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Abstract

In this dissertation, we investigate the properties of matter, denser than nuclei,

that exists inside compact stars. First, we examine a mixed superfluid/superconductor

system, which likely occurs in neutron star cores. We derive an effective theory of

Cooper pair quasiparticles from a microscopic theory of nucleons, and calculate the

coupling strengths between quasiparticles. We then calculate the structure of mag-

netic flux tubes, taking into consideration interactions between neutron and proton

Cooper pairs. We find that interactions between the condensates can lead to interest-

ing phenomena and new phases at the border between type-I and type-II behavior.

Next, we examine the response of nuclear matter to vibrational modes by calculating

the bulk viscosity from purely leptonic processes. We find that for hot neutron stars,

the bulk viscosity due to leptons is very small compared to the bulk viscosity due to

nucleons, but for cold neutron stars, the leptonic component is dominant. Finally,

we derive the reflection and transmission properties of light at boundaries between

phases of matter that have two independent U(1) generators, which may exist at the

surface of “strange stars” or at boundaries between different phases of matter in a

neutron star.
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Chapter 1

Introduction

1.1 Theoretical Phases of Matter at High Density

Determining the phase diagram of very hot or very dense matter is a challenging

theoretical problem on the forefront of today’s nuclear and particle physics research.

The primary challenge is a lack of experimental data about how matter in these

regimes behaves. At high temperature and low density (T & 150 MeV, µbaryon . 500

MeV), it is predicted that matter consists of a Quark-Gluon Plasma (QGP), while

at low temperature and high density (T . 50 MeV, µbaryon & 1000 MeV) , theory

predicts a number of different phases consisting of color-superconducting quark matter

(Fig 1.1 [1]).

Recently, the Relativistic Heavy Ion Collider at Brookhaven has begun exploring

the high temperature, low density regime of the phase diagram, but it is unlikely that

a terrestrial experiment will be able to explore the low temperature, high density

2
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liq

T

µ

gas

QGP

CFL

nuclear
superfluid

compact star

non−CFL

heavy ion
collider

hadronic

Figure 1.1: Notional phase diagram for nuclear and quark matter at high density and temperature

[1].

regime. To collect data that can verify the theoretical predictions in this regime, we

must turn to our friends the astronomers and astrophysicists. Based on measurements

of mass and radii, the predicted quark matter phases may exist inside compact stars.

Pulsars and X-ray bursters are compact objects that are likely neutron stars, but

some could possibly be “strange stars” that are purely composed of quark matter [2].

3
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1.2 Internal structure of neutron stars

The nuclear matter in the neutron star core ranges from a few times the normal

nuclear density, ρ0 = 0.15 nucleons/fm3, to an order of magnitude higher [2]. This

dense matter is also very cold compared to the nuclear temperature scale; the typical

temperature of a neutron star is less than about 108 K [2]. (In comparison, the quark-

gluon plasma created at RHIC has a temperature on the order of 1012 K.) . Therefore,

it is likely that quark matter can exist inside of neutron stars. Neutron stars likely

have an “onion” structure, where the phase of matter depends on the depth from the

star’s surface. The crust layers are thought to be a crystalline arrangement of nuclei

and electrons. As the depth increases, the density becomes larger than the “drip

density”, where neutrons begin to drip out of nuclei, so nuclei and a nucleon fluid

coexist. Increasing the depth further, the nuclei dissolve into pure nucleon fluid. In

the neutron star core, the nucleons may become deconfined, resulting in quark matter

(Fig 1.2).

However, there is no way to directly observe these properties. Pulsars have been

identified as rotating neutron stars; the observable properties are the spin rate (pulsar

frequency), spin-down rate due to energy losses, glitches (sudden changes in spin-down

rate), and thermal emission from neutrinos and photons. More generally, neutron

stars that accrete matter from a binary partner may be the source of X-ray bursts.

To make a connection between neutron star observations and dense matter theories,

star models must be constructed based on a theory of the constituent matter, and

4
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Figure 1.2: Illustration of a number of possible models for the internal structure of a neutron

star [3].

the model results compared to neutron star properties.

One of the interesting predictions about the neutron star core is that the neutrons

should form a superfluid and the protons should form a superconductor. Since the

strong nuclear force has a long-range attractive part, the Bardeen-Cooper-Schreiffer

(BCS) mechanism induces pairing between nucleons [4]. The neutron superfluid ro-

tates by forming a triangular array of vortices, called an Abrikosov lattice. This

model of a neutron superfluid has been invoked to explain the phenomena of neutron

star glitches [2]. Over time, the neutron star’s rotation frequency decreases as it loses

energy. Occasionally, the rotation frequency of the star will increase suddenly, then

return to its normal trend of decreasing again - this sudden increase in frequency is

5



Chapter 1 Introduction

called a glitch. In order for the rotation frequency of the star to decrease, vortices

need to move toward the outside of the star, but this causes stress on the neutron

star crust, because the ends of the vortices are pinned to the crust. It is thought that

a glitch occurs when the buildup of stress cause a massive realignment of the crust

(“starquake”) so that the vortices can move outward [2].

Based on the predicted properties of the neutron star core matter, the proton

superconductivity should be of type II [5]. In a type II superconductor, magnetic flux

is allowed to penetrate the superconductor in quantized flux tubes. These flux tubes

also form an Abrikosov lattice. It has also been shown that neutron vortices become

pinned to proton flux tubes, because the neutrons drag protons around with them

(“entrainment”) and magnetize the vortices [6].

1.3 Isospin asymmetry and Cooper pair

interactions

Recently, it has been suggested that nuclear matter in neutron stars might be a type-I

superconductor. The astrophysical evidence is that certain neutron stars have long

precession periods, and it has been suggested that this means the proton supercon-

ductivity cannot be type-II [7], although that inference has been contested [8, 9].

A theoretical argument for type-I superconductivity in neutron star cores was then

presented by Buckley et. al. in Ref. [10]. These authors assumed that the effective

potential for the Cooper pair fields has a U(2) symmetry under rotation of proton

6



Chapter 1 Introduction

and neutron Cooper pairs into each other. Specifically, the effective potential for the

Cooper pair fields was assumed to take the form

V (|∆pp|2, |∆nn|2) ≈ U(|∆pp|2 + |∆nn|2)

= −µc(|∆pp|2 + |∆nn|2) + a(|∆pp|2 + |∆nn|2)2 + · · ·
(1.1)

The assumption that the potential is approximately a function of |∆pp|2+|∆nn|2 leads

to |∆pp|2|∆nn|2 cross terms, which provide a strong repulsive interaction between the

neutron and proton Cooper pair condensates. It is argued in Ref. [10] that this leads

to a long-range attraction between proton flux tubes, i.e. type-I superconductivity.

The assumed U(2) symmetry was justified by invoking the isospin symmetry of

the underlying nuclear interaction. The authors of Ref. [10] admit that isospin is

severely broken by the constraint of electrical neutrality, which, combined with beta-

equilibration, greatly suppresses the proton Fermi momentum relative to the neutron

Fermi momentum, but they claim that this does not affect the interaction between

the p-p and n-n Cooper pairs. This seems implausible, since it is well known in

the theory of superconductivity that the coefficients of the terms in the Landau-

Ginzburg effective theory, including the quartic coupling a, depend strongly on the

Fermi momenta of the underlying fermions [11]. For example, for a one component

Fermi gas, just below the BCS critical point, the effective Landau-Ginzburg potential

is

V (|∆|2) = −µ|∆|2 + a|∆|4 + · · · (1.2)

where µ ≈ NF (Tc − T )/Tc, and NF is the density of states at the Fermi surface, so

7



Chapter 1 Introduction

for non-relativistic fermions NF ∝ mpF where m is the mass and pF is the Fermi

momentum. The minimum of the potential occurs at ∆0 =
√

µ/(2a), so the quartic

coefficient is a = µ/(2∆2
0). The binding energy of the condensate is then V (∆0) =

−1
2
NF∆2

0, a well-known result in the superconductivity literature [12]. We see that µ,

a, and V (∆0) are all very sensitive to the Fermi momenta of the underlying fermions.

Clearly for protons and neutrons in a neutron star, which have very different Fermi

momenta but similar pairing condensates ∆, this will not give an effective potential

of the form (1.1).

In chapter 2 (based on [13]), we back up our reasoning with a concrete calculation.

Starting from a four-fermion interaction model (known as the NJL model) of protons

and neutrons with U(2) symmetry, an effective Lagrangian for pair quasiparticles is

derived. The NJL couplings are treated as variables, and are determined using gap

equations and the predicted values of the neutron and proton gaps. The couplings

between the pair quasiparticles are then determined at both T = 0 and at finite

temperature. It was found that the coupling between neutron pairs and a proton pairs

was smaller than the coupling between two neutron pairs or the coupling between two

proton pairs by about two orders of magnitude. This finding seems to rule out the

assumption of a U(2) symmetry for the effective theory of Cooper pairs.

8



Chapter 1 Introduction

1.4 Flux tubes and the type-I/type-II transition

in a superconductor coupled to a superfluid

In chapter 3 (based on [14]) we investigate a system that has both a charged conden-

sate, leading to superconductivity, and a neutral condensate, leading to superfluidity.

We focus on the magnetic flux tubes that are associated with the superconducting

condensate, and study how they are modified by the presence of the superfluid, as-

suming that the two condensates can interact with each other via density and gradient

(“entrainment”) interactions. Nuclear matter is an example of this type of system,

which at sufficiently high density undergoes Cooper pairing of both neutrons and

protons. We will present our calculations in this context, referring to the charged

condensate as the “proton condensate” and the neutral one as the “neutron conden-

sate”, and choosing values appropriate to nuclear matter for our parameters when

presenting numerical results.

We study the type I versus type II nature of a (proton) superconductor coupled

to a (neutron) superfluid, using an effective theory for the protons and neutrons

that contains four-fermion interaction terms which lead to s-wave pairing. We do not

include higher-angular-momentum pairing, although that would be needed for a more

realistic analysis of high-density nuclear matter. Our analysis extends that of Ref. [10]

in the following ways: (a) Our model, like that of Ref. [10], contains a coupling anp

between the magnitudes of the neutron and proton condensates, and self-couplings

ann and app, but we survey the whole range of values of anp, from zero to of order app;
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(b) we also include “entrainment” interactions between the gradients of the proton

and neutron condensates; (c) we use a simpler and more direct method to study the

type-I/type-II phase boundary, using the energetics of flux tube coalescence/fission:

we calculate the energy of flux tubes with a wide range of magnetic fluxes, from one

quantum to several hundred quanta, and find which one has the lowest energy per

unit flux. As we will see, this has the additional benefit of allowing us to find exotic

stable multi-quantum flux tubes, such as have been found in systems of two coupled

superconductors [15]. However, as we discuss below, our analysis is not sensitive to

minima in the interaction energy at finite separation between flux tubes.

Our analysis is entirely at zero temperature. This is a good approximation for

neutron star matter near nuclear saturation density, where the critical temperatures

for the superfluid and superconductor are of order MeV [16, 17, 18]. The tempera-

ture of a compact star drops below this value within minutes of its formation in a

supernova, and is at or below the keV range after the first 1000 years [19]. When we

discuss type-I versus type-II behavior we are referring to the response of the system

to a magnetic field at the lower critical value, at T = 0.

As far as we know, there has been no previous work on how a flux tube in a

superconductor is affected by a gradient coupling to a co-existing superfluid. How-

ever, there has been work on possible knot solitons [20], vortices in the SO(5) model

of high-temperature superconductivity [21], and on the complementary situation, a

superfluid vortex with gradient coupling to a co-existing superconductor. There the

coupling leads to the “entrainment” or Andreev-Bashkin effect [22] whereby the pro-
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ton condensate is dragged along with the neutron condensate, producing a non-zero

proton current around the vortex, dressing it with some magnetic flux [23]. It is

interesting to note that this flux is not a multiple of the flux quantum for proton flux

tubes. This is possible because of the difference between the energetics of a neutron

vortex and a proton flux tube. The flux tube has energy density localized to the

vicinity of its core. Far from the core the energy density must vanish, which means

the proton field must change in phase by a multiple of 2π, and the the vector potential

must cancel the resultant gradient, leading to a quantized magnetic flux. A neutron

vortex, by contrast, has gradient energy that is not localized to the vicinity of the

vortex, and the total energy per unit length diverges in the infinite volume limit.

The vector potential is therefore not constrained to cancel any gradient in the proton

field, and takes on a value that minimizes the overall energy, with no quantization

condition on the resulting magnetic flux.

Returning to the situation that we study, a proton flux tube in a neutron super-

fluid background, we do not expect a similar behavior. This is because the proton

flux tube’s energy density is localized around its core, giving it (unlike the neutron

vortex) a finite energy per unit length. If the neutron condensate were entrained, and

developed non-zero circulation around the flux tube, it would acquire a non-localized

energy density, leading to an infinite energy per unit length for the flux tube, which

is clearly energetically disfavored. We will see in chapter 3 that the effect of gradient

couplings on the proton superconductor is more subtle: it leads to metastable regions

near the type-I/type-II boundary.
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1.5 Leptonic contribution to the bulk viscosity of

nuclear matter

The bulk viscosity of nuclear matter plays an important role in the damping of oscil-

lations in neutron stars. One well-known example is r -modes, which, if the interior of

the star is a perfect (dissipationless) fluid, become unstable with respect to the emis-

sion of gravitational waves [24, 25, 26]. This emission acts as a brake on the rotation

of the star. However, r-mode spindown will not occur if the r-mode is sufficiently

strongly damped, for example by shear or bulk viscosity of the matter in the interior

of the star. It is therefore important to calculate of the bulk viscosity of the various

candidate phases in a neutron star. Several calculations exist in the literature, for

nuclear [27, 28, 29, 30, 31, 32] and hyperonic [33, 34, 35] as well as for unpaired quark

matter [36, 37, 38] and various color-superconducting phases [39, 40, 41, 42, 43, 44].

In chapter 4 (based on [45]) we will study β-equilibrated nuclear matter. We will

assume that the density is high enough that the negative-charge chemical potential

µl is greater than the mass of the muon, so the matter consists of neutrons, protons,

electrons and muons. Such matter is expected to exist in the core of the star. In

previous calculations of bulk viscosity of npeµ nuclear matter the focus has been on

the contribution from interconversion of neutrons and protons via weak interactions.

But nuclear matter at neutron-star densities is expected to show Cooper pairing of

protons (superconductivity) or neutrons (superfluidity) [16, 17, 46] either of which will

suppress interconversion by a factor of order exp(−∆/T ), where ∆ is the energy gap at
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the Fermi surface. This opens up the possibility that, in superfluid or superconducting

phases, the dominant contribution to the bulk viscosity might come from purely

leptonic processes. The relevant process is conversion of electrons to muons (and vice

versa) via either the direct Urca process or the modified Urca process. The direct

Urca leptonic conversion process is forbidden by energy and momentum conservation:

in converting an electron near its Fermi surface to a muon near its Fermi surface,

the change in free energy is very small (of order T ), so the emitted neutrinos carry

momentum and energy of this order. But the change of momentum of the charged

lepton is large, at least µl −
√

µ2
l − m2

µ, and the low-energy neutrino cannot carry

this much momentum. However, the modified Urca process can occur; for example,

two electrons with energy slightly above the Fermi energy can scatter to an electron

and a muon with energies near the Fermi energy, or an electron and muon can scatter

to two muons. The strongest interaction between leptons is electromagnetism, so

this process proceeds via exchange of a photon, whose propagator should include the

effects of screening by the nuclear medium. As the temperature decreases, the process

will become suppressed as the Fermi distributions assume their zero-temperature step

function profiles, but at finite temperature the modified Urca process will result in a

non-zero contribution to the bulk viscosity.

We calculate the leptonic bulk viscosity arising from the processes e + ℓ ⇋ µ +

ℓ + ν + ν̄, where ℓ = e or µ. We conclude that, if the protons and neutrons are both

ungapped, i.e if there is neither superfluidity nor superconductivity, then the bulk

viscosity from these purely leptonic processes is several orders of magnitude smaller
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than that from the nucleonic processes. However, once the temperature drops below

the critical value for Cooper pairing of the protons or neutrons, the nucleonic bulk

viscosity at frequencies & 10Hz is strongly suppressed, and leptonic processes become

the dominant source of bulk viscosity at those frequencies.

In chapter 4, we lay out the process for calculating the bulk viscosity of a two-

component leptonic system under application of a periodic volume and pressure per-

turbation. A crucial component of this calculation is the conversion rate between

electrons and muons, which is discussed in great detail. We show the numerical re-

sults of our calculations and how they compare to the bulk viscosity resulting from

modified Urca equilibration of the nucleon population.

1.6 Strange stars: an example interface between

phases of a U(1)×U(1) gauge theory

It is possible that 3-flavor strange quark matter is absolutely stable, resulting in

“strange stars” where the entire star may consist of quark matter instead of nucleonic

matter [2]. In the vaccum outside the star, hadrons are confined, and inside the star,

quarks are deconfined. In chapter 5 (based on [47]), the reflection and transmission

properties of light at the boundary between these two phases is investigated, as well

as the properties at boundaries between other possible phases.

We study boundaries between phases in which different linear combinations of

gauge generators are free. Mixing of gauge generators is familiar from the standard
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model of particle physics, and the possibility of creating neighboring domains in which

different linear combinations of gauge generators are free is now receiving serious

attention. To set the stage for this work we first briefly review a concrete example.

In the standard model, the propagating U(1) gauge boson (the photon) is asso-

ciated with a particular Abelian U(1)Q subgroup of the full standard model gauge

group. This subgroup emerged unbroken from the electroweak Higgs symmetry break-

ing SU(2) ⊗ U(1)Y → U(1)Q at the TeV scale, and is generated by some linear com-

bination of the “W3” generator of the SU(2) weak interaction and the “Y ” generator

of the U(1) hypercharge interaction.

We now know that in quark matter the gauge group for the propagating U(1)

gauge boson will be rotated into a different direction by a further layer of symmetry

breaking at the MeV scale. At sufficiently high density, quark matter will develop

a condensate of quark Cooper pairs that plays the role of a Higgs field [48, 49].

(For reviews of this phenomenon of “color superconductivity” see Ref. [50]). In the

real world, quark matter is expected to contain the three lightest flavors, and in

this case the condensate forms a “color-flavor-locked” (CFL) phase [51], in which a

linear combination of the photon and one of the gluons remains massless, while the

orthogonal linear combination and the remainder of the gluons become massive by

the Higgs mechanism. The gauge symmetry breaking is SU(3)color ⊗U(1)Q → U(1)Q̃.

Thus a “rotated” electromagnetism is present in the CFL color superconducting phase

of quark matter. This raises the interesting possibility of having an interface between

a vacuum region in which the propagating gauge boson is the usual Q-photon, and
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a quark matter region in which it is a different particle, the Q̃-photon, which is a

mixture of the photon and a gluon. What will happen to electromagnetic fields,

including light beams, that encounter such an interface?

The U(1) ⊗ U(1) gauge system arises in various other physical contexts. Elec-

troweak symmetry breaking can be simplified to a U(1) ⊗ U(1) system by focussing

on the hypercharge and W3 bosons, which mix to form the photon and Z0. The

U(1) ⊗ U(1) gauge system also arises in extensions of the standard model, where an

extra U(1) gauge symmetry with a corresponding Z ′ gauge boson is added. Natural

contexts for this include Grand Unified Theories with gauge groups such as SO(10)

and E6, and some string models [52, 53].

In chapter 5 we study the light reflection and transmission properties of a boundary

between phases in a U(1) ⊗ U(1) gauge theory. There have been previous studies of

the behavior of magnetic fields [54] and light beams [55] in the specific case of the

interface between the vacuum and CFL quark matter. However, we consider the

most general realization of the gauge symmetries that supports propagating gauge

bosons. On one side of the boundary both U(1) gauge symmetries may be free, or

some linear combination may be Higgsed or confined. On the other side, both U(1)

gauge symmetries may be free, or a different linear combination may be Higgsed

or confined, where the difference is parameterized by a “mismatch angle” α. We

calculate the nature and intensity of the reflected and transmitted gauge bosons in

each case.

We introduce the U(1) ⊗ U(1) model and show how Higgsing or confinement of
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a gauge field can be implemented by appropriate boundary conditions at the inter-

face and describe the calculation of the reflection and transmission coefficients for

the various types of boundary. We then discuss how they compare with previous

calculations, explain some mysterious features, and analyze their compatibility with

expectations based on the complementarity principle. We also analyze subleties of

the low-frequency limit and a detailed example of complementarity.
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Isospin asymmetry and Cooper

pair interactions

Recently, it has been suggested that nuclear matter in neutron stars might be a type-I

superconductor. The astrophysical evidence is that certain neutron stars have long

precession periods, and it has been suggested that this means the proton supercon-

ductivity cannot be type-II [7], although that inference has been contested [8, 9].

A theoretical argument for type-I superconductivity in neutron star cores was then

presented by Buckley et. al. in Ref. [10]. These authors assumed that the effective

potential for the Cooper pair fields has a U(2) symmetry under rotation of proton

and neutron Cooper pairs into each other. Specifically, the effective potential for the

Cooper pair fields was assumed to take the form

V (|∆pp|2, |∆nn|2) ≈ U(|∆pp|2 + |∆nn|2)

= −µc(|∆pp|2 + |∆nn|2) + a(|∆pp|2 + |∆nn|2)2 + · · ·
(2.1)
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The assumption that the potential is approximately a function of |∆pp|2+|∆nn|2 leads

to |∆pp|2|∆nn|2 cross terms, which provide a strong repulsive interaction between the

neutron and proton Cooper pair condensates. It is argued in Ref. [10] that this leads

to a long-range attraction between proton flux tubes, i.e. type-I superconductivity.

The assumed U(2) symmetry was justified by invoking the isospin symmetry of

the underlying nuclear interaction. The authors of Ref. [10] admit that isospin is

severely broken by the constraint of electrical neutrality, which, combined with beta-

equilibration, greatly suppresses the proton Fermi momentum relative to the neutron

Fermi momentum, but they claim that this does not affect the interaction between

the p-p and n-n Cooper pairs. This seems implausible, since it is well known in

the theory of superconductivity that the coefficients of the terms in the Landau-

Ginzburg effective theory, including the quartic coupling a, depend strongly on the

Fermi momenta of the underlying fermions [11]. For example, for a one component

Fermi gas, just below the BCS critical point, the effective Landau-Ginzburg potential

is

V (|∆|2) = −µ|∆|2 + a|∆|4 + · · · (2.2)

where µ ≈ NF (Tc − T )/Tc, and NF is the density of states at the Fermi surface, so

for non-relativistic fermions NF ∝ mpF where m is the mass and pF is the Fermi

momentum. The minimum of the potential occurs at ∆0 =
√

µ/(2a), so the quartic

coefficient is a = µ/(2∆2
0). The binding energy of the condensate is then V (∆0) =

−1
2
NF∆2

0, a well-known result in the superconductivity literature [12]. We see that µ,
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a, and V (∆0) are all very sensitive to the Fermi momenta of the underlying fermions.

Clearly for protons and neutrons in a neutron star, which have very different Fermi

momenta but similar pairing condensates ∆, this will not give an effective potential

of the form (2.1).

In this chapter, we back up our reasoning with a concrete calculation. We work

with a very simple microscopic model for nucleon-nucleon interactions, and analyze

the pairing using the mean-field approximation. We take into account the require-

ments of electrical neutrality and equilibration under the weak interactions, which

disfavor neutron-proton pairing. At zero temperature the potential is not accurately

described by an low-order polynomial like (2.1), but we can expand around the mean

field and obtain the quartic coupling between small fluctuations φnn, φpp,

Ω(φpp, φnn) = · · ·+ αppφ
4
pp + αnnφ

4
nn + αnpφ

2
ppφ

2
nn + · · · . (2.3)

By explicitly calculating these couplings we find that they do not obey the U(2)

symmetry assumed in Ref. [10]. In fact, in the mean field approximation our result

(2.14) shows no interaction at all between the proton and neutron Cooper pairs: αnp =

0. This appears to be a generic mean-field result, and does not depend on any specific

features of the pairing interaction. Further, and as expected from the preceding

discussion, we find that αpp ≪ αnn. We then discuss the lowest-order corrections

beyond the mean-field approximation by calculating the effective interaction between

neutron and proton Cooper pairs diagrammatically. We show that this interaction is

sub-leading in the coupling and is negligible in weak coupling. At temperatures close
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to the critical temperature, where Landau-Ginzburg theory can be used to analyze

vortex structure, we find that the interaction between the pp condensate and the nn

is weak and repulsive, not strong and attractive as Eq. (2.1) would imply.

Our simple model of neutrons and protons is based on the isospin-symmetric

Lagrangian

L = Lkinetic + Lint ,

Lkinetic = N †
αa

(

∂

∂τ
− ∇2

2m
− µa

)

Nαa ,

Lint = −G

2

(

N †
αaNαa

)2
.

(2.4)

The nucleon field Naα has isospin index a = n, p and spin index α =↑, ↓. Repeated

indices are summed. We immediately generalize the interaction to allow different

couplings for protons and neutrons, and Fierz-transform it into the pairing form. We

assume that all pairing is in the rotationally invariant s-wave channel, so keeping only

those terms we obtain

Lint = −Gpp p†↑p
†
↓p↓p↑ − Gnn n†

↑n
†
↓n↓n↑

− 1
2
Gnp (p†↑n

†
↓ + n†

↑p
†
↓)(n↓p↑ + p↓n↑) .

(2.5)

The isospin-symmetric case corresponds to Gpp = Gnn = Gnp. This interaction will

lead to pairing of the fermions at their Fermi surfaces, by the usual BCS mechanism.

We can calculate the thermodynamic potential of the paired state by a standard

Hubbard-Stratonovich transformation that introduces complex bosonic Cooper-pair

fields ∆nn, ∆pp, and ∆pn (for a review, see [56]). The Lagrangian then has three parts:
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the kinetic term is as before, and the others contain the Cooper pair fields:

L = Lkinetic + L∆ + LF ,

L∆ = |∆nn|2/Gnn + |∆pp|2/Gpp + |∆pn|2/Gnp,

LF = −∆∗
nnn↓n↑ − ∆∗

ppp↓p↑

− 1√
2
∆∗

pn(p↓n↑ + n↓p↑) + h.c.

(2.6)

By adjusting the phases of the n and p fields we can choose ∆nn and ∆pp to be real,

leaving ∆pn complex. As is well known [57], in neutron star matter the mismatch

between the proton and neutron Fermi surfaces completely suppresses n-p pairing,

so ∆pn = 0 even at small isospin asymmetry, but for now we keep the ∆pn term.

In the mean-field approximation, we neglect any space-time variation in the ∆ fields

and set them equal to their vacuum expectation values. We can then integrate out

the fermions, giving us the volume density of the thermodynamic potential or grand

canonical potential Ω = E/V −µN/V = −p. In the rest of this paper we will loosely

refer to this as the “thermodynamic potential”. We find

Ω = L∆ −
∫

dω

2π

∫ Λ d3k

(2π)3
ln DetM, (2.7)

where we have introduced an ultraviolet cutoff Λ on the three-dimensional momentum

integral. To obtain this expression, we wrote the inverse propagator in the Nambu-

Gork’ov basis (p↑, n↑, p†↓, n†
↓, p↓, n↓, p†↑, n†

↓), and observed that it block-diagonalizes
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into two identical 4 × 4 blocks,

M =



























−iω + ǫp 0 −∆pp −∆pn√
2

0 −iω + ǫn −∆pn√
2

−∆nn

−∆pp −
∆∗

pn√
2

−iω − ǫp 0

−
∆∗

pn√
2

−∆nn 0 −iω − ǫn



























. (2.8)

Note that when ∆pn = 0, M further decomposes into 2 × 2 blocks, for (p↑, p†↓),

(n↑, n†
↓) etc, which describe the s-wave pairing of protons and neutrons respectively.

