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Notation

Throughout this thesis, geometric units G = c = 1 is assumed unless specified otherwise.

The metric signature is (−,+,+,+). Greek letters stand for spacetime indexes, while Latin

letters stand for spatial indexes only. Einstein summation is assumed throughout the thesis.

When referring to Jordan and Einstein frames, tilde variables correspond to the Einstein

frame, while un-tilde variables correspond to Jordan frame. We define the following:

Symbol Description

∂f
∂xμ ≡ f,μ Partial derivative

∇μ ≡ f ;μ Covariant derivative

� ≡ �g ≡ gμν∇μ∇ν D’ Alembertian

G Gravitational constant

κ
√
8πG

gμν Metric tensor

g Determinant of gμν

Rμν Ricci tensor

R Ricci scalar or scalar curvature

Tμν Stress-energy tensor

T ≡ gμνTμν Trace of stress-energy tensor
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ABSTRACT OF THE DISSERTATION

Neutron Star Models in Alternative Theories of Gravity

by

Dimitrios Manolidis

Doctor of Philosophy in Physics

Washington University in St. Louis, 2014

Professor Clifford M. Will, Chair

We study the structure of neutron stars in a broad class of alternative theories of gravity.

In particular, we focus on Scalar-Tensor theories and f(R) theories of gravity. We construct

static and slowly rotating numerical star models for a set of equations of state, including a

polytropic model and more realistic equations of state motivated by nuclear physics. Ob-

servable quantities such as masses, radii, etc are calculated for a set of parameters of the

theories.

Specifically for Scalar-Tensor theories, we also calculate the sensitivities of the mass and

moment of inertia of the models to variations in the asymptotic value of the scalar field

at infinity. These quantities enter post-Newtonian equations of motion and gravitational

waveforms of two body systems that are used for gravitational-wave parameter estimation,

in order to test these theories against observations.

The construction of numerical models of neutron stars in f(R) theories of gravity has

been difficult in the past. Using a new formalism by Jaime, Patino and Salgado we were

able to construct models with high interior pressure, namely pc > ρc/3, both for constant

density models and models with a polytropic equation of state. Thus, we have shown that

xi



earlier objections to f(R) theories on the basis of the inability to construct viable neutron

star models are unfounded.
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Chapter 1

Introduction

1.1 Gravity and General Relativity

Sir Isaac Newton was the first to propose a mathematical description of the laws of gravity, in

1687. Newton’s theory remained as the widely accepted theory of gravity until the beginning

of the 20th century. In 1915, Albert Einstein introduced his theory of General Relativity.

It was a revolutionary theory that changed the way physicists think about gravity. Today,

General Relativity is considered a well established theory that is studied as a standard

textbook subject [47], [31], [58].

Unlike Newtonian gravity, where gravity is described as a force from a distance, in General

Relativity gravity arises from curvature in geometry. It is the curvature that affects the the

motion of particles in spacetime. On the other hand, massive bodies and energy sources

cause the spacetime to curve. To study the curvature we employ a mathematical description

of the squared length of an infinitesimal displacement in an arbitrary direction. This squared

length, or “line element”, is given by

ds2 = gμνdx
μdxν (1.1)

where xμ are the coordinates describing the spacetime and gμν is the metric tensor. The

1



1.1 Gravity and General Relativity

metric tensor is one of the fundamental quantities in General Relativity. Given the metric

tensor the geometry of the spacetime can be fully described. If the geometry of the spacetime

is known, the motion of test particles can be predicted.

The equations that we use to derive the elements of the metric tensor are called Einstein

field equations and they are given by

Gμν = 8πTμν . (1.2)

The right hand side of the equation is called the stress-energy tensor and it describes the

mass-energy part of the equation. It is a measurement of the flux of the 4-momentum

through a surface in a direction of one of the spacetime coordinates. More specifically the

component T 00 is the energy density. The component T 0i is the flux of energy across a

surface of constant xi. The component T i0 is the i component of the momentum density.

Finally, T ij is the flux of i-th component of momentum across a surface whose normal is in

the j direction. The stress energy tensor is symmetric like the metric tensor. The elements

of the stress-energy tensor depend on the system under study. As an example, the stress

energy tensor of a perfect fluid is given by

T μν = (ρ+ p)uμuν + pgμν . (1.3)

We will use this stress energy tensor repeatedly in this thesis.

The left hand side of the equation is called the Einstein tensor Gμν and it describes the

geometric part of the equation. It is a function of the metric tensor. More specifically, the

Einstein tensor depends on the Riemann tensor, which is a measurement of the curvature of

the spacetime. The Riemann tensor is given by

Rα
βμν = Γα

βν,μ − Γα
βμ,ν + Γα

μγΓ
γ
βν − Γα

νγΓ
γ
βμ (1.4)

2



1.1 Gravity and General Relativity

where Γα
βγ are the Christoffel symbols, given by

Γα
βγ =

1

2
gαμ(gμβ,γ + gμγ,β − gβγ,μ). (1.5)

The contracted Riemann tensor is called Ricci tensor

Rμν = Rγ
μγν (1.6)

and the contracted Ricci tensor is called the Ricci scalar, or scalar curvature

R = Rγ
γ. (1.7)

Finally the Einstein tensor is given by

Gμν = Rμν − 1

2
gμνR (1.8)

The local conservation of energy and momentum implies that stress-energy tensor satisfies

the equation

T μν
;ν = T μν

,ν + Γμ
νγT

γν + Γν
νγT

γμ = 0, (1.9)

where a semicolon denotes a covariant derivative. One the other hand, using the Bianchi

identity

Rμναβ;γ +Rμνβγ;α +Rμνγα;β = 0, (1.10)

we can show that

Gμν
;ν = 0, (1.11)

which is compatible with the local conservation of energy.

3



1.2 Alternative theories of gravity

1.2 Alternative theories of gravity

Even though General Relativity has passed all the local experimental tests, the strong field

regime still remains mostly unexplored. In addition, a unification of General Relativity with

the other three interactions has not been possible. In order to address these issues, physicists

search for alternatives to General Relativity. Numerous theories have been presented to this

date. Some of these theories were shown to be non-viable since their predictions did not

agree with the new and more accurate experimental results. There exist, however, several

viable theories today that pass the experimental tests, yet their predictions differ from those

of General Relativity in the strong field regime. In this thesis we will focus on two types of

alternative theories of gravity. Scalar Tensor theories and f(R) theories of gravity.

1.2.1 Scalar Tensor theories

One of the most well studied attempts to modify General Relativity is the class of Scalar

Tensor theories of gravity. The existence of the scalar field was initially motivated from

Kaluza-Klein theories and later from superstring and super-gravity theories, which all give

rise to scalar fields coupled to matter. The first scalar tensor theory was introduced by

Fierz[27], Jordan[35], Brans and Dicke[9], so we will refer to it as FJBD theory. The theory

introduces a dynamical scalar filed φ in addition to the metric gμν , which is the central part

of General Relativity. The action of the FJBD theory reads as follows

S =
1

2κ2

∫
d4x

√−g

(
φR +

ω

φ
gμνφ,μφ,ν

)
+ SM (1.12)

where SM is the matter part of the action. The matter action contains the variables of non-

gravitational fields, and the metric, but does not contain the scalar field. The theory contains

one arbitrary parameter ω which value is to be constrained by local gravity experiments.

The theory reduces to General Relativity in the limit ω → ∞. Later on, Bergmann[7],

4



1.2 Alternative theories of gravity

Wagoner[69] and Nordvedt[52] generalized the theory, where the free parameter ω becomes

a free function ω(φ) of the scalar field φ, and the scalar field can have an arbitrary potential.

Thus, the action of the generalized theory is

S =
1

2κ2

∫
d4x

√−g

[
φR +

ω(φ)

φ
gμνφ,μφ,ν + 2φλ(φ)

]
+ SM (1.13)

where λ(φ) is another free function which plays a role similar to that of the cosmological

constant in General Relativity. Since the function ω(φ) is arbitrary, the action describes a

class of Scalar Tensor theories. In order to choose a specific theory to work with, we need

to choose a specific function for ω(φ).

The field equations of the theory can be obtained by varying the action with respect to

the tensor field gμν and the scalar field φ [70]

Rμν − 1

2
gμνR− λ(φ)gμν =

κ2

φ
Tμν +

ω

φ2
(φ,μφ,ν − 1

2
gμνφ,λφ

,λ) +
1

φ
(φ;μν − gμν�φ) (1.14)

�φ+
1

2
φ,λφ

,λ d

dφ
ln

(
ω(φ)

φ

)
+

1

2

φ

ω(φ)

[
R + 2

d

dφ
(φλ(φ))

]
= 0. (1.15)

The equation for the scalar field φ can be rewritten as

�φ+
2φ2dλ/dφ− 2φλ(φ)

3 + 2ω(φ)
=

1

3 + 2ω(φ)

(
κ2T − dω

dφ
φ,λφ

,λ

)
(1.16)

,where Tμν ≡ 2(−g)−1/2δSM/δgμν is the stress energy tensor and T = T μ
μ . The asymptotic

value of the scalar field φ0, in the weak field limit, is related to the gravitational constant G.

In geometrized units,

G ≡
[
4 + 2ω(φ0)

3 + 2ω(φ0)

]
φ−1
0 = 1. (1.17)

Like every other theory of gravity, Scalar Tensor theories need to be experimentally tested

to determine their viability. In order to test the theory a very powerful tool is used, called

5



1.2 Alternative theories of gravity

the Parametrized Post-Newtonian (PPN) Formalism [70]. This is done by firstly assuming

that the matter in the solar system can be modeled as a perfect fluid. Then we express

the metric as a series of potentials whose source is the various matter variables. We replace

the coefficients of the terms in the metric by arbitrary parameters. By choosing specific

values for the parameters of this metric we obtain the Post-Newtonian metric of a particular

theory of gravity. The most general case of this metric, under certain assumptions for the

Post-Newtonian functionals contains ten parameters γ, β, ξ, α1, α2, α3, ζ1, ζ2, ζ3 and ζ4.

The metric reads

g00 = −1 + 2U − 2βU2 − 2ξΦW + (2γ + 2 + α3 + ζ1 − 2ξ)Φ1

+ 2(3γ − 2β + 1 + ζ2 + ξ)Φ2 + (1 + ζ3)Φ3

+ 2(3γ + 3ζ4 − 2ξ)Φ4 − (ζ1 − 2ξ)A

g0i =
1

2
(4γ + 3 + α1 − α2 + ζ1 − 2ξ)Vi − 1

2
(1 + α2 − ζ1 + 2ξ)Wi

gjk = (1 + 2γU)δjk (1.18)

General Relativity corresponds to the case γ = β = 1 and ξ = α1 = α2 = α3 = ζ1 = ζ2 =

ζ3 = 0. The PPN parameters of Scalar Tensor theories are

γ =
1 + ω

2 + ω

β = 1 + ω′(3 + 2ω)−2(4 + 2ω)−1

ξ = α1 = α2 = α3 = ζ1 = ζ2 = ζ3 = 0 (1.19)

where ω = ω(φ0) and ω′ = dω
dφ
(φ0), where φ0 is the value of the scalar field far from the solar

system.

The PPN Formalism can be used now to test the theory against the experimental findings

of solar system experiments. The most important of these experiments are
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1.2 Alternative theories of gravity

• The deflection of light around the Sun. The deflection angle of a light ray passing

near the Sun is given by [71]

δθ =
1

2
(1 + γ)

4M�
d

1 + cosφ

2
, (1.20)

where M� is the mass of the Sun, d is the distance at which the ray passes the Sun and

φ is the angle between the Earth-Sun line and the incoming direction of the photon.

