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 Heterochromatin is classically defined as densely staining regions of the genome; these 

domains are typically late replicating and show little recombination. Correct assembly of 

heterochromatin is critical for chromosome stability. Assembly begins with histone deacetylation 

and H3 lysine 9 di- and trimethylation (H3K9me2/3); the methylated H3 is typically bound by 

Heterochromatin Protein 1a (HP1a). Heterochromatin predominates at pericentric and telomeric 

domains —regions abundant in transposable elements (TEs) and satellite repeats. Transcription 

of these TEs has been found to generate a platform for assembly of heterochromatin through 

RNAi in S. pombe and A. thaliana, and may play a critical role in Drosophila melanogaster.  

However, the precise role of RNAi in heterochromatin assembly for a metazoan system such as 

flies remains unclear. However, 1360, a DNA transposable element in D. melanogaster, has been 

found to be sufficient to promote heterochromatin assembly in a repeat-rich region, as shown by a 

variegating phenotype of a hsp70-white reporter. RNAi components and heterochromatin factors 

such as HP1a were both implicated in this 1360-sensitive variegation, a form of position effect 

variegation (PEV). 

 Here, I sought to determine the extent and mechanism of TE-sensitive PEV. A collection 

of 1360-sensitive landing pad insertion lines containing the hsp70-w reporter was generated. This 

tool allows for the repeated sampling of altered 1360 constructs in a variety of chromatin 

contexts, a useful a platform to study the attributes of 1360-sensitive variegation as well as PEV 

generally. We found 1360-sensitive PEV to extend to sites outside of annotated heterochromatin, 
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although most sensitive sites lie within or proximal to heterochromatic masses. I used 

biochemical approaches to show that 1360-sensitive PEV corresponds to HP1a accumulation 

over the hsp70-w promoter region, confirming that the silencing is due to heterochromatin 

assembly. The deletion of sites within the 1360 element with homology to the PIWI-interacting 

RNAs (piRNAs) in 1360 suppressed PEV, as did dominant mutations in PIWI domain proteins. 

Similar results were obtained using Invader4, a retrotransposon, in the same landing pad site.  

The results support a mechanism that uses piRNAs for transposon-sensitive HP1a-silencing, 

likely early in development, with persistent effects observed in the adult somatic tissue of the eye.  

 To determine if the sequence determinants required for 1360-sensitive silencing in a 

euchromatic region (as seen above) also operate in a repetitious sequence environment, where 

interspersed signals may operate cooperatively, I investigated a 1360-sensitive site in the piRNA 

generating locus 42AB. We find that mutations in piwi, along with many prototypical Su(var) 

mutations, result in weak suppression of variegation at this site, while an ago2 mutation enhances 

variegation. Tests of various fragments of the TEs do not reveal a strong dependency on piRNA 

matching sequences, contrary to the euchromatic site driven to a heterochromatic form by the 

added TE. These findings indicate that suppression of PEV by mutations in the genes for RNAi 

components occurs in a limited number of heterochromatic domains, predominantly those near 

gene clusters – sites typically found at the border between euchromatin and heterochromatin. 

Thus chromosomal context appears to be an important determinant for RNAi-dependent 1360-

sensitive PEV. This finding helps to reconcile reports of inconsistent PEV effects from mutations 

in RNAi components that have been carried out using reporters in different domains. Collectively, 

these results indicate the TEs can act as sequence determinants of heterochromatin assembly at 

a subset of genomic sites using an RNAi-mediated targeting mechanism. 
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PREAMBLE 

 Transposable elements populate a large fraction of most eukaryotic genomes, 

contributing to roughly half of the human genome and 22% to the Drosophila melanogaster 

genome. Genome restructuring by TEs has played a pivotal part in composing lineage specific 

regulatory networks, and thus are regarded as potent drivers of evolution (Feschotte, 2008). 

However, mechanisms have evolved to create an equilibrium between genome stability and 

plasticity, wherein quelling transposon activity typically takes precedence. From plants to 

mammals, a well conserved mechanism for TE silencing involves small RNA-mediated post-

transcriptional (RNA degradation) and transcriptional silencing (chromatin-mediated) by PIWI 

domain proteins. The PIWI domain proteins primarily reside in germ line tissue and the early 

embryo, suggesting the extent of their observable influences may be limited, particularly at the 

chromatin level (Brennecke et al., 2007). Ovaries depleted of germ line Piwi exhibit the 

upregulation of TE transcripts, which is correlated to a loss of chromatin silencing marks over a 

subset of reactivated TE promoters (Klenov et al., 2011; Wang and Elgin, 2011). Such work 

draws into question whether chromatin silencing marks at some TEs are directly deposited by 

Piwi and, if so, if such activity is solely restricted to the germ line. 

 The review presented herein (Chapter 1) provides a comprehensive survey of the 

literature regarding the role of PIWI domain proteins in chromatin-based silencing, particularly as 

it relates to their primary targets - transposable elements. This topic is one of active investigation 

for many in the Drosophila community interested in chromatin biology, as it adds a rapidly 

adaptable and sequence-specific mechanism to the current palette of heterochromatin assembly 

pathways. The review nicely converges evidence of cis-acting targets that promote HP1a 

recruitment and trans-acting PIWI effectors that support the phenomenon. The evidence 

presented highlights the layers of complexity associated with chromatin biology. For one, there 

are multiple mechanisms operating in tandem at any given time and, two, this likely contributes to 

context-dependent effects observed between reporter inserts. To directly address the question at 
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large, the role of Piwi at the chromatin level, these layers of complexity will have to be 

experimentally addressed. 

 The work I present provides a new platform with which to address context specific 

silencing effects (Chapter 2). The use of phiC31 landing pad reporter inserts in a wide variety of 

silent chromatin environments (e.g. telomere proximal, fourth chromosome) can help resolve 

issues relating to genetic context so that multiple, putative cis-acting targets of heterochromatin 

assembly may be sampled at a single insertion site. Proof of concept is presented for cis-acting 

TE targets of HP1a-dependent heterochromatin assembly. The targets included the DNA 

transposon 1360 and the retrotransposon Invader4, both shown to produce HP1a-dependent 

silencing of the hsp70-w reporter. The genetic dissection of these two unrelated TEs at a 

euchromatic landing pad site, near a block of heterochromatin revealed that the deletion of sites 

with sequence homology to PIWI-interacting RNAs (piRNAs) impact HP1a-dependent silencing. 

Thus, a useful resource has been developed to explore the mechanisms employed for cis-targets, 

in a variety of chromatin contexts. Importantly, the results suggest that sequences with homology 

to piRNAs may be specifically targeted for silencing, presumably by Piwi. Indeed, read-through 

transcription of the landing pad construct is observed in 0-10 hr embryos – generating a possible 

target for complementary piRNAs. The combined observations lay important groundwork for 

understanding the mechanisms of small RNA mediated silencing. 

 The euchromatic reporter insert was dominantly suppressed by mutations in PIWI domain 

proteins Piwi and Aub. Interestingly, context appears to be an important determinant of the 

mechanism behind TE-induced silencing (Chapter 3). Although most reporter inserts silenced by 

a single copy of 1360 are also dominantly suppressed by piwi, not all are. The unifying feature of 

those that are is that they are at the base of 2L, suggesting the chromatin status of this domain 

may be particularly susceptible to the effects of additional copies of TEs. This domain may be 

under the surveillance of the piRNA pathway – targeting heterochromatin to sites of new TE 

insertions. Also of interest were sites more densely populated with TE remnants, particularly at 

the primary piRNA generating cluster 42AB. This site is reportedly enriched in HP1a in piwi 
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mutants, suggesting that this domain might be alternatively regulated (Moshkovich and Lei, 

2010). Sampling of partial 1360 fragments at a landing pad reporter insert in 42AB revealed that 

1360-sensitive silencing is refractory to the loss of sites with homology to piRNA reads at this site. 

These observations suggest that in this repetitious environment, additional targets or 

mechanisms may act redundantly.  

 Together, these observations support a context specific model, whereby euchromatic 

sites interspersed with repetitious sequence (or vice versa) are particularly susceptible to the 

epigenetic effects of new TE insertions, which may be mediated by Piwi. These observations 

invite exciting new experimental work (Chapter 4) to address the implications of such a model – 

particularly methods to directly measure the effect of Piwi on chromatin structure. 
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ABSTRACT 

Heterochromatin formation is critical for genome stability in eukaryotes. Inappropriate 

heterochromatin assembly can have deletrious effects on gene expression, and consequently the 

orgranism. Here we focus on heterochromatin assembly mechanisms in Drosophila 

melanogaster. In particular, we review the potential role of transposable elements as genetic 

determinants of the chromatin state, and examine how small RNA pathways may participate in 

the process of targeted heterochromatin formation.  

INTRODUCTION  

Cytological staining of interphase chromatin reveals two apparent states of compaction – 

a euchromatic state which is lightly stained, diffuse in appearance; and a heterochromatic state 

which is densely stained, appearing compact  (Zacharias, 1995). Thus heterochromatin is 

classically defined as densely packaged throughout cell cycle, peripherally localized nuclear 

material. The repetitious sequence content of eukaryotic genomes was initially recognized by 

quantitative DNA reassociation analysis (or Cot curves) using principles pioneered by Roy Britten 

and colleagues (Britten and Kohne, 1968). These studies revealed the abundance and 

arrangement of repetitive DNA, and ultimately led to the understanding that heterochromatin is 

enriched in satellite and transposable element sequences of varying copy numbers. Although 

understanding genome organization within the euchromatic, more complex, gene-rich 

compartment took precedence for many years, heterochromatin has more recently received 

attention with the development of improved sequencing technologies and bioinformatics 

strategies. These tools have enabled improved assemblies and annotation of repeats present in 

heterochromatin. 

In a complex organism consisting of differentiated cells, “constitutve heterochromatin“ is 

that found at the same place in all cell types, while “facultative heterochromatin“ (important for 

developmentally controlled genes) occurs in some cells but not others (Beisel and Paro, 2011). 

Along a chromosome, constitutive heterochromatin is usually found at pericentric repeats and 

telomeres, while facultative heterochromatin can be interspersed along the chromosome arms. 

Heterochromatin is generally characterized by a signature of histone modifications that includes 
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H3K9me2/3; in plants, mammals, and some other organisms it is also associated with DNA 

methylation at CpG or CpNpG repeats.  

In the fruit fly, Drosophila melanogaster, heterochromatin becomes visible during nuclear 

cycle 11-14 of embryogenesis (3-4 hrs), establishing post-translational histone modifications that 

persist throughout development (Hathaway et al.). Most heterochromatic sites are enriched for 

H3K9me2/3, the chromo domain protein HP1a and the histone methyltransferase (HMT) 

SU(VAR)3-9, whose catalytic SET domain delivers the H3K9me2/3 mark. Two other SET domain 

proteins have been identified, SETDB1 (encoded by egg) and G9a; both are also H3K9 histone 

methyltransferases, although Su(var)3-9 and Egg appear to have the dominant role (Brower-

Toland et al., 2009).  

 Functional studies that deplete SU(VAR)3-9 homologues in mammals or in yeast have 

shown that the protein is important for kinetochore assembly and chromosome segregation 

(Aagaard et al., 1999; Ekwall et al., 1996), while a loss of HP1a in Drosophila results in telomere 

fusions (Fanti et al., 1998). Another form of instability from the loss of heterochromatin (HP1a in 

particular) is the activation of transposable elements (Wang and Elgin, 2011), which could lead to 

double strand breaks as well as the obvious mutagenizing effects of TE insertions within protein-

coding DNA. Gain-of-function mutations in Su(var)3-9 cause heterochromatin expansion and 

female sterility in Drosophila (Kuhfittig et al., 2001). Alternatively, facultative heterochromatin 

proteins play an important role in cell identity. Examples include X-inactivation in mammals and 

developmentally controlled silencing progams associated with Polycomb group (PcG) proteins, 

which accomplish targeted gene silencing using an H3K27me3-based mechanism. This review 

will primarily focus on mechansims associated with HP1a targeting. Our discussion of 

“heterochromatin“ will be in reference to constitutive hetrochromatin unless otherwise specified. In 

Drosophila, the constitutive heterochromatin domains include the pericentric heterochromatin, 

regions in the telomeres, and the bulk of the small fourth chromosome (Muller F element) 

(Kharchenko et al., 2011). 

A classic and commonly used assay to dissect the cis- and trans-acting factors involved 
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in heterochromatic silencing in Drosophila (among other systems) involves position-effect 

variegation (PEV) – first observed in Drosophila by Herman Muller in the 1930s. Following X-ray 

mutagenesis, Muller recovered fly lines (termed wm, white mottled) that had a variegating, red-

interspersed-with-white pattern across the fly eye, rather than its normally solid-red (or completely 

white, if mutant) appearance (Muller, 1930). The phenotype is caused by a DNA rearrangement 

that places the euchromatic white gene, which has a transport function required cell-

autonomously for red eye pigmentation, proximal to repeat-rich pericentric heterochromatin. This 

results in the stochastic “spreading” of heterochromatin components along the now proximally 

located euchromatic mass that includes white (Fig. 1A). Dominant loss-of-function mutations in 

heterochromatin components such as Su(var)3-9 or the HP1a gene Su(var)205 suppress the 

PEV phenotype such that the expression of white is restored in a greater fraction of cells, 

whereas over-expression can have the opposite effect. At the chromatin level, PEV is 

characterized as resulting in a relatively regular nucleosome array (Sun et al., 2001; Wallrath and 

Elgin, 1995), indicative of heterochromatic packaging. Biochemical analysis across the inverted 

breakpoint of one strain from the wm collection, wm4, shows variable enrichment of 

heterochromatin proteins along a 30 kb stretch, suggesting some sequence determinants might 

be more susceptible than others to ectopic heterochromatin assembly (Vogel et al., 2009). 

Together, these observations suggest that heterochromatin assembly can spread in cis- provided 

a permissible sequence context and sufficient trans-acting molecules. These properties have 

made PEV a widely used model with which to dissect the cis- and trans-acting factors responsible 

for heterochromatin assembly. 

 Localized distribution of heterochromatin in the genome implies an underlying sequence 

determinant for its targeted formation. The immediate question following this observation asks for 

a mechanistic explanation for the targeting process. In recent years, work from plants and the 

fission yeast S. pombe have established that many of the heterochromatin components in these 

systems are associated with RNA-directed transcriptional silencing (Slotkin and Martienssen, 

2007). In these systems, RNA transcribed from repetitive, heterochromatic loci is processed into 

small RNAs that ultimately become the targeting signal for heterochromatin assembly. Such a 
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targeting mechanism, in which the targeting signal is generated from heterochromatin (the target) 

itself, allows plasticity. This is necessary to accommodate imprecision during DNA replication or 

new TE invasions that change the system’s DNA composition, while ensuring functional precision 

(faithful heterochromatin assembly).   

S. pombe, a system for which RNA-directed transcriptional silencing is well described, 

serves as an excellent model of how cis-sequence determinants work with trans-acting factors to 

assemble heterochromatin at repeats, generally remnants of transposable elements (TEs). 

Targeting of the HP1 family protein Swi6 and the H3K9 HMT Clr4 depends on the processing of 

RNA Pol II transcripts generated from heterochromatic loci. The RNAi-induced transcriptional 

silencing complex (RITS) contains the chromo domain protein Chp1, as well as the RNAi 

component Ago1, which binds small RNAs generated from target sites (e.g. dg/dh repeats, cis-

acting signals) located in pericentric heterochromatin (Kloc and Martienssen, 2008) (Fig. 2). 

Mutations in the slicer activity of Ago1 result in a loss of silencing for reporters located at 

heterochromatic sites (Irvine et al., 2006), indicating that Ago1 is an essential trans-acting factor 

for heterochromatin assembly in S. pombe, and that processing the long RNA cis-acting signal 

from dg/dh repeats into smaller fragments is required. The small RNAs generated by Ago1 

provide a primer for RNA-dependent RNA polymerase, which generates additional dsRNA 

products to be processed by Dicer1. The amplified small RNA is used to achieve additional RITS 

targeting. However, whether such a mechanism also operates in metazoan systems remains an 

open question.  

