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Abstract

Systems Metabolic Engineering of Microbial Cell Factories for the
Synthesis of Value-added Chemicals

by
Arul Mozhy Varman
Doctor of Philosophy in Energy, Environmental, and Chemical Engineering
Washington University in St. Louis, 2013

Professor Yinjie J. Tang, Chair

Microbial cell factories offer us an excellent opportunity for the conversion of many
different cheaply available raw materials into valuable chemicals. Systems metabolic
engineering aims at developing rational strategies for the engineering of microbial hosts by
providing global level information of a cell. This dissertation focuses on metabolic engineering,
bioprocess modeling and pathway analysis, to develop robust microbial cell factories for the
synthesis of value-added chemicals. The following research tasks were completed in this regard.

First, statistical models were developed for the prediction of product yields in engineered
microbial cell factories - Saccharomyces cerevisiae and Escherichia coli (Chapter 2). A large
space of experimental data for chemical production from recent references was collected and a
statistics-based model was developed to calculate production yield. The input variables
(numerical or categorical variables) for the model represented the number of enzymatic steps in
the biosynthetic pathway of interest, metabolic modifications, cultivation modes, nutrition and
oxygen availability. In addition, the use of **C-isotopomer analysis method was proposed for the
accurate determination of product yields in engineered microbes under complex cultivation

conditions (Chapter 3).
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Second, metabolic engineering of the cyanobacterium, Synechocystis sp. PCC 6803 was
performed for synthesizing isobutanol under phototrophic conditions (Chapter 4). With the
expression of the heterologous genes from the Ehrlich Pathway, by incorporating an in situ
isobutanol harvesting system, and also by employing mixotrophic conditions, the engineered
Synechocystis 6803 strain accumulated a maximum of ~300 mg/L of isobutanol in a 21 day
culture. In addition, Synechocystis 6803 was engineered for the synthesis of D-lactic acid
(Chapter 5), via overexpression of a novel D-lactate dehydrogenase (encoded by gldA101). The
production of D-lactate was further improved by employing three strategies: (i) cofactor
balancing, (ii) codon optimization, and (iii) process optimization. The engineered Synechocystis
6803 produced 2.2 g/L D-lactate under photoautotrophic conditions with acetate, the highest

reported lactate titer among all known cyanobacterial strains.

Finally, an E. coli cell factory was engineered to study the fermentation Kinetics for
scaled-up isobutanol production (Chapter 6). Through kinetic modeling (to describe the
dynamics of biomass, products and glucose concentration) and isotopomer analysis, we have also
offered metabolic insights into the performance trade-off between two engineered isobutanol
producing E. coli strains (a high performance and a low performance strain). The kinetic model
can also predict isobutanol production under different fermentation conditions. | and my
colleagues have also demonstrated that E. coli cell factory can also be used for converting waste
acetate into free fatty acids through metabolic engineering. In conclusion, the opportunities and
commercial limitations with current biotechnology as well as the role of systems metabolic
engineering for the development of high performance microbial cell factories were discussed

(Chapter 7).
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Chapter 1: Introduction to systems metabolic engineering of

microbial cell factories

1.1 Introduction

Biomass-derived carbon and energy have been used by human society for a long time.
This dependence was shifted to petroleum derived carbon and energy in recent times. A 2008
census indicated that most of the energy utilized worldwide came from the burning of fossil fuels
and it accounted for about 80% of the energy consumed’. The U.S. Energy Information
Administration had projected a 49% increase in global energy demand from 2007 to 2035%. This
dependence on fossil fuels cannot go on forever as oil reserves have started dwindling.
Furthermore, the USEPA reports that the atmospheric CO, concentrations has increased by up to
35% since the industrial revolution in the 1700’s”, while CO; produced from burning fossil fuels
contributed to about 56.6% (2004 data) of the total greenhouse gas emissions®. In consideration
of the energy security and environmental concerns there is a growing need for the production of

biofuels and petroleum-derived chemicals from renewable sources.

For the production of chemicals from microbes to be economical, the target chemical
must be produced at high yield, titer and productivity. These traits are difficult to be met by
naturally occurring microbes®. Henceforth, microbes must be engineered to achieve the desired
traits. With the advent of recombinant DNA technology, we now have the tools to redesign
metabolic pathways for the production of chemicals from renewable materials. Technologies
beyond simple genetic engineering are often required to achieve a desired phenotype and much
of this rational modification has been performed in the form of metabolic engineering. Metabolic

engineering is the improvement of cellular activities by manipulation of enzymatic, transport,
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and regulatory functions of the cell by the application of recombinant DNA technology®. On the
other hand, systems biology Metabolic engineering can be integrated with systems analysis and

modeling to perform rational engineering of microbial hosts®.

1.2 Microbial cell factories

Microbial biocatalysts offer several advantages in producing small-molecule chemicals.
Unlike conventional chemical syntheses which are heavily dependent on petroleum-derived
substrates, microbes are able to use renewable materials to synthesize many commodity
chemicals and fuels’. Due to its scalability, microorganisms are also suitable platforms to
synthesize pharmaceutical molecules. Among the many industrial microorganisms, Escherichia
coli and Saccharomyces cerevisiae have long been the industrial workhorses preferred for
metabolic engineering applications. These two organisms have well-established genetic tools
and have been explored to create industrial scale production of chemicals from microbes®.
Developments in genetic tools have led to the ability to efficiently engineer E. coli as a
biocatalyst for the production of a wide variety of chemicals, potential biofuels and
pharmaceuticals®. S. cerevisiae is typically known for its robustness in fermenting sugars into
alcohol. It has also gained importance as a heterologous platform to synthesize many precursors
of commodity chemicals and pharmaceuticals .

Sugars (such as glucose, xylose starch, and sucrose) have been widely used for biofuel
production, which can be obtained either from food crops (corn, sugarcane, sugar beet) or from
biomass polymers (i.e., cellulose and hemicellulose). To reduce feedstock costs, a great deal of
effort has been focused on the isolation, characterization and engineering of a handful of species

(e.g., Clostridium thermocellum and Clostridium phytofermentans) that can utilize cheap



biomass for bioproduct synthesis (such as ethanol)®. Engineered Clostridium cellulolyticum has
been shown to produce isobutanol directly from crystalline cellulose’®. More recently, E. coli
was engineered for the production of biodiesel directly from hemicelluloses, a plant derived
biomass™. Utilizing non-sugar-based substrates, such as glycerol, lactate, acetate, CO,, and
syngas (CO, CO, and H,), for the production of value added chemicals has been a trend in recent

years (Figure 1.1).
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Figure 1.1: Metabolic engineering pathways for biofuel production

Ethanol is currently the most commercially successful biofuel and can be produced by
yeast fermentations. Yeast efficiently converts sugar into ethanol and CO; via glycolysis pathway

and pyruvate decarboxylase / alcohol dehydrogenase. Biofuels with properties similar to those of
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gasoline and diesel fuel are being synthesized by microorganisms (Figure 1.1). Several
engineered biofuel pathways are being examined. For example, engineered Escherichia coli can
use the keto acid pathway and the Ehrlich pathway to produce higher alcohols (such as
isobutanol), while the mevalonate pathway in yeast can be extended to synthesize branched and

cyclic hydrocarbons (the biofuels with lower freezing point and higher energy content).

Table 1.1: Commonly employed microbes for biofuel production

Species Substrates Products Features

Saccharomyces Glucose, fructose,  Alcohols Easy genetic

cerevisiae galactose, and manipulations, Crabtree
others effect

Zymomonas Glucose, fructose,  Ethanol High ethanol tolerance and

mobilis sucrose yield

Clostridium Glucose, cellulose, Ethanol Growth at high

thermocellum cellobiose temperature, mixed

fermentation pathways
Clostridium Glucose, xylose Ethanol and Acetone, ethanol, and
acetobutylicum butanol butanol fermentation

Escherichia coli

Cyanobacteria
(e.g., Synechocystis
6803)

Phanerochaete
chrysosporium

Yarrowia lipolytica

Glucose, xylose,
glycerol, and others

CO;

Glucose and lignin

Glucose, acetate
and fatty acids

Alcohols, diesels,
and other biofuels

Alcohols, H,, fatty
acids

cellulosichiomass
pretreatment

Lipids

Easy genetic
manipulations, fast growth

CO, fixation

Strong ability to degrade
lignin

Oleaginous yeast that
accumulates lipids

Finally, microbial metabolisms for biofuel production are very different across the
species. Saccharomyces cerevisiae and Escherichia coli are microbial cell factories that are

widely used in biofuel industrial because the two model species ferment sugar efficiently and are



also amenable to genetic modification and bioprocess scale up. Other microbial species, such as
cyanobacteria, are also promising hosts for biofuel production because they can convert sunlight
and CO, to biomass and products. The species diversity in metabolic features offers opportunity
for synthesizing many different useful products from diverse carbon substrates. Table 1.1 shows
several different microbial species that produce biofuels, either via the native biofuel pathway or

via a metabolically engineered pathway.

1.3 Tools for genetic engineering of microbial hosts

Overexpression of native or heterologous genes is often achieved through plasmid based
expression systems. Plasmids are naked DNA molecules that are capable of replication within
the host. Plasmids are commonly used to carry genetic materials and transfer them to the
microbial host. The gene expression is mainly controlled at the transcript level, i.e., by tuning
with the promoter. The most widely used promoters are the lac and the hybrid promoters such as
tac, tic and trc. These promoters can be induced under the presence of isopropyl-B-D-
thiogalactopyranoside (IPTG). However, there is also research being done for the use of
constitutive promoters for gene expression. Some of them rely on the use of natural promoters
and others rely on random mutation of constitutive promoters. One of the goals of synthetic
biology is to manipulate protein expression at the translation level and this can be achieved by
modulation of the ribosomal binding site. Riboregualtors have been developed to tune gene
expression by RNA-RNA interactions. Another method by which gene targets can be
overexpressed is through codon optimization®.

Plasmid based expression systems often suffer from unstable genetic performance.

Chromosomal integration of target genes along with the promoter can be utilized to avoid this
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problem. Often, overexpression of many genes would be required to achieve a desired yield.
Novel approaches have been developed to control the coordinated expression of each gene. One
such approach combines multiple genes into an operon under the control of a single promoter
and the expression of each gene is controlled at posttranscriptional stage by tuning the intergenic
regions. This method was applied for the coordinated expression of three genes of the
heterologous mevalonate pathway in E. coli and resulted in an increase of the mevalonate
production by sevenfold *2.

Knockout of competing pathways can redirect the flux of carbon towards the product of
interest. Gene deletion is often achieved through homologous recombination and traditionally
this is performed through plasmids containing a selectable marker flanked by DNA fragments of
the target gene. Genes can be deleted in yeast by the use of a linear PCR fragment along with a
short flanking region homologous to the target DNA. Gene deletions can also be performed
using bacteriophage, and they depend on the FLP-FRP recombination to remove the marker after
gene deletion. This method leaves a 68bp FRT scar on the chromosome for each deletion

performed.

1.4 Cyanobacteria as a microbial cell factory

Direct capture of CO, for the synthesis of bioproducts is a more economical and
environmental friendly approach that has received extensive studies recently. Cyanobacteria or
blue-green algae are photoautotrophic prokaryotes and can fix CO; in the presence of sunlight.
The photosynthetic efficiency of cyanobacteria is much higher than that of higher plants (10 —
20% in contrast to 0.5% in higher plants)!. The transformability of some cyanobacteria species

coupled with the availability of sequenced genomes allows us to perform complex genetic
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engineering®®. They generally have high growth rates as compared to green algae and plants.
The diversity of metabolic capability in cyanobacteria lets them grow in highly saline
environments as well as marginal lands and hence will not compete with land used for
agriculture®®.  Among all cyanobacterial species, Synechocystis sp. PCC 6803 (hereafter
Synechocystis 6803) is one of the most extensively studied species since it was initially isolated
from a freshwater lake in 1968. The entire genome, including four endogenous plasmids, was

sequenced in 1996, and over 3000 genes have been annotated to date™ °

. Synechocystis 6803
demonstrates versatile carbon metabolisms, growing under photoautotrophic, mixotrophic and
heterotrophic conditions *’. Additionally, biochemical similarities between the plant chloroplasts
and Synechocystis 6803 make the latter an ideal system for studying the molecular mechanisms
underlying stress responses and stress adaptation in higher plants'®. More importantly, this
species is naturally competent (homologous recombination at high frequency)™. The recent
developments in synthetic biology have provided plenty of molecular biology tools to engineer
Synechocystis 6803 as a photosynthetic host for the production of diverse types of chemicals.
Metabolic engineering has been applied for microbial ethanol production, including
overexpression of genes to increase ethanol yield, disruption of genes to direct the carbon flux to
ethanol and deletion of enzymes that can oxidize NADH. To directly convert CO; to biofuel, the
cyanobacterium Synechococcus sp. PCC 7002 was engineered for the synthesis of ethanol 2°.
Recently, pdc and adh genes from Zymomonas mobilis were integrated into the chromosome of
Synechocystis sp. PCC6803 under the control of the strong light driven psbA2 promoter. An
average yield of 5.2 mmol ethanol OD3 unit™ litre day™ was achieved #*. Algenol Biofuels

Inc. claim that they can produce ethanol at a rate of 6000 gal/acre/year from an engineered

cyanobacterial strain®.



Butanol is hydrophobic, has greater energy density, and a higher octane rating relative to
ethanol. Therefore, butanol biosynthesis has received extensive studies. Acetone-butanol-ethanol
(ABE) fermentation uses Clostridium acetobutylicum to produce n-butanol, but such process is
restrained by relatively low production rate and generates large amount of byproducts. To
overcome this problem, the n-butanol pathway derived from Clostridium was reconstructed in
fast-growing E. coli or yeast strains > ?*. Another novel alcohol synthesis approach is via non-
fermentative pathway?>, where the amino acids biosynthesis pathways and Ehrlich pathway 2 %
were utilized to convert glucose to alcohols. Cyanobacteria have been explored for biofuel
production (Figure 1.2). Synechococcus elongatus PCC 7942 was engineered to accumulate 450
mg/L of isobutanol in 6 days®®. S. elongatus 7942 was engineered with a modified CoA-
dependent 1-butanol pathway and this strain accumulated 14.5 mg/L 1-butanol under anoxic
condition”®. Long chain alcohols and hydrocarbons have ideal properties for combustion and are
found to be either additives or major components of petroleum. Synechocystis 6803 and
Arabidospis thaliana were engineered with a heterologous fatty acyl-CoA reductase (FAR) for
the production of fatty alcohols®. Researchers at LS9 identified two key enzymes responsible
for the production of alkanes in cyanobacteria: an acyl-CoA carboxylase and an aldehyde

decarbonylase *'. This discovery opens up many possibilities for engineering cyanobacteria for

alkane production.
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Figure 1.2: Schematic representation of engineered biochemical pathways for the production of
biofuels in cyanobacteria. Abbreviations: RuBP, Ribulose-1,5-bisphosphate3-PGA; 3-
phosphoglycerate; Kdc, ketoacid decarboxylase; ADH, alcohol dehydrogenase; PDC , pyruvate
decarboxylase; ACC, acetyl-CoA carboxylase; AAR, acyl-ACP reductase; AAD, aldehyde
decarbonylase; FAR, fatty acyl-CoA reductase; Ter, trans-2-enoyl-CoA reductase; Hbd, 3-
hydroxybutyryl-CoA dehydrogenase; AdhE2, aldehyde/alcoholdehydrogenase; LDH, lactate
dehydrogenase; EFE, Ethylene formation enzyme. Highlighted reactions indicate the pathway
that will be focused in this study.

Finally, many of the cyanobacterial strains have native hydrogenases that can evolve
hydrogen under anoxic conditions. Though the theoretical efficiency for hydrogen production is
predicted to be high, the efficiency in which wild type cyanobacterial strains produce hydrogen
was observed to be very low (< 0.1%) . Synechococcus elongatus sp. 7942 was engineered

with hydrogenase from Clostridium acetobutylicum and was demonstrated that the
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heterogeneous hydrogenase can support hydrogen evolution at a rate >500 times than that of

endogenous hydrogenase under anoxic conditions®.

1.5 Modeling and Systems Analysis

Mathematical kinetic models can be helpful in interpreting experimental data, in
understanding quantitative functions of biological systems, and in predicting metabolic
performances 3. Arnold Fredrickson introduced the terms “segregated” and “structured” to
categorize most kinetic models for biological systems. The term “segregated” was used to take
into account the presence of heterogeneous individuals in a cell population explicitly (For
example: a model that would take into account the different age groups of cell that would be
present in a cell population). The “structured” kinetic model was used to define formulation of
cell systems as composed of multiple biomass components. The group “Unsegregated and
unstructured” is the most idealized case which considers the cell population as one component
solute and most of the kinetic models will fall in this category (e.g., Michaelis-Menten kinetics:
V=VmxS/(KntS) ).

On the other hand, metabolic fluxes do not consider kinetic behavior of microorganisms,
but they provide the ratios in which each pathway is engaged in cellular functions. Fluxomics in
an organism were first studied using in silico analysis known as Flux Balance Analysis (FBA).
FBA uses the stoichiometry of metabolic reactions along with a set of constraints*. The total
number of reactions and constraints is often less than the number of variables (Flux) to be
calculated and hence the system is underdetermined. This necessitates the use of an objective
function to calculate the set of theoretical fluxes. Maximization of biomass is the objective

function employed generally as all species evolve themselves to multiply more in their
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environment. **C-MFA computes the overall pathway activities in an organism by utilizing the
isotopic labeling approach and is valid only at isotopic and metabolic steady state. **C-MFA is
performed by feeding the microbes with a *C labeled carbon source followed by measurement
of the enrichment pattern of the metabolites. The isotopic labeling pattern of all the metabolites
is then fed to an algorithm to generate the intracellular fluxes®. Though both the methods of
FBA and *C-MFA utilize the overall metabolic network and use the assumption of metabolic
steady state, they have two different purposes. FBA gives an optimal flux distribution to achieve
a desired performance whereas **C-MFA quantifies the in vivo operation of a cell. The two
techniques complement each other and can be utilized to locate bottlenecks in metabolic

pathways for the synthesis of a desired product (Figure 1.3).

Finally, the current flux analysis disregards the dynamic metabolic behavior of a
biological system. This avoids the difficulties in solving large-scale kinetic models and
performing time-dependent experimental measurements. However, many biological systems
cannot maintain a metabolic (or isotopic) steady state during the entire cultivation process. The
flux modeling for dynamic metabolite concentrations or isotopic labeling requires the innovative

approaches to link kinetic model to metabolic flux analysis.
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Chapter 2: Statistics-based model for prediction of chemical
biosynthesis yield from Saccharomyces cerevisiae
This chapter has been reproduced from the following publication:
Varman, A.M., Xiao, Y., Leonard, E. & Tang, Y. Statistics-based model for prediction of

chemical biosynthesis yield from Saccharomyces cerevisiae. Microbial Cell Factories 10, 45
(2011).

Abstract

Background

The robustness of Saccharomyces cerevisiae in facilitating industrial-scale production of
ethanol extends its utilization as a platform to synthesize other metabolites, both native and of
heterologous origins. Metabolic engineering strategies, typically via pathway overexpression and
deletion, continue to play a key role for optimizing the conversion efficiency of substrates into
the desired products. However, chemical production titer or yield remains difficult to predict
based on reaction stoichiometry and mass balance. We sampled a large space of data of chemical
production from S. cerevisiae, and developed a statistics-based model to calculate production
yield using input variables that represent the number of enzymatic steps in the key biosynthetic
pathway of interest, metabolic modifications, cultivation modes, nutrition and oxygen

availability.
Results

Based on the production data of about 40 chemicals produced from S. cerevisiae, metabolic
engineering methods, metabolite supplementation, and fermentation conditions described

therein, we generated mathematical models with numerical and categorical variables to predict

13



production vyield. Statistically, the models showed that: 1. Chemical production from central
metabolic precursors decreased exponentially with increasing number of enzymatic steps for
biosynthesis (>30% loss of yield per enzymatic step, P-value=0); 2. Categorical variables of gene
overexpression and knockout improved product yield by 2~4 folds (P-value<0.1); 3. Addition of
notable amount of intermediate precursors or nutrients improved product yield by over five folds
(P-value<0.05); 4. Performing the cultivation in a bioreactor enhanced the yield of product by
three folds (P-value<0.05); 5. Contribution of oxygen to product yield was not statistically
significant. Yield calculations for various chemicals using the linear model were in fairly good
agreement with the experimental values. The model generally underestimated the ethanol
production as compared to other chemicals, which supported the notion that the metabolism of

Saccharomyces cerevisiae has historically evolved for robust alcohol fermentation.

Conclusions

We generated simple mathematical models for first-order approximation of chemical
production yield from S. cerevisiae. These linear models provide empirical insights to the effects
of strain engineering and cultivation conditions toward biosynthetic efficiency. These models
may not only provide guidelines for metabolic engineers to synthesize desired products, but also

be useful to compare the biosynthesis performance among different research papers.

2.1 Background

Producing small-molecule chemicals from microbial biocatalysts offers several
advantages. Unlike conventional chemical synthesis which are heavily dependent on petroleum-

derived substrates, microbes are able to use renewable materials to synthesize many commodity
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chemicals and fuels * (Figure 2.1). Due to its scalability, microorganisms are also suitable
platforms to synthesize pharmaceutical molecules that are conventionally produced from
extracting large amounts of natural resources. Among many industrial microorganisms, the
baker’s yeast, i.e., S. cerevisiae continues to emerge as a preferred production platform *. S.
cerevisiae is typically known for its robustness in fermenting sugars into alcohol. In the recent
past, it has also gained importance as a heterologous platform to synthesize many precursors of
commodity chemicals and pharmaceuticals . In general, chemical production using whole-cell
biocatalysts are achieved by genetic engineering to extend the substrate range of an existing
biosynthetic pathway or to introduce new biosynthetic pathways (either derived from other
organisms, or completely novel). Rational metabolic engineering approaches then analyze the
cellular metabolism and improve production titer by overexpressing rate-limiting enzymes or
deleting competing pathways. In general, the actual yield of chemical production is not easily
predicted due to the complexity of biological systems and dependency of cultivation conditions.
Biological complexities not only include intrinsic properties (such as enzyme Kkinetics and
substrate specificity), but also include enzyme compartmentalization, intracellular signaling, and
metabolite transport between eukaryotic cell organelles. Therefore, strain engineering requires
multiple rounds of trial-and-error experiments to perform the optimum combination of genetic
manipulations. In the present work, we sought to develop mathematical models that could
provide a priori estimation of chemical production yield from engineered S. cerevisiae when
given a set of parameters, namely the number of steps in the biosynthetic pathway of interest,
genetic modifications, cultivation conditions, and nutrient and oxygen availability. The
coefficients of these parameters were obtained from the regression of the yields and production

conditions reported by recent literatures. Such model predicted the empirical yields that were
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lower than the theoretical productivities under “ideal” conditions. The model results could give

metabolic engineers guidelines for increasing desired products and for reducing futile attempts.
2.2 Model development

The model defined several important parameters that influenced the efficiency of
chemical production from microbial hosts. The first group of parameters accounted for the
number of enzymatic steps in the biosynthetic pathway of interest since it had been shown that
this parameter was often inversely correlated with microbial product yield °. To enumerate the
number of enzymatic steps, we introduced two numerical variables in our model, i.e. PRI and
SEC. The variable PRI specified the number of enzymatic steps in primary metabolism (Figure
2.1), e.g. glycolysis that is required to convert sugar (glucose or galactose) to pyruvate. The
variable SEC specified the number of enzymatic steps in the subsequent pathway (typically
belongs to secondary metabolism), which catalyzed the conversion of central carbon
intermediate into the final product of interest. The next group of variables was to capture the
effects of genetic modification. Various genetic strategies have been used to implement
metabolic engineering * . For example, promoters with different strength influence production
level. However, for the sake of simplifying our model, variations of genetic components used in
metabolic engineering strategies were lumped into two ordinal variables, i.e. OVE, and KNO.
OVE signified the introduction of multiple copies of genes of native or heterologous origin for
the purpose of improving production level. KNO signifies the alteration of branch pathways that
might compete with the pathway of interest > *°. We further sub-categorized OVE based on the
number of modified genes into OVEc; (without “pushing” pathway flux), OVEc; (enhancing 1~2

enzyme activities), and OVEcs (improving a number of key enzyme functions). KNO was also
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categorized by KNOc; and KNOc; (i.e., without knockout or with knockout, respectively). Table

2.1 explained the specifications for each sub-category.

The yield of metabolite production is also a function of cultivation conditions and nutrient
availability. For instance, production of metabolites from a bioreactor is often higher than a
shaking flask, due to the increased efficiency of mass transfer of oxygen, substrates, and
nutrients. Moreover, culture acidification that often generates cytotoxicity and maintenance
burden to the microbial hosts can be mitigated in a bioreactor by automated pH control. Based on
these basic properties, we introduced the variable CUL to represent the general property of a
cultivation condition. We also introduced the variable OXY and NUT to capture the effects of
oxygen availability and nutrient supplementation, respectively*’*°. Moreover, the variable INT
captured the effect of addition of a secondary carbon source which served as a precursor or an

intermediate metabolite of the pathway of interest.

Several assumptions were made to simplify our model development. A) Yield calculation was
based on the conversion of major carbon substrate to final product if multiple nutrient sources
were supplemented (e.g., yeast extract was not treated as the carbon source). B) We calculated
the yields based on two factors: initially added carbon substrate in the culture and final measured
product. We neglected the unused carbon substrate that remained in the end of the production. C)
To calculate enzymatic steps from the carbon source, the model only considered the key route
from the major substrate (mostly glucose) to the final products (enzyme steps for co-factors or
ATPs synthesis were neglected). D) For product synthesis promoted by the addition of an
intermediate, we had no means of differentiating the carbons derived from added precursor or

from the carbon substrate (i.e., glucose). To account for the contribution from both carbon
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sources, the yield calculation was assumed to be an arithmetic mean of the two yields (One yield
was based on substrate, e.g., glucose, and the other yield was estimated from the intermediates).
Meanwhile, the number of primary steps or secondary steps were also assumed as an arithmetic
mean of two data sets (one variable was counted from substrate; the other variable was counted

from the intermediate).

Biochemical systems theory ** states that reaction rates (vi) can be described by a general power

law expression of the type:
vime, ] [ X}’ (2.1)
J

Where X represents the system variables and the parameters a;, gjj are the constants. Equation
(2.1) yields a linear form in logarithmic coordinates. Based on similar assumptions, our model
for yield prediction used system variables (i.e., numerical or categorical variables related to yeast

biosynthesis) to describe the relative carbon flux to the final products.

logio Y = Bo + PerIPRI + BsecSEC + Pove,c2OVEc: + Pove,csOVEcs + PBrno,cocKNOcz +

BnuT,co2NUTc2 + BinT,c2INTe2 + Beur,c2CULcz + Boxy,c20XY c2 (2.2)

In Equation 2.2, logyo Y was the dependent variable which represented production yield (mol C
in product/mol C in primary substrate), given each independent variables [3; 0 We defined Bo as
the intercept in Equation 2.2, which represented the combined contribution of Category 1 of all

ordinal variables. o was defined as:

Bo = Pove.ci + Bkno,ct + BrnuTct + BinT.c1t Beurct + Poxy.ci (2.3)
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The ordinal variables (using a binary system) were assigned a value of one if and only if the
condition fitted the category in Table 2.1. Otherwise, the ordinal variables were assigned a value
of 0 *. (2) To acquire the coefficients in Equation 2.2 and 2.3, we compiled data from ~40
publications which described the production of chemicals by S. cerevisiae under various
experimental conditions. Table 2.2 summarized the categories assigned to these experimental
conditions and the yield of product from our best judgment. Using these data, we performed
regression analysis to fit the model via the software package R “** to find the regression
coefficients and P-values. For this study, a variable was statistically significant (90%) if its P-

value was below 0.1.

2.3 Results and discussion

We constructed simple models which linked several numerical and ordinal variables that
affected the yield of chemical production from S. cerevisiae. These ordinal variables consisted of
the number of modified genes or pathways (OVE), the number of gene knockouts in known
competitive pathways (KNO), nutrient source (NUT), intermediate (INT), cultivation mode
(CUL), and oxygen availability (OXY). We described the yield of chemical production as the
summation of these independent variables in Equation 2.2. We fitted Equation 2.2 and
determined the coefficients of the variables using linear regression analysis of ~40 compounds.
Although multiple data of production yields were often reported in each literature, the model
only considered the best yield under a denoted experimental condition. Then, all experimental
conditions were categorized by numerical and ordinal variables. The linear regression

coefficients obtained for Equation 2.2 were given in Equation 2.4, such that:
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log Y =-1.53-0.01 PRI - 0.19 SEC + 0.007 OVEc; + 0.52 OVEc3 + 0.31 KNO¢; + 0.73 NUT¢;

+0.77 INTc2 + 0.51 CULc, + 0.27 OXYc2 (2.4)

The accuracy of obtained coefficients in Equation 2.4 was evaluated based on R® and the P-
value. Here, we used a P-value of 0.1 as the limit below which the result was considered
significant *®. Out of the eight variables specified in our model, SEC, OVE, KNO, NUT, INT
and CUL had P-value of less than 0.1. The summary of the P-value of each variable was listed in
Table 2.3. Figure 2.2A showed a plot of the production yields obtained experimentally and those
obtained from model prediction for the corresponding conditions. The correlation of this model
to the dataset had an R? value of 0.55, which reflected the moderate discrepancy between
reported yields and the model-predicted yields. Figure 2.2B plotted the residuals of model fitting.
The residuals appeared to scatter around zero randomly, so the linear model was proper to

describe the experimental data.

Interestingly, the number of enzymes in the primary pathway (PRI) did not significantly affect
production yield (P-value = 0.76) (Table 2.3). This suggested that rate-limiting steps to increase
chemical production flux often lay in the downstream pathway of central metabolism. The
coefficient of SEC was negative. This suggested that the length of a pathway downstream of
central metabolism negatively affected production yield. Specifically, addition of a new
enzymatic step in a secondary metabolic pathway reduced product yield by 36% (for numerical
variable SEC: 10°55€ =10%%° =64%). A good demonstration of the effect of pathway length on
product yield was found in the case of naringenin production **. With the following inputs of

variables PRI = 10 (Galactose to PEP), SEC = 14 (i.e., 10 steps from PEP to phenylalanine; 4
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steps from phenylalanine to flavanone), KNO = INT = CUL = OXY = category 1, NUT =

Category 2; OVE = Category 3; the model calculated:

Yield= 107153 0.01x10) + (0.19x14)+ 052+0.73— 5 0009 (The reported experimental production yield was
0.00058). In most cases, our model-predicted yields were within the range of one order of

magnitude compared to the experimental values.

Since the number of steps in central metabolism (PRI) did not significantly affect production
yield, we computed another set of regression coefficients for Equation 2 without the variable

PRI, to yield a simplified form Equation 2.5.

log Y =-1.60 — 0.19 SEC + 0.0003 OVEc; + 0.50 OVEc3z + 0.31 KNOc, + 0.73 NUTc, + 0.82

INTc2 + 0.51 CULc; + 0.28 OXYc2 (2.5)

As shown in Table 2.3, regression using Equation 2 with the exclusion of the variable PRI did
not change the R? value. This result indicated that the number of enzymatic steps in primary
metabolism did not significantly affect product yield. Presumably, fluxes in central metabolic
pathways were typically high and robust *°, when compared to those downstream secondary
pathways. It has been demonstrated recently that production of chemicals was significantly

improved, only when the capacity of a downstream pathway was increased “°.

Metabolic engineering typically involves pathway modification to shift metabolic fluxes into a
desired product or to permit the use of an alternative carbon source *’. We defined the variable
OVE, and KNO in Equation 2.2 to capture the effect of pathway overexpression, and deletion,
respectively. The regression of experimental data using Equation 2.2 showed that the coefficients
of OVEc, and OVEc; had positive values (Table 2.3). The model successfully captured the
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contribution of both pathway overexpression and gene deletions to increase product yield in S.
cerevisiae. The high P-value of OVEc; (0.98) indicated that statistically, the overexpression of a
small number of genes (1-2) was uncertain to improve production yield. However, the coefficient
of OVEc; (=0.52; P-value=0.07) indicated the effectiveness of multiple gene modification to
resolve the bottleneck steps. This observation is consistent to the fact that metabolic fluxes
generally do not sensitively respond to changes of single enzyme activity, but are controlled by
all key enzymes along the biosynthesis pathway. On the other hand, the regression coefficients of
KNOc¢, had positive value (=0.31, P-value = 0.08), and thus the removal of competitive

pathways could be effective to increase production yield.

