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ABSTRACT OF THE DISSERTATION 
 

Biomechanical and Neural Factors Associated with Gait Dysfunction and Freezing in 
People with Parkinson Disease 

 
by 
 

Daniel Soren Peterson 
 

Doctor of Philosophy in Movement Science 
 

Washington University in St. Louis, 2013 
 

Professor Gammon M Earhart, Chair 
 

Parkinson disease (PD) is a progressive neurological disorder with no known 

cure, affecting one million Americans. Half of those with PD experience freezing of gait 

(FOG), manifested as an inability to complete effective stepping. Gait dysfunction and 

FOG are associated with falls, severe injury, and reduced quality of life, and are among 

the most disabling and distressing symptoms of PD. The causes of FOG and gait 

dysfunction are not well understood. Further, FOG is notoriously difficult to elicit in a 

laboratory setting, making efforts to track or identify individuals at risk for freezing 

difficult. An important first step in determining the mechanism of gait dysfunction and 

FOG is to identify factors associated with these symptoms. Therefore, the overall goal 

of this project was to better understand how pathologies of movement and brain 

function are associated with gait dysfunction and FOG.  

To this end we conducted three experiments (chapters 2-4). In experiment 1 

(chapter 2), we assessed the relationship between coordination of steps and freezing of 

gait. Results suggested that individuals with PD who freeze exhibit worse coordination 

than those who do not freeze, and further, that tasks related to freezing (turning and 
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backward walking) resulted in worse coordination than forward walking. Finally, there 

was a significant positive correlation between freezing severity and global coordination 

of steps. These results together support the hypothesized relationship between 

coordination of steps and freezing. 

In experiment 2 (chapter 3), we investigated neural signals associated with gait 

dysfunction (measured via blood oxygen level dependent [BOLD] signal) in those with 

PD compared to healthy adults. We found that during complex gait tasks, those with PD 

activated the supplementary motor area more than healthy adults. In addition, we 

observed reduced activity in the globus pallidus in people with PD. Finally, PD exhibited 

consistent positive correlations between a measure of gait function (overground walking 

velocity) and brain activation such that those with higher brain activity exhibited better 

gait function.  

In experiment 3 (chapter 4), we investigated the neural underpinnings of freezing 

of gait. Specifically, we looked at gait imagery in those with PD who do experience 

freezing (freezers) and those who do not (non-freezers). We found those who 

experience freezing exhibited reduced BOLD signal in the cerebellar locomotor region, 

suggesting dysfunctional activity in this region may play a role in freezing. BOLD 

response within freezer and non-freezer groups were not consistently correlated to 

functional gait measures such as overground gait speed or freezing severity.  

Together these results better elucidate how pathologies of movement (i.e. 

coordination of steps) and neural function are related to gait dysfunction and freezing. 

Specifically, we found that coordination of steps and activity of the cerebellar locomotor 
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regions may be related to freezing. Further, altered activation of the globus pallidus may 

be related to gait dysfunction in those with PD, and generally, larger BOLD response is 

correlated to improved overground gait function. 
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Chapter 1: Introduction 

PARKINSON DISEASE 

Parkinson disease (PD) is the second most prevalent neurodegenerative 

disease, and has no known cure. PD currently affects one million Americans and its 

prevalence is expected to increase as the US population ages (Strickland and Bertoni 

2004). Individuals with PD often develop severe motor dysfunction, leading to falls, 

reduced quality of life, and depression. The economic effects of PD are quite large, as 

approximately twenty five billion dollars are spent on direct and in-direct costs of PD 

every year in America alone (Whetten-Goldstein et al. 1997; Scheife et al. 2000).  

A prominent neural pathology observed in those with PD is the degeneration of 

dopaminergic neurons in the substantia nigra pars compacta (SNpc) within the basal 

ganglia, thought to be related to the presence of ubiquitin- and α-synuclein-positive 

cytoplasmic inclusions known as Lewy bodies (Polymeropoulos et al. 1997; Bennett et 

al. 1999; Wakabayashi et al. 2007). This loss of SNpc dopaminergic neurons leads to a 

reduction in dopamine input to the striatum, and is likely involved with several of the 

cardinal motor symptoms of PD. However, in those with PD, Lewy bodies are not 

restricted to the SNpc. Recent evidence suggests that in the early stages of PD, Lewy 

bodies are commonly noted in brainstem (medulla oblongata) and olfactory bulb. As the 

disease progresses, however, they are present in virtually all parts of the brain. Based 

on these findings, Braak and colleagues developed a staging system of PD, showing 

dysfunction and Lewy body inclusion beginning in the brainstem and moving rostrally, 

affecting the basal and mid forbrain, and eventually multiple regions of the neocortex 
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(Braak et al. 2003). Due to the extensive pathology at late stage PD, individuals often 

exhibit substantial motor and non-motor dysfunction. 