Using very-long-baseline radio interferometry the best result for this technique yields

a value for gamma [39]

γ − 1 = (−1.6± 1.5)× 10−4. (1.21)

• The Shapiro time delay. Radar signals that travel past the Sun and return back to

Earth experience a time delay, as first pointed out by Irwin Shapiro. The time delay

is given by the formula [71]

δt =
1

2
(1 + γ)

(
240− ln

d2

r

)
μs, (1.22)

where d is the distance of closest approach of the ray in solar radii, and r is the

distance of the object receiving the signal from the Sun, in astronomical units. The

most stringiest bound on the value of gamma comes from the Doppler tracking of the

Cassini spacecraft in 2003 [8] which yields the result

γ − 1 = (2.1± 2.3)× 10−5. (1.23)

• The perihelion shift of Mercury. The advance of the perihelion of Mercury has

been measured to be 43 arcseconds per century. The theoretical value taking into

account both relativistic PPN contributions and the solar quadrupole moment is given
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1.2 Alternative theories of gravity

by [71]

˙̃ω = 42.′′98
(
1

3
(2 + 2γ − β) + 3× 104

J2
10−7

)
, (1.24)

where J2 = (2.2 ± 0.1) × 10−7 [45], [3] is the quadrupole moment. Comparing the

theoretical value to the experimental one we get

| 2γ − β − 1 |< 3× 10−4, (1.25)

which combined with the Cassini result gives a bound on β [26], [68]

β − 1 = (−4.1± 7.8)× 10−5. (1.26)

The bound on the PPN parameter γ can be translated to a bound on the parameter ω of

the FJBD theory according to the equation (1.19)

ω > 400000. (1.27)

The action of scalar tensor theory can be re-written in such a way that it looks sim-

ilar to that of General Relativity. This non-metric representation is called the ”Einstein

frame” while the regular metric representation is called the ”Jordan frame”. The metric is

conformally transformed to a new metric variable that is coupled to the scalar field [24],[16]

gμν → g̃μν = Ω2(φ)gμν (1.28)

Because of this, g̃μν is no longer the physically measured metric; nevertheless it is a useful

variable for representing this class of theories. The scalar curvature transforms as

R = Ω2R̃ + 6
�Ω

Ω
(1.29)
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1.2 Alternative theories of gravity

The determinant of gμν transforms as

√
−g̃ = Ω4

√−g (1.30)

We now use the transformation

dϕ =
1

2

√
2ω(φ) + 3

dφ

φ
(1.31)

Ω2(φ) = φ (1.32)

Substituting the previous equations into the action (1.13) for λ(φ) = 0 we get

S =
1

2κ2

∫
d4x
√

−g̃
[
R̃− 2g̃μνϕ,μϕ,ν

]
(1.33)

where ϕ is the new scalar field. This is the action in the Einstein frame. Following the

notation of Damour and Esposito-Farese [17] we define some useful parameters

A(ϕ) = Ω−1 (1.34)

α̃(ϕ) ≡ d lnA(ϕ)

dϕ
=

1√
3 + 2ω(φ)

(1.35)

β̃(ϕ) =
dα̃(ϕ)

dϕ
(1.36)

The field equations in the Einstein frame, derived from the action (1.33) are

R̃μν = 2g̃μν∂μϕ∂νϕ+ κ2

(
T̃μν − 1

2
T̃ g̃μν

)
(1.37)

�g̃ϕ = −κ2

2
α̃(ϕ)T̃ (1.38)
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1.2 Alternative theories of gravity

where T̃μν ≡ 2(g̃)−1/2δSM/δg̃μν is the stress energy tensor and T̃ = T̃ μ
μ . We can now define

the PPN parameters in the Einstein frame

γ − 1 = − 2α̃2
0

1 + α̃2
0

(1.39)

β − 1 =
1

2
β̃0

α̃2
0

(1 + α̃2
0)

2
(1.40)

where α̃0 = α̃(ϕ0) and β̃0 = β̃(ϕ0) are the asymptotic values of the parameters α̃ and β̃ far

from the source. As we will see later on, the Einstein frame is routinely used in numerical

simulations since the field equations have a simpler form preferred for numerical analysis.

1.2.2 f(R) theories of gravity

The second type of alternative theories of gravity that we study in this thesis is f(R) theories

of gravity. Such theories have existed since the 1960’s. But during the last two decades

these theories have grown in interest in an attempt to explain the accelerated expansion of

the universe. Nowadays f(R) theories are well established, and are considered a potential

dynamical alternative to Dark Energy [20],[60]. Depending on the choice of f(R), such

theories can retain many of the successful features of General Relativity at solar-system and

astrophysical scales, while introducing dramatically different features at cosmological scales.

The Einstein-Hilbert action

S =
1

2κ2

∫
d4x

√−g R +

∫
d4xLM(gμν , ψM), (1.41)

is modified to

S =
1

2κ2

∫
d4x

√−gf(R) +

∫
d4xLM(gμν , ψM), (1.42)

where κ2 = 8πG and SM =
∫
d4xLM(gμν , ψM) is the matter part of the action, which depends
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1.2 Alternative theories of gravity

on the metric gμν and the matter fields ψM .

We can obtain the field equations by varying the action with respect to the metric gμν

as follows

fR(R)Rμν − 1

2
f(R)gμν −∇μ∇νfR(R) + gμν�fR(R) = κ2Tμν , (1.43)

where fR(R) = f ′(R) is the first derivative of f with respect to R and

Tμν = − 2√−g

δLM

δgμν
. (1.44)

It has been shown that the left hand side of equation (1.43) is divergence free, which implies

T μν
;ν = 0. (1.45)

We can easily see that substituting f(R) = R, fR(R) = 1 recovers the well known field

equations of General Relativity. The trace of equation (1.43) is

fRR + 3�fR − 2f(R) = κ2T (1.46)

When the stress energy tensor T = 0, the Ricci scalar R is no longer necessarily zero.

If there exists a point where the Ricci scalar is constant and Tμν = 0, equation (1.43)

becomes

fRR− 2f(R) = 0 (1.47)

The root of equation (1.47) is R = C and the maximally symmetric solution is de Sitter. If

C = 0 the maximally symmetric solution is the Minkowski spacetime.

We can also rewrite the field equations in the Einstein equations form

Gμν = Rμν − 1

2
gμνR =

κ2

fR
(Tμν + T eff

μν ), (1.48)
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where

T eff
μν =

1

8πG

(
f(R)−RfR

2
+∇μ∇νfR − gμν�fR

)
. (1.49)

The simplest model that was first introduced was f(R) = R + αR2 [62] but it does not

strongly affect large scale cosmological behavior. Once the acceleration of the expansion of

the universe was well established, additional models were proposed in order to explain the

said acceleration. One of the first choices to attempt to account for cosmological acceleration

was [10],[11],[12],[51]

f(R) = R− μ4/R, (1.50)

but it was then shown that the model suffered from instabilities [22]. One can show that the

field equation with first order corrections for the curvature contains a term with a very large

coefficient. The characteristic time of the instability is ∼ 10−26 sec, so the instability grows

very fast and reaches high values. This motivated the derivation of the conditions required

for a viable f(R) theory.

A viable f(R) theory must satisfy both cosmological observations and local gravity con-

straints. Amendola et al. [2] derived the conditions for a cosmologically viable f(R) theory.

The sequence of the cosmological eras dominated by radiation, then by matter, and finally

by acceleration, must be preserved in such a theory. Starting with a spatially flat Friedmann-

Lematre-Robertson-Walker spacetime, we consider the metric

ds2 = −dt2 + a(t)dx2 (1.51)

The Ricci scalar becomes

R = 6(2H2 + Ḣ), (1.52)

where H = ȧ/a is the Hubble parameter. The stress energy tensor is that of a perfect fluid
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T μ
ν = (−ρM , pM , pM , pM). Considering non-relativistic equation for matter and radiation

ρ̇m + 3Hρm = 0 (1.53)

ρ̇r + 4Hρr = 0 (1.54)

the field equations (1.43) become

3fRH
2 = (fRR− f(R))/2− 3HḟR + κ2(ρm + ρr) (1.55)

− 2fRḢ = f̈R −HḟR + κ2(ρm + 4/3ρr) (1.56)

We define the following variables

x1 =
ḟR
HfR

, x2 =
−f

6H2fR
, x3 =

R

6H2
, x4 =

κρr
3H2fR

(1.57)

plus the density parameters

Ωm =
κρm

3H2fR
= 1− x1 − x2 − x3 − x4, Ωr = x4, ΩDE = x1 + x2 + x3 (1.58)

We derive the following system of equations

dx1

dN
= −1− x3 − 3x2 + x2

1 − x1x3 + x4 (1.59)

dx2

dN
=

x1x3

m
− x2(2x3 − 4− x1) (1.60)

dx3

dN
= −x1x3

m
− 2x3(x3 − 2) (1.61)

dx4

dN
= −2x3x4 + x1x4 (1.62)
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where N = ln a is the number of e-foldings and

m =
d ln fR
d lnR

=
RfRR

fR
(1.63)

r =
d ln f(R)

d lnR
=

RfR
f(R)

(1.64)

Finally, the effective equation of state of the system is

weff = −1− 2Ḣ/(3H2) (1.65)

An analysis of the above dynamical system reveals that the critical points (ignoring radiation,

x4 = 0), namely the points where the derivatives dxi

dN
all become zero, are

P1 : (x1, x2, x3) = (0,−1, 2), Ωm = 0, weff = −1

P2 : (x1, x2, x3) = (−1, 0, 0), Ωm = 2, weff = 1/3

P3 : (x1, x2, x3) = (1, 0, 0), Ωm = 0, weff = 1/3

P4 : (x1, x2, x3) = (−4, 5, 0), Ωm = 0, weff = 1/3

P5 : (x1, x2, x3) = (
3m

1 +m
,− 1 + 4m

2(1 +m)2
,
1 + 4m

2(1 +m)
),

Ωm = 1− m(7 + 10m)

2(1 +m)2
, weff = − m

1 +m

P6 : (x1, x2, x3) = (
2(1−m)

1 + 2m
,

1− 4m

m(1 + 2m)
,−(1− 4m)(1 +m)

m(1 + 2m)
),

Ωm = 0, weff =
2− 5m− 6m2

3m(1 + 2m)
(1.66)

The point P5 can be identified as the matter-dominated epoch, for m close to zero. Points P1

or P6 can either be identified as the later accelerated epoch. The stability of the above fixed

points is analyzed by considering only time-dependent linear perturbations around them.

The trajectories that start from the saddle matter point P5 and then approach the stable
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1.2 Alternative theories of gravity

points P1 or P6 can be considered viable. The stability analysis reveals that m needs to

satisfy the condition

0 < m ≤ 1 (1.67)

Finally, we end up with two classes of models that are cosmologically viable.

Class A: Models that connect P5 (r � 1,m � +0) to P1 (r = 2, 0 < m ≤ 1)

Class B: Models that connect P5 (r � 1,m � +0) to P6 (m = r1, (
√
31)/2 < m < 1).

According to the above analysis the models f(R) = R + αRn and f(R) = R − μ4/R are

non-viable.

The models should also satisfy local gravity constraints. This is done by considering

spherically symmetrical linear perturbations in a flat background metric [50],[53],[25],[60]

ds2 = −[1 + 2Ψ(r)]dt2 + a(t)[1 + 2Φ(r)]dr2 + r2dΩ2 (1.68)

We write the Ricci scalar as

R(t, r) = R0(t) +R1(r) (1.69)

where R0 is the background curvature and R1 is the perturbation to this background. We

assume that the matter source has mass density ρ(r) and negligible pressure. The trace

equation (1.46) now becomes

∇2R1 −m2
fR1 = − κρ

3fRR(R0)
(1.70)

where

m2
f =

fR(R0)− fRR(R0)

3fRR(R0)
. (1.71)

Since 0 < m(R0) < 1 as it was shown earlier (1.67), this means that m2
f > 0. Assuming the
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1.2 Alternative theories of gravity

the field is light, mfr � 1, yields the solution

R1 =
κMs

12πfRR(R0)r
, mfr � 1 (1.72)

where Ms is the total mass of the source. Using this assumption, we can solve the linearized

field equations for the PPN potentials Ψ(r) and Φ(r),

Ψ(r) � − κMs

6πfR(R0)r
(1.73)

Φ(r) � κMs

12πfR(R0)r
. (1.74)

According to this solution we can calculate the Post-Newtonian parameter γ

γ = −Φ(r)

Ψ(r)
� 1

2
(1.75)

This violates the strict experimental bound on the parameter |γ − 1| < 2.3 × 10−5 which

comes from the Cassini solar experiment. This would mean the non-viability of f(R) theories.

Fortunately, usually the condition mfr � 1 is not satisfied. This is because of the chameleon

mechanism [36],[37]. The effective mass of the scalar mf depends on the density of the

surroundings. When the matter density is high, the field also has a high effective mass,

while in a low density cosmological environment the field acquires a light mass. In addition

to these constraints, a viable model should satisfy [63]

fRR(R) > 0, (1.76)

which is needed to avoid tachyonic instabilities like the one appearing in model (1.50) and

fR(R) > 0, (1.77)
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which guarantees the absence of ghost fields.

There exist now several viable models that satisfy both cosmological and local gravity

constraints.

• The Hu and Sawicki model [33]

f(R) = R− μRc(R/Rc)
2n

(R/Rc)2n + 1
(1.78)

with n, μ,Rc > 0.

