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1 Introduction

In physics we constantly attempt to align theory with observation. Given some reason-

able assumptions, we compare predictions of quantities to measurements of the same

quantities. The more precisely the results match, the greater confidence we can put in

our understanding. The other possibility is the predictions and measurements do not

match. At least one of these must be wrong. In some sense, measurement also depends

on theory: we can only be so sure of how well a measurement represents any particular

physical quality or action. Often we have such control over an experimental set-up that

this is manifested only as statistical and systematic uncertainty. This typically makes the

fault of disagreement between reproducable measurement and theory fall upon theory.

However, in astrophysics, we cannot design the systems to be measured, only the probes

for measurement. So when physical theory disagrees with an astronomical observation of

some system, ignoring the possibility of a bad instrument, there are two possible culprits:

the theory describing how parts of the system interact (i.e. the dynamics), or the theory

describing what quality of the system has been measured.

This difficulty has created one of the most important open problems in modern as-

trophysics, the missing mass problem. As a brief example, which will be returned to in

greater detail, consider a spiral galaxy, made up of stars, gas, and plasma. It is natural to

suppose these constituents interact with one another through Newtonian gravity, mean-

ing that there is a specific relationship between the velocity curve, which can be measured

via the Doppler shift, and the contained mass, which is measured by accumulating the

abundances of the constituents. We would expect these measurements to generally agree,

but they do not. Along the lines of what is described above, one of two conclusions can

be drawn: spiral galaxies do not exactly follow Newtonian gravity, or the measurements

are incomplete. More precisely, the second of these possible conclusions is that galaxies

have some component that dominates their total mass and is non-luminous. This new

component is the standard explanation and is called dark matter. The other possibility,

that Newtonian gravity fails in some way as an effective theory for galactic-scale dynam-

ics, has also been seriously considered [89, 90, 59], but the application of this paradigm
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to cosmology is incomplete, and it has problems predicting the power spectrum of the

Cosmic Microwave Background. We will assume in this work that Newtonian dynamics

and General Relativity are correct: unseen dark matter does indeed exist.

Accepting that dark matter exists, the next question is: what is it? At the time when

astrophysical discrepancies were first found1 by Fritz Zwicky in 1933 [141], it was known

that a large portion of the luminous mass in galaxies was made up not of stars but diffuse

gas and dust. We now call this the interstellar medium. Astronomical observations had

not yet covered the entire electromagnetic spectrum at the time, so it was natural to ex-

pect the missing mass to be filled in by the interstellar medium at yet-unseen wavelengths.

Modern observations have covered this spectral ground from radio to gamma-ray: atomic

hydrogen is traced by its 21 cm line, molecular gas is identified by spectral lines from

radio to infrared, ionized gas (plasma) emits thermal x-rays, and interstellar dust is a

source of infrared blackbody radiation. Observations have enriched the map of galaxies

and clusters of galaxies, but they have not entirely revealed the missing mass. Not satis-

fied with diffuse material, the existence of massive compact halo objects (MACHOs) was

considered around the 1980s. A population of such objects would be non-luminous, evad-

ing observations as yet, but could, however, be determined by gravitational micro-lensing:

the brightness of background stars would be occasionally enhanced by lensing over time.

After lengthy monitoring of the galaxy, however, it seems that MACHOs account for at

most only several percent of the total mass [125].

By cosmological arguments, the majority of matter in the universe must be non-

baryonic and cold, and we identify this cosmological component as the galactic dark

matter as well. We must turn to physics beyond the Standard Model. Specific candi-

dates will not be discussed at length, but the generic weakly-interacting massive particle

(WIMP) will be assumed. This class of particle candidates is well motivated by the

thermal relic density calculation and by the possibility of supersymmetry. WIMP dark

matter allows for the possibility of non-gravitational particle detection. Detection meth-

ods can be either direct, looking for signals from WIMP-nucleon interactions in terrestrial

1Oort found discrepancies in the dynamics of the solar system in 1932 that he attributed to something
like dark matter, but these were quickly settled.
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instruments, or indirect, looking for signatures of self-annihilation where the WIMP den-

sity is highest. Such a detection of particle dark matter has not yet been confirmed as

successful. It is hoped that this work contributes toward a discovery.

In order to make specific predictions for direct and indirect detection, we need to

model the structures formed by dark matter. Especially, we need to understand the

distribution of dark matter in and around the Milky Way, where we are most likely to

make a detection. Signatures of WIMPs in indirect detection generally scale with either

their mass density or mass density squared. We can predict the distribution of mass from

Newtonian simulations, which gives us an idea of where to look and the luminous extent

of dark matter structures in the galaxy. We are also interested in the velocity distribution

of WIMPs for two reasons: the velocity distribution of WIMPs near the earth has a large

impact on direct detection, and it can also have a significant effect on annihilation rate

of WIMPs, which is important for indirect detection.

These two distributions, mass and velocity, are not independent. It is reasonable to

assume that galactic-scale dark matter structures are statistically stationary in the sense

that their phase-space distribution is time-independent.2 This creates a link between

the mass distribution of a structure and the velocity distribution of particles within that

structure. Taking advantage of this relationship is the basis of this entire work. In par-

ticular, we investigate the impact of a complicated augmentation of the annihilation rate,

Sommerfeld enhancement, which requires the non-trivial calculation of the velocity dis-

tribution of WIMPs everywhere in the galaxy. We also consider the effect of anisotropy in

the velocity distribution of WIMPs throughout the galaxy on direct detection prospects.

The focus of this work is phenomenology: how do different models affect predictions

of WIMP detection? The many theories of WIMPs, such as the many possible supersym-

metric theories, are not investigated here. This work may be considered as a treatise on

the necessity of methods of calculation: in what cases are careful and difficult numerical

computations necessary to find an accurate and precise prediction? In Section 2, we

give an overview of modern physical cosmology, in particular the most important and

2The time scale of terrestrial observations is much less than dynamical time scales.
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convincing evidences for non-baryonic dark matter: Big Bang Nucleosynthesis and the

Cosmic Microwave Background. In Section 3 we give a somewhat-historical overview of

the evidence for galactic dark matter, as well as mass density models of galactic dark

matter structures and models of the baryonic components of the Milky Way. In Section 4

we briefly discuss various particle candidates for dark matter, motivate WIMPs, and dis-

cuss the thermal relic density calculation in detail. In Sections 5 and 6 we review the

basic calculations involved in indirect and direct detection, as well as the local positron

excess, which has been a major motivator for the possible particle physics of Sommerfeld

enhancement, which is also described in detail. Sections 7 and 8 include the main results

of this work: we perform the most careful to date calculation of the velocity distribution

of WIMPs in the Milky Way and consider the impact on indirect detection prospects; we

also derive the anisotropy profile of dark matter in the Milky Way, incorporate the result

into a new empirical model of the velocity distribution, and calculate the effect on direct

detection prospects. We conclude in Section 9 with some thoughts on these efforts and

the context in the larger scheme of things.

All inline division is such that a/2c = a/(2c). A subscript 0 generally denotes the

present time or pure s-wave interaction. Effort has been made to avoid using natural

units, or at least use them consistently, but wherever constant factors are accidentally

neglected, ~ = c = kB = 1.
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2 Cosmology and Dark Matter

Here we review the basic concepts from physical cosmology that will be necessary in

future discussions. In particular we are interested in the interplay between matter and

radiation densities and expansion, the thermodynamics of these components, and the

time-dependence of thermodynamic quantities. Two principles set the foundation for

these derivations: general relativity and statistical homogeneity and isotropy on large

scales.

Homogeneity and isotropy imply the generic space-time metric attributed to Fried-

mann, Lemâıtre, Robertson, and Walker (the FLRW metric). This naturally introduces

the concept of cosmic expansion, first predicted by Lemâıtre in 1927 and observationally

confirmed by Edwin P. Hubble in 1929.3 The expansion of the universe is one of the

three pillars of the Big Bang Model of Cosmology, the others being Big Bang Nucle-

osynthesis (Section 2.1) and the Cosmic Microwave Background (Section 2.2). Using the

FLRW metric and assuming that the content of the universe is a perfect fluid, consistent

with homogeneity and isotropy, the Einstein tensor equations of general relativity can be

solved, producing the Friedmann-Lemâıtre equations:

ȧ2

a2
=

8πG

3
ρ− kc2

a2
+

Λ

3
, (1)

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
, (2)

where ρ is the density and P is the pressure of all components in the universe. The

first of these is often simply called the Friedmann equation, while the second is called

the acceleration equation. The quantity a is called the “scale factor”: it tracks a length

scale in an expanding universe, in the sense that if a physical distance between two

points divided by the scale factor, d/a, is constant, then the two points are said to be

“comoving”. Similarly, we can speak of comoving volumes. We can define the “Hubble

3The usual story is that Hubble discovered the expansion of the universe, but there is actually some
contention over the exact history. Hubble used redshift measurements by Vesto M. Slipher to determine
distances, so there is some major credit due there. See [97] and references within.
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parameter” that measures the rate of expansion:

H ≡ ȧ

a
. (3)

Two comoving points of physical distance r have a physical relative velocity of Hr in an

expanding universe. The dimensionless quantity k takes the value of +1, 0, or −1 and

determines the curvature of physical space: spherical (closed), flat, or hyperbolic (open),

respectively. Observations are very compatable with flat or nearly flat space, and it is a

puzzle why a non-flat space should appear so close to flat today, so the usual assumption

is that space really is flat and always has been (k = 0). We will make this assumption

from here on. The quantity Λ = 8πGρΛ is a cosmological constant attributed to the

energy density of the vacuum. For the purposes of this work, Λ will be important only

when discussing measurements of the Hubble parameter from supernovæobservations.

Equations 1 and 2 also combine to give the continuity equation

dρ

dt
+ 3

ȧ

a
(ρ+ P ) = 0. (4)

Ignoring for a moment the cosmological constant (or absorbing it into ρ) and pressure

P , there is a simple Newtonian interpretation of these equations. Consider some matter

symmetrically distributed in a sphere with outgoing velocity proportional to the distance

from the sphere’s center. The matter’s kinetic energy driving it outward, diluting it,

competes with its potential energy, gravitationally drawing it back in, compressing it. If

the total energy is negative, then gravity will eventually win and the matter will collapse.

If the total energy is larger than zero, the matter will escape to infinity with kinetic energy

to spare. If it is precisely zero, the matter will “barely” escape to infinity. These three

cases correspond to closed, open, and flat space. A full relativistic derivation introduces

the pressure contribution.

The continuity equation 4 applies to all components separately, assuming they do not

interact. It is usually solved for a particular component of the universe by specifying

an equation of state that relates ρ and P , normally of the form P = wρ, where w is
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a constant “equation of state parameter”. Two extreme cases are of importance: non-

relativistic matter or “dust” has zero pressure so w = 0; ultra-relativistic matter such as

radiation has w = 1/3.4 Using whatever equation of state, the continuity equation gives

the density as a function of the scale parameter:

ρM ∝ a−3, (5)

ρR ∝ a−4. (6)

Obviously, the term in equation 1 contributed by curvature is proportional to a−2, and

the contribution from the cosmological constant is indeed constant. If we assume that

the observed expansion has been monotonic always, these relations have an important

implication: regardless of the composition of the universe today, as long as the universe is

old enough, there was a time before which radiation dominated the total energy density,

so ρ ≈ ρR, and after which matter dominated the total energy density, so ρ ≈ ρM .

In most situations, we will be concerned with cosmology during one of these two

“eras”, so it is appropriate to assume the dynamics of the universe are dominated by one

or the other. Now we use the rest of the information in equations 1 and 2 to find the

time-dependence of a and H. First suppose the universe is made up entirely of relativistic

matter. In this case, ρ ∝ a−4, and the Friedmann equation implies

a(t) ∝ t1/2, (7a)

H(t) = 1/2t, (7b)

ρ(t) =
3

32πGt2
. (7c)

Next suppose the universe is dominated non-relativistic matter. In this case, ρ ∝ a−3,

4This is shown explicitly in Appendix A.
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and the Friedmann equation implies

a(t) ∝ t2/3, (8a)

H(t) = 2/3t, (8b)

ρ(t) =
1

6πGt2
. (8c)

Expressing the total density ρ explicitly as a sum of components, we can rewrite the

Friedmann equation as

3H2

8πG
= ρM + ρR + ρΛ −

3

8πG

kc2

a2
. (9)

If the spacial curvature is zero, then the total density is equivalent to the left-hand-side,

which we define as the critical density:

ρcrit(t) ≡
3H2(t)

8πG
. (10)

If we know the total density of the universe ρ and the rate of expansion H, we then

know whether space is curved and how (if we do not assume space is flat a priori). If

ρ = ρcrit then space is flat; if ρ is greater than or less than ρcrit then space is closed or

open, respectively. This is in analogy with the Newtonian interpretation of the Friedmann

equation described above.

Generally, we can write the total energy density in units of the critical density today :

ρ = ρcrit,0

[

ΩΛ + ΩM

(a0
a

)3

+ ΩR

(a0
a

)4
]

, (11)

where ρcrit,0 is the critical density today,

ρcrit,0 =
3H2

0

8πG
, (12)

and we have introduced the standard fractions, defined as the fraction of the critical

8



density made up of whatever component today,

ΩΛ ≡ ρΛ,0/ρcrit,0, (13a)

ΩM ≡ ρM,0/ρcrit,0, (13b)

ΩR ≡ ρR,0/ρcrit,0. (13c)

Then we have

ΩΛ + ΩM + ΩR = 1. (14)

In Appendix A we review derivations of the number, energy, and entropy densities,

and the pressure of relativistic and non-relativistic bosons and fermions. The important

results we will need later are the energy and entropy densities of all relativistic species

ρR(T ) =
π2

30
NT 4, (15)

sR(T ) =
2π2

45
NT 3. (16)

Combining equation 15 with equation 7c we find a relationship between changes in

time and temperature during the era of radiation domination:

dt

dT
= −

√

45

4π3GN T−3. (17)

An important quantity is the baryon-to-photon ratio

η ≡ nB/nγ . (18)

We will see later that the number density of cosmological photons is easily measured.

While η is still a theoretically-important quantity, it was also a main observational target

before the CMB spectrum was fully observed.

Our calculations later will be during either eras of radiation domination or matter

domination. The point in history when these two components are equally balanced is

9



approximated by

ρR = ρM ,

ΩR(1 + zeq)
4 = ΩM(1 + zeq)

3, (19)

which, knowing from the CMB temperature that the photon density is Ωγh
2 = 2.47×10−5,

the total radiation density (photons and neutrinos) is ΩRh
2 = 4.12 × 10−5. We also

know from the CMB anisotropies that ΩMh
2 = 0.14 [3], so we estimate that radiation-

matter equality occured at around a redshift of zeq ≃ 3400. The photon temperature

today is Tγ,0 = 2.7255K and Tγ ∝ 1 + z, so the photon temperature at radiation-matter

equality was roughly 104 K. Studies of interactions that occur at energies corresponding to

temperatures well above this value can assume equation 7; at those well below can assume

equation 8. On the other hand, we will also see that the density of baryonic matter is

only ΩBh
2 = 0.022, so the redshift and photon temperature at radiation-baryon equality

were zγ,B ≃ 530 and Tγ,B ≃ 1500K, respectively.

2.1 Big Bang Nucleosynthesis

The term “nucleosynthesis” refers to the creation of atomic nuclei, combinations of bound

protons and neutrons, the two of which being generally referred to as nucleons. Essentially

all of the baryonic matter in the universe consists of atomic nuclei, the most widespread of

which is hydrogen, making up about three quarters of the baryonic matter; helium being

the other quarter. Cosmologically, there are only trace amounts of heavier nuclei such

as lithium, carbon, and so on, though these are certainly important in their own right.

Stellar nucleosynthesis is specifically the process of creating these heavier elements in

stars via hydrogen fusion and the subsequent burning of helium. The important product

of hydrogen fusion is stable helium nuclei: the temperature of a typical star is high enough

that the hydrogen nuclei, which are lone protons, have enough energy to tunnel through

the Coulomb barrier and create the unstable isotope 2He.5 This begins the proton-proton

5The probability of this is given by the Gamow-Sommerfeld factor, first derived by George Gamow
in 1928.
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(p-p) chain reaction.6 This 2He nucleus may emit a positron via beta-plus decay, resulting

in a 2H nucleus, which is called a deuteron. This first step of the hydrogen-fusion process

may be written as

1H+ 1H→ 2H+ e+ + νe + γ, (20)

where e+ is a positron, an anti-electron, and νe is an electron neutrino. The energy of the

photons emitted in this reaction each have 0.421MeV of energy, minus whatever kinetic

energy the positron and neutrino carry; furthermore, the positrons created annihilate

with electrons to create pairs of photons, each with at least mec
2 = 0.511MeV of energy

(plus whatever kinetic energy the electron and positron had). These photons and those

from subsequent reactions are important for creating an outward pressure in a star to

prevent gravitational collapse. The next step is for deuterons to combine with another

proton to create the helium isotope 3He:

1H+ 2H→ 3He + γ. (21)

With a source of 3He coming from proton-proton fusion, the dominant reaction to create

4He at these temperatures is the fusion of two 3He nuclei:

3He + 3He→ 4He + 1H+ 1H. (22)

Subdominant reactions that create helium from deuterons involve heavier nuclei, lithium

and beryllium. These are important, however, because they involve weak interactions

and so create neutrinos (with energy of ∼ 0.1 to 10MeV or more). Nuclei of 4He, also

called “alpha particles”, in supply, creation of heavier nuclei is started by the triple-alpha

process: two helium nuclei combine to create the unstable isotrope beryllium-8 that,

before it decays, combines with another helium nuclei to finally create the important

element carbon-12. Heaver nuclei are created by successive fusions of helium nuclei:

oxygen-16, neon-20, etc.

6This is actually the dominant process in stars with central temperature less than about 1.7× 107 K.
Hotter stars follow the carbon-nitrogen-oxygen cycle [109], which we do not need to discuss for the
purposes of illustrating the differences between stellar and big bang nucleosynthesis.
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This process [27, 73] explains the origin of “metals”, elements heavier than helium, but

there is a puzzle here. The rate at which deuterons are burned is larger than that at which

they are created, so the abundance of deuterons in stars should always be vanishingly

small unless there was an initial abundance at the time a star may have been formed. In

recent astrophysical history, stars are the only objects that, with the ingredients available,

just protons, can reach the temperatures necessary to create deuterons. Another puzzle

is the helium abundance of the universe today: about 25% of baryonic matter is helium,

which is created in stars, but such a large abundance of helium, if it were created only

in stars, would imply a much higher stellar luminosity than is seen in the sky. The stars

are not bright enough to be responsible for all of the helium we see today. We must look

to the early universe, when the temperatures were also high, for an initial abundance of

deuterons and helium. It turns out that the deuterium and helium abundances today are

an excellent probe of the overall density of nucleons when the universe was young, just

minutes after the big bang.

The important difference between stars and the early universe is what ingredients are

available: stellar nucleosynthesis begins with solely protons. There are no free neutrons,

which decay with a lifetime of about 880 seconds [22]. This is far less than the age of

the universe: ignoring any intervening processes, after 13 billion years only one out of

every 10010
14

neutrons in an initial population would be left over. Much earlier, however,

protons and neutrons were kept in chemical equilibrium via weak interactions. When the

universe cooled enough, weak interactions become inefficient and two important things

then happen: the neutron abundance is subject to decay (since the neutron-to-proton

interactions cannot be driven), and nuclear interactions take over, just as in stars, so

deuterons and helium nuclei can be formed. Different from stars, however, there are

free neutrons available and the density is much lower than in stars.7 Only two-body

interactions can compete against expansion at this density, so helium nuclei must be

formed via deuterons, and this goes for heavier nuclei as well. Also, while deuterons

are easily created by the abundant protons and neutrons, their own abundance remains

7The density of the universe at this time was approximately that of air on Earth.
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Figure 1: The primary weak interactions that govern the proton and neutron abundances
while T & 1010 K. Once these become inefficient, nuclear interactions dominate.

small for some time, since their binding energy is so small. These two facts, that heavy

nuclei must be made via deuterons and that the binding energy of deuterons is small,

together cause what is called the “deuterium bottleneck”. When this bottleneck stops

and deuterons become abundant, helium nuclei can finally form. All of the free neutrons

become bound in helium nuclei and are thus barred from decay. Since the neutrons are

free to decay while the bottleneck is in effect, the abundance of neutrons depends on

when the bottleneck stops. Observations of the deuterium/helium abundances today are

a probe for the cosmological baryon density, because as we will see in more detail below

that when the bottleneck stops depends on the density of nucleons.

To summarize, the important points are the chemical equilibrium of protons and

neutrons, neutron decay, and the deuterium bottleneck. We will now review each of

these concepts in detail.

Above temperatures of about 1MeV/kB ≈ 1010 K, the most important reactions are

the following six:

n+ νe ←→ p+ e−, (23)

n+ e+ ←→ p+ νe, (24)

n←→ p+ e− + νe. (25)

The tree-level Feynman diagrams for these interactions are shown in Figure 1. In order

to calculate the abundances of neutrons and protons when nucleosynthesis starts, we need

to know how these interactions change the relative abundances with time. This means

we must calculate the cross-sections and then the interaction rates of all six processes.

