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1. INTRODUCTION 

Meta-analysis is a set of techniques used to compare and combine results from 

similar studies or, more generally, similar samples.  Most applications arise in 

quantitative research syntheses or systematic reviews, wherein the studies are several 

reported investigations on a given topic.  In that context, it is useful to view a “study” as 

the collection of all important methodological and other features of a reported 

investigation apart from the specific random sample of subjects.  Although statistical 

techniques for combining results from related studies have existed for several decades 

(Abrams & Jones, 1995; Chalmers, Hedges, & Cooper, 2002), such integrative reviews 

have become especially popular in health-, behavioral-, and social-science disciplines 

since the late 1970s (Glass, 1976; Schmidt & Hunter, 1977). 

Most meta-analytic techniques are statistical procedures, sometimes involving 

graphical methods.  The present thesis concerns situations where the results to be 

aggregated are summary statistics, such as correlations or certain simple functions of 

means (e.g., mean differences) or proportions (e.g., risk differences, odds ratios).  I refer 

to these quantities generically as effect sizes (ESs), whereas many authors use “ES” 

somewhat more narrowly to refer to any statistical index of bivariate association, and 

some reserve it specifically for standardized mean differences (SMDs).  Numerous meta-

analytic techniques developed for specialized scenarios are beyond the present scope, 

such as vote-counting procedures, tests of combined significance, and methods for 

individual patient data, single-subject designs, genetic linkage studies, or survival data.  
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Also, I focus mainly on frequentist methods, with only occasional comments on Bayesian 

or empirical Bayes approaches. 

It is worth noting here two major distinctions among meta-analytic techniques and 

commenting on their attendant meta-analytic aims; these are made more precise in 

Chapter 2.  First, univariate meta-analytic models and methods are intended for a scalar 

ES, whereas their multivariate counterparts are meant for a vector-valued ES (Becker, 

2000; Nam, Mengersen, & Garthwaite, 2003).  For instance, a research synthesist might 

be interested in the Pearson product-moment correlation between two continuous 

variables (a univariate situation) or in two or more such correlations involving three or 

more variables (a multivariate situation).  In the multivariate case, each study may 

contribute estimates of all ES components or only a strict subset.  I focus herein on the 

former, complete-data multivariate case but comment on missing-data considerations. 

Second, fixed-effects models and methods treat the studies at hand (and their ES 

parameters) as fixed and support generalization to other studies with the same features 

but different random subjects, whereas their random-effects counterparts treat the studies 

as random and support generalization to a larger universe of studies from which those at 

hand were sampled (Hedges & Vevea, 1998).  Compared to fixed-effects models, 

random-effects models include an additional error term that essentially reflects the 

collective effect of all study-level features that influence a study’s ES parameter.  In this 

thesis I mainly consider random-effects models, for which meta-analysts are often 

interested in estimates and inferences about two (hyper)parameters: the mean and 

(co)variance (matrix) of ES parameters across studies.  I also address fixed-effects 
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approaches that assume all studies share the same ES parameter (i.e., homogeneity) and 

whose main object of estimation and inference is this common ES.  Applications of 

fixed-effects analyses often entail a test of homogeneity.  Some fixed-effects methods 

permit heterogeneity among the fixed but unknown ES parameters and focus on 

estimation of or inferences on their mean.  These heterogeneous fixed-effects models are 

beyond the present scope, as are meta-analytic models with study-level covariates (i.e., 

moderators) and various tasks of interest under heterogeneity, such as estimating or 

making inferences about a specific study’s ES parameter or predicting a future study’s ES 

parameter. 

More specifically, this thesis concerns a problem encountered increasingly as 

research synthesists address more sophisticated research questions and attempt to convey 

them to wider audiences: How can one obtain valid estimates of and inferences about 

some function of an ES instead of the ES itself?  Such a situation arises when meta-

analytic procedures are most appropriate for available data in a particular form but the 

meta-analyst is interested in some transformation of that form.  For example, some meta-

analytic procedures perform better with a variance-stabilizing transformation of the focal 

ES, but for practical purposes the meta-analyst may wish to express certain estimates or 

other results in terms of the focal ES or a more familiar or practically informative metric.  

As a multivariate example, consider a research synthesis whose authors collect from each 

of several studies an estimate of at least one of the correlations among the three variables 

Y1, Y2, and Y3 (or variables similar to these 3): They believe some of these correlations 

are heterogeneous and opt for a random-effects analysis, and their primary substantive 
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interest is in the between-studies mean and variance of the squared multiple correlation 

for predicting Y1 from both Y2 and Y3.  Obtaining this squared multiple correlation from 

every study and meta-analyzing these directly may be neither feasible nor prudent.  Some 

examples given later involve other ES metrics (e.g., SMDs, proportions). 

The major aims of the present project are to develop and evaluate meta-analytic 

techniques for estimation of and inferences about a wide variety of functions of 

heterogeneous multivariate ESs.  Certain special cases of these techniques are also 

addressed, such as for fixed-effects models.  The remainder of this thesis constitutes four 

chapters that cover the project’s major components.  Chapter 2 gives more detail on 

background and motivation for the problem, including notation for standard models and 

procedures and brief remarks on relevant literature, as well as discussion of various 

functions of potential interest.  In Chapter 3 I propose techniques for estimation and 

inference, with an emphasis on the multivariate random-effects case for generic ESs; I 

also comment on special cases involving particular ES metrics and the univariate and 

fixed-effects simplifications.  In Chapter 4 I report on two Monte Carlo investigations of 

the proposed techniques’ performance under realistic conditions.  Finally, in Chapter 5 I 

review the project’s contributions and comment on limitations and directions for 

continued work on this and related meta-analytic problems. 
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2. BACKGROUND AND MOTIVATION 

In the interest of broad applicability to various functions of a variety of ESs, the 

methods I propose in Chapter 3 are based on intermediate results from fairly general 

meta-analytic procedures used for estimation and inference in several commonly 

encountered situations.  In this chapter I present the multivariate random-effects model 

underlying these procedures and describe a particular set of techniques for estimation of 

and inference about key elements of this model, followed by comments on alternative 

methods and models.  Next I describe various functions of ESs that might be of interest in 

meta-analytic work, with particular attention to specific ES metrics.  I then introduce 

notation for hyperparameters of such functions and comment on meta-analytic tasks to be 

accomplished by the proposed techniques.  Emphasis is on the multivariate random-

effects case, but univariate and fixed-effects specializations are also considered. 

2.1. Multivariate Random-Effects Models and Procedures 

In this section I describe a conventional random-effects model for multivariate 

ESs as well as a particular set of associated estimation and inference procedures for the 

main meta-analytic tasks.  Other approaches relevant to this model are also mentioned, as 

are alternative random-effects models.  Models and methods in this section are not 

original to the present work. 

2.1.1. Focal model and procedures.  Suppose that for the ith independent study 

we observe the J-component ES ti = [ti1, ti2, ..., tiJ]T, i = 1, 2, ..., I, as a realization of Ti = 

[Ti1, Ti2, ..., TiJ]T, and we view Ti as an estimator of study i’s ES parameter θi = [θi1, θi2, 

..., θiJ]T, which is in turn a realization of Θi = [Θi1, Θi2, ..., ΘiJ]T.  Both Ti and Θi are 
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random column vectors, and it is understood that Θ1j, Θ2j, ..., and ΘIj are commensurable 

in some sense, for each j.  (In an attempt to maintain consistency of notation, I usually 

use Greek letters for [hyper]parameters and Latin letters for observable or error variables; 

uppercase for random variables and lowercase for fixed values or realizations of random 

variables; and boldface and roman type for vectors and scalars, respectively.  For 

example, Θ, Θj, θi, θij, Ti, Tij, ti, and tij are distinct objects in the same ES metric.  

Notable exceptions are my use of uppercase Greek letters for mean vectors and 

covariance matrices and their elements as well as matrices of known coefficients.  I 

usually reserve italic typeface for functions, index variables, and constants.) 

Many developments for multivariate random-effects meta-analysis rely on the 

following model for such a scenario, which treats observed ESs as independent 

multivariate-normal observations with known but possibly heterogeneous covariance 

matrices (Becker, 1992, 1995, 2000; Becker & Schram, 1994; Berkey, Hoaglin, Antczak-

Bouckoms, Mosteller, & Colditz, 1998; Kalaian, 1994; Kalaian & Raudenbush, 1996): 

 Ti = ΜΘ + Ui + Ei , (1) 

where ΜΘ = [ΜΘ1, ΜΘ2, ..., ΜΘJ]T is fixed and unknown; the between-studies random 

error (i.e., random effect) Ui = [Ui1, Ui2, ..., UiJ]T has expectation E(Ui) ≡ 0 and fixed, 

unknown covariance matrix ΣΘ ≡ Cov(Ui) ∀ i, so that Ui ~ (0, ΣΘ) ∀ i (i.e., no specified 

distribution); the within-study random error Ei = [Ei1, Ei2, ..., EiJ]T has E(Ei) ≡ 0 and 

fixed, known covariance matrix ΨTi ≡ Cov(Ei), and in particular Ei ~ NJ(0, ΨTi); and Ui 

and Ei are independent.  From Model 1 (i.e., as defined by Equation 1) it follows that 
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study i’s conditional expectation and covariance matrix, given Ui = ui, are θi ≡ E(Ti | ui) = 

ΜΘ + ui and Cov(Ti | ui) = ΨTi, and specifically Ti | ui ~ NJ(θi, ΨTi).  Also, the marginal 

expectation and covariance matrix of Ti are E(Ti) = ΜΘ and Cov(Ti) = ΣΘ + ΨTi.  If we 

assume that Ui ~ NJ(0, ΣΘ) ∀ i—as some estimation techniques do—then Θi ≡ ΜΘ + Ui ~ 

NJ(ΜΘ, ΣΘ) ∀ i, and Ti ~ NJ(ΜΘ, ΣΘ + ΨTi).  Although in practice ΨTi often depends only 

or largely on known sample size(s), in some situations it depends non-negligibly on the 

unknown θi.  I will denote element j, l of ΣΘ or ΨTi as ΣΘjl or ΨTijl, respectively.  Because 

the Θi are iid in Model 1, I will usually omit the subscript and write Θ. 

Some common special cases and extensions of Model 1 are worth noting.  When J 

= 1 the model is univariate (i.e., Ti = ΜΘ + Ui + Ei).  The constraint Θi = θ ∀ i 

(equivalently, Ui = 0 ∀ i, or ΣΘ = 0) yields a homogeneous fixed-effects model (i.e., Ti = 

θ + Ei).  A less common heterogeneous fixed-effects model treats ui—and hence θi—as 

fixed but unknown (i.e., Ti = θ  + ui + Ei).  In some situations certain “hybrid” models 

may be appropriate, such as Model 1 with either ΣΘ or ΨTi constrained to be diagonal 

(e.g., when between-studies or within-study correlation between ES components is 

plausibly zero or implied by the study design).  Perhaps the most common extension of 

Model 1 is to replace ΜΘ by a linear predictor that relates each ES component to one or 

more study-level covariates. 

Becker and Schram (1994) described a two-stage strategy for estimation of and 

inference about ΜΘ and ΣΘ in Model 1, whereby one first uses an EM algorithm to 

estimate ΣΘ by maximum likelihood (ML) then treats this estimate as known to obtain a 
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generalized least-squares (GLS) estimate of ΜΘ and this estimate’s covariance matrix.  

Although their exposition was specific to correlations as ESs, their approach extends 

readily to generic ESs as in Model 1.  Using the assumption that Ui ~ NJ(0, ΣΘ) ∀ i, their 

EM algorithm proceeds as follows: 

1. Choose starting values )0(~
ΘΜ  and )0(~

ΘΣ  for estimates of ΜΘ and ΣΘ. 

2. Estimate each study’s ES parameter as )1(~ +x
iθ  = )1(~ +x

iΩ [ 1−
iTΨ ti + ( )(~ x

ΘΣ )-1 )(~ x
ΘΜ ], 

where )1(~ +x
iΩ  = [ 1−

iTΨ  + ( )(~ x
ΘΣ )-1]-1 has typical element )1(~ +Ω x

ijl .  This expectation step uses 

the empirical Bayes posterior mean and covariance matrix of θi, given the data and 

current estimates of ΜΘ and ΣΘ. 

3. Estimate ΜΘj as )1(~ +Μ x
jΘ  = I-1∑=

+I

i
x

ij1
)1(θ~ , and estimate ΣΘjl as )1(~ +Σ x

jlΘ  =  

I-1 ( )∑ =
+++ +Ω

I

i
x

il
x

ij
x

ijl1
)1()1()1( θ~θ~~  – )1(~ +Μ x

jΘ
)1(~ +Μ x

lΘ .  This maximization step uses expected 

sufficient statistics for ΜΘ and ΣΘ—based on θi—to update estimates of these 

hyperparameters. 

4. Repeat steps 2 and 3 until convergence (e.g., until )1(~ +x
ΘΜ  and )1(~ +x

ΘΣ  do not 

differ much from )(~ x
ΘΜ  and )(~ x

ΘΣ ), and denote the resulting estimators ΘΜ~  and ΘΣ
~ .  One 

may also be interested in an empirical Bayes estimate of each study’s ES parameter, iθ
~ , 

and its covariance matrix, iΩ~ . 

Now, treating ΘΣ
~  as known, the GLS estimator of ΜΘ and its estimated covariance 

matrix are given by 
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 ΘΜ̂  = [XT(ΞT)-1X]-1XT(ΞT)-1t (2) 

and 

 )ˆ(vôC ΘΜ  = [XT(ΞT)-1X]-1 , (3) 

where X = [IJ, IJ, ..., IJ]T, an IJ × J design matrix of stacked identity matrices (because 

each of I studies contributes a J-dimensional ES estimate); ΞT is block-diagonal with 

blocks (ΨT1 + ΘΣ
~ ), (ΨT2 + ΘΣ

~ ), ..., and (ΨTI + ΘΣ
~ ); and t = [t1

T, t2
T, ..., tI

T]T. 

Taking ΘΜ̂  ~ NJ[ΜΘ, )ˆ(vôC ΘΜ ] to be approximately true, one may use the 

estimators in 2 and 3 to construct various normal-theory confidence regions involving 

ΜΘ: a confidence interval (CI) for ΜΘj or a linear combination of ΜΘ components, 

simultaneous CIs for two or more such components or linear combinations, or a 

multivariate confidence region for two or more components or linear combinations 

(Harbord, Deeks, Egger, Whiting, & Sterne, 2007).  For instance, when I is not too small 

an approximate 100(1 – α)% CI for ΜΘj is jΘΜ̂  ± zα )ˆ(râV jΘΜ , where zα = -Φ-1(α / 2) 

is a standard-normal quantile and )ˆ(râV jΘΜ  is element j, j of )ˆ(vôC ΘΜ .  One may also 

exploit this approximate normality to test H0: ΜΘj = c or a general linear hypothesis of 

the form H0: LΜΘ = c for appropriate R × J contrast matrix L and null-hypothetical c.  

The latter uses the statistic (L ΘΜ̂  – c)T[ L )ˆ(vôC ΘΜ LT]-1( L ΘΜ̂  – c), which under H0 is 

distributed approximately as χ2(R – 1) for full-rank L. 
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Becker and Schram (1994) also provided a test of the ES parameters’ 

homogeneity that does not require an assumption about the distributional form of Ui.  

This uses the heterogeneity statistic 

 QΘ = (t – X θ̂ )T 1−
TΨ (t – X θ̂ ) , (4) 

where 

 θ̂  = [XT 1−
TΨ X]-1XT 1−

TΨ t (5) 

is a GLS estimator of the common ES θ in a fixed-effects version of Model 1, and ΨT is 

block-diagonal with blocks ΨT1, ΨT2, ..., and ΨTI.  Under H0: Θi = θ ∀ i (i.e., ΣΘ = 0), QΘ 

is distributed approximately as χ2[J(I – 1)].  One may use similar homogeneity tests for 

any subset of the ES components or to compare nested fixed- or random-effects models 

(the latter require attention to the choice of estimator for ΣΘ). 

Finally, Becker (1992) and Becker and Schram (1994) described modifications of 

the above estimators and tests to accommodate missing ES estimates.  Details of these 

modified procedures are beyond the present scope.  In short, they entail imputing missing 

ES estimates before estimating ΣΘ, deleting relevant rows and columns of all matrices for 

GLS estimators and the QΘ statistic, and adjusting the homogeneity test’s degrees of 

freedom accordingly. 

2.1.2. Specific ES metrics.  Model 1 and the associated procedures described 

above are applicable to several meta-analytic situations where studies contribute 

estimates of two or more related ESs.  Perhaps the most difficult requirements to satisfy 

in practice are that the within-study model—Ti | ui ~ NJ(θi, ΨTi) with ΨTi known—is 



 11

plausible and that adequate data are available to compute ΨTi, especially when ΨTi 

depends on θi.  Several authors have described large-sample approximations for a variety 

of commonly used ES metrics that conform to the within-study model reasonably well 

under some realistic conditions.  By way of illustration, I provide details for correlation 

matrices in two different metrics.  I then comment on some other ES metrics.  It is worth 

bearing in mind that for some of these situations other models or techniques tailored to 

the particular form of data, justifiable assumptions, or analytic aims at hand may be 

preferable to the generic procedures described here (e.g., Hamza, van Houwelingen, & 

Stijnen, 2008). 

Suppose the ES parameter Θ comprises the distinct Pearson product-moment (i.e., 

Pearson-r) correlations between the component variables in Y = [Y1, Y2, ..., YP], which I 

denote Ρ = [Ρ12, Ρ13, Ρ23, ... , Ρ(P–2)P, Ρ(P–1)P]T—taking the correlation matrix’s lower 

triangle in row-major order.  Correlations are popular in observational and quasi-

experimental research and are used widely in meta-analysis, especially in studies of 

validity generalization (Hunter & Schmidt, 2004; Schmidt & Hunter, 1977) and 

reliability generalization (Mason, Allam, & Brannick, 2007; Vacha-Haase, 1998).  

Matrices of correlations arise in numerous circumstances where several bivariate 

associations are of interest, including some special situations such as cross-lagged panel 

designs and multitrait-multimethod studies of construct validity.  If Y is P-variate normal 

with arbitrary mean and covariance matrix, Olkin and Siotani (1976) showed that Ri = 

[Ri12, Ri13, Ri23, ... , Ri(P–2)P, Ri(P–1)P]T, Ρ’s sample counterpart from a sample of size ni, is 

approximately J-variate normal (where J = PC2) with the following covariance ψRijl ≡ 
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Cov(RiVW, RiXY) between components j (Rij = RiVW, between variables V and W) and l 

(Ril = RiXY, between variables X and Y): 

 ψRijl = 

( )
( )

ni

iiiiiiiiiiii

iiiiiiiiii









ρρρ+ρρρ+ρρρ+ρρρ
−ρρ+ρρ+ρ+ρ+ρ+ρρρ

YXYWYVXYXWXVWYWXWVVYVXVW

WXVYWYVX
2
WY

2
WX

2
VY

2
VXXYVW 2/

 , (6) 

where ρi = [ρi12, ρi13, ρi23, ... , ρi(P–2)P, ρi(P–1)P]T is the ith study’s realization of Ρ.  Note 

that when {V W} = {X Y}, ψRijj ≡ Var(RiVW) = nii
22

VW )1( ρ− .  Becker and Schram’s 

(1994) EM-GLS procedures for Θ and Ti may be applied to Ρ and Ri, respectively, to 

estimate and make inferences about ΜΡ and ΣΡ (as well as ρi). 

Some meta-analysts prefer to analyze Fisher-z correlations: Ζ = [Ζ12, Ζ13, Ζ23, ... , 

Ζ(P–2)P, Ζ(P–1)P]T and Zi = [Zi12, Zi13, Zi23, ... , Zi(P–2)P, Zi(P–1)P]T, where Ζj = tanh-1 Ρj and Zij 

= tanh-1 Rij, instead of Ρ and Ri.  Steiger (1980) showed that under the same conditions as 

for Equation 6 Zi is approximately J-variate normal with the following covariance 

between components j and l: 

 ψZijl ≡ Cov(ZiVW, ZiXY) = 
)1)(1)(3(

)R,R(Cov
2
XY

2
VW

XYVW

iii

iii

n
n

ρ−ρ−−
 . (7) 

When {V W} = {X Y}, ψZijj = Var(ZiVW) = 1 / (ni – 3).  Now Ζ and Zi take the place of Θ 

and Ti in Becker and Schram’s (1994) EM-GLS procedures for ΜΖ and ΣΖ (as well as ζi). 

In practice, computing ΨRi or ΨZi requires substituting a known value for ρi.  A 

conventional strategy is to substitute ri for ρi (Becker & Schram, 1994).  Hafdahl (2004) 

showed that this strategy performs poorly in several respects, especially when the studies’ 

average ni is not large, and recommended replacing ρi by either a simple estimator of ΜΡ, 
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such as r  = I-1∑=

I

i i1
r , or a simple shrinkage estimator of ρi that is more efficient than Ri 

(e.g., iρ~  constructed from J applications of a univariate version of Becker & Schram’s 

EM algorithm for ijρ
~ , or a non-iterative variant thereof). 

Multivariate ES parameters also arise in meta-analysis for quantities other than 

correlations.  In research domains where binary outcomes are popular, probabilities and 

functions thereof for multiple groups or outcomes may be of interest.  For instance, a 

research synthesis might focus on the probability of success in each of two conditions, 

such as a treatment or intervention and some type of control experience (e.g., wait list, 

placebo medication, sham surgery).  Each study’s meta-analytic data might consist of one 

success proportion from Treatment subjects and another from separate Control subjects, 

pi = [piT, piC]T.  Here the two samples’ independence implies diagonal ΨPi, but in ΣΠ the 

between-studies covariance between ΠT and ΠC may be non-zero.  If the same or related 

subjects experienced both conditions, such as in a case-control or case-crossover design, 

ΨPi would include non-zero covariance between PiT and PiC.  Instead of meta-analyzing 

such proportions directly, one might first apply a logit, arcsine, or other transformation. 

If comparing ΠT and ΠC is of central interest, one could recast the above example 

with proportions as a univariate problem, by transforming each study’s data into a 

difference or ratio of proportions (i.e., risk difference, relative risk) or transformed 

proportions, an odds ratio, or some transformation thereof (Fleiss, 1994; Haddock, 

Rindskopf, & Shadish, 1998).  In some meta-analyses with categorical data, however, 

this approach still yields multivariate ES parameters, such as with more than one 
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treatment group (e.g., mild exercise, vigorous exercise), outcome level (e.g., worse, 

unchanged, better), or outcome variable (e.g., measured at 6 months and 1 year, assessed 

under stress or not).  Such scenarios are especially likely when synthesizing diverse 

studies whose different conditions or outcomes cannot justifiably be considered the same.  

For example, Gleser and Olkin (2000) described fixed-effects meta-analysis procedures 

for the following scenario: Each study contributes the proportion of “success” 

(occurrence of heart disease) for a control sample and for one or two independent 

samples who received one of three anti-hypertension therapies (different samples 

received different therapies), but no study includes all three therapies.  These authors’ 

procedures entail expressing each study’s (incomplete) data as one or two treatment-

versus-control differences in either proportions or their arcsine or logit transforms, so the 

ES parameter comprises three components (i.e., one difference for each therapy). 

Multivariate categorical data may also arise in systematic reviews of diagnostic 

tests.  In particular, many such tests yield a binary decision (e.g., diseased vs. non-

diseased), and when administered to several subjects with and without the target 

disease—as assessed by a “gold-standard” reference test—they yield a 2 × 2 table with 

the frequency of positive and negative diagnosis for each independent sample of subjects.  

Some methods for meta-analyzing such studies entail modeling sensitivity and specificity 

or certain transformations thereof (e.g., logits) as a bivariate ES that is independent 

within studies but possibly dependent between studies (Harbord et al., 2007; Reitsma, 

Glas, Rutjes, Scholten, Bossuyt, & Zwinderman, 2005).  Other authors have described 
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multivariate situations where the basic data are proportions or rates (e.g., Arends, Voko, 

& Stijnen, 2003). 

Another common form for multivariate ES data arises when the basic univariate 

ES is a difference between two samples’ means on a quantitative variable.  Typically the 

samples are independent and differ on a fixed experimental or measured independent 

variable (e.g., intervention, demographic characteristic), the quantitative variable is 

dependent and random, and the difference in means between samples is standardized by a 

(possibly pooled) standard deviation from one or both samples.  Meta-analytic procedures 

for mean differences between related samples (Becker, 1988; Morris & DeShon, 2002) or 

without standardization (Bond, Wiitala, & Richard, 2003) have also been developed but 

will not be addressed in detail here. 

