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Abstract

rt of the Standard Model (SM), Quantum Chromodynamics (QCD) is a widely
accepted theory to describe the physics of quarks and gluons. Formulating QCD
on finite discrete lattices in Euclidean space-time not only enables one to study the
theory non-perturbatively, but also provides a framework analogous to statistical
systems, in which numerical methods can be applied. In this work, we concentrate on
one specific fermion formalism, staggered fermions. To interpret the data obtained
from numerical simulations with staggered fermions, a particular version of chiral
perturbation theory (XPT), rooted staggered XPT (rSXPT), is needed to incorporate
the discretization effects, mainly taste-violations, and the fourth root procedure used
for the staggered fermion formalism.

In the light pseudoscalar sector, I study rSXPT in the two-flavor case. The pion
mass and decay constant are calculated through NLO for a partially-quenched theory.
In the limit where the strange quark mass is large compared to the light quark masses
and the taste splittings, I show that the SU(2) staggered chiral theory emerges from
the SU(3) staggered chiral theory, as expected. Explicit relations between SU(2) and
SU(3) low energy constants and taste-violating parameters are given. The results are

useful for SU(2) chiral fits to asqtad data and allow one to incorporate effects from

i



varying strange quark masses.

By using these formulae and continuum NNLO chiral logarithms, I then perform
a systematic chiral analysis to the MILC lattice data in the light pseudoscalar sector.
Superfine (a~0.06 fm) and ultrafine (a = 0.045 fm) ensembles are used, where light sea
quark masses and taste splittings are small compared to the simulated strange quark
mass. Correlated fits with Bayesian analysis are done for both the pion mass and the
pion decay constant. Physical quantities are obtained by extrapolating the results
to the continuum and full QCD case where the light quarks masses are physical. |
give results for the pion decay constant, SU(2) low-energy constants and the chiral

condensate in the two-flavor chiral limit.

il



Acknowledgments

First, I would like to thank my advisor, Prof. Claude Bernard, for the valuable
advice and assistance at almost every stage of my research, for his enormous patience
in explaining all kinds of physics concepts in great detail, as well as helping me to
correct many mistakes and polishing the English for my writing. This whole work
would not be possible if it is not for his inspiration, advice and continuous support.
I am grateful for him spending time to talk with me about life and career decisions,
from which I have really benefited a lot.

I would also like to thank Prof. Mark Alford and Prof. Michael C. Ogilvie, for
their discussions and suggestions during the committee meeting, which encouraged
me to think about how to express complicated physics ideas in a relatively simple way.
Meanwhile, I would like to thank my previous advisor, Prof. Chuan Liu, who guided
me to the world of lattice field theory and inspired my interests in this research area.

I am indebted to many of my colleagues and friends here, especially Tianyu Zhao,
Jian Wu, Yun Wang and Wei Zhang. It is their kind assistance that helped me go
through the tough times, and it is the fun time sharing together with them that made
my stay in St.Louis more delightful.

A special thanks goes to my beloved one, Wei, for her understanding and support

v



in these past years. She always trusted me and encouraged me to look on the bright
side when I met difficulties in life and research. Many thanks to her for spending
much time in preparing dinner every day and calming me down during the time of
writing the thesis.

Finally, I own my deepest gratitude to my parents and my two sisters. I would
not be able to go this far if it were not for their unconditional love and support

throughout my studies. This thesis is dedicated to them.



Contents

Abstract
Acknowledgments
List of Figures
List of Tables

1 Introduction to Lattice QCD

1.1  Quantum Chromodynamics . . . . . . . .. ... .. ... ......
1.2 Quantum field theory on the lattice . . . . . . .. ... ... ... ..
1.3 Gauge theory on the lattice . . . . ... .. ... ... ...
1.4 Fermions on the lattice . . . . . . . . ... ... L.
1.5 Path integral on the lattice . . . . . . . . .. ...
1.6 Measuring physical quantities on the lattice . . . ... ... ... ..

1.6.1 Extrapolations . . . . ... .. ... ... ... ... ...

2 Staggered Fermions
2.1 Wilson Fermions . . . . . . . . .. ...
2.2 Staggered Fermions . . . . . . ... ..o
2.2.1 Symmetries of the staggered action . . . . .. ... ... ...
2.2.2  Fourth-root procedure . . . . . ... ... ... ... .....
2.3 The “asqtad” staggered action . . . . . . . .. ... 0L
2.3.1 Tadpole improvement . . . . . . . . ... ...
2.3.2 Asqtad improved staggered fermions . . . .. ... ... ...

3 Staggered Chiral Perturbation Theory

3.1 Chiral Perturbation Theory . . . . .. ... ... ... ... .....
3.2 Staggered Chiral Perturbation Theory . . . . .. ... .. ... ...

3.2.1 SET for staggered fermions . . . . . ... ... ... .....

3.2.2 SXPT Lagrangian at LO . . . . . ... ... .. ... .. ...
3.3 Rooted Staggered Chiral Perturbation Theory . . . . . .. ... ...
3.4 Partially-Quenched Chiral Perturbation Theory . . . .. . ... ...
3.5 Pion mass and decay constant in partially-quenched SU(3) rSXPT . .

vi

ii

iv

ix

”

—
\VierNoREN GGV

—_



4 SU(2) Staggered Chiral Perturbation Theory

4.1 Motivation for SU(2) XPT . . . . . .. ... ... ... ...

4.2 SU(2) chiral perturbation theory in the continuum . . . . . . .. . ..

4.3 Cayley-Hamilton relations . . . . . . .. ... ... ... ... ....

4.4 Staggered computations . . .. .. ...
4.4.1 Brief review of SXPT . . . . . .. .. ...
4.4.2 Two-flavor PQ-SXPT at LO . . . . . . ... .. .. ... ...
4.4.3 Two-flavor PQ-rSXPT at NLO . . . . . ... .. ... .. ...
444 Rooting and partial quenching . . . . . . .. ... ...
4.4.5 PION MASS AND DECAY CONSTANT . . . . .. ... ...

4.5 Relation of SU(2) and SU(3) staggered chiral perturbation theories

4.6 Remarks and conclusion . . . . . .. ..o

5 SU(2) Chiral Fitting to MILC Data
5.1 Light pseudoscalar meson mass and decay constant . . . . . ... ..
5.2 Measuring taste splittings . . . . . .. . ... oL
5.3 Determining lattice spacings . . . . . . . .. ... L.
5.4 NNLO SU(2) chiral analysis . . . ... ... ... ... ........
5.4.1 Motivation for SU(2) chiral analysis . . . . . .. ... .. ...
5.5 Fitting indetail . . . . . ..o o
5.5.1 Fit formulae for pion mass and decay constant . . . . . . . ..
5.5.2  Datasets used for SU(2) analysis. . . . . . ... ... ... ..
5.5.3 Fitting strategies . . . . . . ..o oo
5.5.4  Finite volume corrections . . . . . . . ... ... ... ... ..
5.6 Central value fit . . . . . . . . ... ...
5.6.1 List of parameters . . . . . ... .. ... .. .. ... ...
5.6.2 Quark masses and condensates . . . .. ... .. ... ... .
5.6.3 Summary of results . . . . . .. ...
5.7 Discussion and Outlook . . . . .. .. ... ... ... ...

Appendix I v Matrices and Euclidean Field Theory

Appendix II Detailed Descriptions of Computer Codes
INTRODUCTION TO THE FITTING CODE . . . . ... ... .. .. ..
STEPS TO PERFORM A COMPLETE SU(2) CHIRAL ANALYSIS FROM

A CERTAIN DATA FILE . . . . ... . ... ... ... .. .....
DETAILED DESCRIPTIONS OF ALL FILES . . . . . .. ... ... ...
JDAT

dat_files_thin F031009_SF0072_UF0056_ml0101502ms.csh . . . . . . .
JEXEC o

linalg.c . . . . . .

whichspacing.c . . . . . ... oo

schpt2.c . . . . . .

cofitmp.c. . . . ..

MIND.C . . . . o oo e e e e

Vil

62
62
63
67
71
71
74
78
79
79
38
93

96

97

98
100
102
102
103
103
107
108
114
115
115
118
119
119

122



rl_ALLTON-variation.c . . . . . . . . . . . . . 144

rl_ ALLTON main.c . . .. ... .. .. ... ... .. ... ..... 147
makefile . . . . .. 147
JPLOT . . 151
makeplot 2loop.csh . . . . . .. oo 151
finite_vol_correct_all_pts 2loop.csh . . . . . . . .. ... .. ... ... 153
extract_pts_all 2loop_mloverms0101502.csh . . . . . . . . . .. . ... 155
make_fit_lines_some 2loop_fromO.csh . . . . . . .. ... .. ... ... 156
fit line_all 2loop.csh . . . . . . . . ..o 157
sbg.all 2loop.csh . . . . . ..o 160
solve_all 2loop.csh . . . . . . . ..o 162
JSUMMARY . . . o 166
doficsh . . . . . . 166
dofphys.csh . . . . . .. . 166
doubaru.csh . . . . . . ... 167
dompi.csh . . . . . .. 167
dol3.csh . . . . . . 167
dold.csh . . . . . L 167

viii



List of Figures

1.1

1.2

2.1
2.2

2.3

24

3.1

3.2

3.3

3.4

5.1

5.2

5.3

Schematic diagram of a N x N lattice with lattice spacing a in 2-D
spacetime. . . . . . . ...

A plaquette on the lattice around the square near point x in u — v plane

A 2-D schematic diagram showing the values of 7,(x) on the lattice. .
A tadpole diagram for the fermion self energy in the lattice perturba-
tion theory. . . . . . ...
Four-fermion taste violation diagrams. Two incoming fermions change
their tastes by exchanging a gluon with momentum = /a as shown in
figure (a), or exchanging two or more gluons with total momentum 7 /a
as shown in figure (b). . . . .. ...
Multi-link staples used in the “asq” action . . . . . .. . ... . ...

The hairpin disconnected vertex from the U’ term. (a) diagram in the
chiral theory. (b) the corresponding quark flow diagram. . . . . . ..
(a) The complete flavor-neutral, taste-vector propagator between Uy,
and Dy. It is obtained by summing over all diagrams in (b), where
different numbers of taste-vector hairpin vertices are inserted.

Sample pion self energy diagrams and possible quark flow diagrams.
(a) and (b) are two diagrams contributing to the pion self energy. (c)
and (d) are the corresponding two possible quark flow diagrams. The
diagram in figure (c) gets a factor 1/4 while the diagram in figure (d)
doesnot. . . . . . ..
A sample tadpole diagram which contributes to the pion self energy.
Here the meson P is the Goldstone pion composed of x and y valence
quarks. The propagator in the loop is between two flavor-neutral, taste-
vector mesons Xy and Yy, and the corresponding quark flow diagram
is a disconnected diagram. . . . . ... ...

Squared masses of pions for various tastes on the lattices with a =~
0.12fm are shown as functions of quark masses. The splittings appear
to be independent of quark masses. All quantities are in units of ry.
(The scale r; is defined below in section (5.3).) Plot is from Ref. [1]. .
SU(2) chiral fits to f,(left) and m2 /(m,+m,)(right). Only points with
the valence quark masses equal (m, = m,) are shown on the plots . .
Test of convergence of SU(3) XPT fits in the continuum, with the
strange quark mass fixed at 0.6m?"*. Plots are from Ref. [2]. . . . . .

X

7

19

48

59

99

117



List of Tables

5.1

5.2

Ensembles used in this analysis. Here, (F), (SF) and (UF) stand for
fine, superfine and ultrafine lattices respectively. The quantities amy
and amg are the light and strange sea quark masses in lattice units;
m.L is the (sea) Goldstone pion mass times the linear spatial size.
The fine ensembles are not used in our central value fit, but only in
estimating systematic errors. . . . . . . ... ..o
Kaon masses and lightest (sea) pion masses on some sample ensem-
bles. Here three different pion masses are shown: Goldstone, RMS and
singlet. 7y = 0.3117fmisused. . . . . . . .. ...



Chapter 1

Introduction to Lattice QCD

1.1 Quantum Chromodynamics

It is now widely accepted that the physics of fundamental particles can be described
by the theory called the Standard Model (SM). In this theory, the electro-magnetic
(EM) and weak interactions are unified under the framework of SU(2);, x U(1) group
symmetry, and the strong interactions are described by the second part of the SM,
quantum chromodynamics (QCD), which is formulated on a SU(3) gauge group.
Overall, the SU(3) x SU(2) x U(1) Standard Model successfully explains almost all
the experimental results regarding fundamental interactions (with the exception of
gravity), hence it remains a basis of modern particle physics.

The QCD part of the Standard Model studies the interactions between quarks
and gluons. In this framework, there are six flavors of quarks: u, d, s, t, ¢, b and
each flavor has three different colors: red, green, blue. The strong force between

quarks is mediated by eight (color) species of gluons, in a similar way as EM force



is mediated by photons. However, unlike photons, which do not carry EM charges
and do no interact with each other, gluons carry color charges and they interact with
other gluons. This is a fundamental difference between a non-Abelian gauge theory,
like QCD, and an Abelian gauge theory, like quantum electrodynamics (QED). As a
result, QCD exhibits many features distinct from that of QED, and the physics in
QCD is much richer.

There are two well-known properties of QCD:

e Asymptotic Freedom: The strong coupling constant, ag = ¢g*/(47), decreases
as the energy scale is increased. When the energy gets higher (smaller separa-
tions), cvg becomes smaller, and eventually it goes to zero in the infinite energy
limit. In this region (roughly, energy A ~ 2GeV or larger), one can apply the
perturbation theory to calculate physical quantities since the expansion param-
eter ag is significantly less than 1, and the truncation errors are generally under

control.

e Confinement: Although quarks and gluons carry color charges, all physical par-
ticles must be color singlets. That is to say, free quarks can not exist in nature;
they are always confined in hadrons: quark or gluon bound states that are color
singlets. In terms of quark interactions, this phenomenon can be effectively

described by a linear potential term between two quarks at long distance r:
1
V(r)=or+c+ O(-), (1.1)
r

where o is called the “string tension” because when r gets large, V(r) rises

linearly ~ or, as it would for a “string” between the quarks of constant energy

2



per unit length.

These two properties are closely related to the beta function, which governs the
behavior of the coupling constant ag under scale change. For QCD with N, colors

and Ny fermion flavors, the one-loop beta function is:

Blg) =

o9 ¢ [, 2
= Mo~ " 16n2 '

N, — N
3 37/

(1.2)
where p is the energy scale. In reality, there are three colors and six flavors, and
the beta function is negative. As a consequence, the strong coupling constant will
increase as one decreases the energy scale p. In the low energy region (A < 1GeV),
the coupling constant will be too large for the perturbation theory to be applicable.
One therefore needs to use some non-perturbative treatment. Among all of the non-

perturbative approaches, the theory built on the lattice is the only one that comes

directly from the first principles of QCD.

1.2 Quantum field theory on the lattice

Most quantum field theories, such as QCD and QED, suffer from ultraviolet diver-
gences when one calculates physical quantities beyond the lowest order. In the lan-
guage of Feynman diagrams, these divergences come from loop integrals with internal
virtual particles. In principle these particles can carry infinitely large momentum,
hence the integral is divergent. The divergence comes from [ d*p at large momen-
tum p, or equivalently, the infinite number of degrees of freedom at short distance in

the continuum theory. To deal with this problem systematically, regularization and



renormalization are used to remove the divergences and obtain finite physical results
in the end. The first step, regularization, is needed to cut off the integrals and make
number of degrees of freedom finite (as on lattice) or effectively finite (other regular-
izations). Then renormalization expresses all physical results in terms of physically
measurable quantities, after which the cutoff can be taken away:.

There are many regularization methods available, and which one is being used
depends on the actual circumstances and usually the symmetries of the underlying
theory. One method of doing regularization is to use the discrete version of space-
time instead of the continuous one. Suppose space-time is only defined on discrete
points separated by a and the dimension of whole lattice is (Na)* where N is the
number of lattice sites in each of the spatial and temporal directions. Quantum fields
are defined on lattice sites or on the links between nearest neighbor lattice sites. By
doing this, we actually put an ultraviolet energy cutoff A = 7, as well as an infra-red
energy cutoff 7 in the theory. The divergences in loop integrals are thus removed,
and we obtain a well-defined quantum field theory. More importantly, by putting the
quantum fields on a lattice with finite volume and finite lattice spacing, the infinite
degrees of freedom in continuous space-time now become finite. As we will see in
section (1.5), the infinite dimensional integrals in the path integral formulation be-
come multi-dimensional integrals. In Euclidean space-time, the quantum field theory
on a lattice is very similar to a statistical system, and we can apply many numerical
methods that are commonly used in the latter to study the former. This is the key
point that makes it possible to calculate physical oberservables from a quantum field

theory defined on the lattice.



Na
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Figure 1.1: Schematic diagram of a N x N lattice with lattice spacing a in 2-D
spacetime.
Here, we begin by introducing the discrete version of actions of two kinds of

building blocks of QCD: gauge bosons and fermions.

1.3 Gauge theory on the lattice

Because of its fundamental role in modern physics, gauge field theory is one of the
most important quantum field theories that need to be studied on the lattice. The
first successful attempt to formulate quantum gauge theory on a lattice was done
by Wilson in 1974 [3], where he proposed this to study confinement and other non-
perturbative effects in QCD.

The continuum Lagrangian density for SU(3) gauge theory is (in Euclidean space):

1
L= FuwF"™, (1.3)

where the field strength is F,, = F, o Ao/2 with A, as the eight generators of the

v
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SU(3) gauge group. The field strength component F};, is related to the gauge vector

potential A, = Aj\,/2 by

Fo = 0,A% — 8,A% + g fo AL AC (1.4)

ptio

where ¢ is the coupling constant, and f° is the group structure constant defined by

commutations of SU(3) generators
[T, T°] =ifTe. (1.5)

In Wilson’s approach, gauge fields are associated with links on the lattice between
adjacent lattice sites. For a link between site x and x + afi, one defines the gauge

field as a matrix element U,(x) in the gauge group:
U,z + aft) = Uy(z) = 9@ Ul(x) = U_( + ajp). (1.6)

Under a local gauge transformation V'(x), an element v (z) in the color space at
point x transforms as ¢ (z) — V(x)¥(x), while the gauge link U,(z) transforms as
U.(z) = V(2)Uu(x)VT(x + ar). One can construct quantities that are invariant
under local gauge transformations. The simplest one for pure gauge field is the 1 x 1
plaquette W, (x), i.e., the product of gauge links U, (z) around an elementary square

of lattice, as shown in figure (1.2). Writing in terms of gauge links, the plaquette is

W(x) = UM(:E)UV(quaﬂ)Ul(x—i—aﬁ)UJ(m). (1.7)

The gauge action is the sum over all the plaquettes on the lattice:



T+ av T+ aft+ av

A

\
=

x x+aji

Figure 1.2: A plaquette on the lattice around the square near point x in y — v plane
If we expand the U,(x) matrices in the continuum limit, a — 0, this reduces to the

action in the continuum form:
1
Sy — /d%(ZFWFW) + O(a?) (1.9)

The lattice artifacts appear at order O(a?). The Wilson action can be improved by
choosing an appropriate linear combinations of 1 x 1 and 1 x 2 Wilson loops to remove

the O(a?) effects.

1.4 Fermions on the lattice

The continuum free fermion action in Euclidean space-time is [4]:

Sy = / P ()10, (@) + i ()p(z)). (1.10)

In contrast to the gauge fields on the links, fermion fields are defined on each lattice

site z. The continuum derivative is replaced by the difference operator on the lattice:
0,0(x) = Dyab(a) = oo (U + aft) — U — aj). (1.11)
The free fermion action thus takes the following form on the lattice:
SEt = D@ lut(@) +m D d(x)d(w). (1.12)
1 x

7



In the presence of gauge fields, the ordinary derivative in the fermion action should
be replaced by the covariant derivative to make the action invariant under local gauge
transformations. Correspondingly, we introduce the gauge links to connect fermion

fields on adjacent lattice sites to make the action invariant:

1 _ R _ ~ ~ _
St — = (@) Un(@)ib(@ + aft) — (@) yUu(e — af)(z — ap))+m Y d(x)d(z).
(1.13)
This first attempt at a fermion action is the “naive action”. It has the so called

“doubling problem”. Consider the free fermion propagator in momentum space:

S(p) = !

_ , , 1.14
m + v, sin(pua) ( )

where the momentum ranges from =* to Z. In the chiral limit m — 0, besides the

S)E}

usual pole at p = (0,0,0,0), there are another 15 poles in the propagator located at

the corners of Brillouin zone

).} (1.15)

? Y

p:{(§7070’0)"" 7(

213

m
)
a

SHE
Sl

These doublers can appear in loops and contribute to physical processes. However,
they do not correspond to any real particles and need to be eliminated from the origi-
nal theory. Several fermion action formalisms are proposed to address this issue. Com-
monly used ones are the Wilson fermions, staggered fermions, overlap fermions and
the domain wall fermions. We will discuss Wilson fermions and staggered fermions in
the next chapter. For other fermion formalisms, more details can be found in many
textbooks and review articles [4, 5, 6, 7, 8.

8



1.5 Path integral on the lattice

A classical field can be quantized by using the Feynman path integral formulation.

In the case of QCD, one can write down the partition functional on the lattice
z = [lav)ailase s, (116

where M = D+m and S;(U) is the gauge action written in terms of gauge links. We
use the symbol “[ ]” in integrands [dU], [dy)] and [¢] to denote the integration over
all field configurations. For each configuration, one specifies values of all the fields on
all lattice sites and links. For example, [dU] is actually [[; , dU;(x) in which indices
x and i run over all lattice points and four directions in 4-D space-time, and dU;(z)
is the Haar measure on the group. The expectation value of a physical quantity O

can be calculated from the ratio

U] [de)][dep] O Se W) —eM W)

(©0) = -

(1.17)
One can integrate the fermion part in the partition function Z and obtain
z- / (dU)e=5O) det [M (D)), (118)
and the expectation value of O becomes
[1dU)Oe=56W) det[ M (U)]

(0) = = . (1.19)

To perform the multi-dimensional integral, one has to rely on numerical methods like
Monte Carlo or molecular dynamics. It turns out that it is more efficient to use the

method of importance sampling: One generates a set of gauge field configurations



Uy, Uy, -+ Uy with the probability of each configuration oc e=¢(Y) det[M (U)]. Then

the average value O will be a good approximation to (O) if N is large:

1 X
O = N;O(Ui) ~ (0), (1.20)
where O(U;) is the physical oberservable O measured on the i-th gauge field configu-
ration. The configuration average O will approach the true expectation value (O) in
the limit N — oo.
Since the fermion determinant det[M (U)] is not a local function of the gauge field
U, it is expensive to calculate its change under a change in the gauge field. As a
result, people used to ignore its effect by replacing it just by 1, which is the so-called
“quenched” approximation. Under this approximation, the equation (1.19) takes the

quenched version

[1dU)0e=5cW)
Tla0]e5T

<O>quenched - (]-21)

In the language of Feynman diagrams, using the quenched approximation is equiva-
lent to ignoring all internal quark loops. The underlying theory is not really QCD,
and it is not easy to estimate the systematic errors of results from quenched calcula-
tions. Nowadays, with much more powerful supercomputers and large scale clusters,
dynamical (unquenched) simulations have become the norm, and the results are now

much more reliable than the quenched ones.

1.6 Measuring physical quantities on the lattice

Various physical quantities can be constructed from the gauge field links U;(z) and/or

fermion fields (), (x). A very important kind of physical observable is particle

10



spectroscopy, i.e., masses of mesons, baryons and glueballs. Since the main topic of
this work is about light mesons, here we illustrate the method of measuring their
masses on the lattice.

Suppose we already have gauge field ensemble including many gauge configura-
tions. For an operator O(x,t), which annihilates a particle at space-time (x,t), we
can calculate the correlation function (O(z,t)O7(0,0)) by inserting a complete set of

energy eigenstates 1 =Y 7 |n)(n

OOTO(t) = <O<I7 t)OT(Ov O)>7

= (0|0(x, t)n)(n|O¥(0,0)|0),
=Y (0l0(x)|n) (n|OT|0)e =, (1.22)

where FE,, is the energy of the state |n). In the last step in Eq. (1.22) we have used
the equation (5.43) in appendix. If we are only interested in states with momentum
p, we can calculate the correlation function of the operator Y e"*O(x,t). For zero-
momentum states, the operator is simply > O(z,t) and now E, — M,,, the mass of

the n-th state, and the correlation function is

Coro(t) = (> O(x,1)01(0,0))
= (0|0]n)(n|OT|0)e ", (1.23)

Note that only those states |n) with the same quantum numbers as the desired state
O7]0) can contribute. Here we assume that the index n only takes values for these
states, where |1) is the one with the lowest energy (or mass in zero-momentum case).

If the time separation t is large enough, the contribution from the state |1) will
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dominate the summation and the correlation function is
Coto(t) =~ [{0|O]1)[Pe~ M1, (1.24)

For any ¢, we define effective mass of the propagator by

m(t) = log (fi) . (1.25)

(t+1)

The asymptotic value of m(t) will be M;. In practice, the mass M; can be found
from the “plateau” on the plot of m(t) as a function of time distance t.

In practice, this process is in some sense inverted. We want to know the mass of
a particle like a pion. Our task is then to find the interpolating operator O which
has the same quantum numbers as a pion. In general, there can be many choices of
an operator with the desired quantum numbers. A good choice can make the overlap
with the desired state large (or the overlap with other states small) so that one can

achieve a better signal to noise ratio.

1.6.1 Extrapolations

Results obtained on the lattice are “physical” quantities at finite lattice spacing, finite
volume and usually with unphysical light quark masses. The real physical regime is
in the continuum limit, infinite volume and with physical light quark masses. Several
extrapolations are needed to obtain results in this region from results obtained on the
lattice. These are continuum extrapolations, infinite volume extrapolations and light
quark mass extrapolations.

We use the lattice as a cutoff method. However, this is artificial since the real

world is still continuous, at least to the energy scale which can be probed today.
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Therefore, an extrapolation to the point @ = 0 is needed. This can be done by
doing lattice calculations with several different lattice spacings and extrapolating the
quantity according to some function of a. The form of this function usually depends
on the action used in the simulations.

Similarly, the lattice simulations are done within a finite volume, while the real
case is infinite volume (relative to the scale of strong interactions). One performs
calculations with several choices of volumes, and then extrapolates the results to the
limit where L — oo.