• The Starobinsky model [63]

f(R) = R− μRc

[
1−

(
1 +

R2

R2
c

)−n
]

(1.79)

with n, μ,Rc > 0.

• The Tsujikawa model [66]

f(R) = R− μRc tanh(R/Rc) (1.80)

with μ,Rc > 0.

• Recently, Miranda et al. [46] proposed another model

f(R) = R− αRc ln(1 +R/Rc) (1.81)

This is done by noting that the previous models can be seen as special cases of

f(R) = R− μRs

{
1−

[
1 +

(
R

Rc

)n]−1/μ
}

(1.82)

then taking the limit μ → ∞.
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All the above models satisfy the conditions (1.76), (1.77) and they show the correct behavior

preserving the sequence of the cosmological eras, as it was described earlier on. These are

the models that we are going to use later in our analysis in chapter 2.

1.3 Neutron stars

Neutron stars were first proposed by Baade and Zwicky in 1934. The idea was that there

exist stars of very high density and small radius. In 1939, Oppenheimer and Volkoff con-

structed general relativistic models for such objects, assuming that the stars are composed

of degenerate free neutrons at high densities. After these ideas were proposed physicists

turned their attention to other fields of physics and neutron stars were mostly forgotten.

The discovery of pulsars excited new interest for neutron stars. In 1967 a new radio tele-

scope in Cambridge detected a radio source with a very precise period [32]. It was almost

immediately proposed by Gold [29] that a highly rotating magnetized neutron star was the

source of the radio signal. Soon after, the pulsar located in the Crab Nebula was discovered

[57], which confirmed the proposition of Gold and in addition indicated that neutron stars

are the remnants of supernovae explosions. In the following years new models were proposed

for the structure and the evolution of neutron stars and the theoretical aspects of neutron

stars, were extensively studied. Also, new, powerful radio telescopes helped in the continuous

discovery of new pulsars and to this date about 2300 pulsars have been discovered.

Today the theoretical framework for neutron stars is well established. Neutron stars

are believed to be the remnants of supernovae explosions. Their masses range from one to

three solar masses, while the observed range is from about 1 solar mass to just over 2 solar

masses, and their radii range roughly from 8 km to 16 km. The gravitational binding energy

of neutron stars is M
R

∼ 0.2, much larger than that of normal stars. The spin periods of

neutron stars can be as low as a few milliseconds and they can have magnetic fields that
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reach values of 1012 G [43]. Thus, neutron stars are highly rotating relativistic stars and

only fully relativistic models should be considered in order to study their properties. The

fully relativistic equations that describe a neutron star either in General Relativity or in

other metric theories of gravity are a system of non linear differential equations. Analytical

solutions to such a system of equations are almost impossible to find, so we need to resort

to numerical methods to solve the equations. A large number of numerical models with

different numerical techniques have been developed in order to solve the field equations with

high accuracy.

The internal structure of a neutron star remains unknown. The density of the matter

in the center of a neutron star can exceed values of 1015 g cm−3. The domain of such high

densities is still unexplored, mostly because it is still not possible to test experimentally.

However, various nuclear physics models have been proposed. The most prominent models

suggest that the outer crust of a neutron star is composed of a lattice of iron 56Fe. At

densities higher than ∼ 107 g cm−3 the nuclei become more neutron rich because of electron

capture. The inner crust which starts at densities ∼ 1011 g cm−3 is mainly composed of free

neutrons. These neutrons can be found in a superfluid phase, and some models suggest that

certain phases of non-spherical nuclei are present at the bottom of the inner crust, that are

called pasta phases [13]. Beyond densities of ∼ 1014 g cm−3 we have the core of the neutron

star. It is the goal of nuclear physics to find an equation of state that describes the matter

of the neutron star entirely, as we will see later on.

The macroscopic properties of neutron stars are measured by observing pulsar radios

sources. As we already mentioned, it is well established that pulsars are highly magnetized

rotating neutron stars. There are two different types of pulsars. The regular pulsars with

periods P ∼ 0.5 s that increase with rates Ṗ ∼ 10−15 s/s and the millisecond pulsars with

periods 1.4 ms � P � 30 ms that increase with rates Ṗ ∼ 10−19 s/s. Models of binary

systems show that millisecond pulsars have been spun up to such high speeds by accretion of
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matter from an orbiting companion. The lifetime of regular pulsars is, as estimated crudely

by P/Ṗ ∼ 107 yr while the millisecond pulsars have lifetimes close to the age of the Universe

τ = 13.7 Gyr. Using samples of a region near our solar system we can estimate the total

number of regular and millisecond pulsars in our galaxy. Regular pulsars have a surface

density of 156± 31 pulsars kpc−2 which corresponds to about 160,000 pulsars in our galaxy,

while millisecond pulsars have a surface density of 38± 16 pulsars kpc−2 which corresponds

to about 40,000 millisecond pulsars in our galaxy [43].

Of the neutron stars that can be observed, the most important ones are those found in

compact binary star systems. Compact binary systems are the best tools to test General

Relativity and other theories of gravity. The most interesting compact binaries are the ones

containing a neutron star which is a radio pulsar, since the the orbital parameters of the

system can be measured from pulsar timing observations. We define the following parameters

[55]:

M = m1 +m2 (1.83)

is the total mass of the system and

μ =
m1m2

M
(1.84)

is the reduced mass of the system. Also,

η =
m1m2

M2
(1.85)

is the symmetric mass ratio and

M = η3/2M = μ3/5M2/3 (1.86)

is the chirp mass. The post-Keplerian parameters of the system such as the orbital period’s

derivative Ṗb, the advance of the periaston ω̇, the gravitational redshift γ, the range of the
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Shapiro delay r and the angle of inclination i are given in General Reletivity by [43]

ω̇ = 3

(
Pb

2π

)−5/3

(T�M)2/3(1− e2)−1 (1.87)

γ = e

(
Pb

2π

)1/3

T
2/3
� M−4/3m2(m1 + 2m2) (1.88)

Ṗb = −192π

5

(
Pb

2π

)−5/3

T
5/3
� m1m2M

−4/3

(
1 +

73

24
e2 +

37

96
e4
)
(1− e2)−7/2 (1.89)

sin i = x

(
Pb

2π

)−2/3

T
−1/3
� M2/3m−1

2 (1.90)

r = T�m2 (1.91)

where e is the eccentricity, T� = GM�/c3 = 4.925490947 μs and x = a sin i is the projected

semi-major axis. Measurements of these relativistic effects in a variety of binary pulsar

systems have shown excellent agreement with general relativity, including the existence of

gravitational radiation, whose emission leads to the decrease of orbital period [72].

We can now compute the gravitational waveforms emitted by a binary system of such

compact objects, in various theories of gravity. More specifically, in General Relativity the

waveform polarization modes are given by [40], [55]

h+ = −2μM

Dr
(1 + cos2 i) cos 2Φ (1.92)

h× = −4μM

Dr
cos i sin 2Φ (1.93)

where D is the distance to the source, r is the orbital separation and Φ is the orbital phase.
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On the other hand, in FJBD theory they are given by [14]

h+ = −
(
1− 1

2
ξ

)
2μMG

Dr
(1 + cos2 i) cos 2Φ (1.94)

h× = −
(
1− 1

2
ξ

)
4μMG

Dr
cos i sin 2Φ (1.95)

plus a scalar amplitude (often called a “spin-0” or breathing amplitude), given by

hS = −2ξ
Gμ

D

(
GM

r

)1/2

(s1 − s2) sin i cosΦ , (1.96)

where

ξ =
1

2 + ω
(1.97)

and

G = 1− ξ(s1 + s2 − 2s1s2). (1.98)

The quantities s1 and s2 are called the ”sensitivities” of the two inspiraling bodies. These

quantities measure the sensitivity of the mass of each body to variations in the value of

the external scalar field, which controls the gravitational binding energy of each body. This

difference in the waveforms should be measurable by the next generation gravitational wave

detectors which means that we should be able to constrain the value of the parameter ω of

the FJBD theory. The same analysis can be applied to constrain the parameters of other

theories of gravity.

The simplest model one can choose to describe a neutron star is that of a static, spherically

symmetric star. In General Relativity, the metric of the spacetime of such a star is given by

[47]

ds2 = −e2Φ(r)dt2 + e2Λ(r)dr2 + r2dΩ2 (1.99)
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where

dΩ2 = dθ2 + sin2 θdφ2. (1.100)

The two functions Φ(r) and Λ(r) are to be determined by solving the field equations. The

next equation that needs to be defined is the stress-energy tensor of the matter inside the

star. We can model the matter of the star as a perfect fluid, to a very good accuracy. The

stress energy tensor of a perfect fluid is

T μν = [ρ(r) + p(r)]uμuν + p(r) gμν (1.101)

where uμ is the 4-velocity of the fluid and ρ(r) and p(r) are the density and the pressure of

the fluid respectively. The final equation that needs to be provided is the relation between

the density ρ(r) and the pressure p(r). This is called the equation of state (EoS). The true

equation of state of a neutron star remains unknown. Several nuclear physics motivated

models for the equation of state have been proposed as we will see later on this chapter.

We now have all the necessary equations to proceed in our solution. Here it is convenient

to rewrite the function Λ(r) as

e2Λ =

(
1− 2m(r)

r

)−1

(1.102)

where m(r) is a new function that plays the role of the mass, as will be obvious from our

solution. Starting with the tt component of the Einstein equations, we find

dm

dr
= 4πr2ρ(r) (1.103)

Integrating this from the center of the star to its radius r = R will give us the total mass of
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1.3 Neutron stars

the star. Now, using the rr component of the Einstein equations we find

dΦ

dr
=

m+ 4πr3p

r(r − 2m)
(1.104)

Finally, using the energy-momentum conservation equation T μν
;ν = 0 we have

dp

dr
= −(p+ ρ)

dΦ

dr
(1.105)

Substituting equation (1.105) in equation (1.104) we get the final expression

dp

dr
= −(ρ+ p)(m+ 4πr3p)

r(r − 2m)
. (1.106)

This is the TOV equation, discovered by Tolman [65] and independently by Oppenheimer

and Volkoff [54] in 1939 and describes the structure of a static, spherically symmetric star in

General Relativity. In order to solve the equation, one needs to provide initial conditions for

the quantities m(r), p(r) and Φ(r) at the center of the star, in addition to an EoS. One then

integrates the equation outwards until the pressure vanishes, which denotes the surface of the

star. The TOV equation guarantees that the pressure will decrease monotonically as long as

p ≥ 0 and ρ ≥ 0. In the case of a constant density star the equation has an analytic solution.

For a more realistic EoS the equation can only be solved by using numerical methods. This is

the basic scheme that we use to construct models of neutron stars in this thesis, but modified

for alternative theories of gravity, as we will see in chapter 2.

The previous analysis is done for static stars, but as we already discussed, real neutron

stars rotate rapidly. Thus, we need to extend our analysis to include rotation. The metric

that describes the spacetime of a rotating star is stationary and axisymmetric. The most
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1.3 Neutron stars

general form for the line element of such a metric is

ds2 = g00dt
2 + 2g01dtdφ+ g11dφ

2 + g22(dx
2)2 + g23dx

2dx3 + g33(dx
3)2. (1.107)

By exploiting the freedom to choose coordinates, we can rewrite the line element in a more

commonly used form

ds2 = −e2νdt2 + e2ψ(dφ− ωdt)2 + e2μ(dr2 + r2dθ2) (1.108)

where we usually set

eψ = r sin θBe−ν . (1.109)

The functions μ, ν, ω, ψ and B depend only on r and θ. Hartle [30] rewrote the metric

in a different form and by only keeping first order terms in the the angular velocity of

the star Ω he derived a formalism to numerically treat slowly rotating neutron stars. This

slow rotation formalism is able to describe most regular and millisecond pulsars, but fails

to describe rapidly rotating stars near the mass-shedding limit. Since then, a lot more

complicated numerical schemes have been proposed. For a review of numerical schemes of

rapidly rotating relativistic stars see [64].

1.3.1 Equation of state

The true equation of state for the matter inside a neutron star remains unknown. One

wishes to determine the EoS of ∼ 1057 baryons, which corresponds to about one solar mass.

The state of the lowest energy of such high numbers of baryons corresponds to multiple 56
26Fe

nuclei, since this is the nucleus with the largest (negative) binding energy per unit mass.

In addition, relativistic electrons combine with protons to form neutrons by inverse beta

decay. As the density increases, the neutron to proton ratio becomes higher until a critical

25



1.3 Neutron stars

value is reached, which is called “neutron drip”, because the neutrons start escaping from

the nucleus and become free. If we keep increasing the density the baryons form a neutron

gas, whose quantum degeneracy provides the pressure of the system.

