant in vivo 

efficacy.
14,15

 However, naturally occurring bacteriochlorins have the following drawbacks: 
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limited synthetic malleability, susceptibility to unwanted dehydrogenation, a requirement for 

harsh conditions for the modification of functional groups already present in the macrocycle.  

To overcome the aforementioned limitations of naturally occurring bacteriochlorins, a de 

novo synthetic pathway to stable bacteriochlorins has been developed.
16

 A key design feature of 

the synthetic bacteriochlorins is a geminal-dimethyl group in each reduced, pyrroline ring that 

locks-in the bacteriochlorin chromophore and precludes dehydrogenation or tautomerization 

processes. This structural feature dramatically increases the chemical stability and eliminates 

susceptibility to degradative aerobic oxidation.
 

 In this report, three synthetic bacteriochlorins in combination with 730-nm illumination 

from a diode laser were tested and the results compared with those for the clinically approved 

photosensitizer Photofrin (630 nm absorption) and with lutetium texaphyrin (LuTex), which is an 

established near-infrared absorbing photosensitize.
17

  These studies utilized a series of human 

and mouse melanoma cell lines that differ in the pigmentation levels. The selected compounds 

performed significantly better when compared to Photofrin or LuTex, even in highly pigmented 

cells and led to a significant survival advantage and 20% of cures in an in vivo model. A 

preliminary account of this work has been presented at International Photodynamic Association 

Conference as a proceedings paper.
18 

 

The results presented here suggest that PDT may be a promising therapeutic option to 

treat melanoma patients and to prevent relapse of the disease. PDT has been shown to have the 

potential to induce an anti-tumor immune response capable of destroying well-established 

tumors as well as distant metastases.
19

 It is therefore of utmost importance to establish effective 

PDT treatment regimens of melanoma in order to be able to explore the possible immunological 

benefits in patients. PDT may never replace surgery for localized melanoma. Nevertheless it may 
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be an effective treatment option for skin-disseminated tumors, unresectable melanomas, mucosal 

and ocular tumors as well as for patients with stage III and IV melanoma.   

Experimtent methods 

Photophysical measurements and molecular orbital characteristics 

Photophysical measurements were performed as described previously.
23

 The quantum 

yield and lifetime measurements utilized Ar-purged solutions (methanol or 2-

methyltetrahydrofuran) except that the triplet lifetime for 3 was determined using a 

deoxygenated (by free-pump-thaw) aqueous Cremophor micellar solution.  Fluorescence yields 

were determined with respect to 8,8,18,18-tetramethylbacteriochlorin
24

 in Ar-purged toluene, for 

which f = 0.125 was established with respect to chlorophyll a in benzene [f = 0.325]
25

 and 

free base tetraphenylporphyrin toluene [f = 0.090]
26 

 using Soret and Qx excitation.   

Density functional theory calculations were performed with Spartan ’08 for Windows 

(Wavefunction, Irvine, CA, USA; ref. 27) using the hybrid B3LYP functional and 6-31G* basis 

set; equilibrium geometries were fully optimized using the default program parameters. 

Synthesis and photodynamic activity   

Experimental informations are given in Ref A.
 

Results 

Photophysical properties 

 The detailed photophysical properties of the bacteriochlorins 13 are given in Table S1 

of the Supplementary Materials.  The compounds exhibit a narrow range of near-infrared 

absorption maxima (721737 nm; Figure 1), fluorescence yields (0.0930.18), and lifetimes of 
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the lowest singlet excited state (3.74.8 ns).  The lifetimes of the lowest triplet excited state are 

(180200 s) for 2 and 3, ~55 s for the analogs of 1, and 20 s for the standard photosensitizer 

LuTex, all in the absence of molecular oxygen.  The triplet lifetimes are reduced to <1 s in the 

presence of atmospheric oxygen, indicating facile excited-state quenching.  The yields of the 

triplet excited state (0.410.53) are similar to the value of 0.54 for the naturally occurring 

bacteriopheophytin a.
31

  These results indicate that any significant differences in phototoxicity of 

13 must derive primarily from sources other than the lifetime and yield of the triplet excited 

state (from which the reactive oxygen species is produced). 

 

 Figure 1. Molecular structures and absorption spectra (normalized at the Qy band) for the 

bacteriochlorins 1,2, and 3 in DMSO at room temperature. Spectral characteristics are listed in 

Table S1.  
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Molecular orbital characteristics 

 As indicated in Table S1 of the Supplementary Materials, the highest occupied 

molecular orbital (HOMO) energy becomes more negative along the following series: 2 

(4.36 eV) < 1 (4.39 eV) < 3 (4.46 eV).  The lowest unoccupied molecular orbital 

(LUMO) energy becomes more negative along the same series: 2 (2.12) < 1 (2.20) < 3 

(2.28).  Thus, 3 should be harder to oxidize and easier to reduce than 1, which in turn 

should be harder to oxidize and easier to reduce than 2.  A prior study of  a series of zinc 

chlorins showed excellent linear correlations between the calculated orbital energies and 

measured redox potentials (32). These results suggest the shifts in oxidation and reduction 

potentials for the bacteriochlorins studied here (i.e., 2 versus 3) are likely to be on the order 

of 100 mV.
 

  The above values reflect differences in ground-state (S0) properties. The lowest 

triplet excited state (T1) will be both a more potent oxidizing and reducing agent than S0 by 

the T1S0 energy gap.  This gap should be the same to within ~0.05 eV for  bacteriochlorins 

1-3 due to their similar structure, comparable S1 energies, and comparable LUMO-HOMO 

energy gaps (Table S1 of SI). Thus, the trends in the redox characteristics for T1 for 1–3 will 

track those given above for S0 . Since 3 and not 1 is the most potent PDT agent tested, these 

findings suggests that if a Type I (electron-transfer) mechanism is operative, then the 

reduction of the bacteriochlorin T1 excited state is involved. If 1 had been the best 

photosensitizer, then oxidation (rather than reduction) of the T1 excited state would occur. 

Effectiveness of bacteriochlorin-mediated PDT against C-mel melanoma cells 

 The effectiveness of 1, 2 and 3 was tested against the highly pigmented human melanoma 

cell line, C-mel. There was no dark toxicity after 24 h incubation in any case. All compounds 
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tested were effective in producing PDT-induced loss of mitochondrial activity in a dose-

dependent and light-dependent manner against C-mel cells (Figure 2A). The order of 

effectiveness is 3 > 2 > 1. Bacteriochlorin 3 kills over two logs of C-mel cells at a remarkably 

low 0.25 M and 5J/cm
2
 of light, as measured by mitochondrial activity. The order of relative C-

mel cell uptake values of 1, 2, and 3 after 24 h incubation (Figure 2B) is 3 >> 2 > 1.  This trend 

broadly correlates with the order of PDT effectiveness, except that there is a large difference in 

PDT effectiveness between 2 and 1, and only a small difference in cell uptake. 

Effects of melanin content on PDT effectiveness with bacteriochlorin photosensitizers. 

 The effectiveness of the best performing bacteriochlorin, 3, was then tested in three 

variants of the pigmented mouse melanoma cell line B16 that had very different levels of 

pigmentation. The absorption spectra between 300 and 700-nm showing the melanin levels in 

these three cell lines as well as the morphology are shown in Figure S2 of the Supplementary 

Materials. B16-G4F lacks the -MSH receptor and has low melanin levels (OD at 400 nm of 

0.055) (33). B16F1 has moderate levels of melanin (OD at 400nm of 0.5214); however, after 

growth for 7 days in low glucose-containing medium the melanin level was greatly increased 

(B16F1 LG, OD at 400 nm of 1.1841) (34).  Figure 2C shows that the extent of killing correlates 

well with the amount of intracellular melanin pigment: the B16G4F was effectively eradicated 

after incubation with 3 and illumination with 10 J/cm
2
 of 730-nm light (LD50  0.1 µM), while 

the moderately pigmented B16F1 needed somewhat more 3 (LD50  0.2 µM), and even the 

highly pigmented B16F1 LG was still effectively killed by 3 (LD50  0.5 µM), as measured by 

mitochondrial activity assay. Cellular uptake values of 3 by the different B16 variants showed no 

significant differences (data not shown) suggesting that differences in PDT killing were solely 

due to differences in melanin content. 
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 Results were obtained for comparison of the effectiveness of Photofrin-mediated PDT on 

the same three cell lines (Figure 2D). Photofrin mediated PDT was much less effective against 

B16G4F than bacteriochlorin 3, as shown by the higher concentration needed (LD50  3 µM) 

but nevertheless significant PDT killing was observed. The effectiveness of Photofrin was 

dramatically reduced in the case of B16F1 (LD50  10 µM) and completely abolished in B16F1 

LG cells (no LD50). 

 The effectiveness of 3, Photofrin and LuTex were compared via a photosensitizer dose-

variation experiment using a single light fluence (10 J/cm
2
). Figure 2E shows that the clinically 

approved Photofrin was hardly able to kill any pigmented B16F10 melanoma cells even at 10 

M ((LD50  10 µM), while LuTex could kill 90% at 5 M (LD50  1µM), and the extremely 

effective 3 could kill 98% at only 1 M ((LD50  0.1 µM). Values for photosensitizer uptake by 

B16F10 cells (Figure 2F) show that Photofrin actually had the largest uptake while the uptake of 

3 was only slightly higher than LuTex (although the PDT killing was markedly higher). To 

confirm that the MTT assay correctly reported cell death, the survival fractions after PDT with 3 

and Photofrin as determined by the MTT assay were compared with those found using the crystal 

violet (CV) assay that measures cellular integrity (see Figure S1 of Supplementary Materials). 

The killing assessed by MTT was somewhat higher than that found with CV but overall the dose 

response was very similar. Moreover, transmission electron micrographs confirmed complete 

cellular destruction after PDT with 3 (Figure S1 of Supplementary Materials). 

More results to elucidate PDT effectivenss which are intracellular localization of the 

bacteriochlorins, isolation of melanosomes, melanosome destruction by PDT using near-infrared 

light, reactive oxygen species production, and bacteriochlorin-PDT on pigmented melanoma in 

mice are recorded in ref A. 
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Figure 2. (A) In vitro PDT effectiveness of 1, 2 and 3 in human melanoma cell line, C-mel. (B) 

Cellular uptake of 1, 2, and 3 after 24 h incubation with C-mel cells. (C) Effectiveness of 5J/cm
2 

PDT with 3 and (D) Photofrin against differently pigmented variants of B16 mouse melanoma 

cells. (E) Comparison of PDT effectiveness on B16F10 melanoma cells mediated by 3, LuTex, 

and Photofrin.  (F) B16F10 cellular uptake of 3, LuTex and Photofrin. 
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Discussion 

 This report has demonstrated that innovative synthetic stable bacteriochlorins, which 

absorb light in the near-infrared spectral region, are highly active photosensitizers against 

melanoma both in vitro and in vivo. There have been suggestions that melanoma is one of the 

most resistant types of cancer to PDT because photoactivating light is absorbed by intracellular 

melanin rather than by the photoactive photosensitizer that is localized within the melanoma 

cells.  

The examined synthetic bacteriochlorins when combined with 730-nm light are 

significantly better at killing both pigmented and non-pigmented melanoma cells compared to 

the FDA-approved Photofrin and 635-nm light and another near-infrared absorbing 

photosensitizer LuTex. Moreover, the bacteriochlorins examined herein, particularly 2 and 3, are 

effective at significantly lower concentrations (bacteriochlorin < 0.5 M versus Photofrin > 6 

M), thereby reducing side effects.  

 Regarding the mechanism of PDT for the bacteriochlorins studied herein, in vitro 

experiments performed with fluorescent probes for singlet oxygen and for hydroxyl radical 

reveal no difference between 2 and 3 in singlet oxygen generation but that 3 produces 

significantly more hydroxyl radicals than 2. The finding of similar singlet oxygen production for 

2 and 3 is consistent with the comparable photophysical characteristics (Table S1). The finding 

that 3 produces more hydroxyl radicals than 2 is consistent with the expected difference in redox 

properties of the two compounds on the basis of the molecular-orbital calculations. In particular, 

bacteriochlorin 3 should be easier to reduce (and harder to oxidize) than 2 (and 1).  

A Type I mechanism that fits the latter results requires that the triplet excited state of the 

bacteriochlorin receives an electron from an endogenous substrate that acts as a reducing agent, 

A B 
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and subsequently passes the electron to O2 leading to formation of superoxide radical ion and 

subsequently to hydroxyl radicals (or other reactive species). This mechanism, as opposed to the 

well-understood Type II mechanism (which involves energy transfer from the excited 

bacteriochlorin triplet to ground state triplet oxygen 
3
O2 to form reactive singlet oxygen 

1
O2), is 

in keeping with prior work on a set of imidazole-substituted porphyrins.
23,28

  This type of 

electron-transfer mechanism has been also proposed as one mode of PDT activity of the 

palladium bacteriochlorin TOOKAD.
42

 These considerations suggest that the greater PDT 

efficacy of 3 compared to 2 (or 1) may derive from enhanced activity of 3 via a Type I 

mechanism that generates hydroxyl radicals (and/or another reactive species), perhaps 

supplementing singlet oxygen formation via a Type II mechanism. 

Discussion about localization and comparison with commercial photosensitizers is 

recorded in detail in elsewhere.
A 

Conclusions 

 The lack of development of PDT as a therapy for melanoma is thought to be due to 

ineffectiveness of methodologies using presently available photosensitizers and to the optical 

quenching of the activating light by the melanin pigment. The results presented here show that 

there is high promise for future clinical application of synthetic bacteriochlorins in PDT of 

pigmented melanoma.  

Supplementary Material:  An additional description of some methods, along with additional 

results and figures is provided in supplementary materials as noted in ref (A).  
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Supplementary materials 

Meterials and methods 

Photosensitizers 

 

Supplementary Figure 1.TEM micrographs of morphological changes observed after PDT with 

2. A) Control, non-treated cells; B) B16F10 melanoma cells 8h after PDT with bacteriochlorin 2. 

Scale bar is 5 µm. Comparison of Photofrin (C) and bacteriochlorin 3 (D) PDT killing effects 

measured by MTT metabolic assay and also by crystal violet (CV) cellular integrity assays. 
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Supplementary figure 2 Visible absorption spectra of cell lysates containing equal numbers of 

melanoma cells of B16G4F (low melanin), B16F1 growing in RPMI medium (moderate 

melanin) and B16F1 growing in low glucose DMEM medium (high melanin). 

Other photoactivity supplementary are described in ref A. 

Photophysical measurements 

 All photophysical measurements were performed on samples of the bacteriochlorin in Ar-

purged solutions at room temperature unless noted otherwise. Static absorption (Cary 100) and 

fluorescence (Spex Fluorolog2) measurements were performed using dilute (M) non-Ar-purged 

solutions.
5
 Solutions with an absorbance of ≤0.15 at the Soret-band excitation wavelength were 

used for the fluorescence spectral, quantum yield and lifetime measurements. The lifetime of the 

lowest singlet excited state (S) for a given compound was obtained using a fluorescence phase-

modulation technique.
6 
 

 Fluorescence quantum yields (f) were measured with respect to 8,8,18,18-

tetramethylbacteriochlorin
7
 using Ar-purged solutions. The value of f = 0.125 for the latter 

compound in toluene was established with respect to chlorophyll a in benzene [f = 0.325]
8
 and 

free base tetraphenylporphyrin toluene [f = 0.090]
9
 using several excitation wavelengths 
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spanning the Soret and Qx absorption bands. Yields of the lowest excited triplet state (isc) were 

determined for compounds in methanol or 2-methyltetrahydrofuran using a transient-absorption 

technique.
5
 The lifetimes of the lowest energy triplet excited state (T) for compounds in Ar-

purged 2-methyltetrahydrofuran (MeTHF) were determined using a setup described previously.
5 

The triplet lifetime for 3 was also measured in an aqueous Cremophor micellar solution that was 

deoxygenated by repeated freeze-pump-thaw cycles on a vacuum line (< 1 micron pressure).   

