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ABSTRACT OF THE DISSERTATION 

 
 
Engineering Poly(ethylene glycol) Nanogel Coatings:  Developments in Achieving Ultralow Protein 

Adsorption and Applications as Substrates for Stem Cell Culture 

by 

Casey Douglas Donahoe 

Doctor of Philosophy in Biomedical Engineering 

Washington University in St. Louis, 2013 

Research Advisor:  Professor Donald L. Elbert 

 
The biocompatibility of biomaterials is primarily dictated by the interactions that occur at the 

material’s interface with its biological environment.  Proteins irreversibly adsorb to these interfaces 

within seconds to minutes of exposure, altering their structural conformation, inducing cell 

adhesion, and activating various cellular responses.  To this end, surface modification strategies have 

been designed in attempts to develop “stealth” biomaterials or even biomaterials that modulate this 

response by inducing specific biological reactions.  We sought to advance the design of biomaterial 

surfaces by quantitatively studying protein adsorption to ultralow protein adsorbing surfaces formed 

from poly(ethylene glycol) nanogel coatings of variable structural and chemical properties.  We 

found that resistance to protein adsorption can be improved by increasing the nanogel coating’s 

surface packing density, which is achievable using orthogonal cross-linking chemistries, such as click 

chemistry, under phase separation conditions.  We also confirmed that PEG and albumin act 

synergistically within nanogel coatings to resist protein adsorption.  As a demonstration of the utility 

for such protein resistant surfaces, we fabricated improved cell culture substrates with nanogel 

coatings, by spatially patterning cell adhesion and functionalizing surfaces with specific ligands.  

These surfaces showed superior potential for driving the direct reprogramming of fibroblasts to 

cardiomyocytes over the standard stem cell substratum of Matrigel and revealed insight into optimal 

cellular organizations for cardiomyocyte differentiation.  However, we also unexpectedly found that 

adsorption of laminin to mercaptosilanated glass promotes a relatively high efficiency of 

cardiomyocyte differentiation.  The findings outlined in this dissertation demonstrate that 

consideration of often overlooked material design parameters, in addition to the choice of material, 
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provides further opportunity for improving biocompatibility.  We further demonstrated that the 

precision control of cell adhesion and substratum signaling provided by these materials has broad 

potential in biological applications, including stem cell culture.   
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Chapter 1 
 
Introduction 
 

1.1 Objectives of Dissertation 
 
 The overall aim of this dissertation is to further explore the protein resistant properties as 

well as applications of a unique polymeric coating developed by our group.(1)  The coating is 

formed of nanoscale poly(ethylene glycol) (PEG) hydrogels, covalently coupled to surfaces to form 

thin hydrogel barriers.  Chapter 1 briefly reviews the protein resistant properties of PEG, examples 

of strategies used to fabricate PEG coatings, blood compatibility of various PEG coatings, and how 

biomaterials such as PEG may be applied as substrates for stem cell culture.  Chapter 1 is not meant 

to be conclusive and more specific introductions are provided for the research contained in 

Chapters 2 and 3.  Chapter 2 quantitatively compares protein adsorption to various PEG nanogel 

coatings fabricated by means of distinct cross-linking chemistries.  Specifically, Chapter 2 explores 

the potential for exploiting a relatively new bioconjugation chemistry, known as “click chemistry”, 

for creating a more sophisticated and improved nanogel coating.  Indeed, we find that the 

orthogonality of this chemistry allows for the formation of quantifiably denser nanogel coatings of 

confined thickness under phase separation conditions, which translates into drastically reduced levels 

of protein adsorption.  We also examine the effects of further cross-linking these coatings after 

fabrication, with inconclusive results that depend on the method used to assay for protein 

adsorption.  Chapter 3 details the first attempt to employ these coatings as chemically defined 

substrates for stem cell culture.  Specifically, we perform a direct reprogramming of fibroblasts to 

cardiomyocytes on nanogel coatings functionalized with specific adhesion ligands and compare 

results for various assays of cardiac differentiation against surfaces that rely on adsorption of 

adhesion proteins.  We also use the cell resistant nanogel coatings to spatially pattern cell 

organization on all the substrates to determine if controlling cellular organization has potential to 

improve differentiation efficiency.   We find that the nanogel coatings perform superiorly to the 

standard Matrigel coatings commonly used in stem cell culture and inadvertently discover that 

laminin adsorbed to mercaptosilanated glass seems to significantly increase the efficiency of cardiac 
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differentiation by an unknown mechanism.  We do not see improvement in differentiation of 

patterned clusters over those on non-patterned surfaces but do see evidence suggesting that the 

overall reduction in cell expansion from these clusters could improve cumulative differentiation 

efficiency.  Chapter 4 summarizes the dissertation and provides future directions for the continued 

progression of this research. 

1.2 Protein Resistant Properties of PEG 
 
Over the past 30 years or so, PEG, synonymous with poly(ethylene oxide) (PEO), has 

gained extraordinary attention for its use as a biomaterial.   PEG is known to act strongly 

hydrophilic and cross-link into highly hydrated hydrogels, which along with other more unique 

phenomena contributes to the low amounts of protein adsorption observed on PEG materials.  

Because protein adsorption regulates, through cellular adhesion and activation, the physiological 

responses that foreign materials encounter, PEG quickly became an obvious choice for biomaterial 

design.  A major drawback of PEG is that it oxidizes relatively rapidly in the presence of oxygen and 

transition metal ions.(2)  It was shown that in vivo PEG was subject to oxidation by superoxide 

anions and H2O2 liberated by polymorphonuclear leukocytes (PMNs) and macrophages during the 

respiratory burst.(3)  Additionally, significant losses in PEG film thickness have been measured 

under physiological conditions over a period of 4 weeks.(4)  Nonetheless, PEG remains one of the 

most protein resistant polymers studied to date, especially when compared to other materials using 

highly sensitive detection assays.  Both the existence of and mechanisms by which PEG displays 

intrinsically superior protein resistant properties remain controversial.  However, an understanding 

of the theories describing the unique physics of PEG are beneficial in the design of PEG based 

biomaterials.  The simplest explanation relies on PEG’s low interfacial energy with water due to its 

hydrophilic nature.  However, PEG is more resistant than other neutral, hydrophilic polymers 

(dextran, agarose, polyacrylamide, etc.) which also adsorb low levels of protein.(5)  Not exclusive to 

the aforementioned ideas, “steric stabilization” is widely cited as responsible for the protein 

resistance of PEG.  PEG is a highly flexible and mobile polymer leading to larger excluded volumes 

than similar polymers.  The large excluded volume itself may inhibit protein adsorption, and has 

been cited as the primary mechanism by which soluble PEG induces protein precipitation.(6)  

Protein adsorption to a densely coated PEG surface must compress the flexible polymer chains, at 

an entropic cost, as well as partially desolvate the hydrophilic chains against osmotic forces.(5, 7) 
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 It has been suggested that protein resistance on surfaces may be achieved by either kinetic or 

thermodynamic means.  While kinetic resistance, or the delay of protein adsorption, may provide 

suitable resistance to nanoparticles, drug delivery vessels, and PEGylated proteins, all of which only 

require extended blood clearance times, satisfactory biocompatibility of implantable biomaterials is 

likely to be achieved only by thermodynamic means.  Such mechanisms should establish an 

extremely low equilibrium level of protein adsorption on the biomaterial surface so that it resists 

protein adsorption for indefinitely long time periods while it remains in biological contact.(8)  Given 

the theories presented on the mechanisms of PEG protein resistance, a number of modifiable 

parameters clearly contribute to a polymer coating’s protein resistance, including: surface coverage, 

molecular weight and/or chain length, chain flexibility, chain architecture, and polymer-surface 

attraction.  It is important to recognize that in many situations, these parameters may not be able to 

be modulated independently of each other.  Most studies are in agreement that surface coverage is 

by far the most important parameter, yet this is often the most difficult to control.(9)  Increased 

surface coverage is primarily achieved by increasing the polymer grafting density.  However, 

theoretical calculations with mean field theory have shown that the surface coverage necessary to 

prevent any protein adsorption is not experimentally achievable.(8, 10)  An obvious aim of 

biomaterial design then may be to develop coating techniques that result in increased surface 

coverage, either through techniques that improve grafting density or by means to overcome this 

limitation.   

 Grafting density has strong implications on the molecular mechanisms by which PEG is 

theorized to act.  Namely, steric repulsion is thought to be achieved primarily at higher grafting 

densities when the close packing of PEG chains forces a conformational transition of the chains 

from what is called a “mushroom” regime to a “brush” regime.  In the brush regime chains become 

fully extended and do not overlap.(9, 11-13)  Grafting density and chain length are compensating 

factors in achieving brush conformations, as longer chains are difficult to graft at higher densities 

due to their larger excluded volumes but achieve brush conformation more readily for the same 

reason.(12)  However, protein adsorption has been found to increase at very high grafting densities 

as well, assumedly due to dehydration of the polymer chains.(14)  It is also interesting to note that 

Altankov et al. has found grafting density to regulate the bioactivity of adsorbed proteins, specifically 

fibronectin.  While total protein adsorption decreased with higher grafting densities, fibroblast 

adhesion was optimized at an intermediate grafting density, likely due to the hydrophilic preservation 
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of fibronectin conformation and steric protection from biodegradation achieved by the 

incorporation of PEG.(15) 

 Surface interactions with the polymer may affect the conformation of surface bound 

polymer chains as well as the distribution of polymer density near the surface.  It has been 

postulated that stronger polymer-surface interactions will increase steric repulsion at the surface level 

as well as compete with proteins for potential adsorption sites.  This enhanced ‘thermodynamic’ 

barrier to protein adsorption comes at the cost of the longer range ‘kinetic’ barrier of polymer 

density and steric repulsion, preventing proteins from reaching the surface.(8)   PEG, however, is 

unlikely to experience strong attractions to the surfaces it is grafted to, because it is neutral and acts 

strongly hydrophilic. 

 Molecular weight is often the first and easiest parameter investigators have experimentally 

manipulated.  Obviously for a given polymer architecture, changes in the molecular weight will 

manifest in different chain lengths.  Longer chains display more flexibility and thus contribute to 

enhanced steric repulsion by nature of their larger entropies and excluded volumes.  Accordingly, 

molecular weight has been deemed important in kinetic barriers and not thermodynamic barriers as 

steric repulsion is seen as a means of the former.(8, 9)  Longer chains have been shown 

experimentally to provide higher resistance to protein adsorption(16, 17) and these trends have been 

matched by cell adhesion.(17)  Yet, a higher ether content has been found to decrease protein 

adsorption in PEG-like plasma polymer films that measured similar interaction forces, suggesting an 

enthalpic advantage to longer chains as well.(18)  Regardless, protein adsorption has been shown 

sensitive to molecular weight for PEG chains only below 2 kDa.(7, 19)  In general, PEG has been 

considered relatively more flexible than other polymers of similar chain lengths, with the flexibility 

being quantifiable, for instance, by 13C-NMR.(7)  However, short chain PEGs and long chain PEGs 

have been speculated to contribute to protein resistance via different mechanisms (i.e. hydration 

layer vs. steric repulsion) and in fact, a number of studies have discovered that protein resistance can 

be optimized with strategies that incorporate both long chain PEGs and an “underbrush” of short 

chain PEGs.(20, 21)  Most research involving the actual engineering of biomaterials has yet to 

distinguish between the kinetic or thermodynamic barriers.  For this reason some have argued that 

long-term equilibrium based protein resistance will only depend on grafting density as PEG chains 

consume potential protein adsorption sites and that exploitation of PEG steric repulsion may be a 

futile aim for biomaterial research.(9)    
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 The grafting of ‘star’ polymers (polymers with multiple linear chain arms connected at a 

single point) is the best known chain architecture modification strategy to achieve superior surface 

coverage.  Because multiple arms are brought together, star polymers (and branched polymers in 

general) increase the polymer density and steric exclusion volume at surface pinning sites.  However, 

for the same reasons, star polymers do not achieve the same grafting density as linear polymers, as 

they experience enhanced polymer-polymer repulsion.  While the use of poor solvents has been 

known to increase the grafting density of linear PEG (near the cloud point), optimal grafting density 

for star PEG was found at higher concentrations in good solvents.(10, 22)  Still, under optimal 

grafting conditions where star PEG achieves the same volume fraction and higher overall polymer 

density compared to linear PEG, Irvine found higher amounts of small protein adsorption to the 

star PEG grafted surface.(10)  He reasoned that because intermolecular crowding near the branch 

points of star PEG forces extended chain conformations, regions of low polymer density lie 

between the star molecules and between the centers of the molecules and the grafting surface.  Thus, 

while these regions of low PEG density may still provide a kinetic barrier to protein diffusion, 

protein may eventually diffuse between the intermolecular edges and into the region adjacent the 

surface where they have space to eventually adsorb.  Densely packed chains of linear PEG, on the 

other hand, require virtually simultaneous protein diffusion and adsorption due to the dense steric 

barrier providing repulsion at the surface.  Groll has devised a grafting strategy that use star 

polymers with highly reactive groups, isocyanates, to overcome this obstacle through intermolecular 

cross-linking of the star PEG into a dense polymeric coating that resists protein adsorption at least 

as well as grafted linear PEG.(22)  Andrade developed amphiphilic block copolymer surfactants 

containing PEG and hydrophobic blocks of either polypropylene oxide (PPO) or polybutylene oxide 

(PBO) that also show dependency on the copolymer architecture (linear vs. star).  Chain flexibility 

was believed to increase the protein resistance of block copolymers over alternating block 

copolymers with the same PEG content despite its reduced grafting density at the same 

concentration.(5)  While the architecture of star polymers is contentious in terms of protein 

resistance, it is agreed that at least for star polymers with larger numbers of arms, the increased 

surface density of functionalized end groups is appealing for engineering bio-functionalized surfaces, 

for instance ones that can elicit stronger surface mediated specific cell adhesion.(10, 23) 

A more complicated explanation relates PEG’s protein resistant properties to its unique 

solution properties, stemming from what is believed to be a unique molecular structure.  Many of 
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the theories that explain PEG’s seemingly unique high resistance to protein adsorption relative to 

similar hydrophilic polyethers cite a high degree of water organization within PEG/water complexes 

that extends beyond the first hydration shell.(24, 25)  This coordination between the PEG chains 

and water molecules (comprising up to 80% volume) additionally restricts conformational entropy 

upon protein-induced compression of the PEG chain – a step necessary for adsorption.(26, 27)  An 

experimental survey of self assembled monolayers (SAMs) functionalized with an array of chemical 

moieties revealed that in addition to neutral charge and hydrophilicity, all functional groups that 

performed well at resisting protein adsorption were hydrogen-bond acceptors and not hydrogen-

bond donors.(2)  Another study found drastic improvement in resistance to protein adsorption for 

microcontact printed PEG comb polymers if the dry, printed surface was first incubated in water for 

2 h before being immersed in the protein solution.(28)  PEG is unusually soluble in water relative to 

other polyethers such as considering poly(methylene glycol) and poly(propylene glycol), which are 

water insoluble.  This is believed to be due to a preferred gauche conformation of the PEG 

conformer that gives it a polar characteristic.(2, 29)  This polar feature is lost at high temperatures as 

the trans conformation becomes favored, helping to explain PEG’s curious phase behavior.  Trans 

conformers are thought to predominate in regions of grafted PEG chains closest to the surface 

while gauche conformers are found at the end of the brush.  Many, therefore, believe that the 

extreme ‘hydrophilicity’ of PEG derives not from its chemical structure but from a special 

conformational shape which minimally disrupts the natural hydrogen bonding structure of the 

surrounding liquid water.  If such a theory holds true, hydrophobic driving forces for protein 

adsorption would be expected to be minimized by PEG.(5)  While many studies have evoked even 

more complicated arguments, this idea is commonly cited in studies where PEG is found 

responsible for the observed improvement in protein resistance but in which the PEG chains are 

relatively too short for more complex mechanisms to apply.(30) 

 Many of the models for designing protein resistant PEG surface coatings assume PEG to 

be a completely inert barrier layer, which simply must inhibit protein interaction with the underlying 

surface.  Here, it is prudent to address that while PEG coatings are designed to effectively resist 

protein adsorption to the underlying surface, possibility does exist for PEG-protein interactions and 

subsequent adsorption to PEG chains.  Research has shown the potential for PEG to bind proteins 

via weak non-specific interactions, strong ternary recognitions, and hydrogen bonding.(11, 13)  In 

one specific instance, grafting of PEG even promoted adsorption of a particular protein, α-
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lactalbumin, over the uncoated surface.(31)  Normally, high grafting density found near the brush 

regime is able to avoid these interactions due to steric repulsion between chains and the reduced 

entropy of the chains’ configuration upon protein adsorption.(11, 13)  Still, it has been found that 

this kinetic barrier decreases with temperature.(32)  By no means are these numerous mechanisms 

by which PEG may influence protein adsorption fully understood, but it is hoped that as a more 

comprehensive understanding is obtained, biomaterials, including but not limited to PEG coatings, 

will be more intelligently designed to overcome their limitations as inert biological interfaces. 

1.3 Strategies for PEG Surface Coatings 
 
 While, PEG is still most often viewed as the choice material for biocompatible materials,  

bulk hydrogels formed by standard solution polymerizations are too thick and do not possess the 

necessary mechanical properties to meet the many applications where protein resistant interfaces are 

required, especially implantable biomaterials (e.g. a small-diameter vascular stent with a narrow 

lumen).  Thus, PEG has been almost limitlessly surface coupled to an array of base materials, 

notably poly(ethylene terephthalate) (PET), poly(dimethyl siloxane) (PDMS) or silicone rubber, 

metals, and polyurethanes by various mechanisms.  PEG surface coatings have been fabricated 

using: chemisorption, physical adsorption, covalent grafting, vacuum deposition, and other intricate 

means.  Each preparation offers distinct advantages and disadvantages.  For instance, physical 

adsorption and chemisorption may lead to reduced stability while chemical grafting may be laborious 

and lack reproducibility.(33)  Oligo(ethylene glycol)s (OEGs) on SAM surfaces were found 

especially susceptible to decomposition at high temperatures due to interaction with gold surfaces 

and dissolved oxygen.(14)  As an alternative to surface modification, implantable blood contacting 

materials have also been created from hybrid materials, incorporating PEG and more mechanically 

suitable materials, such as polyurethane, to create materials with bulk biocompatibility and 

mechanical strength.(34)  Virtually all PEG preparations that incorporate PEG with other, less 

protein resistant polymers, have shown that protein resistance is proportional to the PEG 

content.(7, 33, 35)  Similarly, when adsorption studies are conducted with multiple distinguishable 

proteins, it has been repeatedly shown that smaller proteins are more likely to penetrate PEG 

coatings, as would be expected.(35) 

 Block copolymers are common choices for a simple means to incorporate PEG onto a 

surface and are often adsorbed by either hydrophobic anchor blocks (polystyrene, polypropylene, 
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etc.) or electrostatic anchor blocks (poly lysine), leaving PEG blocks tethered to the surface.  

Diblock copolymers are well known to microphase separate, given the flexibility of their chains, to 

produce distinct, tunable, and reproducible morphologies.  Even triblock copolymers (PS-PEG-

heparin) have been shown to phase separate into three distinct regions.  Pentablock copolymers 

(heparin-PEG-PS-PEG-heparin) with two surface free chains adsorbed by the center polystyrene 

(PS) anchor show a reduced but evident ability to microphase separate.(36)  Many researchers have 

speculated that microphase separation may actually create surface morphologies that are intrinsically 

biocompatible.  For example, George created nano-scale cylindrical PEG domains in a polystyrene 

matrix on silicon substrates, the dimensions and inter-domain spacing of which could be 

reproducibly controlled by molecular weight and processing parameters.  Interestingly, he found that 

while protein adsorption correlated to PEG content, fibroblast adhesion was lower than what would 

be expected for the amounts of adsorbed protein.(33)  In a similar study, it was found that PEG-

polyurethane diblock copolymers, could modulate protein adsorption not by explicit changes in 

PEG content but by modulating the length of the polyurethane “hard” segment to produce 

microphase domains with different dimensions and amounts of PEG surface exposure.  While it was 

found that the microphase morphology did not affect protein adsorption, per se, protein adsorption 

did correlate with the surface area of the PEG domains.(30)  

 The best example of an electrostatically adsorbed copolymer is a cationic poly-L-Lysine 

comb polymer with grafted PEG chains, known as PLL-g-PEG.  Increased ratios of PEG:PLL in 

PLL-g-PEG coatings showed a reduction in protein adsorption for proteins of all sizes and 

interestingly a higher extent of protein denaturation as measured by time-of-flight secondary ion 

mass spectroscopy (ToF-SIMS).(35)  This design uses a cationic anchor block to adsorb to 

negatively charged biological surfaces, including cell surfaces due to protein glycosylation.  It was 

found that using high molecular weight copolymers to bridge gaps in anionic binding sites, red 

blood cells and fibroblasts could be sterically stabilized to prevent agglutination and adsorption to 

fibronectin coated surfaces, respectively.(37)  PLL-g-PEG has also been effectively grafted to metals 

due to the formation of negatively charged metal oxide films on the surfaces or tissue culture 

polystyrene due to treatment with oxygen plasma.  One such study showed PLL-g-PEG on metal 

remained stable under blood flow and it was found that most of the adsorbed mass from blood was 

constituted of non-protein serum components,(38) while another study showed no protein 
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adsorption to PLL-g-PEG coated titanium from 30 min incubation in plasma at physiological 

temperature.(39) 

 A unique method for physical, non-covalent incorporation of PEG into base materials was 

proposed by Hubbell and Desai, in which PEG is dissolved within the outer layer of a base material 

via a mutual solvent then physically entangled within the material upon addition of a base material 

non-solvent to form a surface-physical-interpenetrating-network (SPIN).  Protein resistance was 

confirmed by adsorption assays, fibroblast adhesion studies, and whole blood perfusions.  Chain 

length dependence was revealed with optimal PEG molecular weight of 18.5 kDa.(40)  

 A few biomolecules show natural resistance to protein adsorption, including albumin, 

heparin, dextran, and phosphatidylcholine; however, none are as resistant as PEG.(41)  Still, many 

have attempted to create hybrid biomaterials with these biomolecules and PEG in order to instill the 

biomaterials with unique properties.  Ji et al. attempted to combine the blood compatibility of both 

PEG and albumin by creating a hybrid material consisting of a polystyrene-graft-PEG copolymer, 

functionalized with stearyl groups at the end of the PEG chains for specific adsorption of albumin.  