In Eq. (2.8), ǫp ≡ k2/2m− µp and ǫn ≡ k2/2m− µn. The determinant is straightfor-

ward to compute and we obtain

DetM = (ω2 + ǫ2
n)(ω2 + ǫ2

p) + ∆2
nn(ω2 + ǫ2

p)

+ ∆2
pp(ω

2 + ǫ2
n) + |∆pn|2(ω2 + ǫpǫn)

+ (∆nn∆pp − ∆2
pn/2)(∆nn∆pp − ∆∗2

pn/2) (2.9)

The requirement that the vacuum expectation values ∆pp, ∆nn, and ∆pn minimize the

thermodynamic potential is expressed in the three gap equations,

∆nn

Gnn
=

∫

dωd3k

(2π)4

∆nn(ω2+ǫ2
p)+∆pp(∆pp∆nn−Re∆2

pn/2)

det M

∆pp

Gpp

=

∫

dωd3k

(2π)4

∆pp(ω
2+ǫ2

n)+∆nn(∆pp∆nn−Re∆2
pn/2)

det M

∆pn

Gnp
=

∫

dωd3k

(2π)4

∆pn(ω2+ǫpǫn)−∆∗
pn(∆pp∆nn−∆2

pn/2)

det M

(2.10)

When ∆pn = 0, as in neutron star matter [57] these equations decouple into indepen-

dent gap equations for ∆pp and ∆nn.
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Because our model interaction is so simple, it predicts pairing gaps that rise with

the density of states near the Fermi surface, so ∆ rises with pF . This means that it

does not produce realistic neutral nuclear matter, in which the interaction is isospin-

symmetric, and pFp ≪ pFn (from electrical neutrality) but nevertheless ∆pp ≈ ∆nn.

In the real world, this happens because the nuclear interaction at short distance is

repulsive, so even though pFn ≫ pFp, the neutrons end up with a similar pairing gap

to the protons. In our simple model, which is strictly valid only at low density, the

four-Fermion coupling only encodes the attractive part of the interaction through the

s-wave scattering length. We will choose Gpp to be larger than Gnn so that in the

neutral system the protons and neutrons have the same pairing gap, as in real nuclear

matter. It will turn out that our essential conclusion, that there is no U(2) symmetry

of the effective potential for the Cooper pair fields, holds irrespective of whether or

not the the couplings Gpp and Gnn are equal. It is then reasonable to guess that Gnp

should have a value somewhere between Gnn and Gpp. To be specific, we shall employ

typical values µn ∼ 60 MeV (kFn ∼ 335 MeV) and µp ∼ 8 MeV (kFp ∼ 123 MeV)

and a momentum cut-off Λ = 750 MeV. For these parameters the four-fermion

couplings that gives ∆nn ∼ 1 MeV and ∆pp ∼ 1 MeV are Gnn ∼ 1 × 10−5 MeV2 and

Gpp ∼ 2 × 10−5 MeV2, respectively.

Since ∆np = 0 in beta-equilibrated neutral nuclear matter, we can write the mean-

field thermodynamic potential

Ω =
∆2

nn

Gnn
+

∆2
pp

Gpp
−
∫

dω

2π

∫ Λ d3k

(2π)3

(

ln(ω2 + ǫ2n + ∆2
nn) + ln(ω2 + ǫ2p + ∆2

pp)
)

(2.11)

=
∆2

nn

Gnn
−
∫ Λ d3k

(2π)3

(

√

ǫ2n + ∆2
nn − ǫn

)

+
∆2

pp

Gpp
−
∫ Λ d3k

(2π)3

(√

ǫ2p + ∆2
pp − ǫp

)

(2.12)
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φnn
φnn

φnn φnn

n

n

nn

Figure 2.1: The lowest-order mean-field contribution to αnn, the coefficient of the φ4
nn term in the

effective potential, which describes scattering between low-momentum fluctuations φnn in the nn

condensate. The thick lines are Nambu-Gork’ov neutron propagators. Each double-square vertex is

an insertion of the φnn operator. There is a similar diagram for αpp.

We see that this is equal to the sum of the thermodynamic potentials for two species

of Cooper pair bosons that do not interact with each other. There are no cross-

terms between ∆pp and ∆nn. The effective potential does not take the form (2.1).

This result did not depend on the specific form of the interaction. It simply arises

from the fact that beta-equilibrium and electrical neutrality require pFp ≪ pFn, and

Cooper pairing is suppressed between species with very different Fermi momenta.

We may use Eq. (2.12) to investigate the nature of the quartic terms that describe

the coupling between fluctuations in the Cooper-pair densities. Fluctuations in the

pairing field φnn, φpp are defined through the following substitutions in Eq. (2.12):

∆nn → ∆̃nn + φnn and ∆pp → ∆̃pp + φpp where ∆̃nn and ∆̃pp are the ground state
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expectation values that satisfy the gap equations. For small fluctuations an expansion

of the thermodynamic potential about the mean field ground state is well motivated.

Retaining only the quartic terms

Ω(φpp, φnn) = · · ·+ αppφ
4
pp + αnnφ

4
nn + αnpφ

2
ppφ

2
nn + · · · . (2.13)

From the preceding discussion it is clear that in the mean field approximation there

are no cross-terms. The coefficients αnn and αpp are non zero and depend in general

on the chemical potentials, ∆̃nn and ∆̃pp. Explicitly, by Taylor expanding Eq. (2.12)

we find

αnp = 0 ,

αnn =
1

8

∫

d3k

(2π)3

1

E3
n

− 6∆̃2
nn

E5
n

+
5∆̃4

nn

E7
n

,

αpp =
1

8

∫

d3k

(2π)3

1

E3
p

−
6∆̃2

pp

E5
p

+
5∆̃4

pp

E7
p

,

(2.14)

where En =
√

ǫ2
n + ∆̃2

nn and Ep =
√

ǫ2
p + ∆̃2

pp. These contributions can also be

calculated in a diagrammatic approach using the Nambu-Gorkov Greens functions

[4]. The diagram for αnn is shown in Fig. 2.1, and there is an analogous one for αpp.

We find

αnn =
1

4

∫

d3k

(2π)3
kT
∑

s

Tr [Gn(k, iωs)τGn(k, iωs)τGn(k, iωs)τGn(k, iωs)τ ] , (2.15)

where the finite temperature Nambu-Gorkov Green’s function for the neutron super-

fluid, expressed in the (n↑, n
†
↓) basis (see text after Eq. (2.8)), is

Gn(k, iωs) =
1

(iωs)2 − E2
n(p)









−iωs + ǫn −∆nn

−∆nn −iωs − ǫn









, (2.16)
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and insertions of the fluctuating pairing field are

τ =









0 1

1 0









. (2.17)

The Matsubara frequency is ωs = (2s + 1)πkT . In evaluating these diagrams we

ignore any momentum transfer since we are interested only in the low momentum

fluctuations. We have explicitly checked that the diagrammatic approach gives the

same result as Eq. (2.14). At zero temperature and when ∆̃/µ is small we obtain the

following analytic expressions

αnn = − MkFn

24π2∆̃2
nn

(

1 + O[
∆̃2

nn

µ2
n

]

)

, (2.18)

αpp = − MkFp

24π2∆̃2
pp

(

1 + O[
∆̃2

pp

µ2
p

]

)

. (2.19)

We see that the couplings are proportional to the corresponding Fermi momenta,

αnn ∝ kFn and αpp ∝ kFp, so the scattering of proton condensate fluctuations is much

weaker than that of neutron condensate fluctuations, indicating a strong breaking of

any symmetry that rotates proton Cooper pairs into neutron Cooper pairs. Further,

the sign of αnn and αpp is negative. However, since we are Taylor expanding about

the global minimum of the thermodynamic potential, there are lower and higher order

terms (not explicitly written in Eq. (2.13)) that ensure that the system is stable with

respect to both small and large fluctuations. This is in contrast to the usual Landau-

Ginzburg analysis just below Tc, where a Taylor expansion about the normal state is

characterized by a negative quadratic coefficient and a positive quartic term.

We now discuss corrections to Eq. (2.12) beyond the mean field approximation.
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Figure 2.2: The lowest-order contributions beyond mean field to αnp, the coefficient of the φ2
nnφ2

pp

term in the effective potential, which describes scattering between low-momentum fluctuations φnn

and φpp in the nn and pp condensates. The thick lines are Nambu-Gork’ov neutron or proton

propagators. The double square vertices are insertions of the φnn and φpp operators. The hatched

vertex is the fundamental n†np†p interaction in the Lagrangian.

The leading order diagram that contributes to the scattering between neutron and

proton fluctuations is shown in Fig. 2.2. The important point is that this diagram

involves the fundamental four-fermion neutron-proton interaction Gnp. Evaluating

the diagram, we find that the leading-order beyond-mean-field contribution to the ef-

fective four-point interaction between the proton and neutron condensate fluctuations

is

αnp =
1

4
Gnp

∫

d4k

(2π)4
Tr [Gn(k, iω)τGn(k, iω)τGn(k, iω)τ3]

×
∫

d4k

(2π)4
Tr [Gp(k, iω)τGp(k, iω)τGp(k, iω)τ3] (2.20)

= − Gnp

k3
Fnk

3
Fp

64π4µ2
nµ2

p

f(
∆nn

µn
) f(

∆pp

µp
) , (2.21)

where Gn(k, iω) and Gp(k, iω) are the Nambu-Gorkov Green’s functions for the neu-

trons and protons respectively, and τ3 = diag(1,−1) is the diagonal Pauli matrix [4].
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The dimensionless function f is defined by the integral

f(δ) =

∫ ∞

−1

dx x
√

x + 1
x2 − 2δ2

(δ2 + x2)5/2
. (2.22)

For δ ≪ 1 we obtain the following analytic relation

f(δ) = −1 + log

[

8

δ

]

+ O[δ2] . (2.23)

To see whether beyond-mean-field corrections can raise αnp to a value comparable

to αnn or αpp we follow Ref. [10] in defining an asymmetry parameter

ǫ = (αnnαpp − α2
np)/(αnnαpp) . (2.24)

(Ref. [10] expresses ǫ in terms of the quartic couplings app, ann, anp for the expansion

around ∆ = 0, but it should be equally valid to expand around the mean field,

which is the minimum of the thermodynamic potential.) Ref. [10] concluded that

type-I superconductivity requires ǫ < 1/20. As we have seen, in the mean-field

approximation ǫ = 1. From Eq. (2.21) we find that the beyond-mean-field corrections

to ǫ are negligible by several orders of magnitude. ǫ is always within 10−4 of unity.

All our calculations so far have been at zero temperature, in which case the ex-

pansion of the potential around the mean-field ground state is only valid for small

deviations from that state. This makes it impossible to discuss the expected structure

of the vortices, in which the pairing fields vary from zero to their vacuum values. In

order to be able to say anything about the vortices, we have to work at temperatures

close to the critical temperature Tc, where a traditional Landau-Ginzburg analysis is

possible, using an expansion around the zero-mean-field state with only the quadratic
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and quartic terms,

Ω(T ∼ Tc; φnn, φpp) = −µc
nnφ

2
nn −µc

ppφ
2
pp +ac

ppφ
4
pp +ac

nnφ
4
nn +ac

npφ
2
ppφ

2
nn + · · · . (2.25)

This analysis was performed by S. Reddy and presented in [13], so it will not be

included here. However, we will state the results of the analysis. For our choice

of parameters we find that Tc ≃ 0.6 MeV. For T = 0.4 MeV the coefficients of the

effective potential are µc
nn = 5520 MeV2, µc

pp = 2010 MeV2, ac
nn = 2627, ac

pp = 968 and

ac
np = −3(Gnp/Gnn). As before, the asymmetry parameter ǫ ≃ 1 since anp ≪ ann and

anp ≪ app. The fact that ac
np is negative implies that the neutron(proton) superfluid

density will decrease in the inner core of the proton(neutron) vortex.

Our conclusion is that in neutral nuclear matter, the disparity between the neutron

and proton Fermi momenta provides a strong explicit breaking of the U(2) symmetry

posited in Ref. [10]. This breaking is far too strong to allow the proposed mechanism

for type-I superconductivity to operate. A calculation of the vortex structure is

presented in chapter 4, where due to the non-perturbative nature of the interaction

between nucleons, we do not exclude the possibility of a strong coupling between

the neutron and proton superfluids. In our simple model the attractive interaction

between neutrons and protons directly leads to a negative ac
np leading to a depletion

of the neutron superfluid in the core of the proton vortex. This result is robust as long

as the effective interaction between neutrons and protons is attractive and contradicts

the predictions in Ref. [10] where the neutron superfluid density increased inside the

proton vortex.
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Flux tubes and the type-I/type-II

transition in a superconductor

coupled to a superfluid

In this chapter we investigate a system that has both a charged condensate, leading

to superconductivity, and a neutral condensate, leading to superfluidity. We focus on

the magnetic flux tubes that are associated with the superconducting condensate, and

study how they are modified by the presence of the superfluid, assuming that the two

condensates can interact with each other via density and gradient (“entrainment”)

interactions. Nuclear matter is an example of this type of system, which at sufficiently

high density undergoes Cooper pairing of both neutrons and protons. We will present

our calculations in this context, referring to the charged condensate as the “proton

condensate” and the neutral one as the “neutron condensate”, and choosing values
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appropriate to nuclear matter for our parameters when presenting numerical results.

We study the type I versus type II nature of a (proton) superconductor coupled

to a (neutron) superfluid, using an effective theory for the protons and neutrons

that contains four-fermion interaction terms which lead to s-wave pairing. We do not

include higher-angular-momentum pairing, although that would be needed for a more

realistic analysis of high-density nuclear matter. Our analysis extends that of Ref. [10]

in the following ways: (a) Our model, like that of Ref. [10], contains a coupling anp

between the magnitudes of the neutron and proton condensates, and self-couplings

ann and app, but we survey the whole range of values of anp, from zero to of order app;

(b) we also include “entrainment” interactions between the gradients of the proton

and neutron condensates; (c) we use a simpler and more direct method to study the

type-I/type-II phase boundary, using the energetics of flux tube coalescence/fission:

we calculate the energy of flux tubes with a wide range of magnetic fluxes, from one

quantum to several hundred quanta, and find which one has the lowest energy per

unit flux. As we will see, this has the additional benefit of allowing us to find exotic

stable multi-quantum flux tubes, such as have been found in systems of two coupled

superconductors [15]. However, as we discuss below, our analysis is not sensitive to

minima in the interaction energy at finite separation between flux tubes.

Our analysis is entirely at zero temperature. This is a good approximation for

neutron star matter near nuclear saturation density, where the critical temperatures

for the superfluid and superconductor are of order MeV [16, 17, 18]. The tempera-

ture of a compact star drops below this value within minutes of its formation in a
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supernova, and is at or below the keV range after the first 1000 years [19]. When we

discuss type-I versus type-II behavior we are referring to the response of the system

to a magnetic field at the lower critical value, at T = 0.

As far as we know, there has been no previous work on how a flux tube in a

superconductor is affected by a gradient coupling to a co-existing superfluid. How-

ever, there has been work on possible knot solitons [20], vortices in the SO(5) model

of high-temperature superconductivity [21], and on the complementary situation, a

superfluid vortex with gradient coupling to a co-existing superconductor. There the

coupling leads to the “entrainment” or Andreev-Bashkin effect [22] whereby the pro-

ton condensate is dragged along with the neutron condensate, producing a non-zero

proton current around the vortex, dressing it with some magnetic flux [23]. It is

interesting to note that this flux is not a multiple of the flux quantum for proton flux

tubes. This is possible because of the difference between the energetics of a neutron

vortex and a proton flux tube. The flux tube has energy density localized to the

vicinity of its core. Far from the core the energy density must vanish, which means

the proton field must change in phase by a multiple of 2π, and the the vector potential

must cancel the resultant gradient, leading to a quantized magnetic flux. A neutron

vortex, by contrast, has gradient energy that is not localized to the vicinity of the

vortex, and the total energy per unit length diverges in the infinite volume limit.

The vector potential is therefore not constrained to cancel any gradient in the proton

field, and takes on a value that minimizes the overall energy, with no quantization

condition on the resulting magnetic flux.
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Returning to the situation that we study, a proton flux tube in a neutron super-

fluid background, we do not expect a similar behavior. This is because the proton

flux tube’s energy density is localized around its core, giving it (unlike the neutron

vortex) a finite energy per unit length. If the neutron condensate were entrained, and

developed non-zero circulation around the flux tube, it would acquire a non-localized

energy density, leading to an infinite energy per unit length for the flux tube, which

is clearly energetically disfavored. We will see that the effect of gradient couplings

on the proton superconductor is more subtle: it leads to metastable regions near the

type-I/type-II boundary.

3.1 Stability of flux tubes

Our aim is to explore the response of the proton superconductor to an applied critical

magnetic field at zero temperature. We will therefore construct a phase diagram in

the space of the coupling constants of the Ginzburg-Landau effective theory. We

would like to be able to specify when it is of type II (at the lower critical magnetic

field, flux tubes appear, and remain separate, i.e they repel) and when it is of type I

(at the critical magnetic field, macroscopic normal regions appear, i.e. the flux tubes

attract and coalesce). The simplest way to do this is to calculate the energy per unit

length En of a flux tube containing n flux quanta. The same approach has been used

for vortices in the SO(5) model [58]. It is convenient to work in terms of the energy
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per flux quantum,

Bn =
En

n
− E1 . (3.1)

When Bn is negative the n-quantum flux tube is stable against fission into many

single quantum flux tubes, and it is energetically favorable for n single quantum flux

tubes to coalesce into one n-quantum flux tube. When Bn is positive the n-quantum

flux tube is unstable against fission, and coalescence is energetically disfavored. If

one calculates Bn for all n then the energetically favored value of n is the one that

minimizes Bn.

In a traditional type I superconductor, small flux tubes attract each other and

amalgamate into large ones and ultimately into macroscopic normal regions, so we

would expect to find Bn < 0 with its value dropping monotonically as n rises. In a

type II superconductor we would expect Bn > 0, with its value rising monotonically

with n. Our calculations confirm these results for a single superconductor, but we

will see that Bn shows more complicated behavior when the superconductor feels

interaction with a co-existing superfluid.

Calculations of Bn are straightforward because they always occur in a cylindrically

symmetric geometry, so the problem is one-dimensional. For a more detailed under-

standing of flux tube interactions, one would have to consider two single-quantum

flux tubes a distance d apart. Their total energy is U(d), where U(0) = E2 and

U(∞) = 2E1, so B2 = 1
2
(U(0) − U(∞)). As expected, B2 < 0 means that the flux

tubes have lower energy when they amalgamate, and B2 > 0 means that the flux

tubes have lower energy when they separate. If U(d) is monotonic, we can conclude
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that flux tubes either coalesce (B2 < 0) or repel to infinite separation (B2 > 0), cor-

responding to type-I or type-II behavior respectively. However, if there is a minimum

in U(d) at some favored intermediate separation d = d∗ then irrespective of the sign

of Bn, one has a new variety of type II superconductor with some favored Abrikosov

lattice spacing d∗. Such behavior has been found to arise from a φ6 term [59] and in

the case of two charged condensates [15]. Calculating U(d) in the current context is

an interesting but demanding problem which we leave for future work. In this paper

we assume that U(d) is monotonic, so to analyze the attractiveness/repulsiveness of

the flux tube interactions it is sufficient to calculate Bn, or equivalently En/n.

3.2 Flux tubes in the Ginzburg-Landau model

3.2.1 Ginzburg-Landau model

We start by writing down the zero-temperature Ginzburg-Landau effective theory

of proton and neutron condensates in the presence of a magnetic field [6, 10]. We

denote the proton condensate field by φp, the neutron condensate field by φn, and the

magnetic vector potential by A. The free energy density is

F =
~

2

2mc
(|(∇− iq

~c
A)φp|2 + |∇φn|2) +

|∇ × A|2
8π

+ Uent(φp, φn) + V (|φp|2, |φn|2) (3.2)
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where mc is twice the nucleon mass, q is twice the proton charge, Uent is the entrainment

free energy density (see [6])

Uent = − ~
2

2mc

σ

2〈φp〉〈φn〉
[

φ∗
pφ

∗
n

(

(∇− iq

~c
A)φp · ∇φn

)

+ φ∗
pφn

(

(∇− iq

~c
A)φp · ∇φ∗

n

)

+φpφn

(

(∇ +
iq

~c
A)φ∗

p · ∇φ∗
n

)

+ φpφ
∗
n

(

(∇ +
iq

~c
A)φ∗

p · ∇φn

)

]

(3.3)

and

V (|φp|2, |φn|2) = −µp|φp|2 − µn|φn|2 +
app

2
|φp|4 +

ann

2
|φn|4 + apn|φp|2|φn|2 (3.4)

σ is a parameter characterizing the strength of the gradient coupling, µp and µn are

the chemical potentials of the proton and neutron condensate excitations, and app,

ann, and apn are the GL quartic couplings.

In zero magnetic field, the condensates would have position-independent bulk

densities 〈φp〉2 and 〈φn〉2 obtained by minimizing the free energy. This allows us to

eliminate the chemical potentials µp, µn by writing

µp = app〈φp〉2 + apn〈φn〉2

µn = ann〈φn〉2 + apn〈φp〉2 (3.5)

so up to constants involving 〈φp〉 and 〈φn〉, the potential V can be expressed in terms

of the deviations of the condensate fields from their bulk values:

V (|φp|2, |φn|2) = app

2
(|φp|2 − 〈φp〉2)2

+ ann

2
(|φn|2 − 〈φn〉2)2

+apn (|φp|2 − 〈φp〉2) (|φn|2 − 〈φn〉2) .

(3.6)

In a neutron star, electrical neutrality keeps the proton fraction small, in the 5%

to 10% range [60, 61]; we will take 〈φp〉2/〈φn〉2 ≈ 0.05. As we now argue, a typical
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value for the entrainment coupling is σ ∼ 10−1. We first relate our formalism to

the hydrodynamic limit of the free energy, following [6]. We focus on the phases of

the fields, φp = 〈φp〉 exp(iχp) and φn = 〈φn〉 exp(iχn), and assume the fields have

constant magnitude, and their phases have gradients

vp =
~

2mp
∇χp −

2e

mpc
A , vn =

~

2mn
∇χn . (3.7)

The free energy density (3.2) then reduces to the hydrodynamic form

F =
1

2
ρppv2

p +
1

2
ρnnv2

n + ρpnvp · vn + V +
B2

8π
, (3.8)

where the symmetric matrix ρ of superfluid densities has elements

ρpp = 2mp〈φp〉2 ≈ mc〈φp〉2 , ρnn = 2mn〈φn〉2 ≈ mc〈φn〉2 , ρpn = −2mnσ〈φp〉〈φn〉 . (3.9)

Our entrainment parameter σ is therefore related to the parameter ǫ of Ref. [62, 63,

64] by σ = ǫ〈φn〉/〈φp〉. Since ǫ is of order 0.03, and 〈φn〉2/〈φp〉2 ∼ 20, we expect

σ ∼ 10−1. This is consistent with the estimate ρpn ≈ −1
2
ρpp used by [6]. In terms of

the Andreev-Bashkin parametrization [22], ρ12 = −ρpn, ρ1 = ρpp+ρpn, ρ2 = ρnn +ρpn,

so ρ1/ρ12 ∼ 1, ρ2/ρ12 ∼ 40. All the interactions in (3.8), including the entrainment,

have their ultimate origin in the strong interaction between the nucleons, which is

isospin symmetric, and hence does not distinguish protons from neutrons.

3.2.2 Flux tube solutions

To study a flux tube containing n flux quanta, we assume a cylindrically symmet-

ric field configuration in which the proton condensate field winds (in a covariantly
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constant way) around the z-axis with a net phase 2πn,

φp = 〈φp〉 f(r)einθ (3.10)

φn = 〈φn〉 g(r) (3.11)

A =
n~c

q

a(r)

r
θ̂ (3.12)

We have defined φn as a real field, because, as noted in chapter 1, any net phase

change in the neutron condensate when it circles the flux tube would cost an infinite

energy per unit length. Inserting the ansatz in (3.2) we obtain

F =
~

2

2mc

[

〈φp〉2
(

(f ′)2 +
n2f 2(1 − a)2

r2

)

+ 〈φn〉2(g′)2 − 2σ〈φp〉〈φn〉f · g · f ′ · g′

]

+
n2

~
2c2

8πq2

(a′)2

r2
+

app〈φp〉4
2

(

f 2 − 1
)2

+
ann〈φn〉4

2

(

g2 − 1
)2

+ apn〈φp〉2〈φn〉2
(

f 2 − 1
) (

g2 − 1
)

(3.13)

Generating the Euler-Lagrange equations using the standard procedure, we obtain

a set of coupled differential equations for f , g and a:

~
2

2mcapp〈φp〉2
[

f ′′ +
f ′

r
− n2(1 − a)2f

r2
− σ

〈φn〉
〈φp〉

[

f · g
(

g′′ +
g′

r

)

+ f (g′)
2]
]

= f(f 2 − 1) +
apn

app

〈φn〉2
〈φp〉2

f(g2 − 1)

~
2

2mcapp〈φp〉2
[

g′′ +
g′

r
− σ

〈φp〉
〈φn〉

[

f · g
(

f ′′ +
f ′

r

)

+ g (f ′)
2

]

]

=
ann

app

〈φn〉2
〈φp〉2

g(g2 − 1) +
apn

app
g(f 2 − 1)

mcc
2

4πq2〈φp〉2
(

a′′ − a′

r

)

= −(1 − a)f 2 (3.14)

At this point we recall the definition of the Ginzburg-Landau parameter κ = λ/ξ,

where the London penetration depth λ and superconducting coherence length ξ are
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(see [65])

λ ≡
√

mcc2

4πq2〈φp〉2
=

√

mcc2

16π~cαEM〈φp〉2

ξ ≡
√

~2

2mcapp〈φp〉2
(3.15)

To further simplify the equations, we then change variables to a dimensionless radial

coordinate r̃ = r/ξ, obtaining

f ′′ +
f ′

r̃
− n2(1 − a)2f

r̃2
− σ

〈φn〉
〈φp〉

[

f · g
(

g′′ +
g′

r̃

)

+ f (g′)
2

]

= f(f 2 − 1) +
apn

app

〈φn〉2
〈φp〉2

f(g2 − 1)

g′′ +
g′

r̃
− σ

〈φp〉
〈φn〉

[

f · g
(

f ′′ +
f ′

r̃

)

+ g (f ′)
2

]

=
ann

app

〈φn〉2
〈φp〉2

g(g2 − 1) +
apn

app

g(f 2 − 1)

a′′ − a′

r̃
= − 1

κ2
(1 − a)f 2 (3.16)

The free energy per unit length of the flux tube, in terms of the variable r̃, is

En = 2πapp〈φp〉4ξ2

∫ ∞

0
(r̃dr̃)

{

(f ′)2 +
n2f2(1 − a)2

r̃
+

〈φn〉2
〈φp〉2

(g′)2 − 2σ
〈φn〉
〈φp〉

f · g · f ′ · g′

+n2κ2 (a′)2

r̃2
+

1

2

(

f2 − 1
)2

+
1

2

ann

app

〈φn〉4
〈φp〉4

(

g2 − 1
)2

+
apn

app

〈φn〉2
〈φp〉2

(

f2 − 1
) (

g2 − 1
)

}

(3.17)

In addition to the system of equations, we require boundary conditions on the fields

at the origin and at ∞. Far from the flux tube core, the fields will go to their

uniform condensate value, so f(∞) = g(∞) = a(∞) = 1. Near the origin, f(r) ∝

rn, a(r) ∝ r2 and g(r) is a constant. Therefore we have the conditions f(0) = 0,

a(0) = 0 and g′(0) = 0. To obtain the energy of a flux tube we numerically solve the

ODE system for the neutron and proton condensate and magnetic potential profile
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functions, then calculate the free energy of the system by inserting the results into

(3.17) and integrating.