It is a general knowledge that bioprocess conditions affect cellular viability and product yield.
Our model suggested fermentation using a well-controlled bioreactor improved production yield
by 3.2 times (CULc,:10°°U~? = 10%°Y). The model further suggested that fermentation under
anaerobic or microaerobic condition could enhance yield compared to aerobic fermentation.
However, such enhancement was not statistically significant (P-value = 0.32). This observation
could be explained by the fact that S. cerevisiae produced fermentative products (ethanol and

glycerol) (Crabtree effect) *® *

under aerobic and glucose-sufficient medium. Therefore, aerobic
metabolism in S. cerevisiae could operate similarly to metabolism under oxygen-limited
condition. The coefficient for the variable INT was 0.77, which represented that the
supplementation of a precursor metabolite translated to an approximately six fold increase of the
product yield (P-value = 0.02). Similarly, the addition of nutrients (such as yeast extract) also
significantly increased production yield (the coefficient of NUT¢, was 0.73). The contributions

of INT and NUT to product formation indicated that intermediates/nutrients provided building

blocks or energy sources that reduced the rate-limiting steps in biosynthetic pathways.
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We used Equation 2.2 to compute the production yield of chemicals according to the
specifications listed in Table 2.2. We observed that, for ethanol production, the experimental
values were generally higher than the empirical model predictions. In reality, the reported

maximum ethanol yield could reach 0.5 mol C-ethanol / mol C-glucose *°

, which could be
several folds higher than model predictions. To mitigate this discrepancy, we re-categorized the

ethanol synthesis pathway as the primary pathway to generate Equation 2.6.

log Y =-1.73 +0.003 PRI — 0.19 SEC + 0.05 OVEc; + 0.56 OVEc;3 + 0.37 KNO¢; + 0.71 NUT¢,

+ 0.86 INTcy + 0.51 CULc, + 0.12 OXY 2 (26)

Regression of the data using Equation 2.6 improved the R? value from 0.55 to 0.58,
demonstrating that ethanol could be better assumed as a central metabolite for S. cerevisiae.

Using Equation 2.6, we predicted ethanol production based on a recent reference **

by
specifying PRI = 11, SEC = 1 (cellulose degradation step), OVE = C3, KNO = C1; NUT = C2,
INT = C1, CUL = C1, and OXY = C2. The ethanol production yield calculated by Equation 2.6

was 0.31. This value was in good agreement with the reported values of ~0.4 **.

2.4 Model applications and limitations

The main application of the model is to predict the biosynthesis yield from S. cerevisiae.
The model were validated by “unseen data” (Figure 2.2C) from some randomly selected new
publications (2010~2011). The model predicted the yields based on the reported experimental
conditions described by these papers **°°. Most yield data were close to model predictions. The

predictive power of the model was consistent with the model quality described in Table 2.3.

23



Furthermore, the model can reveal the metabolic features of S. cerevisiae. For example, the
modified model Equation 2.6 showed that it was better to treat ethanol pathway as the primary
routes in cell metabolism, because of the strong ability for ethanol fermentation by yeast,
possibly due to long-term process for selecting yeast as alcohol producer through human history.
The model can also be useful for comparing the productivity among other yeast species (Figure
2.3). For example, riboflavin producer, Candida famata, exhibits a high riboflavin productivity
(2~3 order of magnitude higher than model prediction) *’. Pichia pastoris, a common species for
protein expression, shows high S-adenosyl-L-methionine productivity if a large amount of the
intermediate methionine was repeatedly added in the medium *®. Besides, Pichia stipitis also has
high yields of L-lactic acid and ethanol from glucose and xylose *°. Figure 2.3 demonstrated that
some yeast species were able to explore their native pathways for biosynthesis of certain
products with extraordinary efficiency (better than S. cerevisiae), therefore, these yeast species

may be alternative hosts for certain biotechnology applications.

The accuracy of the model predictions for some products could be poor due to several limitations
during model development. First, the category was a rough estimation of experimental conditions
especially for variables related to gene modifications (OVE and KNO), and the yields could be
very different even in the same category. Second, some products, despite large synthesis rates,
were either not very stable or difficult to accumulate in a large quantity due to consumptions by
downstream pathways or product degradations (e.g., Glycerol 3-phosphate °°). Their yields could
be significantly lower than model predictions even though the actual flux to the product was
high. Third, the coefficient Bsgc from model regression could not account for the big variances of
biosynthesis efficiency or potentially feedback inhibitions in secondary pathways. For example,

butanol synthesis is significantly improved via non-fermentative amino acid pathways compared
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to traditional acetyl-CoA routes ®, because amino acid synthesis pathways in microorganisms
are more effective than other heterogeneous pathways. Fourth, because of limited information
from the references, the yield calculation could not precisely include the CO, fixation (e.g.,
overexpression of the native carboxylase pathway: pyruvate + CO, > oxaloacetate) ® or the
nutrients utilization in the rich medium. Fifth, the model neglected enzyme steps related to
energy metabolism (such as ATP and NADPH synthesis), while cofactor imbalance can also

affect the product yields.

2.5 Comparison to the previously published E. coli model

Recently, we have constructed the E.coli model using same modeling approach.
Compared to the E.coli model, S. cerevisiae shows several differences: 1. Oxygen conditions
made a more significant impact on biosynthesis yield in E.coli than that in S. cerevisiae; 2. The
genetic modification in E.coli had higher uncertainty for metabolic outcomes; 3. For metabolic
pathways from precursors to final products, loss of yield per biosynthesis step (~30%) in S.
cerevisiae is higher than that in E.coli (10~20%). Interestingly, E. coli model states that primary
metabolism influences product yield (a relatively small P-value of 0.06) which indicates the
balance of precursor production from central metabolism is also an important consideration for
metabolic engineering of E.coli. For example, it has been demonstrated that lycopene production
with E. coli was enhanced by redirecting the carbon flux from pyruvate to G3P *, but feeding
other central metabolite precursors (such as pyruvate) could not improve lycopene production.
On the other hand, the S. cerevisiae model indicates that it is less likely that the number of steps
in central metabolism play a bottleneck role in the production of metabolites derived from it,

while the bottlenecks are more likely in the secondary pathways (from central precursors to the
25



final product). Therefore, the metabolic strategies should focus on the secondary pathways to
have a better chance for increasing final yield. Although modification of central metabolism may
affect microbial physiologies, a few studies indicate the robustness of the central metabolism in
S. cerevisiae because of its importance to cell vitality. For example, S. cerevisiae may maintain
central metabolic fluxes via gene duplication and alternative pathways under different
environmental and physiological conditions *> ®. Therefore, the inflexibility of central pathways
in S. cerevisiae is likely to render metabolic engineering strategies ineffective when targeting
enzymes in central metabolism. In general, the unique metabolic features of yeast and bacteria

can be of important consideration when choosing a production host.
2.6 Conclusions

Although S. cerevisiae has been widely used as a robust industrial organism for metabolic
engineering applications, many metabolic features of this organism for biosynthesis under
various conditions remain unknown. In this study, the statistic model for yeast biosynthesis
permits a priori calculation of the final product yield achievable by current biotechnology.
Unlike other in silico models based on mass balance or thermodynamics (such as FBA model) **
% our model is based on a statistical analysis of published data using numerical and ordinal
variables (categorized experimental conditions). The model has three applications. 1. The yield
prediction takes into account the genetic design of the microbial host system and the
“suboptimal” conditions under which the fermentation process occurs. 2. The model may
identify effective metabolic strategies and at the same time, quantitatively provide the degree of
uncertainty (i.e., possibility for failure). For example, statistical analysis shows that, for S.

cerevisiae, metabolic bottlenecks may be more likely to be in the secondary metabolic pathways
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rather than primary pathways, and thus it can narrow down the genetic targets and avoid futile
work. 3. This model may be used to qualitatively benchmark yields of different engineered

production platforms.
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Figure 2.1: Metabolic pathway for the biosynthesis of major products. The blue box represents
central metabolism and the yellow box represents secondary metabolism. Solid arrows signify
single step reaction and dotted arrows signify multiple steps. Abbreviations: ACoA — Acetyl-
CoA; DAP - Dihydroxyacetone-Phosphate; DAHP — 3-Deoxy-D-Arabino-Heptulosonate-7-
Phosphate; DHA - Dihydroxyacetone; F6P - Fructose-6-Phosphate; FBP — Fructose 1,6-
bisphosphate; G6P — Glucose-6-Phosphate; GADP - Glyceraldehyde-3-Phosphate; Oxa -
Oxaloacetate; Oxo - 2-Oxoglutarate; PEP - Phosphoenolpyruvate; PHB - Poly[(R)-3-
hydroxybutyrate]; pHCA - p-Hydroxycinnamic acid; R5P - Ribose-5-Phosphate; RubSP —
Ribulose-5-Phosphate; Suc — Succinate; X5P — Xylulose-5- Phosphate.
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Figure2.2C
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Figure 2.2: Model results. A) Plot of the actual logarithmic yields against the logarithmic yields
generated by the regression model. The line drawn as diagonal to the plot is one-to-one and
passes through the origin. The data points have an R2 value of 0.55. B) Plot of residuals against
fitted values. C) Model validation using newly published data (2010~2011) 1 - B-amyrin °; 2 -
ascorbic acid >*; 3 — monoterpene **; 4 — vanillin *°; 5 - succinic acid °.
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Table 2.1: Ordinal variables used in the linear regression model

Ordinal variables

Category 1
(subscript C1)

Category 2
(subscript C2)

Category 3
(subscript C3)

OVE: number of
modified genes or
pathways

No modified genes or
pathways were
present.

One or two modified
genes or pathways
were present.

More than two
modified genes or
pathways were
present.

KNO: number of gene
knockouts in known
competitive pathways

No gene knockouts
were performed.

Gene knockouts were
performed.

NUT: nutrient source

Fermentation
occurred in defined
medium (only
including trace
amounts of amino
acids or vitamins)

Fermentation
occurred in a very
rich medium.

INT: Intermediate

Intermediate was not
added

Intermediate was
added

CUL: cultivation
mode

Fermentation
occurred in a shaking
flask.

Fermentation
occurred in a batch,
fed-batch, or
continuous feed
bioreactor.

OXY: oxygen
conditions

Fermentation
occurred in aerobic
conditions.

Fermentation
occurred under
oxygen-limited
conditions (anaerobic
or micro-aerobic).

Note: the input of ordinal variables was specified using a binary system, 1 and 0. When a

category (e.g., overexpression Category 2) was applied, the value 1 was assigned to OVEc;.

Otherwise, the value 0 was assigned.
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Table 2.2: Dataset used for linear regression

Primary  Second

Reference  Product Yield Step Step OVE C2 OVE C3 KNO C2 NUT C2 INT C2 CUL C2 OXY C2
& (E,E,E)-Geranylgeraniol 0.00025 10 10 1 0 0 1 0 0 0
& (E,E,E)-Geranylgeraniol 0.014 10 10 0 1 0 1 0 0 0
& (E,E,E)-Geranylgeraniol 0.047 10 10 0 1 0 1 0 0 0
& (E,E,E)-Geranylgeraniol 0.018 10 10 0 1 0 1 0 0 0
& (E,E,E)-Geranylgeraniol 0.031 10 10 0 1 0 1 0 0 0
& (E,E,E)-Geranylgeraniol 0.058 10 10 0 1 0 1 0 0 0
& (E,E,E)-Geranylgeraniol 0.14 10 10 0 1 0 1 0 1 0
& 1,2-Propanediol 0.014 4 3 1 0 0 1 0 0 0
8 1,2-Propanediol 0.010 4 3 1 0 0 1 0 1 0
& 1,2-Propanediol 0.026 4 3 1 0 0 1 0 1 0
I 5-epi-aristolochene 0.010 10 9 1 0 1 1 0 0 0
[ 5-epi-aristolochene 0.0090 10 9 1 0 1 1 0 0 0
7 Acetate 0.13 9 2 0 0 1 0 0 1 0
° Acetate 0.015 9 2 0 0 1 0 0 1 0
" Acetate 0.26 9 2 0 1 0 0 0 0 1
8 Amorphadiene 0.00049 12 9 1 0 0 0 0 0 0
8 Amorphadiene 0.0020 12 9 1 0 0 0 0 0 0
8 Amorphadiene 0.0040 12 9 1 0 1 0 0 0 0
8 Amorphadiene 0.011 12 9 1 0 1 0 0 0 0
8 Amorphadiene 0.016 12 9 0 1 1 0 0 0 0
8 Amorphadiene 0.016 12 9 0 1 1 0 0 0 0
0 Amorphadiene 0.0080 12 9 1 0 1 0 0 0 0
7 Amorphadiene 0.0090 12 9 0 1 1 0 0 0 0
0 Amorphadiene 0.011 12 9 0 1 1 0 0 0 0
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105

Taxadiene 7.7x10° 12 8 0 1 0 1 0 0 0
106 Vanillin 0.0030 3 6 0 1 1 1 0 0 0
104 Xylitol 0.0070 5 2 1 0 1 0 0 0 0
104 Xylitol 0.014 5 2 1 0 1 0 0 0 0
104 Xylitol 0.014 5 2 1 0 1 0 0 0 0
" Xylitol 0.27 5 2 0 1 0 0 0 0 1
7 Xylitol 0.29 5 2 0 1 1 0 0 0 1
107 B-carotene 4.5x107 10 14 1 0 0 0 0 0 0
107 B-carotene 2.9x10° 10 14 0 1 0 0 0 0 0
107 B-carotene 0.00011 10 14 0 1 0 0 0 0 0
107 B-carotene 0.00036 10 14 0 1 0 0 0 0 0
107 B-carotene 0.0010 10 14 0 1 0 0 0 0 0

Note: Some papers show that product biosynthesis can be enhanced by supplementing additional precursors. In the parenthesis, we

have listed the number of enzyme steps from the added intermediates to final products.

* Steps for ethylene were counted based on the arginine route.
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Table 2.3: Regression coefficients and P-values for S. Cerevisiae model

Model 1 Model 2 Model 3
Variable With primary steps Without primary steps Ethanol as a primary metabolite
Coefficient P-value  Std. Error Coefficient  P-value Std. Error Coefficient  P-value  Std. Error

Intercept -1.53 0 0.42 -1.60 0 0.34 -1.73 0 0.41
;‘;‘Fr)“ary -0.01 0.76 0.04 . . . 0.003 0.93 0.03
Sst‘;%’”dary -0.19 0 0.02 -0.19 0 0.02 -0.19 0 0.02
OVE 0.007 0.98 0.26 0.0003 0.99 0.25 0.05 0.84 0.24
OVE ¢3 0.52 0.07 0.29 0.50 0.079 0.28 0.56 0.05 0.28
KNO c; 0.31 0.08 0.18 0.31 0.078 0.18 0.37 0.03 0.17
NUT ¢ 0.73 0 0.18 0.73 0 0.18 0.71 0 0.17
INT 0.77 0.02 0.31 0.82 0.001 0.25 0.86 0.004 0.29
CUL 0.51 0.02 0.22 0.51 0.02 0.21 0.51 0.02 0.21
OXY c2 0.27 0.32 0.27 0.28 0.31 0.27 0.12 0.65 0.27
Multiple R? 0.55 0.55 0.58
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Chapter 3: The use of **C-based analysis to elucidate the

Intrinsic biosynthesis yields

This chapter has been submitted for peer-review and the author would like to thank all the co-
authors for their contributions.

Abstract

Microbial platforms have widely been used for the synthesis of diverse value-added
chemicals. Rational metabolic engineering and optimal fermentations can improve microbial cell
factory’s yields from renewable feedstock. However, very few studies have rigorously
investigated the intrinsic product yields from engineered microbial platforms under complex
cultivation conditions. In this paper, we discuss the use of *C-based metabolite analysis for
assessment of product yields in four different cases. First, in the rich medium fermentation,
undefined nutrients (such as yeast extract) may also contribute to the synthesis of final product.
Second, product synthesis may be dependent on co-metabolism of multiple-feedstock. Third,
multiple pathways may be employed by microbes for product synthesis. Fourth, the loss of
ATP/NADH due to cell maintenance and low P/O ratio (Phosphate/Oxygen Ratio) reduces
product vyields, while *C-metabolic flux analysis (**C-MFA) can assess the influence of
suboptimal energy metabolism on microbial productivity. Since product yield is a major
determining factor in biotechnology commercialization, we foresee that *3C-isotopic labeling
experiments, even without performing extensive “*C-flux calculations, can play valuable roles in

the development of microbial cell factories.

Keywords: cell maintenance, co-metabolism, metabolic flux analysis, P/O ratio, yeast extract
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3.1 Introduction

Recent advances in metabolic engineering has enabled us to engineer microbial cell factories
for the efficient synthesis of diverse products, including bulk chemicals, drugs and fuels 8. For
example, advanced biofuels produced by engineered microorganisms with properties similar to
that of petroleum-based fuels, are being reported extensively > *®2 The emergence of systems
biology and synthetic biology has greatly increased the potential of microbial cell factories
towards the production of value-added chemicals 3. This has also improved product’s yield,
titer, and rate so that microbial cell factories can be moved from lab scale to industrial
fermentations *** °. The product yield is a key indicator in achieving an economical bio-
production of the bulk and commodity chemicals **°. But, estimation of product yield may be
difficult if fermentations use either rich-mediums or multiple feedstock (Figure 3.1). Moreover,
new pathways/enzymes are often employed to improve microbial productivity and their relative
contribution to product yield remains unknown 2+ 1% 17118 Thereby a proper technique for the
quantification of intrinsic yields from the engineered pathways is needed if multiple biosynthesis
routes are used by microbial hosts.

3C-tracing experiments can rigorously determine the in vivo carbon fluxes from specific
substrates to final products. Feeding microbial cultures with *3C-labeled substrates results in

119 \which can

unique isotopic patterns amongst the cell metabolites (isotopic fingerprints)
provide functional characterization of metabolic pathways *?°. Integration of this isotopomer data
with metabolic modeling (i.e., *C-MFA) can be used to predict cellular metabolic fluxes. The

metabolic fluxes not only reveals metabolic responses to product synthesis and growth

conditions ***'??, but can also reveal the rigid metabolic nodes for rational pathway engineering
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123 Therefore, 3C-based analysis (i.e., pathway tracing and **C-MFA) are widely used in the
field of biotechnology ****%’. Besides these common applications, this paper demonstrates the
additional utility of simple *C-experiments or the more complicated **C-MFA in determining

product yields from microbial cell factories.
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Figure 3.1: Schematic description of microbial metabolism. Many microbes have the ability to
co-metabolize diverse feedstock. Dark circles indicate labelled carbon. The enrichment of
labeling in the product acts as an indicator for the relative uptake flux of sugars.

3.2 Product yield using rich medium

Engineered microbes may have many metabolic burdens that can inhibit both biomass
growth and product synthesis. To promote their productivity, rich media are commonly used in
fermentations as they provide diverse nutrients for cell growth and stabilize the production
performance of the microbe * *°  Thereby, rich mediums include both primary carbon

substrates (e.g., sugars) and large amounts of nutrients (such as yeast extract). Multiple studies
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have revealed that supplementing culture medium with yeast extract or terrific broth to
engineered microbes significantly improves their final biosynthesis yields ®* *%. Since nutrient
supplements can provide undefined building blocks for both biomass and product synthesis, it is
difficult to precisely calculate the actual product yield from the rich-medium fermentation. To
overcome this problem, *C-analysis can be employed to gain insights into the contributions of
nutrients to product biosynthesis.

For example, two E. coli strains engineered for isobutanol production (i.e., a low
performance strain with an Ehrlich pathway * and a high performance JCL260 strain with

overexpression of both the keto-acid pathway and the Ehrlich pathway **°

) display an increase in
isobutanol titer with the inclusion of yeast extract in their culture medium. Using fully labeled
glucose and non-labeled yeast extract as carbon sources, *3C-experiments revealed that the low-
performance strain derived ~50% of isobutanol carbons from yeast extract (Figure 3.2), while the
JCL260 strain synthesized isobutanol solely from **C-glucose and used yeast extract mainly for
biomass growth *#. This observation from *C-analysis indicates that overexpression of keto-
acid pathway can resolve the isobutanol synthesis bottleneck and effectively pull the carbon from
glucose to product. In another work, an E.coli strain was engineered for conversion of acetate
into free fatty acids via the overexpression of both acetyl-coA synthetase and the fatty acid
pathways. In the acetate-based fermentation, yeast extract significantly promoted fatty acid
productivity, resulting in 1 g/L fatty acids from ~10g/L acetate ***. **C-analysis of the culture
with fully labeled acetate and yeast extract has shown that ~63% carbons in the free fatty acids

were synthesized from *C-acetate (Figure 3.2). Thereby, the actual microbial yield from a

primary substrate in a rich medium could be correctly estimated based on isotopomer analysis.
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Figure 3.2: (A) Biosynthesis yield analyzed by feeding cells with **C-substrates (such as fully
labeled glucose and acetate). (B) Relative product yields from a primary substrate (a —
Isobutanol from glucose in a low performance strain; ab — valine from glucose in a low
performance strain; b — Isobutanol from glucose in JCL260; bb — valine from glucose in JCL260)
129. ¢ — Free fatty acids from acetate in an E.coli strain ***; d - biomass from glucose in wild type
Synechocystls 6803 %% e - D-lactate from acetate in englneered Synechocystis 6803 **. Relative
yield is calculated based on C concentrations in the final product. Abbreviations: GAP,
Glyceraldehyde -3- phosphate; PYR, pyruvate; KIV, ketoisovalerate.

3.3 Product yield during co-metabolism of multiple carbon substrates

Algal species are able to utilize both CO, and organic carbon substrates. Such
mixotrophic metabolism can alleviate the dependence of algal hosts on light and CO, limitations,
and thus enable them to achieve high biomass growth rate and product titer ***. **C-metabolite
analysis has been used to track their photomixotrophic metabolisms in different scenarios. For
example, Synechocystis sp. PCC 6803 (blue-green algae) is a model a cyanobacterium which can

be engineered to produce diverse products and has capability to perform photomixotrophic
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metabolism **°. 3C-MFA has shown that CO, contributes to 25% of Synechocystis biomass yield
during its mixotrophic growth with **C-glucose and *2CO, **2. Besides, **C-metabolite analysis
has also been used to track the synthesis of D-lactate in an engineered Synechocystis 6803 **. In
that study, the lactate production was found to be increased substantially during the co-
metabolism of both CO, and acetate. Experiments with fully labeled acetate and '?CO,
discovered that nearly all of lactate molecules were non-labeled and that only the acetyl-CoA-
derived proteinogenic amino acids (leucine, glutamate and glutamine) were ‘*C-labeled. This
result suggested that acetate was involved only in biomass growth, while the yield of D-lactate
was completely derived from CO,. **C-results also further indicated that acetate may inhibit the
pyruvate decarboxylation reaction and thus redirect flux to lactate. The above study shows the
value of **C-analysis to improve our understanding of pathway regulations for product synthesis.
Since many microbial platforms (including both algal species and heterotrophs) may co-
metabolize multiple carbon substrates simultaneously, isotopomer feeding can reveal the
contributions of each substrate to key metabolite pools, and thus predict the potential bottlenecks

in biomass or product formations.

3.4 Accurate laboratory analysis of product concentrations

Direct measurement of product concentrations in the culture can obtain deceptive results.
There are a few cases that cause product measurement errors. First, loss of volatile products
(such as alcohols) during fermentation may reduce product titers. Second, product may be
degraded or consumed by contaminated microbes during fermentation process. For example,
photochemical degradation of isobutanol synthesis from cyanobacteria was reported **. Third,

aerobic fermentation in shake flasks may have significant water vaporization during long-term
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incubation because the cultivation volume is relatively small (<50mL working volume) and thus
the product concentration may be condensed (e.g., 10~20% water loss was normally observed
after three-day shaking flask cultivations at 37 °C). In all these circumstances, the final product
yield could be very different from the intrinsic microbial product yield. To obtain the true
productivity, in situ product recovery is a common method to reduce product loss. For example,
volatile alcohol products can be trapped in organic solvents during microbial fermentation (e.g.,
gas striping) 13 *¢ 137 Alternatively, kinetic model can be used to obtain intrinsic product yields
via parameter estimation based on complete time-course fermentation data and statistical
analysis (to avoid local solutions) **. Thirdly, **C-experiments can also resolve artifacts during
measurement of intrinsic product yields. By addition of small amount of *3*C-product in the
culture as an internal standard, we can directly measure the change of “*C-product during

fermentation (Figure 3.3). Then, **C-data from time points can be used to correct the artifact of

yield coefficients: ac =—k.C* where C” represents the **C concentration of the product and
dt
ki is assumed the first order constant for product loss. Thereby, k, = _|n(Ct*2)/(t2 -t)- By

t1
analyzing the change in *3C concentration at two different time points (t; and t,), ki can be
calculated. The product loss term can be added to the normally measured product curves for

correction of intrinsic product curves.
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Figure 3.3: Schematic showing the dynamics of product cgncentration. Ca Is the actual
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3.5 Assessment of maximum product yield

Theoretical product yield is generally calculated based on the stoichiometry of product
synthesis from a carbon substrate (without accounting both biomass growth and waste secretion).
However, microbial energy metabolism may also be affecting product yield which is seldom
accounted. The synthesis of high-energy chemicals often requires large amounts of ATPs, while
cell maintenance (used for regeneration of degraded macromolecules, futile cycles, and ATP
leaks) also competes for the same ATPs **. Oxidative phosphorylation of NADH is a major
source for ATP generation (theoretical P/O ratio: 1 NADH - 3 ATPs) **°. However, respiration
efficiency in engineered strains could be poor (e.g., the P/O ratio = 1.3 during riboflavin

140

fermentation **°) due to metabolic stresses . Thereby, a cell may consume extra substrates to

compensate for the ATP demand. To illustrate the effect of cell maintenance on product yield *4?,

a flux balance model was built to show free fatty acid production as a function of ATP
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maintenance and P/O ratios (Figure 3.4) ***. This model employs eight reactions (Table 3.1) and

the fluxes were resolved by the function below:

[max v(2) 1
suchthat A-v=band Ib<v<ub

where the objective function is to maximize v (i.e., the relative flux of fatty acid). A is the
reaction stoichiometry. Ib and ub are upper and lower bound for each reaction flux, v(i). Fig.
3.4a shows the relationship between maximum yield, P/O ratio and ATP maintenance without
biomass growth (v(8)=0). A Higher P/O ratio makes the microbial system less sensitive to the
increased demand for ATP. When the ATP maintenance is low and the P/O ratio is close to 3, the
fatty acid yield can reach the theoretical value of 0.36g fatty acid/g glucose. In this case,
reduction of carbon loss via knock-out of competitive pathways will be effective to achieve the
theoretical yield (Figure 3.4A). If ATP consumption for maintenance increases, cells need to
“burn” extra carbon substrates for energy generation so that fatty acid yields drop significantly.
In this case, the biosynthesis optimization needs to reduce the loss of ATP/NADH. For example,
in a study of the engineered E.coli metabolism responding to fatty acid overproduction **, **C-
MFA (via extensive flux calculation) found that the total ATP/NAD(P)H generation was much
higher than their consumption for biomass growth and fatty acid synthesis. Such difference was
attributed to the low P/O ratio and high cell maintenance during fatty acid overproduction.
Therefore, the engineered strain had a fatty acid yield of only 0.17g fatty acid/g glucose even
after extensive pathway engineering, (Figure 3.4B). The suboptimal energy metabolism in the
engineered strain was likely due to the various physiological stresses experienced by the cell
144).

during fatty acid overproduction (e.g., change cell membrane integrity and compositions

Since metabolic stresses are commonly experienced by microbial hosts, *C-MFA can provide a
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1 diagnostic analysis of cell maintenance and offer insights into the metabolic potential for

2 improving biosynthesis *°.

4  Table 3.1: Simplified biochemical reactions considered in the model

5
Flux,v Reactions Note

V(1)  Glucose >2AceCoA + 2ATP + ANADH Glycolysis

v(2) ,:;cigCoA + 1.75NADPH + 0.875ATP - 0.125 C16:0 fatty Fatty acid synthesis

v(3)  AceCoA - 2NADH + NADPH + ATP + FADH2 TCA cycle

v(4) NADH -> NADPH Transhydrogenation

v(5) NADH > P/O ATP Oxidative
phosphorylation

v(6) FADH2 - 0.67(P/O)ATP Oxidative
phosphorylation

v(7)  ATP >ATP_ext ATP maintenance

6.6Glucose + 37.6ATP + 9.5NADPH + 2.5AceCoA=
39.7Biomass + 3.1NADH

6  Note: glucose consumption for both biomass growth and product synthesis is normalized to 100.

v(8) Biomass formation

7  The optimization was performed by a linear optimizer ‘linprog’ in MATLAB. The final yield (g
8 fatty acid/g glucose) is calculated as follows: Y=(v(2)/8-:256)/(100-180) g C16:0 fatty acid/g

9  glucose.
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Figure 3.4: (A) Theoretical Yield as a function of P/O ratio and ATP maintenance without
biomass growth. (B) Theoretical Yield as a function of P/O ratio and ATP maintenance at growth
rate v(8)=3.6. The units of yield and ATP maintenance are ‘g C16:0 fatty acid/g glucose’ and
‘mol ATP /g glucose’ respectively. The infeasible range in the surface plot indicates that, energy
cannot be balanced for fatty acid or biomass production in that region, resulting in zero yield **.

3.6 Product yield from unconventional engineered pathway

B3C-analysis can be used to decipher the yield of products through multiple biosynthesis
routes. For example, the acetogenic bacterium Clostridium carboxidivorans uses syngas (H,, CO
and CO,) to generate various chemicals (e.g., acetate, ethanol, butanol, and butyrate) *®. It
contains several routes for CO; fixation, which includes the Wood-Ljungdahl pathway and the
anaplerotic or the pyruvate synthase reactions. *C-experiments can be used to identify the
relative contribution of the different CO, fixation pathways towards product synthesis. As a

demonstration, cultivation of Clostridium with labeled **CO, and *CO has been shown in Fig.
50



3.5. Here, *C-analysis of the labeling patterns in either alanine or pyruvate can reveal the

relative contributions of the different CO, assimilation routes to biomass and product synthesis.
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Figure 3.5: °C analysis to study the carbon assimilation during syngas fermentation (**CO,,
12C0O and H,). Analysis of metabolite labeling patterns can determine CO, and CO utilization for
pyruvate production. The isotopomer data of pyruvate were used as a demonstration of *C
applications for product yield calculations.

“Rule of Thumb” indicates that 20%~30% vyield reduction happens per engineered
enzymatic reaction step ®* '?®. Thereby, novel pathways are constantly being explored and
engineered into microbial hosts to create a short-cut route from the feedstock to the final product.
If new pathways are engineered into microbes, it could be unclear how much the engineered

pathways are used by the microbe in parallel with its original pathway **. In the following

example, we demonstrate that *C-experiments can determine the relative fluxes through multiple
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pathways based on measurements of the product labeling. Specifically, butanol could be
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Figure 3.6: Threonine and citramalate pathway for the synthesis of 1-butanol. The carbon
rearrangement network shows the labeling of 1-butanol for both the pathways, when fed with 1-
3¢ pyruvate and **C bicarbonate.

produced simultaneously from a threonine pathway and a citramalate pathway (a short-cut keto
acid-mediated pathway) in E.coli **. If 1% position **C-pyruvate and **C-bicarbonate are fed to

the butanol producing strain, labeling patterns in butanol can quantify fluxes through the two
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biosynthesis pathways (Fig. 3.6). In another example, James Liao Lab introduced a non-
oxidative glycolytic cycle (NOG) into E.coli for breaking down hexose that could lead to a 50%
increase of biofuel yield **’. This NOG pathway starts with fructose 6-phosphate and contains
three metabolic cycles to generate Acetyl-CoA without carbon loss. To probe the contribution of
NOG pathway to overall cell metabolism, their study has also presented a carbon rearrangement
map so that *C-tools can be employed. These examples illustrates that *C-analysis is potentially

suited to examine in vivo activity of these novel pathways for product synthesis.