The derivation is straightforward, but we defer the details to Appendix B.
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The final result for the total rate of neutron-to-proton conversion is

Γn→p =
2G2

F

π3

m2
p

m2
n

∫ ∞

−∞

dEE2
1 + exp {E/Tν}

(E +Q)2
√

1−m2
e/ (E +Q)2

1 + exp {− (E +Q) /T} , (26)

where Q = mn −mp, T and Tν are the photon and neutrino temperatures, respectively,

and the integration leaves out the interval where the square root is imaginary.

If electrons and positrons have not yet annihilated, then T = Tν and

Γp→n = exp {−Q/T}Γn→p. (27)

Knowing these six important interaction rates, we can finally write the differential equa-

tion describing how the number densities of neutrons nn and protons np change with

time. We have

dnn
dt

= −Γn→p nn + Γp→n np

= −Γn→p nn

(

1 + exp {−Q/T} np
nn

)

. (28)

In equilibrium, the instantaneous rate of change of the neutron density (and thus also

the proton density) is zero. We can solve for this equilibrium density easily:

dnn
dt

∣

∣

∣

∣

eq

= 0 = 1 + exp {−Q/T} n
eq
p

neq
n
. (29)

This just the Boltzmann factor again. It is convenient to introduce the relative abun-

dances of neutrons and protons, which are defined as the portion of all nucleons by number

(i = n, p):

Xi ≡
ni

nn + np
. (30)

Now the equilibrium neutron abundance has the simple form

Xeq
n =

1

1 + exp {Q/T} . (31)
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We are neglecting any difference in chemical potential between different nucleons. Because

of this, when the temperature is much larger than the mass difference Q, protons and

neutrons are essentially indistinguishable, so they are evenly balanced in number and

Xeq
n = 1/2. As the temperature drops, however, the mass difference becomes important

and it becomes more and more “appealing” to favor the lighter protons.8 The differential

equation for the actual neutron abundance is

dXn

dt
= Γn→p

(

1 + e−Q/T
)

(Xeq
n −Xn) . (32)

It is useful to switch to the independent variable x ≡ Q/T . At the temperatures of

interest, radiation dominates, so we may use equation 17. Then equation 32 becomes

dXn

dx
=

√

45

4π3N
MPl

Q2
Γn→p x

(

1 + e−x
)

(Xeq
n −Xn) . (33)

This differential equation can be numerically integrated from some early time at xeq ≪ 1

with the initial condition Xn(xeq) = Xeq
n (xeq). Such a calculation is plotted in Figure 2.

Note that the actual neutron ratio begins to deviate significantly from its equilibrium

value at a temperature of around 1010 K.

This calculation has been done ignoring the creation of complex nuclei, meaning that

it certainly becomes incorrect at a temperature of around 109 K, when deuterons can

build up a substantial population, stopping neutrons from decaying. We now want to

calculate when this happens and the deuterium bottleneck “opens”. Knowing the neutron

abundance at that time, we can finally determine the abundance of various isotopes.

First let us consider the efficiency of deuteron-production. The production rate per

8As another way to understand this, consider the Helmholtz free energy F = U − TS, where U is
the energy, T is the temperature, and S is the entropy of the system of protons and neutrons. The
system tends to minimize the free energy. When the temperature is large, it is more advantageous to
maximize the entropy. This is accomplished by having a even mix of protons and neutrons, maximizing
the disorder. On the other hand, if the temperature is low, it is more advantageous to minimize the
energy U , which is accomplished by preferring less-massive protons over neutrons.
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Figure 2: The neutron-to-nucleon ratio Xn versus temperature. Also shown is the equi-
librium ratio Xeq

n and the ratio of photon and neutrino temperatures (T − Tν)/Tν . The
vertical lines mark the temperatures approximately corresponding to electron/positron
annihilation (0.511MeV) and the binding energy of a deuteron (2.23MeV).

free neutron is

dΓ2H

dNn

=
(

4.55× 10−20 cm3/s
)

np

=
(

2.52× 104 s−1
)

(

T

1010 K

)3

XpΩBh
2. (34)

This is quite large even though the universe is young at the time of interest. During

radiation-domination, t ≈
√

45/16π3NMPlT
−2, so ignoring other processes, the number

of deuterons created “per neutron” at time t would be

dN2H

dNn

= t · dΓ2H

dNn

≈ 990

(

T

1010 K

)

Xp

(

ΩBh
2

0.022

)

. (35)

This result cannot be taken literally, but it does tell us that deuteron production is

very efficient, provided there are protons and neutrons available. Thus, as far as the

deuterons are concerned they are in local equilibrium with protons and neutrons, so their

abundance is well-approximated by its equilibrium value. We can find this equilibrium
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value in relation to the proton and neutron abundances. The connection is made via the

chemical potentials: µp + µn = µ2H.
9 Generally, the equilibrium number density of a

particular kind of nuclei is

n = g

(

mT

2π

)3/2

exp {−(m− µ)/T} , (36)

where g is the number of possible spin states, m is the mass, and µ is the chemical

potential. We can remove the (unknown) chemical potentials by writing10

n2H

npnn
=

3

4

(

2π

T

m2H

mpmn

)3/2

eB2H
/T , (37)

where B2H = m2H −mp −mn = 2.23MeV is the binding energy of a deuteron. Defining

the relative abundance of deuterons as X2H ≡ n2H/nN , we have

X2H =
3

4

(

2π

T

m2H

mpmn

)3/2

eB2H
/TnNXnXp

=
9

32π

(H0/h)
2

GmN

(

2π

T

m2H

m2
N

)3/2(
T

Tγ,0

)3

eB2H
/TXnXpΩBh

2

= 2.78× 10−26

(

T

Tγ,0

)3/2

eB2H
/TXnXpΩBh

2

= 1.36× 10−13

(

T

1010 K

)3/2

eB2H
/TXnXp

ΩBh
2

0.022
(38)

Clearly, deuterons were quite rare until the temperature dropped below about 109 K ≈

0.086MeV. Another way to see this is to consider the number density of photons with

energy of at least B2H, which are those that can dismantle a deuteron. Recall that the

9We have assumed that the chemical potentials are negligibly small elsewhere, but this relation is
true regardless.

10A deuteron has three spin states.
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number density of the photons is

nγ =

∫ ∞

0

dǫ ǫ2

π2

1

exp {ǫ/T} − 1

=
2ζ(3)

π2
T 3

= nN/η. (39)

For temperatures below 1010 K, the partial number density nγ(ǫ ≥ B2H) is well approxi-

mated by the Wien approximation, so we may write

nγ(ǫ ≥ B2H) ≃
∫ ∞

B2H

dǫ ǫ2 exp {−ǫ/T} /π2

=
T 3

π2

(

B2H

T

(

B2H

T
+ 2

)

+ 2

)

e−B2H
/T

=
ntot
γ

2ζ(3)

(

B2H

T

(

B2H

T
+ 2

)

+ 2

)

e−B2H
/T . (40)

Then the ratio of “deuteron-capable” photons to deuterons is

nγ(ǫ ≥ B2H)

n2H

=
(ηX2H)

−1

2ζ(3)

[

B2H

T

(

B2H

T
+ 2

)

+ 2

]

e−B2H
/T

≃ 2.4× 1010

η10X2H

(

B2H

T

)2

e−B2H
/T

=
1.6× 109

η10X2H

(

1010 K

T

)2

exp
{

−2.6× 1010 K/T
}

. (41)

The temperature had to drop well below the temperature corresponding to the binding

energy of helium 28.3MeV/kB = 3.3 × 1011 K. This means that the helium abundance

will reach its equilibrium value very quickly once the deuterium bottleneck opens.

We now understand when the deuterium abundance becomes significant, so we may

proceed to the next step. The two reactions that combine deuterons into heavier nuclei

are

2H+ 2H→ 3H+ p (42)

2H+ 2H→ 3He + n. (43)
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The cross-sections of these processes at the temperatures of interest have been experi-

mentally measured; we use, for the respective reactions,

〈σv〉1 ≃ 1.8× 10−17 cm3/s, (44)

〈σv〉2 ≃ 1.6× 10−17 cm3/s. (45)

Via these processes, the total rate at which deuterons interact is

Γ = 〈σv〉totnNX2H

=
(

3.4× 10−17 cm3/s
) ρcrit,0
mN

(

T

Tγ,0

)3

X2H ΩB

=
(

3.8× 10−22 s−1
)

(

T

Tγ,0

)3

X2H ΩBh
2

=
(

1.9× 107 s−1
)

(

T

1010 K

)3

X2H ΩBh
2 (46)

Once these processes are comparable to the expansion rate and become efficient, nucle-

osynthesis begins, locking in the neutron abundance. This occurs after electrons and

positrons annihilate, so the effective number of particles species is N = 3.363 and the

expansion rate is

H = 1/2t

=
(

0.28 s−1
)

(

T

1010 K

)2

(47)

Equating the two rates in equations 46 and 47 gives

ΩBh
2

0.022
≃ 6.7× 10−6

X2H

(

T

109 K

)−1

(48)

We have already estimated that nucleosynthesis begins at around TNuc = 109 K, so this

suggests that the deuteron abundance at the beginning of nucleosynthesis was XNuc
2H
≈

6.7× 10−6. Using equation 38 and estimating XnXp ≈ Xn(1−Xn) ≈ 0.14 from Figure 2,

we find that this abundance would be reached in thermal equilibrium at a temperature of
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1.14×109 K, quite consistent with our starting estimate of 109 K. We can safely conclude

that this is approximately when helium nuclei formed, capturing all the free neutrons.

The fractional abundance of helium by weight Yp is double the neutron abundance: ap-

proximately 25% of nucleons were then contained in helium nuclei, the rest being free

protons (that will become atomic hydrogen). It is measured from observations of emission

lines of hydrogen and helium in H II regions, metal-poor extragalactic clouds of partially

ionized gas. Various groups generally report a value of Yp ≈ 0.25 [98, 102, 75, 18, 17],

and the PDG recommends the value Yp = 0.2465± 0.0097 [22].

This calculation also predicts the deuterium/hydrogen ratio, which can be measured

from 2H I absorption lines in Lyman-α systems, giving 2H/1H = (2.53± 0.04) × 10−5.

Note that because deuterium can only be created (without being quickly destroyed)

during BBN, any observation sets a lower limit on the primoridal deuterium abundance,

which sets an upper limit on η. Past strategies have involved spectroscopic observations

of the interstellar medium, giving the ratio (1.60 ± 0.09+0.05
−0.10) × 10−5 [83]; the Jovian

atmosphere, giving the ratio (5 ± 2) × 10−5 [57]; and measurements of 3He in the solar

wind, thought to have been converted from deuterium before the Sun entered the main

sequence, giving the ratio (2.6± 0.6± 1.4)× 10−5.

While the measurements of the deuterium/hydrogen ratio are now very precise and

imply a value of η that is consistent with that by measurements of the helium abundance,

measurements of the lithium/hydrogen ratio are troubling. The value measured from low-

metallicity stars and dwarfs, (1.6 ± 0.3) × 10−10, is lower than expected from the BBN

calculation [112]. It is not clear how these low-mass stars may burn lithium, so it is

difficult to extrapolate the observed ratios to the primordial values. Figure 3 shows the

precise predictions of various isotopic abundances as a function of η and measurements

of those abundances.

In our estimates we have preemptively assumed that ΩBh
2 = 0.022 in order to cal-

culate the abundances. This is backward from what is actually done in practice: the

abundances are measured and used to calculate ΩBh
2. The point here is just to show
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that nucleosynthesis requires the cosmological density of baryons to be small.11 This re-

sult alone does not necessitate non-baryonic dark matter.We must look to another major

event in cosmic history, when gravity comes into play.

2.2 The Cosmic Microwave Background

We have seen that the expanding, cooling model of cosmology explains very well the

primordial existence of light nuclei. Another major feature of such a universe is a nearly

isotropic Planck distribution of light. This radiation “background” is leftover from the

time of “recombination”, when the temperature of the photon population became low

enough that the matter in the universe, mostly electrons, free protons, and light nuclei,

could combine and become neutral without being immediately ionized again. Before

this time, the free-streaming length of photons was small. After, the universe became

essentially transparent to photons, which continued to traverse, nearly unabated, to be

seen today. Most of this background radiation is now in the microwave range, so the

whole is called the Cosmic Microwave Background. It was first predicted in 1948 by

George Gamow and later discovered (at a single wavelength) in 1965 by Arno A. Penzias

and Robert W. Wilson [103]. The first all-sky observations came from the COBE mission

in 1992 [117, 61]. Since then, the WMAP [78] and, most recently, Planck missions [2] have

measured the temperature of the emission over the entire sky to great precision. These

all-sky maps reveal small fluctuations in the CMB temperature with respect to direction,

and this temperature anisotropy tells us a great deal in cosmology. We will briefly review

how measurements are decomposed, the physical origins of the temperature fluctuations,

and the cosmological parameters that are determined by modeling the creation of the

fluctuations.

We can express the temperature observed from a particular direction n̂ as

T (n̂) =
∑

ℓm

aℓmYℓm (n̂) , (49)

11Strictly speaking, the calculation regarding Big Bang Nucleosynthesis alone only constrains the
baryon-to-photon ratio η. With a basic measurement of the CMB, however, we know the photon density
and thus the baryon density.
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where Yℓm (n̂) = Yℓm (θ, φ) are the spherical harmonics and aℓm are coefficients satisfying

a∗ℓm = aℓ−m (because T is real). Equation 49 does not assume anything about the observed

temperatures, but the coefficients aℓm correspond to the temperature fluctuations seen at

a single place in the universe (the Earth). A cosmological theory can not (and perhaps

should not) predict this. From a cosmological standpoint, we would be interested in

averages over all locations in the universe, which we denote in this section as 〈.〉. We will

refer to this kind of average as a “cosmological average”. If the coefficients aℓm measured

at a single location (such as the Earth) are randomly drawn from a distribution, then a

cosmological theory would predict the distribution for each aℓm and observations would

provide a single sample from each distribution. An alternative way to think of this is that

the randomness is not from the arbitrary location but rather the history of the particular

universe we inhabit. Even from just one location, sampling from many iterations of the

universe would give us more information about the distributions of aℓm, to which we could

compare cosmological predictions.12

Unfortunately, we have only a single vantage point from which to observe and only

one universe, so we cannot sample more than one point from each of the distributions of

aℓm. The expected error of any observed aℓm compared to 〈aℓm〉 is, of course, the vari-

ance of the distribution of that aℓm. We can calculate this variance from the predicted

distribution, but we cannot measure it as we have only a single measurement of each aℓm.

In this context, this is called “cosmic variance” and is unavoidable. There is, however,

a way to dampen its effects so to allow for accurate and precise predictions. We assume

in theory that the universe is homogeneous and isotropic. Then the CMB temperature

fluctuations should, on cosmological average, be rotationally invariant. The angular av-

erage of T (n̂) is simply the average observed temperature Tγ,0, and 〈T (n̂)〉 would be

the cosmological average photon temperature 〈Tγ,0〉. More information is contained in

the two-point correlation function. Rotational invariance requires that the cosmological

12These two distributions — one encapsulating the randomness with location in one universe, the other
the randomness at one location with different universes — are equivalent by the ergodic theorem [137].
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average of the product of two aℓm is

〈aℓmaℓ′m′〉 = δℓℓ′δm−m′Cℓ. (50)

The cosmological two-point correlation function is then

〈T (n̂)T (n̂′)〉 =
∑

ℓm

Cℓ Yℓm(n̂)Yℓ−m(n̂
′)

=
∑

ℓ

Cℓ

(

2ℓ+ 1

4π

)

Pℓ (n̂ · n̂′) , (51)

where Pℓ are the Legendre polynomials. Inverting this equation we find

Cℓ =
1

4π

∫

dn̂ dn̂′ Pℓ(n̂ · n̂′)〈T (n̂)T (n̂′)〉. (52)

While we cannot actually measure the cosmological average 〈T (n̂)T (n̂′)〉, we can measure

the angular average of T (n̂)T (n̂′) from our particular location, which is equivalent to an

average over m:

Cobs
ℓ =

1

2ℓ+ 1

∑

m

aℓmaℓ−m

=
1

4π

∫

dn̂ dn̂′ Pℓ(n̂ · n̂′)T (n̂)T (n̂′). (53)

We see that Cℓ is the cosmological average 〈Cobs
ℓ 〉. The question is: how confident can

we be that the measured values Cobs
ℓ accurately represent the theoretical values Cℓ?

This uncertainty is cosmic variance. The cosmological average of the squared fractional

difference between equation 52 and 53 quantifies the effect of cosmic variance.13 If the

random temperature fluctuations are Gaussian, then we have14

〈

(

Cℓ − Cobs
ℓ

Cℓ

)2
〉

=
2

2ℓ+ 1
. (54)

13This is the cosmological average of the fractional error that observers throughout the universe would
have. Different observers would likely badly disagree over a measurement such as an aℓm or Cobs

ℓ if
cosmic variance is significant.

14Assuming that aℓm follow Gaussian statistics.
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This means that the uncertainty due to cosmic variance in the measurement of Cobs
ℓ , as

an approximation of Cℓ, drops with increasing ℓ. Measurements of higher-order Cobs
ℓ do

not suffer much from cosmic variance. We can understand this by the following. The

distribution of Cobs
ℓ is completely determined by the distributions of aℓm for m ∈ [−ℓ, ℓ],

and we have used 2ℓ + 1 independent measurements to determine Cobs
ℓ in equation 53.

The number of samples of Cℓ thus increases with ℓ, and the estimated average Cobs
ℓ

becomes more accurate with larger ℓ. All of this depends on the starting assumption of

cosmological homoegeity and isotropy. The quantity Cℓ as a function of ℓ is called the

“power spectrum” of the CMB, and it is usually presented as ℓ(ℓ+ 1)Cℓ/2π.

The first two components of the spherical harmonic decomposition are easy to un-

derstand. The first, the monopole, is simply the average temperature Tγ,0 = 2.7255 ±

0.0006K. The second, the dipole, is due to the Doppler shift from the motion of the solar

system. It’s amplitude is 3.355±0.008mK (note that this is milli-Kelvins) [70]. This is a

frame-dependent quantity, so there is indeed a rest frame with respect to the CMB. The

implied velocity for the solar system’s barycenter is 369.0± 0.9 km/s [70].

Higher-order multipoles are the result from inhomogeneities in the density at the time

of recombination. Most of the matter with which photons interact is hydrogen nuclei, free

protons. Hydrogen has an ionization energy of about 13.6 eV, so we would expect that

once most of the photons were below this energy, hydrogen could become neutral and

reliably stay that way. This energy corresponds to a temperature of about 1.6 × 105 K.

Because of the high-energy tail in the Planck distribution of photons, however, recombina-

tion actually occurs at around a temperature of 0.2 eV/kB ≈ 2300K. After recombination,

radiation and matter proceeded to freely expand with separate cosmological dynamics,

so the photon temperature followed Tγ ∝ a−1 after recombination, as it did during radi-

ation domination. Recombination happens after radiation-matter equality, however, so

there was a period of time during which the photon temperature varied as Tγ ∝ a−2.

The duration of this period at a particular location depends on the local matter density,

which thus affects the local photon temperature. These fluctuations are called “intrinsic

fluctuations” and map the “initial conditions” at recombination. Futhermore, at the time
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of decoupling from matter, photons are influenced by the gravitational potential of the

matter. Any fluctuation in the matter density will result in gravitational redshift of the

local photons. The combination of the intrinsic fluctuations and the gravitational redshift

is called the Sachs-Wolfe effect [110]. The difference in temperature from the average is

proportional to the gravitational potential due to the matter perturbation at the time of

recombination:

∆T (n̂)

T (n̂)
=

1

3
φpert (n̂ rrecom) . (55)

The Sachs-Wolfe effect is the dominant influence on multipoles with 3 ≤ ℓ . 100.

Multipoles with 100 . ℓ . 1000 reflect the acoustic oscillations that photons and

baryonic matter underwent just before recombination. Small positive perturbations in

the matter density would gravitationally be driven to collapse, while photon-interactions

provided an outward pressure. The amplitude of these perturbations were O (10−5), so

the perturbation Fourier modes behaved linearly and independently from each other.

The oscillation frequency depended on the sound speed, which depended on the density

and pressure. When recombination occured, some oscillating modes happened to be

at their maximum or minimum, while some happened to be at zero. These conditions

were frozen after recombination and are reflected in a series of peaks in the CMB power

spectrum. The odd-numbered peaks correspond to the modes that were at a maximum

when recombination occurred; even-numbered peaks correspond to modes that were at a

minimum. The troughs correspond to the modes that were at zero. The value of ℓ at the

first peak corresponds to the Hubble radius, i.e. the size of the universe, at the time of

decoupling.

For most purposes, recombination can be assumed to be instantaneous. It was not ex-

actly so, however, and the multipoles corresponding to length scales (at the time) smaller

than the time over which recombination occured, ℓ & 1000, are subject to damping. This

can be thought of as diffusion in the matter-photon fluid as the “coupling” goes to zero.

This is called “Silk damping” [116].

All of the features of the CMB power spectrum we have described are illustrated in

Figure 4. Recent results from the Planck collaboration are also shown. The red curve is

25



the prediction of the ΛCDM model with the best-fit cosmological parameters, which we

will now discuss. The overall normalization of the curve corresponds to the total matter

in the universe: the more mass, the more powerful any mode will be. The difference

in height between the first two peaks is due to the partial viscosity of the matter and

photons. It corresponds to the portion of matter that interacts with photons (i.e. the

portion that is not dark matter).

