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ABSTRACT OF THE DISSERTATION

Cancer is both a genetic and epigenetic disease. Changes in DNA methylation,
histone modifications, and microRNA processing promote tumorigenesis, just as
mutations in coding sequences of specific genes contribute to cancer development. In my
thesis work | sought to determine the role that noncoding RNAs play in endometrial
tumorigenesis. Aberrant methylation of the promoter region of the MLH1 DNA mismatch
repair gene in endometrial cancer is associated with loss of MLH1 expression and a
"mutator phenotype™ in endometrial and other cancers. The molecular and cellular
processes leading to aberrant methylation of the MLH1 promoter region are largely
unknown. | tested the hypothesis that the EPM2AIP1 antisense transcript at the MLH1
locus could be involved in MLH1 transcriptional silencing. | characterized the
MLH1/EPM2AIP1 bidirectional promoter region in endometrial cancer and normal cell
lines and found an abundance of forward and reverse transcripts initiating from a large
region of nucleosome-free DNA in expressing cells. The DICERL1 protein, which is
necessary for processing small RNAs involved in post-transcriptional silencing, is
downregulated in many cancers, including endometrial cancer. | used genomic methods
(RNA-Seq and MeDIP/MRE) to characterize the transcriptome and methylome of
endometrial cancer cells depleted of DICERL. Using a combination of computational and
wet lab methods | showed that reduced DICERL triggers an interferon response in cancer
cells because of accumulation of pre-microRNAs that activate immune sensors of viral
dsRNA. The methylome of DICER1 knockdown cells revealed subtle changes in

methylation, including decreased methylation at the Alu family of repetitive elements.



Small RNAs processed by DICER1 may thus be involved in silencing repetitive regions.
Non-coding RNA has effects on endometrial cancer cells that may contribute to
tumorigenesis, such as influencing the active state of the MLH1 gene and modulating the

immune response.
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“I am one of those that think like Nobel; that humanity will draw more good than evil
from new discoveries.”

-- Marie Curie

“In our adventures, we have only seen our monster more clearly and described his scales
and fangs in new ways - ways that reveal a cancer cell to be, like Grendel, a distorted
version of our normal selves. May this new vision ... inspire our band of biological
warriors to inflict much greater wounds tomorrow.”

-- Harold VVarmus



CHAPTER ONE: Introduction



Epigenetic mechanisms

Epigenetics, the non-Mendelian regulation of gene expression, is crucial to
normal development and often altered in disease states. Epigenetic mechanisms involve
DNA packaging and other forms of transcriptional regulation along with
posttranscriptional regulation. One such example of epigenetic regulation is the agouti
locus in mice. Transcription of the A" (Agouti viable yellow) allele during development
produces a protein that changes mouse coat color from black to yellow. However, mouse
littermates with the same A" allele can have different coat colors. The IAP
retrotransposon is responsible for this variation: by inserting itself proximal of the A"
promoter, it induces transcription of this gene and changes the coat color of the mice.
This is due to a loss of DNA methylation, an epigenetic silencing mark (Morgan et al.
1999), at the A" promoter. Thus two mice with the same allele of A" have different
phenotypes due to differential expression of the allele. This epigenetic control is
determined by the packaging of DNA in chromatin.

The nucleosome is the key building block of chromatin. It consists of about 147
base pairs of DNA wrapped around an octamer of histone proteins, two copies each of
histones H2A, H2B, H3, and H4. The basic histones associate with the acidic DNA to
create a stable nucleosome for packaging DNA (Allis et al. 2007). Nucleosomes are
dynamic in that they rapidly move on and off of the DNA during DNA replication and
transcription (Schones et al. 2008). Chemical modifications to the histones of the
nucleosome make DNA more or less accessible to the transcription machinery.
Chromatin modifications include posttranslational additions of specific chemical groups

(including acetylation, methylation, phosphorylation, sumoylation, and ubiquitination) to



the four histones that make up the nucleosome core. Modifications to the N-terminal tails
of these histones either open up the chromatin, making it more accessible to transcription
factors and transcription machinery (euchromatin), or create a more condensed chromatin
state, repressing transcription (heterochromatin) (Allis et al. 2007).

Cytosine methylation is a critical epigenetic modification that results in
transcriptional silencing. The DNA methyltransferases DNMT3A and DNMT3B
establish methylation by adding methyl groups to the cytosine residues of DNA at CpG
dinucleotides. DNA methylation is a heritable modification because as methylated DNA
replicates, the maintenance DNMT1 methyltransferase adds methyl groups at CpG
hemimethylated sites in the new strand of DNA as it is synthesized. This methylation
typically recruits specific Methyl-CpG-binding proteins that combine to create a
chromatin structure that represses transcription. Genes with such a closed chromatin
structure at their promoter regions are less likely to be transcribed, as access to DNA by
transcription factors and transcription machinery is restricted (Allis et al. 2007). Many
genes have stably positioned nucleosomes and/or DNA methylation at their gene bodies.
The function of gene body methylation is presently unclear, but it is often associated with
highly expressed genes (Ball et al. 2009). DNA methylation is necessary to silence one of
two X chromosomes in mammalian females. X inactivation is initiated by the long
noncoding RNA (ncRNA) Xist, leading to packaging of almost the entire chromosome
with repressive histone marks and DNA methylation (Lyon 1961; Penny et al. 1996).
Imprinting is another function in mammals that requires DNA methylation. This is the
selective expression of either a maternal or paternal allele. For example, the Igf2r, Kengl,

Pws, and Gnas genes have methylation on the maternal allele, while 1gf2 and DIk2 are



methylated on the paternal allele. In each of these cases a NCRNA is expressed from the
allele that is not methylated (Regha, Latos and Spahn 2006). Imprinting is crucial to
normal development; the debilitating Prader-Willi and Angelman Syndromes are caused,
respectively, by deletion of a section of the paternal chromosome 15 at a position at
which the maternal copy is silenced, and by deletion of a section of the maternal
chromosome 15 at a position at which the paternal copy is silenced (Jiang, Bressler and
Beaudet 2004). Thus DNA methylation is important during mammalian development,
and inappropriate methylation can lead to disease. My work focuses on the changes in
DNA methylation occurring in cancer. My rotation project in the Goodfellow Laboratory
involved characterization of methylation at the promoter of the DUSP6 gene. DUSP6 is a
phosphatase that negatively regulates the MAP kinase pathway. While methylation and
silencing of this gene is common in pancreatic cancer, another cancer type in which ERK
signaling is frequently activated, | found that it is quite uncommon in endometrial cancer
(Appendix A).

While some chromatin modifications (i.e. H3K27me3, H3K9me3) and DNA
cytosine methylation repress genes transcriptionally, microRNA (miRNA) regulation is
an example of post-transcriptional epigenetic regulation. Most miRNAs, small ncRNAs,
bind to the 3' untranslated region (UTR) of their target transcript and repress target genes
either by inhibiting translation or stimulating degradation of the mRNA (Ambros 2001,
Lagos-Quintana et al. 2001; Lau et al. 2001). MiRNA biogenesis begins with RNA
polymerase 11 or 111 transcription of miRNA genes into long primary transcripts. The
mature miRNA is derived from a stem-loop secondary structure within the primary

transcript. The RNase 111 enzyme DROSHA cleaves the RNA to cut out the precursor



stem loop (60-100 nucleotides), which is then brought out of the nucleus by the RAN
GTPase XPO-5. In the cytoplasm, the PAZ and RNase 111 domains of DICER1 cut out
the mature miRNA, which is about 22 nucleotides long. The newly cleaved dsRNA is
then processed by the RNAI induced silencing complex (RISC) (Hammond 2005). In
humans, the Argonaute proteins AGO1 or AGO2 associate with the miRNA and mRNA
to inhibit translation or cleave the mRNA. Recent work shows that miRNAs
preferentially inhibit the initiation of translation in flies and zebrafish (Bazzini, Lee and
Giraldez 2012; Djuranovic, Nahvi and Green 2012) (left panel of Figure 7 in Chapter 3).
The miRNA in the RISC enables the complex to associate with the 3° UTR of the target
gene through imperfect complementarity between miRNA and mRNA (Sontheimer
2005). Because miRNAs are not perfectly complementary to their targets, they may
regulate more than one target gene, or several miRNAs may cooperate to regulate a
single target. miRNAs are crucial for developmental and tissue-specific regulation at the
translational level, and deregulation of specific miRNAs has been implicated in several

diseases, including cancer.

Cancer epigenetics

Cancer is a genetic and epigenetic disease. A cancer (a malignant neoplasm) is
defined simply as an overproliferation of abnormal cells, which eventually spread
throughout the body, infiltrating other organs. Humans have had cancer for over five
thousand years; a breast tumor is mentioned in the Edwin Smith Papyrus from Ancient
Egypt, from around 3000 B.C. (Hajdu 2010). The Greek physician Hippocrates gave

cancer its name, from the Greek word carcinos (crab), as he thought a malignant tumor



appeared crablike, with a solid mass in the middle and veins feeding into it. Scientists and
physicians have sought to understand and treat cancers for as long as they have existed,
but an acceleration in the progress of cancer research occurred in the past forty years with
the focus on molecular biology. President Nixon declared a “War on Cancer” in 1971;
subsequently the United States has spent $200 billion on cancer research, resulting in
better understanding of the disease and novel therapies. Molecular biology and genomic
research have enabled researchers to implicate specific genes in the development of
cancer.

A cancer cell must be able to evade apoptosis, attain self-sufficiency in growth
signals as well as insensitivity to anti-growth signals, replicate infinitely, sustain
angiogenesis, and invade tissue and metastasize (Hanahan and Weinberg 2011; Hanahan
and Weinberg 2000). These properties may be attained by mutations in specific genes.
Cells with mutations in key regulatory genes (i.e. genes in developmental pathways or
genes that regulate the cell cycle) may replicate continually. Oncogenes, genes that
promote cancer, were first characterized in tumor-promoting viruses. BRAF is an
example of an oncogene; a common mutation in this gene makes it constitutively active,
activating the RAF/RAS/ERK pathway and driving cellular proliferation. Tumor
suppressor genes such as P53, on the other hand, are necessary for control of cell
division. When these genes are disabled by a mutation, cellular replication proceeds
without bound. Another class of tumor suppressor gene is genes involved in maintaining
genome stability, such as the mismatch repair protein MLH1. Mutations in these genes

cause an increased rate of mutation throughout the genome, allowing for increased



activation of oncogenes and disabling of tumor suppressors (Vogelstein and Kinzler
2004).

Epigenetic events also play a large role in tumorigenesis. In a cancer cell, the
normal and highly controlled epigenetic regulation of gene expression is disrupted and
the packaging of genes in chromatin is changed. Cancer cells exhibit global
hypomethylation (loss of methylation at normally silenced regions such as repetitive
elements) and a gain of methylation (hypermethylation) at specific CpG islands,
including those of tumor suppressor genes. CpG islands are long stretches of CpG
dinucleotides that remain unmethylated to protect the promoter region of a gene from
genetic mutations or epigenetic silencing. Methylation predisposes cytosine to
deamination to thymine, so keeping CpGs unmethylated reduces the amount of mutations
(Bird 1986). Aberrant methylation of CpG islands in promoter regions of genes silences
gene expression (Jones et al. 1999). Hypermethylated, stably silenced genes have been
shown to colocalize in the nucleus (Berman et al. 2012; Easwaran and Baylin 2010).
Cancer cells undergo a global decrease in DNA methylation, turning on genes that are
silenced in normal cells, de-repressing transposable elements, and contributing to
genomic instability. Histone modifications and microRNA profiles are fundamentally

different in cancer cells, leading to altered gene expression (Lujambio and Esteller 2009).

Epigenetic mechanisms in endometrial cancer
A number of the key molecular lesions that contribute to the progression of
endometrial (uterine) cancer have been identified, making it a good tumor model for

studying cancer genetics and epigenetics. Endometrial cancer is the most common



gynecological malignancy in the United States, with more than 47,000 new cases
predicted to occur in 2012 (Siegel, Naishadham and Jemal 2012). Type 1 (endometrioid)
cancer is associated with exposure to high levels of estrogen, promoting hyperplasia of
the uterine lining. Activation of MAPK and AKT signaling and loss of DNA mismatch
repair are frequent events in endometrial cancer (Dedes et al. 2010). Mutations in the
KRAS and FGFR2 genes, which feed into the MAPK-ERK developmental pathway, have
been documented in endometrioid endometrial cancers. In addition, 20% of endometrioid
endometrial cancers are characterized by a defect in DNA mismatch repair. Loss of
DNA MMR leads to a microsatellite instability (MSI) phenotype. This phenotype is a
measurement of the increased mutations (often insertions or deletions) observed in
repetitive microsatellite DNA (Hecht and Mutter 2006). This "mutator phenotype" and
resulting microsatellite instability are caused by epigenetic silencing of the MLH1 gene,
one of the best understood examples of epigenetic silencing of a tumor suppressor gene in
cancer.

The MLH1 gene encodes a highly conserved protein necessary for DNA
mismatch repair. Mutations in MLH1 have been shown to cause Lynch Syndrome, a
cancer predisposition syndrome that confers a 50% lifetime risk for developing
endometrial cancer. Unsurprisingly, sporadic endometrial carcinomas also have defects in
MLH1. Endometrial carcinomas deficient in DNA mismatch repair often exhibit
hypermethylation of the MLH1 promoter CpG island and transcriptional silencing of
MLH1. Methylation of MLH1 can be inherited (Hitchins et al. 2007) and there is evidence
that inherited cis variation contributes to risk for epigenetic silencing of MLH1 in both

endometrial and colon cancer. MLH1 promoter methylation is significantly associated



with a single nucleotide polymorphism (G/A; rs1800734) in the MLH1 regulatory region,
-93 from the transcription start site (Allan et al. 2008; Chen et al. 2007). MLH1 is thus a
bona fide example of a cancer gene with a genetic association with epigenetic regulation.
DNA methylation silences MLH1 transcription and has an effect functionally equivalent
to a mutation or deletion in the MLH1 gene. As MLHL1 is an essential component of DNA
mismatch repair, cancers that do not express MLH1 have a mutator phenotype. The
mutation rate in these tumors is drastically increased and tumors lacking normal DNA
mismatch repair have an MSI tumor phenotype. Cells that lack the DNA mismatch repair
system also are deficient in an S phase checkpoint that promotes apoptosis, allowing cells
with methylated MLH1 to evade apoptosis and promote tumorigenesis (Brown et al.
2003).

The mechanism by which transcriptional silencing of MLHL is initiated has not
been determined. Methylation of the MLH1 promoter region recruits methyl CpG binding
proteins as well as repressive histone modifications, packaging the chromatin into a
"closed" state that prevents access by transcription factors and the transcription
machinery (Xiong et al. 2006). When the DNA is methylated, additional nucleosomes
(relative to the active state) are present at the MLH1 promoter region, creating a more
compact chromatin state (Lin et al. 2007). However, neither of these studies addresses the
underlying question of what process establishes MLH1 methylation.

My thesis research focuses on RNA-mediated transcriptional silencing in
endometrial cancer. Long noncoding antisense RNAs are one class of RNA-mediated
silencing molecules. Antisense RNAs are transcribed from the DNA strand opposite the

protein-coding strand and may be complementary to the mRNA for a specific gene; they
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can act in cis or trans to silence a gene. A long overlapping antisense RNA is sufficient
for transcriptional silencing of the P15 (CDKN2B) gene involved in the initiation of cell
cycle arrest (Yu et al. 2008). Like P15 (CDKN2B), the MLH1 locus is characterized by
bidirectional transcription. A promoter on the opposite strand of DNA to MLH1 and
about 200 bp upstream of the MLH1 start site contains the start site for the antisense
transcript EPM2AIP1. This antisense RNA could function to silence the MLH1 gene in
cancer, as the P15 antisense RNA does. In Chapter Two | describe my work elucidating
the function of EPM2AIP1 and whether it can induce transcriptional silencing of MLH1.
In addition, I describe extensive characterization of transcription, both sense and
antisense, at the MLH1/EPM2AIP1 bidirectional promoter, and mapping of nucleosomes
at this locus.

Small RNA transcriptional gene silencing (TGS) is an extensively characterized
epigenetic mechanism in plants, yeast, and protozoa. Genes and regions of repetitive
DNA, such as the pericentromeric repeats, are transcriptionally silenced by
complementary small RNAs, processed by DICERL1 and targeted to the DNA by the
Argonaute proteins. Recent findings suggest that this process may be conserved in
humans. Evidence for DICER1 and small RNA involvement in mammalian TGS includes
the nuclear localization of proteins involved in small RNA processing and targeting. The
AGO2 protein was previously thought to be localized to the cytoplasm, where it guides
miRNAs to their targets and aids in translational repression. The presence of AGO2 in
the nucleus implies a role for small RNAs in the nucleus of mammalian cells (Weinmann
et al. 2009). Research from the Goodfellow laboratory has shown that DICER1 localizes

to the nucleus. ERK phosphorylates DICER1, prompting nuclear localization (Rimel et
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al. 2012). At present phosphorylated DICER1's function in the nucleus is unknown; the
phosphorylation and nuclear localization could reduce DICER1's function in the
cytoplasm, or phosphorylated DICER1 could have a novel function in the nucleus. The
relocalization/ nuclear shuttling seen when DICERL1 is phosphorylated by ERK could be
especially relevant to endometrial cancer because an estimated 40% of endometrioid
endometrial cancers have activating mutations in the MAPK/ERK pathway, either in
FGFR2 or KRAS (Byron et al. 2008). Furthermore, downregulation of DICERL1 is
associated with transformation and tumorigenesis (Bahubeshi, Tischkowitz and Foulkes
2011; Heravi-Moussavi et al. 2011; Kumar et al. 2007; Kumar et al. 2009; Melo et al.
2010; Melo et al. 2009; Merritt et al. 2008; Sand et al. 2010; Slade et al. 2011). Lower
levels of DICER1 in endometrial cancer predict worse outcomes (Zighelboim et al.
2011).

DICER1 has been implicated in the control of CpG island methylation in
mammalian cells. In HCT116 colon cancer cells with a mutation in the helicase domain
of DICER1, a set of genes that normally had hypermethylated CpG islands showed
demethylation and expression. Levels of the DNA methyltransferase proteins were
unaffected (Ting et al. 2008). The effect on CpG island methylation could be a direct or
indirect effect of altered DICERL1 activity. A recent paper described a loss of telomere
methylation upon DICER1 mutation, providing evidence that the change in methylation
was secondary to reduced DICERL activity. The mutation in DICERL led to failed
processing of the miR-290 cluster, which normally targets the retinoblastoma-like 2
(RBL2) protein. Thus RBL2 was upregulated, and repressed the DNA

methyltransferases, causing a loss of methylation (Benetti et al. 2008).