Gleser and Olkin (1994) distinguished between two types of multivariate 

standardized mean difference (SMD) between independent samples: Multiple-endpoint 

SMDs arise when two samples are compared on each of two or more quantitative 

dependent variables (i.e., endpoints), such as measurements on two or more constructs or 

on the same construct but either in two or more conditions (e.g., split-plot design) or on 

two or more occasions (e.g., pre-post design or longitudinal study).  In contrast, multiple-

treatment SMDs arise when each of two or more independent samples is compared to the 

same reference sample on one endpoint, such as in studies where two or more competing 

treatments or interventions are compared to a single control condition.  Gleser and Olkin 

gave expressions for the asymptotic covariance matrix of multiple-endpoint and 

-treatment SMDs under various assumptions about homogeneity of variances, 



 16

covariances, or correlations between samples.  They also described fixed-effects 

techniques for combining and comparing these multivariate SMDs using GLS.  In 

practice, multiple-endpoint SMDs pose more trouble because their covariance matrix 

relies on within-study correlations between endpoints, which authors of primary studies 

rarely report.  The covariance matrix for multiple-treatment SMDs relies mainly on 

sample sizes and possibly ratios of (heterogeneous) treatment and control variances. 

One can easily imagine more complex scenarios that involve multivariate SMDs.  

For example, multiple-treatment SMDs may be viewed as a special case of two or more 

standardized mean contrasts among three or more independent samples.  Instead of all 

pairwise comparisons with a common control group, one might instead be interested in 

other sets of contrasts.  Such a circumstance could arise, for instance, if one were 

interested in comparing Treatments A and B and some studies provided these data but 

others provided comparisons between A or B and a third condition, Treatment C (e.g., an 

SMD version of Ballesteros, 2005, or Lu & Ades, 2004).  Another more complex 

scenario might involve multiple-endpoint SMDs for which the endpoints differ in two or 

more ways, such as variables M1, M2, R1, and R2 for mathematics and reading measured 

in two experimental conditions (e.g., teaching methods, study strategies, test types) or on 

two occasions (e.g., immediate vs. follow-up).  Furthermore, multiple-endpoint and 

-treatment SMDs may co-occur in a single meta-analysis.  For example, in their 

quantitative review of exercise interventions for adults with arthritis, Conn, Hafdahl, 

Minor, and Nielsen (2008) were interested in SMDs on physical activity, pain, and 

objective and subjective functional ability: Some primary studies included more than one 
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treatment sample compared to a common control sample on two or more of these 

endpoints, in many cases at both pre- and post-intervention occasions (e.g., Lorig, 

Feigenbaum, Regan, Ung, Chastain, & Holman, 1986). 

Numerous types of multivariate ES besides those described above have been or 

could be addressed in meta-analysis.  Examples include variance ratios to compare 

groups’ dispersions, coefficients in regression models (Becker & Wu, 2007), and certain 

parameters in models for survival data (Arends, Hunink, & Stijnen, 2008). 

2.1.3. Other approaches for this model.  Besides Becker and Schram’s (1994) 

multivariate random-effects techniques for estimation and inferences based on Model 1, 

other approaches have been proposed.  Becker’s (1992, 1995) earlier work—perhaps the 

first published explanation of multivariate random-effects meta-analysis—used a method 

of moments estimator for ΣΘ.  In a similar vein, Berkey et al. (1998) described two 

iterative schemes for estimating ΜΘ and ΣΘ (GLS and marginal ML) in a more general 

model that can include study-level covariates.  Although they considered only multiple-

endpoint raw mean differences as ESs (surgical vs. non-surgical mean on post-treatment 

probing depth and attachment level, from split-mouth studies of treatments for 

periodontal disease), their model and procedures extend readily to other multivariate ESs.  

Other authors who have presented estimation strategies for Model 1 or nearly identical 

models include van Houwelingen, Zwinderman, and Stijnen (1993); Kalaian and 

Raudenbush (1996); and Whitehead (2002, Appendices A.7 and A.8). 

Simulation evidence about the performance of Becker and Schram’s (1994) or 

alternative multivariate random-effects methods is scarce.  Two exceptions are Hafdahl’s 
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(2004) aforementioned Monte Carlo study focused on correlation matrices and Riley, 

Abrams, Sutton, Lambert, and Thompson’s (2007) simulations of competing models for 

bivariate random-effects data.  Although the assessment of such techniques is not the 

primary aim of this thesis, some aspects of the Monte Carlo studies in Chapter 4 pertain 

to the performance of Becker and Schram’s EM-GLS approach. 

2.1.4. Related random-effects models and approaches.  Other authors have 

described Bayesian approaches for models similar to Model 1.  For example, Prevost, 

Mason, Griffin, Kinmonth, Sutton, and Spiegelhalter (2007) proposed a Bayesian 

hierarchical model for synthesizing heterogeneous correlation matrices.  Their technique 

involves MCMC for estimation and inferences and can be implemented using widely 

available software (e.g., WinBUGS).  One purported advantage of such a Bayesian 

approach over the others described above is its explicit incorporation of uncertainty about 

ΣΘ into inferences about ΜΘ.  One could presumably extend Prevost et al.’s approach to 

other multivariate ESs, and Nam et al. (2003) described additional Bayesian approaches 

for the multivariate random-effects case.  Although those and other Bayesian approaches 

to the present problem are beyond the scope of this thesis, they would be well worth 

considering for future developments, as would more general mixed models (e.g., Arends, 

Voko, & Stijnen, 2003) and models for more complex meta-analytic data (e.g., Ades, 

2003; Lu & Ades, 2004). 

2.2. Functions of Effect Sizes 

In many realistic situations a meta-analyst will be interested in a different ES 

metric that is some function g of Θ, say Γ ≡ g(Θ), where g may be vector-valued with K 
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components, so that Γ = [g1(Θ), g2(Θ), ..., gK(Θ)]T = [Γ1, Γ2, ..., ΓK]T.  For various 

reasons, however, it may be more desirable to conduct initial stages of the meta-analysis 

in terms of Θ rather than Γ, which introduces the complication of transforming certain 

meta-analytic results between these two metrics.  Although an exhaustive survey of 

candidates for g is not feasible, I describe in this section several examples of such 

functions and circumstances in which they might arise. 

2.2.1. Variance-stabilizing transformations.  A simple variant of the above 

problem arises when g is (essentially) the inverse of some transformation that applies to 

Θ and Ti componentwise (i.e., K = J and gk = g1 ∀ k) and yields ESs that are more 

amenable to Model 1 and its attendant meta-analytic procedures.  Suppose each study 

contributes gi = g(ti) but the transform Ti = g-1(Gi)—or a very similar function of Gi 

(perhaps depending on sample size[s])—is nearly multivariate normal with an essentially 

known covariance matrix, such as an asymptotic approximation whose variances are 

independent of γi = g(θi).  Such variance-stabilizing transformations are available for 

proportions (Gleser & Olkin, 2000), SMDs, correlations, and other statistics (Games & 

Hedges, 1987).  One might apply Becker and Schram’s (1994) EM-GLS procedures to Ti 

to estimate or make inferences about ΜΘ or ΣΘ but instead be interested in ΜΓ ≡ E(Γ) or 

ΣΓ ≡ Cov(Γ).  For example, suppose Ri and Zi = tanh-1 Ri (i.e., Rij = tanh-1 Zik ∀ j = k) are 

a sample Pearson-r correlation matrix and its corresponding matrix of Fisher z-

transforms, as in Section 2.1.2: Despite statistical reasons to meta-analyze Zi, one might 
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wish to estimate or make inferences about ΜΡ and ΣΡ for interpretational or other 

pragmatic reasons (Hafdahl, 2004, 2009a, 2009b). 

2.2.2. Transformations for interpretability.  Other componentwise 

transformations to facilitate interpretation arise for both multivariate and univariate ESs.  

For instance, with data from binary diagnostic tests one might meta-analyze sensitivity 

and (1 minus) specificity as logits but wish to express certain results in terms of the 

original true- and false-positive rates (e.g., as in a traditional ROC curve; see Section 

2.1.2).  In a similar vein, some authors favor ES indices that are interpreted more readily 

by practitioners (e.g., clinicians, physicians), policymakers, or laypersons who are less 

familiar with statistics (Grissom & Kim, 2005; Kline, 2004, pp. 122-131; Kraemer & 

Kupfer, 2006; Lipsey & Wilson, 2001, pp. 146-156; Sinclair & Bracken, 1994).  For 

example, one may express a correlation as its square (i.e., proportion of variance), a 

coefficient of alienation, a common language effect size (CLES; Dunlap, 1994), or a 

quantity in a binomial effect-size display (BESD; Rosenthal & Rubin, 1982).  One may 

express a SMD as a (biserial or point-biserial) correlation or its square, a BESD or CLES 

(McGraw & Wong, 1992), any of Cohen’s (1988) measures of (non)overlap between two 

distributions (i.e., U1, U2, U3), a tail ratio (i.e., ratio of two groups’ probabilities of 

scoring below [or above] some low [or high] value), or improvement over chance 

classification (Huberty & Lowman, 2000).  Certain assumptions and criticisms of such 

indices should be born in mind (e.g., Thompson & Schumacker, 1997; Vargha & 

Delaney, 2000). 
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2.2.3. Other functions.  For many functions of interest each component of g 

depends one two or more components of Θ.  Some examples for bivariate ESs such as 

SMDs, risk differences, relative risks, and odds ratios (or suitable transforms thereof) 

include a difference between or ratio of two such ESs, or the minimum or maximum of 

two or more.  Similarly, with (possibly transformed) probabilities from each of two or 

more groups as ESs, g might be a risk difference, relative risk, odds ratio, likelihood 

ratio, Youden’s index, or number needed to treat (but see Altman & Deeks, 2002, and 

Cates, 2002).  In the case of binary diagnostic tests, one might be interested in functions 

of the true- and false-positive rates, such as the likelihood ratio for a positive (or 

negative) test and the diagnostic odds ratio (Reitsma et al., 2005). 

2.2.4. Functions of correlations.  Many functions of substantive value arise with 

a Pearson-r correlation matrix, Ρ, as Θ (as in Section 2.1.2).  As for scalar g (i.e., K = 1), 

meta-analysts may be interested in a first- or higher-order (semi-)partial correlation 

between two of the P variables in Y (i.e., after linearly partialling one or more of the P – 

2 remaining variables from one or both focal variables), a standardized partial regression 

coefficient from regressing one of the P variables on two or more of the remaining P – 1, 

or the (squared) multiple correlation from such a regression (or the square’s complement, 

the coefficient of multiple alienation, sometimes expressed as its square root; Cohen, 

Cohen, West, & Aiken, 2003).  Other common examples from multivariate analysis 

applicable to Ρ include eigenvalues; determinants; canonical correlation coefficients; 

various measures of multivariate association, such as those used in set correlation 

(Cohen, 1982); and coefficients in path, factor, and more general structural equation 
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models (SEMs; Bollen, 1989).  Beyond the present scope are cautions one should attend 

to when computing or interpreting certain of these quantities, such as critiques of 

standardized regression coefficients (e.g., Greenland, Schlesselman, & Criqui, 1986; 

Richards, 1982) and SEM using correlations instead of covariances (e.g., Cudeck, 1989). 

Numerous other substantively interesting scalar functions of Ρ include differences 

or more general contrasts or other linear combinations of either zero-order correlations or 

certain of the aforementioned quantities.  Some examples are the difference (a) in a 

variable’s correlation with one versus another variable (e.g., Ρ12 – Ρ13), (b) in two 

variables’ correlation between two within-subjects conditions or repeated-measures 

occasions (e.g., Ρ12,A – Ρ12,B for Conditions A and B), (c) between two variables’ zero-

order and partial correlation of some order (e.g., Ρ12 – Ρ12.3 as a test of mediation; Olkin 

& Finn, 1995) or between the corresponding standardized regression coefficients (e.g., 

Β12 – Β12.3), (d) in two variables’ partial correlation between different (sets of) partialled 

variables (e.g., Ρ12.3 – Ρ12.4), (e) in squared multiple correlation between two (possibly 

nested) sets of predictors for one variable (e.g., 2
2.1

2
23.1 Ρ−Ρ ), and (f) between two 

regression coefficients from the same or different regression equations (e.g., one 

predictor’s coefficient with vs. without another [set of] predictor[s]).  One might also be 

interested in more complicated combinations of correlation or regression coefficients, 

such as a second- or higher-order difference (e.g., a treatment difference in the change in 

correlation: [Ρ12,A2 – Ρ12,A1] – [Ρ12,B2 – Ρ12,B1] for Treatments A and B at Occasions 1 and 

2) or a tetrad difference (e.g., Ρ13Ρ24 – Ρ23Ρ14).  Moreover, vector-valued functions of Ρ 
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arise naturally as K-tuples of parameters in multiple regression and other linear models 

(e.g., path coefficients, factor loadings) or other collections of scalar quantities.  Finally, 

if Θ were Ζ then one could apply any aforementioned function to Ζ after transforming it 

to Ρ—that is, g would be a composite function h2◦h1, where h1(Ζ) ≡ tanh Ζ = Ρ. 

2.3. Meta-Analysis for Functions of Effect Sizes 

Major aims of the present thesis are to develop and evaluate techniques to address 

certain meta-analytic tasks for a wide variety of functions of ESs.  In particular, 

considering any function in the previous section as Γ ≡ g(Θ), I am most interested in 

obtaining point estimators of ΜΓ ≡ E(Γ) and  ΣΓ ≡ Cov(Γ) as well as confidence sets and 

tests for ΜΓ.  Of particular interest are circumstances where meta-analytic procedures 

such as Becker and Schram’s (1994) EM-GLS techniques are more appropriate for Ti 

than Gi = g(Ti) but Γ is of more substantive relevance than Θ.  In this section I comment 

on these circumstances and on the scant extant work on this problem. 

2.3.1. Typical circumstances.  There are two primary reasons that one might 

wish to apply meta-analysis in the Θ metric despite being more interested substantively in 

one of many options for g and Γ.  First, as already alluded to, methods such as Becker 

and Schram’s (1994) estimators and inference techniques might perform better with Ti 

than Gi, such as if Ti conforms better to assumptions of normality and known covariance 

matrix or Θ’s distributional properties are more amenable to certain procedures (e.g., 

when components of Γ are bounded but those of Θ are not).  Second, some studies may 

be missing one or more components of Ti so that Gi cannot be computed for each study, 
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but under some missingness mechanisms (e.g., missing completely at random) it may be 

feasible to meta-analyze the incomplete Ti and use results for Θ to obtain results for Γ.  

For instance, suppose each of several studies contributes one or two (but not all 3) of ri12, 

ri13, and ri23: One could estimate ρ = [ρ12, ρ13, ρ23]T in a fixed-effects meta-analysis model 

or ΜΡ and ΣΡ for Ρ = [Ρ12, Ρ13, Ρ23]T in a random-effects model.  These results could be 

used to estimate and make inferences about, say, a common ρ12.3 or hyperparameters of a 

random Ρ12.3 (the partial correlation between Y1 and Y2, partialling Y3), even though ri12.3 

could not be computed for any single study. 

2.3.2. Previous relevant work.  Despite the potential value of obtaining meta-

analytic results for functions of the directly analyzed ESs, little attention appears to have 

been paid to this problem, especially in the case I am most interested in: random-effects 

methods for multivariate ESs.  Nevertheless, it is worth commenting on some methods 

developed—or at least used without explicit justification—for that case as well as some 

popular special cases, beginning with the latter. 

First consider the univariate fixed-effects version of Model 1, where J = 1 and Ui 

= 0 ∀ i, and suppose g is scalar (i.e., K = 1).  If we assume further that ui = 0 ∀ i (i.e., 

between-studies homogeneity), then the main task is to obtain θ̂  as a fixed-effects 

estimate of the common ES, θ, as in Equation 5.  It is usually reasonable to use γ̂  = g( θ̂ ) 

as a point estimator of γ ≡ g(θ), and in practice this is often done without remark (e.g., 

Shadish & Haddock, 1994).  Provided g is invertible, as it is for inverse variance-

stabilizing transformations, many interpretive indices, and other functions, a CI for γ is 
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usually constructed by simply applying g to both endpoints of a CI for θ.  Also, one may 

test H0: γ = c by testing H0: θ = g-1(c).  For non-monotonic g, which is less common but 

plausible (e.g., ρ2), different inference approaches are needed.  I am not aware of 

methods proposed for this in a meta-analytic context, but perhaps some have been 

described or at least mentioned in passing among the more than 6,000 articles, chapters, 

dissertations, conference papers, and other works on research-synthesis methodology.  

One strategy is to use a delta-method approximation of the variance of θ̂ , as Olkin and 

Finn (1990, 1995) suggested for a primary study, and another is to adapt a resampling 

technique such as bootstrapping for meta-analysis (Van den Noortgate & Onghena, 

2005).  Both of these are special cases of methods described in Chapter 3.  I do not 

consider the heterogeneous fixed-effects case here (but see Bonett, 2008, 2009). 

Now consider the univariate random-effects version of Model 1, with J = 1, and 

suppose again that g is scalar.  In this case, Becker and Schram’s (1994) procedures—or 

various univariate alternatives (e.g., DerSimonian & Laird, 1986; DerSimonian & 

Kacker, 2007; Hedges, 1983; Raudenbush, 2009; Shadish & Haddock, 2009)—yield 

point estimators of ΜΘ and ΣΘ and a CI or test for ΜΘ.  A meta-analyst interested in Γ ≡ 

g(Θ), however, would instead prefer estimators of and inferences about ΜΓ and ΣΓ.  

Some authors have described or used in passing the point estimator g( ΘΜ̂ ) and similarly 

applied g directly to the endpoints of a CI for ΜΘ.  These may be meant as point and 

interval estimators of ΜΓ, but this is rarely explicated: Most authors simply state that 

these transformations express the estimators in the desired metric (i.e., Γ).  As Schulze 
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(2004, pp. 75-79) and Hafdahl (2009a) discussed in the situation I refer to herein as the 

“univariate z-to-r case”—namely, J = K = 1 with Ζ as Θ and Ρ = tanh Ζ as Γ—the 

intended estimand of these direction transformations is ambiguous, and they may yield 

poor estimators of ΜΓ (e.g., with large ΣΘ or ΜΘ).  As a simple example, consider Θ2 as 

Γ: For many realistic distributions Var(Θ) = E(Θ2) – [E(Θ)]2, so the direct transformation 

g(ΜΘ) = [E(Θ)]2 is smaller than ΜΓ = E[g(Θ)] = E(Θ2) by ΣΘ = Var(Θ). 

In the univariate z-to-r case, Hafdahl’s (2009a) Table 1 gives the discrepancy 

between tanh ΜΖ and ΜΡ in several realistic conditions (and some unrealistic ones—

Hafdahl, 2009a, and Hafdahl & Williams, 2009, highlighted deficiencies in prominent 

Monte Carlo simulations that some authors have cited as evidence against analyzing 

Fisher-z correlations).  Positing that this discrepancy is largely responsible for the 

sometimes poor performance of tanh ΖΜ̂  and an associated CI as estimators of ΜΡ, 

Hafdahl (2009a) proposed alternative estimators that use a more defensible integral z-to-r 

transformation (IZRT), which formalizes Law’s (1995) “point approximation” approach.  

This IZRT and a version for variances to estimate ΣΡ are special cases of the more 

general integral transformations described in Chapter 3.  Such an integral transformation, 

however, complicates testing ΜΓ or constructing a CI for it.  Hafdahl’s (2009c) 

simulation studies showed that Hafdahl’s (2009a) proposed approaches—application of 

the IZRT to a CI for ΜΖ, and a delta-method variance for ΡΜ̂ —work reasonably well in 

many conditions.  In Chapter 3 I describe generalizations of those procedures for generic 

ESs as well as bootstrap approaches. 
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As for the multivariate homogeneous fixed-effects version of Model 1, with Ui = 0 

∀ i, the main task is to obtain θ̂  as an estimate of θ, as in Equation 5.  Like in the 

univariate case, a meta-analyst interested in γ ≡ g(θ) could reasonably use γ̂  = g( θ̂ ) as a 

point estimator, where g may be scalar or vector-valued.  This was, for instance, Becker’s 

(1992) approach for estimating a vector of standardized regression coefficients (say, β) 

from a pooled correlation matrix ( ρ̂ ).  Other authors have used this approach to estimate 

exploratory factor models (Hafdahl, 2001), path models (S. F. Cheung, 2000), or more 

general SEMs (M. W.-L. Cheung & Chan, 2005; Furlow & Beretvas, 2005) from a 

pooled correlation matrix.  Except in special cases (e.g., componentwise functions), 

inference about γ or any of its components cannot be based on inference about θ (e.g., g 

applied to CIs or more general confidence sets for θ).  Becker gave a formula for the 

Jacobian matrix needed to obtain an approximate covariance matrix for β̂  from that for 

ρ̂  by the multivariate delta method.  This strategy may be generalized readily to generic 

multivariate ESs and more general g, which is a special case of one approach described in 

Chapter 3.  A drawback of this strategy in practice is the required derivatives, which will 

be difficult to obtain for many meta-analysts.  Solutions to this barrier, including 

numerical differentiation and bootstrap alternatives, are also addressed in Chapter 3. 

Finally, with no restrictions on Model 1, suppose a meta-analyst obtains ΘΣ
~ , 

ΘΜ̂ , and )ˆ(vôC ΘΜ  but would like estimates of and inferences about ΜΓ and ΣΓ.  As in 

the univariate random-effects case, authors who have described methods for these latter 
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estimates and inferences seem to have used g( ΘΜ̂ ) or an analogous estimator without 

clarifying the intended estimand.  For example, Becker (1992) and Becker and Schram 

(1994) considered a vector of standardized regression coefficients as a function g of a 

Pearson correlation matrix (i.e., with Ρ as Θ and Β as Γ): They applied the same g to ΡΜ̂  

as one would apply to ρ or ρi and obtained )]ˆ(v[ôC ΡΜg  by the same multivariate delta 

method as in the fixed-effects case.  As an example involving binary outcomes, Reitsma 

et al. (2005) described a bivariate random-effects analysis of, essentially, logit true- and 

false-positive rates—say, Λ = [ΛT, ΛF]T—that compares favorably with competitor 

techniques for meta-analyzing diagnostic tests (Harbord et al., 2007).  (They in fact 

analyzed logit sensitivity and specificity, ΛT and -ΛF.)  They reported point and interval 

estimates for the mean of sensitivity, specificity, and the diagnostic odds ratio in their 

Table 2 (i.e., [1 + exp(-ΛT)]-1, [1 + exp(ΛF)]-1, and exp[ΛT – ΛF], respectively) and 

suggested other useful functions of Λ in their Appendix 1.  All of their estimates appear 

to entail applying the relevant function directly to ΛΜ̂  or to a CI for ΜΛT or ΜΛF. 

Despite the appeal of the above direct approach based on g( ΘΜ̂ ), except in 

special circumstances g(ΜΘ) ≠ ΜΓ, and this discrepancy’s form and magnitude depend on 

not only ΜΘ and ΣΘ but also the distribution of Θ.  Hence, in some situations g( ΘΜ̂ ) 

may estimate ΜΓ poorly.  One might argue that g( ΘΜ̂ ) is intended to estimate g(ΜΘ), but 

to my knowledge no author has explicated that as the estimand.  Indeed, the value of g at 

ΜΘ seems unlikely to be of interest to an applied meta-analyst, especially when Γ is of 
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substantive interest and Θ is merely computationally expedient: It seems more likely that 

he or she would wish to estimate ΜΓ rather than g(ΜΘ).  Although g( ΘΜ̂ ) might be of 

interest as a prediction of γ in a future study for which θI+1 = ΜΘ, it is again unclear why 

ΜΘ is a point of interest for evaluating g(θ), and because )]ˆ(v[ôC ΘΜg  in Becker’s 

(1992) approach does not capture error due to ΣΘ it does not seem to be intended for 

prediction of a future study (cf. Harbord et al., 2007).   Furthermore, an estimator for ΣΓ 

may be of interest to some meta-analysts but does not seem to have been proposed for 

this case of a generic multivariate ES.  A primary contribution of this thesis is my 

proposal in Chapter 3 of techniques to estimate and makes inferences about ΜΓ and ΣΓ. 
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3. PROPOSED ESTIMATION AND INFERENCE TECHNIQUES 

In Chapter 2 I claimed that in many realistic situations a meta-analyst may wish to 

estimate and make inferences about the between-studies mean or covariance matrix of 

some function (g) of heterogeneous ESs (Θ, from which θi arises) whose sample 

estimates (ti from Ti) are analyzed by a conventional approach such as Becker and 

Schram’s (1994) EM-GLS procedures.  Moreover, I contended that procedures for these 

tasks do not seem to have been addressed comprehensively.  The major aims of the 

present thesis are to develop principled techniques for these meta-analytic tasks and 

evaluate them by Monte Carlo simulation.  This chapter focuses on proposed techniques; 

the next, on evaluations thereof.  After describing one straightforward but often infeasible 

approach, I describe point estimators of the target function’s mean and covariance matrix 

followed by strategies for inference on the function’s mean.  I also comment briefly on 

two special cases of interest. 