At the very least, the standard model of cosmology has eight parameters. Those

already described are the Hubble parameter h = H0/ (100 km/s/Mpc), the baryon density

ΩBh
2, the cold dark matter density ΩCh

2, and the total density Ωtot = ρ0/ρcrit,0. The

spectral index n and the amplitude A together determine the power-law that describes

the initial conditions of the density perturbations ∆2 ≃ A (k/k0)
n−1; r is the ratio of

tensor to scalar perturbations (recently measured for the first time by the BICEP-2

collaboration [4]); and τ is the integrated optical depth due to Thompson scattering

between photons and electrons. Generalizations such as a non-constant n = n(k) and

dark energy equation of state parameter w 6= −1 are also possible.

What is important for this work are the baryon and cold dark matter densities. The

most precise results using CMB observations alone are [3]

ΩBh
2 = 0.02207± 0.00033, (56)

ΩCh
2 = 0.1196± 0.0031. (57)

First, we see that there is excellent agreement with the calculation of ΩBh
2 from observa-

tions of isotopic abundances, as described in Section 2.1.15 We now also have a calculation

of the total matter density. The difference of these two is the density of non-baryonic

matter ΩCh
2, which we identify as that of cold dark matter. There is over five times as

much by mass as there is baryonic matter!

15This is impressive, considering that the time of BBN and the creation of the CMB are separate by
380,000 years.
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Figure 3: The abundances of 4He, 2H, 3He, and 7Li as predicted by BBN. The bands
show the 95% CL range. Boxes indicate the observed light element abundances (smaller
boxes: ±2σ statistical errors; larger boxes: ±2σ statistical and systematic errors). The
narrow vertical band indicates the CMB measure of the cosmic baryon density, while the
wider band indicates the BBN concordance range (both at 95% CL) [22].
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Figure 4: The Cosmic Microwave Background power spectrum. Left: a theoretical power
spectrum calculated from CAMB using a standard ΛCDM model. Right: results from the
Planck collaboration [3]. Note the enlarged bands of uncertainty from cosmic variance at
small ℓ. The uncertainty at large ℓ is from foreground contamination.
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3 Galactic Dark Matter

Although the strongest modern evidence for the existence of non-baryonic dark matter

comes from cosmological arguments and surveys, early evidence came from observations

of clusters of galaxies and, somewhat later, studies of individual galaxies. Regardless

of history, all efforts to detect particle dark matter require precise understanding of the

distribution of dark matter on galactic scales. The basic concept is that every galaxy,

including the Milky Way, is embedded in a larger, nearly-spherical “halo” of dark matter

particles. We will review the evidence from virialized clusters of galaxies, arguments

about the stability of galaxies, and galactic rotation curves. We will then discuss in

Section 3.1 how dark matter halos may be modeled.

One of the earliest realizations of dark matter came from using the virial theorem

to measure the mass of clusters of galaxies [141]. This mass was compared to the mass

implied by the luminosity, assuming a typical mass-to-light ratio. The virial theorem is

2T + Φ = 0, (58)

where T and Φ are the total kinetic energy and total gravitational potential energy of a

system with total mass M :

T =M〈v2〉/2, (59)

Φ = −GM2〈1/r〉/2, (60)

where the velocity v and position r are measured relative to the center of mass of the

system. The virial theorem is valid for systems that have reached a state of statistical

equilibrium. This allows us to measure the total mass of a spherical distribution of

galaxies from observations:

M =
2〈v2〉
G〈1/r〉 . (61)

The root-mean-squared velocity
√

〈v2〉 is measured by the Doppler shift of the X-ray

spectrum; 〈1/r〉 is found from the angular separation of the individual galaxies. Results
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of studies along these lines are usually expressed as a mass-to-light ratio M/L. Typical

modern values16 are 200 to 400hM⊙/L⊙ [40, 41]. This is much larger than the mass-to-

light ratios for individual galaxies, ∼ 10hM⊙/L⊙ [29]. We can use the average mass-to-

light ratio of clusters of galaxies to estimate the total mass density of the universe from

the total luminosity density of the universe L. The total mass density is

ρM = L
(

M

L

)

clusters

, (62)

In terms of the fraction of the critical density today, this gives us

ΩM =
(M/L)clusters
ρcrit,0/L

, (63)

which is independent of the Hubble constant. With a value of L = 2 × 108hL⊙Mpc−3,

we find ΩM = 0.15.

In the late-1960s, Richard Miller, Kevin Prendergast, and, independently, Frank Hohl,

wondered about the spiral structure of the Milky Way and other spiral galaxies. Obvi-

ously, something was keeping them from simply gravitationally collapsing into a lump

of stars. Presumably, the structure was supported by rotation, like the solar system.

Such a system is “cold”, as opposed to pressure-supported “hot” systems, the particles

in which have random orbits. The groups utilized the burgeoning computing power (and

techniques that will be described in Section 3.1) to try to simulate the formation of spi-

ral structure as waves in the density of a rotating disk of particles [91, 92, 71]. What

they found was surprising: a rotationally-supported disk of the size of the Milky Way is

unstable: it rapidly evolved into a pressure-supported axisymmetric form. Particle or-

bits changed from uniform and circular to elliptical and at random angles to each other.

Jeremiah Ostriker pointed out that if the kinetic energy of a spheroidal system is at least

28% in the form of rotational motion, then the system is unstable and tends to increase

its moment of inertia by becoming prolate. The initial conditions of the simulations by

16The results scale as H0 because the angular diameter distance scales as H−1

0
and the luminosity L

scales as H−2

0
.
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Miller, Prendergast, and Hohl certainly fell in this regime, so the apparent instability was

correct. Meanwhile, the kinetic energy of the Milky Way is almost entirely rotational:

our galaxy should be very unstable!17 As a solution, Ostriker suggested that there is

another component of the galaxy: a non-rotating spheroid that holds a large portion of

the total mass. Then the galaxy as a whole would truly be pressure-supported. This

halo would have to be dark, since there is no luminous component of the right shape and

sufficient size. Ostriker worked with James Peebles in 1973 to simulate such a composite

system [100]. They confirmed the instability found by Miller, Prendergast, and Hohl, and

then found that the new spheroidal component did indeed provide the necessary stability

for the system. The disk component that we really see kept its own rotational structure.

For the purposes of stability, this new dark halo needed to extend only to about the

position of the Sun and have at least 50% of the total galactic mass. Other observations

from this decade, however, would show that we need much more.

Galaxies, in particular rotating disk galaxies, are non-relativistic systems, so it is

reasonable to expect its particles, stars and plasma, to follow Newtonian dynamics. The

Newtonian gravitational force on a constituent “tracer” of mass due to the rest of the

system creates the centripedal acceleration that drives its circular motion:

gN = V 2
rot/r. (64)

If we can consider the system’s mass as smoothly distributed (i.e. approximate it as a

fluid) then the gravitational force is just given by the enclosed mass:

gN = GM/r2. (65)

Equating these two gives a relationship between the rotational velocity and location of a

17As a quick illustration of this, the Sun has a rotational velocity of about 200 km/s and additional
random velocity of about 40 km/s. We see that Trot/ (Trot + Trand) = 2002/(2002 + 402) ≈ 0.96.
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tracer and the mass within that tracer’s position:

M = V 2
rotr/G, (66a)

V 2
rot =

√

GM/r. (66b)

One might expect these equations to hold for galaxies just as well as they do for the

solar system. If we have tracers that are outside the majority of the mass (the planets

being outside the Sun is an exaggerated example), then their rotational velocity should

simply fall as 1/
√
r. This is a Keplerian rotation curve, and it is not generally seen in

galaxies! Neutral hydrogen is an excellent mass tracer of these galaxies, as it extends

well beyond the stellar edge of spiral galaxies. The 21-cm line from hyperfine-splitting

in the hydrogen atom and the subsequent Doppler-shift of this radio emission allows

for the measurement of the velocity of the gas [108, 32, 19, 52]. Figure 5 is a modern

example of these observations [20]. The measured velocity curve of stars and gas in the

dwarf spiral galaxy NGC 6503 is flat at large radii. The dashed line denotes the velocity

curved expected from the mass contributions of stars alone, which exhibits the Keplerian

behavior beyond the stellar edge of about 5 kpc, a typical radius of dwarf spiral galaxies.

Assuming Newtonian dynamics is indeed correct, there must be an additional component

aside from stars and gas that has a large mass and extends well beyond the stellar disk.

A dark halo provides a solution. The dot-dashed line in Figure 5 is the contribution from

a halo model.

3.1 Halo Models

We have established that DM structures originate from density fluctuations that grav-

itationally collapse and grow with time as the universe expands. Linear perturbation

theory gives us an idea of the early history of these objects, but we cannot continue

this analysis through the non-linear regime to today. Furthermore, the development of

DM structures is complicated by the presence of baryons, which are not an insignificant

gravitational influence, and baryon-photon interactions. Effects include gas dynamics,
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Figure 5: The measured velocity curve of the dwarf spiral NGC 6503, compared to the
contributions from the stellar and gaseous components, based on luminous distribution.
Adding the contribution from a theoretical DM halo provides a good fit to the flat mea-
sured curve. From [20].

radiative cooling, photoionization, recombination, and radiative transfer. If and when

an indirect signature of DM is discovered, we will be able to measure its distribution

in galactic systems. In the meantime, to predict the precise galactic and intergalactic

distribution of DM we must turn to numerical computation. The primary approach to

this problem is N-body simulation, the history of which goes back to Erik Holmberg in

1941 [72]. The incredible steady increase in computer power, illustrated by Moore’s law,

has made these efforts more and more precise, reliable, and illuminating (see Figure 6).

These simulations have two types: collisional, for which individual particles are tracked as

a Hamiltonian system, and collisionless, for which a system of particles is approximated

as a continuous fluid following the Boltzmann equation (eq. 142). The basic algorithm
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Figure 6: Complexity of N-body simulations versus time. This is an example of Moore’s
law. From [54].

is the same, however. Given the state of a gravitational system, either a discrete list

of particle locations and velocities or samples of the phase-space distribution, calculate

the gravitational force on each particle or small volume of phase-space, then evolve the

system by some small, discrete time step. One then has a new state of the system and

continues the process, presumably until it converges to statistical equilibrium. This is

called a Poisson solver.

The reliability of N-body simulations is essentially quantized by their length- and

mass-scales. In modern simulations of cluster-scale structure and larger, the size of the

“imaginary box” is hundreds to thousands of Mpc to a side, with as many as 100 billion

DM “particles”, each with mass of ≈ 106M⊙. Galactic-scale simulations are a few Mpc

to a side. A force softening length scale is necessary to avoid the divergence that occurs
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when two particles are very close to each other. Any results below this length scale

are unreliable: in cluster-scale simulations this is around 1 to 10 kpc; in galactic-scale

simulations this is around 10 pc.

Different groups have found somewhat different results, but they generally find that all

simulated halos follow a universal profile, regardless of mass and epoch [95, 28, 118, 33, 14].

The mass distribution or density profile of any particular halo is

ρ(r) = ρsg(r/rs), (67)

where ρs and rs are a scale density and scale radius, both of which may vary from halo

to halo. The dimensionless function g, a function of the dimensionless radius x ≡ r/rs,

is universal: it is the same for all halos. Two-power models are common:

g2−pow(x) = x−γ0(1 + xα)−(γ∞−γ0)/α. (68)

Choosing the exponents (α, γ0, γ∞) sets the profile model: the negative log-log slope of

the density changes at around x = 1 from γ0 at smaller radii to γ∞ at larger radii. The

“sharpness” of this transition is determined by the parameter α. An outer slope of γ∞ = 3

is generally found in halo simulations, but there is some contention over the inner slope

γ0. Navarro, Frenk, and White (NFW) found an inner slope of γ0 = 1, and this profile

is very commonly used for halos of many scales (including this work), but other studies

favor the Moore profile with α = γ∞ = 1.5 [93].

Another model we will use for the Milky Way halo is the Einasto profile. This profile

was first used to model the luminosity of early-type galaxies and the gaseous components

of clusters of galaxies, but has also been found to be a good fit to DM halos [39]. Its

functional form is

gEin(x) = exp

{

−2

a
(xa − 1)

}

, (69)

where taking a = 0.17 profiles a good fit to galactic- and cluster-sized halos in simula-

tions [96, 67].
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The halo models mentioned so far are “cusped” profiles: the density goes to infinity

at the center. Of course, this does not mean the mass is infinite, and it is presumed

that these models break down at small radii (remember that N-body simulations, from

which we measure these profiles, have a limited resolution). Furthermore, the baryonic

component of galaxies dominates near their centers, and baryons have only very recently

been included in precise simulations [79]. There is also the influence of the central black

hole [65, 130, 111]. If DM self-annihilates, then there is a maximum central density

ρcore = mχ/〈σv〉thalo, where thalo is the age of the halo.

While cusped profiles work well in larger galaxies such as the Milky Way, they are at

odds with dynamical measurements of dwarf spheroidals [134, 11]. A better fit to these

systems is found using “cored” profiles. The density in cored profiles becomes constant

inside some “core radius”. In particular, the Burkert profile [37] is effective in modeling

the DM halo of dwarf spheroidals:

gBur(x) = (1 + x)−1 (1 + x2
)−1

. (70)

With a model of the mass distribution, the gravitational potential of a halo is calculable

in principle, though this can be difficult. An alternative method is to first assume a

potential model. This is good for making constraints on halo qualities using astronomical

observations of tracer objects [35, 36].

In principle, the velocity distribution of particles in N-body simulations can be mea-

sured as well, but this is difficult because of poor resolution18 and because there is no

simple, universal model for the velocity distribution like there is for the mass distribu-

tion. In some simplified cases such as that of an isolated halo the velocity distribution

and anisotropy profile is measured [132], but it is difficult to model these measurements.

The empirical two-parameter model proposed in [88] provides a good fit to the velocity

distribution at different locations of various simulated halos, but there is much scatter in

the parameters, so no universal model is evident. For modeling the velocity distribution

18One would be interested in the velocity distribution at a particular location in the halo, perhaps that
corresponding to the location of the Sun, meaning that particles inside a small volume must be sampled,
unlike how samples of the contained mass is done.
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at a particular location in a given halo, however, it has been successfully utilized [79, 74].

We generalize this model in Section 8.1.

An interesting alternative quantity to measure in simulated halos is the “pseudo-

phase-space density” (PPSD), defined as

Q ≡ ρ

σ3
r

, (71)

where σr ≡
√

〈v2r 〉 is the radial velocity dispersion, which in general varies with position.

In many simulations, the PPSD is found to vary in halos as a power-law over a large

range of radii [123, 131, 87, 132]. A negative slope that is slightly shallower than 2 is

typically found (also see [53]). Note that a value of exactly 2 would correspond to the

case of an isothermal sphere, which has ρ ∝ r−2 and constant σr. In Section 8.1, we will

explore the impact of assuming such a power-law for the PPSD.

3.2 The Milky Way

Here we specify the models and parameters used later to describe the Milky Way (MW)

baryonic and dark matter components. In Section 7.4 we use a NFW profile and an

Einasto profile. A concentration of c = 10 and virial radius of rvir = 200 kpc is chosen for

both profile possibilities. The total mass of the MW halo is then approximately 1012M⊙.

We also model the baryonic bulge and disk of the MW in Section 7.4. Following [121],

we take a spherically-symmetric Hernquist potential for the bulge:

Φbulge (r) = −
GMbulge

r + c0
, (72)

where c0 ∼ 0.6 kpc and Mbulge = 1.5 × 1010M⊙. We model the disk by a spherical

distribution that approximates the mass and circular velocity of the exponential disk:

Φdisk (r) = −
GMdisk

r

(

1− e−r/bdisk
)

, (73)

where bdisk ∼ 4 kpc andMdisk = 5×1010M⊙. Of course, the galactic disk is not spherical,
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Figure 7: Velocity variance profiles of the spherical disk model in equation 73 and a more
appropriate exponential disk with the same mass function.

lower 95% lower 68% mean upper 68% upper 95%

Mvir [10
12M⊙] 1.23 1.33 1.49 1.64 1.86
c 13.93 16.59 19.70 22.90 24.6

ρ⊙ [GeV/cm3] 0.338 0.365 0.389 0.414 0.435
r⊙ [kpc] 7.67 8.00 8.28 8.55 8.81

σtot,⊙ [km/s] 276.7 281.7 287.0 292.2 297.2
vesc [km/s] 528.5 539.7 550.7 561.7 573.3

Table 1: Assumed ranges for the halo parameters, solar radius, local total velocity dis-
persion, and local escape speed. Taken from Table 3 of [42] and from Table 1 of [43].

but the distribution in equation 73 contains the same amount of mass interior to a radius

r as an exponential disk. We further check the validity of this simplified model by

calculating the velocity variance profile of each from the Jeans equation. These are

shown in Figure 7; the velocity dispersion differs with error no more than ∼ 15%.

In Section 8.1 we are interested in a particular derived result, as opposed to just the

example of a method in Section 7.4, so we use a range of parameters that may describe

the MW halo. These are given in Table 1.
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4 Candidates

We see that cosmology and astrophysics requires a new massive, non-baryonic component.

So far we have an idea of the role of dark matter in these contexts: we know what it

does. We do not, however, have a firm understanding of what it is in the sense of

particle physics. The situation is similar, perhaps, to postulating the existence of electric

currents and observing their influence on charged matter, but not knowing the properties

of electrons. Here we briefly discuss some particle candidates and then focus on the broad

class of WIMPs and the supersymmetric neutralino.

The standard model of particle physics does not offer any viable dark matter parti-

cle candidate: there is no non-baryonic, massive, neutral particle that alone can fill the

cosmological and astrophysical roles of dark matter. However, it comes close: standard

model neutrinos are non-baryonic and neutral, and observations of solar emission suggests

that they are actually massive (implying that the SM is incomplete). For these reasons

(and that they are known to exist), neutrinos seemed a good possibility. We now know,

however, that neutrinos can constitute only a small fraction of the total non-baryonic

matter in the universe. As discussed in Section 2, the cosmological neutrino popula-

tion expanded freely after decoupling and, since they are so weakly-interacting, have

approximately kept the same number density. Using Tν,0 = 1.945K and equation 227 for

fermions, the number density of each family of neutrino is 112 cm−3 (g = 2 since each

neutrino and anti-neutrino has one spin state), so the total mass density of neutrinos

today is

ρν,0 =
(

336 cm−3
)

∑

i

mi, (74)

where we sum over the masses of each family of neutrino i = {νe, νµ, ντ}. The fraction of

the total density of the universe today is thus

Ωνh
2 = 0.016

∑

i

mi

eV
. (75)

This is a cosmological bound on the neutrino masses [49]. If neutrinos were to con-

stitute all the dark matter, the total mass of all three types must be about 7.5 eV.
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Since cosmic neutrinos are relativistic until very recently, their free-streaming length is

large (∼ 40Mpc), so smaller-scale structure would be erased, resulting in “top-down”

structure formation [30]. This is contrary to observations of early galaxies [31]. Thus,

astrophysical observations constrain the total neutrino mass to no more than about

0.2 − 0.3 eV [124, 105, 140], meaning that Ωνh
2 < 0.0048, clearly ruling out the pos-

sibility that neutrinos are the main dark matter component.19

It is possible that there are additional species of neutrinos that mix with the standard

model neutrinos but otherwise do not have weak interactions. These “sterile” neutri-

nos could be produced by standard model neutrinos via a small lepton asymmetry, and

they would have a non-thermal spectrum. Because they would be non-thermal, sterile

neutrinos evade the problems of standard model neutrinos described above [114]. Sterile

neutrinos would be “warm” dark matter and are a viable candidate, though structure

formation requires the mass of such new particles to be at least about 3 keV.

Axions are hypothetical spinless particles that were introduced as part of a proposed

solution to the strong CP problem in particle physics [136, 138]. Despite its unrelated

origin, the axion is also a dark matter candidate [115]. Laboratory searches and ob-

servations of supernovae and the sun require the axion mass be very small, . 0.01 eV,

and they must interact with standard model particles very weakly [107]. Similar to ster-

ile neutrinos, this means axions would be a non-thermal relic. Unlike sterile neutrinos,

however, and despite their small mass, axions would be non-relativistic and could satisfy

bottom-up structure formation.

There are many other less well-studied hypotheses of particle dark matter (see [26,

122]). All candidates essentially fall under one of two categories: thermal or non-thermal,

the former meaning that the particle population was in equilibrium at some point in cos-

mic history. Standard model neutrinos are thermal, while sterile neutrinos and axions are

non-thermal. Candidates can further be classified by whether they were non-relativistic

(cold) or relativistic (hot) at the time of decoupling. We will focus on the broad case of

Weakly-Interacting Massive Particles (WIMPs), which are cold thermal relics. This focus

19Meanwhile, observations of solar and atmospheric neutrinos give a lower limit on the total neutrino
mass of about 0.06 eV [22]. Also see [82].
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on cold thermal relics is motivated by the needs of structure formation, the possibility

of supersymmetry, which offers a viable dark matter candidate among other appealing

features described in Section 4.1, and by the relic density calculation in Section 4.2.

