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Abstract of the Dissertation 

  

A Genetic Analysis of Cell Adhesion Molecules in Directed Cell Movements During 

Drosophila Eye Development: the Role of Echinoid and Friend-of-Echinoid in 

Ommatidial Rotation. 

By 

Jennifer Lynn Fetting 

Doctor of Philosophy in Biology and Biomedical Sciences (Developmental Biology) 

Washington University in St. Louis, 2009 

Professor Tanya Wolff, Chairperson 

 

Correct development of multicellular organisms relies on the precise patterning of 

cells, which must respond to and interpret specific cues that instruct the cells to 

differentiate and often undergo directed cell movements and rearrangements to give rise 

to functional tissues and organs. Differential adhesion between the stationary and mobile 

cells permits and promotes these cellular movements, effecting patterning of cells and 

tissues. During Drosophila eye development, groups of cells, the ommatidial precursors, 

undergo a 90° rotational movement within a matrix of stationary cells, providing the cell 

motility readout of tissue polarity. The mechanisms that regulate ommatidial rotation are 

not well understood. 



 viii 

 In order to better understand how ommatidia coordinate cell signaling and cell 

adhesion to regulate the directed cell movement of ommatidial rotation, I investigated the 

roles of two cell adhesion molecules, Echinoid (Ed) and Friend-of-Echinoid (Fred), in 

this process. Initially, I characterized the misrotation phenotypes resulting from loss-of-

function mutations in these two genes, and used a genetic approach to ascertain that they 

function during larval development and cooperate to regulate rotation. 

 To understand the underlying mechanism by which ed and fred regulate rotation, I 

performed a row-by-row analysis of Ed and Fred protein localization during ommatidial 

rotation, and found that these proteins localize in patterns that are consistent with an 

affect on cell-cell adhesion. This observation led to the hypothesis that different levels of 

Ed or Fred in rotating vs. nonrotating cells provide a permissive environment for cell 

movement at the beginning of ommatidial rotation. Beginning midway through 

ommatidial rotation, equalizing levels of these proteins in the ommatidial cells and the 

interommatidial cells leads to a restrictive environment, thus slowing ommatidial 

rotation. In support of this hypothesis, I demonstrate that manipulating levels of these 

proteins and interfering with the establishment of the early permissive environment slows 

ommatidial rotation.  

 My work also provides evidence that Ed and Fred may regulate signaling in the 

slow phase of ommatidial rotation. Mosaic analysis identified a requirement for ed and 

fred in photoreceptors R1, R6, R7 and the cone cells for proper ommatidial rotation. In 

addition, I used a genetic approach to identify potential interactors of ed and fred in 

rotation, and found that both genes interact with two downstream effectors of Egf 

signaling: the Mapk/Pnt transcriptional output and the Cno cytoskeletal/junctional output. 



 ix 

Furthermore, my analysis of the cno loss-of-function phenotype provides the first 

indication that Cno inhibits ommatidial rotation. 

Egf signaling promotes ommatidial rotation, although the underlying mechanism 

is unclear. I hypothesize that Egfr signaling promotes ommatidial rotation by inhibiting 

Cno activity in the ommatidial cells. As ommatidial rotation slows, Ed and Fred 

cooperate to regulate the Egf receptor in R1, R6, R7 and the cone cells, and increased 

inhibition of the Egf receptor as Ed levels rise leads to an increase in Cno activity and the 

cessation of ommatidial rotation.  

 Using a genetic approach, I also identified the tissue polarity genes as interactors 

of ed and fred in rotation. Intriguingly, ed and fred specifically modify different subsets 

of the TP genes. Mosaic analysis of the tissue polarity gene strabismus (stbm) identified a 

requirement for stbm in photoreceptor R7, thus providing the first indication of a role for 

a tissue polarity gene outside of photoreceptors R3 and R4 to regulate some aspect of 

tissue polarity.  

. 
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CHAPTER ONE 

 

 

 

An introduction to Drosophila eye development, 

tissue polarity, and ommatidial rotation 
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Abstract 

 

Throughout the development of multicellular organisms, manipulation of cell-cell 

adhesion is vital for cell signaling, cellular movements, and tissue maintenance. Proper 

development also requires the precise patterning of cells, which must interpret and 

respond to specific molecular cues that instruct them to assume distinct identities, initiate 

an appropriate differentiation program, and arrange themselves in the three dimensional 

space of a tissue. The study of tissue polarity in the Drosophila eye provides an excellent 

model system for studying the patterning of cells in response to molecular signals, and 

understanding how cell-cell adhesion integrates with signaling to regulate directed cell 

movements during pattern formation. 
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The Drosophila compound eye 

The adult Drosophila compound eye consists of approximately eight hundred unit 

eyes, or ommatidia, arranged in a precise hexagonal lattice (Fig. 1-1).  Each ommatidium 

contains approximately 20 cells: eight photoreceptor neurons (R1-R8), four cone cells, 

and primary, secondary, and tertiary pigment cells. The rhabdomeres, or light-sensing 

organelles, of the photoreceptors are arranged into trapezoids, with R3 occupying the 

point of the trapezoid (Fig. 1-1). These trapezoids assume one of two chiral forms, such 

that all ommatidia on the dorsal half adopt the same form, with R3 pointing toward the 

dorsal pole, and all the ommatidia on the ventral half of the eye adopt the opposite 

orientation. This divides the eye into dorsal and ventral halves separated by a midline, 

called the equator (Fig. 1-1) (Wolff and Ready, 1993).  

 The functional consequence of this chirality, combined with the curvature of the 

eye, is the appropriate mapping of the photoreceptor neurons to specific regions of the 

brain. This arrangement is necessary for correct image formation. Due to the way the eye 

curves, corresponding photoreceptors in adjacent ommatidia (for example, R1 in a group 

of adjacent ommatidia) all see the same point in space and project their axons to the same 

space in the brain. If the photoreceptors are not precisely aligned, the axons project to 

incorrect parts of the brain, disrupting vision and processing of images.  

 

Drosophila eye development 

The precise organization of ommatidia originates during larval development. The 

eye imaginal disc is initially an undifferentiated epithelial monolayer covered by a sac 

called the peripodial membrane. During the third larval instar, a wave of differentiation, 
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the leading edge of which is marked by an indentation in the epithelium called the 

morphogenetic furrow (MF), originates at the posterior edge of the eye disc and sweeps 

across to the anterior edge. In its wake, cells are recruited into the developing ommatidia 

in a stepwise manner: first R8, followed by R2/R5, R3/R4, R1/R6, and R7, and finally the 

non-neural cone cells which secrete the lens of each unit eye. Thus, a temporal gradient 

exists such that the most developmentally mature ommatidia reside in the posterior part 

of the disc (Ready et al., 1976; Wolff and Ready, 1993).  

Initially the arrangement of ommatidia is identical on both halves of the eye. Cells 

within the ommatidia are symmetric and are assembled so that the R3/R4 precursors face 

the anterior edge. By row 5 behind the furrow, the R3 and R4 cells adopt their respective 

fates and ommatidia begin a 90° rotation movement (Fig. 1-2). Here, the initial symmetry 

and uniformity of pattern are broken as the ommatidia on the dorsal half of the eye rotate 

counterclockwise, and those on the ventral half rotate clockwise to give rise to the mirror 

image symmetry seen in the adult. Rotation begins between rows 4 and 5 and is complete 

by row 15 (Fiehler and Wolff, 2007). 

The cells in the rotating ommatidia move together, as a unit, within a matrix of 

undifferentiated, stationary cells (Fiehler and Wolff, 2007). They must therefore reduce 

their adhesion to these immobile neighbors, while remaining embedded in the eye disc. 

As R1/6/7 and the cone cells join the rotating ommatidia, they also need to decrease their 

adhesion to the stationary interommatidial cells (IOCs), bind tightly to the other 

ommatidial cells, and rotate as part of the unit. After rotation, the cone cells move up 

over the apical surface of the photoreceptors, covering them and forming stereotypical 

contacts (Wolff and Ready, 1993).  
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Figure 1-1. The Drosophila compound eye. (A) A scanning electron micrograph of the 

wild-type adult Drosophila eye. Ommatidia are precisely arranged into rows. (B) In each 

ommatidium, the rhabdomeres of seven of the eight photoreceptor cells are visible as 

darkly-staining dots arranged into trapezoids. On either side of the equator (red line), the 

point of the trapezoid faces in opposite directions, giving rise to mirror image symmetry. 

(C) A schematic representation of this symmetry and the two chiral forms of trapezoid 

found on the dorsal (blue) and ventral (red) halves of the eye. All figures are oriented 

such that dorsal is toward the top, ventral is toward the bottom, posterior is to the left, and 

anterior is to the right. 
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During pupal life, the eye disc everts and transforms from a sac-like structure into 

the flattened, dome-shaped adult eye. Even during the complex and dramatic 

morphological changes that occur during disc eversion, the ommatidia remain locked into 

place, and the connections between the eye and the brain are unchanged. After eversion, a 

subset of undifferentiated cells in the pupal eye join the ommatidia and become primary, 

secondary, or tertiary pigment cells or bristle cells. The remaining undifferentiated cells 

undergo programmed cell death, which removes the excess IOCs and sets the final 

hexagonal pattern (Wolff and Ready, 1993).  

 

Tissue Polarity 

A universal characteristic of metazoans is the arrangement of cells into organized 

tissues. Epithelia are polarized along an apical-basal axis, with different junctions, 

proteins, and subcellular structures confined to apical or basal parts of the cell, allowing 

signaling events, absorption, and secretion to occur within the proper spatial context. 

Some tissues are also polarized along an axis perpendicular to the apico-basal axis, within 

the plane of the epithelium, known as tissue polarity or planar cell polarity. 

Tissue polarity is vital for the development of multicellular organisms, and in 

numerous patterning and cell motility events. In vertebrates, tissue polarity is easily seen 

in the arrangement of hair follicles on the mouse epidermis, which are all uniformly 

oriented along the rostral/caudal axis (Guo et al., 2004). Similarly, tissue polarity is 

essential for the correct orientation of the stereocilia of the inner ear hair cells in the 

cochlea (Curtin et al., 2003; Lewis and Davies, 2002; Montcouquiol et al., 2003).   
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Figure 1-2. Ommatidial rotation in the dorsal half of the Drosophila larval eye disc. 

Posterior to the morphogenetic furrow (yellow arrows), cells differentiate and form 

ommatidial clusters (dark outlined cells). These clusters are initially oriented in the same 

direction on both dorsal and ventral halves of the eye, with the R3/R4 cell pair facing the 

anterior edge of the eye disc (red arrows). Five rows past the morphogenetic furrow, 

dorsal ommatidia begin to rotate counterclockwise (blue arrows) and ventral ommatidia 

begin to rotate clockwise (not shown). Rotation ceases after the ommatidia rotate a full 

90°. 
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These stereocilia form a chevron on each hair cell, and that of each hair cell all point in 

the same direction. Disruption in the pattern results in defects in hearing. 

Tissue polarity is not confined to epithelial cells. Mesenchymal cells in 

vertebrates including Xenopis, zebrafish, and mice rely on tissue polarity for the cell 

intercalation movements that drive convergent extension and lengthen the body axis 

during gastrulation (Darken et al., 2002; Djiane et al., 2000; Formstone and Mason, 2005; 

Goto and Keller, 2002; Montero et al., 2005). Similarly, tissue polarity organizes the 

epithelial cells that again undergo convergent extension during neural tube closure 

(Curtin et al., 2003; Jessen et al., 2002; Kibar et al., 2001; Park and Moon, 2002). Defects 

in these processes have catastrophic consequences for the embryo, including embryonic 

death and neural tube closure defects.  

 

Tissue polarity in the Drosophila eye 

Much of our understanding about mechanisms that generate tissue polarity came 

from studies using Drosophila. Tissue polarity is most evident in the ommatidia, wing 

hairs, and abdominal hairs. A conserved group of genes, including frizzled (fz), 

disheveled (dsh), strabismus (stbm), prickle (pk), diego (dgo), and flamingo (fmi), are 

know as the core tissue polarity genes because they are essential for proper polarization 

of these tissues (Adler, 2002; Boutros and Mlodzik, 1999; Chae et al., 1999; Feiguin et 

al., 2001; Gubb et al., 1999; Klingensmith et al., 1994; Theisen et al., 1994; Usui et al., 

1999; Vinson et al., 1989; Wolff and Rubin, 1998; Zheng et al., 1995). In eye, wing and 

abdominal tissue, the output of tissue polarity signaling is the polarized localization of the 

tissue polarity proteins to different sub-cellular domains of each cell. In the wing, Fz, 
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Dsh, Dgo, and Fmi form a complex on distal tip of the cell, while Stbm, Fmi, and Pk 

form a complex on the proximal face of the cells (Bastock et al., 2003; Klein and 

Mlodzik, 2005; Strutt, 2001; Strutt, 2002)(Fig. 1-3). This ultimately gives rise to the 

localization of an actin-based structure, the wing hair, at the distal tip of the wing cell 

(Eaton, 2003; Winter et al., 2001).  

In the Drosophila eye, expression and activity of two atypical cadherins, Fat (Ft) 

(Mahoney et al., 1991) and Dachsous (Ds) (Clark et al., 1995), and Four-jointed (Fj), a 

Golgi kinase (Ishikawa et al., 2008), are thought to set up a global positional signal that is 

interpreted by the tissue polarity complex (Cho and Irvine, 2004; Rawls et al., 2002; 

Simon, 2004). Ds localizes in a gradient such that the highest levels are at the D and V 

poles and lowest at the equator. Fj localizes in a complementary pattern – high at the 

equator and low at the poles (Yang et al., 2002). Fat is expressed uniformly throughout 

the eye disc, but is modified by Fj activity in the Golgi so it effectively acts in a gradient 

as well (Strutt et al., 2004). These gradients are thought to bias Fz activity in the 

equatorial cell, although the mechanism by which this information is interpreted by the 

tissue polarity complex is unknown (Yang et al., 2002).  

Tissue polarity in the eye is manifest in the adoption of one of two chiral 

trapezoid forms, and relies on proper execution of three earlier developmental events: 

fate specification (R3/R4 fate); direction of rotation (clockwise or counter-clockwise); 

and degree of rotation (from 0° to 90°) (Wolff et al., 2007). Different subsets of tissue 

polarity genes are required in R3 and R4 to determine R3/R4 cell fate, reminiscent of the 

distinct localization patterns seen in the wing (Fig. 1-3). fz, dsh, dgo, and fmi are required 

in R3, while stbm, pk, and fmi are required in R4 (Jenny et al., 2005; Strutt et al., 2002; 
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Strutt, 2002; Wolff and Rubin, 1998). One transcriptional target of Fz signaling in R3 is 

Delta (Dl), which binds and activates Notch (N) on the R4 cell (Cooper and Bray, 1999; 

Fanto and Mlodzik, 1999; Tomlinson and Struhl, 1999). This differential level of N 

activity results in different fates through the downstream effector Enhancer of split 

(E(spl))(Cooper and Bray, 1999). The direction of rotation has been shown to be tightly 

linked to fate specification, and it was assumed that degree of rotation was, too. For a 

long time, R3 and R4 have been thought of as the cells that control all aspects of tissue 

polarity.  

Other tissue-specific effectors of tissue polarity in the eye include proteins that 

only affect the degree to which ommatidia rotate, while cell fates are specified properly 

and ommatidia initiate rotation in the correct direction. These molecules include the 

serine/threonine kinase Nemo (Nmo), DE-cadherin, DN-cadherin, and Egf signaling 

pathway members (Brown and Freeman, 2003; Choi and Benzer, 1994; Fiehler and 

Wolff, 2008; Gaengel and Mlodzik, 2003; Mirkovic and Mlodzik, 2006; Strutt and Strutt, 

2003). In nmo mutant eyes, ommatidia adopt the correct chirality but generally fail to 

rotate the full 90° (Fig 1-4). nmo is required in R1, R6, and R7 for proper ommatidial 

rotation (Fiehler and Wolff, 2008).  
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Figure 1-3. Asymmetric localization of the tissue polarity proteins. (A) The 

Fz/Dsh/Dgo complex (green) localizes to the distal membrane of pupal wing cells, while 

the Stbm/Pk complex (blue) localizes to the proximal membranes. Fmi is the only core 

tissue polarity protein that localizes to both faces. (B) The Fz/Dsh/Dgo complex blocks 

the Pk/Stbm complex from localizing to the distal membrane, while the Pk/Stbm complex 

prevents the Fz/Dsh/Dgo complex from localizing to the proximal membranes. (C) In the 

R3/R4 cell pair, the Fz/Dsh/Dgo complex localizes to the R3 cell and again prevents 

localization of Stbm/Pk at this membrane. Stbm/Pk, in turn, localize to the R4 membrane 

and block the localization of Fz/Dsh/Dgo at this membrane. 
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Cell adhesion molecules and ommatidial rotation 

Cell adhesion molecules play vital roles in cell movement: excess adhesion 

between two populations of cells inhibits or prevents movement (Hermiston et al., 1996; 

Lecuit, 2005). Previously, two cell adhesion molecules, E-cadherin and N-cadherin, were 

shown to be important during rotation (Mirkovic and Mlodzik, 2006). E-cad is the major 

cadherin in the Drosophila eye, localizing throughout the eye disc. It forms trans 

homodimers and localizes to adherens junctions (AJs), where it binds β-catenin to form 

and stabilize the AJs (Tepass and Harris, 2007). N-cadherin performs a similar function, 

but is confined to neurons and in the Drosophila eye disc is localized only to the R3/R4 

boundary (Mirkovic and Mlodzik, 2006). Loss-of-function studies reveal that DE-

cadherin promotes rotation, while DN-cadherin has the opposite effect, and it is the 

precise balance between levels of these two molecules that is essential for correct rotation 

(Mirkovic and Mlodzik, 2006). Additionally, the cadherins are thought to integrate 

signals from both the Egf signaling pathway and the tissue polarity pathway to control 

rotation, as they interact genetically with members of both pathways (Mirkovic and 

Mlodzik, 2006).  