The material demonstrated a decrease in fibrinogen adsorption via competitive and preferential 

adsorption of albumin in a reversible manner.  The authors concluded from this data that they were 

able to successfully create a hydrophobic-hydrophilic-hydrophobic “sandwich” (PS-PEG-albumin) 

structure, with the PEG chains providing enough entropy to overcome significant PS-albumin 

adsorption and looped PEG chains.(42)  Albumin has also been internally cross-linked into 

nanoscale PEG hydrogel coatings,(1) which are used in the current study and, as will be 

demonstrated, afford a unique synergistic advantage from the albumin component in reducing 

protein adsorption.   

 Similar strategies have been implemented with heparin, which is not only protein resistant 

but a powerful anticoagulant.  Because heparin binds to antithrombin-III catalyzing its binding and 

inhibition of thrombin, heparin functionalized surfaces are popular means to attempt enhanced 

blood compatibility of biomaterial surfaces.  It is further believed that PEG spacers in heparin-

functionalized PEG materials not only serves to enhance the protein resistant background but to 

reduce any steric inhibition of heparin-antithrombin binding that might occur at or near the surface.  

As such, a 4 kDa spacer was found to optimize results.  The incorporation of heparin (hep) onto the 

PEG surface via a CBABC (hep-PEG-PS-PEG-hep) pentablock copolymer achieved mixed results; 
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while the combination demonstrated improved clotting times in vitro and ex vivo, platelet adhesion 

was actually found to increase in vitro with the incorporation of heparin, signaling that it interferes 

with PEG’s protein resistant mechanisms.(36)  

 Many strategies have also employed plasma glow discharge in order to functionalize surfaces, 

including but not limited to glass and PET, with covalent attachment sites for PEG coatings.(1, 43, 

44)  Plasma glow discharge may be employed more universally than other methods to a number of 

substrates given the high energy applied to create reactive groups.  Thin hydrogel films may be 

additionally be cross-linked on top of substrates by this method.  PEG-like plasma polymer films, 

for example, may be fabricated by applying a diethylene glycol dimethyl ether vapor to a surface 

under plasma glow discharge.(18)  Similarly, small molecular weight PEG (200 Da) was heated to 

extremely high temperatures and plasma polymerized onto PET.(45)  This technique resulted in very 

thin, yet, highly cross-linked PEG films that retained the hydrophilic nature and platelet resistant 

properties of PEG, while offering the capability to easily coat intricate and otherwise difficult 

surface geometries.   

A number of emerging strategies rely on surface initiated polymerization of PEG monomers 

(or macromolecules containing PEG chains) in order to create thin cross-linked films or gels 

confined to the surface.  Hill-West devised a unique strategy for application of a 5-100 µm thick, 

degradable hydrogel barrier to the blood vasculature in situ, by adsorption of a photoinitiator 

component to the vessel lumen followed by subsequent application and photopolymerization of a 

PEG precursor solution.(46, 47)  This technique allows localized polymerizations in attempt to 

modulate barrier thickness and create a perfectly molded and tissue adhesive hydrogel via 

mechanical interlocking.  The in situ hydrogel demonstrated decreased thrombosis and intimal 

thickening in vivo, after relatively long durations that encompassed complete hydrogel degradation.  

In a similar manner, surface initiated polymerization of brush polymers containing PEG side chains 

has been widely adopted and found to resist fibroblasts adhesion for more than 3 weeks.(17, 48, 49)  

Surface localized hydrogels could potentially create dense PEG layers of controllable thickness that 

meet the specifications of vascular biomaterials and other surfaces requiring thin but dense 

preparations. 

Most recently, a number of dense PEG coatings have been developed by the application of 

dense, preformed nanoscale or microscale PEG particles to surfaces.(1, 43, 50, 51)  Coating surfaces 
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with aggregates or particles increases the polymer density within a thin coating, because larger 

surface coverage can be achieved with the limited amount of surface pinning sites.  Nanoscale 

hydrogel coatings are formed by partial polymerization of star PEG solutions and are hypothesized 

to achieve nanoscale particle dimensions at intermediate states of gelation due to the effects of steric 

repulsion delaying the onset of bulk gelation.(1)  Larger PEG “microgels” and “microspheres”, on 

the other hand, have been fabricated by various mechanisms exploiting solubility induced phase 

separation at transition temperatures, allowing functionalized PEG to be cross-linked into 

microparticles.  One example uses poly(N-isopropylacrylamide) (pNIPAm) cross-linked into the 

PEG to induce phase separation at elevated temperatures and another uses kosmotropic salts to 

induce phase transition at elevated temperatures while still maintaining the maximal PEG content, 

although the latter has not been applied as a coating as of yet.(50, 52, 53)  The use of salt induced 

solubility effects has been well known for the optimized grafting density of linear PEG near cloud 

point conditions.(12)  In a similar manner, a PEG hydrogel adhesive was created that uses aldehyde 

functionalized PEG-PLA polymeric micelles, which are chemically cross-linked with polyallylamines 

and chemically bind cell surface amines to provide in-situ tissue adhesion.(51)  Formation of PEG 

coatings from larger particles could allow introduction of unique mechanical or chemical properties 

into protein resistant surfaces. 

1.4 In vitro and In vivo Blood Compatibility of PEG 
Materials 

 
 Biocompatibility, or specifically the lack of nonspecific biological responses, may be 

nowhere more important than in vascular biomaterials.  Because these materials are constantly 

exposed to blood and its high concentration of serum proteins, they are not only prone to strong 

inflammatory responses mediated by the circulating antibodies, complement, and leuckocytes, but to 

blood coagulation mediated by circulating platelets and plasma coagulation factors.  While relatively 

good biocompatibility may sustain implants in larger vessels in which fast blood flow prevents the 

build-up of thrombus formation, extraordinary biocompatibility must be obtained for stent coatings 

and vascular grafts of small diameter vessels (e.g. coronary arteries) in which any blood activation 

can lead to rapid clotting and occlusion of the vessel.  So far no satisfactory materials have been 

fabricated, yet, PEG hydrogels might provide an answer.  Thus, an enormous amount of research is 
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focused on developing thin PEG based surface coatings which can effectively eliminate nonspecific 

protein adsorption and platelet adhesion for use in implantable biomaterials.   

Thrombosis is a biological response mediated primarily by platelets.  Accordingly, the ability 

of biomaterials to resist platelet adhesion is a common test of blood compatibility.  Early studies 

demonstrated that 100 kDa PEG simply adsorbed to glass could adequately prevent platelet 

adhesion, but this simple preparation could not prevent blood coagulation.(54)  SEM has shown that 

under blood flow, 20 kDa PEG hydrogels outperformed silicone rubber and PTFE in resisting 

platelet adhesion.(55)   The cross-linked star PEG coating developed by Groll and colleagues was 

tested in vitro with whole blood for blood compatibility using a number of assays.  The coating 

showed a significant reduction in plasma levels of thrombin-antithrombin (TAT) and β-

thromboglobulin, indicators of coagulation and platelet activated release, respectively, over a non-

coated glass substrate.  Additionally, the star PEG coating showed decreased platelet adhesion, 

platelet aggregation, and adsorption of platelet CD41, an activated platelet antigen.  However, no 

reduction in the activated complement marker, SC5b-9, was observed.(56)  An earlier study, did 

indicate less complement activation in vitro (reduced C3a levels) of a PEG and PPO based 

polyurethaneurea hydrogel over Cuprophan, a cellulose membrane traditionally used in dialysis, but 

not over polystyrene.(57)  

 PS-PEG amphiphilic block copolymers showed somewhat surprising results in terms of 

blood compatibility when compared to cross-linked PEG and PS homopolymer controls.  

Interestingly, while the PS-PEG copolymer showed a level of success intermediate of the PEG and 

PS in in vitro platelet adhesion and activated release studies as would be expected, ex vivo shunt 

experiments showed the copolymer demonstrating increased clotting times over both the PS and 

PEG control.  This led the authors to suggest that the mixture of hydrophobic and hydrophilic 

polymers might provide optimal blood compatibility, possibly due to microphase separation.(58)  

 Another in vivo study modified polyurethane heart valves and vascular grafts with sulfonated 

PEG chains (resembling the structure of heparin modified PEG materials) and implanted them 

within a canine shunt model for up to 39 days.  The materials were examined with SEM post 

explantation.  The sulfonated PEG was found not only to increase blood compatibility, by virtue of 

significantly reduced platelet adhesion and thrombus formation, but to also significantly improve the 

biostability of the polyurethane, as evidence by decreased crack formation, decreased calcification, 
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and no detectable loss in polyurethane molecular weight.(59)  This study demonstrates some of the 

best observed, relatively long term in vivo results for a PEG coated biomaterial, but the duration of 

the study and the relevancy of the shunt model studied by no means assure the biocompatibility 

required for permanent implantation of device such as a small diameter vascular graft.   

 The lack industrial PEG based biomaterials in clinical use today stems from discrepancies in 

outcomes between in vitro and in vivo results.  While studies have shown exceptional promise for 

these materials with protein adsorption (e.g. fibrinogen) and even cellular adhesion (e.g. platelet) 

assays in vitro, the success has not been matched in in vivo and ex vivo experiments.  These results 

could imply that in vivo results may be affected by more than just the PEG grafting parameters 

discussed earlier, including grafting density, chain length, etc.  A thorough comparison of in vivo and 

in vitro results for PEG coatings (adsorbed copolymers and covalent grafting) on various materials 

showed mixed results.  In vitro PEG modification of all surfaces showed 70-95% reduction in 

fibrinogen adsorption, except for ePTFE most likely due to poor grafting capability.  In vivo, decent 

results were observed with PEG grafting to metallic stents (greater than 85% reduction in thrombus 

formation), especially nitanol, with only moderate improvements on polyethylene, silicone rubber, 

and glass and virtually no improvement with grafting on polyethylene terephthalate (PET).  The 

authors hypothesized that surgically induced tissue damage leading to platelet activation and 

aggregation is primarily responsible for these discrepancies, as in vitro experiments do not test 

resistance to large platelet aggregates.  These aggregates will experience increased surface attraction 

and could force post-compression adsorption of the PEG to hydrophobic surface materials.  Thus, 

they ultimately recommend implementing this consideration in future biomaterial designs but also 

do not discount that experimental conditions such as flow and anticoagulants (e.g. heparin for 

syringe drawing of blood) may contribute minor roles to some observed differences as well.(41)  It is 

worth noting, that it becomes much more difficult to tease out the effects of individual material 

components and parameters in vivo as various contributing mechanisms of biocompatibility may 

work synergistically under whole flowing blood.(36)  Thus, while in vivo experiments may better 

characterize the ultimate blood compatibility of biomaterials, in vitro experiments are still 

fundamentally necessary to determine the basic scientific mechanisms behind biocompatibility in 

order to implement better designs. 
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1.5 Stem Cells and Biomaterials 
 
 Stem cells are cells characterized by their ability for self-renewal and ability to differentiate 

into any cell type found within a particular organism.  In 2006, Yamanaka et al. was the first to 

successfully demonstrate that pluripotency could be induced in somatic cells by the induction of 

four transcription factors: Oct4 (O), Sox2 (S), Klf4 (K), and c-Myc (M).(60)  Induced pluripotent stem 

cells (iPSCs) resemble embryonic stem cells (ESCs) but alleviate ethical concerns of sourcing and 

provide an appealing alternative to somatic cell nuclear transfer and cell fusion for the 

reprogramming of somatic cells.  Pluripotency is believed to be regulated by 10-20 transcription 

factors altogether, including the “Yamanaka factors” (OSKM) and other key factors such as Lin28 

(L), and Nanog (N), but as shown can be induced by upregulating combinations of only several of 

these factors.  Reprogramming is commonly performed with viral vectors that randomly integrate 

genes for the transcription factors into cellular DNA, but non-integrative means including plasmids, 

(e.g. minicircles), synthetic mRNAs, microRNAs, proteins and synthetic molecules have been 

implemented for reprogramming as well.(61, 62)  As many of these factors are also related to tumor 

formation (esp. c-Myc), safety can be improved by reducing the number of factors or amount of 

upregulation, but at the cost of an already low efficiency (< 1%) of iPSC generation.(63)  Yet, 

stoichiometric optimization of OSKM transcription was found to be more efficient than equal 

overexpression of all the same factors.(64)  Subtle gene expression signatures conserved among 

iPSCs have been found which distinguish them from ESCs(65) and  despite very similar 

transcription profiles,(66) relatively more heterogeneous gene expression as well as slower growth 

rates have been observed in iPSCs relative to ESCs.(67)  Also, transcriptional reprogramming has 

shown signs of epigenetic memory via methylation patterns that bias differentiation of iPSCs back 

toward their original cell type,(68) and thus, reprogramming has been found more efficient on adult 

stem cells than fully differentiated somatic cells.(63)  Furthermore, overexpression of certain genes 

may also cause potential immunogenicity, even if cells are autologously sourced.(69)  Thus, despite 

the common notion that ESCs and iPSCs may now be used interchangeably in research, evidence 

suggests some caution in drawing these assumptions. 

 Stem cells are naturally found in specific physical and biochemical environments, or niches, 

which preserve the cells’ pluripotent nature and promote self-renewal until cells are stimulated to 

migrate from these niches.  Thus, in vitro culture of stem cells relies on artificial material substrates to 
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replicate the non-soluble environmental signals that are necessary for either stem cell maintenance 

and expansion or differentiation.  Adherent stem cells can be influenced in a number of manners by 

the properties of their biomaterial substrates, including: surface chemistry, nanotopography, 

mechanical properties, morphological structures (e.g. fibrils, pores, etc.), and electrical 

properties.(70)  Hydrogels fabricated from synthetic polymers represent ideal choices for stem cell 

substrates in that both their biochemical and mechanical properties can be tailored relatively easily, 

through covalent functionalization of polymer chains and by polymerization with modulation of 

cross-linker density, respectively.(71, 72)  Cross-linker density will also impact the permeability of 

hydrogels, though, which can greatly impact either drug delivery or paracrine signaling of 

encapsulated cells.  In fact, hydrogel design has been shown to influence differentiation through 

selectively modulating permeability of paracrine factors, with cells seeded on the surface of 

hydrogels more prone to differentiation than cells seeded within deep microwells.(73)  Also, 

degradability can be incorporated into hydrogels, either by copolymerization of hydrolytically 

degradable polymers (e.g. poly(lactic acid); PLA), formation of hydrolytic esters during 

polymerization, or cross-linking of enzymatically degradable peptide sequences.(53, 74)  While 

hydrogels can be loaded for diffusive drug release of large proteins, smaller molecules as well may be 

released by covalent tethering with degradable linkers or incorporation of affinity based binding 

molecules, such as cyclodextrin or heparin.  Many of these hydrogel features may be spatially 

regulated, as well, by laser-guided photopatterning for initiation of the various chemical 

reactions.(74)  PEG hydrogels formed around encapsulated stem cells have been used for both 

preservation of stemness and defined differentiation of stem cells, showcasing the versatility of the 

synthetic polymer matrix in customizing environments for specifically designed cellular 

responses.(71, 72, 75)  For instance, Hubbell et al. used the same MMP-degradable hydrogel for 

differentiation of pluripotent stem cells (PSCs) into cardiomyocytes as for expansion of ESCs by 

modulating the elastic modulus to match that of cardiac tissue as well as altering the selection of 

adhesion peptides to stimulate specific target integrins for early cardiogenesis.  By modulating 

combinations of adhesiveness, degradability, and stiffness, the authors were also able to regulate the 

size of cell clusters that grew from single cells, as well, which may also contribute to differentiation 

pathways.(72, 75)   

More often, stem cells have been cultured on 2-dimensional substrates such as tissue culture 

polystyrene (TCPS), rather than being encapsulated within hydrogels, and as such rely on adsorption 
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of specific extracellular matrix proteins or non-specific adsorption of serum proteins to maintain 

their surface attachment.  However, surface chemistry of material interfaces has long been known to 

affect the conformation of adsorbed proteins, which may in turn modulate cell adhesion or even 

differentiation.  For instance, fibronectin conformation and importantly presentation of its α5β1 

integrin binding domain that is primarily responsible for cell adhesion were modulated on 

functionalized SAMs, with strong α5β1 binding dominating on hydrophilic surfaces (esp. OH 

functionalities) and weaker binding via αV integrins on more hydrophobic SAMs (esp. CH3 

functionalities).(38)  Using this information, the same group modulated important integrin signaling, 

showing cell differentiation and mineralization with immature osteoblasts adhered to fibronectin 

coated SAMs presenting functional groups that greatly favored α5β1 integrin binding over αV 

integrin binding.(76)  A similar example exists, wherein native collagen I matrices were discovered to 

induce adipogenic differentiation of bone marrow stromal cells via α1β1, α2β1 integrin signaling, yet, 

denatured collagen I matrices induced osteogenic differentiation via αVβ3 signaling from sites 

normally hidden within the triple helical structure.(77)  In another instance, a chemically defined 

aminopropylmethacrylamide (APMAAm) hydrogel surface developed for ESC culture in chemically 

defined medium, was found to promote ESC adhesion via adsorption of albumin,(78) which is 

normally found to resist cell adhesion, especially when applied to hydrophilic TCPS.(24)  Evidence 

from this study suggested protein unfolding at the interface accounted for the cell adhesion, but 

clearly hydrophilicity alone cannot account for the change in conformation as both surfaces were 

relatively hydrophilic.  For these reasons, PEG hydrogels or PEG-functionalized surfaces make 

attractive candidates as stem cell substrates, in that they promote very minimal protein adsorption 

and cannot support cell adhesion without covalent incorporation of specific ligands.  Proteins 

tethered to PEG surfaces are assumed to maintain their native conformations and thus, it becomes 

much easier to design specific cell receptor responses and avoid unanticipated ones.  Additionally, 

peptides containing binding sequences may be easily conjugated as well, which precludes any 

concerns over which domains are being recognized.  As the many conflated mechanisms behind 

stem cell decision making are yet to be fully elucidated, substrates that act as blank slates upon which 

specific cues may be independently inserted and modulated will prove valuable in expanding the 

multipotent capabilities of stem cells.  
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Chapter 2† 
  
Ultralow Protein Adsorbing Coatings from 
Clickable PEG Nanogel Solutions 
 

2.1 Introduction 
 
 While materials including polyoxazolines(79) and betaines(80-82) have garnered significant 

attention as biocompatible coatings, PEG is still widely used for the surface modification of 

materials requiring “inert” or specifically defined interactions with biological environments.  

Strategies for incorporating PEG have evolved from covalent grafting of linear or star shaped 

chains(23, 83) and adsorption of block copolymers(5, 33, 38) to surface initiated polymerization of 

patterned brush coatings(49) or microscopically thin hydrogels,(46, 84, 85) and deposition of 

preformed hydrogel particles.(1, 86-88)  However, advances have not kept pace with the demands of 

implantable biomaterials as well as in vitro diagnostics(86, 89) both of which remain limited by the 

lowest levels of protein adsorption achievable.(90-92)   

PEG coatings derived from microgel or nanogel solutions allow convenient means to create 

dense yet thin hydrogel coatings (< 100 nm), to enhance areal coverage on surfaces with sparse 

covalent attachment sites, and to create modular surface assemblies.  Recent focus of their synthesis 

has targeted drug delivery applications(93-96) more so than non-fouling surface coatings.(1, 87, 88, 

97, 98)  Thus, many of these microgels are fabricated with hydrophobic components, often in the 

form of an amphiphilic copolymer, for sequestration of hydrophobic drugs along with PEG for 

water solubility and prolonged circulation.(93, 95, 96)  Most often microgel solutions are fabricated 

using free radical polymerization with PEG-diacrylates,(87, 97, 98) although examples formed from 

addition polymerization of macromers has been well reviewed.(99)  Microgel size is typically 

determined by the surfactant added to produce aqueous emulsions(87, 96) or inverse emulsions,(88, 

† Chapter 2 has been adapted with permission from the following published manuscript: C. D. 
Donahoe et al., Ultralow protein adsorbing coatings from clickable PEG nanogel solutions: 
Benefits of attachment under salt-induced phase separation conditions and comparison with 
PEG/albumin nanogel coatings.  Langmuir 29, 4128 (Mar, 2013). 
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100) although nanogels or small microgel solutions have been fabricated without the use of 

surfactants or organic solvents altogether.(1, 94)  Relatively fewer examples exist of microgel 

solutions applied as surface coatings compared to their applications as drug delivery vehicles.  Libera 

et al. has developed several examples of such coatings including PEG-amine microgels cross-linked 

in situ in the dry state with an electron beam(101) and PEG-diacrylate/acrylic acid microgel solutions 

electrostatically deposited on PLL.(88)  Lyon et al. also has created various microgel compositions of 

PEG and pNIPAm to allow thermal collapse of the microgels.(97)  These microgel solutions have 

been attached to amino-silanated glass via EDC coupling or electrostatic interactions after 

centrifugation or spin coating.(50, 87)  In a unique approach Norde et al. studied protein adsorption 

and bacterial adhesion to a coating of PEG-coated silicon nanoparticles that were electrostatically 

deposited and cross-linked to each other with PEG-diacrylate to provide a more mechanically robust 

coating.(98)   

 We previously demonstrated multiple rounds of resistance to in vitro fibrinogen-promoted 

cell adhesion of thin coatings produced from PEG nanogel solutions(1) and quantified lower 

numbers of individually adsorbed proteins when compared to other popular surface coatings, 

including covalently coupled monolayers of: bovine serum albumin (BSA), BSA/gelatin, dextran, 

linear polyacrylamide, glucose, IgG, linear PEG, and multi-arm PEG.(89, 102)  Interestingly, a 

hybrid nanogel coating of PEG cross-linked with BSA, outperformed a 100% PEG nanogel coating, 

although a monolayer of eight-arm PEG was shown to be more repellent than a monolayer of 

BSA.(89)  While the mechanism behind this phenomenon remains unknown, elimination of the 

albumin component remains desirable for implantable biomaterials due to possible immunogenic 

responses(103) and gradual degradation of the protein.  Here we illustrate methods for the 

attachment of clickable 100% PEG nanogel solutions that significantly improve the coating’s 

resistance to protein adsorption, as measured by single molecule counting.   