12



Recent work implies that small RNAs can target transcriptional silencing to
complementary DNA in mammalian cells. Transfecting human cells with dSRNA
complementary to the promoter regions of specific genes can epigenetically silence or
activate, depending on the gene. This process requires AGO2 (Hawkins et al. 2009; Li et
al. 2006; Morris et al. 2004). This work implies that the function of small RNAs in
human cells is analogous to their function in S. pombe, but more work must be done to
determine whether it is a common mechanism or an exception in the case of several
genes. In addition, the microRNA miR-320 has been shown to initiate transcriptional
gene silencing (TGS) of the POLR3D gene. The authors of this study identified 1200
genes with possible miRNA target sites at their promoter regions (Kim et al. 2008). This
study demonstrates a novel role for miRNAs, which were previously thought to be solely
involved in post-transcriptional gene silencing (PTGS): either degrading mRNA or
inhibiting translation. Instead, the miRNAs may bind to the 5' region of the gene and
initiate transcriptional silencing. | contacted the authors to determine whether MLH1 was
among these 1200 genes that had possible miRNA targets in their promoters; it was not
(D. Kim, personal correspondence, 2009).

To begin to determine whether small RNAs are involved in transcriptional
silencing of MLH1, I studied the effects of reduced DICER1, the master regulator of
small RNAs, in endometrial cancer. In Chapters Three and Four | describe knocking
down the DICERL1 protein in endometrial cancer cell lines and testing for changes in
methylation of MLH1. | assessed changes in global methylation and transcription to
determine the role of DICER1 in genomic transcriptional regulation in endometrial

cancer. The biggest signal from the transcriptome of DICER1 knockdown cells was an
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upregulation of interferon response genes. The interferon response is the cell's innate
immune response wherein specialized cytoplasmic sensors recognize foreign molecules
such as bacteria or viruses. | validated the interferon response in DICER1 knockdown
cells and showed that it was triggered by a buildup of pre-miRNAs, 60-100 nt double-
stranded RNA, in the cytoplasm in the absence of DICER1 processing. These structures
can be recognized by cytoplasmic sensors which usually detect viral dSRNA and set off
the interferon response (Alexopoulou et al. 2001; Li and Tainsky 2011; Platanias 2005).
This response may contribute to the tumor phenotypes | observed in DICER1 knockdown
(shDcr) cells, including increased cell migration and increased growth in soft agar.

I analyzed the “methylome” (analogous to the transcriptome; levels of
methylation across the whole genome) of shDcr endometrial cancer cells. The patterns
and extent of methylation overall were not affected by DICER1 knockdown. There were
few validated changes in DNA methylation in gene regulatory regions and gene bodies.
This finding was unexpected given an earlier report in colon cancer cells with a DICER1
hypomorph (Ting et al. 2008) However, we did observe a decrease in methylation at the
Alu family of transposable elements (TEs) in shDcr cells. TEs, first described by Barbara
McClintock in maize (McClintock 1950), make up at least 30% of the human genome
(Lander et al. 2001; Weiner 2002). These elements are characterized by their ability to
transpose themselves into different places in the host genome (jumping genes™). Many
of the TEs that are integrated into the human genome have been stably silenced and are
no longer able to transpose themselves into different locations. Alu elements are a type of
SINE (short interspersed element); these elements are typically 282 bp in length and are

transcribed by RNA Polymerase 111 (Deininger et al. 2003). They use reverse
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transcriptase (encoded by the L1 transposable elements) to create a DNA copy that
inserts into a different part of the genome. As frequent Alu insertion would create
significant genome instability, there is strong selection to stably silence these elements.
They are silenced by chromatin modifications and DNA methylation in normal human
tissues (Gama-Sosa et al. 1983; Kochanek, Renz and Doerfler 1993), but may lose
silencing and be expressed in cancer or other disease states (Belancio, Hedges and
Deininger 2008). Our finding that reduced DICERL levels cause a loss of methylation at
Alu elements is consistent with a recent report showing that low DICERL1 levels in
macular degeneration cause an accumulation of Alu transcripts (Kaneko et al. 2011).
DICER1 may thus be involved in transcriptional silencing of Alu transcripts. As DICER1
is generally reduced and Alu transcription is generally increased in tumorigenesis, this
may be an important component of the genomic instability associated with cancers. The
following Chapters 2-4 make up my thesis work on the role of noncoding RNA in

endometrial cancer.
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CHAPTER TWO: The active MLH1/EPM2AIP1
bidirectional promoter is characterized by multiple
transcripts and an absence of stably positioned
nucleosomes
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Foreword

My Ph. D. research began with a series of experiments focused on the epigenetic
silencing of the DNA mismatch repair gene, MLHL1, in endometrial cancer. | received a
Siteman Cancer Center Cancer Biology Pathway Fellowship award to study MLH1
epigenetic silencing and specifically to determine what, if any, role an antisense
transcript, EPM2AIP1, plays in MLH1 expression and epigenetic silencing.

Cancer cells exhibit hypermethylation of the CpG islands of tumor suppressor
genes, silencing transcription (Jones et al. 1999). Active CpG islands have an open
chromatin structure with loosely positioned nucleosomes to allow the transcription
machinery access to the DNA, but maintain a closed chromatin structure with stable
nucleosomes once they become methylated (Deaton and Bird 2011). The MLH1 gene
encodes a highly conserved protein necessary for DNA mismatch repair. Endometrial
carcinomas that are deficient in DNA mismatch repair often exhibit hypermethylation of
the MLH1 promoter CpG island that is associated with transcriptional silencing of the
gene. Methylation of the MLH1 regulatory region is thus functionally equivalent to a
mutation or deletion in the MLH1 gene. Cancers lacking MLH1 have a mutator
phenotype, exhibited by microsatellite instability (MSI). DNA methylation of MLH1
recruits methyl CpG binding proteins and is associated with repressive histone
modifications, packaging the chromatin into a "closed" state that prevents access by
transcription factors and the transcription machinery (Xiong et al. 2006). Additional
nucleosomes are present at the methylated MLH1 promoter region, creating a more
compact chromatin state (Lin et al. 2007). However, the mechanism by which

transcriptional silencing of MLHL is initiated has not been established.
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EPM2AIP1, a long noncoding RNA transcribed from the opposite strand of DNA
about 200 bp upstream of the canonical MLH1 transcription start site, could be a player in
transcriptional silencing of MLH1. Long noncoding RNA has been shown to be involved
in transcriptional silencing of several loci, as described in Chapter One. A long
overlapping antisense RNA is implicated in transcriptional silencing of the P15 gene
involved in the initiation of cell cycle arrest. The antisense transcript (referred to as
P15AS) is present at high levels in leukemia cells but at low levels in normal cells, while
the sense transcript has the opposite expression pattern. The antisense transcript P15AS
decreases P15 expression at the mRNA level and recruits silencing histone modifications
to the P15 promoter region. Transfecting cells with P15AS causes accelerated
proliferation, implicating the P15 antisense transcript in a cellular function relevant to
tumorigenesis (Yu et al. 2008). The EPM2AIP1 antisense RNA could function to silence
the MLH1 gene in cancer, as P15AS silences P15 in cancer. In this chapter, | explore the
function of EPM2AIPL. | first demonstrate the existence of overlapping EPM2AIP1 and
MLHZ1 transcripts, establishing the possibility that a dSRNA could lead to silencing. Then
I determine whether EPM2AIP1 could induce transcriptional silencing of MLHL1, as
another example of antisense RNA silencing of a tumor suppressor gene.

Contrary to the P15 and P15AS transcripts, the MLH1 and EPM2AIP1 transcripts
are concordantly expressed. There is significant overlap between the transcripts in all cell
lines in which they are expressed and about a third of primary tumors, creating a potential
dsRNA structure. In addition, I identified several novel transcripts for each gene, some
initiating in the middle of the region previously described as having stably positioned

nucleosomes (Lin et al. 2007). After helpful discussions with my thesis research advisory
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committee chair, Dr. Sarah Elgin, | decided to determine the nucleosome positioning at
this locus in endometrial cancer cells. | showed that in endometrial cells expressing
MLH1, the MLH1/EMP2AIP1 bidirectional promoter is devoid of nucleosomes and that
there are multiple transcripts for both genes. The “open chromatin” state for endometrial
cells is in contrast to previous research (Lin et al. 2007) describing a region with three
stably placed nucleosomes when MLHL1 is being transcribed that gains additional
nucleosomes and DNA methylation when the gene is silenced. The nucleosome-free
region could be the result of RNA polymerase landing on open regions of chromatin and
creating novel transcripts, or transcription from multiple start sites (other than the coding
transcript) could serve to keep this important locus open for transcription of the canonical
coding MLH1 transcript. The following manuscript (submitted to Epigenetics) details the

characterization of the MLH1 bidirectional promoter in endometrial cancer.
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Abstract

The MLH1 gene is frequently epigenetically silenced in endometrial cancer. The
silenced state is associated with DNA methylation and the presence of stably positioned
nucleosomes in the 5’ regulatory region. Characterization of the MLH1/ EPM2AIP1
bidirectional promoter revealed multiple transcripts in both the forward and reverse
directions, with overlap and potential dsSRNA in 40% of specimens investigated,
including primary endometrial tumors. Several of the novel transcripts identified appear
to initiate within the region previously described as including stably positioned
nucleosomes. We demonstrated that the active MLH1/ EPM2AIP1 regulatory region in
endometrial cancer and normal cell lines is not characterized by the presence of stable
nucleosomes when the genes are active and the region is unmethylated. We conclude that
when unmethylated, a 569 bp region including the start sites for the MLH1 and
EPM2AIP1 transcripts is free of nucleosomes in endometrial cells. Our finding suggests
greater variability in how nucleosomes are positioned in the shared MLH1/ EPM2AIP1

regulatory region than has been previously appreciated.

Introduction

The nucleosome, the fundamental unit of chromatin, consists of 147 base pairs of
DNA wrapped around an octamer of histone proteins. Nucleosomes are dynamic and are
positioned differently at active and silent loci. Transcriptional events such as the binding
of RNA polymerase have been shown to change nucleosome positioning (Schones et al.

2008). The structure of the nucleosome provides opportunities for chemical modifications
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to make DNA more or less accessible to the transcription machinery. Modifications to the
N-terminal tails of specific histones either open up the chromatin, making it more
accessible to transcription factors and the transcription machinery, or create a more
condensed chromatin state, repressing transcription (Allis et al. ; Schones et al. 2008).

DNA methylation is a critical epigenetic modification that may cause
transcriptional silencing when added to the promoter regions of genes (Jones and Baylin
2002). Methylation recruits methyl-CpG-binding proteins, creating a condensed
chromatin structure and preventing access to DNA by transcription machinery (Allis et
al.). Cancer cells exhibit hypermethylation of CpG islands, long stretches of CpG
dinucleotides that normally remain unmethylated. Aberrant methylation of CpG islands
silences tumor suppressor genes in cancer (Jones and Laird 1999). Recent evidence has
shown that epigenetically silenced genes may be colocalized in the nucleus (Berman et al.
2012).

Endometrial (uterine) cancer is the most common gynecologic malignancy in the
United States. A significant fraction of endometrial cancers have defective DNA
mismatch repair and tumor microsatellite instability (MSI) (Hecht and Mutter 2006;
Zighelboim et al. 2007a). Epigenetic silencing of the MLH1 locus accounts for the vast
majority of MSI-positive endometrial tumors. Cells that lack the DNA mismatch repair
system lose an S phase checkpoint that promotes apoptosis, allowing cells with
methylated MLH1 to evade apoptosis and promote tumorigenesis (Brown et al. 2003). In
addition to somatic epigenetic silencing of MLH1, germline MLH1 epimutations have
been identified in patients with multiple primary Lynch-associated cancers including

endometrial cancer (Hitchins et al. 2007). There is evidence that inherited cis variation
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contributes to risk for epigenetic silencing of MLH1 in both endometrial and colon
cancer. MLH1 promoter methylation is significantly associated with a single nucleotide
polymorphism (G/A; rs1800734) in the MLH1 regulatory region, 93 bp upstream of the
translation start site (Allan et al. 2008; Chen et al. 2007). MLH1 is thus the first example
of a cancer gene with a genetic association with epigenetic regulation.

The mechanism by which transcriptional silencing of MLHL is initiated has not
been established. When the MLH1 locus is methylated, additional nucleosomes are
present at the MLH1 promoter region, creating a more compact chromatin state (Lin et al.
2007; Xiong et al. 2006).We sought to determine the changes in transcription at the
methylated MLH1 locus versus the unmethylated locus. A promoter on the opposite
strand of DNA to MLHL1 starts ~30 bp from the longest reported MLH1 start site (Lin et
al. 2007). We hypothesized that this antisense RNA could function to silence the MLH1
gene in cancer, as has been shown for the tumor suppressor gene P15 (Yu et al. 2008).
We explored the transcriptional status of the MLH1 gene in endometrial cancer cell lines
and found that an abundance of transcripts were expressed when the locus was
unmethylated. We also found there to be a nucleosome-free region of at least 569 bp
around this gene when it was actively transcribed. We conclude that antisense transcripts
do not silence the MLH1 region and that, in contrast to previous studies, the MLH1/
EPM2AIP1 bidirectional promoter is nucleosome free when unmethylated in endometrial

cells.
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Results and Discussion

Overlapping MLH1 and EPM2AIP1 transcripts

5" RACE and RT-PCR analyses for endometrial cancer cell lines, an immortalized
normal endometrial epithelial cell line, and primary tissues revealed the 5’ untranslated
regions of MLH1 and EPM2AIP1 were longer than previously described. MLH1 and
EPM2AIP1 are a bidirectional gene pair transcribed head-to-head on opposite strands of
the DNA. Overlapping transcripts were seen in > 40% of tissues investigated, with a
maximum overlap of 455 bp based on the RACE findings (Figure 1, Table 1). Itis
possible that there are even longer, low abundance transcripts for either or both genes that
were not detected in our RACE analyses. Prior reports on MLH1 and EPM2AIP1
expression did not suggest that the transcripts overlapped (Lin et al. 2007) (Ensembl
ENST00000231790, NCBI NM_000249.3). Query of the NCBI EST database did,
however, reveal several sequences mapping to the region between the published start
sites of MLH1 and EPM2AIP1, suggesting potential overlap (Accessions DB278367,
DB282952, DA097961, EB388804).

RT-PCR confirmed the longer 5’ transcripts for MLH1 and EPM2AIP1 in cell
lines and primary tissues (Table 2). As previously reported (Lin et al. 2007), MLH1
expression was seen only when the shared 5’ region was unmethylated. Typically the
EPM2AIP1 and MLH1 transcripts were not detectable in cell lines in which the promoter
was methylated. Low levels of EPM2AIP1 were, however, seen in the AN3CA cell line,
which does not express MLH1 and is methylated at the shared promoter region (Figure
S1). Four tumors with methylation of the shared promoter region expressed both

transcripts (Table 2). It is likely that the MLH1 and EPM2AIP1 transcripts detected were
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from the non-neoplastic components of the primary tumors (i.e., stroma, lymphocytes
and/or blood vessels). The pattern of expression in three other primary tumors that had
methylation of the shared promoter was noteworthy. Those three cancers expressed
EPM2AIP1 but not MLH1. We excluded DNA contamination of the RNA specimens, a
possible explanation for the discordant expression observed (EPM2AIP1 active and
MLHZ1 silenced), by performing a “no reverse transcriptase” control for each RT-PCR
reaction (Figure S1). Other possible explanations for the unexpected pattern of
expression are that EPM2AIP1 transcription could be activated when MLH1 is not, or that
the relative levels of the two transcripts could be different (EPM2AIP1 more abundant).
However, qRT-PCR in endometrial cancer cell lines showed that these transcripts were
expressed at approximately the same level and that they were concordantly expressed
(data not shown).

We observed four different forward (MLH1) and four reverse (EPM2AIP1)
transcription start sites associated with the unmethylated, active shared 5’ region (Figure
S2). The length of the 5 MLH1 and EPM2AIP1 UTRs varied within a given cell line or
tissue type. MLH1 and EPM2AIP1 transcripts overlapped in all cell lines that expressed
the two transcripts and about one third of primary tissues investigated (N=29).

A transcript initiating 260 bp 5’ of the MLH1 ATG and 43 bp upstream from the
longest reported transcript was expressed concordantly with a shorter 5 EPM2AIP1
transcript in KLE tissue (344 bp 5' of the MLH1 ATG). The “long” MLHL1 start site was
associated with two transcripts. One was the canonical MLH1 transcript with a longer 5’
UTR, and the other was an alternately spliced RNA species lacking MLH1 exon 1 and

giving rise to a long noncoding RNA. It is unclear whether the noncoding transcript is of
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functional significance. It was seen in all tissues that express the "long™ MLH1 transcript
(approximately one third of all specimens investigated). Overlapping MLH1 and
EPM2AIP1 transcripts generating dsSRNA were present in 3/5 endometrial cancer cell
lines, 1 immortalized normal endometrial cell line, 10/18 primary tumors, 2/4 normal
endometrium samples, and testis tissue (Table 2). The overlap using RT-PCR assays

ranged from 47 to 202 bp (data not shown).

Absence of nucleosomes at the MLH1/ EPM2AIP1 bidirectional promoter region

Nucleosomal occupancy and its potential role in silencing of the MLH1/
EPM2AIP1 CpG island was previously assessed by Lin and colleagues (Lin et al. 2007)
using DNAse footprinting, chromatin immunoprecipitation (ChIP) and methylase-based
single-promoter analysis assays (MSPA). They reported that the MLH1/ EPM2AIP1
promoter has two stably positioned nucleosomes in expressing cell lines (colon cancer
and fibroblasts). The two nucleosomes are positioned 3’ of the canonical MLH1 and
EPM2AIP1 transcription start sites (the -60 MLHL1 transcription start site and the -244
EPM2AIP1 transcription start site on the opposite strand) (Figure 2A, upper panel). The
RKO colon cancer cell line that has epigenetic silencing of MLH1 has additional
nucleosomes covering the entire promoter region, suggesting that epigenetic silencing
may be accomplished by the stable placement of nucleosomes into previously vacant
positions (Lin et al. 2007).

We identified novel, more 5’, start sites for MLH1 and EPM2AIP1 that if active in
the same cell could give rise to dsSRNAs. Lin and colleagues mapped three

transcriptional start sites at the MLH1/EPM2AIP1 bidirectional promoter as well as
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nucleosomes after the transcription start sites (Lin et al. 2007) (Figure 2A, upper panel).
The functional significance of the four additional transcripts we observed (3 EPM2AIP1
and one MLH1; Figure 2A, lower panel, in grey) is unknown (the -216 MLH1 transcript
was previously characterized- ENST00000231790). These novel transcripts may
represent exogenous transcription or could have an important regulatory role. Noncoding
RNA sense and antisense transcripts for well characterized genes are quite common in
mammalian genomes (Core and Lis 2008; Guttman et al. 2009; Preker et al. 2008; Seila
et al. 2008). The four noncoding transcripts at the MLH1/EPM2AIP1 bidirectional
promoter could have a causal or consequential relationship to transcription of the coding
transcript. A region of DNA maintained in an "open™ chromatin state (largely devoid of
nucleosomes) could be generally accessible to the transcriptional machinery. In the open
chromatin it is possible multiple start sites combined with alternative splicing would
result in multiple distinct transcripts. Alternatively, the transcriptional machinery binding
to DNA and initiating transcripts over a relatively broad region could serve to keep the
chromatin open and thereby ensure transcriptional potential for an important gene.