 

Egfr signaling in eye development and rotation 

The Egf signaling pathway is involved in almost every stage of Drosophila eye 

development, including photoreceptor recruitment (Dominguez et al., 1998; Freeman, 

1997; Kumar et al., 1998; Spencer et al., 1998)), and recent work identified a role for the  
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Figure 1-4. Ommatidial rotation defects in nmoP1 and aosrlt mutant eyes. (A, B) 

Sections through adult eyes and (A’, B’) corresponding schematics. Mutations in nmo 

and Egf signaling pathway members, including aosrlt, specifically affect the degree of 

ommatidial rotation component of tissue polarity. (A, A’) nmoP1 mutant ommatidia 

under-rotate (MAO = 60°, SD = 22 (Fiehler and Wolff, 2008) and data not shown). (B, 

B’) aosrlt mutant ommatidia both over- and under-rotate (MAO = 80°, SD = 40). Green 

trapezoids represent under-rotated ommatidia and yellow trapezoids represent over-

rotated ommatidia. Blue trapezoids and red trapezoids represent wild-type ommatidia in 

the dorsal and ventral halves of the eye, respectively. Orange circles represent ommatidia 

with an incorrect number of photoreceptors. Orange lines indicate the approximate 

location of the equator. 
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Egf signaling pathway in ommatidial rotation (Brown and Freeman, 2003; Gaengel and 

Mlodzik, 2003; Strutt and Strutt, 2003). The main Egfr ligand essential for proper 

rotation is Spitz, with Keren playing a redundant, nonessential role (Brown and Freeman, 

2003; Brown et al., 2007). After ligand binding, the Egfr acts through an adaptor 

molecule and the GEF Sos, ultimately resulting in Ras activation (reviewed in (Shilo, 

2003)). In rotation, both the Ras/Raf/Mapk transcriptional cascade (resulting in activation 

of the transcription factor Pointed (Pnt) (Gabay et al., 1996)) and the Ras/Canoe (Cno) 

cytoskeletal/junctional modification effector pathways transduce the Egf signal (Brown 

and Freeman, 2003; Gaengel and Mlodzik, 2003).  

Cno is the Drosophila homolog of the mammalian AJ protein Afadin/AF-6, and 

has several PDZ domains, a Ras interaction domain, and an actin-binding domain 

(Matsuo et al., 1997; Miyamoto et al., 1995). Afadins localize to AJs, where they bind 

nectins (see below) and initiate AJ formation (Mandai et al., 1997; Pokutta et al., 2002; 

Tachibana et al., 2000). While different molecules such as E-cadherin and β-catenin are 

associated with stable AJs, afadins are particularly known for forming AJs in tissues that 

are continually being remodeled (Takai et al., 2003), such as those that must be at the 

cellular interface between motile and non-motile cells in order to allow the moving cells 

to slip past their stationary neighbors. 

Three different models have been proposed to explain the role of Egfr signaling 

during ommatidial rotation.  Brown and Freeman suggest that Egfr signaling acts as a 

“lock”, or error correction mechanism during pupal development (Brown and Freeman, 

2003). In this model, Egfr signaling acts to keep ommatidia locked into place during 
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Figure 1-5. The Egf signaling pathway during ommatidial rotation. Upon Spi 

binding, the Egfr dimerizes and transautophosphorylates. This recruits the adaptor 

molecule Grb and the GEF Sos to the plasma membrane. Sos activates Ras, which then 

stimulates the Mapk pathway (Raf, Mek, Erk), resulting in changes in transcription via 

the transcription factor Pnt. Transcriptional targets of Pnt include the inhibitors Aos, Sty, 

and Kekkon1, forming a negative feedback loop. Ras also interacts with the actin-binding 

molecule Cno during ommatidial rotation. 
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later morphogenetic events.  Gaengal and Mlodzik suggest that Egfr signaling acts as a 

“gas” pedal during the second 45o of rotation, regulating the strength of signaling from 

some other source (Gaengel and Mlodzik, 2003).  They see significant over- and under- 

rotation of ommatidia before the end of larval development in Egf signaling pathway 

mutant eyes.  Strutt and Strutt suggest that the rotation phenotypes seen in Egfr pathway 

members are due to the partial transformation of the mystery cells into R3/R4, resulting 

in inappropriate Fz localization, which contributes to the rotation phenotype (Strutt and 

Strutt, 2003).   

Sections through adult Egf pathway mutant eyes reveal that ommatidia both over- 

and under-rotate (Fig. 1-4) (Brown and Freeman, 2003; Gaengel and Mlodzik, 2003; 

Strutt and Strutt, 2003). The mean angle of orientation (MAO) is 90°, but few ommatidia 

actually rotate this amount. There is a wide variance in the degree to which individual 

ommatidia rotate. This is true whether the mutation results in an increase or a decrease of 

Egf signaling, which made it difficult to determine whether the Egf pathway promotes or 

inhibits rotation. Genetic interactions between DE-cadherin and spitz suggest that the Egf 

pathway acts in a positive direction on rotation (Mirkovic and Mlodzik, 2006).  

The Egf signaling pathway has multiple levels of regulation (Shilo, 2003). 

Transcriptional targets include its own inhibitors argos (aos), kekkon1, and sprouty (sty) 

thus forming a negative feedback loop (Casci et al., 1999; Ghiglione et al., 1999; 

Golembo et al., 1996; Klein et al., 2004). These mutations in Egfr inhibitors display 

defects in ommatidial rotation in addition to photoreceptor cell number defects. Other 

regulators of Egf signaling are not transcriptionally regulated by Egfr activation. These 

genes include two cell adhesion molecules, Echinoid (Ed) and Friend-of-Echinoid (Fred), 
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which cooperate to negatively regulate the Egf receptor during R8 selection (Rawlins et 

al., 2003b; Spencer and Cagan, 2003) (Spencer in preparation). 

 

Ed and Fred in Drosophila development 

ed and its paralog fred both encode large transmembrane cell adhesion molecules 

(CAMs) with extracellular immunoglobin (Ig) C2 repeats and fibronectin type III 

domains (Bai et al., 2001; Chandra et al., 2003).  While the extracellular domains of Ed 

and Fred share 69% identity, their intracellular domains are only 30% identical (Chandra 

et al., 2003). The intercellular tail of Ed contains a C-terminal PDZ-binding motif 

(PDZBM) and a Jaguar (Jar) binding domain, while the Fred intracellular domain has no 

conserved motifs (Chandra et al., 2003; Lin et al., 2007; Wei et al., 2005).   

 Ed negatively regulates Egfr upstream of Ras during R8 selection (Rawlins et al., 

2003b; Spencer and Cagan, 2003). Mutations in ed lead to extra photoreceptor cells. Ed is 

putatively phosphorylated by, and may form a complex with, the Egfr. In addition, the Ed 

intracellular domain is cleaved, and undergoes endocytosis, which regulates Egf signaling 

(Spencer and Cagan, 2003). Additionally, Ed forms homophilic and heterophilic trans 

dimers with Fred, and this dimerization is necessary to keep Ed properly localized to the 

cell membrane (Spencer and Cagan, 2003) (Spencer, in preparation). In the wing, the 

PDZBM of Ed has been shown to bind both the AJ protein Bazooka (Baz) and the Ras 

effector Canoe (Cno) at their PDZ domains, and this binding is important for AJ 

stabilization (Wei et al., 2005).   

Fred also functions to regulate Egf signaling. Recent evidence indicates that Fred 

binds Ed and inhibits Ed activity (Spencer, in preparation). Ed and Fred form 
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transheterodimers, and these are thought to promote Ed retention at the membrane and 

interfere with Ed cleavage and endocytosis and thus prevent Ed’s inhibition of Egf 

signaling (Spencer, in preparation). In vitro, cells with high levels of either Ed or Fred 

segregate away from cells with low levels of Ed or Fred (Spencer, in 

preparation)(Spencer and Cagan, 2003). In vivo, Ed or Fred is not detectable at the 

interface between two cells with different levels of Ed or Fred (Laplante and Nilson, 

2006).  

In addition to their roles in eye development, ed and fred have additional tissue-

specific functions that suggest a general role in attenuating Egfr and Notch signaling. For 

example, Ed and Fred modulate N signaling in the Drosophila notum, and are involved in 

the process of SOP selection through influencing Dl endocytosis (Chandra et al., 

2003)(Ahmed, Chandra et al. 2003)(Escudero et al., 2003; Rawlins et al., 2003a). In this 

process, Ed and Fred do not interact with the Egf signaling pathway, even though it too 

plays a role in SOP patterning. In the wing, Ed acts redundantly with E-cadherin, binding 

Bazooka (Baz), an AJ protein, and Cno, to form and stabilize AJs (Wei et al., 2005). In 

this tissue, Ed is necessary for the correct localization of Cno and Baz; neither protein is 

membrane associated when Ed is not present. In the oocyte and embryo, differential Ed 

expression in adjacent cell types is thought to trigger actin cable formation, promoting 

dorsal closure (Laplante and Nilson, 2006). Also in the embryo, Ed binds Jar, the fly 

unconventional myosin VI, to promote its dimerization, and regulate dorsal closure (Lin 

et al., 2007).  

The closest mammalian homologs of Ed and Fred are the nectins (Wei et al., 

2005), Ig superfamily members that bind to Afadin/Af-6, and initiate formation of AJs 
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(Rikitake and Takai, 2008; Sakisaka et al., 2007; Tachibana et al., 2000; Takahashi et al., 

1999; Takai et al., 2003). In mammals, Afadin and its binding partners, nectins and α-

actinin, build and stabilize those dynamic AJs that undergo remodeling (Ooshio et al., 

2007; Takahashi et al., 1999).  Nectins and afadins have been implicated in numerous 

human diseases and developmental defects, including breast cancer, metastasis, and cleft 

palate (Sozen et al., 2001; Suzuki et al., 2000).  

 

Scope of this Dissertation 

The complete mechanism underlying ommatidial rotation remains unclear. 

Manipulation of cell-cell adhesion and response to cell signaling are clearly vital for 

correct ommatidial rotation, but the means by which ommatidia coordinate these 

components to orchestrate the complex directed cell movements of ommatidial rotation is 

not known. To address this issue, I have investigated the roles played by two paralogous 

genes, ed and fred, in ommatidial rotation. First, I characterized the phenotypes of both 

genes, and found that they act during larval development to regulate the movements of 

the ommatidial cells. I next conducted a row-by-row analysis of the Ed and Fred protein 

localization during ommatidial rotation, and found that they localize in strikingly 

different patterns. From this analysis, I show that Ed levels are reduced in ommatidial 

cells prior to rotation, and that this reduction necessary for ommatidial rotation to occur. 

In contrast, I find that Fred is enriched in ommatidial cells compared to interommatidial 

cells, and that its expression pattern phenocopies those of two tissue polarity proteins 

Stbm and Fmi.  
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Using standard mosaic analysis, I demonstrate that ed and fred are required in R1, 

R6, R7, and the cone cells for correct ommatidial rotation. Furthermore, I show that both 

ed and fred interact genetically with members of the Egf signaling pathway during 

ommatidial rotation, and that unlike in the wing, Ed does not localize Cno to the 

membrane in eye discs. In addition, I show that ed and fred interact genetically with 

different subsets of tissue polarity genes: ed interacts with R3 genes, and fred interacts 

with R4 genes. I demonstrate a role for at lease one tissue polarity gene, stbm, in R7, 

providing the first evidence that a tissue polarity gene acts outside of R3/R4 to regulate 

tissue polarity. Finally, I generate and characterize a loss-of-function mutation that maps 

near ed and fred and phenocopies the ed and fred rotation and photoreceptor recruitment 

phenotypes.  
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CHAPTER TWO 

 

 

 

The cell adhesion molecules Echinoid and Friend-of-

Echinoid coordinate cell adhesion and cell signaling 

to regulate the rate of ommatidial rotation in the 

Drosophila eye 
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Abstract 
 

Directed cellular movements are a universal feature of morphogenesis in 

multicellular organisms. Differential adhesion between the stationary and motile cells 

promotes these cellular movements to effect spatial patterning of cells. A prominent 

feature of Drosophila eye development is the 90° rotational movement of the ommatidial 

precursors within a matrix of stationary cells. Here, we demonstrate that the paralogous 

cell adhesion molecules, Echinoid (Ed) and Friend-of-Echinoid (Fred), act throughout 

ommatidial rotation to modulate the degree to which the ommatidial precursors move. 

We propose that differential levels of Ed and Fred between stationary and rotating cells at 

the initiation of rotation creates a permissive environment for cell movement, and that 

uniform levels in these two populations of cells later in the process contribute to slowing 

the movement. In addition to this expected adhesive role in ommatidial rotation, we 

demonstrate, using a genetic approach, that ed and fred impart a second, independent, 

“brake-like” contribution to this process through the Egfr signaling pathway. Ed and Fred 

are localized in largely distinct patterns, but both patterns are dynamic throughout 

rotation. However, ed and fred are required in only a subset of cells for normal rotation. 

ed and fred are required in photoreceptors R1, R7 and R6, cells that, with one exception 

(nmo) have not been linked to a role in TP. Of particular note, this is the first 

demonstration of a requirement for the cone cells in the ommatidial rotation aspect of TP. 

ed and fred also genetically interact with the tissue polarity genes, but affect only the 

degree of rotation component of the TP phenotype, not the direction of rotation or the 

specification of the R3 and R4 fates. Significantly, we demonstrate that at least one tissue 

polarity protein, Stbm, is required in R7 to control the degree of ommatidial rotation.  
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Introduction 

Cell-cell adhesion is fundamental to metazoan development and to the growth and 

maintenance of adult tissues. In adult tissues, continuous regulation of cell adhesion 

underlies events such as spermatid development (Inagaki et al., 2006; Mueller et al., 

2003; Ozaki-Kuroda et al., 2002), maintenance of apico-basal polarity (Nelson, 2003; 

Tsukita et al., 2001)  and regeneration of tissues that require constant maintenance, such 

as the lining of the gut (Hermiston et al., 1996). Throughout metazoan development, cell 

adhesion plays key roles in events including maintenance of tissue integrity, boundary 

formation (Kim et al., 2000; Tepass et al., 2002), cell signaling (Jamora and Fuchs, 2002; 

Perez-Moreno et al., 2003; Sakisaka et al., 2007), and directed cellular movements 

(Hermiston et al., 1996; Pacquelet and Rorth, 2005). The precise and dynamic control of 

cell adhesion is also a critical regulator of tissue morphogenesis and patterning. For 

example, remodeling cell junctions within epithelia enables single cells and groups of 

cells to slide past their neighbors to reorganize tissues, such as during neural tube closure 

and convergent extension in vertebrates (Djiane et al., 2000; Formstone and Mason, 

2005; Harrington et al., 2007) and ovary maturation and dorsal closure in Drosophila 

(Gorfinkiel and Arias, 2007; Lin et al., 2007; Niewiadomska et al., 1999). Loss-of-

function mutations in cell adhesion molecules result in birth defects, including Zlotogora-

Agur syndrome and Margarita Island ectodermal dysplasia, and disease states such as 

metastatic cancer (Matsushima et al., 2003; Naora and Montell, 2005; Pignatelli, 1998; 

Sozen et al., 2001; Suzuki et al., 1998; Suzuki et al., 2000). The coordinated regulation of 

cell adhesion also plays a key role in the rotational movement of subsets of cells that 

polarizes the Drosophila eye across its dorsal/ventral (D/V) midline in an event known as 
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ommatidial rotation. The mechanism by which changes in cell adhesion regulate this 

morphogenetic movement is poorly understood.  