3.1. Direct Meta-Analysis of Function 

If every study contributes a sample estimate gi of the target function’s parameter 

for that study (γi) and both Gi and Γ conform reasonably well to Model 1, then one may 

simply use Becker and Schram’s (1994) procedures to estimate ΜΓ and ΣΓ, make 

inferences about ΜΓ or its components, test ΣΓ or its components, and so on.  For 

example, in the case of correlations ti might be ri, a sample correlation matrix among P 

variables, and gi might be bi, a vector of K ≤ P – 1 standardized regression coefficients 

(i.e., Ρ as Θ and Β as Γ): Provided that one could obtain from each study bi itself (with 

the same outcome and regressor variables) or a complete ri among the same P variables 
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as well as an approximate ΨBi ≡ Cov(Bi) (e.g., using Becker’s, 1992, delta-method 

approach or a reported covariance matrix), one could apply Becker and Schram’s EM 

algorithm to b = [b1, b2, ..., bK]T to obtain ΒΣ
~ , apply GLS to obtain ΒΜ̂  and )ˆ(vôC ΒΜ  

for CIs or other confidence sets (Equations 2 and 3), and test H0: ΣΒ = 0 (Equation 4).  

Becker and Wu (2007) described a fixed-effects variant of this direct strategy applied to 

unstandardized (i.e., raw) regression coefficients, and applying Becker and Schram’s 

procedures instead would accommodate between-studies heterogeneity. 

Some aspects of this direct meta-analysis of gi are attractive: Not only does it 

yield standard meta-analytic results in the Γ metric immediately, but it extends readily to 

other multivariate random-effects models and procedures, such as models with covariates 

(Berkey et al., 1998; Kalaian & Raudenbush, 1996).  Despite these advantages, this 

approach suffers from a major practical drawback: As discussed in Section 2.3.1, in many 

situations a complete gi will not be available from every study, and even when it is the 

standard meta-analytic procedures may perform poorly due to properties of Gi or Γ.  For 

instance, Becker and Wu (2007) discussed several limitations of their direct approach for 

regression coefficients, such as the usual incomparability of regression models across 

studies and lack of available data for ΨGi.  Their real-data example relied on a large 

national survey (NELS:88) that provided subject-level data from each of several schools, 

yielding all results for direct meta-analysis.  Given access to such subject-level data, 

however, meta-analysis may be less appropriate than, say, a standard mixed linear model. 
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3.2. Point Estimation for Function’s Mean 

The point estimators of ΜΓ I propose herein rely on a simple key idea: 

Transformations between moments of Θ and of Γ should incorporate the integration that 

defines these moments.  In particular, it is evident that ΜΓ = g(ΜΘ) will not hold for 

many functions g.  Instead, because ΜΓ = E[g(Θ)] = aaa Θ∫ dfg )()( , where fΘ(a) is the 

density function for Θ at Θ = a ∈ J, ΜΓ is not in general determined by ΜΘ alone, ΜΘ 

and ΣΘ, or any other set of moments of Θ, unless those moments characterize fΘ.  This 

complicates any attempt to estimate ΜΓ from estimates of, say, ΜΘ and ΣΘ.  

Nevertheless, some straightforward estimators may be obtained under certain reasonable 

assumptions about fΘ—such as multivariate normality or multivariate-normal lower-order 

moments.  Two such approaches are described below. 

3.2.1. Integral transformation.  If Θ ~ NJ(ΜΘ, ΣΘ), as is assumed for Becker and 

Schram’s (1994) ML estimator of ΣΘ, then we can express ΜΓ using the following 

function of a J × 1 real vector Μ and a J × J symmetric, positive definite real matrix Σ, 

which for convenience I call the mean integral transformation (MIT) of Μ and Σ: 

 S1(Μ, Σ) ≡ xxx X∫ dfg )()(  , (8) 

where x ∈ J and fX(x) = (2π)-J/2|Σ|-1/2exp[-(x – Μ)TΣ-1(x – Μ) / 2].  If Θ ~ NJ(ΜΘ, ΣΘ), 

then ΜΓ = S1(ΜΘ, ΣΘ), so a sensible estimator of ΜΓ based on estimators of ΜΘ and ΣΘ is 

 ΓΜ̂  = S1( ΘΜ̂ , ΘΣ
~ ) . (9) 
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If ΘΜ̂  and ΘΣ
~  were both ML estimators, then ΓΜ̂  would be an ML estimator of 

ΜΓ by the invariance property of ML.  Because Becker and Schram’s (1994) ΘΜ̂  is not 

ML, however, ΓΜ̂  is not in general ML.  It is, nevertheless, a reasonable estimator 

whose performance under realistic conditions merits consideration.  In practice, the 

integral S1 will rarely exist in closed form, except when g is affine or takes other special 

forms.  It will therefore often be necessary to evaluate S1 by numerical or simulation 

methods, such as Law (1995) and Hafdahl (2009a, 2009c) described for the univariate z-

to-r case.  The following simple Monte Carlo approximation will often suffice: 

1. Draw *
mθ  from NJ( ΘΜ̂ , ΘΣ

~ ) for m = 1, 2, ..., M, where M is large. 

2. Compute *
mγ  = g( *

mθ ). 

3. Compute ΓΜ̂  = M-1∑ =

M

m m1
*γ . 

3.2.2. Approximation of function.  An alternative strategy is to approximate g by 

a simpler function whose expected value is a fairly tractable function of ΜΘ and ΣΘ.  For 

instance, for the univariate z-to-r case Hafdahl (2009a) described an estimator of ΜΡ ≡ 

E(Ρ) that relies on the following expectation of a second-order Taylor-series 

approximation of Ρ = tanh Ζ expanded at ΜΖ: 

 ΜΡ ≈ E[ϕ + (1 – ϕ2)(Ζ – ΜΖ) – ϕ(1 – ϕ2)(Ζ – ΜΖ)2] = ϕ[1 – ΣΖ(1 – ϕ2)] , (10) 

where ϕ = tanh ΜΖ.  This suggests the estimator ΡΜ
(

 = ϕ̂ [1 – ΖΣ
~ (1 – 2ϕ̂ )], where ϕ̂  = 

tanh ΖΜ̂ , which differs from Law’s (1995) TS2 point estimator only in the specific 

estimators of ΜΖ and ΣΖ. 
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For appropriate (e.g., sufficiently differentiable) functions, such a second-order 

Taylor-series mean (MTS2) estimator is extended readily to the more general case with  

J > 1 for Θ or K > 1 for Γ.  Letting ∆ ≡ Θ – ΜΘ, consider the Taylor polynomial of 

degree two, expanded at ΜΘ, as a quadratic approximation to gk(Θ): 

 gk(Θ) ≈ Qgk(Θ; ΜΘ) 

 ≡ gk(ΜΘ) + ∇gk(ΜΘ)T∆ + ∆THgk(ΜΘ)∆ / 2 , (11) 

where ∇gk(ΜΘ) and Hgk(ΜΘ) are, respectively, the gradient vector and Hessian matrix of 

gk(Θ) with respect to Θ evaluated at Θ = ΜΘ (i.e., ∆ = 0).  Using a result on expectations 

of quadratic forms in a random vector that has an arbitrary distribution with finite fourth 

moments (e.g., Schott, 1997), we obtain E[∆THgk(ΜΘ)∆] = tr[Hgk(ΜΘ)ΣΘ].  Hence, for 

the kth component of g(Θ) we have the second-order Taylor-series approximation  

 ΜΓk ≡ E[gk(Θ)] ≈ E[Qgk(Θ; ΜΘ)] = gk(ΜΘ) + tr[Hgk(ΜΘ)ΣΘ] / 2 . (12) 

This suggests the following MTS2 estimator of ΜΓ based on ΘΜ̂  and ΘΣ
~ : 
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To be feasible for practicing meta-analysts, the second-order (mixed) partial derivatives 

in Hgk( ΘΜ̂ ) may be evaluated numerically.  For example, one could approximate 

element j, l of Hgk( ΘΜ̂ ) using the following central difference quotient: 
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where ε is a suitably small increment that balances truncation and round-off error, and 

each of εj and εl is a J-element column vector with ε in position j or l, respectively, and 0 

elsewhere.  Compared to the MIT estimator, this MTS2 estimator will often be 

computationally cheaper and may be more robust to non-normality of Θ.  It may perform 

poorly, however, for functions approximated poorly by a second-order Taylor polynomial 

near ΘΜ̂ , which may in turn depend on ΜΘ, ΣΘ, or other features of Θ’s distribution. 

3.3. Point Estimation for Function’s Covariance Matrix 

Relying on the same basic ideas as for the MIT and MTS2 estimators of ΜΓ, point 

estimators of ΣΓ may be obtained by approximating either the relevant integral or g. 

3.3.1. Integral transformation.  Assuming Θ ~ NJ(ΜΘ, ΣΘ), as for ΓΜ̂  in 

Section 3.2.1, and recalling that ΜΓ = S1(ΜΘ, ΣΘ), we can express ΣΓ using the following 

covariance integral transformation (CIT) of Μ and Σ: 

 S2(Μ, Σ) = xxΣΜxΣΜx X∫ −− dfSgSg )()],()()][,()([ T
11  , (15) 

where Μ, Σ, and fX(x) are defined as for Equation 8.  Namely, if Θ ~ NJ(ΜΘ, ΣΘ), then ΣΓ 

= S2(ΜΘ, ΣΘ).  Hence, a sensible estimator of ΣΓ based on ΘΜ̂  and ΘΣ
~  is 

 ΓΣ̂  = S2( ΘΜ̂ , ΘΣ
~ ) . (16) 
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As with ΓΜ̂ , ΓΣ̂ would be an ML estimator if both ΘΜ̂  and ΘΣ
~  were, but even 

if they are not it is reasonable and warrants investigation.  Except in special cases, it will 

be necessary to evaluate S2 by numerical or simulation methods, such as Law (1995) and 

Hafdahl (2009a, 2009c) described for the univariate z-to-r case.  In many situations the 

following step added to the Monte Carlo approximation of ΓΜ̂  (see Section 3.2.1) will 

suffice: Compute the usual (unbiased) covariance-matrix estimator ΓΣ̂  = (M – 1)-1DDT, 

where D = [ *
1γ  – ΓΜ̂ , *

2γ  – ΓΜ̂ , ..., *
Mγ  – ΓΜ̂ ] is a K × M matrix of deviations. 

3.3.2. Approximation of function.  By analogy with the MTS2 estimator for ΜΓ, 

one could approximate ΣΓ using the covariance matrix of a second-order Taylor-series 

approximation.  For the univariate z-to-r case Hafdahl (2009a, 2009c) described an 

estimator of ΣΡ ≡ Var(Ρ) that uses the following variance of such an approximation of Ρ: 

 ΣΡ ≈ Var[ϕ + (1 – ϕ2)(Ζ – ΜΖ) – ϕ(1 – ϕ2)(Ζ – ΜΖ)2] = ΣΖ(1 – ϕ2)2(1 + 2ϕ2ΣΖ) , (17) 

where the third and fourth moments of Ζ are assumed to be the same as normal—that is, 

E[(Ζ – ΜΖ)3] = 0 and E[(Ζ – ΜΖ)4] = 3 2
ΖΣ —so ΣΡ does not require estimating these 

additional moments.  This suggests the estimator ΡΣ
(

 = ΖΣ
~ (1 – 2ϕ̂ )2(1 + 2 2ϕ̂ ΖΣ

~ ), which 

is essentially the same as Law’s (1995) TS2 point estimator. 

Again, for appropriate functions such a second-order Taylor-series covariance 

(CTS2) estimator extends readily to the more general case of ΣΓ when J > 1 for Θ or K > 

1 for Γ.  Consider again Qgk(Θ; ΜΘ), the quadratic approximation to gk(Θ) given in 
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Equation 11.  By some results on variances and covariances of quadratic forms in a 

multivariate-normal random vector (e.g., Schott, 1997), if Θ ~ NJ(ΜΘ, ΣΘ) then 

 ])()([tr2])(,)(Cov[( TT
ΘΘΘΘΘΘ ΣΜΣΜ∆Μ∆∆Μ∆ lklk gggg HHHH =   

and 

 Cov[∇gk(ΜΘ)T∆, ∆THgl(ΜΘ)∆] = 0 . 

Hence, for the covariance of the kth and lth components of g(Θ) we have the second-

order Taylor-series approximation  

 ΣΓkl ≡ Cov[gk(Θ), gl(Θ)] ≈ Cov[Qgk(Θ; ΜΘ), Qgl(Θ; ΜΘ)] 

 = ∇gk(ΜΘ)TΣΘ∇gl(ΜΘ) + tr[Hgk(ΜΘ)ΣΘHgl(ΜΘ)ΣΘ] / 2 . (18) 

Substituting ΘΜ̂  and ΘΣ
~  for ΜΘ and ΣΘ in this expression yields the CTS2 estimator 

ΓΣ
(

, of which element k, l is 

 2/]~)ˆ(~)ˆ([tr)ˆ(~)ˆ( T
ΘΘΘΘΘΘΘΓ ΣΜHΣΜHΜΣΜ lklkkl gggg +∇∇=Σ

(
 . (19) 

As with Hgk( ΘΜ̂ ), the partial derivatives in ∇gk( ΘΜ̂ ) may be evaluated numerically.  

For example, element j of ∇gk( ΘΜ̂ ) may be approximated using the following central 

difference quotient: 
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3.4. Inference on Function’s Mean 

It is often desirable to accompany a point estimate of ΜΓ with a confidence set or 

test.  In this section I describe two general strategies for accomplishing these tasks.  Each 
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of these is applicable to both of the MIT and MTS2 estimation approaches described 

above, whose mean estimators I denote generically as ΓΜ  ∈ { ΓΜ̂ , ΓΜ
(

}. 

3.4.1. Delta method.  We may view ΓΜ  as a function of ΘΜ̂  (i.e., MIT or 

MTS2) with ΘΣ
~  fixed and known.  This treatment of ΘΣ

~  neglects sampling error in ΘΣ
~ , 

which is not uncommon in meta-analytic inference about the mean ES (e.g., Becker & 

Schram’s, 1994, GLS).  For many functions g, it will be appropriate to estimate an 

approximate covariance matrix for ΓΜ  using the multivariate delta method.  In addition 

to Becker and Schram’s )ˆ(vôC ΘΜ  from GLS (Equation 3), this requires A( ΓΜ , ΘΜ̂ ), 

the K × J Jacobian matrix of ΓΜ  with respect to ΘΜ̂  evaluated at ΘΜ̂  = Θµ̂ , where the 

sample realization Θµ̂  (of ΘΜ̂ ) is used to approximate E( ΘΜ̂ ).  The typical element of 

A( ΓΜ , ΘΜ̂ )—for the kth component of ΓΜ  and the jth component of ΘΜ̂ —is 

 A( ΓΜ , ΘΜ̂ )kj = 
ΘΘ µΜΘ

Γ

ˆˆ
ˆ

=
Μ∂
Μ∂

j

k  . (21) 

In most practical applications these derivatives will require numerical evaluation (e.g., 

using difference quotients analogous to Equation 20), at least for ΓΜ̂  due to the MIT’s 

integral.  If ΓΜ̂  is obtained by the Monte Carlo strategy described above, then A( ΓΜ̂ , 

ΘΜ̂ )kj may be obtained by shifting the same M multivariate-normal variates up or down 

by εj before computing *
mγ  as g( *

mθ  + εj ) or g( *
mθ  – εj).  Analytic derivatives of ΓΜ

(
 may 

be more tractable: Because of the MST2’s form (Equation 13), A( ΓΜ
(

, ΘΜ̂ )kj depends 
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on only ΘΣ
~ , the partial derivative of gk(Θ) with respect to Θj, and the J(J + 1) / 2 distinct 

third-order (mixed) partial derivatives of gk(Θ) with respect to Θj and at most two other 

components of Θ.  Specifically, 

 A( ΓΜ
(

, ΘΜ̂ )kj = ∑∑
= = ==

Θ∂Θ∂Θ∂
∂

+
Θ∂

∂ J

l

J

m mlj

k
lm

j

k gg
1 1 ˆ

3

ˆ

)(ˆ
2
1)(

ΘΘ µΘ

Θ

µΘ

ΘΣΘ  . (22) 

Regardless of how A( ΓΜ , ΘΜ̂ ) is obtained, if ΘΜ̂  is approximately multivariate 

normal with covariance matrix )ˆ(vôC ΘΜ , then we may treat ΓΜ  as approximately 

multivariate normal with covariance matrix 

 )(vôC ΓΜ  = A( ΓΜ , ΘΜ̂ ) )ˆ(vôC ΘΜ A( ΓΜ , ΘΜ̂ )T . (23) 

Hence, one may use ΓΜ  and )(vôC ΓΜ  to construct various normal-theory CIs for 

components of ΜΓ or linear combinations of these components.  One may also test ΜΓ 

components or linear combinations thereof using the same general-linear-hypothesis 

strategy as for tests of ΜΘ (see Section 2.1.1).  For some tests it may be feasible and 

preferable to incorporate the null hypothesis into an alternative covariance matrix, but 

procedures for doing this are beyond the present scope. 

3.4.2. Bootstrap.  Another strategy for inference about ΜΓ involves resampling.  

Specifically, van den Noortgate and Onghena (2005) described four bootstrap methods 

for inference about ΜΘ or covariate effects for SMDs in the univariate case.  On the basis 

of whether a distributional form is assumed for either Ui or Ei in Model 1, each of their 

methods is deemed parametric or nonparametric.  It appears feasible to generalize these 
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methods to handle inferences on ΜΓ as implied by a (possibly vector-valued) function of 

generic multivariate ESs, such as g(Θ).  Each of the four methods entails a particular 

procedure for obtaining B bootstrap samples by generating *
bt  = [ *

1bt T, *
2bt T, ..., *

bIt T]T, b = 

1, 2, ..., B.  Generating *
bt , in turn, involves resampling *

bit  by either sampling from t 

directly (with replacement) or sampling residuals or ESs (possibly via subject-level data) 

from parametric or empirical distributions (e.g., based on shrinkage estimators of θi).  

Some of these resampling procedures involve rescaling and “reflating” residuals to 

compensate for shrinkage.  One potential drawback of bootstrap inference is that every 

resampling procedure requires sample size(s), ΨTi, or ti from all studies, which may not 

be available in some circumstances. 

Below are algorithms for the four bootstrap methods to obtain the pair *
bit  and 

*
biTΨ , as generalized from Van den Noortgate and Onghena’s (2005) algorithms.  For 

each algorithm it is assumed that we begin with the EM-GLS estimates Θµ̂  and Θσ~  (i.e., 

realizations of estimators ΘΜ̂  and ΘΣ
~  of ΜΘ and ΣΘ) and any necessary data from every 

study.  In what follows it will be useful to denote the ith study’s sample size(s) as ni, 

which may be a vector (e.g., with proportions or standardized mean differences). 

First, the effect-size bootstrap is a parametric method that essentially entails 

executing Model 1 directly with an additional distributional assumption: Ui ~ NJ(0, ΣΘ), 

which was also made for the EM estimation of ΣΘ.  The algorithm is as follows: 

1. Draw *
biθ  from NJ( Θµ̂ , Θσ~ ). 
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2. Compute *
biTΨ  from *

biθ  and ni. 

3. Draw *
bit  from a parametric family that depends on only *

biθ  and *
biTΨ , such as 

NJ( *
biθ , *

biTΨ ). 

Note that if ΨTi depends on only ni (and not on θi), then *
biTΨ  = ΨTi so in Step 3 we can 

draw *
bit  from NJ( *

biθ , ΨTi).  Also, if ΨTi depends on only ni and for step 3 we use NJ( *
biθ , 

ΨTi), then we can in one step draw *
biθ  from NJ( Θµ̂ , Θσ~  + ΨTi). 

Second, the raw-data bootstrap is another parametric method similar to the effect-

size bootstrap, except that instead of sampling *
bit  from a parametric distribution we 

compute it from a sample of subject-level data as would be done in a primary study.  The 

algorithm is as follows: 

1. Draw *
biθ  from NJ( Θµ̂ , Θσ~ ). 

2. Sample raw data Yi from a distribution that depends on only *
biθ  and ni. 

3. Compute *
bit  from Yi and ni. 

How raw data are sampled depends on the metric of Θ.  For example, if Θ were a matrix 

of Fisher z-transforms then Yi might be a simple random sample of size ni from a 

multivariate normal distribution whose correlation matrix corresponds to tanh *
biθ , or we 

could instead draw one sample from the appropriate Wishart distribution.  Van den 

Noortgate and Onghena (2005) did not explicitly describe how to obtain *
biTΨ  for this 

method, but one may infer from their explanation of the effect-size and raw-data methods 
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that *
biTΨ  could be computed from *

biθ  and ni.  It may also be reasonable to compute 

*
biTΨ  from all studies’ *

bit  and ni to mimic the computation of ΨTi. 

Third, the error bootstrap is a nonparametric method whose several steps may 

obscure its relatively simple underlying idea: Instead of assuming parametric 

distributions for the errors Ui and Ei, we compute residuals (i.e., estimated errors) for 

each study; we then obtain resampled errors by sampling with replacement (SWR) from 

these residuals and use these errors to compute a resampled *
bit .  The algorithm below 

involves using covariance matrices for residuals to “reflate” them—to compensate for 

shrinkage (Carpenter, Goldstein, & Rasbash, 2003)—and standardizing within-study 

residuals to have a similar mean and covariance matrix for all studies (then later 

unstandardizing them).  Standardization and reflation are accomplished using the 

Cholesky decomposition: For covariance matrix S, let C(S) denote the lower-triangle 

matrix such that C(S)C(S)T = S.  In the following algorithm, Step 1 estimates ES 

parameters, Steps 2–5 resample between-studies errors, and Steps 7–13 resample within-

studies errors. 

1. Compute iθ̂  = ( 1−
iTΨ  + 1~−

Θσ )-1( 1−
iTΨ ti + 1~−

Θσ Θµ̂ ). 

2. Compute iû  = iθ̂  – Θµ̂ , and collect these in the J × I matrix û  = [ 1û , 2û , …, Iû ]. 

3. Estimate the covariance matrix of iû  as uS ˆ  = I-1 Tˆˆuu . 

4. Draw )(ˆ ibu  by SWR from { 1û , 2û , …, Iû }. 

5. Compute *
biu  = C( Θσ~ )C( uS ˆ )-1

)(ˆ ibu . 
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6. Compute *
biθ  = Θµ̂  + *

biu . 

7. Compute iê  = ti – iθ̂ . 

8. Compute iẑ  = C(ΨTi)-1
iê , and collect these in the J × I matrix ẑ  = [ 1ẑ , 2ẑ , …, Iẑ ]. 

9. Estimate the covariance matrix of iẑ  as zS ˆ  = I-1 Tˆˆzz . 

10. Draw )(ˆ ibz  by SWR from { 1ẑ , 2ẑ , …, Iẑ }. 

11. Compute *
biz  = C( zS ˆ )-1

)(ˆ ibz . 

12. Compute *
biTΨ  from *

biθ  and ni. 

13. Compute *
bie  = C( *

biTΨ ) *
biz . 

14. Compute *
bit  = *

biθ  + *
bie . 

This procedure is not fully nonparametric.  For instance, Step 12 typically relies on 

certain distributional assumptions.  Note that if *
biTΨ  depends on only ni so that *

biTΨ  = 

ΨTi, then Step 12 may be omitted and the unstandardization in Step 13 is the inverse 

transformation of the standardization in Step 8.  Also, for computational purposes one 

could reflate resampled residuals (e.g., Steps 3–5, Steps 9–11) for all studies at once, 

such as with C( Θσ~ )C( uS ˆ )-1[ )1(û , )2(û , …, )(ˆ Iu ], or one might reflate before resampling, 

such as by SWR from the elements of C( Θσ~ )C( uS ˆ )-1 û . 

Fourth, the cases bootstrap is a nonparametric method that treats the pairs [ti, ΨTi] 

as random instead of treating ΨTi (and ni) as fixed and known.  The simple algorithm is 

as follows: Draw [ *
bit , *

biTΨ ] by SWR from {[t1, ΨT1], [t2, ΨT2], …, [tI, ΨTI]}.  When ΨTi 
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depends on θi in addition to ni, one could alternatively draw [ *
bit , *

bin ] by SWR from {[t1, 

n1], [t2, n2], …, [tI, nI]} then compute *
biTΨ  from all studies’ *

bit  and *
bin  to mimic the 

computation of ΨTi. 

Regardless of which bootstrap resampling method is used, for the bth bootstrap 

sample one simply applies Becker and Schram’s (1994) EM-GLS approach to *
bit  and 

*
biTΨ  (instead of ti and ΨTi) to obtain *ˆ bΘµ  and *~

bΘσ  (i.e., realizations of ΘΜ̂  and ΘΣ
~ ) and 

then obtains *
bΓµ   from these estimates by either of the MIT or MTS2 estimators.  

Repeating this for all B bootstrap samples yields a set of bootstrap replicates that mimic 

the sampling distribution of ΓΜ  and may be used to make inferences about ΜΓ, such as 

confidence regions or tests based on percentiles or a covariance matrix.  For example, a 

bootstrap covariance matrix for ΓΜ  may be estimated using *
Γµ  = B-1∑ =

B

b b1
*
Γµ : 

 )(vôC ΓΜB  = (B – 1)-1FFT , (24) 

where F = [ *
1Γµ  – *

Γµ , *
2Γµ  – *

Γµ , ..., *
BΓµ  – *

Γµ ] is a K × B matrix of deviations.   