It is important to distinguish between RNA-based silencing systems (here referred to as 

RNA interference or RNAi), which are associated with post-transcriptional mRNA silencing, and 

those implicated in chromatin-based silencing (Fig. 3). In Drosophila, RNAi primarily involves two 

families of proteins: Argonaute proteins, AGO1, AGO2, AGO3, Piwi and Aub, and RNase III 

helicases, DICER-1 and DICER-2. The Argonaute family comprises two clades, the more 

ubiquitous AGO clade (AGO1 and AGO2) and the primarily germ line PIWI clade (AGO3, Aub 

and Piwi). AGO1 and DICER-1 generate microRNAs, derived from imperfect stem-loop 
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transcripts, that participate in translational repression or degradation of mRNA target transcripts. 

Short-interfering RNA (siRNA) is derived from exogenous or endogenous (endoRNAs) dsRNA 

processed by AGO2 and DICER-2 (Ghildiyal et al., 2008; Kawamura et al., 2008). Although 

siRNA is generally considered to function through a post-transcriptional silencing mechanism in 

the cytoplasm, both AGO2 and DICER-2 have recently been documented to associate with 

chromatin in somatic nuclei, suggesting a role in nuclear silencing (Fig. 3) (Cernilogar et al., 

2011; Moshkovich et al., 2011). PIWI-interacting RNAs, piRNAs, are derived from master clusters 

enriched in transposon sequences (Brennecke et al., 2007; Gunawardane et al., 2007). Both 

transcriptional and post-transcriptional silencing mechanisms have been reported for transposon 

silencing by piRNA (Fig. 3) (Brennecke et al., 2007; Gunawardane et al., 2007; Klenov et al., 

2011; Wang and Elgin, 2011). .   

In spite of their hazardous potential, transposons are among the genome’s most 

important tools, providing the host new material for cis-acting regulatory features and protein-

coding capacity (Feschotte, 2008). The paradox between a necessity to maintain genome 

integrity, while also achieving diversity within a population has been empirically linked to RNAi-

mediated transposon regulation (Gangaraju et al., 2010). Indeed, such mechanisms have been 

speculated to participate in generating new variants in a changing environment, with profound 

consequences over the evolutionary trajectory of the population. Thus, RNAi systems in 

Drosophila, particularly the piRNA pathway, can be thought of as a master regulatory 

switchboard, with the primary task of TE repression. Whether these effects occur at the chromatin 

level is the topic of this review. 

 We recognize that a multiplicity of targeting mechanisms for sites with similar chromatin 

marks has been observed in systems that possess well-documented RNAi-mediated 

transcriptional silencing, such as S. pombe and N. crassa. This should come as no surprise; in 

light of the complex chromatin environments present in a genome (Kharchenko et al., 2011), 

equally complex targeting systems have been developed. In S. pombe, all of the major 

heterochromatic domains are targeted for silencing by proteins recognizing specific DNA 
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sequences (i.e. CENP-B recruitment of histone deacetylases to silence Tf2 retrotransposons; 

(Cam et al., 2008), in addition to the RNAi-based mechanisms (Slotkin and Martienssen, 2007). 

Conversely, TE elements have been used for different recognition events as well. For example, 

transposase-derived chromatin modifiers have been documented in Drosophila as well as in 

mammals. For example, BEAF-32, derived from the hAT transposase, is a chromatin insulator 

protein that binds the scs chromatin boundary element (Aravind, 2000).  

 Similar mechanisms may have evolved in Drosophila to specifically target 

heterochromatin factors to TEs. One possible candidate (but with no known transposase-derived 

domains) is Bonus, a Tif1 homolog that derives from a family of proteins identified to interact with 

HP1 and recruit HDACs to mediate transcriptional repression (Nielsen et al., 1999). In Drosophila, 

Bonus can suppress or enhance PEV, depending on the reporter insert, and binds repetitive 

sequence elements in euchromatin (Beckstead et al., 2005). This suggests that Bonus has a role 

in chromatin organization, but precisely what that is remains an open question.  

 Additional mechanisms of silencing include the AT-hook, DNA binding protein D1, which 

has been found to localize to centromeric heterochromatin and suppress PEV (Aulner et al., 

2002). Genome-wide mapping analysis has revealed that D1 overlaps with several combinatorial 

categories of chromatin marks that can be generally ascribed to silent chromatin, in particular, 

HP1a-dependent heterochromatin and PcG-associated silencing (Filion et al., 2010). Indeed, D1 

overexpression induces pairing among its targets in polytene chromosomes suggesting a role in 

higher order chromatin organization (Smith and Weiler, 2010).  

 In this review we strictly aim to synthesize the evidence for RNAi-induced 

heterochromatin targeting in Drosophila. In particular, we focus on repetitious elements acting as 

cis-acting signals. We begin by discussing established examples of cis-acting silencing signals, 

which serve as precedents for sequence-specific targeting of chromatin modifying enzymes. 

Although many empirical examples exist that involve transcriptional activation (Feschotte, 2008), 

we explore the potential of TE remnants to act as silencing signals to be used by RNAi pathway 

component effectors.  
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CIS-ACTING ELEMENTS  

Cis-acting factors that are targets for complexes that bind, rearrange, and/or modify 

histones have profound effects on nucleosome organization and higher-order interactions. A 

classic example are polycomb response elements (PREs), cis-acting DNA sequence targets. 

PREs are targets for the developmentally controlled Polycomb group (PcG) repressor complexes 

PRC1, PRC2, and PhoRC (Muller and Kassis, 2006), responsible for one form of facultative 

silencing. Although these complexes contain histone binding and modifying subunits, it is the cis-

acting sequence content present in PREs that is required for appropriate targeting. Indeed, PREs 

have been found to be nucleosome-free assembly platforms (Muller and Kassis, 2006), 

supporting a sequence-specific targeting event (as opposed to a modified histone-protein 

interaction). Reporter assays using upstream putative regulatory regions of the animal polarity-

determining Hox genes identified PREs as necessary sequence components for targeted gene 

silencing (Chan et al., 1994; Simon et al., 1993). In flies, genome-wide analysis of the sequence 

composition of PREs has revealed low conservation (Hauenschild et al., 2008), with individual 

PREs possessing inherently different propensities for silencing (Okulski et al.). The low sequence 

conservation has been suggested to impart a certain degree of plasticity to these sites which 

enables them to evolve rapidly (Moazed, 2009).  

TEs are an abundant resource for potential cis-regulatory elements. Transposable 

elements have the ability to retool their host’s gene regulatory programs, and so to contribute to 

networks involved in cell identity during tissue specialization, much like PREs. The capacity of 

TEs to establish novel gene regulatory networks, particularly species-specific programs that 

contribute to new evolutionary trajectories, is supported by much empirical evidence (Feschotte, 

2008). Although such new networks are fortuitous for the system, particularly under times of 

environmental stress, it is generally in the best interest of genome integrity for TE expression and 

mobilization to remain suppressed. Transposable elements and their remnants comprise 22% of 

the Drosophila genome (Kapitonov and Jurka, 2003) and roughly half of the human genome 
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(Lander et al., 2001); they reside primarily in repressive, heterochromatic regions. The non-

random distribution and evolutionary conservation of heterochromatic TE clusters suggests that 

their residence is functionally required. As previously discussed, TEs inherently possess 

regulatory signals or may acquire them de novo; this, combined with their capacity for insertional 

mutagenesis, more often than not results in a substantial blow to the system during mobilization 

events. Thus, repression of these elements takes precedence under most circumstances. Indeed, 

the flux of TEs in the genome requires a rapidly adaptive targeted silencing system for survival. 

Deep sequencing of small RNA libraries has shown that TEs are expressed, and become targets 

for small RNA-mediated silencing in flies (Brennecke et al., 2007; Ghildiyal et al., 2008). Although 

small RNA pathways are better known for their function in a post-transcriptional capacity, 

evidence for chromatin-based silencing in Drosophila has been reported (Huisinga and Elgin, 

2009). Both piRNA and chromatin structural proteins (and/or their mRNAs) are present in the 

early embryo (0-6 hr) (Aravin et al., 2003) during the early stages of heterochromatin formation 

(Rudolph et al., 2007). Thus, piRNA sequence elements could help define some heterochromatic 

domains, particularly for a subset of repeats represented in the piRNA repretoire. 

Chromosome organization per se suggests that TEs could be targets for silencing, as 

many Drosophila PEV reporters showing the variegating phenotype typical of heterochromatic 

domains map to repeat-rich regions of the genome. Studies aimed at mapping heterochromatic 

domains on the repeat-rich 4th chromosome of Drosophila melanogaster using an hsp70-white 

reporter have shown that 20-60 kb deletions or duplications of flanking DNA can be sufficient to 

shift a red phenotype to vareigating (and vice versa), indicating local variation in chromatin 

packaging at that scale (Sun et al., 2004) (Fig. 1B). Genomic analysis of these variegating lines 

found a correlation between the presence of the DNA transposable element 1360 and silencing. 

Follow-up experiments using FLP-mediated excision of a 1360 remnant upstream of an hsp70-

white reporter revealed that 1360 is indeed capable of supporting heterochromatin formation 

predominantly in repeat-rich areas of the genome (~30% repeats) (Haynes et al., 2006). 

Interestingly, 1360 is sufficient to induce ectopic, HP1a-dependent heterochromatin assembly in a 

domain of annotated euchromatin that is close to a heterochromatic mass (Sentmanat and Elgin, 
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2012). Variegation in both contexts, repeat-rich and euchromatic, is suppressed in Su(var)205 

and piwi mutants, suggesting that RNAi components may facilitate the HP1a targeting event. 

RNAi-based heterochromatin targeting in both S. pombe and plants is thought to act through 

RNA-RNA recognition events.  A mechanistic connection between such transcriptional silencing 

and 1360-induced heterochromatin assembly was observed when read-through transcripts of the 

P element insert containing 1360 were found to be present in 0-10 hr embryos, suggesting a 

plausible RNA targeting signal. Further, deletion of sites within the 1360 element with homology 

to piRNA sequences abundantly found in Drosophila compromised 1360-induced PEV. These 

results directly implicate the piRNA pathway in 1360-induced silencing (Sentmanat and Elgin, 

2012).  

Given that the piRNA pathway generates the most complex small RNA population in the 

fly – needed to target hundreds of TEs - it is likely that alternative TEs should behave similarly at 

a 1360-sensitive site. This was confirmed using the retroelement Invader4, which recapitulated 

1360-sensitive PEV. Deletion of sites complementary to piRNA sequence elements again 

compromised the effect (Sentmanat and Elgin, 2012). The combined results support a model in 

which a small RNA targeting event utilizing read-through transcripts participates in the HP1a-

dependent assembly of heterochromatin at this site. 

Sites sensitive to 1360 appear to be limited to sites proximal to pericentric repeats, or in 

some cases within mapped pericentric regions. As noted above, the presence of a single copy of 

1360 within the euchromatic arms (which have a low repeat density, <10%) is insufficient to 

trigger a variegating phenotype. A survey of 1360-sensitive and –independent (no change in PEV 

+/- 1360) lines revealed that PEV reporters close to the base of the 2L euchromatic arm are 

consistently suppressed by piwi mutations and almost all are 1360-sensitive. Many PEV reporters 

that show no change in variegation in piwi mutant backgrounds are 1360-insensitive and reside in 

regions associated with polycomb group proteins (TAS sequences). These observations suggest 

that piRNA pathway target sites are likely HP1a-target sites (as 1360-sensitive silencing is an 

HP1a-dependent phenomenon), but limited to a subset of domains. The need for a reporter 
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insertion site that results in read-through transcription of the 1360 element could also limit the set 

of reporter loci demonstrating this form of targeted silencing. 

 The repertoire of possible cis targets for the piRNA system is wide, but few elements 

have been associated with chromatin-based changes in piwi mutants. Knockdown of germline 

Piwi has been shown to compromise HP1a deposition at promoters of HeT-A, Blood, Bari1 and 

Invader1, among a small set of TEs tested in Drosophila ovaries (Klenov et al., 2011; Wang and 

Elgin, 2011). The lack of sufficient polymorphisms among repetitive element types makes it 

difficult to identify the precise location of HP1a loss. Thus, the high copy number and lack of 

complete genome assembly in heterochromatic regions has hampered efforts to identify 

additional targets. Genomic context at a larger scale (at least over 10 kb, and perhaps much 

more) may prove to be an important factor in identifying additional cis-acting determinants of 

heterochromatin formation.   

TRANS-ACTING MACHINERIES: SMALL RNA TARGETING  

 A small RNA-mediated targeting model (Huisinga and Elgin, 2009), representing a 

mechanism of remarkable simplicity and adaptability, uses sequence information encoded in 

small RNAs to achieve highly specific target site recognition. The coding capacity of a 20-30 

nucleotide long RNA allows a wide range of potential target sequences to be identified. Recently, 

both endo-siRNA and piRNA have been implicated in heterochromatin targeting (Fagegaltier et 

al., 2009; Wang and Elgin, 2011). In both cases, however, many critical questions remain to be 

clarified; in particular, whether changes observed at the chromatin level in endo-siRNA and 

piRNA pathway mutants are a result of direct or indirect effects. The potential redundancy and/or 

cross talk between the two pathways further confounds our ability to interpret results from genetic 

perturbation experiments. 

 In flies, endo-siRNAs were first observed by sequencing small RNAs associated with 

AGO2 and small RNAs bearing 2’O-methylation at their 3’ terminus from somatic cells (Ghildiyal 

et al., 2008; Kawamura et al., 2008). It was found that these small RNAs are enriched in 
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transposon and intergenic sequences, and that their production is strongly impacted by mutations 

disrupting the siRNA pathway. Interestingly, the involvement of these small RNAs in 

heterochromatin targeting had been implicated even before their identification. It had already 

been shown, mostly by cytological assays, that mutations in ago2 result in defects in centromeric 

heterochromatin formation (Deshpande et al., 2005). Given the well-established role of AGO2 in a 

small RNA-based silencing mechanism, and a potential parallel mechanism in S. pombe 

(describing small RNA targeting of heterochromatin formation), these observations pointed to the 

enticing possibility of siRNA targeting for heterochromatin formation. The model is particularly 

attractive when taken together with the observed enrichment of transposon sequences in endo-

siRNAs. 

 A test of this model, looking at perturbation of heterochromatin formation and targeting 

under conditions where endo-siRNA production is disrupted, provides encouraging support. It has 

been shown that both viral protein sequestering of endo-siRNA, and mutations impacting endo-

siRNA production, have a dominant suppression effect on a stubble PEV reporter, SbV (a 

translocation of Sb to the 2R pericentric region) (Fagegaltier et al., 2009). It has also been shown 

that trans-heterozygous mutations in components needed for endo-siRNA production, such as 

AGO2 and DCR2, also show strong suppression of wm4 PEV. In addition, in the same study 

Fagegaltier and colleagues further demonstrated that endo-siRNA component mutations have an 

impact on localization of HP1a and H3K9me2/3 using immuno-fluorescent staining of polytene 

chromosomes. While for a good percentage of samples examined, a clear impact on 

heterochromatin distribution is observed, it should be noted that pericentric heterochromatin 

remains visibly stained in all cases. These results argue that while the endo-siRNA pathway is 

critical in determining the localization pattern of heterochromatin, the specific targeting of 

heterochromatin formation at the pericentric region is either independent of the endo-siRNA 

pathway or (more likely) the role of endo-siRNA in this process is redundant with other 

mechanisms. It is interesting to note that while dominant mutations of these same genes have 

little to no impact on PEV at some reporter sites (Haynes et al., 2006), inserts of reporter 

transgenes in other regions of the genome show significant suppression. It appears that 
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involvement of endo-siRNA in targeting heterochromatin formation could be context dependent. 

 One conundrum of the endo-siRNA targeting model for heterochromatin formation is the 

fact that the siRNA pathway is better known for its function in post-transcriptional silencing in the 

cytoplasm. It is therefore difficult to draw a direct mechanistic link to a nuclear targeting process 

for heterochromatin. However, two recent studies have independently demonstrated chromatin-

bound AGO2 protein (Cernilogar et al., 2011; Moshkovich et al., 2011) albeit in larval or adult 

tissues. Although a direct mechanistic link is still missing (i.e. it remains unclear what is recruited 

by AGO2 to initiate heterochromatinization), the endo-siRNA pathway is clearly involved in the 

process of heterochromatin formation, at least in certain regions of the heterochromatic genome. 