The EoS for densities below the neutron drip density is well understood [59]. One starts

with the EoS of an ideal Fermi gas of electrons, which for the limiting cases can be written

as

P = KρΓ0 (1.110)

where, for non-relativistic neutrons, ρ0 � 106 g cm−3, Γ = 5/3,

K =
32/3π4/3

5

�
2

mem
5/3
u μ

5/3
e

=
1.0036× 1013

μ
5/3
e

cgs (1.111)

for extremely relativistic neutrons, ρ0  106 g cm−3, Γ = 4/3,

K =
31/3π2/3

5

�c

m
4/3
u μ

4/3
e

=
1.2435× 1015

μ
4/3
e

cgs (1.112)

where mu is the atomic mass unit and μe is the mean molecular weight per electron. As we

move into a higher density region, certain corrections need to be applied if a more realistic

EoS is to be obtained. The most important corrections are due to electrostatic interactions

and inverse beta decay. We can write the total energy density as

ε = nNM(A,Z) + ε′e(ne) + εn(nn) (1.113)

where, nN , ne, nn are the number densities of nuclei, electrons and neutrons respectively.

The functionM(A,Z) is the energy of the nucleus and it is given by a semi-empirical formula.

The energy of free electrons, εe and the energy of free neutrons εn are known functions of

the Fermi momentum from Statistical Mechanics. Here, the rest energy of the electrons is

included in M(A,Z) so the remainder is denoted by ε′e. When below the neutron drip, the
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1.3 Neutron stars

free neutron energy can be set to zero. Then, one finds the values of A and Z that minimize

the energy of the nucleus and solves for the Fermi momentum. This determines the density

ρ = ε/c2 and the pressure P .

For densities above the neutron drip, the EoS is not well known. At such high densities the

nuclei merge in a sea of baryons. Latimer et al [42] summarize the different approaches used

to describe the EoS above the neutron drip. The first approach is non-relativistic potential

models. Here, the potential of the Hamiltonian is fitted to nucleon-nucleon scattering data.

The short-range correlations are treated by a variational method. The second approach

involves field-theoretical models. The Lagrangian has both baryon and meson degrees of

freedom and starting with a mean field approximation additional effects such as vacuum

fluctuations are later taken into account. This approach sacrifices the connection to nucleon-

nucleon scattering data. The third approach is the relativistic Dirac-Brueckner-Hartree-

Fock approach. Here, the self-energy of a nucleon is assumed to be the sum of two large

potentials. The first potential is an attractive scalar potential and the second is a repulsive

vector potential. Then, the nucleon-nucleon potential is calculated by the use of the nucleon

spinors that are solution of the Dirac equation. The nucleon self-energy is calculated in the

Brueckner-Hartree-Fock approximation. As we will see in Chapter 2, for our calculation, we

selected equations of state from all 3 approaches.
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Chapter 2

Theoretical framework

In this chapter we establish the structure equations for a neutron star in both Scalar Tensor

theories and f(R) theories of gravity. This is done by solving the field equations under certain

assumptions about the spacetime inside the star. In the case of Scalar Tensor theories, we

define the ’sensitivities’ of a neutron star, which are to be calculated numerically. We also

provide the boundary conditions for our set of equations; these turn out to be rather subtle

in the case of f(R) theories. Finally, we discuss the various equations of state for the matter

in the neutron stars, which are used when we solve the equations numerically. At the end,

all the necessary equations for numerically analysis will be established and we will be ready

to proceed with our numerical treatment.

2.1 Scalar tensor theories

We start our study with Scalar Tensor theories of gravity. First, we derive the structure

equations for FJBD theory in the Jordan, frame the convention representation of these

theories as “metric” theories of gravity. This is done to outline the necessary steps required

to derive the structure equations, even though this particular set of equations will not be

used for numerical analysis. Then, we show the structure equations in the Einstein frame,
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2.1 Scalar tensor theories

where the representation of the equation is better suited to numerical analysis. This is done

for both a static and a slowly rotating metric. The matching of the interior metric of the

neutron star, which is calculated numerically, to the exterior metric, which is known in closed

form, provides a set of equations for all the physical quantities of the star. Also, a subset

of the equations of state discussed at the end of this section is used in our analysis of f(R)

theories.

2.1.1 Field equations

We derive now the structure equations for a static spherically symmetric star in the Jordan

frame for the FJBD theory. The process is similar to the one described in Chapter 1 for the

case of General Relativity. We start with the field equations. The field equations for FJBD

theory are a special case of the equations (1.14) and (1.16) with ω′ = λ = 0 [70].

Rμν − 1

2
gμνR =

8π

φ
Tμν +

ω

φ2
(φ,μφ,ν − 1

2
gμνφ,λφ

,λ) +
1

φ
(φ,μ;ν − gμν�φ) (2.1)

�φ = φ,μ
;μ =

1√−g
(
√−gφ,μ),μ =

8πT

3 + 2ω
(2.2)

The metric describing the spacetime is a static, spherically symmetric metric

ds2 = −e2Φ(r)dt2 + e2Λ(r)dt2 + r2dΩ2, e2Λ =

(
1− 2m(r)

r

)−1

(2.3)

where φ(r) and m(r) are the metric functions to be determined, and the coordinate r is

interpreted as the proper circumference/2π of a circle of fixed r and t. We model the matter

inside the star as a perfect fluid. The stress-energy tensor of the fluid is given by

T μν = (ρ+ p)uμuν + pgμν (2.4)
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2.1 Scalar tensor theories

We now express the field equations under the previous assumptions. The equations take the

form

dm

dr
= 4πr2

[
ρ

φ
+

ωφ2
,r

16πφ2

(
1− 2m

r

)
− 3p− ρ

φ(2ω + 3)

]
(2.5)

dΦ

dr
=

1

r(r − 2m)

[
m+

4πr3p

φ
− φ2

,rωr
3

4φ2

(
1− 2m

r

)]
(2.6)

φ,rr + φ,r

(
2

r
+ Φ′ − Λ′

)
=

8πr(3p− ρ)

(r − 2m)(2ω + 3)
(2.7)

Using the energy-momentum conservation equation T μν
;ν = 0 we have

dp

dr
= −(p+ ρ)

dΦ

dr
(2.8)

We substitute equation (2.7) into equation (2.8) to get

dp

dr
= − (p+ ρ)

r(r − 2m)

[
m+

4πr3p

φ
− φ2

,rωr
3

4φ2

(
1− 2m

r

)]
(2.9)

Finally, substituting the first two equations (2.5)) and (2.6) into the third one (2.7) we get

φ,rr =

(
rωφ2

,r

2φ2
− 2 (2πr3(ρ− p)− φr +mφ)

(2m− r)rφ

)
φ,r +

4πr(3p− ρ)(rφ,r − 2φ)

(2m− r)φ(2ω + 3)
(2.10)

Equations (2.5), (2.9) and (2.10) are the desired set of equations to be used for numerical

analysis. An equation of state will be required as well for the set of equations to be complete.

We also define here the total baryon number

N =

∫ R

0

4πnr2
(
1− 2m

r

)−1/2

dr (2.11)

where r = R is the surface of the star and n the baryon density. It has been found, this set

of equations is not ideal for numerical analysis. The set of equations obtained in the Einstein

frame is more suitable for numerical analysis.
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2.1 Scalar tensor theories

2.1.2 Einstein frame

In this section we formulate the equations in the Einstein frame and also generalize from

FJBD theory to the full range of scalar-tensor theories. As we have already seen in chapter

1, the Einstein frame is a non-metric representation of the Scalar Tensor theory, where

the action is put in a form that resembles that of General Relativity. The field equations

derived from the action (1.33) are given by equations (1.37) and (1.38). Also, the conformal

transformation between the Einstein frame and the Jordan frame is described by equations

(1.34), (1.35) and (1.36). Again, we use a static and spherically symmetric metric, given by

(2.3). Finally the matter is assumed to be a perfect fluid with the stress energy tensor (2.4).

Now, expressing the field equations under the above assumptions we obtain the following set

of equations [18]

M ′ =
κ2

2
r2A4(ϕ)ρ+

1

2
r(r − 2M)ψ2 (2.12)

ν ′ = κ2 r
2A4(ϕ)p

r − 2M
+ rψ2 +

2M

r(r − 2M)
(2.13)

ϕ′ = ψ (2.14)

ψ′ =
κ2

2

rA4(ϕ)

r − 2M
[α(ϕ)(ρ− 3p) + rψ(ρ− p)]− 2(r −M)

r(r − 2M)
ψ (2.15)

p′ = −(ρ+ p)

[
κ2

2

r2A4(ϕ)p

r − 2M
+

1

2
rψ2 +

M

r(r − 2M)
+ α(ϕ)ψ

]
(2.16)

(2.17)

where primed quantities denote a differentation with respect to r. We have defined the auxil-

iary field ψ = φ′ in order to recast the equations as a set of first-order differential equations,

which lend themselves naturally to numerical integration schemes. We have defined here

M(r) ≡ m(r) and ν(r) ≡ 2Φ(r) to follow the notation of Damour and Esposito-Farese [18].
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2.1 Scalar tensor theories

We also find it useful to define the baryonic mass M̄(r), given by integrating

M̄ ′ = 4πmbnA
3(ϕ)

r2√
1− 2M/r

(2.18)

from the center of the star to a chosen value of r.

The choice of the coupling function A(ϕ) defines a specific theory. FJBD theory corre-

sponds to the coupling function

A(ϕ) = eα̃ϕ (2.19)

with α̃ = α̃0, a constant, which corresponds to ω(φ) = const. As we will see later, other

choices give more interesting theories, with results that are significantly different from Gen-

eral Relativity.

In order to have a complete set of equations, ready for numerical analysis, we also need

to provide the boundary conditions for our system of equations, as well as an equation

of state, which relates the pressure and density inside the star. However, first we turn

our attention to some quantities called ’sensitivities’ of the neutron star, which we wish to

calculate numerically.

2.1.3 Sensitivities

In Scalar Tensor theories, the scalar field φ produces an external influence on the structure

of a compact body. The scalar field is directly related to the value of gravitational constant

G, as we saw in (1.17).Thus, the mass of each body can be regarded as a function of lnG.

Now, we can expand the field φ in a series, around its asymptotic value φ0 in the weak field

limit [70]. So the field is given by

φ = φ0 +Δφ (2.20)
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and the mass of a compact body A is given by

mA(φ) = mA(lnG) (2.21)

= mA0 −
(

∂mA

∂ lnG

)
0

[
Δφ

φ0

− 1

2

(
Δφ

φ0

)2
]

(2.22)

+
1

2

(
∂2mA

∂ lnG2

)
0

(
Δφ

φ0

)2

+O

(
Δφ

φ0

)3

(2.23)

We define the quantities

sA = −
(
∂ lnmA

∂ lnG

)
0

(2.24)

s′A = −
(
∂2 lnmA

∂ lnG2

)
0

(2.25)

(2.26)

These are called the sensitivities of the compact body A, since they characterize the sensi-

tivity of its mass to changes in G or in φ. Then, we can write

mA(φ) = mA[1 + sA(Δφ/φ0)− 1

2
(s′A − s2A + sA)(Δφ/φ0)

2 +O(Δφ/φ0)
3] (2.27)

Since the mass of the body depends on the sensitivities sa, these quantities enter all the

post-Newtonian equations of motion for gravitationally self-bound bodies, as well as in the

gravitational waveform, and in formulae for gravitational radiation reaction. See for example

. In order to do calculations we need to be provided with the value of the sensitivities be-

forehand. So, we need an independent method of calculating the sensitivities of the compact

bodies.

In a first approximation the sensitivity s ∼ [gravitational binding energy]/[mass]. That

means the value of s for a body like Earth is s⊕ ∼ 10−10, for the Sun it is s� ∼ 10−6 and for
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a white dwarf it is sWD ∼ 10−3. Since these values are several orders of magnitude smaller

than unity, they can be ignored in many calculations. On exception is the Earth-Moon

system, where the effect of these sensitivities in scalar-tensor theory has led to a strong test

of such theories using lunar laser ranging. However, for neutron stars, the sensitivities are of

order of unity [44], so an explicit calculation is required. Assuming an EOS for the neutron

star of the form p = p(ρ), we can uniquely determine a model by fixing the asymptotic value

of G (or φ), asymptotically flat conditions on the metric, and the central density ρc. We

need to compute the sensitivity s holding the baryon number fixed. It can be shown that

s = −
(
∂ lnm

∂ lnG

)
N

=

(
∂ lnm

∂ lnG

)
ρc

+

(
∂ lnm

∂ lnN

)
G

(
∂ lnN

∂ lnG

)
ρc

(2.28)

In this thesis we will also use the following sensitivities

ŝA =

(
∂ lnm

∂ lnφ

)
0

(2.29)

ŝ′A =

(
∂ŝA
∂ lnφ

)
0

(2.30)

It can be shown that the two different sensitivities are related by

ŝA = sA

(
1 +

2ω′
0φ

(3 + 2ω0)(4 + 2ω0)

)
(2.31)

In the case of FJBD theory, ω′ = 0, so the two sensitivities are equal, ŝA = sA.

