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Table 1. Performance on the syllable recall task as measured by mean trials to criterion, 

mean syllables recalled during criterion learning, and final recall following retention 

interval (standard deviations in parentheses) across condition and retention intervals. 

Figure 1. Prospective memory performance across encoding time, delay, and ongoing 

task. 
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Summary

Laboratory-based prospective memory tasks have rarely examined the effect of retention 

interval on later remembering. In the current study, participants had to remember to 

perform an intended action (press Q in response to a target cue) after a short delay 

(approximately 20 min), a 12-hr sleep delay, or a 12-hr wake delay. The results 

demonstrated a large decline in prospective memory performance after a 12-hr wake 

delay (relative to the short delay condition). Interestingly, prospective remembering was 

not only better following a 12-hr sleep delay than a 12-hr wake delay but performance in 

this condition did not differ significantly from performance in the short delay condition. 

Cost analyses (i.e., ongoing task performance decline associated with embedding a 

prospective memory task) demonstrated that spontaneous retrieval processes primarily 

supported prospective remembering. These results are discussed in relation to theories of 

prospective memory retrieval and sleep-dependent memory consolidation.

v



“It is astonishing how much strength the interval of a night gives [memory]…the very 

time which is generally thought to cause forgetfulness is found to strengthen the 

memory.”

--Roman rhetorician Quintilian, First century, AD
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Sleeping to Remember: Spontaneous Retrieval of Prospective Memories Across 

Sleep and Wake Delays

In recent years there has been a resurgence of interest in the effect of sleep on 

memory. Interestingly, the idea that sleep could benefit memory is millennia old (see 

Quintilian quote) and the history of recorded sleep-related memory benefits is as old as 

the empirical study of memory. In his seminal study, Ebbinghaus (1885) observed a 

reduction in forgetting from 9 hrs to 24 hrs (2.1%), which can be compared to the 

forgetting rate from 1 hr to 9 hrs (8.4%) and from 24 hrs to 48 hrs (6.1%). Even though 

the reduced forgetting rate was observed during an interval that included the first night of 

sleep following learning, Ebbinghaus concluded that the reduction was “not credible” (p. 

77), and even lamented that the effect was his “least satisfactory” (p. 77) result.

Ebbinghaus’s (1885) results were no accident. In a classic study, Jenkins and 

Dallenbach (1924) examined memory for nonsense syllables across sleep and wake 

retention intervals of 1 to 8 hrs. Not only was recall greater following sleep delays (59%) 

than wake delays (26%), but recall was actually better following an 8-hr sleep delay 

(56.5%) than a 1-hr wake delay (46%). These results led Jenkins and Dallenbach to 

conclude that sleep serves to protect against “the interference, inhibition, or obliteration 

of the old by the new” (p. 612). In other words, sleep (passively) protects against 

retroactive interference (Wixted, 2004).

Another general account for sleep-related memory benefits contends that 

memories are reactivated and restructured during sleep, and thereby (actively) 

consolidated (e.g., see Mograss, Guillem, & Godbout, 2008; Rasch, Buchel, Gais, & 

Born, 2007; Sejnowski & Destexhe, 2000). Rasch et al. demonstrated that memories can 
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be selectively reactivated during sleep and therefore enhanced. Participants learned a 

visuospatial object-location task (the game “Concentration”) that involved recalling the 

location of card pairs following a sleep or wake interval. Importantly, during learning, a 

rose scent (or an odorless control) was repeatedly presented and participants were re-

exposed to the rose scent (or control) while they slept. Performance on the memory task 

following sleep demonstrated that memory was enhanced when the rose scent (relative to 

the odorless control) was presented both during learning and sleep (specifically, the slow-

wave-sleep stage) phases. In contrast, no memory enhancement was observed if the rose 

scent was presented at learning and again during a wake interval. In addition, using 

functional magnetic resonance imaging (fMRI), Rasch et al. demonstrated that rose scent 

re-exposure led to greater hippocampal area activation (an area that is critical to memory 

encoding and retrieval) during sleep than while awake. Thus, Rasch et al.’s behavioral 

and neurophysiological evidence powerfully demonstrated that, beyond simply protecting 

against retroactive interference (Jenkins & Dallenbach, 1924; Wixted, 2004), sleep might 

also enhance memory by reactivating and strengthening associative links.

In addition to Rasch et al.’s (2007) evidence for sleep-dependent memory 

consolidation, other researchers have demonstrated that sleep preferentially benefits 

associative memory (e.g., see Barrett & Ekstrand, 1972; Fowler, Sullivan, & Ekstrand, 

1973; Talamani, Nieuwenhuis, Takashima, & Jensen, 2008; Yaroush, Sullivan, & 

Ekstrand, 1971). More specifically, sleep has been demonstrated to cause weak 

associations to become stronger (for a brief review, see Diekelmann, Wilhelm, & Born, 

in press) and memory representations to become more elaborated (Mograss et al., 2008; 

see also Charlton & Andras, 2009, for a similar theory). For example, Stickgold, Scott, 
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Rittenhouse, and Hobson (1999) gave participants a semantic priming task that consisted 

of weak and strong primes before and after sleep. Their results demonstrated that weak 

primes led to more priming than even strong primes following a sleep interval (that 

contained dreaming).

The effect of sleep on weak associations has also been observed in cued recall and 

recognition memory tasks. Using an A-B, A-C paired associate learning paradigm, 

Drosopoulos, Schulze, Fischer, and Born (2007) demonstrated a sleep-related benefit for 

the A-B list over the A-C list. The authors reasoned that, even though learning the second 

list (A-C) initially weakened the associative strength of first list pairs (A-B) (via 

retroactive interference), sleep restrengthened these weak associations. 

Mograss et al. (2008) examined event-related potentials to provide converging 

evidence that sleep affects the structure of a memory via strengthening associative links. 

In their recognition memory study, Mograss et al. examined the medial-temporal-lobe-

generated late-positive-component (LPC) effect on old items (compared to new items) in 

sleep and wake conditions. The magnitude of the LPC effect is theorized to reflect the 

amount of binding and elaboration that a memory has undergone (Allan, Wilding, & 

Rugg, 1998). Thus, Mograss et al. interpreted the finding of a larger LPC effect after a 

sleep delay than a wake delay as evidence that sleep-dependent “consolidation consists of 

restructuring or reorganizing weak associations in order to strengthen associative links” 

(p. 431). Therefore, an emerging hypothesis is that sleep may benefit memories by 

binding weak associations. 