The root of the cellular alterations is not well understood. For a small percentage 

of those with PD (approximately 5-10%) genetics are likely responsible (Dauer and 

Przedborski 2003), as several genetic mutations have been associated with PD (for 

review, see (Dauer and Przedborski 2003; Wirdefeldt et al. 2011)), and Lewy body 

proliferation in particular (Polymeropoulos et al. 1997). However for the vast majority of 

cases, the underlying causes are unknown. Recent reports have suggested that certain 

environmental factors may be linked to PD, including pesticides and herbicides (Hatcher 

et al. 2008). Interestingly, the incidence and prevalence of PD seem to have non-

random geographic distribution throughout the United States, with increased prevalence 

and incidence in the Midwest and northeastern regions of the United States (Wright 

Willis et al. 2010). The higher PD burden in these regions may be linked to pesticides 

(the use of herbicides and pesticides are common in the Midwest and Northeast 

[Environmental Protection Agency, 2009; United States Geological Survey Pesticide 

National Synthesis Project, 2009]), however byproducts of industrialization, also 

common in these regions, may play an important role. The long lag time between 

exposure and development of PD, as well as the highly complex interactions between 

numerous environmental exposures, makes identifying specific causal links extremely 

difficult.  

 

GAIT AND MOTOR DYSFUNCTION IN PD 
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The cardinal motor symptoms of PD include bradykinesia, rigidity, and tremor 

(Leenders and Oertel 2001). Posture and locomotion are also affected in people with 

PD, leading to injury and reduced quality of live in this population. Specific changes in 

posture, balance, and gait in people with PD are described in detail below. 

Balance & Posture Dysfunction 

Balance deficits in PD are a common and dangerous symptom associated with 

increased morbidity and mortality (Coelho et al. 2010). Control of balance and posture 

requires efficient processing of multiple sensory inputs (vestibular, visual, and 

somatosensory), and producing effective motor output. Examples of balance 

dysfunction in PD include altered control of center of mass motion during quiet standing 

(Horak et al. 1992; Mitchell et al. 1995), smaller functional limits of stability (Mancini et 

al. 2008), and altered sensory integration to maintain upright posture, among others. 

For example, those with PD typically exhibit increased reliance on visual information 

(Bronstein et al. 1990; Kitamura et al. 1993; Jacobs and Horak 2006). The underlying 

causes of these symptoms are not fully understood, but likely involve deficits in 

vestibular function and motor control. For example, hypometric and bradykinetic 

movements may in part underlie dysfunction of sway and anticipatory postural 

responses.  

Gait dysfunction 

During gait, individuals with PD typically exhibit reduced walking velocity (O'Shea 

et al. 2002) as well as short (Morris et al. 1996), variable (Blin et al. 1991; Hausdorff et 

al. 1998) steps. Further, coordination in timing of steps is impaired (Plotnik et al. 2008), 

and in some cases, steps can become progressively shorter and faster (Chee et al. 
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2009). This progression, known as festination, may result in a total inability to produce 

effective stepping. Due to the dynamic nature of walking, instability during locomotion 

often leads to falls in people with PD. Interestingly, complex gait tasks such as 

backwards walking or turning are particularly difficult for those with PD, as the gait 

dysfunction noted earlier is generally more pronounced during these tasks than during 

normal forward walking (Hackney and Earhart 2009).  

Dysfunction during walking may be related to altered ability to effectively direct 

attention in people with PD. This can be demonstrated during dual task walking, as 

those with PD exhibit considerably worse gait while dual tasking than healthy controls 

(O'Shea et al. 2002; Rochester et al. 2004). Similarly, if attention is focused back on 

gait, using attentional, visual, or auditory cueing strategies, gait can be improved 

(Lohnes and Earhart 2011). Interestingly, some individuals with PD exhibit a so-called 

“posture second” strategy, whereby attention is naturally focused more on a competing 

cognitive task rather than on the gait task than in healthy adults (Bloem et al. 2001; 

Bloem et al. 2006). This suggests a potentially un-safe focus on cognitive, rather than 

balance, needs. Recent evidence has, however, questioned this notion, suggesting 

similar attentional strategies in PD and controls (Yogev-Seligmann et al. 2012). These 

recent investigations, along with other evidence raise the possibility that a posture 

second strategy or “stops walking while talking” sign may be more related to cognitive 

dysfunction than PD specific dysfunction (Bloem et al. 2000; Bloem et al. 2006). Despite 

questions regarding specific postural strategies in PD and controls, attention clearly 

plays an important role in locomotion, particularly in people with PD, and focusing 

attention onto gait is beneficial for improving locomotion in this population.  
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Freezing of Gait 

At least 50% of those with advanced PD exhibit Freezing of Gait (FOG) (Giladi et 

al. 2001; Bartels et al. 2003), defined as a transient inability to complete effective 

stepping (Giladi and Nieuwboer 2008). FOG is a particularly disabling and distressing 

symptom, and is closely related to falls and reduced quality of life (Gray and Hildebrand 

2000; Giladi et al. 2001; Bloem et al. 2004; Moore et al. 2007; Kerr et al. 2010).  