Table S1. Photophysical Properties and Molecular-Orbital Energies of Bacteriochlorins.
a
  

a
All measurements performed on compounds at room temperature. 

b
Peak wavelength (λ) and full 

width at half maximum (fwhm) of spectral feature for compound in aerated solution of DMSO, 

except the fluorescence data for 1 is for the compound in methanol.  
c
Fluorescence quantum 

yield for compound in Ar-purged methanol. 
d
Lifetime of the lowest singlet excited state for 

compound in Ar-purged methanol determined using fluorescence detection. 
e
Measured yield of 

the lowest triplet excited state for the compound in Ar-purged methanol. 
f
Lifetime of the lowest 

triplet excited state for the compound in Ar-purged MeTHF unless indicated otherwise. 
g
The 

average values from two analogs of 1 have the following characteristics (all measurements in Ar-

purged toluene except for T which utilized the compound in Ar-purged MeTHF): f = 0.14, s = 

3.4 ns, isc = 0.53, T = 45 s for 8,8,18,18-tetramethyl-2,12-di-p-tolylbacteriochlorin ( 

determined here; f = 0.18, s = 4.8 ns, isc = 0.50, T = 65 s for 5-methoxy-8,8,18,18-

tetramethyl-2,12-di-p-tolylbacteriochlorin determined previously (9). 
h
The triplet lifetime of 3 in 

deoxygenated (by freeze-pump-thaw procedure) aqueous Cremophore micellar solution is 190 

s. 

 

Cmpd Qy(0,0)
 b

 

absorption 

Qy(0,0)
 b

 

fluorescence 
f

c
 S 

d
 isc

e
 T

f
 Orbital Energy 

 λ  

(nm) 

fwhm 

(nm) 

λ 

(nm) 

fwhm
 

(nm) 
 (ns)  (s) 

HOMO 

(eV) 

LUMO 

(eV) 

1 739 23 739 24 0.16
g 

4.1
g
 0.51

g
 55

g
 4.39 2.20 

2 721 15 727 21 0.093 4.0 0.58 180 4.36 2.12 

3 737 24 745 20 0.12 3.7 0.41 200
h
 4.46 2.28 
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Chapter 9 

Stable synthetic bacteriochlorins for photodynamic therapy: role of bis-cyano peripheral 

groups, central metal substitution (2H, Zn, Pd), and Cremophor EL delivery. 
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Abstract 

A series of four stable synthetic bacteriochlorins was tested for photodynamic therapy 

(PDT) on HeLa cells in vitro.  The parent bacteriochlorin (BC), dicyano derivative (NC)2BC and 

corresponding zinc chelate (NC)2BC-Zn and palladium chelate (NC)2BC-Pd were studied.  

Direct dilution of a solution of bacteriochlorin in an organic solvent into serum-containing 

medium was compared with the dilution of bacteriochlorin in Cremophor EL (CrEL) micelles 

into the same medium.  CrEL generally reduced aggregation (as indicated by absorption and 

fluorescence) and increased activity up to 10-fold (depending on bacteriochlorin) although it 

decreased cellular uptake.  The order of PDT activity against HeLa human cancer cells after 24 h 

incubation and illumination with 10 J/cm
2
 of NIR light is (NC)2BC-Pd (LD50 = 25 nM) > 

(NC)2BC > (NC)2BC-Zn ≈ BC.  Subcellular localization was in the endoplasmic reticulum, 

mitochondria and lysosomes depending on the bacteriochlorin.  (NC)2BC-Pd showed PDT-

mediated damage to mitochondria and lysosomes, and the greatest production of hydroxyl 

radicals as determined using a hydroxyphenylfluorescein probe.  The incorporation of cyano 

substituents provides an excellent motif for the enhancement of the photoactivity and 

photostability of bacteriochlorins as PDT photosensitizers.  
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Introduction  

Photodynamic therapy (PDT) is a rapidly developing cancer therapy that utilizes the 

combination of a non-toxic dye termed a photosensitizer (PS) and harmless visible or near-

infrared (NIR) light to kill cancer cells and destroy tumors by generating reactive oxygen species 

(ROS), such as singlet oxygen, superoxide and hydroxyl radical.
1
 PDT has the advantage of dual 

selectivity in that the PS can be targeted to its destination cell or tissue and the illumination can 

be spatially directed to the lesion.  The ROS produced during PDT are effective in killing both 

malignant and normal cells via necrosis, apoptosis or autophagy depending on the cell type, 

structure of the PS and the light parameters chosen. 

Bacteriochlorins are tetrapyrrole compounds with two opposing pyrroline (reduced 

pyrrole) rings.  The ring structure occurs naturally in photosynthetic pigments 

(bacteriochlorophylls a and b) from purple photosynthetic bacteria of the orders Rhodospirillales 

and Rhizobiales.  Reduction of two pyrrolic rings in the tetrapyrrole macrocycle has a 

pronounced effect on the absorption spectrum.  Bacteriochlorins and bacteriopurpurins have 

large absorption bands in the NIR spectral region of 720–850 nm where chlorins (one reduced 

ring) and porphyrins (no reduced rings) effectively do not absorb.  The characteristically large 

absorption of bacteriochlorins and bacteriopurpurins in the NIR is considered to be ideal for 

maximizing light penetration through tissue because both absorption and scattering of light at 

these wavelengths by endogenous chromophores are minimal.  

A disadvantage of many naturally occurring bacteriochlorin derivatives is their instability 

both in the dark and in the light.  A de novo synthetic route has been developed that affords 

bacteriochlorins that are stabilized against adventitious oxidation by the presence of a pair of 

geminal dimethyl groups.
2
  This route has been used to prepare bacteriochlorins containing a 
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variety of positively charged substituents, groups to impart water solubility, and groups that 

generally vary in hydrophobicity/hydrophilicity.  The bacteriochlorins were employed as PS to 

test PDT activity against B16 mouse melanoma cells,
3
 HeLa human cervical cancer cells

4
 and 

microbial cells (Gram-positive, Gram–negative bacteria and yeast)
5
 in vitro.  A number of the 

bacteriochlorins showed high PDT efficacy (e.g., LD50 < 100 nM) against the targeted cell lines, 

including bacteriochlorins B-16(1) and B-17(2).
3.4

 The reasons for the high PDT efficacy include 

the following: 1) the chemical characteristics such as lipophilicity ensure that these compounds 

are highly taken up by the targeted cells and subsequently localize in sensitive intracellular 

compartments such as mitochondria and endoplasmic reticulum (ER); 2) the long-wavelength 

absorption band with large extinction coefficient and the good triplet yield ensures that the 

incident light is optimally used to produce cell killing even with pigmented cells such as 

melanoma. 

 

 
 

Despite the favorable results, some of the compounds studied previously were more 

readily photobleached than others.  This finding indicated that improvements in photostability 

should be sought to enhance the efficacy of the synthetic bacteriochlorins for use in a variety of 

PDT protocols.  Furthermore, each bacteriochlorin employed was the metal-free (free base) form.  

PDT efficacy of tetrapyrroles and related macrocycles (porphyrins, chlorins, bacteriochlorins, 

phthalocyanines, etc.) often depends on the metalation state,
6
 as was found for a set of 
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imidazolium-substituted metalloporphyrins(1-Zn(3) and 2-M, where M=Zn (4), Pd (5), or InCl 

(6)).
7
 Therefore, in the present study the PDT efficacy of a group of free-base and metal-

substituted bacteriochlorins bearing electron-withdrawing cyano-groups was examined (7-10).  

The goal was to determine if such substituents and/or the presence or the nature of the central 

metal ion would enhance photostability and/or alter other physicochemical properties to give 

even greater efficacy for killing HeLa human cervical cancer cells. 

 

 

 

Many hydrophobic molecules such as the present bacteriochlorins are poorly soluble in 

biological media. Cell uptake should be optimum if the chemical/solubility properties of the PS 

allow for efficient transport through cellular and subcellular boundaries as well as reasonable 

solubility in both the cellular space and the delivery vehicle.  The formation of molecular 

aggregates can diminish uptake (due to mobility constraints) and reduce PDT activity (due to 

rapid nonradiative deactivation of the photoexcited PS).  Nonradiative deactivation 

accompanying aggregation also reduces the ability to probe cellular localization via confocal 

microscopy because fluorescence is generally dramatically quenched.  For these reasons 

Cremophor EL micellar preparation was studied as a delivery vehicle for the compounds.  
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Experimental methods 

Photostability 

Photostability measurements utilized excitation light obtained from a 300W Xenon lamp 

(Model R300-3 lamp and PS300-1 power supply; ILC Technologies, Sunnyvale, CA) that passed 

through a 70-cm path cell containing deionized water followed by a monochromator with a 10-

nm bandpass.  The light intensity at the sample position was measured using a calibrated diode 

and optometer (Models 221 and S471, United Detector Technologies, San Diego, CA) and was 

typically ~5 mW/cm
2
 at the wavelength (720-750 nm) of the NIR absorption maximum of the 

bacteriochlorin (A ~ 0.5 in 1 cm).  The solutions contained ambient (atmospheric) O2 and were 

stirred using a micro magnetic bar at the bottom of the cuvette during illumination. 

Synthesis and PDT activities  

Experimental informations are given in Ref A.
 

Results 

Absorption spectra 

The bacteriochlorin PS under study are relatively insoluble in water, which prompted use 

of two approaches toward solubilization for cell uptake experiments.  The procedures are as 

follows: (1) direct dilution (denoted dd) of bacteriochlorin from organic solvent (5 mM solutions 

in DMA or THF) into complete culture media containing supplemental 10% FBS and (2) 

encapsulation into CrEL micelles and dilution of this suspension at a bacteriochlorin 

concentration of approximately 500 µM into complete medium.  Figure 1 shows the absorption 

spectra for the four PS at 10 µM using these two delivery vehicles compared with the spectra 

determined in pure methanol.  All four compounds show good solubility in methanol, toluene, 

and a number of other organic media.  However, BC (7) and (NC)2BC (8) show significant 

A 

B 
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aggregation using direct dilution into complete medium, which is markedly reduced using CrEL 

encapsulation prior to dilution into complete medium (Figure 1a,b).  The metallobacteriochlorins 

(NC)2BC-Zn (9) and (NC)2BC-Pd (10) were significantly less aggregated after direct dilution 

and therefore the effect of CrEL was less pronounced (Figure 1c,d).  Synthetic bacteriochlorins 

such as those studied here absorb strongly in the NIR region, with a molar absorptivity at the 

NIR maximum (called the Qy band) of ~120,000 M
1

cm
1

.
2 

Photodynamic activity 

The best way to compare the phototoxicity of a group of PS having very different 

activities is to vary the concentration over several orders of magnitude and to determine the cell 

survival fraction with a single light dose.  The results of such studies with the directly diluted PS 

at concentrations up to 5 µM are shown in Figure 2a.  Because PS may exhibit some dark 

toxicity when used at high concentrations, a dark control was used for each data point.  Dark 

toxicity was negligible (greater than 85% survival at the highest PS concentration tested).  The 

order of effectiveness for PDT activity was as follows: (NC)2BC-Pd > (NC)2BC > (NC)2BC-Zn 

≈ BC.  The most active PS delivered by direct dilution, (NC)2BC-Pd, had an LD50 value of 25 

nM.  (NC)2BC was intermediate in activity with a LD50 of 60 nM, while the least active PS, BC 

and (NC)2BC-Zn, had LD50 values equal to or greater than 1 M (Table 1).   

The analogous data with CrEL formulated PS are shown in Figure 2b.  Note that dark 

toxicity was significantly higher for this formulation than for the direct dilution; accordingly, the 

highest concentration that could be tested was 1 µM.  (NC)2BC-Zn in CrEL approached 50% 

dark toxicity at 1 M, while BC showed 30% dark toxicity.  The PDT effectiveness of all four 

PS was improved by CrEL encapsulation.  (NC)2BC-Zn showed the most substantial 

improvement in that CrEL gave a 17-fold decrease in the LD50 concentration from 1 µM to 60 
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nM, while BC gave a 5-fold decrease from 1.8 M to 350 nM.  Only small (<3-fold) 

improvements were displayed by the more active PS, (NC)2BC and (NC)2BC-Pd (Table 1).  

The next test concerned the potential effect of CrEL encapsulation on the rate at which 

the cells took up the PS and therefore became photosensitive.  The study used a series of 

incubation times ranging from 30 min to 24 h along with the same PS concentration of 500 nM 

and the same delivered light fluence of 10 J/cm
2
.  The results are shown in Figure 3.  In all cases, 

CrEL encapsulation significantly reduced the incubation time required to produce light-mediated 

cell killing.  The greatest reduction in incubation time (and increase in cell killing) was found for 

BC (Figure 3a) where CrEL allowed more killing to be achieved after 30 min versus that after 24 

h with direct dilution.  For (NC)2BC-Zn (Figure 3c) there was also a reduction in the incubation 

time needed to produce killing that was not apparent with direct dilution.  For (NC)2BC and 

(NC)2BC-Pd, where the equivalent PS concentration with direct dilution did produce killing, 

CrEL emcapsulation shortened the required incubation time(Figure 3b,d). 
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Table 1. PDT activity and photostability of the bacteriochlorins.
a
  

Compound LD50 

dd 
b
 

LD50 

CrEL 
b 

LD90 

dd 
b
 

LD90 

CrEL 
b 

Uptake 

dd 
c
 

Uptake 

CrEL 
c
 

Efficacy/ 

uptake dd 
d
 

Efficacy/ 

uptake 

CrEL 
d
 

Photo-

stability 

DMA 
e
 

Photo-

stability 

CrEL 
e
 

 
(nM) (nM) (nM) (nM) (nmol/ 

mg) 

(nmol/ 

mg) 

    

BC 1800 60 3000 120 5.27 3.70 1.00 7.32 0.13 0.11 

(NC)2BC 60 25 300 100 4.26 3.32 37.11 114.29 0.91 0.90 

(NC)2BC-Zn 1000 350 2000 350 2.12 2.07 4.47 76.38 0.52 0.04 

(NC)2BC-Pd 25 18 90 40 4.77 2.32 79.55 227.15 0.83 0.94 

a
All measured quantities were obtained at room temperature. 

b
Values taken from Figure 2; dd reflects direct dilution of the DMA 

stock solution of the PS into complete medium, and CrEL reflects dilution of the micellar solution into complete medium.  
c 
Values 

taken from Figure 4 and apply to an incubation time of 24 h and bacteriochlorin concentration of 500 nM. 
d
Efficacy corrected for 

uptake.  The uptake values for BC, (NC)2BC  and  (NC)2BC-Zn  were  determined by fluorescence spectroscopy, while those for 

(NC)2BC-Pd were determined by absorption spectroscopy. The values are calculated by dividing the reciprocal of the LD50 by the 

uptake value, and then normalizing to the value for the direct dilution of BC.  
e
Fraction of the initial Qy absorbance remaining after 

100 J/cm2 illumination for dimethylacetamide (DMA) and CrEL micellar solutions.  B-16 and B-17 have photostability values in 

DMA of 0.02 and 0.09, respectively, and in CrEL of 0.10 at 70 J/cm
2
 and 0.22 at 50 J/cm

2
.
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Figure 1. Absorption spectra of the four bacteriochlorins.  Spectra were measured at 10 µM 

concentration of bacteriochlorin in pure methanol (solid red), in a solution obtained by direct 

dilution (dd) of a 5 mM DMA or THF stock solution of bacteriochlorin into complete medium 

containing 10% FBS (black dotted), or in a solution obtained by dilution of a 500 µM CrEL 

micellar stock solution of bacteriochlorin into complete medium containing 10% FBS (blue 

dashed).  A BC; B (NC)2BC; C (NC)2BC-Zn; and D (NC)2BC-Pd. 
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Figure 2. Relative effectiveness as photosensitizers and effect of Cremophor.  The 

bacteriochlorins were incubated with HeLa cells at a wide range of concentrations for 24 h, 

followed by illumination (or not) with 10 J/cm
2
 NIR light and a MTT assay 24 h later.  (a) Direct 

dilution (dd) into complete medium from 5 mM DMA solution.  (b) Dilution into complete 

medium from 500 µM CrEL solution. 
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Figure 3. Effect of incubation time and delivery vehicle on efficacy of cell killing. a) BC(7); 

b) (NC)2BC(8); c) (NC)2BC-Zn (9); and d) (NC)2BC-Pd(10). HeLa cells were incubated with 

the four bacteriochlorins (500 nM each) delivered either by direct dilution (black) or in CrEL 

micelles (red) for time periods from 30 min to 24 h followed by 10 J/cm
2
 NIR light and a MTT 

assay 24 h later.   
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Photostability 

The photostability of the four bacteriochlorins under study, BC, (NC)2BC, (NC)2BC-Zn, 

(NC)2BC-Pd was investigated and compared with the results for PDT activity of representative 

synthetic bacteriochlorins that were investigated previously (B-16 and B-17).
7b

 The 

bacteriochlorins were studied in DMA and aqueous CrEL micelles, and for both media in the 

presence of atmospheric O2.  Table 1 gives the fraction of the peak NIR (Qy) absorbance 

remaining as a function of incident light fluence up to 100 J/cm
2
 for the four bacteriochlorins.  A 

decrease in Qy absorbance parallels the progressive decrease in the entire (300900 nm) 

absorption spectrum with little or no sign of features due to a chromophoric photoproduct.  The 

diminution of the absorption profile was often accompanied by an increase in the absorption 

baseline, particularly at wavelengths shorter than 500 nm and increasing toward the near-UV 

region indicative of light scattering.   These combined observations suggest that 

photoaggregation contributes to photoinstability.  In some cases, depending on compound and 

medium, weak absorptions due to photoproducts (likely open-chain tetrapyrroles) are also 

observed. 