 Amongst the five Argonaute proteins in the fly genome, the one conspicuously localized 

in the nucleus is Piwi, of the PIWI family proteins (Brennecke et al., 2007). Piwi has therefore 

been regarded as the primary candidate Argonaute protein for heterochromatin targeting in 

Drosophila. The PIWI proteins associate with piRNAs, 26-30 nt small RNAs that are enriched for 

TE sequences. Piwi and Aub primarily bind antisense piRNAs derived from “piRNA loci“,  

postulated to be discrete regulatory loci that can be several kilobases long, proposed to generate 

a transposon defense system. In 2007, two groups independently proposed that a ‘ping-pong’ 

amplification loop is responsible for piRNA biogenesis (Brennecke et al., 2007; Gunawardane et 

al., 2007). piRNA master regulatory loci and endo-siRNA clusters predominantly map to the 

edges of pericentric and telomeric regions—which are highly enriched in repeats and 

transposable elements. Work from Pal-Bhadra and colleagues have demonstrated that mutations 

in PIWI family proteins impact two types of PEV at multiple genomic loci (Pal-Bhadra et al., 2004). 

In a study of Spn-E, a putative helicase involved in the piRNA pathway (Fig. 3), Gvozdev and 

colleagues demonstrated a loss of heterochromatic structure at transposon sites due to this 

perturbation of the piRNA pathway (Klenov et al., 2007). 

 Further evidence supporting the piRNA-targeting model comes from biochemical 

experiments showing a direct interaction between Piwi and HP1a (Brower-Toland et al., 2007). 

Additionally, it has been demonstrated that the direct interaction between Piwi and HP1a is 
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dependent on the PXVXL motif at the Piwi N-terminus. A point mutation in this domain disrupts 

the interaction between Piwi and HP1a in a yeast two-hybrid setting and in vitro (Mendez et al., 

2011). This observation connects the targeting model directly to the well-established HP1a-

centric model for the spread of heterochromatin (Girton and Johansen, 2008), and provides a 

theoretical framework for understanding the heterochromatin formation process in flies.  

 Piwi was first described to be involved in the maintenance of germline stem cells (Cox et 

al., 1998). This function was shown to be required in the stem cell niche of ovarian soma. Deep 

sequencing of piRNA initially positioned Piwi alongside Aub in the Ping-Pong amplification cycle 

for generating secondary piRNAs (Brennecke et al., 2007). This model was later modified in 

response to results from sequencing piRNA in ago3 mutant ovaries (Li et al., 2009) that showed 

Piwi could silence a subset of transposons in the absence of Ago3, and the role of Piwi in 

generating piRNAs became obscure. A functional test of the piRNA targeting model for 

heterochromatin formation in the female germline demonstrated a function for Piwi downstream of 

piRNA production in deposition of HP1a at the putative promoter region for most of the 

transposons tested (Wang and Elgin, 2011). This interpretation is supported by an independent 

study using an N-terminal truncation mutant of Piwi, which fails to localize in the nucleus, to 

demonstrate the critical function of Piwi nuclear localization in transposon silencing and 

enrichment of heterochromatic markers at a subset of transposon sites (Klenov et al., 2011). 

Taken together, results from these two studies and a previous observation from Saito and 

colleagues, on the dependency of Piwi nuclear localization on piRNA binding (Saito et al., 2009), 

make a compelling case that piRNA targeting of Piwi plays a role in transcriptional silencing of 

transposons. 

 Evidence supporting the transcriptional silencing model for Piwi-dependent transposon 

suppression also arises from an independent report showing an increase in HeT-A transcription 

using nuclear run-on assays performed in ovaries depleted for Piwi (Shpiz et al., 2011). It should 

be noted that an earlier report from Zamore and colleagues found a lack of impact on the 

transcription rate of transposons (e.g. mst40) in armitage mutants, suggesting a post-
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transcriptional silencing mechanism for piRNA in transposon silencing (Sigova et al., 2006) 

(Vagin et al., 2006). Consistent with this observation, silencing of the transposon Jockey is not 

impacted by HP1a depletion, indicating that it is not regulated by a chromatin-based mechanism, 

even though it is dependent on Piwi (Wang and Elgin, 2011). Thus, a post-transcriptional 

component is clearly part of the piRNA silencing mechanism, and maybe particularly relevant to a 

subset of TEs.  However, given the predominant nuclear localization pattern of Piwi, and the 

concordance between TE over-expression and depletion of HP1a at these TEs, we argue that a 

transcriptional silencing mechanism mediated through a piRNA-directed heterochromatin 

targeting process is a major mechanism for transposon silencing by piRNA. 

 The physical interaction between Piwi and HP1a that connects the targeting model with 

the spreading model of heterochromatin formation is a substantive link. However, an attempt to 

verify the importance of this direct interaction in transposon silencing in vivo led to the discovery 

of unexpected complexities. By substituting the wild type Piwi in the germline with a single 

residue mutant form (V30A) that fails to interact with HP1a in a yeast two-hybrid experiment had 

no obvious impact on transposon silencing (Wang and Elgin, 2011). It was hypothesized that 

additional proteins bridge the Piwi and HP1a interaction, perhaps in a way similar to Tas3 in the 

S. pombe RITS complex, and that this creates a more robust system. Further biochemical work 

will likely be needed to yield insights into these interactions. Alternatively, other chromosomal 

proteins than HP1a might be initially targeted to the TEs. A tudor-domain containing histone 

methyl-transferase, EGG, appears to be a promising alternative candidate for Piwi targeting of 

heterochromatin formation; this key protein is prominently associated with piRNA loci, and 

necessary to maintain their heterochromatic status(Rangan et al., 2011).  

 In future studies, experiments using constructs bypassing the need for small RNA 

targeting of Piwi to induce heterochromatin formation could be informative in deciphering how 

Piwi recruits relevant downstream factors, if indeed it does. Ectopic tethering of a wild type or 

PAZ domain mutant form of Piwi is being tested in an attempt to induce ectopic heterochromatin 

formation. Tethering of HP1a to euchromatic reporters has been reported to induce ectopic 
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heterochromatin over the reporter and sufficient to induce new chromosomal interactions with 

other endogenous heterochromatic sites (Li et al., 2003; Seum et al., 2001). A strong claim could 

potentially be made from this type of sufficiency, but the results from these experiments may be 

difficult to interpret due to the context-dependent nature of heterochromatin silencing. Given the 

discussion above, a context-dependent impact of tethering is the likely outcome. 

 One critical question concerning the piRNA targeting model for heterochromatin 

formation stems from the fact that piRNA is thought to be restricted to the reproductive system 

and the early zygote (Brennecke et al., 2007). However, heterochromatin is critical for maintaining 

genome stability and adequate chromosome segregation during mitosis throughout the lifetime of 

the individual; thus, the lack of a heterochromatin targeting/assembly mechanism in most tissue 

types does not seem plausible. While the endo-siRNA pathway could potentially be an alternative 

targeting mechanism in the soma, many of the studies cited above show an impact of piRNA 

component mutations in the larval and adult tissues normally scored in PEV assays. It remains 

unclear how mutations in genes that are not known to be expressed could impact chromatin 

structure in those tissues. One intriguing possibility is the epigenetic inheritance of chromatin 

structure through mitosis. Heterochromatin formation is first observed during embryonic stage 

four (nuclear cycle 11-14) and is thought to maintain complete silencing until the relaxation phase 

during the late third instar larval stage (Lu et al., 1998). It is conceivable that the impact of Piwi 

depletion in the early zygote could be maintained epigenetically through mitosis and lead to the 

observed phenotype in later developmental stages of the zygote. In fact, a recent study has 

shown such an impact upon the conditional depletion of Piwi in the early zygote by RNAi 

knockdown; a strong impact on suppression of PEV is visible in adults (Tingting Gu and SCR 

Elgin, personal communication). While significant depletion of HP1a is apparent at the reporter 

site, the impact on heterochromatin as a whole appears to be minimal, suggesting how these 

animals might display a visible phenotype while maintaining the minimum required 

heterochromatin for the progression of the developmental program. We note that while the TEs 

are an important component of heterochromatin, satellite DNA sequences are also a significant 

part of the whole, and might be targeted by other mechanisms.  Studies of mitotic inheritance 
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upon ectopic heterochromatin formation induced by conditional (temporal) tethering of Piwi could 

provide a strong argument for the epigenetic inheritance model described here. 

 

CONCLUDING REMARKS AND FUTURE PERSPECTIVE 

 Here, we focused our discussion on the targeting aspect of heterochromatin formation. 

We reviewed the tremendous progress in the past decade on this issue using the fruit fly as a 

model organism. Clearly, small RNAs are instrumental in the targeting process required to silence 

transposons. However, a reoccurring theme throughout the review is that most of the reported 

experimental observations are dependent on genome context (proximity to heterochromatic 

masses, etc), thus making the derivation of a general rule difficult. For example, the impacts of 

mutations in the genes for RNAi pathway components show a differential response when tested 

on PEV reporter inserts present in different genomic loci. This no doubt reflects the mosaic nature 

of heterochromatin, and could also relate to the special features of the piRNA loci, which are 

certainly packaged as heterochromatin in somatic cells (Kharchenko et al 2011).  The 

effectiveness of 1360 to enhance or drive HP1a-dependent silencing also varies depending on 

the site tested (see discussion above). It is apparent to us that complex interactions between 

multiple mechanisms must be in place, preventing us from deriving simple rules from our 

observations. From an evolutionary point of view, the involvement of transposons in this process 

almost guarantees a convoluted mechanism like the one we observed. There is no doubt an 

”arms race” between the host species and the invading transposable elements through the 

evolutionary time scale, similar to that reported for viral defense systems. Whichever strategy 

succeeds in helping the host cope with the invasive new transposon will result in a further 

(potentially redundant) mechanism built into the system. 

 The idea of heterochromatin targeting originated from a vision in which only two types of 

chromatin exist in the genome. In this scenario, while the majority of the genome is composed of 

euchromatin, the formation of the densely localized heterochromatic regions must be specifically 
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targeted. The dichotomous classification of chromatin structure, while a good starting point and 

still useful in many cases, is insufficient to describe observations made from recent experiments. 

Domains and subtypes of heterochromatin have therefore been reported to describe the 

differences between pericentric and telomeric heterochromatin (Cryderman et al., 1999; Doheny 

et al., 2008). More recently, results from genome-wide chromatin immunoprecipitation mapping of 

chromosomal proteins and histone modifications has suggested other informative ways of 

classifying chromatin structure across the genome. For example the nine-state model can be 

used to adequately identify enhancer regions, transcription start sites and polycomb-regulated 

regions in addition to classic heterochromatin (Kharchenko et al., 2011). These new additions to 

our knowledge have in many ways made the euchromatin/heterochromatin more nuanced. As our 

resolution of chromatin states continues to improves our definitions of these states will likely 

require modifications.  

 While there is no doubt that certain targeting events are needed to ensure proper 

heterochromatin silencing, as supported by ample evidence reviewed in this introduction, the 

pursuit of a single unifying mechanism in heterochromatin targeting is likely to be futile. We 

propose, instead, that multiple mechanisms function in a complex network to ensure proper 

chromatin structure formation in the genome. This complex interactive network forms the basis of 

the context-dependent effects that we so often see in genetic dissections of chromatin biology. 

Towards a better understanding of chromatin based gene regulation, perhaps the reductionist 

approach, seeking simple explanations for targeting mechanisms should be replaced. To gain 

predictive power on the outcomes from simple perturbation experiments, we will have to embrace 

the inherent complexity of the system and utilize the wealth of genomic information derived from 

high throughput technologies.  Where possible, this philosophy has been applied in the studies 

that follow. 

FIGURES 

1.Position-effect variegation in Drosophila melanogaster. Schematic depiction of the 

chromosomal inversion generating the white-mottled four line (ln(1)wm4)  by Muller (Muller, 1930), 
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that places the euchromatic white gene (coding for a transporter protein required for red eye 

pigment) adjacent to pericentric heterochromatin. The light red bar represents heterochromatin 

while the light green bar represents a euchromatic chromatin state. The chromosomal inversion 

results in silencing for some cells (white, due to heterchromatin spreading over the w gene) and 

expression in others (red).  

2. RNAi-transcriptional silencing in S. pombe. Transcripts of dg/dh pericentric repeats are 

targeted by the RNA-induced transcriptional silencing complex (RITS). RITS consists of the 

chromo domain protein Chp1, Tas3 and the small RNA associated protein Ago1. A second 

complex, the RNA-directed RNA polymerase complex (RDRC) consists of the RNA-directed RNA 

polymerase 1 (Rdp1), a putative polyA polymerase Cid12 and helicase Hrr1. RDRC is recruited to 

dh/dg repeats by a physical interaction with RITS to synthesize double stranded RNA, which are 

targeted by Dicer to make additional siRNAs to reinforce RITS recruitment.  

3. Small RNA-mediated silencing in D. melanogaster. Only siRNA and piRNA pathways are 

illustrated. Note that while the piRNA pathway is more restricted to the reproductive system, the 

siRNA pathway has a broader distribution. Both pathways have been implicated in a small RNA 

mediated heterochromatin targeting process. In the siRNA pathway, small RNA generated by 

Dcr2 is loaded to AGO2 RISC. The AGO2 complex can suppress expression via either slicing 

target mRNA in the cytoplasm through a well-characterized post-transcriptional gene silencing 

(PTGS) mechanism or through a yet to be characterized chromatin-based transcriptional 

silencing mechanism (TGS) in the nucleus. In the piRNA pathway, primary piRNA generated by a 

process involving Zuc is fed into the Ping-Pong cycle  involving Aub and AGO3 to generate 

secondary piRNA. This step is proposed to function simultaneously in amplifying antisense 

secondary piRNA and suppress transposon expression via slicing. Spn-E is required for 

secondary piRNA production although the detailed mechanism is unclear. Secondary piRNAs 

loaded onto Piwi, likely by Armitage, allows nuclear localization of Piwi and downstream 

recruitment of HP1a to induce heterochromatin silencing of transpososns.  
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ABSTRACT 

A persistent question in biology is how cis-acting sequence elements influence trans-

acting factors and the local chromatin environment to modulate gene expression. We previously 

reported that the DNA transposon 1360 can enhance silencing of a reporter in a heterochromatic 

domain of Drosophila melanogaster. We have now generated a collection of variegating phiC31 

landing pad insertion lines containing 1360 and an hsp70-driven white reporter to explore the 

mechanism of 1360-sensitive silencing. Many 1360-sensitive sites were identified, some in 

apparently euchromatic domains, although all are close to heterochromatic masses. One such 

site (line 1198; insertion near the base of chromosome arm 2L) has been investigated in detail. 

ChIP analysis shows 1360-dependent HP1a accumulation at this otherwise euchromatic site. The 

phiC31 landing pad system allows different 1360 constructs to be swapped with the full-length 

element at the same genomic site to identify the sequences that mediate 1360-sensitive 

silencing. Short deletions over sites with homology to piRNA reads are sufficient to compromise 

1360-sensitive silencing. Similar results were obtained on replacing 1360 with Invader4 (a 

retroviral-derived element), suggesting that this phenomenon likely applies to a broader set of 

transposable elements. Our results suggest a model in which piRNA sequence elements behave 

as cis-acting targets for heterochromatin assembly, likely in the early embryo where piRNA 

pathway components are abundant, with the heterochromatic state subsequently propagated by 

chromatin modifiers present in somatic tissue.                                                        

INTRODUCTION 

Transposable elements (TEs) are major structural features of nearly all eukaryotic 

genomes, and can play a role as cis-acting regulatory features with profound influence over the 

gene regulatory networks of their host (Feschotte, 2008). However, if left unchecked, the 

deleterious effects of TE mobilization can become insurmountable for the system, damaging 

genome integrity. Thus silencing mechanisms that prevent TE mobilization are fundamental to the 

faithful propagation of genetic information. Position-effect variegation (PEV), a mosaic expression 

pattern resulting from silencing in some cells that normally express a gene, has frequently been 
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used as an indicator of heterochromatic environments (Girton and Johansen, 2008; Wallrath and 

Elgin, 1995). We previously reported that the DNA transposon 1360 can enhance reporter 

silencing in repeat-rich heterochromatic regions (Haynes et al., 2006). To gain insight into the 

mechanisms involved, we sought to identify sequence elements present in 1360 that contribute to 

1360-sensitive PEV, using an adjacent hsp70-driven white gene as the reporter.  

We generated a D.melanogaster strain that allows the incorporation of different 

transgenes, each possessing the same reporter but a different 1360 sequence element, into a 

single 1360-sensitive genomic site. We used the phiC31 landing pad system, where phiC31-

integrase mediates recombination between a landing pad (inserted in the genome) containing 

phage attachment (attP) sites, and a donor construct containing bacterial attachment (attB) sites 

(Bateman et al., 2006). This system allows us to maintain a constant genomic context for multiple 

transgenic constructs. A genomic test site identified at the base of chromosome arm 2L (site 

1198) indeed exhibits 1360-dependent silencing, which we find is dependent on components of 

the heterochromatin system, and reflects accumulation of HP1a.  