Numerous chemistries have been employed to expand the versatility of PEG end group 

functionalities and conjugation strategies.  ‘Click’ chemistry has become immensely popular for 

aqueous bio-conjugations due to the high yields that are quickly achievable under mild physiological 

conditions.(104)  Because these reactions tend to be highly specific and exclude native biomolecules, 

they may be incorporated orthogonally with various other reactive groups allowing construction of 

more sophisticated and highly functionalized biocompatible materials.(105, 106)  Despite toxicity 

concerns for using copper in biological applications, copper-catalyzed azide/alkyne cycloaddition 
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(CuAAC) remains the most popular click reaction, and PEG polymers are frequently modified with 

these functional groups.(107)  Alternatively, a variety of cyclooctynes have been designed by 

Bertozzi et al. and implemented in strain-promoted azide/alkyne cycloadditions (SPAAC) in order 

to obviate the need for a copper catalyst.(108-110)  Additionally, photo-initiated thiol-ene and thiol-

yne reactions between thiols and either alkenes or alkynes have garnered substantial attention.(111, 

112)   

These click chemistries have been widely explored for fabricating PEG hydrogels,(113-116) 

most notably by Anseth et al. and Bowman et al.,(117-121) as well as other hydrogel materials such 

as poly(vinyl alcohol) or  hyaluronic acid.(122-124)    The step-growth mechanism of these click 

reactions provide for homogenous networks and favorable mechanics which are tunable by the 

PEG molecular weight.(113, 114, 116, 118, 121)  Hydrogels have been photopatterned using both 

photonic reduction of the copper catalyst to produce CuAAC hydrogels(117, 125) and photonic 

initiation of thiol-ene reactions, usually for functionalization of residual end groups with cysteine-

containing peptides, such as RGD.(119-121)  While click chemistry has been used to create or more 

commonly to functionalize materials below the macroscopic scale, including polymers, dendrimers, 

nanodiamonds, microbeads, and micelles,(112, 126-133) we have found only one example where it 

was used in cross-linking PEG to fabricate microgel solutions, which were cross-linked within 

mesoporous-silica templates.(134)  Surfaces have also been endowed with clickable moieties by 

grafting clickable PEGs to silicon or glass substrates or by chemically modifying PEG surfaces after 

deposition.(135-138)  SPAAC moieties have also been applied to cellular surfaces, without the 

concern of copper toxicity.(139)  Deposition of azide-terminated alkanethiolates onto gold surfaces 

allows for the creation of clickable SAMs.(140, 141)  Alternatively, thin coatings including a 

polyelectrolyte film(142) and PEG hydrogel(115) have been cross-linked via click reactions on top 

of silicon or glass surfaces.  Click chemistry has been used for the covalent attachment of PEG 

coatings to the underlying surface by using substrates such as: alkyne or thiol functionalized silanes 

and resins,(115, 143, 144) azide functionalized epoxy resins,(145) or a unique cyclooctyne 

functionalized epoxy silane.(146)   

In this study we exploited separate, sequential click reactions for the cross-linking of PEG as 

well as its attachment to glass surfaces to form thin hydrogel coatings.  Using CuAAC we found that 

we could rapidly generate nanogel solutions from multi-armed PEG-azide and PEG-alkyne 

monomers and then easily halt the polymerization with addition of a copper-chelating agent to 
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prevent bulk gelation (Figure 2.1A).  The ability to halt nanogel growth and solution reaction is a 

unique feature of this system that allows for stable long-term storage, limitless reaction times on 

surfaces, and monolayer coverage with the hydrogel coating.  Nanogel solutions were mixed with a 

photoinitiator and attached to mercaptosilanated glass using the UV thiol-yne reaction (Figure 2.1B).  

We quantified protein adsorption to this clickable nanogel coating using TIRF microscopy, which 

enabled single molecule (i.e. single protein) counting, but determined that hybrid PEG/albumin 

nanogel coatings still greatly outperformed the 100% PEG nanogel coatings attached in PBS.  

However, by attaching the clickable nanogel coatings in the phase-separated state using high 

concentrations of a kosmotropic salt, we were able to double the packing density (Figure 2.1C) and 

drastically reduce protein adsorption.  Attaching linear PEG under phase separation, or “cloud 

point”, conditions has been well known to successfully increase grafting density though similar 

results were not obtained with star PEG.(10, 44, 147)  We also studied the effects of cross-linking 

density within the nanogel coating by surface cross-linking residual end groups after attachment 

(Figure 2.2A), which could likewise be performed under phase separation conditions with the 

addition of salt (Figure 2.2B).  These modifications produced a surface that was comparable the 

PEG/albumin coatings by TIRF.  However, AFM revealed drastic changes in coating morphology 

when coatings were further cross-linked and long-term resistance to cell adhesion was lost.  Thus, 

the best 100% PEG coating that we have studied to date is a clickable nanogel coating attached with 

salt in the phase-separated state.  Other 100% PEG nanogel solutions cannot be conjugated in the 

phase-separated state due to bulk polymerization, indicating a potentially important orthogonality of 

copper-catalyzed click chemistry.  
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Figure 2.1: Strategies for synthesis and attachment of clickable nanogel solutions.  (A) Clickable nanogel 

solutions were synthesized via CuAAC by mixing solutions of clickable four-arm PEG monomers with copper(II) 

sulfate and sodium ascorbate.  The cross-linking reaction was halted by the edition of a copper chelator, EDTA.  (B) 

Nanogel solutions were incubated on top of mercaptosilanated surfaces with a photoinitiator, Irgacure 2959, and 

attached under UV irradiation.  (C) Alternatively, nanogel solutions could additionally be mixed with kosmotropic salts 

(e.g. sodium sulfate) to induce phase-separation and incubated under inverted mercaptosilanated surfaces for UV 

attachment as in (B), resulting in increased packing density. 
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Figure 2.2: Strategies for surface cross-linking of nanogel coatings.  Clickable nanogel coatings were able to 

undergo additional internal cross-linking after covalent attachment to surfaces.  (A) This “surface cross-linking” was 

implemented by incubating the surface in a solution of copper(II) sulfate and sodium ascorbate.  (B) Alternatively, 

kosmotropic salts could be included, as well, for the induction of phase-separation within the clickable nanogel coating 

during cross-linking, presumably resulting in a more densely cross-linked coating. 
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2.2 Materials and Methods 
 

2.2.1 Materials 
 
Unless otherwise specified, all reagents were purchased from Sigma Aldrich (Saint Louis, 

MO, USA).  Four- and eight-arm PEG-OH MW 10,000 (Creative PEGWorks, Winston Salem, NC, 

USA), four-arm PEG-alkyne MW 10,000 (Creative PEGWorks), PEG-dithiol MW 3,400 (Creative 

PEGWorks), and dibenzocyclooctyne (DBCO-acid, Click Chemistry Tools, Scottsdale, AZ, USA) 

were purchased commercially.  Eight-arm PEG-vinyl sulfone (PEG-VS),(1)  eight-arm PEG-

amine,(1) four-arm PEG-azide,(148) and four-arm PEG-cyclooctyne(148) were all synthesized from 

PEG-OH MW 10,000 as described previously.  PLL-g-PEG was synthesized in a previous study 

from PLL MW 375,000 and monomethoxy PEG MW 5,000 at a 7:1 grafting ratio.(37)  

2.2.2 Nanogel Solution Syntheses 
 

Clickable nanogel solutions were synthesized from four-arm PEG-azide and four-arm PEG-

alkyne.  Each was dissolved to a concentration of 200 mg/mL in a solution of phosphate buffered 

saline (PBS) already containing 50 mg/mL sodium L-ascorbate and filtered with 0.22 µm syringe 

filters.  PEG solutions were mixed at equimolar ratios of azides to alkynes, and copper(II) sulfate (10 

mg/mL in water) was added at 0.004 equivalents per azide/alkyne pair (4 µL per 1 mL of PEG) then 

immediately vortexed.  The mixture was aliquoted into 1.5 mL microcentrifuge tubes and rotated at 

40 r.p.m. at room temperature until a nanogel size of 100 nm was surpassed as measured by dynamic 

light scattering (DLS) in a manner described previously.(1)  The reaction was halted by adding 10 

equivalents of ethylenediaminetetraacetic acid (EDTA; 0.1 M in water) per copper (16 µL per 1 mL 

of nanogel solution) and vortexed immediately.  Nanogel solutions were allowed to mix for an 

additional hour and then frozen at -80 °C.  Nanogel solutions cross-linked via Michael addition 

chemistry were synthesized from PEG-VS and either BSA or PEG-amine as described before and 

diluted to 100 mg/mL to slow the solution reaction before freezing at -80 °C.(1)   

2.2.3 Size Exclusion Chromatography (SEC) 
 

Molecular weight distributions were approximated by SEC using a 300 x 8 mm gel filtration 

column packed with 5 µm particles with 150 Å pore size (Keystone Scientific Inc., Bellefonte, PA, 
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USA).  A chelated clickable nanogel solution (200 mg/mL), its precursor PEG-alkyne solution (100 

mg/mL) including sodium ascorbate (25 mg/mL), and various solution standards of different MW 

linear PEGs dissolved in PBS were each injected (10 µL) into a mobile phase of 0.5 M dibasic 

sodium phosphate in water flowing at 1 mL/min.  The column flow through was analyzed with a 

UV detector at 200 nm and the peaks were integrated using XCalibur software between time points 

specified by the peak retention times of the linear PEG standards.   

2.2.4 Nanogel Coatings 
 

All nanogel coatings were attached to 12 mm round glass coverslips (Ted Pella Inc., 

Redding, CA, USA) or, for TIRF, 24 x 40 mm rectangular coverslips (Fisher Scientific, Waltham, 

MA, USA) which were mercaptosilanated as described before.(1)  Briefly, coverslips were washed 

with water, ethanol, and acetone then immersed in 5% (v/v) solutions of (3-

mercaptopropyl)trimethoxy silane (MPTS) in acetone for 1 h at room temperature.  Coverslips were 

washed with acetone and cured for 25 min at 110 °C before being stored under vacuum.  Volumes 

of clickable nanogel solutions were mixed 1:1:1 with the photoinitiator 2-hydroxy-4’-(2-

hydroxyethoxy)-2-methylpropionone (Irgacure-2959 or I-2959; 0.15 mg/mL in water) and either 

PBS or 1.5 M sodium sulfate in PBS.  Nanogel solutions without sodium sulfate were incubated on 

top of the glass surface and under a UV flood lamp (365 nm, 100 W) for 20 min to allow surface 

attachment by thiol-yne reaction.  Alternatively, the coverslips were inverted on top of 100 µL 

droplets of nanogel solutions which did include sodium sulfate, sandwiching the mixture with an 

upper PEG-rich phase between the mercaptosilane above and a hydrophobic glass dish below 

(treated with Sigmacote).  After 5 min to allow complete phase separation, these coverslips were 

exposed to the same UV treatment.  Michael addition nanogel solutions were incubated on top of 

the coverslips at 37°C for 1 h (PEG-VS/BSA) or 40 min (PEG-VS/PEG-amine) and unreacted 

vinyl sulfone groups capped at 37 °C with either 100 mg/mL PEG-dithiol in PBS for 30 min for 

TIRF or 50 mg/mL BSA or PEG-amine overnight for cell adhesion studies.  All coverslips were 

washed thoroughly with PBS.  Clickable nanogel solutions were also attached to glass without UV.  

Briefly, glass was silanated with (3-chloropropyl)trimethoxy silane as with MPTS above, then 

subjected to halide-azide exchange by incubating the coverslips with 5 mg/mL sodium azide in 

dimethylformamide (DMF) for 48 h at room temperature under gentle agitation.(149)  The 

azidosilanated coverslips were then incubated with solutions of 200 mg/mL four-arm PEG-

cyclooctyne in PBS for 30 min at 37 °C and washed.  Clickable nanogel solutions were finally 
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incubated with the cyclooctyne functionalized surfaces for another 30 min at 37 °C, attaching via 

SPAAC.  Also, non-silanated coverslips were incubated with 2 mg/mL PLL-g-PEG in PBS (0.22 µm 

filtered) for 1 h at room temperature,(37) as a standard for TIRF and cell adhesion.   

2.2.5 Total Internal Reflection Fluorescence (TIRF) Microscopy 
 

Single molecule counting of adsorbed proteins was performed with TIRF microscopy in 

custom flow cells which attach to the silanated coverslips to form ~50 µL channels.  Nanogel 

coatings were fabricated in situ as described above, with flow cells being inverted during the UV 

incubation of clickable nanogel solutions attached with salt.  For each experiment, a fresh solution 

of bovine fibrinogen was fluorescently labeled overnight at room temperature with Cy5 dye (GE 

Healthcare Biosciences, Pittsburgh, PA).  The fibrinogen was dissolved at 2.5 mg/mL in 0.1 M 

sodium carbonate buffer (pH 9.3) and mixed with 171x molar excess of Cy5 (10 mg/mL in dimethyl 

sulfoxide; DMSO).  Unreacted dye was removed by dialysis.  Nanogel coated flow cells were washed 

with 1 mL of PBS and incubated with the Cy5-labeled fibrinogen for 1 h in the dark at room 

temperature.  The flow cells were washed again and imaged as described before.(89)  Briefly, the 

surfaces were excited with a 640 nm, 40 mW laser and imaged with a Nikon TE-2000 inverted 

microscope (Nikon, Melville, NY).  Five 263.6 µm x 263.6 µm images of each surface were 

processed with MetaMorph and Matlab, using the average count for each surface.  Protein counts 

were normalized against standards in each experiment to account for variations in fibrinogen 

concentration and labeling efficiency.  Statistical significance (p < 0.05) was calculated in Matlab 

using ANOVA with a post-hoc Tukey-Kramer test.     

2.2.6 Quartz Crystal Microbalance with Dissipation (QCM-D) 
 

Mass deposition was measured on 5 MHz quartz crystal sensors with 50 nm silicon dioxide 

coatings (QSX-303, Q-Sense, Sweden).  Sensors were cleaned prior to each experiment with 10 min 

treatment in a UV-ozone chamber, 30 min incubation in 2% sodium doedecyl sulfate (SDS), 

thorough rinsing with deionized water, drying under pure nitrogen, and 10 min more of UV-ozone 

treatment.  Cleaned sensors were silanated and immediately placed in the chambers of a Q-Sense E4 

(Q-Sense).  PBS was flowed over the sensors at 0.1 mL/min for at least 1 h at 22 °C and frequency 

(F) and dissipation (D) baselines were recorded.  The sensors were removed and functionalized as 

described above, incubating nanogel solutions without salt on top of the sensors and nanogel 
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solutions with salt beneath the inverted sensors during UV treatment.  Because the sensors are not 

transparent, UV light was applied from below in the case of the latter.  The nanogel coated sensors 

were returned to the Q-Sense E4 and PBS was flowed over the sensors for 2 h and baselines 

recorded.  The baselines from before and after coating application were stitched together to measure 

changes in F and D.  Clickable nanogel coatings attached without salt remained under PBS within 

the Q-Sense E4 and underwent no surface cross-linking. Alternatively, clickable nanogel coatings 

attached with salt were surface cross-linked by changing to a flow of 1.5 M sodium sulfate in PBS 

for 5 min and then 1.5 M sodium sulfate, 2 mM copper(II) sulfate, and 50 mg/mL sodium ascorbate 

in PBS.  The temperature was raised to 37 °C for all sensors and incubated for 1 h.  The clickable 

nanogel coating attached with salt was washed with a flow of 0.1 M EDTA in PBS for 1 h at 22 °C 

and then PBS for another 1 h.  The temperature was raised back to 37 °C and solutions of 2.5 

mg/mL fibrinogen were then flowed over sensors for both conditions and incubated for 2 h.  The 

flow was restored with PBS, after which the temperature was lowered to 22 °C and the sensors were 

washed for 1 h.  Changes in mass were modeled with Q-Tools software (version 3.0.16.555, Q-

Sense) from F and D changes between the 22 °C PBS baselines at 0.1 mL/min flow surrounding 

each step.  The third, fifth, seventh, ninth, and eleventh overtones were input into a single-layer 

Voigt (viscoelastic) model with constant fluid density (1000 kg/m3) and viscosity (1.0 x 10-3 

kg/(m∙s)) assumed. 

2.2.7 Atomic Force Microscopy (AFM) 
 

Nanogel coatings were fabricated on round glass coverslips per normal.  Surfaces were kept 

hydrated and examined under PBS in tapping mode at 1.0 Hz scanning rates using a Veeco 

Nanoman Scanning Probe Microscope (Veeco Instruments, Plainview, NY) and MESP tips (Bruker 

AFM Probes, Camarillo, CA, USA) with nominal spring constants of 1 N/m and nominal resonant 

frequencies of 75 kHz. 

2.2.8 Cell Adhesion Studies 
 

Nanogel coatings were fabricated on round glass coverslips per normal and incubated with 

2.5 mg/mL fibrinogen for 2 h at 37 °C then washed.  3T3 mouse fibroblasts were seeded on the 

surfaces at 100,000 cells/cm2 in Dulbecco’s Modified Eagle Medium (DMEM; Life Technologies, 

Grand Island, NY, USA) supplemented with 10% fetal bovine serum (FBS; Atlanta Biologicals, 
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Lawrenceville, GA, USA) and 1% Antibiotic-Antimycotic (ABAM; Life Technologies) and imaged 

the next day after gentle washing.  Surfaces were reseeded every two days until cell adhesion 

overwhelmed the surface or until 9 seedings.  Cell adhesion could alternatively be promoted by 

conjugating a cysteine-containing cell adhesion peptide, RGD (Seq: Ac-GCGYGRGDSPG-NH2; 

GenScript, Piscataway, NJ, USA), to the nanogel coating using a UV thiol-yne reaction.  Briefly, 200 

nmol of RGD (MW 1066.12) in 200 µL of PBS was incubated on the nanogel surface and subjected 

to UV irradiation for 20 min, allowing covalent reaction between the nanogel alkynes and cysteine 

thiols.  Percentage of surface coverage by adhered cells was approximated for some images using 

ImageJ software. 

 

2.3 Results and Discussion 
 

2.3.1 Synthesis and Characterization of Clickable Nanogel 
Solutions  

 
Clickable nanogel solutions were successfully created by mixing solutions of four-arm PEG-

azide and four-arm PEG-alkyne dissolved in PBS with high amounts of sodium ascorbate and 

adding small volumes of highly concentrated copper.  The rate of growth was effectively modulated 

with copper concentration (Figure 2.3), which allowed faster production of nanogel solutions than 

possible with the Michael type addition.(1)  These kinetics resemble those achieved by Hu et al.(123)  

To allow sufficient time for DLS measurements, we chose a concentration of 0.004 equivalents per 

azide/alkyne for most syntheses resulting in reaction times of approximately 2 h to reach 100 nm.  

Chelation with 10x EDTA stopped the growth in nanogel size and in fact, when solutions where 

remeasured 1 h later showed slight decreases in hydrodynamic diameter (e.g. from 111.7 to 95.0 nm).  

The reduction in size might stem from eliminating the pseudo-cross-links formed by copper 

complexes between PEG-alkynes(150) or increased hydrophilicity of the nanogels in the presence of 

copper, resulting in more swelling of the nanogel before chelation.  We verified the capacity of 

copper(II) sulfate to complex multiple alkynes by adding a high concentration of copper, 0.5 

equivalents, to a 20% (w/v) solution of PEG-alkyne dissolved in PBS with 50 mg/mL sodium 

ascorbate to form a solid hydrogel.  This gel was dissolved when incubated in 0.1 M EDTA 

overnight.  Nanogel formation was further corroborated by the large shift in molecular weight 

27 
 



 
distribution observed when comparing SEC profiles of PEG-alkyne to that of a 120 nm nanogel 

solution (Figure 2.4).  The shift was quantified by integrating the areas between multiple time points 

established by linear PEG benchmarks of various molecular weights and showed large increases in 

fractions larger than PEG 35,000 and PEG 100,000 and a marked decrease in the fraction smaller 

than PEG 8,000 (Figure 2.5).  This demonstrates the presence of nanogels in these partially 

polymerized solutions, and in much greater proportions than expected from Flory-Stockmeyer 

statistics.(1) 

2.3.2 Quantification of Protein Adsorption via TIRF 
 

The ability of the clickable nanogel coatings attached to mercaptosilanated glass to resist 

protein adsorption was quantified using TIRF microscopy to count individually adsorbed, 

fluorescently labeled proteins (Figure 2.6).  The irradiation time of 20 min used to attach the 

coatings was selected as long enough to cross-link 100 µL bulk hydrogels of 50 mg/mL four-arm 

PEG-alkyne with equimolar amounts of PEG-dithiol, but short enough to minimize evaporation 

induced from the lamp heat.  It is interesting to note that when synthesized,(148) we observed 

homo-polymerization of PEG-alkyne under UV, but not when using the commercial product.  