4.1 Supersymmetric Dark Matter

All of the established symmetries in particle physics link bosons to bosons and fermions

to fermions. Supersymmetry would link bosons to fermions and vice-versa. The frame-

work was first developed totally independent from astrophysics. Rather, it was initially

attractive for solving the hierarchy problem of particle physics and for unifying the gauge

couplings at some large energy scale. It also suggests the unification of particle physics

and gravity at the Planck energy. Supersymmetry first implies that every boson/fermion

particle species has at least one associated fermion/boson species. Supersymmetry can-

not be an exact symmetry, because then the new implied particles would have mass equal

to that of their associated Standard Model particles, and we do not observe these “su-

perpartners”. The symmetry being broken, however, means that the masses of these new

particles may be quite large and thus difficult to create in collider experiments. This

symmetry-breaking should be soft and be associated with TeV-scale energies, but the

details of this process are unknown and introduce most of the ambiguity in the the-

ory. Still, supersymmetry offers a stable weakly-interacting massive particle that is a

promising dark matter candidate.

The minimum number of new fields added to the Standard Model to make it super-

symmetric is a single new particle for each SM particle, their spins being different by 1/2,

and additional Higgs fields. The particle content is shown in Table 2. This is called the

Minimial Supersymmetric Standard Model (MSSM). A fermionic supersymmetric parti-

cle is designated by the name of its SM counterpart, but with the postfix “-ino”, generally

called a bosino. A bosonic supersymmetric particle is designated by the name of its SM

counterpart, but with the prefix “s-”, generally called a sfermion.

Combinations of SM fields and their supersymmetric counterparts are called “su-

permultiplets”. The gauge supermultiplet includes the gluons and their superpartner
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gluinos, and the electroweak gauge bosons and their superpartner gauginos. The matter

supermultiplet includes the three generations of quarks and leptons, their superpartner

squarks and sleptons, and all the associated anti-particles. The Higgs supermultiplet has

two complex Higgs doublets, the superpartner Higgsinos, and the anti-particles. The

additional SM Higgs field is necessary so that both up- and down-type quarks and lep-

tons can simultaneously have mass while being consistent with the supersymmetry. The

fields of supermultiplets are then made components of “superfields”. Vector superfields

contain the gauge and gaugino fields; chiral superfields contain the matter and Higgs

supermultiplets.

A supersymmetric Lagrangian contains Yukawa coupling and mass terms that are

themselves supersymmetric. Combined with gauge invariance, gaugino fields are coupled

to the fields of matter, Higgs, and the matter/Higgs superpartners. The rest of the

Lagrangian is constructed by including all possible interaction terms that satisfy the

usual SU(3)× SU(2)×U(1) symmetry and B−L symmetry (invariance of the difference

between baryon number and lepton number). Finally, soft symmetry-breaking terms are

included.

We may always define the quantity R = (−1)3(B−L)+2S, where S is spin. We see that

SM particles have R > 0 and supersymmetric particles have R < 0. An additional quality

of the MSSM is R-parity, which enforces the multiplicative conservation of R. This was

not originally proposed as part of the MSSM, but as a way to ensure the stability of the

proton in all supersymmetric models, so it is not generally essential (though the stability

of the proton should be ensured somehow). It would mean, however, that supersymmetric

particles can be created from SM particles only in pairs, such as in collider experiments.

More important for this work, R-parity also implies that the lightest supersymmetric

particle (LSP) is stable and an inevitable result of the decay of all heavier unstable

supersymmetric particles. The LSP, if it is neutral, is a dark matter candidate offered by

supersymmetry.

The gauginos and higgsinos mix, the charged fields creating two “chargino” mass

states, and the neutral fields creating four “neutralino” mass states. For the purposes of
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Superfield SM particles Spin Superpartners Spin

Q

(

uL

dL

)

1/2

(

ũL

d̃L

)

0

U c ūR 1/2 ũ∗
R 0

Dc d̄R 1/2 d̃∗R 0

L

(

νL
eL

)

1/2

(

ν̃L
ẽL

)

0

Ec ēR 1/2 ẽ∗R 0

H1 H1 0 H̃1 1/2

H2 H2 0 H̃2 1/2
Ga g 1 g̃ 1/2

Wi Wi 1 W̃i 1/2

B B 1 B̃ 1/2

Table 2: Field content of the MSSM. Taken from [26].

dark matter, only the latter concern us. The lightest neutralino is often the supersym-

metric dark matter candidate.

4.2 Thermal Relic Density

Consider an arbitrary particle that annihilates with its anti-particle. Even if the densities

of both particles and anti-particles are equal and their chemical potentials are zero, at

some point the number density becomes so low that the annihilation rate vanishes. This

results in a left-over number density. In a cosmological context, if these particles were

in thermal equilibrium at some early time, we call this particle a “thermal relic”, which

presently has some abundance or “relic density”. The point at which annihilation becomes

inefficient, once expansion and annihilation has diluted the number density sufficiently,

is called “freeze-out”. This happens roughly when the expansion rate increases to match

the annihilation rate, Γ ∼ H. We present first a simplified derivation to motivate some

basic concepts in section 4 and then a more detailed derivation.

The interaction rate per particle/anti-particle is n〈σv〉, where n = n(t) is the homoge-

neous number density and 〈σv〉 is the thermal average of the product of the annihilation

cross-section and the Møller velocity (for the purposes of this work, this velocity can be

considered just the relative velocity of the annihilating particles). Without annihilation,

the number of particles in a comoving volume na3 would be conserved. With annihilation,
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the rate of decrease in the number of particles in a comoving volume is na3×n〈σv〉. The

Boltzmann equation is then

dn

dt
+ 3Hn = −〈σv〉

(

n2 − n2
eq

)

, (76)

where neq is the equilibrium number density, at which the rate of annihilation and cre-

ation from the background instantaneously balance. We write “instantaneously”, because

expansion dilutes the actual number density (due to the second term on the left-hand-

side) and because the equilibrium density is not constant in time. It depends on the

temperature of the background, which changes due to expansion. For non-relativistic

particles of mass m and number of degrees of freedom g, the equilibrium number density

at temperature T is Maxwell-Boltzmann:

neq = g

(

mT

2π

)3/2

e−m/T . (77)

We now switch to the inverse entropy per particle Y ≡ n/s, so Yeq = neq/s, where s is the

total entropy density. We also change the independent variable from time to the inverse

temperature in units of the particle mass, x ≡ m/T . During the radiation-dominated

era, the entropy density is given by equation 233, so equation 76 becomes [24, 63]

dY

dx
= −〈σv〉 s

Hx

(

1 +
1

3

d lnN
d lnT

)

(

Y 2 − Y 2
eq

)

. (78)

This will be the starting place for the more-detailed calculation later. Neglecting the

logarithmic derivative of N and changing variables again to ∆ ≡ Y − Yeq we have

d∆

dx
= −dYeq

dx
− B(x)∆ (2Yeq −∆) , (79)

where we have introduced the dimensionless function

B(x) ≡
√

πN
45

mMPl

x2
〈σv〉. (80)
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The function N (T ) is not constant and has been calculated by a number of groups [63,

80].20 For this simple calculation, however, we will take it as constant N = 3.363, which is

the value today. We know that the equilibrium density Yeq is negligible for x≫ x∗ ≈ 20,

so we have

d∆

dx
≈ −B(x)∆2. (81)

Assuming, for now, that 〈σv〉 is constant, this can easily be integrated from x = x∗ to

today at x = x0 ≈ ∞. Using ∆(xf )≫ ∆(x0), we find

Y0 =

√

45

πN
xf

MPlmχ

1

〈σv〉 , (82)

which tells us the contribution of this relic particle to the total density of the universe:

Ωχh
2 = ρχ/ρcrit,0

= mχs0Y0/ρcrit,0

≈ 3× 10−27 cm3s−1

〈σv〉 . (83)

To arrive at equation 83 we have made several approximations and assumptions that are

very inaccurate. There are two important points to be learned from this calculation,

however: the density today does not depend on the particle mass, except through loga-

rithmic corrections that have been neglected, and that a interaction rate per particle of

about 3 × 10−26 cm3s−1 gives the correct density expected of cosmological dark matter.

This interaction rate is weak-scale:

G2
Fm

2
χ ≈ 1.6× 10−25 cm3s−1

( mχ

100GeV

)2

. (84)

This motivates the generic kind of dark matter candidate called a Weakly-Interacting

Massive Particle (WIMP).

Now let us return to equation 78 and find the relic density Ωχh
2 more accurately. In

20We have neglected that, in the presence of relativistic particles other than photons, the number of
degrees of freedom associated with the energy density and with the entropy density are distinct. For the
range of WIMP masses we are interested in, however, this distinction is negligible. See [63, 120].
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principle, this equation can be numerically integrated, with the initial condition Y = Yeq

at some x . 1. This is a stiff differential equation, however, so it is very difficult to work

with directly. Fortunately, there are two separate periods of time in which equation 78

simplifies significantly. We will solve the simplified equation in the first period and

connect that with the second to find a final result [120]. Quantities will be designated

with a ∗ at this cross-over between regimes, when x = x∗. In the earlier period, when

x < x∗, the true number density closely follows the equilibrium number density, so

d∆/dx ≪ dYeq/dx. We define the cross-over inverse temperature x∗ by ∆(x∗) ≡ O(1),

where Y/Yeq ≡ 1 + ∆ as before. In other words, we define the moment of cross-over as

when the fractional deviation of Y from its equilibrium value becomes significant. Using

this we replace Y with ∆ and write

d lnYeq
d ln x

+
d ln (1 + ∆)

d ln x
= −〈σv〉sYeq

H

(

1 +
1

3

d lnN
d lnT

)(

1 + ∆− 1

1 + ∆

)

. (85)

Recasting equation 77 as

Yeq(x) =
45

2π2

g

N
( x

2π

)3/2

e−x, (86)

we find a differential equation for 1 + ∆, with which we can find x∗:

d ln (1 + ∆)

d ln x
= −3

2
+ x+

d lnN
d lnT

− 〈σv〉sYeq
H

(

1 +
1

3

d lnN
d lnT

)(

1 + ∆− 1

1 + ∆

)

. (87)

This equation is also difficult to solve numerically, but for x < x∗ we may further approx-

imate d∆/dx≪ 1 and, also neglecting the logarithmic derivaties, write21

x∗+log (x∗ − 1.5)−0.5 log x∗ = 20.5+log
(

〈σv〉∗/10−26 cm3/s
)

+logm−0.5 logN∗. (88)

This equation is easily solved for x∗. For the simple case of pure s-wave annihilation, we

plot the values of x∗ found using the cross-section with which a WIMP of mass m gives

the correct relic density. This is shown in Figure 8. We also plot the square root number

21This result comes from choosing ∆(x∗) =
(√

5− 1
)

/2. The exact choice has negligible effect on the
results.
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Figure 8: Solutions for (Γ/H)∗, x∗, and
√N∗, in the case of constant 〈σv〉, that give the

correct dark matter relic density Ωχh
2 = 0.11.

of relativistic particle species
√N∗ and the annihilation rate divided by the expansion

rate (Γ/H)∗. This ratio continues to drop with increasing x, and it is important to note

that annihilation is still efficient over expansion significantly after this cross-over point.

In other words, x∗ is not the freeze-out inverse temperature as has been erroneously

assumed in some literature.

After the cross-over time, the deviation of Y from its equilibrium value quickly be-

comes large, so in the late-time regime Yeq can be neglected. Equation 78 can then be

integrated from x∗ to around the time of galaxy formation (and WIMP-reheating) at

x0 ≈ mχ/20Tγ,0 to find Y0 = Y (x0). We have

∫ Y0

Y∗

dY

Y 2
= −

∫ x0

x∗

dx〈σv〉 s
Hx

(

1 +
1

3

d lnN
d lnT

)

. (89)

If the annihilation is pure s-wave, then we may express the solution for Y0 as

Y0
Y∗

=
1

1 + α (Γ/H)∗
, (90)
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where

α ≡
∫ T∗

T0

dT

T∗

√

N
N∗

(

1 +
1

3

d lnN
d lnT

)

. (91)

In Figure 8 we also plot α, multiplied by 50 for clarity, for the case of pure s-wave

annihilation. The relic density today is Ωχ = mχY (x0)s0/ρcrit,0, so we find

Ωχh
2 =

8πG

3
(100 km/s/Mpc)−2mχY0s0

=
9.92× 10−28

〈σv〉
x∗√N∗

(Γ/H)∗
1 + α (Γ/H)∗

. (92)

Knowing the WIMP abundance today, we can calculate the necessary interaction cross-

section of a WIMP of given mass.

The interaction rate per particle density 〈σv〉 is not constant in general. The kinetic

average 〈σv〉 depends on the velocity distribution of the WIMP population, which is a

function of temperature (or x). The WIMP distribution is Maxwell-Boltzmann, so we

have

〈σv〉(xχ) =
x
3/2
χ

2
√
π

∫

dv σ(v)v e−xχv
2/4, (93)

where the integral is over all velocities and the cross-section σ(v) is a function of velocity

determined by the particle physics. Pure s-wave annihilation makes 〈σv〉 truly a constant;

p-wave annihilation was considered in [38]. We will consider s-wave interactions with

Sommerfeld enhancement. In this case, the interaction rate per particle density is

〈σv〉 = 〈σv〉0 S (xχ) , (94)

where 〈σv〉0 is the constant s-wave rate and S (xχ) is the Sommerfeld enhancement at

the WIMP inverse-temperature xχ.
22 See Section 5.2 for details about this function.

The above calculation changes somewhat due to these new physics. In the early period,

Sommerfeld enhancement is negligible, so x∗ and (Γ/H)∗ do not change significantly, but

it becomes important in the later period. The main change is that α in equations 90

22Before thermal decoupling, the WIMP temperature follows the photon temperature, so xχ = x.
Afterward, however, the WIMP temperature falls as xχ ∝ x2.
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Figure 9: Solutions for 50α or 50αS (left) and 〈σv〉0 (right) in the cases of pure s-wave
(solid) interactions and Sommerfeld enhanced s-wave interactions far from resonance
(dashed) and near resonance (dotted). The Sommerfeld enhancement takes the coupling
to be 10−2 and, for the dotted curve, the mass ratio to be 1.4 × 10−3 (near the third
resonance).

and 92 is replaced by

αS ≡
∫ T∗

T0

dT

T∗

S
S∗

√

N
N∗

(

1 +
1

3

d lnN
d lnT

)

. (95)

In Figure 9 we compare the value of α found in the pure s-wave case with αS in two cases

of Sommerfeld enhancement, as well as the s-wave cross-section times velocity 〈σv〉0
necessary to get the correct relic density.

To generalize, consider some particle physics that determines σ (v) and is specified

by a set of parameters {ǫi}. Using equation 93 we can calculate the interaction rate per

particle density as a function of inverse temperature x. Following the algorithm above,

we can calculate the relic density today and compare the result to the experimental

value. If the calculated value is significantly larger, that set of parameters of the particle

physics may be ruled out. If the calculated value is significantly lower than the exper-

imental value, we cannot rule out the case, because there may be more than one dark

matter component.23 Alternatively, if the cross-section σ (v) has some constant factor

independent of the parameters {ǫi}, say the s-wave cross-section σ0, one can perform the

same calculation and find the value of σ0 that gives the correct relic density. Then the

cross-section σ (v) is totally specified and can be used in other calculations such as those

23After all, baryonic matter has more than one particle component, so why not dark matter also?
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described in Section 5.
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5 Indirect Detection

Generically, a WIMP undergoes self-annihilation, producing gamma-rays, neutrinos, or

other Standard Model particles. Detecting these annihilation products is the basis for

the indirect detection of DM [26].

Consider a self-annihilating particle. The annihilation rate is

Γ(v) = σΦ, (96)

where σ is the annihilation cross-section and Φ is the flux of incident particles as seen by

the target particle, defined as the product of the number density n and relative velocity

v. In general, the relative velocity between two particles of mass m with four-momenta

pi = (Ei,pi), i = 1, 2 is

v =

√

(p1 · p2)2 −m4

E1E2

. (97)

The cross-section may be a function of the relative velocity, so the annihilation rate on

the left side of equation 96 is really the annihilation rate of particles with relative velocity

v. To get the total annihilation rate, we must know the relative velocity distribution of

the annihilating particles. We average over velocities to get

Γ = 〈σΦ〉, (98)

where 〈.〉 denotes a kinematic average.

Indirect detection of DM is concerned with the final spectrum of Standard Model

particles resulting from such annihilation. Suppose DM particles χ annihilate into some

final states consisting of Standard Model particles. In a volume dV that contains DM

particles, the energy-differential rate at which particles of type j are created is

d2Γj
dE dV

= nχ
∑

i

BRi
dNij

dE
〈σiΦχ〉, (99)

where the sum is over all possible reactions, and BRi is the branching fraction for reaction
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i with cross-section σi, which produces dNij particles of type j with energy between E

and E + dE. The DM flux Φχ (in this frame) is nχv, so we have

d2Γj
dE dV

= n2
χ

∑

i

BRi
dNij

dE
〈σiv〉, (100)

where we now have the thermal average of the cross section times relative velocity. In

general, this quantity can be complicated and very model-dependent. The cross section

can vary rapidly with energy/velocity near resonances or when a new annihilation channel

opens [63]. Furthermore, at early times DM particles had relativistic speeds. This is

important to consider when studying the cosmological history of DM, but for the purposes

of detection today, we may assume that the DM particles are non-relativistic and that

the cross section can be expanded in powers of v2:

σv ≃ a+ bv2 +O(v4), (101)

where a and b are constants associated with s- and p-wave interactions, respectively [119].

In this work we will discuss two cases in particular: the production of gamma-rays

from DM annihilation and the synchrotron radiation from e± created by DM annihilation.

Starting with the first case, assuming the annihilation cross section does not depend on

the energy of the daughter particles, the production rate per volume of photons of any

energy is

dΓγ
dV

=
Nγ

m2
χ

〈σv〉ρ2χ, (102)

where we have integrated over energy and summed over all channels that result in pho-

tons, Nγ being the average number produced per annihilation. The relevant quantity for

observation is the photon flux, the rate of photons striking an area incident from a solid

angle:

Φγ =
Nγ

4πm2
χ

∫

dl dΩ〈σv〉ρ2χ, (103)

where the integral is over line-of-sight and solid angle. In general, the integrand in

equation 103 depends on the radius r from the center of the halo producing photons.
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If we are measuring the photon flux from the galactic center on Earth, this radius is a

function of l and ψ, the angle from the galactic center. In this case we have

Φγ,gc =
Nγ

2m2
χ

∫ ∞

0

dl

∫ ∆ψ

0

dψ cos(ψ) 〈σv〉[r(l, ψ)] ρ2χ[r(l, ψ)], (104)

where ∆ψ is the opening angle of whatever detector and we have written the spacial-

dependence on l and ψ through r explicitly.

If, instead of the galactic center, we are interested in dwarf spheroidals, the point

spread function of the detector may contain the entire object, in which case we may

simply integrate over the entire halo:

Φγ,dSph =
Nγ

m2
χ

∆Ω

4π

∫

dr 〈σv〉(r) ρ2χ(r). (105)

The factor ρ2χ is trivial, given a halo model, but the factor 〈σv〉 can be more difficult

to handle. The simplest thing to do it assume it is constant: there are only pure s-wave

interactions. This approach is a straight-forward way to set upper limits on 〈σv〉 for any

given halo model, using gamma-ray data from, say, the Fermi-LAT instrument. In this

case, equation 103 becomes

Φγ =
Nγ〈σv〉
4πm2

χ

J(∆Ω), (106)

where ∆Ω represents the patch of sky under observation and the so-called J-factor is

J(∆Ω) =

∫

dl dΩ ρ2χ. (107)

This formulation is appealing because the J-factor contains all of the astrophysical infor-

mation about DM, while the rest of the right-hand side of equation 106 depends only on

the particle physics. A thorough review of applications of this calculation to the galactic

center and dwarf spheroidals is given in [58].

After taking 〈σv〉 as constant, the next simplest approach is to consider p-wave in-

teractions, the rate of which depend on the velocity dispersion squared, σ2 ≡ 〈v2〉. Of

course, one can take this as constant in space, but it is straightforward to calculate it
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Figure 10: Measurements of the positron fraction e+/(e++e−) by the AMS-02, PAMELA,
and Fermi-LAT experiments.

using the Jeans equation. This is discussed in Section 7.1.

5.1 The Positron Excess

The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA)

reported a sharp increase in the positron fraction of electron-positron flux at energies of

around 10 to 100GeV [6], which was later confirmed by the AMS-02 experiment [7] (see

Figure 10). This is contrary to the usual model of positron production from high-energy

cosmic rays propogating in the interstellar medium [94]. There are two possibilities:

models of cosmic-ray propogation must be refined (e.g. see [104, 46, 45, 47, 48]), or there

is an additional source of positrons. Annihilating DM that results in electron-positron

pairs would provide this source.