The data in Table 1 show that (NC)2BC and (NC)2BC-Pd are substantially more 

photostable than (NC)2BC-Zn and BC and have 15% loss of absorbance at 100 J/cm
2
 

illumination in both media.  The bacteriochlorins (NC)2BC and (NC)2BC-Pd are also 

substantially more photostable than the previously studied bacteriochlorins B-16 (1) and B-17 (2), 

which in DMA give residual  Qy absorbance values of 0.02 and 0.09, and in CrEL of 0.10 at 70 

J/cm
2
 and 0.22 at 50 J/cm

2
, respectively. 

More results to elucidate PDT effectivenss which are subcellular localization, 

photosensitizer uptake, and reactive oxygen species generation are given in ref A. 
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Discussion 

Motivation and overview 

This study has demonstrated structure-function relationships among PS consisting of a set 

of bacteriochlorins characterized by variations in 1) peripheral substituent pattern (unsubstituted 

or with 3,13-dicyano groups) and 2) metalation state (free base or Pd
2+

 or Zn
2+

 chelate).  Our 

previous studies of tailored synthetic bacteriochlorins has afforded molecules that show 

quantitative structure-activity relationships with regard to charge and lipophilicity (logP),
4
 and 

that are well suited for a range of PDT applications including treatments for microbial infections
5
 

and for melanoma.
3 

 Bacteriochlorins B16(1) and B17(2) are representative compounds that 

proved efficacious against HeLa cancer cells with LD50 of ≤100 nM.
4
 However, the 

photostability of these compounds in the PDT milieu was less than optimal, and photobleaching 

could therefore prove problematic in some PDT protocols.  

meso-Tetraarylbacteriochlorins bearing halogens (F, Cl) in the ortho-aryl positions and 

sulfo substituents in the meta-aryl positions have been reported to afford a pronounced increase 

in photostability due to the electron-withdrawing character of the substituents.
8
  Here, we found 

that peripheral cyano groups markedly increase the PDT activity compared to the analog that 

lacks these substituents.  For example, among the two free base bacteriochlorins, (NC)2BC is 

more active than BC.  The central Pd
2+

 ion of (NC)2BC-Pd increases activity over (NC)2BC, 

and (NC)2BC is in turn more active than the zinc chelate (NC)2BC-Zn (Table 1).  The origin of 

these differences must now be examined. 

Photostability  

A goal of this study was to determine if incorporation of 3,13-dicyano substituents on a 

bacteriochlorin could improve photostability over analogues studied previously (B-16, and B-
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17), including those that have good PDT activity.  The results demonstrate that (NC)2BC-Pd and 

(NC)2BC are more photostable and more photoactive than (NC)2BC-Zn and BC (Table 1).  

Furthermore, as noted above, (NC)2BC-Pd and (NC)2BC are clearly more photostable than 

previously studied bacteriochlorins B-16 and B17, at least in the solvent systems studied (DMA 

and CrEL), although the activities are comparable or only modestly better (LD50 < 100 nM).  It 

can be seen that photostability depends on the medium to a degree depending on the compound.   

Although the photostability of a PS is highly desirable, direct connections with activity  

are difficult and likely need to take into account additional factors such as the mutual 

solubility/solubilization characteristics of the solvate/solvent and potential mechanisms of 

photoaggregation, which appears to contribute ( among with formationof photoproducts such as 

open-chain tetrapyrrole) to photoinstability. Furthermore, photobleaching has been proposed to 

be beneficial in clinical applications by providing a wider safery margin against normal tissue 

damage.
30

 The relationships between the excited-state properties that influence photostability 

(via photoaggregation or photoproduct formation) and photoactivity (via the ability to perform 

Type-1 photochemistry) will be explored in a subsequent paper, drawing on a broad range of 

bacteriochlorin and porphyrin PS and media conditions that are beyond the scope of the present 

study.   

Futher discussions about localization, cellular uptake and distribution, delivery vehicle 

and mechanisms of reactive oxygen species production are described in detail elsewhere.
A 
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Abstract 

 Photodynamic inactivation is a rapidly developing antimicrobial treatment that employs a 

non-toxic photoactivatable dye or photosensitizer in combination with harmless visible light to 

generate reactive oxygen species that are toxic to cells. Tetrapyrroles (e.g., porphyrins, chlorins, 

bacteriochlorins) are a class of photosensitizers that exhibit promising characteristics to serve as 

broad-spectrum antimicrobials. In order to bind to and efficiently penetrate into all classes of 

microbial cells, tetrapyrroles should have structures that contain (i) one or more cationic charge(s) 

or (ii) a basic group. In this report, we investigate the use of new stable synthetic bacteriochlorins 

that have a strong absorption band in the range 720–740 nm, which is in the near-infrared 

spectral region. Four bacteriochlorins with 2, 4 or 6 quaternized ammonium groups, or 2 basic 

amine groups, were compared for light-mediated killing against a Gram-positive bacterium 

(Staphylococcus aureus), a Gram-negative bacterium (Escherichia coli), and a dimorphic fungal 

yeast (Candida albicans). Selectivity was assessed by determining phototoxicity against human 

HeLa cancer cells under the same conditions. All 4 compounds were highly active (6 logs of 

killing at 1 µM or less) against S. aureus and showed selectivity for bacteria over human cells. 

Increasing the cationic charge increased activity against E. coli. Only the compound with basic 

groups was highly active against C. albicans. Supporting photochemical and theoretical 

characterization studies indicate (i) the four bacteriochlorins have comparable photophysical 

features in homogeneous solution and (ii) the anticipated redox characteristics do not correlate 

with cell-killing ability. These results support the interpretation that the disparate biological 

activities observed stem from cellular binding and localization effects rather than intrinsic 

electronic properties. These findings further establish cationic bacteriochlorins as extremely 

active and selective near-infrared activated antimicrobial photosensitizers, and the results 
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provide fundamental information on structure-activity relationships for antimicrobial 

photosensitizers. 

Introduction 

 Photodynamic therapy (PDT) employs a nontoxic dye termed a photosensitizer and low-

intensity visible light, which in the presence
 
of molecular oxygen produces reactive oxygen 

species, such as singlet oxygen, superoxide, and hydroxyl radicals.
15 

 PDT has the advantage
 
of 

dual selectivity in that the photosensitizer can be targeted to a destination
 
cell or tissue, and in 

addition the illumination can be spatially
 
directed to the lesion.

7,48
 PDT has its origins over a 

hundred years ago in the discovery of light-mediated killing of microorganisms
35

, but since then
 

has been principally developed as a treatment for cancer
8
 and age-related macular 

degeneration.
58

 Photodynamic inactivation (PDI) is the term used to describe the use of PDT to 

inactivate an unwanted entity such as a microbial cell.   

There has been a relentless rise in antibiotic resistance over many years in most regions 

of the world and in many different classes of microbial cells.
41

 In recent times the phenomenon 

has become even more worrying, with concerns that hitherto fairly trivial infections could again 

become untreatable as in the days before antibiotics were discovered. 
3
 In fact the present time 

has been termed the “end of the antibiotic era”.
1
 The rise in multidrug resistance among 

microbial pathogens has motivated an international search for alternative antimicrobial strategies, 

particularly those which could be applied to infections in wounds and burns.
32

 

PDI has attracted
 

attention as a possible alternative treatment for localized 

infections.
14,19,27 

In this treatment, the photosensitizer is topically or locally applied to the 

infected tissue and, after a relatively short time interval, light is delivered to the area.  Depending 
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on the effectiveness of the antimicrobial photosensitizer, up to three logs of bacterial or fungal 

cells can be killed without causing unacceptable damage to the host tissue.
11 

 PDI is thought to be 

equally effective against multi-drug resistant as against naïve species
49

, and in addition the PDI 

treatment itself is unlikely to cause resistance to arise.
26 

 It should be noted that the lack of 

development of resistance after PDT is generally difficult to prove experimentally but can be 

shown in particular instances. 

 

Figure 1. Bacteriochlorin photosensitizer 

Gram-negative bacteria are resistant
 
to PDI with many commonly used photosensitizers 

that readily lead to
 

phototoxicity for Gram-positive species.
29

  On the other hand, 

photosensitizers bearing
 
a cationic charge

31,33,37
 or the use of agents that increase the

 
permeability 

of the outer membrane
38

 are known to increase the efficacy
 
of killing of gram-negative 
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organisms. The ideal photosensitizer for killing bacteria should possess an overall cationic 

charge
 
and preferably multiple cationic charges.

16,52
  

Photosensitizers based on the bacteriochlorin backbone have been studied as potential 

PDT-agents for cancer and non-oncological applications.
10,43,46,55

 The large absorption feature in 

the near-infrared spectral region, which is characteristic of bacteriochlorins, is considered to be 

ideal for maximizing light penetration through tissue. This is so because both absorption and 

scattering of light in the 700−800 nm region are minimal.
40,42

  However, in addition to good 

optical properties, it is necessary for a photosensitizer molecule to possess the appropriate 

structural characteristics that will optimize the binding to and penetration into microbial cells. 

For antimicrobial applications, the effective molecular features are likely to include the presence 

of positively charged substituents such as quaternized ammonium groups.  

A de novo synthetic pathway to bacteriochlorins that contain a geminal dimethyl group in 

each pyrroline ring has been developed recently.
22 

 This structural attribute blocks adventitious 

dehydrogenation (to form the chlorin) and thereby affords a stable macrocycle. This synthetic 

route has provided a number of bacteriochlorin building blocks, which provided modular access 

to bacteriochlorins 1–4 (Figure 1). The four molecules were designed to allow investigation of 

the structure activity relationship among differently charged bacteriochlorins. Bacteriochlorin 1 

is a neutral species with two basic amino groups; bacteriochlorins 2–4 contain 2, 4, or 6 cationic 

charges, respectively. The synthesis of bacteriochlorins 1–3 has been reported
44

, and the 

synthesis of 4 will be described herein. The photophysical and molecular-orbital characteristics 

of all four bacteriochlorins have been investigated as part of this study. The goals of the present 

study were to (i) test bacteriochlorins 1–4 as antimicrobial photosensitizers against a panel of 

human pathogens of different taxonomic classifications, and (ii) determine selectivity of the four 
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bacteriochlorins for killing microbial cells versus mammalian (human cancer) cells using the 

same incubation time and other experimental conditions. 

Experimental methods 

Photophysical measurements 

 Photophysical measurements were preformed as described previously.
20

 Measurement of 

the fluorescence (f) and triplet-excited-state (isc) quantum yields and singlet (S) and triplet 

(T) lifetimes utilized Ar-purged solutions (methanol or 2-methyltetrahydrofuran) except that the 

T values for 2 in methanol and 3 in ethanol utilized rigorously degassed (by freeze-pump-thaw) 

solutions. The f values were determined with respect to 8,8,18,18-tetramethylbacteriochlorin 

(50) in Ar-purged toluene, for which f = 0.125 was established with respect to chlorophyll a in 

benzene (f = 0.325)
56 

and free base tetraphenylporphyrin in toluene (f =0.09)
12

 using Soret 

and Qx excitation. Triplet yields were determined using a reference technique to facilitate 

comparisons (20). First, a value of isc = 0.57 was measured for 3. This value along with the f 

and S values for this compound (Table 1) give a value of kic = (11.4 ns)
1

 for the rate constant 

for internal conversion of the lowest singlet excited state to the ground state via the expression 

kic = (S)
1

[1  f  isc]. This value is in good agreement with the average value of kic = (10 

ns)
1

 obtained for a number of analogous 3,13-substituted synthetic bacteriochlorins 

(unpublished work). This kic value was used to obtain the triplet yield for each of the 

bacteriochlorins using the expression ref
isc  = 1 – f – kicS (Table 1).  

Other experimental detail containing synthesis and PDT activity is shown in Ref A.  
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Results 

 

Figure 2. Absorption spectra of bacteriochlorins. 1( solid line) and 2 ( dashed line) in methanol 

at room temperature. The long wavelength near-infrared feature is the Qy(0,0)band. 

 

PDI studies against Gram-positive S. aureus 

The best way to compare the phototoxicity of a group of photosensitizers with very 

different potencies is to vary the concentration over several orders of magnitude and determine 

the survival fraction with and without (dark toxicity) a single light dose. Figure 3 displays the 

survival fraction curves obtained against the Gram-positive bacterium S. aureus incubated for 30 

minutes using bacteriochlorins 1–4 with and without illumination (10 J/cm
2
 732-nm laser light). 

The non-cationic bacteriochlorin 1 produces 1 log of killing at 100 nM, almost 6 logs at 1 µM, 

and eliminates the cells at higher concentrations (Figure 3A). The most effective compound is 

the bis-cationic bacteriochlorin 2, which kills a remarkable 5 logs at 100 nM and eliminates the 

population at 1 µM (Figure 3B). No dark toxicity is observed. Less effective than 2 are the 
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tetrakis-cationic bacteriochlorin 3 (Figure 3C) and the hexakis-cationic bacteriochlorin 4 (Figure 

3D), both of which have a small amount of phototoxicity at 100 nM and kill 5 logs at 1 µM. 

Again no dark toxicity is seen.   

 

Figure 3. Survival fraction against photosensitizer concentration for the photodynamic killing of 

S. aureus cells. Cell suspensions of 10
8
/mL were incubated for 30 min with different 

concentrations of bacteriochlorins 1 (A); 2 (B); 3 (C) and 4 (D) followed by illumination with 10 

J/cm
2
 of 732-nm laser light. 

 

PDI studies against Gram-negative E. coli 

The non-cationic bacteriochlorin 1 shows no effects (no phototoxicity and no dark 

toxicity) against the Gram-negative E. coli (Figure 4A). The bis-cationic bacteriochlorin 2, 

however, is effective against E. coli, killing 1 log at 1 µM, 3 logs at 10 µM and eliminating the 
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population at 100 µM (Figure 4B). Modest dark toxicity (up to 1 log) is observed at the highest 

concentrations. The tetrakis-cationic bacteriochlorin 3 is significantly more effective, killing 4 

logs at 1 µM, almost 6 logs at 10 µM and eliminating the cells at 100 µM (Figure 4C). The 

hexakis-cationic bacteriochlorin 4 is even more powerful, killing 1.5 logs at 100 nM and 

eliminating the cells at 1 µM (Figure 4D). Interestingly, neither bacteriochlorin 3 nor 4 displays 

dark toxicity 

 

Figure 4.Survival fraction against photosensitizer concentration for the photodynamic killing of 

E. coli cells. Cell suspensions of 10
8
/mL were incubated for 30 min with different concentrations 

of bacteriochlorins 1 (A); 2 (B); 3 (C) and 4 (D) followed by illumination with 10 J/cm
2
 of 732-

nm laser light. 
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PDI studies against fungal yeast C. albicans  

 The only bacteriochlorins that exhibits a high degree of phototoxicity against the 

eukaryotic fungal yeast cell C. albicans is the non-cationic bacteriochlorin 1 (Figure 5A). This 

compound displays 4 logs of killing at 10 µM and gives total elimination (>6 logs killing) at 100 

µM. A much lower degree of phototoxicity is observed with the bis-cationic bacteriochlorin 2 

with 12 logs of killing at 10–100 µM (Figure 5B). Neither the tetrakis-cationic bacteriochlorin 

3 (Figure 5C) nor the hexakis-cationic bacteriochlorin 4 (Figure 5D) show any PDI effect 

whatsoever. The only dark toxicity towards C. albicans is 2 logs in the case of bacteriochlorin 1 

at 100 µM (Figure 5A).  