However, Caruso et al. observed homo-polymerization of this same commercial PEG under 

different conditions.(125)  Controls including Michael addition nanogel solutions of PEG-VS cross-

linked with either BSA (VS:BSA) or PEG-amine (VS:Am) were also evaluated.  Cy5-labeled 

fibrinogen was used as a model protein relevant to blood contacting biomaterials, but we found that 

1 h incubations at physiological concentration (2.5 mg/mL) saturated even the best coatings, such 

that adsorbed proteins could not be individually resolved and counted.  Adsorption to most nanogel 

coatings was quantified using a 1:100 dilution of the physiological concentration (Figure 2.6A), while 

adsorption to several less resistant coatings was quantified using a 1:1000 dilution (Figure 2.6B).   

Previously, VS:BSA nanogel coatings were shown more resistant to IgG adsorption(89) and cell 

adhesion(1) than VS:Am nanogel coatings.  Here, we confirmed the extremely low amount of 

fibrinogen adsorption on the VS:BSA nanogel coatings by TIRF and compared the resistance to the 

commonly used non-covalent coating PLL-g-PEG.   

28 
 



 

 
 
Figure 2.3: Copper-dependent gelation kinetics.  Small PEG gels (25 µL) were formed with a fixed 18% (w/v) PEG 

concentration and various equivalents of copper.  Gelation time was measured to the nearest minute as when the 

solution became too viscous to pipette.  Data are presented as mean ± standard deviation (n=3). 
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Figure 2.4: SEC profiles of clickable nanogel solution and precursor.  SEC profiles monitored over a ~9 min 

period with UV detection at 200 nm of A) 10% (w/v) PEG-alkyne and B) 20% (w/v) chelated clickable nanogel 

(hydrodynamic radius = 120 nm) solutions show a large shift in the molecular weight distribution that results from 

partial cross-linking of the nanogel solution.  
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Figure 2.5: Table of molecular weight distributions for clickable nanogel solutions.  The molecular weight 

distribution as determined by SEC of a clickable nanogel solution is markedly skewed towards higher weights than that 

of PEG-alkyne.  Percentages of UV detectable content are delineated by linear PEG benchmarks. 
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Figure 2.6: Quantification of protein adsorption to nanogel coatings via TIRF.  Cy5-labeled fibrinogen molecules 

were counted using TIRF on PLL-g-PEG (orange) coatings as well as VS:BSA (red), VS:Am (blue), and clickable (green) 

nanogel coatings.  Nanogel coatings were studied across a matrix of conditions including attachment with salt and 

surface cross-linking of the coating.  Surface cross-linking was achieved in the VS:BSA and VS:Am nanogel coatings by 

incubating overnight in PBS or 1.5 M salt before capping the reactive groups and in the clickable nanogel coatings by 

incubating in PBS or 1.5 M salt spiked with sodium ascorbate and various amounts of copper for 1 h.  Protein counts 

were normalized against standard nanogel coatings of: (A) VS:BSA or (B) VS:Am.  Fibrinogen was incubated for 1 h at a 

(A) 1:100 dilution or (B) 1:1000 dilution of physiological concentration (2.5 mg/mL) and oversaturated counts were 

marked using (/\).  Statistical significance (p < 0.05) was determined for (A) and (B) separately on unsaturated counts 

relative to the conditions referenced in the final row with (*, **, #).  Data are presented as mean ± standard deviation. 
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While PLL-g-PEG has performed well at resisting protein adsorption as measured by 

relatively insensitive measurements such as Optical Waveguide Lightmode Spectroscopy (OWLS), 

here we found that PLL-g-PEG adsorbed too much fibrinogen to quantify by TIRF (Figure 2.6A).  

Furthermore, although the VS:Am nanogel coating adsorbed more than 100x the number of 

fibrinogen molecules as that of the VS:BSA nanogel coating, the VS:Am coating was still superior to 

PLL-g-PEG.  Clickable nanogel coatings attached in PBS (i.e. not phase-separated) could not be 

quantified at the standard fibrinogen dilution of 1:100, similar to PLL-g-PEG.  At a 1:1000 dilution 

of fibrinogen, clickable nanogel coatings attached in PBS adsorbed more than 2x the number of 

proteins as the VS:Am nanogel coatings (Figure 2.6B).  The two-fold difference between the 

clickable and VS:Am nanogel coatings was unexpected as both are composed of  10 kDa PEG 

monomers cross-linked by different chemistries into similarly sized nanogel solutions.  This 

discrepancy may be due to differences in the nanogel architecture, considering the VS:Am nanogel 

solutions utilize 8-arm PEGs and the clickable nanogel solutions utilize 4-arm PEGs.  Differences in 

arm length, mesh sizes, or density of unreacted chains might account for this result, but the 

mechanism remains unknown.  Also, potential effects of positively charged amine groups within the 

VS:Am nanogel coating on resisting fibrinogen adsorption cannot be discounted, although positively 

charged PLL has been previously found to have negligible effect on fibrinogen adsorption when 

coated onto negatively charged niobium oxide surfaces.(35) 

We then tested the resistance to fibrinogen adsorption of clickable nanogel solutions 

attached with salt in the phase-separated state (Figure 2.6A).  When the clickable nanogel solutions 

were mixed with sodium sulfate to a final concentration of 500 mM, they became cloudy and rapidly 

phase-separated within minutes to produce a densely packed PEG-rich phase atop the solution.  

Glass flow cells were inverted to juxtapose the mercaptosilanated surface to the PEG-rich phase 

during attachment of the clickable nanogel solution, resulting in a 10-fold reduction in protein 

adsorption.  Clickable nanogel solutions attached with salt in the phase-separated state were superior 

to VS:Am nanogel coatings but inferior to VS:BSA coatings (Figure 2.6A).   VS:BSA and VS:Am 

nanogel solutions cannot be attached in the same manner without resulting in visibly thick hydrogel 

films.  The Michael addition reaction between vinyl sulfones and amines occurs at a non-negligible 

rate at the higher PEG concentrations that develop after phase separation and the nanogels rapidly 

cross-link into microspheres and larger aggregates.(52)    
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 The other processing step studied via TIRF was the surface cross-linking of residual PEG 

chains left unreacted after nanogel formation and surface attachment (Figure 2.6A).  Surface cross-

linking was carried out by incubating the clickable nanogel coatings in PBS spiked with sodium 

ascorbate and copper for 1 h at 37 ºC.  In attempting to stitch the nanogel coatings into more 

densely packed hydrogel films, surfaces were also incubated in 1.5 M salt to induce phase separation 

along with sodium ascorbate and various concentrations of copper to promote graduated extents of 

cross-linking.  Surface cross-linking with 2 mM copper in either PBS or 1.5 M salt provided modest 

improvements in resisting protein adsorption.  Incubation in salt without any copper had no 

significant effect on overall protein adsorption but had larger variability than seen otherwise.  

Addition of higher amounts of copper (8 mM) eradicated any substantial resistance to protein 

adsorption.  These saturated protein counts most likely originate from damage to the surface caused 

by stress introduced by the additional cross-linking.  Large areas available for protein adsorption 

seem to be visible under TIRF microscopy when compared to fluorescent images of other nanogel 

coatings (Figure 2.7).  Surface cross-linking was replicated in VS:BSA and VS:Am nanogel coatings 

by incubating the coatings in PBS or 1.5 M salt overnight at 37 ºC.  These incubations provided 

some extended opportunity for the slower Michael type cross-linking reaction, before vinyl sulfones 

were capped per usual.  While cross-linking (i.e. incubation) in PBS provided no notable changes, 

cross-linking in 1.5 M salt slightly worsened the VS:Am nanogel coating and obliterated the 

resistance of the VS:BSA nanogel coating.  The VS:BSA and VS:Am coatings were visibly damaged 

by the phase separation process (Figure 2.8), providing evidence for the potentially damaging effects 

of internally cross-linking such thin surface coatings.   

To be certain that the observed differences in protein adsorption were not a product of the 

variability in nanogel size, we produced three stocks of different VS:BSA nanogel sizes and two 

stocks of different clickable nanogel sizes from the same precursor solutions of each type.  Coatings 

produced from all sizes of the VS:BSA nanogels (53-102 nm) still outperformed coatings produced 

from all sizes of clickable nanogels attached with salt without surface cross-linking (84-128 nm) by 

similar margins (Figure 2.9).  The data seem to suggest that all the nanogel sizes examined are above 

a threshold necessary to achieve maximal surface coverage on the silanated glass.  However, nanogel 

formation remains critical in achieving low protein adsorption as evidenced by previous 

comparisons of VS:BSA nanogel solutions to monolayers of eight-arm PEG-VS.(89)   
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Figure 2.7: Fluorescent images of protein adsorption to nanogel coatings.  Fluorescent images taken using TIRF 

microscopy of nanogel coatings after 1 h incubations with 0.25 mg/mL Cy5-labeled fibrinogen, including:  (A) VS:BSA 

without surface cross-linking, (B) clickable attached with salt without surface cross-linking, (C) clickable attached with 

salt with surface cross-linking by 2 mM copper, and (D) clickable attached with salt with surface cross-linking by 8 mM 

copper.  The large fluorescent spots in (D) may result from stress induced damage to the surface.  The scale bar 

represents 100 µm.   
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Figure 2.8: Micrographs of Michael-addition nanogel coatings incubated in high salt solutions.  Micrographs of 

(A) VS:BSA and (B) VS:Am nanogel coatings show distinct surface morphologies after replicating surface cross-linking 

in 1.5 M salt by overnight incubations in 1.5 M sodium sulfate prior to capping vinyl sulfone groups.  The scale bar 

represents 100 µm.   
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Figure 2.9: TIRF measurements of protein adsorption on nanogel coatings of different size nanogels.  Counts 

of Cy5-labeled fibrinogen adsorbed at 0.025 mg/mL were compared across coatings produced from three different sizes 

of VS:BSA nanogels (red) and two different sizes of clickable nanogels attached with salt without surface cross-linking 

(green).  The large differences in nanogel size do not account for the consistently lower levels of protein adsorption seen 

on VS:BSA coatings.  Data are presented as mean ± standard deviation (n=2). 
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2.3.3 Quantification of Nanogel Coating Packing Density 
 

We hypothesized that the drastic improvement in protein resistance of the clickable nanogel 

coatings when attached with salt was due to increased PEG concentrations in the phase-separated 

state.  We expected that collapsed nanogels would attach at higher packing densities than in the 

swollen state.  Indeed, QCM-D found that the nanogel coatings attached with salt showed 

approximately twice the increase in surface density as the nanogel coatings attached without salt 

(Figure 2.10).  The clickable nanogel coatings were attached ex situ under UV and QCM-D baselines 

measured from before and after coating the sensors were stitched together to model changes in 

mass.  We measured the error that could be expected from removing these sensors during analysis 

by replicating the procedure with sensors that were left unmodified then returned to PBS flow.  The 

magnitude of error (244 ± 214 ng/cm2; 2.44 ± 2.14 nm of water) was found to be negligible relative 

to the masses of the nanogel coatings measured.  The equivalent thickness of water provides a 

maximum estimate for the coating thickness, as we assume the nanogel coatings, comprised of 

unknown proportions of PEG and water, to be perhaps slightly denser than water.  VS:BSA nanogel 

coatings were previously determined to be 1001.2 kg/m3 using a combination of QCM-D and 

OWLS.(1)  As nanogel packing density will affect the mass measurement and this calculation of 

average thickness, the clickable nanogel coating attached without salt (50.3 nm) appears to be packed 

less densely than the VS:BSA nanogel coating (75.2 nm, previously reported(1)).  However, if the 

clickable nanogel coating is attached with salt the average thickness increases (106.4 nm) beyond that 

of the VS:BSA nanogel coating.  Increased packing density clearly improved the clickable nanogel 

coating’s resistance to protein adsorption measured by TIRF, but could not alone account for the 

low levels found on VS:BSA nanogel coatings.  Clickable nanogel coatings attached with salt seem to 

approach maximal packing density as the average thickness is near the approximate 100 nm diameter 

of the nanogels.   

The clickable nanogel coating attached with salt was further used to study in situ the effects 

of surface cross-linking in 1.5 M salt with 2 mM copper.  The very slight fluctuation in mass 

observed during this step (80 ng/cm2) was actually less than that observed on the clickable nanogel 

coating attached without salt, which remained incubated in PBS but was subjected to the same 

temperature change to 37 °C during this step (510 ng/cm2).  This confirms that the nanogel coating 

was well washed after attachment and that subsequent addition of copper did not attach any residual 

PEG in solution but only cross-linked the existing hydrogel structure.  Both coatings were next 
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incubated in situ with physiological levels of fibrinogen (2.5 mg/mL) for 2 h at 37 °C (Figure 2.11) 

and the additions in mass reflected the trend observed with TIRF.  The unmodified clickable coating 

adsorbed more than 15x the amount of protein as the coating attached with salt and surface cross-

linked, although this difference is not as large as the more than 50 fold difference seen with TIRF.  

It is possible that at the higher protein concentration used for QCM-D, the unmodified clickable 

coating reached a threshold of protein saturation, not achieved during TIRF. 

2.3.4 Characterization of Nanogel Coating Topology 
 

Multiple nanogel coatings were analyzed with tapping mode AFM under PBS to assess 

topological differences that arise from the conditions explored (Figure 2.12).  Phase profiles were 

examined in addition to height profiles, revealing changes in material properties along the surface.  

Images of clickable nanogel coatings became distinctly less resolute and more difficult to obtain 

when attached with salt (Figure 2.12B vs. 2.12C).  Although not all the nanogels of this coating are 

individually resolvable, AFM did not detect any deep gaps in surface coverage as evidenced by the 

relatively small height changes measured (less than 5 nm).  It is more likely that the nanogels are 

packed so tightly together that the boundaries of these soft particles are actually intermeshed, 

impeding the ability of AFM to detect their edges.  On the other hand, extended overnight surface 

cross-linking in 1.5 M salt with 1 mM copper strongly improved resolution of the clickable nanogel 

coating attached with salt (Figure 2.12D), enabling imaging on smaller spatial scales (Figure 2.12E).  

The phase profile clearly shows a tightly packed coating of spherical nanogels.  These surfaces also 

exhibit curious circular patches of raised nanogels that were especially well resolved by AFM.  We 

can assume that nanogel coatings attached with salt but without surface cross-linking are packed just 

as tightly since the surface attachment step is identical.  Nanogels of all coatings measure reasonably 

close to 100 nm.  Some shrinking in the final nanogel size might be expected with surface cross-

linking in 1.5 M salt.  However, the high packing density of these coatings may allow some reduction 

in nanogel size without compromising surface coverage.  Otherwise, interstitial gaps may begin to 

appear between the nanogels as they shrink.  This might explain why surface cross-linking in 1.5 M 

salt did not garner significant improvements in the VS:BSA or VS:Am nanogel coatings studied with 

TIRF.  Interstitial gaps resulting from nanogel shrinkage or stress-induced surface damage may 

prove to be quite detrimental as they may allow adsorption of proteins that are smaller than 

fibrinogen within the gaps.  
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Figure 2.10. QCM-D mass measurements of clickable nanogel coatings.  Changes in mass (and their equivalent 

thicknesses for masses of water) were measured with QCM-D for two types of clickable nanogel coatings, including one 

attached without salt and one attached with salt.  The coating attached with salt underwent surface cross-linking in 1.5 M 

salt with 2 mM copper.  The coating attached without salt did not undergo surface cross-linking but was incubated in 

PBS and raised to 37 °C as well during this step.   
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Figure 2.11. QCM-D profiles of protein adsorption to clickable nanogel coatings.  Nanogel coatings were 

incubated with physiological concentrations of fibrinogen (2.5 mg/mL) for 2 h at 37 °C (between the dashed lines) 

followed by PBS at 22 °C.  Frequency and dissipation profiles show large increases in mass for the clickable nanogel 

coating attached without salt and without surface cross-linking (blue) and a relatively smaller change for the clickable 

nanogel coating attached with salt followed by surface cross-linking (red).   
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Figure 2.12. AFM profiles of clickable nanogel coatings.  Images from AFM show height (top) and phase (bottom) 

profiles for (A) mercaptosilanated glass, (B) clickable nanogel coatings attached without salt with no surface cross-

linking, (C) clickable nanogel coatings attached with salt with no surface cross-linking and (D, E) clickable nanogel 

coatings attached with salt with surface cross-linking overnight in 1.5 M salt with 1 mM copper.  Scale bars all represent 

500 nm. The images in (E) are higher spatial resolution images of the sample in (D).  The color scale represents 5 nm for 

the height profiles of (A-C), 20 nm for the height profiles of (D, E), and 30° for all phase profiles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

42 
 



 
2.3.5 Cell Adhesion to Nanogel Coatings 
 

Non-specific cell adhesion was examined as a corroborative, although less sensitive method 

of qualifying protein adsorption, as cells attach to artificial surfaces via layers of adsorbed proteins.  

Surfaces were, therefore, first incubated for 2 h with 2.5 mg/mL fibrinogen to more quickly elicit 

any possible cell adhesion responses.  We studied most of the same conditions investigated with 

TIRF with all surface cross-linking being performed overnight (Figure 2.13).  Additionally, controls 

of a PLL-g-PEG coating, a common non-fouling surface, and an RGD-conjugated clickable nanogel 

coating attached with salt without surface cross-linking were seeded.  Despite its inferior resistance 

to protein adsorption as measured by TIRF, the PLL-g-PEG coating completely resisted cell 

adhesion.  Although the lack of correlation between results is surprising, other examples exist of 

PEG surfaces that display relatively high protein adsorption but also resist cell adhesion.(33)  

Adhesion of well-spread cells to the RGD-conjugated coating demonstrates the effectiveness of the 

UV thiol-yne chemistry for the attachment of cysteine-containing peptides and demonstrates a lack 

of toxicity from the leaching of any residual copper.  Again the VS:BSA nanogel coatings performed 

very well with no significant cell adhesion after 1 round of seeding.  However, both the VS:Am 

nanogel coating and the clickable nanogel coating attached with salt without surface cross-linking 

appeared equally cell free, despite the disparities seen with TIRF.  The clickable nanogel coatings 

attached without salt performed noticeably worse, as expected, but displayed some degree of 

resistance to cell adhesion.  Subtle long-term increases in cell adhesion were observed on the 

clickable nanogel coatings attached with salt without surface cross-linking versus the VS:BSA and 

VS:Am nanogel coatings without surface cross-linking, as seen after 5 rounds of cell seeding (Figure 

2.14). 

The surface most drastically affected by surface cross-linking was the clickable nanogel 

coating attached with salt.  Surface cross-linking greatly increased cell adhesion on both clickable 

nanogel surfaces cross-linked with copper in PBS and 1.5 M salt, in contrast to the improvements 

observed with TIRF.  The coating cross-linked with copper in PBS especially demonstrated an 

immediate and complete deterioration of its ability to resist cell adhesion, with a complete 

monolayer of well spread cells forming after 1 seeding.  Surface cross-linking within these coatings 

may have an exaggerated effect because the higher packing density achieved by attachment with salt 

should allow for more cross-linking opportunities and potentially less damage to the surface.  It is 

difficult to determine why the TIRF and cell adhesion results conflict, but is important to note that 
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other proteins found in the media serum that are much smaller in size than fibrinogen may 

contribute to cell adhesion (e.g. vitronectin).  While we did not study the mechanical properties of 

our coatings, stiffer (more cross-linked) hydrogels do not necessarily enhance cell adhesion,(151) and 

so increased stiffness from surface cross-linking would not necessarily account for our observations.  

Protein adsorption has been found to correlate with protein size on PEG grafted surfaces.(35)  A 

potential source of discrepancy between these tests could stem from any proteins that are able to 

diffuse through the nanogel coating and adsorb to the underlying glass during the 1 h fibrinogen 

incubation.  TIRF cannot discriminate between these proteins and those adsorbed to the actual 

nanogel coating itself, while cells would reasonably be expected to adhere only to the latter, given 

the proven surface coverage of the nanogel coatings.  If the majority of the TIRF protein counts 

arise from adsorption to glass, then any steps which impede diffusion, such as denser cross-linking, 

would explain the TIRF observations.  However, this breakdown cannot be ascertained.  

Importantly, the cell adhesion results agreed with TIRF on the superiority of clickable nanogel 

coatings attached with salt versus those attached without salt if the surface cross-linking step was 

omitted.   