In the present study, I investigated the binding view’s hypothesis of sleep’s effect 

on memory (as compared to the interference view, Jenkins & Dallenbach, 1924) by 
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embedding a prospective memory task in several contexts, one of which was weakly 

associated with the prospective memory intention. According to the interference view 

(Jenkins & Dallenbach), sleep should benefit prospective remembering in each context 

equally, whereas the binding view (e.g., Brankack, Platt, & Riedel, 2009; Mograss et al., 

2008) predicts that, because sleep strengthens weak associations, the greatest sleep-

related prospective memory benefit will obtain in the context that was (initially) weakly 

associated with the intention. 

Prospective Memory and Retention Interval

Prospective memory refers to the ability to remember to perform an intended 

action in the future. Examples of real world prospective memory tasks include 

remembering to take one’s medication with breakfast and calling one’s mother on her 

birthday. The typical laboratory-based prospective memory task (Einstein & McDaniel, 

1990) involves performing some ongoing task (e.g., rating faces) and remembering to 

perform a designated action that is different from the normal ongoing task response (e.g., 

raise hand) if a target cue (e.g., face with glasses) is presented (Maylor, 1996). This 

paradigm was designed as an analogue to real world situations in which individuals are 

engaged in some ongoing activity (e.g., getting ready for work) when they encounter a 

cue (e.g., medicine box) that signals that they should disengage their normal response and 

execute a prospective memory response (e.g., take medication). 

One striking difference between laboratory-based prospective memory tests and 

prospective memory in the real world is the delay between forming and executing the 

intention. Many (if not most) real world prospective memory tasks include retention 

intervals of hours or days, but nearly all laboratory-based prospective memory studies 
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have retention intervals of 5 min or less, few studies have retention intervals greater than 

10 min (Einstein, Holland, McDaniel, & Guynn, 1992; Guynn, McDaniel, & Einstein, 

1998; Hicks, Marsh & Russell, 2000) and only one published study had a retention 

interval greater than 20 min (Nigro & Cicogna, 2000). Perhaps because of this tradition 

of using short retention intervals, there has yet to be an (published) examination of the 

effects of sleep on prospective memory. Indeed, few prospective memory studies have 

even manipulated retention interval, and the studies that have done so have produced 

results that were highly counterintuitive. For example, Hicks et al. reported that 

prospective memory performance was better following longer delays (e.g., 15 min) than 

shorter delays (e.g., 3 min). 

Hicks et al.’s  (2000) results were highly surprising but the nature of their 

prospective memory task may help explain their pattern of results. Because their ongoing 

task (pleasantness-rating) promoted processing of the pleasantness of a given word 

whereas their prospective memory task included a categorical cue (any word that 

represented an animal), the prospective memory task can be considered nonfocal to the 

ongoing task (i.e., categorical information is not necessarily activated in the service of 

pleasantness rating). Therefore, to remember to perform the prospective memory action 

participants were required to divert attention away from the ongoing task to check (i.e., 

monitor) for the categorical prospective memory cue (McDaniel & Einstein, 2000). Such 

an attention-demanding task should benefit from self-reminders (e.g., by increasing 

monitoring for the prospective memory cue in the correct context), and if the effects of 

self-reminders are cumulative (as suggested by Hicks et al.), then prospective memory 

performance could increase over long retention intervals. Thus, another prediction for the 
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effect of sleep on prospective memory is possible. According to the self-reminders view, 

because conscious self-reminders are possible while one is awake but will be minimal 

during a sleep-filled retention interval, the self-reminder hypothesis would predict that 

prospective memory performance should be better after a wake delay than a sleep delay.

Theories of Prospective Memory Retrieval

To gain further leverage on the memory (retrieval) processes that are benefited by 

sleep we next consider (and examine in the present study) two general theories for how 

individuals remember to perform prospective memory intentions: the monitoring theory 

and the multiprocess theory. Monitoring theory (Guynn, 2003; Smith, 2003) argues that, 

for an intention to be retrieved, one must engage effortful monitoring processes prior to a 

target cue. Monitoring processes (e.g., trial-by-trial checking for prospective memory 

cues) are nonautomatic and require working memory capacity or attentional resources. 

Furthermore, according to monitoring theory, prospective memory performance is 

primarily driven by the ability to monitor for a target; therefore, sleep should only benefit 

prospective remembering if it increases the likelihood or effectiveness of monitoring 

immediately before a prospective memory cue. 

The multiprocess theory of prospective memory retrieval (McDaniel & Einstein, 

2000; McDaniel & Einstein, 2007) offers a different prediction for sleep’s effect on 

prospective remembering. According to the multiprocess theory, in addition to engaging 

monitoring processes, individuals may spontaneously retrieve prospective memory 

intentions without having to devote attentional resources or working memory capacity to 

monitoring for the prospective memory cues. One factor that determines the probability 

of an intention being spontaneously retrieved is the extent to which a prospective 
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memory cue is focally processed. For a target cue to be focally processed the ongoing 

activity must direct the individual to process the important features of the target cue, and 

especially those features that were encoded during intention formation (see also the 

encoding specifity hypothesis, Tulving, 1983; Tulving & Thompson, 1973). Thus, if 

contextual features are associated with the prospective memory intention, then 

spontaneous retrieval of the prospective memory should be more likely during that 

specific context due to increased focal processing of the target cue (i.e., the overlap 

between processing at retrieval and the features of the stored prospective memory). The 

multiprocess theory therefore predicts that when conditions encourage individuals to rely 

on spontaneous retrieval rather than monitoring (as is likely with long retention intervals; 

see Kvavilashvili & Fisher, 2007; Scullin, McDaniel, Shelton, & Lee, 2009), sleep can 

benefit prospective memory by strengthening the intention link with the contextual 

factors that will be relevant during retrieval (cf. binding view of memory consolidation). 