The 800 precisely aligned unit eyes, or ommatidia, of the Drosophila compound 

eye are polarized across the D/V midline of the eye, the equator. This polarity is manifest 

as two chiral forms of “trapezoids,” composed of the photosensitive membranes, or 

rhabdomeres, of seven of the eight photoreceptor cells. The apex of the trapezoid (R3) 

points north in the dorsal half and south in the ventral half of the eye (Fig.1; reviewed in 

(Wolff and Ready, 1993)) 

Through a series of coordinated morphogenetic movements, the initially 

unpolarized retinal epithelium acquires polarity during the second half of third larval 

instar development. Groups of differentiating cells, the ommatidial precursors, rotate 

independently of their undifferentiated, stationary neighbors, the interommatidial cells 

(IOCs, (Fiehler and Wolff, 2007)). These patterning events closely follow a moving front 

of differentiation, marked by the morphogenetic furrow, which moves from posterior to 

anterior across the eye imaginal disc (Ready et al., 1976). Posterior to the furrow, the 

photoreceptors assemble into ommatidial units, beginning with R8 and followed by the 

R2/R5 and then the R3/R4 pairs. Ommatidial rotation begins coincident with assembly of 

this 5-cell precluster, five rows posterior to the morphogenetic furrow. Rotation continues 

as the R1/ R6 pair, followed by R7 and then the cone cells, joins the growing ommatidial 

unit. Ommatidia rotate 90° counterclockwise in the dorsal half of the eye and 90° 

clockwise in the ventral half. Rotation is complete by row 15 (Fiehler and Wolff, 2007). 

Six core planar cell polarity, or tissue polarity (TP) genes govern the 

establishment of this polarity: frizzled (fz), disheveled (dsh), strabismus (stbm), prickle 
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(pk), diego (dgo), and flamingo (fmi) (Chae et al., 1999; Feiguin et al., 2001; Klein and 

Mlodzik, 2005; Klingensmith et al., 1994; Tree et al., 2002; Usui et al., 1999; Wolff and 

Rubin, 1998). Three phenotypes are evident when TP signaling is disrupted, suggesting 

three distinct events contribute to the establishment of polarity in the Drosophila eye: 

specification of the R3/R4 fates, direction of rotation (clockwise vs. counter-clockwise), 

and degree of rotation. While mosaic analyses indicate a requirement for the TP genes in 

specifying the R3 and R4 cell fates and additional work demonstrates a tight link between 

fate specification and direction of rotation, the mechanisms that control the degree to 

which ommatidia rotate are poorly understood (Fanto and Mlodzik, 1999; Strutt et al., 

2002; Wolff and Rubin, 1998). The identification of several proteins that affect only the 

degree of rotation, including the serine/threonine kinase Nemo, DE-cadherin, DN-

cadherin, and members of the Egfr signaling pathway (Brown and Freeman, 2003; Choi 

and Benzer, 1994; Fiehler and Wolff, 2008; Gaengel and Mlodzik, 2003; Mirkovic and 

Mlodzik, 2006; Strutt and Strutt, 2003), suggests a subset of genes may cooperate with 

the TP genes to regulate this event. 

Genetic evidence reveals the Egfr signaling pathway promotes rotation (Mirkovic 

and Mlodzik, 2006), even though ommatidia in Egfr pathway mutant eyes can over- or 

under-rotate, leading to a wide variance in the degree to which individual ommatidia 

rotate (Brown and Freeman, 2003; Gaengel and Mlodzik, 2003; Strutt and Strutt, 2003). 

Egfr pathway members signal through two downstream effectors: the Mapk/Pnt 

transcriptional cascade and Canoe (Cno), the actin binding protein and fly homolog of 

Afadin/AF-6, which stabilizes adherens junctions (Brown and Freeman, 2003; Gaengel 

and Mlodzik, 2003). Egfr pathway members also interact genetically with E-cadherin and 
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N-cadherin during rotation (Mirkovic and Mlodzik, 2006). E-cad and N-cad act in 

opposite directions in rotation (E-cad promotes and N-cad inhibits rotation), and Egfr 

signaling pathway members act in the same direction as E-cad (Mirkovic and Mlodzik, 

2006). Although recent studies have identified some of the genetic interactions important 

in rotation, it remains unclear how rotating ommatidia coordinate changes in cell 

adhesion and cell signaling to initiate, advance, and arrest rotation.  

Here, we describe roles for two paralogous cell adhesion molecules (CAMs), 

Echinoid (Ed) and Friend-of-Echinoid (Fred), in controlling one output of TP, the degree 

of ommatidial rotation. Ed and Fred are large transmembrane CAMs with extracellular 

immunoglobin (Ig) C2 repeats and fibronectin type III domains (Bai et al., 2001; Chandra 

et al., 2003). The work described here demonstrates that Ed and Fred are required at 

multiple steps during ommatidial rotation and that they participate in two functionally 

distinct mechanisms to either enable or slow rotation. We propose that in one mechanism, 

Ed and Fred modulate adhesivity and thereby regulate rotation; in a second mechanism, 

they regulate rotation via Egfr signaling. Ed and Fred levels must be tightly titrated both 

initially, to create an environment permissive for rotation, and later, to slow rotation, 

likely by equalizing levels between rotating and non-rotating populations of cells. In 

addition, we demonstrate that ed and fred act in a subset of photoreceptor cells and in the 

cone cells, perhaps to regulate levels of Egfr signaling, ultimately inhibiting rotation. 

Notably, this requirement represents the first demonstration of a role for the cone cells in 

ommatidial rotation. This work also demonstrates that ed and fred interact with the core 

tissue polarity genes to control rotation. Finally, we have identified a new and unexpected 

role for stbm in photoreceptor R7 to control the degree to which ommatidia rotate. This 
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result raises the intriguing possibility that all of the tissue polarity genes function in 

distinct subsets of cells to control R3/R4 fate specification and the degree of rotation.  
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Materials and Methods 

Genetics 

Fly lines used: w1118; ed1; dsh1; fzN21/TM3; fzJ22; stbm15cn, stbm6cn, stbm6cn/CyO, 

stbm153, stbmJ14; pksple; dgo380; aosrlt/TM6; fmifrz3; w1118; PneoFRT42D fmi192/CyO; w1118; 

PlacWspis3547/CyO; cnomis1; cno2/TM3 (gift from U. Gaul); pntΔ88/TM3;  w1118; 

PlacWpnt1277; nmoP1; Elp; sev-GAL4; GMR-GAL4 (gift from H. Chang); ro-GAL4 (gift 

from J. Fischer); UAS-ed (gift from J.-C. Hsu); UAS-fredRNAi (gift from H. Vaessin); y w 

eyFlp; edK1102FRT40A/BC, ed1x5FRT40A/CyO, edSlH8FRT40A/CyO, 

fredl(2)gH10FRT40A/CyO and fredl(2)gH24FRT40A/CyO (described in (de Belle et al., 1993)) 

fredl(2)gH24, edK1102FRT40A/CyO, UAS-fred (gifts from S. Spencer.) All crosses were 

raised at 25°C. Stocks are available from Bloomington unless otherwise noted. 

 

Immunohistochemistry 

Third instar eye imaginal discs were dissected, fixed and stained as described 

(Wolff 2000), with the exception of tissue stained with α-Cno, which was fixed in PLP 

(Matsuo et al., 1999). Discs were incubated in primary antibody overnight at 4°C at the 

following concentrations: mouse α-Armadillo, 1:10 (Developmental Studies Hybridoma 

Bank); rabbit α-Ed, 1:1000 (gift from A. Jarman); guinea pig α-Fred, 1:1000 (generous 

gift from S. Spencer); rabbit α-Cno, 1:500 (generous gift from D. Yamamoto); mouse α-

Flamingo, 1:20 (Developmental Studies Hybridoma Bank); rabbit α-Stbm, 1:500; mouse 

α-dpERK, 1:500 (Sigma); rabbit α-PointedP1, 1:500 (gift from J. Skeath); rat α-DE-

cadherin, 1:20 (Developmental Studies Hybridoma Bank). Alexafluor-conjugated 

secondary antibodies (Molecular Probes) were used at a concentration of 1:300 and 
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incubated at room temperature for two hours in dark conditions. Discs were mounted in 

1:1 N-propylgallate:Vectashield and imaged on a Leica confocal microscope. 

 

Phenotypic analyses 

Adult eyes were fixed, embedded, and sectioned as described (Wolff, 2000). 

Degree of rotation was determined using ImageJ software (NIH) to measure angles 

defined by vectors drawn 1) through the rhabdomeres of photoreceptors R1, R2, and R3, 

and 2) parallel to the equator. Only ommatidia with a correct complement of eight 

photoreceptor cells were scored. For all genotypes, 1000-1500 ommatidia from between 

six and ten eyes were scored. Statistical significance was determined using the Student’s 

t-test (for mean angle of orientation) and F-test (for variance).  

Larval rotation phenotypes were scored in third instar eye imaginal discs stained 

with α-Armadillo to outline cells. ImageJ software was used to measure the rotation 

angle between two vectors, one drawn between R3 and R4 and through R8, and the 

second drawn parallel to the equator. Angles of orientation were scored in rows two 

through 15 in 15 independent eye discs (i.e. one per larva) for each genotype. 

 

Generation of mitotic clones 

Mitotic clones were generated using the FLP/FRT technique (Xu and Rubin, 

1993). Larvae of the appropriate genotypes were heat-shocked for one hour during the 

first instar to generate hsFlp clones. To generate eyFLP clones, larvae were raised at 25°C 

until the third instar. The following Flp and FRT lines were used: yw hsFlp; w+ FRT40A, 

w ry eyFlp; w+ (GMR-myr-GFP) FRT40A/CyO; w1118, eyFlp; w+ (GMR-myr-GFP) 
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FRT42D. Mutant tissue is marked with w- in adult eyes and with the absence of GFP in 

larval discs.  

 

Mosaic analysis 

Mosaic analysis was performed in eyFLP- and hsFLP-generated mitotic clones. 

Phenotypes and photoreceptor genotypes were scored in adult sections. Wild-type cells in 

mosaic ommatidia were marked with w+ and therefore identified by the presence of 

pigment granules at the base of the rhabdomeres. Only ommatidia with a correct 

complement of eight photoreceptor cells were scored for rotation. 
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Results 

ed and fred mutant ommatidia misrotate 

The cell adhesion molecule, echinoid (ed), was identified as a dominant 

suppressor of the ommatidial over-rotation phenotype caused by misexpression of the S/T 

kinase, nemo (nmo) (Fiehler and Wolff, 2008). Although loss-of-function alleles of ed 

and nmo do not exhibit genetic interactions (data not shown), phenotypic analyses reveal 

key roles for ed and its paralog, friend-of-echinoid (fred), during ommatidial rotation. 

Wild-type ommatidia in adult eyes are oriented at almost precisely 90° (90.6°, standard 

deviation =1.7). In contrast, many ed and fred mutant ommatidia are oriented at either 

greater than or less than 90° (Fig 2-1, Table 2-1). While the mean angle of orientation 

(MAO; see Materials and Methods for method used to determine MAO) for both ed and 

fred loss-of-function alleles does not differ significantly from wild type, the variance, a 

quantifiable measurement of phenotype represented by the standard deviation (SD), 

differs significantly from wild type (Table 2-1). Furthermore, stronger allelic 

combinations of ed (e.g. the null allele edk1102 in trans to the hypomorphic allele edSlH8) 

exhibit a greater variance (SD=19.6, P=0) than do weaker allelic combinations, such as 

the hypomorph ed1/ed1 (SD=10, P=0). Loss of fred function, as assayed in genetically 

mutant clones of the hypomorphic allele fredH10, yields a similar phenotype with a large 

variance (SD=13.5, P=0) and a MAO close to that of wild type (89.8°).  

 ed and fred act cooperatively in R8 specification (Rawlins et al., 2003b; Spencer 

and Cagan, 2003) and also cooperate to ensure that ommatidia orient at precisely 90° as 

fredH24 dominantly enhances the ommatidial orientation phenotype of edK1102/edSlH8 

transheterozygotes (Fig. 2-1G, Table 2-1).  Notably, the ed and  
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Figure 2-1. ed and fred mutant ommatidia misrotate. (A-C) Tangential sections 

through adult eyes (left panels) and corresponding schematics (right panels). (A) Wild 

type. Ommatidia come in two chiral forms, shown as blue in the dorsal and red in the 

ventral half of the eye. (B) Some edSlH8/edK1102 ommatidia under- or over-rotate (green and 

yellow trapezoids, respectively), and some contain an incorrect number of photoreceptors 

(orange circles). (C) Some ommatidia in fredH10 clones rotate correctly while others 

under- or over-rotate. (D-F) The ed and fred orientation phenotypes result from aberrant 

ommatidial rotation. α-Arm (red) outlines cell boundaries. Yellow vectors bisect R8 and 

run through the R3/R4 interface, highlighting the angle of orientation of each 

ommatidium. (D) Wild-type ommatidia follow a smooth progression of rotation. 

Ommatidial precursors in both edK1102/edSlH8 (E) and GMR>fredRNAi (F) knockdown eye 

discs misrotate. (G) Reduction of fred activity enhances the ed mutant phenotype; 
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histogram illustrating the percentage of ommatidia (Y-axis) that are oriented at the angles 

indicated (X-axis) in edk1102/edSlH8 and edK1102, fredH24/edSlH8 eyes. (H) Graphical 

representation of data from (D-F) plotted as the MAO of ommatidia in each of four 

genotypes in rows 2-15. Error bars represent the variance (SD). w1118 is the control for 

edK1102/edSlH8; GMR>GFP is the control for GMR>fredRNAi. The SD of ed and fred 

ommatidia is significantly different from that of the controls between rows 7-15. Key to 

trapezoid color for all schematics: blue, red, wild-type; green, under-rotated; yellow, 

over-rotated; black, fail to rotate; orange circles, incorrect number of photoreceptors.  
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Table 2-1. List of ed and fred genetic interactions. 

 

 

 

 Genotype Mean Angle 
Orientation 

(MAO) 

Standard 
deviation  

(SD) 

P-value 
P-value 

 
N 

 
n 

 w1118 90.6 1.85  8 1006 
 ed1 87.16 10.1 0 9 1383 
 edSlH8/edK1102 90.56 19.6 0 6 417 
 fredH10 clones 89.82 13.5 0 10 420 
 GMR>fredRNAi 87.65 13.14 0 10 1039 
 fredH24, edK1102/edSlH8 87.1 29.71 4E-12 10 384 
Tissue  fzN21/fzJ22 88.38 6.54  10 1126 
polarity genes ed1x5/+;fzN21/fzJ22 85.5 13.56 1.0E-126 10 1275 
 fredH24/+;fzN21/fzJ22 88.49 7.69 4E-4 10 1355 
 dsh1/Y 86.16 10.7  7 899 
 dsh1/Y;ed1x5/+ 82.3 16.87 9E-41 6 752 
 dsh1/Y;fredH24/+ 86.22 12.19 4E-5 9 1025 
 stbm153 76.27 22.66  11 1638 
 ed1x5/+;stbm153 68.29 24.95 0.15 10 1199 
 fredH24/+;stbm153 83.01 15.4 1.0E-45 6 842 
 pksple 88.34 4.69  10 1431 
 edK1102/+;pksple 88.99 4.52 0.49 10 1505 
 fredH24/+;pksple 88.02 5.03 0.29 10 1430 
 dgo380 88.61 11.83  8 755 
 ed1x5/+;dgo380 83.9 16.37 3E-25 10 1235 
 fredH24/+;dgo380 87.89 13.08 7E-4 10 1142 
 fmifrz3 88 10.24  6 612 
 ed1x5/+;fmifrz3 83.83 24.52 1.6E-13 6 627 
 fredH24/+;fmifrz3 85.17 15.49 1.2E-11 9 1010 
       
Egfr pathway aosrlt 77.84 40.42  6 645 
 ed1x5/+;aosrlt 80.61 38.39 0.02 10 1055 
 fredH10/+;aosrlt 78.00 39.26 0.11 10 1040 
 ed1 87.17 10.13 0 10 1383 
 ed1, spis3547/ed1 89.88 5.71 1.3E-76 10 1295 
 cnomis1/cno2 94.30 26.28  6 728 
 ed1x5/+;cnomis1/cno2 88.39 33.48 4.9E-25 10 867 
 fredH10/+;cnomis1/cno2 95.99 20.65 1.8E-20 10 1382 
 Elp 92.08 12.12  5 466 
 fredh24/Elp 88.54 8.34 1E-192 5 464 
 pntΔ88/pnt1277 85.5 16.64  9 630 
 ed1x5/+;pntΔ88/pnt1277 83.53 20.84 2E-6 6 611 
 fredH10/+;pntΔ88/pnt1277 91.2 5.1 4E-297 8 987 
P-values are derived from F-test. 
F-test P-values are for a comparison between SD of genotype indicated and its respective 
baseline (i.e. homozygous phenotype is baseline for modified genotypes). 
“N” refers to the number of eyes scored; “n” refers to the number of ommatidia scored.  
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fred ommatidial orientation phenotypes are essentially identical to those of the tissue 

polarity mutants. However, in contrast to the tissue polarity mutants, which also exhibit 

chirality and R3/R4 fate specification defects, loss of ed or fred function disrupts only the 

degree of ommatidial orientation. 