Confocal microscopy was carried out to confirm that the non-cationic bacteriochlorin 1 is 

effective at killing Candida cells because it is able to penetrate inside the cell while the 

quaternized bacteriochlorin 2 cannot. Figure 6A shows C. albicans incubated with 100 µM 

bacteriochlorin 1 for 30 min. The bacteriochlorin fluorescence is false colored red and the 

autofluorescence from the Candida cells is false colored green. It can be seen that the basic 

bacteriochlorin 1 penetrates into the interior of the yeast cells (Figure 6A), while the bis-cationic 

bacteriochlorin 2 under the same conditions gives much less fluorescence, and none was visible 

inside the yeast cells (Figure 6B). 

PDI studies against mammalian cells 

In order to answer the question whether these bacteriochlorins might exhibit selective 

killing of microbial (bacterial or fungal) cells versus the host mammalian cells, experiments were 

performed using a human cancer cell line (HeLa) and the same short incubation time (30 

minutes). Tetrapyrroles are thought to be taken up rapidly into microbial cells, but much more 
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slowly into mammalian cells. In order to carry out a fair comparison (because the microbial cells 

were incubated in serum-free medium) two different incubation media were used. These were 

complete medium 10% fetal bovine serum and also RPMI medium without serum. All three 

cationic bacteriochlorins (2, Figure 7B; 3, Figure 7C; and 

 

Figure 5.  Survival fraction against photosensitizer concentration for the photodynamic 

killing of C albicans cells. Cell suspensions of 10
7
/mL were incubated for 30 min with different 

concentrations of bacteriochlorins 1 (A); 2 (B); 3 (C) and 4 (D) followed by illumination with 10 

J/cm
2
 of 732-nm laser light. 

4, Figure 7D) exhibit minimal PDT killing of HeLa cells, only exhibiting significant 

phototoxicity above 5 µM. By contrast the non-quaternized bacteriochlorin 1 (Figure 7A) shows 
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much greater (at least 50 times) phototoxicity with significant killing observed at only 100 nM. 

Although the MTT assay is only capable of measuring 2.5 logs of cell killing, the same y axis 

was used in Fig. 3 to 5 and 7 to emphasize the observed selectivity of the bacteriochlorins for 

microbial over mammalian cells. In contrast to expectations, the PDT killing of HeLa cells by 

compounds 2 to 4 after incubation in serum-free medium was actually lower than that found with 

conventional serum-containing medium (Fig. 7B to D). It was expected that the uptake of 

bacteriochlorins into the cells might be higher when there was no competition for binding from 

serum proteins, but apparently this was not the case. The only case where the killing was higher 

after incubation in serum-free medium was that of the dark toxicity (not PDT) for compound 1 

(Fig. 7A). 

 

 Figure 6. Two color confocal fluorescence micrographs. C albicans cells were incubated for 30 

min with 100 µM of bacteriochlorin 1 (A) or 2 (B). Autofluorescence is colored green and near-

infrared bacteriochlorin fluorescence is colored red. The scale bar is 10 µm. 

 

Photophysical properties  

 Each compound exhibits a characteristic bacteriochlorin absorption spectrum
23

 with a 
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broad near-UV Soret (B) feature and a long-wavelength Qy feature of comparable intensity in 

the near-infrared spectral region; absorption spectra for bacteriochlorins 1 and 2 are shown in 

Figure 1. The wavelength tunability of synthetic bacteriochlorins via functionalization of the 

3- and 13-position has been reported previously.
50

 The Qy absorption maximum of 

bacteriochlorins 14 in methanol are in the range 718742 (Table 1). Lifetimes of the singlet 

state are in the range 3.54.0 ns, and the lifetimes of the lowest triplet excited state are in the 

range 5490 s (all in the absence of oxygen). The triplet lifetimes are reduced to <1 s in 

the presence of atmospheric oxygen, indicating facile excited-state quenching. The yields of 

the excited triplet state are in the range 0.480.53. These values are comparable to that of 

0.54 for bacteriopheophytin a.
17
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Figure7. Survival fraction against photosensitizer concentration for the photodynamic killing of 

HeLa cells. Cells (5,000/well)were incubated in complete medium or in serum free medium (SF) 

for 30 min with different concentrations of compounds 1(A), 2(B), 3(C), and 4(D) followed by 

illumination ( light) or not (dark) with 10 J/cm
2
 of 732-nm laser light. Viability was determined 

24h later by MIT assay. 
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Table 1. Chemical and photophysical properties of bacteriochlorins 
a
 

Cmpd Partition Coefficient  
Qy 

absorption
b
 

 
Qy 

fluorescence
b
 

 f 
c
 

S
d 

(ns) 
ref
iscΦ

e
 

T
f
 

(s) 
Orbital Energy 

 mLogP
g
 cLogP

h
  

 
(nm)

 
fwhm 

(nm)
 

 

 
(nm)

 
fwhm 

(nm)
 

      
HOMO 

(eV) 

LUMO 

(eV) 

1 +2.3 +4.8 ± 1.5  718 18  724 23  0.095 3.8 0.53 190
i
 4.42 2.19 

2 –0.5 –1.1 ± 1.7  742 23  750 25  0.13 4.0 0.48 77
j
 4.72 3.34 

3 –1.4 –5.3 ± 1.7  729 19  735 24  0.12 3.5 0.53 54
k
 5.05 3.89 

4 –1.7 –5.8 ± 1.7  740 24  750 25      4.56 3.92 

a
 All data measured for compounds at room temperature. 

b
Peak wavelength (λ) and full width at half maximum (fwhm) of spectral 

feature for compound in aerated methanol. 
c
Fluorescence quantum yield for compound in Ar-purged methanol. 

d
Lifetime of the lowest 

singlet excited state for compound in Ar-purged methanol determined using fluorescence detection. 
e
Yield of the lowest triplet excited 

state determined using the expresssion ref
isc  = 1 – f – kicS, with kIC = (10 ns)

–1
 as described in the text. 

f
Lifetime of the lowest 

triplet excited state. 
g
Measured log P. 

h
Calculated log P. 

i
In Ar-purged 2-methyltetrahydrofuran. 

j
In freeze-pump-thaw-degassed 

methanol. 
k
In freeze-pump-thaw-degassed ethanol. 
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Molecular orbital characteristics  

 The energies of the highest occupied molecular orbital (HOMO) and lowest 

unoccupied molecular orbital (LUMO) of each bacteriochlorin were obtained from DFT 

calculations. Table 1 shows that the HOMO energy becomes more negative along the 

following series: 1 (4.42 eV) > 3 (4.56 eV) > 2 (4.72 eV) > 4 (5.05 eV). Along this 

series, the bacteriochlorins will be progressively harder to oxidize. Table 1 also shows that 

the LUMO energy becomes more negative along the following series: 1 (2.19 eV) > 2 

(3.34 eV) > 3 (3.89 eV) > 4 (3.92 eV). Along this series, the bacteriochlorins will be 

progressively easier to reduce. 

 A prior study of a series of zinc chlorins showed excellent linear correlations between 

the calculated orbital energies and measured redox potentials, with a shift in the HOMO or 

LUMO energy of 100 meV giving a shift in the oxidation or reduction potential of on the 

order of 100 mV.
21

 These findings suggest that differences in ground-state (S0) oxidation 

and/or reduction potentials among the bacteriochlorins studied here may be substantial. The 

one caveat is that the redox properties of a bacteriochlorin may differ considerably 

depending on the sub-cellular localization site. A second caveat is that the triplet excited 

state (T1) redox potentials will differ from those for the ground-state (S0) by the T1  S0 

energy gap, which typically will vary similarly to the S1  S0 energy gaps derived from 

Qy(0,0) spectral positions (Table 1). Potential connections between redox and PDI activity 

are given below.  
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Discussion 

The present report has demonstrated that stable, synthetic cationic bacteriochlorins are 

highly promising candidate photosensitizers for antimicrobial PDT. The new method for 

bacteriochlorin synthesis
22,24

 provides compounds with gem-dimethyl groups in the reduced 

pyrrole rings at the 8 and 18 positions. This substitution pattern locks-in the bacteriochlorin 

macrocycle by preventing the oxidation reactions that typically occur with derivatives of 

naturally occurring bacteriochlorins. These reactions lead to instabilities encountered with many 

other bacteriochlorins previously tested for PDT activity. The versatility of the 3,13-disubstituted 

bacteriochlorin building blocks enables macrocycles with a variety of substituent patterns to be 

prepared, including the set of quaternized compounds that were studied herein. 

A large number of publications have pointed out the necessity of using cationic charged 

photosensitizers to efficiently mediate photodynamic inhibition (PDI) of Gram-negative bacteria; 

however, reports that have compared structure-function relationships of photosensitizers against 

three different classes of microbial cell (Gram-positive bacteria, Gram-negative bacteria, and 

fungal yeast) are less common.
30

 One striking result from the present investigation is that the 

photosensitizer structure that gives the maximum PDI effect is different for each class of 

microbial cell.  

All four compounds tested were highly active against the Gram-positive S. aureus 

(Figure 3). The bis-quaternized bacteriochlorin 2 was most effective, producing a remarkable 5 

logs of killing at 100 nM. The other three compounds (basic, tetrakis-quaternized and hexakis-

quaternized) exhibited comparable levels of cell killing that were lower than 2 but still quite 

substantial (>5 logs at 1 µM). One explanation of this finding is that there exists an optimum 
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level of cationic charge necessary both to bind to bacterial anionic phosphate groups and to also 

allow penetration into the bacterial cell wall where the reactive oxygen species produced upon 

illumination can do most damage. Levels of cationic charge less than this optimum value (for 

instance the properties of bacteriochlorin 1) will not lead to sufficient binding, or cationic 

charges greater than this optimum value (for instance bacteriochlorins 3 and 4) will lead to the 

binding being too strong to allow photosensitizer penetration to the bacterial interior. A similar 

finding has been presented in two other reports by one of our groups involving comparisons of 

conjugates between chlorin(e6) and different sizes of polylysine chains
16

 or different sizes of 

polyethylenimine chains.
51

 In both cases the smallest conjugate with the least cationic charges 

has the greatest PDI effect against S. aureus, while the largest conjugate with the most cationic 

charges was the most effective against E. coli. Maisch et al.
28

 also found that a porphyrin with 

two cationic groups was a better photosensitizer against S. aureus than a molecule with four such 

groups. 

A more straightforward structure-function relationship is found here for the effect of the 

bacteriochlorins against the Gram-negative E. coli (Figure 4). In particular, the greater the 

number of cationic quaternized groups the greater the PDI effect. Bacteriochlorin 4 with six 

cationic groups kills measurable numbers of cells at 100 nM and eliminates the population at 1 

µM. Bacteriochlorin 3 (4 cationic groups) kills 4 logs at 1 µM, while bacteriochlorin 2 (2 

cationic groups) kills only 1 log at 1 µM, and bacteriochlorin 1 (no cationic groups) has no 

killing effect at all.  

The fungal yeast C. albicans displays yet another structure-function relationship (Figure 

5). Only the non-cationic bacteriochlorin 1 has a high PDI killing effect, namely elimination of 

the population (> 6 logs) at 100 µM. The bis-cationic bacteriochlorin 2 shows a measurable 1−2 



 

284 

 

logs of killing at 1 µM, while bacteriochlorins with four (3) or six (4) cationic groups give no 

killing effect at all. The microscopy studies suggest that the non-cationic bacteriochlorin 1 is able 

to penetrate to the interior of the fungal cells, while the cationic bacteriochlorin 2 cannot; this 

difference in localization and uptake explains the much greater fungicidal effect of 1. The 

similarity of the structure-function relationships between Candida and HeLa cells is presumably 

due to the fact that fungal cells are eukaryotic and to some extent resemble mammalian cells in 

their overall cellular structure. Because both types of cells are classified as eukaryotes, they have 

many component features in common, including plasma membrane, nucleus and nuclear 

membrane, mitochondria, endoplasmic reticulum, Golgi apparatus and cytoskeleton.  

While many authors have reported that Candida cells are susceptible to PDI with cationic 

photosensitizers
9,25,36

, there are other reports that photosensitizers commonly used to kill cancer 

cells, such as Photofrin
5
, are also effective against yeast cells. Further study is necessary to 

understand the precise structural features of photosensitizer molecules for optimal PDI of fungal 

cells, while preserving selectivity over the host mammalian cells. The overall goal of 

antimicrobial PDT is to be able to kill microbes that are infecting tissue after local application of 

the photosensitizer solution to the infected area and subsequent illumination. Thus, it is 

necessary to also study the PDT killing of mammalian cells that would comprise the host tissue. 

To this end, a human cancer cell line (HeLa cells) was investigated using the same incubation 

time (30 min) employed for the microbial cells. The structure-function relationship was to some 

extent similar to that found for C. albicans with only the basic bacteriochlorin (1) giving any 

significant level of killing at concentrations lower than 1 µM. Therefore, selective PDT killing of 

bacteria compared to mammalian cells is accomplished with quaternized bacteriochlorins with 
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the bis-cationic compound giving the highest selectivity for S. aureus and the hexakis cationic 

compound giving the highest selectivity for E. coli.  

To our knowledge there has been only one prior investigation of bacteriochlorins as 

antimicrobial photosensitizers. Schastak et al.
45

 compared the photodynamic killing of S. aureus, 

MRSA, E. coli and Pseudomonas aeruginosa using a meso-substituted tetramethylpyridinium 

bacteriochlorin versus that with a chorin(e6) derivative called Photolon. The cationic 

bacteriochlorin was able to kill both Gram-positive and Gram-negative bacteria, while the 

anionic Photolon was only able to kill Gram-positive species. Several groups have studied 

bacteriochlorins to kill cancer cells and to treat tumors in vivo. The long-wavelength light 

between 700 and 800 nm that is absorbed by bacteriochlorins is believed to be ideally suited to 

penetrate living tissue due to reduced absorption by tissue chromophores and reduced Mie 

scattering.
53

  The large extinction coefficient (>100,000 M
1

cm
1

) typical of the bacteriochlorin 

Qy band is also advantageous for strong absorption of near-infrared light by the photosensitizer. 

The Pd-containing bacteriochlorins known as TOOKAD (13, 57) and Stakel (2) have been 

extensively investigated in laboratory studies, and, in addition, TOOKAD has been studied in 

clinical trials of PDT for prostate cancer.
54

  

The photophysical studies and DFT calculations indicate that the activity differences 

observed among bacteriochlorins 1–4 must stem from cellular binding and localization effects 

rather than photochemical properties. Indeed, the yield of the triplet excited state (from which the 

reactive oxygen species is produced) is essentially identical (0.480.53) for the four 

bacteriochlorins, and in each cases the lifetime is reduced to <1 s in the presence of 

atmospheric oxygen, indicating facile excited-state quenching. Moreover, there is no specific 

correlation between the anticipated differences in redox properties (based on the molecular-
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orbital energies) for the four bacteriochlorins and their PDI activity against any of the organisms 

studied.  The only broad trend is that 1 or 2 are typically more active than 3 or 4, which all other 

things being equal would favor a mechanism of activity that involves reduction rather than 

oxidation of the photoexcited bacteriochlorin to the extent that electron transfer is involved.  

 In conclusion, bacteriochlorins with constitutive cationic charges provided by quaternized 

ammonium groups are highly active antibacterial photosensitizers. The hexakis-cationic 

bacteriochlorin 4 is capable of eliminating (>6 logs killing) both Gram-positive (S. aureus) and 

Gram-negative (E. coli) bacteria at the remarkably low concentration of 1 µM. Good selectivity 

(4-5 logs) for bacteria over mammalian cells is observed. Only the non-quaternized 

bacteriochlorin 1 shows good PDT killing of the yeast (C. albicans), and selectivity over 

mammalian cells is lower in this case because both cell types are eukaryotic organisms. 
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Chapter 11 

Molecular Electronic Tuning of Photosensitizers to Enhance Photodynamic Therapy: 

Synthetic Dicyanobacteriochlorins as a Case Study 
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Abstract 

Photophysical, photostability, electrochemical, and molecular-orbital characteristics are 

analyzed for a set of stable dicyanobacteriochlorins that are promising photosensitizers for 

photodynamic therapy (PDT).  The bacteriochlorins are the parent compound (BC), dicyano 

derivative (NC)2BC and corresponding zinc (NC)2BC-Zn and palladium chelate (NC)2BC-Pd.  

The order of PDT activity against HeLa human cancer cells in vitro is (NC)2BC-Pd > (NC)2BC 

> (NC)2BC-Zn ≈ BC.  The near-infrared absorption feature of each dicyanobacteriochlorin is 

bathochromically shifted 3550 nm (748763 nm) from that for BC (713 nm).  Intersystem 

crossing to the PDT-active triplet excited state is essentially quantitative for (NC)2BC-Pd.  