In the Einstein frame we use equivalent quantities that play the role of sensitivities. Here,

we follow the definitions of Damour and Esposito-Farese [17]. We define

αA =
∂ ln m̃A

∂ϕ0

(2.32)

βA =
∂αA

∂ϕ0

(2.33)
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Here m̃A is the mass of the star in the Einstein frame. We need to note that the mass in the

Jordan frame and the mass in the Einstein frame are not the same, but they are related by

m̃A = A(ϕ)mA (2.34)

Using the definitions (1.34), (1.35) and (1.36) we can relate the Jordan frame sensitivities

to the Einstein frame sensitivities. We can show that

ŝa =
α̃− αA

2α̃
(2.35)

ŝ′a =
1

4α̃2

(
βA − β̃

α̃
αA

)
(2.36)

Here, following Damour and Esposito-Farese [17] we show a rough estimate of the sensitivity

of a neutron star, using data from General Relativity. First, we define the fractional binding

energy of a neutron star

f ≡ m̄−m

m
> 0 (2.37)

where m̄ is the total baryonic mass. Also, we define

cA = −2
∂ lnm

∂ lnG
= 2sa (2.38)

Keeping the EoS fixed, f depends only on the combination G3/2m̄. It then can be shown

that

cA = 3

(
∂f

∂m̄

)
A

mA (2.39)

The fractional binding energy f , for most analytic equations of state, depends linearly on

the total baryonic mass. This leads to a simple relation between cA and mA,

cA = kmA (2.40)
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where the slope k depends on EoS. Damour and Esposito-Farese found that an average value

for the slope was k = 0.21M−1
� . This gives, for a typical mass of mA = 1.4 M�, a value

sA = 0.147.

2.1.4 Slowly rotating star

We will now derive the structure equations for a slowly rotating neutron star in Scalar Tensor

theory. We will only use the Einstein frame equations. Again, here we follow Damour

and Esposito-Farese [19]. We have already established the field equations (1.37), (1.38) in

a previous section. The metric describing the spacetime, as given by Hartle [30], is the

following

ds2 = −eν(r)dt2 + eμ(r)dr2 + r2dθ2 + r2 sin2 θ (dφ+ [ω(r, θ)− Ω]dt)2 . (2.41)

Here, we only keep first order terms in angular velocity Ω = uφ/ut, so the non-diagonal

components of the metric tensor all vanish except gtφ. The stress-energy tensor describing

the perfect fluid is

Tμν = (ρ+ p)uμuν + pgμν (2.42)

Solving the equations, under these assumptions, we derive the structure equations, which

are the same as with the static case, with two additional equations for the quantity ω and
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its derivative. The final set of equations is the following

M ′ =
κ2

2
r2A4(ϕ)ρ̃+

1

2
r(r − 2M)ψ2 (2.43)

ν ′ = κ2 r
2A4(ϕ)p̃

r − 2M
+ rψ2 +

2M

r(r − 2M)
(2.44)

ϕ′ = ψ (2.45)

ψ′ =
κ2

2

rA4(ϕ)

r − 2M
[α(ϕ)(ρ̃− 3p̃) + rψ(ρ̃− p̃)]− 2(r −M)

r(r − 2M)
ψ (2.46)

p′ = −(ρ+ p)

[
κ2

2

r2A4(ϕ)p̃

r − 2M
+

1

2
rψ2 +

M

r(r − 2M)
+ α(ϕ)ψ

]
(2.47)

ω′ = � (2.48)

�′ =
κ2

2

r2

r − 2M
A4(ϕ)(ρ̃+ p̃)

(
� +

4ω

r

)

+

(
ψ2r − 4

r

)
� (2.49)

(2.50)

Because we are working to first order in rotation, the equations for ω and its derivative

decouple from the other equations. Again, we need to include the quantity M̄(r), the radial

distribution of the baryonic mass, given by (2.18).

2.1.5 Matching conditions

In both cases of static, or slowly rotating metric, the numerical integration can continue

after the surface of the star, where the pressure becomes zero. However, the solution for the

outer region of the star where Tμν = 0, is already known in closed form. We can match the

inner solution to the outer solution by using the correct boundary conditions. The metric
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for the outer solution is [17],[15]

ds2 = −eνdt2 + e−ν [dξ2 + eλ(dθ2 + sin2 θdφ2)] (2.51)

eλ = ξ2 − aξ (2.52)

eν =

(
1− a

ξ

)b/a

(2.53)

ϕ(r) = ϕ0 +
d

a
ln

(
1− a

ξ

)
(2.54)

where a, b and d are integration constants satisfying the relation a2−b2 = 4d2 and d is another

constant. These coordinates are related to the Schwarzschild coordinates used earlier by

r = ξ

(
1− a

ξ

)(a−b)/2a

(2.55)

eμ =

(
1− a

ξ

)(
1 +

a+ b

2ξ

)−2

. (2.56)

The parameters a, b and d can be expressed in terms of the total mass mA and the coupling

constant αA from (2.33).

b = 2
G

c2
mA (2.57)

b

a
= (1 + α2

A)
1/2 (2.58)

d

b
=

1

2
αA (2.59)

Now, it has been shown that using the previous equations, all the physical quantities of the

star can be expressed in terms of the values of the metric components and their derivatives
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at the surface of the star [19]. We define

R ≡ rs (2.60)

αA ≡ 2ψs

ν ′
s

(2.61)

Q1 ≡ (1 + α2
A)

1/2 (2.62)

Q2 ≡
(
1− 2Ms

R

)1/2

(2.63)

ν̂s ≡ − 2

Q1

tanh−1

(
Q1

1 + 2(Rν ′
s)

−1

)
(2.64)

(2.65)

We then have

ν ′
s = Rψs +

2Ms

R(R− 2Ms)
(2.66)

αA =
2ψs

ν ′
s

(2.67)

ϕ0 = ϕs − 1

2
αAν̂s (2.68)

mA =
1

2
ν ′
sR

2Q2e
1
2
ν̂s (2.69)

m̄A = M̄s (2.70)

Specifically for the slowly rotating case, we have some additional quantities

JA =
1

6
�′

sR
4Q2e

− 1
2
ν̂s (2.71)

Ω = ωs − 3JA
4m3

A(3− α2
A)

{
eν̂s − 1 +

4mA

R
eν̂s (2.72)

×
[
2mA

R
+ e

1
2
ν̂s cosh

(
1

2
Q1ν̂s

)]}

IA =
JA
Ω

(2.73)
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Finally, to be able to solve the equations numerically, we need to provide the initial

conditions in the center of the star. The point r = 0 is difficult to be treated by the code

since 1/r terms appear in some expressions. Thus, we set the initial conditions at a point

very close to the origin, r = Δr, which usually is equal to the step size of our numerical

integration. We achieve this by Taylor expanding our quantities around r = 0. This yields

[19]

M(Δr) = 0 (2.74)

ν(Δr) = 0 (2.75)

ϕ(Δr) = ϕc (2.76)

p(Δr) = pc (2.77)

ψ(Δr) =
4π

3
Δr A4(ϕc)α(ϕc)(ρc − 3pc) (2.78)

M̄(Δr) = 0 (2.79)

Again, for the slowly rotating case we also need

ω(Δr) = 1 (2.80)

�(Δr) =
16π

5
Δr A4(ϕc)ω(Δr)(ρc + pc) (2.81)

2.1.6 Equation of state

As we have already discussed, in order to have a complete set of equations for numerical

analysis, an EoS needs to be provided. Since the true EoS for the matter inside a neutron star

is not known, we will have to use approximation for our EoS. The most common approximate

EoS that is used widely in numerical analysis is a polytropic EoS. The EoS is defined by the

40



2.2 f(R) theories

equations

ρ = mbn+
Kmbn0

Γ− 1

(
n

n0

)Γ

(2.82)

p = Kmbn0

(
n

n0

)Γ

(2.83)

These two equations represent a two parameter family of equations of state for different

values of K and Γ. The values are chosen by fitting the parameters to more realistic nuclear

physics models for the EoS. The constants of the equation of state are given values mb =

1.66× 10−27 kg and n0 = 0.1 fm−3 throughout this dissertation. This EoS is also used in the

case of f(R) theories.

Specifically for the slow rotation case, which is the most realistic, we want to use a

realistic EoS as well. The equations of state we use can be found in Lattimer and Prakash

[41]. We choose four of the equations of state studied by Lattimer and Prakash, namely AP4

[1], ENG [23], MPA1 [49] and MS1 [48]. Here we use the same notation as Lattimer and

Prakash. These equations of state cover all three different methods discussed in section 1.3.1.

More specifically, AP4 uses the variational method, MS1 uses the field theoretical method,

while MPA1 and ENG use the Brueckner-Hartree-Fock method. The equations of state are

in tabulated form. An interpolation algorithm is used to create a continuous function of the

data table, which is then used to express the density ρ as a function of the pressure p.

2.2 f (R) theories

In this section we describe different approaches in the derivation of the structure equations

of a neutron star in f(R) theories of gravity. Since the construction of neutron star models

in f(R) theories has proven to be difficult so far, we want to demonstrate that this is mainly

due to the theoretical approach used and not a pathology of the theory itself. We argue that

a new approach by Jaime, Patino and Salgado (JPS) [34] is free of some of the difficulties
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2.2 f(R) theories

previous groups had in the construction of neutron star models. At the end we derive the

structure equations using the JPS approach, following the same procedure as with Scalar

Tensor theories. This study is part of a project with Emanuele Berti, Paolo Pani and Vitor

Cardoso.

2.2.1 Field equations

We show here the different approaches that have been used to obtain the field equation used

to produce relativistic star models in f(R) theories of gravity. The first approach was used

by Kobayashi and Maeda (KM) [38], and later on by Upadhye and Hu (UH) [67]. This

approach exploits the fact that f(R) theory can actually be put in a Scalar Tensor theory

form. We start with the action

S =
1

2κ2

∫
d4x

√−g [f(χ) + f,χ(χ)(R− χ)] +

∫
d4xLM(gμν , ψM) (2.84)

where f is an arbitrary function of χ, subject to the constraint that f,χχ �= 0, and χ is an

auxiliary field. We vary the action with respect to χ. This gives

f,χχ(χ)(R− χ) = 0 (2.85)

Thus, for a non-zero second derivative of f(χ), it must be that

χ = R (2.86)

This shows that the action (2.84) is equivalent to the action (1.42). We define

φ ≡ f,χ(χ) (2.87)
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so the action becomes

S =

∫
d4x

√−g

[
1

2κ2
φR− U(φ)

]
+

∫
d4xLM(gμν , ψM), (2.88)

where

U(φ) =
χ(φ)φ− f(χ(φ))

2κ2
(2.89)

We can easily see that this action is equivalent to 1.13 for ω(φ) = 0. The field equations

derived from the action (2.88) are

φRμν − 1

2
fgμν −∇μ∇νφ+ gμν�φ = κ2Tμν , (2.90)

�φ =
dV eff

KM (φ)

dφ
=

κ

3
T +

dVKM(φ)

dφ
(2.91)

The derivatives of the potential are

V ′
KM(φ) =

1

3
(2f − φR) , (2.92)

V ′′
KM(φ) =

1

3

(
φ

φ′ −R

)
, (2.93)

where φ′ = fRR(R).