The ed and fred orientation phenotypes could originate from two non-mutually 

exclusive patterning events: ommatidial precursors may either fall short of or rotate past 

the normal 90° stopping point, or the misalignment could result from defects in 

morphogenetic events that occur during pupal life, such as cell death (Fiehler and Wolff, 

2007) or ommatidial stabilization following rotation. To establish whether ed and fred 

function during ommatidial rotation, a row-by-row analysis of the degree to which 

individual ommatidia rotate was conducted between rows 2-15 in third instar eye 

imaginal discs lacking ed or fred function and compared to age-matched, wild-type 

counterparts (w1118 or GMR>GFP; see Methods for details). Rotation was measured in 

edSlH8/edK1102 and GMR>fredRNAi eye imaginal discs (fred alleles are lethal, necessitating 

the use of fredRNAi; the GMR>fredRNAi phenotype is identical to the fredH10 phenotype; 

Table 2-1).  

In wild type, ommatidial rotation begins between rows four and five and is 

complete by row 15. In edSlH8/edK1102 and GMR>fredRNAi, although the MAO is 

essentially the same as it is in wild type, the variance in the degree of rotation (SD) is 

greater in the mutants/knockdowns than in wild type (Fig. 2-1D). Importantly, the SD 

does not become statistically distinct from wild type until 2-3 rows after the initiation of 

rotation, or row 7: between rows 7 and 15, many ommatidial precursors under- or over-

rotate in ed and fred mutant eye discs relative to wild type (Fig. 2-1E, F). Notably, row 7 
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marks the time at which the anterior and posterior cone cells are recruited into the 

ommatidial precursor (Fiehler and Wolff, 2007).  These results not only demonstrate a 

role for ed and fred in the cellular movements that drive ommatidial rotation, but further 

indicate they are required for the post-initiation stages of rotation rather than for the 

initiation of rotation. While ed and fred may also participate in later patterning events that 

align ommatidia, their contributions to such events would likely play only a minor role in 

ommatidial rotation, as the MAO and SD for ed and fred ommatidia when rotation is 

complete (row 15) are essentially the same as in their adult counterparts.  

 

Ed and Fred localize in dynamic and partially overlapping patterns in 

the eye imaginal disc 

Ed was previously described as localizing throughout the eye imaginal disc (Bai 

et al., 2001; Rawlins et al., 2003b). However, insight into potential mechanisms by which 

Ed might regulate ommatidial rotation necessitated a more detailed, cell-by-cell and row-

by-row analysis of Ed localization. Immunolocalization of the C-terminal, α-Ed antibody 

reveals that high levels of Ed protein localize at the apical surface of all cells in the 

morphogenetic furrow. This pattern persists immediately posterior to the furrow, through 

row 1 (the arc stage; Fig. 2-2A). In row 3, Ed remains enriched at the apical membranes 

of R3, R4, and the mystery cells, but is considerably diminished at the R8/R2/R5 

interfaces (Fig. 2-2B). The most striking change in Ed localization coincides with the 

start of ommatidial rotation (row 4/5) when Ed is reduced specifically within the 

photoreceptors, the cells that will soon begin to rotate (Fig. 2-2C). The low levels of Ed   
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Figure 2-2. Ed localization is dynamic throughout rotation. (A - F) α-Arm (green) 

and (A’ - F’) α-Ed (red) in sequentially older ommatidial precursors in third instar eye 

disc. (A’’- F’’) Merge of α-Arm and α-Ed images. (A’’’-F’’’) Corresponding schematics, 

with Ed localization in ommatidial precursors represented by solid red lines; Ed 

localization in cells outside the ommatidial precursors are shown in black. Dashed red 

lines indicate cell boundaries where Ed is below detectable levels. Intensity of Ed 

staining correlates with the line weight. (A-A’’’) In row 1, Ed is localized in all cells. (B-

B’’’) By row 3, Ed levels have diminished in R8, R2 and R5 (white arrow). Ed punctae 

are visible (yellow arrowheads). (C-C’’’) Just prior to the start of rotation, Ed levels drop 
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in the photoreceptor cells (see also J); Ed is visible at the R3/R4 (white arrow), R2/R3, 

and R4/R5 interfaces and in punctae (yellow arrowhead). (D - D’’’) Ed levels increase in 

the photoreceptors as rotation progresses (white arrow). (E-E’’’) In row 8, Ed remains 

high in the photoreceptor and cone cells (white arrow), and levels equalize between 

rotating and non-rotating cells (yellow arrow) (F-F’’’). At the completion of rotation, Ed 

is enriched at the cone cell/IOC (yellow arrow) and the cone cell/photoreceptor cell 

boundaries (white arrow). Ed (red) vesicles co-localizes with (G) Rab5-GFP (green) and 

(H) Rab7-GFP-positive (green) punctae in both IOCs (yellow arrow) and photoreceptor 

cells (white arrows). (I) Vesicular Ed (red) does not co-localize with α-Rab11  (green) in 

recycling endosomes in either IOCs (yellow arrows) or photoreceptors (white arrows). (J) 

Low magnification image of an eye imaginal disc stained with α-Ed. Just before rotation 

begins, ommatidia with low levels of Ed appear as “holes” in the staining pattern (white 

arrows). Mitotic cells, which also resemble “holes” (yellow arrowhead), are distinct. 
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in the photoreceptors relative to the robust Ed staining in the IOCs make the 

photoreceptor clusters appear as holes within the imaginal disc epithelium, a staining 

pattern that persists until approximately row 7 (Fig. 2-2D, J). The distinct difference in 

Ed levels between rotating cells (photoreceptors and cone cells) and non-rotating cells 

(the undifferentiated IOCs; (Fiehler and Wolff, 2007)) at the onset of rotation raises the 

intriguing possibility that Ed must be downregulated to allow rotating cells to slip past 

their stationary neighbors. This notion is consistent with Ed’s classification as an Ig 

domain CAM and with the observation that cells with higher levels of Ed adhere more 

strongly to each other than to cells with lower levels of Ed (Spencer and Cagan, 2003; 

Wei et al., 2005). 

Ed levels are initially high in photoreceptors R1, R6 and R7 when they are 

recruited into the growing ommatidium in rows 5/6 (Fig. 2-2D, E). They remain high at 

their interface with the stationary IOCs, yet decrease at the interface with the adjacent 

photoreceptors (i.e. the R1/R2 and R5/R6 cell boundaries). Shortly following the 

recruitment of these photoreceptors and the consequent increase in Ed levels at the 

rotation interface, rotation slows (row 7). Given that Ed is a CAM, and given the close 

correlation between high levels of Ed and slower rotation, initial and then sustained levels 

of Ed at the interface between rotating and non-rotating cells may provide a mechanism 

for slowing/stopping rotation.  

  When the cone cells are recruited into the ommatidial cluster, there is a dramatic 

shift in relative levels of Ed within the ommatidia and in the IOCs: Ed becomes 

prominent in two bands, one at the interface between the cone cells and the 

photoreceptors and a second at the interface between the cone cells and the IOCs (Fig. 2-
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2E, F). Notably, the recruitment of the cone cells and the resulting increase in Ed levels 

are coincident with the second, slower 45° of rotation (Fiehler and Wolff, 2007). The 

distinct early and late patterns of Ed localization in rotating vs. stationary cells suggest a 

model in which adhesion between rotating and non-rotating cells is reduced early to 

enable cells to slide past one another, and subsequently increased during the slow phase 

of rotation to slow, and ultimately stop, rotation.  

In addition to its membrane localization, Ed is also evident in intracellular 

vesicles throughout the eye disc (Fig. 2-2B, C). The IOCs contain large Ed punctae that 

frequently co-localize with either GFP-tagged Rab5 (an early endosome marker, Fig. 2-

2G) or Rab7 (a late endosome/lysosome marker, Fig. 2-2H), but not with α-Rab11 

(which labels recycling endosomes, Fig. 2-2I). Photoreceptors R8, R2, R5, R3 and R4 

often contain Ed punctae before and at the very beginning of rotation and again, the Ed-

positive punctae frequently also contain Rab5 or Rab7, but not Rab11, suggesting that Ed 

is endocytosed and degraded. As noted above, Ed levels in the membranes of R8, R2, R5, 

R3, and R4 – the first cells to join the ommatidia – are initially high but decrease just 

before rotation begins (Fig. 2-2C); the presence of Ed in endosomes in these cells prior to 

the onset of rotation suggests that the cells in the cluster are actively reducing Ed levels, 

again suggesting that rotation requires different Ed levels in moving and stationary cells. 

In sharp contrast, Ed is not found in vesicles in photoreceptors R1, R6, and R7 (although 

Rab5 and Rab7 are prominent in these cells, Fig. 2-2G, H). This is consistent with the 

observation that Ed remains enriched at the interface between the IOCs and 

photoreceptors R1, R6, and R7 -- cells that join the cluster just before the second, slower 
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half of rotation -- and also suggests that Ed may play a distinct role in these cells relative 

to the other photoreceptor cells in the cluster. 

The localization pattern of Fred, as detected by an antibody raised against a 

peptide in the Fred intracellular domain (Spencer, in preparation), differs markedly from 

that of Ed. The Fred pattern is strongly reminiscent of those of the tissue polarity proteins 

Stbm and Fmi, suggesting these proteins may share functions during rotation. Like Ed, 

Fred protein is abundant in the morphogenetic furrow. In contrast to Ed, early in rotation 

Fred is enriched in the photoreceptors relative to the surrounding IOCs (Fig. 2-3A, B). In 

addition, similar to the TP proteins, Fred’s localization in R3 and R4 is dynamic during 

the first half of rotation. At the initiation of rotation (rows 4-5), Fred is localized in a 

double-horseshoe pattern (UU), outlining photoreceptors R3 and R4 except where they 

abut R2 and R5 (Fig. 2-3B – B’’’). Approximately one row, or 1.5 hours later, in row 6, 

Fred is restricted to the lateral edge of the R4 cell and the R3/R4 boundary (Fig. 2-3C – 

C’’’, D – D’’’). Fred levels remain high in R1, R6 and at the R7/R8 interface as they are 

recruited into the photoreceptor cluster in row 6 (Fig. 2-3; C-C’’’). One row further 

posterior, Fred is not detectable at the R3/R4 boundary but remains at the lateral edge of 

R4, the R7/R8 interface and in R1 and R6 (Fig. 2-3E – E’’’). The relatively high level of 

Fred in R1, R6 and R7 compared to the other photoreceptor cells during the second half 

of rotation predicts an important role for Fred in these cells. Following recruitment of the 

cone cells, the Fred pattern recapitulates the Ed pattern in that bands of Fred are evident 

at the interfaces between both the cone cells and the photoreceptors and the cone cells 

and IOCs (Fig. 2-3F – F’’’). As described above for Ed, since Fred is also an Ig-  
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Figure 2-3. Fred localization is dynamic throughout rotation. (A-F) α-Arm (red), (A’- 

F’) α-Fred (green), and (A’’- F’’) merge, in increasingly older ommatidial precursors in 

third instar eye disc. (A’’’- F’’’) corresponding schematics; Fred localization is 

represented by green lines, line weight correlates with intensity of Fred staining. (A-A’’’) 

In row 3, Fred levels are enriched in R3 (white arrow), R4 (not evident in this image), 

and the mystery cells (yellow arrow). (B-B’’’) Just prior to the initiation of rotation, Fred 

localizes to the lateral edges of R3 and R4 (white arrows) and the R3/R4 boundary 

(yellow arrowhead). (C-C’’’) In row 6, Fred begins to disappear from R3 (white arrow), 

but remains high in R4 and at the R3/R4 boundary. The newly added R1 and R6 contain 

high levels of Fred (yellow arrowheads). (D-D’’’) Row 7: Fred disappears from R3 and is 

still high in R4 and at R3/R4 boundary (white arrow). A bright band of Fred highlights 

the interface between R7 and R8 (yellow arrowhead), and Fred can still be seen faintly in 

R1 and R6. (E-E’’’) By row 9, Fred is no longer present at the R3/R4 boundary, outlining 

only the periphery of R4 (white arrow). (F-F’’’) At the end of rotation, Fred is enriched at 
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the interfaces between the cone cells and the IOCs (white arrow) and also at the 

boundaries between the photoreceptors and the cone cells (yellow arrow).  
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containing CAM, the localization pattern at the cone cell/photoreceptor and cone 

cell/IOC boundaries suggests adhesion increases between these subsets of cells during the 

second, slower phase of rotation, perhaps serving as a brake for rotating cells. 

 

Misexpression of ed and fred generates an under-rotation phenotype 

The dynamic localization of Ed and Fred in rotating and stationary cells suggest 

that ed and fred must be tightly regulated in time and space to achieve normal rotation. 

To test this hypothesis, cell-specific drivers were used to manipulate Ed and Fred levels 

in the photoreceptors and IOCs to either artificially equalize levels between rotating and 

non-rotating cells or to force high levels of expression in cells where Ed and Fred are not 

normally elevated, and to subsequently evaluate the effect on rotation. 

Ommatidial precursors rotate more slowly when driving UAS>ed or UAS>fred 

with the following drivers: sev>Gal4 (R3, R4, R1, R6, R7 and the cone cells); ro>Gal4 

(R8, R2, and R5); and GMR>Gal4 (all cells posterior to the morphogenetic furrow). 

Interestingly, despite the distinct Ed and Fred localization patterns, the consequence of 

mis-expression is similar for both ed and fred. When either ed or fred is driven under the 

sev promoter, ommatidia under-rotate, on average, and exhibit a significant variance 

(Table 2-1, Fig. 2-4A, B). A similar phenotype results from mis-expression of UAS>fred 

driven by ro>Gal4, although driving UAS>ed with ro>Gal4 does not cause a rotation 

phenotype (Fig. 2-4E, F). (Note that some ro >ed ommatidia do have the expected 

missing photoreceptor phenotype due to an effect on Egfr signaling (Rawlins et al., 

2003b; Spencer and Cagan, 2003). In the genotypes that under-rotate, aberrant rotation is 

evident from the start of rotation, or between rows 4 and 5 (Fig. 2-4G). By row 15, when  
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Figure 2-4. Misexpression of ed or fred results in under-rotation. (A-F) Sections 

through adult eyes and corresponding schematics of ed and fred misexpression lines. (A, 

B) sev>ed and sev>fred ommatidia frequently under-rotate; very few ommatidia are 

missing photoreceptors. (C) GMR>ed tissue is severely disrupted, precluding analysis of 

angles of orientation. (D) Most ommatidia in GMR>fred adult eyes under-rotate. (E) 

Most ommatidia rotate 90° in ro>ed eyes; some ommatidia are missing photoreceptors. 

(F) In contrast, many ommatidia under-rotate in ro>fred eyes. (G) Graph of larval 

rotation, or MAO, for ommatidia in rows 2-15; Y-axis, degree of rotation. Ommatidia in 

misexpression lines are under-rotated in rows 4-15 compared to controls.  Error bars 

represent the SD. 
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rotation is complete in wild type, ommatidia in these mis-expression backgrounds have 

only rotated approximately 60° (Fig. 2-4G). Overall, these data indicate that excess ed 

and fred activity early in rotation and forced equalization of levels in rotating vs. non-

rotating cells interferes with rotation, suggesting that dissimilar Ed and Fred levels in 

rotating and non-rotating cells are vital for the progression of rotation. 