Testing various features of 1360, we found that 1360-sensitive PEV at site 1198 does 

not require the inverted repeats at the ends of the element, nor internal transcription start sites, 

but is impacted by small deletions over sites homologous to piRNAs, a small RNA population 

initially generated in germ-line tissue and loaded into the zygote. This observation was extended 

to the retrotransposon Invader4, suggesting that the mechanism is broadly applicable. Thus sites 

with homology to piRNAs may be cis-acting targets for heterochromatin assembly, likely in the 

early embryo – a stage when piRNA pathway components are abundant - with this decision 

subsequently propagated in somatic tissue by chromatin modifying factors.                         

RESULTS 

1360-sensitive silencing is observed in a subset of euchromatic domains.  We 

generated a collection of landing pad lines by mobilizing a P element construct containing attP 

sites flanking a FLP-excisable 1360, cloned upstream of an hsp70-white reporter (Fig. 1A). 

Mobilization led to the recovery of 38 variegating landing pad lines (~5% recovery) with inserts 



! "#!

mapping to unique genomic sites (Fig. 1B). Many (34%) mapped to the telomere-associated 

repeats (TAS) present on 2R and 3R. The subtelomeric repeats are known targets for P element 

insertion (Karpen and Spradling, 1992). These genomic regions are enriched for polycomb group 

proteins E(Z), PSC and PC, and the associated histone mark H3K27me3 (Andreyeva et al., 2005; 

Kharchenko et al., 2011). In 60% of the variegating lines  (including those in TAS) the construct 

mapped to regions with a high repeat density (>30%), a property of canonical heterochromatin 

(Smith et al., 2007). (See Dataset S1 for a list of all lines.). In most of these cases the construct 

insertion sites lie in the pericentric heterochromatin of 2L and 2R, in the fourth or the Y 

chromosomes. A subset of lines have insertion sites in regions of low repeat density (<10%) that 

are enriched for chromatin marks associated with transcriptional activity, such as H3K4me2 and 

H3K9ac, in both S2 and BG3 cells (Dataset S1) (Kharchenko et al., 2011). The distribution of 

variegating insertions within transcriptionally active domains is not random; all lie within two 

divisions (or numerical cytological positions) of pericentric or telomeric heterochromatin. These 

lines represent a unique resource with which to study position effects.   

To determine which variegating landing pad reporters are 1360-sensitive, eye pigment 

assays were performed comparing 3-5 day old adults with the 1360 element removed by FLP-

mediated excision with their sibs with the 1360 element present, i.e.  +/-1360. Fourteen lines 

exhibited pigment levels that were increased in the absence of 1360, a suppression of PEV (Fig. 

1B; see also Dataset S1 and Fig. S1). Some of these lines had a reporter inserted within or close 

to genes, in repeat-poor regions enriched for euchromatic marks in S2 and BG3 cells 

(Kharchenko et al., 2011). Thus 1360 can support heterochromatin formation at a wider variety of 

sites than previously recognized (Haynes et al., 2006; Sun et al., 2004). We chose the 1360-

sensitive landing pad line 1198, with an insert at the base of 2L, distal to a block of 

heterochromatin (cytological position 38B6, 2L:20094149) for further investigation. This line 

exhibits >2-fold change +/-1360 in eye pigment, a range sufficient to detect partial suppression of 

1360-sensitive silencing (Fig. 1D).    
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The construct is inserted within a gene (nesd). A survey of the chromatin environment at 

the insertion site (in the absence of the P element insert) shows that the region is enriched for 

marks associated with transcription (H3K4me2 and H3K9ac) in S2 and BG3 cells, as well as in 

3rd instar larvae (Riddle et al., 2011; Roy et al., 2010) (Fig. 1C). The 20 kb region surrounding 

the reporter has a repeat density of 2%, consistent with the notion that the reporter is not in 

canonical heterochromatin. Notably, the eye phenotype in the absence of 1360 corresponds with 

that observed on insertion of the reporter into a euchromatic environment, displaying a solid red 

eye; variegation is only observed in the presence of the 1360. However, in the presence of the 

1360 element pigment levels become comparable to some lines present in annotated 

heterochromatin (e.g. line 1310; compare line 1198 with 1360 to line 1310 without 1360; see Fig. 

S1), indicating that in the presence of a 1360 the site may be more representative of 

heterochromatin. The degree of silencing is greater in the female than the male, as is typical of 

PEV (Fig. 1D). This line gives us an opportunity to study 1360-sensitive ectopic silencing of a 

reporter. 

1360 supports ectopic heterochromatin assembly.  We hypothesized that the PEV 

observed in the presence of 1360 for line 1198 is due to a change in the local chromatin 

environment, from a native euchromatic domain to a 1360-dependent heterochromatic state, 

which is reversed on loss of 1360. Heterochromatin assembly is associated with the presence of 

H3K9me2/3, deposited by a histone methyltransferase (HMT), typically (but not always) 

SU(VAR)3-9, and the chromo domain protein HP1a, encoded by Su(var)205 in flies. We 

assessed eye pigment levels for the 1198 reporter +/-1360 when mutant for either Su(var)3-9 or 

Su(var)205 to test whether these components are required for 1360-senseitive PEV. In the 

presence of 1360, a  >2-fold increase in pigment is detected with each mutant in both sexes, 

while no significant change is observed in the absence of 1360 in males (a minor quantitative 

change is seen in females), corroborating that 1360-sensitive PEV is dependent on 

heterochromatin components (Fig. 2A). Importantly, this also indicates that in the absence of 

1360, HP1a-dependent silencing is not supported at this site. 
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To determine if 1360-sensitive PEV is a consequence of a change in the chromatin 

landscape, we performed ChIP-qPCR using antibodies for HP1a and H3K9me2, assaying the 

promoter region of hsp70-white (as marked in Fig. 1A). This demonstrated that the local 

chromatin environment is substantially enriched for HP1a and H3K9me2 in the presence of 1360, 

while in the absence of 1360 levels were low (Fig. 2B). No significant difference in the 

euchromatic mark H3K4me2 was detectable +/-1360. Thus the 1360-sensitive PEV exhibited by 

line 1198 reflects HP1a-dependent heterochromatin assembly at a normally euchromatic site in 

the genome.  

A cis-acting sequence element in the right half of 1360 is necessary and sufficient 

for 1360-sensitive PEV.  Several features present in 1360 could be used as a signal for 

heterochromatin assembly. Possibilities include the terminally inverted repeats; putative 

transcription start sites (TSSs) found within the right half of the element; and regions with 

similarity to piRNA reads. Terminally inverted repeats can contribute secondary structure or serve 

as binding sites for transposon-derived proteins, both mechanisms utilized in plants (Ebbs et al., 

2005; Huettel et al., 2006). Present within the right half of 1360 are three putative TSSs, with 

similarity to the 1360 transcription initiation sites suggested to produce antisense Suppressor of 

stellate transcripts in the D. melanogaster male germ-line (Aravin et al., 2001). If the integrated 

copy of 1360 is a target for the transcription machinery, this might cause inappropriate local 

transcript production, targeting the site for silencing by a similar mechanism. The right half also 

contains sites which map to piRNA reads with an antisense bias; these sites could be targets for 

antisense piRNAs bound to Piwi, possibly targeting sense transcripts of the integrated 1360 (Fig 

3A).  

To identify which sequence features in 1360 contribute to 1360-sensitive PEV, we tested 

1360 fragments lacking the terminal inverted repeats (1360!IR), left half (1360!L), or right half 

(1360!R) for induction of silencing as measured by pigment assays (Fig. 3A). Deletion of the 

right half of 1360 has the most pronounced effect on 1360-sensitive variegation, resulting in a 2-

fold increase in eye pigment (Fig. 3B; compare red bars). Lines lacking the inverted repeats or 
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the left half of 1360 retained 1360-sensitive silencing, indicating that these sequence elements 

are dispensable for 1360-sensitive PEV.  

Since each 1360 element is flanked by FRT sites (Fig. 1A), we can test whether silencing 

for each line is dependent on the presence of the 1360! construct. FLP-mediated excision of 

1360!L and 1360!IR leads to a loss of silencing comparable to the loss of the full-length 1360 

donor, while excision of 1360!R produced no change in pigment levels (Fig. 3B). Thus, deletion 

of the left half or inverted repeats of 1360 does not impact 1360-sensitive PEV, while deletion of 

the right half does, suggesting that sequence feature(s) within the right half of the element, 

independent of the terminally inverted repeat, are necessary and sufficient for 1360-sensitive 

PEV. 

Putative transcription start sites present in 1360 are not required for 1360-sensitive 

PEV.  Although there are no universal core promoter elements in D. melanogaster, there are 

some canonical elements, spanning approximately 80 bp, that are common targets for the RNA 

Pol II transcription machinery, including the TATA box and the Initiator (Inr) motif (Juven-Gershon 

et al., 2008). The 1360 element in our construct contains one TATA box with a downstream Inr 

motif close to one of the mapped Su(ste) promoter sites, while the other two sites have nearby Inr 

motifs. To test whether these putative promoters are required, we made three 80 bp deletions in 

1360!L, each spanning one of these sequence elements, to make 1360!TSS (Fig. 3A). The 

resulting construct maintains 1360-sensitive PEV, indicating that the putative TSSs are 

dispensable for silencing (Fig. 3B). FLP-mediated excision of 1360!TSS led to a ~2-fold increase 

in pigment levels, confirming that the sequences in 1360!TSS are sufficient to impart silencing 

(Fig. 3B). Thus an alternative sequence element(s) must be responsible. 

The disruption of sites matching antisense piRNA reads compromises TE-

dependent variegation.  The piRNA pathway, previously implicated in 1360-sensitive PEV 

(Haynes et al., 2006), suppresses TEs in the germ-line through post-transcriptional targeting of 

sense and antisense transcripts by the slicer-mediated activities of Aubergine (AUB) and 

Argonaute 3 (AGO3), using a ping-pong mechanism (Brennecke et al., 2007). The repertoire of 
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defective and active TE copies present in the genome can skew the piRNA population to bias 

against active TEs, necessary to prevent further TE colonization of the genome (Brennecke et al., 

2008; Khurana et al., 2011). A third component, PIWI, is a nuclear protein that binds mostly 

antisense piRNAs, a subset of which are generated by ping-pong cycle dependent piRNA 

biogenesis (Brennecke et al., 2007; Li et al., 2009). PIWI interacts with HP1a, and has been 

implicated in a transcriptional silencing role in the germline (Klenov et al., 2011; Mendez et al., 

2011; Wang and Elgin, 2011). These piRNA components are loaded into the oocyte (Aravin et al., 

2003; Brennecke et al., 2007); their mode of TE repression in the early embryo has been 

relatively unexplored, but could include a role in establishing heterochromatin domains. 

Heterochromatin formation, and the boundary between heterochromatic and euchromatic 

domains, is established in the syncytium, at nuclear cycle 10-14, and must be propagated by 

chromatin modifying mechanisms present in somatic tissue (Rudolph et al., 2007).  

Large-scale sequencing of piRNA populations has revealed that individual TE families 

have distinct patterns and ratios of sense and antisense piRNAs (Klattenhoff et al., 2009; Li et al., 

2009). To determine if the right half of the 1360 element has a distinguishing piRNA distribution 

that could indicate key sites for silencing, we mapped the piRNA read density from wt ovary 

piRNA data generated by Li et al., 2009 (Li et al., 2009), against the 1360 copy present in our 

construct, 1360{}1503. Both halves of the element exhibit matches to piRNA reads (Fig. 3A), but 

antisense peaks (one with a 10-nt overlapping sense and antisense peaks indicative of ping-pong 

cycle biogenesis) were present at two positions only, in the right half of the element (Fig. 3A). We 

tested whether these regions contributed to 1360-sensitive PEV by removing the signature ping-

pong overlapping peaks (36 bp deletion) and the neighboring shorter antisense peak (10 bp 

deletion) of 1360!L to make 1360!piRNA. The new junctions formed by the deletions did not 

result in new piRNA matches. Indeed, these relatively small deletions, 46 bp in total, significantly 

compromised the 1360 effect, although a complete loss of 1360-sensitive silencing was not 

observed (Fig. 3B).  
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Whether the observed loss of silencing was directly associated with the 1360!piRNA 

construct was tested by assaying PEV after FLP excision of this 1360 fragment. Indeed, a 1.3-

fold change was observed, indicating that much of the capacity to silence had been lost, and that 

the residual silencing was due to the 1360 remnant (Fig. 3B). The results indicate that this 46 bp 

sequence component contributes significantly to 1360-dependent silencing, but is not the sole 

sequence responsible for the effect. To verify that the PEV assay data was truly a reflection of a 

change in silencing (from less capacity for transcription +1360 to more capacity for transcription -

1360), we performed RT-qPCR for hsp70-driven white transcripts in 3-5 day old non-heat 

shocked (NHS) and heat shocked (HS) adults, comparing the full-length and 1360!piRNA 

recombinant lines. Transcript levels for hsp70-w at 25°C are sufficient to generate the eye 

phenotype. Heat shock increases the level of the appropriate transcription factor, and provides a 

more robust test of the accessibility of the promoter region, producing levels of transcript suitable 

for a quantitative assay (Haynes et al., 2006; Wallrath and Elgin, 1995). Indeed, the presence of 

1360 significantly decreases the capacity for expression under heat shock; this capacity is 

restored on loss of 1360, and partially restored with the 1360!piRNA construct (Fig. 3C). These 

findings indicate that piRNA sequence elements present in 1360 contribute to 1360-sensitive 

heterochromatin assembly.  

 To explore whether piRNA pathway components could impact 1360-sensitive PEV at this 

site, we tested reporter line 1198 both +/- 1360 in the presence of piwi and aub mutant alleles. 

Mutations in both genes dominantly suppressed 1360-sensitive PEV (Fig. S2). This finding 

implicates an RNAi mechanism in establishing this 1360-sensitive silencing.  

To determine whether this phenomenon is unique to element 1360 we swapped 1360 

with the long terminal repeat (LTR) element Invader4 (Fig. 4A).  Invader4 was chosen for two 

reasons. First, many variegating reporters generated for this study (Fig. 1B) are located within or 

in close proximity to an Invader4 element. (Similar criteria were used initially to select 1360 as a 

potential target for heterochromatin assembly (Sun et al., 2004).) Second, Invader4 is regulated 

similarly to 1360 by piRNA pathway components in that transcription from both elements is up-



! "#!

regulated in ovaries in aub, ago3 and piwi mutant backgrounds (Brennecke et al., 2007; Li et al., 

2009). When Invader4 replaces 1360 in the test construct, we found an equivalent level of 

variegation (Fig. 4B); this loss of expression was also suppressed by mutations in 

heterochromatin and piRNA components (Fig. S3). Deletion of sites with homology to piRNA 

reads (Invader4!LTR; Fig. 4A) resulted in an increase in pigment levels  - similar to the loss of 

full-length Invader4 [compare silencing by the full length element (left) with that by the truncated 

element (right), Fig 4B]. This evidence supports the suggestion that piRNA sequence elements 

can promote silencing; importantly, the phenomenon is not exclusive to 1360, and can be 

observed using either a DNA transposon- or a retrotransposon-derived element. 

 
Work from plants and fungi argues that such a recognition event would likely be based on 

RNA-RNA base pairing (Slotkin and Martienssen, 2007), suggesting a requirement for 

transcription over the transposable element to generate a target template. While the putative 

TSSs in 1360 are dispensable for 1360-sensitive PEV at this insertion site, read-through 

transcription could occur from a nearby promoter. In this case, the P element is inserted 

downstream of the transcription start site for nesd. This gene is expressed at low levels in the 

female ovary, and at moderately high levels in the early embryo (Graveley et al.). To determine if 

read-through transcription of the P element is occurring, we looked for transcripts across the P 

element junction by RT-PCR in 0-10 hr embryos; such transcripts are detected (Fig. 4C). The 

combined results support a model in which a small RNA targeting event utilizing this transcript 

participates in the HP1a-dependent assembly of heterochromatin at this site in the early embryo, 

with the consequences of that event being evident in the tissues that go on to form the eye (see 

model Fig. S4).                                                                                                                  

DISCUSSION 

Our screen to identify a 1360-sensitive phiC31 landing pad site generated  many landing 

pad lines with inserts in unique chromatin domains, including several on the fourth chromosome 

and in repetitious elements such as the telomere-associated sequences on chromosomes 2R and 

3R (Fig. 1). This study adds useful resources to the collection of phiC31 lines currently available 
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(Venken et al., 2011). We find that reporters in a wide-range of chromatin domains are sensitive 

to the presence of 1360;, thus, the influence of 1360 is not limited to repeat-rich, heterochromatic 

sites. However, proximity to repeat-rich regions appears to be important, as most 1360-sensitive 

reporters are close to the base of the euchromatic arms or are telomere proximal (Fig 1B). 