Consistent with previous research (Einstein et al., 2005; Scullin, McDaniel et al., 

2009; Smith, 2003) I assessed whether participants were relying on spontaneous retrieval 

or more effortful monitoring processes by examining ongoing task cost (i.e., slower 

ongoing task performance due to directing attention toward the prospective memory 

intention) before prospective memory cues. Monitoring theory predicts that because 

costly monitoring processes must be activated preceding target cues for an intention to be 

retrieved (Smith, Hunt, McVay, & McConnell, 2007), cost should emerge before target 

cues, and further that a strong correlation between pre-target cost and prospective 

memory performance should obtain. On the other hand, according to the multiprocess 

theory (McDaniel & Einstein, 2007), when the delay between intention formation and 
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execution is substantial (Scullin et al., 2009, Experiment 4), most participants will rely on 

spontaneous retrieval processes that do not require monitoring. If participants are relying 

on (relatively automatic) spontaneous retrieval processes then cost should not be 

observed prior to target cues (or associated with prospective memory performance).

The Present Experiment

The primary goal of the present experiment was to use a prospective memory 

paradigm (and prospective memory theories) to gain a deeper understanding of the 

processes by which sleep benefits memory. In contrast to typical laboratory-based 

prospective memory tasks, but consistent with many real world prospective memory 

intentions, the present study employed several ongoing tasks and long retention intervals. 

Previous research (Scullin et al., 2009) suggested that such conditions should promote 

reliance on spontaneous retrieval processes rather than monitoring processes. Therefore, 

focal prospective memory cues were employed to ensure that the intention could be 

spontaneously retrieved (McDaniel & Einstein, 2007). 

The present study included both short and long delays between intention encoding 

and execution. In the short delay conditions, the first target cue appeared approximately 

20 min after the prospective memory intention was encoded. In the long delay conditions, 

the retention interval was approximately 12 hrs. Participants were tested in the morning 

or evening such that the retention interval included intervals of nighttime sleep or 

daytime wake. Importantly, to avoid strong associations between the ongoing task 

context and the prospective memory task, participants were told that the prospective 

memory cues could occur at any time during the experiment, and following the retention 

interval, the target cues occurred in 3 separate ongoing tasks. Though two of these 
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contexts (living/nonliving task, lexical decision task) should not have been associated 

with the prospective memory intention, the third context (semantic categorization) was 

weakly associated with the intention by means of temporal proximity (see Drosopoulos, 

Windau, Wagner, & Born, 2007, for evidence that sleep enhances temporal order in 

associative memory).  

At least three predictions for the effects of the sleep delay on prospective memory 

are possible. First, according to Hicks et al.’s (2000) suggestion that prospective memory 

performance increases over delays because of increased self-reminders, prospective 

remembering should be worse in the sleep delay condition than the wake conditions (if 

participants rely on monitoring processes instead of spontaneous retrieval processes to 

support prospective remembering). Second, according to Jenkins & Dallenbach’s (1924) 

interference view, if prospective memory is subject to retroactive interference, then a 

sleep delay should produce better prospective remembering relative to an equally-long 

wake delay across all ongoing task contexts by protecting the intention from interference. 

According to the binding view of memory consolidation, which contends that sleep 

promotes the strengthening of weak associative links, sleep should benefit prospective 

memory, but primarily during the semantic categorization context, which was weakly 

associated with the prospective memory intention during encoding (and presumably 

strengthened during sleep). Such a finding would be consistent with previous research 

that demonstrated that weak temporal associations are strengthened during sleep 

(Drosopoulos, Windau, et al., 2007). 

To eliminate interpretational ambiguity and strengthen the conclusion that the 

retention interval manipulation caused the obtained prospective memory pattern in the 
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present study I also included a nonsense recall task (following Jenkins & Dallenbach, 

1924) and a working memory task (reading span). According to the binding and 

interference views, sleep should benefit recall (as demonstrated by Jenkins & Dallenbach; 

see also Ebbinghaus, 1885), but not working memory performance. 

Method

Participants and design. Washington University undergraduates (N = 124) 

participated for class credit or monetary compensation at 0900 hrs and/or 2100 hrs. Data 

collection occurred in groups of 1-10 and participants returning for a second experimental 

session performed all tasks at the same computer station as during the first session. 

Testing lasted 1.25-2.00 hrs.

The design was a 2 x 2 factorial in which encoding time (morning or evening), 

and delay (short or long) were between subjects variables. Two participants in the 

evening encoding/long delay condition (hereforth referred to as the sleep delay condition) 

and one participant in the morning encoding/long delay condition (hereforth referred to as 

the wake delay condition) were excluded for not returning for the second experimental 

session. In addition to the previously described groups (n = 24 in each group), a control 

group (n = 25) that never received the prospective memory task was tested in the short 

delay conditions (n = 13 in evening group) to serve as a baseline against which to 

measure ongoing task cost in the prospective memory groups. Participants in the short 

delay conditions were randomly assigned to prospective memory and control groups.

Task overview. The first experimental session included, in the following order, 

reading span, living/nonliving decision, lexical decision, semantic categorization, 

prospective memory task encoding (except in the control condition), Symptom Checklist-
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90 (SCL-90) questionnaire, demographics forms, and nonsense syllable learning tasks. In 

the second experimental session participants performed the Morningness-Eveningness 

Questionnaire (MEQ; Horne & Ostberg, 1976), syllable free recall, reading span, 

living/nonliving decision, lexical decision, semantic categorization, and symmetry span. 

Procedure. The reading span was an automated working memory task that 

required participants to maintain letters in mind while determining whether sentences 

made sense (for an elaboration on this task and procedure see Unsworth, Redick, Heitz, 

Broadway, & Engle, 2009).

After performing the reading span task the experimenter loaded the program that 

contained the rest of session 1’s experimental tasks. The first 3 tasks were “ongoing 

tasks”—living/nonliving task, lexical decision task, and semantic categorization task— 

that would include prospective memory target cues during the next experimental session. 