Surface cross-linking of the VS:BSA nanogel coating in 1.5 M salt led to adhesion of large 

cell aggregates, consistent with the increase in protein adsorption measured by TIRF.  The VS:Am 

nanogel coating with surface cross-linking in 1.5 M salt, on the other hand, initially maintained its 

resistance for several rounds of cell seeding but then rapidly deteriorated after 5 rounds of seeding 

(Figure 2.14).  The VS:BSA and VS:Am nanogel coatings with surface cross-linking in PBS 

maintained similar resistance to cell adhesion as their counterparts with no surface cross-linking until 

about 9 rounds of seeding, when subtle declines were observed (Figure 2.15).  However, the extent 

of surface cross-linking that actually occurred overnight without salt-induced phase separation may 

be mild.  The VS:BSA nanogel coating has been shown previously to resist fibroblast adhesion for 

up to 3 weeks.(1)   

Few other studies on biocompatible surface coatings have attempted to examine long-term 

cell adhesion.  Most often, surface coatings are evaluated for long-term stability by patterning cells 

onto selectively adhesive regions of the surface and monitoring the long-term pattern integrity, 

which is deteriorated as cells migrate onto and firmly adhere to the protein resistant regions.  Study-

to-study comparisons are difficult as cell type, cell seeding density, media content, substrate material, 

and the various strategies for attaching the chemically similar polymers may affect results.  The 
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dimensions, shapes, and ligands used to promote adhesion in patterned cell studies add additional 

sources of variability, making studies that compare multiple types of coatings valuable.  Still several 

of the best examples of PEG coatings demonstrate superb resistance to fibroblast adhesion for 

multiple weeks similar to our results, but not necessarily for multiple months.  Patterned 

oligo(ethylene glycol) terminated SAMs began to collapse after 1 week,(152) PLL-g-PEG grafted at 

high temperatures maintained pattern integrity for at least 36 days,(147) and PEG-functionalized 

polymer brush coatings resisted twice-a-week cell seedings for 3 weeks after which gradual increases 

in adhesion were observed.(17)   

Finally, we also demonstrated that clickable nanogel solutions could be attached in a UV-free 

process to cyclooctyne functionalized azidosilanated glass, exhibiting comparable resistance to cell 

adhesion after 1 seeding (Figure 2.16).  However, for unknown reasons, these clickable nanogel 

coatings produced saturated counts on TIRF (data not shown).   
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Figure 2.13: Cell adhesion to nanogel coatings after 1 seeding.  Cell adhesion of 3T3 fibroblasts was examined 1 

day after the first seeding at 100,000 cells/cm2 on several surfaces that were incubated with 2.5 mg/mL fibrinogen for 2 

h at 37°C.  Surface cross-linking was allowed overnight on some VS:BSA and VS:Am nanogel coatings before capping 

and implemented with 2 mM copper overnight on some clickable nanogel coatings both at 37 °C.  Additionally, control 

surfaces of PLL-g-PEG adsorbed to glass, and clickable nanogel solutions attached with salt with no surface cross-

linking and conjugated to RGD via a UV thiol-yne reaction were examined.  Approximate percentage of surface 

coverage by adhered cells is indicated in the insets.  The scale bar represents 1 mm. 
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Figure 2.14: Cell adhesion to nanogel coatings after 5 seedings.  Cell adhesion of 3T3 fibroblasts was examined 1 

day after the fifth seeding at 100,000 cells/cm2 on several surfaces that were initially incubated with 2.5 mg/mL 

fibrinogen for 2 h at 37 °C.  Surface cross-linking had been allowed overnight on some VS:BSA and VS:Am nanogel 

coatings before capping and implemented with 2 mM copper overnight on some clickable nanogel coatings both at 37 

°C.  Approximate percentage of surface coverage by adhered cells is indicated in the insets.  The scale bar represents 1 

mm. 
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Figure 2.15: Cell adhesion to nanogel coatings after 9 seedings.  Cell adhesion of 3T3 fibroblasts was examined 1 

day after the ninth seeding at 100,000 cells/cm2 on several surfaces that were initially incubated with 2.5 mg/mL 

fibrinogen for 2 h at 37°C.  Surface cross-linking had been allowed overnight on some VS:BSA and VS:Am nanogel 

coatings before capping and implemented with 2 mM copper overnight on some clickable nanogel coatings both at 37 

°C.  Approximate percentage of surface coverage by adhered cells is indicated in the insets.  The scale bar represents 1 

mm. 
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Figure 2.16: Cell adhesion to clickable nanogel coatings attached via CuAAC and SPAAC.  Cell adhesion of 3T3 

fibroblasts was examined 1 day after the initial seeding at 100,000 cells/cm2 after incubation with 2.5 mg/mL fibrinogen 

for 2 h at 37 °C.  Surfaces include clickable nanogel coatings attached with salt via: (A) SPAAC to a PEG-cycloctyne 

interface on azidosilane, or (B) UV thiol-yne to mercaptosilane, both without surface cross-linking.  The attachment 

chemistries appear to perform comparably in terms of cell adhesion.  The scale bar represents 1 mm. 
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2.4 Conclusion 
 

We have shown click chemistry to be a useful tool in the facile synthesis and attachment of 

100% PEG nanogel coatings.  Particularly, fabrication of nanogel solutions by CuAAC enabled 

attachment to surfaces in the phase-separated state without risk of bulk gelation.  The increased 

nanogel surface density resulted in greatly improved resistance to protein adsorption by TIRF.  The 

additional step of surface cross-linking was also easily performed with CuAAC and showed that 

higher cross-linking densities provide modest improvements in resistance to fibrinogen adsorption, 

but negatively impacted resistance to cell adhesion.  These clickable nanogel coatings represent the 

best coatings of 100% PEG that we have examined for short-term protein resistance by TIRF and 

provide new insights into structural properties of coatings that affect the adsorption of proteins.  

The use of clickable functionalities further eliminates any non-specific conjugations to biomolecules 

that might occur through either reaction with insufficiently capped vinyl sulfone groups or 

electrostatic interactions with amine groups.  However, the results further establish that 

PEG/albumin nanogel solutions are superior for producing protein resistant coatings, suggesting 

synergy between the PEG and albumin in resisting protein adsorption and cell adhesion.  Lack of 

long-term resistance to cell adhesion currently precludes these particular PEG nanogel coatings and 

similar surface coatings from in vivo applications, including biosensors and medical implants.  

However, as we have demonstrated significantly lower levels of protein adsorption compared to 

PEG-g-PLL and other previously studied coatings, the nanogel coatings seem to comprise superior 

surfaces for in vitro biological diagnostics or other applications requiring strong short-term resistance 

to protein adsorption. 
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Chapter 3 
 
Patterned Cell Adhesion with PEG Nanogel 
Coatings for the Direct Reprogramming of  
Fibroblasts to Cardiomyocytes 
 

3.1 Introduction 
 

Clinical stem cell treatment of myocardial infarction has been practiced with embryonic stem 

cells (ESCs), mesenchymal stem cells (MSCs), and within the past decade newly discovered cardiac 

stem cells (CSCs) with promising results.(153)  Because of their proliferative potential, however, 

most basic research on cardiomyocyte differentiation has utilized either ESCs or induced pluripotent 

stem cells (iPSCs), resulting in remarkably similar transcription profiles(66) and similar efficiencies of 

cardiomyocyte induction.(154-157)  Reprogramming somatic cells into iPSCs provides obvious 

advantages in cell sourcing over use of ESCs, but now cutting-edge research is finding ways to 

short-cut this pathway altogether and directly reprogram somatic cells to the desired cell type.(158)  

Ieda et al. found that expression of three transcription factors – Gata4, Mef2c, and Tbx5 – was able to 

reprogram cardiac and dermal fibroblasts into functional cardiomyocytes in vivo, beginning at 3 days 

and progressing for several weeks.(155)  More recently, Efe et al. has directly reprogrammed 

fibroblasts to cardiomyocytes by inducing transient expression of Yamanaka factors (Oct4, Sox2, 

Klf4, and c-Myc) along with simultaneous treatment of a JAK-STAT inhibitor to prevent iPSC 

formation, and followed by treatment with cardioinductive media that includes BMP4.(156)  BMP as 

well as TGF-β are paracrine factors secreted by cardiomyocytes that have been found to induce 

cardiogenic differentiation of ESCs.(159)  This protocol produces unstable intermediates that that 

are prohibited from developing into fully pluripotent cells but rather relax into defined cardiac 

progenitors and requires substantially shortened differentiation time compared to using iPSCs.(156)  

It is believed that the earliest steps in any of these reprogramming protocols involves chromatin 

remodeling/unwinding, which precedes transcriptional activation.(160)   
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Differentiation is not only controlled by soluble factor signaling, but by signaling through 

adhesion sites to the extracellular matrix.  In general, stem cells do not readily attach to any substrate 

but must be promoted by functionalization with specific adhesion ligands.(161)  Adhesion molecules 

not only regulate differentiation through direct signaling via cell receptors, but may indirectly 

influence differentiation through effects on cell stiffness, cell shape, cell proliferation, and cell 

migration as well.  Basement membrane components form the earliest extracellular matrix of a 

developing embryo, with laminin expressed at the two-cell stage.  Matrigel, a reconstituted basement 

membrane isolated from mouse sarcoma, has become the most commonly used stem cell substrate 

for both for maintenance of pluripotent stem cells (PSCs) and defined differentiations thereof.  It is 

composed roughly of ~60% laminin, ~30% collagen IV, ~8% entactin, and ~2% other proteins 

(according to product literature) and induces cell-cell contacts and cell polarization unseen on other 

substrates for a variety of cell types.(162)  While Matrigel is an improvement upon the standard of 

mouse embryonic fibroblast (MEF) feeder layers in terms of xenogenic contamination, the mouse 

derived protein matrix is still considered too unsafe for human applications.  Additionally, an 

incomplete and inconsistent profile of Matrigel content, makes precise control and interpretation of 

experiments troublesome.  For these reasons, many researchers have begun to explore chemically 

defined substrates as viable alternatives to Matrigel. 

As the major component of Matrigel, laminin is considered an obvious choice to replace 

Matrigel.  It is a heterotrimeric protein with 15 physiologically relevant combinations of its subunit 

isoform chains that are developmentally regulated.  While laminin is known to specifically support 

the differentiation of neural and pancreatic cells,(163) its role in cardiogenesis is less understood, 

with some evidence showing it may also be necessary to support cardiomyocyte differentiation(164) 

and proper cardiac function,(163) especially during later stages of maturation.(165)   Still others have 

used laminin coatings for the maintenance of pluripotent ESCs.(166)  Studies of recombinant 

laminin isoforms revealed diverse isoform-specific effects on ESCs, from maintenance of ESC self-

renewal and pluripotency (laminin-511) to rapid differentiation (laminin-111, used in this 

study).(167)  Studies of various types of stem cells showed that iPSCs prefer Matrigel over laminin 

for initial attachment, but cell colonies expand better on laminin.(161)  Expression of pluripotency 

markers in this study also indicates that stemness may increase as cells form colonies from single 

cells.  Other major extracellular matrix components include collagen and fibronectin.  Collagen I has 

been shown necessary for cardiomyocyte differentiation,(163) whereas collagen IV (also found at 
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high concentrations in Matrigel) has been shown necessary for the maintenance and expansion of 

cardiac progenitor cells.(168)  Fibronectin has been indicated for differentiation into mesodermal 

and ectodermal lineages,(163) while a growing amount of evidence suggests that vitronectin, which 

shares many of the same integrin receptors as fibronectin,(169) maintains pluripotency and is an 

equally viable alternative to Matrigel for the culture and maintenance of PSCs.(170-172)    

Integrin receptors are the primary means of stem cell and cardiac cell attachment to the 

extracellular matrix but also initiate signaling pathways.  Human ESCs have been found to produce 

all major components of the extracellular matrix (fibronectin, laminin, collagen I, and collagen IV) 

and express the corresponding integrins,(173) with strong expression of integrin subunits for 

laminin (α6β1), fibronectin (α5β1), and vitronectin (αVβ5) detected in both ESCs and iPSCs.(75, 

172)  ESCs adhere well to fibronectin, vitronectin, and Matrigel but poorly to laminin + entactin and 

collagen IV, with only vitronectin and Matrigel able to support self-renewal and maintain 

pluripotency.(173)  The developing heart shows temporal regulation of the extracellular matrix 

content and cellular expression of specific integrins.(174)  Studies have shown that while neonatal 

cardiomyocytes adhere to a variety of extracellular matrix substrates, including laminin, fibronectin, 

and collagens I-IV, adult cardiomyocytes only adhere to laminin and collagen IV,(175) augmenting 

the potential importance of these latter two (or of Matrigel) for promoting cardiomyocyte 

maturation.   

Langer et al. found that treatment of standard polystyrene or polypropylene with specific 

durations of UV/ozone could provide chemically defined surfaces that were optimized for 

adsorption of vitronectin or FBS and able to support routine stem cell culture.(170)  In relatively few 

circumstances, defined synthetic substrates that lack xenogeneic components or recombinant 

proteins altogether have been successfully used for stem cell culture, including poly[2-

(methacryloxy)ethyl dimethyl-(3-sulfopropyl)ammonium hydroxide] (PMEDSAH), which was used 

in combination with chemically defined serum-free medium.(176)  Cell adhesion peptides isolated 

from both vitronectin and bone siaoloprotein were covalently tethered to an acrylate surface cross-

linked with PEG and each was capable of promoting either ESC maintenance or cardiomyocyte 

differentiation when cardiogenic media was applied.(177)  RGD is a conserved tripeptide adhesion 

sequence commonly used in tissue engineering that is found in fibronectin, vitronectin, fibrinogen, 

and other extracellular matrix components.  It is recognized by a number of integrins including all 5 

αV integrins as well as α5β1, α8β1, and αIIbβ3 integrins,(169) with especially strong affinity for β3 
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integrins.(169, 178)  Some research has shown binding of stem cells to RGD induces specific 

lineages of differentiation.  RGD promoted early stages of chondrogenic differentiation of 

mesenchymal stem cells within PEG hydrogels(179) as well as endothelialization over cardiogenesis 

in PEG hydrogels seeded with ESC embryoid bodies.(180)  The latter was speculated to result from 

reduced embryoid body aggregation rather than a direct response to integrin signaling.  Given the 

expansive number of RGD-binding integrins, each with different affinities for RGD, and the 

dynamic expression of integrins in developing cardiac tissue, it is difficult to precisely predict the 

effects of RGD, if any, on cardiomyocyte differentiation.  The abundant evidence supporting 

vitronectin as a substrate for stem cell maintenance, suggests RGD (its sole integrin binding 

sequence) should not promote differentiation.  Hubbell et al. quantified integrin expression in 

mouse ESCs and recapitulated the extracellular matrix with an artificial PEG matrix presenting four 

ligands specific to highly upregulated integrins, including α5β1, αVβ5, α6β1, and α9β1.(75)  Using 

RGD as the ligand specific to the first two integrins, it was found that simultaneous signaling 

through all of the integrins together, but none individually, promoted maintenance of ESC stemness.  

Interestingly, another group found that both α5β1 and α6β1 integrins were found necessary, along 

with BMP4, for mesodermal differentiation of ESCs.(181)  It is important to note, that as laminin is 

capable of binding the α6β1 integrin,(169) the PEG surfaces used in the current study have the 

potential of activating 3 of the 4 integrins isolated for stemness and both integrins necessary for 

mesodermal differentiation, according to these studies.  Thus, overlap clearly exists among integrin 

signaling pathways and it is the cumulative integrated signal that is important to consider. 

Finally, cellular organization can affect differentiation.  For instance, spatial distribution 

within cellular aggregates can affect distributions of cell-cell or cell-extracellular matrix interactions 

as well as gradients of temperature, pH, oxygen, and soluble factors, explaining why modulation of 

embryoid body size has been implicated as an important variable in stem cell maintenance and 

differentiation.(182)  Within a developing embryoid body it is expected to find a heterogeneous 

cellular population including cell types belonging to all three germ layers (endoderm, mesoderm, and 

ectoderm).  Appropriate interactions between these cell types are thought to be important in 

inducing various types of cellular differentiation.  Particularly, cardiogenic tissue relies on inductive 

cues from early endodermic tissue, which forms on the surface of differentiating cellular 

aggregates.(183)  Thus, the surface area to volume ratio of embryoid bodies becomes an obvious 

parameter in stem cell differentiation.  Endodermal tissue is believed to induce cardiac 
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differentiation via TGF-β and FGF protein signaling.  Notably, Matrigel is believed to derive from 

parietal endoderm.(162)  The size of embryoid bodies can be uniformly well controlled by using 

centrifugation of stem cells into spatially defined microwells.(184)  Also, Zandstra et al. used 

patterned 2-dimensional colonies to create uniformly sized embryoid bodies after removal of the cell 

colonies from the surface.(185)  This work found that the diameter of the stem cell colonies biased 

gene expression profiles toward certain lineages before any differentiation protocol had been 

established, with 400 µm embryoid bodies (vs. 200 and 800 µm) most suited for cardiac induction.  

Similarly, frequency of contraction has been found by some to be maximized in aggregates between 

250-300 µm(186), although the proportion of cardiomyocytes in these aggregates is generally found 

to increase with decreasing diameter size.(187)  Additionally, this study found that all size controlled 

embryoid bodies outperformed spontaneously formed embryoid bodies in terms of percentage of 

cardiomyocytes and percentage of contracting embryoid bodies.(187)     

An array of traditional micropatterning techniques has been applied to the patterning of 

surfaces for cell adhesion, including: microcontact printing, liquid phase printing, microfluidic 

patterning, photolithography coupled with molecular assembly or plasma polymerization, 

photoimmobilization or photochemistry patterning, stencil assisted patterning, ink jet patterning, 

and laser guided writing.(188)  Surface patterning of selectively adhesive regions on cell resistant 

coatings has been well practiced, usually with microcontact printing or photonic patterning.  PLL-g-

PEG is a common choice(189, 190) for a non-fouling background and was shown to maintain 

pattern integrity of fibroblasts for up to 13 days, with pattern degradation believed to be a result of 

polymer desorption or exchange with serum proteins and not of cellular processes.(191)  SAMs 

patterned with mannitol groups surprisingly outperformed SAMs patterned with tri(ethylene glycols) 

in terms of long-term resistance to fibroblast adhesion, by maintaining pattern integrity for 25 

days.(152)  Stem cells have been seeded via adhesion molecules patterned directly onto tissue culture 

polystyrene, with the interstitial space passivated through incubation with pluronics, however long-

term culture and/or differentiation of these cells has not been tested.(185, 192)  Human PSCs have 

also been seeded onto photo-chemically patterned polystyrene, which showed superior scale-up 

capabilities over MEF feeder systems due to cellular organization.(170)  More commonly, cells are 

patterned within microwells of a thin 3-dimensional hydrogel yielding uniformly sized embryoid 

bodies for differentiation rather than in monolayer clusters.(182)  We have found few examples for 

the study of stem cell differentiation from 3-dimensional embryoid bodies formed on 2-
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dimensionally patterned surfaces.  Nakazawa et al. patterned 200 µm spots of gelatin onto platinum 

coated glass chips and passivated the interspatial area with adsorption of PEG-thiol.  They found 

that embryoid bodies gradually formed from mouse ESCs grown on these patterns and displayed 

significantly higher proliferation rates and higher expression of endoderm and mesoderm markers 

with lower expression of pluripotency markers after 7 days of culture, compared to cells seeded in 

microwells.(193)  Additionally, RGD has been patterned onto PEG hydrogels for the differentiation 

of mesenchymal stem cells by polymerizing the PEG around islands of gold patterned onto glass via 

photolithography, then peeling off the hydrogel/gold and attaching RGD via a gold-thiol bond.(194, 

195)  It is reasonable to assume that many of the commonplace surface passivating strategies used in 

these patterning schemes are sufficient for maintaining short-term pattern integrity during routine 

stem cell maintenance but may not hold up for the long term culture necessary for cellular 

differentiation, especially if target cell types display more robust adhesion and migration.     

Direct reprogramming offers distinct advantages over differentiation of PSCs, including 

shorter paths to differentiation and less risk of teratoma formation.(153)  However, as this process 

begins with the monolayer culturing of fibroblasts on 2-dimensional substrates rather than with the 

formation of 3-dimensional embryoid bodies from stem cells, cellular organization has not been 

investigated with these protocols.  It is uncertain whether the lessons learned with regards to 

embryoid body size apply to the spontaneously formed aggregates that arise during direct 

reprogramming to cardiomyocytes.   Because we have measured superior protein resistance of our 

PEG VS:BSA nanogel coatings vs. other preparations, we hypothesized that they possess superior 

potential for maintaining pattern integrity over the commonplace strategies explored thus far in stem 

cell patterning.  By implementing a simple stencil assisted patterning approach with a rubber stamp 

(referred to herein as stamping), we were able to either selectively pattern the nanogel coating itself 

onto glass substrates or selectively pattern adhesion molecules onto our nanogel coatings.  This 

allowed us to pattern fibroblasts into discrete colonies that would hopefully force formation of size-

defined cell aggregates during reprogramming.  We performed direct reprogramming of MEFs to 

cardiomyocytes on both patterned and non-patterned substrates, including Matrigel, laminin, and 

PEG functionalized with laminin and RGD (PEG-laminin/RGD), all of which were attached to 

mercaptosilanated glass.  Pattern integrity was either not maintained well enough for the 18 day 

experiment to draw strong conclusions on the value of patterning or was largely negated by drastic 

loss of cell aggregates that did remain confined but eventually detached from surfaces after over-
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proliferation.  However, the surviving patterned aggregates showed no indication of superior 

differentiation over the many spontaneously formed aggregates.  Significant differences were 

noticed, though, between the 3 substrates, with laminin demonstrating superior performance in the 

number of contracting patches and staining for sarcomeric α-actinin, followed by PEG-

laminin/RGD, and then Matrigel.   

 

3.2 Materials and Methods 
 

3.2.1 Pattern Stamping 
 

All reagents were purchase from Sigma Aldrich (St. Louis, MO, USA) unless otherwise 

noted.  All surfaces were fabricated on 12 mm round glass coverslips (Ted Pella Inc., Redding, CA, 

USA) that were mercaptosilanated as described previously.(1)  Patterned surfaces were created via 

different stamping schemes (discussed in Results) all of which utilized PEG VS:BSA nanogel 

solutions for passivation of selected surface regions.  Nanogel solutions were fabricated, stored, and 

covalently coupled to mercaptosilanated glass as described before,(1) which entails incubating the 

nanogel solutions (100 mg/mL) for 1 h at 37 °C on top of the mercaptosilanated glass.  Stamping 

was implemented with 12 mm round rubber stamps (rubberstamps.net, Bettendorf, IA, USA) with 

protruding cylindrical posts of 500 µm diameters.  Stamps were cleaned with ethanol and water 

between each application, then coated with 2 mg/mL PEG-g-PLL for 1 h at room temperature to 

make the rubber surface hydrophilic.  After rinsing in PBS, the stamps were inverted on top of the 

glass coverslips and the pair was sandwiched between two glass slides that were securely clamped 

together with two standard office-supply binder clips.  Various solutions were applied to the 

interstitial space between the coverslip and rubber stamp for patterning by careful pipetting and 

incubated for appropriate times at 37 °C.  These solutions were removed by pipetting 1 mL of PBS 

through the interstitial space before removal of the binder clips and stamp from the coverslip 

surface.  Coverslips were placed in 24-well plates and washed again with PBS.  Surfaces were further 

functionalized according to normal protocols by incubating solutions over the entire coverslip 

surface.  The ability of various stamping protocols to pattern selectively adhesive regions was 

evaluated by seeding the surfaces with 40,000 3T3 fibroblasts/cm2 and imaging the cell laden 

surfaces with phase contrast microscopy the following day after gentle washing.  Cells were cultured 
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according to standard protocols in Dulbecco’s Modified Eagle Medium (DMEM; Life Technologies, 

Grand Island, NY, USA) supplemented with 10% fetal bovine serum (FBS; Atlanta Biological, 

Lawrenceville, GA, USA) and 1% Antibiotic-Antimycotic (ABAM; Life Technologies) and pattern 

integrity was monitored over time by microscopy.  