The longer 5 UTRs/more 5’ transcription start sites we identified for both MLH1
and EPM2AIP1 in endometrial tissues were unexpected and inconsistent with the
nucleosomal positioning for the active promoter region described by Lin and colleagues
(Lin et al. 2007). Methylase-based single promoter analysis assays (MSPA) in three
endometrial cell lines suggested a very different pattern of nucleosome positioning (Fig
2A). We observed no nucleosome footprinting over a 569 bp region (-464 to +105) in the
normal endometrial cell line EM-E6/E7/TERT and the endometrial cancer cell lines

Ishikawa and KLE (Figure 2A) based on sequence analysis of multiple cloned PCR
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products from each of the three cell lines. Of the 35 CpGs in the bisulfite PCR amplicon,
we found only 4 to be protected (CpGs 11-14, Figure 2A, lower panel). We did not
observe the protection at CpGs 1-4 and 24-35 that Lin and colleagues observed (Lin et al.
2007) and proposed to be associated with the presence of nucleosomes (Figure 2A). The
methylase protection at CpGs 11-14 we saw (Figures 2A and B) is, however, consistent
with what was reported by Lin et al.(Lin et al. 2007). As shown in Figure 2B, CpG 10
was methylated (M.Sssl-treatment) but the following four CpGs (11-14) were converted
to TGs in the EM-E6/E7-TERT cell line, and as such were protected. The genomic DNA
control (shown in the bottom half of Figure 2B) was on the other hand methylated at all
CpGs. COBRA similarly showed protection (no methylation) at the region of protection
observed by sequencing (-269 BsrBI digestion) but methylation (no protection) at a
downstream CpG (-250 Mlul digestion), confirming the sequencing results (Figure 2C).
Restriction enzymes that digest at CGs only cut at the -269 CG in Figure 2B (left panel of
Figure 2C) and not at the next TG at -250 (right panel of Figure 2C). A smaller PCR
amplicon covering the MLH1 transcription start site confirmed the absence of
nucleosome footprinting (data not shown). Lin et al. performed nucleosome positioning
in colon cancer cells. Review of the publically available ENCODE data for a leukemia
and a lymphoblastoid cell line genome-wide study (ENCODE/Stanford/BYU 2011)
indicated that as we saw in endometrial cells, nucleosomes were absent from the 569 bp
region by micrococcal nuclease digestion. This could mean that either the region is
nucleosome free, or nucleosomes are not stably positioned, rapidly moving on and off the
DNA. Taken together, these studies suggest that nucleosome positioning at the

MLH1/EPM2AIP1 bidirectional promoter may vary significantly between cell types.
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The four CpGs protected from M.Sssl methylation span 20 bp and the distance
between CpG 10 and 15 (both unprotected) in only 42 bp. The maximum size of the
protected region is too small for a nucleosome (147 bp) but could be protected by the
presence of a transcription factor. Search of the TRANSFAC database (Wingender 2008)
for transcription factors that could bind to this region previously characterized as a
"footprinting region” (Arita et al. 2003) produced only the liver-specific transcription
factors HNF-1B and HNF-1C. Search of the Geo database showed that these factors
were unlikely to be present in the endometrium. The most frequently observed 5' start site
of the EPM2AIP1 transcript is within the protected region and an MLH1 transcription
start site is nearby (Figure 2A). As such, it is possible the transcription factor(s) for
MLHZ1 or the transcription machinery for EPM2AIP1 are giving a footprint. Given our
data confirm the protein-binding regions but do not support the nucleosome positioning
established by Lin et al. (Lin et al. 2007), we used COBRA to detect the presence of
nucleosomes at the estrogen receptor (ESR1) as a positive control. We investigated
Ishikawa cells for which nucleosome positioning has been previously reported (Rocha et
al. 2005). As expected, M.Sssl was not able to methylate this region, consistent with the
presence of stably positioned nucleosomes protecting the region from methylation
(Figure S3).

The generally concordant expression of the MLH1 and EPM2AIP1 sense and
antisense transcripts observed is consistent with previous reports (Lin et al. 2007).
Unlike the P15 antisense transcript (Yu et al. 2008), EPM2AIP1 is not involved in
transcriptional silencing of MLH1. Our observation that at least a 569 bp region in the

shared MLH1/EPM2AIP1 promoter region is not characterized by stably positioned
34



nucleosomes is at odds with an earlier report (Lin et al. 2007). This large nucleosome-
free region may in part explain the multiple start sites for both the sense and antisense

transcripts.

Materials and Methods

Cell culture

The AN3CA, KLE, and RL952 endometrial cancer cell lines were purchased from the
American Type Culture Collection. The Ishikawa and MFE296 cell lines were gifts from
Dr. Stuart Adler (Washington University School of Medicine, Department of Internal
Medicine) and Dr. Pamela Pollock (Queensland University of Technology, Brisbane),
respectively. The EM-E6/E7/TERT immortalized normal endometrial cell line was
originally reported by Mizumoto and colleagues (Mizumoto et al. 2006) and provided by
Dr. Pamela Pollock. Cell lines were grown as previously described (Byron et al. 2008;

Dewdney et al. 2011).

Preparation of Nucleic Acids

Primary endometrial tumors and normal endometrium specimens were collected
as part of IRB-approved studies (Washington University Medical Center Human
Research Protection Office protocols HRPO-91-0507, -93-0828 and -92-0242). Genomic
DNA from tumor tissues, normal endometrium, and cell lines was extracted using the
DNeasy Tissue kit (Qiagen, # 69506). Total cellular RNA was prepared using the Trizol
reagent (Invitrogen, # 10296-010). Human testes RNA was obtained from Stratagene

(Agilent Technologies, Inc., # 540049).
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5'RACE and RT-PCR

5' RACE was performed using the Roche 5'/3' RACE reagent, according to the
manufacturer's instructions (Roche Applied Science, # 03353621001). Complementary
DNA (cDNA) was generated using 1 pg total RNA and the QuantiTect Reverse
Transcription Kit (Qiagen, # 205311). Conventional RT-PCR was performed using the

primers below.

RT-PCR Primers Forward Reverse

MLH1 5' CTGGACGAGACAGTGGTGAA 3’ 5' AGGGGCTTTCAGTTTTCCAT 3'
"Long" MLH1 5' AGGGACGAAGAGACCCAGCA 3 5' GATCCCGGTGCCATTGTCT 3'
EPM2AIP1 5' TGTGGATGACGCCCAAAAGA 3' 5' CCTGCACGAGCAGCTCTCTCT 3'
"Long" EPM2AIP1 5" AGGTGCTTGGCGCTTCTCAG 3 5'CCTGCACGAGCAGCTCTCTCT 3'
GAPDH 5' TGCACCACCAACTGCTTAGC 3 5' GGCATGGACTGTGGTCATGAG 3'

Quantitative RT-PCR of transcripts and the GAPDH control was performed using SYBR
Green (BioRad) methods and the same primers as for conventional RT-PCR. Relative
expression levels were calculated using the delta-delta C; method (Chiappinelli et al.
2010). All gPCR assays were performed in triplicate and analyses were repeated with
new cDNA syntheses. Minus RT controls (reverse transcriptase negative cDNA

synthesis reactions) were carried out for at least one sample per plate.

Nucleosome Positioning

Nucleosome positioning at the MLH1/EPM2AIP1 bidirectional promoter was
assessed by the methylase-based single promoter analysis assay (MSPA) as previously

described in (Lin et al. 2007). Briefly, isolated nuclei were treated with M.Sssl, an
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enzyme that methylates all unprotected DNA. DNA was prepared from the treated cells
and then bisulfite converted using a commercially available kit (EZ DNA Methylation
Gold™ Kit, Zymo Research, # D5006). Cloning and sequencing was performed using
standard methods.(Zighelboim et al. 2007b) Bisulfite PCR products were cloned using
the PCR-2.1TOPO TA vector (Invitrogen, # K4510-20). A minimum of 5 clones for each
cloning experiment sequenced using ABI Prism BigDye Terminator chemistry v1.1

(Applied Biosystems, # 4337451).

COBRA Assays

COBRA (Combined Bisulfite Restriction Analysis) was performed as previously
described (Xiong and Laird 1997), using two rounds of amplification (nested PCR). PCR

primers, amplicon sizes, and restriction digestions used were as follows.

Assay Primers* Amplicon Size Restriction Digest Products

MLH1/EPM2AIP1  Rd1 For 5' gggaggTTaTaagagTagggT 3'

promoter Rd1 Rev 5' aAttctcaatcatctctttAataA 3'
Rd2 For 5' ggaggTTaTaagagTagggTTa 3' 569 bp BsrBI- 374, 195 bp
Rd2 Rev 5' catctctttAataAcattaActAAcc 3' Mlul- 357, 212 bp

ER promoter Rd1 For 5' aggagggggaatTagagaT 3'
Rd1 Rev 5' ccaAAAactAttAccttAccctA 3'
Rd2 For 5' gggggaatTagagaTaaaTagag 3' 235 bp Acil- 147, 88 bp

Rd2 Rev 5' cccaaaAaAcaActtcee 3'

*Uppercase T indicates cytosine converted to thymine by bisulfite treatment.

Restriction fragments were resolved on 10% polyacrylamide gels, stained with
ethidium bromide, and photoimaged with a UV camera (ImageStore 500 Version 7.12,

White/UV Transilluminator; UVP, Inc.).
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Figure S2: The MLH1/ EPM2AIP1 bidirectional promoter.

A. Sequence showing transcription start sites and initiator codons. The MLH1 start
codon (ATG, chr3:37035039-37035041 hg37.1-2009) and EPM2AIP1 start codon
(TAC:ATG chr3:37034566-37034568) are shown in bold. MLH1 5' and EPM2AIP1 5'
UTRs are highlighted in yellow and gray respectively. EPM2AIP1 start sites (+49, -136, -
244, and -344 relative to the MLH1 ATG) are underlined. MLH1 start sites (-60, -216, -
260 relative to the ATG) are italicized. The four novel transcription start sites are

indicated in blue text.

B. Location of primers used for bisulfite PCR. Round 1 Primers are italicized. Round 2
Primers are shown in red text. Upper case Ts indicate converted unmethylated cytosines
and upper case CGs mark the location of methylatable Cs evaluable by bisulfite

conversion.
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Supplemental Figure 2: The MLH1/ EPM2AIP1 bidirectional promoter.

A. The MLH1/ EPM2AIP1 bidirectional promoter chr3:37034381-37035154

TCGTGCTCAGCCTCGTAGTGGCGCCTGACGTCGCGTTCGCGGGTAGCTACGATGAGGCG
GCGACAGACCAGGCACAGGGCCCCATCGCCCTCCGGAGGCTCCACCACCAAATAACGCT

GGGTCCACTCGGGCCGGAAAACTAGAGCCTCGTCGACTTCCATCTTGCTTCTTTTGGGCG
EPM2AIP1 start codon (-471)

TCATCCACATTCTGCGGGAGGCCACAAGAGCAGGGCCAACGTTAGAAAGGCCGCAAGGG

GAGAGGAGGAGCCTGAGAAGCGCCAAGCACCTCCTCCGCTCTGCGCCAGATCACCTCAG
alternate EPM2AIP1 transcription start site (-344)
CAGAGGCACACAAGCCCGGTTCCGGCATCTCTGCTCCTATTGGCTGGATATTTCGTATTCC

alternate MLH1 transcription start site (-260)
CCGAGCTCCTAAAAACGAACCAATAGGAAGAGCGGACAGCGATCTCTAACGCGCAAGCGC
EPM2AIP1 transcription start site (-244)

ATATCCTTCTAGGTAGCGGGCAGTAGCCGCTTCAGGGAGGGACGAAGAGACCCAGCAACC
MLH1 transcription start site (-216)

CACAGAGTTGAGAAATTTGACTGGCATTCAAGCTGTCCAATCAATAGCTGCCGCTGAAGGG
alternate EPM2AIP1 transcription start site (-136)

TGGGGCTGGATGGCGTAAGCTACAGCTGAAGGAAGAACGTGAGCACGAGGCACTGAGGT

MLH1 transcription start site from Lin et al. (-60)

GATTGGCTGAAGGCACTTCCGTTGAGCATCTAGACGTTTCCTTGGCTCTTCTGGCGCCAAA
MLH1 start codon (0) alternate EPM2AIP1 transcription start site (+49)

ATGTCGTTCGTGGCAGGGGTTATTCGGCGGCTGGACGAGACAGTGGTGAACCGCATCGC
GGCGGGGGAAGTTATCCAGCGGCCAGCTAATGCTATCAAAGAGATGATTGAGAACTG

B. The bisulfite converted MLH1/ EPM2AIP1 bidirectional promoter chr3:37034381-
37035154

tCGtgTtTagTTtCGtagtggCGTTtgaCGtCGCGttCGCGggtagTtaCGatgaggCGgCGaTagaT
TaggTaTagggTTTTatCGTTTtTCGgaggTtTTaTTaT TaaataaCGTigggtTTaTtCGggTCGga
aaaTtagagTTtCGtCGaTttTTatTitgTttTttttgggCGtTatT TaTattTtgCGggaggT TaTaagagTag
ggTTaaCGttagaaaggTCGTaaggggagaggaggagT TtgagaagCGTTaagTaT TtTTITCGTtTtg
CGTTagatTaTTtTagTagaggTaTaTaagT TCGgttTCGgTatTtTtgTtT TtattggTtggatatttCGtatt
TTTCGagTtTTtaaaaaCGaaT TaataggaagagCGgaTagCGatTtTtaaCGCGTaagCGTatatTT
ttTtaggtagCGggTagtagTCGTttTagggagggaCGaagagaT TTagTaaT T TaTagagttgagaaatttg
aTtggTattTaagTtgtT TaatTaatagTtgTCGTtgaagggtggggTtggatggCGtaagTtaTagTtgaagga
agaaCGtgagTaCGaggTaTtgaggtgattggTtgaaggTaTttTCGtigagTatTtagaCGtitTTttggTiTtt
TtggCGTTaaaatgtCGttCGtggTagggattattCGgCGgTtggaCGagaTagtggtgaaTCGTatCGC
GgCGggggaagttatTTagCGgTTagTtaatg TtatTaaagagatgattgagaaTtg
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Table 1. MLH1 and EPM2AIP1 transcription start sites by 5’ RACE.

Ishikawa KLE Testis
EPM2AIP1 TSS -244 -344 " +195
MLH1 TSS -60 -260 -60
Overlap 0 bp 0 bp 255 bp

Most abundant transcripts by 5' RACE in RNAisolated from the

endometrial cancer cell lines Ishikawa and KLE and testis. Positions of
transcription start sites (TSS) relative to the MLH1 translation start site
(ATG- 3:37035039-41, hg37.1-2009) are given.
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Table 2. Summary of MLH1 and EPM2AIP1 transcripts in primary tumors and normal
tissues.

Transcripts Promoter
MLH1 EPM2AIP1  Overlap Methylation*
Endometrial cell lines
AN3CA - - No M
MFE296 - - No M
Ishikawa + + Yes U
KLE + + Yes U
RL952 + + Yes U
EM E6/E7 + + Yes U
Primary Tissues
Endometrioid endometrial
carcinomas
1900T - + No M
2141T - - No M
2180T - - No M
21947 - + No M
2258T - + No M
1859T + + Yes U
2160T + + No U
2212T + + Yes U
2213T + + Yes U
2238T + + Yes U
2247T + + Yes M
2252T + + Yes M
2281T + + Yes U
2283T + + No U
2293T + + Yes M
2306T + + Yes U
2308T + + Yes U
2310T + + No M
Normal endometrium
N-2018 + + Yes ND
N-26 + + No U
N-27 + + Yes ND
N-28 + + No ND
Testes
normal tissue + + Yes ND
*COBRA

EC: endometrial carcinoma; M: methylated; U: unmethylated,
ND: not determined.
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CHAPTER THREE: Reduced DICERL elicits an
interferon response in endometrial cancer cells
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Foreword

Although DICER1’s role as a tumor suppressor has been firmly established, the
mechanisms by which loss of DICER1 contributes to tumorigenesis remain mostly
unknown. | undertook a series of experiments to investigate the effect that reduced
DICER1 has on short noncoding RNAs, microRNAs (miRNAs), and mRNA levels in
tumorigenesis. | knocked down the DICER1 protein in endometrial cells using ShRNAs
and evaluated miRNA and mRNA expression levels as well as growth properties of cells
with intermediate and long-term DICER1 knockdown.

DICERL is essential for miRNA biogenesis. MiRNAs are first processed in the
nucleus where the RNase |11 enzyme DROSHA cleaves the primary transcript (pri-
MiRNA) to cut out the precursor stem loop of about 70 nucleotides (pre-miRNA), which
is then brought out of the nucleus by the RAN GTPase EXPORTIN-5. In the cytoplasm,
the PAZ and RNase 111 domains of DICER1 cut out the mature miRNA, which is about
22 nucleotides long. One strand of the cleaved dsRNA enters the RISC (RNA-induced
silencing complex) (Hammond 2005), where the Argonaute protein AGO2 associates
with the miRNA and mRNA to inhibit translation or cleave the mRNA. The miRNA in
the RISC enables the complex to associate with the 3” UTR of the target gene through
imperfect complementarity between miRNA and mRNA (Sontheimer 2005). MiRNAs
target up to 60% of human genes and are essential to development and normal biology.
MiRNA profiles are fundamentally different in cancer cells, leading to altered gene
expression (Lujambio and Esteller 2009).

Downregulation of DICER1 and other RNA interference (RNAI) pathway

components is associated with transformation and tumorigenesis. In humans, germline
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loss-of-function DICER1 mutations are associated with the inherited pleuropulmonary
blastoma tumor susceptibility syndrome (Hill et al. 2009). Dicerl acts as a
haploinsufficient tumor suppressor in a Kras-driven mouse model of lung cancer (Kumar
et al. 2007; Kumar et al. 2009). Two other key components of miRNA biogenesis,
TARBP2 and XPO5, coding, respectively, for the TRBP and Exportin-5 proteins, are
mutated in human tumors and affect tumorigenic properties of cancer cells (Melo et al.
2010; Melo et al. 2009). Although this chapter is focused on DICERL1 function in
endometrial cancers, it is worth noting that | did attempt to corroborate the report of
frequent TARBP2 mutation in endometrial cancer and contrary to the published report
(Melo et al. 2009) failed to observe TARBP2 mutations in primary tumors (Appendix B).
Another group failed to replicate the reported rate of TARBP2 mutations (Melo et al.
2009) in hereditary nonpolyposis colorectal cancer (Garre et al. 2010). At the
Endometrial Cancer TCGA meeting April 9/10 2012 hosted at Washington University in
St. Louis, the preliminary report for exome sequencing did not include TARBP2 among
the list of significantly mutated genes. DICER1, on the other hand, was frequently
mutated with 12 of 49 grade 3 endometrioid cancers carrying somatic mutations. Low
levels of DICER1 and DROSHA are associated with worse outcome in ovarian cancer
(Merritt et al. 2008) and work from our group shows that low levels of DICERL1 are
associated with decreased time to recurrence in endometrial cancer (Zighelboim et al.
2011). In addition, conditional deletion of both Dicerl and Pten in mouse fallopian tube
causes an ovarian cancer that closely resembles human serous ovarian cancer (Kim et al.