Genetic analysis and ChIP experiments show that 1360-sensitive PEV is representative of HP1a-

dependent heterochromatin assembly (Fig. 2). The use of phiC31 recombineering technology 

allowed us to show that a unique sequence element within the right half of 1360, independent of 

the inverted repeat terminal sequences and of putative transcription start sites, is required for 

optimal 1360 impact in line 1198 (Fig. 3). Importantly, an alternative, unrelated transposable 

element (Invader4) has the same effect as 1360 – implicating a mechanism that can be broadly 

applied to other TEs (Fig 4A, 4B). In both cases the deletion of sites with homology to antisense-

oriented piRNAs compromised silencing at this ectopic site. This suggests that a small RNA 

directed, RNA-RNA targeting event is contributing to transposon-sensitive heterochromatin 

assembly, potentially using a mechanism similar to that documented in S. pombe and plants (Fig. 

S4) (Chen et al., 2008; Kloc et al., 2008; Mette et al., 2000; Noma et al., 2004). 

The ability to trigger ectopic HP1a assembly appears to be limited to genomic sites close 

to heterochromatic masses, as the distribution of 1360-sensitive sites is limited (Fig. 1B). Indeed, 

half of 1360-sensitive sites are in annotated heterochromatin (chromatin states 7/8, BG3 cells), 

while most sites inducing variegation but lacking 1360 sensitivity (without a change in pigment 

levels +/-1360) are in Polycomb enriched regions, frequently in telomere-associated repeats 

(Dataset S1). Thus 1360-sensitive PEV appears to be an HP1a-dependent phenomenon. Prior 

reports as well as this study find that single repetitious elements within the euchromatic arms do 

not trigger detectable reporter silencing (Haynes et al., 2006). The high density of repetitious 

elements in heterochromatic domains is a fundamental characteristic of these regions, suggesting 

that these repeats may cooperatively participate in stabilizing heterochromatin factors. 

Cooperative function of interspersed signals has been reported for other domain-wide chromatin 

structures, for example that developed to provide dosage compensation (Straub and Becker, 

2008). Many of the 1360-sensitive sites identified here are surrounded by repeats of different 
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types; thus at different insertion sites, additional mechanisms could be at work. In the future it will 

be of interest to determine if our observations extend to other 1360-sensitive sites, both those 

adjacent to and within annotated heterochromatin. It is probably no coincidence that our 

experimentally recovered test site (Fig 1C) resembles the classical rearrangements that result in 

PEV, having a reporter in a normally euchromatic domain close to a heterochromatic mass.  

Evidence for piRNA-mediated effects on chromatin assembly in flies is mixed, with data 

suggesting both silencing and activating roles for RNAi system components, depending on 

reporter location (Haynes et al., 2006; Moshkovich and Lei, 2010; Yin and Lin, 2007). Mutations 

in piRNA pathway components are weak suppressors of PEV for a reporter in a repeat-rich 

environment, with and without 1360 present, suggesting that both local heterochromatin and 

1360-sensitive silencing are impacted (Haynes et al., 2006). Other TEs with piRNA signals 

include HeT-A, I element and copia (Li et al., 2009). All three transposon families have been 

found to be silenced by HP1a and H3K9me2/3 assembly over their promoter elements in the 

female germ line by a mechanism dependent on RNAi components (Klenov et al., 2007; Wang 

and Elgin, 2011). piRNA biogenesis is most active at this stage, and it has been argued that its 

effects may be limited to germ cells. For example, mutations in the RNA helicase Spn-E, required 

for piRNA biogenesis, exhibit TE de-repression in the female germline but not in mature somatic 

tissues (no-ovary carcasses)(Klenov et al., 2007). Mutations in many of the RNAi components 

and chromosomal proteins result in female sterility, making the issue difficult to study.   

Both piRNA and chromatin structural proteins (and/or their mRNAs) are synthesized 

during oogenesis, loaded into the ovary, and present in the early embryo (0-6 hr)(Aravin et al., 

2003). Their presence overlaps the early stages of heterochromatin formation (cycles 11-14) and 

of zygotic transcription (nuclear cycle 14) (Rudolph et al., 2007). The latter coincides with the 

appearance of the histone H3K4 demethylase SU(VAR)3-3, without which HP1a and H3K9me2 

levels in the heterochromatin become substantially reduced while levels for the activating 

H3K4me2 mark become high (immunofluorescent staining of nuclei in cycle 14 embryos), 

resulting in suppression of PEV. Generation of wild type clones from heterozygous Su(var)3-3 
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lines suggests that the chromatin patterns established in the late embryo persist during 

differentiation (Rudolph et al., 2007). Thus, piRNA components could play a role in initiation of 

heterochromatin formation in the early embryo at select sites (e.g. a subset of TEs) in the 

genome, with the structure maintained during development by chromosomal protein interactions.  

However, whether or not depletion of these products in the female germline/early embryo alone is 

sufficient to see an impact in the larvae/adult remains to be tested. 

While the impact on silencing of deleting the piRNA sites in 1360 and Invader4 is striking, 

full suppression of the PEV induced by 1360 was not observed (Fig. 3B, 4B), which suggests that 

additional sites may be critical. Such sequences could be missing from the small RNA library 

used for our analysis. Additional piRNA libraries (Brennecke et al., 2007) examined did not 

identify additional sites within the right half of the 1360 element. The piRNA libraries reported to 

date do not achieve saturation, so it is possible that additional piRNA targets remain.  

Alternatively, a different mode of targeting could also be in effect, unrelated to a piRNA-

mediated event. Such dual mechanisms have been documented for heterochromatin formation in 

S. pombe, a system in which RNAi-mediated heterochromatin targeting is well established (Cam 

et al., 2008; Kloc and Martienssen, 2008). In many eukaryotes, transposases have been found to 

be sources of DNA binding domains, co-opted by their host to achieve new transcriptional 

regulatory networks, in many cases targeting their cognate transposon sequences (Feschotte, 

2008). For example, Drosophila BEAF-32, derived from the hAT transposase, is a chromatin 

insulator that binds the scs chromatin boundary element (Aravind, 2000). Similar mechanisms 

may have evolved in Drosophila to specifically target heterochromatin factors to TEs.  However, 

no candidate proteins have emerged to date. 

Evidence for an RNAi-based mechanism that contributes to heterochromatin assembly 

has been found in several model systems (worms, plants, fission yeast). In S. pombe, targeting of 

the HP1a homolog Swi6 and the H3K9 HMT Clr4 depends on the processing of RNA Pol II 

transcripts (generated from heterochromatic loci) by RNAi components. The RNAi-induced 

transcriptional silencing complex (RITS) contains the chromo domain-containing protein Chp1 as 
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well as the RNAi component Ago1, which binds small RNAs with homology to target sites (e.g. 

dg/dh repeats) in pericentric heterochromatin (Kloc and Martienssen, 2008). In the system 

described here, the read-through transcripts of the nesd gene detected in early embryo samples 

(Fig 4C) are plausible targets for Piwi associated with 1360 or Invader4 piRNAs, utilizing a base-

pairing interaction. Analysis of EST libraries from Drosophila embryos indicates that most TE 

families are transcribed (Deloger et al., 2009). However determining the origin of these transcripts 

is a challenging task given the high sequence similarity among TE family members. The current 

experiments have not allowed us to determine whether the 1360-sensitive silencing observed is 

transcription dependent, as would be required for an RNA-RNA recognition event for targeted 

silencing; such a test will be critical for future work to establish the mechanism involved. The 

present results support a mechanism that utilizes piRNAs, possibly ping-pong cycle derived (as 

are 1360 and Invader4 piRNAs (Li et al., 2009)), for transposon sensitive targeting of HP1a, most 

likely early in development, with persistent effects observed using reporters in adult tissues.   

MATERIALS AND METHODS 

Fly Stocks:  All Drosophila stocks and crosses were maintained at 25°C on cornmeal 

sucrose-based media (Shaffer et al., 1994). Fly stocks were from the Bloomington Drosophila 

Stock Center unless otherwise indicated. Transgenesis of the landing pad construct into the 

starting stock yw67c12 was carried out by Genetic Services (Cambridge MA). Stocks and 

constructs used, plus the mobilization and mapping procedures are described in detail in SI 

Materials and Methods. 

Chromatin Immunoprecipitation:  Chromatin isolation and immunoprecipitation from 3rd 

instar larvae were carried out as previously described (Riddle et al., 2011). The antibodies used 

were HP1a W191, Abcam2012 H3K9me2, and Millipore 07-030 H3K4me2. Antibodies were 

validated by us and by others: see the Antibody Validation Database 

(http://compbio.med.harvard.edu/antibodies/about) (Egelhofer et al., 2011). Quantitaive PCR (see 

Table S2 for the list of primers) was performed using BioRad 2x Master Mix SYBR Green in a 
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Cepheid SmartCycler. Two biological replicates, each consisting of two technical replicates, were 

assayed for each immunoprecipitation assay. 

Mapping piRNA reads and assessing RNA products:  Direct sequence mapping was 

carried out using small RNA sequence reads derived from wild-type Oregon R ovaries (Li et al., 

2009) retrieved from the NCBI trace archives with accession number SRP000458 (Figs 3A, 4A).  

For RT-PCR, RNA was isolated from 0-10 hr embryos (Fig. 4B) or 3-5 day adult flies, +/- heat 

shock (Fig. 3C), DNAse I treated and reverse transcribed using random hexamer primers (Fig. 

4B) or oligo dT (Fig. 3C). See SI Materials and Methods for details.                      
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FIGURE LEGENDS 

Figure 1. 1360-senstive PEV can occur at euchromatic sites. (A) Schematic of phiC31-mediated 

cassette exchange between the donor construct and a landing pad, resulting in the recombinant 

product at the same genomic site. The yellow gene, used as a marker to recover recombinants, 

was removed by loxP excision prior to all assays. The bar below hsp70-white denotes the region 

assayed by ChIP-qPCR in Fig. 2. (B) Map of the landing pad insertions exhibiting variegation. 

Those showing suppressed variegation on excision of 1360 are marked by green triangles; those 

with no change, red triangles (see also Dataset S1). (Black triangles indicate that the line was not 

assayed.). (C) Chromatin state of the 1198 insertion site based on modENCODE ChIP-array data 

from 3rd instar larvae (active marks H3K9ac, H3K4me2, and silent marks H3K9me2 and HP1a 

shown). A vertical line denotes the P element insertion site within nesd. (D) Pigment assays +/-

1360 for females (red) and males (blue), with representative eye pictures (see also Fig. S1). Bars 
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represent the mean from two biological replicates, +/- SEM. Excision of the 1360 element results 

in a loss of silencing. 

Figure 2. 1360 promotes heterochromatin assembly. (A) Eye phenotypes (top) of line 1198 +/-

1360, comparing the starting line (wt, left) with those mutant for Su(var)205 (HP1a) or the HMT 

Su(var)3-9. Below: corresponding pigment assay readings (OD 480). Bars give the mean from 

two biological replicas, +/-SEM. (B) ChIP assessment of levels of HP1a, H3K9me2 and H3K4me2 

at the hsp70-white promoter for line 1198 +1360 (black bars) and -1360 (grey bars). qPCR 

primers bracket the hsp70-white promoter (see Fig. 1A). All data was normalized to input; fold 

enrichment over the alpha actinin locus is shown, +/- SEM.   

Figure 3. piRNA sequence elements in the right half of 1360 support 1360-sensitive silencing. (A) 

1360 variants used in donor constructs for phiC31-mediated cassette exchange. Bent arrows 

indicate putative transcription start sites. Frequencies of sense (red line) and antisense (blue line) 

piRNA reads (Li et al., 2009) that map to 1360{}1503 are shown. The bars below illustrate the 

deletions for the 1360DTSS and 1360!piRNA constructs. (B) Representative eye pictures for 

each 1360! recombinant line are shown under the pigment assay data (from male flies) using OD 

480, +/-SEM. Asterisks indicate a significant change +1360 (red) vs -1360 (blue) with a P-value of 

<.05 (Student’s t-test); numbers indicate fold change. Loss of the right half of 1360{}1503 or loss 

of the piRNA hotspots results in a significant loss of silencing (no or reduced change on excision 

of the 1360 remnant). (C) RT-qPCR of hsp70-w transcript levels in non-heat shocked (NHS) and 

heat shocked (HS) wt adult flies heterozygous for the P element. Shown is fold expression 

(normalized to RpL32) relative to full-length 1360 recombinant lines, +/-SEM.  

Figure 4. Invader4 piRNA sequence elements support PEV. (A) Invader4 variants used in donor 

constructs for phiC31-mediated cassette exchange are shown. Frequencies of sense (red line) 

and antisense (blue line) piRNA reads mapping to  Invader4{}1541 are shown. The bar below 

denotes regions of Invader4 deleted in Invader4!LTR. (B) Pigment assay data using OD480, +/- 

SEM is shown for +/- Invader4 test constructs. Loss of regions with homology to piRNA reads 

(Invader4!LTR) results in a loss of Invader4-sensitive PEV. (C) Diagram of the P element 
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insertion site for line 1198 in the 5’ end of nesd. Black bars represent primers used for RT-PCR 

(top). Read-through transcripts spanning the 3’P region of the P element (3’P) and control RpL32 

products are shown (bottom). Lines used were wt control (no P element insert) and 1198, where 

+/-RT indicates the addition or omission of reverse transcriptase.  

SUPPORTING INFORMATION 

Fly Stocks:  FLP-mediated excision of inserts was performed using hs-FLP Cy/noc Sco 

(6876) as described previously (Haynes et al., 2006).  The yw67c23  strain was used to outcross 

reporter lines for pigment assays (for +/-1360 assays and WT controls for mutant analysis) and 

ChIP-qPCR. Alleles used for PEV assays are yw; Su(var)20502/CyO,  yw; Su(var)20505/CyO, 

w118;Su(var)3-906,  w118; aubQC42/CyO, w118; aub!P-3a/CyO (Pal-Bhadra et al., 2004),  w118; 

piwi1/CyO (Cox et al., 1998),  w118; piwi2/CyO (Cox et al., 1998).  

Constructs:  The P element landing pad construct was derived from P[T1] (Haynes et 

al., 2006). Phage attachment sites attP1 and attP2 were PCR amplified (using primers attP1F, 

attP1R, attP2F, and attP2R) from pUASTP2 (Bateman et al., 2006), and cloned into StuI and ClaI 

sites of P[T1], respectively. The Clontech In-Fusion PCR Cloning System was used; primers were 

designed according to manufacturer’s specifications (Zhu et al., 2007).  

Donor constructs were derived from pCiB-yin (Bateman et al., 2006) by PCR amplifying 

yellow (primers y F, y R) to clone into the pCR2.1 TOPO vector to make pCR2.1-y (Bateman et 

al., 2006). The attB1 and attB2 sites were cloned from pCiB-GFP (Bateman et al., 2006) and the 

loxP sites from pP[wlo+GS]. The attB2 site was inserted into ApaI of pCR2.1-y to generate 

pCR2.1-y-attB2. A loxP site was cloned into a new pCR2.1 TOPO vector and attB1 was inserted 

upstream at KpnI to make pCR2.1-attB1-loxP. PCR amplification of attB1-loxP and insertion into 

the SacI site of pCR2.1-y-attB2 was carried out to produce pCR2.1-attB1-loxP-y-attB2. A second 

loxP site from pP[wlo+GS] and a frt site from P[T1] were cloned into a new pCR2.1 TOPO vector 

to make pCR2.1-loxP-frt. Each deletion construct (Fig. 3A) was derived from the 1360{}1503 

copy present in P[T1]. The full-length Invader4 construct (Fig. 4A) was derived from 

Invader4{}1541 (sub-cloned from the fourth chromosome into pCR2.1 TOPO-TA vector using 
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primers Invader4F/R) and cloned into the XhoI site of pCR2.1-loxP-frt using primers 

XhoIInvader4F/R. The list of primers used to amplify deletion constructs can be found in Table 

S2. Each amplified deletion construct was cloned into the XhoI site of pCR2.1-loxP-frt, to 

generate pCR2.1-loxP-frt-1360!. Primers XhoI8-24F and XhoI8-24R were used to amplify loxP-

frt-1360! to clone into the XhoI site of pCR2.1-attB-loxP-y-attB to make pCR2.1-attB-loxP-y-loxP-

frt-1360!-attB. Preparing the 1360!TSS and 1360!piRNA constructs required consecutive 

inverse PCR steps; primers are listed in Table S2. Donor constructs were injected by Genetic 

Services (Cambridge MA).  