3.2.2 Direct Reprogramming 
 

Mouse embryonic fibroblasts (MEFs) were reprogrammed to cardiomyocytes according to a 

protocol modified from Efe et al.(156)  MEFs were isolated in a previous study from day 13.5 

embryos of mice homozygous for doxycycline-inducible OSKM factors.(196)  Cells were seeded at 

3,600 MEFs/cm2 (normalized to adhesion area) in DMEM + 10% FBS + 1% ABAM within 24-well 

plates containing functionalized surfaces prepared on 12 mm glass coverslips (Day -1).  

Reprogramming began at day 0 and was executed via timed stages of media treatments.(196)  Each 

well was provided 1 mL of media that was changed daily throughout the protocol.  All media 

components were purchased from Invitrogen (Life Technologies) unless otherwise noted.  From 

days 0-5, cells were reprogrammed toward incomplete pluripotency by induction of Yamanaka 

factors with doxycycline and inhibition of iPSC generation via JAK-STAT inhibition.  Media 

consisted of knockout DMEM (KO DMEM) + 2 µg/mL doxycycline (Sigma) + 0.5 µM JAK 

inhibitor I (JI1, EMD) + 15% embryonic stem cell qualified FBS (ES-FBS) + 5% knockout serum 

replacement (KSR) + 0.1 mM β-mercaptoethanol, + 1% Glutamax + 1% non-essential amino acids 

+ 1% embryonic stem cell qualified nucleosides (Millipore).  From days 6-8, doxycycline was 

removed, ES-FBS concentration was reduced to 1%, and KSR concentration was increased to 14% 

(all other components remained the same).  From days 9-14, cardiogenesis was initiated with 

chemically defined media (CDM) that included BMP4.  Media consisted of RMPI-1640 + 20 ng/mL 

BMP4 (Stemgent) + 0.5x N2 + 1x B27 w/o vitamin A + 0.05% BSA fraction V + 0.1 mM β-

mercaptoethanol.  From days 15-18, CDM was applied without BMP4.    

3.2.3 Surfaces for Reprogramming   
 

Reprogramming was conducted on patterned and non-patterned surfaces that included 

substrates of: laminin adsorbed to mercaptosilane, Matrigel adsorbed to mercaptosilane, and PEG 

VS:BSA nanogels (on mercaptosilane) functionalized with laminin and RGD.  Matrigel (BD 

Biosciences) was applied at 11.4 µg/cm2 by diluting in DMEM and applying 200 µL to each well for 
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1 h at room temperature according to product specifications.  Laminin-111 (Sigma) was applied to 

both glass and nanogel coatings at a surface density of 57 µg/cm2 by diluting in PBS and applying 

200 µL to each coverslip, allowing overnight incubation at 37 °C for either adsorption or covalent 

conjugation via protein amines with vinyl sulfones.  After laminin conjugation, RGD (Seq: Ac-

GCYRGDSPG-NH2; Genscript) was conjugated at 44 nmol/cm2 to nanogel coatings via cysteine 

thiols to vinyl sulfones, by diluting in PBS and applying 200 µL to each coverslip for 1 h at 37 °C.  

Patterned laminin and Matrigel surfaces were capped with 500 µL of 200 mg/mL four-arm PEG-

amine in PBS for 3 h at 37 °C before incubation with laminin or Matrigel.  Functionalized PEG 

nanogel surfaces were capped overnight with the same, except after laminin and RGD conjugation. 

3.2.4 Contracting Patch Quantification 
 

Samples were examined under 4x and 10x objective at days 14, 16, and 18 of reprogramming 

to find and count patches of cells that were synchronously contracting.  Approximate boundaries of 

the contracting patches were outlined on image files and analyzed by ImageJ to determine the areas of 

the contracting patches.  

3.2.5 Immunocytochemistry Analysis 
   

On day 18 of reprogramming, cells were fixed with 500 µL/well of 4% paraformaldehyde 

for 15 min and washed 3x 5 min with PBS.  Cells were then permeabilized for 30 min at room 

temperature using 300 µL/well of a 1:1000 dilution of Triton-X 100 in blocking solution (10% goat 

serum + 1% BSA in PBS).  Primary antibody for sarcomeric α-actinin (mouse IgG; Sigma) was 

diluted at 1:1600 in blocking solution and applied at 300 µL/well overnight at 4 °C.  After washing 

3x 5 min with PBS, secondary antibody (Alexa Fluor 594 goat anti-mouse; Invitrogen) was next 

diluted at 1:1000 in blocking solution and applied at 300 µL/well for 1 h at room temperature.  Cells 

were washed again 3x 5 min with PBS and finally cell nuclei were stained with DAPI (100 ng/mL in 

PBS) at 300 µL/well for 30 min at room temperature.  Samples were stored under PBS at 4° C in the 

dark.  Fluorescent images taken at 4x and 10x objective were contrast enhanced and converted to 

binary images in MATLAB before calculating the surface area staining positive for each α-actinin 

and DAPI.  Positive staining areas were tallied separately for each stain on each coverslip and the 

cumulative ratio of α-actinin/DAPI was calculated. 
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3.2.6 Statistics 
 

All statistical significance (p < 0.05) was calculated in MATLAB using ANOVA with a post-

hoc Tukey-Kramer test.  All data are presented as mean ± standard deviation, with 3 samples for 

each condition examined during reprogramming. 

 

3.3 Results 
 

3.3.1 Preliminary Optimization of Patterning Techniques 
 

We examined two general schemes for the fabrication of patterned cell substrates using our 

PEG nanogel coatings as passivating backgrounds (Figure 3.1).  In Scheme I, we conjugated the 

nanogel solution to mercaptosilanated glass coverslips under stamping.  This protocol left regions of 

silanated glass protected from PEG conjugation beneath the stamp posts.  After removal of the 

stamp, the vinyl sulfone groups were capped and the surface was incubated in solutions of adhesion 

proteins, with the patterned nanogels preventing adsorption across the surface except for exposed 

spots of mercaptosilanated glass created by the stamp.  In Scheme II, we instead conjugated the 

nanogel solution across the entire mercaptosilanated glass surface prior to stamping.  The reactive 

vinyl sulfone groups were selectively capped to create a patterned surface by incubating the capping 

solutions under stamping on the nanogel coated surface.  After stamping, selective adhesive spots 

were created by incubating the surface in a solution of adhesive proteins or peptides to covalently 

conjugate to the vinyl sulfones protected from capping under the stamp posts.   

Several molecules were considered to serve as vinyl sulfone capping reagents for the creation 

of patterned adhesion areas.  We tested the resistance of capped surfaces to resisting RGD 

conjugation (Figure 3.2), as RGD will be incubated over entire surfaces of some samples (Scheme 

II), including the passivated background.  However, several of our standard choices including BSA 

and cysteine showed non-specific cell adhesion over the entire surface, suggesting that RGD was 

inadvertently conjugated to the capped passivating background.  Both BSA and cysteine (if 

conjugated via its amine group via the slower, less probable reaction) possess free thiols which most 

likely formed disulfide bonds with the cysteine-containing RGD peptide.  However, PEG-amine 

showed no significant fibroblast adhesion and was comparable to nanogel coatings incubated with 
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fibrinogen rather than RGD.  Given this result we also evaluated the amino molecule tris as a 

potential capping agent, given its high water solubility (Figure 3.3).  However, even without 

adsorption of fibrinogen to the surface, a solution of 500 mg/mL tris was unable to achieve 

adequate capping and resistance to fibroblast adhesion within as short of a time frame as PEG-

amine.   

Scheme I was tested under several conditions, including adsorption of several different 

adhesion proteins.  We found the best result when capping the nanogel background with 50 mg/mL 

cysteine for 2 h at 37 °C and then incubating the surface in a 500 µL solution of 2.5 mg/mL 

fibrinogen for 2 h at 37 °C.  This particular patterned surface was seeded with fibroblasts and 

maintained pattern integrity for up to around 53 days when cell migration was observed from the 

originally stamped areas (Figure 3.4).  Two other samples were stamped with this same strategy, but 

capped with four-arm PEG-amine for 1 h at 37 °C, and then incubated with either 15 µg laminin 

overnight at 37 °C (Figure 3.5) or ~24 µg Matrigel for 1 h at 37 °C (Figure 3.6).  Although both 

these samples showed comparable and promising patterning after initial cell seeding, the long-term 

pattern integrity did not hold up as well as the previous sample with significant cell migration and 

pattern collapse emerging between 6 and 10 days.  It is presently uncertain, whether the differences 

between the performance of the fibrinogen sample and the laminin or Matrigel samples stems from 

the difference in capping reagent or from the reactivity or adsorption of the adhesion protein 

solution with the passivated nanogel background.  Additionally, differences in the volume of media 

and frequency of media changes may have contributed to the aggressiveness of the cells in terms of 

their proliferation and migration.  We were able to visualize the nanogel coating formed via Scheme 

I, by fluorescently labeling the surface with an amino-reactive dye, DyLight 488, after the stamping 

step and prior to any capping or protein incubation (Figure 3.7).  These images revealed a well 

formed pattern (Figure 3.7 A) with minor damage in the form of scrapes appearing consistently 

below many of the patterned spots (Figure 3.7A and 3.7D).  Most spots in the center region of the 

coverslip formed crisp edges with the nanogel coating (Figure 3.7B) while many spots near the 

border of the coverslip seem to show spots with rough edges surrounded by damaged nanogel 

coating (Figure 3.7C). 
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Figure 3.1: Strategies for patterning cell adhesion with PEG nanogel coatings. Surfaces were patterned for cell 

adhesion using (A) a 12 mm diameter rubber stamp that possessed 500 µm posts by (B) clamping the stamp to 12 mm 

glass coverslips and applying solutions to the interstitial space between the two with a pipet.  (C) Patterns of adhesive 

molecules were fabricated with stamping via one of two schemes.  In Scheme I, nanogel solutions (purple) were 

conjugated to mercaptosilanated glass under stamping, followed by whole surface incubations with capping solutions 

(yellow) to quench vinyl sulfones and then whole surface incubations with protein solutions (red) to create adhesive 

spots by adsorption to the unprotected mercaptosilanated glass.  In Scheme II, the entire mercaptosilanated glass was 

first coated with nanogel solution (purple) before vinyl sulfones were selectively quenched with application of capping 

solutions (yellow) under stamping.  The entire surface was then incubated with protein/peptide solutions (red) to allow 

covalent functionalization of the nanogel coating in spots with uncapped vinyl sulfones.    
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Figure 3.2: Cell adhesion on nanogel coatings capped with various molecules.  Cell adhesion of 3T3 fibroblasts 

was examined on VS:BSA nanogel coatings capped at 37 °C with (A) 200 mg/mL BSA overnight, (B) 50 mg/mL 

cysteine for 1 h, or (C) 200 mg/mL four-arm PEG-amine for 1 h, all of which were then incubated with either 100 nmol 

RGD for 1 h (top) or 1.25 mg fibrinogen for 2 h (bottom) at 37 °C.  Scale bar represents 1 mm. 
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Figure 3.3. Cell adhesion on tris-capped nanogel coatings.  Cell adhesion of 3T3 fibroblasts was examined on 

VS:BSA nanogel coatings capped at 37 °C with 500 µL of 500 mg/mL tris for (A) 3 h or (B) overnight.  Scale bar 

represents 1 mm. 
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Figure 3.4: Pattern integrity of cells adhered via patterned fibrinogen adsorption.  Pattern integrity of 3T3 

fibroblasts was examined for up to 53 days on a surface patterned via Scheme I, in which the mercaptosilanated 

coverslip was incubated with VS:BSA nanogel solution under stamping and then capped with 50 mg/mL cysteine for 2 h 

at 37 °C and incubated with 2.5 mg/mL fibrinogen for 2 h at 37 °C.  Scale bar represents 1 mm. 
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Figure 3.5: Pattern integrity of cells adhered via patterned laminin adsorption.  Pattern integrity of 3T3 fibroblasts 

was examined for up to 10 days on a surface patterned via Scheme I, in which the mercaptosilanated coverslip was 

incubated with VS:BSA nanogel solution under stamping and then capped with 200 mg/mL PEG-amine for 1 h at 37 

°C and incubated with 15 µg laminin overnight at 37 °C.  Scale bar represents 1 mm. 
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Figure 3.6: Pattern integrity of cells adhered via patterned Matrigel adsorption.  Pattern integrity of 3T3 

fibroblasts was examined for up to 10 days on a surface patterned via Scheme I, in which the mercaptosilanated 

coverslip was incubated with VS:BSA nanogel solution under stamping and then capped with 200 mg/mL PEG-amine 

for 1 h at 37 °C and incubated with ~24 µg Matrigel for 1 h at room temperature.  Scale bar represents 1 mm. 
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Figure 3.7: Fluorescent imaging of a patterned nanogel coating.  Fluorescent labeling with amino-reactive DyLight 

488 of a VS:BSA nanogel coating fabricated via Scheme I without capping or subsequent protein incubation shows 

uncoated mercaptosilane spots under (A) 4x objective or (B, C, D) 10x objective.  Spots found near the center of the 

coverslip (B) seem to possess more defined edges than some found near the border of the coverslip (C).  Scrape-like 

marks may also be consistently found beneath many of the patterned spots (A, D).  Scale bars represent 1 mm (A) or 

500 µm (B-D).  
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The volume of liquid contained on one 12 mm coverslip beneath the rubber stamp was 

approximated to be 55 µL, which is notably less than the 150 µL incubated on top of the surfaces 

for standard nanogel coating procedure or the 500 µL incubated with the nanogel coated coverslip 

to cap residual vinyl sulfone groups (typically performed within a 24 well plate).  The reduced 

volume seems to have a pronounced effect on the efficacy of the capping solution when using 

Scheme II, compared to non-patterned nanogel coatings capped with the full 500 µL for the same 

durations of time.  We tested this hypothesis by replacing the 200 mg/mL PEG-amine capping 

solution within the stamped coating every 5 min during a 1 h incubation at 37 °C and noticed some 

improvement in pattern integrity, with less cell adhesion observed in the interstitial space after 

incubation with 50 nmol RGD (Figure 3.8).  Interestingly, the pattern generated using Scheme II 

with repetitive capping showed pattern collapse at around the same time frame as the laminin and 

Matrigel patterns generated with Scheme I, between 6 and 9 days (Figure 3.9).   

When applying stamping to nanogel coatings as in Scheme II, the effect of the high 

mechanical pressure on the thin nanogel coating must be considered.  To study these effects we 

performed sham stampings in which nanogel coatings were clamped together with the stamps and 

filled with PBS to preserve hydration.  The stamps and blinder clips were removed at several time 

points and the entire surface was then capped overnight per normal with 500 µL of 200 mg/mL 

PEG-amine, such that the entire surface should resist cell adhesion.  However, after seeding 3T3 

fibroblasts on the surfaces it was revealed that the areas beneath the rubber stamp showed 

significant cell adhesion if applied overnight and some cell adhesion at lesser time points (Figure 

3.10).  Interestingly, the nanogel coating subjected to 1 h stamping showed more severe cell 

adhesion than that subjected to 3 h stamping, suggesting that not only the duration of stamping but 

the amount of pressure applied by the binder clips could influence the results.  The pressure is not 

necessarily normalized as the binder clips are all manually adjusted to fit the coverslip and stamp set 

up.  All binder clips were afterwards adjusted to attempt to provide the minimal pressure necessary 

to secure the stamps to the nanogel coated coverslips.  These results also indicate the value in 

optimizing stamping times such that application of capping solutions is reduced to the minimal time 

required to adequately quench vinyl sulfones.  Rubber stamps became noticeably stuck to the glass 

coverslips after overnight applications, requiring significant prying force to remove them from the 

surface.  Such a phenomenon was rarely observed on 1 h applications, suggesting that indeed the 

application duration and not just the amount of pressure impacts the surface.  The exact affect the 
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stamping has on the surface is unclear but could include adsorption of the PEG to the stamp and 

subsequent removal/breakage from the coverslip surface or dehydration of the hydrogel network 

beneath the stamp.  The detrimental effect of dehydration was demonstrated on a nanogel surface 

which was allowed to dry overnight at 37 °C and was then rehydrated, capped, and seeded with 

fibroblasts (Figure 3.10D).  The extensive fibroblast adhesion implies that the dehydration has an 

irreversible damaging effect to the PEG network that diminishes its innate protein resistive 

properties.  These findings also indicate that the potential to implement a microcontact printing 

protocol on the nanogel surfaces might prove difficult, considering these protocols are normally 

performed by stamping dried proteins onto relatively dry surfaces, although PEG hydrogels have 

been used as substrates.(197) 

As laminin has been shown important for cardiomyocyte differentiation, we explored the 

potential of using it as the primary adhesion molecule on our nanogel coatings by covalently 

coupling it to the vinyl sulfones.  We used a slightly higher amount of laminin (25 µg/sample), 

compared to what is found in Matrigel coatings (15 µg/sample) of the same area and similar studies 

that have adsorbed laminin to TCPS.(196)  We found that laminin was not able to promote 

fibroblast adhesion on VS:BSA nanogel coatings (Figure 3.11A-D) and only promoted moderate 

fibroblast adhesion on VS:Am nanogel coatings (Figure 3.11E-H) if residual vinyl sulfone groups 

were left uncapped after laminin conjugation.  The latter suggests a synergy between the covalently 

attached laminin and serum proteins conjugated to the residual vinyl sulfones, neither of which 

promoted cell adhesion alone.   

 

 

 

 

70 
 



 

 
 

Figure 3.8: Patterned cell adhesion on RGD-functionalized nanogel coatings after repetitive capping.  Pattern 

integrity of 3T3 fibroblasts was examined on VS:BSA nanogel coatings patterned via Scheme II, by capping with 200 

mg/mL PEG-amine for 1 h at 37 °C under stamping and then incubating with 50 nmol RGD overnight at 37 °C.  The 

capping solution was replaced every 5 min (12 times) in (A) but not in (B).  Scale bar represents 1 mm. 
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Figure 3.9: Pattern integrity of cells adhered via patterned RGD-functionalization of nanogel coatings.  Pattern 

integrity of 3T3 fibroblasts was examined for up to 9 days on a VS:BSA nanogel coating patterned via Scheme II, after 

being capped under stamping with 12 x 5 min incubations (1 h total) of 200 mg/mL PEG-amine at 37 °C and then 

incubated with 50 nmol RGD overnight at 37 °C.  Scale bar represents 1 mm. 
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Figure 3.10: Cell adhesion on nanogel coatings after sham stamping. Cell adhesion of 3T3 fibroblasts was 

examined on VS:BSA nanogel coatings that underwent sham stamping under PBS (A) overnight, (B) for 3 h, or (C) for 1 

h before the entire surface was capped overnight at 37 °C with 200 mg/mL PEG-amine.  The VS:BSA nanogel coating 

in (D) was dried overnight, rehydrated in PBS for 3 h, and then capped overnight with 50 mg/mL BSA, all at 37 °C.  

Scale bar represents 1 mm.  
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Figure 3.11: Cell adhesion to laminin-functionalized nanogel coatings.  Cell adhesion of MEFs was examined on 

(A-D) VS:BSA and (E-H) VS:Am PEG nanogel coatings that were first incubated with (A, C, E G) 25 µg laminin or (B, 

D, F, H) PBS and then incubated with (A, B) 200 mg/mL BSA, (E, F) 200 mg/mL PEG-amine or (C, D, G, H) PBS 

overnight at 37 °C.  Scale bar represents 1 mm. 
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Because laminin was not capable of supporting fibroblast adhesion, we supplemented 

laminin in our direct reprogramming protocol with RGD, which has been used to provide robust 

adhesion for several cell types, including fibroblasts and cardiomyocytes.(198)  A serial dilution of 

RGD incubated on VS:BSA nanogel coatings for 1 h at 37 °C showed a clear concentration 

dependent adhesion response of 3T3 fibroblasts in both cell density and cell spreading (Figure 

3.12A).  Maximal cell adhesion and spreading seems to be maintained with as little as 50 nmol RGD, 

with noticeable reductions beginning to appear between 25 and 12.5 nmol RGD.  Using dry mass 

measurement previously obtained with OWLS on the VS:BSA nanogel coatings,(1) we calculated a 

theoretical vinyl sulfone content of 118 pmol per coverslip, although a large percentage of those will 

be reacted.  This mass would correspond to a 2.66% (w/v) PEG hydrogel coating of 100 nm 

thickness, which is near the lower threshold of the PEG content that is reasonably required to form 

a bulk hydrogel.  Clearly the RGD content required to achieve maximal cell adhesion (25 nmol) is 

much higher than what would be theoretically expected, considering these values are orders of 

magnitude above what should saturate the remaining vinyl sulfones.  Because all free RGD 

molecules should have ample time to covalently react to the surface within the 1 h incubation 

period, we assume that disulfide bonding within the RGD solution drastically lowers the 

concentration of available thiols for surface reaction.  We also tested the adhesion response of 

MEFs to a dilution of RGD and found a similar response with a drop-off in adhesion between 25 

and 12.5 nmol RGD (Figure 3.12B).  To assure adequate adhesion for our reprogramming 

experiments we incubated nanogel coatings with 50 nmol RGD for 1h at 37 °C after laminin 

conjugation.    