3.7 Conclusion

Product vyield is one of the main factors involved in commercialization of a
technology **°. Microbial productivity is not only associated with the efficiency of biosynthesis
enzymes, but is also intertwined with energy metabolisms and metabolic balances *°. Via simple
3C analysis, we can characterize the hosts’ intrinsic production yield using different carbon
sources, and determine the contributions of alternative pathways to biosynthesis. In addition,
3C-MFA can profile hosts’ fluxomes and determine the amount of extra substrates that cell
metabolism has to consume to compensate ATP losses due to cell maintenance and low P/O
ratio. In the end, loss of products during fermentations (such as volatile alcohols or product
degradation) introduces common measurement errors and artifacts *** *3* 337 The accurate
quantification of unstable metabolites can also be achieved via *C-based method (i.e., using

isotopomer labeled internal standards) ™.

Through this review paper, we hope that the
metabolic engineering field will recognize more value of **C-techniques and foresee an extended

use of *C-experiments during the development of microbial cell factories.
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Chapter 4. Metabolic engineering of Synechocystis

6803 for isobutanol production

This chapter has been reproduced from the following publication:
Varman, A.M., Xiao, Y., Pakrasi, H.B. & Tang, Y.J. Metabolic Engineering of Synechocystis sp.

Strain PCC 6803 for Isobutanol Production. Applied and Environmental Microbiology 79, 908-
914 (2013).

Abstract

Global warming and decreasing fossil fuel reserves have prompted great interest in the
synthesis of advanced biofuels from renewable resources. In an effort to address these concerns,
we have performed metabolic engineering of the cyanobacterium Synechocystis sp. PCC 6803 to
develop a strain that can synthesize isobutanol under both autotrophic and mixotrophic
conditions. With the expression of two heterologous genes from the Ehrlich Pathway, the
engineered strain can accumulate 90 mg/L of isobutanol from 50 mM bicarbonate in a gas-tight
shaking flask. This strain does not require any inducer (i.e., IPTG: Isopropyl B-D-1-
thiogalactopyranoside) or antibiotics to maintain its isobutanol production. In the presence of
glucose, isobutanol synthesis is only moderately promoted (titer = 114 mg/L). Based on
isotopomer analysis, we find that compared to the wild-type strain, the mutant significantly
reduced its glucose utilization and mainly employed autotrophic metabolism for biomass growth
and isobutanol production. Since isobutanol is toxic to the cells and may also be degraded
photochemically by hydroxyl radicals during the cultivation process, we employed in situ
removal of the isobutanol using oleyl alcohol as a solvent trap. This resulted in a final net

concentration of 298 mg/L of isobutanol under mixotrophic culture conditions.
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4.1 Introduction

Global energy needs continue to increase rapidly due to industrial and development
demands, furthering environmental concerns. Much of the worldwide energy consumption
comes from the burning of fossil fuels, which produces about 6 gigatons of CO, annually **2.
Increasing CO; levels may act as a feedback loop to increase the soil emissions of other

greenhouse gases such as methane and nitrous oxide, heightening global temperature ™.

For
energy security and environmental concerns, there is an urgent demand for the development of
bioenergy. Bioethanol is the most common biofuel, but it also has low energy density and
absorbs moisture. Isobutanol (IB) is a better fuel because it is less water soluble and has an

energy density / octane value close to that of gasoline *** *°.

Amongst the next generation
biofuels synthesized from pyruvate, IB possesses fewer reaction steps (5 reaction steps from
pyruvate to I1B) in contrast to the synthesis of 1-butanol or biodiesel. IB is less toxic to microbes
2% 50 that it may achieve higher product titer and yield °* *?. For example, a maximum titer of

50.8 g/L of IB can be achieved in an engineered E. coli **.

On the other hand, cyanobacteria can not only convert CO; into bio-products, but also
can play an important role in environmental bioremediations. The photosynthetic efficiency of

) . Furthermore, some

cyanobacteria (3~9%) is high compared to higher plants (<0.25~3%
species of cyanobacteria are amenable to genetic engineering. Table 4.1 lists the various biofuels
that have been synthesized through the metabolic engineering of cyanobacteria. Autotrophic IB
production in cyanobacteria was first demonstrated in Synechococcus 7942 2. Moreover, a

model cyanobacterium Synechocystis sp. PCC 6803 is capable of growing under both

photoautotrophic and mixotrophic conditions, while the presence of glucose can significantly
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promote biomass and bioproduct synthesis **°. Thereby, we have engineered a glucose tolerant
Synechocystis 6803 strain with two key genes kivd and adhA of the Ehrlich pathway?® so that the
cyanobacterial strain can convert CO, into IB. Through both metabolic engineering and

bioprocess optimization, we have improved our strain’s IB production capabilities.

4.2 Materials and methods

4.2.1 Chemicals and reagents.

Restriction enzymes, T4 DNA ligase, DNase and a Revertaid first strand cDNA synthesis
kit were purchased from Fermentas or New England Biolabs. Oligonucleotides were purchased
from Integrated DNA Technologies. Toluene, IB, a-ketoisovaleric acid, phenol and chloroform
were purchased from Sigma-Aldrich (St. Louis, MO). KlenTag-LA **” was purchased from DNA
Polymerase Technology (St. Louis, MO). TRI Reagent® was purchased from Ambion, USA. °C
labeled glucose was purchased from Cambridge Isotope Laboratories.

4.2.2 Culture medium and growth conditions.

A glucose tolerant wild-type strain of Synechocystis 6803 (WT) and the recombinant
strain AV03 were grown at 30°C in liquid BG-11 medium or solid BG-11 medium at a light
intensity of 50 pmol of photons m?s™ in ambient air. Kanamycin at a concentration of 20
pHg/mL was added to the BG-11 medium when required. Growth of the cells was monitored by
measuring OD73, of the cultures on an Agilent Cary 60 UV-Vis Spectrophotometer. Cultures for
the synthesis of IB were grown in 10 mL medium (Initial OD73o of 0.4) in 50 mL shake flasks for
4 days. The mid-log phase cultures were then closed with rubber caps to prevent the loss of IB
during incubation, and the cultures were supplemented with 50 mM NaHCO3; as an inorganic

carbon source. Mixotrophic cultures of Synechocystis 6803 were started in a BG-11 medium

57



containing a known amount of glucose as an organic carbon source. E. coli strain DH10B was
the host for all plasmids constructed in this study. E. coli cells were grown in falcon tubes
containing Luria-Bertani (LB) medium at 37°C under continuous shaking. Ampicillin (100
pg/mL) or kanamycin (50 pg/mL) was added to the LB medium when required, for the

propagation of plasmids in E. coli.

4.2.3 Plasmid construction and transformation of Synechocystis 6803.

The vector pTAC-KA containing an ampicillin resistance cassette (Amp®) and two genes
(kivd and adhA from Lactococcus lactis) was constructed as described *2°. The pTAC-KA vector
was modified using the following steps to convert it into a Synechocystis 6803 vector. To clone
the flanking regions of a potential neutral site into pTAC-KA, a Synechocystis 6803 vector
pSL2035 containing both the flanking regions and the kanamycin resistance cassette (Km®) was
used as a template. pSL2035 is a Synechocystis 6803 vector designed to integrate any foreign
DNA into the genome of Synechocystis 6803 by replacing the psbAl gene and its promoter.
psbAl is a member of psbA gene family and is found to be silent under most conditions ** **°.
pSL2035 was constructed by cloning the flanking regions for the psbAl gene and the Km® into
pUC118. The 5’ flanking region from pSL2035 was PCR amplified along with Km® by
respective primers (Table 4.2) and cloned into the Pcil and Bsu361 site of pTAC-KA, resulting in
the vector pTKA2. The 3’ flanking region was PCR amplified from pSL2035 by the respective
primers and inserted into the Ahdl site of pTKAZ2, disrupting the native Amp® and henceforth
creating the vector pTKAS.

Transformation was performed by using a double homologous recombination system, and

the genes were integrated into the target site of the Synechocystis genomic DNA. Specifically, 2
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mL of Synechocystis 6803 from a mid-log phase (1~3x10° cells mL™) culture was centrifuged at
10,000 x g for 2 min. The pellet was suspended in a fresh BG-11 medium (200 pL) to a final cell
density of 1~3x10° cells mL™. Plasmid DNA was added to a final DNA concentration of 5~10
ng/mL *° to this dense Synechocystis 6803 cell culture. The mixture was then incubated under
normal light conditions (50 HE m™ s™) overnight. The culture was then spread onto a BG-11 agar
plate containing 20 pg/mL of kanamycin. Recombinant colonies usually appear between 7 and
10 days. Colonies were propagated on a fresh BG-11 plate containing kanamycin, and a colony
PCR was performed to verify successful integration of the insert into the genomic DNA of the
recombinant. The positive colonies were propagated continuously onto BG-11 plates containing
kanamycin, to get a high segregation of the insert in the recombinant *”. To verify the integrity of
the promoter and gene sequences, the heterologous DNA integrated into the genome of the
mutant AV03 was PCR amplified and sent for sequencing with the respective primers.

4.2.4 Reverse transcription PCR (RT-PCR).

Total RNA isolation of Synechocystis 6803 was performed using a TRI Reagent®
(Ambion, USA) by following the manufacturer protocol with modifications. 1 mL of RNAwiz
was prewarmed to 70°C and pipetted into the frozen cells directly. Immediately, the mixture was
vortexed and incubated for 10 min at 70°C in a heater block. 0.2 mL of chloroform was added to
the mixture and mixed vigorously followed by incubation at room temperature for 10 min. The
aqueous and the organic phase were separated by centrifugation at 10,000 x g at 4°C. The RNA
containing aqueous phase was transferred into an eppendorf tube, to which, equal volumes of
phenol and chloroform were added. The mixture was mixed vigorously followed by
centrifugation to separate the aqueous and the organic phase. The aqueous phase was removed to

a clean tube, to which 0.5 mL of diethyl pyrocarbonate (DEPC) treated water was added. RNA
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in the solution was precipitated by the addition of room temperature isopropanol and centrifuged
at 10,000 x g at 4°C to pellet the RNA. The RNA was washed with ethanol and resuspended in a
fresh 50 uL of DEPC treated water. The quantity and quality of the isolated RNA was
determined using a Nanodrop ND-1000 (Thermo Scientific, USA). The RNA was incubated at
room temperature with DNase to degrade any genomic DNA, if present in the RNA sample.
Synthesis of cDNA was performed by utilizing a Reverse transcriptase enzyme from Fermentas
along with dNTPs and random primers in a reaction buffer. The mixture was incubated at 42°C
for 60 min. The synthesized cDNA was used as a template for the PCR, to detect the expression
of the mRNA of interest.
4.2.5 Isobutanol quantification assay.

IB synthesized in the culture was quantified using a gas chromatograph (Hewlett Packard
model 7890A, Agilent Technologies, equipped with a DB5-MS column, J&W Scientific) and a
mass spectrometer (5975C, Agilent Technologies). IB extraction was done using a modified
procedure 8. Samples of the cyanobacterial culture (400 pL) were collected and centrifuged at
10000 x g for 5 min. IB was extracted from the supernatant by vortexing for 1 min with 400 pL
of toluene, and methanol was used as the internal standard. A 1 puL sample of the organic layer
was injected into the gas chromotagraph (GC) with helium as the carrier gas. The GC oven was
held at 70°C for 2 min and then raised to 200°C with a temperature ramp of 30°C min™, and the
post run was set at 300°C for 6 min. The range of the mass spectrometer (MS) scan mode was set
between m/z of 20 and 200. The concentration of IB present in the culture was determined based
on a calibration curve prepared with known concentrations of IB ranging from 25 mg/L to 400

mg/L.
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4.2.6 *C-experiment to detect carbon contribution of glucose.

The **C-abundance of some important metabolites was measured for both the wild-type
and the mutant strain AV03, to estimate the carbon contribution of both glucose (fully labeled by
13C) and nonlabeled bicarbonate for biomass and IB synthesis. Mixotrophic cultures of both the
wild-type Synechocystis 6803 and the mutant AV03 were grown in BG-11 medium (with 50mM
nonlabeled NaHCOs), which contained 0.5% glucose (U-*3C, Cambridge Isotope Laboratories,
MA). Cultures were collected on day 3, 6 and 9, and proteinogenic amino acids were hydrolyzed
and then derivatized with TBDMS (N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide,
Sigma-Aldrich). The derivatized amino acids were analyzed for their mass isotopomer
abundance by GC-MS, as described before %% ! The m/z ion [M-57]", which corresponds to
the entire amino acid, was used to calculate the **C abundance in amino acids [mg my.... my].

The fraction of carbon (Fa) derived from fully labeled glucose for each amino acid was estimated

based on the following equation: F, = 4.2)

where i is the number of labeled carbons, m; is the mass fraction for different isotopomers of the
corresponding amino acid and n represents the total number of carbons in the corresponding
amino acid. The m/z of [M-15]" was used only for leucine and isoleucine, since their [M-57]"
overlaps with other mass peaks %2, IB extraction was performed for samples obtained from the
above cultures and was analyzed using the GC-MS. The fraction of carbon derived from glucose

for isobutanol (Fig) was estimated based on the isobutanol MS peak abundances:

Fg =it (4.2)
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where A; is the abundance of the mass-to-charge ratio peaks for the various isobutanol

isotopomers (i.e., Ao~A, for m/z=74~78).

4.3 Results

4.3.1 Construction of an isobutanol producing Synechocystis 6803 strain.

IB synthesis in Synechocystis 6803 requires the expression of two heterologous genes of
the Ehrlich pathway. The enzymes 2-keto-acid decarboxylase and alcohol dehydrogenase can
convert 2-keto acids into alcohols. In this work, we constructed a plasmid pTKAS3 containing the
genes kivd and adhA from Lactococcus lactis under the control of an IPTG inducible promoter,
Pwc. The plasmid was designed to integrate the genes into a neutral site in the genome of
Synechocystis 6803, along with a kanamycin resistance cassette (Fig. 4.1a - Left). The wild-type
strain of Synechocystis 6803 was transformed with pTKA3, resulting in the recombinant strain
AV03. The integration of the insert genes into the genome was verified by a colony PCR after
several rounds of segregation (Fig. 4.1a - Right).

To identify the optimal IPTG concentration required for 1B synthesis, the AV03 strain
was grown under different concentrations of IPTG. IB analysis from the cultures indicated that
IB was highly synthesized even without the addition of IPTG (Fig. 4.1b). To verify if this
observation was an artifact of any mutations that might have occurred in lacl or the promoter, the
foreign DNA integrated into the chromosome of AVO03 was sequenced. Sequencing results for
the lacl and the promoter Py, in the genome of AV03 revealed that the nucleotide sequence was
completely intact. There have been reports of leaky expressions with IPTG inducible promoters
163 Besides, Fig. 4.1b indicates that as the concentration of IPTG went higher than 1mM, the 1B

synthesis reduced. The ODz3 of the different cultures indicated that the addition of IPTG did
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not apparently interfere with the growth rate of the culture. RT-PCR showed the expression
levels of the genes kivd and adhA under different IPTG concentrations. The result of RT-PCR
experiment (Fig. 4.1b - Inset) indicated that the levels of kivd and adhA mRNA synthesized in
the mutant were higher with IPTG than without. Henceforth, lower expression of the two genes
is sufficient for IB synthesis, possibly because the Ehrlich pathway may not be the rate-limiting
step for IB production.

4.3.2 Isobutanol synthesis under autotrophic and mixotrophic growth.

Under autotrophic conditions, Synechocystis 6803 utilizes light as an energy source (ATP
and NADPH) for the conversion of CO, into biomass and IB. Fig. 4.2a compares the autotrophic
growth of the mutant and the wild strain. Under autotrophic conditions, we found that the growth
rate of the mutant AV03 remains unaltered as compared to the wild-type strain. 1B accumulation
in the mutant was tested under autotrophic condition (Fig. 4.2b), and the strain was found to
synthesize a maximum of 90 mg/L of IB (the only extracellular product detected by GC-MS) in a
6-day culture. In a sealed shaking flask, NaHCOj3; in the medium (50mM) was consumed by
AV03 within six days, and then both the biomass and IB started declining.

The wild-type strain of Synechocystis 6803 grows about 5 times faster under mixotrophic
conditions compared to autotrophic conditions (Fig. 4.2a). However, our mutant AV03 did not
exhibit an increased growth rate under mixotrophic conditions. To measure the glucose
utilization by wild-type and mutant AV03, we fed cells with 0.5% fully labeled glucose and
nonlabeled bicarbonate. Isotopomer analysis of **C-abundance in cell metabolites (Fig. 4.2c)
showed that the wild-type synthesized 70~90% of its amino acids using carbons from glucose,
whereas the mutant produced biomass only using 5~10% carbon from glucose, and 12% of the

carbon of IB was labeled (i.e., derived from glucose). These results indicated that the mutant
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tended to limit glucose metabolism for IB production. The AV03 strain was found to synthesize
a maximum of 114 mg/L of IB mixotrophically after 9 days (Fig. 4.2b), whereas cells with only
glucose (heterotrophic without bicarbonate or CO,) synthesized a maximum of 27 mg/L of IB.
This result suggests that the Synechocystis 6803 mutant is unable to take significant advantage of
its glucose metabolism to have a fast rate of 1B production.

4.3.3 In situ alcohol concentrating system using a solvent trap.

IB is toxic to the cells and our study revealed that IB inhibited Synechocystis 6803 growth
at external concentrations of only 2 g/L (Fig. 4.3). Moreover, our control experiments indicated
the loss of IB after 9 days of continuous incubation. IB can be slowly degraded by photo-
chemically-produced hydroxyl radicals in aerobic cyanobacterial cultures ****®° Therefore, a
system with continuous removal of the synthesized alcohol products will be beneficial **" 1%, We
have demonstrated the use of an in situ alcohol removal system by using oleyl alcohol *** ™ as a
solvent trap for increasing IB titer. In previous studies, gas stripping is one efficient way for IB
recovery, but it requires an expensive cooling system due to very low concentrations of IB from
photo-bioreactors. Here, inside each cultivation flask, we placed a small glass vial containing 0.5
or 1 mL oleyl alcohol solvent, so that oleyl alcohol was not mixed with the culture solution (Fig.
4.4). Volatile IB in the headspace can be trapped in the solvent vial because of the high
solubility of 1B in oleyl alcohol. This method will effectively trap the 1B while the solvent will
not directly interfere with light and cell culture conditions.

To test the effect of oleyl alcohol on IB productivity, we did a 3-week time-course study
(Fig. 4.4) by adding 50 mM NaHCOg; intermittently (every 4 days). During the cultivation, the
pH of the cultures was also adjusted to be between 8 and 9 before the addition of excess

bicarbonate. Every 3 days, the oleyl alcohol in the vials was taken out for IB measurement, and
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then replaced with fresh oleyl alcohol. The mixotrophic cultures with alcohol trap (0.5 mL)
reached the highest net IB concentration of 298 mg/L. The autotrophic cultures with 0.5 mL and
1 mL oleyl alcohol had a maximum net IB titer of 180 mg/L and 240 mg/L, respectively,
whereas the autotrophic cultures without the oleyl alcohol trap were able to achieve a maximum
of only 108 mg/L of IB. IB levels in the organic phase reached concentrations of up to 500 mg/L

with only 3 days of trapping.

4.4 Discussion

Isobutanol (IB) is a promising biofuel for the replacement of gasoline. So far, E. coli has
remained the most successful microbial host for IB production. In this study, we have focused
our efforts on a cyanobacterial species, Synechocystis 6803, which can grow on both CO, and
glucose. The mixotrophic cultivation may offer industrial flexibility and economic benefits
because the gas-liquid mass transfer of CO, is often a rate-limiting step in efficient
photobioreactor operations. Attempts in creating a stable strain of Synechococcus 7942 that can
transport and utilize glucose has been barely successful *. The glucose tolerant strain of
Synechocystis 6803 unlike other cyanobacterial strains, can perform both autotrophic and
mixotrophic metabolisms. In our work, we found that the wild-type strain of Synechocystis 6803
under mixotrophic conditions grew at a rate 5 times faster than the autotrophic condition.
Moreover, the engineered Synechocystis 6803 strain accumulated 90 mg/L of IB, whereas the
Synechococcus 7942 strain expressing the same two enzymes (keto-acid decarboxylase and
alcohol dehydrogenase) only accumulated a maximum of 18 mg/L . Switching the condition

from autotrophic to mixotrophic for the mutant AVO03 increased the maximum IB titer to 114
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mg/L. Interestingly, the mutant tended to grow autotrophically and had minimal glucose

utilization compared to the wild-type strain (Fig 4.2c).

IB can be inhibitory to cell physiologies. Moreover, our experiments also observed IB
degradation (by hydroxyl radicals) during the incubation process. Thereby, efforts in coming up
with product recovery are important to improve IB titer in cyanobacterial culture. This work
employed an in situ IB removal system by growing cultures in shake flasks with vials containing
oleyl alcohol. Mixotrophic growth of AV03 along with in situ IB removal synthesized a
maximum of 298 mg/L IB, which is lower than the highest IB titer (450 mg/L) reported in
Synechococcus 7942 mutant expressing 3 more genes of the keto acid pathway. On the other
hand, our strain design has two apparent advantages for industrial application. First, our strain
does not require any antibiotics to maintain its IB production because the two heterologous genes
in the mutant show good stability during normal cultivation conditions. Second, the strain does
not need any inducer (IPTG) for IB production, which can significantly reduce the industrial

Ccosts.

Overexpressing the keto acid pathway can increase the IB titer in Synechococcus 7942 %.
Furthermore, optimizing CO; and light conditions of the cyanobacterial strain can also increase
the final titer and productivity. Liu et. al., 1" have reported a doubling time of 7.4 hours for

Synechocystis 6803, by growing them under 140 pmol of photons m? s*

of light and by
bubbling 1% CO, enriched air. Therefore, our strain can serve as a springboard for future
development of higher performance Synechocystis 6803 strains with increased IB titer and

productivity.
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In summary, IB synthesis under autotrophic conditions in a cyanobacterium
Synechocystis 6803 was demonstrated by the expression of two heterologous genes. It was
further demonstrated that mixotrophic cultures of the mutant can significantly increase 1B
synthesis with minimal glucose consumption. The mechanism behind the reduced glucose-
utilizing metabolism of AV03 compared to the wild-type strain remains unclear. A possible
explanation is that the cells tend to avoid the intracellular metabolic imbalance or 1B
intermediate inhibition by down-regulating glucose uptake. Using oleyl alcohol as a simple
solvent trap, 1B production can be improved by 2~3 times. Therefore, in situ IB recovery may
reduce the product loss and separation cost. We have also demonstrated that a simple expression
of the Ehrlich pathway with bioprocess modification can synthesize 1B without other major
waste products, while still achieving comparable levels of IB to an extensive genetically

modified Synechococcus 7942 strain (Table 4.1) %,
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Figure 4.1a
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Figure 4.1: (a) Schematic representation to show the integration of the genes kivd and adhA

into the genome of Synechocystis 6803. Colony PCR performed to verify the integration of the

insert into the genomic DNA of the mutant (AV03). The vector ptka3 w was used as a template
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for the positive control and wild-type cells were used as negative control. Colony PCR of AV03,
showed the presence of a band (8.3kb) the same size as the positive control (+ve) and the
absence of the negative control (WT) band. (b) IB synthesized by engineered Synechocystis 6803
under different IPTG concentrations (n=3). (Inset) Result of an RT-PCR performed to detect the
expression of the heterologous genes kivd (Top: 500bp from kivd) and adhA (Bottom: 200bp
from adhA). Lane 1, wild-type 6803 (WT); Lane 2, AV03 with 0 mM IPTG; Lane 3, AV03
with 0.5mM IPTG; Lane 4, AV03 with 1ImM IPTG.
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Figure 4.2c
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Figure 4.2: (a) Growth curves of Synechocystis 6803 WT and AV03 (n=3, shake flask cultures):
O WT under autotrophic, ¢ WT under mixotrophic, © AV03 under autotrophic and e AV03
under mixotrophic conditions (note: growth curve of AVO03 under mixotrophic condition
overlaps with autotrophic growth curves of AV03 and WT). (b) IB synthesized in AV03 under
autotrophic conditions (only HCOg), heterotrophic (only glucose) and mixotrophic (both HCO3
and glucose) conditions (n=3, shake flask cultures with closed caps). (c) Percentage carbon
contribution of glucose for synthesizing amino acids and isobutanol in the wild-type (WT) and
the mutant strain (AV03) as measured on day 9 (shake flask cultures with closed caps).
Isotopomer analysis (TBDMS based method) of proteinogenic amino acids confirms the low **C-
glucose utilization by the mutant. The error bar represents the 2% technical error of the
instrument.
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Figure 4.3
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Figure 4.3: Toxic effects of IB on the growth of Synechocystis 6803. IB was added to a final
concentration (g/L, n=2) of ¢ 0, 0 0.2, A0.5, o 1, m 2 and e 5 to a Synechocystis 6803 culture
with an initial OD730 ~ 0.8.
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Figure 4.4
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Figure 4.4: Net concentration of IB synthesized (columns) and biomass growth (curves) by the
AV03 culture under different conditions (n=3). a — IB with 0.5 mL oleyl alcohol (Autotrophic); b
— IB with 1 mL oleyl alcohol (Autotrophic); ¢ — IB with 0.5 mL oleyl alcohol and glucose
(Mixotrophic); d — IB with no oleyl alcohol (Autotrophic, negative control); al — ODy3 with 0.5
mL oleyl alcohol (Autotrophic); a2 — OD73 with 1 mL oleyl alcohol (Autotrophic); a3 — ODz3
with 0.5 mL oleyl alcohol and glucose (Mixotrophic); a4 — OD;3y with no oleyl alcohol
(Autotrophic, negative control). (Inset) Schematic representation of the in situ IB removal
system used to increase the production of IB.
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Table 4.1: Metabolic engineering of cyanobacterial strains for biofuel production.

Product Species Titer or Overexpressed Promoters Culture vessel / Remarks Culture | Ref.
Productivity | genes Days

Ethanol Synechococcus | 230 mg/L pdc and adh rbcLS Shake flask 28days |
7942

Ethanol Synechocystis 552 mg/L pdc and adh psbA2 Photobioreactor 6 days A
6803

Isobutyrald | Synechococcus 1100 mg/L alss, ilvC, ilvD, kivd LlacO,, trcand | Roux culture bottle with 8 days *

ehyde 7942 and rbcls tac NaHCO;

Isobutanol | Synechococcus | 18 mg/L kivd and yghD trc Shake flask with NaHCO; 1 day ®
7942

Isobutanol | Synechococcus 450 mg/L alss, ilvC, ilvD, kivd LlacO, trc Shake flask with NaHCO; 6 days ®
7942 and yghD

Fatty Synechocystis 20048 pg/L far rbc Photobioreactor with 5% CO, 18 days %

alcohol 6803

Alkanes Synechocystis 162+10 accBCDA rbcl Shake flask - %
6803 ug/OD/L

Fatty acids | Synechocystis 197 +14 mg/L | tesA, accBCDA, psbA2, cpc, and | 1% CO, bubbling 17days | "
6803 fatB1, fatB2, tesA137 | trc

Hydrogen | Synechococcus | 2.8 hydEF, hydG and psbALl, lac Anaerobic conditions with - ¥z
7942 umol{hr/mg hydA DCMU treatment**

Chl-a

1-Butanol Synechococcus 14.5 mg/L hbd, crt, adhE2, ter trc, LlacO, Dark roux culture bottle under 7 days #
7942 and atoB anoxic condition

Fatty Synechocystis 20+2 far, aas rbc, pshA2 Shake flask = e

alcohol 6803 pg/L/OD

1-Butanol | Synechococcus | 30 mg/L ter, nphT7, bldh, trc, LlacO, Shake flask 18 days e
7942 yghD, phal, phaB

where “Chl-a is chlorophyll a; **DCMU is 3-(3,4-dichlorophenyl)-1,1-dimethylurea.
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Table 4.2: Primer sequences used in this study.

Name Sequence (5°—3°)
AMV14F GCGCACATGTCGGAACAGGACCAAGCCTTGAT
AMV15R GCGC CCTGAGGCCTTTACCATGACCTGCAGGG
AMV16F GCGCGACGGGGAGTCAATTGTGCCATTGCCATAACTGCTTTCG
AMV17R GCGCGACTCCCCGTCTTTGACTATCCTTTTTAGGATGGGGCA
psl_up_fwd | TACCGGAACAGGACCAAGCCTT
AMV01 GCGCCATATGTATACAGTAGGAGATTACCTATTAGAC
AMV12 GCAGCAGCAACATCAACTGGTAAG
AdhA-TMs | TCAACTAGTGGTACCAGGAGATATAATATGAAAGCAGCAGTAGTAAG
adhA_RTr GACAATTCCAATTCCTTCATGACCAAG
Rnpbr CGGTATTTTTCTGTGGCACTGTCC
Rnpbf CAGCGGCCTATGGCTCTAATC
AV03_6F GAATCCGTAATCATGGTCATAGCTG
AV03 4R GCCAAAGCTAATTATTTCATGTCCTGT
AV03 1R TGTCGGGGCGCAGCCATGA
AV03_2F AGAGGATCCTTCTGAAATGAGCTG
AV03_3F CAGAGCCTAATCTTAAAGAATTCGTGG
AV03_4F GGGTAAACTATTTGCTGAACAAAATAAATC
AV03 2R CCGCTTCTGCGTTCTGATTTAATC
AV03 5F GTTGATCGGCGCGAGATTTAATCG
AV03_7F CCGTTGAAATTGACCGAGTACTTTCT
AV03_8F CAGTCGAAAGAGAAATTCATGGACC
AV03 5R CGCTACGGCGTTTCACTTCTG
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Chapter 5: Photoautotrophic production of D-lactic acid in
an engineered cyanobacterium
This chapter has been reproduced from the following publication:

Varman, A.M., Yu, Y., You, L., & Tang, Y.J. Photoautotrophic production of D-lactic acid in an
engineered cyanobacterium. Microbial Cell Factories, 12, 117 (2013).

AMYV and YY contributed equally for this work.

Abstract

Background: The world faces the challenge to develop sustainable technologies to replace

thousands of products that have been generated from fossil fuels. Due to concerns about food
security, sugar-based microbial fermentation raises economical questions. Thus, phototrophic
microbial cell factories serve as promising alternatives for the production of commodity
chemicals and biofuels. For example, polylactic acid (PLA) with its biodegradable properties is a
sustainable, environmentally friendly alternative to polyethylene. At present, PLA microbial
production is mainly dependent on food crops such as corn and sugarcane. Moreover, optically
pure isomers of lactic acid are required for the production of PLA, where D-lactic acid controls
the thermochemical and physical properties of PLA. Henceforth, production of D-lactic acid

through a more sustainable source (CO,) is desirable.

Results: We have performed metabolic engineering on the cyanobacterium, Synechocystis sp.
PCC 6803, for the phototrophic synthesis of optically pure D-lactic acid from CO, by utilizing
solar energy. Synthesis of optically pure D-lactic acid was achieved by utilizing a recently
discovered enzyme, (i.e., a mutated glycerol dehydrogenase, GlyDH*). Significant

improvements in D-lactate synthesis were achieved through codon optimization and by
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balancing the cofactor (NADH) availability through the heterologous expression of a soluble
transhydrogenase (STH). We have also discovered that addition of acetate to the cultures
improved lactic acid production. More interestingly, **C based metabolic pathway analysis
revealed that acetate was not used for the synthesis of lactic acid, but was mainly used for
synthesis of some biomass building blocks (such as leucine and glutamate). Finally, the optimal
strain was able to accumulate 1.14 g/L (photoautotrophic condition) and 2.17 g/L (phototrophic

condition with acetate) of D-lactate in 24 days.

Conclusions: We have demonstrated the photoautotrophic production of D-lactic acid by
engineering a cyanobacterium, Synechocystis 6803. The engineered strain shows an excellent D-
lactate productivity from CO,. In the late growth phase, the lactate production rate by the
engineered strain reached a maximum of 0.19 g D-lactate/L/day (in the presence of acetate). This
study serves as a good complement to the recent engineering work done on Synechocystis 6803
for L-lactate production. Thereby, our study may facilitate developments in the use of

cyanobacterial cell factories for the commercial production of high quality PLA.
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5.1 Background

Fossil fuels helped literally ignite the industrial revolution, and from then on radically
changed the way we live; today, thousands of products are generated from fossil fuels '°.
Unfortunately, fossil fuels are non-renewable and their reserves will foreseeably run dry.
Moreover, the reckless use of this resource has resulted in a tremendous release of greenhouse
gases leading to adverse effects to our earth’s climate and to the creatures living on our planet.
These drawbacks have driven researchers to look for alternative renewable replacements for
petroleum and petroleum-derived products.  Amongst the petroleum-derived products;
polyethylene with an annual productivity of 80 million metric tons per annum stands out as one

of the most commonly used plastics *'".