The system has five independent parameters: app, ann/app, apn/app, σ, and 〈φn〉/〈φp〉.

In neutral nuclear matter, the density of protons (neutrons) is proportional to 〈φp〉2

(〈φn〉2), and the proton density is approximately 5% of the total baryon number

density [6], so we set 〈φp〉2/〈φn〉2 = .05 in most of our analysis. Following [10, 13]

we set ann = app, and use (3.15) to exchange the parameter app for κ, which is the

conventional parameter used in condensed matter studies of superconductivity. Our

reduced set of parameters is therefore κ, the proton-neutron gradient coupling σ,

and the proton-neutron density coupling β ≡ apn/app. We also study some effects of

varying 〈φp〉2/〈φn〉2.

3.3 Numerical Results

3.3.1 Flux tube solutions

For given values of 〈φp〉2/〈φn〉2, κ, the proton-neutron gradient coupling σ, and the

proton-neutron amplitude coupling β ≡ apn/app we numerically solved the equations

of motion (3.16) giving the field profiles for flux tubes with various numbers n of flux

quanta. We obtained the solutions using a finite-element relaxation method, which

is much less sensitive to initial conditions than the traditional “shooting” method,

and better suited to repeatedly solving the equations for different sets of parameters.

Next, we insert the solution for each profile into our expression for the free energy

41



Chapter 3
Flux tubes and the type-I/type-II transition in a superconductor coupled to a

superfluid

Profiles with nonzero density coupling
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Figure 3.1: (Color online) Profile of flux tube with n = 1 units of flux (left) and n = 100 units of

flux (right) showing the effect of density coupling β between neutron and proton condensates. The

plot shows the deviation δρ of the condensates from their vacuum values (3.18). With no coupling

between the condensates (β = σ = 0), the neutrons are undisturbed (δρn = 0). With a non-zero

density coupling β, the neutron condensate (broken lines) is significantly perturbed by the flux tube.

Note that the neutron δρn’s are multiplied by 10 (not by 100 as in Fig. 3.2) to make them visible.

The other parameters are κ = 3.0, σ = 0.0, and 〈φp〉2/〈φn〉2=.05.

(3.17) and numerically integrate it to obtain a value for En.

To estimate the numerical errors in our results, we varied the convergence criterion

in the finite-element relaxation calculation, the spacing of the radial grid of points,

and the radius out to which the grid extended. We found that the resultant variation

in En/n was of order 10−6, so numerical errors are invisible on the scale of the plots

shown in Fig. 3.3.

Having obtained En we then plot the series Bn to determine whether the system

is type I or type II for the chosen point in parameter space. In this way we find the
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Profiles with nonzero gradient coupling
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Figure 3.2: Profile of flux tube with n = 1 units of flux (left) and n = 100 units of flux (right)

showing the effect of gradient coupling σ between neutrons and protons. The plot shows the deviation

δρ of the condensates from their vacuum values (3.18). With no coupling between the condensates

(β = σ = 0), the neutrons are undisturbed (δρn = 0). With a non-zero gradient coupling σ, the

neutron condensate (broken lines) is slightly perturbed by the flux tube. Note that the neutron

δρn’s are multiplied by 100 to make them visible. The other parameters are κ = 3.0, β = 0.0, and

〈φp〉2/〈φn〉2=.05.

points in parameter space where the system changes from a type I state to a type

II state. Taking various slices through the parameter space, we can generate phase

diagrams that show the boundary curves between the various phases.

Figs. 3.1 and 3.2 each show a profile for a flux tube with a single flux quantum

n = 1 on the left, and a profile for a flux tube with 100 flux quanta on the right.

Fig. 3.1 shows the effect of non-zero density coupling β and Fig. 3.2 shows the effect

of non-zero gradient coupling σ. We have plotted the normalized difference in density
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of the pair fields from their condensate values,

δρp(r̃) ≡
φ2

p(r̃) − 〈φp〉2
〈φp〉2

= f 2(r̃) − 1

δρn(r̃) ≡ φ2
n(r̃) − 〈φn〉2

〈φn〉2
= g2(r̃) − 1 (3.18)

No coupling to neutrons

We do not show a plot of the flux tube profile for a simple superconductor, since

this is well known: in a core region whose area rises as the number of flux quanta n,

the proton condensate is suppressed; in a wall region the condensate returns to its

vacuum value. At the Bogomolnyi point [66], κ = 1/
√

2, the energy per flux quantum

is independent of n [67], but on either side of this value there are area and perimeter

contributions to the energy [68], so for κ close to 1/
√

2 we expect the energy of a flux

tube in a simple superconductor to have the following dependence on n,

E(sc)
n (κ) = nEBog + δκ M

(

n − c 1

2

√
n + c1 + · · ·

)

. (3.19)

This is an expansion around n = ∞, but our numerical results will show that it

works down to n = 1. We define δκ ≡ κ − 1/
√

2. EBog is the energy per unit flux at

δκ = 0. By convention we take the parameter M , which has dimensions of energy,

to be positive. The value of c 1

2

is then positive, ensuring that for δκ > 0, n = ∞

is disfavored (type-II), and for δκ < 0, n = ∞ is favored (type-I). We will see this

behavior in our numerical results (Sec. 3.3.2 and upper left plot of Fig. 3.3).
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Density coupling to neutrons

For positive β, which corresponds to positive anp, equations (3.2) and (3.4) indicate

that there is a repulsion between the neutron and proton condensates, so in the center

of the flux tube, where the proton condensate is suppressed, the neutron condensate

will be enhanced. That is exactly what we see in Fig. 3.1, where the dashed curve,

showing the perturbation to the neutron density ρn, rises inside the flux tube. For

negative β there is attraction between the two condensates, and the neutron conden-

sate is suppressed inside the flux tube (dash-dotted line). We therefore expect that

the leading correction due to the interaction will be proportional to the core area, i.e

proportional to n. The energy of an n-quantum flux tube is then

En(κ, β) ≈ E(sc)
n (κ) + Mβ(−n + b 1

2

√
n + b1 + · · · ) , (3.20)

where E
(sc)
n (κ) is the energy for an n-quantum flux tube in a pure superconductor,

with no coupling to a superfluid (3.19). The leading correction is −Mβn, which should

be negative and quadratic in β for small β (see Sec. 3.3.1), so the interaction energy

parameter Mβ is positive and proportional to β2. The sub-leading term proportional

to
√

n arises from the energy cost of the gradient in ρn at the edge of the flux tube,

where it must return to its vacuum value, so we expect this term to be positive:

b 1

2

> 0. We do not have an a priori expectation for the sign of the sub-sub-leading

term b1.
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Gradient coupling to neutrons

For positive σ, we expect from (3.2) and (3.3) that the positive gradient in ρp at the

wall of the flux tube will induce a positive gradient in ρn in the same range of radii,

which lowers the energy of the system. This is exactly what we see in Fig. 3.2, where

the dashed curve showing the perturbation to ρn has a positive slope in the range of

radii where the solid curve (ρp) has the largest positive slope. On either side of that

region it has a negative slope, as it returns to its unperturbed value. For negative σ

the effect is reversed: the dash-dotted curve shows ρn having a negative slope where

ρp has the largest positive slope.

We therefore expect that in the presence of a gradient coupling, the correction to

the energy of a flux tube has a dominant core-perimeter term proportional to
√

n,

En(κ, σ) ≈ E(sc)
n (κ) + Mσ(−s 1

2

√
n + s1 + · · · ) . (3.21)

The energy correction is negative and quadratic in σ for small σ (see Sec. 3.3.1), so

the interaction energy parameter Mσ is proportional to σ2; choosing it to be positive

by convention requires s 1

2

to be positive. We do not have an a priori expectation for

the sign of s1.

Symmetry under change of sign of couplings

It is clear from Figs. 3.1 and 3.2 that for couplings β and σ of order 0.5 the modification

of the field configuration due to the interaction between the condensates is extremely

small, so it is reasonable to treat its effects perturbatively. (At the end of Sec. 3.3.3 we
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will discuss the limit of small neutron condensate, where the perturbative approach

becomes questionable.)

When we evaluate the perturbative correction to the energy of the flux tube,

there is no linear term in β and σ. Such a term would arise from evaluating the β and

σ terms from the Hamiltonian in the unperturbed field configuration. But in that

configuration the neutron condensate sits at its vacuum value, so both terms evaluate

to zero (g = 1, g′ = 0 in (3.17)).

We therefore expect the change in the energy of the flux tube to be quadratic in

the couplings β and σ. Firstly, this correction must be negative. This is a well-known

result from perturbation theory: the second-order correction arises from the change

in the configuration in response to the perturbation, which only occurs because it is

driven by a resultant lowering of the energy. Secondly, the change in the energy will

in general contain β2, σ2, and βσ terms. This means it will be even in β when σ = 0

and even in σ when β = 0, so we expect Mβ ∝ β2 and Mσ ∝ σ2 in Eqs. (3.20) and

(3.21).

However, if both β and σ are nonzero, then the βσ terms spoil the symmetry of

the energy under negation of the couplings. This is clear from Figs. 3.1 and 3.2. For

example, suppose that as well as non-zero β we have a very small non-zero σ. Now

consider sending β → −β. From Fig. 3.1 we see that this changes the sign of the

slope of ρn in the wall region where ρp has positive slope. If σ is nonzero then these

two configurations will have different energies, since the gradient of ρn is then coupled

to the gradient of ρp.
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Figure 3.3: (Color online) The energy per flux quantum En/n, in units of EBog (see Eq. (3.19)), as

a function of the number n of units of flux in the flux tube. Top left, simple proton superconductor

with neutrons completely decoupled (β = σ = 0); top right, density coupling between condensates

(β = .5, σ = 0); bottom left, gradient coupling between condensates (β = 0, σ = .5); bottom right,

both couplings (β = σ = .5).

3.3.2 Energetic stability of flux tubes

In Fig. 3.3, the energy per flux unit (En/n) is plotted against n for various values of

the Ginzburg-Landau parameters, namely κ, the density coupling β, and the gradient

coupling σ. We fixed 〈φp〉2/〈φn〉2 = 0.05 (Sec. 3.2.1).
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No coupling to neutrons

The upper left plot of Fig. 3.3 shows E
(sc)
n (κ)/n, the energy per flux quantum when

there are no interactions between the neutron and proton pairs. We see that the

only possible phases are the standard type I and type II, with a transition at the

Bogomolnyi point, κ = 1/
√

2, where the favored value of n jumps from 1 to infinity.

The lower line (κ just below 1/
√

2) corresponds to type-I, where the lowest energy/flux

is at n = ∞, so flux tubes attract. The upper line (κ just above 1/
√

2) corresponds

to type-II, where the lowest energy/flux is at n = 1, so flux tubes always repel each

other. The middle line corresponds to the transition point (κ = 1/
√

2), where there is

no interaction between flux tubes [66]. Our numerical results are consistent with the

expected form (3.19): when δκ > 0 the asymptotic value of En/n is increased, and

En/n rises monotonically towards that asymptotic value, and conversely when δκ < 0

the asymptotic value of En/n is decreased, and En/n falls monotonically towards that

asymptotic value. It is clear that c 1

2

in (3.19) must be positive to obtain this behavior

at large n. From fits to our numerical calculations we find that c1 is always positive,

so it “fights against” the leading c 1

2

/
√

n term, but for all n > 1 it is overwhelmed. In

fact, we find that (3.19) gives an excellent fit to our results down to n = 1, without

any higher order terms.

In the remaining panels of Fig. 3.3, we explore the effect of density and gradient

couplings between the proton superconductor and the neutron superfluid.
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Density coupling to neutrons

The upper right panel of Fig. 3.3 shows the effect of a density coupling between the

condensates. From (3.19) and (3.20) we expect

En/n = EBog + (Mδκ − Mβ) +
Mβb 1

2

− δκMc 1

2√
n

+
Mβb1 + δκMc1

n
+ · · · (3.22)

The first point to notice is that the density coupling shifts the critical κ to a larger

value. The transition between type-I and type-II occurs when the asymptotic behavior

at large n changes from rising to falling, i.e. when the coefficient of the 1/
√

n term

changes sign. This occurs for some positive value of δκ

δκcrit(β) =
Mβ b 1

2

Mc 1

2

∝ β2 (3.23)

which rises as β2 because M , Mβ , b 1

2

, and c 1

2

are all positive, and Mβ ∝ β2 when

σ = 0 (Sec. 3.3.1). Thus in the upper right panel of Fig. 3.3 we had to increase κ

from around 0.707 to around 0.818 in order to find the transition.

The other important point is the presence of a minimum in En/n when κ is just

above the new type-I/type-II boundary, indicating that the favored value of n may be

neither 1 (standard type-II) nor infinity (type-I) but some intermediate value. This

is consistent with (3.22), as long as we assume that the coefficient b1 from (3.20) is

either positive, or negative and of sufficiently small magnitude, so that the 1/n term

in (3.22) has a positive coefficient (recall that Mβ, M , and c1 are all positive, and δκ is

also positive in this region). The minimum will then arise from competition between

the positive 1/n term, which dominates at smaller n, giving a negative slope, and
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the 1/
√

n term which has a negative coefficient (because δκ is just above the new

critical value) and dominates at larger n giving a positive slope. However, as δκ

is reduced the negative coefficient of 1/
√

n becomes smaller and smaller, and the

minimum moves out to arbitrarily large n, so the energetically favored value of n

does not jump suddenly from 1 to ∞ as in the standard case, but increases in steps

from 1 to infinity as we lower κ through a range of values down to the new critical

value. This creates an infinite number of “type-II(n)” phases, each with a different

flux in the favored flux tube, and when that flux becomes infinite the superconductor

becomes type-I. This behavior is seen in our numerical results (Fig. 3.4).

Gradient coupling to neutrons

The lower left panel of Fig. 3.3 shows the effect of a gradient interaction with the

superfluid. From (3.19) and (3.20) we expect

En/n = EBog + Mδκ +
−Mσs 1

2

− δκMc 1

2√
n

+
−Mσs1 + δκMc1

n
+ · · · (3.24)

Here we see that the gradient coupling shifts the critical κ to a smaller value. The

transition between type-I and type-II occurs when the coefficient of the 1/
√

n term

changes sign, which in this case happens for small negative δκ,

δκcrit(σ) = −
Mσ s 1

2

Mc 1

2

∝ −σ2 (3.25)

which is proportional to −σ2 because M , Mσ, s 1

2

, and c 1

2

are all positive, and Mσ ∝ σ2

when β = 0 (Sec. 3.3.1).

51



Chapter 3
Flux tubes and the type-I/type-II transition in a superconductor coupled to a

superfluid

The other important feature of this plot is the presence of a maximum in En/n

when κ is close to the type-I/type-II boundary. This is consistent with (3.24), as long

as we assume that the coefficient s1 from (3.21) is either positive, or negative and of

sufficiently small magnitude, so that the 1/n term in (3.24) has a negative coefficient.

The maximum will then arise from competition between the negative 1/n term, which

dominates at smaller n, giving a positive slope, and the 1/
√

n term, which dominates

at larger n giving a negative slope.

The presence of this maximum allows for the possibility of metastable flux con-

figurations. If we scan down in κ, we start in a type-II region where En/n has its

minimum at n = 1 and rises monotonically with n. But at some point a metastable

minimum at n = ∞ appears, which drops to become degenerate with the minimum

at n = 1. At this point there is a first-order transition: at the critical field, n = 1 flux

tubes would co-exist with macroscopic normal regions (i.e. flux tubes with n = ∞)

but not with flux tubes of intermediate size. Reducing κ further, the n = 1 flux tube

becomes energetically metastable, and finally unstable.

Density and gradient coupling to neutrons

The lower right panel of Fig. 3.3 shows the effect of a combination of gradient and

density interactions. As κ is decreased, a metastable energy minimum emerges at

finite n; it drops and becomes a new global minimum at n = n∗, yielding a sharp

transition from n = 1 type-II to n = n∗ type-II. As κ is reduced further the favored

number of flux quanta in a flux tube rises in integer steps from n∗ to infinity, at which
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point the superconductor becomes type-I.
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Figure 3.4: (Color online) Effect on the superconductor of density coupling β to a superfluid,

displayed as a phase diagram in the κ-β plane, with no gradient coupling (σ = 0) and 〈φp〉2/〈φn〉2 =

0.05. The left panel shows how non-zero β causes an increase in κcritical. In the right panel we

magnify the transition region near β = 0.5, illustrating that on the type-II side there is a sequence

of “type-II(n)” bands in which the number of flux quanta in the favored flux tube rises, reaching

infinity when the superconductor becomes type I.

3.3.3 Phase diagrams

Figures 3.4–3.7 illustrate the additional structure in the phase diagram of the su-

perconductor induced by the couplings to a superfluid. Each diagram is a two-

dimensional slice through the parameter space.

Figure 3.4 shows the consequences of a density coupling β between the superfluid

and superconductor. We see that the density coupling, irrespective of its sign, favors

type-I superconductivity, pushing the the critical κ for the type-I/type-II transition

up to higher values, forming a parabolic phase boundary in the β-κ plane, as expected
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Figure 3.5: (Color online) Effect on the superconductor of gradient coupling σ to a superfluid,

displayed as a phase diagram in the κ-σ plane, with no density coupling (β = 0) and 〈φp〉2/〈φn〉2 =

0.05. The gradient coupling causes a decrease in κcritical, and creates metastable states on either

side of the transition, with spinodal lines as shown.

from (3.23). This can be thought of as arising from the fact that nonzero β lowers

the energy per flux of the core of large flux tubes (see (3.22)), which favors type-I

superconductivity.

In the right panel we zoom in on the transition line near β = 0.5 to show the

substructure in the phase transition region that is invisibly small in the left panel. As

one would expect from our discussion of Figure 3.3 (upper right panel), on the type-II

side of the transition there is a series of bands distinguished by the number of flux

quanta n in the energetically favored flux tube. “Type-II (n = 1)” is the standard

type-II superconductor. With decreasing κ we find transitions to Type-II (n = 2),

Type-II (n = 3), and on up to n = ∞ which is a type-I superconductor.

In Figure 3.5 we show the consequences of a gradient coupling σ between the

superfluid and superconductor. We see that the gradient coupling, irrespective of its
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Figure 3.6: (Color online) Phase diagram for combined density and gradient interactions: the κ-β

plane for σ = 0.5 and 〈φp〉2/〈φn〉2 = 0.05. The type-I/type-II boundary is no longer symmetric

under β → −β. In the right panel we magnify the transition region near β = 0.5, illustrating that

on the type-II side as κ decreases the number of flux quanta in the favored flux tube jumps from

1 to a finite value (in this case n = 5) and then there is a sequence of bands in which n rises to

infinity, at which point the superconductor becomes type I.

sign, favors type-II superconductivity, pushing the critical κ for the type-I/type-II

transition down to lower values, forming an inverted parabolic phase boundary in the

σ-κ plane, as expected from (3.25). It also makes the phase transition first order, with

spinodal lines where the unfavored phase becomes metastable. Both these effects arise

from the lowering of the energy of the wall of the vortex, as explained in Sec. 3.3.2.

In Figure 3.6 we show phase diagrams for the combination of both density and

gradient couplings, fixing σ = 0.5 and varying β. As discussed in Sec. 3.3.1, we

expect that when σ 6= 0 the β → −β symmetry is now broken. In the right panel we

magnify the transition region near β = 0.5, illustrating that on the type-II side as κ

decreases the number of flux quanta in the favored flux tube jumps from 1 to a finite
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Figure 3.7: (Color online) Phase diagrams in the κ vs. 〈φn〉2/〈φp〉2 plane. Vertical dashed lines

show 〈φn〉2/〈φp〉2 = 20, the value used for other figures in this paper. The left panel is for density

coupling β = −0.1, but no gradient coupling (σ = 0). The right panel is for gradient coupling

σ = 0.1, but no density coupling (β = 0). In both cases, we see that the type-I/type-II transition

converges to κ = 1/
√

2 as the neutron condensate disappears. For the case of a density coupling, as

the neutron condensate decreases, the type-I/type-II boundary changes at 〈φn〉2/〈φp〉2 ∼ 10 from a

narrow region of type-II(n) phase bands (thick line) to wider metastable regions.

value n = 5, and then there is a sequence of bands in which n rises, reaching infinity

when the superconductor becomes type I. This is the expected behavior, based on

our discussion in Sec. 3.3.2.

Finally, in Figure 3.7, we anticipate one direction in which this work could be

extended, by exploring the consequences of varying the ratio of the superfluid density

to the superconductor density, which up to now was fixed to 〈φn〉2/〈φp〉2 = 20, an

appropriate value for neutral beta-equilibrated nuclear matter, of the type we expect

to find inside neutron stars. Figure 3.7 shows phase diagrams in the plane of κ and

〈φn〉2/〈φp〉2 for a system with a density coupling (left panel) and with a gradient

coupling (right panel).
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For the case of a density coupling we use a negative value of the coupling, because

this corresponds to an attractive interaction, which gives smooth behavior in the

limit where the neutron condensate disappears, 〈φn〉2/〈φp〉2 → 0. As is clear from the

plot, the type-I/type-II transition then converges to the standard value for a single-

component superconductor, κ = 1/
√

2. For a repulsive interaction, the 〈φn〉2/〈φp〉2 →

0 limit is singular: we discuss this in more detail below. It is interesting to note that

the effects of the density coupling change dramatically with the relative densities of

the neutrons and protons. At 〈φn〉2/〈φp〉2 & 10 the density coupling produces a thin

region of multi-flux-quantum “type-II(n)” phases, as was illustrated in Fig. 3.4. But

for lower values, it has a similar effect to a gradient coupling, inducing metastable

regions on either side of the type-I/type-II boundary. This should be understandable

in terms of the dependence of the coefficients b 1

2

and b1 (Eqn. (3.20)) on 〈φn〉2/〈φp〉2.

In Sec. 3.3.2 we argued that if b1 is large enough then the En/n curve has a minimum

at finite n, yielding a type-II(n) phase. We conjecture that as 〈φn〉2/〈φp〉2 gets smaller,

b1 becomes sufficiently negative that this is no longer the case, and instead there is a

maximum, leading to metastability of the n = 0 and n = ∞ states in spinodal regions

around the type-I/type-II boundary. This is a topic for future investigation.

For the case of a gradient coupling (right panel of Fig. 3.7) the effects of varying

〈φn〉2/〈φp〉2 are less dramatic. It is interesting that, as for a density coupling, the

variation is non-monotonic. Again, we conjecture that this could be understood in

terms of variation of the coefficients s 1

2

and s1 (Eqn. (3.21)) with 〈φn〉2/〈φp〉2. As the

superfluid density drops to zero, its effects become negligible, and the critical value
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of κ converges towards 1/
√

2 as one would expect.

Finally, we discuss the singularity of the 〈φn〉2/〈φp〉2 → 0 limit for a positive β,

i.e. a repulsive density coupling between the neutron and proton condensates. From

(3.6) we see that the expectation value of the neutron condensate is 〈φn〉+ 1
2
β(〈φp〉−

φp), so far from the flux tube, where φp is 〈φp〉, it is 〈φn〉. But in the core of the

condensate it is larger (there is less proton condensate to repel it). In fact, even if

the parameter 〈φn〉2 were zero or slightly negative, there would be a positive neutron

condensate in the core of the flux tube. This shows that for positive β the neutrons do

not decouple and become irrelevant in the limit 〈φn〉 → 0. We note two consequences

of this. Firstly, for small 〈φn〉 the β → −β symmetry discussed in Sec. 3.3.1 is no

longer present, because the effect of the flux tube on the neutron condensate is no

longer a small perturbation. Secondly, in a system where 〈φn〉2 is small and negative

(i.e. the neutrons just barely fail to condense in the presence of the proton condensate)

flux tubes could have superfluid cores, which is another topic that we leave for future

investigation.

3.4 Conclusion

We conclude that coupling a superconductor to a co-existing superfluid causes sig-

nificant modification of the energetics of the flux tubes. On the basis of calculations

restricted to the cylindrical geometry of n-quantum flux tubes, we conclude that a

coupling between the densities of the condensates shifts the type-I/type-II boundary
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to larger κ, and, if the superfluid density is high enough, appears to create an infinite

number of new “type-II(n)” phases whose most stable flux tubes contain multiples

of the basic flux quantum. A gradient coupling between the condensates leads to

metastable regions surrounding the transition between type-I and type-II supercon-

ductivity.

As discussed in Section 3.1, our calculation corresponds to comparing the energy

at zero and infinite separation of flux tubes with varying numbers of flux quanta.

This leaves open the possibility that there might be additional minima at finite sep-

aration. It is therefore possible that in parts of the phase diagram there might be a

different phase from the ones we identify, namely an alternative type of type-II super-

conductor in which the spacing between flux tubes is fixed by the microscopic physics

rather than by the strength of the applied field. To resolve this question will require

calculation of the free energy of a pair of flux tubes at arbitrary separation. Such

calculations have been performed for large separation [69, 70, 71], and by perturbing

about the Bogomolnyi point [59] and by numerical computation [72]. In particular,

the numerical methods that have been used recently to follow the interaction and

annihilation or vortex-antivortex pairs [73] would be readily applicable to the simpler

time-independent calculation of the interaction potential of flux tubes. Another nat-

ural generalization of our calculation would be to allow for non-s-wave pairing, such

as the 3P2 pairing that is believed to occur in the neutron superfluid in the core of a

neutron star.

Our results add another example to the class of two-component Ginzburg-Landau
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models with non-standard superconducting behavior. Previous work in this area

includes the SO(5) model of high-temperature superconductivity, which has flux tubes

described by a two-component GL model, where each component carries a different

U(1) charge, and only one of them condenses in the vacuum [21]. Another example is

the case of a two-component GL model where both components have electric charge,

very different mass, and nearly the same Fermi energy. This system was found to

have non-monotonic E(n)/n and intermediate minima in the interaction potential

[15].

The exotic phenomena that we predict are localized to the region around the

type-I/type-II transition, so they may not turn out to be relevant for the inner core

of a neutron star, which is believed to be well inside the type-II regime [5]. However,

given the extremely impressive recent progress in creating exotic systems such as

multi-component superfluids of trapped cold atoms, it seems quite conceivable that

a material that is both a superconductor and a superfluid might be created in the

laboratory, and could be studied under controlled conditions. Our results would be

directly relevant to such a material.

60



Chapter 4

Leptonic contribution to the bulk

viscosity of nuclear matter

The bulk viscosity of nuclear matter plays an important role in the damping of oscil-

lations in neutron stars. One well-known example is r -modes, which, if the interior of

the star is a perfect (dissipationless) fluid, become unstable with respect to the emis-

sion of gravitational waves [24, 25, 26]. This emission acts as a brake on the rotation

of the star. However, r-mode spindown will not occur if the r-mode is sufficiently

strongly damped, for example by shear or bulk viscosity of the matter in the interior

of the star. It is therefore important to calculate of the bulk viscosity of the various

candidate phases in a neutron star. Several calculations exist in the literature, for

nuclear [27, 28, 29, 30, 31, 32] and hyperonic [33, 34, 35] as well as for unpaired quark

matter [36, 37, 38] and various color-superconducting phases [39, 40, 41, 42, 43, 44].