3.3.2 Non-Patterned and Patterned Surfaces for Direct 
Reprogramming 

 
We used the stamping schemes described above to create patterned surfaces with three 

different adhesive substrates: laminin adsorbed to mercaptosilanated glass (laminin), Matrigel 

adsorbed to mercaptosilanated glass (Matrigel), and PEG-functionalized with laminin and RGD in 

the form of our VS:BSA nanogel coating (PEG-laminin/RGD).  The laminin and Matrigel patterned 

surfaces were created using Scheme I, while the PEG-laminin/RGD patterned surface was created 

using Scheme II.  Surfaces were seeded with MEFs for reprogramming to cardiomyocytes and 

photographed every 3 days.  Representative images of each sample are shown in Figures 3.13 (days 

3, 6, 9) and 3.14 (days 12, 15).  Because cells were seeded according to established protocols at a 
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much lower density than the preliminary experiments (3,600 vs. 40,000 cells/cm2), signs of 

patterning did not emerge until imaging on day 3 when cells became more confluent.   

Surprisingly, the laminin and especially the Matrigel patterns were not as well-defined as 

those seen in preliminary experiments seeded with 3T3 fibroblasts (Figures 3.5 and 3.6).  Although 

the stamped regions are detectable on most samples, the edges are loosely defined and a number of 

cells are adhered within the interstitial spaces.  The patterned PEG-laminin/RGD surfaces, on the 

other hand, exhibit well defined and confined circular cell patches.  While any semblance of a 

pattern is lost on the patterned laminin and patterned Matrigel samples by day 9, the patterned 

PEG-laminin/RGD surfaces maintain good integrity until day 9 and show gradual but incomplete 

degradation afterwards through day 18.  However, while defined stamping boundaries were present 

across the patterned PEG-laminin/RGD surfaces, many of the patches never filled to confluency 

via cell proliferation.  Additionally, beginning at day 9 we continually observed decreasing numbers 

of cell aggregates on the patterned PEG-laminin/RGD surfaces, indicating that the aggregates can 

become detached if they outgrow their adhesion areas.  While the patterned PEG-laminin/RGD 

surfaces and parts of the patterned laminin and Matrigel surfaces began showing 3-dimensional cell 

growth evidenced by the phase-dark aggregates at day 9, the non-patterned surfaces mostly did not 

begin showing spontaneous cell aggregation until day 12. 

Low objective micrographs of the whole surfaces on day 15 (Figure 3.15) depict areas of 

high cell density (phase bright) across the various samples and confirm that pattern integrity was 

best maintained on the patterned PEG-laminin/RGD surfaces relative to the patterned laminin and 

Matrigel surfaces.  They also show, however, that only several of identifiable patterned spots on the 

patterned PEG-laminin/RGD surfaces have grown into larger more dense aggregates, confirming 

that most of the patterned spots either did not fill in or peeled off.  These micrographs furthermore 

reveal that the non-patterned laminin surfaces promoted substantially more robust cell proliferation 

compared to other conditions, as seen by the expansive coverage of the surfaces by dense and large 

cell aggregates.   
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3.3.3 Quantification of Functional Contraction in Differentiated 

Cardiomyocytes 
 

The first sign of cardiomyocyte contraction was detected at day 13.  The number of 

synchronized beating patches was quantified by visual examination on days 14, 16 and 18 (Figure 

3.16A).  The number of contracting patches continually increased on virtually all samples until day 

18 when the cells were fixed.  Counts on all non-patterned surfaces more than doubled between 

days 16 and 18 suggesting significant maturation of cardiomyocytes during this time frame.  All 

substrates presented more contracting patches on their non-patterned surfaces compared to their 

patterned counterparts and on none of the surfaces did the patterned substrates display earlier signs 

of functional contraction.  Because the patterned samples did not maintain pattern integrity 

throughout the entire 18 days, it is not appropriate to normalize this data to the original adhesion 

area of the patterned surfaces.  The non-patterned laminin and PEG-laminin/RGD surfaces 

displayed significantly higher numbers of contracting patches relative to the other surfaces 

examined.  These results were mimicked by quantifications of the cumulative surface areas of the 

contracting patches (Figure 3.16B), except that the non-patterned PEG-laminin/RGD surfaces 

exhibited a higher proportion of contracting surface area than the non-patterned laminin surfaces, 

despite having a lower count of contracting patches.   

When we examine the average surface area of all the individual contracting patches for each 

condition (Figure 3.17A), we see that the contracting patches displayed on non-patterned PEG are 

on average larger than those on all other surfaces, although not significantly so given the large size 

distribution evidenced by the standard deviation.  A box plot of this data reveals that several 

extremely large contracting patches on the non-patterned PEG-laminin/RGD, the size of which is 

not seen on any other conditions, skewed its average towards larger dimensions (Figure 3.17B).  The 

non-patterned laminin also displayed some contracting patches that were larger than other 

conditions, but is probably skewed downward by many tiny patches seen contracting within the cell 

monolayers (Figure 3.18).  Unlike large 3-dimensional aggregates, smaller patches of cardiomyocytes 

are known to be less contractile(187, 199) and mature cardiomyocytes outside of large 3-dimensional 

aggregates may be less likely to form large synchronized contractions because of strong cellular 

adhesions to the laminin functionalized surface.  One relatively large contracting patch was also 

found on the patterned PEG-laminin/RGD surface, which seemed to skew the average size given 

the relatively low counts on these samples.   
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Figure 3.12: Cell adhesion to RGD-functionalized nanogel coatings.  The extent of cell adhesion of (A) 3T3 

fibroblasts and (B) MEFs on RGD-functionalized VS:BSA nanogels was examined across serial dilutions of RGD 

ranging from (A) 1.063-50 nmol/coverslip or (B) 12.5-100 nmol/coverslip.  Samples were capped after RGD 

conjugation with overnight incubations of 200 mg/mL BSA at 37 °C.  Scale bars represents 1 mm. 
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Figure 3.13: Cell adhesion at days 6, 9, and 12 of reprogramming.  Representative micrographs from each of 3 

samples for non-patterned and patterned laminin, Matrigel, and PEG-laminin/RGD surfaces show cell density and 

pattern integrity at days 3, 6, and 9 of the 18-day reprogramming protocol.  Scale bars represent 1 mm. 
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Figure 3.14: Cell adhesion at days 12 and 15 of reprogramming.  Representative micrographs from each of 3 

samples for non-patterned and patterned laminin, Matrigel, and PEG-laminin/RGD surfaces show cell density and 

pattern integrity at days 12 and 15 of the 18-day reprogramming protocol.  Scale bars represent 1 mm. 
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Figure 3.15:  Low objective micrographs of cell adhesion at day 15 of reprogramming.  Low objective 

micrographs of all 3 samples for non-patterned and patterned laminin, Matrigel, and PEG-laminin/RGD surfaces show 

cell density and pattern integrity across the entire 12 mm coverslips at day 15 of the 18-day reprogramming protocol. 
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Figure 3.16: Quantified cardiomyocyte contraction during reprogramming.  The (A) number of contracting 

patches and (B) cumulative surface area of contracting patches on each coverslip was quantified at days 14, 16, and 18 of 

reprogramming under the microscope.  Statistical significance (p < 0.05) was determined for day 18 relative to non-

patterned laminin (*) and non-patterned PEG-laminin/RGD (#).  Data are presented as mean ± standard deviation (n = 

3).  
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3.3.4 Sarcomeric α-Actinin Expression in Differentiated 

Cardiomyocytes 
 

On day 18, after final counts of beating clusters, the cell laden surfaces were fixed and 

stained for the cardiac marker sarcomeric α-actinin to visualize trends and relative extents of cardiac 

differentiation.  Cell nuclei were also stained with DAPI so that α-actinin staining could be 

normalized to the total cell density (Figure 3.19).  Notably, the non-patterned surfaces all exhibited 

relatively less variation between samples than the patterned surfaces, of which variation could result 

from sampling areas of intrinsically more heterogeneous surfaces or from genuine differences 

between the samples that arise due to the random and spontaneous breakdowns in pattern integrity.  

Images were taken at both 4x and 10x objectives and separately analyzed but revealed the same 

trends between the conditions.  The non-patterned laminin showed the highest expression profile 

for α-actinin, corroborating the results seen in counts of contracting patches.  Large cell aggregates 

on non-patterned laminin, like in other conditions, exhibited sporadic expression of α-actinin 

(Figure 3.20).  However, large proportions of the cell monolayers surrounding these aggregates 

seemed to express a basal level of α-actinin as well, not seen in other conditions (Figure 3.21).  The 

widespread expression across these cells on the non-patterned laminin surfaces accounts for the 

significantly increased α-actinin:DAPI expression found in this condition.  This monolayer 

expression may relate to the large number of small contracting patches mentioned earlier to be 

found in the monolayer cells of this condition (Figure 3.18).  Interestingly, the same extent of α-

actinin expression was not found in the patterned laminin samples, even though the pattern integrity 

was not well maintained allowing monolayer expansion between the cell aggregates.  Additionally we 

noted very strong α-actinin expression occasionally found along the edges of monolayers where 

circular holes were present (Figure 3.22).  They are found across all conditions but appear most 

abundant on the non-patterned laminin surfaces.  High α-actinin expression was also found across 

all conditions in cellular structures that appeared somewhat fibrillar, or appeared to form structures 

with large aspect ratios (Figure 3.23).    

Patterned PEG-laminin/RGD surfaces were the only condition to show higher staining 

ratios than their non-patterned counterparts, although they did not demonstrate higher counts or 

surface areas of contracting patches.  By visual assessment, the aggregates formed from patterning 

do not appear to express α-actinin more profusely than aggregates formed spontaneously on non-

patterned PEG surfaces or on any other surface for that matter (Figure 3.20).  Indeed, the 
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quantitative staining ratios for large cell aggregates are among the lowest of the sampled images for 

this condition.  Rather, a number of tiny cellular aggregates surrounded by a diffuse field of single 

cells seem to comprise the best staining ratios for structures found on this condition (Figure 3.24).  

These aggregates show relatively well structured α-actinin throughout the cluster or at least 

expanding the entire dimensions of the cluster and were observed prominently on the patterned 

PEG-laminin/RGD surfaces.  Intriguingly, these aggregates do also appear on the patterned laminin 

surfaces, which show almost identical staining ratios to the patterned PEG-laminin/RGD surfaces 

(Figure 3.19).   

Finally, we looked at the α-actinin staining in images that were matched with relatively large 

contracting aggregates, as the latter would presumably indicate a sure sign of cardiomyocyte 

differentiation (and because these images were the easiest to pair).  To our surprise these contracting 

areas did not appear to exhibit profuse or relatively strong (bright) α-actinin expression, although 

positive cells were detected within or near the edges of each (Figure 3.25).  These comparisons 

indicate a subtle discrepancy in the two assays used to determine cardiomyocyte differentiation.   
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Figure 3.17:  Size distributions of contracting cell patches.  (A) The sizes of contracting patches from day 18 were 

pooled across samples from each condition and averaged.  (B) A box plot of the data reveals similar median sizes of 

contracting patches but several outliers that skew the averages for certain conditions.  Data are presented as mean ± 

standard deviation. 
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Figure 3.18:  Images of small contracting patches on non-patterned laminin monolayers. Outlines of contracting 

cell patches (white) on micrographs of the non-patterned laminin surfaces show relatively small contracting patches that 

seem to uniquely appear within the 2-dimensional cell monolayers away from the larger 3-dimensional aggregates, which 

are more prone to show contraction.  Scale bar represents 500 µm.    
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Figure 3.19: Quantification of α-actinin expression.  Immunocytochemistry analysis performed at (A) 10x and (B) 4x 

objectives quantifies the staining for the cardiomyocyte protein sarcomeric α-actinin as a percentage of areas staining 

positive for DAPI.  Statistical significance (p < 0.05) was determined relative to non-patterned laminin (*).  Data are 

presented as mean ± standard deviation (n = 3).  
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Figure 3.20: Images of α-actinin expression in cell aggregates. Representative merged fluorescent images show 

examples of sporadic α-actinin expression (red) within the 3-dimensional cell aggregates found across surfaces of all 

conditions.  No obvious differences were found between the α-actinin staining within aggregates formed on different 

surfaces, including patterned vs. non-patterned.  Cell nuclei were stained with DAPI (blue).  Scale bar represents 500 µm. 
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Figure 3.21: Images of α-actinin expression in cell monolayers.  Representative merged fluorescent images 

comparing α-actinin expression (red) on (A, B, C) non-patterned laminin relative to other conditions, including (D) 

patterned laminin, (E) non-patterned Matrigel, and (F) non-patterned PEG-laminin/RGD, shows higher levels of 

expression within cell monolayers of non-patterned laminin surfaces.  Cell nuclei were stained with DAPI (blue).  Scale 

bar represents 500 µm. 
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Figure 3.22: Images of α-actinin expression along monolayer edges.  Representative merged fluorescent images 

show examples of strong α-actinin expression (red) that frequently occurs around the edges of holes in cell monolayers.  

Representative images are taken from (A, B, C) non-patterned laminin surfaces, (D, E) non-patterned Matrigel surfaces, 

and (F) a patterned PEG-laminin/RGD surface.  The image in (F) provides an example where trend is not observed.  

Cell nuclei were stained with DAPI (blue).  Scale bar represents 500 µm. 
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Figure 3.23: Images of α-actinin expression in elongated structures.  Representative merged fluorescent images 

show examples of strong α-actinin expression (red) that is often found in elongated fibril-like cellular aggregates or of 

emerging elongated α-actinin structures that form among cells with no noticeable macro-organization.  Representative 

images are taken from (A) a non-patterned laminin surface, (B, C) patterned laminin surfaces, (D, E) non-patterned 

PEG-laminin/RGD surfaces and (F) a patterned Matrigel surface.  Cell nuclei were stained with DAPI (blue).  Scale bar 

represents 500 µm. 
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Figure 3.24: Images of α-actinin expression in small cellular aggregates. Representative merged fluorescent images 

show examples of strong α-actinin expression (red) that is often found in isolated cellular aggregates that are smaller than 

the 500 µm patterned aggregates.  Representative images are taken from (A-C) patterned laminin surfaces and (D-F) 

patterned PEG-laminin/RGD surfaces.  Cell nuclei were stained with DAPI (blue).  Scale bar represents 500 µm. 
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Figure 3.25: Images of α-actinin expression within boundaries of large contracting patches.  Representative 

merged fluorescent images (at 4x objective) show α-actinin (red) expression profiles relative to approximate boundaries 

(yellow) of observed functional contraction.  Examples are of relatively large contracting patches taken from (A) a non-

patterned laminin surface, (B) a non-patterned PEG-laminin/RGD surface, and (C) a patterned PEG-laminin/RGD 

surface.  Cell nuclei were stained with DAPI (blue).  Scale bar represents 1 mm. 
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3.4 Discussion 
 

As discussed in Chapter 2, patterning cells has been widely adopted to study the efficacy of 

various surface passivation strategies.  We observed varying degrees of success with the same PEG 

nanogel substrate acting as the passivating background.  For instance, when utilizing Scheme I we 

observed superb pattern integrity past 50 days for a sample backfilled with fibrinogen, but the same 

pattern began to collapse between 6 and 9 days when backfilled with either laminin or Matrigel.  As 

our previous studies with TIRF using both fibrinogen and IgG(89) have hinted, different proteins 

may present different adsorption profiles to the same surface.  We have also speculated this could 

contribute to discrepancies seen between TIRF and cell adhesion studies.  So it is possible that 

laminin and the proteins found in Matrigel, including laminin and collagen IV, may adsorb more 

readily to the PEG nanogel surface or simply that they more readily promote fibroblast adhesion 

than fibrinogen.  However, these two sets of experiments also used different capping molecules – 

cysteine with the fibrinogen and PEG-amine with the laminin and Matrigel – which might also 

explain the different responses.  Interestingly, the surface created with Scheme II, which promoted 

specific fibroblast adhesion via RGD alone, also showed pattern collapse beginning between 6 and 9 

days.  The passivating background of this surface was also capped with PEG-amine just as the 

laminin and Matrigel surfaces which showed pattern collapse around the same time, bolstering 

support for the idea that the capping molecules may play a major factor in pattern integrity.  It is 

difficult to compare pattern integrity of these experiments to those of MEFs seeded for the 

reprogramming experiment, as the cell seeding density was drastically different and took several days 

to reach confluency in the latter.  However, the inferior patterning that emerged for the laminin and 

Matrigel surfaces was surprising when compared to the preliminary surfaces also incubated with 

laminin and Matrigel, because they were all prepared by the same methods, including capping with 

PEG-amine.  It is unlikely that the lower seeding density would lead to an earlier collapse, but 

possible that the MEFs act more aggressively than the 3T3 fibroblasts.  However, inter-experimental 

variability, especially in the stamping technique, cannot be negated as a possible reason for the 

inconsistent performances.   

While the PEG-laminin/RGD surfaces patterned via Scheme II retained better pattern 

integrity than the patterned laminin and Matrigel surfaces during the reprogramming experiment, 

there remained several flaws with this strategy.  For one, the non-negligible number of patterned 

spots that did not achieve cell confluency during the 18 day experiment, suggest that the nanogel 
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coating may be damaged from the stamping under these particular patches.  We saw evidence of this 

in the preliminary experiments as well, especially under prolonged stamping.  Yet, it is unclear why 

the damaged nanogels in our preliminary experiments invoked nonspecific cell adhesion, while those 

in our reprogramming experiment prevented any significant adhesion.  Secondly, many of the cell 

aggregates that did form successfully under patterning, did not endure 18 days of proliferation 

without peeling off the substrate surface, suggesting a potential limitation in the patterning strategy 

in general.  Previous studies from our group showed higher rates of proliferation over the first three 

days as well as over the first 15 days for samples that included RGD than those that did not.(196)  

The authors also noted confluent cells peeling off the edge of non-patterned PEG substrates with 

high concentrations of RGD by day 12 and by day 18 for PEG substrates with laminin.  

Interestingly, though, this problem was circumvented by the inclusion of both RGD and laminin, 

which we show here to be ineffective for patterned substrates, in which the surface area is much 

more limited.  Also, we saw evidence of higher proliferation of cells on laminin surfaces than on 

PEG-laminin/RGD surfaces by day 15. 

We had hypothesized that by controlling aggregate size we could replicate the spatial and 

paracrine cues found to be optimal for differentiation of PSCs.  Whether or not the patterning 

increased the efficiency of differentiation within the patterned cellular aggregates relative to 

spontaneously formed clusters, we also supposed that the patterning might lead to earlier cardiac 

maturation given the early impetus to form 3-dimensional aggregates and thus more cell-to-cell 

contacts.  Efe et al. observed cell contraction as early as 11 days, although this is not always 

standard.(156)  Indeed our results showed earlier signs of dense cell aggregation on the patterned 

surfaces (day 9) than the non-patterned surfaces (day 12).  Yet, even though cell aggregates seemed 

well formed on the patterned surfaces by the time we began implementing a regime of cardiogenic 

media (day 9), the data showed more contracting patches on all the non-patterned substrates for 

every time point examined.  The onset of contraction at day 13 and drastic increase in the number of 

contracting patches on all our non-patterned surfaces between days 16 and 18 generally aligns well 

with a period of cardiac maturation indicated by a decrease in progenitor markers (Mesp1 and Isl1) 

from day 14 onward in Efe et al.’s study.(156)  

The non-patterned laminin surfaces displayed the most proliferation, the highest number of 

contracting patches, and the highest staining ratios for α-actinin of all the conditions examined.  

Additionally, the non-pattern laminin adsorbed to mercaptosilanated glass contained almost double 
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the counts of contracting patches than the same amount of laminin adsorbed to TCPS in Smith et 

al.’s, study.(196)  In that study she found that increasing the laminin concentration 5-fold (to the 

level used in this study) improved differentiation on PEG substrates but not on TCPS, suggesting 

that perhaps the adsorption of laminin had saturated.  Indeed, laminin has been found to saturate at 

850 ng/cm2 on TCPS,(166) which is lower than both the PEG concentrations examined in Smith’s 

study (11.4 and 64 µg/cm2).  This leads us to believe that perhaps the mercaptosilanated glass is 

capable of adsorbing more laminin than TCPS due to either strong hydrophobic interactions or 

possibly even disulfide bonding to the thiol-functionalized surface.  Given the higher counts of 

contracting patches and higher staining ratios, the mercaptosilane most likely adsorbs more laminin 

than can be conjugated to PEG nanogel coatings as well, especially considering that laminin 

adsorbed to TCPS or untreated glass has been shown capable of supporting cell adhesion while 

laminin conjugated to the nanogel coatings has not.   

However, possible conformational changes in adsorbed laminin as opposed to the overall 

content, cannot be excluded as possible stimulants either.  In fact, Healy et al. found by SEM 

Matrigel to form globular proteins (vs. the normal fibrillar) on untreated (hydrophobic) polystyrene 

that could not support ESC growth.(200)  It was also shown that Matrigel adsorbed to glass formed 

denser protein layers and promoted ESC differentiation relative to Matrigel adsorbed to TCPS 

which preserved ESC pluripotency.  However, adsorption to hydrophobic mercaptosilanated glass is 

unlikely to resemble adsorption to hydrophilic untreated glass.  Regardless, the evidence presented 

here corroborates existing reports that laminin is vital to promoting cardiomyocyte differentiation.  