Interpreting the positron excess as a result of DM annihilation introduces difficul-

ties with other observational constraints and the standard relic density calculation (see

equation 83). The anti-proton flux has no unexpected behavior, so a new source of

positrons cannot also be a source of anti-protons [5, 55]. Furthermore, the production of
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hadrons in general must be small, since the production of π0s from DM annihilation is

well-constrained by gamma-ray observations of the galactic center, and the production

of electrons and positrons would create synchrotron emission [25, 21, 44]. The other dif-

ficulty is that the interaction rate required to create the observed excess is much larger

than that expected for a thermal relic. A “boost factor” of O(100) is needed. Both of

these issues can be solved by postulating a new force in the dark sector: DM particles

experience a force mediated by a new boson φ. Then the annihilation channel χχ→ φφ

may be the dominant one. The new φ particle may decay to Standard Model parti-

cles. If it is light enough, decays to hadrons are kinematically forbidden (π0s and p/p).

Furthermore, a new force between DM particles can adequately boost the annihilation

cross-section by a mechanism called the Sommerfeld Effect, which is described in detail

in Section 5.2.

If we assume there is an attractive force between dark matter particles that provides

the necessary boost to explain the postron excess, then there is a possibility of contradic-

tion. Any boost to the annihilation rate of local DM must also apply to DM everywhere

else. In particular the annihilation rate of DM at the galactic center is also boosted, so

the flux of photons from these annihilations receives the same boost. It is possible that

the boost from the Sommerfeld effect, while explaining the local positron flux, causes the

galactic center emission to exceed observations. This possibility is investigated in detail

in Section 7.4.

5.2 The Sommerfeld Effect

The Sommerfeld Effect is the change in the interaction cross-section of a target object

or particle (located at the origin) due to a circular potential. If the potential grants an

attractive force, then we call this the Sommerfeld Enhancement, since the cross-section is

increased. We will briefly describe a classical analogue and then proceed with a quantum

mechanical derivation.

Consider a point particle approaching a hard sphere of radius R from infinity with

velocity v and impact parameter b. The scattering cross-section is simply the cross-
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sectional area of the target sphere σ0 = πR2. If b > R then no scatting occurs. Now

suppose that the incident particle and the target sphere are gravitationally attracted.

Then the scattering cross-section increases because the incident particle is accelerated

toward the target sphere. Simply using conservation of energy and angular momentum,

the modified scattering cross-section is found to be

σ = σ0

(

1 +
v2esc
v2

)

, (108)

where v2esc = 2GM/R is the escape velocity of the target sphere. The quantity in paren-

theses is the classical Sommerfeld factor and, in this case of an attractive force, can vary

from 1 to ∞. The smaller the incident velocity, the greater the modification.

The Sommerfeld enhancement is the quantum analogue of the above classical effect.

We have a circular potential V (r) centered at the origin and a non-relativistic incident

particle. If the incident particle were free (no potential), its wave function would simply

be

ψ0(r) = eikz, (109)

where the subscript 0 denotes the lack of the scattering potential V (r), k is the wave-

number or momentum of the particle, and, without loss of generality, we have taken

the particle as moving along the z-axis. As in the classical analogue, we say that a

scattering has occurred if the incident particle “hits” the target or enters the volume

that it encompasses. For the most part, we will assume that the interaction is point-

like: scattering occurs if the incident particle is found at the origin. The likelihood that

scattering occurs, i.e. the cross-section, is thus proportional to the likelihood that the

incident particle is found at the origin:

σ ∝
∫

d3r δ(r)|ψ(r)|2 = |ψ(0)|2. (110)

Similarly, in the case without the potential, the unmodified cross-section is σ0 ∝ |ψ0(0)|2 =

1. With the potential, the modification to the cross-section, i.e. the Sommerfeld factor,
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is

S =
|ψ(0)|2
|ψ0(0)|2

= |ψ(0)|2. (111)

To find this, we must solve the Schrödinger equation.

An axisymmetric wave function subject to a circular potential may be written as

ψ(r, θ) =
∞
∑

l=0

ileδl (2l + 1)

k
Pl (cos (θ))Rl(r), (112)

where δl is the phase shift associated with the partial wave solution labeled by l, Pl(x) is

the lth Legendre polynomial, and Rl(r) is the radial wave equation for the lth solution.

Since the Legendre polynomials are orthogonal, equation 111 becomes

S =
∞
∑

l=0

[

(2l + 1)
Rl(r)

k

]2

. (113)

The equation for the radial wave equations Rl(r) is

1

r2
d

dr

(

r2
dRl (r)

dr

)

− l (l + 1)

r2
Rl (r) + 2M (E − V (r))Rl(r) = 0, (114)

where E = k2/(2M) is the energy of the incident particle. For our purposes, we are

interested in interactions described by an attractive Yukawa potential

V (r) = −α
r
e−mφr, (115)

with coupling constant α and force-carrier mass mφ. Recall that we are ultimately inter-

ested only in the wave function at r = 0. In the limit r → 0, equation 114 is dominated

by the first two terms24

1

r2
d

dr

(

r2
dRl (r)

dr

)

− l (l + 1)

r2
Rl (r) = 0, (116)

which, for l 6= 0, has solutions Rl 6=0(r) ∝ rl, which vanish at the origin. Since we only

24As long as V (r) does not diverge faster than 1/r.
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need the value of the wave function at the origin, we may ignore the l 6= 0 partial wave

functions and focus on the l = 0 case. The Sommerfeld factor is then

S =

∣

∣

∣

∣

R0(0)

k

∣

∣

∣

∣

2

. (117)

We recast equation 114 in terms of the function χ(r) = rR0(r) and the dimensionless

parameters

ρ ≡ kr, (118)

ǫv ≡
k/M

α
=
v

α
, (119)

ǫφ ≡
mφ/M

α
, (120)

so we have

d2χ

dρ2
+

(

1 +
2

ǫvρ
e−ǫφρ/ǫv

)

χ(ρ) = 0. (121)

This equation cannot be solved analytically in general. However, in the case of a

massless force-mediator, an analytic solution exists. Taking mφ = 0, we have

d2χ

dρ2
+

(

1 +
2

ǫvρ

)

χ(ρ) = 0. (122)

This is the Coulomb wave equation25 and is solved by the regular and irregular Coulomb

wave functions, the first of which is physically permissible, so

χ(ρ) = F0(η, ρ) =

√

2π/ǫv
1− e−2π/ǫv

ρeiρM(1− i/ǫv, 2,−2iρ), (123)

where M(α, β, γ) is the confluent hypergeometric function. Using χ(r) = rR(r) in equa-

tion 113, we find that the Sommerfeld factor in the case of a massless force-mediator

is

SC =

∣

∣

∣

∣

χ(ρ)

ρ

∣

∣

∣

∣

2

ρ→0

=
2π/ǫv

1− e−2π/ǫv
. (124)

25Equation 122 can be solved analytically even if the l(l+1)/r2 term was not dropped in equation 114.
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Figure 11: Sommerfeld factor for a Yuwaka potential.

Let us now return to the case of a general Yukawa potential, equation 121. Calculating

this requires numerical computation. We know that in the limit r → 0, χ(r) ∼ r, since

R0(r) ∼ constant. This grants an alternative expression for the Sommerfeld factor:

S = |χ′(0)|2 . (125)

In the opposite limit, r → ∞, we expect χ(r) = rR0(r) ∼ sin(kr), a sinesoidal wave

with amplitude unity. This is all the information necessary to calculate S. Details of the

algorithm are given in Appendix C. The Sommerfeld factor S is plotted in Figure 11.

Note the resonance pattern that arises due to the force-mediator being massive, which

allows for the brief formation of bound states.

An alternative potential is the Hulthen potential

VH(r) = −αmφ
e−mφr

1− e−mφr
, (126)

59



Yukawa

Hulthen

Coulomb

0.01 0.05 0.10 0.50 1.00 5.00 10.00

10-5

0.001

0.1

10

mΦ r

-
V
�H
Α
m
Φ
L
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which behaves as a Coulomb potential −α/r for small r and, like the Yukawa potential,

exponentially decays for large r. The three potentials so far discussed, Yukawa, Hulthen,

and Coulomb, are compared in Figure 12.

The advantage of approximating the Yukawa potential with the Hulthen potential is

that the Schrödinger equation is then analytically solvable. The result is

SH(v) =
A sinhB

coshB − cos
√
2AB − B2

, (127)

where A = 2π/ǫv and B = 12ǫv/πǫφ. To demonstrate the validity of using this result,

Figure 13 plots the Sommerfeld factors S and SH as a function of the mediator-WIMP

mass-ratio for two different velocities. Most important is that the structure from mass

resonance is also exhibited when using the Hulthen potential. From equation 127 we see

that mass resonances occur in the low velocity limit (ǫv ≪ ǫφ) at

ǫφ,res =
12

π2n2
for n ∈ Z>0, (128)

which are drawn in Figure 13
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Figure 13: Comparison of the Sommerfeld factor S for a Yukawa potential (solid black)
and a Hulthen potential (dashed red). Left: ǫv = 10−4. Right: ǫv = 10−2.

We will generally refer to S = S(v) as the Sommerfeld factor, which is a function of the

relative velocity between two annihilating particles. If we have a population of particles

with some probability distribution of relative velocities f (v; {αi}) that is specified by

parameters {αi} (usually the temperature or position in a system), then the Sommerfeld

enhancement of the annihilation rate is

S ({αi}) ≡ 〈σv〉/〈σv〉0

=

∫

dv σ(v)v S(v) f (v; {αi})
∫

dv σ(v)v f (v; {αi})
. (129)

In the case of only s-wave annihilation, this simplifies to

S ({αi}) =
∫

dv S(v) f (v; {αi}) . (130)
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6 Direct Detection

We have determined that the Milky Way galaxy is contained in a much larger dark matter

halo. Dynamical observations of the galaxy give an idea of the local DM density ρ⊙ ≈ 0.3

- 0.4GeV/cm3 [42] [Find some more references]. It must therefore be that the Earth

sweeps through a significant amount of DM particles as it, and the solar system, move

through the galaxy. If the DM particles are WIMPs, then they will occasionally interact

with other matter. In particular, we can in principle observe the interaction of passing

WIMPs with nuclei: we can record the recoil energy imparted upon nuclei in a detector.

This is the basic idea of direct detection [66, 135, 56].

The most important ingredients in predicting the rate of WIMP-nucleon interactions

in a detector are the velocity distribution of local DM particles in the lab frame flab(v; t),

normalized to ρ⊙ here, and the WIMP-nucleon cross-section. The interaction rate be-

tween nucleons and WIMPs with velocity v per detector mass is [76]

dRv =
ρ⊙

mχmN

flab (v; t)
dσ

d |q|2
d |q|2 |v| d3v, (131)

where |q|2 is the square momentum transfer and dσ/ d |q|2 is the differential cross-section.

Switching to the energy transfer Q = |q|2 /2mN and integrating over velocity, we have

the total energy-differential interaction rate per detector mass

dR

dQ
=

ρ⊙
mχmN

∫

|v|≥vth

d3v |v| flab (v; t)
dσ

dQ
. (132)

We will focus on elastic scattering. Then the minimum or threshold velocity a WIMP

needs in order to contribute to the differential rate with energy transfer Q is

vth =

√

Qmχ

2m2
r

, (133)

where mr = mχmN/ (mχ +mN) is the reduced mass. Usually the focus is on spin-

independent interactions, since the spin-dependent interaction rate is typically much
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smaller (but note, e.g., [10]). Then the differential cross-section is

dσ

dQ
=

σ0mN

2m2
r |v|2

F 2 (Q) , (134)

where σ0 is the WIMP-nucleon cross-section at zero momentum transfer and F (Q) is

the form factor describing the structure of the nucleus used in the detector in question.

Inserting equation 134 into equation 132, we have

dR

dQ
=

σ0
2mχm2

r

∫

|v|≥vth

d3v
ρ⊙flab (v; t)

|v|

=
σ0

2mχm2
r

∫ ∞

vth

dv dΩ ρ⊙ |v| flab (v; t) . (135)

All of the astrophysics of DM are contained in the integral of equation 135, while all of

the particle physics is outside. From an astrophysical standpoint, therefore, the integrand

of equation 135 is of the main interest. We denote this function of velocity as

g (|v| , t) ≡
∫

dΩ ρ⊙ |v| flab (v; t) . (136)

Note that we have written the lab-frame WIMP velocity distribution with explicit

time-dependence. This is because the boost from the halo frame to the lab frame changes

as the Earth orbits the Sun. Generally, it is the combination of the Earth’s velocity with

respect to the Sun and the Sun’s velocity with respect to the galaxy and halo. Unless

the local DM velocity distribution is anisotropic (see Section 8), a boost of constant

magnitude has no effect and flab would indeed be independent of time. However, the

Earth’s orbit causes an oscillation in the net velocity boost. Thus, the interaction rate

depends on the time of year. The velocity boost to the lab frame may be considered

as the aggregate of three motions: the rotational motion of the Sun around the galactic

center (defining the “local standard of rest”), the pecular motion of the sun, which is an

instance of the relatively small random velocities in the Milky Way spiral galaxy, and the

orbit of the Earth around the Sun. These combine to give the net velocity boost to the
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lab frame, which is roughly

vlab = [Θ0 + (15.4 km/s) cos (2π (t− t1))] φ̂, (137)

where Θ0 ≃
√

2/3σv ≈ 250 km/s, and t1 = 0.419 is the beginning of June in years.

There are various experimental setups for detecting WIMP-nucleon interactions. Ex-

periments such as LUX [9], XENON [15], and ZEPLIN [81] consist of a large volume of

a nobel gas, often xenon. When a WIMP interacts with a nucleus, imparting 1 to 100

keV of energy, the atom is both excited and ionized. Applying an electric field causes

the free electrons to drift, eventually scintillating. These processes create two separate

signals, and the time delay between the two distinguishes the incident particle. Alterna-

tively, experiments such as CDMS [8], Edelweiss [16], CRESST [13], CoGeNT [1], and

DAMA/LIBRA [23] use cryogenically-cooled crystal materials. Interactions with incident

particles create scintillation photons and cause ionization, and vibrational phonons are

also detectable.

Given an experimental setup, there are two basic ways of interpreting data. One

can attempt to filter out background events from unwanted particles such as cosmic

rays (experiments are typically located underground to protect against these), radiation

from the surrounding earth, and contamination of the target material. Whatever is left,

if significant, might be interpreted as a WIMP signal. Alternatively, one may neglect

accounting for background radiation and look for a modulation in the total signal. If the

rate of background interactions is constant, then any modulation in the total rate must be

from the earth sweeping through the DM halo at varying speed, as described above. This

has been the strategy of the CoGeNT and DAMA/LIBRA collaborations, which have

reported a modulation, interpreted as a WIMP signature, for some time. Meanwhile, the

CRESST collaboration also reports an excess of events compatible with a WIMP signal.

On the other hand, collaborations such as XENON, Super-CDMS26, ZEPLIN, Edelweiss,

and, especially and most recently, LUX have all found no significant signal attributable

to WIMPs. These collaborations put maximum limits on the possible WIMP mass and

26CDMS did find a possible signal, but this was later excluded by Super-CDMS.
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Figure 14: 90% confidence limits on the spin-independent elastic WIMP-nucleon cross-
section and WIMP mass from LUX (blue and red), XENON-100 (orange), CDMS II
(green), ZEPLIN-III (magenta), and Edelweiss II (yellow). Also, in the inset, the 90%
allowed regions from CRESST (yellow), CDMS II silicon detectors (green), CoGeNT
(red), and DAMA/LIBRA (grey). From [9].

WIMP-nucleon cross-section. Indeed, there is much disagreement between various direct

detection experiments, including between positive results. Figure 14 shows the limits

from experiments with null results and the allowed regions from experiments with positive

results.
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7 The Phase-Space Distribution and Implications for

Detection

The phase-space distribution or distribution function (DF) contains the full informa-

tion for describing a system of particles statistically. We define the function f so that

f(x,v, t) d3x d3v is the probability that at time t a particular particle is in the phase-

space volume d3x d3v around the position (x,v). Since any particle must be somewhere,

this function is normalized so that

∫

d3x d3vf(x,v, t) = 1. (138)

The value of the DF at any location in phase-space is invariant with the coordinate

system [29], so we may use arbitrary canonical phase-space coordinates w = (x,v). At

time passes, probability must be conserved in the same sense that mass is conserved in

fluid flow. Thus we have the continuity equation

∂f

∂t
+

∂

∂q
· (f q̇) + ∂

∂p
(f ṗ) = 0. (139)

Using Hamilton’s equations, this becomes

∂f

∂t
+ q̇ · ∂f

∂q
+ ṗ · ∂f

∂p
= 0. (140)

This is the collisionless Boltzmann equation. An alternative way to express it is to define

the total derivative df/dt as the left-hand side of equation 140. It is the rate of change

in the local probability density as seen by an observer following a particle in the system.

We can then simply write

df

dt
= 0, (141)

which means that the flow of “probability fluid” through phase-space is incompressible.

In other words, the probability density around a particle is constant as that particle

moves (though the density around different particles may be very different).
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In Cartesian coordinates the Hamiltonian is H = |v|2/2 + Φ(x) and equation 140

becomes

∂f

∂t
+ v · ∂f

∂x
− ∂Φ

∂x
· ∂f
∂v

= 0. (142)

From here on we focus on systems that are in statistical equilibrium, so the DF is not

a function of time: f = f(x,v). Jeans theorem tells us that we may always take the DF

of a system to be a function of no more than three independent isolating integrals [29].

In a stationary gravitational potential Φ(x), an integral of motion is a function I(x,v)

that is invariant along any orbit in the system. Mathematically, the function I satisfies

equation 141. In this work we will discuss two integrals of motion: the Hamiltonian or

energy H and the angular momentum L.

The Hamiltonian H is an integral of motion: the energy of a particle in a collisionless

system is constant. A DF f = f(H) that is a function of energy only is called ergodic: it

is constant along energy hyper-surfaces in phase-space. It immediately follows that the

mean velocity vanishes everywhere, because f is an odd function of v:

v(x) =

∫

d3v vf(|v|2/2 + Φ)
∫

d3vf(|v|2/2 + Φ)
= 0. (143)

Similarly, the velocity dispersion tensor is isotropic everywhere:

σ2
ij(x) = vivj =

1

3
σ2δij. (144)

An isotropic system is thus one that is described by an ergodic DF. In the context of

this work, the terms “isotropic” and “ergodic” may be used interchangably. Systems

with spherical symmetry are the easiest to describe and study. Though DM halos in

simulations are not spherical but rather axisymmetric, it is useful to model them as

spherical for the purposes of detection prospects.

If the system is spherically symmetric, so Φ = Φ(r), then the distribution of particles

depends on the angular momentum vector L only through the magnitude L = |L|. In

spherical coordinates, vr and vt =
√

v2θ + v2φ are the radial and tangential components of
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v; they are parallel and perpendicular, respectively, to the radial direction. Then L = rvt

and H = (v2r + v2t )/2 + Φ(r). The mean values of vr and vt again vanish, but isotropy is

broken: σr(r) 6= σθ(r) = σφ(r). Anisotropic systems will be studied in greater detail in

Section 8.

It is worth pointing out that many of the usual concepts and techniques from statistical

mechanics cannot be applied to systems such as those we are discussing here [29, 101,

86, 77]. Firstly, in a gravitational system, energy is not an extensive quantity : the

energy of the whole is not equal to the sum of the energies of its parts. To illustrate,

in a system with constant number density n of particles with mass m, the potential

energy of any particular particle at radius R is −Gm2n
∫

d3x/r = −2πGm2nR2. The

potential energy per particle is greater for more distant particles, so the total energy

is not extensive. Non-extensive statistical mechanics, which generalizes the Boltzmann-

Gibbs entropy, is discussed in [126, 128, 127]. Secondly, for bound systems of more than

two particles, hyper-energy surfaces in phase-space are unbounded. This means that the

microcanonical ensemble cannot be defined. Furthermore, since the energy, mass, and

entropy of a gravitational system cannot be simultaneously finite, the canonical ensemble

cannot be defined (non-extensive statistical mechanics may avoid this issue). Indeed, the

phase-space mass densities calculated in Section 7.2 cannot be normalized: the mass

is infinite. Calculating a phase-space probability density is an alternative, and it can be

normalized to unity, but the problem resurfaces when calculating observables because the

number of particles is infinite. However, since we are just interested in using phase-space

distributions to empirically calculate observables and they are calculated from models

that are measured anyway (not derived), we will continue despite these caveats, but they

should be kept in mind.

7.1 The Jeans Equation and Applications

Recall the Boltzmann equation (142), now written using the Einstein summation conven-

tion:

∂f

∂t
+ vi

∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi
= 0. (145)
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Multiplying this by vj and integrating over all velocities gives

∂

∂t

∫

d3vfvj +

∫

d3vvivj
∂f

∂xi
− ∂Φ

∂xi

∫

d3vvj
∂f

∂vi
= 0, (146)

where we have used the facts that v does not depend on time and that ∂Φ/∂xi does

not depend on v. Since there are no particles with infinite velocity, we can apply the

divergence theorem to the last term to find

∂(ρvi)

∂t
+
∂(ρvivj)

∂xj
+ ρ

∂Φ

∂xi
= 0. (147)

Subtracting from this vi times the continuity equation, we finally obtain the Jeans equa-

tion:

ρ
∂vi
∂t

+ ρvj
∂vi
∂xj

= −ρ ∂Φ
∂xi
− ∂(ρσ2

ij)

∂xj
(148)

This is essentially the Euler equation but with the fluid velocity replaced by the average

particle velocity; the last term acts as a pressure force −∇p. Indeed, the object −ρσ2
ij is

a stress tensor that provides a pressure, which is anisotropic in general.