Bootstrap inference is more computationally intensive than delta-method 

inference, primarily because the bootstrap entails repeating EM-GLS procedures B times, 

and some bootstrap resampling methods are susceptible to numerical problems (e.g., 

improper covariance matrices in the error bootstrap).  Bootstrapping can, however, be 

applied to more functions than the delta method.  Also, bootstrap inference may be less 

sensitive to violations of certain distributional assumptions, and it may better incorporate 
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uncertainty about ΣΘ.  Although obtaining bias-corrected estimators of ΜΓ from the 

bootstrap samples may also be feasible, these are beyond the present scope. 

3.5. Special Cases 

In some circumstances, such as with certain types of functions (e.g., affine, 

componentwise, scalar), for homogeneous fixed-effects models, or when J = K = 1, 

simplifications to the above estimators or inference procedures may arise.  In some of 

these circumstances alternative procedures may be preferable, such as direct application 

of the MIT or MTS2 transformations to endpoints of CIs for components of ΜΘ in the 

case of a componentwise function.  Below I remark briefly on two particular 

circumstances of potential interest. 

3.5.1. Homogeneous fixed effects.  First, consider the homogeneous fixed-effects 

model mentioned in Sections 2.1.1 and 2.3.2, for whose only parameter, θ, Equation 5 

gives a GLS estimator.  In this case ΣΘ is undefined because Θ is not random (loosely 

speaking, ΣΘ = 0), so the EM algorithm is unnecessary.  Regarding γ ≡ g(θ), the MIT and 

MTS2 estimators both simply yield )ˆ(ˆ θγ g= , and ΣΓ is undefined.  Application of the 

delta method is simplified because the Jacobian matrix of γ̂  with respect to θ̂  involves 

only partial derivatives: 

 )ˆ(vôC γ  = A( γ̂ , θ̂ ) )ˆ(vôC θ A( γ̂ , θ̂ )T , (25) 

where 

 A( γ̂ , θ̂ )kj = 
θΘ

θ

ˆ

)(

=
θ∂

∂

j

kg
 . (25) 
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Furthermore, bootstrap resampling does not involve between-studies error.  For instance, 

for the effect-size and raw-data bootstrap algorithms one can omit Steps 1 and 2 and use 

*
biθ  =  θ̂  in Step 3, and for the error bootstrap algorithm one can omit Steps 1–6 and use 

*
biθ  = iθ̂  = θ̂  in Steps 7 and 12. 

3.5.1. Affine transformation.  Second, suppose the function g is affine, so that Γ 

≡ g(Θ) = WΘ + v, where W is a K × J matrix of known coefficients, and v is a column 

vector of J known values.  Then the IT and TS2 estimators both simply yield ΓΜ  = 

W ΘΜ̂  + v and ΓΣ  = W ΘΣ
~ WT, where ΓΣ  ∈ { ΓΣ̂ , ΓΣ

(
}.  Also, the delta method yields 

)(vôC ΓΜ  = W )ˆ(vôC ΘΜ WT, which also follows from noting that Cov( ΓΜ ) = 

Cov(W ΘΜ̂  + v) = WCov( ΘΜ̂ )WT.  The bootstrap resampling procedures do not 

simplify markedly. 
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4. MONTE CARLO STUDIES OF PROPOSED TECHNIQUES 

A second major aim of the present thesis is to evaluate the techniques proposed in 

Chapter 3.  My main interest is in point estimators’ accuracy and efficiency and  

confidence sets’ coverage performance.  As illustrated in the description of the main 

simulation study below, Study 1, simulating even one situation requires several choices 

about the data and meta-analytic methods.  Furthermore, some of the methods are 

computationally slow (e.g., MIT and CIT by simulation with bootstrap inference, 

especially with large B).  Hence, it was not practically feasible to evaluate these 

procedures thoroughly under a wide range of plausible conditions.  Study 1 offers a 

preliminary Monte Carlo examination of the proposed point-estimation and delta-method 

inference techniques for a non-trivial function g in a limited number of realistic 

conditions.  Study 2 is a follow-up Monte Carlo investigation focused mainly on 

bootstrap inference in a subset of conditions from Study 1, with some comparisons to 

delta-method inference.  In the following sections I describe each study’s method and 

report on its results, followed by a summary highlighting each study’s main findings.  It 

will often be convenient to refer collectively to the MIT and CIT estimators as IT 

estimators and to the MTS2 and CTS2 estimators as TS2 estimators. 

4.1. Study 1: Method 

The primary purpose of this first Monte Carlo study was to assess the proposed 

point estimators’ and delta-method CIs’ performance under fairly realistic conditions 

when most or all assumptions of these procedures are satisfied.  To this end, data were 

generated to conform to Model 1, with Θ and Ti both multivariate normal and ΨTi 
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known.  In each of several conditions defined by the number of studies as well as features 

of ΜΘ, ΣΘ, and ΨTi, a feasible but informative number of replications (i.e., simulated 

meta-analyses) were run.  Each such meta-analysis entailed applying proposed techniques 

to the simulated data to obtain estimates of and inferences about (components of) a 

judiciously selected vector-valued function of Θ, and these results were used to estimate 

properties of point estimators and CIs.  Details of this Monte Carlo study are given 

below, some of which were arrived at by considering run time, sampling error for 

estimates of evaluation criteria, and other information from pilot simulations. 

4.1.1. Design conditions.  Generating data that conform to Model 1 requires 

specifying J, ΜΘ, ΣΘ, I, and each simulated study’s ΨTi.  Enormously many options exist, 

even if they were limited to typical values for a specific ES metric (e.g., correlations) in 

an actual research domain.  Furthermore, little empirical evidence about typical values is 

available for most of these quantities, largely because multivariate meta-analysis has been 

used rarely to date—even in applications where it may have been more appropriate than 

univariate procedures.  Hence, my choices were informed by my previous work with 

multivariate meta-analysis, most of which has involved simulations of correlation 

matrices (e.g., Hafdahl, 2001, 2004, 2007, 2008) as well as several real-data applications 

involving correlation matrices (e.g., Hafdahl, 2001, 2009b, 2009d) or multiple-treatment 

SMDs (e.g., Conn, Hafdahl, Brown, & Brown, 2008; Conn, Hafdahl, Cooper, Brown, & 

Lusk, 2009; Conn, Hafdahl, Cooper, Ruppar, Mehr, & Russell, 2009; Conn et al., 2008; 

Conn, Hafdahl, Porock, McDaniel, & Nielsen, 2006). 
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To simplify design choices at some cost in generalizability, I fixed J = 6 and set 

ΜΘ = η1J , a column vector of J ηs, with η varied systematically as a design factor.  I 

also varied ΣΘ and ΨTi systematically based on the following simple structures: ξ1 ≡ ΣΘjj 

∀ j and ξ2 ≡ Corr(Θj, Θl) = ΣΘjl / ξ1 ∀ j, l as variances and correlations for ΣΘ, and ΨTijj = 

ΨTill ∀ i, j, l and φ ≡ Corr(Tij, Til) = ΨTijl / ΨTijj ∀ i, j, l as variances and correlations for 

ΨTi.  Hence, each of ΣΘ and ΨTi was compound symmetric with homogeneous variance.  

Furthermore, to mimic the usual dependence of ΨTijj on study i’s sample size, ni ∈ *, I 

used ΨTijj = 1 / ni ∀ i, j, so that ΨTijl = φ / ni ∀ i, j ≠ l.  This specific relation between an 

ES’s (approximate asymptotic) conditional variance and sample size, ΨTijj = 1 / ni, indeed 

holds for some realistic ESs: a variance-stabilizing transformation of Hedges’s d (Hedges 

& Olkin, 1985, p. 88) and the arcsine transformation of a proportion.  It is also nearly true 

for a Fisher-z correlation, where ΨZijj = 1 / (ni – 3), and it holds for special cases of a 

Pearson-r correlation (ρi = 0) and a risk difference (πi1 = πi2 = 1 / 2 and ni1 = ni2 = ni / 2).  

Compound symmetry for ΨTi was not intended to represent any particular ES, and in 

practice ΨTi often depends on θi. 

The factorial simulation design consisted of 35 = 243 conditions, each defined as a 

quintuple of five factors: three values each of the mean, η ∈ {0.0, 0.4, 0.8}; between-

studies variance, ξ1 ∈ {0.052, 0.102, 0.202}; between-studies correlation, ξ2 ∈ {-.1, .1, 

.5}; within-study correlation, φ ∈ {-.1, .1, .5}; and number of studies, I ∈ {10, 20, 40}.  

For most of the factors these levels cover fairly wide ranges of realistic values.  A 
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possible exception is I, whose values seem somewhat small but are meant to reduce 

computational burden. 

To mimic realistic sample sizes, I sampled ni from a positively skewed 

distribution with n  = 100 as its approximate expected value.  To avoid idiosyncrasies of 

any particular sample of I ni values, a new sample was drawn for each replication, which 

introduces an additional random component into the expectations and probabilities used 

for evaluation criteria.  Although meta-analysis simulations often vary n  as a factor, with 

the present ideal ESs this was not of sufficient interest to warrant the cost of a larger 

design: Unlike many real ESs, ti was generated such that the shape of Ti’s sampling 

distribution does not depend on ni, so the most important consequence of varying n  

would be to vary the ratio of ΨTijj to ΣΘjj, which already varies with ξ1 = ΣΘjj. 

4.1.2. Data generation.  In each condition I generated 500 independent meta-

analytic data sets and analyzed each of them using the several procedures specified 

below.  Each such replication’s data consisted of I independent pairs [ni, ti], with study i’s 

ni and ti generated independently as follows: 

1. Draw xi from χ2(3), and set ni = 〈[(xi – 3) / )3(2 ]( n  / 2) + n 〉, where 〈a〉 

denotes the integer nearest a. 

2. Draw θi from N6(ΜΘ, ΣΘ). 

3. Draw ti from N6(θi, ΨTi). 

Step 1 yields ni from a positively skewed distribution with approximate mean n  

and variance ( n  / 2)2 and ni > .38 n .  In Step 3 ni and φ determine ΨTi.  (Steps 2 and 3 are  
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equivalent to drawing ti from N6[ΜΘ, ΣΘ + ΨTi].)  The resulting expected ratio of 

between-studies to “total” variance, E[ΣΘjj / (ΣΘjj + ΨTijj)], ranged from .193 with ξ1 = 

ΣΘjj = 0.052 to .773 with ξ1 = 0.202, which encompass Hedges and Pigott’s (2001) generic 

guidelines for small (ratio of .25) and large (.50) between-studies variances. 

4.1.3. Meta-analytic procedures.  Each replication’s simulated meta-analytic 

data were analyzed by first applying Becker and Schram’s (1994) EM-GLS procedures to 

obtain ΘΜ̂ , ΘΣ
~ , and )ˆ(vôC ΘΜ .  Their QΘ statistic (Equation 4) for testing ΣΘ was 

disregarded.  Although analyses in the Θ metric were not of primary interest, these 

quantities were used to construct CIs for each component of ΜΘ, in part to verify the 

simulation procedures and to serve as a baseline for assessing analyses in the Γ metric. 

More important, the proposed techniques for estimates and inferences in the Γ ≡ 

g(Θ) metric were applied to ΘΜ̂ , ΘΣ
~ , and )ˆ(vôC ΘΜ , where g was the following vector-

valued function: g(Θ) = [ 2
1Θ , Θ1Θ2, 1 / ( 3Θ−e  + 1), 34 Θ−Θe , )2/(sinh22 5Θ , tanh Θ6]T.  

The K = 6 components of g are basic nonlinear algebraic and transcendental functions 

likely to constitute realistic composite functions: g1(Θ) = 2
1Θ  and g2(Θ) = Θ1Θ2 are 

quadratic, g3(Θ) = 1 / ( 3Θ−e  + 1) would transform a logit to a proportion, g4(Θ) = 34 Θ−Θe  

would transform two logits to an odds ratio, g5(Θ) = )2/(sinh22 5Θ  is the inverse 

variance-stabilizing transformation of a SMD in the balanced case (Hedges & Olkin, 

1985, p. 88), and g6(Θ) = tanh Θ6 is the inverse of Fisher’s z-transformation. 
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Point estimators of ΜΓ and ΣΓ were obtained by each of the IT and TS2 

estimation approaches in Sections 3.2 and 3.3.  For IT estimators I used Monte Carlo 

integration with M = 10,000 samples, and for IT estimators I used numerical derivatives 

with the increment ε chosen adaptively.  Inferences about ΜΓ were obtained by applying 

the delta method in Section 3.4.1 with numerical derivatives for both the IT and TS2 

estimators.  The main inference task of interest was a 95% CI for each component of ΜΓ, 

using standard-normal quantiles with no adjustment for simultaneous inference.  Hence, 

in each condition these analyses yielded two point estimates of ΜΓ and ΣΓ and two sets of 

componentwise CIs for ΜΓ.  (I also computed 90% and 99% CIs as well as Student-t CIs 

at all three confidence levels using I – 1 as degrees of freedom, for all of which results 

are available upon request but not presented below.) 

4.1.4. Evaluation criteria.  Regarding the performance of point estimators of ΜΘ, 

ΜΓ, ΣΘ, and ΣΓ, my primary interest was in bias and mean squared error (MSE) for 

estimators of each component of ΜΘ and ΜΓ and each diagonal element and ΣΘ and ΣΓ.  

As an example, for the IT estimator of ΜΓk, Bias( kΓΜ̂ ) ≡ E( kΓΜ̂  – ΜΓk) and MSE( kΓΜ̂ ) 

≡ E[( kΓΜ̂  – ΜΓk)2].  Properties of ΘΜ̂ , ΓΜ̂ , and ΓΜ
(

 as vectors or of ΘΣ
~ , ΓΣ̂ , and ΓΣ

(
 

as matrices may be of interest for some purposes, but here I consider only scalar 

properties separately for each component of Θ and Γ.  As for inference about ΜΓ, I am 

most interested in the coverage probability of each component’s CI versus the nominal 

confidence level.  Particular transformations of bias, MSE, and CI coverage probability to 

facilitate interpretation are described along with the presentation of results. 
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4.2. Study 1: Results 

In this section I report selected results from the above Monte Carlo study, with 

ideal generic ESs as data, the delta method for inferences, and five design factors.  

Separate subsections are devoted to point estimators of means from ΜΘ and ΜΓ, point 

estimators of variances from ΣΘ and ΣΓ, and delta-method CIs for means.  To keep the 

scope manageable and emphasize findings most relevant to anticipated applications, the 

presentation of results is simplified in various ways, such as by displaying summaries of 

results over conditions.  For readers who wish to examine the simulation results 

independently, SAS/IML programs (Version 9.1) and data are available from the author. 

4.2.1. Point estimators of means.  In each of the 243 conditions the simulation 

yielded empirical estimates of bias, variance, and MSE for the EM-GLS estimator of ΜΘj 

and the IT and TS2 estimators of ΜΓk.  Table 1 is typical of tables used to summarize 

simulation results in this thesis: For some outcome of interest, selected percentiles across 

conditions are shown separately for each component of Θ or Γ.  (The 1st, 2nd, 98th, and 

99th percentiles are sometimes omitted when summarizing substantially fewer than 243 

conditions.)  Table 1, in particular, shows percentiles across all conditions of 100 times 

standardized bias for each element of ΘΜ̂ , SBias( jΘΜ̂ ) =  Bias( jΘΜ̂ ) / SE( jΘΜ̂ ), where 

SE( jΘΜ̂ ) = )ˆVar jΘΜ(  is the estimator’s empirical standard error.  Standardized bias 

retains the sign of bias and rescales it relative to sampling error to facilitate judging its 

magnitude for comparisons among conditions, methods, ES metrics, function 
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components, and so on.  Squaring standardized bias yields a relative difference between 

MSE and variance, or the “inflation” of MSE over variance due to bias: 

[SBias(•)]2 = [Bias(•)]2 / [SE(•)]2 = [MSE(•) – Var(•)] / Var(•) . 

Furthermore, the proportion of MSE due to (squared) bias is just {1 + [SBias(•)]-2}-1 = 

[Bias(•)]2 / MSE(•).  (Dividing bias by the estimand would yield another re-expression of 

bias, but this fails in one third of the present conditions where ΜΘj = η = 0.) 

Although my primary interest is in the proposed estimators of ΜΓ, comparing 

them to their counterparts for ΜΘ addresses the impact of the proposed transformation 

 

Table 1 
Percentiles of Standardized Bias for Estimators of ΜΘj 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Percentile Θ1 Θ2 Θ3 Θ4 Θ5 Θ6 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 100 13 12 11 13 13 13 
 99 10 10 11 8 10 11 
 98 9 9 9 8 9 10 
 95 7 8 8 7 7 8 
 90 6 6 6 6 6 6 
 80 4 4 4 4 4 4 
 75 4 4 3 3 3 3 
 50 1 0 0 0 0 0 
 25 -2 -2 -3 -3 -3 -3 
 20 -4 -3 -5 -3 -4 -3 
 10 -6 -6 -6 -6 -6 -5 
 5 -7 -8 -8 -8 -8 -8 
 2 -9 -10 -10 -9 -9 -9 
 1 -10 -10 -11 -9 -11 -10 
 0 -11 -13 -14 -13 -13 -11 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Note. Table entry is percentile (across 243 conditions) of Monte Carlo 
estimate of 100Bias( jΘΜ̂ ) / )ˆ(Var jΘΜ . 



 55

techniques.  That is, the performance of the EM-GLS estimators ΘΜ̂  and ΘΣ
~  serves as a 

useful baseline against which to evaluate the performance of transformations of these 

estimators used to estimate ΜΓ and ΣΓ.  As Table 1 shows, standardized bias for jΘΜ̂  was 

often less than 0.05 in absolute value and always less than 0.15, so that MSE would be at 

most 100(0.152) = 2.25% larger than variance.  This negligibly small standardized bias 

showed no apparent association with any of the five simulation design factors.  (Any 

variation among components of Θ in standardized bias or other properties of ΘΜ̂  is due 

entirely to Monte Carlo sampling error.) 

Table 2 parallels Table 1 but for components of ΜΓ—separately for IT and TS2—

instead of ΜΘ.  It will occasionally be convenient to refer simultaneously to the IT and 

TS2 estimators of ΜΓ, ΓΜ̂  and ΓΜ
(

, respectively, as ΓΜ  ∈ { ΓΜ̂ , ΓΜ
(

}.  With 

exceptions for Γ1 and Γ2 in certain isolated conditions, which I address below, 

standardized bias was at worst only slightly larger for estimators of ΜΓ than for 

estimators of ΜΘ: typically less than 0.10 in absolute value and rarely more than 0.20.  

That standardized bias was not markedly larger for ΓΜ  than ΘΜ̂  is encouraging, 

especially given that ΓΜ  depends on ΘΣ
~ , which is shown later to exhibit considerable 

bias in some conditions. 

As for associations with design conditions, standardized bias for ΓΜ  tended to be 

more positive than negative for 4ΓΜ  and vice versa for 6ΓΜ , and for both of these 

components it was most pronounced with small ξ1 = ΣΘjj (i.e., small between-studies 
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variance component).  Most prominent, however, was the substantial positive 

standardized bias for 1ΓΜ  and 2ΓΜ , which was sometimes over 0.50 and reached 0.83 

for 1ΓΜ  and 0.74 for 2ΓΜ .  These large values occurred almost exclusively when η = 

ΜΘj = 0 and ξ1 ≤ 0.102.  To highlight this association with η and ξ1, Table 3 shows 

percentiles of standardized bias for only 1ΓΜ  and 2ΓΜ , separately for conditions with η 

= 0 and ξ1 ≤ 0.102 versus all other combinations of η and ξ1. 

 

Table 2 
Percentiles of Standardized Bias for Estimators of ΜΓk 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 Integral transformation (IT) Taylor series, order 2 (TS2) 
 –––––––––––––––––––––––––– –––––––––––––––––––––––––– 
Percentile Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 100 83 74 11 17 15 12 83 74 10 17 15 11 
 99 81 65 10 15 10 11 81 65 10 15 10 9 
 98 79 52 9 14 10 10 79 52 8 14 10 8 
 95 69 30 7 11 7 7 69 30 7 11 7 7 
 90 54 13 6 9 6 5 54 13 5 9 6 4 
 80 16 8 4 6 5 3 16 7 4 6 4 2 
 75 14 7 3 6 4 2 13 7 3 6 4 1 
 50 7 2 0 2 1 -1 6 2 0 2 1 -2 
 25 2 -2 -3 -1 -3 -4 2 -2 -3 -1 -3 -5 
 20 1 -3 -5 -1 -4 -5 1 -3 -5 -2 -4 -5 
 10 -1 -7 -7 -3 -6 -7 -2 -7 -7 -4 -5 -8 
 5 -3 -9 -8 -6 -7 -10 -3 -9 -8 -6 -7 -11 
 2 -5 -13 -10 -8 -9 -12 -5 -13 -10 -8 -9 -13 
 1 -6 -19 -11 -9 -10 -15 -6 -19 -11 -9 -10 -15 
 0 -9 -22 -16 -13 -14 -16 -9 -22 -16 -13 -14 -16 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Note. Table entry is percentile (across 243 conditions) of Monte Carlo estimate of 
100Bias( kΓΜ̂ ) / )ˆ(Var kΓΜ  for IT or 100Bias( kΓΜ

(
) / )(Var kΓΜ

(
 for TS2. 
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The large standardized bias for 1ΓΜ  and 2ΓΜ  warrants further exploration, 

because the associated functions share a feature that largely accounts for their poor 

performance in some conditions.  Namely, both Γ1 = g1(Θ) = 2
1Θ  and Γ2 = g2(Θ) = Θ1Θ2 

are quadratic functions of Θ, so they are not in general monotonic over their 

corresponding components of Θ.  Although g1 and g2 imply simple transformations of 

ΘΜ̂  and ΘΣ
~  to obtain 1ΓΜ  and 2ΓΜ , these mean estimators’ performance deteriorates 

when ΜΘ is near a critical point of g1 or g2.  More specifically, the unusually large 

 

Table 3 
Percentiles of Standardized Bias for Estimators of ΜΓ1 and ΜΓ2, by Selected Conditions 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 η = 0 and ξ1 ≤ 0.102 (54 conditions) η ≥ 0.4 or ξ1 = 0.202 (189 conditions) 
 –––––––––––––––––––––––––––– –––––––––––––––––––––––––––––– 
 IT TS2 IT TS2 
 ––––––––––– ––––––––––– ––––––––––– ––––––––––– 
Percentile Γ1 Γ2 Γ1 Γ2 Γ1 Γ2 Γ1 Γ2 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 100 83 74 83 74 19 20 19 20 
 95 81 64 81 64 14 10 14 10 
 90 79 50 79 50 11 8 11 8 
 80 70 34 70 34 9 7 9 7 
 75 69 25 69 25 8 6 8 6 
 50 47 7 47 7 4 2 4 2 
 25 22 -2 22 -2 1 -3 1 -2 
 20 20 -5 20 -5 0 -3 0 -3 
 10 11 -12 11 -12 -2 -6 -2 -6 
 5 8 -18 8 -18 -4 -8 -4 -8 
 0 2 -22 2 -22 -9 -11 -9 -10 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Note. Estimators: IT = integral transformation; TS2 = Taylor series, order 2.  Table entry 
is percentile (across specified conditions) of Monte Carlo estimate of 100Bias( kΓΜ̂ ) / 

)ˆ(Var kΓΜ  for IT or 100Bias( kΓΜ
(

) / )(Var kΓΜ
(

 for TS2. 
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positive standardized bias for 1ΓΜ  and 2ΓΜ  when η = 0 with small ξ1 seems to be due 

mainly to both large positive bias and small variance compared to other conditions.  This 

is easiest to illustrate for 1ΓΜ , for which ΜΓ1 = ΣΘ11 + 2
1ΘΜ  and both the IT and TS2 

estimators are essentially 1ΓΜ  = 11
~

ΘΣ  + 2
1

ˆ
ΘΜ ; a similar explanation for ΜΓ2 would 

involve Θ1 and Θ2 (e.g., covariances, products of means).  First, when η = ΜΘ1 = 0, 2
1

ˆ
ΘΜ  

is often nearly 0, so 1ΓΜ  depends largely on 11
~

ΘΣ .  As shown later, 11
~
ΘΣ  overestimated 

ΣΘ11 substantially when ΣΘ11 = ξ1 was small (relative to within-study variance), which in 

turn induced positive bias in 1ΓΜ . 

Second, when η = ΜΘ1 = 0 the empirical standard error used to standardize the 

bias of 1ΓΜ , SE( 1ΓΜ ), depends largely on the variance of 11
~

ΘΣ , which is small compared 

to the variance of 2
1

ˆ
ΘΜ  that contributes more to SE( 1ΓΜ ) when η ≥ 0.4.  More 

specifically, in any condition the true variance of 1ΓΜ  is essentially 

Var( 1ΓΜ ) = Var( 11
~
ΘΣ ) + Var( 2

1
ˆ

ΘΜ ) + 2Cov( 2
1

ˆ
ΘΜ , 11

~
ΘΣ ) . 