In this chapter we will study β-equilibrated nuclear matter. We will assume
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that the density is high enough that the negative-charge chemical potential µl is

greater than the mass of the muon, so the matter consists of neutrons, protons,

electrons and muons. Such matter is expected to exist in the core of the star. In

previous calculations of bulk viscosity of npeµ nuclear matter the focus has been on

the contribution from interconversion of neutrons and protons via weak interactions.

But nuclear matter at neutron-star densities is expected to show Cooper pairing of

protons (superconductivity) or neutrons (superfluidity) [16, 17, 46] either of which will

suppress interconversion by a factor of order exp(−∆/T ), where ∆ is the energy gap at

the Fermi surface. This opens up the possibility that, in superfluid or superconducting

phases, the dominant contribution to the bulk viscosity might come from purely

leptonic processes. The relevant process is conversion of electrons to muons (and vice

versa) via either the direct Urca process or the modified Urca process. The direct

Urca leptonic conversion process is forbidden by energy and momentum conservation:

in converting an electron near its Fermi surface to a muon near its Fermi surface,

the change in free energy is very small (of order T ), so the emitted neutrinos carry

momentum and energy of this order. But the change of momentum of the charged

lepton is large, at least µl −
√

µ2
l − m2

µ, and the low-energy neutrino cannot carry

this much momentum. However, the modified Urca process can occur; for example,

two electrons with energy slightly above the Fermi energy can scatter to an electron

and a muon with energies near the Fermi energy, or an electron and muon can scatter

to two muons. The strongest interaction between leptons is electromagnetism, so

this process proceeds via exchange of a photon, whose propagator should include the
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effects of screening by the nuclear medium. As the temperature decreases, the process

will become suppressed as the Fermi distributions assume their zero-temperature step

function profiles, but at finite temperature the modified Urca process will result in a

non-zero contribution to the bulk viscosity.

We calculate the leptonic bulk viscosity arising from the processes e + ℓ ⇋ µ +

ℓ + ν + ν̄, where ℓ = e or µ. We conclude that, if the protons and neutrons are both

ungapped, i.e if there is neither superfluidity nor superconductivity, then the bulk

viscosity from these purely leptonic processes is several orders of magnitude smaller

than that from the nucleonic processes. However, once the temperature drops below

the critical value for Cooper pairing of the protons or neutrons, the nucleonic bulk

viscosity at frequencies & 10Hz is strongly suppressed, and leptonic processes become

the dominant source of bulk viscosity at those frequencies.

In this chapter, we lay out the process for calculating the bulk viscosity of a

two-component leptonic system under application of a periodic volume and pressure

perturbation. A crucial component of this calculation is the conversion rate between

electrons and muons, which is discussed in great detail. We show the numerical

results of our calculations and how they compare to the bulk viscosity resulting from

modified Urca equilibration of the nucleon population.
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4.1 Bulk viscosity of leptons

First we write down a general expression for bulk viscosity in a two-species system,

arising from interconversion of the two species. Then we specialize to the case of

electrons and muons in nuclear matter.

4.1.1 Bulk viscosity of a two-species system

We assume that the system experiences a small-amplitude driving oscillation

V (t) = V̄ + Re(δV eiωt)

p(t) = p̄ + Re(δp eiωt)

(4.1)

where the volume amplitude δV ≪ V̄ is real by convention, and the resultant pressure

oscillation p(t) is complex. The average power dissipated per unit volume is

dE

dt
= − 1

τ V̄

∫ τ

0

p(t)
dV

dt
dt = −1

2
ω Im(δp)

δV

V̄
, (4.2)

where τ = 2π/ω, so the bulk viscosity is [37]

ζ =
2V̄ 2

ω2(δV )2

dE

dt
= −Im(δp)

δV

V̄

ω
. (4.3)

We will determine Im(δp), which will be negative. We will assume that heat arising

from dissipation is conducted away quickly, so the whole calculation is performed at

constant temperature T . We assume that our system contains two particle species

e and µ, and the state of the system is determined by the corresponding chemical

potentials µe and µµ. The total number of electrons and muons is conserved, and
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equilibrium is established via the conversion process e ↔ µ. For simplicity of pre-

sentation and of the final expressions, it is better to work in terms of charged lepton

number l and electron-muon asymmetry a, so pressure is a function of µl and µa,

where

µl = 1
2
(µe + µµ) nl = ne + nµ =

∂p

∂µl

∣

∣

∣

∣

µa

µa = 1
2
(µe − µµ) na = ne − nµ =

∂p

∂µa

∣

∣

∣

∣

µl

(4.4)

From now on all partial derivatives with respect to µl will be assumed to be at constant

µa, and vice versa. In beta-equilibrium, µa is zero. The variations in the chemical

potentials are expressed in terms of complex amplitudes δµl, and δµa,

µl(t) = µ̄l + Re(δµl e
iωt) ,

µa(t) = Re(δµae
iωt) .

(4.5)

The pressure amplitude is then

δp =
∂p

∂µl

∣

∣

∣

µa

δµl +
∂p

∂µa

∣

∣

∣

µl

δµa = nlδµl + naδµa , (4.6)

From (4.6) and (4.3) we find

ζ = − 1

ω

V̄

δV

(

n̄lIm(δµl) + n̄aIm(δµa)
)

. (4.7)

To obtain the imaginary parts of the chemical potential amplitudes, we write down

the rate of change of the corresponding conserved quantities,

dnl

dt
=

∂nl

∂µl

dµl

dt
+

∂nl

∂µa

dµa

dt
= −nl

V̄

dV

dt
,

dna

dt
=

∂na

∂µl

∂µl

dt
+

∂na

∂µa

dµa

dt
= −na

V̄

dV

dt
− Γtotal

e→µ .

(4.8)
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All the partial derivatives are evaluated at equilibrium, µl = µ̄l and µa = 0. The

right hand term on the first line expresses the fact that charge is conserved, so when

a volume is compressed, the density of charged leptons rises. On the second line,

there is such a term from the compression of the existing population of particles,

but there is also a rate of conversion Γtotal
e→µ of electrons to muons, which reflects the

fact that weak interactions will push the lepton densities towards their equilibrium

value. For small deviations from equilibrium we expect Γtotal
e→µ to be linear in µa, so it

is convenient to write the rate in terms of an average width γa, which is defined in

terms of the total rate by writing

Γtotal
e→µ = γa

∂na

∂µa
µa . (4.9)

We now substitute the assumed oscillations (4.1) and (4.5) in to (4.8), and solve

to obtain the amplitudes δµl and δµa in terms of the amplitude δV and frequency ω

of the driving oscillation. Inserting their imaginary parts in (4.7) we obtain the bulk

viscosity, which is conveniently expressed in terms of the susceptibilities

χll =
∂nl

∂µl
,

χla =
∂nl

∂µa
=

∂na

∂µl
,

χaa =
∂na

∂µa
,

(4.10)

all evaluated at equilibrium, µl = µ̄l, µa = 0. Note that χal is the same as χla from
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(4.4). Defining

γeff =
χllχaa

χllχaa − χ2
la

γa =
χll

χllχaa − χ2
la

∂Γtotal
e→µ

∂µa

∣

∣

∣

µa=0
,

C =
(χllna − χlanl)

2

χll(χllχaa − χ2
la)

,

(4.11)

we obtain the final result for the bulk viscosity in a two-species system,

ζ = C
γeff

ω2 + γ2
eff

. (4.12)

From (4.12) we can already see how the bulk viscosity of a two-species system

depends on the frequency ω of the oscillation and the effective equilibration rate γeff .

At fixed equilibration rate, the bulk viscosity decreases monotonically as the os-

cillation frequency rises; it is roughly constant for ω . γeff , and then drops off quickly

as 1/ω2 for ω ≫ γeff .

At fixed oscillation frequency ω, the bulk viscosity is a non-monotonic function of

the rate γeff . It is peaked at γeff = ω, with a value

ζmax = 1
2
C/ω . (4.13)

For γeff ≪ ω or γeff ≫ ω the bulk viscosity tends to zero. Thus very fast and very

slow processes are not an important source of bulk viscosity. As we will see below,

for leptons in nuclear matter the equilibration rate is sensitive to temperature but

the coefficient C is not, so we expect ζ(T ) to be peaked at γeff(T ) = ω, where the

oscillation frequency ω is of order kHz for typical oscillation modes of neutron stars.
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4.1.2 Leptons in nuclear matter

In nuclear matter the leptonic chemical potential µl = µe = µµ is much greater than

the temperature and the electron mass, so we can evaluate the susceptibilities (4.10)

at me = T = 0. Temperature dependence will come in only via the equilibration rate

γa. Treating the electrons and muons as free fermions, we find

γeff = γa
(µl + pF )2

4µlpF
,

C =
1

9π2
m2

µpF (µl − pF ) .

(4.14)

where the muon Fermi momentum is given by p2
F = µ2

l − m2
µ. Note that the bulk

viscosity goes to zero as mµ → 0 (mµ → me, really). This is because if the muons

and electrons have equal mass then under compression their relative densities do not

change, and there is no need for any equilibrating process, so the pressure is always

in phase with the volume and no dissipation occurs.

Even without calculating the rate of lepton number equilibration, we can now

estimate the amount of bulk viscosity that could possibly arise from leptons. If the

equilibrating weak interaction at some temperature happened to have a rate that

matched the typical oscillation frequency of the star, ω ≈ 2π × 1000 Hz, and the

lepton chemical potential had a relatively moderate value of about 120 MeV, we

would obtain from (4.13), ζmax = 5.5 × 1022 MeV3 = 7.5 × 1027 g s−1cm−1. This is

at the upper end of typical nuclear bulk viscosities which range up to 1028g s−1cm−1

[27]. This motivates us to proceed with the calculation of the rate of conversion of

muons to and from electrons via the weak interaction.
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4.2 Muon-electron conversion rate

The muon-electron conversion rate Γtotal
e→µ consists of two partial rates,

Γtotal
e→µ = Γtotal

ee→eµ + Γtotal
eµ→µµ (4.15)

The partial rates are

Γtotal
ab→cd =

∫

d3p1d
3p2d

3p3d
3p4d

3k1d
3k2

64(2π)14ω1ω2ω3ω4Ω1Ω2

δ4(p1+p2−p3−p4−k1−k2)Wab→cd(p1p2 → p3p4k1k2)

× [fa(ω1)fb(ω2) (1−fc(ω3)) (1−fd(ω4))−fc(ω1)fd(ω2) (1−fa(ω3)) (1−fb(ω4))] (4.16)

where a,b,c,d are either e or µ, Wab→cd is the spin-summed and averaged matrix

element. The charged lepton of flavor j has energy ωj =
√

p2
j + m2

j , the neutrino of

flavor j has energy Ωj = |kj|, and fb(ωj) is the Fermi distribution function

fb(ωj) =

[

1 + exp

(

ωj − µb

T

)]−1

(4.17)

Using the previous definitions for µl and µa, we have

µe = µl+µa, µµ = µl−µa (4.18)

and since µa is small, to first order in µa we have

fe(ω1)fe(ω2) (1−fe(ω3)) (1−fµ(ω4))−fe(ω1)fµ(ω2) (1−fe(ω3)) (1−fe(ω4)) = F (ω1, ω2, ω3, ω4)
µa

T

(4.19)

and

fµ(ω1)fe(ω2) (1−fµ(ω3)) (1−fµ(ω4))−fµ(ω1)fµ(ω2) (1−fµ(ω3)) (1−fe(ω4)) = F (ω1, ω2, ω3, ω4)
µa

T

(4.20)

F (ω1, ω2, ω3, ω4) ≡
2 exp [(ω3+ω4−2µl) /T ] [1+2 exp [(ω2−µl) /T ]+exp [(ω2+ω4−2µl) /T ]]

(1+exp[(ω1−µl)/T ]) (1+exp[(ω2−µl)/T ])2 (1+exp[(ω3−µl)/T ]) (1+exp[(ω4−µl)/T ])2
(4.21)
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Figure 4.1: Feynman diagrams for the process e + e → e + µ + ν̄µ + νe. There are an

additional two diagrams which are obtained from these by exchanging p1 ↔ p2.
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Figure 4.2: Feynman diagrams for the process e + µ → µ + µ + ν̄µ + νe. There are an

additional two diagrams which are obtained from these by exchanging p3 ↔ p4.
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To determine the content of the matrix elements, we draw the Feynman diagrams

for each possible way the reaction can occur. We can draw two different diagrams for

each process, depending on the whether the weak conversion of the electron to muon

occurs before the electromagnetic scattering, or in the reverse order (Fig. 4.1, Fig.

4.2). However, because there are identical particles involved, and we are integrating

over all initial and final momenta, we need to add two additional diagrams for each

process. For the process e + e ⇋ µ + e + ν + ν̄, we must add two diagrams where

the labels on the initial state electron momenta are reversed; and for the process

e + µ ⇋ µ + µ + ν + ν̄, we must add two diagrams where the labels on the final state

muon momenta are reversed. These diagrams get an additional negative sign for the

interchange of fermions [74]. For similar calculations, see [75, 76].

Since we have four diagrams for each process, the spin summed-and-averaged

matrix elements are

Wee→eµ =
1

8

∑

spins

|E1 + E2 − E3 − E4|2

Weµ→µµ =
1

8

∑

spins

|M1 + M2 − M3 − M4|2 (4.22)

Here E1, E2, E3, E4 are the amplitudes corresponding to the diagrams of Fig. 4.1, and
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M1, M2, M3, M4 are the amplitudes corresponding to the diagrams of Fig. 4.2 [77]:

E1 =
e2GF√

2(q2−q2
s)

ē(p3)γ
µe(p1)ν̄e(k1)γ

λ
(

1−γ5
) /p2+/q+me

(p2+q)2−m2
e

γµe(p2)µ̄(p4)γλ

(

1−γ5
)

νµ(k2)

E2 =
e2GF√

2(q2−q2
s)

ē(p3)γ
µe(p1)ν̄e(k1)γ

λ
(

1−γ5
)

e(p2)µ̄(p4)γµ
/p4−/q+mµ

(p4−q)2−m2
µ

γλ

(

1−γ5
)

νµ(k2)

E3 =
e2GF√

2(w2−q2
s)

ē(p3)γ
µe(p2)ν̄e(k1)γ

λ
(

1−γ5
) /p1+ /w+me

(p1+w)2−m2
e

γµe(p1)µ̄(p4)γλ

(

1−γ5
)

νµ(k2)

E4 =
e2GF√

2(w2−q2
s)

ē(p3)γ
µe(p2)ν̄e(k1)γ

λ
(

1−γ5
)

e(p1)µ̄(p4)γµ
/p4− /w+mµ

(p4−w)2−m2
µ

γλ

(

1−γ5
)

νµ(k2)

(4.23)

M1 =
e2GF√

2(q2−q2
s)

µ̄(p3)γ
µµ(p1)ν̄e(k1)γ

λ
(

1−γ5
) /p2+/q+me

(p2+q)2−m2
e

γµe(p2)µ̄(p4)γλ

(

1−γ5
)

νµ(k2)

M2 =
e2GF√

2(q2−q2
s)

µ̄(p3)γ
µµ(p1)ν̄e(k1)γ

λ
(

1−γ5
)

e(p2)µ̄(p4)γµ
/p4−/q+mµ

(p4−q)2−m2
µ

γλ

(

1−γ5
)

νµ(k2)

M3 =
e2GF√

2(s2−q2
s)

µ̄(p4)γ
µµ(p1)ν̄e(k1)γ

λ
(

1−γ5
) /p2+/s+me

(p2+s)2−m2
e

γµe(p2)µ̄(p3)γλ

(

1−γ5
)

νµ(k2)

M4 =
e2GF√

2(s2−q2
s)

µ̄(p4)γ
µµ(p1)ν̄e(k1)γ

λ
(

1−γ5
)

e(p2)µ̄(p3)γµ
/p3−/s+mµ

(p3−s)2−m2
µ

γλ

(

1−γ5
)

νµ(k2)

(4.24)

where w = p2 − p3, and s = p1 − p4.

The only parameter in our calculation that depends on details of the baryonic

matter in the neutron star is the plasma screening momentum qs. In a full treatment

one would have to use the appropriate in-medium propagator which is a complicated

function of the photon momentum involving Debye screening of longitudinal photons,

and Landau damping and possible Meissner screening of transverse photons [78, 79]

In this paper we greatly simplify the calculation by assuming that the longitudinal

and transverse photons have a common screening mass

q2
s = 5αµ2

l . (4.25)
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For the longitudinal photons, this is a reasonable estimate of the square of the Debye

mass M2
D for µl > mµ. The electron contribution to M2

D is 4αµ2
l /π ≈ αµ2

l [80]; the

muon contribution is smaller when µl ∼ mµ and equal when µl ≫ mµ, and there is

also a proton contribution that is enhanced by mN/µl. If we treat the system as a

gas of free nucleons and leptons then (4.25) differs from M2
D by less than a factor of

2 for µl > mµ.

For the transverse photons, (4.25) is an overestimate of their screening. In the

low-momentum (London) limit, proton superconductivity would give a Meissner mass

M2
M = 4/(3π)αp3

F,p/mp (see, e.g., Ref. [12]), and overall charge neutrality requires

that pF,p ≈ µl (assuming that electrons are the main source of negative charge), so

M2
M ≈ αµ2

l (µl/mN ); (4.25) would then overestimate M2
M by a factor of between 10

and 50 depending on µl. Moreover, in modified Urca processes the photon momentum

is well above the proton inverse coherence length, so the magnetic screening is reduced

below the London value [81, 80].

However, the sensitivity of our results to the precise screening of the photons

is limited by the fact that the photon always carries enough momentum to move a

lepton between the muon and electron Fermi surfaces, and its energy is negligible in

comparison to its momentum. So in the transverse photon propagator M2
M is added to

κ2 where the minimum value of κ is pFe−pFµ which varies from about 80 MeV at µl =

110 MeV to 20 MeV at µl = 300 MeV. There is therefore no singularity at very small

values of MM : the photon propagator becomes independent of MM when MM ≪ κ.

Our approximation (4.25) corresponds to assuming a value of MM that, in the range
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mµ < µl < 300 MeV, is unphysically large but of the same order of magnitude as the

minimum momentum transfer κ. So using (4.25) is a conservative approximation that

should give a reasonable order-of-magnitude estimate of the leptonic equilibration

rate, with a tendency to underestimate it because the contribution of transverse

photons is overly suppressed.

To obtain the equilibration rates, we first multiply out the right hand sides of

(4.22) and define partial matrix elements by

Wee→eµ =
∑

i,j≤i

W ij
ee→eµ, Weµ→µµ =

∑

i,j≤i

W ij
eµ→µµ

W 11
ee→eµ =

1

8

∑

spins

|E1|2, W 12
ee→eµ =

1

8

∑

spins

(E†
1E2 + E†

2E1),

W 13
ee→eµ = −1

8

∑

spins

(E†
1E3 + E†

3E1), etc. (4.26)

The traces resulting from the spin sums are easily evaluated with a computer algebra

package; we used the FeynCalc package for Mathematica [82]. The traces are listed

in section 4.5. In the next few paragraphs, we will describe the steps used to analyt-

ically integrate 10 of the 18 integrals, and list the expressions that we subsequently

integrated numerically in section 4.4.

We make use of the fact that the neutrino energies are ∼ T ≪ µe, µµ by approxi-

mating the momentum and energy conserving delta functions as

δ4(p1+p2−p3−p4−k1−k2) ≈ δ(ω1+ω2−ω3−ω4−Ω1−Ω2)δ
3(p1+p2−p3−p4) (4.27)

We then note that k1 and k2 occur exactly once in each term, dotted into one of the
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other 4-momenta pi. Writing

kj = Ωj (1, sin ξj cos ηj , sin ξj sin ηj , cos ξj) (4.28)

then any dot product with another 4-momentum pi is

pi · kj = Ωj (ωi−(pi)x sin ξj cos ηj−(pi)y sin ξj sin ηj−(pi)z cos ξj) (4.29)

The result of this operation is that the integrals over the k1 and k2 angular variables

become trivial:

∫

d3kj

Ωj

pi · kj →
∫

k2
jdkjd(cos ξj)dηjpi · k̂j → 4πωi

∫ ∞

0

Ω2
jdΩj (4.30)

because all of the integrations over one of the angles ξj or ηj are zero.

The energy-momentum conserving delta function allows us to use relations like

p1 − p3 = p4 − p2 to rewrite some of the denominators of the matrix elements. For

example, in Wee→eµ we can substitute variables so that p3 does not appear in the

denominators of any of the terms; then we can integrate out the p3 3-momentum

variables easily. Similarly, in Weµ→µµ we can substitute variables so that p2 does

not appear in the denominators and integrate out the p2 3-momentum variables.

However, our matrix elements have many terms containing the four-momentum p3

(p2), so it would be easier if we could integrate over d4p3 (d4p2). This is accomplished

by replacing

∫

d3p3

ω3
=

∫

d4p3

(p3)0
δ
(

(p3)0 −
√

p2
3 + m2

µ

)

≈
∫

d4p3

(p3)0
δ ((p3)0 − µl) (4.31)

in Wee→eµ and similarly for p2 in Weµ→µµ . In the last approximation we are using
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the fact that the Fermi distribution function is sharply peaked at low temperatures.

Then we integrate over d4p3 (d4p2) using four of the delta functions.

We can further approximate that the medium is isotropic, by taking one of the

remaining momentum variables to be in a fixed direction (the z-axis for convenience).

The electrons are relativistic, so ωi = |pi| and d3pi = ω2
i dωid cos θidφi when particle

i is an electron. The muons may not be relativistic, so ωi =
√

p2
i + m2

µ and d3pi =

ωi

√

ω2
i −m2

µdωid cos θidφi when particle i is a muon. We then use the remaining delta

function to integrate over the magnitude of this isotropic momentum variable.

The remainder of the integrations are performed numerically. The only further

approximation made was to again take advantage of the sharply peaked Fermi distri-

bution function, and set ωi = µl everywhere inside the integral, except for inside the

Fermi function itself. This allows a separation of the eight-dimensional integral into

a four-dimensional energy integral and a four-dimensional integral over the angular

variables. The integration variables are also changed to dimensionless variables by

scaling them with respect to µl.

The final expression for each term in the rate has the form

Γij
eℓ→µℓ =

e4G2
F µ12

l

128π11m4
µ

(µa

T

)

× Iℓ
ω × Iℓij

dΩ (4.32)

where ℓ is the species of the spectator lepton, and Iℓ
ω and Iℓij

dΩ are dimensionless energy

and angular integrals, respectively. These integrals are listed in section 4.4.
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4.3 Numerical results and conclusions

The remaining part of the rate calculation is performed numerically. The dimension-

less energy integrals are nearly the same; a power-law fit of the results yields

Ie
ω ≈ 78.86

(

T

µl

)8

, Iµ
ω ≈ 78.62

(

T

µl

)8

(4.33)

In our approximation, the angular integrals only have dependence on µl. We

determined an analytical fit for the µl-dependence of Ieij
dΩ and Iµij

dΩ (accurate within

5%) over the range 120 MeV < µl < 300 MeV by curve-fitting the numerical data

with sixth-order polynomials:

∑

ij

Ieij
dΩ ≈

(

1 −
m2

µ

µ2
l

)1/2 6
∑

i=0

ci

(

µl

mµ

)i

,

c0 = −1.7363 × 104, c1 = 5.0189 × 104, c2 = −4.7644 × 104, c3 = 1.3224 × 104,

c4 = 4.4203 × 103, c5 = −2.7199 × 103, c6 = 3.5119 × 102 (4.34)

∑

ij

Iµij
dΩ ≈

(

1 −
m2

µ

µ2
l

)3/2 6
∑

i=0

ci

(

µl

mµ

)i

,

c0 = 1.2433 × 106, c1 = −3.6329 × 106, c2 = 4.4365 × 106, c3 = −2.8702 × 106,

c4 = 1.0354 × 106, c5 = −1.9728 × 105, c6 = 1.5507 × 104 (4.35)

Fig. 4.3 shows the µl dependence of the effective rate γeff defined in (4.11). As

µl approaches mµ, the rate quickly drops to zero as the muon population disappears.

The overall T 7 dependence is also illustrated in the sizable difference in order of

magnitude of the rate for the three different temperatures.

Fig. 4.4 shows the temperature dependence of the bulk viscosity ζ as defined in

(4.12), for a neutron star with oscillation frequency ω = 2π × 1kHz. The straight
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Figure 4.3: (Color online) Dependence of the effective rate of electron/muon conver-

sion γeff (see (4.11)) on the charged-lepton chemical potential µl at three different

temperatures. As µl drops towards mµ, the muon population decreases and the con-

version rate drops to zero. The temperature dependence is T 7, hence γeff is much

larger at higher temperatures.

78



Chapter 4 Leptonic contribution to the bulk viscosity of nuclear matter

dashed, dotted and dot-dashed lines on the log-log plot illustrate the power-law depen-

dence on T for three different values of µl. Also plotted is the nucleonic bulk viscosity

using the results of [28]. These results are for a model where neutrons are superfluid,

pairing in the spin triplet state, and the protons are superconducting, pairing in the

spin singlet state; also, it is assumed that only modified Urca processes are available

for damping of pulsations (although direct Urca processes would become possible at

higher densities) and the critical temperature for both the neutron superfluidity and

proton superconductivity was chosen to be 1010 K ≈ 0.86 MeV. Above the critical

temperature for proton superfluidity, the bulk viscosity for 1 kHz oscillations due to

leptons is several orders of magnitude less than the bulk viscosity due to nucleons;

below the critical temperature, the nucleonic bulk viscosity quickly decreases and at a

low enough temperature, the leptonic contribution becomes dominant. Based on our

calculations, this crossover temperature appears to be of order 0.01 to 0.1 MeV (108

to 109 K) for an oscillation frequency in the kHz range. Such a suppression of the

nucleonic contribution can arise either from superfluidity of neutrons or superconduc-

tivity of protons. It is therefore quite possible that for many cold neutron stars, the

bulk viscosity of the superconducting or superfluid region comes mainly from leptonic

processes.

The viscosity curves in Fig. 4.4 all slope upwards because the equilibration rate

γeff(T ) is well below the oscillation frequency ω, so we are in the slow-equilibration
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Figure 4.4: (Color online) Dependence of the leptonic bulk viscosity ζ on temperature

for three different values of the lepton chemical potential, and an oscillation frequency

of 1 kHz; for frequency dependence, see the discussion after (4.36). The solid line is

the nucleonic bulk viscosity [28] due to modified-Urca processes. The protons are

superconducting at T < 0.86 MeV (1010 K).
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(high frequency) regime of (4.12), where

ζ ≈ C
γeff(T )

ω2
. (4.36)

This is true for both leptonic and nuclear viscosities. In this regime one can simply

add the two bulk viscosities to get the total bulk viscosity (see, for example, appendix

A of Ref. [40]). As the temperature rises, the equilibration rate and hence the bulk

viscosity rise. When γeff(T ) comes close to ω, (4.36) becomes a poor approximation

to (4.12): ζ reaches a maximum when γeff(T ) = ω. Those maxima, for both leptonic

and nuclear bulk viscosities, are beyond the right hand limit of Fig. 4.4; for µl = 200

MeV, the peak occurs at T ≈ 40 MeV.

We can now see how our results depend on the frequency of the oscillations.

Decreasing ω moves each ζ(T ) curve to the left, shifting the viscosity curves in Fig. 4.4

upwards. The largest value we find for the leptonic effective rate γeff (at T = 10 MeV,

for µl = 300 MeV) is γeff ∼ 2 rad/s, so for the leptonic bulk viscosity (4.36) is valid

for oscillation frequencies well above this value. For example, if we reduced the

oscillation frequency from 1000 Hz to 100 Hz then all the viscosity curves in Fig. 4.4

would be shifted upwards by a factor of 100. Decreasing the frequency still further

would bring us to the regime where, in the temperature range of interest, either the

nuclear and leptonic rate was comparable to the oscillation frequency (so one or both

bulk viscosity curves would show a resonant peak in our plot). Then one may not

be able to simply add the bulk viscosities. At extremely low oscillation frequencies,

both peaks would shift to very low temperatures, the bulk viscosity curves in our
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plot would all slope downwards, the nucleonic contribution dominates, and the bulk

viscosities could again be added.