2012).

o1



The current data point to a haploinsufficient tumor suppressor role for DICERL1 in
solid tumors. However, except for isolated examples such as regulation of miR-200 in
metastatic breast cancer (Martello et al. 2010), it is unclear why and how DICERL1 acts as
a tumor suppressor. Prompted by the clinical data on DICER1 levels in endometrial
cancer patients (Zighelboim et al. 2011), | knocked down the DICER1 protein in
endometrial cancer cell lines using ShRNA delivered via lentiviral infection and stable
selection. To determine the complete effects of DICER1 knockdown, I performed
MRNA-sequencing (RNA-Seq) on control and DICER1 knockdown cells. This work,
performed in collaboration with Dr. Michael Brent's laboratory (Center for Genome
Sciences & Systems Biology, Washington University in St. Louis) allowed me to
capitalize on contemporary genomic methods to characterize DICER1 knockdown cells.
The most striking and somewhat unexpected result was a dramatic upregulation of
transcripts involved in the interferon response. | validated the changes in interferon
response gene transcript levels and showed that DICER1 knockdown causes a type |
interferon response in endometrial cells. | went on to show that the interferon response is
due to accumulation of pre-miRNAs in the cytoplasm. The precise relationship between
reduced DICERL activity, the type | interferon response and tumorigenesis remains to be
determined. Possible mechanisms include alterations in STAT signaling, inflammatory

responses and the activation of tumorigenesis via inflammation.
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The following is a manuscript published in Molecular Cancer Research (March 2012)

characterizing the interferon response in DICER1 knockdown endometrial cancer cells.

Reduced DICER1 elicits an interferon response in endometrial cancer cells

Katherine B. Chiappinelli*?, Brian C. Haynes®, Michael R. Brent®, Paul J. Goodfellow*?
Department of Surgery, “Division of Gynecologic Oncology, *Center for Genome

Sciences, Washington University in St. Louis

Running title: Reduced DICERL elicits an interferon response
Keywords: Endometrial cancer, DICER1, Interferon response, microRNA, RNA-

Sequencing
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Abstract

DICERL1 is essential for the generation of mature microRNAs (miRNAs) and
other short noncoding RNAs. Several lines of investigation implicate DICER1 as a
tumor suppressor. Reduced DICER1 levels and changes in miRNA abundance have been
associated with aggressive tumor phenotypes. The global effects of reduced DICER1 on
MRNA transcript abundance in tumor cells remain largely unknown. We used shRNA to
stably knock down DICERL1 in endometrial cancer cell lines to begin to determine how
reduced DICERL1 activity contributes to tumor phenotypes. DICER1 knockdown did not
affect cell proliferation but caused enhanced cell migration and growth in soft agar.
miRNA and mRNA profiling in KLE cells revealed overall decreases in miRNA levels
and changes in the relative abundance of many mRNAs. One of the most striking
changes in MRNA levels was the upregulation of interferon stimulated genes (ISGs), the
majority of which lack known miRNA target sequences. IFN(, a key upstream regulator
of the interferon response, was significantly increased in DICER1 knockdowns in the
AN3CA, Ishikawa, and KLE endometrial cancer cell lines and in the normal endometrial
cell line EM-E6/E7/TERT. IFNp secreted in media from KLE and EM-E6/E7/TERT
shDcr cells was sufficient to activate an interferon response in HT29 cells. The reduced
miRNA processing in DICER1 knockdowns was associated with increases in pre-
miRNAs in the cytoplasm. Our findings suggest elevated pre-miRNA levels trigger the
interferon response to double-stranded RNA. We thus report a novel effect of reduced

DICERL1 function in cancer cells.
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Introduction

Endometrial cancer is the most common gynecological malignancy in the United
States and approximately 15% of patients suffer from recurrent disease (Creutzberg et al.
2000; Siegel et al. 2011). Discovery of the molecular lesions contributing to endometrial
tumorigenesis will provide opportunities for targeted therapies.

DICERL1 is an RNASE 111 helicase necessary to process double-stranded RNA
(dsRNA) in mammalian cells, the predominant form of which is microRNA (miRNA).
Primary miRNAs (pri-miRNAS) are cleaved by the enzyme DROSHA into pre-miRNAs.
Pre-miRNAs are transported out of the nucleus by EXPORTIN-5 and processed in the
cytoplasm by DICER1 and accessory proteins. Mature miRNAs go with AGO proteins to
pair imperfectly with the 3' UTRs of target mMRNAs and either impede translation or
degrade the mRNAs (Kim, Han and Siomi 2009). About 60% of human genes may be
regulated post-transcriptionally by miRNAs (Friedman et al. 2009; Lewis, Burge and
Bartel 2005). Given the key role of miRNAs in gene regulation it is not surprising
DICER1, DROSHA, and other RNAI components have been implicated as “tumor
suppressors” in solid tumors (Hill et al. 2009; Kumar et al. 2009; Melo et al. 2010; Melo
et al. 2009; Merritt et al. 2008). Germline loss-of-function mutations in DICER1 are
associated with the pleuropulmonary blastoma tumor susceptibility syndrome (Hill et al.
2009). The penetrance of inherited DICER1 mutations is, however, modest and it has
been proposed that DICERL1 is a haploinsufficient tumor suppressor (Slade et al. 2011). A
recent report on somatic DICER1 mutations in nonepithelial ovarian tumors further
supports the notion DICER1 is a haploinsufficient tumor suppressor (Heravi-Moussavi et

al. 2011). DICERL1 is an essential gene. The Dicerl homozygous knockout mouse is
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embryonic lethal (Bernstein et al. 2003; Kanellopoulou et al. 2005). Conditional deletion
of Dicerl in a mouse Kras lung cancer model caused homozygous knockout cells to die,
but heterozygous tumors to be more aggressive than wild type tumors (Kumar et al.
2009), consistent with Dicer’s role as a haploinsufficient tumor suppressor. Our group
previously showed lower DICER1 mRNA levels in endometrial cancer are associated
with recurrence and accelerated disease progression (Zighelboim et al. 2011).

The interferon response is a component of the innate immune response to
pathogens such as RNA viruses. Viral dsSRNA binding to Toll-like receptor 3 (TLR3) on
the cell membrane or IFIH1 (MDAJS), PKR, or RIG-1 in the cytoplasm triggers IRF3 and
NF«B translocation to the nucleus and transcription of early genes, specifically IFNp.
Secreted IFNP activates cell surface receptors by autocrine and paracrine means to induce
activation of STATL1 and expression of interferon stimulated genes (ISGs). Next, IFNa
genes are transcribed leading to downstream effects including global inhibition of
translation and apoptosis (Alexopoulou et al. 2001; Li and Tainsky 2011; Platanias 2005;
Wang and Carmichael 2004). Innate immunity and interferon responses in malignancies
are context dependent and often paradoxical. An immune response may mediate tumor
cell killing; interferons have been used to treat a variety of human cancers (Caraglia et al.
2009; Krejcova et al. 2009). However, inflammatory cytokines downstream of the
interferon response have been linked to cellular transformation (lliopoulos, Hirsch and
Struhl 2009). Cellular senescence can trigger an interferon response (Novakova et al.
2010), but increases in 1ISGs such as ISG15 and IFI44 are prognostic for breast and lung

cancer recurrence, respectively (Bektas et al. 2008; Lee et al. 2008). The interferon
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response and how it impacts tumor behavior is likely determined by a complex and
context dependent interaction of tumor cell specific effects and humoral responses.
Using short hairpin RNAs (shRNAs) we reduced DICERL levels in endometrial
cancer and normal cell lines by greater than 50%. mRNA and miRNA profiling studies
revealed global perturbations in RNA levels. The most striking change observed was an
increase in transcription of IFNB and ISGs characteristic of an interferon response. We
demonstrate that the interferon response in endometrial cells with reduced DICER1

results from accumulation of pre-miRNAs in the cell cytoplasm.

Materials and Methods
Cell culture

Four endometrioid endometrial cancer cell lines were investigated. AN3CA and
KLE were purchased from the American Type Culture Collection. The Ishikawa cell line
was a gift from Dr. Stuart Adler (Washington University School of Medicine,
Department of Internal Medicine). The MFE296 cell line was kindly provided by Dr.
Pamela Pollock (Queensland University of Technology, Brisbane) and the HT29 cell line
was kindly provided by Dr. Loren Michel (Washington University). The EM-
E6/E7/TERT cell line was originally reported by Mizumoto and colleagues (Mizumoto et
al. 2006) and kindly provided by Dr. Pamela Pollock. Cell lines were grown as
previously described (Byron et al. 2008) and authenticated as reported in (Dewdney et al.

2011).

Lentiviral transduction to create stable knockdowns
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DICER1 and GSK3p knockdowns were created in AN3CA, EM-E6/E7/TERT,
Ishikawa, KLE, and MFE296 cell lines as previously described (Ramsingh et al. 2010).
Virus production and infections were carried out according to established methods
(Stewart et al. 2003). DROSHA knockdown was created with virus kindly provided by
Michael Kuchenreuther in Dr. Jason Weber's laboratory (Washington University).

The short hairpin sequences used were:

shDcrA 5-GCTCGAAATCTTACGCAAATA-3'

shDcrC 5'-GCCAAGGAAATCAGCTAAATT-3

shDro2 5'- CGAAGCTCTTTGGTGAATAAT-3'

shDro4 5'- CCAGCGTCCATTTGTACTATT-3'

shGSK3pB 5-AGCAAATCAGAGAAATGAAC-3

shLuc 5'CCCTCTGAACATGAGCATCAA-3'

ShRFP 5-TGCTAAGGAGTTTGGAGACAA-3' (Moffat et al. 2006)

The shDcr3 hairpin construct was designed by Sigma-Aldrich (St. Louis, MO).

Reverse transcription polymerase chain reaction (RT-PCR)

Total cellular RNA was extracted utilizing the Trizol® method (Invitrogen,
Carlsbad, CA). Nuclear and cytoplasmic fractions were prepared using the Norgen Biotek
Cytoplasmic and Nuclear Purification Kit, according to the manufacturer's instructions
(Norgen Biotek, Thorold, Ontario, Canada). RNA concentration was determined with the
NanoDrop machine and software (Thermo Fisher Scientific, Wilmington, DE).
Complementary DNA (cDNA) was generated using 1 pg total RNA and the QuantiTect

Reverse Transcription Kit (Qiagen, Valencia, CA). Quantitative RT-PCR of pre-miRNAs
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and the DUSP6 control was performed using SYBR Green (BioRad) methods. The

primers used are listed below.

Pre-microRNA Primers Forward Reverse
PRELET7D 5" TTTAGGGCAGGGATTTTGC 3 5' TAAGAAAGGCAGCAGGTCGT 3'
PREMIR183 5'CGCAGAGTGTGACTCCTGTT 3 5 TCGTGGATCTGTCTCTGCTC 3
PREMIR450A 5" AAACTATTTTTGCGATGTGTTCC 3 5' TGCAAAATGTCCCCAATACA 3
DUSP6 5'CCCCTTCCAACCAGAATGTA 3 5' TGCCAAGAGAAACTGCTGAA 3

Expression of DICER1, DROSHA, IFI44, IFI44L, IFI6, IFIH1, IFNB1, MX1, and
OAS3 mRNAs, and LET7B, LET7D, MIR107, MIR183, MIR450A, MIR542 pri-
miRNAs was assessed by quantitative RT-PCR TagMan® assays (Applied Biosystems,
Foster City, CA) and the Applied Biosystems 7500 Fast real-time PCR system and
software. Human (-actin was used as the endogenous control as previously described
(Poliseno et al. 2010). Expression of let-7c, miR-10a, miR-16, miR-29b, and miR-126b
mature miRNAs was assessed by quantitative TagMan® microRNA assays (Applied
Biosystems, Foster City, CA) and the Applied Biosystems 7500 Fast real-time PCR
system and software. U6 was used as the endogenous control (Melo et al. 2009). Relative
expression levels were calculated using the delta-delta C; method (Chiappinelli et al.
2010).

All gPCR assays were performed in triplicate and then repeated with new cDNA
synthesis. Minus RT controls (reverse transcriptase negative cDNA synthesis reactions)

were carried out for at least one sample per plate.
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MicroRNA profiling

KLE and AN3CA cell lines were subjected to global microRNA profiling with
Nanostring™ technology (Seattle, WA). 749 miRNAs were evaluated using the nCounter

Human miRNA Panel CodeSet®.

RNA-Sequencing

PolyA+ RNA was purified from total RNA using the Dynabeads mRNA
Purification Kit (Invitrogen, Carlsbad, CA). Each sample was resuspended in 2 ul of 100
mM zinc acetate and heated at 60°C for 3 minutes to fragment the RNA by hydrolysis.
The reaction was quenched by the addition of 2 ul volumes of 200 mM EDTA and
purified with an Illustra Microspin G25 column (GE Healthcare). First strand cDNA was
made using hexameric random primers and SuperScript 111 Reverse Transcriptase
(Invitrogen, Carlsbad, CA), and the product was treated with E. coli DNA ligase, DNA
polymerase |, and RNase H to prepare double stranded cDNA using standard methods.
cDNA libraries were end-repaired with a Quick Blunting kit (New England BioLabs,
Ipswich, MA) and A-tailed using Klenow exo- and dATP. lllumina adapters with four
base barcodes were ligated to cDNA and fragments ranging from 150-250 bp were
selected using gel electrophoresis. Libraries were enriched in a 10-cycle PCR with
Phusion Hot Start Il High-Fidelity DNA Polymerase (Thermo Fisher Scientific,
Waltham, MA) and pooled in equimolar ratios for multiplex sequencing. Single read, 36-
cycle runs were completed on the lllumina Genome Analyzer I1x.

Sequenced reads were aligned to the human reference sequence (hg19 / NCBI

Build 37.1) using Tophat (Trapnell, Pachter and Salzberg 2009). Reads that aligned
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uniquely to the reference sequence were considered for gene expression quantification
with Cufflinks (Trapnell et al. 2010). Gene expression was normalized using the

Cufflinks provided option for quartile normalization.

Western blots

Western blot analysis of DICER1 was performed as previously described (Byron
et al. 2008; Chiappinelli et al. 2010). GAPDH was used as a loading control. Antibodies
used were as follows: rabbit anti-DICER1 H212 (sc-30226, Santa Cruz Biotechnology,
Inc., Santa Cruz, CA, 1:200), goat anti-rabbit IgG-HRP (sc-2030, Santa Cruz
Biotechnology, 1:2500), rabbit anti-DROSHA (ab12286, Abcam, 1:750), mouse anti-
GAPDH (NB615, Novus Biologicals, Littleton, CO, 1:4000), goat anti-mouse 1gG-HRP
(sc-2005, Santa Cruz Biotechnology, Inc., Santa Cruz, CA, 1:5000), rabbit polyclonal
anti-STAT3 H-190 (sc-7179, Santa Cruz Biotechnology, 1:200), rabbit anti-phospho-
STAT3 Ser727 (9134, Cell Signaling Technology, 1:500), rabbit anti-phospho-STAT3
Tyr705 EP2147Y (04-1059, Millipore, 1:500). Band intensities were quantified using the

program ImageJ (National Institutes of Health).

ELISA

ELISA was performed with the Verikine-HS™ Human Interferon Beta Serum

ELISA kit (PBL Interferon Source).

Cell proliferation, wound healing and colony formation assays
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For cell proliferation assays 100,000 cells were plated in 6-well plates in
triplicate. Cells were trypsinized and counted using trypan blue staining and a
hemocytometer every 24 hours for 120 hours.

Wound healing assays were performed using AN3CA and KLE cells. Cells were
grown to confluency then scratched down the middle of the plate. Cells were
photographed every 4-6 hours for up to 96 hours (GE Healthcare IN Cell Analyzer 2000).
The area of the "scratch” (area not filled in) was determined for each time point.

Growth of endometrial cancer cell lines in soft agar was determined as follows:
First a base layer of 0.5% agar was plated in media, then a top layer of 0.3% agar in
media with 30,000 cells per well was plated in 6-well dishes. After 4 weeks, cells were

stained with crystal violet and imaged. Colonies were counted.

Interferon stimulation

Polyl:C (Invitrogen, Carlsbad, CA) was diluted into the media of cells or

transfected using the Dharmafect reagent (Thermo Fisher Scientific, Waltham, MA).

Let-7 inhibition

Let-7 inhibition was performed as previously described (Robertson et al. 2010).
The CHECK-2 vector with the let-7b target site cloned into the 3' UTR was a kind gift

from Annaleen Vermeulen (Thermo Fisher Scientific).
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Results and Discussion
Stable knockdown of DICER1

We used shRNA and lentiviral infection to stably knock down DICERL1 in four
endometrial cancer cell lines and a transformed normal endometrial epithelium cell line;
AN3CA, Ishikawa, KLE, MFE296, and EM-E6/E7/TERT. Of five hairpins tested, two
(shDcrA and shDcrC) resulted in substantial reductions in DICER1 protein levels (Figure
1A). Knockdowns were generated with shDcrA and shDcrC hairpins and shLuc and
shRFP controls. Stable knockdown of DICER1 (<50% of controls) persisted for up to 30
passages for all cell lines, with the exception of MFE296, for which knockdown was
unstable (Figure 1B and data not shown). In KLE, DICER1 was reduced to ~10% of
controls, suggesting that sufficient ShRNA processing can occur with substantially
reduced DICERL1 activity (Figure 1B). An additional shRNA targeting the DICER1 3'
UTR (shDcr3) was used in KLE cells leading to greater than 50% reduction in DICER1
protein levels (Supplemental Figure 1).

Cell doubling times were similar in DICER1 knockdowns and control cells
(Supplemental Figure 2). Cell migration was increased in AN3CA shDcr cells (Figure
1C) but no difference was seen in KLE shDcr cells. The Ishikawa and EM-E6/E7/TERT
cells could not be evaluated in the cell migration assay because they did not grow as
monolayers on glass slides (Supplemental Figure 2). In both KLE and EM-E6/E7/TERT,
shDcr cells formed more colonies in soft agar than control cells (Figure 1D and
Supplemental Figure 2). These in vitro assays for cancer-associated phenotypes suggest

that reduced DICERL1 in endometrial cancer cells can result in increased cell motility and
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anchorage independence. This increased cell motility was previously shown in breast
cancer cell lines and attributed to a reduction in miR-200 and upregulation of genes
involved in epithelial mesenchymal transition (Martello et al. 2010).

We profiled miRNAs globally in shDcr cells to identify reductions in particular
miRNAs that might contribute to cancer-associated phenotypes. Nanostring™ miRNA
profiling studies in AN3CA cells as well as KLE knockdowns and controls revealed 133
of 749 miRNAs interrogated were expressed at appreciable levels. When the average
levels of miRNA expression in the two KLE knockdowns were compared with the KLE
shLuc control, 64% of the 133 miRNAs showed reduced levels in the knockdowns
(Supplemental Table 1 and Figure 2A). miR-200 was not expressed in endometrial cancer
cell lines (Supplemental Table 1) so could not be responsible for the cancer-associated
phenotypes mentioned above. We observed clear increases in a subset of miRNAS
(Figure 2A) as previously described in colon cancer cells with reduced DICERL1 protein
(Melo et al. 2009). Similar effects on miRNA abundance were seen with both
knockdowns in the KLE cell line; however, the magnitude of changes in miRNA levels
seemed greater in the shDcr3 knockdown than in the shDcrA knockdown. For the
shDcrA knockdown, 76/133 miRNAs were less than in shLuc control (average log, fold
change -.502). With the shDcr3 knockdown, 95/133 miRNAs were less abundant than in
the shLuc control with an average -.828 fold change (log,). KLE shDcrA cells were
evaluated at passage 15 and shDcr3 cells at passage 5. The more pronounced effect on
miRNA levels seen with the shDcr3 knockdown could be attributable to more efficient

targeting of DICER1 with the shDcr3 construct, greater reduction in DICERL1 protein
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levels at earlier passages, or compensation for DICERL1 as shDcrA cells were passaged
(e.g. stabilization of miRNAS).

gRT-PCR of five miRNAs previously shown to be expressed in normal and
cancerous endometrium (Lu et al. 2005) confirmed the relative abundance reported by
Nanostring™ profiling in AN3CA and KLE cells. qRT-PCR in pooled endometrial
cancers confirmed the rank order of five miRNAs reported by Nanostring™
(Supplemental Table 1 and Figure 2B). miR-16 was the highest expressed of the five
miRNAs by profiling and gRT-PCR. miR-29b was the lowest expressed by both profiling
and qRT-PCR. qRT-PCR confirmed the Nanostring™ profiling and the functional
reduction of DICERL1 processing, as five mature miRNAs were significantly decreased in
KLE shDcr cells (Figure 2C). pri-miRNAs, the initial miRNA transcripts that are
processed by DROSHA, were not significantly altered, showing that effects on mature

miRNAs are due to a defect in miRNA processing, not transcription (Figure 2D).