At present, most lattice QCD simulations are done with unphysical light sea quark
masses. The masses of up and down sea quarks in the simulations are heavier than

their physical values. This is due to two reasons:

e Simulations with small quark masses need more computing power. When the
quark mass gets smaller, the condition number x of the Dirac matrix () + m)
becomes large.! The complex conjugate (CG) algorithm, which is used to invert

Dirac matrices, slows down.

mL - SQince

e The finite volume corrections from a particle of mass m are ~ e~
the lightest pseudoscalar, the pion, couples to all physical states, we should
have m,L > 1 so that finite volume corrections are negligible. In practice, this
condition is often set to be m,L > 4. When light quark masses are smaller, a

bigger lattice with larger L = Na is needed, and this requires more computing

resources.

The condition number of a positive hermitian matrix A4 is k= Amag [ Amin, where Ao and Apin

are maximal and minimal eigenvalues of A.

13



The physical quantities calculated with unphysical light quark masses are thus not the
quantities corresponding to the real world. One needs to perform the calculations at
several different quark masses and extrapolate the results to the point with physical
light quark mass.

It turns out that all of these three extrapolations can be done with the help of
chiral perturbation theory (XPT), which we will talk about in Chapter [3]. After all
these extrapolations, one finally obtains the physical quantity which can be used to

compare with experiments or serve as input to other models/theories.
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Chapter 2

Staggered Fermions

We know that the naive fermion action on the lattice has the issue of doubling.
People have been using several different fermion actions to deal with this problem.
In this chapter, we will focus on the Kogut-Susskind fermion formalism, also called
the staggered fermions. As a comparison, I will first give a brief discussion about
the Wilson fermion formalism, which is more straightforward but also sacrifices more

symmetries.

2.1 Wilson Fermions

One way to deal with the fermion doubling problem was proposed by Wilson [9]. In

the naive fermion action, he added a second-derivative-like operator

SV = = D U@ (e + o) - 20(x) + (e — ) = ~THD. (21)

This is an dimension-five operator with an explicit factor of lattice spacing a. In
the language of the renormalization group, this term is “irrelevant” in the continuum
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limit @ — 0. In tree processes, its effects explicitly vanish in this limit, and in
divergent loop diagrams, it only serves to renormalize lower-dimension operators.
Therefore, one can always add this term to the naive action without changing the
desired continuum action.

Adding S" to the naive fermion action S™**¢ we obtain the Wilson action

St W = m, " () (x) + % > (@)@ + afp) — Yz — aj))

=N "0, M,,U(z), (2.2)
> UMy,

where the Dirac matrix M,, is

Mxya - 5a:y - RZ[(T - Vu)ax,y—aﬂ - (T + 7#)5x,y+aﬂ]7 (23)
o

with the rescaled field ¥ = ¢/v/2x and hopping parameter k = 1/(2m,a + 8r). We
can see that the free fermion propagator (in absence of gauge fields) in momentum
space is:

a
1 =2k} (rcos(pua) — i, sin(pya))

_ (mga + 4r) 7 (2.4)

32,9 8in(pu)) +mya + 32, (1 = cos(p,a))|

Q=

where we have used the definition of the hopping parameter x in the last step. The
term > (1 — cos(p,a)) in Eq. (2.4) acts just like a mass term, which gives all the
doublers, except the one at p = (0,0,0,0), an effective mass at the order of %T For
example, the doubler near p = (%,0,0,0) in the Brillouin zone obtains an additional

Y

mass = r(1 — 2cos(7))/a = 2r/a. In the continuum limit, these fiveteen doublers
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become heavy (~ %) and thus decouple from the theory. The only physical pole in

the propagator is the state located at p = (0,0,0,0) in the Brillouin zone. Thus the
Wilson fermion action is free of doublers.

By using the following property of the the naive Dirac matrix
75Dnaive,>/5 — _Dnaive’ (25)

one can see that in the massless limit, the naive fermion action is invariant under the

global chiral transformation v — €4, 1) — 10€*. Indeed,
S = 4 Dygiveth — V€* " Dpgivee’ 1)
= e e Dpginet)
= Y Daivet)

= gneive, (2.6)

The naive fermion action thus keeps the chiral symmetry although it suffers from the
problem of doublers. On the contrary, the Wilson action, while free from doublers,
breaks the chiral symmetry at O(a) since the Wilson term acts like a mass term and
it is not invariant under the global chiral transformation. This is the main drawback
of the Wilson fermion formalism. Due to the lack of chiral symmetry, the quarks
can obtain masses even if the bare quark masses are zero, and this makes the data
analysis more complicated. Furthermore, without the protection of chiral symmetry,
in simulations with Wilson quarks at small masses, one may encounter “exceptional”
configurations where the results become divergent and thus ruin the calculations [4].

While the discretization errors of the naive fermion action is at O(a?), The Wilson

fermion action has discretization errors at O(a). One can remove the O(a) lattice
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artifacts by adding another irrelevant dimension-five operator and choosing appropri-

ate coefficients. This new operator is called the Sheikholeslami-Wohlert (SW) term,

or the clover term.

1aq

SSW - _CSW Z (b O-,uu uy )¢<SU)

(2.7)

where F,, is the field strength and o, = %[%,%]. Nowadays, the clover action is

more widely used than the original Wilson action.

2.2 Staggered Fermions

Another way to reduce the number of doublers is to use the staggered fermions [10].

The idea is to diagonalize the Dirac matrices v, by making a local change of variables

Y(x) and () in the naive fermion action:

d(z) = x(@)Q,  P(z) = Qx(z),

where (), is a 4 X 4 unitary matrix.

There are many solutions for €2, one choice is

Ay =Ty = g2t agele,

Making substitutions in Eq. (2.8) and using the identity
Dyl = (—1)>v<u® I,

one can write the free fermion action as

S = my 3 @) + o X @) T +ai) - (o - o),

18

(2.8)

(2.9)

(2.10)

(2.11)



— u(r) =1
) =1
2

L

Figure 2.1: A 2-D schematic diagram showing the values of 7),(x) on the lattice.

Here, I is the 4 x 4 identity matrix with Dirac indices and the phase factor n,(x) is
() = (=1)2wn ™0y (z) = 1. (2.12)

nu(x) is an alternating number defined on the links between the nearest neighbor
lattice sites with period 2a, as shown in figure 2.1 in two-dimensional spacetime.

In Eq. (2.11), four Dirac components of the field x(z) are decoupled and they are
all completely equivalent. One can choose to keep only one Dirac component on each
lattice site x, hence reduce the degrees of freedom by a factor of four. This will, in
turn, reduce the number of doublers from sixteen to four. The presence of these four
doublers can be seen more clearly in the spin-taste basis discussed below.

Based on the fact that I', and 7,(z) are periodic functions of x with period 2a,
it is natural to treat the 2* hyper-cubic lattice as the new unit cell. The sixteen
components of the one-component field x(x) in a hypercube can be collected into a

new field q(y)q; [11, 12]

1
a(Y)ai = 3 ZA: (Ca)aix(2y + ad), (2.13)
1
3 ; X2y +aA)(Ta)l,, (2.14)

where A is any one of the 16 vectors with components A, = 0 or 1, and matrices
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ry,= 7{4175427?37;44 are the same as defined above, and 2y + aA is where the original

one-component field x is defined. In Egs. (2.13) and (2.14), indices « and ¢ both run
from 1 to 4. It turns out that the index a can be interpreted as the Dirac index
and the index 7 represents the duplicity of four doublers. We call these doublers four
“tastes” to be distinguished from “flavors”. Correspondingly, the basis formed by the
new field ¢(y)a; is the so-called spin-taste basis.

The staggered action in Eq. (2.11) can be written in spin-taste basis as [13, 12]:

SKS=16>q(y) {m(f OD+ Y (1) vuta(y© éﬁﬁs)ﬁu]} q(y), (2.15)

o

where the taste matrices §, = ;. The first and second-derivative operators ¥/, and

A, are defined as

T (9) = L7y + 20) — fly — 207 (2.16)

D) = 5 0+ 20) — 2f(5) + fly — 20 (217)

For each flavor of fermions, the four doublers are shown explicitly, and there are no
more doublers for the new field ¢(y) which is defined on the “coarser” lattices.

All the above discussions are for free staggered fermions, i.e., no gauge fields
are involved. However, it is the interacting theory that we are interested since our
goal is to simulate QCD where both fermions and gluons are present. From the
free staggered action Eq. (2.11), the interacting action can be obtained by inserting

appropriate gauge links U, (x) between nearest-neighbor lattice sites.

S =mg Yy X(@)x(x) + % 3" x@)nu(@) HUL()x(x +af) — Ul — ap)x(x —ap)).
: (2.18)
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When we go to spin-taste basis, the definitions of ¢(y)a; and §(y)io in Eq. (2.14) are

changed to
1
=3 D Ua)(Ta)aix(2y + ad), (2.19)
A
1
=3 > X2y + aA)US(y)(Ta)l,, (2.20)
A

where Uy(y) is the product of gauge links along some path from =z = 2y to x =
2y + aA. Consequently, the interacting action in spin-taste basis now takes a much
more complicated form

SKS — 162 { I®I)+Z[(%®]) \V +aS5+a256+-~-]}q(y), (2.21)

I

where S5 contains several dimension-five operators which break taste symmetries.
The key point is that in the continuum limit a — 0, these taste symmetry breaking

effects are suppressed and one obtain a continuum theory with four degenerate tastes.

2.2.1 Symmetries of the staggered action

For simplicity, we consider the single-flavor staggered action with interaction to gauge
fields. The action can be written in one-component basis as Eq. (2.18) or in spin-taste
basis as Eq. (2.21).

In Eq. (2.21), the tastes can be treated in the same way as flavors, the symmetries
and breaking patterns look very similar to those of ordinary XPT. In the continuum
and massless limits, i.e., a — 0,m — 0, only the kinetic term in Eq. (2.21) is left. The
action has a SU(4), x SU(4)g x U(1)y chiral symmetry where the axial symmetry

U(1)4 is violated due to the anomaly. The U(1)y part represents the fermion number
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conservation and thus is trivial. The SU(4), x SU(4)g symmetry is spontaneously
broken to the diagonal SU(4)y vector symmetry, giving rise to fifteen massless Gold-
stone bosons. The mass term, > ¢(y)m(I @ I)q(y), breaks the SU(4); x SU(4)r
symmetry explicitly to SU(4)y and gives the Goldstone bosons masses mZ, o< m,.

A key point here is that even if the mass term is zero, the irrelevant terms in
Eq. (2.21), e.g., aSs and a?Sg, break the chiral symmetry explicitly at finite lattice
spacing a because of the explicit taste structures in those terms. In the simpler
case of free staggered fermion, this can be seen from the taste matrices . &ués In
the last term in Eq. (2.15).! If the lattice spacing a is small enough so that the
taste-violations can be treated as perturbations, these taste-violating terms then give
Goldstone bosons finite masses, just as small quark mass terms do.

It turns out that, at finite lattice spacing but zero mass, symmetries of the one-
flavor staggered fermion can be seen more clearly in the one-component basis. If we

set m =0 in Eq. (2.18), the action has a U(1). x U(1), even-odd symmetry [12]

= = —i0

x(2), X(z) = x(x)e™**, if x = even, (2.22)

oy (z), x(x) = x(z)e ™, if x = odd, (2.23)

where a site is called oven or odd if ) (z,,/a) is even or odd. This even-odd symmetry
is broken to the diagonal U(1)y symmetry (a. = a, = ay) if we turn on the mass
term.

Here, the even-odd symmetry looks very similar to a chiral symmetry. However, it

turns out that there is a fundamental difference in the axial part. The axial even-odd

L Actually, the presence of Dirac matrix s in this term also breaks the chiral symmetry to a

vector symmetry.
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symmetry, where a, = —a, = «., takes the form in spin-taste basis

g(y) — e 9)g(y),  qly) — qly)e’* 0. (2.24)

This symmetry, called the U(1). symmetry, is a taste non-singlet and thus free from
the anomaly. It is kept as a symmetry on the quantum level when the mass term is
zero, in contrast to the axial chiral symmetry which is violated due to the anomaly.
An important consequence is that this U(1). symmetry, together with other staggered
symmetries, guarantees that there will not be any mass-term contributions from loop
calculations if the bare quark mass is zero [14], i.e., there is no additive mass renor-
malization for staggered fermions, contrary to the case of Wilson fermions.

To summarize, in the continuum limit with zero mass, the one-flavor staggered
fermion action is invariant under a SU(4); x SU(4)r x U(1)y symmetry which is
then spontaneously broken to SU(4)y x U(1)y. This gives fifteen massless Goldstone
bosons. The mass term and the third term in Eq. (2.15) both break the SU(4), x
SU(4)r symmetry explicitly and give Goldstone bosons masses. The symmetry is
finally broken to U(1)y, the vector subgroup of U(1), x U(1),, at finite lattice spacing
with nonzero mass.

Untill now we have only talked about continuous symmetries. The staggered ac-
tion also has many discrete symmetries including the shift symmetry, axis inversions,
charge conjugate, etc. For a more complete discussion of the staggered symmetry

group, see Ref. [12] and references therein.
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2.2.2 Fourth-root procedure

As one can see from the spin-taste basis, there are four taste species for each flavor
of quarks, and these four species are completely degenerate. The fermion action is
block diagonal in taste space in the continuum limit, so each one contributes equally
to the fermion determinant in the path integral formalism. One can get rid of the
extra degrees of freedom by taking the fourth root of the fermion determinant and

using it in generating gauge configurations. The partition function is then
z- / (dU)e=56O) det (M (1)), (2.25)

Although this is naively correct in the continuum limit, it may cause some concerns
because of the behavior at finite lattice spacings. It has been shown that the fourth-
root procedure produces, non-perturbatively, violations of locality at non-zero lattice
spacing [15]. However, work over the last few years indicates that locality and uni-
versality are restored in the continuum limit of the lattice theory [16, 17, 18, 19].
Throughout this work, we will assume that the usage of the fourth-root procedure is

legitimate.

2.3 The “asqtad” staggered action

2.3.1 Tadpole improvement

In this section, we will talk about an important improvement in the gauge field sector,
the so-called “tadpole” improvement. Below, I will follow the discussions in Ref. [§]

closely.
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Figure 2.2: A tadpole diagram for the fermion self energy in the lattice perturbation

theory.

Gauge fields are formulated on the lattice as gauge links U,(x) = e'94u(®) con-

necting adjacent lattice sites. Expanding U, (z) in lattice spacing a,

a2g2

U, (z) = elagAu(z) — 1 4 iagA,(z) — TAi(x) 4o (2.26)

one finds that the third term generates a vertex where two quarks are connected to two
gluons, while this vertex is absent in continuum QCD. These lattice artifacts should
go away when one approaches the continuum limit ¢ — 0. However, it was shown
that the artifacts, instead of being suppressed by powers of a, are only suppressed by
powers of g2 due to the effects of so-called tadpole diagrams [20]. In these diagrams,
the ultraviolet divergences generated by the gluon loops would introduce a factor of
1/a* which cancels the explicit a dependence of the vertex, hence only a factor of g?
is left. A mean-field approach is proposed to remove these lattice artifacts. Notice
that the divergence comes from the high momentum part of the gauge field, and one

can split the gauge field into a high momentum (UV) part and a low momentum (IR)
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part. By integrating out the UV part, one can write down the effective gauge link,
UM(Z’) _ eiag(Aﬁ’V(x)+AﬁR(x)) _ uoeiagAﬁR(x) _ UOUN($), (2'27)

where v is the tadpole factor. One then replaces all the gauge links U,(x) in the
lattice action by uoU, (), and absorbs the tadpole factor ug in the coupling constant

g to get the tadpole improved action. For example, the Wilson gauge action becomes
1 ué ~ 1 ~
Sy=>_ ?(TrUp +he)=Y E(TrUp +he) = ﬁ(TrUp + h.c.), (2.28)

where the rescaled coupling constant g2 = g*/ug. The perturbation theory in g2 then
has no tadpoles and the convergence is improved [4].

There are two common choices for the tadpole factor ug: one is the expectation
value of the gauge links in Landau gauge, another is the fourth root of the expectation
value of the plaquette,

uy = (TrU,) 4. (2.29)

These values are usually determined non-perturbatively.

2.3.2 Asqtad improved staggered fermions

From previous discussion, we know that at finite lattice spacing, the mass term and
taste-violating term in the staggered action in Eq. (2.15) both break the taste sym-
metry explicitly and give Goldstone bosons masses. In typical numerical simulations,
the contributions to Goldstone boson masses from taste-violations could be larger
than those from finite quark masses. This makes it difficult to take the continuum

limit, since lattice artifacts dominate over the physical effect from the mass. The
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situation can be improved if one uses some modified versions of the staggered actions
on the lattice that can reduce the taste-violations.

An important version of the improved staggered action is the so-called “asqtad”
action. In the following discussions about the implementation of this action, I will
follow closely to Ref. [12].

Recall that for every flavor of staggered fermion, the four taste species live on
adjacent sites within the 2* hyper-cubic lattice. In momentum space, a fermion
can change its taste by emitting or absorbing a gluon with momentum 7/a. It is
exchanging of these high momentum gluons that gives rise to the taste-violating
effects, as shown in figure (2.3). Thus taste violations can be reduced by suppressing
the coupling to these UV gluons in the staggered action [12]. Since the quarks on
the lattice are connected by gauge links U,(z), the coupling between fermions and
gluons can be altered by changing U,(x) in the interacting staggered fermion action.
Instead of the original “thin links”, one uses the “fat links” where products of link
variables over different paths from site x to site x 4+ ap are added to the gauge links.

For example, one can make the substitution

U(z) = Uy(z) +wa®y _ ALU,(x), (2.30)
vEp

where the lattice Laplacian Al is defined as

AU, (z) = %[U,,(x)U#(x+aﬁ)U,,T(a:+a/l)+Uj (x—ap)U,(z—av)U, (x—av+afr)—2U,(x)].
(2.31)

After coupling to fermions, the second term in Eq. (2.30) produces a new term in

the fermion action. Because of the explicit factor of a2, this term vanishes as a — 0,
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Figure 2.3: Four-fermion taste violation diagrams. Two incoming fermions change
their tastes by exchanging a gluon with momentum 7/a as shown in figure (a), or
exchanging two or more gluons with total momentum 7/a as shown in figure (b).
hence it does not change the desired continuum action.

In momentum space, one can expand U, (x) to first order in g and get the following

substitution rule [12]:

Au(p) = Au(p) + 0 D 2Au(p)(cos(ap,) — 1) + 4sin( P ) sin(“E) 4, ()], (232)
VER

The second term in Eq. (2.30) is actually a 3-link staple shown in figure 2.4(a). If
one sets the coefficient w = 1/4, one can eliminate the coupling to gluons A, (p) with
one single transverse momentum p,(v # p) = Z. Coupling to longitudinal gluons
with v = p is automatically cancelled between the forward and backward parts of
the lattice fermion derivatives [21]. Similarly, 5-link and 7-link staples can be added
to eliminate the coupling to gluons with more components of momentum equal to
m/a [12]

a’ at
U(z) — U}:?(x) =Uulz) + — Z Azl/Uu(x) + 39 Z Ai)Azl/Uu(x)
iz pAVEN

6
a 2: I AL AL
-+ @ AJApAVUM($). (233)
oEPAVEN
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(a) 3-link staple (b) 5-link staple (c) 7-link staple (d) straight 5-
link staple
Figure 2.4: Multi-link staples used in the “asq” action
Furthermore, one can add the “straight 5-link staples” [22] in the gauge link U, (z)
and the Naik term [23] in fermion derivative to get the complete O(a?) improved

staggered action - so-called “asq” action.

Un(z) = U™ (x) =U]" - aZ? > ANUL(x), (2.34)
VEp
V.ux(z) = V,x(z) — %Q(A“)gx(x). (2.35)

Finally, one can replace the coefficients in this action by the tadpole improved ones,
obtaining the final version of “asqtad” improved fermion action, which is the action
used extensively by the MILC collaboration. The asqtad action reduces the taste
violations and has better scaling properties than the ordinary staggered action.
Although the fat links eliminate coupling to a single gluon with transverse momen-
tum components as 7/a, taste-violations can still occur by exchanging two or more
gluons with total momentum 7 /a, as shown in figure (2.3(b)). The taste-violations for

asqtad fermions are at O(c2a?), while the generic discretization errors are at O(a,a?).
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Chapter 3

Staggered Chiral Perturbation

Theory

Although lattice QCD is the most powerful non-perturbative method from first prin-
ciples, it is very difficult to simulate continuum QCD with physical light quark masses
(my, mgq ~ my). The reason is that the computing resources needed in simulations
grow like, roughly speaking, four to six powers of 1/m;, depending on the algorithms.
Simulations with physical light quark masses and reasonable size of lattices are ex-
tremely difficult and time consuming to implement on modern supercomputers. In
practice, one usually performs simulations at several different light quark masses
which are higher than the physical values, and then extrapolates the results, i.e.,
hadron masses, decay constant, etc., to the point with physical light quark masses.
A systematic way to do the extrapolation is to use the chiral perturbation theory
(XPT). In XPT, the functional dependences of physical quantities on the light quark

masses are given explicitly, thus can be used as the fit functions to guide us to the
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chiral limit.

3.1 Chiral Perturbation Theory

It is a fact that masses of three light quarks up, down and strange are much smaller

than other three quarks charm, bottom and top [24]:

m,, = 0.005GeV me = (1.15 — 1.35)GeV
mg = 0.009GeV | <1GeV < |y, = (4.0 — 4.4)GeV . (31
ms = 0.175GeV my = 174GeV

where the scale 1GeV is approximately the mass of a typical hadron composed of light
quarks, e.g., m, = 770MeV. If we are only interested in the physics of those light
hadrons, we can, to an excellent approximation, ignore the three heavy quarks aside
from their perturbative effects and consider the QCD sector of light quarks only. The

QCD Lagrangian for light quarks is:

L= (2)(P+ M) (), (3:2)

where f = wu,d, s are flavor indices and automatically summed over, and M is the

quark mass matrix in flavor basis:
M = Diag(my, mg, ms). (3.3)
If we define the left hand field vy, and right hand field ¥z

v = %(1 — Y5)¥, Yr = %(1 + 75) 0, (3.4)

I =050+ ) I = D51 75), (3.5)
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we can write Eq. (3.2) in the following form:

L = 1 (2) PUi (@) + dp(e) Pop(e) +df (2) Mug(e) + df(e) Mg (2).  (3.6)

In the zero quark mass limit, 7.e., m, = my = ms = 0, this action is invariant under

a global U(3) x U(3)g transformation on the flavor basis:

Y, — Uy, Y — Urg, (3.7)
U, — U}, Pr — VUL, (3-8)

with Upr € U(3). We say that the action in Eq. (3.2) has the U(3), x U(3)g chiral
symmetry. It turns out that the axial U(1) symmetry, with U, = U; = exp(if)1,
is violated due to chiral anomaly on the quantum level, hence the original chiral
symmetry group is reduced to SU(3), x SU(3)g x U(1)y, with U(1)y corresponding
to the quark number conversation. In the following, we will only concentrate on the
SU(3), x SU(3)g part.

Empirical facts about the hadron spectrum suggest that the chiral symmetry in
QCD is spontaneously broken from SU(3);, x SU(3)g to its subgroup SU(3)y in which
Up = Ugr = U. This will result in eight Nambu-Goldstone bosons with zero masses
if the three light quarks are massless. Further analysis show that these bosons must
be pseudoscalars. In reality, there are indeed eight light mesons with masses much

smaller than other hadrons:

Mgt n= no ~ 140MeV, (3.9)
mK+,K—,K0,K0 ~ 500M€V, (310)
m, ~ 545MeV. (3.11)
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This can be explained if the three light quarks have nonzero but small masses com-
pared to Agep ~ 1GeV, so that the massless pseudoscalar bosons obtain finite masses
by treating the quark masses as small perturbations.

A systematic way to study the physics near the chiral limit in QCD is Chiral
Perturbation Theory (XPT) [25, 26, 27]. The essential point of XPT that in the low
energy region of QCD (A < 1GeV), the physics can be described by the effective
field theory where the degrees of freedom are the light physical states, pseudoscalar
mesons, instead of quarks and gluons. Possible terms of the effective theory are
constrained by the underlying symmetries of QCD.

For XPT in the light meson sector, one can collect eight pseudo-Goldstone bosons

into a field ¢:

\7;—05 + \/ié T Kt ut ud us
¢ = i —f/—% +2% K |~ | du dd ds | (3.12)
K- KO —2 st sd s3

NG

and define an SU(3) matrix ¥ in terms of ¢ as

Y =exp % (3.13)

Under a SU(3) x SU(3)g chiral transformation, 3 and X7 transform as
YU xUl, 8t Upstul. (3.14)

In the low energy region, physics is dominated by the would-be-Goldstone mesons
(7, K,n, etc.) since their masses are significantly smaller than other hadrons. If we are

only interested in this energy region, it is possible to construct an effective Lagrangian
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in terms of matrices ¥ and X' since they actually describes the Goldstone bosons.
The Lagrangian should be local, Lorentz invariant, and most importantly, invariant
under SU(3);, x SU(3)g transformation. It turns out that the simplest term one can
write down is Tr(9,%0,%"). Terms that only involve ¥ and ¥ without derivatives
are trivial, which can be seen by using XX = 1.

In the QCD Lagrangian, Eq. (3.6), the quark mass term breaks chiral symmetry
explicitly. Contribution to the effective Lagrangian from quark masses can be ob-
tained by using the “spurion” analysis. One images that under the SU(3); x SU(3)r

chiral transformation, the quark mass matrix M transforms as
M — U MU MY — UgMTU}, (3.15)

so that the last two terms in Eq. (3.6) are invariant under the chiral transformation.
Now, with ¥, 2T and M, MT, one can construct a term Tr(M T+ MTY) in the effective
Lagrangian. Note that the real quark mass matrix M is a constant matrix and does
not transform, so the matrix M here is a “spurion”. This analysis is useful to keep
track of the chiral symmetry breaking patterns, and serves as a powerful tool in
constructing chiral Lagrangians.

Now, one can write down the chiral Lagrangian (in Euclidean space):

_F B t ooyt
£ = TH(0,20,51) — BET(MsT + M), (3.16)

where f and p are two low energy constants (LEC). We will see later that f can be
related to the pion decay constant, while y is related to the quark condensate in the

chiral limit.