Polylactic acid (PLA) is made by the polymerization of
lactic acid and has the potential to replace polyethylene as a biodegradable alternative *®. Lactic
acid is a chiral compound and exists in two isomeric forms: D (-) lactic acid and L (+) lactic acid.
The various properties of polylactic acid are modulated by the mixing ratio of the D (-) and L (+)

9

lactic acid and, henceforth, it is essential to produce both the isomers *°. It has been estimated

that for the PLA production to be profitable, the lactic acid price should be less than 0.8%/kg *°.
This necessitates the production of lactic acid from a cheaper source. Although microbial
fermentation can produce lactate from sugar-based feedstock, such process may compete with
global food supplies. Therefore, this work focuses on cyanobacterial process development for the

sustainable synthesis of D (-) lactic acid, with CO; as the carbon substrate and sunlight as an

energy source.

Cyanobacteria have the ability to reduce atmospheric CO2 into useful organic
compounds by using solar energy and have been engineered to synthesize a number of value-
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added products % 18182 gynechocystis sp. PCC 6803 (hereafter Synechocystis 6803) with its
ability to uptake foreign DNA naturally, has been the model organism of choice for various

metabolic engineering works 1% 183 184

Synechocystis 6803 also has the ability to grow
mixotrophically with glucose and acetate '®°. Therefore, along with CO,, its versatile carbon
metabolism allows the co-utilization of cheap organic compounds for product biosynthesis. For
example, acetate abundant wastewater generated from biomass hydrolysis and anaerobic

131

digestion ~°°, can Dbe potentially used for promoting cyanobacterial productivity. More

importantly, there are numerous molecular biology tools for Synechocystis 6803, making it an

attractive organism for metabolic engineering works ¢ ¢,

Synechocystis 6803 has recently been engineered for the production of L-lactate (a

187189 However,

maximal titer of 1.8 g/L and a maximal productivity of 0.15 g/L/day)
engineering Synechocystis 6803 for the production of optically pure D-lactate synthesis is more
difficult due to the lack of an efficient D-lactate dehydrogenase. Recently, a mutated glycerol
dehydrogenase (GlyDH*) was discovered by Wang et al. ** and this enzyme was found to
behave as a D-lactate dehydrogenase, exhibiting an unusually high specific activity of 6.9 units
per mg protein with pyruvate and NADH as substrates. This enzyme allows a Bacillus coagulans
strain to produce 90g/L of D-lactate. Their work served as a motivation for us to engineer
Synechocystis 6803 through the heterologous expression of gldA101 (encodes GlyDH*). We
found that this original enzyme was able to synthesize optically pure D-lactate in Synechocystis
6803. To further improve cyanobacterial productivity, we employed three strategies: 1. Codon

optimization of gldA101 (Supplementary Figure 5.5); 2. Heterologous expression of a

transhydrogenase; 3. Supplementing cultures with extracellular carbon sources (such as glucose,
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pyruvate and acetate). The final engineered strain demonstrated a high D-lactic acid productivity

and titer (titer >1g/L).
5.2 Results and Discussion

Cyanobacteria need a lactate dehydrogenase to synthesize lactate from pyruvate (Figure
5.1). Earlier works on Synechocystis 6803 for lactate production involved the expression of an
Idh from Bacillus subtilis for synthesis of L-lactate *®. As a first step, we tested the activity of
GlyDH* for D-lactate production ** by transferring the gene from Bacillus coagulans to
Synechocystis 6803. A plasmid pYY1 was constructed that contained the gene gldA101 under
the control of an Isopropyl p-D-1-thiogalactopyranoside (IPTG) inducible promoter, Py.. The
gldA101 gene was then subsequently transferred to the glucose tolerant wild type Synechocystis
6803 through natural transformation, generating the strain AV08. The optical density and the D-
lactate concentration of the AVO08 cultures were monitored in shake flasks. As can be verified
from Figure 5.2, AV08 did not show any significant levels of D-lactate in the initial 12 days.
The D-lactate levels started increasing steadily at the late autotrophic growth phase and reached a
final titer of 0.4 g/L, whereas a wild type strain of Synechococcus 7002 was able to produce only

~ 7 mg/L of D-lactate through glucose fermentation *".

A familiar strategy to increase the synthesis of a target product would be to increase the
levels of the heterologous enzyme inside the cell. This can be achieved by modifying the
enzyme regulation either at the transcriptional level or at the translational level. Cyanobacteria
are known to have their own preference in the use of codons for synthesizing amino acids 2.

Lindberg et al. ** have employed codon optimization for the isoprene synthase gene IspS and

have found a 10-fold increase in the IspS expression level. More recently, this strategy was
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applied to increase the expression of the efe gene (from Pseudomonas syringae) in Synechocystis

6803 for ethylene production .

Since the gene involved in this work was borrowed from a
gram-positive organism and Synechocystis 6803 being gram-negative, we hypothesized that this
would be a useful strategy. The codon optimized gene gldA101-syn (synthesized by Genewiz
Inc, South Plainfield, NJ) was integrated into the psbAl gene loci in the genome of the WT

Synechocystis 6803 using the plasmid pDY3 to obtain the strain AV11.

Further improvements in product synthesis can be achieved by rectification of
bottlenecks in the metabolic pathway. The lactate dehydrogenase enzyme utilizes NADH as its
cofactor, whereas the ratio of NADH to NADPH is reported to be much lower in cyanobacteria.
For example, the ratio of NADH to NADPH in Synechococcus 7942 under light conditions was
estimated to be 0.15, and in Synechocystis 6803 under photoautotrophic conditions the
intracellular NADH concentration was only 20 nmol/g fresh weight, whereas the intracellular
concentration of NADPH was about 140 nmol/g fresh weight °°*°”. This lower concentration of
NADH in cyanobacteria, points to the fact that availability of NADH could be a major limiting
factor for synthesizing D-lactate. Henceforth, a soluble transhydrogenase, sth from Pseudomonas
aeruginosa '8, was introduced downstream of the gene gldA101-syn. This engineered strain was
called AV10. The heterologous genes in AV10 and AV11 are under the control of the same
single promoter, Py, located upstream of gldA101-syn and sth in AV10 and located upstream of

gldA101-syn in AV11.

The three strains (AV08, AV10 and AV11) showed similar growth rates to wild type
strain under photoautotrophic conditions, and thus the production of D-lactate did not introduce

growth defects in the engineered strains (Figure 5.2A and Figure 5.6). However, the three strains
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differed in the production rate of D-lactic acid. The strain AV11 with codon optimization
(gldA101-syn) had an improved productivity for D-lactate compared to the AV08 strain (Figure
5.2B). Both strains produced D-lactate mainly during the later growth stage. Introduction of the
transhydrogenase improved the D-lactate synthesis further in AV10, and this strain produced D-
lactate in both the growth phase and non-growth phase. The rate of photoautotrophic D-lactate
production by AV10 increased significantly (achieving a maximum productivity of 0.1 g/L/day
and ~0.2 mmol/g cell/day) during the late phase of the culture and the final titer of D-lactate

reached 1.14 g/L.

We observed that the D-lactate production rate reached its peak in the later stages of
cultivation, suggesting that more carbon flux has been directed to lactate production during the
non-growth phase. This increased flux was expected because the lactate precursor (pyruvate) is a
key metabolic node occupying a central position in the synthesis of diverse biomass components,
and more pyruvate becomes available for lactate synthesis when biomass growth becomes slow.
Therefore, an obvious thought would be to enhance lactate production by supplementing the

cultures with pyruvate %,

However, our experiments found that addition of pyruvate did not
yield apparent improvements in D-lactate synthesis (data not shown), possibly because
Synechocystis 6803 may lack an effective pyruvate transporter. The alternate option would be to
grow AV10 with glucose and increase the glycolysis flux for pyruvate synthesis. In our previous
study, addition of glucose was found to increase isobutanol production in Synechocystis 6803 *%.
However in this study, when we grew the AV10 strain under mixotrophic conditions (with 5 g/L

glucose), it did not show a higher growth rate or display improvements in the final D-lactate titer

compared to the autotrophic condition. The AV10 cultures grown in the presence of glucose
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instead showed an impaired growth, possibly because the engineered pathways caused a
metabolic imbalance during glucose catabolism (Figure 5.3).

We also hypothesized that the intracellular pyruvate pool can be increased for lactate
production by addition of exogenous acetate. Supplementing cultures with acetate can redirect
more carbon from pyruvate to lactate in three possible ways 2%°: (1) acetate is used as a building
block for lactate production; (2) acetate provides additional carbon source for biomass synthesis
and reduce pyruvate consumption; (3) acetate conversion by acetyl-CoA synthetase consumes
Coenzyme-A (CoA), decreasing the CoA pool available for pyruvate decarboxylation. To test
this hypothesis, the AV10 cultures were supplemented with 15mM acetate. We found that
growth rate of the AV10 cultures with acetate (Figure 5.3A) remained comparable to their
growth rate under autotrophic condition, but there was substantial improvement in the synthesis
of D-lactate (the maximal titer reached 2.17 g/L and the peak productivity reached ~0.19
g/L/day, Figure 5.3B).

To further understand the role played by glucose and acetate in D-lactate synthesis, AV10
cultures were grown with [1,2-*C] glucose and [1,2-*C] acetate (Sigma, St. Louis). Cultures
were collected from the mid-log phase and were used for amino acid and D-lactate analysis. As
an example, mass spectrum of D-lactate from a cyanobacterial culture is shown in supplementary
Figure 5.7. The *C abundance in the amino acids and lactate were obtained as mass fraction m;,
where ‘i’ indicates the number of **C in the molecule. As can be seen from Figure 5.4A, glucose-
fed cells have significant **C-carbon distributed in amino acids (indicated by an increase in m;
and m,). Also, D-lactate from glucose-fed cultures was partially **C-labeled (m, ~0.22). The
isotopomer data in Figure 5.4A proved that **C-glucose provided the carbon source for both

biomass and lactate production. However, glucose-based mixotrophic fermentation is not
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beneficial to D-lactate production compared to autotrophic cultures, possibly because carbon flux

136 As for the acetate-fed cultures,

from glycolysis may cause some carbon and energy imbalance
only leucine and glutamate (which both use acetyl-CoA as their precursor) were significantly
labeled (an m, of 0.31 and 0.32 respectively), while other amino acids (e.g., aspartate and
alanine) were nonlabeled (Figure 5.4B). Interestingly, D-lactate from acetate-fed culture was
almost nonlabeled, indicating that the carbons of lactate molecules were mainly derived from
CO,. Therefore, the observed enhancement of lactate synthesis in the presence of acetate can be
explained by two complementary mechanisms. First, acetate is an additional carbon source for
synthesizing biomass building blocks, such as fatty acids and some amino acids, thus redirecting
the extra carbon flux from CO, to lactate. Secondly, acetate may limit the pyruvate

decarboxylation reaction by reducing the CoA pool by the formation of acetyl-CoA and thus

improve pyruvate availability for lactate synthesis.

5.3 Conclusions

The results reported here are for the autotrophic production of D-lactate in cyanobacteria
via the heterologous expression of a novel D-lactate dehydrogenase (GlyDH*) and by balancing

the precursors and cofactors. Other molecular strategies may also be applied to further improve

the D-lactate production: (1) by seeking stronger promoters **%; (2) optimizing ribosomal binding

sites 2%: (3) improving activity of GlyDH* via protein engineering; (4) introducing powerful

20

lactate transporter 2°%; (5) knocking out competing pathways (such as the glycogen and

polyhydroxybutyrate synthesizing pathways); (6) duplicating the heterologous genes by

3

integrating at multiple sites *®; and (7) limiting biomass production by knocking down the

pyruvate decarboxylation reaction. Also, considering the future outdoor algal processes for

83



scaled up D-lactate production, we hypothesize that knocking out metabolic pathways that
synthesize carbon storage molecules (polyhydroxybutyrate and glycogen) may be deleterious to
algal growth during the night phase in day-night cultivation **. On the other hand, process
optimization by employing better light conditions, along with proper CO, concentration, pH and
temperature control, may also be employed to increase the D-lactate productivity in a scaled-up

system.

5.4 Materials and methods

5.4.1 Chemicals and reagents. Restriction enzymes, Phusion DNA polymerase, T4 DNA ligase
and 10-Beta electro-competent E. coli kit were purchased from Fermentas or New England
BioLabs. Oligonucleotides were purchased from Integrated DNA Technologies (IDT). All
organic solvents, chemicals, *C-labeled acetate, and glucose used in this study were purchased

from Sigma-Aldrich (St. Louis, MO).

5.4.2 Medium and growth conditions. E. coli strain 10-Beta was used as the host for all
plasmids constructed in this study. E. coli cells were grown in liquid Luria-Bertani (LB) medium
at 37°C in a shaker at 200 rpm or on solidified LB plates. Ampicillin (100 pg/mL) or kanamycin
(50 pg/mL) was added to the LB medium when required for propagation of the plasmids in E.
coli. The wild-type (glucose-tolerant) and the recombinant strain of Synechocystis 6803 were
grown at 30°C in a liquid blue-green medium (BG-11 medium) or on solid BG-11 plates at a
light intensity of 100 pmol of photons m™?s™ in ambient air. Kanamycin (20 pg/mL) was added
to the BG-11 growth medium as required. Growth of the cells was monitored by measuring their

optical density at 730 nm (OD730) with an Agilent Cary 60 UV-vis spectrophotometer. 10 mL
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cultures for the synthesis of D-lactate were grown (initial OD73p, 0.4) in 50 mL shake flasks
without any antibiotic and ImM Isopropyl -D-1-thiogalactopyranoside (IPTG) was added for
induction. Mixotrophic cultures of Synechocystis 6803 were started in BG-11 medium containing

a known amount of glucose (0.5%) or acetate (15mM) as an organic carbon source.

5.4.3 Plasmid construction and transformation. The vector pTKA3 ¥ served as the backbone
for all the plasmids constructed in this study. The gene gldA101 encoding GlyDH* *° was
amplified from the plasmid pQZ115 with the primers gldA-o0-F2 and gldA-o-R (Table 1 and 2).
The obtained 1.2 kb fragment was digested with BamHI/Nhel and cloned into the same
restriction sites of pTKA3, yielding the vector pYY1. A gene cassette, which consists of the
codon optimized gldA101 (gldA101-syn) with the promoter Py in the upstream and the

1% in the downstream, was

transhydrogenase (sth) gene from Pseudomonas aeruginosa
chemically synthesized by Genewiz Inc (South Plainfield, NJ) and cloned into the commonly
used E. coli vector pUC57-kan resulting in the plasmid vector pUC57-glda_sth. The vector
pUC57-glda_sth was digested with BamHI/Nhel, and the yielding 2.6 kb fragment was cloned
into the corresponding restriction sites of pTKAS3, resulting in the vector pDY2. The vector

pDY3 was constructed by self-ligation of the 8.2 kb fragment obtained through the digestion of

pDY2 with Kpnl.

Natural transformation of Synechocystis 6803 was performed by using a double

19

homologous-recombination procedure as described previously Recombinant colonies

appeared between 7 and 10 days post inoculation. The genes of interest were finally integrated

into the psbA1 gene loci (a known neutral site under normal growth conditions) in the genome of

3 136'

Synechocystis 680 For segregation, the positive colonies were propagated continuously
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onto BG-11 plates containing kanamycin and segregation of colonies was verified through a
colony PCR with the primers AMV17R and psl_up_fwda (Table 1). The promoter and the
heterologous genes in the engineered strains were PCR amplified with respective primers (ptka3-
F, CO-F, O-F, sth-F) (Table 1) and sent for sequencing to Genewiz to verify the cloning

accuracy.

5.4.4 D (-) lactate analysis. D(-)/L(+) lactic acid detection kit (R-biopharm) was used to
measure the D-lactate concentration. Samples of the cyanobacterial culture (50 pL) were
collected every 3 days and centrifuged at 12,000 rpm for 5 min. The supernatant was collected
and the D-lactate concentration assay was performed following the manufacturer’s instruction.
All the reactions were performed in a 96-well plate reader at room temperature (Infinite 200

PRO microplate photometer, TECAN).

5.4.5 3C isotopomer experiment. To estimate the carbon contributions of glucose and acetate
for biomass and D-lactic acid synthesis a *3C labeling experiment was performed. The mutant
AV10 was grown in a BG-11 medium with 0.5% glucose (1,2-**C, glucose) or 15mM acetate
(U-1C, acetate) (Sigma, St. Louis). Cultures were started at an OD730 of 0.4 and were grown
with labeled glucose or acetate for over 48 hours. The biomass samples and supernatant were

collected for measurement of lactate and amino acid labeling.

The proteinogenic amino acids from biomass were hydrolyzed and then derivatized with
TBDMS [N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide], as described previously **°.
The derivatized amino acids were analyzed for their *C mass fraction by GC-MS (Hewlett

Packard 7890A and 5975C, Agilent Technologies, USA) equipped with a DB5-MS column
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(J&W Scientific) *°. The fragment [M-57]" containing information of the entire amino acid was
used for calculating the **C mass fractions (M: the molecular mass of the derivatized amino
acids). The fragment [M-15]" was used only for leucine, since its [M-57]" overlaps with other
mass peak 2°°. To analyze extracellular D-lactic acid labeling, the supernatant (0.2 mL) was first
freeze-dried at -50 °C. The dried samples were then pre-derivatized with 200 pL of 2%
methoxyamine hydrochloride in pyridine for 60 minutes at 37 °C and then derivatized with 300
ML N-Methyl-N-(trimethylsilyl) trifluroacetamide (TMS) for 30 minutes at room temperature.
The natural abundance of isotopes, including **C (1.13%), 0 (0.20%), #°Si (4.70%) and *Si
(3.09%) changes the mass isotopomer spectrum. These changes were corrected using a published

algorithm and the detailed measurement protocol can be found in our previous paper *.
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Table 5.1: Primer sequences

Primer name | Sequence (5°— 3°)

gldA-o-F GGATCCTTGACAATTAATCATCCGGCTCG

gldA-o0-F2 GGATCCTTGACAATTAATCATCCGGCTCGTATAATGTGTGGAATTGT
GAGCGGATAACAATTTCACACAGGAGATATAATCATATGACGAAAA
TCATTACCTCTCCAAGCAAGTTTATACAAGG

gldA-0-F3 ATGACGAAAATCATTACCTCTCCAAG

gldA-o0-R GCTAGCTCATGCCCATTTTTCCTTATAATACCGCCCG

gldA-0-R2 TTAGGCCCACTTTTCCTTGTAATAGC

tranNADH-F | CCTAAGCTAGCGGAGGACTAGCATGG

tranNADH-R | GCTAGCGGTACCTCAAAAAAGCCGG

ptka3-F CCCGAAGTGGCGAGCCCGAT

CO-F TTGATGTTGCCTTTGAACCC

O-F ATGGATACGAAAGTGATTGC

sth-F GAGCTACCACCTGCGCAACA

AMV17R GCGCGACTCCCCGTCTTTGACTATCCTTTTTAGGATGGGGCA

psl up_ fwda

TACCGGAACAGGACCAAGCCTT
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Table 5.2: Plasmids and strains

Plasmids/Strains | Description | Source or reference
Plasmids
pUC57-glda_sth Chemically synthesized gene cassette consisting Genewiz: 190198 207
of Py, gldA101-syn and sth. ’
pQZ115 Plasmid carrying gldA101 190
pTKA3 Backbone plasmid for all vectors constructed in | 136
this study, with psbAl as the integration loci.
pYY1 Derived from pTKA3 with gldA101 and the This study
promoter, Py.
pDY?2 Derived from pTKA3 with gldA101-syn, sth This study
and the promoter, Py..
pDY3 Derived from pTKA3 with gldA101-syn and the This study
promoter, Py.
Strains
E. coli 10-Beta Cloning host strain. New England
Biolabs
%Bgchocystls sp. PCC | Glucose tolerant wild type, naturally competent. This study
H . . r
AV08 Syngchocystls Pic::gldA101::Km', GlyDH*of This study
Bacillus.
AV10 Synechocystis Py::(gldA101-syn)-sth::Km",
GlyDH* of Bacillus, transhydrogenase of This study
Pseudomonas.
H . _ . r *
AV11 Synech_ocystls Pirc::gldA101-syn::Km’', GlyDH This study
of Bacillus.
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Figure 5.1A
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Figure 5.1B
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Figure 5.1: Metabolic engineering of Synechocystis 6803 for the synthesis of D-lactic acid. (A)
Metabolic pathway for D-lactate synthesis. Lactate permeation through the cell membrane occurs
either via a lactate transporter or by passive diffusion®®® *®.  Red arrows indicate the
heterologous pathway engineered into Synechocystis 6803. Abbreviations: GlyDH", mutant
glycerol dehydrogenase; TH, Transhydrogenase; 3PGA, 3-phosphoglycerate; CoA, Coenzyme
A; G1P, glucose 1-phosphate; F6P, fructose 6-phosphate; PHB, poly-B-hydroxybutyrate; RuBP,
ribulose 1,5-bisphosphate. (B) Colony PCR to verify the presence of the heterologous genes of
the mutant glycerol dehydrogenase (Left picture) and transhydrogenase (Right picture) in the
engineered strains of Synechocystis 6803. gldA101 was amplified with primers gldA-o-F3 and
gldA-0-R; gldA101-syn was amplified with primers gldA-o-F and gldA-0-R2; sth was amplified
with primers tranNADH-F and tranNADH-R (Table 5.1).
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Figure 5.2A

30
20
=
&
r~
S
10
-
0 L=
0 6 12 18 24
Time, days
Figure 5.2B
1200

D-Lactate, mg/L
=] o
=] =]
=] (=]

W
=
=]

Time, days

Figure 5.2: Autotrophic production of D-lactate in the engineered strains of Synechocystis 6803.
(A) Growth curves and (B) D-lactate production in the engineered strains (n = 3). Circles: AV08
(with gldA101). Triangles: AV10 (with gldA101-syn and sth) and Squares: AV11 (with gldA101-

syn).
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Figure 5.3A
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Figure 5.3: Mixotrophic production of D-lactate by AV10. (A) Growth and (B) D-lactate
production in the engineered Synechocystis 6803 strain AV10 (n = 3), with the provision of
additional organic carbon source, i.e., with glucose and acetate (Mixotrophic metabolism).
Squares: with acetate. Circles: with glucose.
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Figure 5.4A
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Figure 5.4B
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Figure 5.4: Isotopomer analysis showing the mass fraction of isotopomers for selected
proteinogenic amino acids [TBDMS based measurement] and D-lactate [MSTFA based
measurement]. Standard abbreviations are used for amino acids in the figure. (A) Cultures grown
with 5 g/L of [1,2-**C] glucose and (B) Cultures grown with 15 mM of [1,2-*C] acetate. “white
bar” my — mass fraction without any labeled carbon; “grey bar” m; — mass fraction with one
labeled carbon; “black bar” m, — mass fraction with two labeled carbon. (Note: natural **C
makes up about 1.1% of total carbon as measurement background)
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gldalo0l 1 ATGACGAAAATCATTACCTCTCCAAGCAAGTTTATACAAGGCCCCGATGAATTGTCCAGG

gldA-syn iy weogews = Covevnnnn Elhmensuive Cuo.CTC, A .CoeCuiGovnnnnnns CoeGuvunnn C..
gldalol 61 CTTTCGGCGTATACGGAAAGGCTTGGCAAAAAAGCATTTATTATTGCGGATGATTTTGTC
gldA-syn 6l T.GAGT..C..... G oG e G..G..C..... |G S J NN o M TN -

gldalol 121 ACCGGCCTTGTCGGCAAAACGGTTGAAGAAAGCTATGCCGGCAAAGAAACGGGGTATCAA
gldA—=syn: 1290 wiseem s TG remGhaa T GonPamiGruGe vCLCuuwmrrn mug s WEgnn Cu sl eCawnG

gldal01l 181 ATGGCATTATTCGGTGGTGAGTGTTCTAAACCGGAAATCGAACGGCTTTGTGAAATGAGC
gldR—Syh, B8 reuswene = Bt Glonesline Bl Clesa Rer EAG e oG silloneGlsnnywmpa Gl lE G euBe Gl Ee

gldalol 241 ARATCCGAGGAAGCCGATGTCGTTGTCGGAATCGGCGGCGGAAAAACATTGGATACCGCA
gl ssym 20 eumas s s Booson wow g ConlurGruGr HEs mmaman we s ne mos EromAle 2Ex e E

gldalol 301 ARAAGCAGTCGGGTATTACAATAACATTCCGGTGATTGTCGCGCCGACCATCGCTTCCACC
glidA—syn: B0 ==iGs sCeaGrmbeClhmnns movemas ¢ (PERLRCEAE Elr GhnlChriBrunilaniln semcapamans

gldalol 361 AATGCCCCGACAAGCGCCCTGTCTGTTATTTACAAAGAGAACGGCGAGTTTGAAGAATAC
GUdRSTh, S0, oo smuzes (GNP | LIS/, { IR - JN T | SO C e 7, W C- N N

gldalol 421 TTGATGCTGCCGCTGAACCCGACTTTTGTCATTATGGATACGAAAGTGATTGCCTCTGCC
gldA—=syn 4271 e s RS Bl i S s @araan & GamCagm s ChaeT o G Cn wmne Sl

gldalol 481 CCTGCCCGCCTGCTCGTTTCCGGCATGGGAGATGCGCTTGCAACGTATTTTGRAAGCGCGC
gidA—=5yn.: M8l wwws ssoees LN Tl Gleperenays smvweemesgeys @ [ R - RS 0 LU (€ E RN SRR | LT o AR e s

gldalol 541 GCCACTAAGCGGGCAAATAAAACGACGATGGCAGGCGGGCGTGTTACGGAAGCGGCGATC
gldA-syn 541 ......c0c0nnnn (e I— [ 7PN 5N - N H O T - | O, S LY W N - T

gldalol 601 GCGCTTGCAAAACTTTGTTATGACACGCAAATTTCGGAAGGTTTAAAAGCAAANCTGGCA

gid-dA—=Syn: E0: mnETnEraCrrmGTa Gl ClnnlCruvmuns E 16 eCACT v Gron Bl GrnGunl 1 GTAmE
gldalol 661 GCGGAAAAACATCTTGTTACGGAAGCAGTGGAAAAAATCATTGAAGCGAATACGTATCTG
glidR—=Syn: 661y m=lEx aGemwmm B Gl Glon B GreniCr oleaGhmaGiman e ChmGrmBrniCr olieaClits

gldalol 721 AGCGGAATCGGTTCTGAAAGCGGCGGCCTTGCTGCGGCACATGCGATCCATAATGGGCTT
qlidR—Sym, "2, BEL. .l C 0 s o - b 7 TN U - LB < | WO U - W G/ LA

gldalol 781 ACCGTGCTCGAAGAAACCCATCATATGTACCACGGCGAAAAAGTGGCATTCGGTACCCTC
gldA-syn 781 ...... T:Gue:GeeGrvwn CovCrvrenreronnans GeoGavunn Tewoun C..TT.G

gldAl0l 841 GCCCAGCTGATTTTGGAAGATGCGCCGAAAGCGGAAATTGAAGAGGTGGTCTCCTTCTGE
gldA-syn 841 ...... y I S (7 — (I o S o N o SOV . KO Gl spsumsonens Gevernnnn T

gldalol 901 CTGAGTGTCGGACTTCCCGTCACGCTCGGGGATTTGGGCGTGAARAGAACTGAATGAGGAA
gldA-syn 901 T..TCC..G..CT.G..T..T..CT.G..C..C.uuvuurrnnn [T | O (- T —

gldalol 961 AAGCTCCGAAAAGTGGCTGAACTTTCCTGTGCGGAAGGCGAAACGATTTATAACATGCCG
gldA-syn: 261 weATWG BB CieTeGowvu L CotCudCuivvnnnnns C

gldAal0l 1021 TTTGAAGTCACGCCTGACCTTGTGTACGCAGCAATCGTTACCGCTGATTCCGTCGGGCGG
gldR—syh, B2 e = (C N NN . WO ( 5 B0 L) L[ 1 PR —— CoslBiaee spmraspmisnme wame G [ 5 B G-

gldAl0l 1081 TATTATAAGGAAAAATGGGCATGA
gldA-syn 1081 ..... Ep yposyan B G e C.A.

Figure 5.5: Nuleotide sequence alignment of gldA101 and the codon-optimized gldA101 (i.e.,

gldA101-syn, synthesized by Genewiz Inc). Conserved nucleotide sequences in gldA101-syn are
indicated as dotted lines.
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Figure 5.6: Autotrophic growth curve for Synechocystis 6803 strains shows similar growth of
the engineered D-lactate producing strains as compared to the wild type strain. Diamond: Wild
type. Square: AV08. Triangle: AV10. Circle: AV11.
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Figure 5.7: Mass spectra obtained via GC-MS confirm the presence of lactate in the cell culture
supernatant of AV10 strain. D/L lactate enzyme kit (R-Biopharm) was used to further confirm
that the product is an optically pure D-lactate.
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Chapter 6: Kinetic modeling and isotopic investigation of
Isobutanol fermentation by two engineered Escherichia coli
strains
This chapter has been reproduced from the following publication:

Varman, A.M., Xiao, Y., Feng, X., He, L., Yu, H., & Tang, Y.J. Kinetic Modeling and Isotopic

Investigation of Isobutanol Fermentation by Two Engineered Escherichia coli Strains. Industrial
& Engineering Chemistry Research 51, 15855-15863 (2012).

AMV, Y X, and XF contributed equally to this work.

Abstract

We constructed an E. coli BL21 strain with the Ehrlich pathway (the low performance
strain for isobutanol production). We also obtained a high isobutanol-producing E. coli strain
JCL260 from the James Liao group (University of California). To compare the fermentation
performances of the two engineered strains, we employed a general Monod-based model coupled
with mixed-growth-associated isobutanol formation kinetics to simulate glucose consumption,
biomass growth, and product secretion/loss under different cultivation conditions. Based on both
kinetic data and additional **C-isotopic investigation, we found that the low performance strain
demonstrated robust biomass growth in the minimal growth medium (20 g/L glucose), achieving
isobutanol production (up to 0.95 g/L). It utilized significant amount of yeast extract to
synthesize isobutanol when it grew in the rich medium. The rich medium also enhanced waste
product secretion, and thus reduced the glucose-based isobutanol yield. In contrast, JCL260 had
poor biomass growth in the minimal medium due to an inflated Monod constant (K), while the
rich medium greatly promoted both biomass growth and isobutanol productivity. With the

optimized keto acid pathway, JCL260 synthesized isobutanol mostly from glucose even in the
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presence of sufficient yeast extract. This study not only provided a kinetic model for scaled-up
isobutanol fermentation, but also offered metabolic insights into the performance tradeoff
between two engineered E. coli strains.

Key words: *C-isotopic, Ehrlich pathway, mixed-growth-associated, tradeoff, yeast extract

6.1 Introduction

Biobutanols are second generation biofuels that have higher energy density and lower
water solubility than ethanol. Acetone-butanol-ethanol (ABE) fermentation is a traditional
bioprocess that uses Clostridium acetobutylicum to produce n-butanol, but such a process is
restrained by the slow alcohol production rate *®°. To overcome this restriction, the n-butanol
pathway derived from Clostridium has been reconstructed in fast-growing E. coli or yeast strains
23, 24, 118, 210 Bytanol biosynthesis via the Clostridium pathway has limitations including low
product titer and yield due to the accumulation of toxic metabolites. Another approach is via the
keto-acid pathway to produce low-toxicity isobutanol (IB), % where the amino acid biosynthesis
pathways and the Ehrlich pathway are incorporated for alcohol synthesis *® % This method
shows effective production of higher alcohols because of robust and ubiquitous amino acid
pathways.