In each of these ongoing tasks participants were given the task instructions and a 12-trial 

practice block (that included speed and accuracy feedback). Then they performed a 164-

trial experimental block in which the first 6 and last 6 trials were considered buffers. In 

each task, participants responded using the keys marked Y and N (1 and 2 on the number 

pad, respectively). The task instructions in the living/nonliving task were to determine as 

quickly and accurately as possible whether a presented noun represented a living (e.g., 

dog) or nonliving (e.g., chair) object. In the lexical decision task they were instructed to 

determine as quickly and accurately as possible whether a string of letters formed a word 

(e.g., kite) or nonword (e.g., itek). Furthermore, in the semantic categorization task a 

capitalized word appeared on the right side of the screen and a lowercase word appeared 

on the left side of the screen, and participants were instructed to quickly and accurately 
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determine whether the lowercase word (e.g., hockey) was a member of the category word 

(e.g., SPORT).  

Immediately following completing the semantic categorization task, participants 

encoded the prospective memory task (except for participants in the control condition). 

Participants were told that, in addition to the different tasks they had been doing and 

would be doing, there was a secondary interest in their memory for performing an action 

in the future. Participants were instructed to press the Q key if they ever saw the words 

table or horse during any point in the experimental session (or also in the next session, in 

the long delay conditions). Furthermore, they were told to press the Q key when they 

remembered having seen their target word, even if that trial was no longer on the screen. 

Participants were told that they would not be reminded of the target words or the target 

key and that their primary goal was to focus on whichever task they were performing. To 

check their understanding of the prospective memory instructions they were required to 

write down the instructions. If a participant failed to recall a target word, the target key, 

or seemed to misunderstand the instructions otherwise, the experimenter verbally 

explained the instructions to the participant (using the same instructions as above) who 

then was asked to write down the instructions again.

Participants were next given a few questionnaires (SCL-90 and demographics 

questionnaires) and were then told that they would be studying a list of nonsense 

syllables (e.g., cen, tor), which they would need to remember for a later test (Jenkins & 

Dallenbach, 1924). During the study phase, the 10 syllables each appeared for 4 sec. The 

study phase was followed by an immediate request to recall all the syllables on a notepad. 

Participants that failed to recall at least 8 syllables (supervised by the experimenter) 
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repeated the study-test phases until they were able to learn the syllables to criterion. 

Following criterion learning participants in the short delay conditions were allowed a 

break before continuing onto the second half of the experiment. Participants in the sleep 

and wake delay conditions were given a notecard that included their subject ID and 

testing room numbers and were asked to bring it back for the next experimental session.

 Participants began the second session (or second half of the experimental session 

in the short delay condition) by filling out the MEQ, which assesses an individual’s 

optimal time of day, and answering sleep-related questions (e.g., estimated asleep and 

wake times the previous night and whether they had taken a nap that day). 

Following the questionnaires, participants were given 3 min to recall the syllables 

they had previously studied. Participants then performed the reading span task followed 

by the 3 ongoing tasks (living/nonliving decision, lexical decision, semantic 

categorization). During each ongoing task, the first 6 and the last 6 trials were considered 

buffer items and the target words appeared on trials 107 and 158. The remaining 150 

trials were filler items and subjected to reaction time analyses. Two lists of filler items 

were constructed for each ongoing task (one for each session) and list order was 

counterbalanced across participants. Then participants performed the automated 

symmetry span task, a working memory task that required participants to respond 

whether a pattern was symmetrical while maintaining matrix cell locations in mind (see 

Unsworth et al., 2009, for elaboration). 

Results 

Alpha was set to less than .05 for inferring statistical significance. When the 

omnibus analysis of variance (ANOVA) revealed significant results and there was an a 
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priori prediction of the pattern of results (e.g., retention interval differences, see 

introduction), planned comparisons (Dunn t-test for unequal sample size groups) were 

conducted. Furthermore, because condition (prospective memory versus control) was 

nested within the short delay groups, the ANOVAs did not test for condition by delay 

interactions. Therefore, for cost analyses, encoding time by delay interactions were tested 

using hierarchical regression techniques (when both pre-manipulation and post-

manipulation scores were present). Finally, when the sphericity assumption was violated 

the Huynh-Feldt error term was used and noted. 

Syllable learning and recall. Performance on the syllable-learning task was 

assessed as the number of study trials to learn the syllables to criterion (i.e., at least 8 

correctly recalled) as well as the number of syllables recalled on the final study trial. 

These data are presented in Table 1. A series of 2 x 2 x 2 ANOVAs that included the 

between subjects factors of condition (prospective memory or control), encoding time 

(morning or evening) and delay (short or long) showed no significant effects for final 

study trial recall (largest F (1, 115) = 1.29, MSE = .52, for the delay main effect) or for 

number of learning trials to reach the criterion (largest F (1, 115) = 3.71, MSE = 1.76, p = 

.06, for the encoding time by delay interaction). These results suggest that the groups did 

not differ prior to the delay manipulation and that embedding a prospective memory task 

did not cause worse performance on the syllable-learning task (as demonstrated by no 

condition effects).

Performance on the final syllable recall test was tabulated as the number of 

syllables perfectly recalled. For the dependent measure of number of correct syllables 

recalled, a 2 x 2 x 2 between subjects ANOVA that included condition (prospective 
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Table 1

Performance on the syllable recall task as measured by mean trials to criterion, mean 

syllables recalled during criterion learning, and final recall following retention interval 

(standard deviations in parentheses) across condition and retention intervals.

Trials to Criterion           Syllables Learned                 Final Recall  

Morning Delay          2.79 8.50 7.58

        (1.02) (.78) (1.41)

Morning Control          3.58 8.42 7.25

        (1.62) (.67) (1.60)

Evening Delay          3.13 8.50 7.50

        (1.19) (.83) (1.06)

Evening Control          3.00 8.31 6.62

        (1.35) (.75) (2.22)

Sleep Condition          2.75 8.46 6.46

        (1.29) (.78) (1.89)

Wake Condition          3.46 8.21 4.42

        (1.56) (.42) (1.89)
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memory or control), encoding time (morning or evening), and delay (short or long) was 

conducted. There was a significant delay main effect, F (1, 115) = 37.84, MSE = 2.81, but 

also a significant encoding time by delay interaction, F (1, 115) = 9.65, MSE = 2.81 (next 

largest F = 2.51 for the encoding time main effect). Planned comparisons demonstrated 

that syllable recall was similar in the morning and evening short delay conditions 

(collapsed across prospective memory and control groups) (t (72) < 1). When collapsing 

across all the short delay conditions, planned comparisons demonstrated better syllable 

recall in the collapsed short delay condition than the wake delay condition, t (96) = 7.39, 

and the sleep delay condition, t (96) = 2.21. Importantly, syllable recall was greater in the 

sleep delay condition than the wake delay condition, t (47) = 4.22. Thus, the results 

replicated Jenkins and Dallenbach’s (1924) finding that sleep-filled retention intervals 

buffered against forgetting of nonsense syllables (see also Ebbinghaus, 1885). Now that 

the typical sleep-related benefit to syllable recall has been demonstrated, the effect of 

sleep on working memory performance and prospective memory performance will be 

evaluated.