34



Expanding Eq. (3.16) to second order, one finds the masses of these pseudo-

Goldstone bosons:

MZ. = p(my, +ma), (3.17)
M12(+ = p(m, +my), (3.18)
2 (my, —ma)?
M = p(my, +mg+ O BT ) (3.19)
1 (my — mq)?

If one drops the terms proportional to (m, —mg)?/ms, which is ~ 1/30 of m,, or my,

one finds the Gell-Mann-Okubo relation:

1
M? = 5(2M§<+ +2M2, — M2,), (3.21)

n

which agrees with experimental data within a few percent. This is one piece of
evidence that supports the validity of using this effective Lagrangian.

One can see from the formulae of meson masses that the quark mass m, always
appears together with p as a scale-independent combination x = 2um,. It is then
reasonable to treat the squared momentum of a physical (onshell) meson as the same
order as the quark mass. That is, p* ~ M2, ~ img,, which is usually written as
p? ~ my,. According to this power counting rule, the two terms in the chiral La-
grangian given in Eq. (3.16) are the two lowest order terms. The Next-to-Leading
(NLO) order will be O(p*, p*mg, m?). The power counting is essential in XPT calcu-
lation, and it also plays an important role in the renormalization of XPT.

In general, one can introduce external currents in the QCD action and map them

to the chiral Lagrangian. The rationale behind this external field approach is that,
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in the absence of anomalies, the Ward Identities obeyed by the Green functions are
equivalent to an invariance of the generating functional under a local transformation
of the external fields [28]. In practice, four currents are added: left and right hand
currents [, and r,, scalar and pseudoscalar quark densities s and p. They are all

color-neutral, 3 x 3 hermitian matrices. The QCD action is

Lacp = £ =01 (2)(D — inuly )] () + h(a) (D — inur,) Ph(x)
+ 17 (2) (s + ip)Up(x) + Ui () (s — ip) (o). (3.22)
Now, instead of global chiral transformations, we enforce a local chiral transformation.

To make the QCD action invariant under this transformation, these external currents

transform as

l, — ULl,Ul —id,U,Ul, (3.23)
r, — Upr, Ul —i0,UgU}., (3.24)
(s +ip) = Up(s +ip)UL, (3.25)
(s —ip) = Ug(s —ip)U}. (3.26)

Correspondingly, the partial derivative in the chiral Lagrangian is replaced by the
covariant derivative D, to make the chiral Lagrangian invariant under local chiral

transformations.

0,5 — D% = 0,5 — il, X +iSr,. (3.27)

One can see that in the presence of external currents, D, transforms as D, —

U LDMEU; under a chiral transformation. With these new building blocks, we can
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write down the lowest order Lagrangian
_ f2 T f2 T T
L= 3 Tv(D,XD,X") — 3 Tr(x X"+ x'Y), (3.28)

where x = 2u(s + ip) is acting like the original mass term. One can always recover
the ordinary SU(3) chiral Lagrangian by setting [, = r, = 0 and p = 0,s = M =
Diag(m,,, mg, ms).
In Eq. (3.28), we can write the field ¢ as ¢ = ¢,T, with T, the generators of SU(3)
group
T (TuTy) = 0apy  [Ta, Th) = V/2i fane T (3.29)
One can calculate the conserved left and right handed currents by taking the derivative
of the chiral Lagrangian with respect to the external fields {,, and r,, [29]. To the lowest

order, we have

oL i 1

L_ Zp~ _ ~ g2 ter _Z
J, 2, 4f 0,X% 2f8uq5, (3.30)

0,L ) 1

R _ = 2yt =
J, Dur 4:f ¥10,% 2f8qu. (3.31)

Writing J-* in T, basis, J»%* = J T, we get the equation

(OTF () = JE (2)]6a(p)) = —ipfoae ™, (3.32)
(Oldysulm™ (p)) = (| AZ (@) |7t (p) = (O1(TF = T 2 (@) |7 (p) = —ip,fe ™.
(3.33)

where the superscript “12” represents the (1,2) element of the 3 x 3 matrix. By

comparing it with the definition of pion decay constant F; = 93MeV

(dyursulm™ (p)) = —iV2Fep,, (3.34)
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we conclude that, at LO, the parameter f equals the pion decay constant f, =
V2F, = 130.4GeV. Actually, all the meson decay constants are equal at this order,
e f=fo=fx= Iy

If one takes the derivative with respect to the scalar current s and sets all other

currents to zero, one gets

) = (ss) = 22 _ 1

(tu) = (dd) = (3s) = i (Tr (S + 1)

o 1f?
~ - (3.35)

This relates the chiral condensate in the chiral limit to the LO LEC pu.
At Next-to-Leading (NLO) order, i.e., O(p*, p*mq, m?), the SU(3) XPT Lagrangian

is (in Euclidean space):

L% =—1,T(D,x'D,%)* — L,Tr(D, 2D, SN Tr(D, XD, 2T
— L3Tr(D,X'D, XD, YD, ¥) + L,Tr(D, XD, ) Tr (S y + Sx 1)
+ LsTr(D, XD, 2 (ETy + Bx1)
— LeTr(STy + 2xN)? = LyTe(STy — 2xN)? — LeTr(STyZTy + 2x i Ey D)
+iLoTr(FrD, 5 DY + FruyDySD,ST) + LigTr(SFp S Fry )

+ contact terms, (3.36)

where L; — —Lyo are ten NLO SU(3) LECs. Here, we do not show contact terms
which involve only external fields. These terms do not contribute to physical results
like scattering amplitudes or the meson spectrum because they do not contain the

dynamical field ¥. As a result, we will not consider these terms in this work.

38



3.2 Staggered Chiral Perturbation Theory

In lattice QCD simulations, various formulations of fermions are used. They should
all approach to the same continuum form as the lattice spacing goes to zero, i.e.,
we expect that they are all in the same universality class. However, at finite lattice
spacing, there will be extra effects from lattice artifacts associated with each fermion
formalism. These terms could break the chiral symmetry explicitly even when the
light quark masses are zero. One then needs to generalize XPT to the cases of fermions
on the lattice and incorporate the effects of chiral symmetry breaking at finite lattice
spacing under the same framework. It turns out that this can be done using similar
analysis as is done in ordinary XPT. Since we use staggered fermions in this work,
here we concentrate on the formulation of XPT for staggered fermions.

In the spin-taste basis, there are four tastes for each single flavor of staggered
fermions. In the continuum limit, the Dirac operator is expected to be proportional
to the identity in taste space. Therefore, the continuum staggered action has a SU(4)
taste symmetry. At finite lattice spacing, the taste symmetry is broken and the ef-
fects need to be included in the formalism of XPT. This was done in the one-flavor
case by Lee and Sharpe [30] and then generalized to multi-flavor case by Aubin and
Bernard [31, 32]. The resulting chiral theory for staggered fermions is called “stag-
gered chiral perturbation theory” (SXPT). Correspondingly, the SXPT which takes
into account the fourth root procedure is called “rooted staggered chiral perturbation
theory” (rSXPT).

To obtain the form of SXPT, two steps are needed. First, one writes down the
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Symanzik Effective Theory (SET) for staggered fermions, and then one can construct
the chiral Lagrangian using spurion analysis, which is the same technique used to

incorporate quark mass terms in ordinary XPT.

3.2.1 SET for staggered fermions

The idea of the SET is that one can parameterize the lattice artifacts of an action S
by writing down an effective continuum action Sspr as an expansion in powers of the
lattice spacing a [33]

Lspr = Lo + Y a" L™ (3.37)

n=1

where £"** is the term with dimension n + 4. Note that the SET is defined in
the continuum, and it is supposed to describe physics with momentum far below the
lattice cutoff, i.e., p < 1/a. The possible form of operators in the SET are constrained
by the underlying symmetries. For staggered fermions, there are no dimension five
operators that respect all the symmetries [29, 34].! The first scaling violation terms
appear at order a?, which can be seen from figure (2.3(a)), in which two quarks
interact by exchanging a gluon with one or more momentum components equal to
7/a. Because different taste species in momentum space are located on the corners
of Brillouin zone, this high momentum gluon will change the taste of each quark and

keep both quarks still on shell, instead of driving them off shell. Effectively, such

! Apparently, there is a dimension-five operator in the staggered action written in spin-taste basis,
shown in Eq. (2.15). However, it turns out that this operator will be pushed to dimension-six if
we redefine the fermion fields [35, 12]. We know this is possible because with momentum space

definitions of tastes, there are no taste violations in the free theory.
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diagrams produce O(a?) four quark operators in the SET. The operators have the

form
Oss’tt’ - 61('75 X 51&)%6] (78/ X gt’)Qja (338>

where i, j are flavor indices, s,s’ are spin indices and ¢, are taste indices. Color
indices are not shown here explicitly. In principle, they should be there and contracted
in such a way that the operators are color singlets. Operators that are in the form
of Eq. (3.38) but with different color structures are actually distinct operators in the
SET. However, they are mapped to the same term in the chiral Lagrangian since
they violate chiral symmetry in the same way. We are only interested in finding all
possible terms in the chiral Lagrangian. The coefficients of these terms are arbitrary
anyway. Therefore, we can always omit color indices for our purposes here.

Careful analysis show that the spin and taste matrices must satisfy the following

properties [12]:

U(1)e symmetry = {75 ® &,7s ® &} =0, (3.39)
shift symmetry — & = & (3.40)
rotational and parity symmetries — v5 = vy (3.41)

All of the operators satisfying these conditions are gathered into two groups, “type A”
and “type B”, depending on whether there are mixings between the spin indices and

taste indices. Operators with the spin and taste indices summed over separately are
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called “type A” operators. There are twelve of them, listed by Lee and Sharpe [30]:

LEFD LIS x A+ [Sx V] +[AX S|+ [V x S]+ [P x Al + [P x V]

+[AX P+ [VXxPl+[TxA+[TxV]|+[AxT|+[VxT], (342

where S, P, T, A,V (scalar, pseudoscalar, tensor, axial vector, vector) represent the

spin or taste matrices. For example, [A x T represents the four-quark operator

AXTI =Y G © &p)ad(v5, @ &g (3.43)

pov<p

Operators which have common indices in the spin and taste matrices are called “type

B” operators. There are four of them:
LEFB) [T, x Ay + [T, x V] + [Ay x T + [V, x T, (3.44)
where, for example, [V, x T,] represents the operator [36]

[VM X Tu] = Z Z{@ (7#®€uu)%’% (7,u ®€Vu)% _Cji(’)/u ®§uu5)%’(7j (7u®€5VM)Qj}' (3'45)

moovER

Now we have all the possible operators which break the SU(4) taste symmetry on
quark level. The second step is to find the corresponding terms in the chiral La-
grangian that break the taste symmetry in the same manner. This can be done by

using the spurion analysis, which is shown in the next section.

3.2.2 SXPT Lagrangian at LO

To construct the chiral theory for staggered fermions, it is convenient if we do not
distinguish flavor and taste in the beginning and integrate the symmetries into a

larger group. For Ny flavors of unrooted staggered fermions, in the continuum case,
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the theory is invariant under a SU(4N¢), ® SU(4N¢) g chiral symmetry, which is then
spontaneously broken to the subgroup SU(4Ny)y, resulting in 16(N;)? — 1 massless
Goldstone bosons. The taste symmetry U(4), x U(4)g is explicitly broken at finite
lattice spacing by taste-violating terms, and the flavor symmetry SU(Ny), x SU(Ny)r
is explicitly broken by non-zero quark masses. If we treat these explicit symmetry
breaking terms as perturbations, we will find that these would-be-Goldstone bosons
acquire finite masses at non-zero quark mass or non-zero lattice spacings.

Without taste-violating terms, the leading order (O(p? m,)) chiral Lagrangian

is [12]
2 2 m2
L= gTr(auZﬁuZT) — §Tr(xz +x2h) + 2—£[Tr(<1))]2, (3.46)
with ¥ = exp(i®/f). The field ® is given by
U 7% KT
~ D KO
b = , (3.47)
K- K° §

where each entry is a 4 x 4 matrix in the taste space, 77 = >, 7;Tp. The taste
group generators T are defined as T = {&s,1€,5,9 (0 > v),§,, I}. The mass
matrix is x = 2u(myI, mgl,mgl,---) in which I is the 4 x 4 unit matrix in taste
space. In Eq. (3.46), my is the anomaly contribution to the flavor and taste singlet
Ny o< Tr(®). Integrating out this singlet is equivalent to keeping the singlet explicitly
in the Lagrangian, and taking mg — oo at the end of the calculation [37].

Now we need to incorporate taste-violating terms in the chiral Lagrangian. As

mentioned before, the lowest order taste-violations are at O(a?). Before we proceed, a
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power counting scheme must be specified because the chiral Lagrangian is essentially
a perturbative expansion in powers of momentum and quark masses. One thus needs
to compare the relative size of a typical taste-violating term a*§ and p* ~ m2 ~ um,.
For lattice simulations with asqtad staggered quarks, one finds that the contributions
to pion mass from taste-violations are comparable to the contributions from quark
masses [1], i.e., a*6 ~ pum,, where a0 is a typical taste-violating contribution to the

pion mass (taste splittings). As a result, we use the following rule
p* ~m2 ~ pmg ~ a*d, (3.48)

when we construct the chiral Lagrangian including taste-violations.

At leading order, we should have terms at O(a?) as well as terms at O(p®) and
O(m,). The latter two are the usual LO terms in the ordinary SU(4Ny) chiral La-
grangian, Eq. (3.46). The O(a?) terms can be constructed from O(a?) taste-violating
operators in the SET using a spurion analysis.

Here we show an example of finding terms in chiral Lagrangian corresponding to
the “type-A” operator Oprxv] = a23i(Vw ® &,)0i0; (Yop ® &5)g;. Using ¢; = ¢ + ¢F,

this operator can be written as

O[Txv} = GQ[Q_iL(%w®£p)q@R+qu<7uu®£p>qZ‘L]2 = az[q_iL(%w®F1)qﬁ+q_ﬁ(7w®F2)qiL]27
(3.49)

where we introduce two spurions £} and F5. Eventually they will take the values
Fr=a§" = a8, ® Liawor, 2= a8 = a&, ® Lo, (3.50)

where Ny is the number of flavors and If40r is the identity matrix in flavor space.

44



Under an SU(4Ny), x SU(4Ny¢)g chiral transformation, ¢ and ¢ transform as
g = Lqr, qr— Rar, G — @ L', qn — qrR". (3.51)

If Fy and F, transform as Fy — LF\R', F, — RF,L', the operator Orxv) will be
“invariant” under chiral transformations.

The building blocks for the chiral Lagrangian include ¥, ¥t and y, x' from ordinary
XPT, and the two new objects Fr and Fy. Focusing on the O(a?) terms, the mass
matrices x and x' can not appear since otherwise the operators will be at higher order
O(a*m,). Similarly, we can not use derivatives since otherwise the operator will be at
O(a?p?). Tt can be found that there are three possible combinations of these blocks,

i.€., three operators in the chiral Lagrangian:

Tr(F, SN Tr(FY) — e shTeEls),
Tr(F SO Tr(F S0 + Tr(RS) Tr(FE) — Tr(es W ehTe(elM™ st + Te(edN ) e) Te(elMs),
T(F SRS + Tr(BEEY) — Tr(e M ie™ st + TN e,
(3.52)
One can perform the same analysis for other eleven type-A operators and find in total
eight linearly independent operators.
The “type-B” operators only have the joint 90° space-time and taste rotational
symmetry. Derivatives in chiral operators are needed to carry the space-time indices
and break the SO(4) rotational symmetry, hence the chiral operators are higher order

e.g., O(a*p?). As a result, the “type-B” operators do not contribute to the staggered

chiral Lagrangian at O(a?) [30].
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Finally, one can write down the staggered chiral Lagrangian to LO, i.e., O(¢*, my, a*):

f? 1 f? t mg 2 2
L= —Tr(&MZGHE ) — gTr(XZ +x2) + Q(Tr(q))) +aV. (3.53)

The taste-breaking potential V = U + U’ is given by:
U= G0 =0T 5 )
k

+ 03% ST e R + he)

v

+ 041 Z[Tr(£ v N5y 4 el

+Cs Y Tr(ga Be s, (3.54)

pu<v

=" CvOp zcwi ST ) Te(eN) D) + he)
k/

v

1 N N
+ Caary S ITe(El ) Te(el) ) S) + e

v

+ Gy STIHE )T )

v

+ Coag SUITHEN )T 5, (3.59)

v

where h.c. indicates Hermitian conjugate.

Note that U consists of terms with single trace while U’ consists of terms with
double traces. Expanding U and U’ to the second order in chiral fields, we find all
terms which are in the same form as ordinary (O(m,)) mass terms. These terms are
at O(a?), so they give extra contribution to meson mass at LO. While terms in U
contribute to all meson mass, terms in U’ only contributes to masses of flavor-neutral
mesons, i.e., U, D, S, etc.. In practice, we treat the quadratic terms in U’ as vertices

and sum to all orders to get the propagators of flavor-neutral mesons. This will be
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illustrated below. First let us focus on the mass terms from .
Combining the ordinary mass (x m,) and extra contributions from the taste-

breaking potential U, the pseudoscalar meson mass takes the form

mp, = p(mg +my) + a®Ap, (3.56)

where x and y are the valence quarks composing meson P, and B is the taste structure.
Because U keeps the SO(4) taste symmetry, which can be seen from the contracting of
taste indices in the Lorenz-invariant form, the contribution from the taste-breaking
part a?Ap also has this symmetry. In another words, the degeneracy of sixteen
mesons Pg in continuum case is lifted according to the irreducible representations of
SO(4) group at finite lattice spacing a. The value of Ap thus falls into five groups
(P,V,T, A, I)? corresponding to the taste structure (&s,i€,s5, i€, &, [) Tespectively.

One can calculate Ag by expanding terms in U to second order

Ap =0, (3.57)
16

Ay = F(Ol + 3C5 + Cy + 3C%), (3.58)
16

Ap = F(zcg + 20, + 4Cs), (3.59)
16

AV - F(Cl -+ Cg -+ 304 -+ 306)7 (360)
16

A= ﬁ(zlcg +4Cy). (3.61)

These taste splittings are flavor independent. Each meson, whether flavor-neutral or
flavor-charged, obtains the same contribution as long as the taste structure is the

sale.

2The identity I is sometimes called “S” for scalar, as in Eq. (3.42).
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425/
—a*dy, U a*dy
Uy Dy u ) € gl]

(a) (b)

Figure 3.1: The hairpin disconnected vertex from the U’ term. (a) diagram in the

chiral theory. (b) the corresponding quark flow diagram.

—a?s, —a?s,

a2
i — — :';:‘:g + & . 4 —+ ..

(a) (b) (¢)

Figure 3.2: (a) The complete flavor-neutral, taste-vector propagator between Uy and
Dy . Tt is obtained by summing over all diagrams in (b), where different numbers of

taste-vector hairpin vertices are inserted.

As explained before, we treat the quadratic terms in U’ as vertices. For example,

one such term is
25/
a“dy,

2

(U, +D,+ S+ )2, (3.62)

216

I (Coy — Csy). This is a two point vertex mixing flavor-neutral,

with a?d), = a
taste-vector mesons. If we draw the underlying quark flow diagram, say, for the
vertex between Uy and Dy, it will look like figure (3.1). This diagram is called the
disconnected “hairpin” diagram. It is disconnected in the sense that the valence quark
lines are not connected, although they are still connected by gluons in QCD. In order
to get the flavor-neutral meson propagator, one needs to sum over all intermediate

disconnected vertices, as shown in figure (3.2). Using the resummation method in

Refs. [38, 31], one obtain the following propagator between flavor-neutral mesons M
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and N in the taste-vector channel

HL(‘JZ + m%v)

DV _ —CZ25/ ’
My (@ +mip ) (@ +mi) TTp(g® +m3,)

(3.63)

where L labels the unmixed flavor-neutral mesons in the “UDS” basis and F' labels
the eigenvalues of the full mass matrix (include the effects of U in the taste-vector
channel). For n = 3, the eigenstates of the full mass matrix are 7, - and 7;, and

their masses are listed in Ref. [31]

mig = myg, =mjp, =2um+a’Ay,
1 3
ml = 3 (mQUV +m3, + Zazé{/ — Z) :
2 Ll s 2 3 o
my, = 5 (Mo, +mg, + 1° oy + 72 ; (3.64)

where the up and down quark masses are set equal: m, = mg = m.
Similarly, one can find the propagators of flavor-neutral, taste-axial mesons by

following the same procedure.

HL(q2 + m%A)

D4 = —a%d )
M A+ m3 )@ +m3 ) [1p(a® +m2,)

(3.65)

where the eigenstates of the full mass matrix are 7%, 74 and 7y, whose masses can be
obtained by substituting V' by A in Eq. (3.64).

Finally, the m2 term in Eq. (3.46) produces a vertex mixing flavor-neutral, taste-
singlet mesons (Uy, Dy, Sy, etc.)

2
—2mg

3

(Ur+Dy+Sr+--+) (3.66)
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It has the same form as the flavor-neutral, taste-vector vertex in Eq. (3.62), thus can
be treated on the same footing. One then finds the propagator in the flavor-neutral,

taste-singlet channel

3 (@ +mi )@ +my,) [1p(¢% +miE)

Din = (3.67)

Since we will take m3 to infinity in the end, we only need the masses of eigenstates
of the full mass matrix in the flavor-neutral, taste-singlet sector in that limit. They

are [31]

mfr? = myp, =mp,, (3.68)
mi  2m3

m?, = % + TSI (3.69)

mfig =mg. (3.70)

3.3 Rooted Staggered Chiral Perturbation Theory

The chiral theory we build so far is actually for unrooted staggered fermions. In
SXPT this can be seen from the fact that for each pseudo-Goldstone boson with
certain flavor structure, there are sixteen copies with different taste structures. These
unphysical particles can appear in loops and give extra contributions. In order to
get the physical results, one needs to take into account the fourth-root procedure,
which is used for staggered quarks, in the framework of staggered chiral perturbation
theory. In the language of Feynman diagrams, taking the fourth-root is equivalent
to dividing the contribution of each sea quark loop by four. Correspondingly, one

can draw the underlying quark flow diagrams for each Feynman diagram in terms of
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Figure 3.3: Sample pion self energy diagrams and possible quark flow diagrams. (a)
and (b) are two diagrams contributing to the pion self energy. (c) and (d) are the
corresponding two possible quark flow diagrams. The diagram in figure (c) gets a

factor 1/4 while the diagram in figure (d) does not.

Goldstone mesons. There can be many possibilities of quark flow diagrams for one
single diagram represented by mesons. In figure (3.3) we show the pion self-energy
tadpole diagrams, which are typical in XPT calculations, and two possible quark flow
diagrams. We associate a factor of 1/4 for each internal sea quark loop appearing
in the quark flow diagrams. For example, the contribution from diagram in figure
3.3(c) is multiplied by 1/4 while the contribution from diagram in figure 3.3(d) is
not. By studying the quark flow diagrams carefully, one can find the appropriate
factor for each channel and obtain final results by summing over contributions from

all diagrams.
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It turns out that the fourth-rooting can be incorporated more systematically by
using the replica method [39, 16, 35]. We will illustrate this method later in the
calculations of the pion mass and decay constant.

Again, there are concerns about the usage of fourth-root procedure in staggered
chiral perturbation theory. Recent work shows that rSXPT is the correct chiral effec-
tive theory for rooted staggered quarks [16, 35], thereby reproducing the continuum
XPT in the @ — 0 limit. For a recent review of the fourth-root procedure see Ref. [12]

and references therein.

3.4 Partially-Quenched Chiral Perturbation The-

ory

In QCD, the correlation function of a charged pion is

(7 (2)7=(0)) = (u(x)ysd(x)d(0)y5u(0))
1 ! - —Sgauge =S fermion 53 1
- / DUED%D%@ a(w)5d(x)d(0)y5u(0)

/
1 _ -
= Z/DUG_S‘”“QE/ | | Dq_iine_fq(¢+M)qﬂ(x)75d(x)d(O)%u(O)
i=1

— _% / DUe SsuseDet (] + M)Tr [y5(1D + mu)op 5 (D + ma) g | -

= — (3P +mu)og 1P + ma)zo ), (3.71)

where we have performed the integral of fermion fields explicitly. In the last step
in Eq. (3.71), we assume that the probability distribution of gauge configurations
is oc e~ SeeuseDet(]) + M). Tt can be seen that the sea quarks which contribute the
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fermion determinant and the valence quarks which appear in the propagators are
in some sense independent. One can choose their masses to be different, or even
use different fermion actions for these two types of quarks. These choices result in
some “altered” versions of QCD: the former is the so-called partially-quenched QCD
(PQ-QCD) and the latter is the mixed action QCD. There are some diseases with
these QCD versions. For example, they violate unitarity since external states and
intermediate states are not the same. Nevertheless, we will find that they are useful
in helping us to extract physical results. Below I will concentrate on the PQ-QCD,
where valence quark masses are different from sea quark masses.

An important fact is that PQ-QCD has ordinary QCD as its subset [38]. From
PQ-QCD, one can always go to the full QCD limit by taking valence quark masses
equal to sea quark masses. People are interested in PQ-QCD simulations mainly for

the following reasons:

1. The computation of quark propagators are relatively easy compared to the gen-
erations of dynamical gauge configurations. For each gauge ensemble generated
with the same sea quark content, one can use several sets of valence quarks to
compute quark propagators, correlation functions and “physical” quantities like
masses of mesons composed of valence quarks. We use the quote marks here

because these quantities do not correspond to real physical quantities in QCD.

2. From PQ-QCD, one can construct partially-quenched XPT (PQXPT), using the
same method used above in constructing ordinary XPT. Except for some minor

differences like the presence of double poles and extra operators in PQXPT, the
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form of PQXPT is basically the same as XPT. LECs in PQXPT take the same
values as LECs in XPT because, simply speaking, the LECs do not depend
on quark masses. More importantly, PQXPT enables us to pin down LECs
more easily from PQ-QCD simulation results. For example, the NLO analytic

contribution to m?2 in SU(3) PQXPT is

~ (2Lg — Ls)(my + my) + 2(2Lg — Ly) (2 + m,), (3.72)

where m, and m, are the valence masses and m and m, are the sea quark masses.
(We have set light sea quark masses equal: m, = mg = m.) In ordinary SU(3)

XPT, the corresponding contribution is

~ (2Lg — L3)2m + 2(2L¢ — Ly) (210 + my). (3.73)

In order to find (2Lg — L5), one only needs to change valence quark masses in
PQ-QCD simulations, while one needs to change sea quark masses in ordinary
QCD simulations. Clearly it is more economic to use the partially-quenched

approach since changing valence quarks is easier in lattice simulations.