Since the field equations can be put in a Scalar Tensor theory form, we can also confor-

mally transform the equations to the Einstein frame. This is the approach by Babichev and

Langlois [5],[6], hereafter BL. They define

ϕ ≡
√

3

2κ2
log fR (2.94)

g̃μν = Ω−2gμν (2.95)

Ω−2 ≡ fR = e
√

2κ2/3φ (2.96)
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so the action becomes

SE =

∫
d4x
√

−g̃

[
R̃

2κ2
− 1

2
(∇̃ϕ)2 − VBL(ϕ)

]
+ Smat

[
Ω2g̃μν , ψ

]
(2.97)

where

VBL(φ) =
RfR − f

2κ2f 2
R

(2.98)

is the scalar potential. Varying the action the obtain the field equations

Gμν = κ2
{
Ω4Tμν + ∂μϕ∂νϕ− gμν

2

[
VBL + (∂φ)2

]}
(2.99)

�ϕ =
dV eff

BL

dϕ
≡ dVBL

dϕ
− dΩ

dϕ
Ω3T . (2.100)

The derivatives of the potential are

V ′
BL(ϕ) =

√
2

3κ2

2f −RfR
2f 2

R

, (2.101)

V ′′
BL(ϕ) =

1

3fRR

[
1 +

RfRR

fR
− 4ffRR

f 2
R

]
. (2.102)

Jaime, Patino and Salgado, hereafter JPS, proposed a new approach [34]. In this case

the equation (1.43) is rewritten as

fRGμν − fRR∇μ∇νR− fRRR(∇μR)(∇νR)

+ gμν

[
1

2
(RfR − f) + fRR�R + fRRR(∇R)2

]
= κ2Tμν (2.103)

where (∇R)2 = gμν(∇μR)(∇νR). The trace of (2.103) is

�R =
1

3fRR

[
κ2T − 3fRRR(∇R)2 + 2f −RfR

]
(2.104)
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Combining the two equations we get

Gμν =
1

fR
[fRR∇μ∇νR + fRRR(∇μR)(∇νR)+

−gμν
6

(RfR + f + 2κT ) + κTμν

]
(2.105)

�R =
dṼ eff

JPS

dR
≡ κ

3fRR

T − fRRR

fRR

(∇R)2 +
dṼJPS

dR
(2.106)

where

dṼJPS

dR
≡ 2f −RfR

3fRR

(2.107)

2.2.2 JPS formulation vs Scalar Tensor formulation

We discuss here the past difficulties encountered in the numerical integration of the field

equations of f(R) for neutron stars. We also show how some of these difficulties can be

avoided by using the JPS formalism.

At first KM claimed that neutron stars cannot be constructed in f(R) theories because

singularities occur in the interior of the neutron star. UH and BL showed that these singular-

ities are a product of numerical instabilities and not a physical property of the theory itself.

Using different numerical schemes UH and BL were able to construct numerical models of

relativistic star in f(R) theories.

Nevertheless, the problem of numerical instabilities in the interior of the star remains,

making the integration of the field equations very difficult. The problem arises because the

potentials by KM, UH and BL have finite values at the points in the interior where the

Ricci scalar R becomes very large, which means that the solution can access the region of

very large R using only finite amount of “potential energy”. Let us consider the Starobinsky

model (1.79). Inside the neutron star the curvature is much higher than the cosmological

value Rc,

R  Rc. (2.108)
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We expand the function f in this limit

f(R) ∼ R− μRc + μRc

(
Rc

R

)2n

, R  Rc (2.109)

It can be shown that the potentials of both the KM and UH formalism and the BL formalism,

approach a constant value in this limit

V (φ) → constRc (2.110)

while the derivatives of the potentials diverge. The same argument can be applied to the

other f(R) models. The energy density that is required to reach this singularity is on the

order of the central density of the star. Although this means that the singularity would be

accessible in the interior of the star, the chameleon mechanism, whereby the effective mass

of the scalar field (related to the second derivative of the potential) become large in the

interior of the star, prevents this from happening, as discussed by UH. Unfortunately, the

chameleon mechanism makes the numerical integration even more difficult.

On the other hand, JPS use a different potential, namely

VJPS(R) = −Rf(R)

3
+

∫ R

f(x)dx. (2.111)

The derivative of this potential vanishes when the derivative (2.107) vanishes, since fRR > 0.

This corresponds to a de Sitter solution with R = R1 = const. This potential, in the high

curvature limit, for the Starobinsky model becomes

VJPS(R) = R3
c

(
R

Rc

)2n+4

(2.112)

which shows that the potential becomes infinite when R → ∞. This guarantees that the

singularity cannot be accessed in the interior of the star.
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Another issue with mapping f(R) theories to Scalar Tensor theories, is that the scalar

field potential might be multi-valued. This is true for example for the Starobinsky model.

It is claimed that the numerical calculations will follow the minimum value of the potential

and this multi-valueness of the potential does not pose a problem. However, calculations

done using a multi-valued potential, especially close enough to a singular point where the

potential is discontinuous are less trustworthy and we should try to avoid such potentials if

possible. The JPS potential is not multi-valued and does not contain any singular points.

2.2.3 Structure equations in the JPS formulation

We derive now the structure equations describing a neutron star for a static spherically

symmetric spacetime. We follow the notation of JPS [34]. The metric is given by

ds2 = −B(r)dt2 + A(r)dr2 + r2dΩ2 (2.113)

Here we follow the JPS notation. The field equations then yield

R′′ =
1

3fRR

[
A(κ2T + 2f −RfR)− 3fRRRR

′2]+ ( A′

2A
− B′

2B
− 2

r

)
R′ (2.114)

A′ =
A

r(2fR + rR′fRR)

{
2fR(1− A)− 2Ar2κ2T t

t

+
Ar2

3
(RfR + f + 2κT ) +

rR′fRR

fR

[
Ar2

3
(2RfR − f + κ2T )

− κ2Ar2(T t
t + T r

r) + 2(1− A)fR + 2rR′fRR

]}
(2.115)

B′ =
B

r(2fR + rR′fRR)

[
Ar2(f −RfR + 2κ2T r

r) + 2(A− 1)fR − 4rR′fRR

]
(2.116)
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B′′ =
2AB

fR

[
κ2T θ

θ −
1

6

(
RfR + f + 2κ2T

)
+

R′

rA
fRR

]

+
B

2r

[
2

(
A′

A
− B′

B

)
+

rB′

B

(
A′

A
+

B′

B

)]
(2.117)

Equations (2.116) and (2.117) are not independent and we can choose either one for our

calculations. Also, using the conservation of the stress-energy tensor for a perfect fluid

Tμν = (ρ+ p)uμuν + pgμν we get

p′ = −(ρ+ p)B′

2B
(2.118)

The system of equations (2.114) - (2.117) and (2.118) is the set of structure equations for

a static spherically symmetric relativistic star. In order for the set to be complete we also

need to provide an EoS. The same polytropic EoS described in section 2.1.6 is used. The

parameters chosen are shown in table 3.1.

The JPS field equations can be solved analytically in vacuum, far away from the star

where one obtains the asymptotic solution

B(r) = A−1(r) = 1− Λeff
r2

3
(2.119)

R = R1 = const , Λeff =
R1

4
(2.120)

This is a de Sitter solution, where the asymptotic value of the Ricci scalar plays the role

of the cosmological constant. This corresponds to the point where the first derivative of

the potential, as defined in (2.111), becomes zero. This means that the local minima of

the potential play the role of the asymptotic value of the Ricci scalar. The behavior of the

potential for a certain f(R) model strongly depends on the parameters of the model. As

an example, the number of minima of the Starobinsky model depends on the value of the

parameter λ for n = 1. As we can see in Fig. 2.1, there is a critical value λ = 8/
√
27, below

which the potential has only one minimum. We discuss the behavior of the potentials of
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various f(R) models, more extensively in chapter 3.

Λ�1.8
Λ�8� 27
Λ�1.2

�1 0 1 2 3 4

0.0
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0.4

0.6

0.8

1.0

R

V
�R
�

Figure 2.1: The potential of the Starobinsky model vs the Ricci scalar for different values of
the parameter λ

Finally, to be able to integrate the equation numerically, we need to provide a set of

initial conditions at the center of the star. The integration starts at some r = Δr, very close

to the origin. We expand the quantities A(r), p(r), R(r) in Taylor series around the origin

A(Δr) = A(0) + A1
Δr2

2
+O(r4) (2.121)

p(Δr) = p(0) + p1
Δr2

2
+O(r4) (2.122)

R(Δr) = R(0) +R1
Δr2

2
+O(r4) (2.123)

R′(Δr) = R1 Δr +O(r3) (2.124)

with the choice, A(0) = B(0) = 1. We plug in the expansion in the structure equations and

solve for A1, p1, R1. The full expressions for the initial conditions for all the models used

can be found in appendix A.

49



Chapter 3

Numerical method and results

3.1 Scalar tensor theories

3.1.1 Numerical integration

The numerical method used to solve the structure equations presented in chapter 2 is called

the shooting method. This is a widely used method for systems of differential equations with

the boundary conditions defined at two different points. For a more extensive discussion of

the shooting method please refer to [56]. Here we give the basic principles of the method

and we discuss further a few details specific to our code.

The first step is to write the set of the structure equation as a system of first order

ODEs in the form y′i(x) = fi(x, yi, y
′
i), where yi are the dependent variables and x is the

independent variable. The systems (2.12) - (2.18) and (2.43) - (2.49) are already in this

form with r being the independent variable, while M, ν, ϕ, ψ, p, M̄ , ω,� are the dependent

variables. In numerical work it is desirable to use dimensionless variables, and therefore all

variables will need to be re-scaled as we discuss in the next section. Furthermore, we need

to provide boundary conditions at the two boundary points. In our case all the boundary

conditions are defined at the first boundary r = 0, except for the scalar field, which is defined
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3.1 Scalar tensor theories

at infinity ϕ(∞) = ϕ0. Choosing the EoS and central density at the center of the star, ρc

defines a specific model.

Next, we integrate the equations, starting from the center of the star, where we have

provided the initial conditions (2.74) - (2.81). The value for the scalar field at the center of

the star is initally a guess. The real value will be obtained after the boundary conditions

at the second point are met. The numerical integration is done by using a Runge-Kutta

method. In each step of the code, the integration progresses by one step size Δr. The values

of the dependent variables are calculated using the values of the previous step. The process

is repeated until the second boundary is reached, where the stopping condition is met. In

this case this is the surface of the star where the pressure becomes zero, p = 0.

When the boundary has been reached, several quantities are calculated using equations

(2.60) - (2.73). One of the quantities is the scalar field ϕ at the surface. The required value

of the scalar field at infinity – the required boundary condition – can be linked to the value

at the surface using equation (2.68). The difference of the value of the field at the surface

obtained by the numerical integration and the value obtained from the asymptotic boundary

condition is calculated. If the difference is greater than some tolerance of the code, the

process starts over. The difference is used to obtain a better guess for the central value of

the scalar field. This process is repeated iteratively, until the difference between the two

surface values of the scalar field is below the tolerance, where we can declare that the final

boundary conditions has been met.

At this point all the relevant quantities of the star are calculated and recorded, and this

constitutes one star model that corresponds to some initial central density. This process also

yields the value of the first sensitivity in the Einstein frame αA. This is because there is a

straightforward relation to calculate αA from the quantities at the surface of the star (2.67).

Unfortunately, no such relation exists for the second sensitivity βA. In order to calculate the

second sensitivity, we calculate models around the initial star model that differ by Δρc and
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numerically calculate the derivative
(

∂αA

∂ϕ

)
0
, by using a five-point formula

f ′(x) =
−f(x+ 2h) + 8f(x+ h)− 8f(x− h) + f(x− 2h)

12h
+O(h4) (3.1)

In this case f(x+h) ≡ α(ρc +Δρc, ϕ0 +Δϕ0) and h ≡ Δϕ0 = ϕ02 −ϕ01. The same formula

is used for the moment of inertia sensitivity as well. This, though has to be done keeping

the baryonic mass constant. This means that the value of the baryonic mass M̄ of the first

model becomes an additional boundary condition at the surface of the star for the next

four models. Thus, for the next four models the process is repeated iteratively until both

conditions are met.

Finally, when all the quantities, including the sensitivities, have been calculated a new

central density is chosen. The process as described above is repeated, to obtain a second

neutron star model. This is repeated until a range of central densities that includes both

stable and unstable branches of the M vs R diagram is covered. The step size for the density

between two models might be different, but the total number of models is ∼ 200 for all EoSs.

In order to test the good behavior and the convergence of the code, several tests were

done. One example is monitoring the total mass of the star for decreasing values of the step

size Δr. The results are shown in figure 3.1.