Working memory performance. Performance on the reading span task was 

calculated as the total number of letters recalled in the correct set position. To investigate 

whether working memory performance depends on quality of delay (as suggested by 

Kuriyama, Mishima, Suzuki, Aritake, & Uchiyama, 2008, but not predicted by the 

binding or interference views), a 2 x 2 x 2 ANOVA was conducted on session-1 and 

session-2 reading span performance that included condition (prospective memory or 

control), encoding time (morning or evening), and delay (short or long) as between-

subjects factors. There were no significant effects for session-1 reading span performance 
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(largest F (1, 115) = 2.4 for the condition main effect), thereby demonstrating no pre-

experimental group differences. Importantly, there were also no significant effects for 

session-2 reading span performance (largest F (1, 115) = 1.01 for the encoding time by 

delay interaction). The lack of a sleep-related working memory benefit was not due to 

repeating the same working memory task. Performance on the symmetry span task 

(administered only in session 2) was calculated as the total number of squares recalled in 

the correct position and subjected to a 2 x 2 x 2 ANOVA that included condition 

(prospective memory or control), encoding time (morning or evening), and delay (short 

or long) as between subjects factors. Consistent with the reading span analyses, there 

were no significant effects [largest F (1, 115) = 2.04, MSE = 57.38 for the condition main 

effect]. Thus, in contrast to the syllable recall results, but as predicted by the binding and 

interference views, sleep does not benefit working memory.

Prospective memory performance. Q presses that followed one target cue but 

occurred before the next target cue (and were within the same ongoing task) were 

counted as correct. Prospective memory performance was first assessed as the proportion 

of participants that remembered to press the Q key at least once in response to a target 

cue. This measure was motivated by the observation that real world prospective 

remembering is typically assessed as whether an intention has or has not been executed, 

regardless of the opportunities to perform the task (e.g., whether or not medication is 

taken with breakfast, regardless of the time spent eating breakfast). The proportion of 

participants who performed the prospective memory task at least once did not differ in 

the short morning delay (M = .67) and short evening delay (M = .71) conditions (χ² < 1), 

and these conditions were therefore collapsed in the following analyses. There was a 

18



                                                                                        

significantly greater proportion of participants who responded to the prospective memory 

target cues in the short delay conditions than the wake delay condition (M = .29), χ² = 

10.15, but not the sleep delay condition (M = .58; χ² < 1). Critically, individuals in the 

sleep delay condition were significantly more likely to respond to at least one target cue 

than individuals in the wake delay condition, χ² = 4.15. Therefore, sleep not only 

benefited free recall of syllables but also benefited memory for performing intended 

actions. This result was consistent with the binding and interference views (which both 

suggest that sleep should benefit prospective memory), but not the self-reminders view 

(Hicks et al., 2000).

The following analyses examined prospective memory performance across 

ongoing task contexts to investigate whether the sleep benefit to prospective 

remembering could be better explained by an interference account or a sleep-dependent 

binding account. Because prospective memory responding to horse was similar to 

responding to table (F (1, 93) = 2.70, MSE = .28), performance across these targets was 

collapsed. Furthermore, performance across the first and second target item within 

ongoing task contexts was also collapsed because performance did not differ between 

these targets during the living/nonliving (χ² =1.12), lexical decision (χ² =1.83), or 

semantic categorization tasks (χ² < 1). Thus, there were no target item or target order 

effects. Next, I examined prospective remembering across ongoing task contexts, with 

particular interest in levels of performance during the semantic categorization task, which 

was weakly associated with the prospective memory intention during encoding. 

Prospective memory performance across contexts is illustrated in Figure 1.
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Figure 1
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For the dependent measure of proportion of Q presses in response to a target cue 

(see Figure 1), a 3 x 2 x 2 mixed ANOVA was conducted that included the within 

subjects variable of ongoing task (living/nonliving decision, lexical decision, and 

semantic categorization) as well as the between subjects variables of encoding time 

(morning or evening) and delay (short or long). There was a main effect of ongoing task, 

F (2, 184) = 3.15, MSE = .05, and simple effects tests demonstrated that prospective 

memory performance was greater during the semantic categorization task (M = .40) than 

the living/nonliving task (M = .31), F (1, 95) = 5.39, MSE = .05, and the lexical decision 

task (M = .33), F (1, 95) = 4.13, MSE = .05, but the latter two tasks did not produce 

differential performance levels (F < 1). There was also a delay condition main effect, F 
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(1, 92) = 6.10, MSE = .46, and, critically, the main effects were qualified by a significant 

3-way interaction between encoding time, task, and delay, F (2, 184) = 4.46, MSE = .05. 

The interaction is illustrated in Figure 1. A primary reason the interaction obtained was 

that there was a main effect of task (assessed by simple effects tests) only in the sleep 

delay condition, F (2, 46) = 5.55, MSE = .05 (Fs = 2.03, < 1, and 1.43, in the short 

morning delay, short evening delay, and wake delay conditions, respectively). In the 

sleep delay condition, prospective memory performance was greater during the semantic 

categorization task than the living/nonliving task, t (23) = 3.16, and the lexical decision 

task, t (23) = 2.56, and the latter two did not differ (t < 1).  