Because of these advantages, PQ-QCD is often used in modern lattice QCD simula-

tions, and the data obtained, e.g., meson masses, decay constants, can be analyzed

by using formulae from PQXPT.

To implement partial-quenching in QCD, one can use the trick by Morel [40]. If

there are N, valence quarks and N, sea quarks, one introduces N, pseudo-fermions

(bosonic fermions) with masses equal to those of the valence quarks, in order to

cancel the contributions from N, valence quarks to the functional determinant. In
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another words, the valence quarks are quenched because, equivalently, there is no net
contributions from them to the determinant. Indeed, the N, pseudo-fermions behave
like bosons but they are still four-spinor objects. In the path integral formalism,
they give factors det(D + m)~! in the functional determinant which exactly cancel
the contributions from the N, valence quarks. With N, + N, quarks and N, pseudo-
fermions, the Lagrangian is invariant under a graded chiral symmetry group SU (N, +
Ng|Ny)p x SU(N, + Ng|N,)r. An element in the SU(N, + N¢|N,) group takes the

form

A B
U= : (3.74)

C D

where A is an (N, + Ny) x (N, + N,) matrix composed of commuting numbers, D is
an N, x N, matrix composed of commuting numbers. C' and B are matrices of anti-
commuting numbers, with dimension N, x (N, + N;) and (N, + N;) x N, respectively.

If valence quark masses m? and sea quark masses m? are both small, and their
differences |m? —m?| are also small [29], one can construct the corresponding PQXPT
for PQ-QCD. Since the symmetry group is enlarged to SU(N, + Ns|N,), the chiral

field ® becomes a (2N, + N;) X (2N, + N;) matrix
o= , (3.75)

where ¢ is the (N, +N,) x (N, + N,) matrix for ordinary mesons, ¢ is a N, x N, matrix
for mesons made of pseudo-fermions, y and x' are mesons made of one fermion and

one pseudo-fermion. The LO chiral Lagrangian then takes the form [4]

2 2

f 2
Lpo = fZStr(DHEDuET) - ST+ xZh) + %CPS, (3.76)
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in which ¥ = expi®/f. Here, the super-trace Str is defined as StrU = TrA — TrD for
a matrix U defined in Eq. (3.74).

At NLO, the chiral Lagrangian of SU(3) PQXPT takes the form
,cg;g = — L;Str(D,X'D,%)? — L,Str(D, XD, %" Str(D, XD, ¥7)
— L3Str(D,X'D,¥D, %D, %) + LyStr(D, XD, %)Str(Xy + Xx ")
+ LsStr(D, XD, B(Xy + 2x1))
— LeStr(XTy + 2xN)? — LyStr(STy — 2xN)? — LeStr(ETy Xy + SxTEy )
+iLoStr(F1,, D, YD, Y + Fr,,D, YD, ") 4+ LigStr(EFy,, X Fr,,)
+ contact terms
+ Lpg[Str(D,X'D,¥D,%D, %) — %Str(D#ET D,X)?
— Str(D, XD, 2N Str(D, XD, %) + 2Str(D, XD, XD, %D, X)) (3.77)
Basically, it has the same form as the NLO chiral Lagrangian of ordinary SU(3)
XPT in Eq. (3.36), but with the trace Tr replaced by the super-trace Str. Another
difference from ordinary XPT is that the last term in Eq. (3.77) is an extra operator
that appears in NLO PQXPT. This is the so-called unphysical operator [41]. When
we go to the full QCD case, this operator will vanish due to Cayley-Hamilton relations
for dimension-three matrices. We will come back to this issue when we talk about
the SU(2) XPT in the next chapter.
There is another way to formulate the partially-quenched chiral Lagrangian: the
so called “replica” method. Furthermore, this method can be extended in the case of

SXPT to take into account the fourth root procedure. We will illustrate this method

in the next chapter.
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Above is only a brief introduction to the PQ-QCD and PQXPT. For more detailed
discussion and subtleties involved, we refer the reader to Ref. [42, 37, 38, 29] and

references therein.

3.5 Pion mass and decay constant in partially-quenched

SU(3) rSXPT

In partially-quenched SU(3) rSXPT, where the two valence quarks are z,y, one
can calculate the mass of the flavor-nonsinglet meson P* = a7 up to NLO, i.e.,
O(p*, p*mq, mZ, p*a®, mqya®, a*). For simplicity, we concentrate on the true Goldstone
particle Py .

In the 241 generic case (m, = mg = m # m, and no degeneracies between valence
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and sea quarks), the NLO expressions for m P and fP5+ are [1]

(mNLO 2

Pt )

—2a%0}, > R {Mﬁ]yv}w ) 2020, > R EME, D) <m§>+a2<L"+L’>>

J J

16,Utree

+f2

32 ree N

I = f{1+16 2f2[ 3224 mo,) ‘( REAAME N im3,)

+REIMENi(m2.) +ZDE3?1 (M Hem)
+ZDJ[2Y21] {M;% QZR[32 {MXYI}> (m )>

+§a2(5(/< REAAME 1i(m §<V>+R£§;2]({M£?l}>l7<m2yv>

ZD% M) ZD??J ({ME })e(m?)

+QZR£'472]({M[;]YV )g(mi)) + <V N A) +6L2(LH . L/)
J

16,utree
f2

8,utree
f2

+ Ls (my +my) + —=—Ly (2m+m5)}

Here p and f are LO LECs, and Ly, Ls, Lg, Lgs are NLO LECs. These are all LECs
that also appear in the continuum SU(3) XPT. ¢, and ¢/, are LO taste-violating
parameters, and L', L” are linear combinations of NLO (O(a®p?, a*m,,a?)) taste-
violating parameters. The index () runs over all mesons composed one valence quark
(x,y) and one sea quark (u,d, s), and B represents all sixteen taste structures.

In Egs. (3.78) and (3.79), functions Rg-n’k} and D][Z-’k] are residues that come from
integrating the flavor-neutral meson propagators in tadpole diagrams, like the one

shown in figure 3.4. Its contribution to the pion self-energy is
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Xv Yy

By By

Figure 3.4: A sample tadpole diagram which contributes to the pion self energy.
Here the meson P is the Goldstone pion composed of z and y valence quarks. The
propagator in the loop is between two flavor-neutral, taste-vector mesons Xy and Yy,

and the corresponding quark flow diagram is a disconnected diagram.

2 2
¢ +mi))

~ d4pDV _ —(12(5/ /d4p HL( v

[ @iy = (et) @+ %)@ + ) [ i)

(¢* +mp, ) (* +mp, ) (¢® +mE,)

= (e 6/V)/d Ple +m% ) (@ +m3 ) (g +m2 )(¢* +m2 ) (g* +m

)
(¢° + mi;, ) (¢* +msv)
v)

= (et} [ ¥ P @ T B @ F )@ 2 (3.80)

(¢*+my, )’
where we have used Eq. (3.63) and set m, = my = m in the last step. The integrand

is in the form

T (¢® + p2)
H?:1(q2 +m?)’

where {M} and {u} are two sets of masses, and m; € {M}, u, € {u}. If n > k and

T (MY {p}) = (3.81)

there are no degeneracies in the denominator mass set { M}, one can use “Lagrange’s

formula” to write ZH ({M}; {u}) as [31]

TR () = 3 R MY () (3.52)
with the residue function R defined as
R[n k]({M} {u}) = Ha 1(lua 12) (3.83)

[[izi(mi —m3)
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Substituting Eq. (3.82) into Eq. (3.80), we get

[ P =R ) [t EEN

pq2 + m;
where the mass sets are {M} = {mx,,my,,my,,my } and {u} = {my,,mg, }.
The integral in Eq. (3.84) is divergent. After regularization and renormalization, the

infinite part is absorbed by the bare LECs. The finite part is

d'p 1 1 2
/( P S ——milne = ——(m?), (3.85)

oA +m? 162 Az 1672

where A is the scale used in the renormalization, and [(m?) is defined as

m2

I(m?) =m lnﬁ (3.86)

Assembling all these equations together, Eq. (3.80) finally takes the form

/ d'p DYy — 37 RMAAMY s [ih)i(m?). (3.87)

i=1

If there are degeneracies in the denominator mass set {M}, like in the integral
[ d*pDY y, one can proceed by taking derivatives on the mass set without degen-

eracies

d (¢* +mg, ) (> +mg,)
d4 DV — (_ 25/ o /d4 \% \%4
[ ks = ot ) F R ) )

= () ) [t

q —i—mf

S (—a?)( dg{ 'S REZ (MY ()i (m2)

i=1

= (—a’3y) ZDsz {M} i {uhi(m3), (3.88)

where we defined the residue function D as

UMY () =~ R (M) 1) (3.59)
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From the above discussion, one can have a general idea about the structure of
Egs. (3.78) and (3.79). The residue functions RL"”“} and DZ[Z-’k] are defined in Eq. (3.83)

and Eq. (3.89) respectively. The function I(m?) is defined in Eq. (3.86), and I(m?) is

I(m?) = — (ln Zl—j + 1) : (3.90)

which comes from integrals in the form [ d*p For completeness, we list all
(p

1
2 m2)2 "

the “denominator” and “numerator” mass sets here:

(M} - {mx,,mn,},

(M} = {my,,my, },
(M = {mx,, myy, my, },

(MG} = {mxy My g, 3, (3.91)
(M} = {mysy My, g
(MG} = {maxy My, My iy},

(MY} - (s},

(M} = {myas My 3,
(MG} = {mx 0 mygs Mg 3,

1}y = {muz,ms}, (3.92)

where the meson masses can be found in section (3.2.2).
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Chapter 4

SU(2) Staggered Chiral

Perturbation Theory

4.1 Motivation for SU(2) XPT

In three-flavor XPT, the expansion parameters are m2 /A%, m3 /A2, etc. Although the
pion mass is much less than the chiral scale A, ~ 1GeV, the kaon mass is not. The
kaon part in the expansion is thus not converging as fast as the pion part. In order to
make the XPT results more reliable, one needs to go higher orders in the expansion
so that truncation errors are better under control.

The issues caused by kaons in XPT can be dealt with in another way. Instead
of expanding around the three-flavor chiral limit m, = my = ms; = 0, one performs
expansions around the two-flavor chiral limit m, = mg = 0, m, = m?"  where
mP"s is the physical strange quark mass. In this way, the new expansion parameters

are mZ /A2, etc. and the series converges faster than the original one. The two-flavor
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chiral expansion can be systematically studied by using two-flavor XPT, where the

chiral symmetry is restricted to the up and down quark sector.

4.2 SU(2) chiral perturbation theory in the con-

tinuum

At LO, the SU(2) chiral Lagrangian in Minkowski space is [26]
(4 F2 . .
L) = TV#UTV“U +2BF2(s"U° + p'U"), (4.1)

where F'is the pion decay constant of F in the lowest order, with normalization so
that F, = 92MeV. U = (U°, U?) is a four-component real vector field of unit length,

i.e., (U%)*+>,(U")? = 1. The covariant derivative V, is defined by

V.U =0,U° +a,(z)U", (4.2)

VU =0,U" + ¢l (2)U' — al (2)U°, (4.3)

"

where a/, () and v}, () (i = 1,2, 3)are components of external axial and vector currents

a,(x) and v, ()

v, = —TZU:L, (4.4)
a, = =7'q, (4.5)

In Eq. (4.1) we also introduce external scalar and pseudoscalar currents s and p
s =8I + s'7", (4.6)
p=p"I+p'1, (4.7)
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0

where s°, s’ p°, pi are all real. Vectors x4 = 2B(s%, p*) and ¥ = 2B(p°, —s') trans-

form like the vector U.

Alternatively, £§4) can be written in “trace form” in terms of an SU(2) matrix X:
y_ PP
£ = ZTr(DuET D) + FXAUA, (4.8)

where the matrix field ¥ can be related to the vector form of U by

% =01 +ir'U", (4.9)
.1
U° = STz, (4.10)
Ut = —%Tr[riZ], (4.11)

where 7¢ are three 2 x 2 Pauli matrices. The covariant derivative D, is defined as

DY =0,% —ir,X +1iXl, with the left and right handed currents [, and r,

1

l, = 5(% +a,), (4.12)
1

Ty = E(vu —ay). (4.13)

The external sources y and ' in the trace form are related to the fields s and p by

X =2B(s+ip) =2B[(s" +ip") I + 7(s" +ip")], (4.14)

X' =2B(s —ip) =2B|(s® —ip°)I + 7(s" — ip")]. (4.15)

With these definitions and the following trace equations for Pauli matricies

Tr(7") =0, (4.16)
Tr(r'77) = 26%, (4.17)
Tr(ririr%) = 2ie'*, (4.18)
Tr(r'rirhrt) = 2(696M — 5 4 §ileIk), (4.19)
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one can relate terms in the trace form to terms in the vector form

1
VrUTVY U = 5Tr(DMzT D,Y), (4.20)
1
XU = ZTr(ETX + 2, (4.21)
1
U = ETr(ETX — 2. (4.22)

The equation of motion (EOM) for SU(2) XPT reads
VeV UL — UAUTVHV,U) = A — U UT ), (4.23)
in the vector form, or reads [24]
(D*D)st — (D) — x2f + 2y + %TI(XET -2y =0, (4.24)

in the trace form.

At NLO, the general form for the SU(2) chiral Lagrangian is [26]

LY =1,(V*UTV U + L(VFUTN UV, UV, U)
+ (XU + L(V*XTV,U) + Is(UTF* F,U)
+ (VU E,, NV U) 4+ :(XTU)? + hax" x + hoTr(F,, F*™)

+ haX" X, (4.25)
where the tensor F),, is defined by
(V,vV, -V, vV, )U=F,U. (4.26)

Note that the field strength F},, has two indices, of which one is to contract with the
index of U. Writing the right hand side of Eq. (4.26) explicitly, it is F lf‘VB U4 with
indices A, B = 1,2,3,4. In Eq. (4.25), terms with coefficients h; are contact terms
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that do not contain dynamical fields, and we will not show these terms explicitly in
the following discussions.
Using Eqs. (4.20)-(4.19) and switching to Euclidean space, we can write the NLO

SU(2) Lagrangian Eq. (4.25) in the trace form [24]

ll l2
£ =— Z[Tr(DuZDuZT)]Q — ZTr(D“ETD,,E)Tr(DHETD,,E),

B I3+,
16

z

(Tr(x" + S + S T(D,S D) T (S + 2x ),
+ —[Tr(xZT = X%,

il

+ LTr(STEESED) — ?Tr(FjVDMETDVE +FiD,xD,5),

+ [contact terms|, (4.27)
where DY = 0, — ir,X +iXl,, and the field strength tensors Flf, and FMLV are

Flﬁ = aurl/ _ 8Vru - i[?"u, 7",/], (428)

FlL =0, — 0L, — il 1). (4.29)
They are related to the field strength F),, by

FE + FL = F,, = FaPrirP, (4.30)

For partially-quenched SU(2) XPT, the NLO chiral Lagrangian takes the same
form as the NLO Lagrangian in general SU(N) (N > 3) case. There are eleven
terms at this order, among which four terms vanish in the full SU(2) limit due to
Cayley-Hamilton relations for two-dimensional matrices. These terms are the so-

called unphysical operators in the partially-quenched SU(2) XPT.
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4.3 Cayley-Hamilton relations

The Cayley-Hamilton theorem states that every square matrix satisfies its own char-

acteristic equation. For a n x n matrix A, its characteristic polynomial p is defined

by

p(A) = det(A,, — A),

(4.31)

where [,, is the n x n identity matrix. The Cayley-Hamilton theorem says that we

have the equality

p(A) =0.
For example, if A is a 2 x 2 matrix
a b
A= ;
c d
then we have
A% — (a+d)A+ (ad — be) I, =0,

= A?—Tr(A)A+ 2([Tr(4))? — Tr(4%) =0

The 2 x 2 matrices A and B satisfy

AB+ BA —Tr(A)B — Tr(B)A+ Tr(A)Tr(B) — Tr(AB) = 0.

(4.32)

(4.33)

(4.34)

(4.35)

Multiplying both sides by a 2 x 2 matrix C' and taking traces on both sides of the

equation, we get

Te(ABC) + Tr(BAC) — Tr(A)Tr(BC) — Tr(B)Tr(AC)

— Tr(AB)Tr(C) + Tr(A)Tr(B)Tr(C) = 0.
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The chiral field X satisfies

»et =1, (4.37)

Tr(2'D,Y) = 0. (4.38)

We can get various relations between terms in NLO SU(N) chiral Lagrangian by
making appropriate choices for matrices A, B and C' in Eq. (4.36). For example, if
we let A = DX, B = ¥D,%f we have Tr(A) = Tr(B) = 0. Choosing C' to be
D,YD, YT and (xXT + SxT), we get respectively
1
O, =Tr(D,xD,x'D,x~D,%") — E[Tr(DHEDHET)]Q =0, (4.39)

1
O, = Tr(D, XD, X (= + 2x 1)) — §Tr(DHEDHET)Tr(XET +3xH) =0 (4.40)
If we choose A= D, X% B=YD,2 and C = AB = D, XD, %1, we get

o0, =Tr(D,~D,¥'D,~D, %) + Tv(D, XD, %' D,¥D, %)

— Tr(D,~D,~NTr(D,XD,%T) = 0. (4.41)
In practice, we use another operator Os instead of O}

1
O; =Tr(D,~D,%'D,xD,¥") + 2Tr(D, XD, X' D, ED, ¥ — 5[Tr(z)uzzpuzﬁ)]2

— Tr(D, XD, %N Tr(D,XD,%T) = 0. (4.42)

This operator is the sum of Of and O; and it is linearly independent of O; and Os.
Actually, Eq. (4.42) is also true for three-dimensional matrices and it plays a role in

generalizing SU(3) XPT to the partially-quenched case.
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Furthermore, we have the following equations for SU(2) XPT:

O = 2Tr(xENET + ExTExT) = [Tr(x & + 2xH]? = [Tr (xS - Sy ]

= [Tr(mx)]* + [Tr(mxM)]* = [Tr())* — [Tr(x")]*. (4.43)

The last line in Eq. (4.43) do not involve X, hence the operator O, is a contact
term, and it does not have any physical effects in SU(2) theory. However, O, does
contribute to calculations of physical quantities in the PQ-SU(2) theory and general
SU(N) (N > 2) XPT. Therefore, we treat it as a new operator in the PQ-SU(2) theory
and list it in the chiral Lagrangian with coefficient p,.

In the full SU(2) theory, each of the four operators O, Oy, O3 and Oy either
vanishes, or becomes equivalent to a contact term, and thus does not contribute to
calculations of physical quantities. However, in the partially-quenched case, these
operators do not vanish, and they contribute to the quantities that will become phys-
ical quantities in the full limit. For these reasons, we call these four operators un-
physical operators in the partially-quenched theory. Correspondingly, the PQ-SU(2)
Lagrangian be can written as terms in the full SU(2) theory augmented by these un-

physical operators Oy, O, O3 and O, with coefficients ps, p1, ps and py respectively.
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Now one can write down the most general NLO Lagrangian for PQ-SU(2) XPT

19 Iy
£y —Zl[Tr(DuZTDuZ)]Q - fTr(DMETD,,E)Tr(DMETDVZ)

cont —
1
+ p3 (Tr(DMZTD“EDVZTDVE) — E[Tr(DHZTD“E)P)
+ Y <Tr(DuET D,¥D,¥'D,¥) + 2Tr(D, %D, YD, %D, ¥)

1

— S[B(D,' D) - Tr(DHETDl,E)Tr(D”ETDZ,E))

b+l
16

i 1
+ f—é (Tr(DuETDME(XET +3xh) — ETr(DHETDME)TI"(XET n E;J))

l()
[Te(XT + 2x)) + STr(D 2 D 2) Tr (x4 2x)

0
+ % <2Tr(ZTXxTX + 3Ty = Tr(x BT 4+ 2x1)? — Tr(xy ST — ZXT)2>

lO
+ Z[Tr(xEt — 2xH)?
16
.lo
— Tr (X" Fr S Fr,,) — %Tr(FLWD“ET D,Y + Fg,, D, XD, 3",  (4.44)

where all coefficients are bare parameters and need to be renormalized later.

The Lagrangian is written in this form so that the bare coefficients ¥ (i =
1,2,-+-,7) have the same values as the corresponding [; with the standard defini-
tions [26] in the two-flavor full QCD limit. The parameters p?, py, p3 and pJ are the
four extra LECs at NLO in the partially-quenched case. The four operators associ-
ated with p{ are unphysical operators at O(p*), which only appear in the two-flavor
partially-quenched theory. These unphysical operators vanish in the unquenched
SU(2) sector of the PQ theory as a result of the Cayley-Hamilton relations for 2-
dimensional matrices. Among these operators, the two with factors p{ and p9 will
contribute to the pion masses and decay constants at NLO. The other two with fac-

tors p§ and p} only contribute to the same quantities at NNLO, since they contain
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four derivatives. Here, I am only interested in pion masses and decay constants at

NLO, so p{ and pJ will enter the calculations below, and p$ and pJ are irrelevant.

4.4 Staggered computations

In order to perform the corresponding analysis in the SU(2) case, one needs to cal-
culate the 1-loop formulae for pseudoscalar meson masses and decay constants in
two-flavor PQ-rSXPT. In addition, it is important to check that the presence of taste
violations and rooting do not interfere with the decoupling of the strange quark as its
mass is increased, allowing the SU(2) chiral theory to emerge from the SU(3) theory.
This is a check on a technical step in the argument of Ref. [16] that rSXPT is the cor-
rect effective chiral theory for rooted staggered quarks. Finally, it is useful to relate
the LECs in the two-flavor and three-flavor cases, and to find the scale dependence
of the LECs in both cases, thereby checking their consistency. These calculations are

presented below.

4.4.1 Brief review of SXPT

The key point of SXPT is to incorporate systematically the taste-violating effects at
finite lattice spacing in the chiral perturbation theory for staggered fermions. The idea
of how to develop XPT including scaling violations is due to Sharpe and Singleton [43],
and was first applied to staggered quarks by Lee and Sharpe [30].

Basically, SXPT is constructed through two steps. First, one writes down the con-

tinuum Symanzik Effection Theory (SET) for staggered fermions. The taste-violating
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four-quark operators appear at O(a?) in the SET. The coefficient of each of these op-
erators also depends on the coupling constant oy, and it varies with different staggered
actions used in simulations. Specifically, for unimproved staggered action, these op-
erators appear at O(a,a?), while for asqtad improved action, these operators appear
at O(a2a?) [1]. For Highly Improved Staggered Quarks (HISQ), these operators also
appear at O(a?a?) but with smaller coefficients than for asqtad quarks [44, 45]. In
the second step, one maps operators in the SET to terms in the chiral Lagrangian
using spurion analysis. The taste-violating four quark operators are mapped into
the taste-breaking potential in the chiral Lagrangian. In the two-flavor case, these
two steps can be done in the same manner as those in the three-flavor case given by
Refs. [31]. The final form of the two-flavor chiral Lagrangian looks exactly the same
as the three-flavor Lagrangian except that the chiral field ® takes its definition in the
two-flavor case.

For the purposes of constructing the chiral theory, the SET is taken as “given”. We
do not need to consider the issues of additive and multiplicative renormalizations that
one would need to face in defining finite higher dimensional operators in perturbation
theory. All we need to know are the symmetry properties of staggered fermions,
which determine what operators can appear. Note further that the lattice spacing a
is not a cutoff for the chiral theory, which will in practice be cut off using dimensional
regularization. Instead a serves to parameterize symmetry breaking in the chiral
theory, and plays a role closely analogous to that of the light quark masses.

In the SET there are also operators at O(a?) which satisfy all the continuum
symmetries of staggered fermions. Such operators produce “generic” discretization
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effects and in general come with different powers of a; than taste-violations. (For
example, with asqtad quarks, the lowest order of generic discretization corrections is
O(asa®) while the lowest order of taste-violations is O(a?a?).) These operators in the
SET are logically distinct from O(a?) taste-violating operators, and their sizes are
“dialed” more or less independently by adjustments of the actions. In the asqtad case,
it is know from simulations [1] that taste violating effects are the dominant cause of
discretization effects at O(a?) even though generic effects can appear at lower order
in a,. That is because the coefficients of the taste-violating operators turn out to
be large. After being mapped to chiral theory, the generic SET operators give the
same terms as those in the continuum Lagrangian, but multiplied by a coefficient of
O(a?). For the same reason above, these terms in the chiral Lagrangian representing
generic discretization effects are essentially different from the taste-violating terms
even though both of them can appear at the same order of lattice spacing a. It is
therefore consistent to consider the effects of taste-violating operators independently
of generic effects, and that is what I do here.

In practical numerical work, both effects need to be considered. The fact that
taste-violations and generic finite lattice spacing effect usually are significantly small,
have different mass dependence, and come with different powers of «a, allows a rela-
tively clean separations if sufficient numbers of different lattice spacings are included.
Of course, some systematic error will be present and needs to be estimated.

For convenience in numerical work, the effects of generic operators are often ab-

sorbed into effective a? dependence of the LECs. This is possible since the generic
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operators have the same symmetries as the continuum QCD operators.! So, for ex-
ample, one can take the results given here for SU(2) SXPT and effectively take into
account generic operators simply by letting the LECs have a? dependence. But I
emphasize that, logically, the generic effects should be thought of in XPT as new op-
erators, just like the taste-violating effects, not as corrections to old operators. That
way, we satisfy the requirement that all LECs in SXPT are a? independent, just as

they are independent of the light quark masses.

4.4.2 Two-flavor PQ-SXPT at LO

In SXPT the theory becomes a joint expansion about the chiral and continuum limits.
The effective Lagrangian was worked out for the single flavor case in Ref. [30], and
later generalized to multi-flavor case in Ref. [31]. In Refs. [16, 35], it was shown
that the replica method introduced for this problem in Ref. [39] is a valid method
for taking rooting into account. The partial quenching can be treated either by the
graded symmetry method [42, 46], or by the replica method [47]. Here, for simplicity,
I use the replica method for both the rooting and the partial quenching. I take n/.
copies of each valence quark (x,y), and n, copies of each flavor of sea quark (u,d).
The chiral symmetry group is SU(8(n.. +n,))r x SU(8(n,. +n,))r. The pseudoscalar

mesons can now be collected into a 8(n!. +mn,.) x 8(n, +n,) matrix ®, where the factors

'There are also operators that have continuum taste symmetry but violate rotational invariance.