3.1.2 Equations used for numerical analysis

In this section we analyze the equations used in the numerical code. Unit-less variables are

preferred for numerical analysis. Also, dealing with number that differ by several orders of

magnitude in the same calculation introduces more numerical error. Thus, starting with the
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Figure 3.1: Total mass M̂ dependance on step size Δr̂. We start with a large value for the
step size Δr̂ = 10−3 and we decrease it in discrete steps. The green box denotes the range
of values used in the code, 10−6 < Δr̂ < 2 × 10−5. The mass value clearly converges for
decreasing step size.
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static spacetime case, we use the following re-scaling for our variables

r = r0r̂ (3.2)

M = r0M̂ (3.3)

ρ = ρ0ρ̂ (3.4)

p = ρ0p̂ (3.5)

while the rest of the variables remain the same. We choose ρ0 = ρc in almost every model,

so ρ̂c = 1. Under this re-scaling the EoS becomes

ρ̂ =
p̂

Γ− 1
+ A p̂1/Γ (3.6)

where A = mbn0

(Kmbn0)1/Γρ
1−1/Γ
c

. We obtain the initial condition for p̂c = p̂(0) by solving numeri-

cally the algebraic equation

p̂c
Γ− 1

+ A p̂1/Γc = 1. (3.7)

When using more realistic equations of state, as described in section 2.1.6, the values of

density and pressure are just divided by the initial value of density, ρc. We re-write the

structure equations using the re-scaled variables. We notice that the form of all the terms of

the equations remains the same, while the original variables change to “hatted” ones, other

than that some terms are multiplied by a ρcr
2
0 coefficient. By setting ρcr

2
0 = 1 the form of

the equations remains exactly the same, but all the original variables have been replaced

with the re-scaled ones.

The initial conditions are also re-scaled in the same manner. The initial guess for the

value of the scaler field at the origin, ϕc, is set to be of the same order of magnitude as

the value at infinity, since tests of the code reveal that the value of the scalar field does not

change significantly. This reduces the number of steps required to reach the desired value at
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infinity. The structure equations are then integrated outwards, until the value of the pressure

is lower than some threshold value, usually set to be p̂(R) < 10−9. The re-scaled matching

equations with the exterior metric are used to calculate the physical quantities of the star.

The value for the scalar field at infinity is set either to zero or to some value which is lower

than the allowed value from Solar System experiments. Specifically for the “spontaneous

scalarization” case we set ϕ0 < 4.3× 10−3 to follow Damour and Esposito-Farese [18].

When the integration is over and the value of the scalar field at infinity has been reached

within tolerance, the re-scaled variables are changed back to the original variables. In addi-

tion we change to SI units, from geometric units where G = c = 1.

3.1.3 Results

In this section we present the numerical results obtained with our code. We start with the

FJBD case for a static metric. A polytropic EoS is used. The value of the parameter coupling

constant is chosen to be 10−2 < α̃ < 10−4. The models shown here have α = 10−3 so they

are very close to those obtained in General Relativity. The parameters of the equation of

state that we use are shown in Table 3.1.

Γ K

EOS I 2.00 0.1

EOS II 2.34 0.0195

EOS III 2.46 0.00936

Table 3.1: EOS parameters

These are the same parameters used by Damour and Esposito-Farese [18]. More specifically,

EOS II is fitted to the equation of state II of [21] and EOS III is fitted to the equation of

state A of [4].

About 200 models were integrated as we increased the value of the central density. The

lowest value for the central density was around ρc = 1015kg/m3 while the highest value was
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chosen to be about ρc = 1021kg/m3. The step size for the central density varies, depending on

the value of the central density itself, as well as the behavior of the models. For example, we

choose a smaller step size around the maximum mass of the star. The density and pressure

profile of certain models obtained using EoS II is shown in Figures 3.2 - 3.5. As we can see,

the trace of the energy momentum tensor T = 3p − ρ becomes negative when the central

density is higher than a certain value. This value is about ρc = 2.27× 1018kg/m3 for EoS II.

The derivative of the scalar field at the center of the star also changes sign when the trace

T changes sign (see (2.78)).
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Figure 3.2: EOS II: Density profile for ρc = 4× 1017 kg/m3
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Figure 3.3: EOS II: Density profile for ρc = 1× 1018 kg/m3
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Figure 3.4: EOS II: Density profile for ρc = 2.27× 1018 kg/m3
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Figure 3.5: EOS II: Density profile for ρc = 1× 1019 kg/m3

All these models can be used to create a M vs R diagram for a specific choice for the EoS.

These diagrams are shown in figures 3.6 - 3.9. As in General Relativity, all the models have

a maximum total mass and the along that sequence with larger central density are expected

to be unstable.
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Figure 3.8: Mass of the star M/M� vs star radius R in km
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Figure 3.9: Mass of the star M/M� vs central density ρc in kg/m3
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Now we are moving on to ”spontaneous scalarization” models [18], [19] were the coupling

function takes the form

A(ϕ) = e
1
2
β̃ϕ2

(3.8)

Here the value of the derivative of the coupling constant is negative and is given different

values while the value the scalar field at infinity is taken to be ϕ0 = 4.3× 10−3. This makes

the PPN parameters |γ − 1| � 1.3× 10−3 and |β − 1| � 4× 10−3 for β̃ = −6. These values

are chosen to follow Damour and Esposito-Farese [18], even though the bounds on these

parameters are stricter today (see (1.23), (1.26)). We show here the “sensitivity” in the

Einstein frame αA as well as in the Jordan frame sA. We also show the M vs R diagram

where the effects of ”spontaneous scalarization” become obvious. These results completely

agree with Damour and Esposito-Farese.
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Figure 3.10: Sensitivity αA vs total mass mA/M� for different values of the parameter β
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Figure 3.11: Sensitivity sA vs total mass mA/M� for different values of the parameter β.
In the high density limit the sensitivities become positive, and approach the 0.5 limit which
corresponds to the sensitivity of a black hole.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.5  1  1.5  2  2.5

mA

-αA

φ0 = 4.3x10-3

φ0 = 10-4

Figure 3.12: Coupling constant αA vs total mass mA/M� with A(ϕ) = exp(−3ϕ2)

62



3.1 Scalar tensor theories

 0

 0.5

 1

 1.5

 2

 2.5

 8  9  10  11  12  13  14  15

R (km)

mA

Brans-Dicke
exp -3φ

2

exp -2.5φ
2

exp -2φ
2

Figure 3.13: EOS II: Total mass mA/M� vs star radius R in km for different values of the
parameter β

Finally, we present here models for the slow rotation case (Fig. 3.14 - 3.22). This is the

most realistic case. In addition to rotation, realistic equations of state are used, as described

in section 2.1.6. The Einstein frame first “sensitivity” αA, second “sensitivity” βA, as well as

the moment of inertia sensitivity are shown here, for various values of the coupling constant

α0. Also the moment of inertia itself is shown in figure 3.20 .
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Figure 3.14: EOS AP4: First coupling constant αA vs the total mass of the star mA in solar
masses for α0 = 10−3
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Figure 3.15: EOS ENG: First coupling constant αA vs the total mass of the star mA in solar
masses for α0 = 10−3
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Figure 3.16: EOS MPA1: First coupling constant αA vs the total mass of the star mA in
solar masses for α0 = 10−3
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Figure 3.17: EOS MS1: First coupling constant αA vs the total mass of the star mA in solar
masses for α0 = 10−3
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Figure 3.18: EOS MPA1: Second coupling constant βA vs the total mass of the star mA in
solar masses for α0 = 10−3
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Figure 3.20: EOS AP4: Moment of inertia vs the total mass of the star mA in solar masses
for α0 = 10−3

3.1.4 Discussion

We have calculated models of neutron star in Scalar Tensor theories of gravity. A wide range

of parameters of these models was studied. The main goal of our study was to calculate

the sensitivities of realistic neutron star models. Initially we calculated static models in the

FJBD theory. A low value for the parameter α̃0 ∼ 10−4, or a high value for the parameter

ω ∼ 500, 000 in the Jordan frame respectively, was used for these models. These are used as

test models to confirm the we can reproduce results of prior works. The M vs R diagrams

show no significant changes from General Relativity for very high values of ω. Then, we

calculated static models for the “spontaneous scalarization” case. These models have already

been studied by Damour and Esposito-Farese [18] and we were able to completely reproduce

their results. In addition, we calculated the Jordan frame sensitivities for these models, which

Damour and Esposito-Farese had not done. We notice that the Jordan frame sensitivities
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Figure 3.21: EOS MS1: Sensitivities and moment of inertia vs the total mass of the star mA

in solar masses for α0 = 10−5
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Figure 3.22: EOS MS1: Sensitivities and moment of inertia vs the total mass of the star mA

in solar masses for α0 = 10−2
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become negative in the “spontaneous scalarization” case, which never happens in FJBD

theory. Finally, slow ration models with a realistic equation of state were produced. Here, a

wide range for the values of the coupling constant α̃0 was used and both the first, second and

moment of inertia sensitivities are calculated. The form of the sensitivities as a function of

the mass of the star in the Einstein frame remains the same, while the magnitude depends on

the value of α̃0. The sensitivity αA approaches the value of α̃0 in the low central density limit.

On the other hand, the value of the Jordan frame sensitivities asymptotically approaches

0 in the low central density limit and it asymptotically approaches 0.5 in the high density

limit, for all models. The value 0.5 corresponds to the sensitivity of a black hole.

This study is part of a greater project with Michael Horbatsch, Emanuele Berti and Justin

Alsing. The final goal of the project is to calculate the energy fluxes of binary systems in

Scalar Tensor theories. In order to do that, the calculation of sensitivities for the allowed

range of both parameter α̃0 and β̃0 is required. For the most stringiest bounds on these

parameters see [28]. Finally, this data can be used by future studies of compact binaries

in Scalar Tensor theories, since the sensitivities are present in the equations of motion of

compact binaries.

3.2 f (R) theories

The same numerical method is used for f(R) theories of gravity as Scalar Tensor theories.

The initial conditions are defined at the origin, except for the Ricci scalar which is defined

infinitely far away from the star, or at the cosmological horizon for de Sitter models. The

cosmological horizon corresponds to the the point where the grr component of the de Sitter

metric (2.119) becomes infinite. The boundary value of the Ricci scalar R1 is defined as the

minimum of the JPS potential VJPS(R) (2.111). The system (2.114) - (2.117) is already in the

form y′i(x) = fi(x, yi, y
′
i) where the dependent variables are A,B,R, p and the independent
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variable is r. These equations are re-scaled as we will see in the following section. The

integration proceeds until the pressure becomes vanishingly small, at which point we define

the radius of the star. The integration continues, with the pressure set to zero until we

reach a radius very close to the cosmological horizon r = rH . Notice that since we know the

asymptotic value for the Ricci scalar we can know the value for the cosmological horizon,

rH =

√
3

Λ
=

√
12

R1

(3.9)

Then, we check the difference of the value for R1 found with the code against the desired

asymptotic value of the Ricci scalar. The difference is used to change the initial guess for the

Ricci scalar and the process is repeated. After several iterations the desired value is reached

and the computation stops after the physical quantities of the star have been calculated. As

we will see, picking the initial condition for R can be problematic, since the code crashes if

the value differs significantly from the real solution. Before that though, we need to discuss

the re-scaled equations that are actually used in the code.

3.2.1 Equations used for numerical analysis

Following the same procedure as in section 3.1.2 we use re-scaled dimensionless variables.

We use the following re-scaling

r = r0r̂ (3.10)

R = R0R̃ (3.11)

ρ = ρ0ρ̂ (3.12)

p = ρ0p̂ (3.13)
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where we set ρ0 = ρc, corresponding to the central value. This re-scaling leaves the structure

equations unchanged except for some coefficients of R0r
2
0 and ρ0r

2
0. We set

R0r
2
0 = 1 (3.14)

ρ0r
2
0 = C (3.15)

so the equations are unchanged except for a factor of C. The parameter C controls the ratio

of the matter density inside the neutron star and the cosmological matter density ρΛ. We

define

υ =
ρΛ
ρc

(3.16)

Assuming a typical value for the central density of a neutron star is ρc = 1017 kg/m3 and the

density that corresponds to the cosmological constant is ρΛ ∼ 10−26 kg/m3 makes υ ∼ 10−43.

Such a large difference in the two scales is extremely hard to handle numerically, so larger

values must be used. In our code, the lowest value that is used is υ = 5 × 10−11. Since

ρΛ = Λ
8πG

from (2.120) it follows that

υ =
R̃1

32πG
C−1 (3.17)

where R̃1 = R̃(r̂H) is the value of the Ricci scalar that we will seek as a boundary condition

at the cosmological horizon.

3.2.2 Results

We firstly present results for constant density stars, like the ones used by JPS. Various

choices of the model of the f(R) theory and the parameters of the chosen model were used.