I also examined prospective memory performance in each of the three ongoing 

tasks by conducting 2 x 2 ANOVAs that included encoding time (morning or evening) 

and delay (short or long) as between subjects factors. These tests only demonstrated delay 

condition main effects in the lexical decision, F (1, 92) = 8.99, MSE = .18, and 

living/nonliving, F (1, 92) = 4.25, MSE = .18, tasks, but that in the semantic 

categorization task, a significant encoding time by delay condition interaction obtained, F 

(1, 92) = 4.72, MSE = .20. This interaction obtained because prospective memory 

performance was much lower in the wake delay condition than sleep delay condition, t 

(47) = 2.63, and the (collapsed) short delay condition, t (71) = 2.77; interestingly, the 

sleep delay and short delay conditions did not differ (both Ms = .50; t < 1). Thus, sleep 

primarily augmented prospective memory performance during the context that was 

weakly associated with the prospective memory intention during encoding. This result 

was not predicted by a simple interference theory (cf. Jenkins & Dallenbach, 1924), but 

was consistent with the binding view that argues that sleep is involved in the restructuring 
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of memory representations (Brankack et al., 2009; Mograss et al., 2008) and the 

strengthening of weak associative links (Stickgold et al., 1999), such as those produced 

by temporal proximity (Drosopoulos, Windau, et al., 2007). To further understand how 

sleep-dependent binding improved prospective remembering during the semantic 

categorization task I examined whether participants relied on spontaneous retrieval 

processes or monitoring to retrieve their intentions. 

Cost before and after target cues. The present experiment was designed to 

evaluate whether prospective remembering was supported by spontaneous retrieval 

(predicted by the multiprocess theory) or monitoring (predicted by monitoring theory) 

processes by examining whether cost emerged before target cues (thereby suggesting 

reliance on monitoring processes). Each ongoing task block included 150 filler trials and 

2 target events, organized such that 100 filler trials preceded the first target trial and then 

50 more filler trials intervened between the first and second target trials. Monitoring 

theory predicts (the presence of and) a relation between cost preceding a target cue and 

the probability of pressing Q in response to that target cue. Multiprocess theory predicts 

that no such relation should emerge because spontaneous retrieval processes allow an 

intention to be reflexively retrieved when a cue is focally processed. 

For the dependent measure of mean reaction times preceding the first target cues 

(i.e., the first 100 trials in each ongoing task block), a 3 x 2 x 2 x 2 mixed ANCOVA 

(controlling for mean session-1 reaction times on the first 100 trials in each ongoing task) 

was conducted in which task (living/nonliving, lexical decision, semantic categorization) 

was a within subject factor and encoding time (morning or evening), delay (short or 

long), and condition (prospective memory or control) were between subjects factors. 
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There were no significant effects [largest F (2, 224) = 2.84, MSE = 3415. 82, for the task 

by encoding time by delay interaction] and estimated cost (i.e., difference between 

prospective memory and control groups after controlling for session-1 differences) was 

very low during the living/nonliving (estimated Mcost = 15 ms), lexical decision (estimated 

Mcost = 23 ms), and semantic categorization (estimated Mcost = 13 ms) tasks. This result 

suggests that participants relied on relatively automatic spontaneous retrieval processes, 

instead of the more effortful monitoring processes, to retrieve their prospective memory 

intentions. 

Because the control condition was nested within the short delay groups, the above 

ANCOVA did not test for group differences in cost. To test for such differences, a series 

of hierarchical regressions were conducted only in the prospective memory groups. After 

covarying the corresponding ongoing task’s session-1, pre-target mean reaction times, the 

delay and encoding time main effects were entered (dummy coded) in step 2, followed by 

the interaction term in step 3. These steps did not explain additional session-2, pre-target 

mean reaction time variance (i.e., an estimate of cost) during the living/nonliving task 

(largest F (1, 91) = 3.23, ΔR ² = .013, p = .08, for the interaction), lexical decision task 

(all Fs < 1), or semantic categorization task [largest F (2, 92) = 2.39, ΔR ² = .011, p = .10, 

for the main effects]. Thus, pre-target cost did not vary depending on retention interval 

and the prospective memory benefit in the sleep delay condition (especially during the 

semantic categorization task) cannot be explained by increased monitoring in that 

condition.

 To establish that the previous null effects were not due to inadequate power to 

detect cost I next examined whether cost would emerge following the first target cue (i.e., 
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the 50 trials following the first target event and preceding the second target event). Rather 

than implicating preparatory monitoring (which would be suggested by pre-target cost), 

post-target cost may indicate action execution, switch costs, and/or intention rumination 

(Marsh, Hicks, & Watson, 2002). To investigate post-target cost I conducted a 3 x 2 x 2 x 

2 mixed ANCOVA that controlled for the corresponding session-1 ongoing task reaction 

times, included task (living/nonliving, lexical decision, semantic categorization) as a 

within subjects factor, and included encoding time (morning or evening), delay (short or 

long), and condition (prospective memory or control) as between subjects factors. In 

addition to the main effect of task, F (2, 224) = 5.66, MSE = 8387.64 (Huynh-Feldt), 

there was a main effect of condition, F (1, 112) = 9.35, MSE = 16574.48, such that 

estimated post-target cost (based on statistically adjusted means) was high in the 

living/nonliving task (estimated Mcost = 53 ms), lexical decision task (estimated Mcost
 = 41 

ms), and semantic categorization task (estimated Mcost
 = 61 ms). There were no other 

significant effects (next largest F = 2.13 for the encoding time by delay interaction), and 

the lack of a significant task by condition interaction (F < 1) demonstrated that post-

target cost was similar in each task. Thus, participants only devoted attention to the 

prospective memory task and away from the ongoing task (resulting in post-target cost) 

after the first target cue.

For the sake of completeness, I also conducted hierarchical regressions on 

session-2 post-target reaction times in the same manner as the pre-target reaction time 

regressions. The delay main effect, encoding time main effect, and delay by encoding 

time interaction did not explain additional session-2 post-target variance (i.e., an estimate 
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of cost) during the living/nonliving task (all Fs < 1), lexical decision task (all Fs < 1), or 

semantic categorization task [largest F (1, 91) = 2.37, ΔR ² = .013, for the interaction].

To further demonstrate the relation (or lack thereof) between prospective memory 

performance and cost, a series of partial correlations were conducted between mean 

session-2 reaction times before target cues (i.e., first 100 trials in each task) and 

following target cues (i.e., last 50 trials in each task), and the probability of pressing the 

Q key for the first and second target cue (the corresponding session-1 ongoing task 

reaction times were partialled). The results were consistent across ongoing tasks. First, in 

each ongoing task, there was no significant relation (rs (93) = .05, .11, and .13 for the 

living/nonliving, lexical decision, and semantic categorization tasks, respectively) 

between pre-target cost and prospective memory performance on the first target in each 

task. Of further interest was the highly reliable, positive association between prospective 

memory performance on the first target trial and post-target cost (rs (93) = .37, .36, and .