Their effects appear only at O(a*) in the XPT for pseudoscalar mesons.
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of 8 arise from 2 flavors of 4 tastes each:

/ 1in!
Xll Xln" Pll P
.. " . T
n’'1 n'n’ n’1 n'n!
X" X" P P
.. i - "\
pto.. pmoyn oy
n’1 n’.n’! 1 ’o
P ... Pt Y™ 0 Y
b =
11 1in 11 1n,.
U N VA (i
nrl Ny nrl Ny
U .U L . T
71_11 7.‘.1”7‘ Dll DlnT
vl . gume pmlo o pDrene
(4.45)

where each entry is a 4 x 4 matrix in taste space with, for example, U% = 321° U¥T,.
X,Y,U, and D are the mesons made from z, yy, uii, and dd quarks respectively. P,
is a charged valence meson made from xy and m, is the charged sea meson made

from ud. The hermitian generators 7T, are defined to be:

Ta = {557 iSMSa Zf,ul/v g,ua 5[} <446)

The lowest order (O(p?, my, a?)) Euclidean Lagrangian is:

2 2
£ :%Tr(DuZDuZT) - %Tr(xﬂ +x2)
2mg 1 nen 11 N2 2
+T(UI +...+ U™+ D+ ...+ D)+ a’V, (4.47)
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where ¥ = exp(i®/f) and x is a 8(n, + n,) x 8(n, + n,) diagonal matrix:

X:Q,u(g)Diag(znx],...,mxl,myl,...,myl,mu[,...,mul,mdl,...,md]) (4.48)

with I the 4 x 4 identity matrix in taste space. The covariant derivative D, in

Eq. (4.47) is defined by
DY =0, —il,Y+i%r,, DX =0,5"—ir, X +i%1, (4.49)

where [, and 7, are the left and right-handed currents respectively. Throughout this
paper, I alway use the superscript or subscript “(2)” to indicate parameters in the
two-flavor theory.

The taste-breaking potential V = U + U’ is defined by:

U= 00, =COT(E Vel P s
k
1
2+ (R R
+ 0575 > [Te(exelPR) + hoc]
1
+ CPZ S (el el R + hee

+CP > Te(ePseont), (4.50)

p<v

/ 1
—U' =Y CuO =07 Y [THEPD)TH(EPT) + hee
k/

v

1
+ O YT (E D) (e S) + hee

ORI Tr(E 5]

v

+ 082 ey e s, (4.51)

where féR) is the product of &5 in taste space with the identity matrix in flavor and

replica space, and similarly for f,SR), fﬁ?) and 5,8}5).
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Due to the anomaly, the SU(8(n] +n,.)) singlet receives a large contribution to its
mass (< myg), and thus does not play a dynamical role. Integrating out this singlet
is equivalent to keeping the singlet explicitly in the Lagrangian (the third term in
L®), and taking mg — oo at the end of the calculation [37]. Here, the m2 term is
normalized so that for the hairpin diagram between two flavor-neutral taste singlet
mesons, each composed of a single species, the vertex is @, independent of the

number of flavors. For the two-flavor SXPT with n, replicas for each sea quark, the

mass matrix for flavor-neutral taste singlet mesons takes the form:

myi +4 0o’ 0o’ RN 0o’
5/ .. . 6/
5, . e mU}lr’ﬂr + (5, 5/ .« e 5/
, (4.52)
0o’ ce 0’ mpu +0 o’
6/ .. . 6/
6, e (5/ (S/ 6, mD}’Lr’ﬂr —|— 6/
where every non-diagonal element is §' = @, and I have anticipated taking n, — 0

to eliminate virtual loops of valence quarks. Diagonalizing the matrix and taking the

limit of mg — oo, we obtain the mass of the 7}:

8m3
2 _ oMy
My, = —3 T (4.53)

Generally, if there are Ny flavors of sea quarks, the result will be #N Py
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4.4.3 Two-flavor PQ-rSXPT at NLO
At NLO, the two-flavor PQ-rSXPT Lagrangian has two parts:

£ =9 40 (4.54)

ont

Eg%t contains operators of O(p*, p>m,, mg), which are of the same form as operators
in two-flavor continuum PQ-XPT. £,(f\2 is of O(a*p?, a*my,a*). It contains all NLO
taste-violating terms for staggered fermions [36].

The most general continuum NLO Lagrangian £§§Lt in Euclidean space was given
in Eq. (4.44). This set of LECs can be related to the LECs used by Bijnens and

Lahde [48] through:

Py = —L" 4 2L, Py = —Lg™,

= 4L§2pq) + 2L:(32pq) _ QL(()?pq)7 19 = 4Lg2pq) + 4[/821@)7

P = 16157, Py = —8L;"",

1§ = 1625 + 8L — 8L — 4L, 1§ = 8L 4 4L,

10 =L3, 19 = —2L§*,

10 = —16L%P) — 8L (4.55)

The general form of £ (O(a2p?,a®m,,a*)) is given in Ref. [36]. Examples of

operators in Lﬁ_ﬁv) that contribute here are:
a*Tr(0,516:0,565),  a*Tr(£, 216, XN + p.c., (4.56)

(with p.c. indicating parity conjugate) where the first operator contributes both to
pseudo-Goldstone masses and decay constants at NLO, and the second one only con-

tributes to the pseudo-Goldstone masses at NLO. From this, it is clear that the

78



taste-violating analytic contributions to decay constants and masses at NLO are in-
dependent. We do not need any further details from Ref. [36] here, since it is not
currently useful to relate the NLO analytic taste-violating contributions to parameters

in the Lagrangian.

4.4.4 Rooting and partial quenching

In the continuum limit, there are four degenerate taste species for each quark flavor.
We obtain physical results in rSXPT by taking the fourth root of each fermion deter-
minant, which is known as the fourth root procedure. Although it has been shown
that this procedure produces, non-perturbatively, violations of locality at non-zero
lattice spacing [15], work over the last few years indicates that locality and universal-
ity are restored in the continuum limit of the lattice theory [18, 19], and that rSXPT
is the correct chiral effective theory [16, 35], thereby reproducing continuum XPT in
the @ — 0 limit. For a recent review of the fourth-root procedure see Ref. [12] and
references therein.

For calculations in rSXPT, the fourth-root is taken by letting n, — %L at the end

of the calculation [16, 35]. Similarly, virtual loops associated with the valence quarks

are eliminated by taking n! — 0 [47].

4.4.5 PION MASS AND DECAY CONSTANT

Following the procedures in Ref. [31], T calculate the light pseudoscalar mass and
decay constant through NLO (O(mg, mga?)). For simplicity, I always assume the up

and down quark masses are equal, m, = my = m;. The dimensional regularization
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scheme is employed, and the results in d = 4 — € dimensional space-time are:

2
me
P5

€

1 [2,1] 2] -£
j =1+ gy, |2 MR R o)
J

(my +my
=200, Y T R (MG, DR ()5 4 (V 0 A) + a®(Lg) + L)

H(2)

+
d—4 £2
AT

"
(40 4+ 0+ 4p)2m) + i (8 = ) m)
(2)

(4.57)

1 1 2 2 £
oy =fw {1+ AT 11672 /2 |~ 55 2 Reyy (my,)
(2) Q.B

1 _£ _£
+ Z (Remg(j (m§(]) 2 —I— Remgf] (mgf[) 2
+ (m?][ - m%{])<_RE - 1>(m§([)_§ + (m?][ - m%[)(_Re - 1)<m2Y[)_§>

(RE?,”<{Mxyf}>Rem%<,<m§,>*% + REV(MEy, DRamd, <m;>*%)

+ 252V ( RPIAME DR, —1)( z+ZDf;L DRem? (m?

€

(X oY)+ 22 REVUME, 1Rm2(m?)~ a) (V ¢ A)

=~ =~/ ,u H 2
+ 0t (Lg) — Ly)] + gratage (4 =) @m) + g (D (me +my)

(4.58)
where A is the scale introduced in the dimensional regularization, and all the scale

factors are written explicitly. Here, R, is defined to be:
2
R.=———log(4n) +~v—1+ O(e), (4.59)
€

where v = —I"(1) is Euler’s constant. In Eqgs. (4.57) and (4.58), R, comes from the
integral over the tadpole diagram with a single pole, while (=R, — 1) comes from the

integral over the tadpole diagram with a double pole. The index Q runs over the 4
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mesons made from one valence and one sea quark, and B runs over the 16 tastes, which
form five multiplets (P, V, A, T, 1). 5{/(2) and (5’A(2) are LO taste-violating hairpin pa-
rameters, and L’(’z) and L’(Q) are NLO taste-violating parameters. The latter are simply
the linear combinations of LECs coming from O(a*p?) and O(a*m,) taste-violating
terms, for example, the operators given in Eq. (4.56). There are no contributions
from O(a*) terms to pseudo-Goldstone masses and decay constants, either because of
the exact non-singlet chiral symmetry (for the masses) or because the operators do
not contain derivatives (for the decay constant).

The residue functions R and D are defined as in the SU(3) case in Eqgs. (3.83) and

(3.89). For convenience, we show them here:

[n,k] ) _ H’2=1(M§ - m?)
Rj ({M}’ {M}> - H/ln:1(m12 . m?) ) (46())
DAY () = R (), (4.61)

where the prime on the product means that [ = j is omitted. The denominator

mass-set arguments in these residue functions are defined by:

{M[)Q(]V} = {mx,, m%}, {M%} = {my,, mnb}v
{M[)%]YI} = {mXI ) mYI}? {M[;]Yv} = {mXV’ Myy s m77§/} (462>

The numerator mass-set arguments for taste = are always {u=z} = {my=}. We show
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the masses explicitly here:

mZ, =my =mp, = 2uem + agAg), (4.63)
mk, = 2/izm, + azAg), (4.64)
m2. = 2puaymy, + a*AY), (4.65)
a2,
a8’ @
m%/A =my, + TA’ (4.67)
2 2
My, ~ 3o, (4.68)

where Ag) are the taste splittings in SU(2) rSXPT. The final relation holds for m2 >
mfrl. Here, nj, and 7/, are, respectively, the taste-vector and taste-axial vector, flavor
and replica neutral mesons whose masses are shifted by the taste-violating hairpin
contributions. Since 7} has a mass proportional to mg, it decouples in the limit when

m3 is taken to infinity.
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Using the identities of residue functions listed in the second paper of Ref. [31]:

.

n 1, n=k+1;

>

=t 0, n>k+2.

\
.

Z?:1m§_22:1ﬂ¢217 n=k+1

k] 2 _
ZRJ mjo= 3-1, n=k+2;
j=1
0, n>k+ 3.
\
(
iD[’“’“] _ Pk
j7£ -
=t 0, n>k+1.

2 n 2 k 2 — I
my +Zj:1mj =D ami Mg n=k;

n,k n,k
> (o) —m4 = { rbar (49

Jj=1

3

0, n>k+2.

and ignoring terms vanishing at order e or higher as ¢ — 0 , one can simplify

Eqgs. (4.57) and (4.58) to:
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m
P 1 2 2 2
(e tm) +5m ) ZM(z){l - —1672]"(2) [(,u(g)(Qmm + 2m, — 2my) + a2A§ ) + 2a26{/( )+ 2426, R,
T Yy 2

3 R ) 20, S B G D)+ 7

J

+ Ad—4a2(il(20) + i(g))}

F(2 (2
g (8 + 2+ ) 2m) + (o (o~ ) me + )
2) (2)
(4.70)
1
fpr :f(Q){l + 16722 [ — (pgzy (M + my + 2my) + 2a° AP + 2625, + 2026, )R,
(2)

1 1 -
— o5 D Umd,) + 7 (1md,) + Umd,) + (mf, — md (k)
Q,B

+ (m?]I — mYl l~mYI ) ZRP 1] )l(m?)
a28,® .
+ S (REDAME, Dl +ZD£2;V (M Di(m?)

FX oY) 23 RPI M, D)) + (V 4 A)

1" =/ ILL /,l/
+ AL — L) + S (4 — P 2m) + g () (ma +my)

d—4 d—4 £2
201 £ 2N
(4.71)
where
1
AL = (A7 +447 + 647 +4AT + APY) (4.72)

is the average taste splitting in the two-flavor case. The chiral logarithm functions [

and [ in Eqs. (4.70) and (4.71) are given by [31]:

I(m?) = m?In % [infinite volume], (4.73)
B 2
I(m?) = — (ln % + 1) [infinite volume]. (4.74)



Finite volume corrections at NLO may be incorporated by adjusting (m?) and I(m?)
as in Ref. [31, 49].

Recall that in continuum SU(2) XPT, because the NLO Lagrangian contains all
the possible analytic terms consistent with the symmetries, the divergences generated
from one-loop graphs built from LO vertices can be absorbed by an appropriate

renormalization of the bare NLO LECs [{ and contact term coefficients hY [26]:

R
0 — d—4 ; '—e ) — e
B = (M) (s i), h=1,2,3 (4.76)
7 7 7/3271_2 ) ) ) )

where R, has the same definition as above, and [; and h; are renormalized coefficients
(which often appear as [[ and A} in literature). For SU(2) XPT, the values of v; and ¢;
are listed in Ref. [26]. For the general case in SU(N) XPT, similar results can be found
in Ref. [50]. In Eqgs. (4.75) and (4.76), as one changes the scale A, [; and h; should
also change in such a way that the bare quantities [ and h? are scale independent.

Specifically, under a change in the chiral scale A to A, the SU(2) LECs change by:

% o, A2

l,(A/) = ZZ(A) — 327‘(‘2 0og F,

(4.77)

This renormalization procedure can be applied in SU(2) rSXPT in the same way.
The only difference is that, at each order of chiral expansion, there are additional
taste-violating terms. The presence of these terms in effective field theory reflects
the fact that the continuum SU(4) taste symmetry is broken by finite lattice spacing
effects. In the two-flavor case, the full chiral symmetry SUL(8) x SUg(8) is broken

both by taste-violating terms and by the usual mass terms. Effectively, the taste-
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violating terms are acting just like the mass terms, and they can be treated in the
same way once the power counting scheme is specified. In practice, we use the power
counting rule p* ~ m, ~ a® in SU(2) rSXPT [31, 12]. As a result, the LO contri-
bution for a physical quantity is at O(p?), O(m,) and O(a?), coming from the terms
in Eq. (4.47). At NLO, the one-loop graphs built from LO vertices will generate di-
vergences at O(p*), O(p*my), O(m?), O(a’p®), O(a*m,) and O(a'). By construction,
Eq. (4.54) is the most general Lagrangian in the same order which satisfies all the
symmetries of staggered quarks. Indeed, all possible terms in this Lagrangian are
found by treating mass terms and taste-violating terms in the same footing, using a
spurion analysis [12]. Since the staggered symmetries (a subset of SUL(8) x SUg(8)
in the two-flavor case) are not violated by dimensional regularization, it is possible to

(4)

cont and

absorb all the one-loop divergences by renormalization of the NLO LECs in £
NLO taste-violating parameters in LSV). This is indeed the case in current calculations
of the pseudo-Goldstone pion mass and decay constant. However, since I am only
concentrating on these two physical quantities, I can only derive the renormalization
conditions for certain linear combinations of LECs and taste-violating parameters.
Since valence quark masses m,,m,, sea quark mass m; and lattice spacing a* each

can vary independently, one can collect the coefficients for each term separately and

obtain the following renormalizations:

86



1

0 _ ad—4;

1 = ATl — R,
1

0 __ Ad—4

R ]
1

0 _ Ad—4

pg = Ad74p2 )

(L) + L) = A4 (L + Li) —

(A7 + 201 + 20" R.),

(.Z/I(IQO) a zl(g)) - Ad_4(l~/(/2) - ~/(2) + 2(Aav + 5{/ + 5{4)7?,6)7

(4.78)
(4.79)
(4.80)
(4.81)
(4.82)

(4.83)

Again, the renormalized coupling constants in SU(2) SXPT are scale dependent. They

should change with the scale A in such a way that the bare coefficients are scale

independent. It is easily seen from Eqs. (4.78)-(4.83) that, under a change in the

chiral scale A to A’, the LECs change by:

A
N — RS
ls(A ) = lg(A) + 6471'2 log A2 >
1 A
/ P— —_— —
l4(A) = l4(A) 167‘(2 log A2 s
1 A2

Pl(A) :Pl(A) - @log F’

b2 (A/> = D2 (A)7

T/ T/ / TN T/ / A
(Liay + Lig))(A) = (Lig) + Lig))(A) + (Ar + 26y + 25)4) log Az

12

12

Tn T/ / Tn T / ! A
(Liay — L)) (A) = (Lig) — Lig))(A) — 2(Agy + 0y + 074) log e

(4.84)
(4.85)
(4.86)
(4.87)
(4.88)

(4.89)

After the renormalizations in Eq. (4.78) through Eq. (4.83), the pion mass and

decay constant can be written in terms of renormalized LECs and taste-violating

parameters:

87



2
me .,
P5

(M +my) :M(Q){ 167 2f(2) [ZR {MXY,}) (m3)

— 2425, Z REVUMEL Nim?) + (V& A) + a*(Lly, + L@))}
o+ 22 (Al py + 4Apo)(my +ma) + Z2 (—py — dpa)(me + ) |,
T T
(4.90)

1
5 (RE AME, Dimi,) + BEVAME, Diem3,))

a2, 2,1 5 9 21 9 )
S (REIAME Dimk,) + 7 DL M, Dim?)

(X oY)+ 22 REV(ME, 1 <m§)) F(V o A)

oy = )] + 5 s = 1) ma) + (o) ma 4 )

(4.91)

4.5 Relation of SU(2) and SU(3) staggered chiral

perturbation theories

Now that we have the results for the pion mass and decay constant to NLO in SU(2)
PQ-rSXPT, we can study the relations of the LECs and taste-violating parameters
between the two-flavor and the three-flavor cases. This can be done by comparing
formulae for physical quantities in SU(2) theory and the corresponding formulae in

SU(3) theory, in the case where the light quark masses and taste splittings are much
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smaller than the strange quark mass, i.e.,

2 2/
my my my a”Ap G5V(A)

; ) 5 5 ~e 1. (492)
ms mg Mg pmg s

For small €, we expect the SU(2) theory to be generated from the SU(3) one

ms

I
(4mf)?

as in Ref. [27]. Since, at NLO in SU(3) XPT, there are terms which go like
times logarithms, we will in general need to expand to O(e) to pick up all terms that
appear at NLO in SU(2) XPT, such as % or (‘ﬁ%f;. Of course, all dependence on
mg,m,,m; and a® must be explicit, because the LECs do not depend on the light
quark masses and have no power-law dependence on lattice spacings.

I will first focus on the taste-splittings Ag) and the taste-violating hairpin pa-
rameters (55%24). In Egs. (4.90) and (4.91), Ag) and 5624) only appear in the NLO
part, and the same statement is true for Ap and 5{/( A) in the corresponding SU(3)
formulae, so it suffices to use the relations between Ag) and Ag, and 5&%% and 5{,( Ay

at LO in rSXPT.

At LO in SU(3) rSXPT, we have the mass of a flavor-nonsinglet meson:
mg, = 2umy + a*Ap. (4.93)

By comparing with Eq. (4.63), we conclude that at LO, for each taste index B, we
have

a2Ag) =a*Ap. (4.94)

On the other hand, the mass of 7y, the lighter of the two flavor-neutral, taste-
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vector mesons that mix in the SU(3) rSXPT is:

1 3
ml = 5 (mIQJV +mg, + Za25(/ — Z) : (4.95)
a?d; 9(a?6t,)?
7=\, =t = g )+ 2OV (g

In the limit m; = m, < my and a25{/( Ay <K s, it should become the mass of what

we call 7, here, as given in Eq. (4.66). Indeed, we have:

(a6

[

1
2 2 2
My, == Mg, + 50 oy + O(

). (4.97)
Comparing Eq. (4.66) and Eq. (4.97), we find that, at LO in rSXPT,

a®8,? = a2, (4.98)

(a26§/)2

Himes

where corrections of O( ) generate NLO effects in SU(2) rSXPT, since they are

of O(a*). A similar relation holds for &, and &', at LO:
a?5'\? = a2/, (4.99)

If we expand the NLO SU(3) formulae for m2 and f, in Ref. [31] in powers
of €, we find that the three-flavor formulae reproduce the form of the two-flavor
formulae, as expected. Both are expansions in orders of m,, m,, m;, a*Ap and a26(/( )
Since the light valence quark masses, sea quark masses and lattice spacings can vary
independently, we can match the coefficient of each term.

By comparing formulae in SU(2) SXPT and SU(3) SXPT, and utilizing Eqs. (4.94),

(4.98) and (4.99), one obtains the relations between SU(2) LECs and SU(3) LECs up
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to NLO. I find:

o= f(1- 167:2f2um5 log I 7 pwms), (4.100)
) = p(l = 48732f2 4“?‘9 % 32(2L]f2_ L4) ), (4.101)
P =16Ls — (1 +log 550). (4.102)
Py = —8Lg + 1617T2é(10g 3’/‘\2”5) + 61 2111(1 +1o “X}), (4.103)
Iy = 8(2Lg — Lu) +4(2Ls — Ls) = 70— 316(1 +log 3’12 ), (4.104)
l4:8L4+4L5—W}1(1+10g “XZS), (4.105)
Ly =L" - éAI(l +log 3%”3) - %Aav(l +log “XZS), (4.106)
Ligy = L' — %A[(l +log %7\? ) + ;Aav(l + log A2 °), (4.107)

where Ly, Ls, Lg and Lg are renormalized SU(3) LECs, L" and L’ are the NLO taste-
violating parameters in SU(3) rSXPT. Here I use the tilde to distinguish them from
L" and L' after redefinitions in Ref. [1]. Namely, in SU(3) rSXPT, L” and L’ are

related to L” and L’ through

1 1 -
(L= L) = (0" = I') = (8Ls + 24Ly) A, (4.108)
(L L) = 1 — (L' + L') — (32Ls — 16 L5 + 96Ls — 48L,)AY.  (4.109)

Egs. (4.104) and (4.105) are the same as the equations in the full QCD con-
tinuum case [27]. Egs. (4.102) and (4.103) relate the unphysical LECs in the
partially-quenched two-flavor theory to the physical LECs in the three-flavor the-
ory. Eqgs. (4.106) and (4.107) give us relations between taste-violating parameters in

the two-flavor and three-flavor theories. If we require the SU(2) SXPT to describe
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the same physics in the two-flavor sector of the underlying SU(3) SXPT, all the pa-
rameters in the SU(2) theory should vary with the strange quark mass mg according
to Eqs. (4.102)-(4.107).

The renormalizations of L” and L are complicated and involve the taste-
splitting terms A; and A,,. It is more convenient to redefine L” and L’ by

associating particular O(a?) terms with the [; [1]. The following replacements:

PO () (m - ma) = S (o) (ma -+ ma) + a*AR),
2f 2 f
(2) (2)
(2 4y —p
; (2) (4[4 — pl)(mx + my) — ; . 1 (M(2)(mx + my) + CLQA(%))’
f(2) f(z)
H(2) 4l3 + p1 + 4po 2 A (2)
—5 (4l + p1 +4pa) (my + ma) = ——— 55— () (Mo +ma) + a”A;7),
f(2) f(z)
H(2 —(p1 +4p
f%)(—(pl +4p2)) (my +my) — %(u(g) (me 4+ my) +a>AP)  (4.110)
(2) (2)

absorb splittings into the mass-dependent counterterms to make them correspond to
the meson masses (or average values thereof) that appear in the loops. Eq. (4.110)

is equivalent to defining new parameters L’(’z) and L/(Q):

1 1 -
o2 (Lly = L) = 153 (Lo = Ligy) + 245, (4.111)
1672 (L,(/ 2t L(Q)) 167?2( @ T L/ ) — 4l3A . (4.112)

After these redefinitions, L’(’2) will become independent of chiral scale, and L/(z) is

renormalized according to:
A7
Loy (N') = Ligy(A) + 28, + 8,7 log T (4.113)

The renormalizations of other LECs remain unchanged.
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After these redefinitions, the new L’('Q) and L’(Q) are related to the corresponding

SU(3) quantities L” and L’ by:

Lly — Ly = (L' = ') = Agy(1 + log “XZS) 4 16m2A, (8Ls + 24L, — 21,)
1
— (L' — L) + Ay [12872 L4 — = (1 + log 2722 4114
2 A2
" / " / 1 %ums 2
(2) + L(Q) = (L + L) — gA[(l + log A2 ) + 167 A[(32L8 - 16L5 + 96L6 — 48L4 - 4l3)
" / 2 2 %Mms
= (L' + L) 4 Ap | 167°(32L — 16La) — 5 (1 + log 355) (4.115)

Using the standard scale renormalization of the L; [27],

Li(A) = Li(A) + ¢ A (4.116)
A 25672 % A2 '
with
Cy=—1; Cs=—3; (4.117)
2Cs — Cy = —2/9 ; 2Cs — Cs = 4/3, (4.118)

it is easy to check that the factors in square parenthesis in Eqs. (4.114) and (4.115)
are scale independent. This is a consistency check, since L’(’Q) and L’(Q) transform in

the same way as L” and L', respectively, under scale change.

4.6 Remarks and conclusion

I calculated the pseudo-Goldstone pion mass and decay constant to NLO in two-flavor

PQ-rSXPT using the replica method. I also checked that SU(2) rSXPT emerges from

a

2 25/
SU(3) rSXPT in the limit Ze Zv M ﬁ,m < 1, as assumed in Ref. [16].

ms? mg’ mg’ HMs Hms
Finally, I derived the relations for the LECs and taste-violating parameters between
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the two-flavor and three-flavor cases. Some of the formulae here (Egs. (4.90) and
(4.91)) are used for the SU(2) chiral fits to MILC data [51].