Treating the covariance in this expression as negligibly small and noting that if 1
ˆ

ΘΜ  is 

normally distributed then 

Var( 2
1

ˆ
ΘΜ ) = 2[Var( 1

ˆ
ΘΜ )]2 + 4[E( 1

ˆ
ΘΜ )]2Var( 1

ˆ
ΘΜ ) , 

we see that if E( 1
ˆ

ΘΜ ) ≈ ΜΘ1 = 0 then to a close approximation 

Var( 1ΓΜ ) ≈ Var( 11
~
ΘΣ ) + 2[Var( 1

ˆ
ΘΜ )]2 . 
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The second term on the right-hand side of the latter expression is relatively small: In the 

present simulation, Monte Carlo estimates of Var( 11
~

ΘΣ ) / Var( 1ΓΜ ) were nearly always 

between 0.80 and 1.00 in the 81 conditions with ΜΘ1 = 0, whereas this quotient was 

between 0.10 and 0.15 when ΜΘ1 = 0.4 and ΣΘ11 = 0.04 (27 conditions) and otherwise 

between 0.00 and 0.06 (135 conditions).  The key insight here is that Var( 2
1

ˆ
ΘΜ ) and its 

relative contribution to Var( 1ΓΜ ) are much smaller when η = 0 than when η ≥ 0.4. 

 

Table 4 
Percentiles of Difference in Absolute Standardized Bias Between 
Estimators of ΜΓk 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Percentile Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 100 0.6 0.6 0.7 2.2 0.5 2.8 
 99 0.5 0.4 0.6 1.7 0.4 2.2 
 98 0.3 0.4 0.5 1.5 0.3 1.8 
 95 0.3 0.3 0.3 1.1 0.3 1.4 
 90 0.2 0.2 0.2 0.7 0.2 0.8 
 80 0.1 0.1 0.1 0.2 0.1 0.2 
 75 0.1 0.1 0.1 0.2 0.1 0.2 
 50 0.0 0.0 0.0 0.0 0.0 0.0 
 25 -0.1 -0.1 -0.1 -0.2 -0.1 -0.1 
 20 -0.1 -0.1 -0.1 -0.2 -0.1 -0.2 
 10 -0.2 -0.2 -0.2 -0.6 -0.2 -0.9 
 5 -0.2 -0.3 -0.3 -1.0 -0.2 -1.6 
 2 -0.3 -0.4 -0.4 -1.3 -0.3 -2.1 
 1 -0.4 -0.5 -0.5 -1.7 -0.4 -2.3 
 0 -0.5 -0.6 -0.5 -2.0 -0.5 -3.0 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Note. Table entry is percentile (across 243 conditions) of Monte Carlo 
estimate of 100[|Bias( kΓΜ

(
)| / )(Var kΓΜ

(
] – 100[|Bias( kΓΜ̂ )| / 

)ˆ(Var kΓΜ ], where kΓΜ
(

 and kΓΜ̂  are TS2 and IT estimators. 
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Hence, in conditions with η = 0 and small ξ1, large positive bias and small variance for 

1ΓΜ  occur mainly because 1ΓΜ  depends largely on 11
~

ΘΣ . 

As for the effect of estimation method, the IT and TS2 estimators of ΜΓ yielded 

very similar standardized bias.  Table 4 shows percentiles for 100 times these estimators’ 

difference in absolute standardized bias, computed in each condition as |SBias( kΓΜ
(

)| – 

|SBias( kΓΜ̂ )|.  These absolute values usually differed by less than 0.01 and never by 

more than 0.03.  For another perspective on this agreement between IT and TS2, Figure 1 

 

 
 

Figure 1. Scatterplot of standardized bias for TS2 ( 6ΓΜ
(

) and IT ( 6
ˆ

ΓΜ ) estimators of 
ΜΓ6, with identity line for reference. 
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shows the standardized bias of 6ΓΜ
(

 plotted against that of 6
ˆ

ΓΜ , with the identity line for 

reference: The IT estimator’s standardized bias tended to be slightly higher—more 

positive or less negative—than the TS2 estimator’s.  The linear correlation accompanying 

this plot, r = .990, was smaller than that for the other five components (r > .995). 

 

Table 5 
Percentiles of Transformed Relative Efficiency for Estimators of ΜΓk 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Percentile Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 100 1.3 1.4 1.3 1.6 1.0 2.0 
 99 1.0 1.2 1.1 1.4 0.9 1.3 
 98 0.9 1.1 0.9 1.3 0.9 1.1 
 95 0.8 0.7 0.6 1.1 0.7 0.9 
 90 0.6 0.5 0.5 0.9 0.5 0.6 
 80 0.4 0.3 0.3 0.6 0.4 0.4 
 75 0.3 0.3 0.3 0.5 0.4 0.3 
 50 0.1 0.1 0.1 0.2 0.1 0.0 
 25 -0.1 -0.1 -0.1 0.0 -0.1 -0.2 
 20 -0.2 -0.2 -0.1 0.0 -0.1 -0.3 
 10 -0.4 -0.3 -0.2 -0.1 -0.2 -0.6 
 5 -0.4 -0.5 -0.3 -0.3 -0.4 -0.7 
 2 -0.5 -0.7 -0.5 -0.3 -0.4 -1.0 
 1 -0.7 -0.7 -0.6 -0.3 -0.4 -1.0 
 0 -1.0 -1.1 -0.9 -0.4 -0.8 -1.2 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Note. Table entry is percentile (across 243 conditions) of Monte Carlo 
estimate of 100[MSE( kΓΜ̂ ) / MSE( kΓΜ

(
)] – 100, where kΓΜ̂  and kΓΜ

(
 

are IT and TS2 estimators. 
 

Finally, the IT and TS2 estimators of ΜΓ can also be compared in terms of MSE.  

(I do not report MSE, variance, or their square roots for either estimator, because judging 

or comparing their magnitudes in a practically relevant way is difficult.)  Table 5 displays 
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a transformed version of the relative efficiency of kΓΜ
(

 with respect to kΓΜ̂ : 

100MSE( kΓΜ̂ ) / MSE( kΓΜ
(

) – 100.  This transformed measure is negative or positive 

when the TS2 estimator is less or more efficient, respectively, than its IT counterpart.  

For example, if MSE( kΓΜ̂ ) = .005 and MSE( kΓΜ
(

) = .006, then the TS2 estimator’s 

relative efficiency is .005 / .006 = 0.833, and the transformed relative efficiency is 

100(0.833) – 100 = -16.7, so that TS2 is 16.7% less efficient than IT.  (In this example IT 

is 100/.833 – 100 = 20% more efficient than TS2, but such asymmetry is negligible when 

relative efficiency is near 1.0, as in the present data.)  The two estimators were nearly 

equally efficient, in that TS2 was rarely more than 1% more or less efficient than IT and 

never more than 2% more or less.  Nonetheless, the slight efficiency differences tended to 

favor the TS2 estimator, which may be due in part to Monte Carlo error in the IT 

estimator.  This slight advantage for TS2 was most noticeable for Γ4 = g4(Θ) = exp(Θ4 – 

Θ3), and closer inspection revealed that TS2’s advantage was most pronounced when the 

between-studies variance component was largest (ξ1 = 0.202). 

4.2.2. Point estimators of variances.  In each condition the simulation yielded 

empirical estimates of bias, variance, and MSE for the EM-GLS estimators of ΣΘjj and 

the IT and TS2 estimators of ΣΓkk.  Analogous to Table 1 for jΘΜ̂ , the top panel of Table 

6 shows percentiles of 100 times standardized bias for jjΘΣ
~ , Bias( jjΘΣ

~ ) / SE( jjΘΣ
~ ).  

Because ΣΘjj = ξ1 > 0 for all j in all conditions, it is also reasonable to express bias for 

jjΘΣ
~  as relative bias, Bias( jjΘΣ

~ ) / ΣΘjj, as shown in the bottom panel of Table 6 (times 
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Table 6 
Percentiles of Standardized and Relative Bias for Estimators of ΣΘjj 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Percentile Θ1 Θ2 Θ3 Θ4 Θ5 Θ6 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Standardized bias 
 100 61 63 62 67 61 61 
 99 59 60 60 60 60 60 
 98 59 59 58 59 58 60 
 95 57 57 56 57 57 56 
 90 54 54 54 54 54 54 
 80 48 49 50 50 50 49 
 75 45 45 46 46 46 45 
 50 4 5 5 5 5 5 
 25 -12 -10 -11 -10 -11 -11 
 20 -14 -13 -13 -13 -14 -13 
 10 -17 -17 -17 -18 -18 -17 
 5 -20 -20 -20 -20 -19 -20 
 2 -23 -24 -23 -22 -22 -23 
 1 -26 -25 -24 -23 -23 -24 
 0 -29 -25 -27 -27 -34 -26 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Relative bias 
 100 111 113 108 122 112 117 
 99 104 105 104 110 106 106 
 98 101 102 99 101 102 101 
 95 95 94 92 99 97 95 
 90 83 82 85 83 85 86 
 80 58 55 59 59 57 59 
 75 40 43 41 42 43 40 
 50 2 3 3 3 3 3 
 25 -4 -4 -4 -4 -4 -4 
 20 -5 -5 -5 -5 -5 -5 
 10 -8 -8 -8 -7 -7 -7 
 5 -9 -10 -9 -9 -9 -9 
 2 -11 -11 -12 -10 -11 -10 
 1 -12 -13 -12 -10 -11 -12 
 0 -15 -13 -14 -14 -17 -13 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Note. Table entry for standardized bias is percentile (across 243 
conditions) of Monte Carlo estimate of 100Bias( jjΘΣ

~ ) / )~(Var jjΘΣ ; for 

relative bias, 100Bias( jjΘΣ
~ ) / ΣΘjj. 
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100).  I will focus on standardized bias, mainly to consider sampling variance when 

assessing bias and to maintain consistency with the above treatment of mean estimators.  

Several key patterns of bias across conditions, methods, and components of Θ and Γ were 

similar between standardized and relative bias. 

It is evident that jjΘΣ
~  exhibited greater bias (relative to sampling variance) than 

jΘΜ̂ .  Although standardized bias for jjΘΣ
~  fell below -0.20 in only about 5% of the 

conditions and then almost never below -0.30, the magnitude of positive standardized 

bias is more troubling: It exceeded 0.50 in nearly 20% of the conditions and occasionally 

exceeded 0.60—making MSE( jjΘΣ
~ ) up to about 35% larger than Var( jjΘΣ

~ ).  Closer 

inspection revealed that standardized bias varied among conditions due primarily to ξ1 = 

ΣΘjj.  As shown in Table 7, which presents percentiles separately for each value of ξ1, 

standardized bias was markedly positive for ξ1 = .052 (usually between 0.40 and 0.60), 

negligibly negative to slightly positive for ξ1 = 0.102 (usually between -0.10 and 0.20), 

and somewhat to negligibly negative for ξ1 = 0.202 (usually between -0.25 and -0.05).  

Other design factors’ effects were substantially less pronounced, such as a slight 

tendency for standardized bias to be larger in absolute value with fewer studies.  (Any 

variation in properties of jjΘΣ
~  among components of Θ is due entirely to Monte Carlo 

sampling error.) 

Table 8 shows percentiles of standardized bias separately for IT and TS2 

estimators of ΣΓkk.  It will occasionally be convenient to refer simultaneously to the IT 
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Table 7 
Percentiles of Standardized Bias for Estimators of ΣΘjj, by Selected Conditions 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 ξ1 = 0.052 (81 conditions) ξ1 = 0.102 (81 conditions) ξ1 = 0.202 (81 conditions) 
 –––––––––––––––––––––––––– –––––––––––––––––––––––––– –––––––––––––––––––––––––– 
Percentile Θ1 Θ2 Θ3 Θ4 Θ5 Θ6 Θ1 Θ2 Θ3 Θ4 Θ5 Θ6 Θ1 Θ2 Θ3 Θ4 Θ5 Θ6 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 100 61 63 62 67 61 61 20 23 24 23 22 23 0 -2 -5 -5 -5 -4 
 98 60 61 60 62 60 60 20 20 20 20 18 21 -3 -4 -7 -6 -5 -5 
 95 59 60 60 60 58 60 18 18 16 18 15 18 -5 -5 -8 -6 -7 -6 
 90 58 58 57 59 57 57 14 17 13 14 15 16 -8 -7 -8 -8 -8 -8 
 80 56 55 56 56 56 56 10 12 11 13 12 10 -10 -10 -10 -9 -10 -10 
 75 56 55 55 56 55 56 10 11 11 11 10 8 -12 -10 -11 -10 -11 -11 
 50 50 51 51 51 52 52 4 5 5 5 5 5 -15 -14 -14 -15 -15 -14 
 25 45 45 47 46 46 46 0 -2 0 -1 -1 -1 -18 -18 -18 -19 -18 -18 
 20 43 44 44 46 44 44 -2 -3 -2 -2 -2 -2 -19 -19 -18 -19 -18 -19 
 10 40 41 40 41 39 43 -5 -6 -4 -5 -4 -5 -21 -22 -22 -20 -20 -21 
 5 39 40 37 39 37 41 -6 -9 -6 -6 -7 -9 -23 -24 -23 -22 -23 -24 
 2 37 38 36 35 37 40 -9 -10 -8 -8 -8 -10 -28 -25 -25 -25 -24 -25 
 0 36 35 33 33 36 40 -13 -12 -12 -10 -9 -12 -29 -25 -27 -27 -34 -26 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Note. Table entry is percentile (across 243 conditions) of Monte Carlo estimate of 100Bias( jjΘΣ

~ ) / )~(Var jjΘΣ . 
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and TS2 estimators of ΣΓ, ΓΣ̂  and ΓΣ
(

, respectively, as ΓΣ  ∈ { ΓΣ̂ , ΓΣ
(

}.  For the most 

part these estimators’ standardized bias mimicked that of jjΘΣ
~ , in that the distributions 

across conditions were similar.  Also, as Table 9 shows, ξ1 largely accounts for variation 

in standardized bias among conditions. 

Closer inspection highlights two notable exceptions, however, where estimators 

of ΣΓkk performed differently than jjΘΣ
~ .  First, standardized bias for 11ΓΣ  and 22ΓΣ  was 

substantially positive—at least compared to other components—not only when ξ1 = 0.052 

 

Table 8 
Percentiles of Standardized Bias for Estimators of ΣΓkk 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 Integral transformation (IT) Taylor series, order 2 (TS2) 
 –––––––––––––––––––––––––– –––––––––––––––––––––––––– 
Percentile Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 100 64 78 62 79 61 61 64 78 62 79 61 61 
 99 60 76 60 75 60 60 61 76 60 75 60 60 
 98 59 73 58 73 58 59 59 73 58 73 58 59 
 95 56 68 56 70 57 56 56 68 56 71 57 56 
 90 55 60 54 57 54 54 55 61 54 57 54 54 
 80 50 51 50 44 50 49 50 52 50 43 50 49 
 75 46 46 46 38 46 45 46 46 46 37 46 46 
 50 20 19 5 3 5 5 20 19 5 -2 4 8 
 25 -1 -3 -11 -8 -9 -12 -1 -3 -6 -23 -15 -2 
 20 -4 -5 -13 -9 -12 -15 -4 -5 -8 -27 -18 -5 
 10 -10 -11 -18 -12 -16 -18 -10 -11 -13 -33 -22 -13 
 5 -12 -16 -21 -15 -17 -20 -12 -16 -17 -37 -24 -18 
 2 -16 -19 -24 -18 -20 -24 -16 -19 -20 -41 -26 -21 
 1 -18 -19 -26 -21 -22 -26 -18 -19 -21 -41 -29 -23 
 0 -23 -22 -29 -24 -33 -30 -24 -22 -24 -48 -38 -27 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Note. Table entry is percentile (across 243 conditions) of Monte Carlo estimate of 
100Bias( kkΓΣ̂ ) / )ˆ(Var kkΓΣ  for IT and 100Bias( kkΓΣ

(
) / )(Var kkΓΣ

(
 for TS2. 
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Table 9 
Percentiles of Standardized Bias for Estimators of ΣΓkk, by Selected Conditions 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 ξ1 = 0.052 (81 conditions) ξ1 = 0.102 (81 conditions) ξ1 = 0.202 (81 conditions) 
 –––––––––––––––––––––––––– –––––––––––––––––––––––––– –––––––––––––––––––––––––– 
Percentile Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Integral transformation (IT) 
 100 64 78 62 79 61 61 47 49 24 38 22 24 27 27 -6 5 -3 -5 
 98 61 77 60 76 60 60 43 48 20 37 18 20 26 23 -7 1 -4 -6 
 95 59 73 60 73 58 60 40 45 15 33 16 18 25 20 -8 -1 -5 -8 
 90 58 70 57 72 57 57 37 42 13 26 15 15 23 18 -9 -2 -7 -9 
 80 56 66 55 65 56 56 33 35 10 16 12 10 18 14 -11 -5 -8 -10 
 75 55 64 55 58 55 55 29 33 10 11 10 7 14 10 -11 -5 -9 -12 
 50 53 54 51 49 51 51 11 12 5 1 5 5 -5 -6 -15 -8 -13 -16 
 25 46 44 46 37 46 46 3 1 -1 -6 -1 -1 -11 -13 -19 -12 -16 -19 
 20 44 42 44 30 45 45 2 0 -2 -8 -2 -2 -11 -15 -19 -13 -17 -19 
 10 41 38 40 21 39 43 -1 -5 -5 -11 -4 -6 -15 -17 -23 -15 -19 -22 
 5 40 36 37 16 37 41 -5 -6 -6 -14 -7 -9 -17 -19 -25 -16 -21 -24 
 2 39 32 35 11 37 40 -7 -7 -8 -18 -8 -11 -19 -20 -26 -21 -23 -27 
 0 37 26 33 9 36 39 -10 -10 -12 -22 -9 -13 -23 -22 -29 -24 -33 -30 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

(table continues) 
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–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 ξ1 = 0.052 (81 conditions) ξ1 = 0.102 (81 conditions) ξ1 = 0.202 (81 conditions) 
 –––––––––––––––––––––––––– –––––––––––––––––––––––––– –––––––––––––––––––––––––– 
Percentile Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Taylor series, order 2 (TS2) 
 100 64 78 62 79 61 61 47 49 25 37 22 24 27 27 -1 -3 -9 21 
 98 62 77 60 76 60 60 43 48 21 36 17 22 26 23 -2 -9 -11 17 
 95 60 73 60 74 58 59 40 45 16 32 15 19 25 20 -2 -10 -11 14 
 90 58 70 57 73 57 57 37 42 14 24 14 17 22 18 -3 -16 -13 10 
 80 56 65 56 65 56 56 33 35 11 12 11 12 18 15 -5 -21 -15 5 
 75 55 64 55 59 55 55 29 33 11 8 9 11 14 11 -6 -23 -15 3 
 50 53 54 52 48 52 52 11 12 5 -2 4 6 -5 -6 -10 -29 -20 -5 
 25 46 44 47 37 46 46 3 1 0 -12 -2 2 -11 -13 -14 -34 -22 -14 
 20 44 42 44 30 44 44 2 0 -1 -14 -3 0 -11 -15 -15 -36 -23 -17 
 10 41 38 41 20 39 43 -1 -5 -4 -17 -5 -4 -15 -17 -19 -37 -25 -20 
 5 40 36 37 14 37 42 -5 -6 -6 -18 -8 -7 -17 -19 -20 -41 -26 -22 
 2 39 32 36 10 37 40 -6 -7 -7 -24 -9 -9 -19 -20 -21 -42 -30 -25 
 0 36 26 34 7 36 40 -10 -10 -11 -28 -10 -11 -24 -22 -24 -48 -38 -27 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Note. Table entry is percentile (across specified conditions) of Monte Carlo estimate of 100Bias( kkΓΣ̂ ) / )ˆ(Var kkΓΣ  for IT 

and 100Bias( kkΓΣ
(

) / )(Var kkΓΣ
(

 for TS2. 
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(across other design factors) but also when ξ1 ≥ 0.102 and η = 0, most notably with fewer 

studies.  This mostly likely occurred for similar reasons as the substantial standardized 

bias for 1ΓΜ  and 2ΓΜ  in the same conditions: For Γ1 = 2
1Θ  in particular, Θ1 ~ N(ΜΘ1, 

ΣΘ11) implies that ΣΓ11 = 2ΣΘ11(ΣΘ11 + 2 2
1ΘΜ ), so when ΜΘ1 = η = 0 the dominant 

contribution to 11ΓΣ  should be from 11
~
ΘΣ , which was substantially positively biased with 

smaller ξ1.  Furthermore, because E( 2
1

ˆ
ΘΜ ) = Var( 1

ˆ
ΘΜ ) + [E( 1

ˆ
ΘΜ )]2, when η = 0 2

1
ˆ

ΘΜ  

overestimates 2
1ΘΜ  = 0 more with larger Var( 1

ˆ
ΘΜ ), such as with smaller I or larger ξ1.  

Hence, even when ξ1 = 0.202 so that negative bias in 11
~
ΘΣ  lowers 11ΓΣ , when η = 0 with 

larger Var( 1
ˆ

ΘΜ ) the positive bias in 2
1

ˆ
ΘΜ  increases 11ΓΣ .  Also, the variance of 11

~
ΘΣ  is 

much smaller than that of 2 2
1

ˆ
ΘΜ  when η ≥ 0.4, so the variance of 11ΓΣ  used in its 

standardized bias is much smaller when η = 0 than when η ≥ 0.4.  Analogous reasoning 

applied to Γ2 = Θ1Θ2 would involve covariances. 

Second, in some conditions estimators of ΣΘ22 and ΣΘ44 tended to yield notably 

different standardized bias than those for variances of other components, primarily with 

smaller ξ1 when ξ2 and φ (i.e., between- and within-studies correlations) were discrepant.  

For example, with smaller ξ1 when ξ2 ≤ .1 and φ = .5, standardized bias for 22ΓΣ  and 

44ΓΣ  was markedly higher and lower, respectively, than for other components; the 

opposite pattern held when ξ2 = .5 and φ ≤ .1.  This dependence on ξ2 and φ is not 

surprising, given that Γ2 and Γ4 depend on more than one component of Θ. 
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Table 10 
Percentiles of Difference in Absolute Standardized Bias Between 
Estimators of ΣΓkk 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Percentile Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 100 0.7 0.6 1.5 37.4 8.3 13.3 
 99 0.5 0.4 1.4 34.5 8.2 5.7 
 98 0.4 0.4 1.3 31.9 8.0 5.6 
 95 0.3 0.3 1.1 27.1 7.8 5.2 
 90 0.2 0.2 0.9 24.2 7.2 4.0 
 80 0.2 0.2 0.7 16.4 5.8 2.6 
 75 0.1 0.1 0.3 12.7 5.1 2.3 
 50 0.0 0.0 0.0 0.9 0.0 0.2 
 25 -0.1 -0.1 -4.1 -0.8 -0.2 -1.2 
 20 -0.1 -0.1 -4.5 -1.0 -0.9 -3.1 
 10 -0.2 -0.2 -5.6 -1.9 -1.1 -12.7 
 5 -0.3 -0.3 -6.7 -3.3 -1.2 -14.9 
 2 -0.4 -0.5 -7.1 -4.1 -1.3 -17.6 
 1 -0.5 -0.8 -7.3 -4.3 -1.4 -18.2 
 0 -0.6 -1.6 -7.6 -4.6 -1.5 -21.8 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Note. Table entry is percentile (across 243 conditions) of Monte Carlo 
estimate of 100[|Bias( kkΓΣ

(
)| / )(Var kkΓΣ

(
] – 100[|Bias( kkΓΣ̂ )| / 

)ˆ(Var kkΓΣ ], where kkΓΣ
(

 and kkΓΣ̂  are TS2 and IT estimators. 
 

As for comparing estimators of ΣΓkk, Table 10 shows percentiles for the difference 

between the TS2 and IT estimators’ absolute standardized bias, |SBias( kkΓΣ
(

)| – 

|SBias( kkΓΣ̂ )|.  For ΣΓ11 and ΣΓ22 these differences were negligible, as we might expect 

given that for these components the estimators differ primarily due to Monte Carlo 

sampling error in the IT estimator.  Other components of Γ yielded notable differences in 

standardized bias, however, mainly when ξ1 was large.  The most pronounced 

discrepancy occurred for ΣΓ44 when ξ1 = 0.202: Both the IT and TS2 estimators usually 
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exhibited negative bias, but TS2’s was substantially larger (typically -0.40 to -0.20) than 

IT’s (typically -0.10 to 0.0), especially with larger I.  TS2 also exhibited somewhat more 

negative bias than IT for ΣΓ55, mainly when ξ1 = 0.202.  On the other hand, the IT 

variance estimator was sometimes more biased than its TS2 counterpart, such as for ΣΓ66 

when ξ1 = 0.202 with smaller η and I (with larger I the estimators were often biased in 

different directions) or for ΣΓ33 when ξ1 = 0.202.  The scatterplot in Figure 2 shows the 

correspondence between standardized bias for 66ΓΣ
(

 and 66
ˆ
ΓΣ  across conditions. 