Phosphorescence from (NC)2BC-Pd occurs at 1122 nm (1.1 eV).  This value and the measured 

ground-state redox potentials fix the triplet excited-state redox properties, which underpin PDT 

activity via Type-1 (electron-transfer) pathways.  A perhaps counterintuitive (but readily 

explicable) result is that of the three dicyanobacteriochlorins, the photosensitizer with the 

shortest triplet lifetime (7 s), (NC)2BC-Pd, has the highest activity.  Photostabilities of the 

dicyanobacteriochlorins and other bacteriochlorins studied recently are investigated and 

discussed in terms of four phenomena: aggregation, reduction, oxidation, and chemical reaction.  

Collectively, the results and analysis provide fundamental insights concerning the molecular 

design of PDT agents. 
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Introduction  

Photodynamic therapy (PDT) is an emerging treatment approach that uses a non-toxic 

photosensitizer and harmless visible or near-infrared (NIR) light to kill diseased cells by 

generating reactive oxygen species, such as singlet oxygen, superoxide and hydroxyl radicals.
1
  

To enhance the efficacy and selectivity of response, molecular tuning of the chemical and 

electronic-structure characteristics of photosensitizers is employed to produce (1) favorable 

photophysical properties; (2) chemical and photochemical stability; (3) preferential delivery to 

the destination tissue or cell type, including subcellular compartments; and (4) production of 

reactive oxygen species that are especially lethal to the target cell.   

An important consideration is to choose or tune the photosensitizer to have strong 

absorption in the NIR region where light penetration through tissue is maximal because both 

absorption and scattering of light at these wavelengths by endogenous chromophores are 

minimal.  In this regard, bacteriochlorins and related macrocycles are ideal because of the intense 

NIR (720850 nm) absorption resulting from the reduction of two pyrrolic rings in the 

tetrapyrrole macrocycle compared to chlorins (one reduced ring, modestly intense red absorption) 

and porphyrins (no reduced rings and weak or no red or NIR absorption).  Naturally occurring 

bacteriochlorins or derivatives thereof, such as WST9 (Tookad) and WST11 (Chart 1) can have 

high PDT efficacy but have drawbacks due to instability (in the dark and in the light) and 

limitations on molecular tailoring because nearly all sites about the perimeter of the macrocycle 

already bear substituents.   

A de novo synthetic route has been developed to access bacteriochlorins that are 

stabilized against adventitious oxidation by the presence of a geminal dimethyl group in each 
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reduced ring.
2-4

 This route has been used to prepare bacteriochlorins containing a variety of 

positively charged substituents, groups to impart water solubility, and/or groups that can vary the 

balance between hydrophobicity and hydrophilicity.  The PDT activity of these bacteriochlorins 

has been tested against B16 mouse melanoma cells
5
, HeLa human cervical cancer cells

6
 and 

microbial cells (Gram-positive, Gram-negative bacteria and yeast)
7 

in vitro.  A number of these 

synthetic bacteriochlorins are highly efficacious (i.e., LD50 100 nM) for cell killing against 

human cancer cell lines.  Representative structures are shown in Chart 2.  The bacteriochlorins 

employed are all the metal-free (free base) forms.  The PDT efficacy of tetrapyrrole 

chromophores (e.g., porphyrins, chlorins, bacteriochlorins, phthalocyanines) often depends on 

the metalation state,
8
 as was found for a set of imidazole-substituted metalloporphyrins (Chart 3) 

targeted against HeLa and CT26 cancer cells.
9,10

 

Some of the synthetic bacteriochlorins are more readily photobleached than others.  

Photobleaching is defined as loss of absorption of the bacteriochlorin, and can stem from a 

variety of causes (oxidation, reduction, aggregation, chemical reaction).  Understanding the 

interplay of molecular structure and origin of photobleaching in principle could lead to 

improvements in photostability and thereby afford increased PDT activity.   

Recently we synthesized and examined the PDT efficacy against HeLa cancer cells of a 

set of free base and metal-substituted bacteriochlorins bearing electron-withdrawing, cyano-

groups (Chart 4).
11

 In addition to photoactivity, analyses were performed of cellular uptake, 

subcellular distribution, and the propensity of the compounds to form singlet oxygen (Type-2 

photochemistry) or hydroxyl radicals (Type-1 photochemistry).  The dicyanobacteriochlorins 

show (1) the same trend in efficacy with metal ion (e.g., Pd
2+

 > Zn
2+

) as determined for the 

imidazole-substituted (and other) porphyrins, (2) increased photostability, and (3) efficacies 
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comparable to or surpassing those of the best of the synthetic bacteriochlorins studied previously 

and other common PDT agents. 

 

 

 

 

Chart 1. Representative native bacteriochlorin derivatives (WST9 = Tookad, WST11)
20,21

 and a 

synthetic bacteriochlorin (TDCPBS) 
27,28

 that have been examined in PDT studies.   
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Chart 2. Representative synthetic bacteriochlorins examined previously for PDT activity.
5-7

 

 

In the present work, the photophysical, redox, and molecular-orbital characteristics of the 

unsubstituted and dicyanobacteriochlorins are presented along with more extensive 

photostability data.  This information allows analysis of the recent results
11

 concerning 

photoactivity and reactive oxygen species production in terms of fundamental electronic 
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properties, including excited-state redox potentials.  To increase the generality of the findings, 

the analysis is extended to include results on the imidazole-substituted porphyrins and 

representative synthetic bacteriochlorins studied previously, for which photostability 

characteristics are presented here for the first time.  The collective findings provide fundamental 

insights into the design and electronic tuning of bacteriochlorin photosensitizers for enhanced 

PDT efficacy.  

 

Chart 3. Imidazole-substituted porphyrins examined previously for PDT activity.
9,10 

 

Chart 4. Synthetic bacteriochlorins examined recently for PDT activity.
11
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Experimental methods 

Photosensitizers 

The syntheses of BC
4
, (NC)2BC

3
, and (NC)2BC-Zn

3
 have been described.  The synthesis 

of (NC)2BC-Pd will be reported elsewhere.  Absorption and emission studies indicate that 

samples of (NC)2BC-Pd studied herein contain <1% of the free base (NC)2BC starting material.  

Photofrin and Verteporfin (liposomal benzoporphyrin derivative, BPD) were gifts from QLT, Inc. 

(Vancouver, Canada) and Lutex was a gift from Pharmacyclics, Inc. (Sunnyvale, CA).  

Photophysical characterization 

Static absorption (Varian Cary 100 or Shimadzu UV-1800) and fluorescence (Spex 

Fluorolog Tau 2 or PTI Quantamaster 40) measurements were performed at room temperature, as 

were all other studies.  Determination of the fluorescence quantum yield (f), singlet excited-

state lifetimes (S) and triplet yields (T) utilized dilute (M) Ar-purged toluene and methanol 

solutions.  Measurements of the triplet lifetimes (T) utilized Ar-purged 2-methyl tetrahydrofuran 

solutions.  Samples for f measurements had an absorbance 0.1 at the excitation wavelength to 

minimize front-face effects and similarly low absorbance in the Qy(0,0) band to minimize inner-

filter effects. 

Static emission measurements employed 24 nm excitation- and detection-

monochromator bandwidths and 0.2-nm data intervals.  Emission spectra were corrected for 

detection-system spectral response.  Some measurements employed an extended NIR sensitive 

detector that drives a lock-in amplifier frequency-referenced to the rate of chopping of the 

excitation light prior to the excitation monochromator.  Fluorescence quantum yields were 



 

300 

 

determined relative to several different standards.  These standards are (1) chlorophyll a in 

deoxygenated toluene (f = 0.325),
12

 which is the value measured in benzene,
13

 (2) free base 

meso-tetraphenylporphyrin (FbTPP) in nondegassed toluene, for which f = 0.070 was 

established with respect to the zinc chelate ZnTPP in nondegassed toluene (f = 0.030),
14

 a 

value consistent with prior results on FbTPP,
15

 and (3) 8,8,18,18-tetramethylbacteriochlorin
4
 in 

Ar-purged toluene, for which f = 0.14 was established with respect to chlorophyll a in benzene 

and FbTPP in toluene. 

Singlet-excited state lifetimes (S) for all compounds except (NC)2BC-Pd were obtained 

using time-correlated-single-photon-counting detection on an apparatus with an approximately 

Gaussian instrument response function with a full-width-at-half-maximum of ~1 ns (Photon 

Technology International LaserStrobe TM-3).  Samples were excited in the Soret or Qx regions 

using excitation pulses at 337 nm from a nitrogen laser or in the blue to green spectral regions 

from a dye laser pumped by the nitrogen laser.  The S value for (NC)2BC-Pd was obtained by 

ultrafast transient absorption spectroscopy, probing disappearance of the bleaching in the Qy 

ground-state absorption band and excited-state absorption features following excitation in the Qx 

band with an ~130 fs excitation flash.
16

 The T values were similarly determined using transient 

absorption spectroscopy, probing the decay of bleaching of the Soret band and excited-state 

absorption features following excitation in the Qx band with ~5 ns pulses from a Q-switched 

Nd:YAG laser (532 nm) or a dye laser pumped by the Nd:YAG laser .
9,16

  

The isc values (triplet yields) were obtained using transient absorption spectroscopy. 

The extent of bleaching of the ground-state Qx bands due to the formation of the lowest singlet 

excited state was measured immediately following a 130 fs flash in the Qy(0,0) band and 
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compared with that due to the formation of the lowest triplet excited state at the asymptote of the 

singlet excited-state decay.
9,16

 

Photostability studies 

Photostability measurements utilized excitation light obtained from a 300W Xenon lamp 

(Model R300-3 lamp and PS300-1 power supply; ILC Technologies, Sunnyvale, CA) that passed 

through a 70 cm path cell containing deionized water followed by a monochromator with a 10 

nm bandpass.  The light intensity at the sample position was measured using a calibrated diode 

and optometer (Models 221 and S471, United Detector Technologies, San Diego, CA) and was 

typically ~5 mW/cm
2
 at the wavelength (720750 nm) of the NIR absorption maximum of the 

bacteriochlorin sample (A ~ 0.5 in 1 cm).  The solutions contained ambient (atmospheric) O2 or 

had the O2 removed by purging with Ar for ~1 h or by repeated freeze-pump-thaw cycles on a 

high vacuum line that achieved a vacuum of <10
6

 Torr.  The O2 was removed from all aqueous 

micellar solutions via the latter method.  Samples were stirred using a micro magnetic bar at the 

bottom of the cuvette during illumination. 

Electrochemistry 

Electrochemical studies were performed using previously described instrumentation.
17

 

The solvent was butyronitrile (Burdick and Jackson) containing 0.1 M tetrabutylammonium 

hexafluorophosphate (Aldrich; recrystallized three times from methanol and dried at 110 °C in 

vacuo) as the supporting electrolyte.  The electrochemical cell was housed in a glovebox.  The 

E½ values were obtained with square wave voltammetry (frequency 10 Hz) under conditions 

where the ferrocene couple has a potential of +0.19 V. 

 



 

302 

 

Density Functional Theory calculations 

DFT calculations were performed with Spartan ’10 for Windows version 1.2.0 in parallel 

mode on a PC equipped with an Intel i7-975 cpu, 24 GB ram, and three 300 GB, 10k rpm hard 

drives.
18 

The calculations employed the hybrid B3LYP functional and basis sets 6-31G* and 

LACVP (the former for atoms H to Kr and lanl2dz for atoms Kr and above).  The equilibrium 

geometries were fully optimized using the default parameters of the Spartan program.  Molecular 

orbital images were plotted using an isovalue of 0.016. 

Results and discussions 

Sensitizer Activity, Uptake, Localization, and Reactive oxygen species production 

 In our recent study
11

, the PDT activity against HeLa cancer cells in vitro was studied 

using the parent bacteriochlorin (BC), dicyano derivative (NC)2BC and the corresponding zinc 

chelate (NC)2BC-Zn and palladium chelate (NC)2BC-Pd (Chart 4).  The photosensitzers were 

delivered either by (1) direct dilution (denoted “dd”) of a solution of bacteriochlorin in an 

organic solvent [5 mM in N,N-dimethylacetamide (DMA) or tetrahydrofuran (THF)] into serum-

containing complete culture medium or (2) encapsulation into aqueous Cremophore EL micelles 

(CrEL) followed by dilution into the same complete medium.  For both delivery methods, the 

order of PDT activity against HeLa cells after incubation for 24 h and illumination with 10 J/cm
2
 

of NIR light is (NC)2BC-Pd > (NC)2BC > (NC)2BC-Zn > BC.  As can be seen from Table 1, 

the LD50 values improve using CrEL versus direct dilution only modestly for (NC)2BC-Pd (18 

versus 25 nM) and (NC)2BC (25 versus 60 nM) but significantly for (NC)2BC-Zn (60 versus 

1000 nM) and BC (350 versus 1800 nM). 
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 Values for the uptake of 5 M bacteriochlorin at different time points in the incubation 

medium are also given in Table 1.  The highest uptake using direct dilution is found for BC and 

(NC)2BC-Pd, followed by (NC)2BC and (NC)2BC-Zn.  The use of CrEL substantially decreases 

the uptake of (NC)2BC-Pd, (NC)2BC and BC but has little effect for (NC)2BC-Zn.  Table 1 also 

gives the PDT efficacy per unit uptake, obtained by dividing the reciprocal of the LD50 value by 

the uptake value and then normalizing to the value of BC using direct dilution.  The tabulated 

values of efficacy corrected for uptake for both delivery motifs show the same order as the 

tabulated values for activity alone: (NC)2BC-Pd > (NC)2BC > (NC)2BC-Zn > BC.  Thus, 

although cell uptake certainly influences the overall PDT activity, other factors appear to 

dominate.  In this regard, the greater efficacy of (NC)2BC-Pd versus (NC)2BC-Zn parallels our 

prior results on imidazole-substituted metalloporphyrins (Chart 3) wherein 2-Pd is more active 

than 2-Zn, exhibiting LD50 values of 55 nM and 833 nM under the excitation conditions 

employed. 
9,10 

The studies on the dicyanobacteriochlorins complement and extend this prior work 

by inclusion of a free base analogue, providing additional information for analysis of activity.  

 Fluorescence microscopy studies reveal that subcellular localization of the unsubstituted 

and dicyanobacteriochlorins is in the endoplasmic reticulum, mitochondria and lysosomes 

depending on the compound.  The least active compound, BC, is found mainly in the 

endoplasmic reticulum and lysozymes, and the next compound, (NC)2BC-Zn, is also found 

mainly in lysozymes with little evidence for association with mitochondria.  The second most 

active bacteriochlorin, (NC)2BC, localizes mainly in the endoplasmic reticulum and 

mitochondria.  The most active compound, (NC)2BC-Pd, also targets mitochondria (and 

lysosomes) as deduced by  the damage done by PDT activity monitored after illumination.  The 

results suggest that the propensity for mitochondrial targeting contributes to the relative PDT 
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efficacy of the four bacteriochlorins.  Mitochondria are considered to be an important PDT target 

because of the vital cellular functions performed, including regulation of metabolism, cell-cycle 

control development, and induction of apopotic cell death after mitochondrial damage.  

The propensities of the bacteriochlorins to produce singlet oxygen by energy transfer 

(Type-2 mechanism) or hydroxyl radical by electron transfer (Type-1 mechanism) were probed 

using fluorescent dyes sensitive to the particular reactive oxygen species.  Of the four 

bacteriochlorins, (NC)2BC-Pd produces the most singlet oxygen and also the most hydroxyl 

radicals, with the balance favoring the latter (Type-1 photochemistry).  The next active 

compound, (NC)2BC, also produces a relatively high ratio of hydroxyl radicals to singlet oxygen.  

The two least active photosensitizers, (NC)2BC-Zn and BC, give low ratios hydroxyl radicals 

versus singlet oxygen and therefore carry out less Type-1 than Type-2 photochemistry.  In 

summary, the most active bacteriochlorins (against HeLa cells) produce the greatest amounts of 

hydroxyl radicals.  Similar results were found previously for the imidazole-substituted 

porphyrins (Chart 3), for which 2-Pd produces more hydroxyl radicals and, as noted above, has 

greater PDT activity than 2-Zn 
10

.
 