The Jeans equation in spherical coordinates is

d(ρv2r )

dr
+ 2

β

r
ρv2r = −ρdΦ

dr
, (149)

where we have used the anisotropy parameter β ≡ 1− σ2
t /2σ

2
r . This form will be vital in

Section 8. If the anisotropy parameter is constant, we can multiply equation 149 by r2β

and integrate to find

v2r (r) =
1

r2βρ(r)

∫ ∞

r

dr′r′2βρ(r′)
dΦ

dr′
, (150)

which simplifies further for an isotropic system:

v2r (r) =
1

ρ(r)

∫ ∞

r

dr′ρ(r′)
dΦ

dr′
. (151)

This formula has a simple physical interpretation: multiplying both sides by ρ∆V shows

that the left-hand side is the total kinetic energy of particles in a small volume ∆V at
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radius r, while the right-hand side is the work done to move a mass ρ(r)∆V from infinity

to radius r.

Recall that the cross section for p-wave interactions is proportional to the second

moment of the relative velocity, the relative velocity dispersion squared: σ2 ≡ 〈v2〉. If

individual particles follow a velocity distribution that is Maxwell-Boltzmann with disper-

sion σ1, then the relative velocity dispersion is

σ =
√
2σ1. (152)

As mentioned in Section 5, the radial velocity dispersion of individual particles can be

calculated directly from the density profile and potential using the Jeans equation. We

do not need to know the functional form of the velocity distribution. The photon flux

from p-wave interactions in an isotropic halo is, using equations 101, 103, and 152,

Φγ,p =
6bNγ

4πm2
χ

∫

dl dΩσ2
r,1[r(l, ψ)]ρ

2
χ[r(l, ψ)], (153)

and σ2
r,1 is easily calculated from equation 151. Typically, because DM particles are very

non-relativistic, the contribution from p-wave interactions is subdominant to velocity-

independent s-wave interactions. However, it is possible there is some mechanism that

prohibits s-wave annhilations.

If a system is spherical and isotropic, higher velocity moments (kurtosis, etc.) can be

calculated from further equations analogous to the Jeans equation. This procedure can

be continued to arbitrarily high velocity moments. These will be exact in the sense that

they would agree with the calculations using the full phase-space distribution f . However,

information is lost from integrating the Boltzmann equation. With just velocity moments,

there is no way to ensure that f is everywhere non-negative.

We will see in Section 7.4 that the relative velocity distribution of DM particles is close

to Maxwell-Boltzmann except near the center of halos, which is a small portion of the total

volume. Therefore, unless an observation of the galactic center is in question, assuming

a Maxwell-Boltzmann velocity distribution is a reasonable approximation. Since we can
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easily calculate the single-particle velocity dispersion from the Jeans equation and thus

also the relative velocity dispersion, we can calculate the thermal average of an arbitrary

cross section. This strategy was used in considering Sommerfeld enhancement of an

annihilation signal in the galaxy and dwarf spheroidals [106].

7.2 Eddington’s Equation for Ergodic Systems

The phase-space density of a DM halo has often been taken as simply the product of the

mass density (Section 3.1) and a Maxwell-Boltzmann velocity distribution:27

f = ρ(r)× fMB(v). (154)

This does not generally solve the Maxwell-Boltzmann equation (140). A Maxwell-Boltzmann

velocity distribution is correct only for the singular isothermal sphere:

ρSIS(x) ∝ x−2. (155)

If the velocity distribution cannot be approximated by Maxwell-Boltzmann (or any given

function) and either the interaction rate per particle density 〈σv〉 is not simply a linear

combination of velocity moments or the Jeans equations cannot be closed, such as in the

case of anisotropy, then the DF must be calculated. Given a spherical system with mass

distribution ρ(r) and potential Φ(r), we can find an ergodic DF that is self-consistent

and a solution to the Boltzmann equation.28

It is convenient to introduce the relative potential Ψ ≡ −Φ + Φ0 and relative

energy E ≡ −H + Φ0 = Ψ − v2/2. The constant Φ0 is chosen so that f = 0 for E ≤ 0.

In other words, Ψ = 0 at the “edge” of the system. If the system extends to infinity,

then Φ0 = 0 and Ψ is simply the binding energy of the system. In this work, Φ0 will

generally be zero, but there are cases when a non-zero value is appropriate.29 Requiring

27We are now considering the DF as a phase-space distribution of mass, not probability. This does
not change the points made earlier in Section 7.

28Any isolated, finite system with an ergodic DF must be spherical [29], but the converse is not
necessarily true. A spherical system may have a non-ergodic DF (see Section 8).

29For example, if the halo profile is truncated at some finite radius rtrunc, with no particles beyond
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that f(E ≤ 0) = 0 also means that only particles that are bound are considered apart of

the system, so the maximum velocity is the escape velocity vesc(r) =
√

2Ψ(r).

To restate the problem precisely, we have a system with known mass distribution ρ(r),

and we wish to derive a DF that depends on the phase-space coordinates only through

the energy: f = f(E). We begin by noting that the mass distribution is recovered from

the DF by marginalizing over velocity. Since the DF is isotropic, it depends only on the

magnitude of the velocity. We can thus write

ρ(r) = 4π

∫ vesc

0

dv v2f(Ψ− v2/2). (156)

We can change variables of integration to E , and, since Ψ(r) is a monotonic function, we

can consider ρ as a function of Ψ instead of r. We have

1√
8π
ρ(Ψ) = 2

∫ Ψ

0

dEf(E)
√
Ψ− E . (157)

The integrand vanishes at the limits of integration, so differentiating both sides with

respect to Ψ gives

1√
8π

dρ

dΨ
=

∫ Ψ

0

dE f(E)√
Ψ− E . (158)

This is an Abel integral equation, which can be inverted. The solution for f(E) may be

written as

f(E) = 1√
8π

d

dE

∫ E

0

dΨ√
E −Ψ

dρ

dΨ
. (159)

A physical requirement is that f(E) ≥ 0, there is no negative mass density anywhere.

Equation 159 thus implies that a spherical mass distribution ρ(r) and relative potential

Ψ(r) can be recovered from an ergodic DF if and only if the quantity

∫ E

0

dΨ√
E −Ψ

dρ

dΨ
(160)

is an increasing function of E for E ≥ 0. Otherwise, there would be some position and

this radius, then Φ0 = Φ(rtrunc).
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velocity that has negative density. This is an important check when deriving DFs. A

more useful way to express the solution to equation 158 is

f(E) = 1√
8π

[
∫ E

0

dΨ√
E −Ψ

d2ρ

dΨ2
+

1√
E

(

dρ

dΨ

)

Ψ=0

]

. (161)

This is Eddington’s formula and will be used extensively in this work. Typically, the

second term on the right-hand side vanishes, so for our purposes we have

f(E) = 1√
8π

∫ E

0

dΨ√
E −Ψ

d2ρ

dΨ2
. (162)

It is not always easy or possible to invert Ψ(r) in order to express ρ as a function

of Ψ.30 However, we can always write the second derivative in equation 162 in terms of

derivatives with respect to r. We have

d2ρ

dΨ2
=

(

dΨ

dr

)−2
(

d2ρ

dr2
−
(

dΨ

dr

)−1
d2Ψ

dr2
dρ

dr

)

. (163)

Then Eddington’s formula becomes

f(E) = 1√
8π

∫ E

0

dΨ√
E −Ψ

(

dΨ

dr

)−2
(

d2ρ

dr2
−
(

dΨ

dr

)−1
d2Ψ

dr2
dρ

dr

)

. (164)

Or, changing the variable of integration,

f(E) = 1√
8π

∫ ∞

r(Ψ=E)

dr√
E −Ψ

(

dΨ

dr

)−1
(

d2ρ

dr2
−
(

dΨ

dr

)−1
d2Ψ

dr2
dρ

dr

)

. (165)

These forms are useful for numerical computation. We find that integrating over the

potential Ψ results in much better accuracy than integrating over radius.

Consider the Milky Way halo. Using the baryonic disk and bulge models from Sec-

tion 3.2, equations 72 and 73, the total gravitational potential experienced by dark matter

30For example, inverting the Jaffe and Hernquist potentials is easy. It is difficult, though doable, in
the case of NFW (see Appendix H).
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Figure 15: Phase-space distribution function of the dark matter in the Galaxy, equa-
tion 162, assuming an NFW profile, with and without baryonic components, or a dark
matter only Einasto profile. See Appendix D for the definitions of the axes.

particles in the halo is

Φ(r) = Φbulge(r) + Φdisk(r) + Φhalo(r). (166)

We use both a NFW profile and an Einasto profile for the Milky Way halo, so Φhalo is

derived from either equation 68 or 69. We can easily take derivatives of Ψ = −Φ and

ρ = ρχ; then equation 164 can be numerically computed. Figure 15 plots the DFs of

a Milky Way-like halo for the cases of NFW with and without baryons and Einasto.

The DFs vanish at zero energy because there are no bound particles infinitely far away;

they diverge at a finite energy because at r = 0 the potential is finite and the density is

infinite31.

We do the same for a typical dwarf spheroidal, modeled after Draco. In this situation

we neglect baryons and use a NFW profile and a cored Burkert profile. The DFs for these

cases are plotted in Figure 16.

31A Jaffe profile, on the other hand, has infinite potential energy at r = 0, so the DF has a semi-infinite
domain and diverges at infinity.
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Figure 16: Phase-space distribution function of the dark matter in a dSph with an NFW
or a cored Burkert profile. See Appendix D for the definitions of the axes.

7.3 Velocity Distribution

If the phase-space density f(x,v) is known, then the single-particle velocity distribution

at a given position x is simply

P1(v;x) =
f(x,v)

ρ(x)
, (167)

which is normalized so that
∫

d3vP1(v;x) = 1. If the system is spherical and ergodic, we

have

P1(v; r) =
f(Ψ(r)− v2/2)

ρ(r)
. (168)

The single-particle velocity distribution in Milky Way-like NFW and Einasto halos at

a few radii are plotted in Figure 17. These do not include the effects of baryonic com-

ponents. Figure 18 plots the NFW velocity distribution taking the baryonic disk and

bulge into account. For a typical dwarf spheroidal, the cases of NFW and Burkert are

plotted in Figure 19. For every curve in these plots, a Maxwell-Boltzmann distribution

with the same dispersion is shown for comparison. In the DM-only plots, it is clear that

the Maxwell-Boltzmann distribution is a good approximation at larger radii. We also see

that the true velocity distribution deviates from Maxwell-Boltzmann at smaller radii: the
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Figure 17: Single-particle velocity distribution P1(v; r) (see equation 168) for a NFW
halo (left) and Einasto halo (right), both without baryonic components. The dotted lines
show a Maxwell-Boltzmann distribution with the same velocity dispersion.
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Figure 18: Single-particle velocity distribution P1(v; r) (see equation 168) for a NFW
halo with baryonic components.

peak becomes sharper and located at a smaller velocity. The situation is less clear when

the baryonic disk and bulge are included, but the deviation from Maxwell-Boltzmann

still occurs at smaller radii, albeit less severely.

To calculate the annihilation rate in general, we need the relative velocity distribution

P (vrel; r). Essentially, we need to convolve the single-particle velocity distribution in

equation 167 with itself. In the center-of-momentum frame of a two-particle system,

there are two relevant quantities: the relative velocity vrel = v1 − v2 and the center-

of-momentum velocity vcm = (v1 + v2)/2. The two-particle and single-particle velocity
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Figure 19: Single-particle velocity distribution for a dSph satellite-sized NFW halo (left)
and Burkert halo (right).

distributions are related in general as (suppressing the distribution “parameter” x)

P (vrel,vcm) d
3vrel d

3vcm = P1(v1)P1(v2) d
3v1 d

3v2. (169)

The determinant of the Jacobian matrix is unity, so we have

P (vrel,vcm) = P1(vrel/2 + vcm)P1(vrel/2− vcm). (170)

Marginalizing over the center-of-momentum velocity and the direction of the relative

velocity gives the relative velocity distribution. For an ergodic system, with P1 given by

equation 168, we have

P (vrel) = 8π2v2rel

∫ vesc

0

dvcmv
2
cm

∫ 1

−1

dz P1(v+)P1(v−), (171)

where v2± ≡ v2cm + v2rel/4 ± vcmvrelz and z is the cosine of the angle between the relative

and center-of-momentum velocity vectors. This function is normalized so that

∫ 2vesc

0

dvrel P (vrel) = 1. (172)

We are now free to calculate the interaction rate per particle density with arbitrary cross

section:

〈σv〉 =
∫ 2vesc

0

dvrel σvrel P (vrel). (173)
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It is interesting to note that the relative velocity dispersion seems to follow the same

relationship with the single-particle dispersion that is true for Maxwell-Boltzmann dis-

tributions. This is shown in Figure 20. This serves as a useful check of numerical

computation.

Figure 21 plots the relative velocity distribution P (vrel) at various radii in a NFW halo,

without and with baryonic components. The trends in the relative velocity distribution

are very similar to those seen in the single-particle velocity distribution. The distribution

becomes more sharply peaked at smaller values as the radius decreases.

7.4 Galactic Signature

We have developed an elaborate and complicated formalism in Sections 7.2 and 7.3 that

is necessary when the Maxwell-Boltzmann distribution is a poor approximation and the

non-relativistic expansion in equation 101 is invalid (or at least not the whole story).

We will now scrutinize the necessity of such a detailed calculation. The question is:

in what situations does using a MB distribution instead of the correct phase-space dis-
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Figure 21: Relative velocity distribution at various radii in an NFW halo without (left)
and with (right) the effects of baryonic components. The dotted lines show a Maxwell-
Boltzmann distribution with the same velocity dispersion.

tribution result in a significantly-inaccurate calculation of observables? We assume an

ergodic (spherically symmetric and isotropic) distribution function for simplicity. The

aim is not so much to make predictions, but rather to test the reliability of simplifying

assumptions [60].

The Sommerfeld effect motivated in Section 5.1 and described in Section 5.2 is an

interesting example of 〈σv〉 not simply being a linear combination of velocity moments.

Instead, we have a complicated function of vrel that must be averaged using the relative

velocity distribution. Of course, the Maxwell-Boltzmann distribution can be used as an

approximation, in which case calculating S(r) = 〈S(vrel; r)〉 is a straightforward numerical

calculation [106]. But we have seen that MB can be a poor approximation near the center

of a halo. Is this break-down of the MB approximation very important in the context of

indirect detection of dark matter? We define the quantity

F ≡ J/JMB, (174)

where J is the generalized J-factor (compare with equation 107)

J(∆Ω) =

∫

dl dΩSρ2χ, (175)

which is calculated using the exact relative velocity distribution, and JMB is the same

calculation but using a Maxwell-Boltzmann distribution with dispersion 220 km/s. This
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Figure 22: F calculated for the galactic center using a NFW profile (left) with (solid)
and without (dotted) baryonic components and an Einasto profile (right) with baryonic
components.
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Figure 23: F calculated for the Draco dwarf spheroidal using a NFW profile (left) and a
Burkert profile (right).

ratio quantizes the effect deviation from MB has on the observed flux. The larger the

value, the more severe the deviation and a poorer the approximation. Figure 22 plots

this for the case of the galactic center, using a Sommerfeld model with α = 10−2 and

variable ξ = mφ/mχ. Figure 23 is for the case of Draco.

We are also interested in the possibility of observing secondary emission from electrons

and positrons that are annihilation products interacting with the magnetic field around

the galactic center. Instead of a line-of-sight integral, i.e. the J-factor, we calculate the

volume integral

K =

∫ rB

0

dr′r′2Sρ2χ, (176)

where rB ≃ 1 kpc is the radius within which the magnetic field strength can create appre-

ciable emission. Analogous to equation 174, we quantize the adequacy of the Maxwell-
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Figure 24: G calculated using a NFW profile (right) with (solid) and without (dotted)
baryonic components and an Einasto profile (right) with baryonic components.

Boltzmann approximation with

G ≡ K/KMB. (177)

As before, we plot G in Figure 24 for a NFW profile and an Einasto profile, using the

same Sommerfeld model with α = 10−2.

The most dramatic effect from using the DF is in the case of the galactic center without

accounting for baryons. Additional boosts to the J-factor of as much as two orders of

magnitude are possible. This would mean that any constaint on a combination of DM

halo and Sommerfeld models using observations should actually be much more severe

than previously thought. Including baryons, however, which gravitationally dominate at

the galactic center, lessens this additional boost from using the DF. Still, we see that

an additional boost factor of about 2 to 6 is possible. This does not depend much on

the halo model used (NFW or Einasto). The reason for this additional boost over the

Maxwell-Boltzmann approximation is that the true (relative) velocity distribution peaks

more sharply and at a smaller velocity than the Maxwell-Boltzmann distribution (with

the same dispersion) at small radii. Thus, the Sommerfeld enhancement at these radii

are greater and contribute more to the overall boost.

On the other hand, other observations that get large contributions far from a halo’s

center are not as sensitive to the deviation from Maxwell-Boltzmann. This is because

the deviation from MB occurs only at small radii, which contitutes a small portion of

the entire halo. So the larger the portion of a halo away from the center contributing
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to an observation, the smaller the importance of deviation from MB in predicting that

observation. For example, compare the dotted Eddington curves in the left plots in

Figures 22 and 24: the dotted Eddington curve in Figure 24 is smaller relative to the

respective solid curve because it comes from a volume integral as opposed to a line-of-

sight integral. Including baryons also reduces the Eddington curve to nearly unity. As

for the case of Draco, even though the line-of-sight volume includes a large portion of

the halo, since baryons are much less dominant in these systems, a cusped halo grants

significant additional boosts. However, a cored profile, which seems more realistic for

these systems, has very little deviation from MB, so the boost is small.

In all these plots we have also shown the boost over the SHM from using a MB

distribution with variable velocity dispersion (compare with [106]). Compared to the

calculation of the DF and relative velocity distribution, computing the velocity dispersion

from the Jeans equation is easy. We conclude this study by suggesting that the variability

of the velocity dispersion (and thus also velocity-dependent cross-sections) should always

be taken into account. However, except in extreme cases of observations of the galactic

center and Sommerfeld resonance, the full DF calculation can be neglected without too

much inaccuracy.

7.5 Apparent Inner Density Slope

In Section 7.4 we showed how the total flux from Sommerfeld-enhanced WIMP anni-

hilation near the galactic center can be subject to large boosts. Here we investigate

how the “apparent slope” of the inner halo profile can be steepened from Sommerfeld

enhancement. The enhancement increases with decreasing relative velocity, and the rel-

ative velocity distribution becomes peaked at smaller values closer to the center of the

halo. Thus, we expect that the integrand in equation 103, 〈σv〉ρ2χ ∝ S(r)ρ2χ, would have

a steeper slope than the square-density ρ2χ alone. Motivation for this study comes from

tentative observations of γ-ray excesses near the galactic center (the latest example be-

ing [51]). These flux measurements are typically fit to a power-law, and it is simplest

to assume that this slope is that of the WIMP density profile. If there is Sommerfeld
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enhancement, however, then there is some degeneracy between the actual density slope

and the particle physics behind the enhancement (i.e. the values of the coupling α and

mass ratio ξ = mφ/mχ).

In order to get a grasp of this ambiguity, we consider the generalized NFW profile

(with x ≡ r/rs)

gχ(x) = x−γ (1 + x)−(3−γ) , (178)

and we call γ the “inner slope”, which we vary from 0.8 to 1.7. For a given value of γ,

we numerically compute the dimensionless potential

ψ̃ (x) = x−1

∫ x

0

dx′x′2gχ +

∫ ∞

x

dx′x′gχ. (179)

We then compute the relative velocity distribution by way of equation 164 and 171

at about ten different radii from x = 10−1 to 10−3. Specifying the particle physics

parameters, we can use this to calculate the Sommerfeld enhancement at those radii.

At these radii, ρ̃χ is essentially a simple power-law with slope γ. We fit a power-law

with slope γapp to
√
Sρ̃χ in this range of radii. To restore units to the potential, we use

ψ/ψ̃ = 4πGr2sρs; the “velocity unit” is thus v/ṽ =
√

4πGr2sρs. Referring to Section 5.2,

we define α̃ and ξ̃ such that

ǫv ≡
v/c

α
=
ṽ

α̃
, (180)

ǫφ ≡
mφ/mχ

α
=
ξ̃

α̃
. (181)

In other words,

α̃/α = c/
√

4πGr2sρs (182)

≈ 645
rs

20 kpc

(

ρs

107M⊙/kpc
3

)1/2

. (183)

We use the parameters α̃ and ξ̃ because we then do not need to specify the halo parameters

rs and ρs when performing the computation.
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Sρχ from ρχ as a function of α̃, with γ = 1

and ξ̃ = 0.1.