It will be interesting to see whether the leptonic contribution that we have cal-

culated here has any impact on oscillations of neutron stars. In the case of r-modes,

shear viscosity becomes the dominant source of damping in the low temperature

regime, so the leptonic contributions to the bulk viscosity at low temperature are

not likely to be an important source of r-mode damping. However, for other modes

such as radial pulsations [83] they might be the main source of damping. We argued

(after (4.25)) that our approximations lead to a result that is of the correct order of

magnitude, tending to err on the conservative side of underestimating the leptonic

equilibration rate. If a more precise estimate of the bulk viscosity were required, one

could improve on our treatment by replacing the approximation (4.25) with separate

propagators for the transverse and longitudinal photons, incorporating their separate

screening mechanisms [81]. It should be noted that our calculation is limited to the

small-amplitude regime (µa ≪ T ). If the leptonic bulk viscosity is insufficient to

damp an unstable oscillation such as an r-mode then the amplitude will rise and it

will be necessary to repeat our calculation in the large-amplitude (“supra-thermal”)

regime [84] to see whether leptonic bulk viscosity can stop the growth of the mode

once it reaches a large enough amplitude.
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4.4 Partial Rate Integrals

The following abbreviations are used throughout this appendix:

xm =
mµ

µl
, xs =

qs

µl
, t =

T

µl

C12 = 1 − cos θ2, C14 = 1 −
√

1 − x2
m cos θ4

C24 = 1 −
√

1 − x2
m (sin θ2 sin θ4(sin φ2 sin φ4+cos φ2 cos φ4)+cos θ2 cos θ4)

C̄13 = 1 − (1 − x2
m) (sin θ1 sin θ3(sin φ1 sin φ3+cosφ1 cos φ3)+cos θ1 cos θ3)

C̄14 = 1 − (1 − x2
m) cos θ1, C̄34 = 1 − (1 − x2

m) cos θ3 (4.37)

F (xa, xb, xc, xd) =
2 exp [(xc+xd−2) /t] [1+2 exp [(xb−1)/t]+exp [(xb+xd−2) /t]]

(1+exp[(xa−1)/t]) (1+exp[(xb−1)/t])2 (1+exp[(xc−1)/t]) (1+exp[(xd−1)/t])2

(4.38)

Ie
ω =

∫

dx2dx4dy1dy2 y2
1 y2

2 F (x4+y1+y2−x2+1, x2, 1, x4)

Iµ
ω =

∫

dx1dx3dy1dy2 y2
1 y2

2 F (x1, 1, x3, x1−x3−y1−y2+1) (4.39)

Ie11
dΩ =

√

1 − x2
m

∫

dΩ2dΩ4

4C12C14+2C12C24−2C14C24−4x2
mC12+x2

mC24

(x2
m−2C24−x2

s)
2

(4.40)

Ie12
dΩ = −

√

1 − x2
m

∫

dΩ2dΩ4

[

−2C12C
2
24+2C14C

2
24+8C12C14+4C12C24−4C12C14C24−4C14C24

(x2
m−2C24−x2

s)
2

+
x2

m

(

4C2
12−8C12+4C14+C12C24−C14C24

)

− x4
m

(x2
m−2C24−x2

s)
2

]

(4.41)

Ie13
dΩ = −

√

1 − x2
m

∫

dΩ2dΩ4

−4C12C14−4C12C24+6x2
mC12

(x2
m−2C24−x2

s)(x
2
m−2C14−x2

s)
(4.42)
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Ie14
dΩ =

√

1 − x2
m

∫

dΩ2dΩ4

[

2C12C
2
14−4C12C14−4C12C24+2C12C14C24

(x2
m−2C24−x2

s)(x
2
m−2C14−x2

s)

+
x2

m(−C2
12+6C12−2C12C14+2C14−2C24)+x4

m/2

(x2
m−2C24−x2

s)(x
2
m−2C14−x2

s)

]

(4.43)

Ie22
dΩ =

√

1 − x2
m

∫

dΩ2dΩ4

4C12C14+2C12C24−2C14C24−4x2
mC12+4x2

mC14+x2
mC24 − x4

m

(x2
m−2C24−x2

s)
2

(4.44)

Ie23
dΩ =

√

1 − x2
m

∫

dΩ2dΩ4

[

2C12C
2
24−4C12C14−4C12C24+2C12C14C24

(x2
m−2C24−x2

s)(x
2
m−2C14−x2

s)

+
x2

m(−C2
12+6C12−2C12C24−2C14+2C24)+x4

mC12/2

(x2
m−2C24−x2

s)(x
2
m−2C14−x2

s)

]

(4.45)

Ie24
dΩ = −

√

1 − x2
m

∫

dΩ2dΩ4

[

2C2
12C14−4C12C14+2C2

12C24−4C12C24

(x2
m−2C24−x2

s)(x
2
m−2C14−x2

s)

+
x2

m(−4C2
12+5C12+C12C14+C12C24+C14+C24)

(x2
m−2C24−x2

s)(x
2
m−2C14−x2

s)

]

(4.46)

Ie33
dΩ =

√

1 − x2
m

∫

dΩ2dΩ4

2C12C14+4C12C24−2C14C24+x2
m(−4C12+C14)

(x2
m−2C14−x2

s)
2

(4.47)

Ie34
dΩ = −

√

1 − x2
m

∫

dΩ2dΩ4

[

−2C12C
2
14+4C12C14+2C2

14C24+8C12C24−4C12C14C24−4C14C24

(x2
m−2C14−x2

s)
2

+
x2

m(2C2
12−8C12+C12C14−C14C24+4C24) − x4

m

(x2
m−2C14−x2

s)
2

]

(4.48)

Ie44
dΩ =

√

1 − x2
m

∫

dΩ2dΩ4

2C12C14+4C12C24−2C14C24+x2
m(−4C12+C14+4C24) − x4

m

(x2
m−2C14−x2

s)
2

(4.49)

Iµ11
dΩ =

(

1 − x2
m

)3/2
∫

dΩ1dΩ3

−2C̄13C̄14+2C̄13C̄34+4C̄14C̄34+x2
m(3C̄14−5C̄34)−x4

m

(2x2
m−2C̄13−x2

s)
2

(4.50)

Iµ12
dΩ = −

(

1 − x2
m

)3/2
∫

dΩ1dΩ3

[

−2C̄13C̄
2
14+4C̄2

14−2C̄13C̄
2
34−4C̄2

34+8C̄13C̄34+8C̄14C̄34

(2x2
m−2C̄13−x2

s)
2

+
x2

m(4C̄2
14+4C̄2

34−8C̄13+2C̄13C̄14−8C̄14−2C̄13C̄34−4C̄14C̄34−8C̄34)

(2x2
m−2C̄13−x2

s)
2

+
x4

m(3C̄13−2C̄14+2C̄34+10)−3x6
m

(2x2
m−2C̄13−x2

s)
2

]

(4.51)
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Iµ13
dΩ = −

(

1 − x2
m

)3/2
∫

dΩ1dΩ3

[

2C̄13C̄
2
34+2C̄14C̄

2
34−4C̄13C̄34−4C̄14C̄34

(2x2
m−2C̄13−x2

s)(2x2
m−2C̄14−x2

s)

+
x2

m(−4C̄2
34+5C̄13+5C̄14+C̄13C̄34+C̄14C̄34+5C̄34)

(2x2
m−2C̄13−x2

s)(2x2
m−2C̄14−x2

s)

+
x4

m(−3C̄13/2−3C̄14/2−C̄34−6)+2x6
m

(2x2
m−2C̄13−x2

s)(2x2
m−2C̄14−x2

s)

]

(4.52)

Iµ14
dΩ =

(

1 − x2
m

)3/2
∫

dΩ1dΩ3

[

2C̄13C̄
2
34+4C̄2

34−8C̄13C̄34−8C̄14C̄34

(2x2
m−2C̄13−x2

s)(2x2
m−2C̄14−x2

s)

+
x2

m(−C̄2
14−3C̄2

34+6C̄13+8C̄14+2C̄13C̄34+2C̄14C̄34+8C̄34)

(2x2
m−2C̄13−x2

s)(2x2
m−2C̄14−x2

s)

+
x4

m(−3C̄13/2−2C̄34−9)+3x6
m/2

(2x2
m−2C̄13−x2

s)(2x2
m−2C̄14−x2

s)

]

(4.53)

Iµ22
dΩ =

(

1 − x2
m

)3/2
∫

dΩ1dΩ3

2C̄2
14−2C̄2

34+4C̄13C̄34+4C̄14C̄34+x2
m(−4C̄13−4C̄34)+4x4

m

(2x2
m−2C̄13−x2

s)
2

(4.54)

Iµ23
dΩ =

(

1 − x2
m

)3/2
∫

dΩ1dΩ3

[

2C̄14C̄
2
34+4C̄2

34−8C̄13C̄34−8C̄14C̄34

(2x2
m−2C̄13−x2

s)(2x2
m−2C̄14−x2

s)

+
x2

m(−C̄2
13−3C̄2

34+10C̄13+C̄13C̄14+6C̄14+2C̄13C̄34+2C̄14C̄34+8C̄34)

(2x2
m−2C̄13−x2

s)(2x2
m−2C̄14−x2

s)

+
x4

m(−C̄13−2C̄14−2C̄34−10)+2x6
m

(2x2
m−2C̄13−x2

s)(2x2
m−2C̄14−x2

s)

]

(4.55)

Iµ24
dΩ = −

(

1 − x2
m

)3/2
∫

dΩ1dΩ3

4C̄2
34−8C̄13C̄34−8C̄14C̄34+x2

m(8C̄13+8C̄14+8C̄34) − 8x4
m

(2x2
m−2C̄13−x2

s)(2x2
m−2C̄14−x2

s)

(4.56)

Iµ33
dΩ =

(

1 − x2
m

)3/2
∫

dΩ1dΩ3

−2C̄2
14+2C̄14C̄34+x2

m(C̄13+6C̄14−3C̄34)−3x4
m

(2x2
m−2C̄14−x2

s)
2

(4.57)

Iµ34
dΩ = −

(

1 − x2
m

)3/2
∫

dΩ1dΩ3

[

2C̄2
13−2C̄13C̄

2
14+2C̄13C̄14−2C̄13C̄34+2C̄13C̄14C̄34

(2x2
m−2C̄14−x2

s)
2

+
x2

m(−C̄2
13−C̄2

34+2C̄13+4C̄13C̄14+2C̄14)

(2x2
m−2C̄14−x2

s)
2

+
x4

m(−2C̄13−2C̄14−2)+2x6
m

(2x2
m−2C̄14−x2

s)
2

]

(4.58)
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Iµ44
dΩ =

(

1 − x2
m

)3/2
∫

dΩ1dΩ3

2C̄2
13−2C̄2

34+4C̄13C̄34+4C̄14C̄34+x2
m(−4C̄14−4C̄34)+4x4

m

(2x2
m−2C̄14−x2

s)
2

(4.59)

4.5 Partial Matrix Elements

W 11
ee→eµ =

e4G2
F

16 (q2−q2
s)

2 (p1+p2−p3)
4
×

[

−4096(k1 · p4)(k2 · p3)(p1 · p2)
2+4096(k1 · p4)(k2 · p1)(p1 · p2)(p1 · p3)

+4096(k1 · p4)(k2 · p2)(p1 · p2)(p1 · p3)+4096(k1 · p4)(k2 · p1)(p1 · p2)(p2 · p3)

+8192(k1 · p4)(k2 · p2)(p1 · p2)(p2 · p3)−4096(k1 · p4)(k2 · p3)(p1 · p2)(p2 · p3)

−4096(k1 · p4)(k2 · p2)(p1 · p3)(p2 · p3)+4096(k1 · p4)(k2 · p3)(p1 · p3)(p2 · p3)

+4096(k1 · p4)(k2 · p1)(p2 · p3)
2
]

(4.60)
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W 12
ee→eµ =

e4G2
F

16 (q2−q2
s)

2 (p1+p2−p3)
2
[

(p3+p4−p1)
2 − m2

µ

] ×

[

4096(k1 · p3)(k2 · p4)(p1 · p2)(p1 · p3)+4096(k1 · p4)(k2 · p4)(p1 · p2)(p1 · p3)

+4096(k1 · p3)(k2 · p2)(p1 · p2)(p1 · p4)−8192(k1 · p3)(k2 · p3)(p1 · p2)(p1 · p4)

−4096(k1 · p4)(k2 · p3)(p1 · p2)(p1 · p4)−4096(k1 · p2)(k2 · p2)(p1 · p3)(p1 · p4)

+4096(k1 · p2)(k2 · p3)(p1 · p3)(p1 · p4)+4096(k1 · p1)(k2 · p4)(p1 · p3)(p2 · p3)

−4096(k1 · p4)(k2 · p4)(p1 · p3)(p2 · p3)+8192(k1 · p3)(k2 · p1)(p1 · p4)(p2 · p3)

+4096(k1 · p4)(k2 · p1)(p1 · p4)(p2 · p3)+4096(k1 · p3)(k2 · p2)(p1 · p4)(p2 · p3)

+8192(k1 · p4)(k2 · p2)(p1 · p4)(p2 · p3)−4096(k1 · k2)(p1 · p3)(p1 · p4)(p2 · p3)

−4096(k1 · p3)(k2 · p1)(p1 · p3)(p2 · p4)−4096(k1 · p4)(k2 · p1)(p1 · p3)(p2 · p4)

+4096(k1 · p1)(k2 · p2)(p1 · p3)(p2 · p4)−4096(k1 · p3)(k2 · p2)(p1 · p3)(p2 · p4)

−8192(k1 · p4)(k2 · p2)(p1 · p3)(p2 · p4)−4096(k1 · p1)(k2 · p3)(p1 · p3)(p2 · p4)

+4096(k1 · p4)(k2 · p3)(p1 · p3)(p2 · p4)−4096(k1 · p1)(k2 · p2)(p1 · p2)(p3 · p4)

+8192(k1 · p4)(k2 · p2)(p1 · p2)(p3 · p4)+8192(k1 · p1)(k2 · p3)(p1 · p2)(p3 · p4)

−4096(k1 · p4)(k2 · p3)(p1 · p2)(p3 · p4)+4096(k1 · p2)(k2 · p1)(p1 · p3)(p3 · p4)

+4096(k1 · p2)(k2 · p2)(p1 · p3)(p3 · p4)−4096(k1 · k2)(p1 · p2)(p1 · p3)(p3 · p4)

−8192(k1 · p1)(k2 · p1)(p2 · p3)(p3 · p4)+4096(k1 · p4)(k2 · p1)(p2 · p3)(p3 · p4)

−4096(k1 · p1)(k2 · p2)(p2 · p3)(p3 · p4)
]

(4.61)
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W 13
ee→eµ = − e4G2

F

16 (q2−q2
s) (w2−q2

s) (p1+p2−p3)
4 ×

[

8192(k1 · p4)(k2 · p3)(p1 · p2)
2−8192(k1 · p4)(k2 · p1)(p1 · p2)(p1 · p3)

−8192(k1 · p4)(k2 · p2)(p1 · p2)(p1 · p3)−8192(k1 · p4)(k2 · p1)(p1 · p2)(p2 · p3)

−8192(k1 · p4)(k2 · p2)(p1 · p2)(p2 · p3)
]

(4.62)

W 14
ee→eµ = − e4G2

F

16 (q2−q2
s) (w2−q2

s) (p1+p2−p3)
2
[

(p3+p4−p2)
2 − m2

µ

] ×

[

−4096(k1 · p3)(k1 · p4)(p1 · p2)(p2 · p3)−4096(k1 · p4)(k1 · p4)(p1 · p2)(p2 · p3)

+4096(k1 · p3)(k1 · p1)(p1 · p4)(p2 · p3)+4096(k1 · p4)(k1 · p1)(p1 · p4)(p2 · p3)

+4096(k1 · p3)(k1 · p2)(p1 · p4)(p2 · p3)+4096(k1 · p4)(k1 · p2)(p1 · p4)(p2 · p3)

+4096(k1 · p3)(k1 · p3)(p1 · p2)(p2 · p4)+4096(k1 · p4)(k1 · p3)(p1 · p2)(p2 · p4)

−4096(k1 · p3)(k1 · p1)(p1 · p3)(p2 · p4)−4096(k1 · p4)(k1 · p1)(p1 · p3)(p2 · p4)

−4096(k1 · p3)(k1 · p2)(p1 · p3)(p2 · p4)−4096(k1 · p4)(k1 · p2)(p1 · p3)(p2 · p4)

−4096(k1 · p4)(k1 · p1)(p1 · p2)(p3 · p4)−4096(k1 · p2)(k1 · p3)(p1 · p2)(p3 · p4)

+4096(k1 · p2)(k1 · p1)(p1 · p3)(p3 · p4)+4096(k1 · p2)(k1 · p2)(p1 · p3)(p3 · p4)

−4096(k1 · p1)(k1 · p1)(p2 · p3)(p3 · p4)−4096(k1 · p1)(k1 · p2)(p2 · p3)(p3 · p4)

+4096(k1 · k2)(p1 · p2)(p2 · p3)(p3 · p4)

(4.63)
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W 22
ee→eµ =

e4G2
F

16 (q2−q2
s)

2
[

(p3+p4−p1)
2 − m2

µ

]2 ×

[

4096(k1 · p1)(k2 · p2)(p1 · p3)(p1 · p4)−4096(k1 · p4)(k2 · p2)(p1 · p3)(p1 · p4)

+4096(k1 · p3)(k2 · p2)(p1 · p4)
2+4096(k1 · p3)(k2 · p2)(p1 · p3)(p3 · p4)

+4096(k1 · p4)(k2 · p2)(p1 · p3)(p3 · p4)−4096(k1 · p1)(k2 · p2)(p1 · p4)(p3 · p4)

+4096(k1 · p3)(k2 · p2)(p1 · p4)(p3 · p4)+8192(k1 · p4)(k2 · p2)(p1 · p4)(p3 · p4)

−4096(k1 · p1)(k2 · p2)(p3 · p4)
2+4096(k1 · p1)(k2 · p2)(p1 · p3)m

2
µ

−4096(k1 · p3)(k2 · p2)(p1 · p3)m
2
µ−4096(k1 · p4)(k2 · p2)(p1 · p3)m

2
µ

]

(4.64)

W 23
ee→eµ = − e4G2

F

16 (q2−q2
s) (w2−q2

s)
[

(p3+p4−p1)
2 − m2

µ

]

(p1+p2−p3)
2
×

[

−4096 (k1 · p3) (k2 · p4) (p1 · p2) (p1 · p3)−4096 (k1 · p4) (k2 · p4) (p1 · p2) (p1 · p3)

+4096 (k1 · p3) (k2 · p3) (p1 · p2) (p1 · p4)+4096 (k1 · p4) (k2 · p3) (p1 · p2) (p1 · p4)

−4096 (k1 · p3) (k2 · p1) (p1 · p4) (p2 · p3)−4096 (k1 · p4) (k2 · p1) (p1 · p4) (p2 · p3)

−4096 (k1 · p3) (k2 · p2) (p1 · p4) (p2 · p3)−4096 (k1 · p4) (k2 · p2) (p1 · p4) (p2 · p3)

+4096 (k1 · p3) (k2 · p1) (p1 · p3) (p2 · p4)+4096 (k1 · p4) (k2 · p1) (p1 · p3) (p2 · p4)

+4096 (k1 · p3) (k2 · p2) (p1 · p3) (p2 · p4)+4096 (k1 · p4) (k2 · p2) (p1 · p3) (p2 · p4)

−4096 (k1 · p4) (k2 · p2) (p1 · p2) (p3 · p4)−4096 (k1 · p1) (k2 · p3) (p1 · p2) (p3 · p4)

−4096 (k1 · p2) (k2 · p1) (p1 · p3) (p3 · p4)−4096 (k1 · p2) (k2 · p2) (p1 · p3) (p3 · p4)

+4096 (k1 · k2) (p1 · p2) (p1 · p3) (p3 · p4)+4096 (k1 · p1) (k2 · p1) (p2 · p3) (p3 · p4)

+4096 (k1 · p1) (k2 · p2) (p2 · p3) (p3 · p4)
]

(4.65)
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W 24
ee→eµ = − e4G2

F

16 (q2−q2
s) (w2−q2

s)
[

(p3+p4−p1)
2 − m2

µ

] [

(p3+p4−p2)
2 − m2

µ

] ×

[

−4096 (k1 · p3)(k2 · p3)(p1 · p2)(p3 · p4)−4096 (k1 · p4)(k2 · p3)(p1 · p2)(p3 · p4)

−4096 (k1 · p3)(k2 · p4)(p1 · p2)(p3 · p4)−4096 (k1 · p4)(k2 · p4)(p1 · p2)(p3 · p4)

+4096 (k1 · p3)(k2 · p2)(p1 · p3)(p3 · p4)+4096 (k1 · p4)(k2 · p2)(p1 · p3)(p3 · p4)

+4096 (k1 · p3)(k2 · p2)(p1 · p4)(p3 · p4)+4096 (k1 · p4)(k2 · p2)(p1 · p4)(p3 · p4)

+4096 (k1 · p3)(k2 · p1)(p2 · p3)(p3 · p4)+4096 (k1 · p4)(k2 · p1)(p2 · p3)(p3 · p4)

+4096 (k1 · p3)(k2 · p1)(p2 · p4)(p3 · p4)+4096 (k1 · p4)(k2 · p1)(p2 · p4)(p3 · p4)

−4096 (k1 · p2)(k2 · p1)(p3 · p4)
2−4096 (k1 · p1)(k2 · p2)(p3 · p4)

2

+4096 (k1 · k2)(p1 · p2)(p3 · p4)
2+4096 (k1 · p3)(k2 · p3)(p1 · p2)m

2
µ

+2048 (k1 · p4)(k2 · p3)(p1 · p2)m
2
µ−4096 (k1 · p3)(k2 · p2)(p1 · p3)m

2
µ

−2048 (k1 · p4)(k2 · p2)(p1 · p3)m
2
µ−4096 (k1 · p3)(k2 · p1)(p2 · p3)m

2
µ

−2048 (k1 · p4)(k2 · p1)(p2 · p3)m
2
µ

]

(4.66)

W 33
ee→eµ =

e4G2
F

16 (w2−q2
s)

2 (p1+p2−p3)
4 ×

[

−4096 (k1 · p4) (k2 · p3) (p1 · p2)
2+8192 (k1 · p4) (k2 · p1) (p1 · p2) (p1 · p3)

+4096 (k1 · p4) (k2 · p2) (p1 · p2) (p1 · p3)−4096 (k1 · p4) (k2 · p3) (p1 · p2) (p1 · p3)

+4096 (k1 · p4) (k2 · p2) (p1 · p3)
2+4096 (k1 · p4) (k2 · p1) (p1 · p2) (p2 · p3)

+4096 (k1 · p4) (k2 · p2) (p1 · p2) (p2 · p3)−4096 (k1 · p4) (k2 · p1) (p1 · p3) (p2 · p3)

+4096 (k1 · p4) (k2 · p3) (p1 · p3) (p2 · p3)
]

(4.67)
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W 34
ee→eµ =

e4G2
F

16 (w2−q2
s)

2 (p1+p2−p3)
2
[

(p3+p4−p2)
2 − m2

µ

] ×

[

4096 (k1 · p3) (k2 · p4) (p1 · p2) (p2 · p3)+4096 (k1 · p4) (k2 · p4) (p1 · p2) (p2 · p3)

+4096 (k1 · p2) (k2 · p4) (p1 · p3) (p2 · p3)−4096 (k1 · p4) (k2 · p4) (p1 · p3) (p2 · p3)

+4096 (k1 · p2) (k2 · p1) (p1 · p4) (p2 · p3)−4096 (k1 · p3) (k2 · p1) (p1 · p4) (p2 · p3)

−8192 (k1 · p4) (k2 · p1) (p1 · p4) (p2 · p3)−4096 (k1 · p3) (k2 · p2) (p1 · p4) (p2 · p3)

−4096 (k1 · p4) (k2 · p2) (p1 · p4) (p2 · p3)−4096 (k1 · p2) (k2 · p3) (p1 · p4) (p2 · p3)

+4096 (k1 · p4) (k2 · p3) (p1 · p4) (p2 · p3)+4096 (k1 · p3) (k2 · p1) (p1 · p2) (p2 · p4)

−8192 (k1 · p3) (k2 · p3) (p1 · p2) (p2 · p4)−4096 (k1 · p4) (k2 · p3) (p1 · p2) (p2 · p4)

+4096 (k1 · p3) (k2 · p1) (p1 · p3) (p2 · p4)+8192 (k1 · p4) (k2 · p1) (p1 · p3) (p2 · p4)

+8192 (k1 · p3) (k2 · p2) (p1 · p3) (p2 · p4)+4096 (k1 · p4) (k2 · p2) (p1 · p3) (p2 · p4)

−4096 (k1 · p1) (k2 · p1) (p2 · p3) (p2 · p4)+4096 (k1 · p1) (k2 · p3) (p2 · p3) (p2 · p4)

−4096 (k1 · k2) (p1 · p3) (p2 · p3) (p2 · p4)−4096 (k1 · p2) (k2 · p1) (p1 · p2) (p3 · p4)

+8192 (k1 · p4) (k2 · p1) (p1 · p2) (p3 · p4)+8192 (k1 · p2) (k2 · p3) (p1 · p2) (p3 · p4)

−4096 (k1 · p4) (k2 · p3) (p1 · p2) (p3 · p4)−4096 (k1 · p2) (k2 · p1) (p1 · p3) (p3 · p4)

−8192 (k1 · p2) (k2 · p2) (p1 · p3) (p3 · p4)+4096 (k1 · p4) (k2 · p2) (p1 · p3) (p3 · p4)

+4096 (k1 · p1) (k2 · p1) (p2 · p3) (p3 · p4)+4096 (k1 · p1) (k2 · p2) (p2 · p3) (p3 · p4)

−4096 (k1 · k2) (p1 · p2) (p2 · p3) (p3 · p4)
]

(4.68)
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W 44
ee→eµ =

e4G2
F

16 (w2−q2
s)

2
[

(p3+p4−p1)
2 − m2

µ

]2 ×

[

4096 (k1 · p2) (k2 · p1) (p2 · p3) (p2 · p4)−4096 (k1 · p4) (k2 · p1) (p2 · p3) (p2 · p4)

+4096 (k1 · p3) (k2 · p1) (p2 · p4)
2+4096 (k1 · p3) (k2 · p1) (p2 · p3) (p3 · p4)

+4096 (k1 · p4) (k2 · p1) (p2 · p3) (p3 · p4)−4096 (k1 · p2) (k2 · p1) (p2 · p4) (p3 · p4)

+4096 (k1 · p3) (k2 · p1) (p2 · p4) (p3 · p4)+8192 (k1 · p4) (k2 · p1) (p2 · p4) (p3 · p4)

−4096 (k1 · p2) (k2 · p1) (p3 · p4)
2+4096 (k1 · p2) (k2 · p1) (p2 · p3)m2

µ

−4096 (k1 · p3) (k2 · p1) (p2 · p3)m2
µ−4096 (k1 · p4) (k2 · p1) (p2 · p3)m2

µ

]

(4.69)

W 11
eµ→µµ =

e4G2
F

16 (q2−q2
s)