 Initial results of photobleaching studies obtained previously
11

 on the four bacteriochlorins 

are also given in Table 1.  Listed is the fraction of the NIR Qy(0,0) absorbance remaining after 

100 J/cm
2
 of illumination in the same optical band.  Values are given for the compounds in DMA 

and CrEL solutions in the presence of ambient O2 and for the latter in the absence of O2.  The 

most active compounds, (NC)2BC-Pd and (NC)2BC, are the most photostable, with 

typically >90% of the Qy absorbance remaining even in the presence of ambient O2.  The two 

lesser active compounds, (NC)2BC-Zn and BC, show lower photostability in the presence of O2 

and marked improvement if O2 is removed from the solution.  Below, more extensive 
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measurements of the photostability of the dicyanobacteriochlorins are presented and compared 

with those for representative synthetic bacteriochlorins whose PDT activity (but not 

photostability) have been studied previously. 

Absorption and Fluorescence spectra 

Figure 1A shows the absorption spectra for BC, (NC)2BC, (NC)2BC-Zn, and (NC)2BC-

Pd in toluene.  The wavelengths of all the major absorption features for the bacteriochlorins in 

toluene and methanol are given in Table 2.  For each bacteriochlorin the spectral positions are 

similar in the two solvents, and the same is found for the compounds in DMA and in CrEL 

solutions.  All four compounds show good solubility in the four media.   

 Figure 1B focuses on the NIR absorption feature, the Qy(0,0) band.  This band for the 

metal-free dicyanobacteriochlorin (NC)2BC is substantially (35 nm) hypsochromically shifted 

versus the parent bacteriochlorin BC (748 versus 713 nm in toluene).  The incorporation of the 

central Pd
2+

 ion of (NC)2BC-Pd slightly bathochromically shifts the band to 751 nm while the 

Zn
2+

 of (NC)2BC-Zn causes a larger shift to 761 nm.  Figure 1B shows that the corresponding 

Qy(0,0) fluorescence band for each bacteriochlorin lies only 25 nm to longer wavelength than 

the Qy(0,0) absorption maximum (Table 2).   

 

Chart 5. Two sets of synthetic bacteriochlorins prepared and studied recently.
19

  

A 

B 
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Table 1. PDT activity, photostability and photophysical properties of the bacteriochlorins.
a
  

Compound 
LD50 

dd 

LD50 

CrEL
 

Uptake 

dd 

Uptake 

CrEL 

Efficacy

/uptake 

dd 
b
 

Efficacy

/uptake 

CrEL
b
 

Photo-

stability 

DMA 
c
 

Photo-

stability 

CrEL 
c
 

Photo-

stability 

CrEL 

no O2 
c
 

f S T T 

 (nM) (nM) 
(nmol/ 

mg) 

(nmol/ 

mg) 
      (ns)  (s) 

Unsubstituted & dicyano BCs         

BC 1800 350 5.3 3.7 1.0 7.3 0.13 0.11 0.54 0.14 4.0 0.62 169 

(NC)2BC 60 25 4.3 3.3 37.1 114.3 0.91 0.90  0.15 4.1 0.43 84 

(NC)2BC-Zn 1000 60 2.1 2.1 4.5 76.4 0.52 0.04 0.67 0.15 3.9 0.63 121 

(NC)2BC-Pd 25 18 4.8 2.3 79.6 227.2 0.83 0.94  0.007 0.02

3 

0.99 7 

Representative prior studied 

BCs 

        

B16 100  11.7  8.1  0.02 0.01 0.56 0.11 3.6 0.40 190 

B17 80  13.5  8.8  0.09 0.21 0.71 0.08 3.7 0.56 198 

B19 15  0.001  632400     0.15 3.0 0.55 159 

B22 3000  7.7  0.4  0.60 0.11
d
 0.76 0.11 4.0 0.48 77 

B29 100  8.2  11.6  0.09 0.11
 d
 0.78 0.10 3.8 0.53 190 

B31 800  1.8  6.6  0.02 0.05
d
 0.73 0.09 3.5 0.53 54 

a
All measured quantities were obtained at room temperature.  Data for B16-B31 are taken from refs (5) and (6).  LD50 and uptake 

data for the unsubstituted and dicyano bacteriochlorins are taken from ref (11).  For the LD50, uptake, and efficacy/uptake values, “dd” 

reflects direct dilution of the DMA stock solution of the photosensitizer into complete medium and CrEL reflects dilution of the 

micellar solution into complete medium.  Measurements of the fluorescence yields (f), singlet excited state lifetimes (S) and triplet 

yields (T) employed Ar-purged toluene solutions and of the triplet lifetimes (T) Ar-purged THF solutions.  
b
Calculated by dividing 

the reciprocal of the LD50 by the uptake value and normalizing to the value for BC dd.  
c
Photostability as measured by the percentage 

of the initial Qy absorbance remaining after 100 J/cm
2
 fluence of light given at that wavelength.  

d
The values are reached at 50 J/cm

2
 

fluence. 
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Figure 1.  Absorption spectra (solid) and fluorescence spectra (dashed) of bacteriochlorins in 

toluene: BC (black), (NC)2BC (green), (NC)2BC-Zn (blue), (NC)2BC-Pd (red).  Panel A shows 

the full near-UV to NIR absorption spectrum.  Panel B focuses on the NIR (Qy) region of the 

absorption spectra and the companion fluorescence spectra. 
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Table 2.  Absorption and fluorescence properties of dicyanobacteriochlorins.
a 

Cmpd Solvent 
By 

abs  (nm) 

Bx 

abs  (nm) 

Qx 

abs (nm) 

Qy 

abs (nm) 

Qy 

em  (nm) 
Qy /IB s 

S  

(ns) 

BC Tol 340 365 489 713 716 0.85 0.14
 

4.0 

 MeOH 335 359 485 708 712 0.72 0.095 4.1 

(NC)2BC Tol 347 372 515 748 752 1.3 0.15 4.1 

 MeOH 342 367 510 743 747 1.3 0.095 4.1 

(NC)2BC-Zn Tol 343 380 546 761 763 1.8 0.15 3.9 

 MeOH 341 374 553 752 757 1.9 0.15 4.1 

(NC)2BC-Pd Tol 326 374 518 751 753 3.4 0.007 0.023 

 MeOH 323 371 514 744 749 2.8 0.007  

a
All measurements were made at room temperature.  

 

Fluorescence yields, Singlet excited-state lifetimes, and Triplet yields 

Compounds BC, (NC)2BC and (NC)2BC-Zn have similar singlet excited-state lifetimes 

(S = 3.94.1 ns) and fluorescence quantum yields (f = 0.140.15).  The results are summarized 

in Tables 1 and 2.  The lifetime of (NC)2BC-Pd is dramatically reduced (S = 23 ps) as is the 

fluorescence yield (f   0.007).  The latter value is an upper limit because the possibility cannot 

be excluded that some of the weak emission derives from trace demetalated analogue (NC)2BC, 
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which has spectral overlap with (NC)2BC-Pd.  Indeed, based on the relative S values, one 

would have expected a f value of ~0.0008 for (NC)2BC-Pd.  The f and s values of BC, 

(NC)2BC and (NC)2BC-Zn are comparable to those that we have found recently for synthetic 

free base bacteriochlorins (see e.g., Table 1)
57,16,19

 and zinc bacteriochlorins
19

 bearing a number 

of substituent patterns.  The results for (NC)2BC-Pd are in keeping with values for two other 

synthetic palladium bacteriochlorins
19

, and palladium-substituted bacteriochlorophyll and the 

corresponding sulfonato derivative.
20,21

 

The reduced S and f values for (NC)2BC-Pd (like other palladium tetrapyrroles) 

derives from heavy-metal (and perhaps d-orbital) enhancement of singlet-to-triplet intersystem-

crossing, which in turn makes the latter process virtually quantitative (T = 0.99).  The yield of 

intersystem crossing (i.e., the triplet yield) for (NC)2BC-Pd can be compared with 0.63 for 

(NC)2BC-Zn and 0.43 for (NC)2BC (Table 1).  The T value for BC (0.62) is greater than that 

for (NC)2BC, reflecting the effect of the cyano-groups to draw electron density from the 

macrocycle and thereby diminish spin-orbit coupling, which underlies the intersystem-crossing 

process.  The T values obtained here for the dicyanobacteriochlorins are consistent with the 

results of prior studies on synthetic bacteriochlorins, which give average yields of ~0.5 for free 

base bacteriochlorins, ~0.7 for zinc chelates, ~0.8 for indium chelates, and ~1 for palladium 

chelates.
1113,16,19

 Essentially quantitative intersystem crossing is also found for palladium-

substituted bacteriochlorophyll and derivatives thereof.
20,21 

These values for bacteriochlorins can 

be compared with the typical triplet yields of 0.70.8, 0.80.9 and 0.91 for free base, zinc, and 

palladium porphyrins such as tetraphenylporphyrins and imidazolium porphyrins.
9,22
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These comparisons show that one can expect a maximal enhancement factor in triplet 

yield of ~1.5 for porphyrins and ~2 for bacteriochlorins upon changing the metalation state (i.e., 

palladium versus free base).  The data in Table 1 indicate that PDT activity, as judged by LD50 

or related measures that account for uptake, show variations in activity of one or two orders of 

magnitude.  Although heavy metal (e.g., palladium) substitution may not give a significant gain 

in PDT efficacy due to an increased triplet yield, activity could be enhanced via accompanying 

changes in more critical characteristics, such as ground- and excited-state redox properties, 

shorter T1 lifetimes, and altered axial ligation, as discussed previously 
9
 and  below.   

Phosphorescence spectra and Triplet excited-state energies 

Figure 2 shows an emission scan for (NC)2BC-Pd in deoxygenated THF at room 

temperature; the scan was collected using a detection system with extended NIR sensitivity.  The 

spectrum shows fluorescence (747 nm) close in position to that found in toluene (753 nm; Figure 

1B) as well as weak phosphorescence at 1122 nm.  The phosphorescence is verified as 

originating from (NC)2BC-Pd using excitation spectra and is completely quenched (as expected) 

if the solution contains ambient O2.  Phosphorescence was not observed for (NC)2BC-Zn under 

the same conditions, and is expected to be much weaker.   

Because of the rather small number of reports of bacteriochlorin phosphorescence, this 

emission was also measured for two other recently synthesized palladium chelates (B9 and B87) 

for which the other photophysical properties have been obtained recently.
19

 The structures of 

these palladium bacteriochlorins and their zinc and free base analogues are shown in Chart 5.  

The phosphorescence, verified by excitation spectra, occurs at 1114 nm for B9 and 1118 nm for 

B87, similar to 1122 nm for (NC)2BC-Pd.  Each wavelength corresponds to a triplet excited-
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state (T1) energy of 1.11 eV.  The latter value is lower than that of the singlet excited state (S1) 

for the three bacteriochlorins by 0.56, 0.52 and 0.54 eV, respectively.   

 

 

Figure 2.  Emission spectrum of (NC)2BC-Pd in 2-methyltetrahydrofuran.  The band at 747 nm 

is fluorescence and the band at 1122 nm is phosphorescence. The spectra were acquired using 

excitation in the Soret band (374 nm).  The phosphorescence was also observed using excitation 

in the Qy band (740 nm). 

The above-noted phosphorescence wavelengths, T1 energies and S1T1 energy gaps for 

the three synthetic palladium bacteriochlorins are within the span of most reported values.  The 

compounds include bacteriochlorophyll (BChl) and its zinc- and palladium-substituted analogues 

(11701221 nm, 1.011.06 eV; 0.560.58 eV), the free base analogue bacteriopheophytin (1097 

nm; 1.13 eV; 0.50 eV), zinc tetraphenylbacteriochlorin (1157 nm; 1.07 eV; 0.57 eV), and free 

base tetraphenylbacteriochlorin (1053 nm; 1.17 eV; 0.50 eV) (23,24).  Similar T1 energies (1.15 
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and 1.22 eV) have been determined for two chlorinated tetrasulfonatophenylbacteriochlorins 

using photoacoustic spectroscopy.
25 

The T1 energies for the latter two compounds could be 

slightly lower than reported because the analysis assumed that internal conversion is effectively 

zero (i.e., f + T = 1) whereas recent results on a large group of free base bacteriochlorins 

indicate that this nonradiative pathway typically has at least twice the quantum yield as 

fluorescence.
16

 The triplet energy of 1.30 eV for free base tetraphenylbacteriochlorin
22

 is 

modestly higher than the above-noted phosphorescence energy of 1.17 eV.
24

 Elucidation of 

triplet excited-state energies is important for deducing excited-state redox potentials and 

assessing PDT mechanisms as discussed recently
22,25

 and below.  

Triplet excited-state lifetimes 

The lifetime of the lowest triplet excited state (T) in deoxygenated solution is in the 

range 80170 s for BC, (NC)2BC, and (NC)2BC-Zn but is dramatically reduced to 7 s for 

(NC)2BC-Pd (Table 1).  Similar triplet lifetimes (310 s) have been reported for other synthetic 

palladium bacteriochlorins
19

 and for palladium-substituted bacteriochlorophylls.
20,21

  The shorter 

lifetimes of the palladium versus zinc or free base bacteriochlorins can be attributed to heavy-

atom enhancement of both triplet excited-state decay pathways (phosphorescence emission and 

non-radiative intersystem crossing).  The triplet lifetime is reduced to <1 s for each of the 

bacteriochlorins in the presence of ambient O2, consistent with the added contribution of the 

energy/electron-transfer processes that underlie the formation of the reactive oxygen species for 

PDT.  

The results of the present study of metal-containing dicyanobacteriochlorins along with 

the findings in our prior studies of free base bacteriochlorins
57

 and imidazole-substituted 
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porphyrins
9,10

 show no clear correlation between triplet lifetime and PDT activity (Table 1).  In 

fact, a seemingly counterintuitive result is that of the three dicyanobacteriochlorins, the 

photosensitizer with the shortest triplet lifetime (7 s), (NC)2BC-Pd, has the highest activity.  

The same is true concerning imidazole-substituted porphyrins 2-Pd (~10 s) versus 2-Zn (~6 ms) 

studied previously. 
9,10

  The synthetic palladium tetrapyrroles, like native bacteriochlorophyll-

derived WST9 (Tookad) and WST11, apparently have such favorable general characteristics 

(e.g., uptake/distribution, reactive oxygen species production) that a triplet lifetime of 10 s 

allows sufficient encounters with O2 to attain high PDT activity.
22

  A possible advantage to such 

short triplet lifetimes in reducing photobleaching is described below. 

Photostability 

The photostability properties of the four bacteriochlorins under study [BC, (NC)2BC, 

(NC)2BC-Zn, (NC)2BC-Pd] (Chart 4) were measured, as were those of representative synthetic 

bacteriochlorins whose PDT activity was investigated previously (B16, B17, B19, B22, B29, 

B31; Chart 2).
57 

The photostability properties of several standard PDT agents (Lutex, Photofrin, 

benzoporphyrin derivative BPD)
26

 were also examined. Each compound was studied in multiple 

media [e.g., toluene, DMA, dimethylsulfoxide (DMSO), methanol (MeOH), ethanol (EtOH), 

acetonitrile (MeCN), CrEL] both in the presence and absence of ambient O2.  The absorbance 

spectrum (350900 nm) was monitored as a function of incident light fluence (up to 100 J/cm
2
) 

in the Qy(0,0) band, and in most cases the fluorescence spectrum was followed as well.  In each 

case, the fraction of the initial peak Qy(0,0) absorbance as a function of light fluence was plotted.  

Table 1 gives the value at 100 J/cm
2
 for a number of bacteriochlorins in DMA and CrEL in the 
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presence of ambient O2 and CrEL in the absence of O2.  Representative spectra and plots are 

shown in Figures 36.   

 

Figure 3.  Photobleaching studies showing the absorption spectrum of bacteriochlorins in media 

containing ambient O2 as a function of the fluence of the light delivered at the Qy maximum 

(720750 nm).  The following fluences (J/cm
2
) are shown in each panel: 0 (black), 5 (red), 25 

(blue), 50 (green) and 100 (dark yellow).  The insets to panels E and F show the corresponding 

fluorescence spectra elicited by excitation in the Qx band (480-530 nm) for the same fluences 

used during acquisition of the absorption spectra. 
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Photobleaching is defined operationally as loss of absorption of the bacteriochlorin in the 

entire near-UV-to-NIR spectral region.  Photobleaching can stem from a variety of sources, 

including reduction, oxidation, aggregation, or chemical reaction, which are referred to as 

photoreduction, photooxidation, photoaggregation, and photodegradation, respectively.  