Table 6.1 summarizes diverse biobutanol production strategies, including the
overexpression of the targeted pathway in different microbial hosts (including photoautotrophic
microbes), the elimination of competing pathways, the systems redesign of host metabolism, and
the integration of fermentation with in situ product separation. However, few papers have studied
the Kinetics of engineered microbial hosts for biobutanol fermentation. To apply a newly

developed host in the biofuel industry, a kinetic-based model is of practical importance not only
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for designing optimal scaled-up fermentation, but also for understanding the internal metabolic
features of microbial hosts in responses to various nutrient sources and cultivation conditions. To
fulfill this gap, our lab has created an E. coli mutant that produces IB via the Ehrlich pathway.
Meanwhile, we have obtained a high performance E. coli strain JCL260 with an optimized

130 Based on fermentation data

metabolism for IB synthesis (offered by the James Liao group)
using both strains, we developed an empirical model to analyze and compare their fermentation
kinetics. We also performed ‘*C-experiments to investigate the nutrient use of the two mutant

strains for the synthesis of biomass and IB.

6.2 Materials and Methods

6.2.1 Pathway construction

We engineered E. coli BL21 (DE3) by heterologous expression of Kivd (2-
ketoisovalerate decarboxylase) and AdhA (aldehyde reductase). The two genes were amplified
from Lactococcus lactis by PCR with high fidelity DNA polymerase Pfx (Invitrogen). Primers
for kivd:5’-gacactcgagtaatgtatacagtaggagattac-3’; 5’-tgcgggtaccttatgatttattttgttc-3’. Primers for
adhA: 5’-tcaactagtggtaccaggagatataatatgaaagcagcagtagtaagac-3’; 5’-
atttgcggccgcegcatgcttatttagtaaaatcaatgac-3’. The genes kivd (treated with Xhol / Kpnl) and adhA
(treated with Kpnl / Sphl) were cloned into the pTAC-MAT-Tag-2 Expression Vector (Sigma-
Aldrich) via Xhol / Sphl to create the plasmid pTAC-KA, and then transformed into E. coli
BL21 (DE3). This low performance mutant used its native valine biosynthesis pathway to
generate 2-ketoisovalerate, and then converted it to IB by the heterologous Ehrlich pathway (Fig.
6.1). To confirm the expression of Kivd and AdhA, we performed SDS-PAGE analysis of the

recombinant strain and observed the protein bands of Kivd (~ 60 kDa) and AdhA (~ 35 kDa).
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The strain secreted IB, acetate, lactate, ethanol, and a small amount of n-propanol and methyl-
butanol (similar product profiles to other 1B producing E. coli strains) %. Additionally, Professor
James Liao from University of California offered us an E. coli strain JCL260 with plasmids
pSA65 and pSA69 #'. This high performance strain not only contains two plasmids that
overexpress the entire IB pathway, but also has gene deletions to interfere with waste product
(acetate, formate, ethanol, succinate, and lactate) biosynthesis.
6.2.2 Fermentation conditions

Fermentations were performed in a New Brunswick Bioflo 110 fermentor with a dissolved
oxygen (DO) electrode, a temperature electrode, and a pH meter. The 100% DO was defined as
the point where the cell-free medium was purged by air (~2 L/min) for 15 minutes. In the oxygen
limited fermentations (air rate = 0 L/min), the DO dropped to 0% during the exponential growth
phase. Two culture media were used: (a) a minimal medium that contained 2% glucose, M9 salts
(Difco), 10 mg/L vitamin B1, and 50 mg/L ampicillin; and (b) a rich medium containing the
minimal medium with 5 g/L yeast extract. To start each fermentation, 400 ml of culture was
inoculated with 5 ml of overnight LB culture (ODggo~3) of the recombinant E. coli strain. The
cultivation conditions were: pH = 7.0 (controlled by adding 2 mol/L NaOH via an auto-pump),
temperature = 30 °C, and stirring speed = 200 rpm. For all fermentations, cells were first grown
in aerobic conditions (DO>50%) before adding 0.2 mM IPTG (Isopropyl (-D-1-
thiogalactopyranoside). Right after IPTG induction, we imposed two O, conditions: 1) in aerobic
conditions, air (flow rate: ~1 L/min) was bubbled into the bioreactor to provide O, and to remove
IB (i.e., gas stripping) from the bioreactor; 2) in O, limited conditions, air was turned off and the
DO was maintained zero during IB production. For the low performance strain, we had three

fermentations: F1 (minimal medium and aerobic conditions), F2 (minimal medium and O,
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limited conditions), and F3 (rich medium and O, limited conditions). For JCL260, we had two
fermentations (F4: minimal medium and aerobic conditions; F5: rich medium and aerobic
conditions).
6.2.3 Analytical methods for biomass and metabolites

Culture samples were taken after IPTG induction, ~3 ml of culture was taken from the
bioreactor at each time point for metabolite and biomass analysis. Biomass growth was
monitored by optical density ODggo. There was a linear relationship between the dry cell weight
and ODggo. To measure dry biomass weight, biomass samples were harvested by centrifugation,
washed with DI water, and dried at 100°C until their weight remained constant. Glucose,
ethanol, acetate, and lactate were measured using enzyme kits (R-Biopharm). Alcohols could be
detected using GC (Hewlett Packard model 7890A, Agilent Technologies, equipped with a DB5-
MS column, J&W Scientific) and a mass spectrometer (5975C, Agilent Technologies). The GC-
MS detected ethanol, 1B, propanol and methyl-butanol. The IB concentration was determined by
a modified GC-MS method. *® Briefly, 400 pl of supernatant was extracted with 400 ul of
toluene (Sigma-Aldrich) by 2-min vortex, followed by high-speed centrifugation (16000xg). The
organic layer was taken for GC-MS analysis under the following program: hold at 70 °C for 2
min, ramp to 230 °C at 20 °C min-1, and then hold at 300 °C for 6 min. The carrier gas was
helium. The MS scan mode was from m/z 20 to 200. Samples were quantified relative to a
standard curve of IB concentrations for MS detection, and methanol was taken as an internal
standard.
6.2.4 *C-experiments for analyzing nutrient contributions to isobutanol productions

In the *C-experiments, the minimal medium with 2% fully labeled glucose (Cambridge

Isotope Laboratories) was supplemented with 1 g/L or 5 g/L yeast extract (Bacto). By measuring
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3c-abundance in key metabolites from the engineered strains, we estimated the contribution of
yeast extract (non-labeled) to biomass and 1B synthesis in the **C-glucose medium. Specifically,
5 ml of cultures (with **C-glcuose and yeast extract) were inoculated with 5 pl of overnight LB
culture of the engineered strain in a 50 ml falcon tube with a closed cap (shaking at 200 rpm,
30°C). The cultures (JCL260 or the low performance strain) were induced by 0.2 mM IPTG
(when ODgp>0.2), and the samples were taken (at t=~24 hours, middle-log growth phase) for
isotopomer analysis of IB and amino acids. The two mass-to-charge peaks (m/z=74 for unlabeled
IB and m/z=78 for labeled 1B) were quantified. Their ratio approximately corresponded to the
ratio of IB synthesized from unlabeled yeast extract vs. labeled glucose. Concurrently, we did
isotopic analysis of proteinogenic amino acids to identify the incorporation of unlabeled carbon
from yeast extract into biomass protein. The measurements were based on a GC-MS protocol,
using TBDMS (N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide, Sigma-Aldrich) to
derivatize hydrolyzed amino acids from the biomass '®*. The m/z ions [M-57]+ from
unfragmented amino acids were used for analysis except leucine and isoleucine. Because of
overlapping ions with [M-57]+, the [M-159]+ was used to calculate the isotopomer labeling
information of leucine and isoleucine **.
6.2.5 Model formulation

We developed a kinetic model to describe the fermentation data after IPTG induction. The
model contained six time-dependent process variables: X, ACT, LACT, EtOH, IB, and Glu,
which represented the concentrations of biomass, acetate, lactate, ethanol, 1B, and glucose,
respectively. The biomass growth model consisted of glucose-associated (Rx) and yeast-extract-
associated (Rxye) terms. IB production was simulated by a mixed-growth-associated product

formation model (Eg. 6.5), where B was the non-growth associated IB production rate. In Eq.
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6.1~6.6, kg was the cell death rate; Y o was the acetate yield from lactate (equal to 0.67 g ACT/g
LACT, based on a 1:1 mol ratio); Yxg, Yac, Yee Yic, and Y, were the growth associated
glucose yields to biomass, acetate, ethanol, lactate, and IB. kjg was the removal rate of IB due to
gas stripping under aerobic fermentation F1, F4 and F5. In F2 and F3, IB loss was minimal (kg
was set to zero). A first-order kinetic parameter (kyt) was used to describe acetate production

from lactate.

SRy —ky X 4Ry e (6.)
O'Ad% =R, +Y, K, - LACT - X (6.2)
d"gtCT =R, — K, - LACT - X (6.3)
dE(tj(t)H _R. (6.4)
‘g—sz,B+ﬂ-X—k,B-|B (6.5)

dGlu_ R, R, R. R R, 66
dt YXG YAG YEG YLG YIBG

In Eq. 6.7~ 6.12, Rx, Ra, Re, R, and Rz were the production rates of biomass, acetate, ethanol,

lactate, and IB from glucose, respectively.

<t O 1

Ks +Glu n (6.7)

Kia

RA:aAX 'RX (68)
Re = agx Ry (6.9)
R =ax Ry (6.10)
Rig = apx - Rx (6.11)
Rx YE = MmaxYE e et (6.12)
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Ry represented a growth model with Monod constant Ks and maximum specific rate coefficient
Umaxapp. OlNCE acetate inhibited E. coli growth by decreasing the intracellular pH, a non-
competitive inhibition Kia was included in the model #*2. The dependence of the glucose-based
growth rate on oxygen (i.e., aerobic growth vs. anaerobic growth) was implicitly included in the
calculation of Wmaxapp (1.€., the 0Xygen conditions affected pmaxapp). 0AX, OEX, OLx, and apx Were
the growth-associated yields of acetate, ethanol, lactate, and IB, respectively. In the rich medium,
the yeast extract was quickly consumed to support biomass growth. The model included a yeast-
extract-associated biomass growth rate Rx ye using a two-parameter exponential decay function
Eq. 6.12. Table 6.2 summarized model parameters and their units.

For each batch culture, unknown parameters were determined by minimizing the sum of
the squares of the differences between the model’s predictions and the experimentally observed
growth and metabolite profiles **. The “0de23” command in MATLAB (R2009a, Mathworks)
solved the differential equations, while the “fmincon” command searched suitable values of
parameters. To reduce the risk of having local solutions during the nonlinear parameter
estimation, we tested the initial guesses for 30 times within the range of possible values to
identify the global solution. To evaluate the quality of the parameter estimates, we checked the
sensitivity of the estimated parameters to the measurement inaccuracies. Fifty simulated
fermentation data sets (including both biomass and metabolite data) were generated by the
addition of normally distributed measurement noise to the fermentation data set (i.e., randomly
perturbed the measured data by 30%). The same data-fitting algorithm found new sets of
parameters. From the probability distribution of these parameter distributions, standard

deviations of model-fitted parameters were estimated.
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6.3 Results and discussion

6.3.1 Isobutanol fermentation results

In this study, both engineered E. coli strains employed the Ehrlich pathway (Fig. 6.1),
where 2-ketoisovalerate from valine metabolism is redirected to IB synthesis. For the low
performance strain, we simply over-expressed 2-ketoisovalerate decarboxylase and alcohol
dehydrogenase. For strain JCL260, both the Ehrlich pathway and 2-ketoisovalerate synthesis
pathway were overexpressed. This strain also had gene deletions involved in by-product
formation to increase pyruvate for IB synthesis, so it was reported to produce 22 g/L of IB in 112
hrs. 2
This study compared IB fermentation kinetics between the two strains. For the low
performance strain, ethanol and lactate were barely detected in the aerobic conditions (Fig. 6.2).
IB titer only reached (0.2 g/L) in F1, because the in situ removal of IB was considerable (the
airflow carried 1B out of the fermentor). Such gas stripping is an effective strategy to avoid the
IB accumulation in the culture that causes the inhibitory effect on alcohol production . In O,
limited conditions, the F2 generated 0.95 g/L IB, 1.5 g/L ethanol, 2.2 g/L acetate, and 5.1 g/L
lactate, while the lactate was reused in the late fermentation stage (stationary growth phase).
With the addition of yeast extract, the F3 had fast biomass growth (Fig. 6.4). The cell density
reached a peak (2 g DCW/L biomass) after seven hours of IPTG induction, and glucose was
consumed within ~12 hours (compared to ~40 hours in the F1 and F2). The high rates for
biomass growth promoted IB production rate. It took the F3 15 hours to generate 0.6 g/L 1B,

while it took F2 40 hours to generate same amount of IB. The addition of yeast extract also

resulted in a large amount of growth-associated organic acids (6.0 g/L lactate and 3.6 g/L
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acetate), and thus decreased IB yield from glucose (0.7 g/L 1B and 2.0 g/L ethanol from the F3).
A recent paper reported that JCL260 accumulated up to 7 g/L IB in an aerobic batch culture
using the culture media containing 55 g/L glucose, 2.2 g/L sodium citrate, 25 g/L yeast extract,
and complex trace metal solution #*. This study performed two aerobic fermentations using
JCL260. In the complete minimal medium with 20 g/L glucose (F4, Fig. 6.5), JCL260 had very
slow biomass growth and low IB titer (~0.1 g/L). When yeast extract (5 g/L) was supplemented
(F5, Fig 6.6), IB productivity was significantly improved and its titer reached ~1 g/L (over
fivefold higher than the low performance strain). Meanwhile, JCL260 produced only 1 g/L
acetate (two times lower than the low performance strain) because of the deletion of
phosphotransacetylase (pta) .

6.3.2 Kinetic modeling of isobutanol fermentation

The same kinetic model simulated fermentation processes by two IB producers. Table 6.2 lists
the kinetic parameters obtained by nonlinear parameter fitting. For the low performance strain,
the specific growth rate pmaxapp (0.015 h-1) in the oxygen limited conditions was lower than that
in the aerobic culture conditions (0.051 h-1). IB could be synthesized in both growth and
stationary phases. The O, limited condition reduced growth associated IB yield, but promoted
non-growth associated IB production (e.g., f = 0.012 g IB/g biomass-h in the F2). In the presence
of yeast extract, the yeast extract associated biomass growth rate (umaxye=0.48 hr-1) was one
order of magnitude higher than glucose-associated growth rates. The addition of yeast extract
(F3) also improved the biomass yield coefficient (Yxg = 0.20) and the growth associated 1B
production (asx = 0.78 g IB/g biomass). Meanwhile, the yeast extract increased vyield
coefficients of waste products (Yagc, Yec, Yic) in the F3. The IB yield coefficient Y, was 0.26 g

IB/g glucose under aerobic respiration, higher than Y, under O, limited conditions (F2 and F3).
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For JCL260, the fermentation data indicated that the strain had a highly inflated Monod constant
Ks (10 g/L), which caused the biomass growth rate to be slower than that of the low performance
strain. The slow growth led to poor IB synthesis in F4 (o gx=0.06 g IB/g biomass). Because of
the knockout of the pta gene to reduce acetate synthesis, the growth associated acetate
production aax in F4 was 0.35 g acetate/g biomass, suggesting that acetate production rate was
reduced compared to the low performance strain (aax =0.62 g acetate/g biomass in the F1). On
the other hand, JCL260 still generated acetate after pta deletion “**. The alternate acetate
pathways in JCL260 had higher glucose associated acetate yield (Yag) than that of the low
performance strain under aerobic conditions. This observation was consistent with the fact that
JCL260 (the strain with multiple gene knockouts) had a poor respiration rate, and thus higher
fraction of glucose was converted to biomass (i.e., Yxg also increased) and byproducts rather
than degraded to CO,. When yeast extract was added to the growth media, the growth associated
IB production aygx was 3.3 g IB/g biomass, which was about 5.7 folds higher than that of the low
performance strain. The addition of nutrients improved the JCL260 biomass growth, the cell
energy (such as NADH) generation, and the carbon flux through the IB pathway. In contrast, the
low performance strain had a suboptimal IB pathway. Therefore, yeast extract only enhanced
metabolic overflows to waste metabolites rather than improving IB titers (the F3).

Finally, the continuous flow of air into the bioreactor performed an in situ stripping of 1B
out of the reactor in the aerobic conditions (F1, F4 and F5). Using the model, we estimated the
total IB production by JCL260 without any loss by gas stripping (i.e., kig = 0, Fig. 6.6). The
model showed that the total IB could reach 5 g/L in F5. This result indicated that the 1B
production can be significantly improved via the integration of IB fermentation with a

downstream product recovery process.
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6.3.3 Analysis of the role of yeast extract for isobutanol synthesis

Nutrient supplements plays important role in improving fermentation performance. Rich
media have been commonly used for butanol fermentations %> *% 2! |n addition to providing the
building blocks for biomass growth, E. coli can also utilize the Ehrlich pathway to convert
protein hydrolysates to higher alcohols 2*°>. However, the contribution of rich nutrient (yeast
extract) to 1B production was not quantified. Here, we used **C-experiments to determine the
ratio of carbon utilization from two different sources (nonlabeled yeast extract vs. fully labeled
3C-glucose) under oxygen limited conditions via GC-MS analysis (Fig. 6.7). For the low
performance strain cultivation with 1 g/L yeast extract, its proteinogenic amino acids (e.g.,
histidine, leucine, isoleucine, lysine, and proline) were highly imported from exogenous amino
acids (>50%, corresponding to the *2C-dilutions), while IB was mostly labeled with four carbons
(m/z=78, IB came from labeled glucose). When excess yeast extract (5 g/L) was provided, the
low performance strain not only used yeast extract as the building blocks for cell growth, but
also converted it to IB (~50% IB was nonlabeled). On the other hand, with sufficient yeast
extract (5 g/L), JCL260 still mainly used **C-glucose for 1B production (labeled 1B was > 90%).
In the rich media, JCL260 highly utilized yeast extract for biomass synthesis. It showed much
higher **C-labeling concentration (~20%) in valine than the low performance strain (~5%).
Higher abundance of *3C-labeling in valine proved that the overexpression of the keto acid
pathway in JCL260 efficiently enhanced the **C-glucose flux towards 2-ketoisovalerate (the
common precursor for both IB and valine) and reduced the relative valine uptake from the rich

media.
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6.4 Concluding remarks

This study developed a general empirical model for IB fermentations by two engineered
E. coli strains. The model with nonlinear fitted parameters reasonably well described batch
fermentation data under denoted cultivation conditions. The model results indicated that the two
strains displayed a difference in biomass growth behavior and products generation. The
comparative study revealed the change of influential kinetic variables in responses to the
cultivation conditions. Moreover, we quantified the contribution of nutrient sources to product
yields via isotopic investigation, and proved that the keto-acid pathway was a rate-limiting step
for 1B production in the low performance strain. This study may serve as a springboard for
developing useful bioprocess models for higher alcohols fermentations in the biotechnology
industry.
Abbreviations
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Table 6.1: Recent studies on biobutanol production by engineered microorganisms

Products  Substrate Host cell Titer Research Highlights Ref
IB Glucose E. coli 22 g/L Introduction of a non-fermentative pathway to 2
produce IB; elimination of competing pathways to
reduce waste metabolite secretion
IB Glucose  E. coli 50 g/L In situ 1B removal from the bioreactor using gas 21
stripping
IB CO, Synechococcus ~0.4 g/L. Overexpression of both non-fermentative pathway 28
elongatus and Rubisco for autotrophic IB production
IB Cellulose  Clostridium 0.66 g/L.  Direct conversion of cellulose to IB using 10
cellulolyticum engineered cellulolytic bacterial species
IB Glucose  E. coli 1.7g/L A strain optimized for IB production via 216
elementary mode analysis
1B Glucose  E.coli 13.4g/L  Utilization of the NADH-dependent enzyme in 114
keto-acid pathway to alleviate co-factor imbalance
IB Amino E. coli ~2 g/L Utilization of protein hydrolysates for higher 215
acids alcohols synthesis by introducing enzymes for
exogenous transamination and deamination cycles
IB CO;, Ralstonia ~1g/L Developing an electromicrobial process to convert 2%
eutropha CO, to higher alcohols
Butanol Glucose E. coli 1g/L A strain engineered for 1-butanol and 1-propanol 218
production via isoleucine biosynthesis pathway
Butanol Galactose  Saccharomyces 2.5mg/L  Overexpression of n-butanol pathway derived from
cerevisiae Clostridium
Butanol Glucose E. coli 4.6 g/L Increase of the barrier for the reverse reaction of 118
butyryl-CoA to crotonyl-CoA via trans-enoyl-CoA
reductase
Butanol Gluocse E. coli 30 g/L Use of trans-enoyl-CoA reductase and optimization ~ 2*
of NADH & acetyl-CoA driving forces
Butanol CO, Synechococcus  14.5 Anaerobic production of 1-butanol from CO, using ~ %°
elongatus mg/L CoA-dependent butanol pathway
Butanol Glucose  E.coli ~14g/L  Utilization of a functional reversal of the beta- 109
oxidation cycle for the synthesis of alcohols
Butanol  CO, Synechococcus 30 mg/L  Driving butanol synthesis pathway forward viaan 17
elongatus engineered ATP consumption
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Table 6.2: Parameters of Monod model for E. coli IB fermentation

Notations Units F1 F2 F3 F4 F5
Ks Monod constant g/L 0.32+0.05° 0.32+0.05 0.32+0.05 10 +1° 10 +1
Kin | Acetate inhibition g/L 49+11° 49+11 49+11 1.0+02°¢ 1.0+0.2
Umaxapp | SPecific growth rate /h 0.051+0.004 | 0.015+0.001° | 0.015+0.001 | 0.12+0.01°¢ | 0.12+0.01
Yxc Biomass yield from glu | g biomass/g 0.18+0.03 0.14+0.01 0.20+0.04 0.38+0.01 0.39+0.03
glu
Yac Acetate yield from glu g acetate/g 0.076+0.007 | 0.083+0.004 0.33+0.07 0.32+0.01 0.35+0.02
glu
Yes Ethanol yield from glu g ethanol/g NA 0.26+0.01 0.40£0.05 NA NA
glu
Yie Lactate yield from glu g lactate/g NA 0.56+0.01 0.91+0.10 NA NA
glu
Yie IB yield from glu g I1B/g glu 0.26+0.05 0.033+0.001 0.19+0.04 0.22+0.01 | 0.36+0.02
OlAX Growth associated g acetate/g 0.62+0.02 0.30+0.01 3.0£0.2 0.35+0.01 0.51+0.03
acetate synthesis biomass
OEX Growth associated g ethanol/g NA 3.7+0.2 4.0£0.2 NA NA
ethanol synthesis biomass
oL X Growth associated g lactate/g NA 14+1 14+1 NA NA
lactate synthesis biomass
osx | Growth associated 1B g I1B/g 0.58+0.05 0.078+0.01 0.78+0.06 0.06+0.01 3.310.1
synthesis biomass
Ky Cell death rate /h 0.010+0.002 | 0.001+0.0002 | 0.010+0.001 | 0.02+0.01 0 £ 0.001
Kig gas stripping rate /h 0.11+0.02 NA NA 0.11+0.01 0.11+0.01
Kact acetate production from (h-g NA 0.013+£0.001 | 0.0034+0.00 NA NA
lactate biomass/L)™ 02
Kye Yeast extract /h NA NA 0.55+0.03 NA 0.65+0.05
consumption rate
Umaxye | Apparent specific /h NA NA 0.48+0.03 NA 0.32+0.03
growth rate with yeast
extract
S Non-growth associated | g IB/ 0.002+0.002 | 0.012+0.001 0.006+0.0 0+0.0 0+0.0
IB production (g biomass-h)

a): model assuming same values for F1, F2, and F3. b): model assuming same values for F2 and
F3. ¢): model assuming same values for F4 and the F5. NA: not applicable.
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Figure 6.1: Metabolism in the E. coli strains for IB production. Rx, Rx ve, Ra, Re, Ri, and Rig
were shown in the Equations 6.1~6.12. IB synthesis consumes one mole NADPH (by keto-acid
reductoisomerase) and one mole NADH (by aldehyde reductase). The cell met metabolism
removes the redundant NADH by O, oxidization or by synthesis of lactate and ethanol.

113



1.4 25

Biomass (g/L)
Glucose (gfL}J

0.0 . . . . . . - - , : . -
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (h) Time (h)

1.4 0.30

1.2 4 e} 0.25 -

0.20 A

0.10 A

Acetate (g/L)
Isobutanol (g/L)
[=]

o

0.05 -

0.00

0 10 ZID 3I0 4'0 5IO GIO
Time (h) Time (h)

Figure 6.2: Growth Kinetics after IPTG induction (F1). The circles were experimental
measurements, and the solid lines were simulations from the Monod kinetic model (same as Fig.
6.3~Fig. 6.6).
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Figure 6.3: Growth kinetics after IPTG induction (F2).
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Figure 6.7: The fraction of **C carbon in metabolites from the low performance (A) and
JCL260 (B) IB-producing strains. The biomass was grown on fully labeled **C-glucose, with 1
g/L (black bar) or 5 g/L (gray bar) nonlabeled yeast extract (n=2, GC-MS standard errors <
2%).The *3C fractions (R) of metabolites were based on the following equation:

n
R= l Z(X My)

X=0 where n was the total carbon number of the metabolite (0 < x < n). Mx was
the corresponding **C isotopomer fraction for each isotopomer (Mo was unlabeled fraction, M,
was singly labeled fraction, M, was doubly labeled fraction, etc.)
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Chapter 7: Conclusions and perspectives

7.1 Summary

With the advent of systems metabolic engineering, microbes have been engineered for
synthesizing numerous chemicals and biofuels. However, there are still several roadblocks that
remain to move microbial cell factories from laboratories to industry. In this thesis, we have
performed several studies to overcome difficulties associated with development of efficient
microbial platforms. In our first effort, we built a “Rule of Thumb” model to evaluate the various
variables that influence microbial performance for the biosynthesis of diverse products under
different growth conditions. Specifically, the yield of a microbial product remains difficult to
calculate either by using the reaction stoichiometry or by using the large scale metabolic models.
Filling this gap has been the focus for Chapter 2 and a statistical model was developed to get
production yield of chemicals in Saccharomyces Cerevisae. The developed statistical model
allows the user to get a priori yield value based on the engineering to be performed. The model
can also provide the degree of uncertainty associated with each parameter that can be used to
improve yield of a product. As a second effort, the use of *C isotopomer analysis to elucidate
the intrinsic product yields under complex nutrient conditions and multiple pathways for product
synthesis has been dischussed in Chapter 3. Moreover, in the same chapter we have also pointed
out the value of **C-MFA in estimating the influence of microbial suboptimal energy metabolism
on final product yield.

Besides modeling based studies, metabolic engineering tools were also applied to create
three microbial platforms. Firstly, to contribute for the efforts in the field of biofuels and at the

same time to reduce the dependence on food based biofuels, isobutanol synthesis from carbon
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dioxide was demonstrated by engineering the cyanobacterium Synechocystis 6803. This research
work also established the need for process integration along with metabolic engineering to
improve microbial product titer. With the minimal engineering required for isobutanol synthesis,
via co-metabolism of extra carbon substrates, and by using an in situ isobutanol removal system,
we demonstrated improvements in isobutanol titer from the cyanobacterial platform. In the
course of this work, isobutanol was found to be degraded photo chemically in the presence of
hydroxyl radicals. This discovery necessitates research work for improvements in the reduction
of radical accumulation during cell cultivation and thereby to reduce product degradation. With
a view to offer industrial flexibility in handling carbon feedstock, mixotrophic fermentation was
performed for isobutanol synthesis by providing the cultures with glucose. The growth of the
strain did not increase as expected and the mechanism responsible for this counter action is likely
due to metabolic imbalance during mixotrophic isobutanol production and it needs further
investigation to elucidate the proper mechanism.

Secondly, the decreasing fossil fuel reserves will not only have its negative impact on the
fuels but also negatively impact the petrochemicals that we use. PLA has been proposed as a
substitute for polyethylene but presently its synthesis is food based. In Chapter 5, we have
engineered the cyanobacterium Synechocystis 6803 to synthesize D-lactic acid. We have also
demonstrated the positive effects of improving cofactor balance on the product titer along with
improvements in the carbon flux. In this study, acetate was discovered to improve the
photoautotropic production of D-lactic acid by about two folds, possibly due to its inhibition of
pyruvate decarboxylation reaction. By incorporating various metabolic engineering techniques
and by feeding a cheap carbon feedstock, this work achieved the highest lactic acid titer ever to

be reported using cyanobacteria as a host. In addition, this study also guided us in identifying the
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target pathway (i.e., pyruvate decarboxylation) to improve microbial performance, which may be
potentially regulated by utilizing synthetic circuits that use either a growth associated or a light
activated promoter.

Thirdly, the kinetic models and the isotopomer studies developed in Chapter 6 allowed us
to compare the metabolic performance of the two strains. This work enabled us to compare the
role of nutrients in product synthesis between a low performance and a high performance strain,
and to identify the rate limiting section of the biosynthesis pathway. Overall this thesis elaborates
the combined application of isotopomer analysis, modeling and metabolic engineering research

to improve microbial product yields.

7.2 Challenges with commercialization of industrial biotechnology

With the need to develop a sustainable technology for resolving environmental concerns,
replacing fossil fuels and its derivatives, and creating new pharmaceutical chemicals for our
better living, numerous metabolic engineering works were performed in the past decade. Despite
the many successes that were attained in the laboratory, only a handful of them have reached
commercialization. Listed below are some key reasons for the failure of metabolic engineering
works to translate into microbial production at industrial scale **°:

1. Compared to chemical synthesis, both the rate and the yield of microbial biosynthesis are
very slow.

2. Substrate pretreatments are costly, reducing the profit margin for chemicals produced

from microbial cell factories. For example, microbial hosts are still not efficient enough
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in utilizing the low cost cellulose as their carbon feedstock, while the conversion of
cellulose into sugars is still commercially challenging.

3. Product purification is also expensive if the fermentation titers are low.

4. Contamination associated with bioprocesses can lead to huge loss in product yield, but
sterilization costs are very high.

5. Aerobic microbes need oxygen and the energy demand for intensive aeration makes
bioprocessing very expensive. Moreover, enormous amounts of fresh water are required
for fermentations.

6. Engineered strains are often unstable and therefore scaling up is very challenging.

7. Petroleum is still at an affordable price and therefore the profit margin for microbial

productions is still very limited.

Co-production of commercial

Biomass production q product (sugar, cooking oil...)
(fertilizers, pesticides,

transport)
Waste biomass

Rising oil
Cost Input ($) pree %

High-Value
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Consolidated BlOfuel

Bioprocess (ethanol, biodiesel, biogas,

Butanol..))

Benefit
Output ($)
Integrated bio-separation Gove.rn‘ment and
process (high titer fermentation public support
rediuced separation cost) (e.g., tax; laws)

Figure 7.1: Schematic diagram of the various factors that play a major role in the economic
feasibility of a biofuel production process.
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In the past decade, several lessons were learnt from the biofuel industry and it cautions us
that commercialization of biofuel production technology is a difficult task. Thereby,
industrializing biofuel production would need the combined expertise of biologists, chemists,
and engineers for its success. In order to reduce the cost of biofuel production, consolidated
bioprocessing (remove the pretreatment step and integrated fermentation with bio-separation)**
and co-production of value added products with biofuels are two key approaches in addition to
metabolic engineering of microbial platforms (Figure 7.1). Moreover, global economy and
government policy also influence the direction of biofuel industry. Therefore, we believe that

engineering microbes for producing biofuels or other value-added chemicals is a promising

direction that would require many years of hard work to realize its true potential.

7.3 Challenges with cyanobacterial bioprocessing

Metabolic engineering for the synthesis of value added products from cyanobacteria looks
attractive as they can utilize carbon dioxide and sunlight. There are two main roadblocks for
commercializing a technology that synthesizes products from engineered cyanobacteria. The
first roadblock is related with cyanobacterial cultivation in large-scale. In large scale,
cyanobacteria cultures are proposed to be grown either in open ponds or in closed photo-
bioreactors. Although open pond are cheap for operation, they require year round sunlight as
well as a warm climate, placing a strong limitation on the geographical location. Open ponds
also have the other disadvantage of water loss by evaporation and a huge risk of microbial
contamination. On the other hand, closed bioreactors looks like a good alternative, but they are

still very expensive to operate **. Algal photo-bioreactors also often suffer from higher
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maintenance costs due to the formation of bio-films that block light penetrations. The second
roadblock is associated with the low rates and titers of product synthesis in engineered
cyanobacteria compared to their heterotrophic cousins. For example, an E. coli strain produced
5.2 g/L of fatty acids in 3 days %!, whereas the highest fatty acid titer in cyanobacteria was

17

below 0.2 g/L after 2-weeks of cultivation *"2. Similarly, engineered Synechocystis 6803

achieved only 0.2 mg/L fatty alcohol, a 3000 fold lower titer as compared to the levels achieved

222, 30

by engineered E. coli (0.6 g/L) . Cyanobacterial biosynthesis often takes weeks to
synthesize a chemical in reasonable titers and this increases the operation along with
maintenance costs. Long fermentations may also lead to product degradation and microbial
contamination **, further reducing the profit margin.