41, for the living/nonliving, lexical decision, and semantic categorization tasks, 

respectively). Thus, prospective remembering was associated with post-target, but not 

pre-target, cost.

The results for the partial correlations between performance on the second target 

and cost on the 50 trials preceding that trial were also interesting. Though the cost 

relation was positive and significant in the living/nonliving, r (93) = .20, lexical decision, 

r (93) = .28, and semantic categorization, r (93) = .29 tasks, this relation became 

negligible (-.09, .10, .01 for living/nonliving, lexical decision, and semantic 

categorization tasks, respectively) after controlling for first target performance in the 

corresponding ongoing task. Controlling for performance on the first target is necessary 
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because prospective memory performance on the first target cue in each task can 

parsimoniously explain both target-2 performance (mean target 1-target 2 correlation was 

r = .67) and subsequent cost. These results converge on the conclusion that pre-target cost 

was not necessary for focal prospective memory performance (cf. Smith et al., 2007) and 

compel the conclusion that spontaneous retrieval processes that required no pre-target 

cost to trigger intention retrieval supported prospective remembering. 

Additional analyses. I also examined group differences in hours slept, SCL-90 

score, MEQ score, proportion of notecards returned, and napping frequency. The delay 

and encoding time conditions did not differ (or interact) in hours slept the night before 

the memory tests (all Fs < 1; Ms = 6.81, 7.00, 6.82, and 6.55 hours, for the short morning 

delay, short evening delay, wake delay, and sleep delay conditions, respectively), or on 

SCL-90 score (largest F = 1.35 for the encoding time main effect) (Ms = 53.75, 61.32, 

42.58, and 53.88 for the short morning delay, short evening delay, wake delay, sleep 

delay conditions, respectively). For MEQ score, there was a significant encoding time 

main effect, F (1, 116) = 5.17, MSE = 91.85, signaling that participants in the morning 

encoding (Ms = 45.66 and 48.96, for the short morning delay and wake delay conditions, 

respectively) and evening encoding (Ms = 42.93 and 43.56 for the short evening delay 

and sleep delay conditions, respectively) conditions began the experiment closer to their 

optimal time of day (note, however, that both mean scores fall under the “neutral” 

classification). Neither the delay main effect (F  (1, 116) = 1.21, MSE  = 91.85) nor the 

encoding time by delay interaction (F < 1) was significant. 

One additional group difference of interest was whether participants in the wake 

and sleep delay conditions remembered to return their notecards (that included the subject 
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ID and testing room numbers) when returning for session 2. A significantly greater 

proportion of notecards were returned in the wake delay condition (M = .75) than the 

sleep delay condition (M = .42), χ² = 5.49. Such a result was unexpected but all 

participants were asked why they thought they forgot their card and at what point they 

remembered they had forgotten, and their responses helped explain the pattern of results. 

Interestingly, 43% of the sleep delay participants who failed to return their notecard 

reported to having forgotten their notecard because they had just woken up and were 

rushed to leave to come to the second experimental session. These participants reported 

to having remembered that they had forgotten their notecard before arriving to the 

experimental room. Therefore, the ability to compare notecard-return performance 

between conditions was unfortunately confounded by factors such as differential 

alertness, that did not appear to be an important factor by the time participants began the 

experimental tasks (as demonstrated by similar ongoing task and working memory 

performance during the second experimental session). 

One potentially important remaining factor was whether participants in the wake 

delay condition napped during the retention interval. There were 6 participants in the 

wake delay condition who napped during the retention interval. Because these naps were 

short in length (M = 61 min) and occurred hours after the first session they were unlikely 

to contain large amounts of quality sleep (e.g., slow-wave-sleep or rapid-eye-movement 

sleep stages), and therefore would not confer much protection from immediate retroactive 

interference (Wixted, 2004), or consolidate the memory (Rasch et al., 2007). Indeed, the 

short nap did not appear to “pollute” the wake delay condition results (see Table 1 and 
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Figure 1) and the same retrospective and prospective memory results obtained when 

analyses were conducted without the participants who napped. 

In addition to the group difference analyses above I also conducted some 

individual differences tests. A series of bivariate correlations between proportion of 

correct Q responses to target cues and performance on the first reading span task (r (96) = 

.05), the second reading span task (r (96) = .13), and the symmetry span task (r (96) = .

10), demonstrated no significant relation between prospective memory performance and 

working memory performance. This result was consistent with the finding that 

prospective remembering did not require attention-demanding monitoring. Syllable recall 

was correlated with prospective memory performance, r (96) = .28, but this effect was 

eliminated after controlling for encoding time and delay conditions (p > .10). 

Furthermore, the only notable association between prospective memory performance and 

a questionnaire or questionnaire item was for frequency of vigorous exercise, r (96) = .

18, p = .08. This association became significant, ß = .20, p < .05, after controlling for 

delay, encoding time, and the delay by encoding time interaction, (see Clarkson-Smith & 

Hartley, 1989, for evidence that exercise may improve cognitive functioning].

Discussion

In the present study, sleep-related benefits were observed for both free recall of 

syllables (Jenkins & Dallenbach, 1924) and memory for performing an action in response 

to a cue. In the prospective memory task, a sleep interval (relative to a similar length 

wake interval) increased the probability that an individual would at some point during the 

ongoing tasks remember to perform the prospective memory intended action (similar to 

having to remember to take medication at some point during breakfast). Furthermore, 
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sleep-related prospective memory benefits were pronounced during the semantic 

categorization task. Differential engagement of monitoring could not explain the sleep-

related benefit or prospective remembering in the other delay conditions. Collectively, 

these results have practical and theoretical implications for prospective memory and sleep 

research. 