Regarding the efficiency of IT and TS2 estimators of ΣΓkk, Table 11 shows 

percentiles for the transformed relative efficiency of TS2 with respect to IT: 

 
 

Figure 2. Scatterplot of standardized bias for TS2 ( 66ΓΣ
(

) and IT ( 66
ˆ
ΓΣ ) estimators of 

ΣΓ66, with identity line for reference. 
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100MSE( kkΓΣ̂ ) / MSE( kkΓΣ
(

) – 100.  The two estimators did not differ substantially in 

efficiency for ΣΓ11 or ΣΓ22 but sometimes did for other components of Γ, primarily with 

larger ξ1.  More specifically, TS2 tended to be less efficient than IT for ΣΓ33 (up to 8% 

less, mainly with smaller η and I) and especially for ΣΓ66 (up to 29% less, mainly with 

smaller η) but more efficient than IT for ΣΓ55 (up to 10% more) and especially for ΣΓ44 

(up to 52% more, mainly with smaller I). 

 

Table 11 
Percentiles of Transformed Relative Efficiency for Estimators of ΣΓkk 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Percentile Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 100 3 3 1 52 10 5 
 99 3 2 0 42 9 4 
 98 2 2 0 41 9 3 
 95 2 2 -1 35 8 3 
 90 1 1 -1 29 8 2 
 80 1 1 -1 21 7 2 
 75 1 0 -1 17 6 1 
 50 0 0 -2 9 3 -5 
 25 0 0 -4 5 2 -12 
 20 0 -1 -5 5 2 -16 
 10 -1 -1 -6 3 1 -22 
 5 -1 -1 -7 3 1 -25 
 2 -2 -2 -7 2 1 -27 
 1 -2 -3 -8 2 0 -27 
 0 -3 -5 -8 2 0 -29 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Note. Table entry is percentile (across 243 conditions) of Monte Carlo 
estimate of 100[MSE( kkΓΣ̂ ) / MSE( kkΓΣ

(
)] – 100, where kkΓΣ̂  and kkΓΣ

(
 

are IT and TS2 estimators. 



 73

It is important to note that unlike the IT and TS2 estimators of ΜΓk, which 

performed quite similarly in nearly all conditions for all components of Γ, the IT and TS2 

estimators of ΣΓkk sometimes performed rather differently for Γ3 through Γ6.  To 

complicate matters further, these differences in performance between variance estimators 

were typically such that the estimator with larger standardized bias was more efficient.  

This could occur if, for instance, kkΓΣ̂  and kkΓΣ
(

 had the same (unstandardized) absolute 

bias but differed in variance, in which case one might prefer the more precise estimator 

(i.e., with smaller variance), but the present situation was usually more ambiguous: In 

conditions where the IT and TS2 estimators of ΣΓ33 through ΣΓ66 tended to differ in 

absolute bias and variance—mainly when ξ1 was large—the more precise estimator also 

tended to be more biased, but the proportion of MSE due to bias was small enough that 

the estimator with smaller variance had smaller MSE.  As an illustrative example, when 

[I, η, ξ1, ξ2, φ] = [20, 0.8, 0.202, -.1, .1] the IT estimator had Bias( 44
ˆ
ΓΣ ) = -0.00339 and 

Var( 44
ˆ
ΓΣ ) = 0.00215, whereas for the TS2 estimator Bias( 44ΓΣ

(
) = -0.01276 and 

Var( 44ΓΣ
(

) = 0.00146.  Hence, standardized bias was much larger for TS2 (-0.334) than 

IT (-0.073) but MSE was smaller for TS2 (0.00162) than IT (0.00216). 

4.2.3. Confidence intervals for means.  In each condition the simulation yielded 

empirical estimates of the coverage probability of standard-normal 95% CIs for ΜΘj 

(from EM-GLS estimates) and for ΜΓk (by the delta method applied to IT and TS2 

estimates).  For CIs for ΜΘj, the top panel of Table 12 shows percentiles of the empirical 

coverage percentage’s difference from nominal 95%, which estimates 100πj – 95, where 
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πj = Pr(ΜΘjL < ΜΘj < ΜΘjU) is the coverage probability for the 95% CI (ΜΘjL, ΜΘjU).  

The bottom panel of Table 12 shows percentiles of this departure from nominal expressed 

as a logit difference, which estimates ln{[πj / (1 – πj)] / [.95 / (1 – .95)]}.  Compared to 

the percentage difference, this logit difference (i.e., log odds ratio) amplifies deviations 

for coverage probabilities further from .5, consequently emphasizing over- versus 

undercoverage.  I will focus on the percentage difference.  For a 95% CI that attains 

nominal coverage probability, the standard error of coverage probability estimated from 

the present 500 replications is slightly below .01.  Approximate 90% and 99% acceptance 

 

Table 12 
Percentiles of Deviation from Nominal Coverage Percentage and Logit 
Probability for 95% Confidence Intervals for ΜΘj 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Percentile Θ1 Θ2 Θ3 Θ4 Θ5 Θ6 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Percentage 
 100 2.8 3.0 2.8 3.6 2.8 3.2 
 99 2.2 2.3 2.4 2.3 2.4 2.2 
 98 2.0 1.8 2.0 2.0 1.6 2.0 
 95 1.6 1.6 1.6 1.6 1.4 1.4 
 90 1.0 1.2 1.0 1.0 1.0 1.0 
 80 0.4 0.6 0.5 0.6 0.6 0.4 
 75 0.2 0.4 0.2 0.4 0.2 0.0 
 50 -0.8 -0.8 -0.8 -1.2 -0.8 -1.0 
 25 -2.3 -2.2 -1.9 -2.2 -2.2 -2.0 
 20 -2.6 -2.5 -2.4 -2.4 -2.4 -2.4 
 10 -3.4 -3.6 -3.6 -3.4 -3.4 -3.2 
 5 -4.4 -4.0 -5.0 -4.0 -4.2 -4.0 
 2 -5.6 -4.4 -5.6 -4.6 -4.8 -5.1 
 1 -5.9 -4.6 -6.7 -4.7 -5.3 -5.6 
 0 -7.0 -7.4 -7.6 -6.6 -6.2 -6.8 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

(table continues) 
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––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Percentile Θ1 Θ2 Θ3 Θ4 Θ5 Θ6 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Logit probability 
 100 0.85 0.95 0.85 1.31 0.85 1.05 
 99 0.60 0.65 0.68 0.65 0.69 0.60 
 98 0.54 0.48 0.54 0.53 0.41 0.53 
 95 0.40 0.40 0.40 0.40 0.34 0.34 
 90 0.23 0.29 0.23 0.23 0.23 0.23 
 80 0.09 0.13 0.12 0.13 0.13 0.09 
 75 0.04 0.09 0.04 0.09 0.04 0.00 
 50 -0.16 -0.16 -0.16 -0.23 -0.16 -0.19 
 25 -0.40 -0.39 -0.34 -0.39 -0.39 -0.36 
 20 -0.45 -0.43 -0.42 -0.42 -0.42 -0.42 
 10 -0.56 -0.58 -0.58 -0.56 -0.56 -0.53 
 5 -0.68 -0.63 -0.75 -0.63 -0.65 -0.63 
 2 -0.81 -0.68 -0.82 -0.70 -0.73 -0.75 
 1 -0.85 -0.70 -0.92 -0.72 -0.78 -0.82 
 0 -0.95 -0.99 -1.01 -0.91 -0.87 -0.93 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Note. Table entry for percentage is percentile (across 243 conditions) of 
Monte Carlo estimate of 100πj – 95, where πj is coverage probability of 
confidence interval for ΜΘj; for logit probability, ln[πΘj / (1 – πΘj)] – 
ln(.95 / .05). 
 

intervals around .95 are, respectively, (.934, .966) and (.925 and .975), which correspond 

to the following intervals for percentage difference: (-1.6, 1.6) and (-2.5, 2.5).  (These 

normal-approximation intervals depart slightly from their exact binomial counterparts, 

which require additional criteria to be defined uniquely.) 

The coverage probability of 95% CIs for ΜΘj was often near nominal but departed 

markedly in some conditions, most notably with fewer studies.  As Table 13 shows by 

displaying percentiles separately for each value of ξ1, coverage probability tended to be 

slightly too high when ξ1 = 0.052 (rarely by more than 2%), somewhat too low when ξ1 = 
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Table 13 
Percentiles of Deviation from Nominal Coverage Percentage for 95% Confidence Intervals for ΜΘj, by Selected Conditions 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 ξ1 = 0.052 (81 conditions) ξ1 = 0.102 (81 conditions) ξ1 = 0.202 (81 conditions) 
Per- ––––––––––––––––––––––––––––– ––––––––––––––––––––––––––––– ––––––––––––––––––––––––––––– 
centile Θ1 Θ2 Θ3 Θ4 Θ5 Θ6 Θ1 Θ2 Θ3 Θ4 Θ5 Θ6 Θ1 Θ2 Θ3 Θ4 Θ5 Θ6 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 100 2.8 3.0 2.8 3.6 2.8 3.2 1.2 1.6 1.0 0.8 1.6 1.8 0.6 1.8 2.0 0.6 0.8 1.2 
 98 2.4 2.6 2.5 2.4 2.6 2.2 0.9 0.9 0.8 0.7 1.0 1.3 0.3 0.3 0.7 0.4 0.3 0.6 
 95 2.2 2.0 2.2 2.0 1.8 2.0 0.4 0.6 0.6 0.4 0.4 0.4 0.2 0.0 0.4 -0.2 0.0 0.0 
 90 1.8 1.8 1.6 1.8 1.4 1.6 0.2 0.4 0.2 0.0 0.2 0.0 -0.2 -0.2 -0.4 -0.4 -0.6 -0.4 
 80 1.4 1.6 1.2 1.4 1.2 1.4 -0.2 -0.4 -0.2 -0.6 -0.4 -0.4 -1.0 -0.8 -1.2 -1.2 -1.0 -1.0 
 75 1.2 1.2 1.0 1.2 1.2 1.0 -0.4 -0.6 -0.4 -0.8 -0.6 -0.6 -1.4 -1.0 -1.2 -1.2 -1.2 -1.2 
 50 0.6 0.6 0.4 0.6 0.6 0.4 -1.2 -1.2 -1.0 -1.4 -1.2 -1.4 -2.4 -2.2 -2.2 -2.2 -2.4 -2.0 
 25 0.0 -0.2 0.0 0.2 0.0 -0.2 -2.2 -2.0 -1.8 -2.2 -2.0 -2.2 -3.4 -3.6 -3.8 -3.6 -3.4 -3.4 
 20 -0.2 -0.2 -0.2 0.2 0.0 -0.2 -2.6 -2.2 -2.0 -2.2 -2.2 -2.4 -3.6 -3.8 -4.4 -3.8 -3.6 -3.8 
 10 -0.6 -0.6 -0.8 -0.4 -0.6 -0.6 -3.0 -2.6 -2.8 -2.4 -2.4 -2.6 -4.8 -4.0 -5.2 -4.4 -4.2 -4.8 
 5 -1.0 -1.0 -0.8 -0.8 -0.8 -1.0 -3.2 -3.4 -3.0 -3.0 -2.6 -3.2 -5.6 -4.4 -5.6 -4.6 -5.0 -5.4 
 2 -1.3 -1.2 -1.1 -1.7 -1.5 -1.2 -3.8 -4.4 -3.8 -3.3 -3.6 -3.4 -6.2 -4.9 -6.7 -4.9 -5.6 -5.9 
 0 -1.6 -1.6 -1.8 -2.2 -2.0 -1.6 -4.4 -4.6 -6.8 -3.6 -4.4 -3.8 -7.0 -7.4 -7.6 -6.6 -6.2 -6.8 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Note. Table entry is percentile (across specified conditions) of Monte Carlo estimate of 100πj – 95, where πj is coverage 
probability of confidence interval for ΜΘj. 
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0.102 (rarely by more than 3%), and notably too low when ξ1 = 0.202 (usually by between 

1% and 5%).  The slight overcoverage when ΣΘjj = ξ1 = 0.052 may be due largely to 

substantial overestimation of ΣΘjj in those conditions, especially for smaller I.  This 

positive bias in jjΘΣ
~  inflates the standard error of jΘΜ̂ , but its influence on the CI’s width 

via ΨTi + ΘΣ
~  (see ΞT in Equation 3) may be slight, because when ξ1 = 0.052 even 

positively biased jjΘΣ
~ —typically 0.003 < E( jjΘΣ

~ ) < 0.005—tends to be small relative to 

ΨTijj ≈ 1 / n  = 1 / 100 = 0.01.  At the other extreme, undercoverage when ξ1 = 0.202 may 

be due largely to underestimation of ΣΘjj, which was worse for smaller I and would 

impact the CI’s width more than when ξ1 = 0.052, because jjΘΣ
~ —typically 0.036 < 

E( jjΘΣ
~ ) < 0.039—is larger relative to ΨTijj. 

Treating ΘΣ
~  as known by using standard-normal quantiles may also affect CI 

performance, primarily by narrowing CIs based on fewer studies (i.e., smaller I) relative 

to CIs that would treat ΘΣ
~  as an estimate.  This may counteract the inflation of jjΘΣ

~  

when ξ1 = 0.052, fortuitously yielding nearly nominal coverage probability.  It may also 

exacerbate the CI-narrowing influence of negatively biased jjΘΣ
~  when ξ1 = 0.202, 

especially because when I was smaller the bias and variance of jjΘΣ
~  were both larger, 

which makes treating )ˆ(râV jΘΜ  as known for a standard-normal CI even less 

appropriate.  Finally, treating ΘΣ
~ as known may partly explain why with ξ1 = 0.102 and I 

= 10 the CI coverage probability tended be too low despite a slight overestimation of ΣΘjj: 
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The narrowing influence of using standard-normal quantiles more than compensates for 

the widening influence of positively biased jjΘΣ
~ .  (Performance of Student-t CIs, which 

are not reported here, was largely consistent with these speculations.) 

 

Table 14 
Percentiles of Deviation from Nominal Coverage Percentage for 95% Confidence 
Intervals for ΜΓk 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 Integral transformation (IT) Taylor series, order 2 (TS2) 
 –––––––––––––––––––––––––––– –––––––––––––––––––––––––––– 
Percentile Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 100 2.2 2.6 2.8 3.0 2.8 2.8 2.0 2.6 2.8 3.0 2.8 2.8 
 99 1.8 1.7 2.4 2.2 2.4 2.0 1.8 1.7 2.4 2.0 2.4 2.0 
 98 1.8 1.2 1.8 1.8 1.8 1.6 1.6 1.2 1.8 1.8 1.8 1.8 
 95 1.0 1.2 1.4 1.4 1.4 1.2 1.0 1.0 1.4 1.4 1.4 1.4 
 90 0.4 0.8 1.0 0.8 1.0 0.8 0.6 0.6 1.0 0.8 1.0 0.8 
 80 -0.4 -0.2 0.4 0.4 0.6 0.2 -0.2 -0.1 0.4 0.4 0.6 0.2 
 75 -0.6 -0.8 0.3 0.0 0.2 0.0 -0.6 -0.6 0.2 0.2 0.2 0.0 
 50 -3.6 -3.0 -0.8 -1.0 -0.8 -1.2 -3.6 -2.8 -0.8 -1.0 -1.0 -1.2 
 25 -45.6 -39.1 -2.0 -2.6 -2.1 -2.4 -45.1 -38.9 -2.0 -2.6 -2.0 -2.4 
 20 -49.3 -44.5 -2.4 -3.1 -2.5 -2.8 -49.5 -44.7 -2.4 -3.2 -2.4 -2.8 
 10 -61.1 -55.9 -3.8 -4.6 -3.4 -3.6 -61.2 -56.3 -3.6 -4.4 -3.2 -3.8 
 5 -65.8 -64.6 -5.0 -5.0 -4.0 -4.8 -65.9 -64.4 -5.0 -5.0 -4.2 -4.8 
 2 -67.2 -66.2 -5.7 -5.6 -5.0 -5.6 -67.6 -66.7 -5.7 -5.8 -4.8 -5.8 
 1 -68.1 -67.4 -6.2 -6.4 -5.4 -6.7 -68.5 -67.6 -6.5 -6.5 -5.4 -6.4 
 0 -70.6 -68.2 -8.4 -7.6 -6.2 -8.6 -69.8 -68.4 -8.2 -7.4 -6.0 -8.4 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Note. Table entry is percentile (across 243 conditions) of Monte Carlo estimate of 100πk 
– 95, where πk is coverage probability of IT or TS2 confidence interval for ΜΓk. 
 

Table 14 shows coverage results for delta-method CIs for ΜΓk based on both IT 

and TS2 estimators.  Apart from notable exceptions for Γ1 and Γ2 that occur in isolated 

conditions, CIs for ΜΓk yielded very similar coverage as those for ΜΘj, in terms of the 
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distribution of deviation from nominal coverage percentage as well as the deviation in 

particular conditions.  To illustrate this close correspondence, Figure 3 shows a 

scatterplot of the deviation of coverage proportion from .95 for CIs for ΜΘ6 and IT CIs 

for ΜΓ6—recall that Γ6 = tanh Θ6: Although CIs for ΜΓ6 tended to exhibit somewhat 

 
 

Figure 3. Scatterplot of deviation of coverage probability from nominal .95 for CIs for 
ΜΓ6 (by IT) and ΜΘ6, with identity line for reference. 
 

lower coverage probability than their counterparts for ΜΘ6, these two coverage 

proportions were very highly correlated (r = .958), indicating that these two CIs tended to 

be higher or lower in the same conditions.  Hence, the IT and TS2 transformations of 

ΘΜ̂  and ΘΣ
~  into ΓΜ  combined with delta-method estimates of Cov( ΓΜ ) do not appear 
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to introduce much additional error relevant to CI construction, but they also faithfully 

transfer problems with CIs for ΜΘ to CIs for ΜΓ (e.g., due to bias in estimators of ΣΘ and 

quantiles that treat ΘΣ
~  as known). 

 

Table 15 
Percentiles of Deviation from Nominal Coverage Percentage for 95% Confidence 
Intervals for ΜΓ1 and ΜΓ2, by Selected Conditions 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 η = 0 (81 conditions) η ≥ 0.4 (162 conditions) 
 –––––––––––––––––––––––––––– –––––––––––––––––––––––– 
 IT TS2 IT TS2 
 –––––––––––– –––––––––––– –––––––––– –––––––––– 
Percentile Γ1 Γ2 Γ1 Γ2 Γ1 Γ2 Γ1 Γ2 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 100 -32.0 -21.8 -32.6 -21.4 2.2 2.6 2.0 2.6 
 98 -34.4 -21.9 -34.5 -21.9 1.8 1.4 1.8 1.4 
 95 -36.4 -22.6 -36.6 -22.6 1.4 1.2 1.4 1.2 
 90 -38.2 -29.6 -38.2 -29.4 0.8 1.0 0.8 1.0 
 80 -43.8 -35.2 -43.8 -35.6 0.2 0.4 0.2 0.4 
 75 -45.8 -39.2 -45.2 -39.0 0.0 0.2 0.0 0.2 
 50 -56.8 -50.2 -57.2 -50.0 -1.2 -1.4 -1.3 -1.3 
 25 -63.2 -58.4 -64.0 -58.6 -3.6 -3.0 -3.6 -2.8 
 20 -65.2 -62.6 -65.2 -62.6 -4.0 -3.4 -4.0 -3.4 
 10 -66.8 -66.0 -67.2 -65.8 -5.4 -4.4 -5.0 -4.8 
 5 -67.4 -66.4 -67.6 -67.0 -6.4 -6.0 -6.4 -5.8 
 2 -69.2 -67.9 -68.9 -67.8 -7.3 -6.6 -7.2 -6.4 
 0 -70.6 -68.2 -69.8 -68.4 -8.4 -8.8 -8.2 -8.6 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Note. Estimators: IT = integral transformation; TS2 = Taylor series, order 2.  Table entry 
is percentile (across specified conditions) of Monte Carlo estimate of 100πk – 95, where 
πk is coverage probability of IT or TS2 confidence interval for ΜΓk. 

 

The abysmal performance of CIs for ΜΘ1 and ΜΘ2 in some conditions warrants 

further explanation.  Table 15 presents percentiles of deviation from nominal coverage 

percentage for these two CIs separately for conditions with η = 0 and η ≥ 0.40: CIs for 
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these two components of ΜΓ performed as well as for other components except when ΜΘj 

= η = 0, in which case their coverage percentage was below nominal 95% by at best more 

than 30% and 20% for ΜΓ1 and ΜΓ2, respectively, and at worst by around 70% below 

nominal.  This extremely poor coverage when η = 0 was worse with larger I or ξ1 (i.e., 

more studies, larger between-studies variance, or both).  Although this dreadful CI 

coverage and its association with I and ξ1 may be influenced by bias in 1ΓΜ  or 2ΓΜ , 

these estimators’ non-normality in some conditions, or negative bias in 11
~
ΘΣ  or 22

~
ΘΣ , the 

dominant culprits are mostly likely two properties of the delta method applied to these 

quadratic functions when η = 0. 

These problematic features are most easily described for ΜΓ1, which involves 

only one component of Θ.  (Recall that Γ1 = 2
1Θ  and Γ2 = Θ1Θ2.)  To a close 

approximation the delta-method 100(1 – α)% CI for ΜΓ1 by both IT and TS2 is 

( 2
1

ˆ
ΘΜ  + 11

~
ΘΣ ) ± zα2| 1

ˆ
ΘΜ | )ˆ(râV 1ΘΜ  , 

where 2| 1
ˆ

ΘΜ | is the absolute value of the estimated derivative of 1ΓΜ  with respect to 

1
ˆ

ΘΜ .  Two aspects of this CI are evidently problematic when ΜΘ1 = η = 0, in which case 

the essentially unbiased 1
ˆ

ΘΜ  is near zero.  First, with 2
1

ˆ
ΘΜ  also near zero 11

~
ΘΣ  

dominates the point estimator of ΜΓ1, especially for larger ΣΘ11 = ξ1.  Note again that 

Var( 1ΓΜ ) ≈ Var( 11
~

ΘΣ  + 2
1

ˆ
ΘΜ ) = Var( 11

~
ΘΣ ) + Var( 2

1
ˆ

ΘΜ ) + 2Cov( 2
1

ˆ
ΘΜ , 11

~
ΘΣ ) , 
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of which the covariance term is usually negligible.  The delta method as implemented 

here, however, treats 11
~

ΘΣ  as fixed and known (see Section 3.4.1) and essentially yields 

4 2
1

ˆ
ΘΜ )ˆ(râV 1ΘΜ  as an estimated approximation of Var( 2

1
ˆ

ΘΜ )—if we ignore other 

components of Γ—which in turn is substantially smaller than Var( 1ΓΜ ). 

 

Table 16 
Percentiles of Difference in Absolute Deviation from Nominal Coverage 
Percentage Between 95% Confidence Intervals for ΜΓk 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Percentile Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 100 1.2 1.4 1.0 0.8 0.6 0.6 
 99 0.8 1.1 0.6 0.6 0.5 0.4 
 98 0.8 0.8 0.4 0.6 0.4 0.4 
 95 0.6 0.6 0.4 0.4 0.2 0.4 
 90 0.4 0.4 0.2 0.2 0.2 0.2 
 80 0.2 0.2 0.2 0.2 0.2 0.2 
 75 0.2 0.2 0.2 0.2 0.2 0.2 
 50 0.0 0.0 0.0 0.0 0.0 0.0 
 25 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 
 20 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 
 10 -0.4 -0.4 -0.2 -0.2 -0.2 -0.2 
 5 -0.4 -0.6 -0.4 -0.4 -0.4 -0.4 
 2 -0.8 -0.8 -0.4 -0.4 -0.6 -0.6 
 1 -0.9 -1.1 -0.6 -0.6 -0.6 -0.6 
 0 -1.6 -1.8 -0.6 -0.6 -0.8 -0.8 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Note. Table entry is percentile (across 243 conditions) of Monte Carlo 
estimate of |100πk,TS2 – 95| – |100πk,IT – 95|, where πk,TS2 and πk,IT are 
coverage probability of TS2 and IT confidence intervals for ΜΓk. 
 

Second, 2
1

ˆ
ΘΜ  and, consequently, the delta method’s estimated derivative and 

approximate variance are more likely to be arbitrarily small with larger I.  Even if 11
~

ΘΣ  
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were known so that approximating Var( 2
1

ˆ
ΘΜ ) also approximated Var( 1ΓΜ ) well, 

4 2
1

ˆ
ΘΜ )ˆ(râV 1ΘΜ  would approximate Var( 2

1
ˆ

ΘΜ ) poorly when ΜΘ1 = 0.  A somewhat 

better variance approximation—based on a second-order Taylor polynomial for 1ΓΜ —is 

4 2
1

ˆ
ΘΜ )ˆ(râV 1ΘΜ  + 2[ )ˆ(râV 1ΘΜ ] 2, the last term of which does not tend to 0 along with 

1
ˆ

ΘΜ .  In short, when η = 0 the delta method’s approximation of Var( 1ΓΜ ) is much too 

small because it neglects sampling error in 11
~

ΘΣ  (worse with larger ΣΘ11) and 

underestimates Var( 2
1

ˆ
ΘΜ ) (worse with larger I). 