Mobilization: Mobilization was from the X chromosome (Line 5, X:3589639). Females 

homozygous for the P-element insertion were crossed to w/Y, Sb !2-3/TM6 males.  The male 

progeny carrying the Sb !2-3 chromosome and the landing pad construct were crossed to 

yw67c23; net; sbd; spapol (MMR- multiply marked recessive) females. Male progeny which carried 

the landing pad construct but not the Sb !2-3 chromosome were backcrossed to yw67c23; net; 

sbd; spapol females, facilitating genetic mapping as indicated by the absence of one of the 

recessive phenotypes, net, sbd or spapol. Landing pad lines generated from the screen were 

maintained over appropriate 2nd or 3rd chromosome balancers (CyO or TM3Sb), or for the 4th, a 

chromosome marked by a dominant mutation (ciD). 

Mapping insertion sites in landing pad lines:  Insertion sites in landing pad lines were 

mapped by inverse PCR from the 5’P end to the transposon as previously described (Sun et al., 

2004). The genomic position of the landing pad P element in line 1198 was confirmed by 

amplifying and sequencing the 3’ end of the construct (primer 3’w v.2) and predicted flanking 

genomic region (primer 1198 F). 

PhiC31 cassette exchange:  To screen for putative recombinants we crossed adults to 

yw and screened F1 males for y+. PCR was used to confirm that cassette exchange had 

occurred in the desired orientation, by screening for the loss of attP sites and gain of attL and 

attR (Fig. 1A). We crossed each recombinant to yw P{y[+mDint2]=Crey}1b for Cre recombinase-



! "#!

mediated excision of the yellow marker prior to analysis by pigment assay; this was necessary, as 

enhancers present in the yellow gene interfered with our reporter readout.  

Eye pigment analysis:  Quantitative eye pigment analysis was performed on 3-5 day-old 

adults. All mutant lines analyzed were heterozygous for the reporter and for the mutant allele. 

Flies were homogenized in 250 µL of 0.01 M HCl in ethanol, incubated for 10 min at 50°C and the 

extract clarified by centrifugation. A final volume of 150 µL was used to measure optical density at 

480 nm (adapted from (Khesin and Leibovitch, 1978)).  

Assessment of RNA products by RT-PCR:  RNA was isolated from 0-10 hr embryos 

(Fig. 4B) or 3-5 day adult flies (Fig. 3C) using Trizol (Invitrogen) according to the manufacture’s 

protocol. For quantitative analysis of hsp70-w (primers white exon6 F/R) from +/-1360 and 

1360!piRNA (Fig. 3C) flies were non-heat shocked or heat shocked at 37°C for 55 min and 

allowed to recover for 2 hours prior to RNA extraction. RNA was DNAse I treated (Promega RQ1 

RNase-Free DNase) and reverse transcribed (Invitrogen SuperScript II) using random hexamer 

primers (Fig. 4B) or oligo dT (Fig. 3C). qPCR of the 3’P end of the P element (Fig. 4B) was 

performed using primers 1198 F and 3’P A412 R.  

Supplemental Figure Legends 

Figure S1.  Pigment assay (OD 480; a measure of expression of the hsp70-white gene) for 

females and males carrying the reporter element (Fig 1) at different insertion sites, with (+) or 

without ( - ) the 1360 element. The left half of the graph is a compilation of all 1360-sensitive 

landing pad lines, while the right half displays data from those that showed no change in pigment 

levels +/-1360. Error bars derived from two biological replicate experiments (four technical 

replicates per experiment), +/- SD. 

Figure S2.  Representative eye pictures for 1198 lines +/-1360 (top) in the presence of piwi and 

aub mutant alleles. Pigment assay data (OD 480, below) shows the mean of two biological 

replicate experiments, +/-SEM. When 1360 is present, silencing is sensitive to mutations in piwi 

and aub, which code for components of the RNAi system.  
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Figure S3.  Representative eye pictures and pigment assays (OD 480) (+/- SEM) for line 1198 

females and males carrying the reporter construct with an Invader4 element, demonstrating the 

impact of mutations in Su(var)205, piwi, or aub. Silencing is sensitive both to mutations in the 

heterochromatin system and the piRNA system. 

Figure S4. A model for piRNA targeting of 1360. piRNAs loaded onto Piwi could bind  

to the read-through transcript from the nesd promoter. Our results suggest that  

these RNA products help target HP1a to the 1360 element upstream of our reporter. 

 

Supplemental Tables 

Table S1. (Dataset S1) Landing pad lines generated from our screen, giving the eye  

phenotype, location in the genome (chromosome, band, and sequence position of  

the insertion), orientation (strand), gene and repeat densities (or number of bases  

annotated as genes (Flybase) or repeats (repeat masker) reported as percentages  

measured 10 kb on either side of the insertion site for a total of a 20 kb window), 

with the corresponding chromatin state of the native insertion site in  

BG3 and S2 cells (Kharchenko et al., 2011), 1360-dependent silencing is indicated  

as Y = yes, N = no, and U = unknown (not tested). Note that sites where no  

chromatin state information is available are marked “NA” in those columns.   

Table S2. Oligonucleotides 
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CHAPTER 3 

A variegating reporter in the 42AB piRNA locus of Drosophila melanogaster is not 

sensitive to mutations in the piRNA system. 
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ABSTRACT 

Position-effect variegation (PEV), the stochastic silencing of a gene in some of the cells in which 

it is normally expressed, can be observed when a typical euchromatic gene is placed adjacent to 

or within a heterochromatic environment. Variegating reporters have been widely used to study 

the trans-acting factors responsible for silencing, helping to uncover the assembly mechanisms 

necessary for a heterochromatin state. We have previously reported that the DNA transposon 

remnant 1360, acting in cis, and RNAi components (specifically PIWI domain proteins), acting in 

trans, impact variegating reporters proximal to repeat-rich genomic regions near the base of 

chromosome 2L in Drosophila melanogaster. The requirement for PIWI domain proteins suggests 

that these components may be involved in establishing or maintaining 1360-sensitive 

heterochromatin formation. Here we investigate whether this is general, restricted to specific 

domains, or a peculiarity of 1360-induced PEV. We find that 1360-sensitive variegating reporters, 

particularly at the base of 2L, exhibit suppression of variegation in piwi mutant backgrounds at a 

greater frequency than do variegating reporters which are not sensitive to an added 1360 

element. We investigated in detail a TE-sensitive site in the piRNA generating locus 42AB, which 

is considered heterochromatic by multiple criteria. The reporter shows enhanced silencing when 

associated with either a copy of 1360 or a copy of Invader4, with enhanced HP1a accumulation at 

its promoter. However, mutations in piwi, along with many prototypical Su(var) mutations, result in 

only weak suppression of variegation at this site, while an ago2 mutation enhances variegation. In 

addition, tests of various fragments of the TEs do not reveal the strong dependence on piRNA 

matching sequences which is observed at a euchromatic site driven to a heterochromatic form by 

an added TE. Our findings indicate that suppression of PEV by mutations in the genes for RNAi 

components occurs in a limited number of heterochromatic domains, predominantly those near 

gene cluseters – sites resembling the border between euchromatin and heterochromatin, 

generated in rearrangement-induced PEV. Thus chromosomal context is an important 

determinant of sensitivity to Su(var) mutations. This finding helps to explain the inconsistent PEV 

effects obtained using different reporters to test the impact of mutations in RNAi components. 
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INTRODUCTION 

 Position-effect variegation (PEV) is defined as the stochastic silencing of a gene in some 

of the cells in which it is normally expressed due to a repressive chromatin environment. This 

phenomenon results in a “mottled” expression pattern as observed for many prototypical 

examples of PEV (Girton and Johansen, 2008). The first documented instance of PEV in 

Drosophila was seen in wm4 (white mottled four), the product of a chromosomal inversion that 

positions a gene required for eye pigment transport adjacent to pericentric heterochromatin 

(Muller, 1930). Such rearrangements result in the splotched appearance of red across the eyes, 

interspersed with white or lighter shades of red (yellow, orange). Variegating lines are also 

recovered when a transposon carrying an appropriate reporter gene inserts into a 

heterochromatic domain (Wallrath and Elgin, 1995). Large-scale screens for modifiers of the PEV 

phenotype have revealed ~150 genes that suppress [Su(var)] and more that enhance [E(var)] 

variegation (Girton and Johansen, 2008). The study of variegation has led to the genetic and 

biochemical characterization of many core chromatin-modifying components responsible for 

expressed and silenced states of gene regulation. Many of the genes required to support PEV are 

involved in heterochromatin assembly, generating the relatively inaccessible, compact chromatin 

state associated with transcriptional silencing. Components required for heterochromatin 

assembly include histone methyltransferases (HMTs) such as SU(VAR)3-9 and dSETDB1, as 

well as the chromo domain protein Heterochromatin Protein 1 (HP1a) (Eissenberg and Reuter, 

2009).  Cytological studies have revealed that these components are present at high 

concentrations in the pericentric and telomeric domains, as well as the small fourth chromosome 

(the Muller F element) of D. melanogaster. Not surprisingly, almost all variegating reporters lie 

within or proximal to such sites, providing a means to study these chromosomal domains 

(Wallrath and Elgin, 1995). 

 The availability of reporter inserts in a wide variety of chromosomal domains provides 

access to the unique regulatory features associated with each site. Thus the trans-acting factors 

that influence heterochromatin assembly have been shown to differ among the heterochromatic 
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domains (pericentric heterochromatin, telomeres, other sites). A notable example from Drosophila 

is the 4th chromosome, where the most prominent HMT along the arm is dSETDB1; accordingly 

mutations in this HMT result in the strongest suppression of variegation for many 4th chromosome 

PEV reporters (Brower-Toland et al., 2009). However, the extent of differential targeting of 

heterochromatin components to the various heterochromatic domains in Drosophila is relatively 

unexplored. Given that heterochromatin formation is required for many different complex 

chromatin assemblies, with different structural and transcriptional roles, the means of finding the 

appropriate targets is likely equally complex.  

 In S. pombe, RNAi proteins are required for the appropriate assembly of heterochromatin 

at the centromeric repeats (Grewal, 2010). In Drosophila, the RNAi effector Argonaute family 

proteins PIWI and AGO2 have been linked to heterochromatin assembly (Fagegaltier et al., 2009; 

Klenov et al., 2011; Wang and Elgin, 2011). Both proteins have been found to associate with 

chromatin and to bind small RNAs with homology to repetitive elements that are packaged into 

heterochromatin. Three lines of evidence support a possible role for Piwi in heterochromatin 

assembly. First, Piwi has a predominantly nuclear localization (Brennecke et al., 2007). Second, 

the loss of Piwi leads to increased expression of many transposable elements, sequences with 

homology to piRNA products (24-30 nt small RNAs) generated by PIWI proteins (Brennecke et 

al., 2007; Gunawardane et al., 2007); in some cases increased expression has been correlated 

with a loss in HP1a over the TE promoters (Klenov et al., 2011; Wang and Elgin, 2011). Third, 

there is in vitro evidence of a physical associated between HP1a and Piwi (Brower-Toland et al., 

2007; Mendez et al., 2011). 

 However, Piwi is reportedly dispensable for HP1a targeting to variegating reporters 

present in piRNA generating sites of the genome (Moshkovich and Lei, 2010; Phalke et al., 

2009). Surprisingly, in piwi mutants, an increased accumulation of HP1a over reporters inserted 

at these sites is observed by ChIP-qPCR (Moshkovich and Lei, 2010; Yin and Lin, 2007), 

indicating that alternative mechanisms may support heterochromatin assembly at such sites. 

Previous studies from our lab show that a 1360 remnant cloned upstream of an hsp70-w reporter 
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is sufficient to support HP1a-dependent heterochromatin formation at sites near the base of 

chromosome 2L (Haynes et al., 2006; Sentmanat and Elgin, 2012). Variegation of these 1360-

associated reporters is strongly suppressed (>2-fold increase in pigment levels) in many lines 

when mutant for Su(var)205 (the gene encoding HP1a) or piwi or aub (encoding PIWI domain 

proteins) (Haynes et al., 2006). Enrichment of HP1a and H3K9me2 was observed in the presence 

of 1360, corroborating the notion that 1360-sensitive PEV is the result of an HP1a targeting 

event. In a test at one such site, the deletion of sites within 1360 with homology to piRNAs 

resulted in a loss of silencing (Sentmanat and Elgin, 2012). These findings suggest that piRNA 

pathway components contribute to HP1a-dependent, 1360-sensitive PEV. 

 While variegating reporters at many sites in the genome are sensitive to the presence of 

a copy of 1360 (referred to as 1360-sensitive), others are not (1360-insensitive). To investigate 

whether suppression of variegation in piwi mutant backgrounds is a general feature of 1360-

sensitive sites, we surveyed 27 1360-sensitive and 1360–insensitive variegating reporter lines 

recovered in an earlier screen (Sentmanat and Elgin, 2012). We find that many, but not all, 1360-

sensitive variegating reporters respond similarly to mutations in piwi with a loss of silencing. Here 

we investigate in detail a 1360-sensitive reporter in the piRNA generating locus 42AB, which 

consists of a string of repetitious elements. Second site mutations in piwi as well as many 

prototypical Su(var) loci are only weak suppressors of variegation at this site, while ago2 

enhances PEV. Genetic dissection of the 1360-element inserted at this site shows that while the 

right half of 1360 contributes most significantly to 1360-sensitive PEV, deletion of sites with 

homology to piRNA sequence elements has no significant impact. Our findings indicate that while 

our reporter in the 42AB locus is sensitive to the presence of an additional copy of 1360, 

elimination of either cis or trans components of a potential piRNA system has little impact. These 

results suggest that there are a limited number of heterochromatic reporter sites that support 

1360-sensitive silencing that is suppressed by RNAi components. Surprisingly, the piRNA locus 

tested is not among these sites. Clearly chromosomal context is an important determinant of the 

silencing mechanisms at work. This finding is significant in that it helps to reconcile inconsistent 
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PEV effects between different reporters in RNAi mutant lines, and provides a starting point for 

analyzing the mechanisms involved.  

RESULTS 

Variegating reporters sensitive to piwi mutations tend to reside at 1360-sensitive sites 

 An hsp70-driven white reporter gene, cloned downstream of a 1360 remnant in a P 

element landing pad construct (see Figure 2a), was previously mobilized to determine the extent 

of 1360-sensitive PEV (Sentmanat and Elgin, 2012). Twenty-seven variegating lines were 

recovered (~5% of total mobilizations); of these, eleven of the lines are 1360-sensitive, 

determined by a statistically significant difference in pigment levels +/-1360 (p<.05, Table 1), 

while the variegation phenotype of the remaining 16 lines are unaffected by removal of 1360 

(Sentmanat and Elgin, 2012). To determine if PIWI domain proteins generally contribute to the 

variegating status of reporters in 1360-sensitive sites, we determined the impact of piwi mutations 

on the level of PEV, looking for a dominant phenotype. The chromatin status of each insert was 

also determined using the chromatin profile associated with the site in BG3 cells or S2 cells when 

BG3 data was not available (Table 1) (Kharchenko et al., 2011). We hypothesized that if 1360-

sensitive PEV requires PIWI domain proteins to target silencing complexes to the TE, and so to 

the site of the reporter, then on depletion of Piwi, pigment levels should equal or exceed the 

levels observed in the absence of 1360 – a suppression of 1360-sensitive PEV. 

 On average, variegated expression from 1360-sensitive inserts is suppressed by piwi 

mutations more frequently than is the case for 1360-independent reporters. This difference is 

significant and reproducible in many cases using the piwi1 or piwi2 alleles, although the effect is 

stonger in the piwi1 background. A commonality between 1360-sensitive reporters suppressed by 

piwi mutations is that, like the previously published 1360-sensitive lines, they tend to cluster at the 

base of 2L. Indeed, all variegating inserts at the base of 2L tested by our lab have been 

suppressed by mutations in piwi1, piwi2, or both. This suggests that inserts in this genomic 
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domain are particularly sensitive to mutations in piRNA components, in contrast to others, 

indicating that genomic location is an important factor.  