Though the underlying neural dysfunction associated with FOG is not fully 

understood, previous investigations have identified several brain regions possibly 

related to freezing. For example, in those without PD, lesions in the supplementary 

motor area (SMA) (Della Sala et al. 2002), globus pallidus (GP) (Klawans et al. 1982; 

Feve et al. 1993), and mesencephalic locomotor regions (MLR) (Masdeu et al. 1994; 

Bhidayasiri et al. 2003; Kuo et al. 2008) resulted in freezing- like symptoms. 

Interestingly, individuals with PD also exhibit dysfunction in these areas (Playford et al. 

1992; Bartels et al. 2003; Jahanshahi et al. 2010; Prodoehl et al. 2010; Snijders et al. 

2011; Cremers et al. 2012a), suggesting they may be involved with FOG.  

The MLR, and, within this region, the pedunculopontine nucleus (PPN), has been 

suggested to be related to FOG (Lewis and Barker 2009). This is due in part to the large 

role the PPN plays in movement, and specifically, locomotion. The PPN plays a key role 

in the control of descending locomotor signals, and is closely tied to the dopaminergic 

and cholinergic systems, both of which are dysfunctional in PD. Lesion (Masdeu et al. 

1994; Bhidayasiri et al. 2003; Kuo et al. 2008; Karachi et al. 2010) and functional 

imaging (Snijders et al. 2011; Cremers et al. 2012a) studies also support the notion that 

dysfunction of this region may be related to FOG. The PPN is atrophied in those with 
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PD with respect to healthy older adults (Hirsch et al. 1987). Preliminary evidence 

suggests this region may be further atrophied in freezers with respect to non-freezers 

(Snijders et al. 2011). Finally, brain stimulation to the PPN region may improve gait and 

reduce the number of freezing events (Plaha and Gill 2005; Thevathasan et al. 2011; 

Thevathasan et al. 2012), although recent double blinded clinical trials have shown only 

marginal benefit for PPN stimulation (Ferraye et al. 2010; Moro et al. 2010) (for review 

see (Ferraye et al. 2011)). Further research is necessary to better understand if and 

how this region is associated with freezing and gait dysfunction in PD. 

Similarly to other types of gait dysfunction, the complexity of the gait task may 

also influence freezing. Turning, for example, is a complex gait task generally requiring 

more coordination of movement and posture than simple gait tasks such as forward 

walking (Courtine and Schieppati 2004). Turning is the most common way to elicit 

freezing in the home (Schaafsma et al. 2003), and is the most consistent way to elicit 

freezing in the laboratory setting (Spildooren et al. 2010; Snijders et al. 2012). The 

mechanism by which turning elicits freezing is not well understood. However, turning 

necessitates asymmetries in step length and leg velocity (Courtine and Schieppati 

2003), and leads to discoordinated stepping in people with PD. This asymmetry and 

reduced coordination of steps during turning may precipitate freezing (Plotnik and 

Hausdorff 2008). In support of these findings, a recent report suggested that individuals 

with PD who experience freezing may have altered activity in the supplementary motor 

area (a pre-motor region associated with the coordination and planning of complex 

movements) with respect to those who do not freeze (Snijders et al. 2011). 
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FOG is also associated with attentional deficits, as cueing, a strategy to focus 

attention back to the gait task, is a common and effective strategy to “break” freezing 

episodes (Lee et al. 2012). Similarly, tasks which pull attention away from gait, i.e. dual 

tasking (Snijders et al. 2010; Spildooren et al. 2010), doorways (Almeida and Lebold 

2010), and stressful or emotional situations (Rahman et al. 2008) often elicit freezing 

(for reviews, see (Fahn 1995; Okuma 2006; Hallett 2008; Morris et al. 2008; Browner 

and Giladi 2010; Nutt et al. 2011)). Together, these results suggest the possibility that 

freezing may be associated with dysfunction not only of the basal ganglia and 

brainstem, but also frontal executive and attentional regions of the cortex. This notion is 

further supported by recent research showing that 1) alterations in cortical volume of 

freezers (Kostic et al. 2012), and 2) cognitive function are altered in those with PD 

(Amboni et al. 2008). Cortical regions have direct and indirect connections to not only 

the basal ganglia, but also brainstem regions such as the PPN (Pahapill and Lozano 

2000; Jenkinson et al. 2009). Therefore, it is possible that freezing results from 

discoordination and dysfunction of multiple regions (i.e. cortical, basal ganglia, and brain 

stem) as opposed to one in isolation (Hashimoto 2006; Lewis and Barker 2009). 

Recently, biomechanical characteristics have been suggested to be related to, or 

possibly part of the causal pathway of freezing. Indeed, numerous studies have noted 

that individuals with PD show altered coordination of both upper (Vercruysse et al. 