2 (p1+p2−p3)
4 ×

[

−4096 (k1 · p4) (k2 · p3) (p1 · p2)
2+4096 (k1 · p4) (k2 · p1) (p1 · p2) (p1 · p3)

+4096 (k1 · p4) (k2 · p2) (p1 · p2) (p1 · p3)+4096 (k1 · p4) (k2 · p1) (p1 · p2) (p2 · p3)

+8192 (k1 · p4) (k2 · p2) (p1 · p2) (p2 · p3)−4096 (k1 · p4) (k2 · p3) (p1 · p2) (p2 · p3)

−4096 (k1 · p4) (k2 · p2) (p1 · p3) (p2 · p3)+4096 (k1 · p4) (k2 · p3) (p1 · p3) (p2 · p3)

+4096 (k1 · p4) (k2 · p1) (p2 · p3)
2−8192 (k1 · p4) (k2 · p1) (p1 · p2)m2

µ

−4096 (k1 · p4) (k2 · p2) (p1 · p2)m2
µ+4096 (k1 · p4) (k2 · p3) (p1 · p2)m2

µ

−4096 (k1 · p4) (k2 · p2) (p1 · p3)m2
µ+4096 (k1 · p4) (k2 · p1) (p2 · p3)m2

µ

+4096 (k1 · p4) (k2 · p2) (p2 · p3)m2
µ−8192 (k1 · p4) (k2 · p3) (p2 · p3)m2

µ

+4096 (k1 · p4) (k2 · p2)m4
µ

]

(4.70)
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W 12
eµ→µµ =

e4G2
F

16 (q2−q2
s)

2 (p1+p2−p3)
2 [(p3+p4−p1)2 − m2

µ

] ×
[

4096 (k1 · p3) (k2 · p4) (p1 · p2) (p1 · p3)+4096 (k1 · p4) (k2 · p4) (p1 · p2) (p1 · p3)

+4096 (k1 · p3) (k2 · p2) (p1 · p2) (p1 · p4)−8192 (k1 · p3) (k2 · p3) (p1 · p2) (p1 · p4)

−4096 (k1 · p4) (k2 · p3) (p1 · p2) (p1 · p4)−4096 (k1 · p2) (k2 · p2) (p1 · p3) (p1 · p4)

+4096 (k1 · p2) (k2 · p3) (p1 · p3) (p1 · p4)+4096 (k1 · p1) (k2 · p4) (p1 · p3) (p2 · p3)

−4096 (k1 · p4) (k2 · p4) (p1 · p3) (p2 · p3)+8192 (k1 · p3) (k2 · p1) (p1 · p4) (p2 · p3)

+4096 (k1 · p4) (k2 · p1) (p1 · p4) (p2 · p3)+4096 (k1 · p3) (k2 · p2) (p1 · p4) (p2 · p3)

+8192 (k1 · p4) (k2 · p2) (p1 · p4) (p2 · p3)−4096 (k1 · k2) (p1 · p3) (p1 · p4) (p2 · p3)

−4096 (k1 · p3) (k2 · p1) (p1 · p3) (p2 · p4)−4096 (k1 · p4) (k2 · p1) (p1 · p3) (p2 · p4)

+4096 (k1 · p1) (k2 · p2) (p1 · p3) (p2 · p4)−4096 (k1 · p3) (k2 · p2) (p1 · p3) (p2 · p4)

−8192 (k1 · p4) (k2 · p2) (p1 · p3) (p2 · p4)−4096 (k1 · p1) (k2 · p3) (p1 · p3) (p2 · p4)

+4096 (k1 · p4) (k2 · p3) (p1 · p3) (p2 · p4)−4096 (k1 · p1) (k2 · p2) (p1 · p2) (p3 · p4)

+8192 (k1 · p4) (k2 · p2) (p1 · p2) (p3 · p4)+8192 (k1 · p1) (k2 · p3) (p1 · p2) (p3 · p4)

−4096 (k1 · p4) (k2 · p3) (p1 · p2) (p3 · p4)+4096 (k1 · p2) (k2 · p1) (p1 · p3) (p3 · p4)

+4096 (k1 · p2) (k2 · p2) (p1 · p3) (p3 · p4)−4096 (k1 · k2) (p1 · p2) (p1 · p3) (p3 · p4)

−8192 (k1 · p1) (k2 · p1) (p2 · p3) (p3 · p4)+4096 (k1 · p4) (k2 · p1) (p2 · p3) (p3 · p4)

−4096 (k1 · p1) (k2 · p2) (p2 · p3) (p3 · p4)−4096 (k1 · p3) (k2 · p2) (p1 · p2)m2
µ

+2048 (k1 · p1) (k2 · p3) (p1 · p2)m2
µ+2048 (k1 · p3) (k2 · p3) (p1 · p2)m2

µ

−4096 (k1 · p1) (k2 · p4) (p1 · p2)m2
µ−4096 (k1 · p4) (k2 · p4) (p1 · p2)m2

µ

+2048 (k1 · p2) (k2 · p1) (p1 · p3)m2
µ+4096 (k1 · p2) (k2 · p2) (p1 · p3)m2

µ

−2048 (k1 · p2) (k2 · p3) (p1 · p3)m2
µ−8192 (k1 · p2) (k2 · p4) (p1 · p3)m2

µ
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−2048 (k1 · k2) (p1 · p2) (p1 · p3)m2
µ−4096 (k1 · p2) (k2 · p1) (p1 · p4)m2

µ

+4096 (k1 · p2) (k2 · p2) (p1 · p4)m2
µ+4096 (k1 · k2) (p1 · p2) (p1 · p4)m2

µ

−2048 (k1 · p1) (k2 · p1) (p2 · p3)m2
µ−2048 (k1 · p3) (k2 · p1) (p2 · p3)m2

µ

−4096 (k1 · p1) (k2 · p2) (p2 · p3)m2
µ−4096 (k1 · p3) (k2 · p4) (p2 · p3)m2

µ

+4096 (k1 · p4) (k2 · p4) (p2 · p3)m2
µ+2048 (k1 · k2) (p1 · p3) (p2 · p3)m2

µ

+4096 (k1 · p1) (k2 · p1) (p2 · p4)m2
µ+4096 (k1 · p4) (k2 · p1) (p2 · p4)m2

µ

−4096 (k1 · p1) (k2 · p2) (p2 · p4)m2
µ+4096 (k1 · p3) (k2 · p2) (p2 · p4)m2

µ

+8192 (k1 · p4) (k2 · p2) (p2 · p4)m2
µ+4096 (k1 · p3) (k2 · p3) (p2 · p4)m2

µ

−4096 (k1 · p4) (k2 · p3) (p2 · p4)m2
µ+8192 (k1 · k2) (p1 · p3) (p2 · p4)m2

µ

−4096 (k1 · p2) (k2 · p2) (p3 · p4)m2
µ−4096 (k1 · p2) (k2 · p3) (p3 · p4)m2

µ

+4096 (k1 · k2) (p2 · p3) (p3 · p4)m2
µ−2048 (k1 · p2) (k2 · p1)m4

µ−4096 (k1 · p2) (k2 · p2)m4
µ

+2048 (k1 · p2) (k2 · p3)m4
µ+8192 (k1 · p2) (k2 · p4)m4

µ+2048 (k1 · k2) (p1 · p2)m4
µ

−2048 (k1 · k2) (p2 · p3)m4
µ−8192 (k1 · k2) (p2 · p4)m4

µ

]

(4.71)
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W 13
eµ→µµ = − e4G2

F

16 (q2−q2
s) (s2−q2

s) (p1+p2−p3)
2 (p1+p2−p4)

2 ×
[

−4096 (k1 · p4) (k2 · p3) (p1 · p2)
2−4096 (k1 · p3) (k2 · p4) (p1 · p2)

2

+4096 (k1 · p4) (k2 · p1) (p1 · p2) (p1 · p3)+4096 (k1 · p4) (k2 · p2) (p1 · p2) (p1 · p3)

+4096 (k1 · p3) (k2 · p1) (p1 · p2) (p1 · p4)+4096 (k1 · p3) (k2 · p2) (p1 · p2) (p1 · p4)

+4096 (k1 · p4) (k2 · p1) (p1 · p2) (p2 · p3)+4096 (k1 · p4) (k2 · p2) (p1 · p2) (p2 · p3)

+4096 (k1 · p3) (k2 · p1) (p1 · p2) (p2 · p4)+4096 (k1 · p3) (k2 · p2) (p1 · p2) (p2 · p4)

−4096 (k1 · p1) (k2 · p1) (p1 · p2) (p3 · p4)−4096 (k1 · p2) (k2 · p1) (p1 · p2) (p3 · p4)

−4096 (k1 · p1) (k2 · p2) (p1 · p2) (p3 · p4)−4096 (k1 · p2) (k2 · p2) (p1 · p2) (p3 · p4)

+4096 (k1 · k2) (p1 · p2)
2 (p3 · p4)−4096 (k1 · p3) (k2 · p1) (p1 · p2)m2

µ

−4096 (k1 · p4) (k2 · p1) (p1 · p2)m2
µ+4096 (k1 · p2) (k2 · p2) (p1 · p2)m2

µ

−2048 (k1 · p3) (k2 · p2) (p1 · p2)m2
µ−2048 (k1 · p4) (k2 · p2) (p1 · p2)m2

µ

+2048 (k1 · p1) (k2 · p3) (p1 · p2)m2
µ+2048 (k1 · p2) (k2 · p3) (p1 · p2)m2

µ

+2048 (k1 · p1) (k2 · p4) (p1 · p2)m2
µ+2048 (k1 · p2) (k2 · p4) (p1 · p2)m2

µ

−2048 (k1 · p2) (k2 · p1) (p1 · p3)m2
µ−4096 (k1 · p2) (k2 · p2) (p1 · p3)m2

µ

−2048 (k1 · p4) (k2 · p2) (p1 · p3)m2
µ+2048 (k1 · p2) (k2 · p4) (p1 · p3)m2

µ

−2048 (k1 · k2) (p1 · p2) (p1 · p3)m2
µ−2048 (k1 · p2) (k2 · p1) (p1 · p4)m2

µ

−4096 (k1 · p2) (k2 · p2) (p1 · p4)m2
µ−2048 (k1 · p3) (k2 · p2) (p1 · p4)m2

µ

+2048 (k1 · p2) (k2 · p3) (p1 · p4)m2
µ−2048 (k1 · k2) (p1 · p2) (p1 · p4)m2

µ

+2048 (k1 · p1) (k2 · p1) (p2 · p3)m2
µ+2048 (k1 · p2) (k2 · p1) (p2 · p3)m2

µ

+2048 (k1 · p1) (k2 · p2) (p2 · p3)m2
µ−2048 (k1 · p4) (k2 · p2) (p2 · p3)m2

µ

−2048 (k1 · p1) (k2 · p4) (p2 · p3)m2
µ−2048 (k1 · p2) (k2 · p4) (p2 · p3)m2

µ
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−4096 (k1 · k2) (p1 · p2) (p2 · p3)m2
µ+2048 (k1 · k2) (p1 · p4) (p2 · p3)m2

µ

+2048 (k1 · p1) (k2 · p1) (p2 · p4)m2
µ+2048 (k1 · p2) (k2 · p1) (p2 · p4)m2

µ

+2048 (k1 · p1) (k2 · p2) (p2 · p4)m2
µ−2048 (k1 · p3) (k2 · p2) (p2 · p4)m2

µ

−2048 (k1 · p1) (k2 · p3) (p2 · p4)m2
µ−2048 (k1 · p2) (k2 · p3) (p2 · p4)m2

µ

−4096 (k1 · k2) (p1 · p2) (p2 · p4)m2
µ+2048 (k1 · k2) (p1 · p3) (p2 · p4)m2

µ

+4096 (k1 · k2) (p2 · p3) (p2 · p4)m2
µ+2048 (k1 · p1) (k2 · p2) (p3 · p4)m2

µ

+4096 (k1 · p2) (k2 · p2) (p3 · p4)m2
µ+4096 (k1 · p2) (k2 · p1)m4

µ−2048 (k1 · p1) (k2 · p2)m4
µ

+4096 (k1 · p2) (k2 · p2)m4
µ+2048 (k1 · p3) (k2 · p2)m4

µ+2048 (k1 · p4) (k2 · p2)m4
µ

−2048 (k1 · p2) (k2 · p3)m4
µ−2048 (k1 · p2) (k2 · p4)m4

µ+4096 (k1 · k2) (p1 · p2)m4
µ

−2048 (k1 · k2) (p2 · p3)m4
µ−2048 (k1 · k2) (p2 · p4)m4

µ

]

(4.72)
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W 14
eµ→µµ = − e4G2

F

16 (q2−q2
s) (s2−q2

s) (p1+p2−p3)
2 [(p3+p4−p1)2−m2

µ

] ×
[

−4096 (k1 · p3) (k2 · p4) (p1 · p2) (p1 · p3)−4096 (k1 · p4) (k2 · p4) (p1 · p2) (p1 · p3)

+4096 (k1 · p3) (k2 · p3) (p1 · p2) (p1 · p4)+4096 (k1 · p4) (k2 · p3) (p1 · p2) (p1 · p4)

−4096 (k1 · p3) (k2 · p1) (p1 · p4) (p2 · p3)−4096 (k1 · p4) (k2 · p1) (p1 · p4) (p2 · p3)

−4096 (k1 · p3) (k2 · p2) (p1 · p4) (p2 · p3)−4096 (k1 · p4) (k2 · p2) (p1 · p4) (p2 · p3)

+4096 (k1 · p3) (k2 · p1) (p1 · p3) (p2 · p4)+4096 (k1 · p4) (k2 · p1) (p1 · p3) (p2 · p4)

+4096 (k1 · p3) (k2 · p2) (p1 · p3) (p2 · p4)+4096 (k1 · p4) (k2 · p2) (p1 · p3) (p2 · p4)

−4096 (k1 · p4) (k2 · p2) (p1 · p2) (p3 · p4)−4096 (k1 · p1) (k2 · p3) (p1 · p2) (p3 · p4)

−4096 (k1 · p2) (k2 · p1) (p1 · p3) (p3 · p4)−4096 (k1 · p2) (k2 · p2) (p1 · p3) (p3 · p4)

+4096 (k1 · k2) (p1 · p2) (p1 · p3) (p3 · p4)+4096 (k1 · p1) (k2 · p1) (p2 · p3) (p3 · p4)

+4096 (k1 · p1) (k2 · p2) (p2 · p3) (p3 · p4)−4096 (k1 · p1) (k2 · p2) (p1 · p2)m2
µ

+6144 (k1 · p3) (k2 · p2) (p1 · p2)m2
µ+4096 (k1 · p4) (k2 · p2) (p1 · p2)m2

µ

+2048 (k1 · p1) (k2 · p3) (p1 · p2)m2
µ−4096 (k1 · p3) (k2 · p3) (p1 · p2)m2

µ

−4096 (k1 · p4) (k2 · p3) (p1 · p2)m2
µ+2048 (k1 · p1) (k2 · p4) (p1 · p2)m2

µ

+2048 (k1 · p3) (k2 · p4) (p1 · p2)m2
µ+4096 (k1 · p4) (k2 · p4) (p1 · p2)m2

µ

−2048 (k1 · p2) (k2 · p1) (p1 · p3)m2
µ−2048 (k1 · p2) (k2 · p2) (p1 · p3)m2

µ

+4096 (k1 · p2) (k2 · p4) (p1 · p3)m2
µ+2048 (k1 · k2) (p1 · p2) (p1 · p3)m2

µ

+2048 (k1 · p2) (k2 · p1) (p1 · p4)m2
µ−2048 (k1 · p2) (k2 · p3) (p1 · p4)m2

µ

−2048 (k1 · k2) (p1 · p2) (p1 · p4)m2
µ−2048 (k1 · p1) (k2 · p1) (p2 · p3)m2

µ

+4096 (k1 · p3) (k2 · p1) (p2 · p3)m2
µ+4096 (k1 · p4) (k2 · p1) (p2 · p3)m2

µ

−2048 (k1 · p1) (k2 · p2) (p2 · p3)m2
µ+4096 (k1 · p3) (k2 · p2) (p2 · p3)m2

µ
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+4096 (k1 · p4) (k2 · p2) (p2 · p3)m2
µ−2048 (k1 · p1) (k2 · p4) (p2 · p3)m2

µ

+2048 (k1 · p3) (k2 · p4) (p2 · p3)m2
µ+2048 (k1 · k2) (p1 · p4) (p2 · p3)m2

µ

−2048 (k1 · p1) (k2 · p1) (p2 · p4)m2
µ−2048 (k1 · p3) (k2 · p1) (p2 · p4)m2

µ

−4096 (k1 · p4) (k2 · p1) (p2 · p4)m2
µ−4096 (k1 · p3) (k2 · p2) (p2 · p4)m2

µ

−4096 (k1 · p4) (k2 · p2) (p2 · p4)m2
µ+2048 (k1 · p1) (k2 · p3) (p2 · p4)m2

µ

−2048 (k1 · p3) (k2 · p3) (p2 · p4)m2
µ−4096 (k1 · k2) (p1 · p3) (p2 · p4)m2

µ

+2048 (k1 · p2) (k2 · p1) (p3 · p4)m2
µ+4096 (k1 · p2) (k2 · p2) (p3 · p4)m2

µ

+2048 (k1 · p2) (k2 · p3) (p3 · p4)m2
µ−2048 (k1 · k2) (p1 · p2) (p3 · p4)m2

µ

−2048 (k1 · k2) (p2 · p3) (p3 · p4)m2
µ

+2048 (k1 · p2) (k2 · p1)m4
µ+2048 (k1 · p2) (k2 · p2)m4

µ−4096 (k1 · p2) (k2 · p4)m4
µ

−2048 (k1 · k2) (p1 · p2)m4
µ+4096 (k1 · k2) (p2 · p4)m4

µ

]

(4.73)
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W 22
eµ→µµ =

e4G2
F

16 (q2−q2
s)

2 [(p3+p4−p1)2−m2
µ

]2 ×
[

4096 (k1 · p1) (k2 · p2) (p1 · p3) (p1 · p4)−4096 (k1 · p4) (k2 · p2) (p1 · p3) (p1 · p4)

+4096 (k1 · p3) (k2 · p2) (p1 · p4)
2+4096 (k1 · p3) (k2 · p2) (p1 · p3) (p3 · p4)

+4096 (k1 · p4) (k2 · p2) (p1 · p3) (p3 · p4)−4096 (k1 · p1) (k2 · p2) (p1 · p4) (p3 · p4)

+4096 (k1 · p3) (k2 · p2) (p1 · p4) (p3 · p4)+8192 (k1 · p4) (k2 · p2) (p1 · p4) (p3 · p4)

−4096 (k1 · p1) (k2 · p2) (p3 · p4)
2+4096 (k1 · p1) (k2 · p2) (p1 · p3)m2

µ

−4096 (k1 · p3) (k2 · p2) (p1 · p3)m2
µ−8192 (k1 · p4) (k2 · p2) (p1 · p3)m2

µ

−8192 (k1 · p1) (k2 · p2) (p1 · p4)m2
µ+4096 (k1 · p3) (k2 · p2) (p1 · p4)m2

µ

+4096 (k1 · p4) (k2 · p2) (p1 · p4)m2
µ+4096 (k1 · p1) (k2 · p2) (p3 · p4)m2

µ

−8192 (k1 · p3) (k2 · p2) (p3 · p4)m2
µ−4096 (k1 · p4) (k2 · p2) (p3 · p4)m2

µ

−4096 (k1 · p1) (k2 · p2)m4
µ+4096 (k1 · p3) (k2 · p2)m4

µ

+8192 (k1 · p4) (k2 · p2)m4
µ

]

(4.74)
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W 23
eµ→µµ = − e4G2

F

16 (q2−q2
s) (s2−q2

s)
[

(p3+p4−p1)2−m2
µ

]

(p1+p2−p4)
2 ×

[

4096 (k1 · p3) (k2 · p4) (p1 · p2) (p1 · p3)+4096 (k1 · p4) (k2 · p4) (p1 · p2) (p1 · p3)

−4096 (k1 · p3) (k2 · p3) (p1 · p2) (p1 · p4)−4096 (k1 · p4) (k2 · p3) (p1 · p2) (p1 · p4)

+4096 (k1 · p3) (k2 · p1) (p1 · p4) (p2 · p3)+4096 (k1 · p4) (k2 · p1) (p1 · p4) (p2 · p3)

+4096 (k1 · p3) (k2 · p2) (p1 · p4) (p2 · p3)+4096 (k1 · p4) (k2 · p2) (p1 · p4) (p2 · p3)

−4096 (k1 · p3) (k2 · p1) (p1 · p3) (p2 · p4)−4096 (k1 · p4) (k2 · p1) (p1 · p3) (p2 · p4)

−4096 (k1 · p3) (k2 · p2) (p1 · p3) (p2 · p4)−4096 (k1 · p4) (k2 · p2) (p1 · p3) (p2 · p4)

−4096 (k1 · p3) (k2 · p2) (p1 · p2) (p3 · p4)−4096 (k1 · p1) (k2 · p4) (p1 · p2) (p3 · p4)

−4096 (k1 · p2) (k2 · p1) (p1 · p4) (p3 · p4)−4096 (k1 · p2) (k2 · p2) (p1 · p4) (p3 · p4)

+4096 (k1 · k2) (p1 · p2) (p1 · p4) (p3 · p4)+4096 (k1 · p1) (k2 · p1) (p2 · p4) (p3 · p4)

+4096 (k1 · p1) (k2 · p2) (p2 · p4) (p3 · p4)−4096 (k1 · p1) (k2 · p2) (p1 · p2)m2
µ

+8192 (k1 · p3) (k2 · p2) (p1 · p2)m2
µ+4096 (k1 · p4) (k2 · p2) (p1 · p2)m2

µ

+2048 (k1 · p1) (k2 · p3) (p1 · p2)m2
µ+4096 (k1 · p3) (k2 · p3) (p1 · p2)m2

µ

+2048 (k1 · p4) (k2 · p3) (p1 · p2)m2
µ+2048 (k1 · p1) (k2 · p4) (p1 · p2)m2

µ

−8192 (k1 · p3) (k2 · p4) (p1 · p2)m2
µ−2048 (k1 · p4) (k2 · p4) (p1 · p2)m2

µ

+2048 (k1 · p2) (k2 · p1) (p1 · p3)m2
µ−2048 (k1 · p2) (k2 · p4) (p1 · p3)m2

µ

−2048 (k1 · k2) (p1 · p2) (p1 · p3)m2
µ−2048 (k1 · p2) (k2 · p1) (p1 · p4)m2

µ

+4096 (k1 · p2) (k2 · p3) (p1 · p4)m2
µ−2048 (k1 · p2) (k2 · p4) (p1 · p4)m2

µ

+2048 (k1 · k2) (p1 · p2) (p1 · p4)m2
µ−2048 (k1 · p1) (k2 · p1) (p2 · p3)m2

µ

−4096 (k1 · p3) (k2 · p1) (p2 · p3)m2
µ−2048 (k1 · p4) (k2 · p1) (p2 · p3)m2

µ

−4096 (k1 · p3) (k2 · p2) (p2 · p3)m2
µ−4096 (k1 · p4) (k2 · p2) (p2 · p3)m2

µ
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+2048 (k1 · p1) (k2 · p4) (p2 · p3)m2
µ−2048 (k1 · p4) (k2 · p4) (p2 · p3)m2

µ

−4096 (k1 · k2) (p1 · p4) (p2 · p3)m2
µ−2048 (k1 · p1) (k2 · p1) (p2 · p4)m2

µ

+8192 (k1 · p3) (k2 · p1) (p2 · p4)m2
µ+2048 (k1 · p4) (k2 · p1) (p2 · p4)m2

µ

−4096 (k1 · p1) (k2 · p2) (p2 · p4)m2
µ+8192 (k1 · p3) (k2 · p2) (p2 · p4)m2

µ

+4096 (k1 · p4) (k2 · p2) (p2 · p4)m2
µ−2048 (k1 · p1) (k2 · p3) (p2 · p4)m2

µ

+2048 (k1 · p4) (k2 · p3) (p2 · p4)m2
µ+2048 (k1 · k2) (p1 · p3) (p2 · p4)m2

µ

+2048 (k1 · k2) (p1 · p4) (p2 · p4)m2
µ+2048 (k1 · p2) (k2 · p1) (p3 · p4)m2

µ

+4096 (k1 · p2) (k2 · p2) (p3 · p4)m2
µ+2048 (k1 · p2) (k2 · p4) (p3 · p4)m2

µ

−2048 (k1 · k2) (p1 · p2) (p3 · p4)m2
µ−2048 (k1 · k2) (p2 · p4) (p3 · p4)m2

µ

+2048 (k1 · p2) (k2 · p1)m4
µ−4096 (k1 · p2) (k2 · p3)m4

µ+2048 (k1 · p2) (k2 · p4)m4
µ

−2048 (k1 · k2) (p1 · p2)m4
µ+4096 (k1 · k2) (p2 · p3)m4

µ−2048 (k1 · k2) (p2 · p4)m4
µ

]

(4.75)

W 24
eµ→µµ = − e4G2

F

16 (q2−q2
s) (s2−q2

s)
[

(p3+p4−p1)2−m2
µ

]2 ×
[

−8192 (k1 · p3) (k2 · p2) (p1 · p3) (p3 · p4)−8192 (k1 · p4) (k2 · p2) (p1 · p3) (p3 · p4)

−8192 (k1 · p3) (k2 · p2) (p1 · p4) (p3 · p4)−8192 (k1 · p4) (k2 · p2) (p1 · p4) (p3 · p4)

+8192 (k1 · p1) (k2 · p2) (p3 · p4)
2+8192 (k1 · p3) (k2 · p2) (p1 · p3)m2

µ

+8192 (k1 · p4) (k2 · p2) (p1 · p3)m2
µ+8192 (k1 · p3) (k2 · p2) (p1 · p4)m2

µ

+8192 (k1 · p4) (k2 · p2) (p1 · p4)m2
µ−16384 (k1 · p1) (k2 · p2) (p3 · p4)m2

µ

+16384 (k1 · p3) (k2 · p2) (p3 · p4)m2
µ+16384 (k1 · p4) (k2 · p2) (p3 · p4)m2

µ

−8192 (k1 · p3) (k2 · p2)m4
µ−8192 (k1 · p4) (k2 · p2)m4

µ

]

(4.76)
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W 33
eµ→µµ =

e4G2
F

16 (s2−q2
s)

2 (p1+p2−p4)
4 ×

[

−4096 (k1 · p3) (k2 · p4) (p1 · p2)
2+4096 (k1 · p3) (k2 · p4) (p1 · p2) (p1 · p3)

+4096 (k1 · p3) (k2 · p1) (p1 · p2) (p1 · p4)+4096 (k1 · p3) (k2 · p2) (p1 · p2) (p1 · p4)

−4096 (k1 · p3) (k2 · p3) (p1 · p2) (p1 · p4)+4096 (k1 · p3) (k2 · p4) (p1 · p2) (p2 · p3)

+4096 (k1 · p3) (k2 · p1) (p1 · p2) (p2 · p4)+8192 (k1 · p3) (k2 · p2) (p1 · p2) (p2 · p4)

−8192 (k1 · p3) (k2 · p3) (p1 · p2) (p2 · p4)−4096 (k1 · p3) (k2 · p2) (p1 · p3) (p2 · p4)

+4096 (k1 · p3) (k2 · p3) (p1 · p3) (p2 · p4)+4096 (k1 · p3) (k2 · p1) (p2 · p3) (p2 · p4)

−4096 (k1 · p3) (k2 · p1) (p1 · p2) (p3 · p4)−4096 (k1 · p3) (k2 · p2) (p1 · p2) (p3 · p4)