Furthermore, a noticeable difference exists between the non-patterned and patterned laminin 

surfaces as well in the lack of monolayer staining for α-actinin on the patterned laminin samples.  

Patterned laminin monolayers formed from a breakdown of pattern integrity and migration outward 

from the patterned aggregates.  Monolayer cells found on the patterned surfaces are not necessarily 

adhered to laminin directly adsorbed to mercaptosilanated glass, though, and may still reside over 

PEG nanogels as well as serum proteins adsorbed to the glass or PEG.  This could further imply 

that the laminin adsorption directly to mercaptosilane is responsible for the unique and pervasive 

staining found on all the non-patterned laminin surfaces.   

The important role of laminin may also explain why the Matrigel surfaces performed notably 

worse than the other substrates, given the lower concentration of laminin found within Matrigel, 

which is lower than what was applied to the laminin or PEG-laminin/RGD surfaces and which 
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must compete against other proteins in the solution for adsorption to the surface.  Because Matrigel 

solution will form a 3-dimensional gel at given concentrations and elevated temperatures it is, in 

general, not an ideal candidate for modulating laminin concentration.  However, it is important to 

note that batch-to-batch variability has been reported to affect experimental results of cells grown 

on Matrigel as well.(201)  Both the current study and the Smith et al. study(196) found lower day 18 

counts of contracting patches on Matrigel (both around 7 patches/cm2) compared to the same 

condition in the original Efe et al. study(156) (approximated as 26 patches/cm2) suggesting a 

discrepancy in the efficiency of the reprogramming protocol between the groups.  Additionally, 

Smith et al. noted a significantly lower efficiency of cardiomyocyte differentiation as determined by 

flow cytometry (4% vs. 40%).(196)  

The non-patterned PEG surfaces were second only to the non-patterned laminin surfaces 

for the number of contracting patches and was superior to all surfaces in terms of total contracting 

area.  Thus, it was slightly surprising to find that the percentage of cells staining positive for α-

actinin was significantly less than non-patterned laminin and similar to non-patterned Matrigel, 

which displayed lower functional contraction.  Smith et al. was the first to study the direct 

reprogramming protocol on PEG substrates and found that conjugating higher concentrations of 

laminin and/or RGD to bulk PEG hydrogels was able to both increase the number of contracting 

patches over Matrigel and increase the staining ratio over PEG substrates with lesser amounts of 

laminin and/or RGD.  Thus, we would expect to see an improvement as well in the staining ratio on 

our PEG nanogel coatings over Matrigel adsorbed to mercaptosilane, given the higher concentration 

of laminin.  It is unclear whether subtle chemical or structural differences between our PEG 

substrates and those in Smith et al.’s study, including the choice of cross-linking agent (BSA vs. 

PEG-amine) or the thickness of the substrate, may have influenced the results.  Given that the 

previous study was able to perform a reprogramming experiment on bulk PEG gels functionalized 

with laminin and no RGD while we demonstrated no cell attachment to VS:BSA nanogel coatings 

and only moderate attachment to VS:Am nanogel coatings, it would seem that bulk PEG hydrogels, 

particularly VS:Am hydrogels, may afford a higher surface density of free PEG chains for protein 

conjugation or provide less steric resistance to protein attachment.   

Additionally, substrate stiffness has been known to affect differentiation.  Engler et al. has 

shown the ability to tune differentiation of stem cells via modulation of substrate stiffness (between 

0.1 – 40 kPa)(202) and has also computed that cells mechanically sense their environment on the 
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length scale of adhesions.(203)  It is perhaps possible that even if the PEG nanogel substrate is not 

promoting increased differentiation over Matrigel that it provides a relatively mechanically pliant 

substrate more appropriate for allowing large cell patch contractions.  A substrate modulus of 10 

kPa has been found to be ideal for promoting contractility,(182, 204) while we have previously 

measured moduli of our bulk PEG hydrogels to be around 7 kPa.(53)  Glass on the other hand 

presents elastic moduli generally greater than 50 GPa, and the elastic modulus of serum proteins 

adsorbed to TCPS has been measured at 4 GPa.(205)  It is uncertain the exact stiffness cells sense 

on thin nanogel coatings on glass, but an effectively higher stiffness than the bulk hydrogels 

examined previously may inhibit contractility and/or differentiation.    

We noticed small cellular aggregates forming on the patterned laminin and patterned PEG-

laminin/RGD surfaces that stained extremely well for α-actinin, seemingly increasing the surfaces’ 

overall staining ratios (patterned laminin stained higher than non-patterned Matrigel and non-

patterned PEG, but not non-patterned laminin due to reasons discussed above).  It is uncertain 

whether these aggregates spontaneously formed from cells that migrated out of the larger patterned 

aggregates, they are remnants of the larger aggregates that over-proliferated and peeled off the 

surface, or if they are pieces of larger aggregates that were shed during proliferation and reattached 

to the surface.  However these results resemble published trends that show larger proportions of 

cardiomyocytes in smaller embryoid bodies, which were additionally found unlikely to contract.(187)  

The lower amount of total cells found on these patterned surfaces altogether probably leads to lower 

cumulative DAPI values without a large loss in cumulative α-actinin values, since α-actinin-positive 

cells are generally found within or surrounding the cell clusters.  The patterned laminin surfaces of 

course serve as an important exemption to this observation.  Because the Matrigel patterned the 

least effectively, it is perhaps not surprising we did not see an improved staining ratio with this 

substrate.  Given the relatively low efficiency of differentiation seen across the experiment, there 

may be an excess of cells, i.e. cell differentiation cannot keep pace with proliferation, especially on 

non-confined surfaces.  This would suggest an innate advantage to patterning, except when 

considering the non-patterned laminin surface.  It is also important to consider that the 

immunocytochemistry provides a 2-dimensional assessment of the surface, and so the actual 

differentiation efficiency may be skewed relative to the staining by larger numbers of cells found in 

aggregates than in monolayers.   
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Soares et al. studied the phenotypic differences between primary chick embryo cardiac cells 

cocultured as 3-dimensional aggregates and as single cells on 2-dimensional surfaces.(199)  The 2-

dimensional cells possessed flat and well-spread morphologies and tended to be isolated while the 

aggregate cells were smaller and formed many cell-to-cell junctions.  They found evidence of more 

differentiated cardiomyocytes in the 3-dimensional aggregates, including increased α-actinin 

expression and more frequent contraction, while the 2-dimensional cells displayed evidence of 

higher proliferation rates, possibly indicating a less differentiated state.  The authors speculate that 

the spatial organization influences the phenotype which may change upon movement between the 

two environments.  This study corroborates what we observed on most conditions with the α-

actinin-positive cells found within or near the edges of the 3-dimensional aggregates and could 

provide further motivation to maximize the proportion of cells associated with clusters, such as 

through a patterning method.   

Other cellular structures that showed notably efficient actinin staining include cells with 

elongated shapes.  Given known relationships between cell strain and cell shape,(175) it is reasonable 

to question whether the cellular remodeling and α-actinin upregulation observed here is a result of 

cardiogenic differentiation or a cause of it.  Cyclic strain has been shown to upregulate cardiac gene 

expression in ESC derived cardiomyocytes(206, 207) and promote differentiation of ESCs 

(downregulation of Oct3/4),(208) especially at higher frequencies, but the results are not suggestive 

that cells experiencing static strain (perhaps such as those forming elongated shapes) would see the 

same benefits.  However, sets of mouse cardiac progenitor cells (Isl1+/Nkx2.5-) from both embryos 

(day 9.5) and ESC-derived embryoid bodies (day 6) were sorted in another study and grown on non-

patterned or patterned (20 µm stripes) fibronectin coated slides for 5 days.  Interestingly, α-actinin 

staining revealed significantly higher numbers of cardiomyocytes on the elongated patterned 

surfaces.(209)  Yet, the proportion of cardiomyocytes was still lower than cells grown from mature 

cardiac populations (Nkx2.5+) on either patterned or non-patterned surfaces.  This data could 

suggest that cellular organization in both aggregate structures and longitudinal alignments may 

regulate cardiac differentiation but the temporal stages at which they would be most beneficial 

remains unknown.   

The best examples of α-actinin staining observed were not found within the borders of 

several of the largest contracting patches.  Figures 3.25A and 3.25B show relatively common trends 

of contraction, in which the cells found immediately surrounding 3-dimensional aggregates tend to 
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show synchronized contraction, which may or may not include the bulk of the aggregate itself 

(Figures 3.25B vs. 3.25A).  Both these examples show some α-actinin within the corresponding 

aggregate but less (bright or profuse) or no staining in the contracting cells surrounding it.  It is 

possible that differentiated cardiomyocytes are found mostly within the aggregates, but the pull of 

the contraction is felt most by the cells extending from the aggregates.  In some instances, staining 

seems to reveal a layer of faintly stained cardiomyocytes that appear near the bottom of a 3-

dimensional aggregate, possibly adhered directly to the substrate, but not within the dense aggregate 

above (Figures 3.25A and 3.25C vs. 3.25B).  These trends might indicate that the combination of 

direct integrin signaling from the surface with paracrine signaling from the cellular aggregate above 

act synergistically in promoting differentiation.  A dense mass of undifferentiated cells above might 

also muffle the ability these cardiomyocytes to functionally contract.  Still it cannot be discounted 

that strong α-actinin expression might be lagging in functional cardiomyocytes that have not 

completely matured by day 18 and in fact, many more of the cells within the contracting regions 

than indicated by staining could be differentiated.  It is also noted that many of the brightly stained 

regions found in these images are not contracting, which could imply that even differentiated 

cardiomyocytes require a certain degree of cellular organization to functionally contract.  While it 

would be difficult to quantify many of the specific trends discussed here, these observations all 

provide insight into the effects of cellular organization on cardiomyocyte differentiation that might 

prove useful in designing future studies.     

 

3.5 Conclusion 
 

As direct reprogramming is a very new development, it is difficult to know what knowledge 

learned from differentiation of PSCs is appropriate to apply to the techniques used here.  

Comparisons would depend on the similarity of the “unstable intermediates” that Efe et al. describes 

in this protocol to PSCs more commonly studied, especially with regards to cellular organization (i.e. 

embryoid bodies).  “Pre-iPSCs” have been isolated after partial completion of iPSC reprogramming 

protocols and found to exhibit the proliferative and biosynthetic characteristics of iPSCs with the 

silencing of many somatic genes, but not the exogenous expression of vital pluripotency genes such 

as Oct4 and Nanog.(210)  Similar biosynthetic output should promote similar responses to cellular 

organization.  Yet, we found no evidence of improved cardiac differentiation within the patterned 

cell aggregates, although our assays may not be sensitive enough to detect subtle increases in 
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efficiency.  We did, however, observe increased α-actinin staining efficiencies in patterned samples 

believed to result from reduced cell densities between aggregates.  Furthermore, we observed 

efficient α-actinin staining of particular types of cellular organization including elongated cells, 

fibrillar structures, and small cell aggregates, providing possible motivation for alternative patterns 

that might prove beneficial.  Most importantly though, we unexpectedly found that laminin 

adsorbed to mercaptosilanated glass appears to significantly enhance cardiac differentiation and 

uniquely so in cells unassociated with cellular aggregates.  These results further advance the 

importance of laminin in cardiac differentiation.  Finally, both the laminin and PEG-laminin/RGD 

surfaces proved to be superior alternatives to Matrigel for cardiac differentiation, providing more 

chemically defined and presumably consistent substrates that should prove useful for stem cell 

research.  Given the highly temporal regulation known to occur in developing cardiomyocytes, 

especially when originating from somatic fibroblasts, it is unlikely that one immutable substrate is 

ideal for directing all the various stages of differentiation.  The laminin surfaces are likely most 

beneficial near later stages of cardiomyocyte differentiation.  Future methods of dynamically 

regulating substrate signaling and cellular organization, including proliferation, may prove useful in 

the overall efficiency of cardiac differentiation. 
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Chapter 4 
 

Conclusions 
 

4.1 Summary of Dissertation 
 
 In Chapter 2 we determined that the packing density of nanogel coatings can greatly 

influence the surface’s protein resistance.  Click chemistry allowed surface attachment under phase 

separation conditions which resulted in a much higher packing density and lower protein adsorption.  

These coatings were easily fabricated with monolayer precision, required no capping, and could be 

further functionalized with subsequent click reactions.  However, we also confirmed that PEG 

nanogel coatings containing albumin outperformed all 100% PEG nanogel coatings, establishing a 

unique and unexplained synergy between the albumin and PEG.  We further found discrepancies 

between single molecule detection and cell adhesion assays in terms of surface cross-linking, 

suggesting a difference in the protein adsorption profiles examined by these methodologies.  In 

Chapter 3, we showed that the nanogel coatings functionalized with laminin and RGD 

outperformed Matrigel coatings in both the number and area of contracting patches.  However, we 

discovered that laminin adsorbed to mercaptosilanated glass demonstrated the highest number of 

contracting patches and highest expression of α-actinin by significant margins.  Patterning seemed to 

slightly increase the efficiency of α-actinin staining on the functionalized nanogel coatings (PEG-

laminin/RGD) by limiting cells expansion outside of cardiac clusters.  We also observed strong α-

actinin staining in fibrillar structures and small cellular aggregates, the latter found solely within the 

patterned surfaces due to the passivating background that prevented significant cell expansion on 

the surfaces.   

 
 
 

4.2 Future Directions 
  
 While the aim of this research, Chapter 2 in particular, was to apply existing knowledge 

about PEG and protein adsorption to the design of a better biomaterial, our studies of protein 
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adsorption on PEG nanogel coatings have actually uncovered intriguing and unexplained structure-

property relationships.  Despite some speculation, we have yet to fully understand how PEG and 

albumin work synergistically in resisting protein adsorption, how internal cross-linking density 

affects protein adsorption and cell adhesion, and why PEG-VS:Am nanogel coatings outperformed 

clickable PEG nanogel coatings (attached without salt).  The most straight-forward experiments to 

pursue would include protein adsorption studies on coatings fabricated from nanogels of modulated 

architectures (e.g. four-arm vs. eight-arm, MW 10,000 vs. MW 5,000, etc.), which should 

immediately help to answer whether the discrepancies we saw with TIRF between the 100% PEG 

nanogel coatings stem from physical parameters or chemical differences between the functional 

groups.  Our nanogel coatings are distinct from most research in protein adsorption in that the 

dense ~100 nm coatings comprise legitimate hydrogels relative to the more common grafting of 

PEG monomers to surfaces.  Thus, our protein adsorption studies could reflect protein adsorption 

to PEG itself more so than to the underlying surface, protected by a PEG barrier.  As such, protein 

adsorption to our thin hydrogels has larger implications for the design of large hydrogel constructs 

for tissue engineering.  Future studies would greatly benefit from the development of analytical 

detection methods which can distinguish between protein adsorption to the surface and PEG chains 

or which could be applied to thick hydrogel constructs.  Additionally, as the clickable nanogel 

coatings are distinct in allowing attachment of defined monolayers, it could be beneficial to study the 

effect that multiple nanogel layers have on protein adsorption, such as by using a PEG-cyclooctyne 

interface between the individual layers.  Experiments using other proteins or even synthetic peptides 

for the cross-linking of PEG nanogel solutions could also help determine if albumin is unique in its 

ability to enhance resistance to protein adsorption and whether this resistance derives from physical 

or chemical origins. 

 As discussed at several points in this dissertation, mechanical properties can influence 

adhesion and behavior of cells.  While mechanical properties have been characterized for bulk PEG 

hydrogels of similar makeup by rheometry, we have not characterized our thin nanogel coatings.  

The stiffness felt by cells on nanogel coatings could likely be modulated by the much stiffer 

substrates beneath.  It would be helpful to characterize this stiffness through AFM or force 

indentation studies.  Additionally, the mechanical durability of the nanogel coatings comprises an 

important consideration for long-term, in vivo use.  We have previously found evidence that the 

nanogel coatings are easily scratched, most likely removing PEG from the glass surface.  More 
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extensive characterization needs to be undertaken, and importantly, possible steps to curtail any 

damage such as surface cross-linking or new attachment schemes need to be studied before any 

possible implantation, which could easily damage a fragile coating.  It would also be prudent to 

conduct in vitro studies under flowing plasma or serum, to test for adsorption of plasma proteins or 

blood coagulation, which would offer insight into how the coatings would perform in use with a 

blood contacting vascular implant.   

 We have demonstrated that PEG nanogel coatings possess great potential in an array of 

applications requiring protein resistant interfaces, including biomaterials, biological diagnostics, and 

cell culture.  In this dissertation, we examined the nanogel coatings’ resistance to protein adsorption 

and cell adhesion, as well as their ability to provide a platform for designed cell growth and 

maintenance.  All of the experiments presented here were performed on nanogel coatings covalently 

attached to glass surfaces.  Glass provides a standard platform in the field, which is easy to 

functionalize with a diverse range of silanes, conveniently is optically clear, and can be employed in 

many in vitro applications.  However, the ability to functionalize a large assortment of substrate 

materials, including metals, hard plastics, and softer rubbers, would greatly expand the utility of the 

coatings, and is especially necessary for implantable biomaterials.  Previously, our group 

demonstrated the ability to attach PEG nanogels to polyethylene terephthalate (PET) using plasma 

glow discharge – which provides a powerful tool for achieving these goals.(1)  We have also had 

limited success in applying plasma glow discharge to functionalize polystyrene plastics (data not 

shown), which provides great potential for use with standard cell culture materials.  Additionally, the 

ability to functionalize surfaces with a cyclooctyne molecule, as demonstrated by Popik et al., (146) 

will allow more versatile attachment of clickable nanogel coatings without the requirement for UV 

irradiation.  We anticipate that our findings regarding nanogel packing density and residual cross-

linking of nanogel surfaces would apply to any substrate if the attachment chemistry can be 

optimized to provide robust conjugation. 

 The results discussed in Chapter 3 provide an immediate impetus for further studies.  In 

order to determine, whether the laminin adsorbed to mercaptosilane glass actually improved 

cardiomyocyte differentiation to the significant extent we detected, direct reprogramming should be 

repeated on surfaces of laminin adsorbed to mercaptosilanated glass, untreated glass, and TCPS, 

perhaps at multiple concentrations, and analyzed by flow cytometry for a more quantitative analysis 

of differentiation efficiency.  Furthermore, by some means such as oxidizing the mercaptosilane 
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surface or replacing it with a sulfonate surface, we should be able to determine whether laminin is 

attaching via disulfide formations or simply adsorbing at much higher surface densities.  Applying 

advanced analytical methods to these surfaces, perhaps X-ray photoelectron spectroscopy (XPS) or 

MALDI mass spectrometry, might also aid in quantifying the attachment of laminin to these 

surfaces or even the surface density of functional PEG groups available for reaction on nanogel 

coatings, which could present a limiting factor.  Patterning laminin adsorbed to mercaptosilane could 

also be improved, perhaps with multiple applications of the passivating PEG nanogel coating under 

stamping, such as was found to improve capping efficiency under stamping.  However, given the 

widespread α-actinin expression observed for this condition, it is unlikely that patterning would 

improve efficiency here.     

 With regards to the patterning of functionalized ligands on nanogel coatings, it appears that 

the stamping technique described in Chapter 3 is not ideal for use with nanogel coatings.  While 

stamping is a cheap and quick way to create patterns, the mechanical pressure necessary seems to 

damage the fragile nanogel coatings.  Also, this technique would be difficult to scale-up for 

patterning on a large number of surfaces and without more sophisticated fabrication techniques has 

limited spatial resolution.  Photonic patterning has been well used with PEG hydrogels, particularly 

with clickable moieties, either in the form of laser writing or photo-mask polymerization.  These 

techniques could allow fabrication of precise and intricate patterns without compromising the 

protein-resistant structure of the hydrogel, however, they would also face challenges with scalability.  

As some observational trends discussed in Chapter 3 indicate, more intricate patterns which include 

aligning cells in longitudinal arrangements or grouping cells within much smaller aggregates could 

greatly enhance differentiation.  It would further be interesting to attempt patterning the cells at a 

later stage in the reprogramming process to circumvent the problems associated with maintaining 

pattern integrity over long periods of high proliferation.  However, passaging of cells at various 

developmental stages can prove challenging for reforming surface attachments if cell-cell contacts 

are preferred, and a large loss in yield might occur if cells are lost during this process.  As was 

discussed, PEG substrates have previously been used for both defined differentiations and 

expansion of PSCs.  Given the low protein adsorption of the PEG nanogel surfaces, it would be 

worthwhile to pursue their application for long term culture of PSCs since they should not 

inadvertently stimulate differentiation pathways given their inert nature.  Additionally, because we 

have fabricated nanogel solutions from various polymerization chemistries, great potential exists for 
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creating modular nanogel assemblies presenting an array of functionalities.  Using this strategy, 

surfaces could also be patterned via different surface chemistries prior to nanogel attachment, which 

might provide a more convenient method of patterning the nanogel coatings.  Finally, it was 

demonstrated by Kamp et al. that cardiac differentiation could be improved by replicating the 3-

dimensional nature of the extracellular matrix with an overlay of Matrigel, sandwiching the 

cells.(211)  Our nanogel coatings might allow an effective way of recapitulating the dimensionality of 

the extracellular matrix, as well, within a thin sandwich of nanogel coatings, which would still allow 

optimal diffusion for waste-nutrient exchange.   

 The work described in this dissertation provides the foundations for an array of research.  

The PEG nanogel coatings possess unique properties that allow for studying the effects of hydrogel 

architecture, cross-linking chemistry, and surface attachment chemistry on protein adsorption.  

These coatings have demonstrated potential for uses with in vitro diagnostics and as substrates for 

stem cell culture, and may someday be applied as biomaterials for in vivo applications such as 

implantable device coatings.   
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