As indicated by their difference in absolute deviation from nominal coverage 

percentage, shown in Table 16, the IT and TS2 CIs performed quite similarly in most 

conditions.  For ΜΓ3 through ΜΓ6, these absolute deviations from 95% usually differed by 

less than 0.5% in either direction and never by more than 1.0%.  For example, when [I, η, 

ξ1, ξ2, φ] = [40, 0.8, 0.202, -.1, .5] the coverage percentages for the IT and TS2 CIs for 

ΜΓ3 were, respectively, 95.6% and 94.8%, whose absolute deviations from nominal differ 

by |94.8 – 95.0| – |95.6 – 95.0| = 0.2 – 0.6 = -0.4%.  The IT and TS2 CIs’ deviations from 

nominal 95% occasionally differed somewhat more for ΜΓ1 and ΜΓ2, but this usually 

occurred for very large deviations when η = 0 with large I or ξ1 (e.g., absolute deviations 

more than 30%), and the difference never exceeded 2.0% in either direction.  There was 

no apparent tendency for the absolute deviations to be larger for IT or TS2 for any 

component of ΜΓ.  Figure 4 illustrates this symmetry for IT and TS2 CIs for ΜΓ6, and 
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analogous plots for ΜΓ1 through ΜΓ5 look similar.  (Differences in signed deviation from 

nominal 95% were not notably larger than absolute deviation for any component of ΜΓ.) 

 
 

Figure 4. Scatterplot of deviation of coverage probability from nominal .95 for TS2 and 
IT CIs for ΜΓ6, with identity line for reference. 
 

4.3. Study 2: Method 

This second Monte Carlo study was conducted to evaluate the performance of 

bootstrap inference.  Most aspects of this study were the same as for Study 1, except that 

bootstrap methods were used instead of the delta method to construct CIs.  Bootstrap 

resampling takes considerably longer than delta-method computations, and three different 

bootstrap methods were evaluated.  Due to time constraints, only a subset of Study 1’s 

conditions were included in Study 2 (see below).  It is likely that some choices for 
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bootstrap methods that were meant to reduce computational burden (e.g., small B) also 

decreased the performance of bootstrap inferences.  Nevertheless, this preliminary 

evaluation of bootstrap inference for functions of ESs serves as valuable groundwork for 

future investigations. 

4.3.1. Design conditions and data generation.  The same design factors as in 

Study 1 were used, but only the two extreme values of each factor were included.  Hence, 

the factorial simulation design consisted of 25 = 32 conditions, each defined as a 

quintuple of five factors: η ∈ {0.0, 0.8}, ξ1 ∈ {0.052, 0.202}, ξ2 ∈ {-.1, .5}, φ ∈ {-.1, .5}, 

and I ∈ {10, 40}.  I generated 500 independent meta-analytic data sets, each consisting of 

I independent pairs [ni, ti], using the same procedures as in Study 1. 

4.3.2. Meta-analytic procedures.  The same estimation methods as in Study 1 

were applied to each replication’s simulated meta-analytic data to obtain ΘΜ̂ , ΘΣ
~ , and 

)ˆ(vôC ΘΜ  as well as IT and TS2 point estimators of ΜΓ and ΣΓ for the same function g.  

To construct CIs for components of ΜΓ, however, the effect-size, error, and cases 

bootstrap methods in Section 3.4.2 were used instead of the delta method to estimate 

Cov( ΓΜ̂ ) and Cov( ΓΜ
(

).  The raw-data bootstrap was not used, because generating 

subject-level data whose ESs are from Ti ~ N6(θi, ΨTi) would be equivalent to the effect-

size bootstrap.  Specifically, each of these three resampling methods was applied to the 

same replication’s data and point estimates using B = 30 bootstrap samples, and the 

covariance matrix of each method’s bootstrap sample (Equation 24) was used to obtain 

standard errors with which to construct standard-normal 95% CIs for ΜΓk.  Hence, the 
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only difference between delta-method and bootstrap CIs was the estimation of a standard 

error.  (Again, I also computed 90% and 99% CIs as well as Student-t CIs at all three 

confidence levels using I – 1 as degrees of freedom, and results from these are available 

upon request but will not be presented.) 

4.3.3. Evaluation criteria.  The point estimators in Study 2 were identical to 

those in Study 1, so their performance is not discussed again.  My primary interest was in 

the coverage probability of bootstrap CIs for each Γ component.  Hence, in each 

condition 36 distinct coverage probabilities were estimated: one for each component of 

ΜΓ by each of two estimation methods crossed with each of three bootstrap methods. 

4.4. Study 2: Results 

In this section I report selected findings from the Monte Carlo study of simple 

bootstrap CIs.  As in Study 1, the presentation is simplified by displaying numerical 

results as percentiles over conditions.  In each of the 32 conditions, the simulation yielded 

estimated coverage probabilities for 95% CIs constructed for each component of ΜΓ 

using standard errors from each point estimator of ΜΓ (IT and TS2) combined with each 

bootstrap method (effect size, error, and cases).  Of primary interest are comparisons 

among bootstrap methods as well as between bootstrap and delta-method CIs. 

4.4.1. Comparison of bootstrap methods.  Table 17 displays percentiles of 

deviation from nominal coverage percentage for each combination of ΜΓ estimator and 

bootstrap method.  The error bootstrap performed substantially worse than the other 

bootstrap methods, yielding coverage percentages that were at best 3% below nominal 
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Table 17 
Percentiles of Deviation from Nominal Coverage Percentage for 95% Confidence Intervals for ΜΓk, by Bootstrap Method 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 Effect size bootstrap Error bootstrap Cases bootstrap 
Per- ––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––– ––––––––––––––––––––––––––– 
centile Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Integral transformation (IT) 
 100 5.0 5.0 1.6 1.4 1.8 1.6 -4.2 -2.6 -4.8 -3.6 -4.4 -3.6 1.8 2.4 -0.2 0.6 0.2 0.0 
 95 5.0 5.0 1.1 1.0 1.5 1.0 -6.0 -6.3 -5.0 -4.9 -5.6 -5.2 1.1 0.9 -0.6 -0.6 -1.0 -0.3 
 90 4.6 4.8 0.6 0.6 1.2 0.6 -6.5 -8.2 -5.6 -6.6 -6.7 -6.0 0.6 0.4 -1.2 -0.8 -1.4 -1.0 
 80 4.1 3.6 0.2 0.4 0.4 0.0 -9.9 -9.6 -6.4 -7.5 -7.7 -7.4 -0.4 0.0 -1.4 -1.2 -2.1 -1.6 
 75 1.7 3.4 0.1 0.2 0.3 -0.2 -10.6 -9.8 -6.5 -7.8 -8.0 -7.4 -0.4 -0.3 -1.4 -1.5 -2.4 -1.8 
 50 -1.3 -0.1 -1.4 -1.2 -1.5 -1.7 -13.4 -12.6 -9.3 -10.3 -8.8 -9.8 -4.0 -3.0 -3.7 -3.5 -3.2 -3.2 
 25 -4.8 -2.9 -3.3 -3.5 -2.6 -3.0 -18.6 -16.1 -10.5 -11.6 -11.5 -11.6 -6.5 -5.1 -5.2 -5.5 -4.8 -5.4 
 20 -5.1 -4.9 -3.8 -4.1 -3.0 -4.0 -19.8 -17.6 -11.2 -11.9 -11.9 -11.9 -7.0 -5.7 -5.6 -5.8 -5.3 -6.1 
 10 -6.9 -5.6 -4.6 -4.9 -4.2 -5.3 -26.7 -24.9 -12.0 -12.6 -13.7 -12.2 -10.8 -7.1 -6.0 -6.2 -6.0 -7.2 
 5 -7.5 -5.9 -5.4 -5.2 -4.8 -6.2 -28.6 -29.0 -12.2 -13.9 -13.9 -12.6 -13.5 -10.1 -6.9 -6.4 -7.4 -7.2 
 0 -9.0 -6.2 -7.0 -5.8 -7.2 -7.4 -28.8 -31.4 -12.4 -14.6 -14.6 -13.2 -14.2 -13.2 -8.4 -9.0 -8.4 -8.8 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

(table continues) 
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–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 Effect size bootstrap Error bootstrap Cases bootstrap 
Per- ––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––– ––––––––––––––––––––––––––– 
centile Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Taylor series, order 2 (TS2) 
 100 5.0 5.0 1.8 1.4 1.8 1.8 -3.8 -2.6 -4.4 -3.4 -4.6 -3.4 2.0 2.4 -0.2 0.6 0.0 0.2 
 95 5.0 5.0 1.1 0.9 1.4 1.0 -5.8 -6.3 -5.0 -4.9 -5.7 -5.1 1.0 0.8 -0.4 -0.4 -0.7 -0.4 
 90 4.6 4.8 0.6 0.8 1.2 0.6 -6.6 -7.9 -5.3 -6.6 -6.8 -6.2 0.8 0.4 -1.0 -0.8 -1.4 -1.0 
 80 4.1 3.6 0.2 0.2 0.4 0.0 -10.4 -9.3 -6.4 -7.0 -7.4 -7.3 -0.4 0.1 -1.2 -1.2 -2.4 -1.6 
 75 1.7 3.4 0.2 0.1 0.3 -0.2 -10.8 -9.6 -6.4 -7.6 -7.6 -7.6 -0.6 -0.5 -1.4 -1.4 -2.4 -1.6 
 50 -1.3 -0.3 -1.1 -1.1 -1.4 -1.8 -13.2 -12.8 -9.1 -10.4 -8.9 -9.9 -3.8 -2.9 -3.5 -3.6 -3.1 -3.2 
 25 -4.6 -2.9 -3.0 -3.6 -2.6 -3.0 -18.6 -16.3 -10.4 -11.8 -11.5 -11.5 -6.4 -5.0 -5.4 -5.5 -5.0 -5.3 
 20 -5.3 -5.2 -4.1 -4.2 -2.6 -3.8 -20.4 -17.3 -11.5 -11.8 -12.1 -11.9 -7.2 -5.8 -5.4 -6.0 -5.3 -6.1 
 10 -6.9 -5.8 -4.8 -4.6 -4.2 -5.3 -26.7 -25.5 -12.0 -12.8 -13.7 -12.2 -10.8 -6.9 -6.0 -6.2 -6.0 -7.1 
 5 -7.8 -6.0 -5.4 -5.2 -5.1 -6.1 -28.5 -29.0 -12.3 -14.0 -13.8 -12.4 -14.0 -10.1 -6.9 -6.4 -7.2 -7.4 
 0 -9.6 -6.4 -6.8 -5.8 -6.8 -7.4 -28.6 -30.4 -12.6 -14.2 -14.8 -13.2 -14.4 -12.6 -8.0 -8.2 -8.4 -9.2 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Note. Table entry is percentile (across 32 conditions) of Monte Carlo estimate of 100πk – 95, where πk is coverage probability 
of confidence interval for ΜΓk. 
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95%, more than 10% below nominal in over half of the conditions, and occasionally as 

low as 30% below nominal.  In no condition was the error method’s CI coverage nearer 

nominal than that of its effect-size or cases counterparts, and it was usually at least 4% 

lower.  Results for the error method will not be considered further.  The effect-size and 

cases CIs are compared in more detail below along with their delta-method counterparts. 

 

Table 18 
Percentiles of Difference in Absolute Deviation from Nominal Coverage Percentage 
Between Integral-Transformation and Taylor-Series 95% Confidence Intervals for ΜΓk, 
by Bootstrap Method 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 Effect-size bootstrap Cases bootstrap 
 –––––––––––––––––––––––––– –––––––––––––––––––––––––– 
Percentile Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 100 0.6 0.6 0.4 0.8 0.6 0.6 0.8 0.4 0.8 0.4 0.4 0.4 
 95 0.5 0.5 0.3 0.2 0.4 0.3 0.4 0.3 0.2 0.2 0.4 0.4 
 90 0.4 0.4 0.2 0.2 0.4 0.2 0.4 0.2 0.2 0.2 0.4 0.4 
 80 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
 75 0.2 0.2 0.0 0.2 0.2 0.2 0.2 0.2 0.0 0.2 0.2 0.2 
 50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
 25 0.0 0.0 -0.2 -0.2 -0.2 -0.2 -0.1 -0.1 -0.2 -0.2 -0.2 -0.2 
 20 0.0 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 
 10 -0.2 -0.2 -0.4 -0.2 -0.4 -0.2 -0.2 -0.2 -0.4 -0.4 -0.4 -0.4 
 5 -0.3 -0.3 -0.4 -0.4 -0.4 -0.2 -0.4 -0.4 -0.4 -0.5 -0.5 -0.5 
 0 -0.6 -0.6 -0.4 -0.6 -0.4 -0.4 -0.6 -0.6 -0.6 -0.8 -0.8 -0.6 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Note. Table entry is percentile (across 32 conditions) of Monte Carlo estimate of  
|100πk,TS2 – 95| – |100πk,IT – 95|, where πk,TS2 and πk,IT are coverage probability of TS2 
and IT confidence intervals for ΜΓk. 

 

As for comparisons between the IT and TS2 estimators, Table 18 shows their CIs’ 

difference in absolute deviation from nominal coverage percentage separately for the 

effect-size and cases methods.  These differences were at most 0.8% in absolute value 



 90

and typically less than 0.2%, and neither estimator exhibited a systematic pattern of 

deviating from nominal more than the other.  The IT CIs tended to exhibit coverage 

percentage nearer nominal than TS2 CIs for certain components of ΜΓ with certain 

bootstrap methods (e.g., ΜΓ1 and ΜΓ2 with effect-size bootstrap, ΜΓ1 with cases 

bootstrap), but this was rather subtle, as was the apparent advantage of TS2 CIs over IT 

CIs for other combinations (e.g., ΜΓ3 with effect-size bootstrap, ΜΓ3 and ΜΓ4 with cases 

bootstrap).  To simplify subsequent exposition, I will consider only the IT estimator. 

Performance differences between effect-size and cases bootstrap CIs depended 

upon the condition.  Table 19 shows percentiles of these two CIs’ difference in coverage 

percentage and their difference in absolute deviation from nominal 95% (for IT only).  

Cases CIs usually yielded lower coverage percentage than their effect-size counterparts: 

This was most pronounced when I = 10 and ξ1 = 0.052 (lower by over 7%), and reversals 

rarely exceeded 1%—most often when I = 40 and ξ1 = 0.202.  Because the effect-size CIs 

sometimes exceeded 95% coverage, however, the cases CI occasionally yielded coverage 

up to 5% nearer nominal in the sense of smaller absolute deviation from 95%.  This 

potential advantage favoring the cases CI occurred almost exclusively for ΜΓ1 and ΜΓ2 in 

the eight conditions with η = 0 and ξ1 = 0.052.  Whether it is indeed an advantage 

depends partly upon other CI properties, such as width.  Upon closer inspection, in these 

8 conditions the effect-size method’s estimated bootstrap variances for 1
ˆ

ΓΜ  and 2
ˆ

ΓΜ  

were substantially too large—much more so than in the other 24 conditions. 
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Table 19 
Percentiles of Difference in Coverage Percentage and Absolute 
Deviation from Nominal Coverage Percentage Between Effect-Size and 
Cases 95% Bootstrap Confidence Intervals for ΜΓk 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Percentile Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Coverage percentage 
 100 2.0 1.0 1.2 0.4 1.2 1.2 
 95 1.2 0.9 0.8 0.2 0.8 0.9 
 90 0.2 0.2 0.4 0.2 0.4 0.2 
 80 -1.0 -0.3 0.2 -0.2 -0.4 -0.2 
 75 -1.8 -1.4 -0.2 -0.2 -0.6 -0.5 
 50 -3.2 -2.7 -1.3 -1.3 -1.3 -1.2 
 25 -5.0 -4.9 -2.7 -3.7 -4.0 -3.0 
 20 -5.2 -5.5 -3.9 -4.3 -4.9 -4.0 
 10 -5.4 -6.6 -5.3 -5.0 -6.0 -5.7 
 5 -6.1 -7.3 -5.7 -5.7 -6.2 -6.2 
 0 -6.6 -7.6 -7.4 -6.4 -7.4 -6.2 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Absolute deviation from nominal 95% 
 100 6.6 7.6 5.8 5.6 7.4 6.2 
 95 6.1 6.7 4.8 4.7 5.6 5.1 
 90 5.4 5.2 4.4 4.4 5.0 4.6 
 80 4.4 2.8 3.4 3.6 2.8 3.4 
 75 3.3 2.5 2.4 2.7 2.6 3.0 
 50 1.5 0.4 0.9 0.9 1.2 1.0 
 25 -2.1 -1.4 -0.2 0.2 0.3 0.2 
 20 -3.0 -2.6 -0.4 0.0 0.0 0.0 
 10 -3.8 -3.8 -0.6 -0.2 -0.6 -0.7 
 5 -4.0 -4.8 -1.1 -0.3 -1.1 -1.1 
 0 -4.6 -5.0 -1.2 -0.6 -1.2 -1.6 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Note. Table entry in top panel is percentile (across 32 conditions) of 
Monte Carlo estimate of 100(πk,C – πk,ES), where πk,C and πk,ES are 
coverage probability of cases and effect-size bootstrap confidence 
intervals for ΜΓk based on integral transformation; bottom panel, 
|100πk,C – 95| – |100πk,ES – 95|. 

 

4.4.2. Bootstrap versus delta method.  Both the effect-size and cases CIs 

performed substantially better than their delta-method counterparts for ΜΓ1 and ΜΓ2 
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when η = 0, but for other components or in other conditions the delta-method CIs tended 

to outperform their bootstrap counterparts.  (Comparisons between delta-method versus 

bootstrap results are subject to greater sampling error than comparisons between 

bootstrap results, because the latter are based on the same simulated meta-analytic data, 

which were independent of Study 1’s data.)  Table 20 shows percentiles of the difference 

in absolute deviation from nominal CI coverage percentage between the delta-method CI 

and each bootstrap CI.  This difference favored the bootstrap methods substantially for 

 

Table 20 
Percentiles of Difference in Absolute Deviation from Nominal Coverage Percentage 
Between Delta-Method and Bootstrap 95% Confidence Intervals for ΜΓk, by Bootstrap 
Method 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 Effect-size bootstrap Cases bootstrap 
 –––––––––––––––––––––––––––– –––––––––––––––––––––––––––– 
Percentile Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 100 2.8 2.0 4.2 3.4 1.8 3.8 6.0 7.2 6.2 5.6 8.2 5.2 
 95 2.0 1.7 2.6 1.8 1.7 2.1 4.6 4.8 4.8 5.4 5.7 4.8 
 90 0.6 1.6 2.2 1.2 1.6 1.4 4.1 3.8 4.4 4.4 5.3 4.6 
 80 -0.2 0.0 1.5 0.9 1.2 1.2 2.6 2.0 3.4 3.2 3.6 3.5 
 75 -0.4 -0.4 1.2 0.6 1.1 0.7 2.1 1.8 3.1 2.8 2.8 3.2 
 50 -14.5 -8.7 0.2 0.0 0.2 0.1 -16.4 -10.1 1.9 1.5 1.8 1.2 
 25 -43.7 -42.0 -0.3 -0.8 -0.2 -1.0 -42.1 -41.3 0.5 0.0 0.5 0.2 
 20 -53.6 -51.1 -0.8 -1.1 -0.2 -1.0 -56.3 -53.8 0.2 -0.2 0.2 0.2 
 10 -60.4 -60.3 -1.0 -1.8 -0.8 -1.6 -60.5 -60.9 -0.2 -1.3 -0.4 -0.2 
 5 -62.2 -63.7 -1.5 -2.4 -1.0 -1.6 -62.5 -63.0 -1.0 -1.7 -0.6 -0.5 
 0 -65.2 -66.4 -3.4 -3.0 -2.2 -2.2 -63.2 -65.6 -3.4 -2.0 -0.8 -2.8 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Note. Table entry is percentile (across 32 conditions) of Monte Carlo estimate of  
|100πk,BS – 95| – |100πk,DM – 95|, where πk,BS and πk,DM are coverage probability of 
bootstrap and delta-method confidence intervals for ΜΓk based on IT estimator. 
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ΜΓ1 and ΜΓ2 in about half of the conditions (i.e., when η = 0) but otherwise tended to 

favor the delta method more often and by somewhat larger amounts—more so for the 

cases bootstrap (sometimes over 5% and up to 8%) than the effect-size bootstrap (usually 

less than 3% and always less than 5%). 
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Figure 5. Coverage percentage for three methods’ CIs for ΜΓ1, averaged over ξ2 and φ 
for each combination of other design factors.  Methods: delta method (triangle, △), effect-
size bootstrap (square, □), cases bootstrap (circle, ○).  Design factors: I (x-axis), ξ1 (0.052 
in left panels, 0.202 in right panels), η (0.8 in top panels, 0.0 in bottom panels).  
Reference lines at 95%. 
 

By way of more detail regarding the influence of design factors, the four line plots 

in Figure 5 show coverage percentage for the delta-method and both bootstrap CIs for 

ΜΓ1 at each combination of I, η, and ξ1, averaged over the four combinations of ξ2 and 
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φ—correlation factors that least affected CI coverage.  (CIs for ΜΓ2 yielded similar 

patterns.)  Most striking is the delta method’s abysmal performance when η = 0, 

especially when I = 40.  Also apparent is the typically lower (but sometimes nearer 

nominal) coverage for cases CIs than effect-size CIs.  Figure 6 shows a similar set of four 

line plots for ΜΓ6, which typifies patterns for ΜΓ3, ΜΓ4, and ΜΓ5.  Although all three 
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Figure 6. Coverage percentage for three methods’ CIs for ΜΓ6, averaged over ξ2 and φ 
for each combination of other design factors.  Methods: delta method (triangle, △), effect-
size bootstrap (square, □), cases bootstrap (circle, ○).  Design factors: I (x-axis), ξ1 (0.052 
in left panels, 0.202 in right panels), η (0.8 in top panels, 0.0 in bottom panels).  
Reference lines at 95%. 
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methods’ CIs tended to cover ΜΓ6 less than nominal 95%, especially when I = 10, this 

was less pronounced for the delta method and effect-size bootstrap when ξ1 = 0.052.  This 

is most likely due to the combined effects of using standard-normal quantiles to construct 

CIs—making them too narrow with smaller I—and the latter two methods’ heavier 

reliance on ΘΣ
~  for their standard errors (recall that ΘΣ

~  overestimates variances in ΣΘ 

substantially when ξ1 = 0.052 and underestimates them somewhat when ξ1 = 0.202). 

4.5. Summary of Monte Carlo Studies 

Studies 1 and 2 constitute a preliminary assessment of the proposed estimation 

and inference techniques applied to a six-component function of ideal generic ESs in a 

five-factor simulation design.  This assessment treated the function components as six 

separate scalars and focused on bias and MSE for point estimators and coverage 

probability for CIs.  In this section I summarize each study’s key findings. 

4.5.1. Study 1.  For most of the six component functions in most of Study 1’s 243 

conditions, standardized bias—and hence the contribution of bias to MSE—for the IT 

kΓΜ̂  and the TS2 kΓΜ
(

 was negligibly small with no clear tendency to be positive or 

negative, showed little association with design factors, and tended to be only slightly 

larger than that for jΘΜ̂ .  Also, the IT and TS2 estimators of ΜΓk yielded similar 

standardized bias and MSE, with neither showing a clear advantage for any function.  

The two quadratic functions, Γ1 = 2
1Θ  and Γ2 = Θ1Θ2, yielded notable exceptions: 

Standardized bias for their IT and TS2 mean estimators was substantially more positive 

when η = ΜΘj = 0 with small ξ1 = ΣΘjj than in all other conditions, in which it was 



 96

comparable to standardized bias for other components of ΜΓ.  This aberrant performance 

occurs largely because when ΜΘj = 0 the means of Γ1 and Γ2 depend mainly on ΣΘ, 

whose diagonal is estimated with large positive bias when ΣΘjj is small. 

Estimators of variances in ΣΓ also tended to perform similarly to their ΣΘ 

counterparts, but their standardized bias was larger than for estimators of ΜΘ and ΜΓ and 

exhibited more associations with design factors and more variation among components of 

Γ.  The most prominent and consistent pattern was that kkΓΣ̂  and kkΓΣ
(

 exhibited 

substantial positive bias when ξ1 = 0.052 but notable negative bias when ξ1 = 0.202, 

emulating associations between ξ1 and bias in jjΘΣ
~ .  Two patterns unique to particular 

components of Γ arose: Estimators of ΣΓ11 and ΣΓ22 (i.e., for quadratic functions of Θ) 

yielded markedly more positive standardized bias in some conditions where η = 0, and 

estimators of ΣΓ22 and ΣΓ44 (i.e., for functions of two components of Θ) yielded more 

standardized bias in one direction or the other when ξ2 and φ were dissimilar.  In some 

conditions the IT and TS2 estimators of ΣΓkk differed notably in bias or MSE for the non-

quadratic components of Γ, mainly with larger ξ1.  These differences favored IT in some 

conditions but TS2 in others, and the more biased estimator tended to yield lower MSE. 