 

ed and fred are required in a subset of cells for ommatidial rotation 

Ed and Fred are dynamically localized in multiple cell types in the eye disc during 

rotation, including both motile and stationary cells (Fig. 2-2, Fig. 2-3). Since ed and fred 

have pleiotropic effects, the localization patterns of the proteins do not definitively 

identify those cells that require ed and fred for normal rotation, particularly since Ed and 

Fred regulate the reiterative Egfr signaling necessary for photoreceptor recruitment 

(Freeman, 1997; Spencer and Cagan, 2003; Spencer et al., 1998) at a time coincident with 

their role in ommatidial rotation. To identify the single photoreceptor or subsets of 

photoreceptor cells in which Ed and/or Fred function to regulate ommatidial rotation, we 

conducted a mosaic analysis. The FLP/FRT system (Xu and Rubin, 1993) was used to 

generate clones of either ed1x5 or fredH10 mutant ommatidia. The degree of rotation of 

mosaic ommatidia, those with a mixture of genetically mutant and genetically wild-type 

photoreceptors, was then assessed to evaluate the function of Ed or Fred in both 

individual photoreceptor cells and in specific groups of photoreceptors. Mosaic 

ommatidia mutant for ed (or fred) in a given photoreceptor were compared to mosaic 

ommatidia wild-type for ed in that photoreceptor; the genotypes of the remaining 

photoreceptors were not factored in. Parallel analyses were conducted for  
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Figure 2-5. ed and fred are required in R1, R6, R7 and the cone cells for correct 

ommatidial rotation. (A) Schematic representation of wild-type MAO (black line; 

90.6°) and wild-type variance (SD, green wedge; 1.7). (B) Schematic representation of 

hypothetical mutant MAO (dashed grey line) and SD (red wedges). In C-F, black line: 

MAO when designated cells are genetically wild-type for ed or fred; dashed gray line: 

MAO when designated cells are genetically mutant for ed or fred; genetically wild-type 

SD: green wedges; genetically mutant SD: red wedges; overlap: yellow wedges. (C, F) ed 

and fred are required in photoreceptors R1, R6 and R7, and the cone cells for rotation. (D, 

E) ed and fred are not required in R3/R4 or R2/R5 for rotation.  
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three groups of photoreceptors: R3/R4, R2/R5, and R1/R6/R7 and significant changes in 

the variance between each paired data set were identified. This analysis demonstrated that 

both ed and fred are required in R1, R6, and R7 for correct rotation: mosaic ommatidia 

genotypically wild-type for ed or fred in R1, R6, and R7 are more likely to have a smaller 

variance than mosaic ommatidia in which R1, R6 and R7 are genotypically mutant (Fig. 

2-5A). Although a requirement for fred in R3 and R4 seemed likely given the prominent 

expression of Fred in R3 and R4 at a critical period of rotation, the mosaic analysis did 

not identify a requirement for either ed or fred in R3, R4, R8, R2, or R5 (Fig. 2-5B, C). 

The mosaic analyses indicate a requirement for Ed and Fred in R1, R6 and R7, yet 

wild-type ed or fred in these three cells does not completely rescue rotation. Furthermore, 

ommatidia with a full complement of genotypically wild-type photoreceptors can still 

misrotate. These observations suggest that ed and fred function in additional, non-

photoreceptor cells to regulate ommatidial rotation. The most compelling candidates are 

the cone cells, as they express high levels of Ed and Fred until well after the completion 

of rotation. To explore a potential role for Ed and Fred in the cone cells, mosaic 

ommatidia were evaluated in mid-pupal ed1x5 and fredH10 eyes (40 hrs after puparium 

formation at 25°). This analysis revealed that mosaic ommatidia with wild-type 

photoreceptors and mutant cone cells misrotate (for ed1x5 MAO = 83°, SD = 30, P<5E-17; 

for fredH10 MAO = 92°, SD = 18, P<3E-9; Fig. 2-5D), thus defining unambiguous roles 

for Ed and Fred in the cone cells for ommatidial rotation. Notably, these results provide 

the first demonstration of a role for the cone cells in ommatidial rotation.  
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Figure 2-6. ed and fred interact genetically with pnt and cno. (A-C) Sections through 

adult eyes and corresponding schematics. (A) pnt1277/pnt∆88 mutant eyes exhibit both 

over- and under-rotated ommatidia. (B) ed1x5/+, pnt∆88/pnt1277; reducing ed activity 

enhances the pnt phenotype (i.e. the SD increases). C) fredH24/+, pnt∆88/pnt1277; reducing 

fred activity suppresses the pnt phenotype virtually to wild type. (D) Histogram of angles 

of ommatidial orientation for pnt∆88/pnt1277, ed1x5/+, pnt∆88/pnt1277, and fredH24/+, 

pnt∆88/pnt1277. X-axis, MAO; Y-axis, percentage. (E-G) Sections and corresponding 

schematics for adult eyes of genotypes as follows. (E) In cnomis1/cno2 mutant eyes, most 

ommatidia over-rotate. (F) ed1x5/+, cnomis1/cno2; reducing ed activity enhances the cno 

phenotype. (G) fredH24/+; cnomis1/cno2; reducing fred activity suppresses the cno 
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phenotype. (H) Histogram of angles of ommatidial orientation in cnomis1/cno2, ed1x5/+, 

cnomis1/cno2, and fredH24/+; cnomis1/cno2 adult eyes. X-axis, MAO; Y-axis, percentage.  
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ed and fred interact with Egfr signaling pathway members to regulate 

ommatidial rotation 

The ed and fred ommatidial rotation phenotypes strongly resemble phenotypes 

observed in mutants of members of the Egfr signaling pathway. Furthermore, ed inhibits 

Egfr signaling (Bai et al., 2001; Rawlins et al., 2003b; Spencer and Cagan, 2003). To 

determine if Ed and/or Fred cooperate with Egfr signaling, we tested ed and fred for their 

ability to interact with Egfr pathway members and found that ed and fred dominantly 

modify the rotation phenotypes of Elp, pnt, and cno. However, whereas ed and fred 

cooperate to regulate ommatidial rotation (Fig. 2-1G), they oppose one another in their 

interactions with Elp, pnt, and cno. Both fredH10 and fredH24 dominantly suppress the eye 

size and rotation phenotypes of the dominant Egfr gain-of-function allele, Ellipse (Elp; 

Table 2-1); the effect of ed1x5 on the Elp rotation phenotype could not be scored, as ed 

significantly enhances the photoreceptor number phenotype of Elp, severely reducing the 

number of ommatidia with a normal complement of photoreceptors (data not shown). 

ed1x5 enhances while fredh24 strongly suppresses the phenotype of both pntΔ88/pnt1277 and 

cnomis1/cno2 (Table 2-1, Fig. 2-6).  

In the context of R8 selection, ed is upstream of Ras, at the level of the receptor 

(Rawlins et al., 2003b; Spencer and Cagan, 2003), and fred functions upstream of ed 

(Spencer, in preparation). Standard epistasis analysis cannot be employed to 

unambiguously order ed, fred and these Egfr pathway genes in a linear pathway because 

1) null alleles of each of these genes are lethal and 2) the ommatidial rotation phenotypes 

resulting from mutations in these genes are indistinguishable. The data presented above  
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Figure 2-7. Ed does not physically interact with Cno in the eye.  (A, A’) Cno 

localization (red) in an ed1x5 clone, marked by the absence of GFP (A’). There are no 

detectable changes in Cno localization within ed clones, although Cno does form a 

“cable” of strong staining around the periphery of the clones, at the boundary between 

wild-type and mutant cells (yellow arrows), similar to the actin cable described in 

((Laplante and Nilson, 2006), fig 2A’). (B, B’) Phalloidin localization (red) in ed null 

clone (outlined in yellow; marked by absence of green in B’). Phalloidin staining appears 

normal in ed mutant clones. 
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do, however, indicate that in the simplest scenario, ed and fred also function upstream of 

Ras, since ed and fred interact with Elp as well as both branches (cno and pnt) of the Egfr 

pathway. These results further suggest that ed and fred likely regulate rotation at least 

partly through control of Egfr signaling. 

In the wing, Ed tethers Cno to the membrane via its physical interaction with the 

PDZ domain of Cno (Wei et al., 2005). However, in the eye the basis of the ed/cno  

genetic interaction in rotation is distinct, as Cno localization is unchanged in clones of the 

null allele ed1x5 (Fig. 2-6A, A’). Furthermore, Cno anchors the cytoskeleton to adherens 

junctions (Matsuo et al., 1997; Miyamoto et al., 1995), yet at least at a gross level, the 

actin cytoskeleton does not appear to be disrupted in ed mutant tissue (Fig. 2-6B, B’). In 

light of the absence of a direct physical interaction between Ed and Cno, the genetic link 

between ed/fred and Egfr signaling likely has its basis in regulating upstream signaling 

events, perhaps at the level of the Egf receptor.  

 

ed and fred interact with different subsets of tissue polarity genes 

The TP genes control three events: specification of the R3 and R4 cell fates 

(Fanto et al., 1998; Fanto and Mlodzik, 1999; Wolff and Rubin, 1998), the direction of 

rotation with respect to the ommatidium’s dorsal or ventral location in the eye, and the 

degree of rotation. Of these three events, ed and fred regulate only the degree to which 

ommatidia rotate, suggesting they may cooperate with the TP genes in this event. The 

observation that the Fred localization pattern mimics those of Stbm and Fmi lends 

support to this hypothesis. Genetic assays designed to identify a possible link between ed 

and fred and TP signaling revealed that ed and fred interact genetically with largely non-  
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Figure 2-8. ed and fred interact genetically with different subsets of the TP genes. 

(A-G) Adult eye sections and corresponding schematics. Red trapezoids (Fig. 8 only): 

dorsoventral inversions. (A) fzN21/fzJ22 mutant eyes exhibit both over- and under-rotated 

ommatidia. ed interacts specifically with the subset of TP genes required in R3: fz, dgo 

and fmi.  (B) ed1x5/+; fzN21/fzJ22 ; reducing ed activity enhances the fz rotation phenotype 

without affecting the chirality phenotype. fred interacts with two TP genes that are 

required in R4 for correct polarity: stbm and fmi. (C) stbm153 mutant eyes exhibit both 

over- and under-rotated ommatidia. (D) fredH24/+, stbm153/stbm153; reducing fred activity 

strongly suppresses the stbm rotation phenotype. The fmifrz3 phenotype (E) is enhanced by 

both loss of ed function (F) ed1x5/+, fmifrz3/fmifrz3 and loss of fred function (G) fredH24/+, 

fmifrz3/fmifrz.  
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overlapping sets of the six core TP genes, as follows. ed dominantly enhances the mutant 

phenotypes of the genes that function in R3: fz, dsh, dgo, and fmi, whereas fred 

dominantly interacts with genes that function in R4: fred suppresses the hypomorphic 

stbm phenotype and enhances the fmi phenotype (Table 2-1; Fig. 2-8). 

These striking findings not only reveal a distinct association between ed and fred 

and the R3- and R4-specific tissue polarity genes, respectively, but they are also  

unexpected in light of the mosaic analysis data, which identify roles for ed and fred in 

R1, R6, and R7, but not in R3 and R4 (Fig. 2-5). Furthermore, excess Ed and Fred protein 

in R3 and R4 at the beginning of rotation slows the process (sev>ed and sev>fred, Fig. 2-

4). These findings raise the intriguing possibility that the TP genes act in unique subsets 

of cells to control the three distinct events under their control. The localization patterns of 

the TP proteins are consistent with such a model as several, including Stbm, localize not 

only at the R3/R4 interface, but also at the interfaces between the R7/R8, the R7/R1 and 

the R7/R6 photoreceptor cells. Furthermore, like nmo, ed and fred function are clearly 

required in R7 to regulate ommatidial rotation (see Discussion). While previous mosaic 

analyses have not uncovered a requirement for the TP genes in any cells other than R3 

and R4, these analyses measured the composite phenotype (R3/R4 fate, degree and 

direction of rotation). Consequently, a role for a subset of photoreceptors in one of these 

events could have been masked. 

We therefore re-examined the requirement for stbm in TP, but focused 

specifically on its role in ommatidial rotation. This analysis revealed a requirement for 

stbm function in photoreceptor R7 in regulating the degree of rotation. Remarkably, loss 

of stbm function in R7 can account for almost all of the degree-of-rotation errors in 
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mosaic stbm ommatidia: when R7 is genotypically wild-type for stbm, the variance in the 

degree of rotation, SD=5, is very close to that of wild type, SD=1.7; when R7 is 

genotypically mutant for stbm, the variance is significantly greater (SD=15; see Table 2-

2). These results provide the first demonstration 1) of a genetic requirement for any TP 

gene outside the R3/R4 pair, and 2) that the TP genes act in distinct subsets of cells to 

control the genetically separable aspects of the TP phenotype. This novel result, in 

 

Table 2-2. stbm is required in R7 for degree of rotation. 

 

conjunction with the localization of Stbm at the tip of R7 and in the cone cells, provides 

an exciting new perspective as to how the TP complex may regulate the degree to which 

ommatidia rotate.  

The Ed, Fred and core TP proteins localize to the R3/R4 boundary at 

approximately the same stage of development (Bastock et al., 2003; Strutt et al., 2002; 

Strutt, 2002). In addition, the Fred, Stbm, and Fmi localization patterns during rotation 

bear a strong resemblance to one another (Rawls and Wolff, 2002). While these 
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observations raise the possibility that the tissue polarity proteins may influence Ed and 

Fred localization, or vice versa, molecular epistasis analyses failed to uncover such a link, 

as Stbm and Fmi localization are unaffected in ed and fred mutant clones, and Ed and 

Fred are not mislocalized in clones of the tissue polarity genes stbm and fmi (data not 

shown). Since protein localization does not appear to be the mechanism whereby the 

tissue polarity complex modulates Ed/Fred activity, an alternative possibility is that the 

core TP genes may act in a pathway parallel to ed and fred, indirectly regulating these 

two genes. 
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Figure 2-9. Ed and Fred contribute to both phases of rotation. (A) Differential levels 

or expression domains of Ed and Fred, respectively, in rotating and non-rotating cells 

create a permissive environment for the faster phase of rotation. Levels of Ed are 

equivalent in cells within nascent ommatidial preclusters and IOCs (depicted as solid red 

lines of equal line weight in left panel). Immediately before rotation, cells that will rotate 

actively reduce their levels/distribution of Ed and Fred (center panel: reduced Ed levels, 

thin red line; reduced number of cells expressing Fred (green)). A decrease in adhesion 

(dashed red line, right panel) between rotating and stationary cells enables rotation to 

proceed. (B) Ed and Fred regulate Egfr signaling during the slow phase of ommatidial 

rotation. When photoreceptors R1, R6 (purple cells) and R7 (yellow cell) join the cluster, 

they contain high levels of both Ed (red bars) and Fred (green bars). During the fast 
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phase, Ed/Fred binding reduces Ed’s inhibition of the Egf receptor (blue bars, left panel). 

Robust Egfr signaling inhibits Cno (blue hexagons) activity, consequently few stable AJs 

form (orange squares). Concurrent with the slower phase of rotation, Ed levels increase in 

R1, R6 and R7. Ed associates with the Egf receptor, inhibiting Egfr signaling (middle 

panel). As a result, Cno activity increases and stable AJs form between moving and 

stationary cells, effectively applying a brake at the rotation interface (middle panel). 

Rotation-specific signaling events shift to a new rotation interface upon recruitment of 

the cone cells (light green) into the cluster. At the completion of rotation, levels of AJ 

proteins (Ed, Fred, Cno, and Arm) are high, an indication that these two subsets of cells 

adhere strongly to one another. 
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Discussion 

Here, we demonstrate that ed and fred have partially overlapping functions during 

the two phases of ommatidial rotation. In the first phase, we propose that different levels 

of Ed and Fred in rotating and non-rotating cells modulate the adhesivity of these cells, a 

prerequisite for rotation to occur. In the second half of rotation, Ed and Fred are required 

in R1, R6, R7, and the cone cells, where they likely regulate the Egf receptor to 

contribute to the slowing of rotation. The Egfr effector Cno inhibits rotation, and is itself 

inhibited in response to Egfr signaling.  

There are two phases of rotation, distinguishable by the rate at which ommatidia 

rotate (Fiehler and Wolff, 2007). The initial phase is fast and persists from row 4 to row 

7; during this phase, ommatidia rotate between 10-15° per row. During the second, slow 

phase, between rows 7 and 15, ommatidia rotate 5-10° per row. The data presented here 

demonstrate that Ed and Fred function during both phases, and that they play unique roles 

in each of these phases.  