To overcome the cost due to the low productivity from cyanobacterial biofactories, we
have proposed the integration of wastewater treatment with bio-production of D-lactate in our
future research work. We believe that, the natural ability of cyanobacteria in utilizing N and P
from wastewater along with its potential to synthesize value-added chemical synthesis from CO,
using sunlight would result in a commercially viable process technology. Besides, strict life-

cycle-analysis needs to be performed to reveal the energy, water and environmental impacts from

these phototrophic microbial platforms #%.

7.4 Recent developments in synthetic biology

Development of engineered microbes for artemisinic acid (precursor to the antimalarial
drug artemisinin) production has been one of the major success stories since the inception of
metabolic engineering "®. Towards developing a strain capable of synthesizing artemisinic acid

at industrial levels #** it has been quoted that very little time and money were focused on
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identifying the right metabolic pathways. The rest of the efforts were focused on applying the
various synthetic biology tools to iteratively improve the performance of the strain %°. Synthetic
biology was utilized to improve the production levels by carefully coordinating the expression of
multiple genes to reduce intermediates accumulation, by balancing cofactors and by enriching
precursors. Thereby, synthetic biology tools along with systems analysis and metabolic
modeling can significantly speed up pathway optimization and strain development.

In recent studies, synthetic biology has extensively been applied for balancing metabolic
pathways to increase the performance of the engineered microbes ?%°. The simplest strategy was
to engineer cells by employing different promoters of varying strength and this has been
successful on numerous occasions™® %" 28 Balancing the expression of all genes in a pathway
can also be achieved by manipulating at mRNA level. This can be accomplished by varying the
stability of specific mMRNA segments that code for the enzyme %, by designing synthetic
ribosome binding sites % and by utilizing transcription factor based approach to reprogram gene
| &,

transcription at global leve Metabolite channeling to improve product yield has also been

230,231 Moreover,

performed to improve performance by utilizing synthetic protein scaffolds
dynamic sensor-regulator systems have been developed to overcome toxicity of intermediates by
switching the pathway at the correct time and thereby increasing the overall performance **°.
Finally, high throughput genome engineering are being developed to speed up the creation of
optimal hosts. For example, multiplexed automated genome engineering (MAGE), a strategy for
large scale reprogramming of the genome based on natural selection principles may accelerate
metabolic engineering by effectively tuning the expression of multiple genes 2% In addition,
trackable multiplex recombineering (TRMR) can create and evaluate thousands of genetic

modifications simultaneously 2*.
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7.5 Future directions

Overall, there are still many challenges associated with developing industrial-strength strains for
the synthesis of chemicals. However, several opportunities do exist to make microbial processes
to be competitive with chemical synthesis. Along with developing more powerful synthetic
biology tools, research must also focus on developing cost effective technologies to overcome
challenges mentioned in Chapter 7.2. Thereby, microbial cell factories should be engineered to
metabolize multiple substrates, synthesize multiple products, reduce byproducts, and to minimize
oxygen demand as well as to engineer them with control systems to uptake key precursors and
synthesize products as needed. All these engineering must be performed in an integrated manner
with a systems level understanding of the cell at all levels (Figure 7.2). Systems level analysis
will enable researchers to identify bottleneck pathways and genes that can be targeted for
improved performance. Model development to simulate the output of synthetic biology tools
would enable us to predict and understand the dynamics of engineered pathways. This
development would lead to a tremendous reduction in experimental hours by screening for
optimal pathway designs on a computer, before engineering it into a host cell. Also, to improve
the economical margin of cyanobacterial based product synthesis, the engineered algal process
can be integrated with a wastewater treatment facility. On the other hand, our incomplete
knowledge about the biology of the cell often requires guesses to perform metabolic engineering.
As our understanding about the cell grows, guesswork based experiments would be avoided
leading to more successful outcomes. Simultaneously, we have to work with process engineers

to bridge gaps between laboratories studies and industrial applications. With all these
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developments, it is possible that in the near future, we may realize the dream of using microbial
cell factories for the production of diverse value-added chemicals at industrial scale from

cheaper feedstock.
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Figure 7.2: Schematic diagram of an integrated iterative approach required for the development
of high-performance microbial strains towards industrial commercialization.
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CHAPTER 13

Microbial metabolisms and cell culture models for biofuel

production

What is included in this chapter?

This chapter covers microbial metabolism as it is related to biofuel production. Discussions
on microbial (both kinetic and metabolic) models to predict cell growih, the dynamics of
product secretion, metabolite turnover rates, and yield coefficients are included. Pertinent
examples and calenlations have also been provided.

13.1 Introduction

Microbial metabolism involves complex sets of biochemical reactions catalyzed by different
enzymes. These enzyme-mediated reactions are responsible for the synthesis of a large number
of metabolites and generation of cellular energy. A microbial medium must be supplemented
with carbon substrates and other essential nutrients (water, oxygen, nitrogen, phosphorus, etc..)
for all these reactions to take place. The progress of all the biochemical reactions within a cell is
reflected as the production of more microbial mass and other products.

; E 5
Carbon substrate + nutrients —Y-oeo> Biomass + products (13.1)

As such, a microbe operates like a very complex cell factory in which thousands of reactions
take place. Microbial metabolisms can produce diverse bioproducts from cheap substrates, and
thus microbial hosts are widely used for synthesizing biofuel molecules. In recent years,
molecule biology technologies have been employed extensively to improve cell metabolic
capability for converting renewable carbon compounds such as starch. cellulose and carbon
dioxide into biofuels. Thereby, the understanding of the common metabolic pathways for biofuel
conversion is important for development of advanced biofuel platforms. Moreover, metabolic
models play a key role in scaling up of bioprocesses from laboratory to industrial level and make
production economically viable. For example, microbial growth models quantify and predict
biomass and produet syntheses under various cultivation conditions (note: Monod-based model
is commonly used to describe the rate of cell growth as the function of substrate concentrations).
Other models such as stoichiometry flux analysis and elemental balance models measure
intracellular reaction rates and the carbon flows from substrates to biomass and final products.
They identify bottleneck reactions within the metabolic network, calculate the product and
biomass vields, and predict the performance of the cell towards product synthesis. In this
chapter, we introduce several useful microbial models, which can be used to describe microbial
metabolisms and bioreactor operations for biofuel production.

The Authors are: Arul Varman, Lian He, and Yinjie J. Tang, School of Engineering & Applied Science,
Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA.

145



13.2 Carbon metabolisms in biofuel production
Microbial metabolisms can be divided into three categories based on the types of carbon sources:

Autotrophs-Inorganic carbon such as CQ, is the carbon source. Plants, algae and
cyanobacteria can harvest light energy and obtain electrons from water to produce biofuel
precursor (such as lipids) and H,. They use the Calvin cycle for CO; fixation, which employs
the enzyme ribulose bisphosphate carboxylase/oxygenase (RuBisCO) to convert ribulose-
1.5-bisphosphate and CO; into 3-phosphoglycerate (3PG). Some bacterial species may
employ other autotrophic pathways, such as reductive citric acid cycle, Wood-Ljungdahl
pathway, and 3-hydroxypropionate cycle.

Heterotrophs-Organic carbons are the carbon source. Glucose is one of the most common
carbon sources employed by heterotrophs for biofuel production. Glucose catabolism occurs
through three primary pathways: (i) Glycolysis (i.¢., the Embden Meyerhof Parnas pathway),
(i1) the pentose phosphate pathway; (iii) the Entner-Doudoroff pathway (ED). Microbial
species can also use other carbon substrates (acetate, glycerol and xylose) for biomass growth
and product synthesis (Figure 13.1).

Mixotrophs— CO, and organic carbon substrates are consumed simultaneously. For example,
algal species show higher biomass and biofuel productivity in mixotrophic conditions.

The primary pathways of microbial metabolism are listed in Table 13.1. Microbes use these
pathways to generate energy in the form of ATP (Adenosine-3'-triphosphate) and reducing
equivalents such as NADH (Nicotinamide adenine dinucleotide)) NADPH (Nicotinamide
adenine dinucleotide phosphate), and FADH, (Flavin adenine dinucleotide). These pathways also
provide chemical precursors that are essential to synthesize biofuel products (e.g., ethanol,
propanol, and butanol) and biomass building blocks (e.g., amino acids, DNA - Deoxyribonucleic

acid, RNA — Ribonucleic acid, lipids, and carbohydrates).

Table 13.1 Primary pathways for substrate metabolism

Pathway Starting Ending ATP and reducing Biomass
s metabolite metabolite equivalents precursors
Glycolysis Glucose 2 Pyruvate 2 ATP, 2 NADH 3PG, Pyruvate,
PEP
Oxidative Go6P C5P and COy 2 NADPH C5P, E4P
PP pathway
ED pathway 6PG Pyruvate and none 3PG, Pyruvate
GAP
TCA cycle Pyruvate 3C0O; 6 NADH, 2 Acetyl-CoA, a-
FADH,, 2 GTP ketoglutarate,
Oxaloacetate
Calvin cycle 3 CO, GAP -6 NADPH, 3PG
-9 ATP*

* ;" means consumption of energy molecules
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Sugars (such as glucose, xylose starch, and sucrose) have been widely used for biofuel
production, which can be obtained either from food crops (com, sugarcane, sugar beet) or from
biomass polymers (i.e., cellulose and hemicellulose). Non-sugar-based substrates, such as
glycerol, lactate, acetate, CO,, and syngas (CO, CO, and H,), can also be converted into biofuels
(Figure 13.1). Substrate yield coefficients are the ratio of the amount of product or biomass
formed to the amount of substrate consumed. The theoretical yield dictates the maximum amount
of a biofuel that can be produced from a given carbon source as tabulated in Table 13.2.

Ethanol, currently the most commercially successful biofuel, can be produced by yeast
fermentations. Yeast efficiently converts sugar into ethanol and CO; via glycolysis pathway and
pyruvate decarboxylase / alcohol dehydrogenase. High quality biofuels with properties similar to
those of gasoline and diesel fuel are being synthesized by microorganisms (Figure 13.1). Several
engineered biofuel pathways are being examined. For example, engineered Escherichia coli can
use the keto acid pathway and the Ehrlich pathway to produce higher alcohols (such as
isobutanol), while the mevalonate pathway in yeast can be extended to synthesize branched and
cyclic hydrocarbons (the biofuels with lower freezing point and higher energy content).

Table 13.2 Theoretical biofuel vields of selected carbon substrates

Subatrate Product Product yield Biomass yield
(gram/gram) (gram/gram)

Glucose Ethanol 0.51 0.51
Glucose Isobutanol 0.41 =

Glucose lipid 0.32 -

Acetate Fatty acids 0.29 0.36
Acetate CH, .27 --

Glyceerol Ethanol 0.50 0.50

CO; (with Hy) ~ Methane 0.36 0.62

Finally, microbial metabolisms for biofuel production are very different across the species.
Saccharomyces cerevisiae and Escherichia coli are microbial cell factories that are widely used
in biofuel industrial because the two model species ferment sugar efficiently and are also
amenable to genetic modification and bioprocess scale up. Other microbial species, such as
cvanobacteria, are also promising hosts for biofuel production because they can convert sunlight
and CO, to biomass and products. The species diversity in metabolic features offers opportunity
for synthesizing many different useful products from diverse carbon substrates. Table 13.3 shows
several different microbial species that produce biofuels, either via the native biofuel pathway or
via a metabolically engineered pathway.
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Table 13.3. Commonly employed microbes for biofuel production

Species Substrates Products Features

Saccharomyces Glucose, fructose,  Alcohols Easy genetic

cerevisiae galactose, and manipulations, Crabtree
others effect

Zymomonas Glucose, fructose,  Ethanol High ethanol tolerance and

mobilis sucrose yield

Clostridium Glucose, cellulose, Ethanol Growth at high

thermocellum cellobiose temperature, mixed

fermentation pathways
Clostridium Glucose, xylose Ethanol and Acetone, ethanol, and
acetobutylicum butanol butanol fermentation

Escherichia coli

Cyanobacteria
(e.g., Synechocystis
6803)

Phanerochaete
chrysosporium

Yarrowia lipolytica

Glucose, xylose,
glycerol, and others

CO,

Glucose and lignin

Glucose, acetate
and fatty acids

Alcohols, diesels,
and other biofuels

Alcohols, H, fatty
acids
cellulosicbiomass
pretreatment

Lipids

Easy genetic
manipulations, fast growth

CO, fixation

Strong ability to degrade
lignin

Oleaginous yeast that
accumulates lipids

Crabtree effect: This is a phenomenon wherein, yeast is able to produce ethanol under oxygen
conditions when provided with high concentrations of glucose.

13.3 Metabolic models for biofuel production
13.3.1 Microbial growth in batch culture

In batch system, microbial growth takes place in a closed system without inflow or outflow
except aeration. Microbial growth is commonly monitored by measuring the dry weight,
turbidity (optical density) of the culture medium, or the number of colony forming units (CFUs).
For slow growing microbes (at very low cell density) or microbial culture containing suspended
solids, cell density can be indirectly determined by measuring the concentrations of DNA, RNA,
ATP, or total proteins.
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Microbial  growth — usually
undergoes five growth phases:
(1) lag phase, (2) exponential
phase, (3) declining rate of
growth, (4) stationary phase,
and (5) death phase (Figure
13.2). However, depending on
the cultivation  conditions,
microbial growth curves may
not strictly follow the five
growth phases.

Substrate 3

Biomass

Product 2

Biomass, Product (g/L)
Carbon substrate (g/L)

Lag Phase: In the lag phase,
cell numbers remain unchanged —
for a while after the initial Time

mnoculation. The cells are Figure 13.2 Biomass growth and product secretion
metabolically active during this curves. Product 1 is growth associated, while product 2 is

period and the cell size may mpon-growth associated.
increase. The lag phase can be

reduced by using an inoculum from an exponential phase, by increasing the inoculation ratio, or
by improving the nutrient conditions in the culture medium.

Exponential Growth Phase: Exponential growth phase (also known as logarithmic growth
phase) starts when cells divide at a constant rate. In this stage, the metabolic activity (metabolic
flux) and chemical composition of all the cells can be assumed to be in a pseudo-steady state.
The exponential growth rate can be mathematically described as:

o X (13.2)
dt

where X (g/L) is the cell concentration and p(hr™) is the specific growth rate for the cells.
Integration of equation (13.2) from (t = t;, X = Xj) to any other time point in the exponential
growth phase (t, X) yields:

|n[?xﬂ}t) . (13.3)

o

Equation (13.3) indicates a semi log plot of In(¥X) versus time is a straight line with a slope of p..
The time required for a cell to double its population (ty) is given by:

In{2) 0.693
1, = — == (13.4)
H H
A modified form of Eq. (13.2) includes the cell growth with a lag phase (t,):
6
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dX -titj
2 = x| 1" 13.5
(e 135

Declining Growth Phase: At the end of exponential phase. one or more of the nutrients in the
cell culture medium becomes limited for biomass growth, while the product accumulation may
also stress cell metabolisms.

Stationary Phase: During this phase, the cell population remains constant because nutrients
become limited and toxic produects become inhibitory. At this stage, microbial host may actively
produce some non-growth-associated products (such as antibiotics and lipids). Cells may
continue to grow slowly, which is counterbalanced by cell death as discussed in the following

phase.

Death Phase: During the death phase, cell lysis occurs and the cell population starts declining.
The death phase can be represented by a first order rate equation of the form

dx

r -k X (13.6)

where kg 1s the first order decay rate constant.

Example 13.1:

Optical density (OD) measurement is normally employed as a direct means for monitoring the
growth of microbes because O values are proportional to cell concentrations. Growth of a
blue green algal strain was monitored by measuring the absorbance of the culture at 730 nm and
the data recorded is as given below:

Time (hrs): 0 21 96 128

OD730 : 04 06 3 ?

Questions: Calculate the maximum specific growth rate and doubling time of this algal strain.
Estimate the OD at time point 168 hrs.

Solution

In(OD,) -1In(OD,)  In(3.2) - In(0.6)

0.022 hr
£ -1, 96 - 21 '

Specific growth rate (u)

In(2) _ 0.693

= 31.5 hrs.
poo 0.022

Doubling time

ODz = ODy, exp [ (i3-t)] = 3.2 exp [0.022(168-96)] = 6.5
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13.3.2 Monod equation and inhibition Kinetics

Cell growth can be described by the Monod equation. The Monod equation has been developed
from observations on the growth of cells at different substrate concentrations and can fit a wide
range of data. The Kinetics described by this equation is similar to those of the Michaclis-Menten
equation developed for enzymatic reactions. The Monod equation for cell growth limited by a
single substrate is described by:

S
= B> (13.7)

5

where p, . is the maximum specific growth rate. Kg is known as the half velocity constant or the
Monod constant, and is equal to the substrate concentration at which the growth rate is half the
maximum. The values of p  and Ks depends upon the organism selected, type of substrate

used, and cultivation conditions. The model takes two simpler forms depending on the substrate
concentration:

At high substrate concentration(S >> Kg),
S/(S+K.)~ 1, and = (0" order)  (13.8) %
=

At low substrate concentration (S << Kg), E
SIS +K) = S/K,, L

" [C]
and [ = %S (1" order) (13.9)
As discussed above, at low substrate T S ———

concentration (13.9), the Monod equation
represents first order kinetics, that is, the FKigure 13.3 Microbial growth rates as a
growth rate is proportional to the substrate function of substrate concentrations
concentration. At high substrate

concentration (13.8), the Monod equation approaches 0" order, that is, the growth rate is
independent of substrate concentration. The Monod equation is graphically shown in Figure
13.3.

A Monod model that accounts for cell death with a biomass decay rate constant kg (hr™), is:

S
W= [”K'"—S]k (13.10)
§+

The Monod model treats a cell population as a single homogenous system. However, there are
other more complicated growth models. For example, segregated models treat each cell
individually and view a cell culture as a heterogencous mixture of cell population. Structured
models represent a multicomponent approach that considers components within a cell, such as
the concentration of intracellular metabolites, DNA, and RNA. These complex models have

8
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been well described elsewhere and beyond the scope of the book (Blanch and Clark, 1997;
Shuler and Kargi, 2000; Stephanopoulos, Aristidou and Nielsen, 1998).

13.3.3 Inhibition models

Substrates and products in the culture medium can inhibit cell growth. For example, high
concentration of sugar decreases cell growth, while products such as ethanol and butanol
interfere with cell physiology. A common approach to model inhibition accounts for the
inhibitors (I) as competitive, uncompetitive or noncompetitive:

For a competitive inhibition model;

S
W= u”id"l (13.11)
K | 1+— |+S
: K
For a uncompetitive inhibition model;
5
p= Has I (13.12)
K.+5| 1+
KI
For a noncompetitive inhibition model;
5
Hnax (13.13)

e

Another common inhibitory model is expressed by using the inhibitory constant in an
exponential form;

p= ﬁe'm (13.14)
c’+

By using the maximum inhibitor concentration (I,,), we can get:

wos(oaY .
= toed | g 13.1
i [K5+S]{ 1] (13:13)

m

where, n is a parameter that indicates the toxicity of the inhibitor. As the value of I approaches
I, the specific growth rate (u) of cell becomes zero, indicating that the cell is no longer viable.
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Multiple substrate models: The model for multi-substrates (81, 82, S3, ... 8;) can be written
either as an additive or a multiplicative form. Eq. 13.16 describes cell growth by consuming
several carbon substrates additively. For example, microbes use both glucose and xylose for
biomass growth. Eq. 13.17 describes multiple-nutrient-controlled cell growth. For example,
aerobic microbial growth is controlled by two substrates in a multiplicative manner (8,: glucose
and S»: oxygen).

lJ'rrliﬂ:lSl + p‘rrlaxZSZ +.+ u‘nlamsrl

= (13.16)
[K,+S,] [K+S,] (K. +S,]
H=H { > % % (13.17)
e [K1 +51] [K2+51] [Kn +Sn]

13.3.4 Monod-based kinetic model for biofuel production in batch bioreactors

Kinetic models can be used to describe biomass growth, substrate utilization, and product
formation as a function of time. To link the biomass growth with substrate consumption and
product formation, yield coefficients are used in a kinetic model. Yield coeflicients are the ratios
of amount of biomass or products produced to the amount of substrates consumed. To
demonstrate how to simulate biofuel fermentations, a kinetic model to predict aerobic production
of isobutanol by an engineered Escherichia coli is discussed in this section.

In a batch reactor, engineered E.coli can use glucose as the only carbon substrate to produce
isobutanol (IB) and acetate. Isobutanol formation is both growth and non-growth associated as it
1s produced from an intermediate of an amino acid synthesizing pathway, which is active under
all the growth stages of a microbial culture (Figure 13.2). Along with isobutanol, the strain
excretes acetate as a growth associated fermentation product. Thus, the model consists of four
time-dependent variables: X, A, IB, and G, which represent the concentrations of biomass,
acetate, isobutanol, and glucose, respectively.

Biomass: (::: =R,k X (13.18)
dA
Acetate: — =R, (13.19)
dt
. . diB
Isobutanol formation: gt =R, BX-k IB (13.20)
t .
. dG R, R, R,
Glucose consumption; — = -——-——-— (13.21)
Y)(ﬁ Yﬂﬁ YI.%G
10
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R=— H& (13.22)

g A
(KS+G)[1+ » J

Acetate production equation:  R,=t B, and (13.23)

Biomass growth equation:

Isobutanol production equation: R =t B (13.24)

In the above equations, [} is the non-growth associated isobutanol production rate; kg is the cell
death rate constant; and Yxg, Yag, and Ypg are the yield coefficients for the production of
biomass, acetate, and isobutanol from glucose, respectively. kg represents the rate of IB loss
from the fermentor (due to product vaporization). The presence of acetate inhibits cell growth,
and hence, a non-competitive inhibition constant Kja is included in the model. osx and upy are
the growth-associated yield coefficients of acetate and IB, respectively.

Example 13.2:
For the parameter values given below, predict the isobutanol concentration as a function of time
for 50 hours. Assume the initial concentrations of biomass, acetate, isobutanol, and glucose to

be 0.12 g/L, 0.08 g/L, 0 g/L, and 20 g/L, respectively.

Parameters Units Values
Ks Monod constant g/L 0.305
Hmax, Maximum specific growth rate 1/h 0.073
Kia, Acetate inhibition constant g/LL 47.69
kg, Death rate constant 1/h 0.007
Yxg, Yield coefficient for biomass g biomass/g glu 0.161
Yirg, Yield coefficient for IB g IB/g glu 0.163
Y ag, Yield coefficient for acetate g acetate/g glu 0.080
oypx, Growth associated yield of IB g IB/g biomass 0.528
aax Growth associated yield of acetate g acetate/g biomass 0.614
ki, 1B loss rate 1/h 0.123
B. Non-growth associated IB production rate g IB /(g biomass-h) 0.006

11

155



Solution

The equations (13.18-13.24) are solved using the function “ode2?” from MATLAB.  The
results are presented in Figure 134 Detailled MATLAE code for this problem can be found in
the appendiz (Appendix 1313
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Fioure 134 Simulated results for the isohutanol kinetic modd, showing the cdl growth, acetate
production, ischutanol production, and glucose consumption with time.

Discussion: Figure 134 shows that iscbutanol production 15 high at the eatly growth stage.
When gluccse 1z used up, the cell growth approaches its stationary phase and the 1sobutanol
coticentration starts declining (lost through Moreactor outlet under aeration conditions).

13.3.5 Monod model coupled with m ass transfer

The presence of aliquid film arcund a cell can alter the substrate concentration to which the cell
1z exposed to. Hence, the substrate concentration at the cell surface, 5 will be less than the
substrate concentration in the bullk, 3, This difference in substrate concentration will affect the
cell growth rate and will be dependent on the mass transfer of the substrate from the bulk
solution to the cell sutface. The rate of substrate consumpti on for cell growth 1s:
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X
Rate of substrate consumption = —— % (13.25)

[K#5.] ¥

The substrate transfer from the bulk solution to the cell surface can be described by a mass
transfer coefficient ki (1/hr), interfacial area per unit volume of the cell a (1/m), and the ratio of
cell concentration to cell density (X/p):

X
Rate of substrate transport = K, E{—] (S,-S.) (13.26)
p

At steady state, there is no accumulation of substrate within the liquid film, and the rate of
substrate transfer to the cell surface will be equal to the rate at which substrate is consumed.
Hence, by equating (13.25) and (13.26), we get

HRw X ka X (,-5.) (13.27)
[K5+Ss] Yx,-‘s p

After rearranging and simplifying equation (13.27), we get

S
U= S . (13.28)

5, +K + HoscP
© kayY

L X8

The detailed steps and examples involved in equation (13.28) can be found in Blanch and Clark
(1997). Equation (13.28) clearly reveals that rate of growth is dependent on both mass transfer
coefficient and size of the cell.

13.3.6 Mass balances and reactions in fed batch and continuous-stirred tank bioreactor

In a fed batch bioreactor, fresh media is added to the bioreactor without product removal. A fed
batch bioreactor is commonly employed to produce biofuel products. In a continuous bioreactor
(i.e., chemostat), fresh media is continuously added into the bioreactor, and at the same time the
culture medium containing products, wastes, and cells is continuously removed from the
bioreactor. Figure 13.5 shows a continuous flow bioreactor with 8j;, and Sy representing the
concentrations of substrate in the inlet and outlet. Qi and Qg are volumetric flow rates at the
inlet and outlet, respectively. V is volume of the reactor, r, is substrate consumption rate by cells,
and X is the biomass concentration.

13
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A general mass balance on substrate is given by:

Sout

in ds Q Q 1dv
& —=rX+—0§ -—25 5 —— (13.29)
dt Vv v T vt
Qin Qout
I where V, S and X represent the volume of the bioreactor,
the concentrations of substrate and biomass in the
bioreactor respectively.
V. x _ _ _ ds  dv
In a continuous-stirred tank bioreactor, ot = =0,
dt dt
Figure 13.5 Continuous flow Q.=0,,=Q, ad D=9 where D is the dilution rate.
bioreactor meooe v

Substituting these values in equation (13.29), we get:

rX=D(s,-S,,) (13.30)

In a fed-batch bioreactor,Q_ =0, and by substituting this in equation {13.29), we get:

out

ﬁ:—rﬁX+%Sm-Sld—V (1331
dt \Y V dt

dv
Further simplification, by substituting E = Qi along with the definition of dilution rate in

equation (13.31) yields:
ds
—+rX=D(5, -5 (13.32)
at (5,.-3)

Moreover, mass balance expressions for biomass and product formations in fed batch and
continuous-stirred bioreactors can be derived using similar approach (equation 13.29), which are
described elsewhere (Stephanopoulos, Aristidou and Nielsen, 1998).
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Example 13.3:

“Washout™ 1s a condition in which the dilution rate D" is too high and the cells cannot grow
fast enough leaving the biomass concentration in the reactor to be X = 0. For the parameter
values, pyay = 0.2 hrl, Kg=1 g/L, and 8, = 10 g/L, calculate the maximum dilution rate above
which washout will occur. Find the flow rate within which a 1 liter bioreactor must be operated
without washout.

Solution
At steady state, p = D. Under washout condition X = 0 and henceforth the substrate
concentration inside the bioreactor 8 = 8,

S 0.2)10
Maximum dilution rate, Dm“:m = w = 0.18hr .
[K.+S,] (10+1)

Maximum flow rate, Quax = (V) (Dmax) = 0.18 Li/hr.

13.3.7 Elemental balance and stoichiometric models

Elementary balance model

The approximate chemical formula of microbial biomass is given by CH, §Op6No2S0004Po.m-
Carbon thus constitutes nearly 50% of dry cell weight of biomass; and is an important element
required for the growth of the cell. Since the mass of each element is conserved, elementary
balance model can be used to determine the stoichiometry of a biological reaction when the
compositions of substrates and products are known. The following reaction represents the
general aerobic growth of a microorganism (CIH.O4N.) on an organic carbon substrate (CH,Op)
and a nitrogen source (NH;):

CH, Oy +00y+BNH;=yCHO¢N+6H,0+£CO> (13.33)

The respiratory quotient (RQ) can be measured under acrobic growth conditions, and is defined
as the ratio of the CQ; production rate to the O, consumption rate:

RQ == (13.34)
o

The elementary balance equations can be written in a matrix form and the elementary balance of
equation (13.33) can be calculated via a matrix algorithm.

Carbon 0 Oxll 0 1
Oxygen -2 0Bhd 1 2
Nitrogen 0 -3yac 2 0 = (13.35)
Hydrogen 0 -18C 0 O
RQ -RQ 0® 0 1
15
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Stoichiometric model
The stoichiometnc model 1s for the estimation of metabolic fluxes in a denoted metabolic
network. The basic equationis:

d
2 Sewsb (13.36)
dt

where, de/dt is the net accumulation rate of all metabolites, S is the stoichiometry matnx for a
specific network, v i1s the vector for the flux variables, and b 1s the vector for the substrate
uptake, biomass synthesis, and product formation rates. In the matnx S, each column contains
the stoichiometry of a specific reaction 1n the network, and the row corresponds to mass balance
of intermediates, substrates, or products. At steady-statc condition, the inflow rates of all the
metabolites are equal to their outflow rates. Hence, the equation can be simplified as:

S-v=b (13.37)

Example 13.4:

Consider the simple network shown below. We can calculate the intemal fluxes vy, vz, vz and vy

using the stoichiometric model, assuming that v, and v, are determined experimentally.

1 0 1 0jv, v,
1 -2 0 0|v,|_
0 0 1 -1{v,
0 1 0 1jv, vy,
Abbreviations
3PG — 3-Phosphoglycerate
6PG — 6- phosphogluconolactone
AcCoA — Acetyl CoA
AKG — o-ketoglutarate
ATP — Adenosine-5"triphosphate
C1 - 5.10-Methyleneteirahydrofolate;
16

160



C5P — Ribose-5-phosphate

CIT — Citrate

DHAP — Dihydroxyacetone phosphate

E4P — erythrose-4-phosphate;

F6P — Fructose 6-phosphate

FADH> — Flavin adenine dinucleotide

GAP — Glyceraldehyde 3-phosphate

GOP — Glucose 6-phosphate

GPP — Geranyl pyrophosphate

GTP — Guanosine-5'-triphosphate

IPMC — 1-Isopropyl-4-methylcyclohexane
IPP — Isopentenyl pyrophosphate

NADH — Nicotinamide adenine dinucleotide
NADHP - Nicotinamide adenine dinucleotide phosphate
OAA — Oxaloacetate

PYR - Pyruvate

Ru5P — Ribulose-3-phosphate

RuBP — Ribulose-1,5-bisphosphate
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Exercise Problems
14.1. For inhibition models, which type of inhibition reduces the model’s apparent pimax ?

14.2. Zymomonas mobilis uses the ED pathway for the fermentation of glucose. How many
NADHs are produced when the cells convert glucose to pyruvate via the ED pathway?

14.3 Describe two different butanol producing pathways.

14.4. How many ATPs/NADHs are generated by glycolysis? Which pathway produces the
majority of NADPH?

14.5. One microbial species can use either acetate or glycerol as the sole carbon source for
growth. Can you predict which carbon substrate yields higher biomass?

14.6. What is the advantage of using Clostridium thermocellum to produce ethanol? Can yeast
ferment ethanol under aerobic condition?

14.7. What is the model equation for uncompetitive substrate inhibition for microbial growth?

14.8. The biomass formation equation for a microorganism using glucose and NIHj as carbon and
nitrogen sources is shown below.

CI1206 + b NHz+ ¢ Op — CH, 7Np 180047 (biomass)+ d CO, + ¢ H,0

Balance the above equation and calculate the glucose yield coefficient for biomass (¢/d=1.9).
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14.9. An engineered E.coli has a mass doubling time of 3 h when grown on acetate. The Monod
constant using acetate is 1 g/L, and cell yield on acetate is 0.4g cell/g acetate. If we operate a
chemostat on a feed stream containing 40 g/I. acetate, find the substrate concentration and cell
productivity (g cell/h) when the chemostat dilution rate is 60 % of theoretical maximum dilution
rate.