Photoreduction and photooxidation may in part be reversed (by electron transfer with a species in 

the environment), as can photoaggregation (by dissociation), whereas photodegradation is 

typically irreversible.  One photodegradation pathway entails [2 + 2] cycloaddition of the 

ground-state bacteriochlorin with singlet oxygen (formed by energy transfer from the triplet 

excited-state bacteriochlorin) followed by ring opening to give a bilin species. 

One of the goals with the dicyanobacteriochlorins (Chart 4)
11

 was to improve 

photostability compared to the previously studied synthetic bacteriochlorins.  The results bear 

out the success of that endeavor.  The spectra in Figures 3A and 3C, the plots in Figures 4A, and 

the values in Table 1 show that (NC)2BC-Pd and (NC)2BC in the presence of ambient O2 are 

extremely stable.  The solutions retain 90% of the NIR absorbance in CrEL and 83% in DMA 

after exposure to 100 J/cm
2
 of NIR light.  In contrast, the previously studied bacteriochlorins 

B16, B17, B22, B29, and B31, as well as the parent unsubstituted compound BC in the same 

media, have 20% absorbance remaining after illumination with 100 J/cm
2
 (in some cases at 50 

J/cm
2
) in the presence of ambient O2 and 5080% after removal of O2 (Figures 3 and 4 and Table 

1).  Thus, for CrEL and DMA solutions, (NC)2BC-Pd and (NC)2BC in the presence of ambient 

O2 are more photostable than the other bacteriochlorins even after stability has been markedly 

improved by the removal of O2 (Figure 4).  Bacteriochlorins (NC)2BC-Pd and (NC)2BC are also 

modestly more stable than common PDT agents
26

 Photofrin and Lutex and considerably more 

stable than benzoporphyrin derivative (BPD) (Figures 4A and 4F). 
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Figure 4. Photostability of bacteriochlorins and standard PDT agents in various media in the 

presence (closed symbols) or absence (open symbols) of atmospheric O2.  The absorbance at the 

maximum of the NIR Qy(0,0) absorption band (720750 nm) relative to that prior to illumination 

is plotted as a function of the fluence of incident light in that band.  The panels are organized as 

follows: (A) unsubstituted and dicyanobacteriochlorins in CrEL and DMA, (B) B16 and B17 in 

CrEL, DMA and DMSO, (C) BC in various media, (D) B31 in various media, (E) B22, B29 and 

B31 in CrEL, (F) standard PDT agents.  The data for the bacteriochlorins are colorized as 

follows: (NC)2BC-Pd (red), (NC)2BC-Zn (purple), (NC)2BC (blue), BC (green), B16 (magenta), 

B17 (dark cyan), B22 (light magenta), B29 (wine), B31 (navy blue).  The data for the standard 

PDT agents are colorized as follows: Photofrin (orange), Lutex (violet), benzporphyrin 

derivative (BPD, sky blue).  The symbols for the media are as follows: CrEL (circles), N,N-

dimethylacetamide (DMA, squares), dimethylsulfoxide (DMSO, stars), acetonitrile (MeCN, 

down triangles), MeCN/H2O = 50/50 (pentagons), ethanol (ETOH, diamonds), methanol (MeOH, 

diamonds), toluene (up triangles), acetone (right triangles), benzonitrile (PhCN, down triangles), 

H2O (left triangles).  
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The zinc chelate (NC)2BC-Zn in DMA and CrEL both in the presence and absence of O2 

is less photostable than (NC)2BC-Pd and (NC)2BC in these media containing O2 (Figure 3B and 

4A).  (NC)2BC-Zn has comparable stability to the previously studied bacteriochlorins and BC in 

CrEL (with or without O2) but is typically more stable in DMA (Table 1).  In effect, the 

incorporation of a zinc ion counteracts the photostability enhancement obtained upon 

incorporation of the dicyano-groups; in contrast, a palladium ion can have a synergistic effect.  

These findings can be understood in terms of the redox properties of the chromophores, as 

described below.  Collectively, the results show that the incorporation of (electron-withdrawing) 

cyano groups at the 3,13-positions, along with the appropriate choice of metalation state, provide 

an excellent design for improving photostability of bacteriochlorin photosensitizers.  Chlorine 

atoms, which also are electron-withdrawing, have been incorporated at the ortho-positions of the 

aryl rings in synthetic meso-tetraarylbacteriochlorins to improve photostability (Chart 1).
27,28

  

Prior studies of the photodegradation of bacteriochlorophyll a and derivatives show that 

the process is highly solvent dependent and requires O2.  Typical photoproducts include chlorins 

such as 2-acetylchlorophyll a and other derivatives formed by two-electron oxidation of the 

macrocycle, bilin-like open-chain tetrapyrroles likely formed via addition of singlet oxygen and 

ring opening, and other species that have no featured absorption in the visible region. 
21,29

  The 

geminal dimethyl groups in the synthetic bacteriochlorins are incorporated to avoid 

dehydrogenation to form chlorins and porphyrins
2,3

, which when observed are produced in such 

low yield that the expected features are cleanly resolved only via fluorescence.  Bacteriochlorin 

B16 in DMA with ambient O2 after prolonged illumination gives such an example, showing a 

weak fluorescence feature at ~640 nm (Figure 6C, inset) with no corresponding sharp feature in 

the absorption spectrum (Figure 6A).  This example also reveals broad weak absorption and 
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fluorescence-centered features around 600 nm that could represent open-chain tetrapyrrolic 

photoproducts.   

 

Figure 5.  Photobleaching studies in aqueous micellar solutions (CrEL) of B16 with ambient O2 

(A), B16 with no O2 (B), and BC with no O2 (C) showing the absorption spectrum as a function 

of light fluence (J/cm
2
) in the Qy band (~720 nm).  The insets to each panel show expanded 

views of the 400600 nm region.  The absorbance scale is 00.8 in each panel. 
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 Figure 6.  Photobleaching studies of B16 in N,N-dimethylacetamide (DMA) with ambient O2 

showing the absorption spectra (A) and fluorescence spectra using excitation at the 490-nm Qx-

band maximum (B) or at 376 nm on the long-wavelength side of the Soret band (C) as a function 

of light fluence (J/cm
2
) in the Qy band (720 nm): 0 (black), 5 (red), 25 (blue), 50 (green), 75 

(purple) and 100 (dark yellow).  The insets to each panel show expanded views of certain regions 

of each spectrum.  The absorbance scale is 00.6 in panel (A). 
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Generally the photobleaching of the synthetic bacteriochlorins (bearing geminal dimethyl 

groups) is evidenced by decrease in the entire near-UV-to-NIR absorption spectrum along with a 

similar disappearance of fluorescence.  The diminution of the absorption profile is often 

accompanied by an apparent increase in the baseline, particularly at wavelengths shorter than 

500 nm and increasing toward the near-UV region.  This behavior is illustrated by the absorption 

spectra for (NC)2BC-Zn, BC, and B16 in CrEL with ambient O2 obtained after 100 J/cm
2
 

illumination (Figures 3B, 3D, and 5A; dark yellow).  The featureless spectral profiles could 

reflect formation of nondescript photoproducts analogous to those for bacteriochlorophyll a
29

 or 

light scattering due to photoaggregation.  The analogous profiles for B16 and BC in CrEL in the 

absence of O2 (Figures 5B and 5C) show Soret, Qx and Qy features that are decreased in intensity, 

broadened, and bathochromically shifted after prolonged illumination.  This behavior could 

reflect the formation of small aggregates (possibly as small as dimers) that are partially soluble 

and remain suspended in the micellar environment.  The ability of CrEL to reduce aggregation or 

aid disaggregation underlies the motivation for its use as a delivery vehicle for the 

bacteriochlorins. 
6,11

  Aggregates may play a positive role in PDT by serving as reservoirs to 

provide fresh photosensitzer in place of those that have undergone irreversible 

photodegradation.
29

   

A relationship between photobleaching and the solubilization characteristics of the 

bacteriochlorin in a given medium is illustrated by the behavior of unsubstituted bacteriochlorin 

BC in several media in the presence of ambient O2 (Figures 3D, 3E, 3F, and 4C).  The 

photostability is poor in the CrEL (as noted above), MeCN and DMA but excellent in toluene, 

where 93% of the absorbance remains after 100 J/cm
2
 illumination.  Thus, in the (nonpolar) 

medium in which it is expected to be the most soluble, the highly nonpolar bacteriochlorin BC 
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shows photostability that rivals that of dicyanobacteriochlorins (NC)2BC-Pd and (NC)2BC 

(Figures 3A, 3C, 3E and 4).  Solubility characteristics may also contribute to the marked medium 

dependence of photobleaching of the charged bacteriochlorin B31 (Chart 2 and Figure 4E).  

Solvent polarity can also impact photooxidation contributions to photobleaching via the 

concentration of ambient O2 in the medium and stabilization of electron-transfer products.  

Collectively, these results and considerations suggest that the photostability of a photosensitizer 

may be much different in organic solvents, delivery media, and the cellular milieu. 

A contribution of a photoaggregation mechanism to the observed photobleaching could 

occur by several pathways.  One pathway is an extension of excimer formation
30

 whereby a 

bacteriochlorin in the T1 state associates with another bacteriochlorin in the ground state and so 

on to associate more chromophores.  Such a pathway raises the possibility that photobleaching 

could be reduced for photosensitizers that have shorter T1 lifetimes (such as palladium 

tetrapyrroles) and thus provide less time for such diffusional encounters.  A second pathway 

would involve electron transfer from a bacteriochlorin in the T1 excited state to O2 (or another 

electron acceptor) to form the bacteriochlorin -cation radical.  Interaction of the latter species 

with a ground-state bacteriochlorin would form a dimeric complex, analogous to formation of the 

monocation dimer of magnesium octaethylporphyrin
31

, and so on to associate more 

chromophores.  Dimer (and aggregate) formation would be enhanced because the monomer 

cation radical has a half-filled HOMO and thus the bonding orbital of the interacting 

chromophore pair would be filled and the higher energy antibonding orbital would be half-filled 

(or empty), thereby giving a net bonding interaction that would not occur for two neutral species 

(where both orbitals are filled).  The bacteriochlorin -cation radical in the latter mechanism is 
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presumably an intermediate in more common photooxidation pathways for degradation (e.g., to 

form chlorins).  Thus, it is possible that multiple photobleaching pathways may be intertwined.   

Electrochemical and Molecular-orbital characteristics of the dicyanobacteriochlorins 

 The first oxidation potential (Eox) and first reduction potential (Ered) of the four 

bacteriochlorins [BC, (NC)2BC, (NC)2BC-Zn, (NC)2BC-Pd] were measured and are listed in 

Table 3.  The table also gives the energy of the highest occupied molecular orbital (EHOMO) and 

the lowest unoccupied molecular orbital (ELUMO) obtained from DFT calculations for each 

photosensitizer.  Electron densities (and energies) of the four frontier molecular orbitals for each 

of these four bacteriochlorins are shown in Figure 7.  Studies of a large number of chlorins have 

shown essentially linear relationships between Eox and EHOMO and between Ered and ELUMO. 
32

  As 

Eox becomes more positive, EHOMO becomes more negative, and the molecule is harder to oxidize.  

As Ered becomes less negative, ELUMO becomes more negative, and the molecule is easier to 

reduce.  For comparison Table 3 also lists redox and MO data for two other sets of free base, 

zinc and palladium bacteriochlorins investigated recently.
19

 The Table also gives data acquired 

here or previously 
9
 for imidazole-substituted porphyrins and tetraphenylporphyrins.  

Incorporation of the two cyano groups of (NC)2BC make the molecule harder to oxidize 

than BC (Eox = 0.60 versus 0.09 V; EHOMO = 5.22 versus 4.45 V).  Similarly, the two cyano 

groups of (NC)2BC make the molecule easier to reduce than BC (Ered = 1.10  versus 1.67 V; 

ELUMO = 3.10 versus 2.20 V).  Compared to (NC)2BC, zinc chelate (NC)2BC-Zn is 

significantly easier to oxidize (+29 mV) and only slightly harder to reduce (+4 mV); these redox-

potential shifts are in concert with the relative magnitudes and signs (to less negative values) of 

the energy shifts in the HOMO (+15 meV) and LUMO (+3 meV).  Compared to (NC)2BC, 
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palladium chelate (NC)2BC-Pd is slightly easier to oxidize (+8 mV) and also slightly easier to 

reduce (+7 mV); the former tracks the small shift to less negative HOMO energy (+6 meV) 

whereas the latter is not paralleled by the virtually unchanged LUMO energy (1 meV).  In 

summary, the data in Table 3 show that of the three dicyanobacteriochlorins, (NC)2BC-Zn is the 

easiest to oxidize (although it is harder to oxidize than BC) and (NC)2BC-Pd is the easiest to 

reduce (and is also easier to reduce than BC).   

Figure 8A plots the orbital energies (Table 3) versus the cell-killing LD50 values (Table 

1) for the bacteriochlorins obtained using direct dilution into the complete culture medium.  A 

qualitatively similar plot is obtained using the LD50 values when the bacteriochlorins were first 

encapsulated in micelles upon treatment with CrEL before dilution into the complete culture 

medium.  Figure 8B plots the redox potentials of the T1 excited state versus LD50 values.  The 

excited-state redox potentials are obtained from the ground-state redox potentials and the T1 

energies (Table 3).  The correlations with LD50 are discussed below. 
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Table 3. Spectral, state-energy, redox, and molecular-orbital properties of the bacteriochlorins.
a
 

Compound 
Qy 

b
 

abs 

Qy 
c
 

flu 

T1 

phos 

S1
 d
 

energy 

T1
 e
 

energy 
S1T1 

energy 

S0 

Redox 
f
 

Potentials 

T1 

Redox 
g
 

Potentials 

Orbital 
h
 

Energy 

 (nm) (nm) (nm) (eV) (eV) (eV) 
Eox 

(V) 

Ered 

(V) 

T1 Eox 

(V) 

T1 Ered 

(V) 

HOMO 

(eV) 

LUMO 

(eV) 

DicyanoBC set             

BC 713 716  1.74 1.20  +0.09 1.67 1.11 0.47 4.45 2.20 

(NC)2BC 748 752  1.65 1.11  +0.60 1.10 0.51 +0.01 5.22 3.10 

(NC)2BC-Zn 761 763  1.63 1.09  +0.31 1.14 0.78 0.05 5.08 3.07 

(NC)2BC-Pd 751 753 1122 1.65 1.11 0.54 +0.52 1.03 0.59 +0.08 5.16 3.11 

Other FbBCs             

B16 717 722  1.71       4.36 2.12 

B17 731 737  1.68       4.46 2.28 

Ref BC-T set              

B1 (Fb)  736 742  1.68 1.12  +0.21 1.49 0.91 0.37 4.40 2.22 

B4 (Zn) 749 756  1.65 1.09  0.04 1.60 1.13 0.51 4.26 2.20 

B9 (Pd) 739 745 1114 1.67 1.11 0.56 +0.43 1.14 0.68 0.03 4.36 2.26 

Ref BC-MME set             

B88 (Fb) 758 765  1.63 1.11  +0.38 1.29 0.73 0.18 4.65 2.48 

B84 (Zn)  773 780  1.60 1.08  +0.08 1.41 1.00 0.33 4.55 2.51 
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B87 (Pd) 758 765 1118 1.63 1.11 0.52 +0.29 1.29 0.82 0.18 4.63 2.54 

Imidazole 

porphyrins 
            

1-Zn 576 579 738 2.14 1.68 0.47     4.97 2.35 

2-Zn 576 579 738 2.14 1.68 0.46 +0.36 1.39 1.32 +0.29 5.72
i 

2.81
i
 

2-Pd 547 550 672 2.25 1.84 0.42     5.81
j
 2.83

j
 

Ref porphyrins             

FbTPP 647 650 
 

1.91 1.47
k
 0.44 +0.83 1.45 0.64 +0.02 4.90 2.20 

ZnTPP 588 599 784 2.08 1.58 0.51 +0.56 1.58 1.02    0 4.96 2.12 

PdTPP 553 560 696 2.21 1.78 0.45 +0.82 1.61
 

0.96 +0.17 5.36 2.42 

a
Properties of bacteriochlorins.  All measured quantities were obtained at room temperature.  

b
Peak wavelength of the Qy(0,0) 

absorption band in toluene.  
c
Peak wavelength of the Qy(0,0) fluorescence band in toluene.  