To calculate the Sommerfeld enhancement S(x), we use the Hulthen Sommerfeld

factor S(vrel) given by equation 127. This is because the mass resonances are known to

be at ǫφ = 12/π2n2 or, rewritten in a more suggestive form, with the parameters used

here,
√

12α̃/ξ̃

∣

∣

∣

∣

res

= πn for n ∈ Z>0. (184)

We proceed as follows. For some chosen values of γ and ξ̃ we find γapp as a function

of α̃ over a range of α̃ corresponding to ǫφ ∈ [10−2, 10−1]. An example of this is shown

in Figure 25, in which we show the change in apparent slope ∆γ = γapp − γ. Note that

the resonance pattern from the Sommerfeld factor S(vrel) is manifest. Considering the

magnitude and range of ∆γ, this resonance pattern motivates the semi-empirical model

∆γ = A log

[

12 csc2
(

√

12α̃/ξ̃

)]p

. (185)

We can fit this model, parameterized by A and p, as a function of α̃ to the numerical

results. While this model can be a good fit to results such as that shown in Figure 25

over most of the range of α̃, it has trouble near the resonances. The Sommerfeld models
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Figure 26: Best-fit values for the parameters p (left) and A (right) in equation 185.

that make the fit difficult, however, are also those that create the largest boosts to the

flux amplitude [60], so it seems that, for the purposes of identifying a WIMP signal

at the galactic center, accounting for the apparent inner slope is most important with

Sommerfeld models away from resonance. Thus, in order to obtain a reliable fit to ∆γ-α̃

points, calculated with whatever pair of values of γ and ξ̃, we remove large-∆γ points

from the fitting algorithm until the fractional error of the model relative to the included

points is no more than 0.1. Over the range of γ and ξ̃ of interest, no more than 20%

of points are ever excluded from fits. Figure 26 plots the best-fit values of p and A

as a function of ξ̃ for many values of γ. Figure 27 shows the minimum ∆γ possible as a

function of γ and ξ̃.

85



0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.8 1.0 1.2 1.4 1.6
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Γ

Ξ�

Figure 27: Contour plot of the minimum ∆γ possible as a function of γ and ξ̃.

86



8 Anisotropy and Implications for Detection

So far we have only discussed systems that are described by an ergodic distribution

function. An ergodic distribution function depends only on the energy of a particle,

which depends only on the magnitude of the particle’s velocity. The direction in which

any particle is moving relative to its location in the system is irrelevant. Thus the velocity

distribution at any location in the system is isotropic. This implies that the dispersions

of the velocity components are always equal. Using the components (vr, vθ, vφ), which are

the velocity magnitudes along the spherical unit vectors (r̂, θ̂, φ̂), it is clear that

σ2
r =

∫

dvrv
2
r

∫

dvθ

∫

dvφf
(

Ψ−
[

v2r + v2θ + v2φ
]

/2
)

(186)

and the other dispersions σθ and σφ have the same form, so all three are equal, and the

total dispersion is simply given by the sum σ2 = 3σ2
r .

Of course, systems with velocity anisotropy do exist (the solar system or spiral galaxies

for example). The standard way of quantifying the deviation from isotropy (the “amount”

of anisotropy) is the anisotropy parameter

β ≡ 1−
σ2
θ + σ2

φ

2σ2
r

, (187)

which may be a position-dependent quantity. It is zero if the velocity distribution (at

whatever location in a system) is isotropic. Values of β larger than zero correspond to

“radial bias”: the velocity of particles are likely to be pointed more closely along the

radial direction r̂. Note that β cannot be larger than one; if β = 1 then all particle orbits

are exactly radial. Values of β smaller than zero correspond to “tangential bias”: the

velocity of particles are likely to be pointed more closely along the (θ̂, φ̂) plane. If all

particle orbits are exactly circular, then σr = 0 and β = −∞. Often the dispersions σθ

and σφ are assumed to be equal, so the anisotropy parameter is then witten as

β ≡ 1− σ2
t

2σ2
r

, (188)
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where σt is the tangential velocity dispersion.32

In this section we explore the ways accounting for the possibility of anisotropy can

impact models and predictions. In Section 8.1 we use the anisotropic Jeans equation to

derive the anisotropy profile β(r) for a halo described by a NFW density profile and a

power-law pseudo-phase-space density. In Section 8.2 we review some ways to derive the

distribution function of an anisotropic system with a given anisotropy profile.

8.1 Jeans Analysis of the Anisotropy Profile

Here we attempt to derive the anisotropy profile β (x) for a Milky Way-like halo that is

described by a density profile and a power-law pseudo-phase-space density (PPSD). We

use the NFW profile; general expressions and some details specific to NFW are deferred

to Appendix E. Solving for the contained massM(x) gives us the scale density ρs in terms

of the virial mass Mvir ≡M(c) and concentration c.

Following Taylor and Navarro [123] (also see [53]), we take the PPSD to be a power-law

with negative slope α:33

ρ

σ3
r

=
ρs
σ3
r,s

x−α. (189)

The radial velocity dispersion is now known (see equation 269), and its value at the scale

radius σr,s may be set by assuming a local radial velocity dispersion σr,⊙.

From the differential Jeans equation given in equation 149, we can solve for the

anisotropy parameter (compare with [139, 113]),

β(x) =
5

6
γ (x)− α

3
− GM(x)

2xrsσ2
r (x)

, (190)

where we have defined the negative log-log slope of the density γ(x) ≡ −d log(ρ)/d log(x).

We know the contained mass M(x), and we know the radial velocity dispersion σr from

32We define the tangential velocity dispersion such that σ2
t = σ2

θ + σ2

φ = 2σ2

θ .
33The power of three in equation 189 was allowed to vary in [53], but it may be inappropriate to refer

to such a quantity as a pseudo-phase-space density since the units no longer match.
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the mass density and PPSD, so we have

β(x) =
5

6
γ (x)− α

3
− Σ−2f(x;α), (191)

where f(x;α) is a somewhat complicated function of x, with α its sole parameter (i.e. f

does not depend on the halo parameters or σr,s: see equation 270 for the full expression).

The quantity Σ is a dimensionless measure of the radial velocity dispersion at the scale

radius, defined as

Σ2 ≡ σ2
r,s

4πGr2sρs/3
. (192)

The denominator in equation 192 is the circular velocity squared at the edge of a spherical

mass of radius rs and constant density ρs.

To summarize the necessary ingredients that go into equation 191, we need the PPSD

slope α, the halo parametersMvir, rs, and c (one of which may be determined by the local

halo density ρ⊙), the local radial velocity dispersion σr,⊙, and the local (solar) radius r⊙.

It is shown in Appendix F that the anisotropy parameter for a NFW profile with

PPSD slope α ≈ 2 has asymptotic limits

β(x)→















(5− 2α)/6 for x→ 0

(15− 2α)/6 for x→∞
(193)

This is acceptable in the small-x limit, where β → 1/6 for, as an example, α = 2.

However, in the large-x limit, with the same value of α, β → 11/6, which is greater

than one, implying an imaginary velocity dispersion. Requiring that β ≤ 1 as x →

∞ would imply α ≥ 9/2, which is a far steeper slope than seen in simulations. This

unphysical behavior in β may naively suggest that we cannot have a physical model

that simultaneously exhibits an NFW density profile and power-law PPSD, but really

this requirement for physical-ness is too restrictive. We do not expect the models or

assumption of equilibrium (via the Jeans equation) to hold beyond around the virial

radius. Requiring that these models are consistent and physical only up to just before they

89



are expected to break down is, however, reasonable and still has consequences elsewhere

in a halo. Thus, let us just require that the anisotropy parameter is no greater than one

everywhere within the virial radius.

Mathematically, we require

∀x ≤ c : β(x) ≤ 1. (194)

We can effectively satisfy this for our purposes by requiring that β(c) ≤ 1. This gives a

maximum value for Σ (equation 271) that depends only on the concentration c (by way

of the virial mass) and PPSD log-slope α. For reasonable values of c and α, this upper

limit is of order one. From the definition of Σ in equation 192, this immediately gives an

upper bound on σr,s (equation 272) and thus also on σr,⊙ (equation 273) in terms of the

halo parameters and r⊙. Once σr,⊙ is set, the anisotropy profile β(x) is totally specified,

including the local anisotropy parameter β⊙ = β(x⊙). The total velocity dispersion

profile σtot is then also given, using the relation σ2
tot = (3 − 2β)σ2

r . We find that σtot,⊙

depends monotonically on the choice of σr,⊙, so we finally have an upper bound on σtot,⊙

(equation 274).

To get an idea of what this upper bound on σtot,⊙ is and its uncertainty, we use the

values in Table 1 in Section 3. With these ranges of parameters, we plot the upper limit of

σtot,⊙ versus the PPSD slope α in Figure 28. The dark, solid line uses the mean values in

Table 1, while the upper and lower dashed lines take the extreme values of σtot,⊙ allowed

by the 68% confidence intervals in Table 1. In other words, the band in Figure 28 includes

all combinations of parameters within the 68% confidence intervals. Also shown is the

mean value and 68% and 95% confidence intervals for σr,⊙ in [43].

Actually choosing a value for σr,⊙ (or σtot,⊙) determines the anisotropy profile, but

this quantity is also uncertain. We use the results for σtot,⊙ from [43] and then take

σ2
r,⊙ = σ2

tot,⊙/3, which is used to find the anisotropy profile in equation 190. Note that

the factor 1/3 corresponds to the isotropic case. As we will see, we find only radial bias

at the solar radius. Given the same value of σtot,⊙, radial bias implies a larger value of
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Figure 28: Maximum value of the local total velocity dispersion σtot,⊙. The spread of the
band reflects the uncertainty in the halo parameters. The red solid line marks the mean
value, while the dashed and dotted lines mark the 68% and 95% confidence intervals (see
Table 1).

σr,⊙, which in turn gives a greater local radial bias34. So as far as predicting departure

from isotropy, this is a conservative approximation.

We plot the anisotropy profile for fiducial values α = {2, 35/18, 15/8} in Figures 29, 30,

and 31. The solid curves take the mean values in Table 1 while the dashed curves mark

the area within which all parameters are within their 68% confidence interval given in

Table 1. The vertical lines mark the 68% lower and upper limits of x⊙ = r⊙/rs and c.

For example, if we assume a PPSD slope of 35/18 (Figure 30), we might expect a local

anisotropy parameter of at least about 0.2 and no more than about 0.4.

Generally, the profile is slightly radially biased near the center, reaches a minimum

at around a tenth the scale radius, and rises to a (local) maximum of around 0.4 to 0.6

before the virial radius. We see in all cases that for x → 0 the anisotropy parameter

rises slowly to the value in equation 277, which is independent of the halo parameters.

See [69, 12] for discussion of central anisotropy. Here we do not presume that either

assumed model, of the mass distribution or PPSD, necessarily stays valid at very small

34Successive adapting of the relation between σr,⊙ and σtot,⊙ would, of course, converge to the correct
“trial value” for β⊙.
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Figure 29: The anisotropy profile for α = 2, corresponding to the isothermal case.

or very large radii. See [84] for an investigation of the break-down of the PPSD power

law.

Recently, close attention has been paid to the form of the velocity distribution used to

calculate predictions for indirect and direct DM detection. In some cases the functional

form can make a significant difference. Especially, the assumed velocity distribution

influences the interpretation of results from direct detection experiments [129, 133, 43].

Here on we focus on the local distribution and suppress the subscript ⊙. We introduce a

new, anisotropic generalization of the model proposed by Mao, et al. [88]:

f(v) ∝ exp

{

−
√

v2r
v2r,0

+
v2t
v2t,0

}

(

v2esc − v2
)p
, (195)

where vr = v cos η and vt = v sin η are the radial and tangential velocity components and

η is the angle from the radial direction. The parameters vr,0 and vt,0 are not dispersions

but just velocity scales. The exponent p characterizes the high-velocity tail. The function

is normalized so that
∫

dvf (v) = 1. We choose this distribution because of its recent

success in modeling the Eris and ErisDark simulations (see Figure 3 in [79]). For consis-
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Figure 30: The anisotropy profile for α = 35/18, the critical value discussed in [53].

tency with that study we take p = 1.5, which was used to model the ErisDark results.35

The escape speed vesc is given by the combined gravitational potential of both the DM

halo and any other matter, and we use the mean value in Table 1. The total dispersion

σtot and the anisotropy parameter β are then determined by the parameters vr,0 and vt,0.

We require that the total dispersion equals the mean value in Table 1 and solve for vr,0

and vt,0 such that the desired anisotropy parameter is generated. Of course, the original,

isotropic distribution is recovered when vr,0 = vt,0. See Appendix G for details on the

selection of values for vr,0 and vt,0.

We have checked that the uncertainties in the values of σtot and vesc have a small

impact on the following calculations. More importantly, the uncertainties affect both the

isotropic and anisotropic cases equally once β has been chosen. So for the purposes of

investigating the importance of modeling deviation from isotropy, we show only results

using the mean values in Table 1.

We use the function in equation 195 to model the local velocity distribution with the

intention of understanding the impact that anisotropy can have on direct detection. For

35We do not take the Eris parameter p = 2.7 for two reasons: we have not considered baryonic effects
on the PPSD profile, and because such a steep cut-off makes it difficult to achieve anisotropy greater
than β ≈ 1.0 with the model in equation 195.
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Figure 31: The anisotropy profile for α = 15/8, the value found in [123].

the purposes of this work, we assume a conservative value of 0.2 for the anisotropy pa-

rameter β. It is straight-forward to calculate the function g(v, t) defined in equation 136.

In Figure 32 we plot this function for June and December; for the isotropic case and

the anisotropic case. The differential detection rate is found by specifying a velocity

threshold vth for DM particles in the detector frame:

dR

dQ
∝ G (vth, t) ≡

∫

v≥vth

dv g (v, t) . (196)

The velocity threshold is determined by the specifics of any particular experiment and

the DM particle mass, and we leave it free (see equation 133). Figure 33 plots the function

G, averaged between June and December, for the isotropic and anisotropic cases, with

the fractional difference

∆G = (GAni −GIso) /GIso. (197)

We also consider the modulation amplitude of the signal, defined here as half the

difference between the rate in June and the rate in December:

A (vth) = |G (vth, tJune)−G (vth, tDec)| /2. (198)
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Figure 32: The function g (v, t) defined in equation 136. Solid lines are calculated in
June; dashed lines are calculated in December.
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Figure 33: The time-averaged function 〈G (vth, t)〉t as a function of the velocity threshold
(see equation 196) and the fractional difference between the isotropic to anisotropic cases.

This is plotted in Figure 34 for the isotropic and anisotropic cases, with the fractional

difference, analogous to equation 197.

Combining models of the mass distribution and pseudo-phase-space density, the Jeans

equation gives us a particular anisotropy profile. We have plotted this profile for a few

representative values of the PPSD slope and for a spread of parameters that may describe

the Milky Way halo. These profile shapes are consistent with those shown in Figure 1

of [139], although those results exhibit less anisotropy overall. The anisotropy profiles

found in [34] are also similar but were derived from models of the phase-space distribution.

The difference in methods strengthens both their results and these.
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Figure 34: Signal modulation amplitude as a function of the velocity threshold and the
fractional difference between the isotropic to anisotropic cases.

We have used an anisotropic modification to the model proposed by Mao et al. [88],

which was also used to model the Eris simulation. We find that assuming a local

anisotropy of approximately 0.2 is reasonable and conservative. In the Eris simulation, a

comparable amount of radially biased anisotropy was found at the location corresponding

to the solar radius (this is roughly seen by measuring the half-maximum width of the

radial and azimuthal distributions in Figure 2 of [79]). On the other hand, the results

of [42] favor a local tangential bias, though the small local radial bias found in this work

and others already mentioned is approximately within their 95% confidence interval.

Different direct detection collaborations have found contradictory results (e.g. see [64]).

One of the goals in studying the local velocity distribution is to alleviate these discrep-

ancies. Since different experiments can have different threshold velocities, Figure 33

suggests that the difference between observed signals can vary by several percent due to

the effect of local anisotropy. This may seem small, but it is comparable to the uncer-

tainty introduced by considering different density profiles [43]. The modification to the

modulation amplitude can be even more significant and is sensitive to the value of the

velocity threshold, but the signal itself is smallest where the modification is greatest.

In principle, a detector that can give information about the direction of a detected

WIMP’s velocity would allow us to measure the local anisotropy. This is difficult, as

it would require an individual WIMP to interact multiple times inside the detector or

require a low detector density so the recoiled particle can be tracked. Once a discovery

is confirmed, however, it may be viable to consider such an experiment (see [62]).
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We note that the anisotropy at radii beyond about the scale radius is sensitive to the

shape of the PPSD profile and to the other parameters, and it can also be quite large.

However, it seems unlikely that this grants a viable observational effect, since the density

is so low there and substructure would dominate any emission.

The most novel result of this work is the constraint on the velocity dispersion profile.

Requiring the anisotropy parameter to be physical (i.e. no greater than one) inside the

virial radius implies a maximum value for the local total velocity dispersion of about

300 km/s or so. Typical assumed values for the local velocity dispersion (such as in the

Standard Halo Model, 220 km/s) do not seem to be in great danger, but this consistency

check should be remembered in future model-building.

8.2 Anisotropic Distribution Functions

An ergodic distribution function is a function only of energy. As discussed in Section 7,

systems described by ergodic DFs are spherical and isotropic. It is clear from N-body

simulations, however, that DM halos are not spherically symmetric or isotropic except

at their very centers. More accurately, DM halos are triaxial and have increasing radial

anisotropy in the velocity distribution going outward [132]. How can we include velocity

anisotropy in our models in a self-consistent way? Eddington’s equation 162 is specific to

ergodic DFs, but there are analogous equations for anisotropic models that we will now

discuss.36

The simplest anisotropic DF is one with constant anisotropy, β(r) = β 6= 0. The DF

is of the form

f (E , L) = L−2βf1 (E) , (199)

where L = rvt = rv sin η is the angular momentum. It is straightforward to check by

calculating velocity moments that this form confirms the definition of β in equation 187.

36Analogous equations also exist for axisymmetric distributions [85].
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Marginalizing over velocity to recover the mass distribution ρ(r) gives the relation

ρ =
4πIβ
r2β

∫ ∞

0

dv v2−2βf1 (E) , (200)

Iβ ≡
√
π

2

(−β)!
(

1
2
− β

)

!
, (201)

Rearranging terms and changing the variable of integration, we have

2β−1/2

4πIβ
r2βρ =

∫ Ψ

0

dE f1 (E)
(Ψ− E)β−1/2

. (202)

This is an Abel integral equation for 1
2
< β < 3

2
and can be immediately inverted. If

β < 1
2
, derivatives may be taken to make it Abel:

2β−1/2

4πIβ

dn

dΨn

[

r2βρ
]

=
n
∏

m=1

(

3

2
− β −m

)
∫ Ψ

0

dE f1 (E)
(Ψ− E)β−1/2+n

, (203)

where n is the smallest integer that satisfies 1
2
(1− 2n) < β. Now, for 1

2
−n < β < 3

2
−n,

this can be inverted to give

f1 (E) =
2β−1/2

4π2Iβ

n
∏

m=1

(

3

2
− β −m

)−1

sin

(

π

(

β − 1

2
+ n

))

·

d

dE

∫ E

0

dΨ

(E −Ψ)
3

2
−β−n

dn

dΨn

[

r2βρ
]

(204)

or

f1 (E) =
2β−1/2

4π2Iβ

n
∏

m=1

(

3

2
− β −m

)−1

sin

(

π

(

n+ β − 1

2

))

·
[

∫ E

0

dΨ

(E −Ψ)
3

2
−β−n

dn+1

dΨn+1

[

r2βρ
]

+
1

E 3

2
−β−n

dn

dΨn

[

r2βρ
]

∣

∣

∣

∣

Ψ=0

]

(205)

It is easy to check that this reduces to the usual isotropic Eddington equation for β = 0

and n = 1.