2012) and lower limb movements (Hausdorff et al. 1998; Abe et al. 2003; Plotnik et al. 

2007). Further, those who experience freezing seem to have a more variable and less 

symmetric gait pattern than those not experiencing FOG (Nieuwboer et al. 2001; 

Hausdorff et al. 2003; Plotnik et al. 2008). Importantly, arrhythmic and uncoordinated 
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movements can be observed during normal motion (i.e. non-freezing gait), and 

therefore represent a continuous gait disturbance in these individuals (Hausdorff et al. 

2003). Further, dual tasking, which typically results in more frequent freezing episodes, 

has also been shown to elicit worse coordination of steps (Plotnik et al. 2009). Due to 

these findings, it has been hypothesized that biomechanical factors may be related to 

freezing (Plotnik and Hausdorff 2008; Plotnik et al. 2012). Previous studies, however, 

have tested coordination during straight walking only. Measuring coordination during 

tasks which more commonly elicit FOG, such as turning, could provide a better 

understanding of the relationship between coordination and FOG. For example, if 

coordination and FOG are related, tasks which often elicit FOG should result in worse 

coordination than forward walking. However, if tasks related to freezing do not result in 

worse coordination, it is unlikely that coordination is a strong predictor or contributing 

factor to FOG. Therefore the first aim of this project was to assess coordination of steps 

during tasks which often elicit freezing (backward walking and turning) with relation to 

tasks less associated with FOG to elucidate the relationship between bilateral 

coordination of steps is associated with FOG in people with PD. 

 

NEURAL UNDERPINNINGS OF HEALTHY AND PARKINSONIAN GA IT 

As noted previously, the underlying dysfunction of PD and freezing of gait is not 

well understood. In order to better understand what alterations in neural activity may be 

associated with gait dysfunction, recent investigations have begun to characterize 

supra-spinal locomotor control networks in healthy and diseased populations. In the 
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following sections, the neural control of locomotion will be discussed for healthy young 

adults, healthy older adults, and individuals with PD.  

Locomotor Control in Healthy Young 

Considerable effort and resources have been applied to understanding the neural 

control of gait in healthy young adults, and through work using a variety of techniques 

(i.e. Positron Emmission Tomography; PET, Single Positron Emission Computed 

Tomography; SPECT, Near Infrared Spectroscopy; NIRS, Functional Magnetic 

resonance imaging; fMRI, Electroencephelography; EEG, and others) we have gained 

significant knowledge about how the brain controls gait. Early investigations used PET 

and SPECT to assess regions of the brain which are active during actual walking 

(Fukuyama et al. 1997; Mishina et al. 1999; Miyai et al. 2001; Tashiro et al. 2001; 

Hanakawa 2006). Perhaps not surprisingly, these studies identified several regions to 

consistently be associated with locomotion, including premotor regions, basal ganglia, 

visual cortex, and the cerebellum. Other regions shown to be active, albeit less 

consistently, include the anterior cingulate cortex and dorsal brainstem (Hanakawa et al. 

1999; Hanakawa 2006).  

More recent studies have used fMRI, as it provides superior temporal and spatial 

resolution than PET/SPECT, and it allow testing of multiple tasks for each participant. 

As walking, and in many cases any leg movements, result in prohibitive amounts of 

head motion for fMRI, this technique necessitates individuals to imagine gait tasks. 

Numerous investigations using this technique have largely supported previous findings 

from PET and SPECT studies, showing gait related increases in activity in premotor 

regions, basal ganglia, and cerebellum (Miyai et al. 2001; Jahn et al. 2004; Iseki et al. 
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2008; la Fougere et al. 2010). In addition, possibly due to the higher spatial resolution, 

some investigations have suggested activity in dorsal brainstem and cerebellar regions 

(Jahn et al. 2008; Karachi et al. 2010), the thalamus (Jahn et al. 2004) and 

parahippocampal gyrus (Jahn et al. 2004; Iseki et al. 2008; Jahn et al. 2008). These so-

called “locomotor regions” identified via gait imagery overlap with locomotor centers in 

quadrupeds (Orlovsky 1969; Shik et al. 1969; Mori et al. 1999). 

Recent investigations using fMRI and NIRS have begun to look at brain activity 

during locomotor-like tasks of varying complexity, including turning (Wagner et al. 

2008), backward walking (Godde and Voelcker-Rehage 2010), stepping over obstacles 

(Malouin et al. 2003; Wang et al. 2009), and walking with narrow versus broad 

pathways (Bakker et al. 2008). With respect to forward walking, these relatively complex 

tasks result in increases in pre-motor activity (particularly the supplementary motor 

area, SMA) (Malouin et al. 2003; Bakker et al. 2008; Wagner et al. 2008; Godde and 

Voelcker-Rehage 2010), as well as parahippocampal gyrus (Malouin et al. 2003; 

Wagner et al. 2008), putamen (Wagner et al. 2008), and thalamus (Wagner et al. 2008; 

Godde and Voelcker-Rehage 2010), among others.  