 A survey of the chromatin environment surrounding reporter inserts (20 kb window) 

suppressed by piwi suggests that they tend to reside in annotated heterochromatin, although 

most are close to euchromatic masses (see Table 1, gene density). Many 1360-insensitive 

inserts lie within or in close proximity to telomeric associated sequences (TAS), particularly at 2R 

and 3R.  These domains are enriched for polycomb marks such as H3K27me3 (Kharchenko et 

al., 2011; Sentmanat and Elgin, 2012). These observations support the hypothesis that 

suppression of variegation by Piwi components, like 1360-sensitive variegation, is an HP1a-

dependent phenomenon. 

 Thus, suppression of variegation by piwi mutations is not observed for the majority of this 

set of variegating reporters, in agreement with previous reports (Moshkovich and Lei, 2010; Yin 

and Lin, 2007), but is limited to inserts that lie in domains resembling euchromatin-

heterochromatin borders (particularly at a subset of genomic sites at the base of 2L). These 

genomic sites tend to be 1360-sensitive, suggesting a chromatin environment that can be altered 

by addition of sequence components (TEs) that have been implicated as silencing targets for the 

RNAi system. 

 Several PEV reporters in our collection are present in piRNA generating loci, sites 

previously reported to be enriched in HP1a in the absence of PIWI (Moshkovich and Lei, 2010; 

Yin and Lin, 2007). It has been suggested that Piwi may act as a transcriptional activator for such 

sites. Indeed, transcription of repeats present in these genomic regions is necessary to produce 

piRNA molecules, present in the germ line and early embryo. However, our study found some 

variegating inserts in piRNA generating clusters that are suppressed by mutations in piwi (e.g. 

line 1310 and 153), suggesting that variegating reporters in piRNA generating sites are not 

uniformly enhanced by piwi mutations.  This suggests domain-specific effects, but the presence 

of the 1360 remnant may be a critical difference between the reporters used in these 

experiments.  
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1360-sensitive PEV at the 42AB piRNA cluster  

 To explore the nature of silencing at a site reportedly refractory to PIWI-domain mutants 

we chose to study 1360-sensitive silencing of line 1936, which has a reporter inserted in the 

primary piRNA cluster 42AB (Fig. 1). This region has been previously shown to be enriched in 

HP1a in piwi mutants (Moshkovich and Lei, 2010). In line 1936 the presence of 1360 has a 

marked effect on silencing of our adjacent reporter (>3-fold increase in pigment levels in the 

absence of 1360); this silencing is suppressed  by mutations in piwi, and thus linked to RNAi-

dependent silencing (Table 1). Consequently, this reporter insert can be used to investigate how 

1360-sensitive PEV operates in a region reported to be generally unaffected by RNAi 

components.  

 Detailed mapping of the site revealed that the reporter is inserted in the non-LTR 

retroelement Juan, surrounded by a dense array of repeats near the base of 2R (Fig. 1A). The 

insertion site is annotated as enriched for heterochromatin marks HP1a and H3K9me2 in 3rd 

instar larvae, while depleted for activating H3K4me2 (Riddle et al., 2011). The presence of the 

1360 element enhances variegation by >3-fold (Fig. 1B), suggesting HP1a enrichment is 

occurring over the reporter in the presence of 1360 (Sentmanat and Elgin, 2012). This was 

verified at the chromatin level using chromatin immunoprecipitation (ChIP)-qPCR of hsp70-w in 

+/-1360 3rd instar larvae. Indeed, the presence of 1360 increased the accumulation of HP1a at 

hsp70-w by ~3-fold (Fig. 2A).  

PEV is typically affected by the dose of heterochromatin components, displaying less variegation 

when the availability of silencing effectors is reduced. We tested the impact of mutations in a 

subset of heterochromatin assembly compnents – the H3K9 histone methyl transferases (HMTs) 

SETDB1, Su(var)3-9 and G9a, in addition to the chromo-domain heterochromatin protein 1 

(HP1a). Dominant effects (while small) were most strongly observed for mutant alleles of HP1a 

and SETDB1 (encoded by the egg gene) (Fig. 2B). An enhancement of variegation was observed 

in the Su(var)3-906/+ mutant background, visible in eye pictures and reproducible without the 

1360 present – suggesting Su(var)3-9 is not required for heterochromatin assembly at the 
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reporter. Notably, however, the Su(var) effects were not particularly strong (<2-fold pigment level 

changes) for any of the mutant alleles sampled, which may be indicative of redundant targeting 

mechanisms operating at this site, given the complex array of repeats surrounding the reporter 

insert. 

 A quintessential characteristic of an HP1a targeting event is the spreading of silencing in 

cis. The physical interactions between HP1a and methylated histone H3K9 facilitate this process, 

which is compromised when the HP1a domains required for such interactions are mutated (Hines 

et al., 2009). To determine if a spreading effect could be detected along the P element insert we 

assayed HP1a enrichment +/- 1360 at either end of the reporter insert (Fig. 2A, see red bars). 

Indeed, spreading was detected up to 8 kb downstream (Fig. 2A, see 5’P bars) of the 1360 

element. The combined results suggest 1360-sensitive silencing is an HP1a-dependent event at 

this site, corroborated by HP1a enrichment over the reporter with concomitant spreading over the 

length of the P element insert. 

Enhancement of1360-sensitive PEV at 42AB by mutations in ago2  

The low impact of mutations in piwi led us to explore the impact of mutations in another PIWI 

domain protein, AGO2.  Interestingly, ago2414 mutants displayed an dominant enhancement of 

variegation, but only in the case without the 1360 element (Fig 3A).  A similar result was 

previously found using a reporter carrying mini-white (and no additional repetitious elements) 

inserted into this 42AB region (Moshkovich and Lei, 2010). Eye pictures suggest a slight 

enhancement in ago2414 when 1360 is present (Fig 3B), but this is not sufficient for quantitative 

detection in pigment assays. Mutations in piwi had weak suppression effects in the presence of 

1360, but no impact in its absence (Fig 3A, B), indicating that upon the insertion of a new target 

element (+1360) Piwi may facilitate silencing at this otherwise refractory site.  Thus most 

reporters exhibiting 1360-dependent PEV appear to be dominantly suppressed by mutations in 

piwi– even when in locations reportedly refractory to such effects, namely 42AB.  This sensitivity 

is particularly evident in regions where euchromatin and heterochromatin are closely 

interspersed, for example near the base of 2L (Table 1). This genomic region seems to be 
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particularly amendable, suggesting genomic context is an important determinant of suppression 

by RNAi components. 

Dissection of the 1360 element at 42AB  

To determine the sequence elements required for 1360-sensitivity at a site reportedly refractory to 

piRNA components we swapped the full-length element with partial 1360 fragments (1360!, Fig. 

4A; Sentmanat & Elgin, 2012) using phiC31-mediated recombination. The deletion of sequences 

of the 1360 remnant required to sustain 1360-sensitive PEV should lead to suppression of 

variegation. Removal of the left half (1360!L) or of the terminal inverted repeats (1360!IR) did 

not compromise 1360-sensitive silencing (Fig. 4B). The deletion of the right half of 1360 

(1360!R) has a weak suppression effect, suggesting that sequence components present within 

the right half of the element promote 1360-sensitive silencing. These results (while less dramatic) 

agree with data previously gathered for a 1360-sensitive reporter inserted into 2L (Sentmanat and 

Elgin, 2012). Sites with homology to piRNA sequences present in 1360!L were deleted to 

determine if these sites contribute to the 1360-sensitive effect at this site. No significant 

suppression of variegation is observed. These results indicate that additional sequence elements 

present in 1360!piRNA are sufficient to sustain 1360-sensitive PEV. Interestingly, of all the 

constructs tested, none achieved pigment levels originally observed for the -1360 landing pad line 

(Fig. 1B). The combined results support a model where a combinatorial set of sequence 

elements within 1360 facilitate the 1360-sensitive effect at this site, again suggesting that more 

than one mechanism may be at work.   

Invader4 induces PEV at the 1360-sensitive reporter site in piRNA cluster 42AB 

We previously reported that replacing 1360 with the LTR retroelement Invader4 at a 1360-

sensitive insertion site in euchromatin, recapitulated the full-length 1360 effect. In the euchromatic 

site, deletion of sequences with homology to piRNA sequence elements (LTRs in this case, see 

Fig. 5A for map), resulted in a loss of Invader4-dependent silencing. To determine if a reporter at 

a different site, in a different chromatin environment, would respond similarly, we swapped 1360 
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for Invader4 in line 1936.  We find that the Invader4 element displays a similar impact on 

silencing as observed with 1360. A suppression of PEV is observed on loss of Invader4, again 

suggesting that a sequence determinant present in the element contributes to the effect. Deletion 

of the left- or right-half of Invader4 did not compromise the effects seen with the full-length 

element (Fig. 5B).  Loss of the LTR sequence elements, which have homology to piRNA 

sequence reads, resulted in a weak suppression of PEV, but did not achieve levels comparable to 

deletion of the full-length element. Thus, at this site both 1360 and Invader4 appear to be robust 

targets for silencing, but that cannot be attributed to their piRNA sites. Although the silencing 

effects were compromised upon deletion of the right half of 1360 or the LTRs of Invader4, neither 

deletion was sufficient to eliminate silencing entirely (pigment levels without the element).  Note 

that in both cases, variegation of the reporter is still evident in the absence of the TE (1360 or 

Invader4), no doubt a reflection of the heterochromatic nature of this site (piRNA cluster 42AB) in 

larvae. 

DISCUSSION 

We have recovered a series of D melanogaster lines carrying a 1360+, hsp70-white reporter 

construct that exhibits a variegating phenotype when inserted in a subset of chromosomal 

domains, including some euchromatic domains that shift toward heterochromatin (Sentmanat and 

Elgin, 2012), and some otherwise heterochromatic domains. Our results suggest that 1360-

sensitive sites are more often than not impacted by dominant mutations in piwi. However, piwi-

mutant sensitivity is not a defining feature of all sites Impacted by an additional copy of a TE. We 

find that all 1360-sensitive sites present at the base of 2L tested to date are sensitive to piwi 

mutations, suggesting that this chromatin domain may be under the regulatory control of this 

pathway. Interestingly, we find that a 1360-sensitive insert at the primary piRNA generating locus 

42AB responds rather differently: although weakly suppressed by piwi in the presence of 1360, 

the insert shows striking enhancement of variegation on ago2 mutation when 1360 is absent. 

However, no enhancement was detected in the presence of 1360. These results argue that 

multiple silencing mechanisms are in operation at this site.  Together, these results support the 
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notion that chromosomal context is an important determinant of how dominant mutations in RNAi 

components can impact variegation. 

Work from N. crassa and S. pombe suggest multiple repressive complexes target 

heterochromatin to distinct repeat regions. In N. crassa, different HP1-associated complexes 

regulate accessibility at centromeric and non-centromeric repeats (Honda et al., 2012). Similar 

observations have been made in S. pombe, where the RNA induced transcriptional silencing 

complex (RITS) containing the PIWI domain argonuate protein Ago1 and the chromo domain 

protein Chp1, targets heterochromatin to dg/dh centromeric repeats and to the mating type locus 

but not to other repeat regions.  Similarly, w reporter inserts in distinct chromosomal domains 

reported respond differently to dominant modifiers of PEV. Five unique silencing mechanisms  

were identified, which were dependent on the local repetitious sequence content (Phalke et al., 

2009). The possibility that distinct repeats are targeted for silencing by different complexes has 

received some support. In particular, knockdown of piwi in the ovaries results in marked 

depression for only a subset of transposons (e.g. HeT-A, Bari) with concomitant decrease in 

HP1a over their promoters (Klenov et al., 2011; Wang and Elgin, 2011). Why some repeats are 

targeted for repression by this Piwi-based mechanism and not others has remained elusive. 

The collection of variegating reporters used here is limited, and some genomic regions were 

overrepresented. For example, most 1360-independent variegating reporters recovered lie in the 

telomeric associated repeats (TAS) in 2R and 3R (Sentmanat, M and Elgin, SCR 2012). This bias 

may be a result of P element targeting, possibly due to the presence of 1360 as has been 

previously observed (Husinga et al., 2012). This targeting bias has likely limited our ability to 

survey other repetitious environments that may also be refractory to 1360. Thus, there may be 

additional 1360-independent variegating environments not represented in this study.Most 1360-

insensitive reporters were not suppressed by mutations in RNAi components, corroborating 

previous reports that these components do not impact all silent domains using the present 

reporter assays.  
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While many 1360-sensitive reporter sites exhibit some suppression of variegation in the presence 

of piwi mutations, there is a range of responses.  The reporter studied here, inserted into a 

normally heterochromatic piRNA locus, shows relatively little response, while a euchromatic site  

driven to heterochromatin formation by the 1360 shows a strong response; further, in the latter 

case, much of the 1360 sensitivity can be associated with piRNA elements within the TE.  The 

results suggest  suggests a distinct subset of genomic regions shifts chromatin state on addition 

of an additional TE, and that of these, only a subset appear to be silenced through a piRNA-

directed mechanism.   

METHODS 

Fly stocks and husbandry: Crosses used for this analysis were performed and maintained 

in bottles at 25 C, 70% humidity on sucrose-corn meal media (Schaffer, 1994). Fly stocks were 

obtained from the Bloomington Drosophila Stock Center unless otherwise indicated.  The reporter 

construct and methods for replacing the 1360 element with a partial 1360 element or the Invader4 

element are reported in detail in Sentmanat and Elgin (2012). The y1w67c23  strain was used to 

outcross reporter lines for pigment assays ( +/-1360 assays; WT controls for mutant analysis). 

Lines used for PEV assays are yw; Su(var)20502/CyO,  yw; Su(var)20505/CyO,  w118; 

aubQC42/CyO, w118; aub!P-3a/CyO; w118; piwi1/CyO,  w118; piwi2/CyO.  

Pigment assay: Quantitative eye pigment analysis was performed on 3-5 day-old adults. 

All mutant lines analyzed were heterozygous for the reporter and for the mutant allele. Flies were 

homogenized in 250 µL of 0.01 M HCl in ethanol, incubated for 10 min at 50°C and the extract 

clarified by centrifugation. A final volume of 150 µL was used to measure optical density at 480 

nm (adapted from (Khesin and Leibovitch, 1978)).  

Chromatin immuonprecipitation (ChIP):  Chromatin isolation and immunoprecipitation 

from 3rd instar larvae were carried out as previously described (Riddle et al., 2011). The 

antibodies used were HP1a W191, Abcam2012 H3K9me2, and Millipore 07-030 H3K4me2. 

Antibodies were validated by us and by others (Egelhofer et al., 2011). Quantitative PCR was 
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performed using Bio-Rad 2x iQ SYBR Green Supermix in a Cepheid SmartCycler. Primers used 

to assay alpha actinin, 18s and hsp70-w can be found in Sentmanat and Elgin, 2012. Two 

biological replicates, each consisting of two technical replicates, were assayed for each 

immunoprecipitation assay. 

FIGURE LEGENDS 

Table 1. Reporter lines used for this study. Shown are the fold change +/- 1360 (table split 

between 1360-sensitive lines, top; and 1360-independent, bottom); the fold change in response 

to piwi1 and piwi2 mutations, assessed in the presence of 1360; the chromatin state (Bg3 cells); 

and whether the reporter lies in a piRNA cluster. Chromatin states reported (Kharchenko et al., 

2011) are 8 - heterochromatin-like, 7 -  heterochromatin, 6 - polycomb, 4-1-chromatin associated 

with transcriptionally active regions. Insertion sites are annotated as unique piRNA generating loci 

based on the report by Brennecke et al (Brennecke et al., 2007). Bold values indicate significant 

changes in pigment values (p=<.05, Student’s t-test). NA-Not available, * S2 cell chromatin data. 

Figure 1 1360-sensitive PEV is observed in piRNA cluster 42AB. A. Map showing the landing 

pad insertion in piRNA cluster 42AB. The region is enriched for HP1a and H3K9me2 in 3rd instar 

larvae (modENCODE). Below is a schematic representation of the landing pad construct. Black 

bars indicate fragments amplified for ChIP-qPCR. B. Quantitative eye pigment assay +/-1360 and 

accompanying eye pictures.  