14.10. Bioreactions are often carried out in batch reactors. Using the available information to
determine how much time is required to achieve a 95% conversion of the substrate. Assume that
the volume V of the reactor content is constant, and the reaction rate follows Monod Model.
Initial conditions: Biomass X(0)=0.05 g/L, Substrate S(0)=15g/L, Product P(0)=0 g/

Parameter values: V=1 L, pna=0.2 hr", Ks=1 g/L.

Yield coefficients are assumed to be constant: Yy=0.3g biomass/g substrate, Yp=0.1g product/g
substrate.
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Appendix 13.1

Code used for example 13.1
% initial conditions

y0=[0.12 0.08 0 20]; %x A IB G
tspan=[0:2:50];

% solving the differential equations "ft"
[tl.y]=ode23((@ff tspan,yO);

yl=y(:, 1), %X

y2=y(:,2), %A

y3=vy(:,3); %Ib

ya=y(.4), %G

%oPlot

figure(1)

plot(tl,y(:,1),'ko"

set(gea, Tinewidth', 1.5, fontsize’, 12, Y Tick',0:0.4:1.2)
xlabel('Time (h)','fontsize', 16, fontweight','b"
ylabel('Biomass (g/1.)','fontsize', 16, fontweight','b")

figure(2)

plot(tl,y(:,2),'ko"

set(gea, linewidth', 1.5, fontsize', 12 'Y Tick',0:0.2:1)
xlabel('Time (h)','fontsize',16, fontweight','b"
ylabel(' Acetate (g/L)','fontsize’, 16, fontweight','b")

figure(3)

plot(tl,v(:,3),'ko")

set(gcea, linewidth'| 1.5, fontsize',12,'Y T1ck’,0:0.1:0.3)
yhm([0 0.3])

xlabel( Time (h),'fontsize', 16, fontweight','b"
ylabel('Isobutanol (g/L), fontsize',16, fontweight','b")

figure(4)

plot(tl,y(:,4),'ko"

set(gea, linewidth', 1.5, fontsize’,12,"Y Tick,0:5:20)
yhim{[0 20]}

xlabel('Time (h),'fontsize',16, fontweight','b)
ylabel('Glucose (g/L),'fontsize’, 16, fontweight','b"

function dy=ft{t,y)

param=[0.073 0.305 47.69 0.007 0.614 0.528 0.123 0.161 0.080 0.163 0.006];
Ug(param(1)*y(4)/(param(2y+y(4)))(1/(1+y(2)/param(3)));

Rx-y(1)*Ug;
dy(D)=y(1)*(Ug-param({4)); “cbiomass
dy(2)=param(5)*Rx; % acetate
dy(3)=param(6)*Rx+param(11)*v(1)-param({7)*y(3); % isobutanol
dy(4)=-Rx/param(8)-dy(2)/param(9)-param(6)*Rx/param(10); % glucose
dy=dy".

end
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Appendix 2: Engineering Escherichia coli to convert acetic
acid to free fatty acids.
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Fatty acids (FAs) are promising precursors of advanced biofuels, This study investigated conversion of
s acid (HAc) 1o FAs by an engineered Escherichia coli strain. We combined established genetic engi
neering strategies including overexpressian of acs and fesA gene:

1d knockout of fadE in E coli BL21,

resulting in the production of ~1 g/l FAs from acetic acid. The microbial conversion of HAc to FAs was

Available online xxx achieved with ~20% of the theoretical yield. We cultured the engineered strain with HAc-rich liguid
% ™ wastes, which yielded ~0.43 g/l FAs using waste streams from dilute acid hydrolysis of lignocellulosic
”cérwor ' biomass and ~0.17 g/l FAs using effluent from anaerobic-digested sewage sludge. " C-isotopic experi-
e ments showed that the metabolism in our engineered strain had high carbon fluxes toward FAs synthesis
fene . N " N S
Anaerobic-digested and TCAcycle ina complex HAc medium. This proof-of-concept work demonstrates the possibility for cou-
Carbon flux pling the waste treatment with the biosynthesis of advanced biofuel via genetically engineered microbial
Lignocellulosic biomass species,

© 2013 Elsevier BV, All rights reserved.

1. Introduction

Food based materials are the most widely used fermentation
feedstock for biofuels and biochemicals production [1,2]. How-
ever, considering the global food shortage and increasing cost of
agriculture, non-food based substrates have been studied as alter-
native feedstocks. First, syngas, generated from variousinexpensive
sources such as natural gas and inedible biomass, can be used by
some acetogens for alcohols and acetic acid production | 1-4]. Sec-
ond, lignocellulosic biomass can be hydrolyzed via chemical or
biological methods to C5 and C6 sugars for microbial fermenta-
tions [ 5,6]. Third, algal phototrophic process converts COy into lipid
and other compounds. Fourth, other cheap feedstocks have found
aniche invarious biofuels production processes, including glycerol
(for fatty acids) [7], protein-rich materials (for higher alcohols) [8],
and €Oy (via electromicrobial conversion to higher alcohols) [9].
However, non-food based biofuel production still faces challenges

Abbreviations: AccABCD, acetyl Cof carboxylase; Acs, acetyl CoA synthase; AckA,
acetate kinase; FadD, acyl CoA synthetase; FadE, acyl CoA dehydrogenase; PoxBR,
pyruvate oxidase; Pra, phosphate acetylransferase; TesA, acyl ACP thioes terase;
Fhs, free fatty acids; HAc, acetic acid; IPTG, isopropyl (3-p-1-thiogalactopyranoside;
0D, optical density: YE, yeast extract: AD, anaerobic digestion: AA, amino acids.

* Corresponding author. Tel.: +1 314 835 3457, fac +1 314935 7211,
** Corresponding author, Tel: 1 314 935 3441 ; fax: #1 314935 7211,

E-mail addresses: huaz hongs:ye, iLcom (Y. Xiao), yinjie.t

(Y.). Tang).

swstledu

1369-703X/% - see front matter © 2013 Elsevier BV, All rights reserved,
heep:ffdx.doiorg/10.1016/j.bej.2013.04.013

(such as high cost of pretreatment, poor solubility of substrates,
and low productivity).

This study attempts to use acetic acid (HAc) as a feedstock
for production of biofuel. HAc can be derived from various cheap
sources (Fig. 1). (1) HAc can be generated from syngas via chem-
ical [10,11] (e.g., methanol carbonylation is an efficient route for
HAc production [12,13]) and microbial [3.4,14] catalyses [eg.
HAc is a major product during syngas fermentation). (2) Methane
from natural gas or biogas can be converted to HAc [15]. (3)
HAc is present in several common waste streams. For example,
it is a byproduct from hydrolysis (under acid or alkali pretreat-
ment [16]) or pyrolysis of lignocellulosic biomass [17,18]. HAc
is also an intermediate from anaerobic digestion (AD) of organic
wastes. AD requires the co-operation of microbial communities
through hydrolysis, acidogenesis, acetogenesis, and methanogene-
sis. By inhibiting methanogens, AD can accumulate HAc [19-22].
Oleaginous yeast (Cryptococcus curvatus) has been reported to uti
lize waste HAc as a main carbon substrate for lipid accumulation
| 23-25] and some Clostridium species can use HAc and sugar simul
raneously for alcohols/butyrate syntheses |26,27]. However, the
scarcity of tools for genetic manipulation on such organisms pre-
vents those becoming workhorses for further improvement by
metabolic engineering. Therefore, we sought to engineer a well-
characterized microorganism E coli to generate FAs from HAc. FAs
biosynthesis by E. coli has attracted extensive interests because FAs
are important precursors of fatty esters, fatty alcohols, waxes, and
alkanes [28-30]. Recent studies on biosynthesis of FAs are summa-
rized in Table 1. HAc has energy content comparable to glucose in
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Fig. 1. Strategies for acetic acid production and its metabolism in microorganisms,

aerobic conditions (Fig. 2), but it is a notorious inhibitor for E coli
fermentation. It can diffuse into cell and interfere with cytoplas-
mic pH and henceforth enzymatic activities [31,32], thereby very
few studies have employed genetically engineered microbes for
conversion of HAc into advanced biofuels.

2, Materials and methods
2.1. Strains, plasmids, and culture conditions

Genetic manipulation was done according to the standard pro-
cedures [33] and gene deletion was performed using a commercial
kit (Gene Bridges). All plasmids/strains and primers used in this
study are listed in Tables 2 and 51, respectively. Plasmid construc-
tions were described in Table 1.

M9 minirmal medium contained 6,78 g/LNaz HPOy, 3 g/L KH; POy,
0.5g/L NaCl, 1g/L NHyCl, 0.1mM CaCly (0.011g/L), and 2mM
MgS0y4 (0.24 g{L). For HAc utilization experiments, unless stated
otherwise, the engineered strains were incubated at 37°C in
shaking tubes {5mL culture) at 200 rpm with the M9 medium con-
taining different concentrations of sodium acetate, 0.2 g/L YE (yeast
extract), 0.1mM IPTG (isopropyl B-p-1-thiogalactopyranoside),
25 pefmL kanamycin, and 1x vitamin mix (Sigma).

Table 1
Summary of recent studies on fatty acids biosynthesis.

Substrates Feature description Titer (g/L) Ref,

Glucose Modular oprimization of ~8.6 157]
multi-gene pathways in
E. coli and fed-bavch faty
acids producrion
Reversal of the A-oxidation ~T |58]
cycle; overexpression of
thivesterase FadM from
E. colf
Overexpression of 5.2 |59]
thioesterase TesA and
transcription factor FadR
from E. coli
Overexpression of ~1 |60]
thioesterase from plant
and integrating the
thivesterase gene into
chromosome
Overexpression of 25 171
thicesteras d
acetyl-CoA carboxylase
Co, A genetically modified 02 |61]
cyanobacterium using COz
to produce and secrete
fatty acids

Glucose

Glucose

Glucose

Glycerol

167

To screen engineered FAs producing strains, strains were ini-
tially grown at 37°C in shaking tubes with 5x M9 medium
containing 4.1 g/L sodium acetate (50mM}) and 5gfL YE. When
culture density reached ODggg~ 3 (=16 h), 0.1-0.2mM IPTG and
another 50mM sodium acetate were added and then the tem-
perature was changed to 30°C for FAs accumulation. The samples
were collected at ~36 h(~20h after IPTG addition). To optimize the
cultivation for FAs production, 2.5gfL HAc (equivalent final con-
centration) was added around ~24 h and ~30h (i.e., 5g/L HAc was
resupplied before sample collection).

2.2, pH-coupled HAc fed-batch fermentations

To scale up FAs production from HAc and reduce the toxicity of
HAe on cells, a pH-coupled fed-batch fermentation was performed
[9]. The fermentation minimal medium contained 14.6 g/L K;HPOy,
4/l KH3POy, 10gfL (NH4)2504, 2g/L sodium citrate, 2.05g/L
sodium acetate, 0,117 g/L betaine, 0.011 g/L. CaCly, 0.72 g/L. Mg50,,

Tahle 2
Plasmids and strains used in this study.

Masmids [strains Characteristics Sources

E, coli strains

DH5a For cloning Invitrogen

BL21(DE3) Wild type cell Movagen

BL21{ Apta) BL21{DE3) with deletion of This study
pra gene

BL21[ ApoxB) BL21{DE3) with deletion of This study
poxB gene

BL21{ Apeaf ApoxR) BL21{DE3) with deletion of This study
pre and poxB genes

BL21( AfadE) BL21{DE3) with deletion of This study
fodE gene

Plasmids

PUCI9K Kan®, fac promoter, a PEER?
derivative of pUC19

PTAC-MAT-Tag-2 Amp’, tac promoter, Sigma
exp. ression vector

pMSDS Plasmid carrying gene Cronan Lab®™
accABCD under a T7
promoter

PYX3I0 PUCTOK carrying ocs gene This study

PYX31 PUCTOK cartying ack and This study
pra genes

PYX32 pUCT9K carrying acs, ack, This study
and pta genes

PYX26 PTAC-MAT -Tag-2 carrying This study
tesA zene

PYX33 PYR30 carrying resd gene This study

under a tac promoter

4 Power Environmental Energy Research Institute, California (provided by Dr.
Qinhong Wang).
b University of Nlinois at Urbana-Champaign (provided by Dr. John Cronan).
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Fig. 2. The metabolic pathways of fatty acids biosynthesis from acetic acid (A) and the energy yield (B). The solid lines represent single step, while dotted lines represent multiple sieps. Note: we assume that three AT are
generated from one NADH, while two ATP are generated from one FADH,.
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A0 mg{L kanamycin, 1= vitamin (Sigma} and 1« trace metal solu
tion. The 1000 trace metal solution (per liter) contained the
following: MnSO44H;0 2.4g, ZnS04.7H0 24g, CoCly 0.26g,
CuS04.-5Hz0 0.48 g, NapMo0y-2H0 0.24 ¢, H3BO3 3¢, FeS0,4.7H,0
8.4 ¢, Naz EDTA 20.6 . Fermentations were carried out ina 1L New
Brunswick Bioflo 110 system with a temperature electrode and a
pH meter. In fermenter, 400 m L of culture was inoculated with 5mlL
of overnight LB culture (BL21{ AfadE){pYX33). The pH was main
tained at ~7.0 during the entire fermentation by adding pure HAc
through an auto-pump. The stirring speed was kept at 250 rpm and
the air rate was held at ~1 Lfmin. FAs fermentation using the mini-
mal medium was very slow (the lag phase was over 50 hat 37°C). To
increase product yield and reduce the lag time, we tested different
fermentation temperatures and nutrient conditions. The improved
FAs fermentation was under a rich medium and a lower temper-
ature (note: fermentation temperature can affect the stability and
performance of the mutant [34,35]). Therefore, we used the rich
medium (i.e., the minimal fermentation medium supplemented
with 1% YE) for the fed batch culture and the fermentation tem
perature was at 25°C. IPTG (0.2 mM) was added at 55.5hand 13 h
for fermentations using the minimal medium and the rich medium
respectively.

2.3 Analytical methods

FAs measurement was based on previous reports [7,30,36,37].
A 175l sample of culture, spiked with 100 mgfL pentadecanoic
acid (C15:0) as an internal standard, was extracted by 400 L of
methanol-chloroform (1:1) and acidified by ~5 p.L of concentrated
HCI. The organic layer, separated by centrifugation, was transferred
to a new tube, and the solvent was removed under vacuum condi-
tions. Methyl derivation of FAs was performed at 40°C for ~2h
by adding 200 pL of the reagent mix (10 wL of concentrated HCI,
20 L of (trimethylsilyl) diazomethane solution (2 M), and 170 pL
of methanol ). After that, the samples were vortexed with 200 L of
0.9% NaCl and 350 pL of ethyl acetate, and then the organic layer
was taken for GC-MS analysis. The methyl esters were analyzed
using GC (Hewlett Packard 78904, Agilent Technologies, equipped
with a DB5-MS column, J&W Scientific) and a mass spectrometer
(5975C, Agilent Technologies) under the following program: hold
at 80°C for 1 min, ramp to 280<C ar 30°Cmin~!, and then hold
at 280<C for 3min. The carrier zas was helium. The FAs methyl
esters were quantified based onstandard curves. Other thanmethyl
ester of dodecenoic acid (C12:1) which was generated from deriva-
tization of corresponding fatty acids, F.AM.E. Mix{C8-C24), methyl
oleate, methyl myristoleate, and methyl pentadecanoate were pur-
chased from Sigma as standards.

Glucose, xylose, and HAc concentrations in the waste streams
were measured using an HPLC (Shimadzu) equipped with a Bio-rad
Aminex HPX-87H analytical column and a refractive index detec
tor. The mobile phase was 5mM sulfuric acid with a flow rate of
06mLmin~!, and column temperature was set at 65°C [16]. The
biomass was determined spectrophotometrically, where an ODggg
of one corresponded to 0.338 g dry weight/L for E. colf BL21 strains.
The HAc was also measured via an enzyme Kit (R-Biopharm). All the
error bars presented in the results indicated the standard deviation
from the mean (=2 or 3).

2.4 13€ isotopic experiments for analyzing fatty acids yields

Isotopic tracer experiments were performed to provide fun-
damental information on the acetate utilization in the complex
culture medium. We supplemented minimal medium with 0.25,
0.5, or 1% YE, and replaced the non-labeled HAc by fully labeled
HAc (Cambridge lsotope Laboratories). The FAs production by 13C-
cultures followed the same protocol described in Section 2.1. The
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contributions of the YE and the HAc to the biomass and FAs were
estimated by measuring the 13C-abundance in the metahbolites. The
isotopic analysis of 15 proteinogenic AAs (amino acids) was per-
formed according to the previously described methods [38,39]. The
13C fractions (Rg, '*C carbons/total carbons) of AAs were calculated
with the following equation:

Rp %E[x-Mx) m
x=l

where 1 is the total carbon number of each AA, whilex(0 <x<n)is
the number of the labeled '3C in each AA. M, is the corresponding
13( isotopomer fraction for each AA(Mj is the fraction of the unla-
beled fragment; M, is the fraction of the singly-labeled fragment,
etc.)

Considering overlap of fragment ions, three methyl esters of
fatty acids (C12:0,C14:1, and C14:0) were chosen, and the m/z[M]*
from the unfragmented methyl ester was used for '*C fraction anal-
ysis. R is the ratio of 1*C labeled carbons to total carbons of the
FAs, representing the contribution of 1*C-HAc to FAs biosynthesis.
We considered the natural abundance of *C(1.1%) and one methyl
aroup in the esters from the non-labeled methancl via methylation,
thus the Rp were calculated using the Eq. (2):

w1 {100 1 & A 11
n % 3 ’
Re = ( L (::—) - —) 2)
Band m 5.9
" e G W B

where n is the total carbon number of each fatty acid, while
x{0<x<n) is the number of the labeled *C in each fatty acid.
Ay is the corresponding abundance of fragment ions in the mass
spectrum (Ag, A1, Ag,. .. are the corresponding abundances of the
unlabeled, singly-labeled, doubly-labeled fragments,.. .}

2.5, Conversion of acetic acid in waste streams to fatty acids

Preparing waste streams from hydrolysis of lignocellulosic biomass:
Corn stover, switchgrass, and poplar were collected from fields
at Michigan State University, while miscanthus and giant reed
were obtained from Werks Management, LLC (Fishers, IN). Each
feedstock was dried and ground using a mill. Dilute sulfuric
acid pretreatment of these biomass samples was performed at
130°C. Using 2% (wjw) acid, the switchgrass and miscanthus were
trearted for 2 h, while the corn stover was treated for 1h. Using
3% (wifw) acid, the giant reed and the poplar were treated for
1h and 2h, respectively. The hydrolysates were collected and
pH was neutralized to ~7 by addition of Ca{OH});. The Ca[OH),
could also precipitate and reduce fermentation inhibitors from the
hydrolysates.

Preparing waste stream from anaerobic digestion: The sewage
sludge for AD was [rom the East Lansing waste-water treatment
plant. The sludge was condensed by centrifugation and a final 5%
of total solid sludge was adopted for AD [40]. The AD was carried
out using a 500 mL anaerobic bottle with 400 mL of the pretreated
sludge medium (pH=7). At the beginning, 12.5% (v{v) of manure
AD effluent was added as seed. Methanogens inhibitor (iodoform,
20giLywas added at 0.4 mL{L every other day, while pH was main
tained using 30% (wiw) NaOH solution [41]. The AD effluent was
harvested at 25 days by centrifuging at 4 °C. The effluent was auto
claved before using for E. coli culture.

Test of fatty acids preduction from waste streams: The mutant
BL21({ AfadE ) pYX33 was first grown in 3 mL of 5 M9 salt medium
with 0.5% YE and 50mM sodium acetate at 37°C for ~16h
[ODgpp ~ 3). 1mL of the HAc-rich waste streams and 0.2 mM IPTC
were added into the pre-grown cultures (t=0h), then the cultiva-
tion ternperature was maintained at 30°C for 24 h to accumulate
FAs. The negative control used water to replace the waste streams.
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3. Results and discussions
3.1. Optimization of HAc utilization in E. coli

HAc is a potential feedstock for synthesis of biomass and value
added chemicals. However, E. coli has alimited metabolic capability
to assimilate HAc for biomass growth [42]. E celi assimilates
HAc via AMP-forming acetyl CoA synthetase (the acs pathway)
and phosphotransacetylasefacetate kinase (the reversible PTA-
ACKA pathway) [42]. To select an optimal HAc utilization route,
both pathways were cloned, first separately and then together,
into a vector pUC19K under a lac promoter, resulting in plas-
mids pYX30 (with the ACS pathway), pYX31 (with the PTA-ACKA
pathway), and pYX32 (with both of the pathways) (Table 2). In
acetate mediums (Fig. 3), BL21/pUC19K (containing an empty vec-
tor as a control), BL21/pYX31, and BL21/pYX32 could grow in 25
and 50 mM acetate medium, whereas their growths on 100mM
acetate were severely inhibited. The strain BL21/pYX30 showed the
highest biomass growth and acetate tolerance (100 mM), whose
acs pathway (ATP + acetate + CoA — AMP + pyrophosphate + acetyl-
Coh) produces AMP and requires additional ATP to convert AMP to
ADP (AMP + ATP — 2ADP).

On the other hand, the PTA-ACKA pathway consumes only one
ATP per acetate for acetyl-CoA synthesis, but overexpression of
this pathway impeded acetare utilizarion and biomass growth.
The reverse PTA-ACKA pathway and the PoxB pathway can gen-
erate HAc from acetyl CoA and pyruvate respectively (Fig. 2A)
We blocked the two competitive pathways to create mutant
BL21{ ApoxB, Apta). Although the knockout strain had reduced HAc
production inglucose-based cultures (Fig. 51A), the knockout strain
bearing the plasmid pYX 30 showed poor growth inacetate medium
(Fig. S1B). Therefore, overexpressing the single acs gene along with
maintaining the native HAc pathways was the best strategy for HAc
assimilation in E coli |34,43].

Degradation of HAc to CO+ is the only energy production route
for E. coli growth on HAc (Fig. 2B). When the medium contains

acetate salt, its degradation increases pH in the culture:
CH3CO0™ 4 203 — 2C05 + HyO + OH™ (3)

Therefore, we increased M9 salt concentrations to improve
buffer capacity in our culture medium. For BL21/pYX30 culture,
5 M9 salt medium provided more stable acetate-based growth
than normal M9 medium. Moreover, intermittent feeding with HAc
during cell cultivation could adjust the medium’s pH and re-supply
carbon substrate ro achieve higher biomass production.

3.2, Engineering an optimal fatty acids biosynthesis pathway

FAs biosynthesis [7,44] goes through multiple enzymatic steps
[ Fig. 2A). The reported metabolic strategies for FAs synthesis mainly
include overexpression of thioesterase, enhancernent of acetyl-CoA
comversion to malonyl-CoA, and blocking fatty acids degradation
through the g-oxidation pathway [7,30,45-47]. Recently, compu-
tational modeling successfully predicts gene targets through entire
metabolic network for overproducing FAs in E. coli [48]. Although
the effectiveness of some FAs synthesis strategies is still controver-
sial among different literatures, acyl-ACP thioesterase is generally
thought as the key enzyme for FAs production [7,30]. Therefore,
a fesA gene from E coli with leader sequence deleted, encod-
ing cytosolic thioesterase, was cloned into the pTAC-MAT-Tag-2
expression vector (Sigma-Aldrich). The tesA gene with a tac pro
moter, a T1T2 terminator, and a repressor gene lacl was subcloned
into pYX30, resulting in pYX33.

BL21{pYX33 produced 370mg/l. FAs from HAc medium with
0.5% YE, while BL21/pYX30 (negative control) produced less than
S0mg/L FAs (Fig. 4A). The composition of FAs included C8:0,C10:0,
C12:1,C12:0,C14:1,C14:0,C16:1,C16:0,C1 8:1, and C18:0 ( Fig. S2).
Deleting acyl-CoA dehydrogenase (fadE) gene related to FAs degra-
dation was reported to increase FAs production [30]. In our results,
the BL21{ AfadE)pYX33 produced 20% more FAs than BL21/pYX33
(Fig. 4B). In addition, FAs were mainly located inside the cell and
only 4% of the total FAs were found in the supernatant ( Fig. 4C).
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Fig. 3. Comparative growths of the engineered mutants using acetic acid. The mutants BL2 1JpUC19K (A), BL21/pYX30 (B), BL21/pYX31 (C), and BL21/p¥X32 (D) arew on
different concentrations of acetate. The 0D was measured specrophotometrically (n =2, the mean values were presented). The details of HAc udlization experiments are

recorded inSection 2.
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Fig.4. Engineering E coli strains for FAs production via HAc. (A) FAs productions by BL21/pYX33 and BL21/pYX30; (B) improvement of FAs production by deletion of gene fadE;
(C) FAs productions by BL21{ AfadE){pYX33 and BL21( A fadE)/pYX33 + pMSD8. (n =3, culture medium with HAc and 0.5% YE). Abbreviations: (a) BL21{pYX30; (b) BL21/pYX33;
() BL21{ AfadE)/pYX33; (d) BL21( AfadE)/pYX33 + pMSDS8; NC, negative control (only 0.5% YE and 50 mM acetate were in the medium); Sup, the supernatant of culture,

Finally, the acetyl-CoA carboxylase (AccABCD) gene (borne
on the pMSD8 [49] plasmid) was introduced into the
BL21(AfadE)/pYX33, resulting in BL21(AfadE)/pYX33 +pMSDS.
However, this mutant did not increase HAc-based biomass growth
or FAs production. Although overexpressing the acetyl-CoA car-
boxylase has been suggested to improve FAs synthesis from
glucose and glycerol [7,49], a combined in silico and experimental
study points out that excess malonyl-CoA could be diverted toward
formation of other components under certain growth conditions
[48]. In this study, we think that the FAs precursor (malonyl-CoA)
may not be a bottleneck for our strain to produce FAs from HAc.

3.3. Investigating the theoretical FAs yields

The stoichiometry of FAs synthesis is: 8 acetyl-
CoA+7ATP +14NADPH — fatty acid [50]. We assume that two
ATP are required for producing one acetyl-CoA from HAc and
NADPH is produced from NADH through transhydrogenases [51]:
8 HAc+23 ATP+14 NADPH (or NADH) — fatty acid. If one mole of
NADH is equivalent to three moles of ATP, one mole of fatty acid
synthesis requires 65 moles of ATP that can be produced by oxidiz-
ing 6.5 moles of HAc (Fig. 2B). Thereby, one mole of FAs production
consumes ~14.5 mol of HAc, resulting in the theoretical FAs yield
as ~0.29 g FAs/g HAc (assuming FAs molecular weight as 256).

3.4. The effect of yeast extract on FAs preduction and yield

In previous biofuel reports, nutritional supplements, such as
yeast extract, play an important role in improving fermenta-
tion performance [8,46,52-54]. In our experiments, the mutants
(BL21/pYX33 and BL21{ AfadE)/pYX33) produced less than 0.05 g/L
FAs if 5 g/L YE was used as the sole carbon source. In the presence
of YE and HAc, both biomass growth and FAs were promoted sig-
nificantly (Table 3). To identify the contribution of YE to biomass
and FAs production, we cultured BL21(AfadE)/pYX33 with fully
13C-labeled HAc and non-labeled YE. Fifteen proteinogenic amino
acids (AAs) were measured. Before addition of IPTG, the YE ('2C car-
bons) contributed over 75% AAs to biomass growth (Fig. 5A, most
AAs were non-labeled). After 20 h IPTG induction, the *C abun-
dance in most AAs increased by ~2 folds (Fig. 5B), which confirmed
utilization of HAc for biomass synthesis.

Among these AAs, asparate and glutamate (derived from the
TCA cycle metabolites) showed the highest labeling abundance
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Fig. 5. 1*C-fractions in the proteinogenic amino acids from the engineered E. coli,
The BL21{ AfadE)/pYX33 grew on the medium with fully labeled 3 C-acetic acid and
three different concentrations of non-labeled 0,25, 05, or 1% YE. The cells were
harvested at Oh (the time point of IPTG addition) (A) and 20h (B), respectively.
(n=2).
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Table 3

Analysis  of fatty  acids  biosynthesis  via  isotopic  experiments. The
BL21{ AfdE)pY¥X33 mutant was cultured in the 5x< M8 salt medium con
taining ¢ labeled acetic acid (HAc) and three different concentrations (0.25, 0.5,
or 1%) of non-labeled yeast extract (YE) in shaking mbes. The samples were taken
at Oh (the time at IPTG addirion) and 20h, respectively. Three single farty acids
(C12:0,C14:0, and C14:1) were selected for analysis (n = 2],

Products (ma/L) 0.25% YE 0.5% YE 1% YE
Biomass (20h} 1440 = 10 2560+ 10 3080 = 10
Fas (0 h) 47.0 £ 07 502 & G885 & 0.3
Fas (200h) 4331+ 59 0.2 9997 &£ 22
HCratio - %

FAs-C14:0(0h) 403 £ 15 391+62 356+ 23
FAs-C14:0 {20 h) G661 = 06 641+ 001 598+ 0.2
Fas-Cl14:1 (20 h) 766+ 1.3 684 4+ 18 659 & 0.9
FAs-C12:0{20h) T0.8 &£ 07 692 &£ 06 642 & 06

(up to ~40%), implying that HAc was mainly metabolized via the
TCA cycle. Acetate based metabolism requires gluconeogenesis and
pentose phosphate pathways (PPP) to synthesize precursors of sev
eral amino acids (histidine, phenylalanine and tyrosine). In our
engineered strain, the labeling abundance in these amino acids was
below 20%, indicating limited fluxes from acetate into gluconeoge-
nesis and PPP pathways. Besides, phenylalanine (not tyrosine) was
mostly non-labeled through the entire cultivation in rich medium,
indicating that the engineered strain had very low capability for
de novo biosynthesis of phenylalanine. Moreover, labeling results
indicated that E. coli had a poor capability to synthesize leucine
and isoleucine (both amino acids require pyruvate as the precur
sors) from HAc. This observation can be explained that metabolic
flux from acetate to biomass was also limited at the pyruvate node
(i.e., pyruvate synthesis was bottleneck step for biomass synthesis
from HAc).

Isotopomers in FAs were analyzed after the cells grew with YE
and '3C labeled HAc (Fig. S3). Three FAs (C12:0, C14:1, and C14:0)
were selected for quantifying HAc contribution to FAs production
(Table 3). At the IPTG addition point (O h), ~0.05g/l. FAs had been
produced and ~60% of FAs were from YE. After 20h, ~10gfL. HAc
had been consumed and FAs reached 0.43, 0.57, and 1.0g/L in
the culture with 0.25, 0.5, and 1% YE respectively, in which the
corresponding *C-abundance of FAs were 71+ 5%, 67+ 3%, and
63 £ 3%, This observation confirmed that the key metabolic node
(acetyl-CoA, precursor of FAs) in the engineered strain was mainly
derived from acetate even in a complex culture medium. In the
ory, the maximum FAs yield from HAc is 0.29 2 FAs/g HAc. Isotopic
analysis allows us to determine the true yield of FAs from HAc in
our strain. Given that 63% of the 1 g/1. FAs were produced from HAc
in the rich medium, the actual yield was ~0.063 g FAs{g HAc and
equivalent to ~22% of the theoretical yield.
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Fig. 6. pH-coupled acetic acid feeding fermentation. The fatty acids-producing mutant BL21{ AfodE)/pYX33 grew in the rich medi

FAs and biomass were measured (r=2)

3.5. pH-coupled HAc fed-batch fermentation

To scale up FAs production from HAc, a pH-coupled HAc fed
batch fermentation, which can gradually add HAc to the culture,
was carried out in a 1-L bioreactor. When the fermentation used
the rich medium with YE at room temperature, the biomass and
FAs increased with no obvious lag phase and reached their max
imum concentrations of 3.3 g/l and 0.9g/L at 26h, respectively
(Fig. 6A). In the period from 13h to 26h, ~14 g/l. HAc was con-
sumed and 0.9gfL FAs was generated. A FAs-producing mutant
using glycerol (a major component in crude glycerol waste) was
reported to have a high productivity {170 mgfLfh) and yield (48 mg
FAsfg glycerol) [7]. Given that 65% of the FAs generated by the
mutant were from HAc, the actual productivity was 45mg/Lih
and the actual yield was ~42mg FAsfg HAc (~15% of the the-
oretical yield). On the other hand, the engineered strain had a
poor growth in the complete minimal medium at 37°C. There
was a long lag phase (50h) and the final FAs were only 0.45g/L
(~13% of the theoretical yield) after 100h (Fig. 6B). The mini
mal acetate medium and higher growth temperature may cause
more stresses on cells and reduce final biosynthesis productivity
[34,35].