Locomotion at different speeds has also been shown to alter the activity of the 

brain (Suzuki et al. 2004; Jahn et al. 2008; Karachi et al. 2010; Cremers et al. 2012b). 

For example, brainstem and midline cerebellar alterations were observed in some (Jahn 

et al. 2004; Jahn et al. 2008; Karachi et al. 2010), though not all (Cremers et al. 2012b) 

studies. It has been suggested that these increases may be due to alterations in 

perceived balance needs while imaging brisk walking and running with respect to 

normal walking.  
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Locomotor Control in Healthy Old 

To our knowledge, only two studies have investigated effects of age on the 

neural control of locomotion, with varied results. Zwergal and colleagues investigated 

imagery of running, walking, standing, and lying in both older and younger adults using 

fMRI. During gait imagery, both groups showed brain activity (measured via blood 

oxygen level dependent signal; BOLD) in locomotor regions including the SMA, 

caudate, and cerebellum. Activity in regions less commonly associated with imagined 

locomotion was also noted to be different across age groups. For example, older adults 

showed relative increases in multisensory vestibular cortices and somstosensory 

cortices. Authors suggest that the increases in activity in non-locomotor regions may be 

a result of reduced cortical inhibitory reciprocal interactions within sensory systems in 

older adults. As part of a larger study, Wai and colleagues investigated imagery of gait 

initiation, stepping over obstacles, and gait termination in old and young. Broadly, both 

groups exhibited activity in pre-motor and visual regions during imagined walking, with 

older adults exhibiting more activity in these regions than young. In this study, 

individuals watched videos of gait from a 1st person perspective, possibly eliciting less 

of a response from somatosensory loops than during kinesthetic, whole-body gait 

imagery. Indeed, recent evidence suggests different brain regions are active during 

visual vs. kinesthetic imagery of movement (Guillot et al. 2009).  

In all, this limited body of work suggests numerous alterations in the control of 

locomotion with increasing age, most prominently in non-locomotor regions. Alterations 

in locomotor regions may be more prominent during more complex gait tasks which 

challenge the coordination and planning of locomotion.  
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Locomotor Control in PD 

The overlap between brain regions associated with gait dysfunction and altered 

activity in PD has spurred several recent studies aimed at understanding how the neural 

control of gait may be altered in PD (Hanakawa et al. 1999; Snijders et al. 2011; 

Cremers et al. 2012a; Wai et al. 2012). Hanakawa and colleagues were the first to 

investigate neural signals in PD during locomotion. Using SPECT, investigators showed 

both under-activation (medial frontal areas, precuneus, and cerebellum), and over-

activation (temporal cortex, insula, and cerebellar vermis) in people with PD. More 

recent studies have used gait imagery, showing a variety of alterations during locomotor 

imagery in PD, including reduced activity of the supplementary motor area in people 

with PD who experience freezing (freezers) (Snijders et al. 2011), and alterations in 

cerebellar and brainstem activity (Cremers et al. 2012a; Wai et al. 2012). Together, 

these results provide a promising groundwork for continued work on the neural 

underpinnings of gait dysfunction in people with PD. For example, previous studies 

have primarily focused on simple gait imagery tasks (i.e. forward walking), with little 

work focusing on how neural activity is altered during more complex gait tasks. 

Investigating neural control of complex gait tasks is critical to understand the underlying 

causes of gait dysfunction in PD, as 1) gait dysfunction in PD is more pronounced 

during these tasks, and 2) recent work in healthy adults suggests complex gait tasks 

may alter neural activity in regions of the brain which are dysfunctional in PD (i.e. 

putamen and SMA; (Wagner et al. 2008; Godde and Voelcker-Rehage 2010)).  

One recent study has begun to look at the neural activity of PD during complex 

gait tasks, including gait initiation and stepping over obstacles, showing possible 
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alterations in those with PD in lateral pre-motor regions, pre-cuneus, and inferior 

parietal lobule (Wai et al. 2012). However, although this report provided important 

insights into PD gait, the authors acknowledged that they did not assess the ability of 

participants to imagine movements or imagery compliance during scans raising a 

question of task performance differences across groups. In addition, other gait tasks, 

such as turning and (to a lesser degree) backward walking, are also associated with gait 

dysfunction in PD. Assessing BOLD signal during complex gait tasks which are 

particularly difficult for those with PD may underscore the differences between healthy 

older adults and PD. Therefore, our second aim was to assess the neural 

pathophysiology of locomotion in PD during complex gait-like tasks. We chose to use 

gait imagery during fMRI to assess these group (PD and control) and task (simple and 

complex gait imagery) effects.  