Sleep and Memory

The present experiment aimed to legislate between three views (self-reminder 

view, interference view, and binding view) of prospective memory performance across 

sleep and wake delays. By embedding the prospective memory cue in several ongoing 

task contexts in the present experiment and not specifically linking the prospective 

memory intention to any given context, a test of the structure (i.e., mental representation) 

of the prospective memory intention following sleep and wake delays was possible. 

Indeed, the ability to compare prospective memory performance across contexts was a 

primary advantage of using a prospective memory paradigm to examine the structural 

effect of sleep on a memory and legislate between the self-reminder, interference, and 

binding views. 

The self-reminder view argued that prospective remembering should improve 

over longer delays if the cumulative effect of self-reminders leads to greater attention 

being devoted to the prospective memory task (Hicks et al., 2000). According to this 

view, because more conscious self-reminders should occur while awake than while 

asleep, there should be an increase in prospective remembering in the wake delay 

condition relative to the sleep delay condition that is paralleled by an increase in cost. 

The results of the present experiment failed to support the self-reminder view because 
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cost did not differ between delay groups (perhaps because focal cues were used) and 

prospective memory performance was better following sleep than wake.  

The second hypothesis tested was Jenkins and Dallenbach’s (1924) view that 

sleep improves memory by protecting it against retroactive interference. According to the 

interference view, prospective memory performance should be better in the sleep delay 

condition than the wake delay condition, irrespective of the context in which the 

prospective memory cue appeared. One initial result supported this prediction. Not only 

did more participants remember to perform the prospective memory action at least once 

after a sleep delay than an equally long wake delay, but the proportion of participants that 

ever remembered to perform the prospective memory task did not decline from a 20-min 

short delay to a 12-hr delay that included nighttime sleep. The practical implication is 

that delayed intentions (such as remembering to call your mother on her birthday) are 

best encoded in the evening and executed following a full night’s sleep. However, not all 

results were consistent with the interference view’s predictions.  Specifically, the finding 

that the power of sleep in boosting prospective remembering was largely due to 

performance during the semantic categorization task (Figure 1) suggests that the 

interference view does not capture the complexity of sleep’s effect on memory.

The binding view, which is a variant of consolidation theory, suggests that sleep 

increases associative binding. According to this view, “the brain is functionally organized 

to preferentially activate weak associative links that may aid in the strengthening of…

[the] labile memory trace” (Mograss et al., 2008, p.  430; also see Stickgold et al., 1999). 

The binding view therefore predicted that sleep’s benefit on prospective memory would 

be largely, if not solely, localized to the ongoing task context in which a weak association 
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was formed. Because the semantic categorization task immediately preceded prospective 

memory encoding during the first experimental session, but was never explicitly linked to 

the prospective memory intention, the association between the semantic categorization 

task and prospective memory task could be expected to be present but weak (during 

encoding) in the wake conditions (Drosopoulos, Windau, et al., 2007). Interestingly, 

prospective remembering during the semantic categorization task was so high in the sleep 

delay condition that there was no decline in performance relative to the short 

(approximately 20-min) delay conditions. This result did not obtain during the 

living/nonliving or lexical decision tasks (i.e., only a delay main effect obtained), thereby 

disfavoring simple interference explanations of sleep benefits. However, the finding was 

consistent with the idea that sleep primarily benefits memory through a binding process 

that strengthens weak associations. Because of the temporal proximity of the semantic 

categorization task to prospective memory encoding, this association was selectively 

strengthened during sleep (Drosopoulos, Windau, et al.), thereby leading to a substantial 

increase in prospective remembering in that context. In a sense, sleep gave the intention a 

context in which it could be executed. 

Theoretical Implications for Prospective Memory

The results of the present experiment have further implications for how 

individuals remember to perform intended actions using real-world-relevant retention 

intervals. Whereas monitoring theory predicts that monitoring (which produces cost) 

must precede a target cue for an intention to be retrieved, the multiprocess theory argues 

that spontaneous retrieval processes may support prospective remembering even when an 

individual is devoting no attention toward monitoring for cues (i.e., in the absence of pre-
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target cost). The results of the pre- and post-target cost analyses demonstrated that cost 

was absent preceding the first target cue in each ongoing task. This finding cannot be 

explained by insufficient power to detect cost (cf. Smith et al., 2007) because significant 

cost was observed following the first target cue (in each ongoing task). Furthermore, there 

was no correlation between cost preceding target events and the likelihood of pressing Q 

in response to that target event. Again, the failure to find a correlation between 

prospective memory performance and cost preceding target events cannot be explained 

by insufficient power because highly reliable correlations obtained between prospective 

memory performance and cost following target cues. These results collectively suggest 

that monitoring processes are not always required for prospective memory retrieval 

(especially not for focally processed cues, McDaniel & Einstein, 2007).  The present 

results thus converge on the conclusion that, in the absence of monitoring for prospective 

memory cues, focal processing of cues may spontaneously trigger retrieval of intentions. 

Furthermore, the finding that the sleep benefit during the semantic categorization task 

was not due to monitoring suggests that, during sleep, the association between the 

semantic categorization context and the prospective memory intention was selectively 

enhanced, thereby leading to greater focal processing of the prospective memory cue 

during semantic categorization (see also the encoding specificity hypothesis, Tulving, 

1983). The probability of spontaneously retrieving an intention therefore not only 

depends upon encoding and retrieval conditions, but also depends upon off-line 

consolidation processing during sleep.
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Conclusions and Future Directions

The results of the present research demonstrated that many factors determine 

whether a memory is retrieved. Simple explanations for prospective memory retrieval 

(e.g., monitoring theory, Guynn, 2003; Smith, 2003) and sleep-related memory benefits 

(Jenkins & Dallenbach, 1924) are simply not adequate. More adequately complex 

explanations for prospective memory retrieval and sleep-dependent memory benefits are 

offered by the multiprocess theory (McDaniel & Einstein, 2007) and consolidation 

theories (Brankack et al., 2009; Charlton & Andras, 2009; Rasch et al., 2007), 

respectively. 

The benefits of sleep to memory are likely to be complex and to interact with 

many factors. Therefore, the best theory of sleep and memory will surely incorporate 

both understanding of the physiological processes occurring during sleep and the 

behavioral literature on memory retrieval processes. By doing so we may understand 

what and how information is consolidated as well as how and when sleep-dependent 

consolidation translates to greater remembering.  
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