CIs for ΜΓk also performed much like their ΜΘj counterparts for most components 

of Γ in most conditions: They yielded similar coverage percentage, including poor 

performance in some conditions due largely to bias in jjΘΣ
~  and essentially treating jjΘΣ

~  

as known (by ignoring its sampling variance in the delta method and using standard-
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normal quantiles).  As with point estimators of ΜΓk and ΣΓkk, in some conditions CIs for 

ΜΓ1 and ΜΓ2 performed substantially differently than those for other components: CI 

coverage percentage for ΜΓ1 and ΜΓ2 was far below nominal 95% when η = 0, mainly 

because for these quadratic functions of Θ the delta method severely underestimates the 

sampling variance of kΓΜ  when ΜΘj is near a critical point of kΓΜ  as a function of ΘΜ̂ .  

Finally, the IT and TS2 CIs did not exhibit notable differences in coverage. 

4.5.2. Study 2.  Each of the three bootstrap methods considered here was used to 

construct standard-normal CIs with bootstrap standard errors based on B = 30 bootstrap 

samples.  The most consistent finding from comparisons among bootstrap methods is that 

in all 32 conditions the error bootstrap yielded somewhat to substantially lower coverage 

percentage than its effect-size and cases counterparts.  Cases CIs usually yielded lower 

coverage percentage than effect-size CIs, but occasionally this lower percentage was 

nearer nominal 95%—primarily for the two quadratic functions (Γ1 and Γ2) when η = 

ΜΘj = 0 with small ξ1 = ΣΘjj.  Coverage percentage did not differ notably between IT and 

TS2 CIs for any bootstrap method. 

Both the effect-size and cases CIs performed substantially better than their delta-

method counterparts for ΜΓ1 and ΜΓ2 with η = 0, when the latter’s coverage percentage 

was far below nominal.  For ΜΓ1 and ΜΓ2 when η = 0.8 or for other components of Γ, 

however, delta-method CIs tended to outperform their bootstrap counterparts, more so for 

the cases bootstrap than the effect-size bootstrap. 
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5. GENERAL DISCUSSION 

The present thesis was motivated by a problem that arises with some frequency in 

applications of meta-analysis: Meta-analytic results are obtained by analyzing ESs in a 

metric chosen for convenience or to conform to assumptions of standard meta-analytic 

models, but one wishes to express certain of these results (e.g., point estimates or 

confidence regions for lower-order moments of ES parameters) in a different metric.  My 

primary aims were to propose practically feasible techniques to accomplish such re-

expression in a fairly general situation—vector-valued functions of multivariate ESs 

under a random-effects model—and evaluate selected aspects of these techniques’ 

performance using Monte Carlo simulations.  It is hoped that these proposed techniques 

and initial Monte Carlo evaluation thereof serve as a proof of concept and motivate 

further work on this and related problems.  I begin this chapter by highlighting 

contributions of this thesis to meta-analytic methodology.  I then comment on several 

limitations of the proposed techniques and the Monte Carlo studies, along with remarks 

on potentially fruitful directions for future research in this domain. 

5.1. Overview of Contributions 

Simply put, the statistical problem addressed in this thesis is to begin with 

estimates of the mean and covariance matrix of Θ, a random multivariate ES in a metric 

suitable for meta-analysis, and obtain estimates of the mean and covariance of Γ ≡ g(Θ), 

a possibly vector-valued function of Θ.  More specifically, we begin with ΘΜ̂  and ΘΣ
~  as 

meta-analytic estimators of ΜΘ ≡ E(Θ) and ΣΘ ≡ Cov(Θ), respectively, as well as 
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)ˆv(ôC ΘΜ  as an estimate of Cov( ΘΜ̂ ), and we wish to estimate ΜΓ ≡ E(Γ) and ΣΓ ≡ 

Cov(Γ).  In this section I briefly overview the techniques proposed herein to accomplish 

this re-expression, including point estimators of ΜΓ and ΣΓ as well as inferences on ΜΓ, 

and draw some conclusions about their performance on the basis of findings from the 

Monte Carlo studies. 

5.1.1. Proposed techniques.  The proposed techniques consisted of estimation 

and inference procedures.  The IT estimation approach involves an integral 

transformation of ΘΜ̂  and ΘΣ
~  whereby ΜΓ and ΣΓ are estimated as their defining 

multidimensional integrals, whose integrands are the product of either g(Θ) or [g(Θ) – 

ΜΓ][g(Θ) – ΜΓ]T and the density of Θ (e.g., multivariate normal).  Implementing this 

approach essentially entails substituting ΘΜ̂  and ΘΣ
~  for this latter density’s parameters 

and evaluating the integrals (e.g., by Monte Carlo methods) to obtain the estimators ΓΜ̂  

and ΓΣ̂ . 

By comparison, the TS2 estimation approach involves approximating g(Θ) by a 

second-order Taylor polynomial and taking this polynomial’s expected value and 

covariance matrix as approximations of the corresponding moments of Γ.  These 

approximating moments can be expressed in terms of ΜΘ and ΣΘ, with certain 

distributional assumptions required for the covariance matrix.  Implementing this 

approach entails computing derivatives for gradient vectors and Hessian matrices and 

substituting ΘΜ̂  and ΘΣ
~  for their estimands to obtain the estimators ΓΜ

(
 and ΓΣ

(
. 
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The essence of the IT and TS2 approaches is relatively easy to describe to non-

technical audiences who are likely to use them, and they are fairly easy to implement in 

realistic circumstances, especially if simple numerical methods are used to evaluate 

integrals and derivatives.  (Although many potential users will not have resources to 

program the computations, this barrier to usage will be reduced substantially if the 

techniques are implemented in accessible software.)  Furthermore, because both the IT 

and TS2 approaches are applied directly to ΘΜ̂  and ΘΣ
~ , neither requires access to the 

original meta-analytic data.  This is especially valuable when re-expressing results from a 

previous meta-analysis for which the original data are not available but ΘΜ̂  and ΘΣ
~  

are—a likely scenario when results from a meta-analytic review are used for purposes its 

authors did not anticipate, such as evaluating novel models whose parameters depend on 

Θ, conveying findings to diverse groups of stakeholders, or incorporating review 

outcomes into decision analyses to guide policy. 

As for inferences on ΜΓ, the primary approach I proposed relies on the 

multivariate delta method to estimate an approximation of Cov( ΓΜ̂ ) or Cov( ΓΜ
(

) from 

ΘΜ̂ , ΘΣ
~ , and )ˆv(ôC ΘΜ .  More specifically, this delta-method application uses a Taylor 

polynomial of order one to approximate either ΓΜ̂  or ΓΜ
(

 as a function of ΘΜ̂ , treating 

ΘΣ
~  as known.  This approximation involves derivatives for gradient vectors, which in 

many applications will be best obtained numerically.  The resulting covariance matrix for 

ΓΜ̂  or ΓΜ
(

 may then be used to construct confidence regions for or test hypotheses 
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about one or more components of Γ.  Like the IT and TS2 estimators themselves, this 

delta-method approach does not require the original meta-analytic data.  To facilitate its 

application, authors of meta-analytic reviews should be encouraged to report )ˆv(ôC ΘΜ  

or equivalent results (instead of, e.g., only standard errors for ΘΜ̂  elements). 

Finally, as an alternative to delta-method inference I briefly described bootstrap 

procedures to estimate the sampling distribution of ΓΜ̂  or ΓΜ
(

, which in turn can be 

used to construct confidence regions for or test hypotheses about ΜΓ by either obtaining a 

covariance matrix or using other approaches (e.g., percentiles of bootstrap distribution).  I 

specifically described four different bootstrap resampling methods, each of which is an 

extension of previously proposed bootstrap techniques for meta-analysis.  These 

bootstrap approaches may outperform their delta-method counterparts in certain respects 

under some conditions, especially when features of one’s data sufficiently violate key 

assumptions of the delta method.  Although these potential advantages come at the cost 

of additional computational burden as well as requiring the original data, for some users 

these barriers will be outweighed by higher confidence in the validity of inferences. 

5.1.2. Conclusions from Monte Carlo findings.  Both Monte Carlo studies of 

the proposed techniques were summarized in the previous chapter.  On the basis of those 

findings, some tentative conclusions about these techniques are warranted.  It is worth 

bearing in mind that the present Monte Carlo studies’ simulated data conformed closely 

to the standard multivariate random-effects model (e.g., normal Ti with known ΨTi) and 

satisfied certain assumptions required by some of the proposed techniques (e.g., normal 
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Θ).  In a sense, these data represent an ideal scenario under which most of the proposed 

techniques should perform at their best.  In subsequent sections I elaborate on this 

limitation and others and suggest additional simulation studies. 

Broadly speaking, the proposed techniques seem to perform reasonably well in a 

variety of conditions.  Namely, the point estimators for ΜΓk and ΣΓkk and CIs for ΜΓk 

often performed nearly as well as their counterparts for ΜΘ and ΣΘ, in terms of 

standardized bias for point estimators and coverage probability for CIs.  Although bias 

per se may be of only limited interest, standardized bias is of greater interest in that it 

reflects the contribution of bias to MSE.  I am not aware of a convenient way to compare 

MSE itself between estimators of different functions or in different metrics.  At any rate, 

this similar performance in the Θ and Γ metrics of point estimators and CIs indicates that 

one can apply the proposed techniques to finite meta-analytic samples without degrading 

markedly the selected statistical properties I examined. 

That said, the performance of these estimators and CIs was sometimes mediocre 

or poor.  The most troubling cases, however, were usually isolated to certain conditions, 

either for a particular meta-analytic task or for certain components of Γ.  For example, 

estimators of both ΣΘjj and ΣΓkk exhibited substantial positive standardized bias when ΣΘjj 

was small, but this was usually not more pronounced for Γ than for Θ.  More problematic 

for the proposed transformation techniques was its unusually poor performance for the 

quadratic functions Γ1 and Γ2 when ΜΘj = 0: problematically large positive bias in point 

estimators of ΜΓ1 and ΜΓ2 (mainly with smaller ΣΘjj) and in point estimators of ΣΓ11 and 
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ΣΓ22 (mainly with larger ΣΘjj), as well as egregiously low coverage probability for CIs for 

ΜΓ1 and ΜΓ2, especially with more studies and larger ΣΘjj.  These pronounced exceptions 

for Γ1 and Γ2 serve as reminders that the proposed techniques must be used with caution 

for some types of functions in certain conditions. 

Regarding the two estimation methods I have proposed, under the situations 

studied here the choice between IT versus TS2 does not seem to be important for point 

estimation of ΜΓk or CI construction for ΜΓk using either delta-method or bootstrap 

standard errors.  These two methods’ similar performance is not surprising for point and 

interval estimators of ΜΓ1 and ΜΓ2, for which IT and TS2 differed mainly by minor 

numerical methods (e.g., integration and differentiation strategies); indeed, they 

performed nearly identically for these mean estimators as well as for point estimators of 

ΣΓ11 and ΣΓ22.  However, more noticeable differences between IT and TS2 arose for point 

estimators of ΣΓ33 through ΣΓ66, favoring IT in some situations but TS2 in others.  

Potential users for whom estimation of ΣΓkk is critical are advised to consider carefully 

the function being estimated and the conditions at hand when choosing between these 

estimators.  Note, too, that in some applications one might wish to choose between the IT 

and TS2 estimators on the basis of statistical or other properties not considered here, such 

as operating characteristics of particular hypothesis tests, computational speed and 

burden, or ease of implementation for specific types of users. 

The choice among methods for CI construction is not straightforward.  Delta-

method CIs for ΜΓk perform reasonably well in many situations where CIs for ΜΘj 
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perform well, which indicates that this approach is often appropriate for re-expressing 

results for Θ hyperparameters as CIs in the Γ metric.  In some conditions, however, even 

CIs for ΜΘj perform poorly, such as with few studies and larger ΣΘjj, in which case it is 

difficult to justify delta-method CIs even though their poor performance may not be due 

to the delta method per se.  Furthermore, delta-method CIs for ΜΓk are clearly 

inappropriate for some functions in particular conditions, such as for ΘjΘl when ΜΘj = 

ΜΘl = 0, as demonstrated by their poor performance for Γ1 = 2
1Θ  and Γ2 = Θ1Θ2. 

It is not clear whether bootstrap CIs can be recommended as a general-purpose 

alternative to delta-method CIs.  Although all three bootstrap methods examined in the 

present simulations performed better than the delta-method CIs in the latter’s most 

adverse situations (i.e., for ΜΓ1 and ΜΓ2 when ΜΘj = 0), only two of them—the effect-

size and cases bootstrap methods—maintained acceptable coverage probability in these 

situations.  The error bootstrap performed unacceptably poorly in most situations.  

Moreover, aside from the above situation involving quadratic functions of Θ, the effect-

size and cases bootstrap CIs did not perform better than their delta-method counterparts 

for most functions and conditions considered herein, and in some of these situations one 

or both of these bootstrap methods performed markedly worse than the delta method, 

especially the cases bootstrap.  As I elaborate on below, recommending or discouraging 

particular CI methods on the basis of the present simulations would be premature, largely 

because numerous variants are available that might improve CI performance 

substantially—especially for bootstrap methods. 
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5.2. Limitations and Future Directions 

The techniques I have proposed address some important tasks likely to be of 

interest when re-expressing meta-analytic results in another metric, and they do so for a 

fairly general case likely to encompass many potential users’ situations.  Two Monte 

Carlo studies suggested that these procedures perform acceptably well for a number of 

functions in a wide variety of conditions, with some notable exceptions.  Nevertheless, 

the proposed techniques are limited in important ways, as are the Monte Carlo studies.  In 

this section I comment on several such limitations and offer several thoughts on future 

research to address these limitations and other matters. 

5.2.1. Proposed techniques.  Some aspects of the proposed techniques’ 

unacceptable performance in some situations might be remedied by various minor 

changes to the techniques as implemented in the simulations.  For example, the EM-GLS 

estimators of ΜΘ, ΣΘ, and the former’s sampling covariance matrix seem to exhibit 

certain deficiencies in some conditions, most notably the biased estimation of ΣΘ.  Other 

approaches to estimating these quantities (e.g., see Section 2.1.3) could in turn improve 

estimation and inference for ΜΓ and ΣΓ by the proposed techniques.  Another potentially 

useful change is to construct CIs using Student-t quantiles (or F for multivariate 

confidence regions) instead of standard-normal (or chi-squared) quantiles, which could 

be especially helpful with fewer studies (e.g., Harbord et al., 2007; Hartung & Knapp, 

2001).  One could also investigate a number of alternative strategies for secondary 

estimation tasks (e.g., other estimators for ES parameters, θi, used to estimate ui and ei in 

the error bootstrap; number of bootstrap samples, B) or for numerical methods (e.g., 
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evaluation of multidimensional integrals for IT estimators, evaluation of derivatives for 

TS2 estimators and delta-method covariance matrices). 

More substantial changes to the proposed techniques may also improve 

performance on the statistical tasks considered herein.  One notable limitation of the 

proposed IT estimators is their assumption that Θ is normal.  In some situations one 

might wish to consider other distributional forms for Θ, such as parametric univariate or 

multivariate families governed by ΜΘ, ΣΘ, or other hyperparameters.  Estimating the 

density of Θ by nonparametric methods may also be feasible (e.g., Louis, 1984).  The 

CTS2 estimator of ΣΓ also depends on normality of Θ; alternative estimators that rely on 

weaker distributional assumptions, such as quasi-normality, might be worth pursuing.  In 

a similar vein, for some functions a simpler first-order Taylor series approximation—only 

the first term on the right-hand sides of Equations 13 and 19—might perform reasonably 

well in some conditions and require fewer assumptions for estimating ΣΓ. 

As for substantial changes to inference techniques, the proposed delta-method 

approach is limited by its treatment of ΘΣ
~  as fixed and known in approximating the 

covariance matrix for an estimator of ΜΓ.  Besides the use of Student-t or F quantiles as a 

somewhat ad hoc approach to address this limitation, another approach is to incorporate 

the covariance matrix of both ΘΜ̂  and ΘΣ
~  into the delta-method approximation (perhaps 

without covariances involving ΘΣ
~ ).  Bootstrap inference may also incorporate 

uncertainty about ΣΘ into inferences on ΜΓ, but in conditions where this uncertainty is 

large (e.g., with few studies) alternative methods for constructing CIs may work better 
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than symmetric CIs based on bootstrap standard errors (e.g., equal-tail percentiles, bias-

corrected and accelerated percentiles).  For some classes of functions, such as most 

monotonic scalar functions of one component of Θ, approaches such as the delta-method 

and bootstrap may be bypassed by simply applying the MIT or MTS2 directly to 

endpoints of a CI for ΜΘ. 

It is worth noting other statistical tasks that are potentially of interest but not 

handled by the proposed techniques.  Some that seem most likely to arise in practice 

include inferences on ΣΓ or on both ΜΓ and ΣΓ jointly (e.g., confidence regions or tests) 

and prediction regions for γI+1 (i.e., γ for the next study; see, e.g., Harbord et al., 2007, for 

examples in the case of bivariate logits).  In most practical circumstances ΣΘ = 0 iff ΣΓ = 

0, so testing H0: ΣΘ = 0 also tests H0: ΣΓ = 0.  Hence, confidence regions for ΣΓ—such as 

several authors have promoted in simpler cases (e.g., Biggerstaff & Tweedie, 1997; 

Hardy & Thompson, 1996; Knapp, Biggerstaff, & Hartung, 2006; Tian, 2008; 

Viechtbauer, 2007)—are likely to be of more interest than tests.  Perhaps bootstrap 

procedures for inferences about ΜΓ could be adapted for inferences about ΣΓ. 

It would also be valuable to extend the proposed techniques to models that 

include study-level covariates to account for heterogeneity in ES parameters (e.g., 

Kalaian & Raudenbush, 1996; Berkey et al., 1998).  A more dramatic modification of the 

proposed techniques would be to adopt a Bayesian approach to multivariate random-

effects models, such as Prevost et al. (2007) proposed for the case of correlation matrices 

or Nam et al. (2003) presented for a more general case of generic ESs.  Despite their 
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additional complexity (e.g., choice of prior distributions) and computational demand, 

Bayesian techniques may be well-suited to address some of the proposed techniques’ 

limitations (e.g., assumed distributional form for Θ, neglected uncertainty about ΣΘ). 

Finally, a number of issues that might arise in specific applications remain to be 

addressed.  For example, it would be valuable to delineate systematically classes of 

functions for which the proposed techniques are most appropriate and to identify 

scenarios in which otherwise permissible functions may lead to problematic performance, 

such as quadratic functions of Θ near critical points.  The proposed techniques may 

handle a larger class of functions with certain modifications (e.g., delta method based on 

second-order Taylor polynomial).  On a related note, the proposed techniques may 

require adaptations when used with particular choices of Θ or g.  For example, when Θ 

represents a matrix of Pearson correlations or Fisher z-transforms, the support for 

multivariate-normal Θ (i.e., Θ ∈ J) would extend outside the space of admissible 

correlation matrices, which is theoretically dubious and may cause computational 

problems (e.g., integrating over Θ for IT estimators).  Similarly, for bounded functions 

symmetric CIs based on delta-method or bootstrap standard errors may yield inadmissible 

endpoints (e.g., for Γ1, Γ3, Γ4, and Γ6 in the present Monte Carlo studies). 

5.2.2. Monte Carlo studies.  As with most Monte Carlo studies, several choices 

made largely for convenience limited the generalizability of results to potential users’ 

situations.  One such choice is the three (or two) particular levels of each design factor: I, 

η, ξ1 (especially its ratio with ΨTijj), ξ2, and φ.  Some applications may fall too far outside 



 109

of the design space to warrant useful extrapolation of the present findings.  Another 

limitation is that ideal generic ES data were generated to conform exactly to the 

multivariate random-effects model and to the Θ ~ N assumption underlying certain 

proposed techniques.  More informative for practical applications would be simulations 

that use realistic ES metrics, such as correlations, SMDs, or logits.  For many of these, 

ΨTi and the sampling distribution’s shape depend on θi in addition to sample size(s), and 

some of them may require changes to the proposed techniques (e.g., to handle 

inadmissible values of θi or ti).  The impact of non-normal distributions of Θ is also of 

interest.  Other features of the simulated data that might influence some techniques’ 

performance include the number of Θ components (J); the patterns of values in ΜΘ and 

ΣΘ, which were conveniently simple in the present simulations; and aspects of within-

study sample size(s).  As alluded to in Chapter 2, a wide variety of functions g could also 

be investigated, varying in both the number (K) and nature of component functions.  

Identifying classes of functions for which certain techniques perform similarly would be 

valuable.  (It might be interesting to examine whether the proposed techniques’ 

performance notably improves or deteriorates if applied to each component of Γ ≡ g(Θ) 

separately instead of collectively as a vector.)  

The present Monte Carlo studies included only the proposed techniques, and even 

then only particular versions of them (e.g., central 95% CIs based on standard-normal 

quantiles).  In addition to examining other inference procedures (e.g., 1-sided confidence 

bounds, multivariate confidence regions, tests of hypotheses about ΜΓ) as well as some 
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of the minor and major variants of the proposed techniques mentioned in the previous 

section, one could investigate competing techniques that may be easier without marked 

detriments in performance.  Among these are direct analysis of observed functions (e.g., 

EM-GLS applied to gi = g(ti), as described in Section 3.1), first-order Taylor series 

approximation instead of TS2 (e.g., g( ΘΜ̂ ) as an estimator of ΜΓ), EM-GLS with 

diagonal ΨTi or ΣΘ (e.g., Hafdahl, 2001; Becker, 2009), or estimation of and inferences 

on ΜΓ using the known ΣΘ—unrealistic in practice, but potentially informative about the 

impact of estimating ΣΘ.  For users interested in the homogeneous fixed-effects case (see 

Section 3.5.1), simulations under that model would be valuable.  These would be 

considerably simpler to implement than in the random-effects case (e.g., M. W.-L. 

Cheung & Chan, 2005; Furlow & Beretvas, 2005; Hafdahl, 2001, 2007). 

One might also consider additional evaluation criteria neglected in the present 

simulations.  For instance, evaluate multivariate properties of point or interval estimators 

may be of interest, such as by using a multivariate measure of standardized bias for an 

estimator of ΜΓ or ΣΓ.  Also, a meaningful way to compare MSE between corresponding 

estimators in the Θ and Γ metrics (e.g., estimators of ΜΘ and ΜΓ) would permit assessing 

the proposed techniques’ influence on efficiency.  CIs could also be evaluated in other 

ways, such as by their typical width or variability in width.  Deriving these or other 

statistical properties analytically would be preferable to simulation evidence, but analytic 

derivations for meta-analytic procedures tend to be intractable except in unrealistically 

simplified scenarios (e.g., ideal generic ESs, ΨTi = ΨT ∀ i, known ΣΘ). 
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5.2.3. Accessibility for applied researchers.  Many potential users of the 

techniques I have proposed are applied researchers who are unlikely to understand and 

implement the techniques without further support.  For example, many such researchers 

in the behavioral, social, or health sciences have taken only one or two graduate courses 

in applied statistics and are not proficient in any programming language.  To increase 

such researchers’ interest in and responsible usage of these techniques, at least three types 

of additional resources would be valuable.  First, didactic presentations (e.g., articles, 

conference papers, Internet resources) that include real-data examples and emphasize 

practical decisions and interpretations will help applied researchers appreciate the 

proposed techniques’ value and provide guidance in using them.  For instance, Hafdahl 

(2009b, 2009d) used meta-analytic data from studies in social-cognitive psychology and 

sports psychology to demonstrate some of the proposed techniques applied to path 

models as functions of correlation matrices—one of the most popular uses of multivariate 

meta-analysis to date (though bivariate meta-analysis of true- and false-positive rates for 

diagnostic tests is a competitor). 

Second, providing user-friendly software that implements the proposed 

techniques will greatly reduce computational barriers for many applied researchers.  Such 

software might consist of freely available executable programs, scripts or macros for 

popular statistical or mathematical software (e.g., SAS, SPSS, R, Matlab), interactive 

Internet applets, or modules incorporated into existing meta-analysis software (for 

reviews see, e.g., Bax, Yu, Ikeda, & Moons, 2007; Sterne, Egger, & Sutton, 2001).  A 
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major challenge of producing such software is to incorporate a variety of ES metrics and 

functions to suit the needs of diverse potential users. 

Third, software that could run Monte Carlo simulations tailored to one’s data and 

desired statistical tasks would facilitate choosing among variants of the techniques and 

deciding whether they work sufficiently well in one’s unique circumstances.  As an 

example of this idea, the Mplus software package for structural equation modeling 

includes a Monte Carlo feature to permit custom simulations.  Such software could also 

be made available in several different ways, and it could be used for a variety of tasks 

such as power analysis, sample-size planning, and sensitivity analyses. 
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