At the present stage, we have MILC data for the light pseudoscalar mass and
decay constant at five lattice spacings from 0.15fm to 0.045fm, generated with 241
flavors of asqtad improved staggered quarks. For each lattice spacing, we have many
different sea quark masses as well as many different combinations of valence quark
masses. For most ensembles, the strange quark mass is near its physical value, and
the light sea quark masses are much smaller. If light valence quark masses and taste
splittings are also taken significantly smaller than the strange quark mass, we expect
that SU(2) rSXPT would apply. Preliminary results indicate that it is indeed the
case. Since the strange quark mass is close to the physical value in the ensembles
used for the fits, the SU(2) LECs only suffer small changes due to variations in the
strange quark mass. We can fit to lattice data using Eqs. (4.90) and (4.91) to get
values of SU(2) LECs, the pion decay constant f,, and the physical light quark mass
m, as well as the chiral condensate in the two-flavor chiral limit. Furthermore, we
can do a systematic NNLO SU(2) chiral fit if continuum NNLO chiral logarithms [48]
and possible analytic terms are included, and if taste-violations are relatively small.
The results appear to be consistent with the results of the SU(3) analysis [51].

However, to make the formulae complete and results more accurate, it may be
important to incorporate the effects of the variations in the strange quark mass by
doing appropriate adjustments on certain parameters in the two-flavor theory. In
practice, for each strange quark mass, the four LECs I3, l4, p; and py may be adjusted

i

according to Egs. (4.102)-(4.105), and the two taste-violating parameters, L,y and
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Li,), may be adjusted according to Eq. (4.114) and Eq. (4.115). One then performs
chiral fits to all the lattice data simultaneously. At the final step, physical values of
LECs can be obtained by extrapolating to the physical strange quark mass.

An extension of the present work to the case of quantities involving the strange
quark such as fx or m% using the method of heavy kaon XPT [52, 53] may be very

useful. Work on that is in progress.
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Chapter 5

SU(2) Chiral Fitting to MILC Data

The MILC Collaboration has been running QCD simulations with “2+1” asqtad
improved staggered fermions. At the present stage, dynamical gauge ensembles are
available with many combinations of light sea quark masses and strange quark masses.
Lattice spacings range from 0.15 fm to 0.045 fm. On each ensemble, physical quan-
tities, including light pseudoscalar meson masses and pion decay constants, are mea-
sured with several choices of light valence quark masses. By fitting lattice data to the
formulae for light pseudoscalar masses and decay constants in the partially-quenched
case, we can extract the values of SU(3) LECs (L;), decay constant, quark masses

and the chiral condensate in the chiral limit [2, 51].
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5.1 Light pseudoscalar meson mass and decay con-

stant

Mesons are created (or annihilated) by bilinear quark operators. With the staggered
fermion formalism, there are four taste species for each flavor of quarks. Therefore,
each meson comes with sixteen varieties, labeled by the index ¢. For a pion composed
of x and y valence quarks with taste index ¢, the interpolating operator is given by
O = U.(75 @ &)1b,, where the Dirac matrix is 75 since the pion is a pseudoscalar.
One can find the lightest pseudoscalar meson mass mpg through the asymptotic

behavior of the zero-momentum correlation function

1 . S —m
Crp = 3= Y (O (GO0} 0) = cppe ™ 4. (5.1
)

where Vj is the spatial volume. With mpg available, the pion decay constant can be

| Vscpp
fPS - (mm + my) 4m;;,357 (52)

where m, and m, are the masses of the valence quarks of pion.

obtained from cpp by [1]

In practice, a Coulomb wall source or a random wall source is used instead of the
point source to reduce the contaminations from excited states in Eq. (5.1). After these
measurements, we have the light pseudoscalar meson masses and decay constants for

each gauge ensemble and each combination of valence quark masses.
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Lattice r?Ap r2A 4 r2 A7 riAy r2Ag slope
a~0.18m | 0.0 0.573682 0.913424 1.22711 1.50066 6.38638
a~0.15fm | 0.0 | 3.914643e-01 | 6.177688e-01 | 7.961597e-01 | 9.851499e-01 | 6.761193e+00
a~0.12fm | 0.0 | 2.270460e-01 | 3.661620e-01 | 4.802591e-01 | 6.008212¢-01 | 6.831904e+-00
a~0.09fm | 0.0 0.0746922 0.123776 0.159322 0.220652 6.638563e+00
a~0.06fm | 0.0 0.026348 0.0429778 0.0574378 0.0703879 | 6.486649e+-00
a~ 0.045fm | 0.0 0.0104093 0.0169792 0.0226919 0.0278081 | 6.417427e+-00
continuum 0.0 0.0 0.0 0.0 0.0 6.735978e+00

5.2 Measuring taste splittings

Due to taste-violating effects, there are mass splittings between different taste copies
of a meson with given flavor structure. At LO in ChPT, the taste splittings of a pion
P composed of two valence quarks z and y are a?Ap in Eqs. (3.56). These splittings
are functions of the lattice spacing a, so for each lattice spacing, one collects all
the pion masses with different taste structures and fits them to Egs. (3.56), to find
the splittings in each taste channel. On the m2 vs m, plots, the splittings can be
read from the intercepts of the fit lines. For example, the fit results for “coarse”
(a ~ 0.12fm) lattices are shown in figure (5.1).

Doing this for each lattice spacing, we find all the splittings and list them in
table (5.2). Note that the taste splittings are correct to LO, that is, the errors appear

at NLO O(a? mg, p*). These values can be used in the NLO part of the formulae for

pion masses or decay constants.
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2m,r,

Figure 5.1: Squared masses of pions for various tastes on the lattices with a ~ 0.12fm
are shown as functions of quark masses. The splittings appear to be independent
of quark masses. All quantities are in units of r;. (The scale r; is defined below in

section (5.3).) Plot is from Ref. [1].
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5.3 Determining lattice spacings

Quantities measured on the lattice are dimensionless numbers, i.e., m,a. Only in
the continuum limit and with physical quark masses can one compare these numbers
to the values of physical quantities. In order to obtain dimensionful results from
simulations with unphysical quark masses and finite lattice spacings, one needs to set
up a scheme to determine the lattice spacing a. A commonly used method is to use
a Sommer scale 7 [54]. By definition, the distance r satisfies 72 F(r) = C, where C is
a constant and F'(r) is the force between a static quark and anti-quark. The MILC
collaboration uses 7, defined by C' = 1, which has smaller statistical errors than rg
defined by C' = 1.65 [55].

For each ensemble, one measures the quark anti-quark potential V(R) and finds
the corresponding r; by solving r?F(r) = 1 [12]. Here 7y still takes the dimensionless
form r1/a. One then fits all the 71 /a values from each ensemble to a smooth function
of the gauge coupling and quark masses. There are two different choices of the fit
function: one is to fit log(ry/a) to a polynomial in 5 and 2am; + am [12], another is

to use the function form by Allton [56]:

a _ Gof + Chg f2 4 Cug' f? (5.3)
T B 1 + D2g2f2 ’ ’

where

f = (bog®) /@) exp(—1/(2bog®)) . bo = (11 — 2ny/3)/(4)? ,
bl = (102 - 38”]”/3)/(471-)4 ) AMyotr = 2aml/f + ams/f 5
Co = Coo + Conjamy/ f + Corsams/ f + CO2<amtot)2 ) Cy = Cyo + Coramye, (5.4)
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where ny is the number of flavors, which is set to be 3 since the simulation is done
with 2+1 dynamical quarks. Here, am;, amg are sea quark masses in lattice units.
Coo, Cor, Cors, Coa, U, Co1, Cy and Dy are parameters that can be determined by
fitting the function in Eq. (5.3) to values of r1/a measured on different lattices.

To find r; in physical units, one needs to determine some physical quantities on
the lattice and compare to the experimental value. Often, the 25-1S energy splittings

of the bb meson Asg_171 is used. For each ensemble, one fits the splittings to the form

APYS o (a, amy, amyg) = ABRS (P + ¢a® + coamy /(amy)). After extrapolating in
my and a, and using the experimental value of A% . one finds r?"Y* = 0.318fm with

an error of 0.007fm [1]. This has recently been updated by HPQCD collaboration
to 2" = (.3133(23)(3)fm [57], where the first error is the combined statistical and
systematic error, and the second is from uncertainties in finite volume corrections to
the chiral analysis.

Another method to determine rfhys is to match the value of the pion decay
constant f, obtained from SU(3) chiral analysis to its experimental value, f, =
130.4 & 0.2MeV [58]. That gives 2" = 0.3117(6)(*}2)fm where the first error is
statistical and the second is systematic.

Finally, the lattice spacing can be determined by a = (a/ry) x 2"

, where (a/ry)is
the smoothed value from Eq. 5.3. The smoothed function depends on the sea quark
masses used in the simulations, e.g., am;, am,. For ensembles with the same § but
different sea quark masses, the values of 1 /a are different, hence the lattice spacings

vary with sea quark masses. Therefore, we call this scale setting scheme a mass-

dependent scheme. Since in chiral perturbation theory, all dependence on the quark
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masses should be explicit, a mass-independent scale setting scheme is necessary. This
can be done by using Eq. 5.3 with the quark masses am;, amg set to be physical values
determined for each lattice spacing. In the mass independent scheme, the value of
r1/a only depends on [ and the tadpole improvement factor uy.

Through our analysis, all of the quantities take their dimensionless forms by mul-
phys

tiplying appropriate powers of 7. They can be converted to physical units using r;

when necessary.

5.4 NNLO SU(2) chiral analysis

5.4.1 Motivation for SU(2) chiral analysis

At present, most lattice QCD simulations are performed at unphysical light dynam-
ical quark masses. Fitting of lattice data to forms calculated in chiral perturbation
theory (XPT) [27, 26] makes possible a controlled extrapolation of lattice results to
the physical light quark masses and to the chiral limit. This approach also allows
one to determine the values of LECs in the theory, which are of phenomenological
significance. Although three-flavor XPT has been used successfully for simulations
with 2+1 dynamical quarks, we are still interested in the applications of two-flavor

XPT for the following reasons:

1. The up and down dynamical quark masses in simulations are usually much
smaller than the strange quark mass, which is near its physical value; hence

SU(2) XPT may serve as a better approximation and probably converges faster

102



than SU(3) XPT.

2. Fits to SU(2) XPT can give us direct information about the LECs in the two-

flavor theory, especially I3 and [4.

3. By comparing results from these two different fits, we can study the systematic

errors resulting from the truncations of each version of XPT.

Recently, some groups have used SU(2) XPT for chiral fits to data from three-flavor
simulations [52, 59]. Here, we will perform such an SU(2) chiral analysis for MILC

data from simulations with 2+1 flavors of staggered fermions.

5.5 Fitting in detail

5.5.1 Fit formulae for pion mass and decay constant

From Chapter 4, we already have the formulae for the pseudoscalar pion mass and
decay constant up to NLO in partially-quenched SU(2) rSXPT. In order to perform

a systematic chiral analysis at NNLO, we need to include the effects of operators of

order O(m}, a®m,a*mg, a®) and corresponding loop effects. These loop effects will

contribute to the decay constant and the ratio m2/(m, +m,) at O(mg, a*>mq, a*).
Analytic terms at O(m?) can be included in the formula of pion mass by adding

four additional terms:

NNLO\2

(mp5+

ey = HOANLOEB™ () B Xt B5™ Ot )Xt B (e=20)?),
x Y

(5.5)
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where we assume the up and down sea quark masses are degenerate, x, = Xd = Xud-
The form of these terms is constrained by the interchanging symmetries x <+ y and

u <> d. Similarly there are an additional four terms for the pion decay constant:

FRNEO = FANLO+B (o) 85 ot 57 (ot xaa 85 (o =x0)) (5.6)

These new parameters 8" —— 3™ and ) — — 8 are linear combinations of NNLO
LECs at O(m}). For our purposes of chiral fitting, it is enough to know that Eq. (5.5)
and Eq. (5.6) contain the most general terms at O(m).

At NNLO, there are also O(m,a?) terms contributing to the ratio in Eq. (5.5) and
decay constant. Since we allow the [; to vary with lattice spacing in the fit, some
effects from these terms are actually included in our fitting.

The O(a*) terms are neglected because we expect the effects from these terms are

small. One can measure the size of O(a?) taste-violations by the quantity [1]

N

8n2f2’

Xa2 = (57)

where a?A is the average taste-violating term (see below). For fine lattices (a ~
0.09fm), a®>A ~ (200MeV)? and y,2 is about 0.03. Hence we expect the contributions
of O(a) terms are at the order of x% ~ 0.1% and thus negligible, and terms of
O(my,a?) are subleading (see below).

Since m;;/ (my + my) divides by quark masses, one might worry that terms of

O(a%) in the chiral Lagrangian might contribute at O(a®/m,). This can not happen

2

because Ps is a Goldstone pion, so mp,+
5

is always proportional to (m, + m,) and
O(a®) terms are excluded. For fp5+, only those terms in chiral Lagrangian which have

at least two derivatives can make contributions to the pion decay constant, so terms
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of O(a%) in the chiral Lagrangian do not contribute to the decay constant. Terms of
O(p*a*) in the Lagrangian do contribute and give the terms of O(a?) in fozr-

Since NNLO chiral logarithms for SXPT are not available at the moment, we use
instead the continuum NNLO chiral logarithms by Bijnens and Lahde [48]. When
applied at finite lattice spacing a, there is an ambiguity in defining the pion mass in
the continuum formulae. In practice, we use the root mean square (RMS) average

pion mass in calculations of NNLO chiral logarithms:
midags =, + ¥, (5.9

where A is the average taste splittings A = 1—16 > 5 Ap. This is systematic at NNLO
as long as the taste splittings between different pions are significantly smaller than the
pion masses themselves. This condition is best satisfied on the superfine (a ~ 0.06fm)
and ultrafine (a &~ 0.045fm) lattices, and corresponds to the dropping of O(a') and
O(m,a?) terms above from the systematic analysis.

Note that in the continuum NNLO chiral logarithms, the convention of NLO LECs
used by Bijnens and Lahde, ngp q), is different from what we are using. One thus needs
to express their NLO LECs in terms of our NLO LECs defined in Eq. (4.44). Let ;

and p; denote the renormalized ones of [? and p?, and L:(zp 7 denote the renormalized
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(

ones of Li2p . These two sets of parameters are related by

r , l +
LO(QPQ) S—— L1(2pq) _ Z1 + P3 5 p4’

T l T
Ly = ZQ + P L3(2M) = —p3 — 2p4,

ly ¢ (2pq) _ P1

[r@rg) 4 P Lrery — 22

4 8 32 5 16’
Lr(2pq) _ l3 + l4 @ LT(2P‘1) — _l_7 p_2

0 16 16’ T 16 16’

. [

Lg(zpq) _ _% ’ L9(2pq) _ 56 7
L — (5.9)

The NNLO analytic terms involve linear combinations of NNLO LECs. In order
to make these LECs chiral scale invariant on the lattice (a # 0), one needs to make

some modifications of the quark masses which appear in NNLO analytic terms to

match the RMS pion mass (Eq. (5.8)) used in NNLO chiral logarithms [60].
My — My = My + ——, (5.10)

and similarly for m, and my. This will be done in future analysis, and it has not been
included in current work yet. We note that the results are already independent of the
chiral scale in the continuum limit.

In addition, sometimes we add NNNLO analytic terms to the pion mass and decay
constant. Specifically, we add in terms at O(m}) in the formulae for mZP;r /(Mg +my)

and fP5+. When x, = x4 = Xud, there are five possible forms of these terms which
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satisfy the interchanging symmetries.

2

mP;_

———— = (1 4+ NLO + NNLO + o™ (xz + x3)* + 95 (Xar + Xy)*Xud
my +my

05 (e = X)Xt + 25 (e + X)X + 05330, (5.11)

for = F(1+ NLO+ NNLO + pi” (xa + x)° + 5 (X + x3)"Xuua

+ 5 (e = X)X + 2 (e + X)X + 95 X00). (5.12)

Fits including these NNNLO terms are only used to estimate the errors from trunca-
tions of XPT.

To summarize, at NNLO, we add four analytic terms for m;;r and fP5+ each.
Continuum NNLO chiral logarithms are used with pion mass set to be the RMS
average pion mass. This completes our NNLO formulae used for central value fits.

NNNLO analytic terms are only included in fits to estimate systematic errors.

5.5.2 Datasets used for SU(2) analysis

At the present stage, we have MILC data for the light pseudoscalar mass and decay
constant at five lattice spacings from 0.15 fm to 0.045 fm, generated with 2+1 flavors of
asqtad improved staggered quarks. For each lattice spacing, we have several different
sea quark masses as well as many different combinations of valence quark masses.
In order for the SU(2) formulae to apply, we require both sea and valence quark
masses to be significantly smaller than the strange quark mass, i.e., m>** <mg, and
mbelence < mp. In the fits described below, we use the following cutoff on our data

sets:

my < 0.2mPhs, My +my < 0.5mP"s max(m,, my) < 0.32me"*  (5.13)
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where my is the light sea quark mass, and m, and m, are the valence masses in the
pion.

To be able to consider the strange quark as “heavy” and eliminate it from the chiral
theory, it is also necessary that taste splittings between different pion states be much
smaller than the kaon mass. Furthermore, taste splittings should be significantly
smaller than the pion mass itself for the continuum formulae for the NNLO chiral
logarithms to be approximately applicable.

The lattices that are at least close to satisfying all these conditions include four
fine (a=0.09fm) ensembles, three superfine (a=0.06fm) ensembles and one ultra-
fine ensemble (a~0.045fm). Relevant parameters for these ensembles are listed in
Table 5.1.

In Table 5.2, we list the Goldstone, RMS and singlet pion masses on representative
ensembles. It can be seen that for the fine (a=~0.09 fm) ensembles, either some pion
masses are close to the kaon mass, as on ensemble (am;, am,) = (0.0062,0.031), or
the taste splittings between pions are comparable to the pion mass, as on ensemble
(amy, amg) = (0.00155,0.031). As a result, the data from fine lattices may not be well
described by SU(2) formulae with continuum NNLO chiral logarithms. Our central
fit uses superfine and ultrafine data only, while we include fits to all three kinds of

lattices to estimate systematic errors.

5.5.3 Fitting strategies

All of the following fitting strategies are the same as those used in the three-flavor

chiral analysis. Here I just give a brief review.
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Ensemble amy amsg 15} size myL

~ 0.09fm (F) 0.0062 | 0.031 | 7.09 | 28%x 96 | 4.14
~ 0.09fm (F) | 0.00465 | 0.031 | 7.085 | 323 x 96 | 4.10
~ 0.09 fm (F) 0.0031 | 0.031 | 7.08 | 40° x 96 | 4.22

~ 0.09fm (F) | 0.00155 | 0.031 | 7.075 | 643 x 96 | 4.80

~ 0.06fm (SF) | 0.0036 | 0.018 | 7.47 | 48% x 144 | 4.50
~ 0.06 fm (SF) | 0.0025 | 0.018 | 7.465 | 56% x 144 | 4.38

~ 0.06 fm (SF) | 0.0018 | 0.018 | 7.46 | 643 x 144 | 4.27

~ 0.045fm (UF) | 0.0028 | 0.014 | 7.81 | 643 x 192 | 4.56

Table 5.1: Ensembles used in this analysis. Here, (F), (SF) and (UF) stand for fine,
superfine and ultrafine lattices respectively. The quantities am; and amg are the light
and strange sea quark masses in lattice units; m, L is the (sea) Goldstone pion mass
times the linear spatial size. The fine ensembles are not used in our central value fit,

but only in estimating systematic errors.
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a ~ 0.09fm (F) |~ 0.06fm (SF) | ~ 0.045fm (UF)
ams 0.031 0.018 0.014
amy 0.00155 | 0.0062 | 0.0018 | 0.0036 0.0028
mx(MeV) 559 | 607 | 515 | 543 551
meldstone (\eV) | 177 | 355 | 224 | 317 324
mEMS(MeV) 281 416 | 258 | 341 334
ml (MeV) 346 | 463 | 280 | 359 341

Table 5.2: Kaon masses and lightest (sea) pion masses on some sample ensembles.
Here three different pion masses are shown: Goldstone, RMS and singlet. r =
0.3117 fm is used.

Correlated least chi square fit

Our goal is to fit the lattice data, i.e., pion masses or decay constants, to the desired
formulae and find the optimal choices for the values of parameters in the theory.
Suppose the fitting function takes the form f(z;,{\}) with x; as the ”coordinates”
and {\} as the free parameters in the theory. The usual least chi square fit method

is to find the set of {\} which minimizes y?. If the data are not correlated, x? is

defined as

X2 - Z(f(xlv {)‘}) - fi)2/0i2> (514>

2

where f; is the measured lattice data at point x;, and o; is the corresponding standard

deviation of the mean. This is equivalent to maximizing the probability distribution

110



of finding the data set f;

P(R) oxexp | —3 SO0~ Fla D) (5.15)
i

If the data are correlated, the correlations can be taken into account by using the
covariance matrix C'. Let n be the number of data points, C' is a n x n matrix with
each element C}; representing the correlations between i-th and j-th data. In this

case, the chi square function is
= (i AN = F)C (Flag, {A) = ). (5.16)

2

For lattice calculations, measurements are performed on gauge configurations gen-
erated by Markov chain processes. There are still remnant auto correlations after
we pick configurations with large separations in the chain. One ought to consider
the effects from autocorrelations in the analysis, otherwise the errors will be under-
estimated. There are two ways to deal with this. One is to block successive configura-
tions and estimate errors from the variance of blocks, then increase the size of blocks
until the errors become stable. Another way, which is used in this work, is to use
the measured autocorrelations in the data to rescale the covariance matrix and then
use the rescaled covariance matrix in the analysis. This can be understood in the
sense that there is an effective non-correlating length [, and the variance obtained by
effective correlation configurations is roughly v/ times the variance obtained from the
original configurations. Usually, this factor v/ is not very large, ~ 10 — 15% in our

case, corresponding to an approximately 10% change in the value of x? from the fits.

This, however, could produce large changes (orders of magnitude) to the confidence
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level if the degrees of freedom (DOF) is large. The effects are milder in small DOF
cases, but can still be important.

Even if successive configurations are not correlated, physical quantities are still
correlated with each other [12]. As a result, one should always include the effects

from correlations by using the full covariance matrix in the fits.

Bayesian methods

Constrained curve fits are used in our analysis since they provide an elegant pro-
cedure for incorporating systematic uncertainties due to under-constrained parts of
a theory [61]. The Bayesian method turns out to be a very useful tool for fits with
constraints. The discussion in this part will follow the relevant part in Ref. [4] closely.

The essential point of Bayesian methods is the application of Bayes’ theorem. For
two events A and B, the Bayes’ theorem relates two conditional probabilities P(A|B)

and P(B|A) in the following way

B|A)P(A)

pap) = 2 o (5.17)

Here, P(A) is the probability of event A independent of event B, P(B) is the prob-
ability of event B independent of event A. P(A|B) is the conditional probability of
event A given B, P(B|A) is the conditional probability of B given A.

Bayes’ theorem can be applied to our fitting in the following way: event A is that
the parameters in our model take certain values {\}, event B is that the measured
values are {f;}. What we need is that given the measured data {f;}, which set of

parameters {A} has the largest likelihood, i.e., the largest P(A|B) = P({A\}|{f:}). In
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this case, Bayes’ theorem takes the form

PSHIANP{AL)

PSS = P{fi})

(5.18)

In the numerator, the first factor is just the probability function in Eq. (5.15). The
second factor P({A}) is the probability that the parameters take the value {\} in-
dependent of our measurements. In another words, this is a prior probability. The
denominator P({f;}) is just a normalization factor and it can be ignored here. There-

fore, We have
PN Si}) o< PUSHAY) Bprior ({A})- (5.19)

In practice, we assume that the prior distribution can be approximated by the Gaus-
sian

Pyrior({A}) = e XoriorAN/2, (5.20)

where x?({\}) is defined as

Crnlah) = 3 P 2l (5.21)

Here, A, and G, are “priors” input to the fitting. Their values should be chosen on

the basis of prior knowledge like experimental values or previous fit results.

2
In summary, one can use the augmented x;,, [61]

X?Lug = X2 + X}zyrio'rﬂ
()‘n B S‘n)Q
=X*+ ) S (5.22)
and minimize this new chi square instead of the original one. The fit will favor the

parameter \, in the interval S\n + 5,
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Suppose {A} = {\*} minimizes x,,, the error of a function g({A}) can be ap-

proximated by

75~ Y Ciydig (A Ho9({\")). (5.23)

5.5.4 Finite volume corrections

If the system is in a finite spatial volume L3, one can incorporate the finite volume
effects by modifying the one-loop integrals I(m?) and (m?) [62, 49] which appear in

NLO formulae of mi,; and fp+

I(m?) = I(m?) = <ln % + 51(mL)> (5.24)
I(m?) = I(m?) = — (ln Mm——i1> + d3(mL), (5.25)

where L is the spatial dimension. The finite volume correction terms d;(mL) and

d3(mL) are [49]

(mL)y=4Y" K%ﬁ%ﬂ , (5.26)
g

So(mi) =23 Ko(mL|f), (5.27)
740

where Ky and K; are Bessel functions of imaginary argument. The corrections due
to finite time extent are negligible because the time dimension is between 2.4 to 3
times larger than the spatial dimension.?

There could be residual finite volume corrections from terms beyond one-loop in

SXPT. Such effects were investigated by Colangelo and Haefeli [63] in full continuum

!The only one exception is the fine lattice ensemble with am;/am, = 0.00155/0.031, of which

the dimension is 643 x 96.
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QCD and it was shown that higher order corrections could be 30% — 50% of the
one-loop results [1]. For the volume and meson masses relevant to our computations,
the residual finite volume corrections are roughly 0.002797 for f, and 0.00065147 for
my,. This was determined by direct calculation on a lattice with 40% bigger volume.
We make the corresponding modifications in the last step before we give the quoted

value of f.

5.6 Central value fit

For the central value fit, we use three superfine ensembles (am;, am,) = {(0.0018,0.018),
(0.0025,0.018), (0.0036, 0.018)} and one ultrafine ensemble (am;, ams) = (0.0028,0.014).

Fine ensembles (am;, am,) = {(0.00155,0.031), (0.0031, 0.031),(0.00465, 0.031), (0.0062,0.031)}

are only used to estimate systematic errors.

5.6.1 List of parameters

There are a total of 29 parameters in our fits. The following list shows how these

parameters are treated in the central fit.
(a) LO: 2 unconstrained parameters, ji) and fio).

(b) NLO (physical): 4 parameters, I3, l4 and two extra LECs py, p> that only

appear in partially-quenched XPT. All of these parameters are unconstrained.

(c¢) NLO (taste-violating): 4 parameters. d{,,d’y are constrained within errors at

the values determined from SU(3) SXPT fits [1, 2]; L{,) and L, are constrained
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around 0, with width of 0.3 as estimated in Ref. [1].