In addition, no studies to date have investigated how tasks of varying complexity 

affect those with PD who freeze. Complex gait tasks such as turning are the most 

common trigger for FOG, suggesting certain components of this task are highly related 

to freezing. Understanding how brain signals are altered in those with PD who freeze 

during turning may provide valuable insights into the neural underpinnings of freezing. 

Our third and final aim was to determine the brain mechanisms associated with FOG in 

people with PD. To this end, we measured BOLD signal during imagined forward gait 

and complex tasks which commonly elicit freezing such as backward walking and 

turning. 

Imagery as a Probe of Locomotor Activity 
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There are few methods currently available to probe the neural circuitry underlying 

full body motions such as locomotion, and even fewer that allow collection of signals 

with high spatial and temporal resolution. One commonly used technique for this 

purpose is the collection of BOLD signal during gait imagery. This approach, which 

relies upon the large degree of overlap between actual and imagined movements 

(Jeannerod and Decety 1995; Porro et al. 1996; Deiber et al. 1998; Miyai et al. 2001; la 

Fougere et al. 2010), has been used to gain a better understand of the supra-spinal 

components of locomotion in healthy younger and older adults (Malouin et al. 2003; 

Jahn and Zwergal 2010; Snijders et al. 2011; Zwergal et al. 2012). There are several 

benefits to this type of data collection. First, compared to other cortical and subcortical 

brain imaging techniques used in humans, fMRI provides relatively high spatial (~2-

4mm) and temporal (~2 sec) resolution. Second, imagery of gait allows individuals to 

imagine movements similarly across groups. This is particularly important when 

investigating those with reduced over ground gait speed, as alterations in speed of 

movement can significantly affect BOLD signal (Jahn et al. 2004; Suzuki et al. 2004; 

Jahn et al. 2008; Harada et al. 2009; Cremers et al. 2012b). Finally, with this paradigm, 

it is possible to differentiate descending neural signals from proprioceptive signals or the 

integration of proprioceptive information into motor plans, which may be altered in those 

with PD (Almeida et al. 2005).  

A major downfall of motor imagery is the inability to precisely monitor the 

participant’s adherence to the assigned task. However, several methods have been 

devised to circumvent this limitation. For example, in the current projects, two primary 

steps were taken. First, all participants were screened for their ability to imagine 



15 

 

movements. The Kinesthetic Visual Imagery Questionnaire (KVIQ) was administered to 

all participants, and those who averaged less than a 3 on either the kinesthetic or visual 

components (indicating “Moderately clear/vivid movement imagery), were not scanned. 

The Gait Imagery Questionnaire, GIQ (Pickett et al. 2012), which measures one’s ability 

to imagine gait specifically, was also collected to compare each group’s ability to 

imagine locomotion. Second, we assessed whether participants were adhering to tasks 

during scans. Participants imagined completing both long and short distances of each 

gait task while in the scanner. If the time necessary to complete gait tasks was not 

modulated across short and long imagery bouts, data was not included for analysis.  

Another potential pitfall of gait imagery in those with PD is the possibility that 

those with PD may imagine more poorly while “Off” anti-Parkinson medication with 

respect to “On” medication, in part due to the documented alterations of activity in PD in 

regions, such as the SMA, that play a role in both actual and imagined locomotion (la 

Fougere et al. 2010). However, recent evidence suggests that there is little difference 

between imagery “On” and “Off” anti-Parkinson medication (Peterson et al. 2012; 

Appendix 1). 

 

SUMMARY 

There is currently not a clear understanding of the factors underlying gait 

dysfunction and FOG in people with PD. Though pathologies of movement (i.e. 

coordination of steps) and brain function have been suggested to be related to gait 

dysfunction and FOG, little work has focused on measuring these factors during tasks 

which typically elicit gait dysfunction and freezing.  
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Therefore, the overall goal of this project is to better understand how pathologies 

of movement and brain function are associated with gait dysfunction and FOG. Our 

approach was to measuring these factors during simple tasks (forward walking) as well 

as complex gait tasks (backward, turning) which amplify dysfunction and FOG. We 

chose this approach in an attempt to elicit more pronounced differences between 

freezers and non-freezers (and PD and controls).  

In experiment 1, we investigated how bilateral coordination of steps during gait is 

altered during simple (forward, turning in large circles) and complex (backward, turning 

in small circles) gait tasks to understand how coordination of steps may be related to 

gait dysfunction and freezing. In experiment two, we assessed the BOLD response 

(captured via fMRI) during imagined forward walking, backward walking, and turning in 

PD and controls to understand the brain mechanisms underlying gait dysfunction in PD. 

In experiment 3, we assessed BOLD response during imagined walking in freezers and 

non-freezers to elucidate neural responses related specifically to FOG.  
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ABSTRACT 
 

PURPOSE: Freezing of gait is a debilitating and common gait disturbance 

observed in individuals with Parkinson's disease (PD). Although the underlying 

mechanisms of freezing remain unclear, bilateral coordination of steps, measured as a 

phase coordination index, has been suggested to be related to freezing. Phase 

coordination index has not, however, been measured during tasks associated with 

freezing such as turning and backward walking. Understanding how bilateral 

coordination changes during tasks associated with freezing may improve our 

understanding of the causes of freezing. 