Unlike JPS, we are able to produce models with p > ρ/3. We show here the re-scaled Ricci

scalar R/Rc and the radial component of the metric grr for different choices of the central
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pressure. We notice that for models where a non-zero value for the Ricci scalar has been

selected as the boundary condition, there exists a cosmological horizon, as expected. This

is obvious in our figures since the grr component of the metric becomes infinite when the

cosmological horizon is reached (Fig. 3.23, 3.25). We also notice, that the value of the Ricci

scalar at the origin increases with central pressure, until some value very close to pc = ρc/3,

and then it decreases again. The Ricci scalar becomes negative for Starobinsky models with

no cosmological horizon, R(∞) = 0, as we can see in figure 3.29. The values of the models

presented here are chosen so we can show that our models are in complete agreement with

JPS.
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Figure 3.23: Radial component of the metric grr for the Miranda model with α = 1.2,
ρ0 = 5× 107R1/G and R1 ∼ 1.405R0. The first sharp peak corresponds to the radius of the
star, while the second peak corresponds to the cosmological horizon.

Next we check the dependance of the the models on the value of the cosmological density.

As we explained this value is inversely proportional to the parameter C used in our code.

By changing the constant C we obtain the mass and the radius of the star for different
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Figure 3.24: Scalar curvature R for the Miranda model with α = 1.2, ρ0 = 5× 107R1/G and
R1 ∼ 1.405R0

values of υ, keeping the central density constant. Firstly, we use the Starobinsky model with

λ = 1.56. The potential has two minima for this value, R̃11 � 1.984 and R̃12 = 0. The first

corresponds to a de Sitter solution with a cosmological constant Λ = R11

4
, while the second

one corresponds to an asymptotically flat solution.

The two cases give considerably different values for the mass and the radius of the star for

any value of υ in the range 10−4 > υ > 5×10−11. The mass for the first case is M � 1.739M�

and the radius is r � 9.578 km, while for the second case the mass is M � 1.909M� and the

radius is r � 11.09 km for a central density ρc = 2.98×1018kg/m3. The scalar curvature as a

function of the radius is also completely different for the two cases. We plot the percentage

difference for the first case, R̃1 � 1.984 (Fig. 3.32)

α =
|x− xreal|

xreal

× 100% (3.18)
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Figure 3.25: Radial component of the metric grr for the Starobinsky model with λ = 1.56,
ρ0 = 106R1/(16πG) and R1 ∼ 1.984R0. The first sharp peak corresponds to the radius of
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Figure 3.26: Scalar curvature R for the Starobinsky model with λ = 1.56, ρ0 = 106R1/(16πG)
and R1 ∼ 1.984R0
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Figure 3.29: Scalar curvature R for the Starobinsky model with λ = 1.2, ρ0 = 106R1/(16πG)
and R1 ∼ 1.984R0
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Figure 3.30: The scalar curvature R̃ vs the radius of the star for the Starobinsky model with
λ = 1.56, R̃1 � 1.984 and ρ0 = 2.98× 1018kg/m3
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Figure 3.31: The scalar curvature R̃ vs the radius of the star for the Starobinsky model with
λ = 1.56, R̃1 = 0 and ρ0 = 2.98× 1018kg/m3

for values of mass and radius compared to the value xreal obtained with the smallest υ,

which should be the most realistic one. For comparison, we plot the percentage difference

of the mass and the radius for the asymptotically flat R1 = 0 case (Fig. 3.34). In this

case Λ = 0 so υ = 0. The constant C is changed in the same manner as the previous

case. In this case the constant C corresponds only to a re-scaling of the equations according

to (3.15). The difference in the values is due to numerical errors. We can see that the

percentage differences for the two cases (de Sitter and asymptotically flat case), especially

for the radius, are comparable. Thus, we can conclude that the mass and radius remain

more or less constant for different values of υ but only for the same value of R̃ at infinity. If

we choose a different minimum for the potential, the mass and the radius change significantly.

Finally, we present results obtained by using a polytropic EoS. The parameters of the

EoS are the same as in table 3.1. Using the same steps as in section 3.1.3 we are able to

create M vs R diagrams for different values of the parameters of the f(R) models. Unlike
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Figure 3.32: The percentage difference of the total mass of the star vs υ for the Starobinsky
model with λ = 1.56 and R̃1 � 1.984
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Figure 3.33: The percentage difference of the radius of the star vs υ for the Starobinsky
model with λ = 1.56 and R̃1 � 1.984
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Figure 3.34: The percentage difference of the total mass of the star vs υ for the Starobinsky
model with λ = 1.56 and R̃1 = 0
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Figure 3.35: The percentage difference of the radius of the star vs υ for the Starobinsky
model with λ = 1.56 and R̃1 = 0
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the Scalar Tensor theory case, where about 200 models were used for each diagram, this

number is significantly lower here, due to the difficulty of integrating the models, especially

in the case of a cosmological horizon. The code is very sensitive to the initial guess for the

initial condition of the Ricci scalar. If the initial guess is not close enough to the real value,

which is obtained after several iterations using the shooting method, the code will quickly

crash. This means that the process cannot be easily automated, since the initial guess needs

to be carefully chosen for each individual model.
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Figure 3.36: The total mass of the star vs the central density for the Starobinsky model with
λ = 1.2 and R1 = 0.

3.2.3 Discussion

We have shown that numerical models of neutron stars can be constructed by using the JPS

formalism and a polytropic EoS. Two main points can be made about our models compared

with the already existing models by UH, KM, BL and JPS. First, we were able to construct

82



3.2 f(R) theories

 0

 0.5

 1

 1.5

 2

 2.5

 3

 5  10  15  20  25  30

M
to

t (
so

la
r 

m
as

se
s)

R (km)

Γ = 2.0
Γ = 2.34

Figure 3.37: The total mass of the star vs the radius of the star for the Starobinsky model
with λ = 1.2 and R1 = 0.

models with high interior pressure, namely pc > ρc/3, both for the constant density and

the polytropic EoS case. BL had claimed that instabilities would make it impossible for

models with pc > ρc/3 to be constructed, while UH claimed they could construct them but

it was numerically challenging. JPS also did not show any models where pc > ρc/3 but we

see no reason that they would not be able to construct them. In General Relativity as in

Scalar Tensor theories of gravity, star models with arbitrarily high pressure exist, so we see

no a priori reason why they wouldn’t exist in f(R) theory. With our results we show that

constructing models with pc > ρc/3 is no more challenging than models with pc > ρc/3 if

a better theoretical approach is used, namely the JPS method. Thus, we have shown that

earlier objections to f(R) theories on the basis of the inability to construct viable neutron

star models are unfounded.

Another point is that our numerical models are more realistic of those of BL and JPS. JPS

were trying to illustrate their new approach, so they only constructed unrealistic constant
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density models. Even though BL used a polytropic EoS, as we discussed, they found it

challenging to construct models with a realistic cosmological density. The values for υ they

used were in the range of 10−4 < υ < 10−2. The realistic value for υ is of order ∼ 10−43.

Constructing models with such a huge difference between the two scales, the density inside

the star and the cosmological density, is numerically challenging even in General Relativity.

However, we should strive to construct models with a value as realistic as possible. This

is because, in a de Sitter space the cosmological horizon, determined by the value of Λ,

needs to be far away enough for us to be able to extract realistic quantities such as the

mass of the star. We have demonstrated that we can construct models with a value of υ as

small as 5× 10−11, where the cosmological horizon is more than 1000 times larger than the

radius of the star. Even though this is still very unrealistic, it is a significant improvement

on previous results. In addition we also demonstrated that, just because the value of the

cosmological density is so small, one can not naively set this to zero for practical reasons,

since this corresponds to a different scalar curvature and yields very different results.

These results help strengthen the argument of the existence of neutron stars in f(R)

theories. We have demonstrated that using the JPS method we can produce polytropic EoS

models of neutron stars for all the viable f(R) models. Since there exists a method free of

the difficulties previous researchers had encountered, we can employ this method to produce

more realistic neutron star models, like the ones that already exist for General Relativity.

The next immediate step would be to use more realistic EoSs like the ones used in the Scalar

Tensor theory case we discussed earlier. Furthermore, another step is to construct models

using a slow rotation metric, again like the one used in the Scalar Tensor case. Finally, when

results for these cases have been obtained and the argument of the existence of neutron stars

in f(R) theories has been settled, numerical models of neutron star mergers can be studied

along with gravitational radiation in f(R) theories. Such studies are necessary to be able to

determine the viability of f(R) theories when results of the new generation of gravitational
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3.2 f(R) theories

wave detectors are available.
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Appendix A

f (R) Potentials

We provide here useful expressions for the various models used in our f(R) theory models.

The function f(x) is shown, where x = R/Rc. This is related to f(R) as

f(R) = Rcf(x) (A.1)

dn

dRn
f(R) = R1−n

c

dn

dxn
f(x) (A.2)

Then, the potential V (x) is shown, as defined by JPS, along with its derivative. Finally, the

coefficients of Taylor expansion of the quantities A, p, R are shown, as defined in equations

(2.121) - (2.123).

A.1 Miranda et al

The function is given by

f(x) = x− α ln(1 + x) (A.3)

The potential is given by

V (x) =
1

6
(x(6α + x)− 2α(2x+ 3) log(x+ 1)) (A.4)
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A.2 Starobinsky

dV

dR
=

1

3

(
αx

x+ 1
− 2α log(x+ 1) + x

)
(A.5)
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Figure A.1: The potential of the Miranda et al model vs the Ricci scalar for different values
of the parameter λ

The Taylor expansion coefficients are

A1 =
48πp0(x+ 1) +Rcx(−α + 2x+ 2)− αRc(x+ 1) ln(x+ 1) + 32πρ0(x+ 1)

12(−α + x+ 1)
(A.6)

p1 =
(p0 + ρ0)[−16π(x+ 1)(7p0 + 6ρ0) +Rcx(−3α + 2x+ 2) + αRc(x+ 1) ln(x+ 1)]

40(−α + x+ 1)

(A.7)

R1 =
Rc(x+ 1)[24πp0(x+ 1) +Rcx(α + x+ 1)− 2αRc(x+ 1) log(x+ 1)− 8πρ0(x+ 1)]

15α

(A.8)

A.2 Starobinsky

The function is given by

f(x) = x− λ[1− (1 + x2)−1] (A.9)
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A.2 Starobinsky

The potential is given by

V (x) =
6λ (x2 + 1) tan−1(x) + x (−6λ+ x3 − 4λx2 + x)

6 (x2 + 1)
(A.10)

dV

dR
=

1

3
x

[
1− 2λx3

(x2 + 1)2

]
(A.11)
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Figure A.2: The potential of the Starobinsky model vs the Ricci scalar for different values
of the parameter λ

The Taylor expansion coefficients are

A1 =
48πp0 (x

2 + 1)
2
+Rcx

[
2 (x2 + 1)

2 − λx (x2 + 3)
]
+ 32πρ0 (x

2 + 1)
2

12
[
(x2 + 1)2 − 2λx

] (A.12)

p1 = −
(p0 + ρ0)

{
112πp0 (x

2 + 1)
2 −Rcx

[
λx (x2 − 5) + 2 (x2 + 1)

2
]
+ 96πρ0 (x

2 + 1)
2
}

40
[
(x2 + 1)2 − 2λx

]
(A.13)

R1 =
Rc (x

2 + 1)
{
24πp0 (x

2 + 1)
2
+Rcx

[
(x2 + 1)

2 − 2λx3
]
− 8πρ0 (x

2 + 1)
2
}

30λ (3x2 − 1)
(A.14)
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A.3 Tsujikawa

A.3 Tsujikawa

The function is given by

f(x) = x− μ tanh x (A.15)

The potential is given by

V (x) =
1

6

(
x2 + 2μx tanh x− 6μ ln(cosh x)

)
(A.16)

dV

dR
=

1

3

(−2μ tanh x+ μx sech2x+ x
)

(A.17)
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Figure A.3: The potential of the Tsujikawa model vs the Ricci scalar for different values of
the parameter λ

The Taylor expansion coefficients are

A1 =
μRc

(
tanh x+ x sech2x

)− 2(24πp0 + 16πρ0 +Rcx)

12
(
μ sech2x− 1

) (A.18)

p1 =
(p0 + ρ0)

(
112πp0 + 96πρ0 − μRc tanh x+ 3μRcxsech

2x− 2Rcx
)

40
(
μ sech2x− 1

) (A.19)
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R1 =
Rc coth x[cosh(2x)(24πp0 − 8πρ0 +Rcx) + 24πp0 − 8πρ0 + 2μRcx− 2μRc sinh(2x) +Rcx]

60μ

(A.20)
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