Figure 2 HP1a-dependent silencing over the 1360-sensitive insert in piRNA cluster 42AB A. 

HP1a enrichment along the length of the P element insert. Samples were normalized to input and 

fold-enrichment over alpha actinin is reported, +/- SEM for two biological replicates. The region is 

enriched for HP1a in the presence of 1360. B. Impact of mutations in prototypical suppressors of 

variegation. Pigment assays for the reporter with 1360 present are reported, +/- SEM.   

Figure 3 Mutations in the genes encoding RNAi components have little impact on silencing of the 

reporter in this chromatin domain.  A. Pigment assays of the 1936 reporter insert (+/- 1360) in 
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RNAi mutant backgrounds. B. Corresponding eye pictures. The ago2 mutation results in 

enhanced silencing at this locus, most apparent in the absence of 1360. 

Figure 4 Partial fragments of 1360 are sufficient to generate the added silencing. A. 1360 

fragments swapped for the full length 1360 remnant. The map of sense (blue) and antisense (red) 

piRNA reads from wild-type Drosophila ovaries that guided design of 1360DpiRNA is shown.  B. 

Pigment assays for each 1360 test fragment. The asterisk indicates a statistically significant 

difference between full-length 1360 and a test construct (p-value <.05).  

Figure 5 Invader4 constructs swapped for the full-length 1360 remnant. A. A map of the sense 

(blue) and antisense (red) piRNA reads from wild-type Drosophila ovaries is shown. B. Pigment 

assayed for each Invader4 construct sampled. A single asterisk indicates a statistically significant 

difference at a p-value <.05, and a double asterisk at p-vaule of <.005.  
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CONCLUSION AND FUTURE DIRECTIONS 

 A model for RNAi-based heterochromatin assembly. The vast majority of 

transposable element (TE) remnants reside in heterochromatic environments, which suggests 

TEs may be an underlying sequence determinant for heterochromatin assembly. An exploration 

of this possibility, implementing reverse genetic approaches to determine the cis-acting sequence 

requirements to target a TE for silencing has provided important groundwork in support of RNAi-

based transcriptional silencing in a metazoan system. The use of site-specific recombination by 

phiC31-integrase facilitated the sampling of multiple constructs while maintaining a constant 

genomic context, providing proof of concept that such a system could be applied to study the 

sequence determinants of silencing. The elimination of sites with homology to PIWI-interacting 

RNAs (piRNAs) from either a DNA transposable element or a retrotransposon compromised TE-

sensitive silencing. Further, read-through transcripts detected in 0-10 embryo samples of the P 

element insert at the base of 2L (2L:20094149, cytological position 38B6) provide a plausible 

target for complementary, small RNA recognition and subsequent silencing by HP1a (chapter two 

of this thesis).  

 Heterochromatin first becomes cytologically visible in syncytial blastoderm embryos (130 

min after fertilization) with the appearance of the chromocenter and dispersed heterochromatic 

regions (Mahowald and Hardy, 1985). The presence of heterochromatin on DNA leads to reduced 

accessibility to transcriptional activators. The consequences of this state become apparent during 

gastrulation (190 min after ferilization) as noted in studies analyzing the onset of position-effect 

variegation (Lu et al., 1998). Once established, it is faithfully propagated and becomes 

increasingly pronounced (as observed by PEV analysis) in undifferentiated imaginal precursor 

cells of D. melanogaster (Lu et al., 1998). Differentiation of precursor cells during late 3rd instar  

triggers a release of silencing, which leads to the variegating pattern observed in terminally 

differentiated adult tissues (Lu et al., 1996; Lu et al., 1998). This is supported by evidence that 

ecdysone, a hormone required for differentiation, is sufficient to trigger PEV of cultured primordial 

cells in vitro (Lu et al., 1998). Maternally loaded Piwi and associated piRNAs are present during 
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the first 240 min after fertilization – within the critical period of heterochromatin establishment 

during gastrulation.  

 Our model suggests that the read-through transcripts of the P element produced from the 

nesd gene promoter occur during this stage and are targeted due to the presence of sites with 

homology to piRNA reads present within 1360. We believe silencing must be established early 

over the hsp70-w reporter in most, if not all, eye primordial cells. As differentiation begins, 

reporter silencing is lost in some cells during progressive mitotic divisions. The speckled eye 

phenotype is the result of the relative loss of silencing in some cells and not others during 

differentiation. The eye phenotype associated with 1360-sensitive silencing at the base of 2L is 

clearly not an all or nothing event for each cell. Variegation is relatively weak and presents as 

interspersed dark and light shades of red. If a release of silencing is coincident with activation 

during differentiation the weak PEV observed suggests a relatively strong activation signal assists 

in countering the initial silencing event. Indeed, nesd is reported to not only be highly expressed 

in early embryos (0-10 hrs) but also begins mounting transcriptional activity during late 3rd instar 

larval development, peaking at the prepupae stage (Graveley et al., 2011). Thus, the reactivation 

of nesd during late 3rd instar development may reduce the local HP1a density and facilitate 

hsp70-w accessability – explaining the relatively weak PEV observed at this site.  

  Validating predictions associated with RNAi-mediated heterochromatin assembly. 

The conventional RNAi-mediated transcriptional targeting mechanisms, found in yeast and plants, 

require target transcript production. If a similar mechanism exists at the tested TE-sensitive site 

(described above), the read-through P element transcripts should be required for Piwi-mediated 

silencing. To test this possibility, one would need to interrupt read-through transcription. It is likely 

that the transcripts emerge from the promoter of the nesd gene, as the P element insertion lies 

within the nesd gene body. Peak transcript production necessary for silencing occurs during early 

embryogenesis (2-10 hours). To interrupt read-through transcription, a transcription termination 

signal could be integrated into the P element using site-specific recombination mediated by 

phiC31-integrase. For example, the transcription terminator signal from SV40 is routinely used in 
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P element constructs to signal transcription termination. If read-through transcription is required 

for 1360-sensitive silencing at this site, this strategy should suppress PEV of the hsp70-w 

reporter. 

 The impact of deleting short sequence elements with homology to piRNAs was sufficient 

to compromise silencing, which suggests these elements are required. It would be interesting to 

determine if they are sufficient using site-specific recombination at 1360-sensitive inserts. If so, 

this could be a means to ectopically target Piwi, as well as associated co-factors. Members of 

Haifan Lin’s laboratory (Yale University) have presented data (Huang and Lin, Poster Abstracts – 

Chromatin and Epigenetics, Drosophila Research Conference, Chicago, IL; The Genetics Society 

of America Conferences, 2012; Abstract 370A.) that suggests a tandem array of piRNA sequence 

elements with homology to piRNA reads are sufficient to silence a reporter, through a Piwi-

dependent mechanism. The in vitro physical association between HP1a and Piwi at the PxVxL 

interface suggests that Piwi could directly recruit HP1a to chromatin (Brower-Toland et al., 2007; 

Mendez et al., 2011).  

 However, whether this occurs in vivo remains to be demonstrated. A mutant form of Piwi 

with an alanine substitution at the valine in the proposed PxVxL interaction interface does not 

bind HP1a in vitro, but is still able to rescue piwi null germ cells, repressing the typical, TE over-

expression phenotype (Wang and Elgin, 2011). Thus it appears that the PxVxL interface is not 

required for an in vivo Piwi - HP1a interaction, or that the interaction does not exist in vivo and the 

reported effects thus far have been the result of indirect consequences. (For example, TE 

mobilization will lead to increased DNA damage, which can impact HP1a distribution, and thus, 

TE silencing.) To delineate among the various possibilities, directly tethering of LacI-Piwi to LacO 

repeats may provide the means to gather substantive evidence (Figure 1).  

 Tethering experiments have previously been performed to explore the impact of localized 

HP1a. Using a LacI-HP1a fusion protein binding to LacO repeats cloned upstream of an hsp26-

tag, hsp70-w reporter at euchromatic locations, (Danzer and Wallrath, 2004) found that tethered 

HP1a caused a more compact chromatin state to emerge, and that this state is sensitive to 
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Su(var)3-9 mutations. This finding supports the model that an interaction between HP1a and 

SU(VAR)3-9 is needed for heterochromatin spreading (Bannister et al., 2001; Lachner et al., 

2001). Thus, using these same reporters, proven to form a more compact chromatin state in the 

presence of HP1a, one could begin to address how Piwi might impact chromatin structure. One 

would predict that the N-terminal PxVxL domain of PIWI is the most likely domain for HP1a-

interaction. Thus, if recruitment of HP1a is observed following LacI-Piwi binding, testing for the 

requirement of this domain would help dissect the role of PIWI (e.g. transcriptional or post-

transcriptional silencing). These efforts have begun, and lines containing LacI-Piwi and LacI-

Piwi!N have been generated. The impact of the expression and binding of these fusion proteins 

on silencing of a reporter adjacent to a lacO binding site will be tested using reporter lines with a 

lacO cluster (cytological locations 45D, 54F1 and 87C1) close to a heterochromatic mass. These 

experiments will be completed by collaboration with my colleague Tingting Gu. 

 Mobilization of the landing pad construct containing1360 allowed us to determine that 

1360-sensitive PEV is largely restricted to heterochromatic domains but can be induced in 

annotated euchromatin that is close to repetitive DNA clusters. Many 1360-sensitive reporters 

dominantly suppressed by piwi mutant background are present in heterochromatic domains, but 

almost all were close to interspersed euchromatic domains. There were some inserts in 

heterochromatin refractory to piwi, particularly at the primary piRNA generating cluster 42AB. This 

observation suggests that while not all heterochromatic domains are equally susceptible to the 

effects of piwi mutations, those that are are most likely to be inappropriately expressed as a 

consequence of a nearby promoter.  

 An important extension of this work is to determine whether in the absence of a reporter, 

piwi susceptible 1360-sensitive domains are indeed under the regulatory control of the piRNA 

pathway for heterochromatin targeting. It would be interesting to determine if endogenous repeats 

at these sites (e.g. base of chromosome 2L) experience HP1a-directed targeting by Piwi as 

reporter inserts appear to. This can be carried out with the use of ChIP-Seq technology to 

determine if, in the absence of a reporter, such domains are indeed depleted of HP1a in piwi 

mutants. Given the confounding issues that arise due to maternal loading of Piwi, the best 
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approach would be to examine embryos or larvae depleted of the maternal Piwi load – 

accomplished using the appropriate Gal4 drivers (NGT40;NGT(A), GAL4 expressed in the female 

germ line for loading into the oocyte) coupled with a UAS-Piwi hairpin. Depletion of Piwi in the 

early embryo has been successfully accomplished using this technique (personal communication, 

Tingting Gu, Washington University in St Louis).  

 Transposons as sequence determinants of heterochromatin. There is an 

extraordinary positive correlation between heterochromatin and transposon sequence content 

(Riddle et al., 2011; Yasuhara and Wakimoto, 2008). There are two predominant explanations for 

this observation: (1) heterochromatic regions are gene-poor and undergo little to no meiotic 

recombination, thus, these sites are less deleterious, or (2) transposons are sequence 

determinants of heterochromatin assembly. These explanations are not mutually exclusive. There 

are mounting examples of transposable elements that are co-opted by their host to serve as 

sequence-specific modules to regulate gene expression (Feschotte, 2008). Thus, it is plausible 

that while there is some initial selective advantage upon a new TE invasion to insert within a 

heterochromatic environment, over time these sequences may be co-opted for a regulatory role. 

This predicts that at least some TEs would have become fixed within the population due to their 

functional property in the host genome. This notion is supported by evidence that the transposon 

sequence composition of the TE-rich flamenco locus on the X chromosome are well conserved 

between closely related species of D. melanogaster (e.g. D. yakuba  and D. erecta) and are 

necessary in D. melanogaster to repress active TE copies (Malone et al., 2009). The regulatory 

role of these TEs may require a heterochromatic environment to properly function as has been 

observed for heterochromatic genes such as light and rolled (Lu et al., 2000). In the absence of 

the histone methyltransferase egg the regulatory role of a similar TE-rich cluster on the second 

chromosome is lost (Rangan et al., 2011). 

 The silencing signals (in the form of small RNAs) produced from these heterochromatic 

TE-rich clusters are most notably required for post-transcriptional degradation of active TEs 

(Brennecke et al., 2007). However, as discussed in the chapter 1 of this thesis, a transcriptional 

role is possible. Experiments to investigate this possibility are outlined in this chapter. If a 
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transcriptional role is indeed in effect, this would strongly support that sequence-specific targeting 

occurs at sites with sequences (likely TEs) that represent those targeted by the transcriptional 

silencing component of the pathway. 

 The contribution of transposable elements to genetic variability.  A delicate balance 

exists in the genome between the efforts to maintain genome integrity and the ability to respond 

to new environmental pressures. As is often advisable in unfavorable circumstances, adaptability 

is one’s best recourse. My work has shown that TEs can impart an epigenetic switch at sites in 

their immediate proximity, enhancing the variability of expression (on/off state from cell to cell) for 

a reporter at some genomic sites. Such phenotypic variability could have a selective advantage in 

a changing environment. However, whether the sources of epigenetic modulation that result in 

changes in gene expression are mostly the consequences of environmental perturbations is an 

area of active investigation in the field. Feinberg and Irizarry argue that the source of phenotypic 

variability is not necessarily Lamarckian (or the environment influencing heritable phenotypes), as 

has been previously proposed, but genetic (Feinberg and Irizarry, 2010). Many tissue-specific 

differentially methylated regions that differ between species (e.g. mouse and human) are 

associated with developmentally important genes and, in some cases there is a gain or loss of 

proximal CpG islands targeted for methylation (Feinberg and Irizarry, 2010). This observation 

links underlying genetic determinants to epigenetic regulation of potentially species-specific 

developmental programs. Could TEs be a source of similar phenotypic variation, helping to 

reshape developmental networks? 

 Transposable elements are sources of empirically determined species-specific cis-

regulatory features (Feschotte, 2008). A quarter of the human promoters have been documented 

to contain TE-derived sequences (Jordan et al., 2003). Notably, >30% of binding sites for the 

tumor suppressor protein p53 in humans, determined by chromatin immunoprecipitation (ChIP), 

are enriched for long terminal repeats (LTRs) of the LTR class I endogenous retrovirus (ERV)  

(Wang et al., 2007). The ERV families found at these sites are primate-specific, suggesting a 

species-specific cis-regulatory network. Such events require mobilization(s) that distribute TEs 

into sites that facilitate a gene regulatory role.  
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 The extent to which TEs may influence the epigenetic landscape is unknown, but some 

intriguing examples have emerged. A classic example of heritable epigenetic changes resulting 

from a TE comes from the agouti locus in the mouse, where variable DNA methylation of a 

retrotransposon leads to changes in expressivity between individuals. The retrotransposon 

insertion transforms the agouti locus to a metastable epiallele, a locus variably expressed  

between genetically identical individuals. Environmental factors, particularly potent during early 

embryogenesis, can influence the DNA methylation levels at epialleles leading to altered adult 

phenotypes. Gestational exposure to bisphenol A (BPA), used in plastics, lowers methylation 

levels at the agouti epiallele (among other loci), while dietary supplementation with methyl donors 

such as folic acid can counteract the effect (Dolinoy et al., 2007). Thus, genetic determinants 

within TEs can introduce a target for effectors of epigenetic regulation at some genomic sites, 

while environmental factors may influence the activity of those effectors. Collectively, the data 

presented here suggest that piRNA sequence elements present in TEs are targets for silencing at 

some sites of the genome. 
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Figure 1. Tethering LacI-Piwi to a reporter locus. Two experimental constructs containing wild 

type Piwi and Piwi!N (first 35 amino acids deleted, red) have been cloned separately 

downstream of a LacI tag. The control, LacI-GFP, will also be targeted to the reporter locus to 

determine if a change in the nucleosome density around the reporter is observed between 

experimental constructs and this control. All constructs have an upstream activation sequence 

(UAS) at which Gal4 protein (driver) binds to activate transcription. The Gal4 driver here will be 

under the control of the nos promoter, which is expressed in germ line cells (top right corner) of 

the embryo and adult where Piwi is known to be active. The LacI tag specifically localizes to LacO 

repreats (256 array), here cloned upstream of a reporter. Proteins that associate with Piwi should 

also localize to the LacO repeats with LacI-Piwi, if those associations depend on the N-terminal 

PxVxV sequence (as postulated for HP1a), those associations should be lost in LacI-Piwi!N 

lines. 
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Chapter 4, Figure 1 
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