In the first phase, we propose that the tight regulation of Ed and Fred levels 

between rotating and stationary cells creates an environment that is permissive to 

rotation. Immediately before rotation starts, Ed begins to be endocytosed in the rotating 

cells – the ommatidial precluster cells. Concurrently, Ed levels fall dramatically in these 

cells while remaining high in the stationary IOCs. This rapid drop in Ed levels effectively 

sets up an imbalance in levels of Ed between these two populations of cells. We propose 

that the resulting differential adhesion between these two cell populations enables the 

rotating cells to slide past their stationary neighbors, according to the parameters of 
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Malcolm Steinberg’s differential adhesion hypothesis (DAH; (Steinberg, 2007)). The 

DAH proposes that populations of cells maximize the strength of adhesive bonding 

between them and minimize the adhesive free energy, and uses tension generated by 

adhesion between cells to drive events such as cell rearrangements during 

morphogenesis. Differential adhesion underlies multiple morphogenetic events, including 

epithelial-mesenchymal transitions, cell intercalation (Lecuit, 2005), somite segmentation 

(Murakami et al., 2006) and invasion by malignant cells (Winters et al., 2005), an event 

that bears similarities to ommatidial rotation. In the case of rotation, those cells with the 

same levels of Ed (or Fred) adhere more tightly to one another and cell adhesion is 

reduced between cells with different levels of Ed (or Fred) ((Spencer and Cagan, 2003), 

Spencer, in preparation), thereby enabling the two groups to slide past one another. In 

support of this hypothesis, we showed that artificially equalizing levels of Ed or Fred 

significantly slows rotation.  

The second phase of rotation, between rows 7-15, is slower than the first, with 

ommatidial precursors rotating at a rate of 5-10° per row (Fiehler and Wolff, 2007). The 

data presented here are consistent with Ed and Fred playing two key roles in this phase by 

both directly and indirectly (via Egfr signaling) affecting the physical component of the 

process. We suggest that the outputs in both cases produce adhesive forces that slow/stop 

rotation.  Ed and Fred are required in photoreceptors R1, R6 and R7 and the cone cells 

for normal ommatidial rotation. These cells do not become fully integrated into the 

ommatidial cluster until the second half of rotation. Furthermore, photoreceptors R1, R6 

and R7 constitute the rotation interface until the cone cells are recruited, at which point 

the cone cells co-opt this position and role. Consequently, Ed and Fred are required in the 
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right place (the subset of cells that lie at the rotation interface) and at the right time (the 

slower phase of rotation) to play a role in slowing rotation.  

We propose that Ed and Fred activity in R1, R6, R7 and the cone cells regulates 

Egfr signaling in these cells to slow/stop rotation, as follows. Egfr signaling promotes 

rotation via the Ras/Cno and Ras/Mapk/Pnt effectors (Brown and Freeman, 2003; 

Gaengel and Mlodzik, 2003), so its output must be dampened to slow rotation. Ed binds 

and inhibits the Egf receptor (Bai et al., 2001; Rawlins et al., 2003b; Spencer and Cagan, 

2003), whereas Fred binds Ed and interferes with this inhibition (Spencer, in 

preparation). Therefore, cooperation between Ed and Fred precisely titrates Egfr activity 

in the cells in which Ed and Fred function. As R1, R6 and R7 are recruited into the 

ommatidial cluster, Ed levels are high in these cells, thereby decreasing Egfr signaling at 

their side of the rotation interface, thus impeding rotation. This inhibitory role switches to 

the cone cells when they are recruited and create a new rotation interface.   

One plausible means by which rotation may be slowed through Egfr signaling 

activity is through one of its effectors, Cno. Cno is the fly homolog of Afadin, an actin-

binding adherens junction protein (Mandai et al., 1997; Matsuo et al., 1997; Miyamoto et 

al., 1995; Ooshio et al., 2007). In mammals, Afadin and its binding partners, nectins and 

α-actinin, build and stabilize those dynamic AJs that undergo remodeling (Ooshio et al., 

2007; Takahashi et al., 1999). In our hands, the majority of cno mutant ommatidia over-

rotate, indicating that Cno inhibits ommatidial rotation (Fig. 2-6E, H). Given that Egfr 

signaling promotes rotation and Cno inhibits rotation, Egfr signaling likely suppresses 

Cno activity during rotation. To inhibit Cno activity, activated Ras may bind Cno, 

thereby blocking stable junction formation. In this scenario, high levels of Egfr would be 
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required during the early phase of rotation to prevent Cno from promoting stable 

junctions between rotating and non-rotating cells. Consistent with this hypothesis, levels 

of Ed, an Egfr inhibitor, are very low in ommatidial cells both when rotation commences 

and during the fast phase of rotation. 

In this model, early in the second half of rotation, we propose that higher levels of 

Ed activity are necessary to repress Egfr signaling at the rotation interface, thereby 

increasing the amount of active Cno and consequently increasing the number of stable 

AJs between the moving and stationary cells. The more tightly the cells adhere to one 

another, the less permissive the environment is for movement, and the slower (and more 

difficult) rotation becomes. As previously noted, Ed levels are high in the cells in which 

it would need to be high -- R1, R6, R7 and the cone cells -- and Ed is required in these 

cells. Once rotation is complete, Ed and Fred are at high levels at the cell-cell boundaries 

between the interommatidial and ommatidial cells, an indication that stable AJs now 

cement the fully-rotated ommatidia in place. 

Ed’s closest mammalian orthologs are the nectins, CAMs with extracellular Ig 

domains and a C-terminal PDZBM that binds the PDZ domains of Afadin and Par-3 (the 

Bazooka homolog, (Takahashi et al., 1999; Takekuni et al., 2003). In the Drosophila 

wing, this interaction localizes Cno at the AJs to build and stabilize these junctions (Wei 

et al., 2005). However, a direct, physical Ed/Cno interaction is not necessary for Cno 

localization in the eye, as Cno is not mislocalized in ed null clones. Furthermore, the AJs 

are stable in the eye since β-catenin and E-cadherin staining are normal in ed null clones 

(this is in contrast to E-cad clones, in which the tissue is disrupted and neither Arm nor 
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Ed localize properly, data not shown), so in the Drosophila eye, something other than Ed 

binds Cno and stabilizes the AJs.  

ed and fred genetically interact with the R3 and R4 genes, respectively, modifying 

only the degree-of-rotation aspect of the TP phenotype. Our genetic and molecular 

epistasis data suggest that ed and fred act in a pathway either downstream of or parallel to 

the TP genes. First, Ed and Fred localization do not require the TP complex, nor do the 

TP proteins require Ed and Fred for their localization. Second, mutations in ed and fred 

affect only one aspect of the TP phenotype. 

Nectins and afadins have been implicated in numerous human diseases and 

developmental defects, including breast cancer, metastasis, and cleft palate. Defective 

cell-cell adhesion and cell-cell signaling also underlie these problems. Our data suggest a 

new role for an RTK, the Egf receptor, in inhibiting AJ formation by interfering with Cno 

activity. Given the conservation between these genes, a similar mechanism may also 

underlie at least some of the human diseases associated with nectin and afadin disruption. 

For example, decreasing AJs and increasing cell motility underlie cancer metastasis, so 

understanding the interaction between RTKs and AJ formation may yield profound 

insights into potential therapeutic strategies for these diseases. 
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Abstract 

Tissue polarity is essential for the correct patterning of many epithelia. The 

Drosophila eye, a highly polarized structure, is an excellent system for studying the 

mechanisms by which epithelial tissues organize themselves within the plane of the 

epithelium. Although for a long time tissue polarity in the Drosophila eye was viewed as 

a single entity, recent work suggests that it may be broken down into three genetically 

separable components. Here, I identify and describe a GMREP transgenic line that 

specifically enhances one class of tissue polarity errors, and find that this line contains 

three separate EP insertions, all on the second chromosome. Furthermore, I investigate 

the phenotype of three genes that may be affected by the insertions, and determine that 

none of these genes is involved in setting up any aspect of tissue polarity. 

 I generate an imprecise excision event using this original EP line and isolate a 

loss-of-function mutant line that has a rough eye and a tissue polarity phenotype. I 

characterize this mutation as having photoreceptor number errors, defects in the degree of 

rotation, and possible cell fate errors. Using a mapping strain and deficiency stocks, I 

mapped the phenotype’s causative mutation to the 2L, between 24C3 and 25A1. 

Although the deficiency that spans this region removes the coding regions of the cell 

adhesion molecule echinoid (ed) and the atypical cadherin fat (ft), both known tissue 

polarity genes (see chapter 1 and chapter 2), I ruled out the possibility of mutations in 

either gene being the causative mutation of the phenotype.  
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Introduction 

Proper development of multicellular organisms requires the precise organization 

of cells into tissues. Apicobasal polarity is well characterized in epithelia. In many 

organisms, epithelial tissue can also be organized along an axis perpendicular to the 

apicobasal axis, such that cellular structures and cells are polarized within the plane of 

the epithelium. This latter form is called tissue polarity, or planar cell polarity. Tissue 

polarity is necessary for the correct placement of cellular structures such as the stereocilia 

in the inner ear hair cells in the mammalian cochlea, as well as the orientation of hair 

follicles in the vertebrate epidermis (Guo et al., 2004; Lewis and Davies, 2002; 

Montcouquiol et al., 2003). In addition to setting up patterning, tissue polarity also affects 

the convergent extension movements that drive gastrulation and neural tube closure 

(Djiane et al., 2000; Formstone and Mason, 2005; Goto and Keller, 2002; Jessen et al., 

2002). Defects in tissue polarity can have catastrophic consequences for an organism, and 

have been associated with developmental defects and disease states such as hearing loss 

and spina bifida. 

 The pathways that set up tissue polarity are conserved throughout metazoans. 

Much initial work has been done using Drosophila as a model system, as this was the 

first organism in which tissue polarity was identified. Polarized tissues in Drosophila are 

easily visible in the adult and include the abdomen, the wing, the leg, and the eye. In the 

abdomen and leg, sensory organ bristles orient along an anterior-posterior and proximal-

distal direction, respectively. Similarly, in the wing, actin-based “hairs” extend from the 

distal tip of each cell and align along a proximal-distal axis (Mlodzik, 2005).  
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 The compound Drosophila eye is a highly polarized epithelial structure. Polarity 

in this tissue is manifest by the arrangement of the ommatidia, or unit eyes, and is evident 

in the adoption of one of two chiral forms of photoreceptor arrangement. The 

rhabdomeres, the light-sensing organelles of the photoreceptors, form a trapezoid. In all 

ommatidia on the dorsal half of the eye, the point of the trapezoid (the R3 cell) faces the 

dorsal pole, and on the ventral half of the eye, the point faces toward the ventral pole 

(Wolff and Ready, 1993).  

Mutations in any member of a group of six genes, called the core tissue polarity 

genes, result in tissue polarity phenotypes in the eye. These genes include flamingo (fmi), 

frizzled (fz), disheveled (dsh), strabismus (stbm), prickle (pk), and diego (dgo) (Chae et 

al., 1999; Feiguin et al., 2001; Klein and Mlodzik, 2005; Klingensmith et al., 1994; Tree 

et al., 2002; Usui et al., 1999; Wolff and Rubin, 1998). The adult pattern derives from 

events that occur during the third larval instar. After their recruitment into the ommatidia, 

two cells undergo a fate specification event in which the polar cell in the R3/R4 pair 

adopts the R3 fate and the equatorial cell adopts the R4 fate. Ommatidia then initiate 

rotation in either a clockwise (ventral ommatidia) or counterclockwise (dorsal 

ommatidia) and continue to rotate through 90° from their initial position (Wolff and 

Ready, 1993).  

In the eye, mutations in tissue polarity genes give rise to three general classes of 

defect (Fig. 3-1): 1) symmetrical errors, in which the cell fate decision does not occur 

properly and both cells of the R3/R4 pair become R3 or R4; 2) chirality errors, including 

anterior-posterior (A/P) inversions, dorso-ventral (D/V) inversions, and AP/DV 

inversions. A/P inversions arise when the wrong cell adopts the R3 fate, but rotates 
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correctly given that ommatidium’s location in the eye (counterclockwise if it is a dorsal 

ommatidium, for example). D/V inversions occur when both the cell fate decision and the 

direction of rotation occur incorrectly. Finally, AP/DV errors result when the correct cell 

fate decision occurs, but the ommatidium rotates in the wrong direction based on its 

location in the eye. The third class of errors includes rotation defects, in which ommatidia 

rotate either greater than or less than 90°(Wolff et al., 2007). 

While the three components of tissue polarity have historically been viewed as a 

unit, recent work indicates that they are separable (Wolff et al., 2007). For example, 

certain genes (see chapter 1 and chapter 2) can specifically affect degree of rotation 

without influencing either cell fate or rotation direction and vice versa. The fate decision 

and the direction of rotation are also genetically separable: mutations exist that affect one 

class or the other. However, the mechanisms by which tissue polarity genes orchestrate 

all three events are still unclear.  

To address these problems, a collection of GMREP lines was screened for lines 

with the ability to specifically modify different classes of errors in a sev-stbm 

misexpression background. Initially, I worked with five of these lines to identify the 

genes involved. In this chapter, I present work on one of these EP lines. After locating the 

EP insertion and identifying the gene affected, I characterized its phenotype and its 

interactions with other misexpression tissue polarity backgrounds. From this line, I 

generated a loss-of-function line that specifically affects degree of rotation, symmetrical 

errors, and photoreceptor recruitment, and mapped the mutation to between 24C3 and 

25A1. I also show that this line interacts with the tissue polarity genes, and I rule out two 

candidate genes. 
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Figure 3-1. Origin of different classes of tissue polarity errors. (A) In wild-type discs, 
ommatidia rotate 90° counter-clockwise in the dorsal half of the eye and clockwise in the 
ventral half (green arrows). Final adult forms are shown as trapezoids. (B) Corresponding 
mutant forms of ommatidial precursors and adult trapezoids from dorsal half of the eye. 
D/V inversions arise from the wrong fate choice, but correct rotation with respect to that 
fate. A/P inversions occur when the fate choice is incorrect, and rotation occurs in the 
wrong direction for that fate. AP/DV ommatidia result when the fate decision occurs 
properly but the ommatidia rotate the wrong direction for that fate. Wolff T, Guinto JB, 
Rawls AS (2007) Screen for Genetic Modifiers of stbm Reveals that Photoreceptor Fate 
and Rotation Can Be Genetically Uncoupled in the Drosophila Eye. PLoS ONE 2(5): 
e453. doi:10.1371/journal.pone.0000453 
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Materials and Methods 

Fly strains used: 

EP1658, EP43, EP382, EP564, EP677 (gifts of B. Hay). sev-stbm14-1, sev-dsh, sev-fz, 

stbm153, fmi192, fmifrz3, pksple, dsh1, dgo380, coroex11 (gift from L. Shashidhara),  hil, 

mapping strain nub,b,rdo,hk,pr,cn; Df702, and the Bloomington second chromosome 

deficiency kit. All stocks from Bloomington Stock Center, unless otherwise noted. All 

crosses raised at 25°C.  

 

Plasmid rescue: Plasmid rescue to identify the GMREP insertion site was performed as 

described in (Hay et al., 1997). Genomic DNA was isolated from 50 adult heads using 

standard procedures BamH1, Sau3A, and Bgl II were used to digest DNA. Sequencing 

off the 3’ end of the GMREP element was done with a sequencing primer (Hay et al., 

1997) on an ABI Prism 3000.  

 

In situ hybridization: To study the expression levels of candidate genes, in situ 

hybridization was performed. Third instar eye discs were dissected and processed as 

described in (Rawls et al., 2007). DIG-labeled sense and antisense RNA probes for fu2 

and fu10 were generated from the following ESTs, respectively:  RE67956 and GM02347 

(DGC). Labeled probe was made from the manufacturer’s protocol (Roche Molecular 

Biochemicals). In situ hybridization was performed as described (Rawls et al., 2007), 

using 1ug DIG-labeled RNA probe.  
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Imprecise excision: GMREP elements are marked with w+. To generate the excision 

line, EP1658 males were crossed to Δ2-3 virgin females. Female progeny with variegated 

eyes were crossed to Adv/CyO males. White-eyed males were isolated, and mapped with 

using Adv/Cyo and TM3/TM6 to chromosome X, 2, or 3. The extent of the excision was 

confirmed using PCR with primers flanking the fu2 insertion. Forward primer sequence: 

5’ – AAT GTG GAC GCT GTC CCT AC – 3’. Reverse primer sequence: 5’ – AAT 

GGA CAA AAA GCG ACG AC – 3’. 