DICER1 knockdown effects on mRNA expression: upregulation of interferon response

genes

To further assess the functional consequences of DICER1 knockdown, we
profiled mMRNA expression using RNA-Sequencing (RNA-Seq) in KLE cells (Trapnell et
al. 2010). Out of 9935 genes expressed in KLE by RNA-Seq, 584 were upregulated more
than twofold in shDcr cells (Supplemental Table 2). Gene Ontology analysis showed
enrichment for functions associated with response to virus or other pathogens when the

upregulated gene set was analyzed (Supplemental Table 3). A striking number of
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interferon stimulated genes (ISGs) were upregulated (17 of the 28 present in the RNA-
Seq data set) (Figure 3A). The probability of 17 genes at random being upregulated in
this set is quite low (p<1.2 * 10E-14). gRT-PCR confirmed upregulation of six out of
seven ISGs tested (Figure 3B). Similar increases in six ISG transcripts were seen in
independent knockdowns, providing biologic validation of the effect of reduced DICER1
in KLE cells (shDcrA and shDcr3, Figure 3B; shDcrC, data not shown). To explore a
possible mechanism for interferon response activation in shDcr cells, we evaluated
MRNA levels of transcription factors that might target ISGs. No transcription factors
predicted to bind upstream of the activated ISGs were overexpressed in shDcr cells by
RNA-Seq (data not shown). Direct miRNA effects on ISG transcript levels were ruled out
as the ISGs have no known targets in their 3' UTRs for miRNAs expressed in KLE
(Supplemental Table 4).

This increase in ISGs appeared to be a canonical interferon response (Platanias
2005; Wang and Carmichael 2004). To determine if the upstream IFN gene was
upregulated and activating ISGs, we assessed IFN mRNA and protein levels in DICER1
knockdowns. RNA-Seq did not detect expression of IFNAL in any of the cell lines
investigated, as would be expected for a low abundance transcript. IFN/L transcript was,
however, detectable using qRT-PCR. Two shDcr hairpins caused upregulated IFNS1
transcript compared to shLuc (Figure 3C). The control shRFP hairpin did not
significantly upregulate IFNAL while the shDcrC hairpin did (data not shown). shRNA
alone does not trigger the interferon response (Gondai et al. 2008; The RNAi Consortium

(TRC) 2010). We tested the possibility that knockdown of a cell-essential gene might
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activate the interferon response by measuring IFNSL transcript levels in KLE shGSK3p3
cells. Because neither the shGSK3p nor the control shLuc and shRFP hairpins activate
the interferon response, we conclude that the interferon response seen is a DICER1-
specific effect. The IFNL transcript was upregulated at least twofold in DICER1
knockdowns in two additional endometrial cancer cell lines, AN3CA and Ishikawa, and
an immortalized normal endometrial cell line, EM-E6/E7/TERT (Figure 3C). The
increase in IFNL transcript due to reduced DICERL1 led to increased IFNf protein levels
in the media of KLE shDcr cells (Figure 3D). A similar increase in IFNp protein was
observed in EM-E6/E7/TERT shDcr cell media (Figure 3E), showing that reduced
DICERL1 leads to increased IFNf expression in both normal and cancer endometrial cell

lines.

DICER1 knockdown causes a canonical interferon response

As some cancer cell lines have abrogated interferon responses (Li and Tainsky
2011), we postulated that activation of the interferon response in KLE might be an
artifact of a mutated interferon response pathway. However, the interferon response is
intact in the KLE endometrial cancer cell line. Transfection with polyl:C, a dSRNA
analog, activated the interferon response (Figure 4). IFNS1 transcript levels rose rapidly
and peaked at six hours, with concomitant increases in 1ISGs (Figure 4B). In addition, a
cytoplasmic receptor sensing dsRNA (IFIH1) was overexpressed in KLE cells with low

DICER1 (Figure 3B). The interferon response in KLE shDcr cells upregulates the same
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genes as that in KLE cells transfected with polyl:C, albeit with a smaller magnitude
(Figure 3B, 4B).

We used media transfer to determine the biological activity of secreted IFNf3
protein in the media of shDcr cells. HT29 colon carcinoma cells exhibit a strong
interferon response (Chelbi-Alix et al. 1991; The RNAi Consortium (TRC) 2010),
activating IFNp and 1SGs when polyl:C is either added to the cell culture media or
transfected (Figure 5A, Supplemental Figure 3). Transfer of media from KLE shDcr3
cells to HT29 cells stimulated an interferon response, while shRFP cell media did not
(Figure 5B). Media from EM-E6/E7/TERT shDcr cells similarly stimulated 4/6 1SGs
(Figure 5C), indicating DICER1 knockdown causes an interferon response in both normal
and cancerous endometrial cells. When media from KLE shDcr3 cells was transferred to
KLE shRFP cells, no appreciable interferon response was seen (Supplemental Figure 4).
This difference could be due to the relative strength of interferon responses in KLE and
HT29 cells (Figure 4B, 5A). KLE shDcr3 cells in culture reflect long-term, continual
IFNP stimulation and KLE controls may not respond to a short stimulus with conditioned

medium as HT29s do.

Pre-miRNAs build up in the cytoplasm and may cause an interferon response

To determine a mechanism for activation of the interferon response, we focused
on a candidate miRNA. Members of the let-7 miRNA family, known for their tumor-
suppressive roles (Johnson et al. 2005; Kumar et al. 2008), were significantly reduced in
shDcr cells (Figure 2C and Supplemental Table 1). The let-7 family downregulates the

cytokine IL6, which when activated leads to phosphorylation of STAT3 by NF«B,
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resulting in an inflammatory response linked to cellular transformation (lliopoulos,
Hirsch and Struhl 2009). To determine whether let-7 was responsible for the interferon
response, we inhibited let-7 in KLE cells (Supplemental Figure 5A). No increase in
IFNL was observed when let-7 was inhibited (Supplemental Figure 5B). Thus, let-7
alone is not responsible for the activation of the interferon response.

dsRNA (usually viral) activates the interferon response in mammalian cells. Our
studies suggest a possible mechanism for interferon response upregulation by reduced
DICERL1. Mature miRNAs are too short (averaging 22 nt) to elicit the interferon response
through viral dsRNA sensors (Kumar and Carmichael 1998; Wang and Carmichael
2004). Their precursor molecules, pre-miRNAs, are larger (~70 nt) and as such could be
recognized by cytoplasmic dsRNA sensors IFIH1, PKR, or RIG-1 (Yang et al. 2001). We
determined the subcellular location of pre-miRNAs in control and shDcr cells (Figure
6A). Pre-let7d, pre-miR183, and pre-miR450a were increased in the cytoplasmic fraction
of shDcr cells. The corresponding mature miRNAs were decreased in shDcr cells
(Supplemental Table 5), reflecting reduced DICER1 processing that results in buildup of
pre-miRNAs and reduction of processed, mature miRNAs. Buildup of pre-miRNAs in the
cytoplasm may elicit the canonical interferon response. To determine the specificity of
this effect, we knocked down DROSHA in the KLE cell line (Figure 6B). Knockdown of
DICER1 or DROSHA causes a reduction in mature miRNAs because of reduced
processing. However, only DICER1 knockdown results in a buildup of pre-miRNAs.
Lower levels of DROSHA did not trigger an interferon response as indicated by IFNSL
levels (Figure 6C). Interestingly, DROSHA knockdown appeared to decrease IFNf1

transcript levels. This could point to a role for pre-miRNAs in modulating the interferon
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response. Because DROSHA knockdown results in fewer pre-miRNAs (due to reduced
pri-miRNA processing), this finding demonstrates that pre-miRNA buildup, rather than a
decrease in mature miRNAs, causes the interferon response.

Our data point to the accumulation of pre-miRNAs in the cytoplasm as the trigger
for the interferon response we observed in cells with reduced DICERL activity (Figure 7).
This is unlikely to be an effect of the system used; while SIRNAs may activate the
interferon response in mammalian cells (Sledz et al. 2003), sShRNAs do not (The RNAI
Consortium (TRC) 2010). The immune response to dsRNA is highly conserved, with
organisms such as plants and fungi enacting an RNAi-based response to viral RNA
(Choudhary et al. 2007). Prior studies demonstrating that overexpression of pre-miRNAs
can activate the interferon response in zebrafish (Dang et al. 2008) and that so-called
"long hairpin RNAs" similarly activate the innate immune response (Gantier, Baugh and
Donnelly 2007) are consistent with our findings that build-up of pre-miRNAs elicits an
interferon response. It remains unclear whether or how the interferon response is related
to cancer phenotypes such as increased cell migration and growth in soft agar we
observed in our DICER1 knockdown cells.

While DICER1 homologs are required for the immune response in many
eukaryotes including D. melanogaster (Ding 2010), several lines of investigation indicate
DICER1 may not be necessary for the interferon response in mammals (Wang and
Carmichael 2004). Li and Tainsky evaluated the effects of increased DICERL in Li-
Fraumeni fibroblasts with and without an intact interferon response and showed that
overexpression of DICER1 can activate the interferon response (Li and Tainsky 2011).

The difference in responses seen in fibroblasts in which DICER1 levels were increased
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and epithelial cells with reduced DICERL1 could reflect cell-type specific differences or
potentially opposing functional consequences of excess and deficient DICERL activity in
mammalian cells. DICER1 knockdown cell lines have increased susceptibility to
influenza virus infection, implying DICERL1 is necessary for recognizing viral dSSRNA
(Matskevich and Moelling 2007). However, the cancer cell lines we studied were not
challenged by virus. In the absence of viral infection, pre-miRNAs have a stimulatory
effect on the interferon response. The relationship between alterations in the miRNA
processing machinery and the mammalian interferon response may point to a previously

unrecognized role for DICERL1 in tumorigenesis.
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CHAPTER FOUR: Effect of Reduced DICER1 on DNA
Methylation in Endometrial Cancer Cells
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Foreword

Having established a stable DICER1 knockdown in endometrial cancer cell lines
that reduced DICERL protein to levels comparable to what is seen in primary tumors and
had physiological effects (Chapter Three), | undertook a series of experiments to assess
the effect of DICER1 depletion on transcriptional silencing, specifically DNA
methylation. The RNAI system is involved with heterochromatin formation in the yeast S.
pombe; this is conserved in other organisms such as flies and worms. Although the role of
RNAI in chromatin structure has not been fully established in vertebrates, several
components of the RNAI machinery (AGO2, DICER1) have been localized to the
nucleus in mammalian cells (Rimel et al. 2012; Weinmann et al. 2009). Small RNAs
complementary to the promoter regions of genes can silence or activate transcription,
depending on the gene (Hawkins et al. 2009; Li et al. 2006; Morris et al. 2004), and
mMiRNAs complementary to promoter regions can induce transcriptional silencing (Kim et
al. 2008). HCT116 colon cancer cells with mutated DICER1 exhibit a loss of methylation

and a gain of expression at methylated promoters of genes (Ting et al. 2008).

Targeted analysis of CpG islands frequently methylated in endometrial cancer

One of the first experiments undertaken was to determine if reduced DICERL1 and
changes in small RNAs could be involved in MLH1 transcriptional silencing. | used a
highly quantitative approach (Pyrosequencing) to assess methylation in the MLH1 5’
region, comparing DICER1 knockdowns and controls. Two cell lines in which MLH1 is
heavily methylated and MLH1 is not expressed (AN3CA and MFE-296) and two in

which MLH1 is unmethylated and expressed (Ishikawa and KLE) were evaluated. No
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change in methylation was observed in the four endometrial cancer cell lines when
DICER1 was knocked down (Figure 1). Figure 1 presents an average of methylation at
four different CpG sites in the MLH1 regulatory region. Although not entirely conclusive,
the stable methylation pattern at the MLH1 regulatory region in DICER1 knockdowns
after many cell doublings (>15 passages) did not support a role for DICER1 and small
RNAs in determining MLH1 promoter methylation and transcriptional silencing.
Evaluation of the methylation status of four other CpG islands (RSK4, SESN3,
SFRP1, TITF1) revealed no changes based on COBRA, with the possible exception of
RSK4 for which subtle variation was evident (Figures 2-3). Note that in Figure 3, the
digestion pattern of unmethylated (higher) and methylated (lower bands) is the same in
control and shDcr cells. However, in Figure 2, there does seem be more DNA in the
unmethylated (higher band) for shDcr cells in the Ishikawa and KLE cell lines. This is a
subtle difference but is interesting as RSK4 is located on the X chromosome, one copy of
which is completed methylated in females (i.e. in uterine cancer cell lines). RSK4
methylation is frequently altered in cancers (Dewdney et al. 2011). There are contrasting
reports on DICERY’s role in X inactivation; DICER1 may be involved in X chromosome
silencing (Nesterova et al. 2008; Ogawa, Sun and Lee 2008), but other research shows
that the X chromosome can be inactivated in the absence of Dicer (Kanellopoulou et al.

2009).

Genome-wide methylation analysis
I moved on to a series of experiments to assess the effects of DICER1 depletion

on DNA methylation throughout the genome. Next-Generation Sequencing methods for
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profiling DNA methylation continue to evolve. However, when | began the genome-wide
methylation studies | chose the MBD-Seq method (Invitrogen MethylMiner™), in which
a methyl-binding-domain protein is used to pull down methylated DNA. This DNA from
the pull down is used to generate libraries for Next-Generation Sequencing. Again, this
work was a collaboration with Dr. Michael Brent's laboratory (The Center for Genome
Sciences & Systems Biology, Washington University in St. Louis). Prior to library
construction | demonstrated that | was able to greatly enrich for methylated DNA by
assessing a test region (the MLH1 promoter) using DNA from one cell line with
methylation at the MLH1/EPM2AIP1 bidirectional promoter, and one lacking
methylation at this region (Figure 4). In Figure 4, AN3CA is completely methylated,
Ishikawa is unmethylated, and a 50/50 mix is about half methylated, as would be
expected. When | performed Methylminer™ on the 50/50 mix, only the methylated DNA
was recovered (far right of Figure 4, "Cap"). However, sequencing of the isolated KLE
DNA (three controls and two DICER1 knockdowns, the same group of cell lines
subjected to RNA-Sequencing in Chapter Three) did not provide deep enough coverage
to make conclusions about the amount of DNA methylation in control and DICER1
knockdown cells. I moved on to a different method, MeDIP, collaborating with Dr. Ting
Wang's laboratory (The Center for Genome Sciences & Systems Biology, Washington
University in St. Louis). All of the library preparation data analyses were performed by
Dr. Wang and his laboratory members.

MeDIP is similar to chlP-Seq in that it uses an antibody specific to methylated
DNA to pull it down, then subjects the DNA to Next-Generation Sequencing. From the

MeDIP analysis by Ting Wang, | attempted to validate methylation changes at several
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CpG islands that showed a loss of methylation in the shDcr cells and a gain of expression
in the mRNA-Sequencing (Chapter Three). However, none of these were methylated by
COBRA (Table 1). Several interesting findings came from the initial analysis of the KLE
shLuc and shDcrA MeDIP libraries. First, the 20 miRNAs that showed the greatest
decreases in abundance based on miRNA profiling (see Chapter Three) appeared to have
lost methylation at their gene bodies in shDcr cells relative to controls (Figure 5). While
promoter methylation is associated with loss of transcription, gene body methylation is
associated with active transcription. If small RNAs were targeted back to their
complementary DNA to initiate chromatin silencing and DNA methylation, the gene
body is the region that would be affected. | undertook studies to validate the MeDIP data
using alternative methods, focusing on six miRNAs that were decreased in the miRNA
profiling as well as one control mMiIRNA, and assessed methylation at miRNA gene bodies
(Table 2). Unfortunately, while MeDIP showed a decrease of methylation at their gene
bodies in shDcr cells, I could not confirm this with several methods, including COBRA,
bisulfite cloning, and pyrosequencing. In addition to assessing the methylation status of
the miRNAs in the DICER1 knockdown and control lines, | quantified expression,
focusing on the primary transcripts (pri-miRNAs). The expression levels for all seven of
these were unchanged, implying that any changes in methylation did not affect
transcription (Chapter 3, Figure 2). Figures 6 and 7 show representative COBRA,
bisulfite cloning, and pyrosequencing at the MIRLET7D gene. The second CpG, assessed
by both COBRA and bisulfite cloning, is 100% methylated in both cell types, but the first
shows a very small decrease in shDcr cells. This decrease was within the margin of error,

so | concluded that these results were false positives.
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To obtain results with fewer false positives, | used the MRE/MeDIP combination
method for sequencing the methylome with Dr. Ting Wang's laboratory. The following
details my observations on DNA methylation in shDcr and control cells using this
method, considered a "state-of-the-art" approach. This work is currently in progress, and
my involvement will be limited to the next two months. However, what follows is a draft

of our observations thus far.

96



First draft for consideration for submission to PloS One
Effects of reduced DICER1 on DNA methylation in endometrial cancer cells
Katherine B. Chiappinelli** , Bo Zhang®, Paul J. Goodfellow,*?and Ting Wang®
'Department of Surgery, *Division of Gynecologic Oncology, *Department of Genetics,

Center for Genome Sciences and Systems Biology, Washington University in St. Louis

Katherine Chiappinelli is supported by the Siteman Cancer Center Cancer Biology
Pathway Fellowship and Molecular Oncology Training Grant T32 CA113275. The
experimental work was supported by RO1CAQ071754, P5S0CA134254 and a grant from the
Foundation for Barnes-Jewish Hospital (PJG). B.Z. is supported by NIDA’s R25 program
DA027995. T.W. is supported by NIH grant 5SU01ES017154, the March of Dimes
Foundation, the Edward Jr. Mallinckrodt Foundation, P5S0CA134254 and a grant from the

Foundation for Barnes-Jewish Hospital.

The authors declare that there are no conflicts of interest.