METHODS: Twelve individuals with PD who freeze (freezers), 19 individuals with 

PD who do not freeze (non-freezers), and 10 healthy, age-matched older adults 

participated. General motor disease severity and freezing severity were assessed. 

Phase coordination index was calculated for all subjects during forward walking, 

backward walking, continuous turning in small radius circles, and turning in large radius 

circles.  

RESULTS: Freezers and non-freezers had similar disease duration and general 

motor severity. Stepping coordination was significantly worse in freezers compared to 

non-freezers and controls. Turning and backward walking, tasks related to freezing, 

resulted in worse coordination with respect to forward walking. Coordination was 

associated with severity of freezing scores such that worse coordination was correlated 

with more severe freezing. 

CONCLUSIONS: These results provide evidence that stepping coordination is 

related to freezing in people with PD. Identifying variables associated with freezing may 



28 

 

provide insights into factors underlying this symptom, and may inform rehabilitative 

interventions to reduce its occurrence in PD.   
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INTRODUCTION 

 Freezing of gait (FOG) is a paroxysmal gait disturbance characterized as a 

sudden inability to produce effective stepping (Giladi and Nieuwboer 2008). FOG affects 

50% of individuals with Parkinson's disease (PD), is directly related to falls (Bloem et al. 

2004), and is one of the most disabling and distressing symptoms of PD (Backer 2006). 

Despite the burden of FOG, its underlying causes are unclear.  

FOG can occur during all types of gait, however it is most common during turning 

(Schaafsma et al. 2003). It is possible that the increase in FOG events during turning 

may be due in part to the asymmetric nature of the task. In particular, the temporal and 

spatial asymmetry of steps during turning (i.e. inner and outer legs cover different 

distances (Courtine and Schieppati 2003a)) represents a more complex control problem 

than forward walking. The increased complexity of interlimb timing during turning may 

pose an additional challenge to the bilateral coordination of steps and could contribute 

to FOG (Plotnik and Hausdorff 2008; Fasano et al. 2011). Recent studies have also 

suggested a potential relationship between backward walking and FOG. Though less 

evidence exists relating backward walking to FOG than turning to FOG, several gait 

characteristics, such as asymmetry, step length, and Functional Ambulation Profile 

(FAP (Nelson 2008)), are worsened in PD during backward walking with respect to 

forward. Further, individuals with PD who experience FOG (PD+FOG) exhibit more 

dysfunction during backward walking than those with PD not experiencing FOG (PD-

FOG) (Hackney and Earhart 2009). Though evidence directly linking backward walking 

to FOG is lacking, backward walking represents a complex locomotor task which is 
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more difficult for PD+FOG. Despite the dysfunction of backwards gait in PD+FOG, the 

link between backward gait and FOG is not well understood. 

Several studies have investigated the coordination of bilateral stepping during 

gait, as quantified by the Phase Coordination Index (PCI). PCI has been shown to 

become worse with both age and PD (Plotnik et al. 2005; Plotnik et al. 2007; Plotnik et 

al. 2008; Plotnik and Hausdorff 2008; Plotnik et al. 2009a; Plotnik et al. 2009b; Fasano 

et al. 2011). Interestingly, among those with PD, PD+FOG subjects have worse 

coordination than PD-FOG (Plotnik et al. 2008). These results, along with prior research 

suggesting FOG to be associated with abnormalities of spatiotemporal characteristics 

(Nieuwboer et al. 2001) and sequencing of gait (Iansek et al. 2006), led to the 

hypothesis that freezing may be related to reduced bilateral coordination of stepping 

(Plotnik and Hausdorff 2008). One limitation of these studies is that they only describe 

coordination of steps during forward walking. It remains unclear how coordination 

changes during walking tasks more commonly associated with freezing, e.g., turning 

and backward walking. If a relationship exists between FOG and coordination, tasks 

associated with freezing should result in more poorly coordinated gait, represented by 

higher PCI. If, however, PCI is not altered across these tasks, it would be unlikely that 

coordination is directly related to FOG. Said differently, if coordination and FOG are 

related, one would expect a co-variance of these measures across gait tasks.  

Identifying factors associated with FOG may provide important insight into the 

underlying mechanisms of FOG, potentially informing rehabilitative interventions to 

reduce the incidence of FOG. Further, FOG is notoriously difficult to elicit in a laboratory 

setting. Identifying quantifiable variables that are closely related to FOG, such as PCI, is 



31 

 

a first step in establishing surrogate measures for this symptom. These variables could 

be used to identify individuals at risk for FOG and track the progression of this 

symptom. Therefore, the goal of this study was to better understand the relationship 

between bilateral coordination of stepping and FOG. We determined how tasks 

associated with freezing (turning in small radius circles and backward walking) affected 

coordination with respect to tasks which elicit freezing less often (forward walking and 

turning in large radius circles). We hypothesized that tasks associated with freezing 

would result in higher PCI, i.e., worse coordination, and that this effect would be most 

pronounced in individuals who experience freezing (PD+FOG). We further hypothesized 

that there would be a direct relationship between FOG severity and PCI.   