 

Phenotypic analyses: Adult eyes were fixed, embedded, and sectioned as described 

(Wolff and Rubin, 1998). Ommatidia were scored and classed as follows: A/P inversions, 

D/V inversions, AP/DV inversions, R3/R3 symmetrical errors, R4/R4 symmetrical errors, 

extra photoreceptors, missing photoreceptors, and failure to rotate. For each genotype, 

100 ommatidia from 10 individual flies were scored. 
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Results 

 To identify potential genetic interactors of stbm, a collection of GMREP-lines 

(Hay et al., 1997) was screened to identify those lines that modify the stbm misexpression 

background sev>stbm (Wolff et al., 2007). These lines each contained an enhancer-

promoter element inserted randomly in the genome, which had the ability to affect gene 

expression in one of three ways: 1) inserting into a coding region, 2) inducing expression 

of a nearby gene via the promoter element, or 3) inducing expression of genes up to 10kb 

away via the enhancer element (Fig. 3-2). The enhancer/promoter element contained the 

enhancer from the gene GMR, which is expressed in all cells posterior to the 

morphogenetic furrow. Particular attention was paid to those GMREP lines that modified 

different tissue polarity classes. For example, certain lines specifically enhanced or 

suppressed the number of A/P inversions, D/V inversions, AP/DV inversions, or 

symmetrical errors.  

 Initially, I selected five lines to follow up with: EP1658, EP43, EP382, EP564, 

and EP677 because they each enhanced different classes of polarity errors in the sev-

stbm14-1 background (Table 3-1). I chose to concentrate on EP1658 because of its strong 

enhancement of the sev-stbm D/V errors and also because the insertion, when 

homozygosed, produces a rough eye phenotype. Sections through adult EP1658 

homozygous eyes reveal a strong tissue polarity phenotype (Fig. 3-3). These eyes 

contained ommatidia with all three classes of chirality defects, cell fate errors, and 

misrotated ommatidia. Approximately 46% of ommatidia had some sort of tissue polarity 

error, a very strong tissue polarity phenotype. 
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Figure 3-2. The GMREP element design. (A) The GMREP element is marked with w+ 

and contains the pBS polylinker. The GMR minimal enhancer is immediately adjacent to 

a promoter sequence. After the transcription start site are located the sequences to prime 

both forward and reverse sequencing to enable the rapid identification of the insertion 

site. (B) The GMREP can affect gene expression by inserting into a coding region, 

driving expression of a gene immediately adjacent by virtue of the Hsp70 promoter (blue 

arrow) or driving expression of a gene within 10 kb upstream or downstream of the 

insertion site with the GMR enhancer (green arrow).  
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Polarity 
errors  

EP43 /    
sev-stbm 

EP1658 / 
sev-stbm 

EP-382 / 
sev-stbm 

EP564 / 
sev-stbm 

EP677 / 
sev-stbm 

sev-stbm / 
+ 

D/V 33% 
(489/1500) 

34% 
(274/816) 

14% 
(119/829) 

9.4% 
(93/991) 

12% 
(143/1239) 

8.6% 
(112/1309) 

A/P 12% 
(175/1500) 

11% 
(91/816) 

3.7% 
(21/829) 

5% 
(50/991) 

4.3% 
(53/1239) 

1.4% 
(19/1309) 

AP/DV 4.2% 
(63/1500) 

4.5% 
(37/816) 

6.3% 
(52/829) 

2% 
(20/991) 

2.3% 
(28/1239) 

4.7% 
(61/1309) 

R3/R3 3.3% 
(50/1500) 

3.9% 
(32/816) 

15% 
(123/829) 

1.4% 
(14/991) 

4.3% 
(53/1239) 

0.6% 
(8/1309) 

R4/R4 4.1% 
(62/1500) 

4.3% 
(53/816) 

15% 
(120/829) 

3.4% 
(34/991) 

1.7% 
(21/1239) 

0.7% 
(9/1309) 

Extra R 0 0.6% 
(5/816) 

0.2% 
(2/829) 

0 0 0 

Missing 
R 

0 0.3% 
(2/816) 

2.3% 
(18/829) 

0.4% 
(4/991) 

0 0 

Fail to 
rot. 

0.8% 
(12/1500) 

0 3.1% 
(26/829) 

2.2% 
(22/991) 

0 0 

Total 
error 

57% 
(856/1500) 

64% 
(520/816) 

60% 
(500/829) 

24% 
(236/991) 

24% 
(299/1239) 

16% 
(209/1309) 

Table 3-1. Five GMREP lines strongly enhance different types of polarity errors in a 

sev-stbm misexpression background. Particularly striking enhancements are in red. 

 

 In order to identify the gene affected by the transgene, I needed to locate the 

EP element insertion. The GMREP transgene was designed to facilitate this by containing 

sequences that forward and reverse priming sequences at the 3’ end of the GMREP 

element. Therefore, to find the insertion site, I performed inverse PCR on genomic DNA 

isolated from EP1658 adults. The EP element inserted into the genome at 29D1, 

immediately 5’ to the uncharacterized C2H2 transcription factor fu2. The only other 

predicted gene within 10kb was the uncharacterized gene fu10.  
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Figure 3-3. The GMREP element in EP1658 drives misexpression of fu2. (A) A 

schematic representation of the site of the GMREP insertion in EP1658 and the 

surrounding gene region. The P-element is inserted into the 5’ UTR of fu2. In situ 

hybridization with (B) sense control and (C) antisense probe against fu2 reveals that fu2 

is highly expressed in the GMR pattern in EP1658. (D) A cross section through the adult 

eye and (D’) corresponding schematic reveals that EP1658 homozygous eyes have a 

strong tissue polarity phenotype. Blue trapezoids: wild type; red trapezoids: D/V 

inversions; green trapezoids: AP/DV inversions; black trapezoids: A/P inversions; yellow 

circles: R4/R4 symmetrical error. 
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 To determine which gene the EP element affected, I performed in situ 

hybridization with probes designed against the fu2 mRNA and the fu10 mRNA. fu2 

showed significantly enhanced expression in the GMR pattern compared to the sense 

control (Fig. 3-3B,C). In contrast, fu10 expression levels remained unchanged compared 

to the sense controls, thus confirming that fu2 was in fact the affected gene (data not 

shown). 

 

Imprecise excision provides a loss-of-function line 

 The in situ hybridization data indicated that the EP1658 adult phenotype 

resulted from misexpression of fu2. The precise pattern of the Drosophila eye is 

extremely sensitive, and phenotypes resulting from gene misexpression could stem from 

causes outside of the gene’s true biological function. For example, excessive amounts of 

protein could result in polarity errors simply by interfering with signaling events and the 

formation of protein complexes, and not necessarily by enhanced performance of the 

gene product. 

 Therefore, to confirm that fu2 regulates tissue polarity, I generated an 

imprecise excision event in the EP1658 line to isolate a line that would excise part or all 

of the fu2 gene region. The goal of this experiment is to create a loss-of-function allele, 

whose phenotype would be more representative of the biological function of fu2. I 

isolated one line, called Δ75, and confirmed using PCR that the entire fu2 coding region 

was excised in this line.  

 The Δ75 line was subviable: only a small number of homozygous mutant 

escapers survived. While these escaper flies had rough eyes, a cross section through the  
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Figure 3-4. Δ75 mutant eyes have a tissue polarity phenotype. A cross-section and 

corresponding schematic through Δ75 adult eyes reveal several errors, including 

photoreceptor number defects, misrotated ommatidia, and symmetrical defects. Blue 

trapezoids: wild type ommatidia. Green trapezoids: under-rotated ommatidia. Yellow 

trapezoids: over-rotated ommatidia. Black rectangles: R3/R3 symmetrical errors. Blue 

circles: R4/R4 symmetry errors. Numbers represent ommatidia with photoreceptor 

number defects. 
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adult Δ75 eye revealed a strikingly different phenotype than that of the EP1658 

misexpression line (Fig. 3-4). Very few ommatidia had any chirality defects, although a 

few had what appeared to be symmetrical defects. Many ommatidia had one extra outer 

photoreceptor cell. Finally, many ommatidia were misoriented.  

 

Δ75 is not an allele of fu2 

 Since the entire coding fu2 region was deleted, I assumed this was a genetic 

and protein null allele of fu2. To confirm this, I performed a genetic test, by placing Δ75 

in trans to a deficiency chromosome that covered the region. A stronger phenotype than 

the homozygous fu2 phenotype would indicate that Δ75 is a hypomorphic allele, and an 

identical phenotype would indicate a genetic null allele. Δ75 in trans to a deficiency 

chromosome uncovering the region is entirely wild-type.  

 This result revealed that fu2, despite being deleted from the Δ75 line, was not 

the causative gene of the Δ75 phenotype. The most likely explanation was that a second 

EP element was inserted into the original EP1658 line, and that the excision of gene near 

that insertion caused the phenotype. Chromosomal in situ hybridization (Todd Laverty, 

personal communication) revealed that EP1658 contained three separate EP elements: the 

fu2 insertion at 29D1, an insertion at 42D6, and a third insertion at 57A7.  

 To isolate these insertions, I out-crossed the original EP1658 line and isolated 

three line, each with one EP insertion. The insertion at 42D6 was immediately 5’ of the 

actin and metal ion binding gene coronin (Bharathi et al., 2004), and 57A7 insertion was 

immediately 5’ of the zinc ion binding gene hillarin (Ji et al., 2005). Because loss-of-
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function alleles of both coronin and hillarin are available, I tested these to see if either 

gene was allelic to Δ75, but both genes complemented Δ75. From these data, I concluded 

that none of the genes affected by the original insertions in the EP line caused the Δ75 

phenotype. 

 

The Δ75 mutation maps to chromosomal region 24C3 – 25A3 

 In order to find the gene affected in the Δ75 line, I used a mapping strain to 

pinpoint the location of the mutation. This genetic mapping indicated that the mutation 

associated with the Δ75 phenotype is located distal to 31D. To narrow the region, I tested 

deficiency chromosomes covering this whole region for failure to complement Δ75. One 

deficiency line, Df702, failed to complement Δ75. Df702 uncovers region 24D3 – 25A3, 

far from any of the EP insertions. Again, this combination is subviable; these escapers 

phenocopy the Δ75 escapers. 

 Df702 deletes a region that contains the genes echinoid (ed) (see chapter 2) 

and fat, both of which are tissue polarity genes. Therefore, both are excellent candidates 

to be the gene mutated in the Δ75 strain. A deficiency that specifically removes the fat 

gene region complements Δ75. This was not surprising, given that fat and Δ75 have 

completely different phenotypes. However, Δ75 and ed have very similar phenotypes. 

Therefore, I tested the edK1102 allele and found that it, too, complemented Δ75.  

 

Δ75 genetically interacts with the tissue polarity genes. 

 The Δ75 phenotype strongly resembles that of certain genes that interact with 

the tissue polarity genes, including ed and fred. To determine if Δ75, too, interacted with 
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the tissue polarity genes I used a genetic approach to look for interaction and found that 

the Δ75 allele enhances the dsh and stbm mutant phenotypes but did not enhance the pk  

or dgo phenotypes. In contrast, dsh, stbm, pk, and dgo suppress the Δ75 phenotype (Table 

3-2). 

 

  
Total 
omm. 

% 
errors 

% 
DV % AP 

% 
AP&DV 

% 
R3R3 

% 
R4/R4 

% 
extra 
R 

Δ75H 1401 26.6 0.26 1.3 0.16 3.2 5.6 12.3 
Δ75,dgo380/Δ75 327 15 0 0 0.9 1.8 5.1 4.5 
Δ75,stbm6cn/Δ75 337 12.5 0 0 0 0.2 2.65 8.7 
Δ75,stbm153/Δ75 1419 3.8 0 0.11 0 0.51 0.69 1.96 
Δ75,fmi192/Δ75 322 5.87 0.7 0.8 0 0.28 0.28 2.19 
Δ75, pksple/Δ75 916 5.8 0.2 0.3 0 0.7 1 1.6 
stbm153 1769 37.75 19.5 11.375 2.9 0.81 2.39 0 
Δ75,stbm153/stbm153 2116 47.3 19.64 10.16 3.23 3.05 5.49 0 
dgo380 952 45 0.64 5.72 1.02 6.26 30.5 0 
Δ75,dgo380/dgo380 842 41.3 2.32 5 0.35 9.4 24.5 0 
stbm6cn 2033 44 23.6 9.1 3.9 2.3 2.1 0 
Δ75,stbm6cn/stbm6cn 648 60.5 26 6.125 6.9 6.7 14.4 0.45 
pksple 1259 46 38 2 1.8 1.6 2.2 0.2 
Δ75, pksple/pksple 2854 41 39 1.1 0.5 0.5 0.7 0 
dsh1/Y;Δ75/+ 1972 43 8.9 5.24 4.26 12.5 11 0.11 
dsh1/Y 994 24.3 4.2 5.85 4.53 5.45 3.86 0 

Table 3-2. Δ75 interacts with the tissue polarity genes. 
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Discussion 

 In this work, I phenotypically characterize one GMREP line and present 

evidence that it genetically interacts with misexpression lines of tissue polarity genes. I 

provide further evidence that there are three GMREP insertions in this line, that one 

insertion results in greatly increased gene expression of the transcription factor fu2, and 

that none of the genes affected by these insertions actually influence tissue polarity. I 

generate a loss-of-function mutation that specifically affects ommatidial rotation and 

photoreceptor recruitment, and which phenocopies mutations in ed and fred. I map this 

mutation to between 24D3 and 25A1, and determine that neither ed nor fat are allelic to 

Δ75. 

 The initial GMREP line EP1658 enhanced the D/V class of error to a greater 

extent than any other, and had a tissue polarity eye phenotype. However, the work I did 

characterizing this line demonstrated that none of the genes that were affected by the EP 

element actually had a role in tissue polarity. Therefore, I conclude that the original 

genetic enhancements and the eye phenotype were due to an excess of protein or mRNA 

that interfered with proper tissue polarity signaling. 

 The mutation in the Δ75 line remains of interest. First, it interacts genetically 

with the tissue polarity genes. Second, the phenotype of the adult escapers suggests that 

while this mutation acts differently that the original EP1658 results led me to expect, it 

still provided a new mutant line that affects one aspect of tissue polarity (degree of 

rotation). Some ommatidia also appear to have symmetrical errors, suggesting an affect 

on the cell fate decision, but this observation has not been confirmed looking at a 

molecular marker for R3/R4 fate.  
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 The phenotype of Δ75 is strikingly like that of ed and fred. Furthermore, a 

deficiency in the region of ed and fred fails to complement the Δ75 mutation. These 

observations made it seem extremely likely that ed may be the gene mutated in the Δ75 

line. However, the molecular null allele edK1102 complements Δ75. I have not performed 

complementation analysis with fred loss-of-function alleles because these lines were not 

available before I ended this project. However, it would be interesting to test Δ75 against 

fred loss-of-function alleles for complementation. If fred fails to complement Δ75, the 

Δ75 line would be a useful reagent: the first fred allele that is homozygous semi-viable.  
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Further exploration of Ed’s role in rotation 

 

Endocytosis and degradation 

My work suggests that prior to rotation initiation, Ed is visible in punctae in the 

ommatidial precursor cells. These vesicles are frequently Rab5-GFP and Rab7-GFP 

positive, indicating that Ed, either the full-length protein or the cleaved Ed intracellular 

domain (ICD), is endocytosed and shuttled into lysosomes for degradation (Kramer, 

2002). In this experiment, GMR-Gal4 drives Rab5-GFP or Rab7-GFP in an otherwise 

wild-type background that also contains endogenous Rab5 and Rab7; in other words, 

these data are based on misexpression studies. Therefore, these results need to be 

validated with immunohistochemistry using antibodies against endogenous Rab5 and 

Rab7 and confirming that Ed colocalizes with these proteins in a statistically significant 

manner.  

In my model, immediately before ommatidial rotation, ommatidia actively 

endocytose Ed, reducing Ed levels in ommatidial membranes to levels significantly lower 

than in the IOCs; the resulting minimal adhesion between the two cell populations 

provides an environment permissive for ommatidial rotation. To test the hypothesis that 

endocytosis causes the reduction in Ed levels seen in rows 3 – 6, endocytosis could be 

blocked using the shibire mutation and the consequent effect on Ed levels assessed. This 

temperature- sensitive allele of Dynamin prevents endocytosis when larvae are subjected 

to heat shock (Lloyd et al., 2002). Using the α-Ed antibody, levels of membrane-

associated Ed at the surface of the ommatidial cells could be assessed in eye discs from 

shi larvae dissected immediately after heat shock. If my hypothesis is correct, I would 
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expect to see high levels of Ed in ommatidia in rows 3 – 6 in these discs. shi mutant 

ommatidia have both photoreceptor number and ommatidial rotation defects, indicating 

that endocytosis itself is necessary for ommatidial rotation(Lloyd et al., 2002).   