97



Abstract

Background/Aims: DNA methylation is a stable epigenetic silencing mark in mammalian
cells. Cytosine methylation is associated with transcriptional silencing at gene promoters,
but with transcriptional activation at gene bodies. In addition, DNA methylation serves to
silence much of the repetitive DNA in the human genome. The RNA interference (RNAI)
machinery is involved in establishment and maintenance of chromatin and transcriptional
silencing, specifically at repetitive elements, in S. pombe and other organisms. There is
some evidence for RNAI involvement in transcriptional silencing in mammalian cells.
The DICER1 protein, a master regulator of RNAI in mammals, as it is necessary to
process microRNAs, is downregulated in many solid tumors and has been characterized
as a tumor suppressor. As DNA methylation also changes in cancers, including a global
loss of methylation (especially at repetitive regions), there could be a connection between
the RNAI system and DNA methylation in human cells. We sought to determine the
effect of DICERL1 depletion on DNA methylation in endometrial cancer cells.

Methods: A stable knockdown of DICER1 was established in the KLE endometrial
cancer cell line. MRE and MeDIP were used to map methylation in shLuc (control) and
shDcrA (knockdown) cells. Findings were validated by COBRA, pyrosequencing,
bisulfite cloning, and reduced representation bisulfite sequencing.

Results: We found that genome-wide, the effects of DICER1 on DNA methylation were
minimal. However, DICERL1 depletion led to a specific loss of methylation genome-wide
at the Alu family of repetitive elements. Along with other recent evidence, this finding

points to a role for DICERL in processing and perhaps silencing of Alu elements.
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Introduction

The epigenetic modification DNA methylation is critical for transcriptional
silencing of tissue-specific genes, repressing repetitive regions in the genome, silencing
the second X chromosome in mammalian females, and regulating imprinted genes. As
methylated DNA replicates, the maintenance methyltransferase enzyme DNMT1 adds
methyl groups to the new strand of DNA as it is synthesized. Methyl-CpG-binding
proteins bind methylated DNA and establish a closed chromatin structure. This limits
access to DNA by transcription factors or transcription machinery and results in
transcriptional silencing (Allis et al. 2007).

A hallmark of cancer is the disruption of normal regulation of epigenetic
processes and the packaging of genes in chromatin. Cancer cells exhibit
hypermethylation of certain CpG islands, long stretches of CpG dinucleotides that remain
unmethylated to protect the promoter region of a gene from genetic mutations or
epigenetic silencing. Aberrant methylation of these CpG islands may silence tumor
suppressor genes (Jones et al. 1999). Cancer cells undergo a global decrease in DNA
methylation, turning on genes that are silenced in normal cells, de-repressing
transposable elements, and contributing to genomic instability. However, it is unclear
what mediates these changes (Lujambio and Esteller 2009).

The DICERL1 protein controls another aspect of epigenetic regulation, small
RNAs. DICERL is required for miRNA processing (Hammond 2005; Kim, Han and
Siomi 2009). miRNAs are crucial for developmental and tissue-specific regulation at the
translational level, and deregulation of specific miRNAs has been implicated in several

diseases. Downregulation of DICER1 and other RNA interference (RNAI) pathway
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components is associated with transformation and tumorigenesis (Bahubeshi,
Tischkowitz and Foulkes 2011; Grelier et al. 2009; Heravi-Moussavi et al. 2011; Karube
et al. 2005; Sand et al. 2010; Slade et al. 2011). The current data point to a
haploinsufficient tumor suppressor role for DICERL1 in solid tumors. However, except for
isolated examples such as regulation of miR-200 in metastatic breast cancer (Martello et
al. 2010), it is unclear why and how DICERL1 acts as a tumor suppressor.

Small RNAs may also be involved in transcriptional gene silencing (TGS). In
plants, yeast, and protozoa, genes are transcriptionally silenced by complementary small
RNAs, processed by DICER1 and targeted to the DNA by the Argonaute proteins. Recent
findings suggest that this process may be conserved in humans. Evidence for DICER1
and small RNA involvement in mammalian TGS includes the nuclear localization of
proteins involved in small RNA processing and targeting, such as AGO2 (Weinmann et
al. 2009). Recent work suggests that DICER1 miRNA processing may also be at work in
the nucleus (Giles, Ghirlando and Felsenfeld 2010; Sinkkonen et al. 2010). Research
from our group has shown that DICER1 localizes to the nucleus. ERK phosphorylates
DICERL1 in C. elegans (Arur et al. 2009) and human cells, prompting nuclear localization
(Rimel et al. 2012). At present phosphorylated DICER1's function in the nucleus is
unknown.

Data from mammalian cells implicates DICERL in the control of CpG island
methylation. In HCT116 colon cancer cells, a set of genes that normally had
hypermethylated CpG islands showed demethylation and expression when the cells were
transfected with a DICER1 hypomorph (Ting et al. 2008). Transfecting human cells with

dsRNA complementary to the promoter regions of specific genes can epigenetically
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silence or activate, depending on the gene. This process requires AGO2 (Hawkins et al.
2009; Li et al. 2006; Morris et al. 2004). This work implies that the function of small
RNAs in human cells is analogous to their function in plant cells, but more work is
necessary to determine whether it is a common mechanism or an exception. In addition,
the miRNA miR-320 has been shown to initiate transcriptional gene silencing (TGS) of
the POLR3D gene (Kim et al. 2008). This study demonstrated a novel role for miRNAs,
which were previously thought to be involved in post-transcriptional gene silencing
(PTGS): either degrading mRNA or inhibiting translation.

We sought to determine DICER1’s effect on methylation and thus whether small
RNAs are involved in transcriptional silencing in human cells. We knocked down
DICERL1 in endometrial cancer cell lines using ShRNAs and assessed changes in global
methylation using Next Generation Sequencing methods, MeDIP and MRE. shRNA to
DICER1 was delivered via lentiviral infection and stable selection. Sustained, long-term
reduction in DICERL1 levels achieved using lentivirus short hairpin RNAs should mimic
the reduced expression that is a feature of many human cancers and is associated with
adverse outcomes (Chiappinelli et al. 2012; Zighelboim et al. 2011). We found that while
DICER1 knockdown had little effect on genic regions, repetitive elements were affected

differently, with the Alu family in particular losing methylation.

101



Methods

Cell culture

Five endometrioid endometrial cancer cell lines were investigated. AN3CA, KLE, and
RL952 were purchased from the American Type Culture Collection. The Ishikawa cell
line was a gift from Dr. Stuart Adler (Washington University School of Medicine,
Department of Internal Medicine). The MFE296 cell line was kindly provided by Dr.
Pamela Pollock (Queensland University of Technology, Brisbane). The EM-E6/E7/TERT
immortalized normal endometrial cell line was originally reported by Mizumoto and
colleagues (Mizumoto et al. 2006) and kindly provided by Dr. Pamela Pollock. Cell lines
were grown as previously described (Byron et al. 2008) and authenticated as reported in

(Dewdney et al. 2011).

Preparation of Nucleic Acids

All primary endometrial tumors and normal endometrium specimens analyzed
were collected as part of IRB-approved studies (Washington University Medical Center
Human Research Protection Office protocols HRPO-91-0507, -93-0828 and -92-0242).
Histologic grading and typing were performed by gynecologic pathologists. Staging was
determined using 1988 criteria from the International Federation of Gynecology and
Obstetrics. Tissue specimens and blood were obtained at the time of surgery and stored at
-70° C until nucleic acids were extracted. Genomic DNA from tumor tissues, normal
endometrium, and cell lines was extracted using the DNeasy Tissue kit (Qiagen,
Valencia, CA). Total cellular RNA was extracted from tumors and cell lines using the

Trizol reagent (Invitrogen).
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M&M, a Statistical Framework to Detect Differentially Methylated Regions (DMRSs)
Using MeDIP-seq and MRE-seq Data

MeDIP-Seq and MRE-Seq were performed as described in (Harris et al. 2010;
Maunakea et al. 2010). Previous methods for MeDIP-seq and MRE-seq analysis treated
each data type independently and did not take full advantage of the complementary
nature of the data. The new statistical framework (M&M) used in this publication was
developed by Ting Wang’s laboratory. M& M assumes that the proportion of MeDIP
reads expected in any given genomic location is equal to the proportion of methylated
CpGs in that location, while the proportion of MRE reads expected in any given genomic
location is equal to the proportion of unmethylated CpGs, and the observations of MeDIP
reads and MRE reads each follow a Poisson distribution. The sum of methylated CpGs
and unmethylated CpGs is the total number of CpGs which is a constant for any given
genomic location. Under these constraints, DMR detection is transformed into a modified
T-statistic test that integrates both MeDIP and MRE. Results thus far strongly suggest
that M&M outperforms existing tools. A manuscript describing M&M is in preparation

by the Wang laboratory.

Bisulfite Conversion

DNA bisulfite conversion was performed using a commercially available kit (EZ
DNA Methylation Gold™ Kit, Zymo Research, Orange, CA). 200 ng of gDNA were

converted for each sample.
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Methylminer™ Preparation

DNA from AN3CA and Ishikawa cell lines was subjected to Methylminer™

preparation (Invitrogen) according to the manufacturer’s instructions. DNA isolated
before, during, and after the prep was assessed using MLH1 COBRA as previously
described (Chiappinelli et al. 2010). The primers used were as follows: Outer F 5’-
tttTtTaaTtTtgtgggttgTtggg-3°, Outer R 5’-AAaAAccacaaAaAcaAAAccaa-3’, Nested F
5’-TtgTTCgTtaT Ttagaaggata-3’, Nested R 5’-tctActcctattAActAAatatttc-3’. The
resulting 115 bp amplicon was digested with BstUl and Mbol (New England Biosystems)

to produce 83 and 32 and 76 and 39 bp bands, respectively.

COBRA

COBRA was performed as previously described (Chiappinelli et al. 2010). The
primers used for the RSK4 gene were as follows: Outer F 5’-tggaTttgagagggTTtgTtg-3’,
Outer R 5’-tcaatAAaActtAAAAaAattccce-3’, Nested F 5’-gagggT TtgTtgagTatgtgtga-3°,
Nested R 5’-AaAattccccaActtAAAAtAaaAA-3’. The resulting 156 bp amplicon was
digested with Zral (New England Biosystems) and if methylated produced 123 and 33 bp
fragments. The primers used for the PY2B4 (Sestrin-3) gene were as follows: Outer F 5’-
ggTagaTttgaTtggggaa-3’, Outer R 5’-cataatAcacaAtcctAtAAccaC-3’, Nested F 5’-
gggtaggggagT TaggtTt-3°, Nested R 5’-ctAAActccaAtAaAcacaAaAct-3’. The resulting
218 bp amplicon was digested with BstUI and Hinfl (New England Biosystems) to
produce 178 and 40 and 172 and 46 bp bands, respectively. The primers used for the

SFRP1 gene were as follows: Outer F 5’-gggaTCGggTagTagTttg-3’, Outer R 5°-

AcaAcaccatcttcttAtaAcc -3’, Nested F 5’-GgaggtT T Ttggaagttt-3’, Nested R 5°-
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caCGcactAaAAtAACttAALA-3’. The resulting 265 bp amplicon was digested with BstUI
and EcoRV (New England Biosystems) to produce 214 and 51 and 110, 56, 35, 31, 29,
and 2 bp bands, respectively. The primers used for the TITF1 gene were as follows: Outer
FS-TTGTTAGTTTTTTTTTGTGGT-3’, Outer R 5’-
AAACTCTTACTCCCTCAATACA -3’, Nested F 5’-TTTGGGAAGGAAGGGTAA-3’,
Nested R 5’-AAAACCAACTTCTATAATAACATTC-3’. The resulting 225 bp amplicon
was digested with BstUIl and Mbol (New England Biosystems) to produce 100, 63, and
62, and 115 and 110 bp bands, respectively. The primers used for the MIRLET7D gene
were as follows: Outer F 5’-gaaaTaaaaTtTaaagaaTatgaTTt-3’°, Outer R 5’-
catttAaaaaaacctacaAaaa-3’, Nested F 5’-aaaatgggttT Ttaggaagagg-3’, Nested R 5°-
cttacaccaaaAcaaaAtaAcaaAAa-3’. The resulting 149 bp amplicon was digested with Taql
(New England Biosystems) to produce 111 and 38 bp bands. Primers and restriction
digests used for COBRA assays to validate putative M+M differentially methylated

regions are listed below.

Amplicon
Assay Primers* Size Restriction Digest Products
NDUFA6 Rd1For 5' gtttggag TttttttTTtgaT 3' 265bp Acil (CCGC) 149,91, & 25 bp
Rd1Rev 5' ctaaActAtttccaAAAtAacaAa 3' BstBI (TTCGAA) 192 & 73 bp
Rd2 For 5' ggag Tttt TTtgaTt Tt 3'
Rd2 Rev 5' AcaAAtctAaAaattAttcce 3'
SVIL Rd1 For 5' gaagggagagaggaTatTtT 3' 189 bp Taql (TCGA) 106, 61, & 22 bp

Rd1Rev 5" AaAccaAAAaAccctAaAC 3
Rd2 For 5' GtTTTTtgT T TaagTtggTtT 3'
Rd2 Rev 5" AAAAccctacaattaatacC 3

Quantitative RT-PCR

Expression of BAD, IF144, NDUFAG6, RNF123, SLC2A4RG, and SVIL mRNAs
was assessed by quantitative RT-PCR TagMan® assays (Applied Biosystems, Foster
City, CA) and the Applied Biosystems 7500 Fast real-time PCR system and software as
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previously described (Chiappinelli et al., 2012). If the transcript upregulation was
validated by qRT-PCR, COBRA was performed to determine if the promoter regions

exhibited DNA methylation. N.D. = not determined.

Pyrosequencing

Pyrosequencing was performed as described in (Shearstone et al. 2011). Briefly,
each amplicon was amplified by primers specific to bisulfite converted DNA. Amplified
DNA was resolved on 10% polyacrylamide gels, stained with ethidium bromide, and
photoimaged with a UV camera (ImageStore 500 Version 7.12, White/UV
Transilluminator; UVP, Inc., Upland, CA). The amplicons were then subjected to
Pyrosequencing using sequencing primers inside the amplicon. To check for bisulfite
conversion of the PCR product gDNA, cytosines were dispensed in non-CpG positions.
Each locus was analyzed for methylation as a C/T SNP using QCpG software (Qiagen).

Primers used for Pyrosequencing are listed below:

Assay Primers

For 5-TGGGGAGGAGGGTAGGATATTA-3'

Rev 5'-ACCCAACAAACTTTTCCTTTT-3'
OAT Seq 5'-GGGAGGAGGGTAGGATATTAAT-3'

For 5-TGGGGTAAAGGAGAGGGTTATA-3'

Rev 5'-ACACCCTCCCCTACAAAT-3'
UBE2J2 #3 Seq 5'-GGAGGAGGTGGGTTG-3'

For 5-GGGGTTAGAGAGAGGTGGA-3'

Rev 5'-ACACCCTCCCCTACAAATAC-3'
UBE2J2 #4 Seq 5'-AGAGAGAGGTGGAGA-3'

For 5-ATTTGTAGGGGAGGGTGTT-3'

Rev 5'-CTTCCCTCCCCATATACCA-3'

UBE2J2 #5 Seq 5'-GTGGGTTGTAAAGAGAT-3'
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For 5'-AAGGAAGTTAGGGAGTGAGAGA-3'
Rev 5'-AACACCACTACTCCTACTATCC-3'

ZNF451 Seq 5'-GGGAGTGAGAGAAAG-3’

The MLH1 pyrosequencing assay was designed by Biotage (REF 40-0055, Qiagen).

Bisulfite sequencing of individual clones

DNA was bisulfite converted as described above, and cloning and sequencing
performed using standard methods (Dewdney et al. 2011). The forward and reverse
primers used to amplify the CR1L promoter were F 5'-GTGTTTGTTTGGGATAGAGA-
3'and R 5'-CCAATAAACCCTCCCCTTACTA-3'". Bisulfite sequencing was performed
on the MIRLET7D amplicon used for COBRA. PCR products were cloned using the
PCR-2.1TOPO TA vector (Invitrogen) and a minimum of 5 clones for each cloning
experiment sequenced using ABI Prism BigDye Terminator chemistry v1.1 (Applied

Biosystems).

Results and Discussion

Paragraph to be prepared by Dr. Wang’s group on description of the MeDIP and MRE
combination and Next-Generation Sequencing Results. Table on number of reads

(unique, repeats, etc).

Genic regions
Overall the combined MRE/MeDIP (“M&M?”) data showed that KLE shLuc and

shDcrA cells had very similar methylation patterns (Figure S1). The KLE cell line on
107



average had higher methylation than DNA from normal endometrial tissue, which was to
be expected. However several regions of the genome, such as the OAT gene, showed
differences in methylation (Figure 8). Figure 8 shows the combined methylation data
along with additional genomic features at Exons 1-4 and 5 kb upstream of the
transcription start site of the OAT gene. This gene exhibited higher MeDIP in the shDcrA
cells and higher MRE in the shLuc cells, which meant that it gained methylation in the
DICER1 knockdown. OAT was one of 21 promoter regions that showed a highly
significant difference between the shLuc and shDcrA cells (Table 3). By comparing this
data to methylome data from unperturbed KLE cells (data not shown) and transcriptome
data from the shLuc and shDcrA cells (described in (Chiappinelli et al. 2012)), we chose
six promoter regions to validate.

The methylation gains at OAT, UBE2J2, and ZNF451 did not validate by
pyrosequencing (Figure 9). Methylation differences were minimal and often showed a
small decrease in the shDcr cells instead of the observed increase by M&M analysis.
Each pyrosequencing assay covers only a portion of the promoter region, so we designed
two further 3' assays at the UBE2J2 promoter region (Assays 4 and 5). These also did not
show a significant difference between shLuc and shDcrA cells (Figure S2). We were not
able to design pyrosequencing assays for CR1L, NPHS2, and UBE2S because of the
difficulty of amplifying such CG-rich regions. However, bisulfite cloning and sequencing
showed the lack of a consistent difference between shLuc and shDcrA at the CR1L
promoter region (Figure 10). MRE cut sites are marked in Figure 10 to show where the
restriction enzymes used to generate DNA fragments for MRE are. The biggest

methylation difference should be at these cut sites. We conclude that any differences in
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methylation at these promoter regions are too subtle for our methods to validate and can
perhaps only be detected by genomic methods. Interestingly, the finding that a DICER1
hypomorph cell line loses methylation at specific CpG islands (Ting et al. 2008) was not
confirmed by a genome-wide approach using MBP-Sequencing (Serre, Lee and Ting
2010). These methods analyze populations of cells; single-cell analysis would enable

more precise measurements.

Repetitive Elements

DICERL1 depletion did, however, cause a loss of methylation genome-wide at the
Alu family of repetitive elements, but not at other repetitive elements such as the L1
family (Figure 11). The Alus are type of transposable element (TE) that were first
described by Barbara McClintock in maize (McClintock 1950) and make up at least 10%
of the human genome (Lander et al. 2001). These pieces of DNA are characterized by
their ability to transpose themselves into different places in the host genome ("jumping
genes"). Alu elements are a type of SINE (short interspersed element); these elements are
typically 75-100 nt in length and are transcribed by RNA Polymerase 111 (Deininger et al.
2003). After transcription, they use reverse transcriptase (encoded in the L1 transposable
elements) to create a DNA copy that inserts into a different part of the genome. As
abundant Alu insertion would create significant genome instability, there is strong
selection to stably silence these elements. They are silenced by chromatin modifications
and DNA methylation in normal human tissues, but may lose silencing and be expressed
in cancer or other disease states (Belancio, Hedges and Deininger 2008). Our finding that

reduced DICERL1 levels cause a loss of methylation at Alu elements was consistent with a
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recent report showing that low DICER1 levels in macular degeneration cause an
accumulation of Alu transcripts (Kaneko et al. 2011). The authors imply that DICER1
may process Alu transcripts. The Alu transcripts being processed by DICER1 may be
necessary to initiate stable transcriptional silencing of the repetitive elements, which have
a closed chromatin structure and DNA methylation. DICER1 may thus be involved in
transcriptional silencing or RNA processing of Alu transcripts. As DICER1 is generally
reduced and Alu transcription and mobility is generally increased in tumorigenesis
(Batzer and Deininger 2002), this may be an important part of the genomic instability
associated with cancers. However, as Alu elements make up at least 10% of the human
genome, there is a possibility that we observed this subtle change in methylation simply
because of the abundance of this element and therefore its large genomic “signal”.