d
Energy of the S1 excited state calculated 

from the average energy positions of the Qy(0,0) absorption and fluorescence bands in the prior two columns.  
e
Energy of the T1 

excited state determined by phosphorescence for values indicated in normal font.  The values in italics for the free base and zinc 

bacteriochlorins were obtained from the S1 energy by assuming the same S1T1 energy gap as in the palladium analogue.  
f
Ground-

state redox potentials measured in butyronitrile/0.1 M n-BuN4PF6 versus FeCp2/FeCp2
+
 = +0.19 V.  

g
Redox potentials for the T1 

excited state calculated from the ground state redox potentials and the T1 energy.  
h
Frontier molecular orbital energies from DFT 

calculations obtained using the 6-31G* basis set except for (NC)2BC-Pd, for which the LACVP basis set was used.  For PdTPP and 

ZnTPP the values listed are for the C2 symmetry structures, which are slightly lower in energy than the C4 symmetry structures.  
i
The 

HOMO and LUMO energies listed for 2-Zn were calculated using the actual iodide counterion; for comparison, the values calculated 

using a chloride counterion are 5.58 and 2.67 eV, respectively.  
i
The HOMO and LUMO energies listed for 2-Pd were calculated 

using the actual iodide counterion; for comparison, the values calculated using a chloride counterion are 5.67 and 2.68 eV, 

respectively.  
k
From refs (22) and (34). 
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Excited-state redox properties and Reactive oxygen species production   

Until recently it has been generally accepted that singlet oxygen (formed by energy 

transfer; i.e., Type-2 photochemistry) is the major mediator of toxicity in PDT.  Studies have 

now shown that hydroxyl radicals, superoxide and other species formed by electron transfer 

(Type-1 photochemistry) also play an important role in PDT activity depending on the 

photosensitizer and specific disease or cell type.  The palladium analogues of bacteriochlorophyll 

a (WST9 and WST11; Chart 1) produce superoxide and hydroxyl radicals. 
20,21,33

  Synthetic free 

base meso-tetraarylbacteriochlorins (particularly halogenated sulfonamide analogues; Chart 1) 

also produce superoxide and hydroxyl radicals as well as the Type-2 product singlet oxygen. 
25,27

 

It has been suggested that the latter bacteriochlorins may be expected to produce both Type-1 

and Type-2 photoproducts whereas porphyrins give significantly less electron-transfer (Type-1) 

products because porphyrins are harder to oxidize than bacteriochlorins. 
22,25

   

The diverse free base synthetic bacteriochlorins shown in Chart 2 and free base and 

metal-containing dicyanobacteriochlorins (Chart 4) that are the subject of the present study also 

produce hydroxyl radicals as well as singlet oxygen. 
5,6,7,11

  As noted above, the most active 

dicyanobacteriochlorin (NC)2BC-Pd and the second most active analogue (NC)2BC give a 

higher ratio of hydroxyl radicals versus singlet oxygen upon illumination, whereas the reverse is 

true for (NC)2BC-Zn and BC.  Indeed, (NC)2BC-Pd has greater PDT efficacy and a much 

greater propensity to produce hydroxyl radicals than (NC)2BC-Zn.  In a prior study of 

imidazole-substituted metalloporphyrins (Chart 3), the palladium chelate (2-Pd) was similarly 

found to have greater PDT activity and produce much more hydroxyl radicals than the zinc 

analogue (2-Zn).
10
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The parallelism in relative photoactivity and hydroxyl-radical formation for the palladium 

versus zinc chelates of the dicyanobacteriochlorins and imidazole-substituted porphyrins gives 

insights into fundamental mechanistic issues.  In particular, the palladium chelates of both the 

dicyanobacteriochlorins and porphyrins are found (or expected) to be harder to oxidize and 

easier to reduce than the zinc chelates (both in the ground state and the T1 states).  These findings 

together with general comparisons of the excited-state redox properties of bacteriochlorins 

versus porphyrins, and the effects of the dicyano substituents of the bacteriochlorins on 

photoactivity (and photostability), must be considered collectively in assessing the mechanisms 

of production of reactive oxygen species via Type-1 photochemistry (e.g., hydroxyl radical 

formation) for these tetrapyrroles.   

The Type-1 mechanism is virtually always thought to involve photooxidation of the 

photosensitizer (P) in the T1 excited state (P
T
) by electron transfer to O2 via Eqn. (1A). 

 P
T
  +  O2    P

+
  +  O2


   (1A) 

 P
+

  +  D    P  +  D
+
 (1B) 

A number of reaction sequences have been considered for the subsequent formation of hydrogen 

peroxide and hydroxyl radicals from the superoxide ion (O2


).
10,2022,25,33

  The one-electron 

oxidized photosensitizer is then returned to the starting condition by electron transfer from 

endogenous electron donor (D) [Eqn. (1B)].  The endogenous electron donor has been proposed 

to be human serum albumin for the palladium bacteriochlorophyll a derivatives, where 

complexes between the two species underlie a proposed photocatalytic role of such 

photosensitizers via Eqns. (1A) and (1B).
21

 Photosensitizer oxidation mechanisms involving Eqn. 

(1A) would generally imply that photoactivity should track the T1 excited-state oxidation 
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potential of the photosensitizer.  Therefore, more potent photosensitizers should be easier to 

oxidize in the T1 excited state than less efficacious compounds, all other factors being equal.  

 An alternative mechanism is photoreduction of the photosensitizer in the T1 excited state 

by an endogenous electron donor (D) followed by electron transfer from the photosensitizer 

anion to O2, to again produce superoxide ion, via Eqns. (2A) and (2B).   

 P
T
  +  D    P


  +  D

+
 (2A) 

 P


  +  O2    P  +  O2


 (2B)
 

Subsequent dark reactions of superoxide ion leading to hydrogen peroxide and hydroxyl 

radicals and other reactive oxygen species would proceed just as in the photooxidation 

mechanism described above [Eqn. (1A)].  Additionally, hydroxyl radicals potentially can be 

formed more directly from hydrogen peroxide and the reduced photosensitizer produced in Eqn. 

2A.
10

 The photoreduction mechanism [(Eqns. (2A) plus (2B)] would also give a photocatalytic 

role for the photosensitizer in an analogous manner (to that noted above via the photooxidation 

pathway) for human serum albumin (as the electron donor) and palladium bacteriochlorophyll a 

derivatives (as photosensitizer).
21  

Furthermore, ascorbate has been proposed to perform a similar 

role as a sacrificial electron donor to tetrapyrrole photosensitizers in the P
T
 state [(Eqn. 2A)] or 

P
+

 forms [(Eqn. (1A)].
22

  Photosensitizer reduction mechanisms involving Eqn. (2A) would 

generally imply that photoactivity should track the T1 excited-state reduction potential of the 

photosensitizer.  Therefore, more potent photosensitizers should be easier to reduce in the T1 

excited state than less efficacious compounds, all other factors being equal.
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We have considered these two alternative mechanisms (photosensitizer oxidation and 

reduction) previously in the study of imidazole-substituted palladium versus zinc porphyrins.
9,10

  

The photoreduction pathway rather than the photooxidation pathway seems to best explain the 

findings that porphyrin 2-Pd produces more hydroxyl radicals and is more efficacious than 2-Zn 

(Chart 3).  This follows because based on the T1 energies and ground-state redox potentials for 

these compounds and PdTPP and ZnTPP (Table 3 and ref (35)), the 2-Pd is expected to be 

~150 mV easier to reduce and ~50 mV harder to oxidize than 2-Zn in the T1 state.  Similarly, for 

the dicyanobacteriochlorins, (NC)2BC-Pd is ~130 mV easier to reduce and ~190 mV harder to 

oxidize than (NC)2BC-Zn in the T1 state.   

The latter trend can be extended to the entire set of unsubstituted and 

dicyanobacteriochlorins (Chart 4 and Table 3).  The T1 reduction potential becomes less negative 

or more positive (the excited bacteriochlorin becomes easier to reduce) in the order BC (0.47 

V) > (NC)2BC-Zn (0.05) > (NC)2BC (0.01) > (NC)2BC-Pd (0.08).  The T1 oxidation potential 

becomes more negative (the excited bacteriochlorin becomes easier to oxidize) in the order 

(NC)2BC (0.51 V) > (NC)2BC-Pd (0.59 V) > (NC)2BC-Zn (0.78 V) > BC (1.11 V).  

Figure 8B shows the excited-state redox potentials versus LD50 (using the direct-dilution 

medium).  A similar plot is obtained using the LD50 values obtained using CrEL delivery.  Good 

correlations are seen for both the T1 oxidation and reduction potentials, although the implications 

for activity are, at first glance, reversed.  Increasing PDT activity (decreasing LD50) correlates 

with greater ease of reduction and greater difficulty of oxidation. 

The simplest interpretation of the parallel findings for the dicyanobacteriochlorins and 

imidazole-substituted porphyrins is that the photoreduction of the T1 excited state contributes 

significantly to inherent PDT efficacy (i.e., reactive oxygen species production once the 
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photosensitizer is excited).  However, at least two additional factors must be considered as 

follows. 

(1) The absolute (and relative) rates of electron transfer will ultimately depend on the 

relationship between net free energy change for the excited-state electron-transfer reaction 

(which depends on the T1 redox potentials) and the total reorganization energy involving the 

photosensitizer, O2, and the medium.  In other words, depending on where electron transfer for a 

particular photosensitizer is on this curve (i.e., the Marcus plot), an increase in the free-energy 

driving force for the process (via a change in redox potentials or T1 energy) could either increase 

or decrease the rate of the reaction.  The standard considerations given above consider that a 

greater magnitude of the free energy change implies an increased rate and yield of electron 

transfer. 

(2) The overall PDT activity via the Type-1 mechanism may not be dictated by the rates 

and yields of electron transfer (or the Type-2 contribution by the rates and yields of energy 

transfer) if the limiting factor is photostability.  In this regard, it is normally thought that 

photoactivity proceeds via photooxidation [Eqn. (1A)] and most electron-transfer routes to 

photobleaching proceed via a similar mechanism.  In particular, for a bacteriochlorin the excited-

state oxidation process in Eqn. (1A) involves one-electron oxidation of the macrocycle to form 

the -cation radical, and ultimately formation of a typical chlorin photoproduct by two-electron 

oxidation.
21,29

  Even if formation of chlorin does not proceed via the bacteriochlorin -cation 

radical, the general reasoning seems to be that, within the context of a Type-1 mechanism, both 

PDT activity and photobleaching proceed via a photooxidation (rather than photoreduction) 

pathway.   
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 HOMO-1 HOMO LUMO LUMO+1 

BC 

    

 4.99 4.46 2.20 0.93 

(NC)2BC 

    

 5.68 5.22 3.10 1.65 

(NC)2BC-Zn 

    

 5.78 5.08 3.07 1.44 

(NC)2BC-Pd 

    

 5.91 5.16 3.11 2.06 

Figure 7.  Electron densities and energies of frontier molecular orbitals.  The DFT calculations 

employed basis sets 6-31G* for BC, (NC)2BC, and (NC)2BC-Zn and LACVP* for (NC)2BC-Pd.  

Effectively the same electron densities and the same MO energies (5.74, 5.09, 3.09, 1.45 

eV) were obtained for (NC)2BC-Zn using LACVP*.  The LUMO+2 for (NC)2BC-Pd has 

similar macrocycle electron density and energy (1.41 eV) as the LUMO+1 for the other 

molecules.  



 

332 

 

 

Figure 8. Electronic properties versus cell-killing LD50 value for bacteriochlorins using direct 

dilution of stock solution into complete culture medium.  The data points for increasing LD50 

(left to right) reflecting a decrease in photosensitizer activity are (NC)2BC-Pd (a) > (NC)2BC (b) 

> (NC)2BC-Zn (c) > BC (d).  (A) Calculated HOMO energy (open triangles) and LUMO energy 

(closed triangles).  (B) Redox potential of the T1 excited state (Table 3).  The lines in both panels 

reflect the linear fits to the data. 

 

Electronic tuning of tetrapyrrole photosensitizers for photostability and photoactivity   

Ideally, the photoactivity and photostability of a photosensitizer could be independently 

controlled, at least to some degree.  The data in Figure 8 and the reasoning given above suggest 

that such a situation could in fact contribute to the PDT efficacy of tetrapyrroles.  In particular, 

photoactivity via the Type-1 mechanism could proceed at least in part via transient reduction of 
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the photosensitizer [Eqn. (2A)] and thus would be enhanced if the photosensitizer is made easier 

to reduce in the excited state.  On the other hand, photobleaching likely proceeds to a significant 

degree by photooxidation (rather than photoreduction) and photoaggregation (perhaps via the -

cation radical), in addition to photodegradation; thus photostability would be enhanced by 

making the photosensitizer harder to oxidize.  Rendering a tetrapyrrole chromophore harder to 

oxidize and easier to reduce is, in fact, what generally occurs upon the incorporation of electron-

withdrawing substituents or the incorporation of a central metal ion with a high electronegativity 

(e.g., palladium).  Such trends can be seen in the redox properties and the energies of the frontier 

molecular orbitals (Table 3).
22,34,35

 Furthermore, the strategic choice and placement of 

substituents allow some control over the relative oxidation and reduction potentials (via HOMO 

and LUMO energies), as has been shown for synthetic chlorins, bacteriochlorins and related 

oxophorbines and bacteriooxophorbines that incorporate the keto-bearing five-membered ring of 

the native photosynthetic chromophores. 
16,19,32,3638

  

The increased photostability engendered by halogenation of the aryl rings of meso-

tetraarylbacteriochlorins (e.g., TDCPBS in Chart 1) has been noted previously.
22,25

  The more 

difficult oxidation (and increased photostability) of palladium bacteriochlorophyll a derivatives 

(e.g., WST9 and WST11 in Chart 1) than bacteriochlorophyll a also has been noted
2022,33

, and 

ascribed in part to the effect of the central palladium ion compared to the native magnesium ion.  

Additionally the native-like bacteriochlorins bear a 3-acetyl group and the related keto group in 

the fused five-membered ring spanning the 12- to 15-positions (Chart 1). These groups are 

basically electron withdrawing in character in that they lower the HOMO and LUMO energies 

and make the chromophore harder to oxidize and easier to reduce than bacteriochlorins that do 

not contain such substituents
16,19,38

, and the same is true of chlorin analogues.
9,37 

Thus, the 
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photostability of WST9 and WST11 is likely provided by effects of both substituents and the 

electronegative palladium ion to reduce photooxidation.  

Again, the effectiveness of these previously studied photosensitizers to produce hydroxyl 

radicals (or other Type-1 photoproducts) would be diminished compared to compounds that 

lacked the electron-withdrawing substituents or highly electronegative central metal if the 

mechanism of that process involves photooxidation [Eqn. (1A)]; however, the activity would be 

enhanced if there is a contribution from the photoreduction pathway [Eqn. (2A)].  As described 

above, the same is true of the bacteriochlorins bearing 3,13 substituents that are the focus of the 

present work and our recent investigation of the PDT efficacy of these photosensitizers.
11

  On the 

basis of shifts in MO energy shifts and redox properties obtained upon incorporation of cyano 

versus acetyl groups at similar positions (Table 3),
32,36-38

 one would expect the combined effects 

on oxidation potentials [photostability and photoactivity via Eqn. (1A)] and reduction potentials 

[photoactivity via Eqn. (2A)] to be greater for (NC)2BC-Pd versus the palladium 

bacteriochlorophyll a derivatives WST9 and WST11, all other things being equal.  The 

advantages of (NC)2BC-Pd and related synthetic bacteriochorins are (1) further enhanced 

photostability by the use of the geminal dimethyl groups that inhibit formation of chlorin 

photodegradation products and (2) the availability of macrocycle sites for additional electronic 

and chemical tuning. 

In summary, a combination of favourable electronic effects make the palladium 

bacteriochlorin (NC)2BC-Pd a photosensitizer with PDT activity (LD50 ~ 25 nM) and 

photostability that rival or surpass those of synthetic bacteriochlorins that we have studied 

previously as well as many common PDT agents.  The photostability of this compound is 

enhanced due to diminished photobleaching (via photooxidation, photoaggregation, and 
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photodegradation), which stem from the effects of the peripheral cyano groups and central 

palladium ion.  The photoactivity of (NC)2BC-Pd, (NC)2BC and other tetrapyrrole 

photosensitizers may derive in part from a contribution of a photoreduction pathway for 

production of lethal reactive oxygen species such as hydroxyl radicals.  Collectively, the 

fundamental insights gained from the studies described herein may allow the design of 

bacteriochlorin photosensitizers that have even greater PDT efficacy. 
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