+4096 (k1 · p3) (k2 · p3) (p1 · p2) (p3 · p4)−4096 (k1 · p3) (k2 · p1) (p1 · p2)m2
µ

+4096 (k1 · p3) (k2 · p3) (p1 · p2)m2
µ−4096 (k1 · p3) (k2 · p4) (p1 · p2)m2

µ

−4096 (k1 · p3) (k2 · p2) (p1 · p3)m2
µ+4096 (k1 · p3) (k2 · p1) (p2 · p3)m2

µ

−4096 (k1 · p3) (k2 · p3) (p2 · p3)m2
µ+4096 (k1 · p3) (k2 · p2) (p2 · p4)m2

µ

−4096 (k1 · p3) (k2 · p3) (p2 · p4)m2
µ+4096 (k1 · p3) (k2 · p2)m4

µ

]

(4.77)
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W 34
eµ→µµ =

e4G2
F

16 (s2−q2
s)

2 (p1+p2−p4)
2 [(p3+p4−p1)2−m2

µ

] ×
[

4096 (k1 · p4) (k2 · p2) (p1 · p2) (p1 · p3)−2048 (k1 · p4) (k2 · p3) (p1 · p2) (p1 · p3)

−6144 (k1 · p3) (k2 · p4) (p1 · p2) (p1 · p3)−4096 (k1 · p4) (k2 · p4) (p1 · p2) (p1 · p3)

−2048 (k1 · p4) (k2 · p2) (p1 · p3)
2+2048 (k1 · p2) (k2 · p4) (p1 · p3)

2

+4096 (k1 · p3) (k2 · p3) (p1 · p2) (p1 · p4)+4096 (k1 · p4) (k2 · p3) (p1 · p2) (p1 · p4)

−4096 (k1 · p2) (k2 · p2) (p1 · p3) (p1 · p4)+2048 (k1 · p3) (k2 · p2) (p1 · p3) (p1 · p4)

+2048 (k1 · p2) (k2 · p3) (p1 · p3) (p1 · p4)+2048 (k1 · p4) (k2 · p1) (p1 · p3) (p2 · p3)

−2048 (k1 · p1) (k2 · p4) (p1 · p3) (p2 · p3)+4096 (k1 · p3) (k2 · p4) (p1 · p3) (p2 · p3)

−4096 (k1 · p3) (k2 · p1) (p1 · p4) (p2 · p3)−4096 (k1 · p4) (k2 · p1) (p1 · p4) (p2 · p3)

+4096 (k1 · p1) (k2 · p2) (p1 · p4) (p2 · p3)−8192 (k1 · p3) (k2 · p2) (p1 · p4) (p2 · p3)

−4096 (k1 · p4) (k2 · p2) (p1 · p4) (p2 · p3)−2048 (k1 · k2) (p1 · p3) (p1 · p4) (p2 · p3)

+6144 (k1 · p3) (k2 · p1) (p1 · p3) (p2 · p4)+4096 (k1 · p4) (k2 · p1) (p1 · p3) (p2 · p4)

+8192 (k1 · p3) (k2 · p2) (p1 · p3) (p2 · p4)+4096 (k1 · p4) (k2 · p2) (p1 · p3) (p2 · p4)

+2048 (k1 · p1) (k2 · p3) (p1 · p3) (p2 · p4)−4096 (k1 · p3) (k2 · p3) (p1 · p3) (p2 · p4)

−2048 (k1 · k2) (p1 · p3)
2 (p2 · p4)−4096 (k1 · p1) (k2 · p2) (p1 · p2) (p3 · p4)

+8192 (k1 · p3) (k2 · p2) (p1 · p2) (p3 · p4)−4096 (k1 · p3) (k2 · p3) (p1 · p2) (p3 · p4)

−2048 (k1 · p4) (k2 · p3) (p1 · p2) (p3 · p4)+4096 (k1 · p1) (k2 · p4) (p1 · p2) (p3 · p4)

−2048 (k1 · p3) (k2 · p4) (p1 · p2) (p3 · p4)−2048 (k1 · p2) (k2 · p1) (p1 · p3) (p3 · p4)

+2048 (k1 · p1) (k2 · p2) (p1 · p3) (p3 · p4)−8192 (k1 · p3) (k2 · p2) (p1 · p3) (p3 · p4)

−2048 (k1 · p4) (k2 · p2) (p1 · p3) (p3 · p4)+2048 (k1 · p2) (k2 · p4) (p1 · p3) (p3 · p4)

+2048 (k1 · k2) (p1 · p2) (p1 · p3) (p3 · p4)+4096 (k1 · p2) (k2 · p1) (p1 · p4) (p3 · p4)
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+4096 (k1 · p2) (k2 · p2) (p1 · p4) (p3 · p4)−2048 (k1 · p3) (k2 · p2) (p1 · p4) (p3 · p4)

−2048 (k1 · p2) (k2 · p3) (p1 · p4) (p3 · p4)−4096 (k1 · k2) (p1 · p2) (p1 · p4) (p3 · p4)

+4096 (k1 · p3) (k2 · p1) (p2 · p3) (p3 · p4)+2048 (k1 · p4) (k2 · p1) (p2 · p3) (p3 · p4)

−2048 (k1 · p1) (k2 · p4) (p2 · p3) (p3 · p4)+2048 (k1 · k2) (p1 · p4) (p2 · p3) (p3 · p4)

−4096 (k1 · p1) (k2 · p1) (p2 · p4) (p3 · p4)+2048 (k1 · p3) (k2 · p1) (p2 · p4) (p3 · p4)

−4096 (k1 · p1) (k2 · p2) (p2 · p4) (p3 · p4)+2048 (k1 · p1) (k2 · p3) (p2 · p4) (p3 · p4)

−2048 (k1 · k2) (p1 · p3) (p2 · p4) (p3 · p4)−2048 (k1 · p2) (k2 · p1) (p3 · p4)
2

+2048 (k1 · p1) (k2 · p2) (p3 · p4)
2+2048 (k1 · k2) (p1 · p2) (p3 · p4)

2

−2048 (k1 · p1) (k2 · p3) (p1 · p2)m2
µ−2048 (k1 · p4) (k2 · p3) (p1 · p2)m2

µ

+2048 (k1 · p1) (k2 · p4) (p1 · p2)m2
µ+2048 (k1 · p4) (k2 · p4) (p1 · p2)m2

µ

−2048 (k1 · p2) (k2 · p1) (p1 · p3)m2
µ+4096 (k1 · p2) (k2 · p2) (p1 · p3)m2

µ

+2048 (k1 · p3) (k2 · p2) (p1 · p3)m2
µ+4096 (k1 · p4) (k2 · p2) (p1 · p3)m2

µ

−6144 (k1 · p2) (k2 · p3) (p1 · p3)m2
µ+2048 (k1 · p2) (k2 · p4) (p1 · p3)m2

µ

+2048 (k1 · k2) (p1 · p2) (p1 · p3)m2
µ−2048 (k1 · p1) (k2 · p2) (p1 · p4)m2

µ

+4096 (k1 · p3) (k2 · p2) (p1 · p4)m2
µ+2048 (k1 · p4) (k2 · p2) (p1 · p4)m2

µ

−4096 (k1 · p2) (k2 · p3) (p1 · p4)m2
µ+2048 (k1 · p1) (k2 · p1) (p2 · p3)m2

µ

+2048 (k1 · p4) (k2 · p1) (p2 · p3)m2
µ−4096 (k1 · p1) (k2 · p2) (p2 · p3)m2

µ

+8192 (k1 · p3) (k2 · p2) (p2 · p3)m2
µ+4096 (k1 · p4) (k2 · p2) (p2 · p3)m2

µ

−2048 (k1 · p1) (k2 · p4) (p2 · p3)m2
µ+4096 (k1 · p3) (k2 · p4) (p2 · p3)m2

µ

+2048 (k1 · p4) (k2 · p4) (p2 · p3)m2
µ+6144 (k1 · k2) (p1 · p3) (p2 · p3)m2

µ

104



Chapter 4 Leptonic contribution to the bulk viscosity of nuclear matter

+4096 (k1 · k2) (p1 · p4) (p2 · p3)m2
µ−2048 (k1 · p1) (k2 · p1) (p2 · p4)m2

µ

−2048 (k1 · p4) (k2 · p1) (p2 · p4)m2
µ+2048 (k1 · p1) (k2 · p3) (p2 · p4)m2

µ

−4096 (k1 · p3) (k2 · p3) (p2 · p4)m2
µ−2048 (k1 · p4) (k2 · p3) (p2 · p4)m2

µ

−2048 (k1 · k2) (p1 · p3) (p2 · p4)m2
µ−2048 (k1 · p2) (k2 · p1) (p3 · p4)m2

µ

−4096 (k1 · p1) (k2 · p2) (p3 · p4)m2
µ−4096 (k1 · p2) (k2 · p2) (p3 · p4)m2

µ

+6144 (k1 · p3) (k2 · p2) (p3 · p4)m2
µ+6144 (k1 · p2) (k2 · p3) (p3 · p4)m2

µ

−2048 (k1 · p2) (k2 · p4) (p3 · p4)m2
µ+2048 (k1 · k2) (p1 · p2) (p3 · p4)m2

µ

−6144 (k1 · k2) (p2 · p3) (p3 · p4)m2
µ+2048 (k1 · k2) (p2 · p4) (p3 · p4)m2

µ

+4096 (k1 · p2) (k2 · p1)m4
µ+2048 (k1 · p1) (k2 · p2)m4

µ−4096 (k1 · p3) (k2 · p2)m4
µ

−2048 (k1 · p4) (k2 · p2)m4
µ+4096 (k1 · p2) (k2 · p3)m4

µ−4096 (k1 · p2) (k2 · p4)m4
µ

−4096 (k1 · k2) (p1 · p2)m4
µ−4096 (k1 · k2) (p2 · p3)m4

µ+4096 (k1 · k2) (p2 · p4)m4
µ

]

(4.78)
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W 44
eµ→µµ =

e4G2
F

16 (s2−q2
s)

2 [(p3+p4−p1)2−m2
µ

]2

[

4096 (k1 · p4) (k2 · p2) (p1 · p3)
2+4096 (k1 · p1) (k2 · p2) (p1 · p3) (p1 · p4)

−4096 (k1 · p3) (k2 · p2) (p1 · p3) (p1 · p4)−4096 (k1 · p1) (k2 · p2) (p1 · p3) (p3 · p4)

+8192 (k1 · p3) (k2 · p2) (p1 · p3) (p3 · p4)+4096 (k1 · p4) (k2 · p2) (p1 · p3) (p3 · p4)

+4096 (k1 · p3) (k2 · p2) (p1 · p4) (p3 · p4)+4096 (k1 · p4) (k2 · p2) (p1 · p4) (p3 · p4)

−4096 (k1 · p1) (k2 · p2) (p3 · p4)
2−8192 (k1 · p1) (k2 · p2) (p1 · p3)m2

µ

+4096 (k1 · p3) (k2 · p2) (p1 · p3)m2
µ+4096 (k1 · p4) (k2 · p2) (p1 · p3)m2

µ

+4096 (k1 · p1) (k2 · p2) (p1 · p4)m2
µ−8192 (k1 · p3) (k2 · p2) (p1 · p4)m2

µ

−4096 (k1 · p4) (k2 · p2) (p1 · p4)m2
µ+4096 (k1 · p1) (k2 · p2) (p3 · p4)m2

µ

−4096 (k1 · p3) (k2 · p2) (p3 · p4)m2
µ−8192 (k1 · p4) (k2 · p2) (p3 · p4)m2

µ

−4096 (k1 · p1) (k2 · p2)m4
µ+8192 (k1 · p3) (k2 · p2)m4

µ+4096 (k1 · p4) (k2 · p2)m4
µ

]

(4.79)
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Chapter 5

Illuminating interfaces between

phases of a U(1)×U(1) gauge

theory

We study boundaries between phases in which different linear combinations of gauge

generators are free. Mixing of gauge generators is familiar from the standard model of

particle physics, and the possibility of creating neighboring domains in which different

linear combinations of gauge generators are free is now receiving serious attention.

To set the stage for this work we first briefly review a concrete example.

In the standard model, the propagating U(1) gauge boson (the photon) is asso-

ciated with a particular Abelian U(1)Q subgroup of the full standard model gauge

group. This subgroup emerged unbroken from the electroweak Higgs symmetry break-

ing SU(2) ⊗ U(1)Y → U(1)Q at the TeV scale, and is generated by some linear com-
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bination of the “W3” generator of the SU(2) weak interaction and the “Y ” generator

of the U(1) hypercharge interaction.

We now know that in quark matter the gauge group for the propagating U(1)

gauge boson will be rotated into a different direction by a further layer of symmetry

breaking at the MeV scale. At sufficiently high density, quark matter will develop

a condensate of quark Cooper pairs that plays the role of a Higgs field [48, 49].

(For reviews of this phenomenon of “color superconductivity” see Ref. [50]). In the

real world, quark matter is expected to contain the three lightest flavors, and in

this case the condensate forms a “color-flavor-locked” (CFL) phase [51], in which a

linear combination of the photon and one of the gluons remains massless, while the

orthogonal linear combination and the remainder of the gluons become massive by

the Higgs mechanism. The gauge symmetry breaking is SU(3)color ⊗U(1)Q → U(1)Q̃.

Thus a “rotated” electromagnetism is present in the CFL color superconducting phase

of quark matter. This raises the interesting possibility of having an interface between

a vacuum region in which the propagating gauge boson is the usual Q-photon, and

a quark matter region in which it is a different particle, the Q̃-photon, which is a

mixture of the photon and a gluon. What will happen to electromagnetic fields,

including light beams, that encounter such an interface?

The U(1) ⊗ U(1) gauge system arises in various other physical contexts. Elec-

troweak symmetry breaking can be simplified to a U(1) ⊗ U(1) system by focussing

on the hypercharge and W3 bosons, which mix to form the photon and Z0. The

U(1) ⊗ U(1) gauge system also arises in extensions of the standard model, where an
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extra U(1) gauge symmetry with a corresponding Z ′ gauge boson is added. Natural

contexts for this include Grand Unified Theories with gauge groups such as SO(10)

and E6, and some string models [52, 53].

In chapter 5 we study the light reflection and transmission properties of a boundary

between phases in a U(1) ⊗ U(1) gauge theory. There have been previous studies of

the behavior of magnetic fields [54] and light beams [55] in the specific case of the

interface between the vacuum and CFL quark matter. However, we consider the

most general realization of the gauge symmetries that supports propagating gauge

bosons. On one side of the boundary both U(1) gauge symmetries may be free, or

some linear combination may be Higgsed or confined. On the other side, both U(1)

gauge symmetries may be free, or a different linear combination may be Higgsed

or confined, where the difference is parameterized by a “mismatch angle” α. We

calculate the nature and intensity of the reflected and transmitted gauge bosons in

each case.

We introduce the U(1) ⊗ U(1) model and show how Higgsing or confinement of

a gauge field can be implemented by appropriate boundary conditions at the inter-

face and describe the calculation of the reflection and transmission coefficients for

the various types of boundary. We then discuss how they compare with previous

calculations, explain some mysterious features, and analyze their compatibility with

expectations based on the complementarity principle. We also analyze subleties of

the low-frequency limit and a detailed example of complementarity.
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5.1 Confinement and Higgsing via Boundary Con-

ditions in the U(1) ⊗ U(1) model

We place the interface at the z = 0 plane. On the z > 0 side of the interface we work

in the U(1)Q⊗U(1)T8
basis. U(1)Q is free, so that photons can propagate, and U(1)T8

may be confined, Higgsed, or free. On the z < 0 side of the interface we work in the

U(1)Q̃ ⊗ U(1)X basis. U(1)Q̃ is free, so that Q̃-photons can propagate, and U(1)X

may be confined, Higgsed, or free 1. The Q̃-photon

AQ̃
µ = cos αAµ + sin αG8

µ (5.1)

remains free, while the orthogonal “X” gauge boson

AX
µ = − sin αAµ + cos αG8

µ (5.2)

may be free, Higgsed, or confined. In the case of CFL matter, electromagnetism (Q)

is much more weakly coupled than the strong interaction (T8) at the relevant energy

scale, so the mixing angle α (analogous to the Weinberg angle in the standard model)

is small, and the Q̃ photon is mostly the ordinary Q-photon, with a small admixture

of the T8 gluon. However, in our general treatment, we will keep α as an arbitrary

parameter.

1These names for the generators are taken over from earlier treatments of the interface between

a vacuum and CFL quark matter [54, 55], where one only considers the electromagnetic generator Q

and the color generator T8 with which it mixes. In the CFL quark matter, a quark-quark condensate

acts as a Higgs field, breaking a linear combination X and leaving the orthogonal linear combination

Q̃ unbroken.
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Figure 5.1: The phase boundary that we study. In the z > 0 region, the Q gauge boson is free, and

the orthogonal T8 gauge boson may be free, or it may be Higgsed or confined. In the z < 0 region,

the Q̃ gauge boson is free, and the orthogonal X gauge boson may be free, or it may be Higgsed

or confined. Higgsing and confinement are implemented by currents or charges in the boundary

region of thickness ξ. The condensates that cause Higgsing/confinement are assumed to change over

a much shorter distance.

We study the behavior of Q-photons coming in from z = +∞, and reflecting off

or transmitting through the interface. As in Ref. [54], we use free Maxwell equa-

tions to describe all the gauge fields, with confinement and Higgsing implemented via

boundary conditions at the interface (Fig. 5.1), as we now describe.

At the boundary of a free phase, there are no limitations on the electric and

magnetic fields of both U(1) generators: both types of gauge boson can propagate,

and there are no charges or currents present.

At the boundary of a Higgsed phase, there is a layer of thickness ξ in which there

are electric charges and super-currents associated with the Higgsed generator. This

corresponds to the real physics of a Higgs phase, in which a condensate of a charged
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field supplies mobile electric charges that screen out electric flux and repel magnetic

flux (the Meissner effect). For a confined phase, there is a boundary layer of thickness

ξ in which there are magnetic charges and super-currents associated with the confined

generator. This corresponds to the dual superconductor picture of confinement [85],

in which there are mobile magnetic charges that screen out magnetic flux and repel

electric flux.

Note that we assume the “sharp interface” scenario of Ref. [54], in which the

wavelength λ of the light shining on the boundary is much larger than the penetration

depth ξ for the gauge fields. This assumption seems straightforward but actually

under some circumstances there are subtle order-of-limits issues. We will discuss

them in section 5.3 when we address the paradoxical nature of the α → 0 limit for

certain interfaces.

To proceed, we write all fields as two-component objects in the two-dimensional

space of gauge symmetry generators spanned by Q and T8. The (Q̃, X) basis is rotated

by the angle α:

Q =









1

0









, T8 =









0

1









,

Q̃ =









cos α

sin α









, X =









− sin α

cos α









.

(5.3)

so a general magnetic field takes the form

~B =









~BQ

~BT8









=









cos α~BQ̃ − sin α~BX

sin α~BQ̃ + cos α~BX









(5.4)
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and similarly for ~E. The generalized Maxwell equations are

∇ · ~D = ρ , ∇× ~E = ~JM − ∂ ~B

∂t
, (5.5)

∇ · ~B = ρM , ∇× ~H = ~J +
∂ ~D

∂t
(5.6)

where ρM and JM are magnetic charge and current densities, and we assume the usual

linear relationship between ~E and ~D, and between ~B and ~H ,

Q-photons: Q̃-photons:

~DQ = ε ~EQ, ~DQ̃ = ε̃ ~EQ̃,

~HQ =
1

µ
~BQ, ~HQ̃ =

1

µ̃
~BQ̃.

(5.7)

We assume that the wavelength of the gauge bosons incident on the surface is much

greater than the penetration depth ξ so we can integrate the Maxwell equations over

−ξ < z < ξ, and obtain boundary conditions that relate the fields at z = −ξ to

those at z = +ξ (Ref. [86], sect. I.5). For the fields with divergence equations (D and

B) the boundary conditions relate the components perpendicular to the surface; for

the fields with curl equations (E and H) boundary conditions relate the components

parallel to the surface.

DQ

⊥(ξ)

0BB�1

0

1CCA+ DT8

⊥ (ξ)

0BB�0

1

1CCA− DQ̃

⊥(−ξ)

0BB�cos α

sinα

1CCA− DX
⊥ (−ξ)

0BB�− sinα

cos α

1CCA = σT8

0BB�0

1

1CCA+ σX

0BB�− sin α

cos α

1CCA (5.8)

EQ

‖
(ξ)

0BB�1

0

1CCA+ ET8

‖
(ξ)

0BB�0

1

1CCA− EQ̃

‖
(−ξ)

0BB�cos α

sin α

1CCA− EX
‖ (−ξ)

0BB�− sinα

cos α

1CCA = KT8

M

0BB�0

1

1CCA+ KX
M

0BB�− sin α

cos α

1CCA (5.9)

BQ

⊥(ξ)

0BB�1

0

1CCA+ BT8

⊥ (ξ)

0BB�0

1

1CCA− BQ̃

⊥(−ξ)

0BB�cos α

sin α

1CCA− BX
⊥ (−ξ)

0BB�− sinα

cos α

1CCA = σT8

M

0BB�0

1

1CCA+ σX
M

0BB�− sinα

cos α

1CCA (5.10)

HQ

‖
(ξ)

0BB�1

0

1CCA+ HT8

‖
(ξ)

0BB�0

1

1CCA− HQ̃

‖
(−ξ)

0BB�cos α

sinα

1CCA− HX
‖ (−ξ)

0BB�− sinα

cos α

1CCA = KT8

0BB�0

1

1CCA+ KX

0BB�− sin α

cos α

1CCA(5.11)

The σ’s and K’s are the effective surface charge and current densities, and their

presence varies depending on the physical situation being addressed. For Higgsed
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generators there are electric surface current and charge densities, for confined gener-

ators there are magnetic surface current and charge densities, and for free generators

there are no surface current or charge densities.

8

8

E~t
Q~

E~X
t

θt

Q~B~t
B~t

X

Ei
Q

iθ

iθTEr

TBr

Br
Q

Q
rE

BQ
i

E

Polarization 1: 

parallel to interface

8

8

BQ
i

Ei
Q

iθ

iθ

TEr

TBr

Q
rE

Br
Q

E~X
t

B~t
X

E~t
Q~

Q~B~t

θt

Polarization 2:

B parallel to interface

Figure 5.2: Polarizations of the incident photon beam

5.2 Reflection and Transmission at the Interface

In our analysis we treated both possible polarizations, as illustrated in Fig. 5.2. With-

out loss of generality, we assume that the waves incident from z = +∞ will be purely

Q gauge bosons. For free phases, two different types of gauge boson may be reflected

and/or transmitted. It is also assumed that in a phase where both types of gauge

boson are massless, the index of refraction (and hence the ε and µ) is the same for

both.

In addition, the usual rules of optics apply, since they are purely kinematic in

nature [86]. Therefore the angle of reflection equals the angle of incidence, and Snell’s
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Law applies to the transmitted waves.

To find the transmission and reflection coefficients, we applied the boundary con-

ditions of section 5.1 to the kinematic situations shown in Fig. 5.2. Tables 5.1 and 5.2

show the results of these calculations for the eight non-trivial phase combinations.

(Some intermediate results, the transmission/reflection amplitudes, are shown and

discussed in 5.5).

The shorthand parameters used throughout the calculations are defined as follows:

r ≡ µ

µ̃

ñ

n
=

√

ε̃µ

εµ̃
, (5.12)

ci ≡ cos θi, si ≡ sin θi, (5.13)

ct ≡ cos θt, st ≡ sin θt. (5.14)

We can eliminate cos θt from the amplitudes by making use of Snell’s Law,

n sin θi = ñ sin θt (5.15)

→ cos θt =

√

1 − n2

ñ2
sin2θi. (5.16)

Reflection and transmission coefficients are defined by

R =
Ir

Ii
≡

~Sr⊥

~Si⊥

(5.17)

T =
It

Ii

≡
~St⊥

~Si⊥

(5.18)

where Ii, Ir, It refer to the incident, reflected, and transmitted intensities, respectively,

and ~Si, ~Sr, ~St refer to the incident, reflected, and transmitted Poynting vectors; specif-
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ically,

RQ =
ẑ · ~EQ

r × ~HQ
r

ẑ · ~EQ
i × ~HQ

i

=
crEQ

r
2

ciEQ
i

2 ,

RT8 =
ẑ · ~ET8

r × ~HT8

r

ẑ · ~EQ
i × ~HQ

i

=
crET8

r
2

ciET8

i

2 ,

T Q̃ =
ẑ · ~EQ̃

t × ~HQ̃
t

ẑ · ~EQ
i × ~HQ

i

=

√

ǫ̃µ

ǫµ̃

ctE Q̃
t

2

ciEQ
i

2 .

(5.19)

For clarity, we will illustrate how the calculations leading to tables 5.1 and 5.2 are

done by looking at two of the cases in detail. The amplitudes E give the electric fields

associated with the incident, reflected, and transmitted photons,

~EQ
i = EQ

i ~ni exp(i(~ki · ~x − ωt)) ,

~E
(Q,T8)
r = E (Q,T8)

r ~nr exp(i(~kr · ~x − ωt)) ,

~EQ̃
t = E Q̃

t ~nt exp(i(~kt · ~x − ωt)) ,

(5.20)

where ~n is the unit polarization vector for each wave.
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5.2.1 T8 Free, X Confined

For this combination of phases, the boundary condition equations (5.8), (5.9), (5.10),

(5.11) become

DQ
⊥(ξ)









1

0









+ DT8

⊥ (ξ)









0

1









− DQ̃
⊥(−ξ)









cos α

sin α









= 0 (5.21)

EQ
‖ (ξ)









1

0









+ ET8

‖ (ξ)









0

1









− EQ̃
‖ (−ξ)









cos α

sin α









= KX
M









− sin α

cos α









(5.22)

BQ
⊥(ξ)









1

0









+ BT8

⊥ (ξ)









0

1









− BQ̃
⊥(−ξ)









cos α

sin α









= σX
M









− sin α

cos α









(5.23)

HQ
‖ (ξ)









1

0









+ HT8

‖ (ξ)









0

1









− HQ̃
‖ (−ξ)









cos α

sin α









= 0 (5.24)

Dotting the equations with either









cos α

− sin α









,









1

0









, or









0

1









as appropriate yields

equations that do not depend on the charge or current densities. In this case, we

obtain

HQ
‖ (ξ) = cos αHQ̃

‖ (−ξ) (5.25)

HT8

‖ (ξ) = sin αHQ̃
‖ (−ξ) (5.26)

cos αEQ
‖ (ξ) + sin αET8

‖ (ξ) = EQ̃
‖ (−ξ) (5.27)

cos αBQ
⊥(ξ) + sin αBT8

⊥ (ξ) = BQ̃
⊥(−ξ) (5.28)
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For polarization 1 of Fig. 5.2, equations (5.25), (5.26) and (5.28) lead to

rci(EQ
i − EQ

r ) = cos αctE Q̃
t (5.29)

−rciET8

r = sin αctE Q̃
t (5.30)

cos α(EQ
i + EQ

r ) + sin αET8

r = E Q̃
t (5.31)

which can be solved for the amplitudes in Table 5.4, row 5. Using (5.17) and (5.19)

we obtain the reflection/transmission coefficients of Table 5.1, row 5.