The fact that we observed an effect on methylation only at repetitive elements is
intriguing. The interaction of the RNAI system with heterochromatin formation was first
described in the fission yeast S. pombe at heterochromatic repeats flanking the
centromere of each chromosome. These repetitive regions have bidirectional transcription
that creates double-stranded RNA. A Dicer homolog and an RNA-dependent RNA
polymerase are necessary for formation of the resulting siRNA, which then associates
with the Argonaute protein and brings a chromatin modifier, in this case an H3K9
methyltransferase, to put silencing marks on the chromatin (Buhler, Verdel and Moazed
2006; Verdel and Moazed 2005). S. pombe lacks the DNA methylation mark, but the
plant Arabidopsis thaliana has heavily methylated repetitive DNA and utilizes the RNAI
system to silence these repeats. In this case the process is similar to that in S. pombe, but

the RITS complex is able to recruit DNA methyltransferases (Teixeira and Colot 2010).
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Both plants and fission yeast have an RNA-dependent RNA polymerase that is necessary
for generation of long dsRNA; the strongest argument against RNAi-directed chromatin
silencing in higher organisms is that flies, mice, and humans lack an RNA-dependent
RNA polymerase (Allis et al. 2007). However, a different class of small RNAs, the
Dicer-independent piRNAs, have been shown to repress repetitive regions in flies, mice,
and humans; and, in the case of mammalian cells, an imprinted region, by DNA
methylation (Esteller 2011). Unfortunately, deleting DICER1 would have no effect on
piIRNAs; future experiments knocking down piRNA processing enzymes and determining
the effects on DNA methylation will help to elucidate the roles of these proteins.
Evidence for DICERL1 involvement in heterochromatin comes from the chicken globin
locus, which requires DICERL to recruit the Argonaute protein Ago2 and initiate
silencing histone modifications (Giles, Ghirlando and Felsenfeld 2010). Constitutive
heterochromatin, including the domain in the globin locus and centromeres in fission
yeast, thus may require RNAI for appropriate chromatin packaging. Our data on loss of
methylation at Alu repetitive regions in shDcr cells implies a conserved role for DICER
and small RNA maintenance of heterochromatin at repetitive regions.

In conclusion, DICER1's effects on DNA methylation in human cells are minimal.
DICER1 however does appear to be involved in maintenance of methylation at the Alu
elements. As these make up at least 10% of the human genome, this function may be very
relevant to genome stability. On the other hand, we may have not achieved a good
enough knockdown of the DICERL protein to see effects on methylation, but we
observed other physiological effects when DICER1 was reduced to ~10% of it's

endogenous levels (Chiappinelli et al. 2012). Further directions include characterization
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of histone modifications in DICER1 knockdown cells; these are an alternate way to effect

gene expression and may be influenced by RNA..
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CHAPTER FIVE: Dissertation Conclusions
and Future Directions
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I began my Ph. D. program in 2007, four years after the completion of the human
genome sequence and 65 years after the term “epigenetic” was coined by the
developmental biologist Conrad Waddington (Waddington 2012). In my first year as a
Developmental Biology graduate student, | took the Chromatin Structure and Gene
Expression (Biology 5282) course, outlined by the landmark “Epigenetics” textbook first
published in 2007 (Allis et al. 2007). The Chromatin Structure and Gene Expression
course set the path for my graduate work on mechanisms of epigenetic control.
Epigenetics research grew and changed remarkably during my graduate school
experience. In 2007, epigenetics was thought of more as a series of phenomena than a
field of science. Today, epigenetics is its own discipline. Undergraduate molecular
biology students are taught that two cells with the same genome can have different
phenotypes, attributed to epigenetic differences. A major international effort was
recently mounted to map chromatin modifications throughout the genome (Rosenbloom
et al. 2012). During graduate school, | was fortunate to TA two courses, one that focused
on developmental biology and another that focused on genome organization and
chromatin modifications, such that my knowledge of epigenetics evolved with the field

and concordantly with my research.

Conclusions

My graduate work focused on epigenetic modifications in human malignancies. It
began with an in-depth analysis of one well-known tumor suppressor gene that is silenced
in endometrial and other cancers, then evolved to a whole-genome study of effects of

perturbation of a key factor in epigenetic regulation. By characterizing transcription at the
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MLHZ1 locus in Chapter Two, | showed that this locus had high levels of noncoding RNA.
This corroborated the genome-wide data on the abundance of noncoding RNA in the
mammalian transcriptome. | also noted that nucleosome positioning at the active MLH1
locus was not as previously reported, at least in endometrial cancer. These results show
that chromatin modifications and transcription at specific loci likely differ between cell
types and as such, the massive amounts of genomic data being generated on chromatin
modifications (Rosenbloom et al. 2012) should not be assumed to apply to all cell types.
While there is one human genome, there are many human epigenomes.

Although the 2003 “completed” human genome was heralded as the eventual key
to treating human disease via targeted therapies and personalized medicine (Wade 2003),
we have since learned from efforts to sequence cancer genomes that the process from
finding a mutation to characterizing the biological and potential tumorigenic effects of
this mutation is quite involved (Cancer Genome Atlas Research Network 2008; Cancer
Genome Atlas Research Network 2011). It is also difficult to distinguish important
mutations from the plethora of mutations in a cancer cell. So-called “driver” mutations
are selected for during clonal expansion of tumors and confer growth advantages, while
“passenger” mutations are not selected for but are casualties of highly proliferating cells
with genomic instability. Finding and characterizing “driver” mutations is and will
continue to be a focus of cancer genomics research (Stratton, Campbell and Futreal
2009). The transcriptome and methylome sequencing efforts described in Chapters Three
and Four detail my attempts to technically and biologically validate genome-wide

observations.
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I observed an interferon response upon DICER1 knockdown, normally a reaction
to viruses or other foreign particles in a human cell, and postulated that this might be due
to endogenous retrovirus reactivation. Endogenous retroviruses are retroviruses that
integrated into the human genome very long ago, and like other mobile elements, are
stably silenced to protect genome stability. While investigating the role of DICERL1 in
transcriptional silencing (detailed in Chapter Four), | thought that perhaps small RNAs
might be involved in silencing endogenous retroviruses and that loss of DICER1 could
reactivate these elements. Figure 1 shows the levels of the HERV-K subfamily of
endogenous retroviruses in control and DICER1 knockdown cells. The HERV-K family
is expressed, but by RT-PCR (Figure 1A) and deep sequencing (Figure 1B) does not
differ between shDcr and control cells. Thus reactivation of endogenous retroviruses does

not appear to be responsible for activating the interferon response.

Future Directions

My work on the transcriptome sequencing in shDcr cells showed that these cells
exhibited a canonical interferon response. | observed that shDcr cells were characterized
by tumorigenic phenotypes including enhanced migration and increased growth in soft
agar. This work did not, however, establish a link between the interferon response and
tumor phenotypes. Transfecting the cells with Polyl:C, a positive control for interferon
signaling, caused cell death and was not informative for either assay. Polyl:C is almost
too intense a stimulation of the IFN response and is likely to trigger more apoptosis than
the milder phenotype of the DICER1 knockdown. It is more likely that the low-level,

chronic interferon signature | observed might contribute to tumor phenotypes. Cancers
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are known to arise from conditions such as inflammatory bowel disease and prostatitis
(Mantovani et al. 2008; Slattery et al. 2009). Chronic inflammation has been shown to be
mutagenic (Franco et al. 2008) and to cause epigenetic changes affecting gene expression
(Hahn et al. 2008). Ras/Raf signaling works together with the inflammatory state of
pancreatitis to initiate pancreatic cancer (Guerra et al. 2007), and STAT3 has been well
established as a tumor-promoting molecule (lliopoulos, Hirsch and Struhl 2009). As
phospho-STATS3 is known to be an oncogene, | assessed the levels of pSTAT3 in shDcr
and control cells. pSTAT3 was not significantly increased in shDcr cells (Figure 2) and
so it does not seem that STAT3 is contributing to tumorigenesis in this model.

While | established a novel role for DICERL1 in the control of the interferon
response, there are still many unanswered questions about how the interferon response
affects cancer cells. In the future we will follow up on interferon response components
that were increased in shDcr cells and may be involved in metastasis, such as CXCL10.
This protein is secreted by melanoma metastases (Amatschek et al. 2011) and promotes
invasiveness of breast and colon cancer cells (Shin et al. 2010; Zipin-Roitman et al.
2007). It is also upregulated at the mRNA level in human ovarian cancers and a mouse
ovarian cancer model driven by deletions of Dicerl and Pten in the fallopian tube (Kim et
al. 2012). The upregulation of this protein by IFN and NF«B signaling could be a cause
of the increased migration and growth in soft agar observed in the DICER1 knockdown
cells.

Another way that low DICER1 might contribute to tumorigenesis is through its
effects on chromatin modifications. While I did not see changes in methylation at coding

regions, I did observe a loss of methylation at Alu elements (Chapter Four). | am
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currently working with Ting Wang's laboratory (Center for Genome Sciences & Systems
Biology, Washington University in St. Louis) to validate this result using a PCR
amplicon that amplifies most Alu subfamilies, then subjecting this amplicon to reduced
representation bisulfite sequencing (RRBS) (Meissner et al. 2005). If we are able to
validate this result, it will point to a role for DICERL1 in heterochromatin regulation at
repetitive regions. The interaction of RNAI with chromatin was first described at
pericentromeric repetitive heterochromatin in S. pombe (Hall et al. 2002; Volpe et al.
2002), and a recent publication implied that DICER1 was necessary for heterochromatin
maintenance at the globin locus in chickens (Giles, Ghirlando and Felsenfeld 2010).
DICERL1 could be necessary to process Alu RNA, as suggested by Kaneko et al. (Kaneko
et al. 2011), and the small RNAs generated could be involved in heterochromatin
maintenance at the Alu elements. Recent work (Tarallo et al. 2012) shows that loss of
DICERL1 and subsequent accumulation of Alu RNA activates the NLRP3 inflammasome
and triggers a cell autonomous immune response, very similar to the one | observed in
endometrial cancer cells. Several components of the inflammasome complex are
upregulated at the mRNA level in the shDcr cells, but further work will need to be done
to determine whether pre-miRNAs or Alu RNA are activating the immune response in
the endometrial cancer cells.

Given Alu repetitive elements make up 10% or more of the genome, the greater
part of global hypomethylation in cancer has often been attributed to methylation loss at
Alus. Lower DICER1 levels in solid tumors go along with this. Interestingly, about 20%
of human miRNAs are driven by Pol 1l promoters that have Alus in them (Borchert,

Lanier and Davidson 2006). Thus loss of methylation globally at Alu elements in shDcr
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cells could be explained by increased miRNA transcription in response to DICER1
knockdown and the resulting loss of mature miRNAs. Increased transcription at miRNA
promoters containing Alus could lead to loss of methylation at these elements. The RRBS
experiments under way will allow Dr. Wang’s laboratory to map back the Alus
sequenced to the genome and to determine which elements specifically lose methylation.

The experiments performed in this thesis address only the in vitro consequences
of DICER1 depletion in tumor cells. To gain insights into tumor biology in vivo, |
utilized an orthotopic mouse model of endometrial cancer (first described in (Kamat et al.
2007)) in which we injected endometrial cancer cells (AN3CA) into the uterine horn of
mice and imaged the cancers over time. We did not see a significant difference in tumor
burden between control (shRFP) and shDcrA cells. Interestingly, the shRFP (control) lost
DICER1 expression in vivo, according to RNA analysis after the tumors were resected.
This speaks to the selection pressure for reduced DICER1 in tumors in vivo, but it also a
very small sample size. This result shows the need for reliable methods to downregulate
genes in human cells growing orthotopically or in xenografts on mouse models.

Another way to determine the effect of reduced DICERL1 in vivo is to assess
primary tumors with known DICER1 levels. Future directions include determining the
levels of interferon response genes in primary tumors with high and low levels of
DICERL. However, because we acquired RNA from primary tumors mixed with
infiltrating cells from the immune system, it would be necessary to use microdissected
endometrial cancer tissue to determine the effect on the cell-autonomous immune
response | observed. Microdissection has been successfully performed to separate

epithelium from stroma in breast cancer (Kurose et al. 2001) and study the two
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components in isolation. There is no reason this could not be done for endometrial cancer
samples to allow us to see the effect of low DICERL1 on the cell autonomous immune
response in vivo.

While the RNA-Sequencing method used to characterize the transcriptome of
shDcr cells was well-established, methylome sequencing developed as | proceeded
through graduate school. Thus | was able to learn and try out new methods to map
genome-wide methylation in DICER1 knockdown cells. From this experience | have
learned that technical and biologic validation of genome-wide differences is crucial. In
addition, genome-wide techniques such as "M + M" have the ability to characterize
changes in nongenic regions such as the Alu elements that chip- or array-based methods
do not.

The Next Generation Sequencing methods I used to assess the effects of reduced
DICERL1 in endometrial cancer cells made possible the identification of molecular
phenotypes that | would have missed by taking a traditional gene-by-gene approach, such
as the characterization of the MLH1/EPMA2IP1 promoter. My thesis research taught me
about the power of genomic approaches as well as the care and time necessary to validate
results and meaningfully connect them with tumorigenesis. The human genome sequence
and novel genomic methods have accelerated the pace of cancer research. Genomic
discoveries hold promises for new cancer therapies and potentially approaches to the
prevention of cancers. Putting genomic discoveries into biologic context is a daunting
challenge. New paradigms focused on contextualizing genomics will be needed to

capitalize on genomic discovery efforts, and further mechanistic studies are necessary.
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Epigenomics, an even newer field, may hold particular relevance for cancer
treatments. Epigenetic therapies for cancer have been considered since the DNA
methyltransferase inhibitor 5-azacytidine and its analog 5-aza-2’-deoxycytidine were
found to be effective in myelodysplastic syndrome (MDS), the precursor to acute
myeloid leukemia (Issa et al. 2004; Lubbert 2000; Silverman et al. 2002; Wijermans et al.
2000). These drugs are nucleoside analogs that become incorporated into DNA upon
replication and covalently bind up the DNA methyltransferases, preventing methylation
of cytosines. They have recently been shown to be effective against both solid and
hematologic tumors. A low initial dose triggers a persistent response in cancer cells,
specifically inhibiting the clonogenic properties of putative “cancer stem cells” (Shen and
Laird 2012; Tsai et al. 2012). A recent study showed that a small molecule enhancer of
TRBP miRNA processing specifically inhibits cancer cells (Melo et al. 2011). Histone
Deacetylases (HDACSs) remove acetyl groups from histone to silence genes and are often
overexpressed in cancer. HDAC inhibitors are used to reactivate silenced genes and have
been very successful in treating many types of cancer, especially as combination
therapies (Spiegel, Milstien and Grant 2012). A recent study in non-small cell lung
cancer showed that DNA methyltransferase inhibitors are also successful as combination
therapy (Juergens et al. 2011). These molecules are appealing cancer drugs because they
change modifications to the DNA, not the DNA itself, and because they appear to
preferentially target cancer cells with minimal side effects. At the 2012 American
Association for Cancer Research Conference (Chicago, IL) there were dozens of talks
and posters describing molecular mechanisms and clinical trials of molecules inhibiting

DNA methyltransferases and HDACs. Current concerns are related to the nonspecific
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nature of changing global chromatin modifications. Clearly basic science research is
required to address these concerns.

I hope to make a contribution to this work during my postdoctoral research with
Dr. Stephen Baylin (Johns Hopkins University Medical School) determining the
molecular mechanisms by which DNA methyltransferase inhibitors target cancer cells as

well as their effects on genome organization within the nucleus.
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APPENDIX A: Infrequent methylation of the DUSP6
phosphatase in endometrial cancer
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Abstract

Objective: Dual-specificity phosphatase six (DUSP6, MKP3, or PYST1)
dephosphorylates phosphotyrosine and phosphothreonine residues on ERK-2 (MAPK1)
to inactivate the ERK-2 kinase. DUSP6 is a critical regulator of the ERK signaling
cascade and has been implicated as a tumor suppressor. DNA methylation in the first
intron of DUSP6 abrogates expression in a subset of pancreatic cancers. We sought to
determine whether DUSP6 was similarly silenced by methylation in endometrial cancer,
a tumor type in which there is frequent activation of the ERK pathway.

Methods: 109 endometrial cancers were analyzed for DUSP6 methylation using
combined bisulfite restriction analysis (COBRA). The cohort included 70 primary
endometrioid endometrial cancers, 21 primary endometrial tumors of adverse histological
types, and 18 endometrial cancer cell lines. Primary tumors, cell lines, and normal
endometrial tissues were analyzed for DUSP6 mRNA levels using quantitative RT-PCR
and pERK levels by Western blots and/ or immunohistochemistry.

Results: Methylation of the first intron of the DUSP6 gene was seen in 1/91 primary
endometrial cancers investigated. The methylated tumor was also methylated at the more
5' regulatory region of DUSP6. Q-RT-PCR revealed that DUSP6 transcript levels varied
widely in primary endometrial tumors. DUSP6 mRNA levels did not correlate with
pERK status in primary tumors, consistent with the existence of negative feedback loops
activated by pERK that result in transcription of DUSP6.

Conclusion: DUSP6 methylation is a rare event in endometrial cancer. Silencing of the
DUSP6 phosphatase is unlikely to contribute to constitutive activation of the ERK kinase

cascade in endometrial cancer.
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Introduction

Endometrial cancer is the most common gynecological malignancy in the United States,
with 42,160 new cases and 7,780 deaths predicted in 2009 (Jemal et al. 2009). Although
most women present with early stage disease and are cured with a hysterectomy,
approximately 15% of patients suffer from recurrent or persistent disease that is often
fatal (Creutzberg et al. 2000). Discovery of the molecular lesions that contribute to
endometrial tumorigenesis will provide opportunities for targeted therapies for
endometrial cancer.