Another observation was that the compositions of the FAs from
the cells grown in the rich medium and the minimal medium were
rather different (Fig. S2). Within the rich medium (HAc+ YE), the
products of medium-chain FAs(C8-C14, desirable precursors for jet
fuel, detergent or pharmaceuticals) were 68% of the total FAs, while
the ratio of unsaturated FAs reached ~37%. The medium-chain FAs
content from our engineered strain was notably higher than those
from oleaginous yeast C. curvatus [25]. When the cells grew in the
minimal medium, the long-chain FAs (C16-C18) comprised 56% of
the total FAs, and the ratio of unsaturated FAs was decreased to
26%. In previous studies, the higher proportion of the medium
chain FAs has also been found in the LB rich medium compared
with that in the defined minimal medium | 7). In silico analysis indi
cates that fatty acids chain length in E colf is impacted by many
central genes, transcriptional and post-transcriptional regulations,
and FAs precursor pool sizes (e.g., acetyl-CoA) [48]. Thereby, E coli
FAs composition might be sensitive to the carbon substrates and
growth conditions.

1.6. FAs production from waste HAc

HAc can be cheaply obtained from several types of waste
streams. Although acetate can be chemically converted into other
products, the compositions of waste streams are complicated with
relative low concentration of acetate (<6% ). Thereby, it is more eco
nomic to use biological method to convert waste acetate to other
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value-added products. In this study, we applied the engineered
E coli for treating two acetate rich waste streams.

Acid pretreatment is an important step for lignocellulosic bio-
fuel production. Hydrolysis of five different types of biomass
materials (corn stover, switchgrass, poplar, miscanthus, and giant
reed} by dilute acid generated waste streams containing xylose,
Hac, and a small amount of furfurals and glucose. In such waste
streams, it is still economically infeasible to recover these carbon
sources. Therefore, we directly used these waste streams as feed-
stock for BL21({ AfadE){pYX33 fermentation. To prove this concept,
the E. coli culture was first grown in the medium with acetate and
YE for 16h, and then the cultures were supplemented with [PTG
inducer and each waste stream, using a mix ratio of 3 (the culture)
to 1 (the waste stream solution). In these cultures [0 h), glucose var-
ied from 0.4 g/Lto 1.3 g/L, xylose ranged from 2.2 gfL to 5.2 g/L, and
HAe was from 3.3 g/L to 4 gL (Fig. 7). After 24 h of IPTG induction,
the mutants in each test had consumed all of the glucose, part of
the xylose, and most of the HAc, generating up to 0.43 g/1. FAs. The
negative control (replacing the stream with water) contained only
0.035g/L FAs, while the positive control (using xylose as sole car-
bon source) produced 0.24 g/l FAs. These results indicated that the
engineered strain utilized both sugars and acetate in waste streams
for FAs production.

AD process can accumulate significant acetate under specific
conditions (up to 5% in the AD effluents) [55]. Here, we tested an
AD effluent from municipal sludge (containing ~4 g/l HAc). The
experiment was performed by adding 1 unit volume of waste efflu-
ent (along with IPTG) into 3 unit volumes of BL21{ AfadE)/ pYX33
culture {ODggg >3, pre-grown in the acetate rich medium with-
out IPTG induction). In the final cultures (24 h), we found that the
cells had consumed all HAc {and possibly other unidentified nutri-
ents from AD effluent) and generated 0.17 gfL FAs. For the control
experiment, BL21{ AfadE)pYX33 culture mixed with water (3:1)
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instead of AD effluent, the final culture only contained <0.04 g/l
FAs. We recently compared an engineered E coli strain modified
with similar strategies to a wild-type fungus [56]. We found that
both could use acetate to generate FAs (or lipids) and the engi

neered E. coli (with overexpressing a requlatory transcription factor
FadR} had higher performance than the fungus.

3.7, Significance and future work

The use of acetate as a fermentation feedstock has advantages.
(1) Sources for generating acetate are diverse and plentiful. (2)
Acetate is miscible with water, allowing easy mass transfer dur-
ing fermentation. { 3) Acetyl-CoA, directly synthesized from acetate,
is a starting precursor for many value-added compounds. As a
proof of concept, we demonstrated that 1m? AD effluent (based
on ~4 kgim3 HAc) and 1m? waste streams from the dilute acid
treatment of lignocellulosic biomass can produce about 0.54 and
0.8~1.6 kg FAs, respectively.

On the other hand, this study showed low performance of the
engineered strain for acetate based biofuel production. This result
implied that the host cell faced more stress in the presence of
HAc, compared with other carbon sources (i.e., glucose or glyc
erol). Different metabolic engineering strategies are going to be
tested in the future, including enhancement of £ coli acetate-
tolerance, addition of quorum sensing systemn for auto induction
of FAs production, design of dynamic sensor-regulator in the
FAs pathway. Moreover, for the economic production of biofu-
els from acetate, we need to replace expensive yeast extract by
other cheap protein-rich materials {(e.g., corn steep liquor, algae
residues or fermentation wastes [8])L Economic and life cycle
analyses should also be performed to determine the applicabil
ity of this technology for both waste management and bioenergy
applications.
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Fig. 7. Production of FAs using HAc-rich wastes. The time of IPTG addition was defined as 0 h. The acetic acid [A), glucose (B), fatty acids [C), and xylose (D) were measured
(m=2)at0h (black) and 24 h (gray). The star indicates the value is negligible. Samples: NC, water (negative control); AD, effluent from anaercbic digestion of sludge (boxed
region); C, pretreated corn stover stream; S, pretreated switchgrass stream; P, pretreated poplar stream; M, pretreated miscanthus stream; G, pretreated giant reed stream.
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4, Conclusions

This work overexpressed the HAc assimilation pathway and the
FAs biosynthesis pathway in an E coli strain. We demonstrate that
the engineered strain can utilize acetic acid to produce 0.9 2/L FAs
(within 26 h) and 0.45g{L (within 100h) in the rich and minimal
medium respectively. Since acetate is inhibitory to E. coli growth,
FAs titer obtained in this work was still much lower than sugar or
alycerol based FAs production. However, this study opens oppor-
tunities to employ E. coil or any other species amenable for genetic
engineering (such as fungal species and Corynebacterium) to eco-
nomically utilize low concentration HAc as well as other nutrient
sources in waste streams to achieve both environmental benefits
and bioenergy harvesting.
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variables.
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ABSTRACT: In the production of chemicals via microbial
fermentation, achieving a high yield is one of the most
important objectives. We developed a statistical model to
analyze influential factors that determine product yield by
compiling data obtained from engineered Escherichia coli
developed within last 10 years. Using both numerical and
ordinal variables (e.g., enzymatic steps, cultivation condi-
tions, and genetic modifications) as input parameters, our
model revealed that cultivation modes, nutrient supplemen-
tation, and oxygen conditions were the three significant
factors for improving product yield. Generally, the model
showed that product yield decreases as the number of
enzymatic steps in the biosynthesis pathway increases (7—
9% loss of yield per enzymatic step). Moreover, overexpres-
sion of enzymes or removal of competitive pathways (e.g.,
knockout) does not necessarily result in an amplification of
product yield (P-value >0.1), possibly because of limited
capacity in the biosynthesis pathway to accommodate an
increase in flux. The model not only provides general guide-
lines for metabolic engineering and fermentation processes,
but also allows a priori estimation and comparison of
product yields under designed cultivation conditions.
Biotechnol. Bioeng. 2011;108: 893-901.
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Introduction

In light of rising interests and investments in green
biotechnology, numerous efforts have focused on the
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pharmaceuticals and biofuels (Jarboe et al, 2010;
Stephanopoulos et al,, 1998). For economical production
of a target chemical compound, it is crucial for a microbial
process to achieve high yield, titer, and productivity.
Therefore, an array of engineering strategies has been
routinely used for improving production, including
introduction of heterologous genes, modulation of gene
expression, protein modification, and high-throughput
phenotype screen methods (Clomburg and Gonzalez,
2010). Optimizations of fermentation characteristics such
as culture medium, pH control, temperature, and oxygen
conditions are also equally important.

However, it is generally difficult to identify rate-limiting
components in a complex cellular metabolism in order to
improve microbial performance (Stephanopoulos et al,
2004). To this end, systems biology-based models have been
developed to provide useful information for rationally
engineering microbial hosts with the desired phenotype as
well as to design optimal fermentation conditions (Blazeck
and Alper, 2010; Boghigian et al.,, 2010; Feist et al., 2010;
Meadows et al.,, 2010). Cell-wide metabolic analysis via
fluxomics and metabolic control theories are often used to
estimate metabolic potential, product vyield, nutrient
limitations, and gene targets for metabolic engineering
(Feist et al, 2010; Wildermuth, 2000). For example, to
advance the industrial application of Escherichia coli,
genome-scale flux balance analysis integrates a series of
physical, chemical, and biological characteristics (e.g.,
thermodynamic directionality and energy balance) to
evaluate theoretical yields for multiple native products
from different feed stocks. Nevertheless, it is still difficult to
reliably predict the yield produced by a culture from a given
set of genetic changes and cultivation parameters. To
address this, the present study proposes an empirical model
based on recently published microbial production data to
provide insight into the important parameters for yield
optimization. We construct a linear regression model which
accounts for both numerical and ordinal variables to

Biotechnology and Bioengineering, Vol. 108, No. 4, April, 2011 893



investigate their effects on metabolic yield. Without a priori
knowledge of enzyme kinetics, biomass growth, or the
stoichiometry of metabolic reactions, the model is able to
estimate and compare microbial “chassis” for product
synthesis. Our model provides general guidelines for pathway
modifications, bioprocess optimization, and cost-estimation
in industrial biotechnology.

Model Development

The construction of the empirical model focuses on E. cofi
because it is one of the most common “industrial
workhorses.” It is capable of utilizing a variety of carbon
sources {such as glucose, xylose, glycerol, and fatty acids)
and is easily manipulated by current recombinant DNA
technology. Table I lists the key influential factors that
may control product yields from E. coli. Product biosynth-
esis requires a “common’” route to generate metabolic
intermediates such as pyruvate and acetyl-CoA via central
metabolism {i.e, glycolysis, TCA cycle, and pentose
phosphate pathway). A “specialized” pathway then converts
the common precursors into the compounds of interest. In
our model, we first divide metabolic steps into two separate
numerical variables. The first variable {primary pathway) is
the number of steps from the chosen carbon source to the
appropriate common metabolic precursor in the central
metabolism; the second variable (secondary pathway)
counts the number of enzymatic steps from the common
precursors to the final product of interest {Fig. 1). The
choice to use two distinct variables is based on the fact that

cellular central metabolisms often show high fluxes and a
robust nature for synthesizing central metabolites {e.g.,
pyruvate and TCA acids), while the metabolic fluxes
through secondary pathways to more complex chemicals
are relative small. If multiple carbon sources are used in the
medium, we count the number of enzymatic steps from the
carbon source which is the fewest number of steps away
from the desired product.

To further develop the model, the remaining factors listed
in Table I are described as erdinal-dependent variables. Each
ordinal variable has either two or three categories with an
intrinsic ordering to the categories. For example, nutrient
conditions are divided into two categories (low and high
nutrient supplements). Table II shows the categories for
each ordinal-dependent variable. The relationship between
model predicted yield {on a logarithmic scale) and the
independent variables (regressors) can be correlated using
linear regression {Tang et al., 2005), such that:

10g35Y = By + BpasPRI + BepcSEC
+ Prvion,caMODez + Byiop caMODea
+ Bno,ca KNOe: + Byur c:NUTer
+ Beue:CULe: + Boxy e OXY ez

+ Ao 2 TMPe (1)

where log;, Yis the response variable. Y represents the yield
{mol C in product/mol C in primary substrate}, given the set
of independent variables i (i.e., influential factors). §;, with

Table . Review of influential factors affecting final product vield by Escherichia coli.
Mechanisms
Factors and implications Refs.

Number of primary and

secondary metabolic steps into two ¢l The first

The overall pathways for the microbial biosynthesis can be separated

en

Clomburg and Gonzalez (2010)
the

N -
P required to g
from a carbon source, while the second

P
te key metabolic intermediates

element includes the pathways which convent

these intermediates to the product
Extent of pathway
improvement

Genetic engineering, such as overexpression of native or introduction
of non-native enzymes, can increase the efficiency of product

Jarboe et al. (2010) and
Stephanopoulos et al, (1998)

biosynthesis and allow production of new compounds

Removal of competitive

Strategic deletion of specific genes or down-regulation of competitive pathways

Bailey (1991) and Clark

pathways can re-direct fluxes to targeted pathways and and Blanch (1997)
reduce the accumulation of toxic metabolites
MNutrients Cell growth requires various nutrients. Addition of extra carbon sources, Pelczar et al. {1993)

intermediates or precursor compounds can improve the productivity
Shaking flasks do not provide controlled pH and temperature conditions;
a bioreactor regulates these parameters. In addition, a bioreactor provides
good agitation and mixing conditions. Fed-batch operation prevents substrate
inhibition which may occur if all of the nutrients are added simultaneously
Respiration supports high biomass growth rate but not necessarily high yield.
Some products have 1o be fermented under low oxygen conditions.
Fermentative conditions often result in the
production of mixed acids and alcohol

Cultivation modes Clark and Blanch (19%7)

Clark and Blanch (1997)
and Pelczar et al. (1993)

Oxygen conditions

Temperatures Temperature affects enzyme activity by the Arrhenius law. Pelczar et al. (1993)
An increase in temperature may also result in a decrease
in dissolved oxygen content in the culture
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the exception of Sy, is the regression coefficient of a variable ¢
(numerical or ordinal variable), which reflects the con-
tribution of the corresponding variable to the final product
yield. The ordinal variables are assigned a value of 1 if and
only if the condition fits the category in Table II; otherwise,
that variable is assigned a value of 0 (Weisberg, 1985). 3, is
the intercept, which represents the combined contribution
of the Category 1 of all ordinal variables. 8, is given by
Equation (2):

ﬁOZﬁMOD.Cl I IBKNO,CI f ﬁNUT,Cl f ﬁCUL.CL

+ Boxy.er + Prve et (2)

In the final step, we compile a comprehensive database for
various compounds ( including isoprenoids, biofuels,

flavanones, amino acids, etc.) that have been produced using
E. coli from 40 recently published articles (Supplementary
Table I). Included in this table are the categories assigned to
the experimental conditions and the reported product yield.
The software package R (Team, 2009) is used to find the
regression coefficients and P-values for Equation (1). A
particular coefficient is considered statistically significant
(90% probability) if the P-value is below 0.1.

Results

We analyze the contributions of both numerical and ordinal
parameters to product yield by examining the regression
model derived from the compiled data (Supplementary
TableI). In general, we only select the best yields achieved by
each article for the regression model (i.e., choose “the
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Table Il. Variables used in the linear regression model.

Category 1

Notation (subscript C1)

Category 2
(subscript C2)

Category 3
(subscript C3)

Categorical variables
MOD: pathway improvement
(i.e., overexpression)
KNO: removal of competitive
pathways (i.e., gene knockout)
NUT: nutrient sources

No genetic modification
of biosynthetic pathway
No competitive pathway is removed

Fermentation occurs in
defined medium
(only includes trace amounts
of amino acids or vitamins)
CUL: cultivation modes

Fermentation occurs in
acrobic conditions
Fermentation occurs at

34°C or cooler

OXY: oxygen conditions

TMP: fermentation
temperatures

Fermentation occurs in a shaking flask

Moderate pathway
modification (<3 genes)
At least one competitive pathway
is inhibited or removed
Fermentation occurs in a rich medium
(nutrient carbon source >10%
of primary carbon source)

Extensive pathway
modification (>3 genes)

Fermentation occurs in a
well-controlled bioreactor

Fermentation occurs under
oxygen-limited conditions

Fermentation occurs above 34°C

Notation—numerical variables: steps from substrate to product.

PRI: number of reaction steps in central metabolic pathways (solid arrow in Fig. 1).
SEC: number of reaction steps in secondary metabolic pathways (dotted arrow in Fig. 1).

highest yield” under each unique production condition).
The regression is based on 155 yield data (in logarithmic
scale) of 36 chemicals from different carbon substrates (e.g.,
glucose, glycerol, etc.). From these data points, we obtain the
following coefficients for Equation (1):

log,,¥ = —0.88—0.031PRI—0.041SEC—0.22MOD¢;
—0.32MODc3—0.018KNOg; + 0.28NUT¢,
+0.46CULg, + 0.350XYe; + 0.018TMPg,

(3

Figure 2 shows a plot of the product yields obtained
experimentally against those predicted by the model for the

corresponding conditions. The correlation of this model to
the 155-point dataset is fair, with an R” value of 0.46 that
represents the uncertainty attributed to the sample size and
distribution. The magnitude of each coefficient indicates the
extent to which the engineering of the organism and the
experimental conditions affect the yield of desired product.
The coefficient values must be interpreted in conjunction
with the standard error and the P-value. Here we have used a
P-value of 0.1 (>90% probability) as the limit below which
we have considered the results to be significant (du Prel et
al., 2009). Out of the nine variables used, we find that six of
them have P-value of <0.1 (Table IIT). To ensure that the
generated model is statistically sound, we have examined the

0.5 T T
Sénchez et al. (2005)
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can be seen in the online version of this article, available at http://wileyonlinelibrary.com/
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Table . Regression coefficients for the linear model comprising of eight factors (six factors are ordinal and two factors are numerical).

Category 2 Category 3
Coefficient Standard error P-value Coefficient Standard error P-value

Ordinal variables

MOD =022 0.15 o.le =032 0.16 0.040

KNG —0.018 0.11 0.58

NUT 0.28 010 0.0054

CUL 0.46 niz 0.0036

OXY 0.35 011 0.0027

T™MP 0.018 0.12 0.88
Numerical variables

PRI —0.031 0.o17 0.063

SEC 0.041 0.015 0.007

Intercept: —0.88; standard ervor: 0.24; Pvalue: 0.00036; B 0.46.

standardized residuals of the data. The standardized residual
is given by the quotient of the residual of a value and its
standard deviation. We found that 96% of the standardized
residuals of the dataset lie between —2 and 2. Therefore, the
multiple linear regression model is statistically significant
and can be a valuable tool to predict yield {Anderson et al.,
2009; Montgomery et al., 2006). A plot of the standardized
residual values can be found in the supplementary data
{Supplementary Fig. 2).

The obtained value of f#; (—0.88 £0.24) corresponds
to a product yield when all of the ordinal variables for
Category 2 and Calegory 3 are set equal to zero. The
intercept g, reflects the yield obtained from these base
conditions. To calculate product yield under actual
conditions, we have to assign variables for influential
factors {(Supplementary Table I). For example, to predict
ethanol synthesis by a wild-type strain in an anaerobic
bioreactor, we can choose the following variables {Table IT):
PRI=10; SEC=2; MOD =KNO =NUT = Category 1;
CUL =OXY = TMP = Category 2. The model predicts:

Yield = 10 .88+~ 0030 % 10} —0.041 2} +-0.464-0.35+-0.018

=036 (4)

In this example, the result suggests that the majority of
carbon supplied to the culture is used for the production of
biomass and waste metabolites.

Six factors fit our criterion for significance: PRI, SEC,
CULgs, OXYg, MODgs, and NUTg,. As expected, the
values of PRI {—0.031) and SEC {—0.041) are negative. The
coefficients of these numerical variables represent the
amount of decrease in log-yield for every additional
enzymatic step: each enzyme may reduce the carbon yield
by 7% (=10"%"!) in the primary pathway and by 9%
{=10"""1) in the secondary pathway. The two coefficients
represent the loss of product yield that can accumulate as
the metabolic pathway gets lenger. Therefore, products
from primary pathways such as pyruvate and succinate may
have a yield close to the theoretical limit, but the yield of
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products requiring many enzyme steps will deviate
significantly from the theoretical output because of
imperfect enzyme specificity and activity. We note that
fermentation using a well-controlled bioreactor {reducing
substrate inhibition, pH perturbation, oxygen maintenance,
etc.) can improve the yield by 2.9 times { 1047} when
compared to a shake-flask mode. Meanwhile, fed-batch
culture allows the use of high concentrations of substrates so
that the product titer can be also improved. Under anaerobic
or microaerobic conditions, the yield is increased by a factor
of 2.2 (= 10°%) compared to aercbic conditions. These low
oxygen conditions, however, limit bicmass growth and
metabolic reaction rates.

On the other hand, the effect of temperature on
the product yield is not significant because most culture
temperatures are between 30 and 37°C. In this range,
the difference in yield between Category 1 (<34°C)
and Category 2 {>34°C) is minimal (4% =10"%"'%),
Furthermore, the coefficients for MODg; and MODq;
are both negative, suggesting that genetic modification of
pathways may result in a decreased yield compared to the
base condition where the pathway native to the host is
employed. Since the P-value for MODg, is 0.16, there
is a probability that a moderate genetic modification
may still result in an increased yield. The P-value for MOD;
is 0.04, which indicates that extensive pathway engineering
will possibly result in a low yield {(>>95%) in E. coli even for
carefully designed genetic strategies. There are a few
explanations for this observation. Many studies involve
the importation and expression of multiple heterologous
genes for biosynthesis, and non-native pathways may be
incompatible or inferior to the native pathway in the host,
which may lead to lower biosynthetic efficiency. Second,
pathway engineering often induces metabolic imbalance
and accumulation of toxic metabolites (Atsumi et al.,
2008b). Third, the initial rate-limiting enzymes in the
pathway may shift to other enzymes after overexpression
because of inherent low enzyme activities through the
entire pathway, that is, limited capacity in the biosynthesis
pathway cannot accommodate flux increase {Leonard et al.,
2010).

Colletti et al: Evaluation of Microbial Synthesis Yicld 897

Binvrack

logy and Bi



Without a doubt, gene knockout is a useful tool to
improve product yield (especially for biosynthesis of
metabolites in the central metabolism, e.g., succinate)
(Sanchez et al., 2006). However, we also note that the
coefficient of KNOg; is slightly negative {—0.018) which
means that removal of competitive pathways {i.e., genetic
knockout) may not successfully improve the biosynthesis
yield. While this conclusion seems highly uncertain
{ P-value = 0.88; standard error =0.11), it has been shown
via in silico analysis that knockout strategies cannot ensure
the improvement for product yield even though it is
expected to channel more carbon to the final product
(Blazeck and Alper, 2010; Boghigian et al., 2010; Feist et al,,
2010; Meadows et al, 2010). This inconsistency can be
attributed to unfavorable metabolite accumulation and low
capadity of biosynthesis pathways for flux amplification after
removal of competitive pathways. For example, deletion of the
acetate biosynthesis pathway did not improve the productivity
of acetyl-CoA {an intermediate for many bioproducts), but
rather resulted in an accumulation of pyruvate (Tomar et al.,
2003). Furthermore, it has been shown that invariability of
metabolic flux under mutagenic genotypes is an important
feature in biological systems, and down-regulation of certain
pathways may inhibit cell growth and cause imbalance in the
energy metabolism. Such self-regulation of metabolism
minimizes the performance of knockout-strains and makes
the outcome from knockout strategies uncertain.

Discussion

The regression model presented in this article permits
a priori calculation of the potential product yield from
engineered E. coli. The model is developed through a
mathematical and conceptual understanding of metabolic
processes. Every variable, except for the primary and
secondary number of metabolic steps, is categorized to
account for the vast number of reported experimental
conditions. The coefficients from the multiple linear
regressions  suggest  several guidelines for improving
final product yield, such as choosing the carbon substrate
which has the shortest pathway to the final products, adding
a proper nutrient source, improving cultivation modes,
and utilizing pathways native to the host. Although
application of these strategies can improve the conversion
of carbon sources to product, reduce waste metabolites,
and alleviate inhibitions due to toxic metabolites, such
strategies have to be balanced with economical considera-
tions. Furthermore, current genetic modification technol-
ogies may have unpredictable results when applied for the
improvement of microbial performance. For example,
knockout of competitive pathways (Bailey, 1991; lee
et al,, 2005, 2007; Park et al, 2007; Trinh et al, 2006,
2008) or expression of heterologous genes {Bailey, 1991;
Choi et al., 2010; Park et al., 2007; Zhang et al., 2007) are
expected to shift metabolic fluxes to the desired product by
removing a rate-limiting step or permitting the use of an
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alternative carbon source, However, the actual behavior of a
designed biosynthetic pathway can vary significantly,
especially because the optimal impact of a heterologous
enzyme on production improvement is not guaranteed due
to its potential “side effects” such as metabolic imbalance,
cytotoxicity, or incompatibility with the host organism
{Atsumi et al,, 2008b). Therefore, if we are to improve
current metabolic engineering strategies, it is important to
develop systems biology in order to understand unpredict-
able metabolic regulations and contrel behavior.

Although this empirical model provides a prediction of
product yield under different conditions, the model may
only be approximate. First, the model cannot determine
if the final product is toxic or if the imported non-native
pathway is compatible to the host. For example, the yield
of l-butanol production is low (yield =0.0007, 20-fold
below the model predicted yield) for engineered E. coli
with a synthetic pathway from Clestridinm (Atsumi et al.,
2008a). As a comparison, production of isobutanol (less
toxic than 1-butanel) via a native keto-acid pathway shows a
yield higher than the model prediction (Atsumi et al.,
2008b). Second, the yield calculation does not include all
carbon sources such as nutrient supplements and CO,. For
example, very high succinate yield (above 100%) from
glucose was achieved because an anaplerotic pathway could
fix CO; as a secondary carbon source (Sanchez et al., 2005)
{Fig. 2). Furthermore, the category defining nutrient
conditions is imprecise since mosl experiments involve
the addition of nutrient-rich supplements (e.g., yeast
extract) in varying amounts. A few studies involved the
addition of intermediate compounds or precursors to
improve biosynthesis fluxes. In order to reduce the potential
complexity of the medel, the variable NUT¢; categorizes all
such nutrient conditions in a generalized manner {Table IT).
Therefore, the model is not able to specifically account
for the contribution of special nutrients or the addition of
precursors to the final yield. For example, Leonard et al.
{2007) engineered pathways for flavoneid production
using a minimal medium including both glucose and trace
phenylpropancic acids. The regression model predicts a
calculated yield {average yield = 0.008) 2-3 times lower than
the experimental vyield {average yield=0.020). Third,
the model cannet predict the efficiency of a heterogeneous
enzyme when employed in metabolic engineering experi-
ments. For example, Hanai et al. (2007) incorporated
two different alcohol dehydrogenases in E. coli strains for
isopropanel production. Although the two enzymes encode
for the same function, the adh from Clostridium beijerinckii
produced twice as much isopropanol as the gene from
Thermeanaerebacter brockii. Finally, other factors may
also influence the model accuracy, including insufficient
information to precisely calculate yield, complicated
metabolic behavier and pathway regression, variation of
experimental conditions and analytic methods, unequal
research quality and merit between different articles,
and simplification of model factors using categorical
numbers.
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Figure 3. Distribution of actual lagyg ¥ versus model generated log,o Yfor Saccharomyces cerevisiae. The diagonal line drawn is one-to-one and passes through the origin.
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be seen in the online version of this article, ilable at http://wileyanlinelibrary.com/bit]

In an effort to examine and compare bio-production in
another system, we use our model (Eq. 3, same coefficients)
to analyze the yields of ~20 products achieved by
Saccharomyces cerevisiae based on several recent articles.
A table of the collected data for S. cerevisiae is available in
the supplementary data (Supplementary Table II). Figure 3
shows that the product yields for S. cerevisiae are mostly below
the predicted vield calculated from the E. coli model, especially
for the biosynthesis of “low-yield compounds.” Notably,
several data points in Figure 3 are greater than those of model
predictions due to unique biosynthesis methods. First, the
production of p-hydroxycinnamic acid from glucose (20 g/L)
was unusually high (Vannelli et al,, 2007). This very high yield
was achieved by supplementing 10g/L phenylalanine to
enhance product synthesis. Second, a study on ascorbic acid
production from galactose incorporated a two-stage process:
using glucose for biomass growth, then adding galactose for
product synthesis in the stationary phase (Sauer et al., 2004).
Such a cultivation process could improve the yield of ascorbic
acid because small carbon fluxes are directed to biomass
synthesis during the product production phase. Third, a study
on poly[(R)-3-hydroxybutyrate] (PHB) synthesis supplemen-
ted the culture with pantothenate (a precursor of final
product) to enhance PHB production (Carlson and Srienc,
2006). This indicates that addition of precursor or inter-
mediate compounds can be significantly more efficient for
promoting yield than addition of undefined nutrient sources
(e.g., yeast extract) because it only requires a small number
of enzymatic steps to convert the precursor or intermediate to
the final product. Fourth, a study on glycerol production using
glucose produced a higher yield than the model prediction
(Overkamp et al, 2002). This can be attributed to the
inclusion of ethanol along with glucose in chemostat
cultivation,

Furthermore, we also compared chemical production
from different microbial hosts (eg, S. cerevisiae,
Schizosaccharomyces pombe, Bacillus subtilis, Corynebacterium
glutamicum, Klebsiella pnumoniae, Clostridium  diolis, and
Clostridium  acetobutylicum) (Fig. 4). Without requiring
extensive genetic modifications, some microorganisms can
synthesize certain metabolic products using their native
pathways (Alper and Stephanopoulos, 2009). Data points from
these environmental microbes are distributed about the one-to-
one line in the figure, showing their biosynthesis capability is
comparable to that of E. coli. The model also demonstrates that
other species may possess a significant disadvantage in the
production of a particular product. For example, butanol
synthesis by S. cerevisiae is 1-2 orders of magnitude lower than
the model predictions because yeast shows an inability to utilize
the engineered heterogeneous genes efficiently and a low
tolerance for butanol (Fig. 4), while C. acetobutylicim has a very
robust butanol production comparable to engineered E. coli
strains (Atsumi et al., 2008a; Sillers et al., 2008; Steen et al.,
2008).

Finally, the model can evaluate new methods that are
being developed to increase final product yields. An example
is protein scaffolding, which can avoid channeling inter-
mediates away from the desired product and significantly
improve the product yields (Dueber et al., 2009). By plotting
the actual yield and the predicted yield (Supplementary
Table III), the sample point (glucaric acid) lies above the
one-to-one line and the sample point (mevalonate) lies close
to the one-to-one line after scaffolding (Fig. 4). This implies
that protein scaffolding can be useful for maximizing
biosynthetic potential in E. coli. Another example of a new
method is the application of both metabolic and protein
engineering for levopimaradiene synthesis (Leonard et al.,
2010). The experimental yield (~0.03) is fairly close to the
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pil i (Leonard et al., 2010), {6)

Corynebacterium glutamicum; isobutanol with knockout (Ba); isobutanol without knockout (Bb) (Smith et al, 2010), (7) Bacillus subtilis; riboflavin (Li et al., 2006), (8)
Schizosaccharomyces pembe; vanillin (Hansen et al., 2009), and (9) Saccharomyces cerevisiae; butanol (Steen et al., 2008). [Color figure can be seen in the online version

of this article, available at http://wileyonlinelibrary.com/bit]

predicted yield (~0.05), which indicates the effectiveness
of their pathway engineering strategies.

Conclusions

The statistic-based model permits a priori estimation of final
product yield of a metabolically produced compound based
upon the genetic design of the microbial host system and the
conditions under which the fermentation process occurs.
This empirical model reflects the capability of current
biotechnology to engineer E. coli to achieve the maximal
biosynthetic yield. Such a model can provide information
complementary to the conventional flux balance model
which reflects the productivity of the “optimal” cellular
metabolism. The model equation can be used to economic-
ally optimize the conditions for the production of a specific
compound, providing its users with an estimate of the yield
without performing actual experiments. The model can
also be applied to other microbial chassis and used to
compare their biosynthesis productivity to E. coli. The
predictive power of our model, however, is limited by
variations in experimental conditions and uncertainties
in biological behaviors. For example, the model cannot
evaluate the effect of precursor metabolites or toxic
intermediates on final product yields. In general, this
statistically based model provides a new method towards
developing a comprehensive and quantitative understand-
ing of experimental approaches for metabolic engineering
purposes. The model can be widely useful to plan wet lab
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experiments across a wide range of applications in both
scientific and industrial communities.
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