For polarization 2 of Fig. 5.2, equations (5.25), (5.26) and (5.27) lead to

r(EQ
i + EQ

r ) = cos αE Q̃
t (5.32)

rET8

r = sin αE Q̃
t (5.33)

ci(cos α(EQ
i − EQ

r ) − sin αET8

r ) = ctE Q̃
t (5.34)

which can similarly be solved for the amplitudes in Table 5.5, row 5, and reflec-

tion/transmission coefficients in Table 5.2, row 5.
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5.2.2 T8 Higgsed, X Higgsed

When there is Higgsing in both regions, the boundary condition equations (5.8)-(5.11)

become

DQ
⊥(ξ)









1

0









− DQ̃
⊥(−ξ)









cos α

sin α









= σT8









0

1









+ σX









− sin α

cos α









(5.35)

EQ
‖ (ξ)









1

0









− EQ̃
‖ (−ξ)









cos α

sin α









= 0 (5.36)

BQ
⊥(ξ)









1

0









− BQ̃
⊥(−ξ)









cos α

sin α









= 0 (5.37)

HQ
‖ (ξ)









1

0









− HQ̃
‖ (−ξ)









cos α

sin α









= KT8









0

1









+ KX









− sin α

cos α









(5.38)

In this case, we find

EQ
‖ (ξ) = EQ̃

‖ (−ξ) = 0 (5.39)

BQ
⊥(ξ) = BQ̃

⊥(−ξ) = 0 (5.40)

For polarization 1 of Fig. 5.2, either equation (5.39) or (5.40) leads to the simple

equations

EQ
i + EQ

r = 0 (5.41)

E Q̃
t = 0 (5.42)

which shows that waves of this polarization are completely reflected with a 180 degree

phase shift.
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Table 5.1: Reflection and Transmission Coefficients for Polarization 1. For definitions

see (5.12): ci and ct are the cosines of the incident and transmitted beams; α is the

mismatch between the generators of the free U(1)’s in the outside region (Q) and the

inside region (Q̃); r is a function of the permittivities and permeabilities of the two

regions.

Outer region (T8) Inner region (X) RQ RT8 T Q̃ T X

Higgsed Higgsed 1 0 0 0

Confined Confined 1 0 0 0

Free Higgsed

�
ci cos 2α − rct

ci + rct

�2 �
ci sin 2α

ci + rct

�2 4rcict cos2α

(ci + rct)2
0

Higgsed Free

�
ci − rct

ci + rct

�2

0
4rcict cos2α

(ci + rct)2
4rcict sin2α

(ci + rct)2

Free Confined

�
ci − rct cos 2α

ci + rct

�2 �
rct sin 2α

ci + rct

�2 4rcict cos2α

(ci + rct)2
0

Confined Free

�
ci − rct

ci + rct

�2

0
4rcict cos2α

(ci + rct)2
4rcict sin2α

(ci + rct)2

Higgsed Confined

�
ci − rct cos2α

ci + rct cos2α

�2

0
4rcict cos2α

(ci + rct cos2α)2
0

Confined Higgsed

�
ci cos2α − rct

ci cos2α + rct

�2

0
4rcict cos2α

(ci cos2α + rct)2
0

For polarization 2 of Fig. 5.2, either equation (5.39) or (5.40) leads to the equally

simple equations

EQ
r − EQ

i = 0 (5.43)

E Q̃
t = 0 (5.44)

which shows that waves of this polarization are completely reflected with no phase

shift.
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Table 5.2: Reflection and Transmission Coefficients for Polarization 2
Outer region (T8) Inner region (X) RQ RT8 T Q̃ T X

Higgsed Higgsed 1 0 0 0

Confined Confined 1 0 0 0

Free Higgsed

�
rci − ct cos 2α

rci + ct

�
2

�
ct sin 2α

rci + ct

�
2 4rcict cos2α

(rci + ct)2
0

Higgsed Free

�
rci − ct

rci + ct

�
2

0
4rcict cos2α

(rci + ct)2
4rcict sin2α

(rci + ct)2

Free Confined

�
rci cos 2α − ct

rci + ct

�
2

�
rci sin 2α

rci + ct

�
2 4rcict cos2α

(rci + ct)2
0

Confined Free

�
rci − ct

rci + ct

�
2

0
4rcict cos2α

(rci + ct)2
4rcict sin2α

(rci + ct)2

Higgsed Confined

�
rci cos2α − ct

rci cos2α + ct

�2

0
4rcict cos2α

(rci cos2α + ct)2
0

Confined Higgsed

�
rci − ct cos2α

rci + ct cos2α

�2

0
4rcict cos2α

(rci + ct cos2α)2
0

5.3 Summary and Discussion

We have studied reflection and transmission of gauge bosons at the interface between

differently realized phases of a U(1) ⊗ U(1) gauge theory. In order to allow gauge

bosons to propagate, at least one linear combination of the gauge generators must be

free on each side of the interface: this is taken to be Q in the outer region (z > 0) and

Q̃ in the inner region (z < 0). The other generator is T8 in the outer region and X

in the inner region. The possibilities for this other generator are that it can be also

free, Higgsed, or confined. The (Q, T8) basis may in general be rotated by an angle

α relative to the (Q̃, X) basis. Since the Free/Free boundary (T8 free outside, X free

inside) is trivial for any α, this means that there are 8 possible types of boundary.

The transmission and reflection coefficients for light arriving at these different types

of boundary are given in Tables 5.1 and 5.2. These are complicated so we give a

qualitative summary in table 5.3, and we will now discuss the entries in that table.
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Table 5.3: Behavior of gauge bosons at an interface in U(1) ⊗ U(1) gauge theory

for various realizations of the gauge symmetries on each side. The gauge bosons are

assumed to arrive as Q-photons from the “outer” phase.

Inner (z < 0), Q̃ free

X Free X Higgsed X Confined

T8 Free transmission
Q, T8 reflection

Q̃ transmission

Q, T8 reflection

Q̃ transmission

Outer

(z > 0)

Q free

T8 Higgsed
Q reflection

Q̃, X transmission

total reflection
Q reflection

Q̃ transmission

T8 Confined
Q reflection

Q̃, X transmission

Q reflection

Q̃ transmission

total reflection

5.3.1 How the different boundaries behave

If all generators everywhere are free (T8 and X both free, row 1 column 1 of table

5.3), then there is no distinction between the inner and outer regions other than a

possible difference in refractive index, so there will be transmission and reflection as

at a dielectric boundary like a glass-air boundary.

If both generators in the outer region are free (T8 free) but in the inner region X

is Higgsed or confined (row 1 columns 2 and 3 of table 5.3), then the gauge bosons

are partially reflected and partially transmitted, depending on the angle between Q̃

and Q. However, even though the incident wave is pure Q gauge bosons, there will
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be some additional T8 bosons created and reflected back. The transmitted wave will

be pure Q̃ gauge bosons. Similarly, if both generators in the inner region are free (X

is free) and in the outer region T8 is Higgsed or confined (column 1 rows 2 and 3 of

table 5.3) then there will be transmission of both Q̃ and X, adding up to make a

Q-photon.

If there is only one free generator in each region, Q on the outside and Q̃ on the

inside, then the reflected wave must be pure Q-photons and the transmitted wave

must be pure Q̃ photons. If the broken generator is Higgsed on one side and confined

on the other then there is partial reflection and partial transmission (row 2 column 3

and column 3 row 2 of table 5.3). This was the case studied in [55].

If the broken generators on the inside and outside are both Higgsed, or both

confined then the behavior is very different. Electromagnetic waves are completely

reflected at an interface between two Higgsed phases with different values of α (row

2 column 2 of table 5.3) or between two confined phases where the confined gauge

fields are different linear combinations of Q and T8 (row 3 column 3 of table 5.3). In

addition, since one polarization is flipped in each case while the other stays the same,

left circularly polarized waves are reflected as right circularly polarized waves, and

vice versa. This raises an interesting puzzle: the Higgs/Higgs and confined/confined

boundaries both show total reflection independent of the value of α. But when α =

0 both phases have identical unbroken gauge generators, so the interface is just a

boundary between two media with different dielectric constants, and there should be

some transmission. In fact, in the limit (ǫ̃, µ̃) → (ǫ, µ) there is no boundary, and there
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must be total transmission. This paradox is analyzed below.

5.3.2 Compatibility with previous results

In Ref. [55], Manuel and Rajagopal studied the case where X is Higgsed on the inside

and T8 is confined on the outside, and our results for that case agree with theirs. One

of their main conclusions was that it is possible to use light reflection calculations to

show that there are magnetic monopoles in the QCD vacuum. Their argument was

that the situation they studied corresponds to the boundary between the confining

QCD vacuum and color-superconducting quark matter, and for that situation they

derived the confining boundary condition for T8 color-magnetic flux, which tells us

there are T8 magnetic monopoles in the boundary region, from a few basic assump-

tions, namely: (1) color is not Higgsed, so there are no color (T8) supercurrents in the

boundary layer; (2) no gluons (ie T8 gauge bosons) propagate in the confined phase;

(3) conservation of energy; (4) Snell’s law for the angles of reflection and transmission.

This result can be obtained more directly, without using light reflection calcu-

lations, from considerations of static electromagnetic fields at an interface using as-

sumptions (1) and (2) alone. Consider what must happen to Q̃ magnetic flux lines

that arrive at the boundary from the quark matter side. Their T8 component cannot

penetrate into the QCD vacuum region, since color is confined there (assumption (2)),

and they cannot be turned back into the quark matter region by the Meissner effect

because there are no T8 supercurrents in the boundary layer (assumption (1)). So the

flux lines have to end. This means that at the edge of a color-confined phase there
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must be a boundary layer of color magnetic monopoles that eat up any unwanted

color magnetic flux that might try to enter the confined region.

5.3.3 The singular α → 0 limit

We now turn to the paradoxical behavior of the Higgsed/Higgsed and confined/confined

interfaces, which seem to always reflect all light even in the limit α → 0, where the

interface becomes a typical dielectric boundary which ought to transmit at least some

light. To understand this we have to be careful about specifying the wavelength of

the light that is incident on the boundary.

As mentioned in section 5.1, throughout our calculations we have worked in the

limit of long wavelength relative to the penetration depth, λ ≫ ξ. This corresponds

to the low frequency limit, ω ≪ c/ξ. It turns out that, for the Higgsed/Higgsed and

confined/confined interfaces, the limit of low frequency does not commute with the

limit α → 0 in which the unbroken U(1)’s on either side of the boundary become the

same. An explicit calculation for the Higgs-Higgs boundary at finite α and ω is given

in section 5.4.

We can summarize the result as follows. For polarization 1 (the argument for

polarization 2 is analogous) the transmission amplitude at low frequency (ωξ ≪ c)

and small α is of the form

ωξ

ωξ + iα2c
(5.45)

where ξ is the penetration depth, and dimensionless factors of order one (cosines of

angles, etc) have been omitted. In the limit where ω → 0 first, ωξ ≪ α2c ≪ c,
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the transmission amplitude is zero: this is the total reflection expressed in the first

two rows of tables 5.1 and 5.2. In the limit where α → 0 first, α2c ≪ ωξ ≪ c, the

transmission amplitude is of order 1: this is what we expect when there is no mismatch

between the unbroken U(1)’s at the boundary. We conclude that the paradox is

resolved in this way: at small α there is total reflection for frequencies below α2c/ξ,

but higher frequencies are transmitted. As α → 0 the range of reflected frequencies

becomes smaller and smaller, and finally disappears.

For most of the boundaries we studied, the two limits commute, and we can, with-

out ambiguity, work at arbitrarily low frequency, and discuss how the reflection and

transmission depend on α. But for the Higgs/Higgs and confined/confined boundaries

the order of the limits must be specified.

5.3.4 Complementarity

The complementarity principle [87] states that for any Higgsed description of a gauge

theory there should be a corresponding confined description, so that there is no way to

distinguish a confined phase from a Higgs phase. Since the Higgs phase involves con-

densation of electrically charged fields, while the confined phase involves condensation

of magnetically charged fields, we expect that the confined ⇋ Higgs mapping will in-

volve a magnetic ⇋ electric duality transformation. Exchanging magnetic and electric

fields converts polarization 1 into polarization 2 (see Fig. 5.2), so the confined ⇋ Higgs

mapping will be
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~E → ~H, ~H → −~E,

~D → ~B, ~B → −~D,

qe → qm, qm → −qe,

~Je → ~Jm, ~Jm → − ~Je,

ǫ̃ ⇋ µ̃,

r ⇋ 1/r

polarization 1 ⇋ polarization 2

Higgsed ⇋ Confined

(5.46)

Since the reflection and transmission coefficients are related to the energy and

momentum flow in the scattering process, they are directly observable, and should

be invariant under the duality transformation (5.46). Inspecting tables 5.1 and 5.2

we see that this is indeed the case. For example, the reflection and transmission

coefficients for the Higgsed-Free boundary (third line of table 5.1) are transformed

into those for the Confined-Free boundary (fifth line in table 5.2). In other words, if

we shine light on a boundary and obtain the results of table 5.1 line 3, then we could

not distinguish whether the outside phase is Higgsed or confined.

This means that by measuring only the reflected and transmitted indensities, we

can only distinguish 4 of the 8 types of non-trivial boundary. What is clear from

tables 5.1 and 5.2 is that this ambiguity only exists as a single global choice. There is

not a separate confined vs. Higgs choice for each phase independently. This is exactly

what we expect from the principle of complementarity.

One might naively think that it should be possible to overcome this ambiguity
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by measuring the electric and magnetic fields (which are also gauge-invariant and

physically measureable) directly. Carefully constructing the corresponding thought-

experiment shows that this does not in fact overcome the ambiguity: we discuss this

in section 5.5.

5.3.5 Future directions

As mentioned in the introduction, the U(1) ⊗ U(1) system arises in various contexts

within particle physics, and the results of this paper may be applied to domain walls

or phase boundaries in those contexts. The same formalism can also be used for

more general gauge groups, as in the work of Manuel and Rajagopal [55]. Quark

matter provides a possible area of application, since it has a rich phase diagram,

including a variety of patterns of confinement or Higgsing of various subgroups of the

SU(3)color ⊗ U(1)Q gauge group [50].

Finally, in our analysis we only concerned ourselves with the gauge symmetries,

not with any global symmetries. If massless fermionic fields are included in the theory

then chiral symmetry complicates the complementarity principle [88]. It would be

interesting to see how this affects the distinguishability of our U(1)⊗U(1) interfaces.

One immediate question is the contradiction between Ref. [88], which predicts that

chiral symmetries will not not be broken in weakly-coupled Higgsed phases, and

the accepted picture of high-density quark matter, according to which CFL pairing

produces Higgs breaking of the color gauge symmetry and simultaneously breaks

chiral symmetry. This is crucial to the concept of quark-hadron continuity, which

128



Chapter 5 Illuminating interfaces between phases of a U(1)×U(1) gauge theory

identifies the CFL phase as a controlled continuation of the confined phase.

5.4 Non-zero-frequency effects

The macroscopic calculations of section 5.1 are performed under the simplifying as-

sumption that the frequencies are very small, and therefore the time-derivative terms

in the Maxwell equations are neglected. It is also assumed that the Higgsed or confined

fields are quickly screened, so the field amplitudes are set to zero from the beginning.

The advantage of this approach is that the spatial behavior of the screened fields and

the screening currents does not have to be determined, so the solution is straightfor-

ward. However, any finite frequency effects are thrown away, and as mentioned in

section 5.3.3, Higgsed/Higgsed and confined/confined interfaces have singular behav-

ior in the α → 0 limit. To rectify this problem, we performed the calculation again

for the Higgsed/Higgsed combination, keeping the contributions of screened fields and

finite frequency.

First, we briefly review the behavior of electromagnetic fields in a superconduc-

tor. In addition to the Maxwell equations (5.5), we have the London equations (see

Ref. [89], chapter 34)

d ~J

dt
= γ ~E,

~∇× ~J = −γ ~B (5.47)

that describe how the supercurrents respond to applied fields. The parameter γ

depends on microscopic details such as the density and charge of Cooper pairs that
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make up the supercurrents, but the details are not important for this discussion.

Inserting equations (5.47) into the “curl” equation for ~B, we obtain the wave equation

for the magnetic field in the superconductor,

∇2 ~B = µγ ~B +
1

c2

∂2 ~B

∂t2
(5.48)

From dimensional considerations the definition of the screening length ξ is defined as

ξ ≡ 1√
µγ

(5.49)

and the solutions of the wave equation have the form

~B = ~B0 exp [~κ · ~x − iωt] . (5.50)

Plugging this solution back into the wave equation obtains the magnitude of the

wavevector,

|κ| = ±
√

1

ξ2
− ω2

c2
. (5.51)

For frequencies less than c/ξ, the waves are completely damped, while for frequencies

greater than c/ξ, the waves propagate without any damping. For ω = c/ξ, the

wave has no spatial variation and only oscillates in time. The choice of the positive

or negative solution for the wavevector depends on the boundary conditions of the

superconducting phase. We can obtain identical wave equations for ~J and ~E; since we

are still interested in the low-frequency limit, we can use the limiting value |κ| = ±ξ−1

to obtain the magnitudes of the current and the electric field as

|J0| = ∓ξγ|B0|,

|E0| = ±iωξ|B0| (5.52)
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For the Higgsed/Higgsed phase combination, the Higgsed fields on either side of

the boundary will satisfy the equations above. Explicitly, we have

~EQ
i = EQ

i ~ni exp(i(~ki · ~x − ωt)) ,

~EQ
r = EQ

r ~nr exp(i(~kr · ~x − ωt)) ,

~ET8

r = ET8

r ~nr exp(−~κr · ~x − iωt) ,

~EQ̃
t = E Q̃

t ~nt exp(i(~kt · ~x − ωt)),

~EX
t = EX

t ~nt exp(+~κt · ~x − iωt)) , (5.53)

The “E” amplitudes are the magnitudes of the electric field at the boundary itself

(z = 0); all screening is due to the spatial terms.

Now we will rewrite the boundary condition equations keeping everything that

was thrown away previously. The “curl” equations are sufficient to solve for the field
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amplitudes. We obtain

EQ
‖









1

0









+ ET8

‖









0

1









− EQ̃
‖









cos α

sin α









− EX
‖









− sin α

cos α









=
iω

κz

BT8

‖









0

1









+
iω

κ̃z

BX
‖









− sin α

cos α









(5.54)

BQ
‖









1

0









+

(

1 − 1

ξκz

)

BT8

‖









0

1









− BQ̃
‖









cos α

sin α









−
(

1 +
1

ξ̃κ̃z

)

BX
‖









− sin α

cos α









= − iω

c2κz

ET8

‖









0

1









− iω

c̃2κ̃z

EX
‖









− sin α

cos α









(5.55)

For polarization 1 of Figure 5.2, the solutions for the amplitudes are

EQ
r

EQ
i

=
ωξ̃(ci − cos2α ñ

n
ct) + ic(1 + ct) sin2α

ωξ̃(ci + cos2α ñ
n
ct) − ic(1 + ct) sin2α

ET8

r

EQ
i

=
sin 2αωξci(1 + ct)

ωξ̃(ci + cos2α ñ
n
ct) − ic(1 + ct) sin2α

E Q̃
t

EQ
i

=
2 cos αωξ̃ci

ωξ̃(ci + cos2α ñ
n
ct) − ic(1 + ct) sin2α

EX
t

EQ
i

=
2 sin αωξ̃ci

ωξ̃(ci + cos2α ñ
n
ct) − ic(1 + ct) sin2α

.

(5.56)

Taking the ω → 0 limit, we recover the amplitudes of the first row of Table 5.4

presented below in section 5.5. However, more importantly, taking the α → 0 limit
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first, we obtain

EQ
r = EQ

i

[

ci − ñ
n
ct

ci + ñ
n
ct

]

ET8

r → 0

E Q̃
t = EQ

i

[

2ci

ci + ñ
n
ct

]

EX
t → 0, (5.57)

which are the normal reflection and refraction amplitudes from electrodynamics. Sim-

ilarly, for polarization 2 of Figure 5.2, the solutions for the amplitudes are

EQ
r

EQ
i

=
2ω
h
ξ(1 + c2i )(1 + ct)(

ñ
n

ci − cos2αct) − ξ̃(1 + ci)(1 + c2t )(cos2α ñ
n

ci − ct)
i

+ 2i sin2αccict(1 + ci)(1 + ct)

2ω
h
ξ(1 + c2i )(1 + ct)(

ñ
n

ci + cos2αct) − ξ̃(1 + ci)(1 + c2t )(cos2α ñ
n

ci + ct)
i

+ 2i sin2αccict(1 + ci)(1 + ct)

ET8
r

EQ
i

=
−2ωξ sin 2αc2i ct(1 + ct)

2ω
h
ξ(1 + c2i )(1 + ct)(

ñ
n

ci + cos2αct) − ξ̃(1 + ci)(1 + c2t )(cos2α ñ
n

ci + ct)
i

+ 2i sin2αccict(1 + ci)(1 + ct)

EQ̃
t

EQ
i

=
4ω cos αci

h
ξ(1 + c2i )(1 + ct) − ξ̃(1 + ci)(1 + c2t )

i
2ω
h
ξ(1 + c2i )(1 + ct)(

ñ
n

ci + cos2αct) − ξ̃(1 + ci)(1 + c2t )(cos2α ñ
n

ci + ct)
i

+ 2i sin2αccict(1 + ci)(1 + ct)

EX
t

EQ
i

=
4ωξ̃ sinαci(1 + ci)c2t

2ω
h
ξ(1 + c2i )(1 + ct)(

ñ
n

ci + cos2αct) − ξ̃(1 + ci)(1 + c2t )(cos2α ñ
n

ci + ct)
i

+ 2i sin2αccict(1 + ci)(1 + ct)
.

(5.58)

Once again, taking the ω → 0 limit, we recover the amplitudes of the first row of

Table 5.5 presented below in section 5.5. Taking the α → 0 limit first, we obtain

EQ
r = EQ

i

[ ñ
n
ci − ct

ñ
n
ci + ct

]

ET8

r → 0

E Q̃
t = EQ

i

[

2ci

ñ
n
ci + ct

]

EX
t → 0, (5.59)

the normal reflection and refraction amplitudes for perpedicularly polarized light.

This shows that our “singular” limit problem is actually an order-of-limits prob-

lem. For most of the possible phase combinations, we could take the ω → 0 limit
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at the beginning and not encounter any problems, but for the Higgsed/Higgsed or

confined/confined phases, that is incorrect. Although the frequency drops out in

the α → 0 limit, we need to keep a nonzero frequency value to obtain the correct

expression.

5.5 Field strengths and complementarity

In tables 5.4 and 5.5 we show the reflection and transmission amplitudes, i.e. the ra-

tios between electric field strengths in the incident, reflected, and transmitted beams.

It is clear that the transmission amplitudes do not show invariance under the duality

transformation (5.46). Does this mean that measurements of electric and magnetic

fields can overcome the complementarity ambiguity and distinguish a Higgsed phase

from a confined phase? In this section, we show that although electric and mag-

netic fields are gauge-invariant quantities, what can actually be measured is the force

exerted on a charge, so that even experiments that seem to directly measure field

strengths suffer from the Higgsed/confined ambiguity.

For illustrative purposes, we calculate the Lorentz force on a test charge in the

inner phase due to electromagnetic waves transmitted from the outer phase. First,

we will calculate the force in the case where the outer phase is confined and the

inner phase is Higgsed; then we will calculate the force in the dual picture, where the

outer phase is Higgsed and the inner phase is confined. We will see that although

the transmission amplitudes are not invariant under the duality transformation, the
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Table 5.4: Reflected and Transmitted Amplitudes for Polarization 1

Outer region (T8) Inner region (X) EQ
r /EQ

i ET8

r /EQ
i EQ̃

t /EQ
i EX

t /EQ
i

Higgsed Higgsed −1 0 0 0

Confined Confined 1 0 0 0

Free Higgsed
ci cos 2α − rct

ci + rct

ci sin 2α

ci + rct

2ci cosα

ci + rct
0

Higgsed Free
ci − rct

ci + rct
0

2ci cosα

ci + rct

−2ci sinα

ci + rct

Free Confined
ci − rct cos 2α

ci + rct

−rct sin 2α

ci + rct

2ci cosα

ci + rct
0

Confined Free
ci − rct

ci + rct
0

2ci cosα

ci + rct

−2ci sinα

ci + rct

Higgsed Confined
ci − rct cos2α

ci + rct cos2α
0

2ci cosα

ci + rct cos2α
0

Confined Higgsed
ci cos2α − rct

ci cos2α + rct
0

2ci cosα

ci cos2α + rct
0

physically measureable quantity, force, is invariant.

A linearly polarized electromagnetic wave is sent from the outside, through the

interface, to the inside, where its effect on a test charge is measured. On the outside,

we calibrate the wave by measuring how it causes an electric Q charge to move, and

from the induced motion we measure the electric field strength Ei. On the inside, the

transmitted wave causes an electric Q̃ charge to move, and the resulting motion allows

calculation of the force. For our example, we assume the wave to be in polarization

1 of figure 5.2. As we have calculated in this paper, the transmitted Q̃-fields and the
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Table 5.5: Reflected and Transmitted Amplitudes for Polarization 2

Outer region (T8) Inner region (X) EQ
r /EQ

i ET8

r /EQ
i EQ̃

t /EQ
i EX

t /EQ
i

Higgsed Higgsed 1 0 0 0

Confined Confined −1 0 0 0

Free Higgsed
rci − ct cos 2α

rci + ct

−ct sin 2α

rci + ct

2ci cosα

rci + ct
0

Higgsed Free
rci − ct

rci + ct
0

2ci cosα

rci + ct

−2ci sin α

rci + ct

Free Confined
rci cos 2α − ct

rci + ct

rci sin 2α

rci + ct

2ci cosα

rci + ct
0

Confined Free
rci − ct

rci + ct
0

2ci cosα

rci + ct

−2ci sin α

rci + ct

Higgsed Confined
rci cos2α − ct

rci cos2α + ct
0

2ci cosα

rci cos2α + ct
0

Confined Higgsed
rci − ct cos2α

rci + ct cos2α
0

2ci cosα

rci + ct cos2α
0

force are

~Et = −ẑEt,

~Bt = (−ctx̂ + stŷ)
1

c̃
Et,

~F = −qeEi

(

2ci cos 2α

ci + rct

)

×
(

ẑ

(

1 +
vxst + vyct

c̃

)

+ ŷ
vzct

c̃
+ x̂

vzst

c̃

)

(5.60)

Now transform to the dual picture, where the outer phase is Higgsed and the inner

phase is confined, using the transformation (5.46). Our calibration experiment now

appears to have involved a magnetic charge, feeling a “Lorentz” force

~F = qm( ~H − ~v × ~D). (5.61)
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The transmitted wave is in polarization state 2, with

~H = −ẑ

√

ǫ̃

µ̃
E ′

t,

~D = (ctx̂ − stŷ)ǫ̃E ′
t,

~F = −qmE ′
i

√

ǫ̃

µ̃

(

2ci cos 2α

rci + ct

)

×
(

ẑ

(

1 +
vxst + vyct

c̃

)

+ ŷ
vzct

c̃
+ x̂

vzst

c̃

)

(5.62)

However, E ′
i and Ei are not equal; because of the switch between electric and magnetic

fields, the amplitude of the waves at their source will be calibrated so that

E ′
i =

√

µ

ǫ
Ei. (5.63)

Finally, we find that, in terms of the original incident amplitude Ei, the force measured

in the inner phase is

~F = −qmEir

(

2ci cos 2α

rci + ct

)

×
(

ẑ

(

1 +
vxst + vyct

c̃

)

+ ŷ
vzct

c̃
+ x̂

vzst

c̃

)

(5.64)

By taking the force calculated in the first picture (equation (5.60)), applying the

duality transformation r → 1/r and then replacing qe by qm (which were assumed to

have equal magnitudes), we end up with the expression of the force measured in the

second picture (equation (5.64)). Since the two pictures are equivalent, the ambiguity

remains and cannot be resolved by an attempt to measure the field amplitudes.
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