Endometrioid endometrial carcinomas comprise about 80% of uterine cancers.
Several key genetic events associated with the development of endometrioid endometrial
cancer have been described. Inactivating mutations in the PTEN tumor suppressor and
gain-of-function CTNNB1 mutations are seen in 26-80% and 25-38% of tumors
respectively (Hecht and Mutter 2006). Gain-of-function mutations in the ERK kinase
cascade (FGFR2 or KRAS?2), leading to ERK activation, are seen in 20-30% of tumors
(Byron et al. 2008). However, FGFR2 and KRAS2 mutations do not explain ERK-2
activation in all cases. ERK activation (pERK) is seen in over 60% of endometrial
cancers ((Mizumoto et al. 2007), and our unpublished data). The ERK kinase cascade is
normally initiated by the binding of growth factors (ligands such as EGF and FGF) to
cell-surface receptor tyrosine kinases, resulting in autophosphorylation of the tyrosine
kinase domains of the intracellular protein of the receptor. This in turn triggers G-protein-
mediated activation of the RAS kinase, which phosphorylates the RAF effector, which
phosphorylates ERK-2 (MAPK1). ERK-2 has many phospho-targets involved in

transcriptional regulation, translational regulation, and control of the cell cycle.
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Mutations in genes in the ERK kinase pathway contribute to the development of a variety
of cancers. In endometrioid endometrial cancer, activating FGFR2 mutations are
identified in 10-16% of endometrioid tumors and activating KRAS2 mutations in 10-30%
of endometrioid tumors (Byron et al. 2008; Dutt et al. 2008). These mutations occur
exclusively of one another (Byron et al. 2008). In addition to mutational activation of the
ERK cascade, increased ERK activation can result from silencing of the DUSP6
phosphatase that normally serves to inactivate ERK-2 (Xu et al. 2005).

A number of dual-specificity phosphatases regulate specific kinases in normal
mammalian cells. DUSP1, DUSP2, and DUSP4 localize to the nucleus and target JINK,
p38, and ERK; DUSP5, DUSP6, DUSP7, and DUSP9 localize to the cytoplasm and
target ERK. All of the phosphatases are expressed in normal human uterine tissue
(Expressed Sequence Tag Database 2010). The mouse knockout of DUSP6 shows no
gross abnormalities, but has significantly increased phospho-ERK (Owens and Keyse
2007). RNAi-mediated knockdowns of DUSP6 result in increased phospho-ERK,
showing a direct relationship between the level of this phosphatase and pERK (Chan et
al. 2008; Zeliadt, Mauro and Wattenberg 2008).

DUSP6 has been identified as a tumor suppressor gene and is inactivated in
several different types of cancer. A recent study showed that ~18% of primary lung
cancers exhibit loss of heterozygosity at the DUSP6 locus. DUSP6 expression shows an
inverse correlation with grade in lung cancer (Okudela et al. 2009) and DUSP6 has been
implicated as a tumor suppressor gene in non-small-cell lung cancer (Zhang et al. 2010).
The accumulation of reactive oxygen species in ovarian cancer causes ubiquitination and

proteasomal degradation of DUSPG, leading to increased ERK-2 activity and cell
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proliferation (Chan et al. 2008). A third mechanism of inactivation, DNA methylation,
has been observed in pancreatic cancer cell lines and primary tumors (Furukawa et al.
1998; Zeliadt, Mauro and Wattenberg 2008). Pancreatic cancers, like endometrial
cancers, show frequent mutational activation of KRAS2 (Almoguera et al. 1988), which
leads to increased pERK levels. Methylation of intron 1 of DUSPG6 is associated with
reduced expression of DUSP6 (Xu et al. 2005). The region of intron 1 methylated in
pancreatic cancer has promoter activity and includes a binding site for the ETS2
transcription factor. ETS2 is a target of ERK-2 and ERK-2 and DUSP6 are involved in a
negative feedback loop. As phosphorylated (activated) ERK-2 accumulates in the cell, it
phosphorylates ETS2, which in turn transcriptionally activates DUSP6, which functions
by removing phosphate groups to inactivate ERK-2 (Ekerot et al. 2008; Furukawa et al.
2008). DUSP6 has also been shown to be upregulated through negative feedback by high
levels of fibroblast growth factor (FGF) and KRAS2 (Owens and Keyse 2007). DUSP6
expression is higher in Stage | than Stage Il endometrial cancers (Wu et al. 2005). Given
the high frequency with which mutational activation of the ERK signaling pathway is
seen in endometrial cancers, we hypothesized that methylation of the DUSP6 gene
leading to low expression of DUSP6 might also contribute to constitutive activation of
the ERK kinase cascade. We evaluated DUSP6 methylation in a large cohort of

endometrial cancers representative of all grades, stages and histologic types.
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Materials and Methods:
Preparation of Nucleic Acids:
All primary endometrial tumors and normal endometrium specimens analyzed were
collected as part of IRB-approved studies (Washington University Medical Center
Human Research Protection Office protocols HRPO-91-507, -93-0828 and -92-242).
Histologic grading and typing were performed by gynecologic pathologists. All primary
tumors evaluated had >70% neoplastic cellularity. Staging was determined using 1988
criteria from the International Federation of Gynecology and Obstetrics. Tissue
specimens and blood were obtained at the time of surgery and stored at -70° C until
nucleic acids were extracted. Genomic DNA from tumor tissues, normal endometrium,
and cell lines was extracted using the DNeasy Tissue kit (Qiagen, Valencia, CA). Total
cellular RNA was extracted from tumors and cell lines using the Trizol reagent
(Invitrogen).

DNA from eighteen endometrial cancer cell lines and one pancreatic cell line was
also investigated. The cell lines were AN3CA, HEC1A, HEC59, HHUA, HOVA,
Ishikawa, KLE, MDA H2774, MFE280, MFE296, MFE319, RL952, Sawano, TEN,

UAC1053, UACC210, UACC297, and MiaPaCa-2.

Bisulfite Conversion:
DNA bisulfite conversion was performed using a commercially available kit (EZ DNA

Methylation Gold™ Kit, Zymo Research, Orange, CA).

DUSP6 COBRA Assays:
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COBRA (Combined Bisulfite Restriction Analysis) was performed as previously
described (Xiong and Laird 1997). We used two rounds of amplification (nested PCR).
Three assays were designed at the DUSP6 5' upstream region, 5' UTR, and intron 1. The
primers used in nested PCR, amplicon sizes, and restriction digestions used are presented
in Table 1.

Restriction fragments were resolved on 10% polyacrylamide gels, stained with
ethidium bromide, and photoimaged with a UV camera (ImageSTore 500 Version 7.12,
White/UV Transilluminator; UVP, Inc., Upland, CA). Band intensities were captured

and quantified using the program ImageJ (National Institutes of Health, Bethesda, MD).

cDNA preparation and quantitative RT-PCR:

Total RNA preparation was used as a template to generate first-strand cDNA synthesis
using the QuantiTect Reverse Transcription Kit (Qiagen). Quantitative gene expression
was performed using SYBR® Green (BioRad) methods (Whitehead et al. 2005) and
relative expression was calculated using the AACT method. Quantitative RT-PCR
primers were: Forward 5' CCCCTTCCAACCAGAATGTA 3', Reverse
TGCCAAGAGAAACTGCTGAA 3'. GAPDH was used as the reference gene, PCR
primers were: Forward 5' TGCACCACCAACTGCTTAGC 3, Reverse 5'

GGCATGGACTGTGGTCATGAG 3.

Immunohistochemistry:
Immunohistochemistry was performed for a subset of primary tumors investigated by

COBRA. Five micrometer sections of paraffin-embedded, formalin-fixed tissues were

161



obtained of eight endometrioid tumors. MKP-3 staining was performed with anti-MKP3
antibody (sc-8598, goat anti-human, polyclonal Santa Cruz Biotechnology, Inc, Santa
Cruz, CA) at 1:100 dilution followed by a biotinylated secondary antibody at 1:500
dilution (Donkey anti-goat, Jackson ImmunoResearch Laboratories, Inc., West Grove,
PA) using VECTASTAIN® Elite ABC reagent (Vector Laboratories, Burlingame, CA).
Signals were developed with the 3,3'-diaminobenzidine (DAB) Substrate Kit for
Peroxidase (Vector Laboratories, Burlingame, CA). ERK and phospho-ERK staining was
performed using anti-ERK1/2 (#9012, rabbit anti-human, Cell Signaling Technology,
Inc., Danvers, MA) and anti-phospho-ERK (Thr 202/Tyr 204, #9101S, rabbit anti-human,
Cell Signaling Technology, Inc., Danvers, MA) at 1:100 dilution. Signals were developed
with the 3,3'-diaminobenzidine (DAB) Substrate Kit for Peroxidase (BioCare Medical,

Concord, CA).

Western Blots:

Protein was extracted using lysis buffer containing a mixture of protease and phosphatase
inhibitors. ERK and phospho-ERK were detected using the same antibodies used for IHC
(1:1000 dilutions). Goat anti-Rabbit IgG-HRP (sc-2030, Santa Cruz Biotechnology,

Inc., Santa Cruz, CA) was used as a secondary antibody at a concentration of 1:1250.
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Results

Three COBRA assays were used to evaluate DUSP6 methylation (Figure 1A). Assay 3,
located in intron 1, includes the region previously shown to be methylated in pancreatic
cancers. Methylation of this region prevents transcription factor binding and is associated
with loss of DUSP6 expression (Dutt et al. 2008; Expressed Sequence Tag Database
2010; Xu et al. 2005). The 5' upstream region, as well as exon 1 and intron 1, are CpG
rich. Because the CpG methylation that is associated with gene silencing most often
involves promoter regions upstream of the transcription start site (Cedar and Bergman
2009), we further evaluated more 5' regions of DUSP6 for methylation, using additional
COBRA Assays 1 and 2.

BstUl (CGCG) and Mbol (GATC) restriction digests were used to evaluate
methylation in intron 1 (Assay 3) in 91 primary uterine tumors, representing a diverse
group of grades, stages, and histologies. A single endometrioid tumor (2070, stage IC,
grade 2) showed methylation at both the Mbol and BstUI sites (Table 2, Figure 1B). None
of the 18 endometrial cancer cell lines showed methylation in intron 1 of DUSP6.
MiaPaCa-2, the pancreatic cancer cell line previously shown to have DUSP6 methylation
and very low expression of DUSP6 (Xu et al. 2005), had approximately 40% methylation
at the BstUI and Mbol sites by COBRA (Figure 1B).

We evaluated more 5’ sequences for methylation using COBRA assays to
determine whether the methylation seen in tumor 2070 and the MiaPaCa-2 cell line was
restricted to intron 1 (Assay 3 in our studies, Figure 1A). Assays 1 and 2, in the 5'
upstream region and 5' UTR respectively, were evaluated in tumor 2070 and MiaPaCa-2.

In addition, seven endometrial cancer cell lines (AN3CA, HEC1A, Ishikawa, KLE,
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MFE296, RL952, and SKUT1B), 3 normal endometrial tissues, and 33 primary tumors
from the cohort evaluated with Assay 3 were evaluated for methylation with Assays 1
and 2. None of the samples evaluated showed methylation at Region 1 (data not shown).
Tumor 2070 and the MiaPaCa-2 cell line, however, showed methylation in Region 2
using BstUI and HpyCH41V COBRA (data not shown).

Quantitative RT-PCR showed DUSP6 mRNA was reduced in the MiaPaCa-2 cell
line compared to all cell lines, tumors, and normal tissues assessed (Figure 2A). DUSP6
expression varied widely in the normal endometrial tissues, endometrial cancer cell lines,
and tumors investigated (Figure 2A). DUSP6 transcript levels in normal endometrial
tissues varied approximately two-fold (range 272 to 601 arbitrary expression units
relative to the MiaPaCa-2 cell line). Expression in endometrial cancer cell lines ranged
from 56 to 861 units and in primary endometrioid endometrial cancers from 55 to 889
units (Figure 2A). DUSP6 transcript levels were not correlated with the pERK levels as
assessed by Western blots and IHC (Figure 2B,C). Tumor 2070, which has DUSP6
methylation, did not show a substantial reduction in DUSP6 expression at the mRNA
level. Samples with low DUSP6 expression at the mRNA level (2027T, 1570T, 1474T,
1655T, etc.) did not show methylation at any region of the DUSP6 gene.
Immunohistochemistry revealed DUSP6 expression in all tumors evaluated, including the

specimen 2070 with 5 UTR and intron 1 methylation (data not shown).

Discussion
To the best of our knowledge this study is the first to assess DUSP6 methylation in a

large cohort of endometrial cancers. We conclude that methylation of DUSP6 is an
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infrequent event in endometrial cancers based on our observation of a single methylated
case among 91 tumors investigated. None of the eighteen endometrial cancer cell lines
evaluated showed DUSP6 methylation, further supporting our conclusion that DUSP6
methylation is uncommon in endometrial cancers. In contrast to previous findings in
pancreatic cancers (Xu et al. 2005), DUSP6 intron 1 methylation did not appear to affect
MRNA or protein expression as assessed by quantitative RT-PCR and IHC. However,
we had a single example of a primary tumor with DUSP6 methylation and it is difficult to
speculate as to why the observed methylation was not associated with reduced
expression. One possible explanation for the difference in DUSP6 expression in the
endometrial cancer we observed and what has been described for pancreatic
adenocarcinomas could be the extent of the methylation. Tumor 2070 had an estimated
20% methylation of DUSP6 at intron 1. The pancreatic adenocarcinomas with lowered
DUSP6 expression were shown to have >40% methylation at intron 1 of DUSP6 (Xu et
al. 2005) and the 20% methylation observed in sample 2070 may not be sufficient to
affect DUSP6 expression.

We observed methylation at the putative 5' regulatory region of DUSP6 in sample
2070 as well as MiaPaCa-2, a pancreatic cell line with low expression of DUSP6.
Methylation at the more 5' region of the DUSP6 sequence has not been previously
reported. The significance of this methylation is unknown; however, the importance of
methylation at the 5' regions of genes has been well characterized (Cedar and Bergman
2009; Herman and Baylin 2003). Methylation in 5' regulatory regions can contribute to
recruitment of repressive proteins, a closed chromatin structure, and gene silencing. The

closed chromatin state may spread downstream from the 5' region (Jones et al. 1998;
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Kass, Goddard and Adams 1993). Methylation could thus be initially targeted to either
the 5' region or intron 1 of DUSP6, then spread to other regions, effectively silencing
expression of the gene. It is presently unclear which region is methylated first in vivo.

The low rate of DUSP6 methylation in endometrial cancers was somewhat
unexpected given the fact many endometrial cancers have a CpG island methylator
phenotype and, like pancreatic cancers, have frequent mutations in the ERK signaling
pathway (Arafa et al. 2008; Joensuu et al. 2008; Whitcomb et al. 2003).
Hypermethylation of promoter regions and the resultant CpG island methylator
phenotype (CIMP) as seen in endometrial cancers is a form of epigenetic deregulation
(Herman and Baylin 2003; Lujambio and Esteller 2009). The absence of methylation at
the DUSP6 promoter in cancers that often show abnormal methylation of promoter
regions could reflect strong selection for DUSP6 expression and regulation of ERK-2
phosphorylation in endometrial cancers and/or selection against tumor cells in which the
DUSP6 promoter is methylated. Alternatively, the sequence or genomic context of
DUSP6 could make it relatively resistant to methylation. Our methylation studies did not
address the possibility of post-transcriptional or translational repression of DUSP6
expression; the variation in DUSP6 transcript levels could be explained by microRNA
regulation or other post-transcriptional events.

Quantitative RT-PCR showed low DUSP6 mRNA levels in the MiaPaCa-2 cell
line with DUSP6 methylation compared to the endometrial normal tissues, cancer cell
lines, and primary cancers, consistent with transcriptional silencing by methylation.
Endometrial cancer cell lines with low phospho-ERK (AN3CA, SKUT1B) exhibited high

levels of DUSP6 mRNA. HEC1A, with high levels of pERK, had low DUSP6 mRNA
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expression, and Ishikawa and MFE296 had medium levels of both pERK and DUSP6,
consistent with DUSP6 regulation of ERK phosphorylation. The level of DUSP6
expression we saw in the Ishikawa cell line is similar to what has been previously
reported (Cui et al. 2006). However, KLE and RL952 did not fit this expression pattern
(Figure 2). While seventeen primary endometrial cancers assessed showed a large
variation in DUSP6 transcript expression, there appears to be no relationship between
DUSP6 mRNA and phospho-ERK status. Three normal endometrium tissues were also
assessed and exhibited medium-high levels of DUSP6 mRNA (Figure 2A). An
explanation for the lack of correlation between DUSP6 mRNA and phospho-ERK could
be that other phosphatases are at work, such as DUSP5, DUSP7, or DUSP9 (Owens and
Keyse 2007). Feedback loops in place in response to activated ERK-2, FGF, and KRAS
could also affect levels of DUSP6 when pERK levels are high.

Phosphorylated ERK-2 is seen in >60% of endometrioid endometrial cancer
cases, including some that lack activating mutations upstream in the pathway ((Mizumoto
et al. 2007), and our unpublished data). KRAS2 and FGFR2 mutations are common in
endometrioid endometrial cancers (Byron et al. 2008) but do not account for all of the
cases with activated ERK. We hypothesized that aberrant hypermethylation of the
DUSP6 gene and silencing of the DUSP6 ERK-2 phosphatase could be an additional
mechanism of constitutive activation of the ERK kinase pathway in endometrial cancers.
Given current interest in MEK inhibitors (MEK phosphorylates ERK) as biologic
therapies for cancer, understanding how ERK activity is regulated is of increasing

importance (Adjei et al. 2008; Haura et al. 2010).
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This study shows that DUSP6 methylation is uncommon in endometrial cancer.
Further studies are required to determine whether the high rate of activated ERK seen in
endometrial cancers is attributable to as yet unknown upstream activation events and
whether DUSPG6 activity is deregulated by other mechanisms in pERK-positive

endometrial cancers.
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APPENDIX B: Evaluating the frequency of TARBP2
mutations in endometrial cancer
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A subset of colon and endometrial cancer cell lines with methylation of MLH1
and the resulting loss of mismatch repair and MSI phenotype have loss of function
TARBP2 mutations (Melo et al. 2009). Insertions or deletions in one of the two poly-C
tracts in Exon 5 of the TARBP2 gene are presumed uncorrected strand-slippage mutations
(fairly common in MSI cancers) and abrogate expression of the TRBP protein, which
normally forms a complex with DICER1 and assists in microRNA processing (Melo et al.
2009). A similar mutation was characterized in a poly-A tract of the ATR gene in MSI-
positive endometrial cancer and was associated with poor clinical outcomes (Lewis et al.
2005; Zighelboim et al. 2009). TARBP2 mutations cause destabilization of the DICER1
protein and subsequent microRNA processing defects. Melo et al. (Melo et al. 2009).
screened four endometrial cancer cell lines and found that SKUT1B had an insertion in
the TARBP2 gene. They did not evaluate primary endometrial tumors but identified
TARBP2 mutations in 25.4% of MSI colon cancer and 14% of MSI gastric cancer
primary tumors. In order to determine how frequent this specific TARBP2 mutation is in
endometrial cancer, | sequenced the two C tracts in Exon 5 of TARBP2 in endometrial
cancer cell lines and primary tumors. | confirmed the C insertion in the SKUT1B cell
line, but did not observe any TARBP2 mutations the AN3CA cell line (Figure 1). In
Figure 1, SKUT1B is a C;/Cg heterozygote, compared to AN3CA, a wild type C;/C5.
The sequencing was performed with the reverse primer, thus one allele of SKUT1B is
shifted to the left upon the C insertion. This result is concordant with that of Melo et al
(Melo et al. 2009). However, no mutations were seen in four other cell lines and 64 MSI
primary tumors. I conclude that this mutation is, in fact, not common in endometrial

cancer.
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