(d) NNLO (physical, O(p*)): 5 parameters (Iy, lo, l7, p3, ps) that first appear
in meson masses and decay constants in the NNLO chiral logarithms. [y and [,
are constrained by the range determined from continuum phenomenology [64];
l7 is not constrained since it is not directly known from phenomenology [64].

The partially-quenched parameters p3 and ps are not constrained.

(e) NNLO (physical, O(p®)): 8 parameters c¢;, constrained around 0 with width

1 in “natural units” (see Ref. [1]).

(f) The physical LO and NLO parameters are allowed to vary with lattice spac-
ing by an amount proportional to as(aA)?, which is the size of the “generic”
discretization errors with asqtad quarks, where A is some typical hadronic scale.
This introduces 6 additional parameters that are constrained around 0 with

width corresponding to a scale A = 0.7 GeV.

Alternative versions of the fits, in which the width of the constraints are changed, or
some constrained parameters are left unconstrained (or wice versa), have also been
tried, and the results from those fits are included in the systematic error estimates.
Our central value fit has a x? of 36 with 33 degrees of freedom, giving a confi-
dence level CL=0.33. In Fig. 5.2, we show the fit results for f. and m2/(m, + m,)
as functions of the sum of the quark masses (m, + m,). The red solid curves show
the complete results through NNLO for full QCD in the continuum, where we have
set taste splitting and taste-violating parameters to zero, extrapolated physical pa-

rameters as a — 0 linearly in a,a?, and set valence quark masses and light sea quark
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m?/(m,+m,); SU(2) xPT
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Figure 5.2: SU(2) chiral fits to f.(left) and m2/(m, + m,)(right). Only points with
the valence quark masses equal (m, = m,) are shown on the plots
masses equal. Continuum results through NLO and at tree level are shown by blue
dotted and magenta dashed curves, respectively. It can be seen that the convergence
of SU(2) XPT is much better for the decay constant than for the mass. Nevertheless,
the chiral corrections in both cases appear to be under control.

At the last step, we find the physical values of the average u, d quark mass m by re-
quiring that the 7 has its physical mass, and then find the decay constant correspond-
ing to this point in Fig. 5.2 (left). With the scale parameter r = 0.3117(6) (¥37) fm

determined from NNLO SU(3) XPT f, analysis, we obtain the result for f:
fr = 130.7 £ 1.0 (F3) MeV (5.28)

where the first error is statistical and the second is systematic. This agrees with
the SU(3) analysis, which is tuned to reproduce the PDG 2008 value, f, = 130.4 £+

0.2MeV [58]. We have also tried the fits with 72™* = 0.3135fm and 0.3080fm and
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include them in estimating systematic errors.

5.6.2 Quark masses and condensates

In this study, calculations are done in partially-quenched rSXPT. To obtain the “full
QCD” results, one first sets the valence quarks masses equal to the sea quark masses,
i.e., my = m, = my for a pion, or m, = my, m, = my for a kaon. This can be done
for each ensemble with different choices of m; and mg. The pion and kaon masses
still do not take their physical values at this step. One can reach the physical point
by tuning the bare quark masses am; and amg to give pion and kaon their physical

QCD masses in the isospin limit, mz and mg [1]

m2 = m2, (5.29)
1
M = e+ mi — (1 Ag)(mZ —m)), (5.30)

where Ag =~ 1 is the violation parameter of Dashen’s theorem.

The renormalized quark masses depend on the regularization scheme we are using.
Usually, the quark masses in the MS scheme are quoted for continuum QCD at energy
scale A. For lattice calculations, one uses the scheme with regularization point 1/a,
and the renormalized quark masses at this point takes different values from those in
the MS scheme. One can relate these two renormalized quark masses and obtain the

MS quark masses from bare quark masses on the lattice

(M) = 7, (ah) 90 (5.31)

auop

where Z,, is the renormalization factor and ugp is the tadpole improvement factor,
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which appears here because the MILC improved staggered action defines the lattice
quark mass in an unconventional manner [1].

The renormalization factor Z,, can be calculated perturbatively [65]. In our anal-
ysis, we use two loop perturbative results [66] to obtain physical light and strange
quark masses in the MS scheme at 2GeV.

The quark condensates in the chiral limit are related to LO LECs by (uu) =

—f?u/2.

5.6.3 Summary of results

In summary, we obtain the following results from SU(2) chiral analysis:

fr=1233+0.9+1.4MeV B, = 2.87(3)(5)(14) MeV
Iy =254 0.6 (*19) I =3.9(2)(2) (5.32)
m = 3.23(3)(7)(16) MeV (uu)y = —[280(2) (*2) (4) MeV]?

where the quark masses and chiral condensate are evaluated in the MS scheme at
2GeV. We use the two-loop renormalization factor in the conversion [66]. Errors
from perturbative calculations are listed as the third error in these quantities. All

the quantities agree with results from SU(3) SXPT fits [2] within errors.

5.7 Discussion and Outlook

We have performed NNLO SU(2) chiral fits to recent asqtad data in the light pseu-

doscalar sector. Results for SU(2) LECs, the pion decay constant, and the chiral
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Figure 5.3: Test of convergence of SU(3) XPT fits in the continuum, with the strange

quark mass fixed at 0.6m?"*. Plots are from Ref. [2].

condensate in the two-flavor chiral limit are in good agreement with those obtained
from NNLO SU(3) fits (supplemented by higher-order analytic terms for quantities
involving strange valence quarks)[2]. For comparison, the plots from SU(3) chiral
analysis are shown in figure (5.3).

By comparing figure (5.2) with figure (5.3), it can be seen that SU(2) XPT within
its applicable region converges much faster than SU(3) XPT. For the point 0.05 on
the z-axis in Fig. 5.2, the ratio of the NNLO correction to the result through NLO
is 0.3% for fr and 2.6% for m,/(m, + m,). In contrast, the corresponding numbers
in the SU(3) fits are 2.9% and 15.6% respectively, although the large correction in
the mass case is partly the result of an anomalously small NLO term. Note that
the SU(3) plots use a non-physical strange quark mass, m, = 0.6m?"*, while for the

SU(2) plots, the strange quark mass is near the physical value, m, ~ m?™s. This

120



explains why the two-flavor chiral limits on the SU(3) and SU(2) plots are not the
same.

Since the simulated strange quark masses vary slightly between different ensem-
bles, the parameters in SU(2) SXPT should also change with ensemble [67]. We plan
to incorporate this effect in our fit to see if we can improve the confidence levels.
Another step would be to include the kaon as a heavy particle in SU(2) SXPT [53] in
order to study the physics involving the strange quark, e.g., the kaon mass and decay

constant. This approach has recently been used in Refs. [52, 59].
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Appendix 1 v Matrices and

Euclidean Field Theory

~v matrices

The v matrices are hermitian and satisfy anti-commutation relation {,,7,} = 20,,.

In Euclidean space, they take the form

Y= y V4= ) Vs = ) (533)
—i0 0 0 -1 I 0

where o is the Pauli matrices and [ is the 2 x 2 unit matrix. In this representaion,
v and 73 are pure imaginary, while o, 74 and -5 are real. (Gupta P32)

The left and right handed fermion fields g™ are defined by:

147 1—7
¢ = %4, q" = %4, (5.34)
9 9
B 11— _ 14
" =q 5 > 7" =q 5 . (5.35)
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Minkowski and Euclidean field theory

A d-dimensional field theory in Minkowski spacetime can be related to a d-dimensional

Euclidean field theory through analytical continuation. Under Wick rotation

Ty =t — —iT = —ixy, (5.36)
o =E —ip, (5.37)
we have
rh = —a%, (5.38)
PE = —Dis, (5.39)
Su = iSE, (5.40)
L= Lo, (5.41)

where Lp is defined to be —Ly/(t — —it). In Minkowski space, an operator in

Heisenberg picture, A(t), is related to the operator in Schrodinger picture through

A(t) = et Ae™HHE, (5.42)

In Euclidean space, the same equation becomes

AE(t) = BHTAEB_HT. (543)
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Appendix II Detailed

Descriptions of Computer Codes

INTRODUCTION TO THE FITTING CODE

The whole set of fitting codes is divided to four parts located in the following direc-
tories:

\DAT data files and scripts to thin out data

Function: Make suitable data file for SU(2) analysis from the raw data file

\MESCHACH *.h head files for matrix operations

\EXEC executable files, input and output files

*.c C code, *.for Fortran code (from Bijnens) and makefile

Function: Make sunsettable

Make output file by fitting to the data using input file.

Sample input file: in_r103133 input file with r1=0.3133fm, for NNLO fit

n_r103133_NNNLO input file with r1=0.3133fm, for NNLO fit with NNNLO
analytic terms.

Sample data file: PQ)_meson.0124.0072.0056.dat
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Sample output file: o_fsu_massind_allton_0124_0072_0056_r103133
fsu : fit to fine, superfine and ultrafine lattices
massind_allton: mass-independent scheme, allton-style rl fitting
r103133: use r1=0.3133fm

\PLOT scripts to analyze data and make plots

Function: From the output file, make the sbq file, which gives physical quark
masses, extrapolates parameters to the continuum and infinite volume cases, and
calculates central values and errors of parameters.

For example, if the output file is o_fsu_massind_allton_0124_0072_0056_r103133,
the shq file is FIT o_fsu-massind_allton_0124_-0072-0056_r103133_-YES

\SUMMARY scripts to make summary tables.

From the output file and sbq file, extract final results and put them in table files
in .tex format.

For ChPT LECs, calculate the scale independent parameters $\bar{l.i}$ and put

them in table files.

STEPS TO PERFORM A COMPLETE SU(2) CHI-

RAL ANALYSIS FROM A CERTAIN DATA FILE

(Note: In the following, I always assume that r1phys equals 0.3133fm and the massind_allton

option (mass independent scheme and allton-style fitting function) is used. )
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STEP 1:

Put data files and the covariance matrix file under the directory /DAT.

Data files: f031 (fine lattice ms*rl = 0.031)

sf018 (superfine lattice ms*rl = 0.018)

uf014 (ultrafine lattice ms*rl = 0.014)

Covariance matrix file: cov_ri

Use the script file dat_files_thin_F0310124_SF0072_-UF0056.csh to make the PQ
data file and pts files ( used to make plots ).

Here, the cutoff on (mx + my)*rl is 0.0124 for fine lattice, 0.0072 for superfine
lattice and 0.0056 for ultrafine lattice.

The PQ data file generated is named PQ_meson.0124.0072.0056.dat. 1t contains
the data points from these three lattices and the corresponding covariance matrix.

The script also produces pts files which contain only the so-called “pion” points
(mx = my). These pts files are used by the plot scripts in Step 3:

fine_.031.pts

super_fine_.018.pts

ultra_fine_.014.pts

STEP 2:

Files needed in this step:
Executable files:
schpt2_makesunsettable

schpt2_massind_allton
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Input file:
m-r103133
Data file:
PQ _-meson.124.0072.0056.dat
Copy the PQ data file PQ_meson.0124.0072.0056.dat to directory /EXEC, make
sure the executable files and input files are ready under /EXEC. Here we use sample
input file in_r103133, where the rlphys is set to be 0.3133fm.
(1) Make sunset table for the PQ data file
./schpt2_makesunsettable PQ_meson.0124.0072.0056.dat in_r103133
Enter mu_min, mu_max, mu_step under the prompt. Typical values are “1.0 10.0
0.17, which means that the parameter mu ranges from 1.0 to 10.0 with the step 0.1.
For each data set in the PQ data file, the contributions from 2-loop sunset diagrams
are calculated and stored in the output sunset table file PQ_meson.0124.0072.0056.dat_sunsettabl
(2) Fit to pion mass and decay constant simultaneously.
./schpt2_massind_allton PQ_meson.0124.0072.0056.dat in_r103133 ; o_su_massind_allton_r103
The output file is o_su_massind_allton_r103133. Here ’su’ means ’'superfine’ and
‘ultrafine’. This file gives the correlation matrix, its eigenvalues, covariance matrix,

information for each iteration and final fit results.

STEP 3:

Files needed in this step:
Executable files:

schpt2_massind_allton_plot
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schpt2_massind_allton_nofinitev_plot

schpt2_massind-allton_extrap

schpt2_-massind_allton_extrap_ TRIVIAL

schpt2_massind_allton_extrap_NLO

schpt2_massind_allton_nofinitev_extrap

schpt2_massind_allton_nofinitev_extrap_ TRIVIAL
schpt2_massind_allton_nofinitev_extrap_NLO

schpt2_massind_allton_nofinitev_extraperr

r1_allton-extrap_massind

Fit file:

o_su-massind_allton_r103133
pts files:

fine_.031.pts

super_fine_.018.pts

ultra_fine_.014.pts

Copy the fit file o_su_massind_allton_r103133 to /PLOT. Copy the pts files, e.g.
fine_.031.pts, from /DAT to /PLOT. Use the script makeplot_2loop.csh to generate
plot files. Make sure the template plot files fpi_template_massind.az

and mpisq-over-m_template_massind.ax
are present under /PLOT.

For example, here is the command used to generate plot files for fit file o_su_massind_allton_ri(

./makeplot_2loop.csh o_su_massind_allton r103133 esfuf YES

The omit option “esfuf” means that only superfine and ultrafine points are used
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in the plots. Yes means that the taste-violating terms are set to zero.
The output files are sbq file FIT_o_su_massind_allton_r103133, and plot files fpi_o_su_massind._
and mpisq-over-m_o_su_massind_allton_r103133.ax. One can use axis to show the
plots:
axis < fpi_o_su_massind_allton_r103133.ax |plot -T X
axis < mpisq-over-m_o_su_massind_allton r103133.ax |plot -T X
One can also use axis to export the plots to .eps files:
axis < fpi_o_su_massind_allton_r103133.ax |plot -T PS ; fpi.eps

axis < mpisqg-over-m_o_su_massind_allton_r103133.ax |plot -T PS ; mpisq-over-m.eps

STEP 4:

Copy the fit file o_su_massind_allton_r103133 and the sbq file FIT o_su_-massind_allton_r103133
to /SSUMMARY. Use the script files under /SUMMARY to generate files which list
the final results in tables. Each script file generates a table for one parameter. These
scripts do not take any parameters. They will look for all the output files with
filename o_* and corresponding sbq files FIT o_*, then extract the values of certain
parameter, sort them and make a table file in .tex format.

For a list of the script files and their functions, see the /SUMMARY section below.

Here is one example:

./dof.csh

This script will generate a table file ftable_sorted.tex containing the values of fpi

in the two-flavor chiral limit extracted from all sbq files under /SUMMARY.
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DETAILED DESCRIPTIONS OF ALL FILES

/DAT

Dat files: f031 sf018 uf014 for fine, superfine, ultrafine respectively

Covariance matrix: cov_rl

dat_files_thin F031009_SF0072_UF0056_ml0101502ms.csh

Script to thin out data. Here 009, 0072 and 0056 are cutoff values of am_x + am_y for
fine (ams = 0.031), superfine, ultrafine lattices respectively. “ml0101502ms” means
that we only use the data with light sea quark masses ml equal to 0.1, 0.15 and 0.2ms.

Output of the script is the data file PQ_meson.009.0072.0056.dat. It includes the
data and covariance matrix.

The script also generates points files used for plots:

fine_.031.pts

super_fine_.018.pts

ultra_fine_.014.pts

If the name of data file is PQ)-meson.009.0075.dat

, it means that the file contains superfine and ultrafine data only with cutoffs 009
and 0075.

# of blocks for each lattice
set xc0492_082 = 400

set xc0328_082 = 500
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set xc0164_082 = 646

set xc0082_082 = 600

set mc484_0484 = 598

set mc29.0484 = 600

set mc194_0484 = 621

set mc097_0484 = 621

set mc0484_0484 = 600

set c03_05 = 362

set c02_05 = 485

set c01_05 = 894

set c007_05 = 836

set c005_05 = 527

set c03_03 = 360

set c01_03 = 349

set c005_005 = 701

set 10124 031 = 531

set f0093_031 = 1124

set 0062_031 = 591

set £00465.031 = 480

set 10031031 = 945

set 00155_031 = 491

set 100620186 = 985

set 0031_0186 = 580
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set f0031_0031 = 380
set sf0072_018 = 625
set sf0054_018 = 465
set sf0036_018 = 751
set sf0025_018 = 768
set sf0018_018 = 826
set sf0036_0108 = 601
set uf0028_014 = 801
One sum up the number of blocks for lattices used in the fit, and then write this
number in front of the covariance matrix.
For example, for fits using sf0018_018, sf0025_018, sf0036_018 and uf0028_014, the
total number of blocks is

826 + 768 + 751 + 801 = 3146

/EXEC

Since the ALLTON style fitting function to rl and mass-independent scheme are
always used in our chiral fits, I will only show options with “allton” and “massind”

defined in the following introductions to the code.

linalg.c

Some routines to solve linear equations

matinv() inverse (dim) x (dim) matrix x, put result in y
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lineq() solve mat*ans = vec
factor() Gaussian elimination

subst()

whichspacing.c

Translate between different naming conventions of lattice spacings.

schpt2.c

Main function to calculate the pion mass and decay constant
STANDALONE MODE:
1. read in r1/a, par[], flag, mA, mB, mL, mS (in units of a)
2. set mA, mB, mL, mS to be r1*mA, r1*mB, r1*mL, r1*mS, set mAlat and
mBlat to be a*mA
and a*mB
3. set b[0]-b[90] to be par[0]-par[90]
c[0] = flag, c[1]—<[4] = mA, mB, mL, mS
4. IN PLOT MODE
if lag=0
mpisqo2mq = f(dindex, ¢, b) where dindex is the index o f the point in the array
of 2-loop sunset graph values stored in the table. If dindex is -1, the sunset table is
NOT used.
if MASSIND and EXTRAP
adjust = 1/rntoutput
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else adjust = 1.0
look for sunset table
print mA+mB, mpisqo2mp*adjust,
adjust*sqrt((mA+mB)*mpisqo2mq)*hc/rlphys (pion mass in MeV), mAlat, mBlat
if lag=1
fpi = f(dindex, ¢, b)
print mA+mB, fpi*adjust, adjust*fpi*sqrt(2)*hc/riphys (fpil31 in
MeV), mAlat, mBlat
if lag=2
print 121p3
if lag=3
print 14
if lag=4
print Ip
if lag=>H
print 13
IN EXTRAPERR MODE, get derivative w.r.t. parameters
if flag=0 print df(dindex, ¢, b, i) *(mA + mB) // get
derivative of mass 2
if flag=1 print df(dindex, ¢, b, i) //df/dblj]
if flag=2,3,4,5 print df(dindex, ¢, b, i)
5. IF NOT IN PLOT MODE
if flag=0
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print "mV, 2mS, M 2/(mql+mq2)”, mA+mB, 2*mS, f(dindex, ¢, b)
if lag=1
print "mV,2mS, fpi”, mA+mB, 2*mS, f(dindex, ¢, b)
STANDALONE MODE ENDS
Functions:
f_init(FILE *filep)
IF NOT IN PLOT MODE, PRINT OUT PROMPT MESSAGES
fscanf num_spacing, input_spacing, splittings, slope, a2rat, Zm,
\etc.
fscanf rlphys
set Lamsq = ( meta*rlphys/hc ) 2 = fpichinf2_xmu2 (used in
Bijnens’ code)
set li and kki to be 0 in Bijnens’ code
IN EXTRAP MODE
read input_spacing to be extrapolated to
read in finite volume corrections from table
initial set up for Bijnens’ code
IF NOT MAKESUNSETTABLE and NOT STANDALONE
read in sunset table
f(dindex, ¢, b)
set flag, mA, mB, mL, mS to be ¢[0]-c[4]
set parameters to be b[0]-b[90]

for ALLTON, set A00d — B20d
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call r1_variation() to get spacing, beta, latL, r1/a, \etc.
(Here we are using the actual data, and the REALDATA part in rl_variation() is
executed )
get L/r1 = Lorl = latL/rlav
get int 5, ... slope, a2rat, Zmrat for this lattice spacing
get gen_ratio according to whether FINE_PRIMARY is defined or
not. gen_ratio is used to calculate generic a 2 variations.
if NOT MAKESUNSETTABLE and NOT TESTSUNSETTABLE, adjust the param-
eter mu
mu = mu*Zmrat*(1 + mud*gen_ratio)
adjust all the parameters with variations and gen_ratio
If we let the fit parameters C00, CO1lu, COls, C02, C20, C21, C40, D20 in rl
formula to change, rltrue will be different from rlnom, and we need to do some
additional adjustments to the parameters resulted from the different r1 being used.
rnt = rlnom/rltrue
rat2 = (rlav/rltrue) 2
rt2an = rltrue 2/rlnom/rlav
rntoutput = rnt
if NOT MAKESUNSETTABLE and NOT TESTSUNSETTABLE
mu = mu*rnt
fp93 = p93*rnt
fp131 = fp131*rnt
slope = slope/rnt
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deltap_mub *= rat2 ;

deltap_mu *= rat2 ;

Ln *= rat2 ;
Lnp *= rat2 ;
int_5 *= rat2 ;

int_mud *= rat2 ;

int_munu *= rat2 ;

int_mu *= rat2 ;

int_I *= rat2 ;

fpichinf2_.fpi0 = fp93/sqrt(logcoeft)
(use fp93/logcoeft for 2-loops)

convert my NLO LECs to Bijnens’ set

if STANDALONE

if NOT PLOT

print r1*mA, r1*mB, r1*mL r1*mS choice
Denom = 16 pi 2/fp131 2
AnalyticDenom = fp93 2

use mu everywhere in the fit!

slopep=mu

calculate pion masses with various taste and flavor structure,

mu is used instead of slope

initiate masses used in Bijnens’ NNLO logs

mll = av_split + mu*2mA
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m22 = av_split + mu*2mB
m44 = av_split + mu*2mL
if flag=0 return eval_mpisq()
if flag=1 return eval fpi()
if flag; 1 return eval li()
df(dindex, ¢, b, 1)
calculate the derivative w.r.t. parameter pari]
ddf(dindex, ¢, b, i)
calculate the second derivative w.r.t. parli]
whichcase()
decide if masses are degenerate, and if so, use the corresponding degenerate formulas
for pion mass or pion decay constant.
for SU(2) PQCKhPT, only four possibilities: ABL, ABNL, ALNB NNN
ABL: mx =my = m.
ABNL: m x = m_y !=m_l
ALNB: mx =m1!=my or (my = m.l!= mx)
NNN: mx !l=m_y !=m.]
eval mpisq()
Function to evaluate m_pi 2 for different degenerate cases
dm_tree is NLO analytic contribution
dm_loop_mu, dm_loop_mub dm_loop_i are one loop contributions
their calculations differ for different degenerate cases.

dm_sunset and dm_nosunset are NNLO chiral logs
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if dindex ;=0, obtain dm_sunset from sunsettable
dm_2loop = dm_nosunset + logcoeff*logcoeff*dm_sunset /fp93 4
dm_square is the mock NNLO chiral logs, obselete
dm_quad is quadratic, NNLO analytic terms
dm_cube is cubic, NNNLO analytic terms
eval fpi()
Function to evaluate fpi, similar to eval mpisq()
eval _li()
evaluate ppl, ell4, pp2, ell3 (Names of these LECs need to be changed)
chiral(mass2)
chiral log function mass2*log(mass2/Lamsq)/Denom
chiral_pole2(mass2)
chiral log function (-1-log(mass2/Lamsq))/Denom
msq_etap(m2, m2S, dp)
obtain the mass of \eta’, used in SU(3) fit, obselete in SU(2) fit since the
expression of msq_etap is an inline function now.
Residue functions R and D
R42()

R31()

D21()

Finite volume corrections using cubic interpolation
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1()
if m*L is within the range of finite volume table dlarray, calculate FV correction by
using cubic interpolation.
If not, use deltal() to calculate directly.
d3()
if m*L is within the range of finite volume table dlarray, calculate FV correction by
using cubic interpolation.
If not, use delta3() to calculate directly.
(obsoleted) Finite volume corrections using linear interpolation
d1lin()
d3lin()
Modified Bessel functions
K1() and I1()
KO0() and 10()
mNNLO(Mass1, Mass2, Mass4, interp, epsinterp, epsbij)
return contributions from NNLO chiral logs to mpi 2/(mx+my)
convention: return mp6x21nf2_(&massl1,&mass22,&mass44) / ((massll + mass22)/2.0
fNNLO(Mass1, Mass2, Mass4, interp, epsinterp, epsbij)
return fp6x21nf2_(&mass11,&mass22 &massd4)
fNNLOsunset()
return the contributions from 2-loop sunset diagrams to fpi
mNNLOsunset()
return the contribtuions from 2-loop sunset diagrams to mpi 2/(mx+my)
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fNNLOnosunset()
return the contributions from 2-loop non-sunset diagrams to fpi
mNNLOnosunset()

return the contributions from 2-loop non-sunset diagrams to mpi 2/(mx-+my)

cofit_np.c

Main file to do correlated least square fit
fit data is stored in datum *data,
fit function is f() with first and second-derivative as df() and ddf().
#ifdef MAKESUNSETTABLE
make sunset table for data file with mu from mumin to mumax with certain stepsize
usually it is 1.0 to 10.0 with stepsize 0.1
main file to do the fitting
usage: schpt2_massind_allton datafile input_file ; output_file
Function:
main()
1. Data structure:
*par parameter array
*priorval prior central values
*priorerr prior errors
2. read in eps, max itermations, range of x to be fitted, \etc
3. read in parameters, priors, prior errors from input file

read in data from data file
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4. IF MAKESUNSETTABLE
from mu_min to mu_max with step size mu_step,
print the value of sunset diagram with current mu to
sunset _file
ELSE
read in covariance from data file
make sure nblocks ; ndata
5. Get eigenvalues of the correlation matrix and print them out
If eigcut = 0, skip this part
else
if EIGAV
average small eigenvalues which are less than eigcut
else
ignore small eigenvalues which are less than eigcut and corresponding eigenvectors.
endif
Reconstruct covariance matrix using the eigenvectors and the averaged eigenval-
ues.
6. use matinv() to invert covariance matrix, and store it in covarinv
7. minimize chi_square and obtain values of parameters.
8. Error analysis:
second derivative of chi_square W.R.T. each parameter (Hessian
Matrix) is stored in wparmat1[][]. Inverse Hessian Matrix is stored in

delpar(][], its scaled version is stored in wparmat2[|[]
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wparmat1[|[] = df/dpar * covarinv * df/par
wparmat2||[] = wparmatl * delpar
wparmatl[|[] = 4 * delpar * wparmat2
= 4 * delpar * wparmatl * delpar
wparmatl is the final parameter variance matrix
final error for parameter i parli| is
sqrt(nblocks/(nblocks-ndata)) * 2 * delparli][i] *
sqrt(nblocks/(nblocks-ndata)) * wparmat1]i][i]
dumpmat()
function to print out a matrix
phi()
function to obtain phi = sum_i (f(b). - datai) * covarinvl[i][j] * (f(b)j - data_j)
+ sum_j (b_j - prior_j)*(b_j - prior_j)/priorerr[j] 2
where b_j is the parameters in fitting function f()
dphi()
function to calculate dphi/d par|i]
ddphi()
function to calculate d 2 phi / d 2 par[i]
Functions to calculate CL
gammaq(0.5*dof, 0.5*chisq) get pre-adjusted confidence level

conf_int(chisq, nblocks, ndof) get confidence level
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minp.c

Function to minimize a given function phi(x) using Newtons or gradient descent
methods.