Equation 203 cannot be an Abel integral equation for half-integer β, i.e. β = 1
2
− n
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with n ∈ Z≥0. However, this equation simplifies tremendously in these cases:

2−1−n

π3/2 Γ
(

1
2
+ n
)

dn

dΨn

[

r1−2nρ
]

=

∫ Ψ

0

dE f1 (E) , (206)

The energy-dependent part of the distribution function is then simply

f1 (E) =
2−1−n

π3/2 Γ
(

1
2
+ n
)

dn+1

dΨn+1

[

r1−2nρ
]

∣

∣

∣

∣

Ψ=E

(207)

Osipkov-Merritt models instead take the distribution function as [99]

f (E , L) = f (Q) , (208)

where Q = E −L2/2r2a and ra is the anisotropy radius. The anisotropy parameter is now

variable from 0 to 1 as

β (r) =
r2

r2a + r2
. (209)

The value of ra is the radius around which the anisotropy changes in the system. Note

that in the limit of ra → ∞ the Osipkov-Merritt model reduces to that of an isotropic

system. The equation for Osipkov-Merritt models analogous to equation 157 and 202 is

1√
8π

(

1 +
r2

r2a

)

ρ = 2

∫ Ψ

0

dQf (Q)
√

Ψ−Q. (210)

This can be made Abel by taking the derivative with respect to Ψ and can then be

inverted, similar to the isotropic case. The result analogous to the Eddington equation is

f(Q) =
1√
8π

d

dQ

∫ Q

0

dΨ√
Q−Ψ

d

dΨ

[(

1 +
r2

r2a

)

ρ

]

. (211)

Note that we cannot make the integral in equation 210 trivial by choosing parameters as

we could to find equation 207. This is a limitation of the Osipkov-Merritt model, but we

can restore the capability by the following.
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We now generalize to Cuddeford models, which take the distribution function as

f (E , L) = L−2β0f1 (Q) , (212)

where Q is defined as before and β0 is a constant [50]. The anisotropy now varies from

β0 to 1 as

β (r) =
β0 r

2
a + r2

r2a + r2
. (213)

Note that in the limit of ra → ∞ the Cuddeford model also reduces to that of constant

anisotropy, and in the limit of β0 → 0 it reduces to the Osipkov-Merritt model. The

equation analogous to equation 202 is

2β0−1/2

4πIβ0
r2β0

(

1 +
r2

r2a

)1−β0

ρ =

∫ Ψ

0

dQ
f1 (Q)

(Ψ−Q)β0−1/2
. (214)

Restricting to half-integer values of β0, we have, similar to equation 207,

f1 (Q) =
2−1−n

π3/2 Γ
(

1
2
+ n
)

dn+1

dΨn+1

[

r1−2n

(

1 +
r2

r2a

)1/2+n

ρ

]∣

∣

∣

∣

∣

Ψ=E

(215)

As in Section 7, we can trivially obtain the (anisotropic) single-particle velocity distri-

bution from the phase-space distribution function. In the general case that f = f(E , L),

we have, analogous to equation 168,

P1(vr, vt; r) =
f (Ψ(r)− (v2r + v2t ) /2, rvt)

ρ(r)
. (216)

The calculation of the relative velocity distribution is complicated by anisotropy. Be-

cause of the additional variable in P1, the integral analogous to that in equation 171

becomes a four dimensional integral:

P (vrel) = 8πv2rel

∫ π

0

dη sin η

∫ π

0

d∆η

∫

dvcm,r

∫

dvcm,tvcm,tP1 (v1,r, v1,t) P1 (v2,r, v2,t) ,

(217)
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where the radial and tangential components of the individual particles are given by

v(1,2),r = |vcm,r ± vrel cos(η)/2| (218)

v2(1,2),t = v2cm,t + (vrel sin(η)/2)
2 ± vcm,tvrel sin(η) cos(∆η). (219)
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9 Conclusions

The open problem of dark matter is one of the biggest in modern astrophysics. The full

seriousness of the problem was realized from calculations of big bang nucleosynthesis and

the cosmic microwave background power spectrum, discussed in Sections 2.1 and 2.2. The

baryonic material with which we are most familiar is actually a very small fraction of the

total mass and energy in the universe. The history of dark matter-related observations

goes back further, including the dynamics of galaxies and clusters of galaxies, discussed

in Section 3.

The investigation of particle dark matter theory has been broad and deep. The identi-

fication of dark matter’s particle properties is the next big step toward a full understand-

ing and could serve as a jumping off point for further physics beyond the Standard Model

such as Supersymmetry (see Section 4.1). A great amount of imagination and carefulness

has gone into making predictions for indirect and direct detection (see Sections 5 and 6).

In Section 7 we performed the most detailed calculation to date of the total flux and flux

slope from galactic dark matter that annihilates with a complicated velocity-dependent

cross-section. A novel result about the local dark matter velocity dispersion was found

from a Jeans analysis of anisotropic galactic halos in Section 8.1, and a generalization of

a successful empirical model was introduced.

Experimental efforts have been impressive, but are so far inconclusive. Considering

this null result, some theoretical results may seem strangely precise. The necessity of the

detailed computation in Section 7 is very significant only for particular cases and only

given the assumption of a Sommerfeld enhancement. The 2% change due to anisotropy

found in Section 8.1 seems unlikely to settle the disgreements between direct detection

experiments, especially now that LUX is so dominating. Such results may seem desperate,

but they are not wasted. Once a discovery is actually made, a tremendous amount of

relevant work could already be done in accidental preparation. We will thus likely learn

much detail about galactic dark matter very quickly once a detection is confirmed, thanks

to efforts such as this work.
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A Statistics and Thermodynamics in Cosmology

The universe is not an equilibrium system, but in many cases particle interactions are so

rapid that we can assume local equilibrium. The test of this is to compare the rate of the

interactions of interest against the expansion rate. The rate at which incident particles

with density n and relative velocity v interact with target particles with cross-section σ

is generically

Γ = σnv. (220)

Comparing this with the expansion rate, if the ratio

Γ/H (221)

is much greater than unity we can assume that equilibrium is reached. Another way to

think of this is to define a collision time tc ≃ 1/Γ and compare this against the cosmic

time tH ≃ 1/H. A system is in equilibrium if many collisions happen during a cosmic

time.

Particles are either bosons or fermions, and in equilibrium they follow the respective

statistics, the well-known Bose-Einstein and Fermi-Dirac distributions:

f(ǫ) =
1

exp {(ǫ− µ)/kBT} ∓ 1
, (222)

where the sign is − for bosons and + for fermions. This is the fraction of states with

energy ǫ that are filled. To get a number density, the number of particles in a physical

volume, we need to calculate the number of states per energy. This is the phase-space

volume element, calculated in Appendix B. The number density, energy density, pressure,
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and entropy density are in general

n(T ) =
1

(~c)3
g

2π2

∫ ∞

m

ε
√
ε2 −m2 dε

exp{ε/kBT} ∓ 1
, (223)

ρ(T ) =
1

(~c)3
g

2π2

∫ ∞

m

ε2
√
ε2 −m2 dε

exp{ε/kBT} ∓ 1
, (224)

P (T ) =
ρ(T )c2

3
− 1

~3c

m2g

6π2

∫ ∞

m

√
ε2 −m2 dε

exp{ε/kBT} ∓ 1
, (225)

s(T ) =
ρ(T ) + P (T )− µn(T )

T
. (226)

For very relativistic or massless particles, we set m = 0 and, if the chemical potential

is negligible, we can evaluate the integrals for the cases of bosons and fermions. The

number density is

n(T ) =















ζ(3)
π2 gT

3 bosons

3ζ(3)
4π2 gT

3 fermions.

(227)

The energy density is

ρ(T ) =















π2

30
gT 4 bosons

7π2

240
gT 4 fermions.

(228)

The pressure is simply

P (T ) =
ρc2

3
. (229)

The entropy density is (again, neglecting chemical potential)

s = (ρ+ P )/T (230)

=
4ρ

3T
. (231)

The constant multiplicative difference of 7/8 in the energy densities of bosons and fermions

is important. It means that the contributions to the total relativistic energy density, pres-

sure, and entropy density are the same for each degree of freedom of any particle species
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at temperature T , except for a factor of 7/8 for fermions. We may write

ρ(T ) =
π2

30
NT 4, (232)

s(T ) =
2π2

45
NT 3, (233)

where we have defined the effective number of degrees of freedom

N ≡
∑

B

gB +
7

8

∑

F

gF , (234)

with the summation being over the numbers of degrees of freedom of bosonic species and

of fermionic species.

In the case of very non-relativistic particles, if we have (m − µ)/T ≫ 1 then spin-

statistics are unimportant and the number density is

n(T ) ≃ 1

(~c)3
g

(

mkBT

2π

)3/2

exp {− (m− µ) /kBT} . (235)

The energy density is simply the mass density

ρ(T ) = mn(T ), (236)

and the pressure is negligible. Neglecting chemical potential, the entropy density is easily

found from equation 226:

s(T ) =
mn(T )

T
. (237)

B Neutron → Proton Rate

Calculating the amplitude for these diagrams is straightforward, using the Feynman rules

for fermions and the weak vertex factor.37 For the first process we find

Mnν = −
g2w
8

[

u(p)γµ(1− γ5)u(n)
]

Wµν

[

u(e)γν(1− γ5)u(ν)
]

, (238)

37The weak coupling is a “vector minus axial vector” coupling that violates parity maximally.
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where gw =
√
4παw is the weak coupling constant. The propagator for a W boson with

momentum q is, in general,

Wµν =
−i (gµν − qµqν/M2

W )

q2 −M2
W

, (239)

but the typical momentum transfer of the interactions we are discussing is small in com-

parison to the W boson mass MW = 80.385GeV[22], so we may simplify this to

Mnν = −
ig2w
8M2

W

[

u(p)γµ(1− γ5)u(n)
] [

u(e)γµ(1− γ5)u(ν)
]

. (240)

As is usual, we are not interested in the spins of particles, so we sum over possible spins.

Applying “Casimir’s trick” [68] after squaring the amplitudes, we find

∑

{si}

|Mnν |2 =
G2
F

2
Tr
[

γµ
(

/pn +mn

)

γν
(

/pp +mp

)]

× Tr
[

γµ/pνγν

(

/pe +me

)]

(241)

Working out the traces and averaging over the initial spins, we find

〈|Mnν |2〉 = 64G2
F (pn · pν) (pp · pe). (242)

The amplitude for the other two processes illustrated in Figure 1 have very similar results.

We can write a general amplitude-squared for all three neutron-to-proton interactions as

〈|M|2〉 = 1

2s1
A2, (243)

where s1 is the number of spin states the incoming lepton can take (or, if there is no

incoming lepton as in the case of neutron decay, s1 = 1). In the first and third processes,

the neutron has two spin states (and the neutrino has one), so 2s1 is two total; in the

second process the incoming positron also has two spin states, bringing the total to four.

For convenience we have defined

A2 ≡ 128G2
F (pn · pν) (pp · pe). (244)
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To find the rates at which these three processes occur, we must find the cross-section

in the case of the first two and the decay rate in the case of the third. First let us find

the cross-section of the scattering processes. The differential cross-section is given by the

Lorentz-invariant expression

dσ

dΩ
=

(

1

8π

)2
SA2/2s1

(pn + p1)
2

√

(pp · p2)2 −m2
pm

2
2

(pn · p1)2 −m2
nm

2
1

. (245)

Here 1 and 2 designate the incoming and outgoing leptons, respectively. The statistical

factor S is necessary because there are many free (anti-)neutrinos and, if they have not

yet annihilated, many free electrons and positrons. These fill up the fermionic states

available for the outgoing leptons in the interactions in question. Thus, the cross-section

is reduced by the factor (1−f2), where f2 is the Fermi-Dirac distribution for the outgoing

lepton.38

We calculate the cross-section in the neutron’s rest-frame, so (pn + p1)
2 ≃ m2

n and

(pn · p1)2−m2
nm

2
1 ≃ m2

n |p1|2. The daughter proton is non-relativistic, so we have similar

relations between it and the outgoing lepton. Using these and integrating over solid angle,

the n+ l1 → p+ l2 cross-section is

σ =
1

16π
(1− f2)

A2

2s1

1

m2
n

mp|p2|
mn|p1|

(246)

σ =
1

16π
(1− f2)

2(g2w/MW )4ǫ1ǫ2
s1

m2
p

m2
n

|p2|
|p1|

(247)

σ =
1

16π
(1− f2)

2(g2w/MW )4ǫ22
s1

m2
p

m2
n

v2
v1

(248)

We have a population of neutrons and a incoming flux of leptons with speed v1 =

|p1|/ǫ1. The rate at which neutrons and leptons with energy between ǫ1 and ǫ1 + dǫ1

interact to create a proton and a lepton (of a different kind) with energy between ǫ2 and

ǫ2 + dǫ2 is

dΓn1(ǫ1, ǫ2) = n1(ǫ1;T1) σ(ǫ1, ǫ2)
|p1|
ǫ1

δ(ǫ2 − ǫ1 −Q) dǫ1 dǫ2, (249)

38Of course, if these interactions were occuring in otherwise empty space, then f → 0, S → 1, and the
daughter particles would be free to take any state whatsoever.
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where n1(ǫ1;T1) dǫ1 is the number density of incident leptons with energy between ǫ1 and

ǫ1 + dǫ1 at temperature T1, and Q = mn −mp. This is the product of the Fermi-Dirac

distribution and the phase-space volume element. For any energy ǫ1 there are s1 possible

state(s) for a particle, and the probability that any particular state is filled is given by

the Fermi-Dirac distribution, so we have

n1(ǫ1;T1) dǫ1 = s1f1

∫ |p1|+d|p1|

|p1|

d3p/(2π~)3 (250)

≃ s1f1
|p1|2 d|p1|
2π2~3

(251)

= s1f1
|p1|ǫ1 dǫ1
2π2~3

(252)

Inserting this into equation 249 gives

dΓn1(ǫ1, ǫ2) =
1

2π2~3
s1f1 σ(ǫ1, ǫ2) |p1|2 δ(ǫ2 − ǫ1 −Q) dǫ1 dǫ2. (253)

Note that with the approximations made so far,

A2 = 128G2
Fmpmnǫνǫe (254)

= 128G2
Fmpmnǫ1ǫ2. (255)

Finally, inserting this and equation 246 into equation 253 gives

dΓn1(ǫ1, ǫ2) =
2

G2
Fπ

3~3

m2
p

m2
n

f1 (1− f2) ǫ1ǫ2|p1||p2|δ(ǫ2 − ǫ1 −Q) dǫ1 dǫ2 (256)

Utilizing energy conservation via the delta-function, we integrate over the lepton energies

to find the total rate:

Γtot
n1 =

2G2
F

π3~3

m2
p

m2
n

∫ ∞

m1

dǫ1ǫ
2
1

√

1−m2
1/ǫ

2
1

1 + exp {ǫ1/T1}
(ǫ1 +Q)2

√

1−m2
2/ (ǫ1 +Q)2

1 + exp {− (ǫ1 +Q) /T2}
(257)

The dynamics beind all three processes, neutron-neutrino scattering, neutron-positron

scattering, and neutron-decay, are the same. What is different is the kinematics, the
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relation between the lepton energies and Q. We can write the sum of the interaction

rates that “convert” neutrons into protons as Γn→p = Γnν + Γne + Γn decay and express

this as the integral in equation 257 with expanded limits to generalize the kinematics:

Γn→p =
2G2

F

π3

m2
p

m2
n

∫ ∞

−∞

dEE2
1 + exp {E/Tν}

(E +Q)2
√

1−m2
e/ (E +Q)2

1 + exp {− (E +Q) /T} , (258)

where the integration leaves out the interval where the square root is imaginary.

C Sommerfeld Factor Computation

We want to numerically solve the differential equation

d2χ

dρ2
+

(

1 +
2η

ρ
e−ǫφηρ

)

χ(ρ) = 0 (259)

with the initial conditions χ(ρ0) = Cρ0 and χ′(ρ0) = C, where C is a constant and

ρ0 = O(10−5) (this is to avoid the divergence). The correct choice of C squared is in

fact the Sommerfeld factor S. To find the correct choice, we take an arbitrary “trial”

value for C (that may as well be unity) and then evolve the function χ from ρ = ρ0 to

ρ = ρsin that is large enough so that the function exhibits sinesoidal behavior as sin(ρ+δl).

Typically, ρsin ≈ 100. The amplitude squared of χ(ρ) is measured by calculating A2 =

χ2(ρsin) + χ2(ρsin − π/2), which should be unity. The normalization of χ(ρ) is adjusted

by 1/A, so the Sommerfeld factor is

S = C2/A2. (260)

We used the GNU Science Library to perform the computation, splitting the original

equation into two first-order equations:

χ′ = Φ, (261)

Φ′ = −
(

1 +
2η

ρ
e−ǫφηρ

)

χ. (262)
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D Dimensionless Distribution Functions in Plots

We describe the dimensionless scaling used in Section 7.2 to illustrate the derived distri-

bution functions. Note that this scaling scheme is not else elsewhere in this work, just

to compare DFs of different profiles. The dimensionless radius and density are defined in

this case as [60]

x ≡ r/rvir, (263)

ρ̃ (x) = ρ (xrvir) /ρs, (264)

where rvir is the virial radius and ρs is the scale density. For example, the NFW model

has

ρ̃ (x) =
[

cx (1 + cx)2
]−1

, (265)

where c is the concentration. The quantity g(c) is defined for a general profile by

g(c) ≡
∫ 1

0

dxx2ρ̃(x; c)

=Mvir/4πr
3
sρs. (266)

The dimensionless energy Ẽ is given in terms of E ≡ Ψ− v2/2 by

E =
GMvir

rvir
Ẽ , (267)

where G is the gravitational constant and Mvir is the virial mass.

E Details of Jeans Analysis

From the PPSD power-law in equation 189 and the general density profile in equation 68,

we have the radial velocity dispersion

σ2
r (x) = σ2

r,s

[

x−γ0+α
(

2

1 + x

)γ∞−γ0
]2/3

. (268)
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For the NFW profile this is

σ2
r (x) = σ2

r,s

(

4x−1+α

(1 + x)2

)2/3

. (269)

The expression for the anisotropy parameter β (x) in equation 190 is general. Specific to

the case of the NFW profile, it is

β(x) =
5 + 15x

6 + 6x
− α

3
− Σ−2 · 3x−(2α+1)/3

(

1 + x

2

)1/3

[−x+ (1 + x) log(1 + x)] . (270)

with Σ2 ≡ σ2
r,s/(4πGr

2
sρs/3). The upper limit on Σ in the case of a NFW profile is

Σ2 ≤ Σ2
max ≡

32 · 22/3(1 + c)4/3 [−c+ (1 + c) log(1 + c)]

c(1+2α)/3 [9c− 2α(1 + c)− 1]
. (271)

This translates to the upper limits on σr,s and σr,⊙:

σ2
r,s ≤ σ2

r,s,max ≡ (4πGr2sρs/3)Σ
2
max (α, c) , (272)

σ2
r,⊙ ≤ σ2

r,⊙,max ≡
(

4x−1+α
⊙

(1 + x⊙)
2

)2/3

σ2
r,s,max (α,Mvir, rs, c) . (273)

Finally, because σtot,⊙ increases monotonically with σr,⊙, its upper limit is

σ2
tot,⊙ ≤ (3− 2β⊙)σ

2
r,⊙,max, (274)

which depends on α, Mvir, rs, c, and r⊙.

111



F Asymptotic Behavior of the Anisotropy Profile

We split the function for the NFW anisotropy parameter in equation 270 into two parts,

so β(x) = A(x) + B(x), with

A(x) =
5 + 15x

6 + 6x
− α

3
, (275)

B(x) = −Σ−2 · 3x−(2α+1)/3

(

1 + x

2

)1/3

[−x+ (1 + x) log(1 + x)] . (276)

The first part has simple asymptotic limits

A(x)→















(5− 2α)/6 for x→ 0

(15− 2α)/6 for x→∞
(277)

while the second is more complicated. In the limit x→ 0, we have

B(x)→































−∞ if α > 5/2

−2−4/3 · 3× Σ−2 if α = 5/2

0 if α < 5/2

(278)

and in the limit x→∞, we have

B(x)→















0 if α > 3/2

−∞ if α ≤ 3/2

(279)

As long as 3/2 < α < 5/2, the extreme values of β(x) are determined solely by α.

G Details of the Anisotropic Mao et al. Distribution

We use the velocity distribution in equation 195 to model the local velocity distribution,

with p = 1.5 from [79] and with vesc = 550.7 km/s from [43]. The choice of parameters

vr,0 and vt,0 determine the velocity dispersion and anisotropy parameter. Figure 35 plots
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Figure 35: Contours of the parameters vr,0 and vt,0 that give the specified values of the
anisotropy parameter or total velocity dispersion.

contours that give the specified value of β or σtot. In this work we choose σtot = 287 km/s

as the mean value [43]. For the isotropic case, this implies vr,0 = vt,0 = 209.8 km/s; for

the anisotropic case, with β = 0.2, this implies vr,0 = 270.4 km/s and vt,0 = 187.1 km/s.

H Anisotropic NFW Distribution Functions

The dimensionless density profile proposed by Navarro, Frenk, andWhite and its potential

energy function are

ρ(x) = x−1(1 + x)−2, (280)

Ψ(x) =
log(1 + x)

x
. (281)
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We may invert the latter equation as follows:

Ψ = log(1 + x)/x, (282)

−Ψ−Ψx = −Ψ− log(1 + x), (283)

−Ψ = (−Ψ− log(1 + x))(1 + x)−1, (284)

−Ψe−Ψ = (−Ψ− log(1 + x))e−Ψ−log(1+x). (285)

Here we recognize the form of the definition of the Lambert W function. Since Ψ varies

from zero to one, the quantity −Ψ− log(1 + x) varies from negative infinity to negative

one. This means that the W function we use takes its values on the lower branch:

−Ψ− log(1 + x) = W−1(−Ψe−Ψ), (286)

log(1 + x) = −Ψ−W−1(−Ψe−Ψ), (287)

Ψx = −Ψ−W−1(−Ψe−Ψ), (288)

x =
−Ψ−W−1(−Ψe−Ψ)

Ψ
. (289)

It is convenient to define the function

A(Ψ) = W−1(−Ψe−Ψ), (290)

which has the following derivative:

dA

dΨ
= W ′

−1(−Ψe−Ψ)
d

dΨ

[

−Ψe−Ψ
]

(291)

=
A

1 + A

1−Ψ

Ψ
. (292)

Using what we have found, the density can be written in terms of the potential energy:

ρ(Ψ) =

[

(

−1− A

Ψ

)(

A

Ψ

)2
]−1

(293)

=
Ψ3

A2(−Ψ− A) (294)
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In the cases of constant anisotropy with β equal to positive or negative one-half, the

distribution function is easy to derive using ρ(Ψ):

fβ= 1

2

(E , L) = 1

L

1

π2

E
A2

E + A

1 + A
, (295)

fβ=− 1

2

(E , L) = L

π2

E
A2

E 2 (E + 2A2)

(1 + A)(E + A)2
. (296)
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