 

Structure/function analysis 

My work suggests that Ed plays two roles during the regulation of rotation: 1) 

reducing adhesion between ommatidial cells and IOCs during the fast phase of rotation 

and 2) inhibiting Egfr signaling during the slow half of rotation. However, the molecular 

mechanism by which Ed performs its functions remains unclear. The extracellular 

domain (ECD), rich in protein-protein interaction domains, is essential for regulating 

cell-cell adhesion. The ECD has also been implicated in the direct physical interaction 

between Ed and the Egf receptor, and is required for the homotypic and heterotypic trans 

dimerization necessary to retain Ed at the cell membrane (Spencer and Cagan, 2003). 

However, Ed’s ICD contains two important protein-protein interaction domains as well: 

the C-terminal PDZBM and a Jar-interacting region (Lin et al., 2007; Wei et al., 2005). It 

is unknown whether any part of the Ed ICD is necessary during ommatidial rotation.  

To investigate the ICD’s role in ommatidial rotation, a structure/function analysis 

could be performed, generating a transgenic line containing an Ed construct lacking the 

ICD and testing it for the ability to rescue the ed loss-of-function ommatidial rotation 

phenotype. If the ICD proves to be indispensable in ommatidial rotation, further 

investigation, creating transgenic lines carrying constructs deleting the ICD’s known 

functional motifs and testing for ability to rescue the ed phenotype could lend further 

insight into the molecular mechanism underlying Ed’s role in ommatidial rotation. For 
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example, if Ed’s PDZBM is necessary for ommatidial rotation, this would indicate that 

Ed interacts with an as yet unknown intracellular molecule to regulate ommatidial 

rotation. Such a result could indicate that Ed may act in a protein complex, possibly 

keeping molecules localized to the membrane. Alternatively, Ed’s PDZBM may bind to a 

protein that either facilitates or blocks cleavage and endocytosis of the ICD. In the wing, 

Cno’s PDZ domain binds Ed’s PDZBM (Wei et al., 2005), but my work demonstrates 

that this relationship is not true in the Drosophila eye. Therefore, it will be necessary to 

identify the protein that does bind Ed’s PDZBM. 

 

Identifying physical interactors of Ed 

If Ed’s PDZBM proves to be important in ommatidial rotation, the identity of the 

PDZ protein that binds Ed remains unknown. One potential candidate is Bazooka (Baz), 

the Drosophila homolog of Par-3(Kuchinke et al., 1998). In the wing, Ed’s PDZBM 

binds Baz’s PDZ domain; Baz competes with Cno for binding to Ed(Wei et al., 2005). 

Although Baz has not been shown to play a role in rotation, it is a component of adherens 

junctions and therefore an excellent candidate for Ed’s binding partner during rotation 

(Muller and Wieschaus, 1996). First, I would test for genetic interactions between baz 

and ed to confirm that these genes interact in ommatidial rotation. If so, the next step 

would be molecular epistasis, assessing whether Baz localizes properly to the cell 

membranes in ed null clones, using an α-Baz antibody. If Baz does not bind Ed, or if Ed 

is not necessary for Baz to localize to adherens junctions in the eye, a screen for physical 

interactors similar to that performed by (Wei et al., 2005) could turn up novel candidates, 

or proteins previously not implicated in ommatidial rotation. 
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Identification of a regulator of Ed activity 

 Ed levels are initially high in the ommatidial precluster but drop to nearly 

undetectable levels in the ommatidia immediately preceding and during the fast stage of 

ommatidial rotation. However, after approximately row 7, Ed levels rise in the 

ommatidial cells until they equal levels within the IOCs. At the end of ommatidial 

rotation, Ed is enriched at the photoreceptor/cone cell boundary and again at the cone 

cell/IOC boundary. It is entirely unknown what causes so dramatic a reduction in Ed 

levels before ommatidial rotation, and also what triggers Ed levels to rise after row 7. 

 What is that signal? To answer this question, I would first use a candidate gene 

approach. One potential candidate is the N regulatory gene scabrous (sca). Sca is a 

secreted fibrinogen-related glycoprotein found at high levels along the morphogenetic 

furrow and also up to 6 – 8 rows behind the MF (Baker et al., 1990; Chou and Chien, 

2002; Lee et al., 1996; Lee et al., 2000). Sca has been shown to function during 

ommatidial rotation, although there is some controversy as to its role. Published data 

suggest that sca loss-of-function mutations result in over-rotated ommatidia, from which 

the authors concluded that Sca functions as a brake (Chou and Chien, 2002). My 

unpublished work (Fig. 4-1) demonstrates that sca loss-of-function ommatidia actually 

under-rotate, suggesting that Sca promotes rotation. According to multiple sources, 

secreted Sca protein is observed up to 8 rows past the MF (Chou and Chien, 2002; Lee et 

al., 1996). Therefore, it localizes to exactly the right place and time to act as the signal 

that ultimately results in reduction of Ed levels and, therefore, rotation initiation.  
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Although fred interacts genetically with sca (discussed below), an interaction 

between ed and sca has not been tested. Therefore, I would first use a genetic approach to 

see if loss of one copy of ed dominantly modifies the sca phenotype. If so, I would use 

next use molecular epistasis to determine whether or not Ed levels drop in ommatidial 

cells in sca mutant tissue. If my hypothesis is correct, and Sca is the signal that induces 

Ed endocytosis, I would predict that in sca mutant clones, Ed levels would not decrease 

in ommatidial cells.  

If there is an interaction between ed and sca, Ed may act as a receptor for Sca, and 

the signal is the result of Sca binding the Ed ECD. To test this, I would perform binding 

assays using cell extracts to see if Ed and Sca physically interact. It is possible, due to 

Sca’s known role as a modifier of N signaling, that any potential ed/sca genetic 

interaction could have a basis in N signaling. This is unlikely, however, because ed does 

not interact genetically with N or Dl in ommatidial rotation (data not shown), and only 

co-localizes randomly with N and Dl in ommatidia cells (data not shown).  

 

Further investigation of Fred in rotation 

 

Structure/function analysis 

Fred has no known intracellular functional motifs, and a number of extracellular 

protein-protein interaction domains (Chandra et al., 2003). Fred’s ECD is necessary for 

Fred to form trans heterodimers with Ed (Spencer, in preparation). It remains unknown 

whether Fred’s ICD plays a role in regulation of ommatidial rotation. Performing a 

structure/function analysis like that described above for Ed could identify potential 
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regions of the Fred protein that may be important for Fred function or localization. 

Transgenic lines would be generated containing a Fred construct that lacks the Fred ICD, 

and these could be assayed for ability to rescue the fred loss-of-function ommatidial 

rotation phenotype. If the ICD proves to be important in ommatidial rotation, further 

constructs need to be generated to identify the precise region of the ICD involved in 

activity. The ICD may be required for the physical interaction between Fred and an 

unknown protein, possibly to set up a protein complex. 

In addition, the ICD may play an important role in Fred localization. The Ed and 

Fred localization patterns are strikingly different, although in situ hybridization indicates 

that both genes are ubiquitously expressed throughout the eye disc ((Chandra et al., 2003) 

and data not shown). This indicates that the difference in localization patterns is due to 

manipulation of the protein post-translationally and not due to ed and fred transcription 

occurring in different cells. Furthermore, the protein sequences of the Ed and Fred ICDs 

have little similarity (only 30% identical), although their ECDs are highly homologous 

(70% identical)(Chandra et al., 2003). Taken together, these observations lead me to 

predict that Fred’s ICD dictates its distinct and dynamic localization pattern, and is 

therefore necessary for rotation. 

 

Identification of Fred binding partners 

Fred currently has no known physical interactors besides Ed. Fred’s localization 

pattern is intriguingly reminiscent of the Stbm and Fmi localization patterns (Rawls and 

Wolff, 2003). While Fred localization does not depend on Stbm or Fmi function (chapter 

2, data not shown), the identical localization patterns suggest the possibility that Fred 
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may bind one or both of these proteins in a complex. Therefore, the first method to 

identify interactors will be a candidate protein approach, starting with Stbm and Fmi. 

Binding assays, using cell extracts from eye discs, will determine whether or not Fred 

binds either of these proteins in the eye. If Fred does not bind either Fmi or Stbm a 

general physical interaction screen, such as in (Wei et al., 2005) could identify possible 

regulators or effectors of Fred activity. Although Fred has no obvious protein-protein 

interaction motifs, that does not rule out the possibility of the Fred ICD binding some 

protein. For instance, the region of the Ed ICD that binds Jaguar (Jar), the fly homolog of 

myosin VI, is not a known protein-protein interaction domain (Lin et al., 2007). 

 

Identifying a regulator of Fred activity 

 Like Ed, Fred localization is continually in flux during ommatidial rotation. 

Again, to understand the mechanism by which Fred regulates ommatidial rotation, it is 

important to learn how Fred itself is regulated during this process. Currently, the means 

of Fred regulation is not clear. Again, to investigate this I would initially take a candidate 

gene approach. A prime candidate for regulator of Fred function is Sca. My work shows 

that fred and sca genetically interact, and in fact that loss of one copy of fred strongly 

suppresses the sca phenotype (Fig. 4-2). One model leading from this data is that Sca 

directly binds Fred, preventing Fred from binding Ed, and allowing Ed to bind and inhibit 

the Egf receptor. This model can be tested using pulldown assays with cell extracts to 

determine whether Fred and Sca physically interact.  

 



 94 

 

Figure 4-1. fred suppresses the sca mutant phenotype. Histogram representing the 

percentage of ommatidia (Y-axis) that are oriented at a particular angle (X-axis). In the 

sca background (light purple bars), ommatidia underrotate and there is a wide variance. 

Removing one copy of fred from this background (pink bars) suppresses the 

underrotation phenotype and, to a lesser extent, the variance. 
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Further investigation of Cno in rotation 

 

Cno mosaic analysis and misexpression 

 My work demonstrates that Cno inhibits ommatidial rotation, and work from 

other groups indicates that Egf signaling promotes ommatidial rotation. These 

observations lead to the model that Egf signaling inhibits Cno activity, and that a 

reduction in Egf signaling releases this inhibition, thus slowing ommatidial rotation. 

Cno’s localization pattern is identical to that of Armadillo, or β-catenin, and is found at 

high levels in the membranes of all photoreceptor cells (data not shown). Because of 

Cno’s localization pattern, and the genetic interactions between cno and ed and fred 

(chapter 2), I hypothesize that Cno acts in photoreceptors R1, R6, R7, and the cone cells 

to slow ommatidial rotation; in other words, the cells that join the cluster after 

ommatidial rotation has already begun and which become fully integrated at the start of 

the slow phase of ommatidial rotation. To test this hypothesis, I would to perform a 

standard mosaic analysis in adult eyes (for the photoreceptors) and in pupal eyes (for the 

cone cells).  

 Cno is the Drosophila homolog of Afadin/AF-6 (Matsuo et al., 1997; Miyamoto et 

al., 1995). In mammals, Afadin binds members of the nectin family (the closest 

mammalian relatives of Ed and Fred) to initiate AJ formation (Rikitake and Takai, 2008; 

Takahashi et al., 1999; Takai et al., 2008). This recruits E-cadherin, β-catenin, and α-

actinin via Afadin’s interaction with α-actinin and stabilizes the junction and, therefore, 

adhesion between adjacent cells (Sakisaka et al., 2007; Tachibana et al., 2000). Although 

Cno localization does not depend on Ed in the eye, Cno still must slow rotation by 
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building AJs and anchoring the actin cytoskeleton at AJs which would impede the 

movement of ommatidial cells past IOCs. If this is the case, I would expect that 

misexpressing Cno at high levels in the eye disc, thereby overwhelming Egfr inhibition 

and increasing the number of AJs, would result in dramatically slowed ommatidial 

rotation. To test this, I would use eye-specific drivers (sev-Gal4, GMR-Gal4, and ro-

Gal4) to drive UAS-cno in an otherwise wild-type background and assess the resulting 

affect on ommatidial rotation. If my hypothesis is correct, the mean angle of orientation 

of ommatidia in these eyes should be dramatically less than 90°. It may even be possible, 

by misexpressing cno, to suppress rotation entirely.  

 

Analysis of cno larval phenotype 

 While the Cno phenotype includes misrotated ommatidia, it is still unclear when 

cno functions during rotation. My work assessing ommatidial rotation in ed and fred loss-

of-function discs revealed that the ed and fred phenotypes are statistically significantly 

different from the controls from row 8 to row 15 (chapter 2). Furthermore, the Freeman 

lab found that interfering with Egfr signaling between rows 8 and 15 caused rotation 

defects (Brown and Freeman, 2003). Therefore, I hypothesize that Cno, too, will act 

during the slow phase of rotation. To confirm this, it will be necessary to measure 

ommatidial rotation in cno mutant larval discs between rows 2 and 15, to see if and when 

the cno phenotype becomes significantly different from wild type. 
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Identifying physical interactors of Cno 

My work demonstrates that unlike in the wing, Cno localization in the eye is not 

dependent on Ed binding. However, Cno is tightly membrane associated in the eye disc 

and colocalizes with β-catenin at the AJs, meaning that some protein must be anchoring 

Cno to AJs. Since AJ formation is likely vital for inhibition of ommatidial rotation, it will 

be important to identify which protein acts in concert with Cno to form these junctions. A 

first attempt should involve molecular epistasis with candidate genes, assessing Cno 

localization in clones of loss-of-function alleles of genes whose products resemble the 

Cno localization pattern. Potential candidates include E-cad, β-catenin, and α-actinin, the 

last of which is a known Cno binding partner (Tachibana et al., 2000).  

 

Further investigation of the tissue polarity genes and rotation 

 

Mosaic analysis of additional tissue polarity proteins 

The stbm mosaic analysis provided new and exciting evidence that at least one of 

the tissue polarity genes functions in a cell outside of R3/R4 to regulate one aspect of 

tissue polarity, degree of rotation. The mechanism by which Stbm acts in R7 to regulate 

this process is entirely unclear. Furthermore, Stbm’s requirement in R7 suggests that the 

other TP genes, too, may act outside of R3 or R4. 

 Mosaic analyses of the additional tissue polarity genes would determine whether 

they, too, function outside of R3/R4 to regulate degree of rotation. I hypothesize that 

Stbm and Fmi would be necessary in R7, and that perhaps Fz, Dsh, and Dgo may be 
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required in R1/R6. In general, localization of Fz/Dsh/Dgo and Stbm/Pk are mutually 

exclusive. Stbm, Fmi, and Pk (the Stbm complex) are required in R4 and Fz, Dsh, Dgo, 

and Fmi (the Fz complex) are required in R3 for correct fate specification (Strutt et al., 

2002; Wolff and Rubin, 1998). At the R3/R4 boundary, the Fz complex localizes to the 

R3 side of the interface, excluding the Stbm proteins. Similarly, the Stbm complex 

localizes to the R4 side of the interface, thus blocking the Fz complex from this part of 

the R4 cell(Strutt, 2002). Furthermore, in the wing Fz, Dsh, and Dgo localize to the distal 

face of the wing cell, and Stbm and Pk localize to the proximal side (Fmi localizes to 

both sides) (Bastock et al., 2003; Strutt, 2001). Therefore, mutually exclusive localization 

and activity of the Stbm complex and the Fz complex is a conserved aspect of tissue 

polarity. Stbm functions in R7, and is localized at the tip of R7/R8 interface. From this, I 

predict that Fz, Dsh, and Dgo will prove to be required in R1 and R6 to regulate 

ommatidial rotation. I expect Fmi to be required in all three cells. However, Pk (which 

does not have a rotation phenotype, data not shown) would be unlikely to be required in 

any of these cells during ommatidial rotation.  

 

Molecular epistasis with Egf signaling components 

 My work demonstrates that the Ed/Fred and TP protein interaction does not have 

its basis in protein localization. Various TP genes have been shown to interact genetically 

with members of the Egf signaling pathway, and the Fmi localization pattern is irregular 

in aolrlt mutant discs(Gaengel and Mlodzik, 2003). One potential role of the TP pathway 

in ommatidial rotation is to regulate Egf signaling. If this is the case, levels of Egfr 
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activity may be altered in TP mutant tissue. To address this, I would perform molecular 

epistasis analysis of dpErk levels in clones of TP mutant tissue.  

 It is possible that instead of acting in a linear pathway, the TP signaling pathway 

and the Egf signaling pathway may be acting in parallel pathways that converge at some 

unknown downstream effector. Both the Egf signaling pathway and the TP gene stbm 

enhance the phenotype of shotgun, an allele of the Egf receptor (Gaengel and Mlodzik, 

2003). Therefore, Stbm may regulate levels of E-cadherin-based adhesion specifically in 

R7. This hypothesis is supported by the observation that E-cad levels are irregular in 

clones of RhoA mutant tissue; RhoA is an effector of TP signaling (Gaengel and 

Mlodzik, 2003).  
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