Results are put in vector x[].

rl ALLTON-variation.c

rlnom: nominal values of rl/a

rlav: typical r1/a for this lattice spacing. assume this is what goes into the splittings
and slope determination.

rltrue: rl/a changed from nominal values by shifts in smoothed-r1 fit parameters. it
is set to be rlnom in actual fits.

physical quark masses in units of a

amudphysEXTRA_COARSE] = 0.00192137 ;

amudphys]MEDIUM_COARSE] = 0.00158039 ;

amudphys|[COARSE] = 0.00126372 ;

amudphys[FINE] = 0.000953432 ;

amudphys[SUPER_FINE] = 0.000688411 ;

amudphys|[ CONTINUUM] = 0.00102384 ;
amsphys[EXTRA_COARSE] = 0.0535114 ;
amsphys] MEDIUM_COARSE] = 0.0438377 ;

amsphys[COARSE] = 0.0349209 ;
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amsphys[FINE] = 0.0260627 ;

amsphys[SUPER_FINE] = 0.018747 ;

amsphys| CONTINUUM] = 0.0277394 ;
if EXTRAP: given lattice spacing, find the lowest mass am_1, am_s
calculate rIlnom by using the smoothed formulas
if REALDATA: given r*m_1, r* m_s, figure out am 1, am_s and rl/a
calculate rlnom by using r1*m._s/(a * m_s)
find beta, latL, rlav, etc
if FINDSCALE: given am_l, am_s, figure out beta, lattice spacing, latL, rlav, rlnom
=r1*m.=s / am_s, etc.
calculate rIlnom by using the smoothed formulas
Functions:
rl_variation()
find sea quark masses am_l and beta, rl/a
set amudphys_c, amudphys_f, amsphys_c, amsphys_f
if ALLTON
set AOOn — B20n
if MASSIND
set amudphys|lattice spacing] and amsphys|[lattice
spacing]
if ALLTON
set nf=3, b0, bl
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if MASSIND
set rlavs[lattice spacing]. //rlavs| CONTINUUM]
= rlavs[FINE]
if EXTRAP
set mLa mSa to be lightest mass sets for input_spacing
if REALDATA
find mLa mSa r1/a from r1*mS r1*mL
From mLa, mSa, get beta, latL, spacing, g2, rlav=rlavs[spacing]
if spacing==CONTINUUM
rlnom = rlav
mSa = mSap
mLa = mLap
else
rlnom = r1*mS/mSa
if MASSIND (use physical quark masses)
set amtot and m_ud m_s by using amudphys[spacing] and amsphys[spacing]
if EXTRAP
calculate rlnom in mass independent scheme
else (NOT MASSIND, use actual quark masses)
amtot = 2mLa + mSa
m_ud = mLa

m.s = mSa

if FINDSCALE
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calculate rlnom

calculate rltrue by using the smoothing function
if EXTRAP

if NOT MASSIND

rlnom = rlav

rltrue = rlav

rl ALLTON main.c

Main routine to generate rl executable files
Usage:
EXTRAP: rl1_extrap C00d C10d C01d C20d spacing
FINDSCALE: r1_findscale C00d C10d CO01d C20d am_l am_s
REALDATA: r1_realdata C00d C10d C01d C20d r1*m_ r1*m_s
OUTPUT:
printf("mLa= %e\tmSa= %e\tbeta= %e\nrlav= %e\trlnom= %e\trltrue= %e\n",
mLa,mSa,beta,rlav,rinom,rltrue);
namespacing(spacing);
Lorl = latL/rltrue ;

printf(” L= %d\tL/rltrue= %e\t spacing= %d\ tspacing name = %s\n” ,latL,Lor1,spacing,outpu

maketfile

schpt2_massind_allton

Main executable file to do fitting
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schpt2_massind_allton.o: ${SOURCE} ${EXTRA_HEADERS}
cc -¢ -0 $@ -O3 ${SOURCE} \

-DMASSIND -DALLTON -DEPS=1.0e-9 -DTABLE \

-DTABLENAME=\" /usr/local /share/public/finite_vol_table_0.00001.txt\"
schpt2_massind_allton: schpt2_massind_allton.o \
rl_massind.o whichspacing.o ${FORTRANBINS} ${LIBRARY} ${EXTRA_BINS}
gfortran -o $@ ${EXTRA_BINS} schpt2_massind_allton.o rl_massind.o whichspac-
ing.o ${FORTRANBINS} ${LIBRARY} -lm

Other versions:
schpt2_massind_allton_ms (strange quark mass effects included)
schpt2_massind_allton_goldstone (use the goldstone pion masses in NNLO calcula-
tions)

schpt2_massind _allton_plot

Executable file in standalone mode . Output is given for the purpose of plotting
schpt2_massind_allton_plot.o: ${SOURCE} ${EXTRA_HEADERS}
cc -¢ -0 $@ -O3 ${SOURCE} \

-DMASSIND -DALLTON -DSTANDALONE -DPLOT -DEPS=1.0e-9
schpt2_massind_allton_plot: schpt2_massind_allton_plot.o \
rl_massind.o whichspacing.o ${FORTRANBINS} ${LIBRARY}
gfortran -o $@ schpt2_massind_allton_plot.o r1_massind.o whichspacing.o ${FORTRANBINS}
${LIBRARY} -lm

Other versions:

schpt2_massind_allton_plot_ms
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schpt2_massind_allton_nofinitev_plot (print the results of fpi and mpisq in the infinite
volume case)
schpt2_massind_allton_nofinitev_plot_ms

schpt2_massind_allton_extrap

Executable file in standalone mode. Output is
schpt2_massind_allton_extrap.o: ${SOURCE} ${EXTRA_HEADERS}
cc -¢ -0 $@ -0O3 ${SOURCE} \

-DMASSIND -DALLTON -DSTANDALONE -DPLOT -DEXTRAP -DEPS=1.0e-
9 -DCAREFUL
schpt2_massind_allton_extrap: schpt2_massind_allton_extrap.o \
rl_massind_extrap.o whichspacing.o ${FORTRANBINS} ${LIBRARY}
gfortran -o $@Q schpt2_massind_allton_extrap.o rl_massind_extrap.o whichspacing.o
${FORTRANBINS} ${LIBRARY} -lm

Other versions:
schpt2_massind_allton_extrap TRIVIAL (print the contributions to fpi and mpisq at
the lowest order)
schpt2_massind_allton_extrap NLO (print the contributions to fpi and mpisq up to
NLO)
schpt2_massind_allton_extrap_ms
schpt2_massind_allton_nofinitev_extrap
schpt2_massind_allton_nofinitev_extrap TRIVIAL
schpt2_massind_allton_nofinitev_extrap NLO

schpt2_massind_allton_nofinitev_extrap_ms
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schpt2_massind_allton_nofinitev_extraperr

Executable file to extrapolate the errors
schpt2_massind_allton_nofinitev_extraperr.o: ${SOURCE} ${EXTRA_HEADERS}
cc -¢ -0 $@ -O3 ${SOURCE} \

-DMASSIND -DALLTON -DSTANDALONE -DPLOT -DNOFINITEV -DEXTRAP
-DEXTRAPERR -DCAREFUL
schpt2_massind_allton_nofinitev_extraperr: schpt2_massind_allton_nofinitev_extraperr.o
\
rl_massind_extrap.o whichspacing.o ${FORTRANBINS} ${LIBRARY}
gfortran -o $@Q schpt2_massind_allton_nofinitev_extraperr.o r1_massind_extrap.o whichspac-
ing.o ${FORTRANBINS} ${LIBRARY} -lm

Other verions:
schpt2_massind_allton_nofinitev_extraperr_ms

schpt2_massind_allton_standalone

Executable file in standalone mode
schpt2_massind_allton_standalone.o: ${SOURCE} ${EXTRA_HEADERS}
cc -¢ -0 $@ -O3 ${SOURCE} \

-DMASSIND -DALLTON -DSTANDALONE -DEPS=1.0e-9
schpt2_massind_allton_standalone: schpt2_massind_allton_standalone.o \
rl_massind.o whichspacing.o ${FORTRANBINS} ${LIBRARY}
gfortran -o $@ schpt2_massind_allton_standalone.o r1_massind.o whichspacing.o ${FORTRANBI
${LIBRARY} -lm

Other versions;
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schpt2_massind_allton_standalone_ms

schpt2_makesunsettable

Executable file to make the 2-loop sunset table

Other versions:
schpt2_makesunsettable_goldstone

Helper functions to find smoothed r1/a

r1_allton-findscale_massind: ${R1_MAIN} ${R1_.SOURCES} ${EXTRA_HEADER}
cc-09$@-03 ${R1_-MAIN} ${R1_SOURCES} -DFINDSCALE -DALLTON -DMASSIND
-lm

rl_allton-extrap_massind: ${R1_MAIN} ${R1_.SOURCES} ${EXTRA_HEADER}
cc -0 $@ -03 ${R1_-MAIN} ${R1_SOURCES} -DEXTRAP -DALLTON -DMASSIND
-lm

r1_allton-realdata_massind: ${R1_-MAIN} ${R1_SOURCES} ${EXTRA_HEADER}

cc -0 $@ -03 ${R1_.MAIN} ${R1_SOURCES} -DALLTON -DMASSIND -Im

/PLOT

makeplot_2loop.csh

Main script to make plots
Usage: makeplot_2loop.csh fitfile omit YES/NO
Omit options: none keep all points
¢ omits all coarse, medium_coarse, extra_coarse
ef031sf omits all except {031, sf
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esfuf omits all except sf, uf
YES/NO
YES: set taste-violating parameters to zero, likecontinuum
NO: keep taste-violating parameters.
1. set rlfind = rl_allton_extrap_massind
2. Make sbqfile from the fitfile
$sbq_all 2loop.csh $fitfile YES/NO 1.2 $ritype ; $sbqfile
3. find quantities from sbqfile
aml
fpi, fpierr in physical units
(continuum) rl , rlphys
fpi, fpierr in units of rl, r1*fpi, r1*fpierr
oldconfidence, oldchisq, olddof,
confidence, chisq, dof,
4. For each spacing except omitted ones, make points file $spacing_shiftZ_NOFV _$fitroots.pts
finite_vol_correct_all_pts_2loop.csh $spacing.pts $fitfile
Now all points are adjusted to infinite volume.
5. Extract points used in the plots.
extract_pts_all_2loop_mloverms0101502.csh $fitfile
6. Draw fit lines
make_fit_lines_some_2loop.csh $fitfile Somit YES/NO
7. Make .ax plot files

(1). make .ax plot file for fpi
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pts file fpi_pion_points

lines file fpi_lines

plotfile fpi_$fitroot.ax

start from the template plot file

make substitutions for all quantities, fpi,
fpierr, oldconfidence, oldchisq, \etc.

add points file fpi_pion_points, and lines file

fpi_lines to the plotfile

finite_vol_correct_all_pts_2loop.csh

Make finite volume corrections to all points
Usage: finite_vol_correct_all_pts_2loop.csh $pointfile $fitfile
Output:
outfile = $ptsfile NOFV _$fit.pts
NOT corrected for new smoothed rl
outfileZ = $ptsfile_shiftZ NOFV _$fit.pts
rl(mx+my) and r1*msq/(mx+my) adjusted for Zm/Zm fine
corrected for new smoothed rl
1. Get information for available lattice spacings from $fitfile and write to
tempconstantsl
mass intercepts, slope, a2rat_taste, a2rat_generic, Z_m, \etc
2. Write $numspacings, tempconstantsl, rlphys to temphead
3. RANGETYPE = 7
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4. If allton and massind is in the name
rlname = _massind_allton
rlfind = rl_allton-findscale_massind
5. If noal is in the name
noaltype = _noal
6. If fv is in the name, use LFACTOR execs. (obsoleted)
fvtype = _fv
Ifactor = ...
7. Set two executable files
executable_FV = schpt2$fvtype$noaltype$riname$rangetype_plot
executable NOFV = schpt2$fvtype$noaltype$riname$rangetype nofinitev_plot
8. Get final fit parameters from fitfile, put in $parline
9. For each line in the ptsfile, read the information
rlpts, x, oldpt, err, typel, mA, mB, mL, mS, \etc.
get rl and SPACING by using rlfind = r1_allton-findscale_massind
rlfind 0 0 0 0 $mL $mS ;! temprl (mass is in units of rl)
find SPACING, Zr
10. For each line containg data, do the following
write temphead, rlpts, parline, mA, mB, mL, mS to tempinput
exec_FV < tempinput >! tempoutputl
exec_ NOFV < tempinput >> tempoutputl
put good lines to tempoutput
grep "\!I” tempoutputl ;! tempoutput
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get afv from output of exec_FV (finite volume)

get anofv from output of exec. NOFV (infinite volume)
newpt = oldpt + anofv - afv

echo $x $newpt $err \etc. to $outfile

adjust by Zr

adjust by rl/rlpts

newpt = newpt/Zr, err = err/Zr, x = x*7Zr

newpt = newpt® rl/rlpts, err = err*rl/ripts, x =
x*rl/ripts.

write x newpt err to $outfileZ

extract_pts_all_2loop_mloverms0101502.csh

Usage: extract_pts_all_2loop_mloverms0101502.csh $fitfile
Output: fpi_pion_points
msq_pion_points

extract data points for fpi or msq, do the following:

1. for fine031 sf uf lattices, do the following (use fine031 as example)

(1) pointsfile = fine_.031_shiftZ_NOFV _$fitfile.pts

(2) select the real pion points, i.e. points with mx=my=ml

(2) set ms, ml set, colors set, symbol for each lattice spacing

(3) find the pointsfile, then for each ml, write the color,

symbol, data in pointsfile corresponding to this (ms, ml) to $output
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make _fit_lines_some_2loop_from0.csh

Function: make selected fit lines starting from the chiral limit (m_x + m_y = 0)
Usage: make_fit_lines_some_2loop_from0.csh $fitfile omit YES/NO
Output: fpi_lines

msq_lines
1. If allton is in the fitfile name

rltype = "ALLTON”

if massind is in the fitfile name

rltype = "massind”

2. FVflag = "NOFV”

rangeDflag = "rangeD”

sbafile = FIT $fitfile YES(NO)

make sbqfile if it does not exist

mscont = continuum a*ms
3. Set ml according to the omit option,

For example, if omit = esfuf

masses = (0036 0025 0018 0028 fullphys fullphysTRIVIAL fullphysNLO)

fullphysTRIVIAL is the LO contribution,

fullphysNLO is the contributions up to NLO

fullphys is the full NNLO results
4. for each m in the set, do the following

set spacing, color, step, mB, mL = m, mS (all in lattice units)
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fullphys: mB = mL mS = $mscont
fit_line_all_2loop.csh $fitfile $spacing $flag $step $mB $mL $mS
$FVflag $rangeDflag $ritype $continuumorder ;! tempfitlinebig

5. write comment, color, output line in tempfitlinebig to $output

fit_line_all_2loop.csh

Function: generic script code to make fit line with various parameters.
Usage: fit_line_all 2loop.csh fitfile spacing flag mAmin mAmax step mB mL mS
FVflag rangeDflag ALLr1/SOMEr1/massind continuumorder
Options: flag = 1 fpi
= 0 mpi 2/mq
mAmin mAmax step
the start point, end point and stepsize of the fit line.
mB mL mS
mB=mA pion
mB=mS kaon
mB=mL mA=mB=mL full pion
mL=mA
for full kaon, use mB=mS, mL=mA
FVflag
FV: finite volume
NOFV: infinite volume
rangeDflag
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w»

not used anymore. It is set to be
1. if spacing information not included in fitfile, exit
flag =0: type = PQ_msq
=1: type = PQ_f
2. if ALLTON and massind
rltype = _massind_allton
rlextrap = rl_allton_extrap_massind
rlfind = rl_allton_findscale_massind
3. if FV, exectable = schpt2_..._plot
if continuumorder = TRIVIAL exectable =
schpt2_...extrap_TRIVIAL
if continuumorder = NLO exectable = schpt2_...extrap_NLO
if continuumorder = full exectable = schpt2_...extrap
similary for NOFV, use the nofinitev_plot or nofinitev_extrap
4. Draw certain type of lines according to the value of mB.
if mB = mA
PQ pion

type = PQ_msq_pion, or PQ_f pion

if mB = mS
if mL = mA
full kaon

type = full_msq_K, or full f K

else PQ K
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type = PQ_msq K, or PQ_f K
if mB = mL
full pion
type = full_.msq_pion, or full_f pion
else NNN pion
5. for this lattice spacing, find Zr in fitfile
get nominal rl/a
if spacing = continuum
rlextrap 0 0 0 0 $spacing ;! temprl
else
rlfind 0 0 0 0 mL mS
6. zx = zy = Zr, for fpi, zy =1
get rlphys from fitfile
output ${no}${rtype} ${type}_${spacing} ${mBtype}${mL} ${mS}
7. get npar, parline. To avoid csh errors, split parline to two parts
write numspacings, information (slope,a2rat_taste, Zm, \etc) of
lattice spacings, r1phys to tempplot
if spacing=continuum, write spacing to tempplot and use the extrap
code later
write parline lag mA mB mL mS to tempplot
here mA takes value from mAmin to mAmax with stepsize
8. executable < tempplot ;! tempoutl

write good lines to tempout
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grep "\!I” tempoutl ;! tempout
9. for each line in tempout, adjust the points by

(mx+my)-/, Zr*(mx+my) mpi 2/(mx+my)-;mpi 2/(mx-+my)*Zr fpi-;fpi

sbq_all_2loop.csh

Function: From a fitfile, generate the corresponding shq file containing information
about physical quark masses, fit results for each lattice, etc.
Usage: sbq_all 2loop.csh fitfile YES/NO Delta_ E ALLrl/SOMEr1 /massind [fpifv
fKfv mpifv mKfv]
Delta_E: parameterizes violations of Dashen’s theorem
Delta_E=0 is Dashen’s theorem, Delta_E=1.2 is typical expected
value
[fpifv fKfv mpifv mKfv] are residual finite volume corrections
As of 7/10/07, they are [0.002797 0.00048303 .00065147
.000714505]
1. calculate pi0 = mpihat, mk = mKhat and mkp = mK+
2. for each spacing in the fitfile, do the following
solve_all_2loop.csh $fitfile $spacing .0013 .035 $pi0 $mk $mkp
YES/NO $range $rltype ;! solvetemp
here, $range is set to be rangeD
get ainv from solvetemp
get a2rat from fitfile, a2rat_phys = a2rat_fine

write final solve information to output file
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write the line containing m_u to tempit and output file (use
|tee)
write the line containing fpil31phys in solvetemp to output file
write the line containing ml= in solvetemp to output file
get ml ms mu md msoml from solvetemp
write fchiral3 fchiral2 fpi.fchiral2 B03 psi-bar psi \etc in
solvetemp to output file
write the line containing LEC in solvetemp to output file
if spacing != continuum
write a2rat ml1*($2 in tempit) to tempml.dat
write a2rat mu*($2 in tempit) to tempmu.dat
write a2rat md*($2 in tempit) to tempmu.dat
write a2rat fpil31phys*(1+fpifv), $5 to tempfpi.dat
set noxc nome nosf ainve ainvf noc \etc by setting the value of
a2rat
3. make input files for stline fits
for various fits: tempin_xmcfs, tempin_cf tempin_fsu
4. extrapolate MSbar masses and ratios
fitstline tempml.dat tempin_fsu ;! tempfit
print ”extrapolated from fine superfine ultrafine, ml =
%t”
fitstline tempmu.dat tempin_fsu ;! tempfit
print mu = %f
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fitstline tempmd.dat tempin_fsu ;! tempfit
print md = %f
fitstline tempfpi.dat tempin_fsu ;! tempfit
print fpi = %f
5. set zmf = 1.39391
get parline from fitfile and store it in partemp
get Be eBg, fe, efc, dB, edB, df, edf, \etc from partemp
edB = $2/(1-a2rat+d)
calculate f frac_ef B frac_eB cond fchiral3 \etc.

write the results to output file

solve_all_2loop.csh

Function: Solve physical light quark mass m_l, and obtain strange quark mass m_s
by using the input from SU(3) chiral analysis.
Usage: solve_all 2loop.csh fitfile spacing mLstart mSstart mpihat mKhat mKplus
YES/NO RANGE ALLr1/SOMEr1/massind
1. if allton and massind
rltype = _massind_ allton
rlexec = rl_allton-extrap_massind
if rangeD
executable = schpt2_... nofinitev_extrap
executable_err = schpt2_..._nofinitev_extraperr
2. zmf = 1.39391
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zme = 1.34394 (Why use zmc here???)
get Zr from fitfile (Zmrat)
zm = zmf * Zr
3. rlexec C00d C10d C0O1d C20d $spacing ;! temprl
get rlnom on fiducial lattice from temprl
get rlphys from fitfile
get ainv on fiducial lattice from temprl
4. echo parline = $parline
5. write numspacing, information about lattice spacing in fitfile,
rlphys, $spacing to temphead
6. set mSomL and muod for different lattice spacings and likecontinuum
= YES/NO
7. iterate to find mL which makes pion mass physical, using
extrapolate.awk
print final mL mS values (amL amS mSomL)
8. print physical quark masses hpqed:hep-lat/0510053 |, to tempoutput
mL*ainv*zm
mS*ainv*zm
mU*ainv*zm
md = mu/muod
9. find derivatives of mass and fpi with respect to mL
piL and fpiL,
since we are not considering mS variances of LECs, mS is irrelevant
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here, and 25, B02S are not used in the two-flavor case.
10. calculate the errors of fpil31phys and light quark mass ml by doing the
following;:
get parameter variance matrix for msq and fpi, for pion and K
respectively (K is only relevant in SU(3) case).
dfpipli], dfKpl[i], dpili], dK[i]
deltal[][] is the nfree*nfree dimensional variance matrix read from
fitfile
get the full derivative, dfpi[k] (k=1...nfree) only takes value for
free parameters.
dL[] = - dpili]/piL
dfpi[] = dfpip[i] + dL[J*fpiL (chain rule)
errfpi += dfpi[] * delta[][] * dfpi]]
errmL += dL[] * delta[][] * dL]]
errfpi = sqrt(errfpi) / (fpirl/physfpi)
mLerr = sqrt(errmL) / mL
print out fpil31phys, mLerr
11. calculate fchiral3, fchiral2, B0O3, B02 and their errors.
dL = -dpi[i] / piL
dfpi = dfpip|[| + dL * fpiL.
df3 = df3p]]
df2 = df2p + dS * £2S
dfpiof2[] = (f2r1*dfpi - fpirl*df2)/f2r1/f2rl
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dfpiof3[] = (f3r1*dfpi - fpir1*df3)/f3rl/f3rl

dB03 = dB03p]

dB02 = dB02p]] + dS*B02S

dB020B03[] = (B03r1*dB02 - B02r1*dB03)/B03rl/B03rl
dC3 = f3r1* (2*B03r1*df4 + 3r1*dB03)

dC2 = f2r1* (2¥B02r1*df2 + f2r1*dB02)

rl = sqrt(2)*fpirl /physfpi

errf3 = df3 * deltal][] * df3

errf2 = df2 * deltal][] * df2

errfpiof2 = dfpiof2 * deltal][] * dfpiof2

errC20C3 = dC20C3[] * delta[][] * dC20C3]]

errf3 = sqrt(errf3)/rl

errC20C3 = sqrt(errC20C3)

print out fchiral3, ... jpsi-bar psi;_2/ipsi-bar psi;_3 and errors.
12. print LECs and errors

obtain dLip[] from temperr generated by using exec_err

dLi[] = dLip|]
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errLi = dLi[] * delta[][] * dLi
print out LECs and errors
13. Hessian errors.
read inverse Hessian matrix from the fitfile
use inverse Hessian matrix to calculate errors of fpil31phys,

ml-frac-err, \etc.

/SUMMARY

Enumerate all the output files 0o_*** in current directory and find the
corresponding sbq files FIT_***, Extract the results from these files, put them into
table files in .tex format.

This directory contains the following script files. These scripts do not have argu-

ments.

dof.csh

Output: ftable_sorted.tex
obtain fpi in the two-flavor chiral limit from sbq file, and put them in a table
file ftable_sorted in plain text format, then use the maketable.csh to convert

to a table file in .tex format.

dofphys.csh

Output: fphystable_sorted.tex
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obtain the pion decay constant fpil31phys in physical units and make the table

file.

doubaru.csh

Output: wbarutable_sorted.tex
obtain the chiral condensate \bar{u}u in the two-flavor chiral limit and make

the table file.

dompi.csh

Output: mpitable_sorted.tex

obtain the B_0 in the two-flavor chiral limit and make the table file.

dol3.csh

Output: [3table_sorted.tex
obtain the values of LEC 1.3 from sbq file, then convert to \bar{l 3} using the
formula:
\bar{l.3} = -64*pi 2*1_3 - In (mpiphys 2/mu 2)
where mpiphys is the physical pi + mass, set to be 0.139 GeV here, and mu is the

regularization scale set to be m_\eta = 0.5473 GeV.

dol4.csh

Output: Iftable_sorted.tex
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obtain the values of LEC 1.4 from shq file, then convert to \bar{l.4} using the
formula:

\bar{l.4} = 16*pi 2*1.4 - In (mpiphys 2/mu 2)
where mpiphys is the physical pi + mass, set to be 0.139 GeV here. mu is the

regularization scale set to be m_\eta = 0.5473 GeV.
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