METHODS 

Participants 

Ten healthy older adults, 19 “non-freezers” (PD-FOG), and 12 “freezers” 

(PD+FOG) participated (Table 1). Individuals with PD completed the Freezing of Gait 

Questionnaire (FOG-Q (Giladi et al. 2000)) to assess freezing severity and to classify 

individuals as PD+FOG or PD-FOG. The FOG-Q is a self-assessment of FOG which 

consists of 6 questions, each scored from 0 to 4 (Maximum score- 24 points), with 

higher scores representing more severe freezing. Four questions address the frequency 

and duration of FOG and two questions assess general gait impairment. Patients were 

classified as PD+FOG if they answered ≥2 on question three of the FOG-Q (Plotnik et 

al. 2008), representing a frequency of FOG of at least once a week. Total FOG-Q (sum 

of scores on all questions) was determined for individuals with PD to assess the severity 
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of FOG. The two questions not directly associated with FOG, as well as the criterion of 

a score of ≥2 on question 3 meant individuals classified as PD-FOG could have a non-

zero FOG-Q total score. PD groups were matched for disease duration and severity, 

and all groups were matched for age. Disease severity was measured by part 3 (motor 

subscale) of the Movement Disorders Society Unified Parkinson Disease Rating Scale 

(MDS-UPDRS), as well as Hoehn and Yahr staging (Hoehn and Yahr 1967). Individuals 

were excluded if they had any injury to the lower limbs within six months of testing, were 

unable to walk unassisted, or had neurological disorders other than PD. Individuals with 

PD were tested after a minimum 12-hour withdrawal from anti-parkinsonian 

medications. Experimental protocols were approved by the Human Research Protection 

Office of Washington University in St. Louis, and were in accordance with the 

Declaration of Helsinki. All subjects provided informed written consent prior to 

enrollment. 

Protocol 

Six round footswitches (20mm diameter, 1mm thick; Motion Lab Systems; Baton 

Rouge, LA) were placed on the sole of each shoe (3 near the toes, and 3 near the heel) 

to determine the time of heel strike and toe off. Subjects then completed the following 6 

gait tasks in random order: forward walking, backward walking, turning to the left and 

right in a small radius circle (radius = 0.6m), and turning to the left and right in a large 

radius circle (radius = 3m). Large radius turns have been suggested as a technique to 

reduce FOG during turning (Morris 2006), and were included in this study to serve as a 

contrast for the small radius condition. Five to 8 trials of a 10 meter walk were 

completed for both forward and backward walking. One 60 second large radius circle 
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trial was completed to the left and right, and three to five 20 second bouts of small 

radius turns were completed to the left and right. Subjects were instructed to perform all 

tasks at a comfortable, preferred pace. A telemetered system (Konigsberg Instruments, 

Pasadena, CA) transmitted footswitch data to the collection computer at 1000 Hz. 

Digital video was also acquired for each task. Data were collected using Cortex 

software (Motion Analysis Corp., Santa Rosa, CA USA).  

Data analysis 

PCI is a variable which integrates the accuracy and consistency of left- right 

stepping phases. The derivation of PCI has been described previously (Plotnik et al. 

2007). Briefly, PCI is the summation of two measures:  

φCV – the coefficient of variation of the series of relative timing of the stepping of 

one leg (i.e. the timing of its heel strike) with respect to the gait cycle defined by 2 

consecutive heel strikes (stride) of the other leg. The relative timing is represented by 

the value φ in degrees, which is the outcome of the time normalization with respect to 

the stride scaled to 360°. The ideal anti-phase ste pping pattern yields φ=180°.  φCV 

represents the consistency of phase generation.  

φABS - the mean value of a series of absolute differences between the values of 

φi  (i.e, the phase calculated for the ith stride) and 180°.  

���� � | �� 	  180°|  

φABS represents the overall accuracy in generating anti-phased stepping across 

all the steps of a walking trial.  

 Phase coordination index was calculated as the sum of φCV and PφABS: 

�� � ��� �  ���� 
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where PφABS = 100·(φABS/180). Therefore, PCI consists of two relative values (φCV and 

PφABS), both given as percentages. Periods of freezing and festination were identified 

by watching videos of gait which were time-synchronized with footswitch data. The 

period of festination and freezing, along with approximately one second before and after 

this period, was omitted from data analysis.  

Statistical analysis 

A one-way ANOVA determined statistical differences across age, and 

independent sample t-tests determined statistical differences for all other subject 

characteristics. As PCI was not different while turning to the left and right for small or 

large radius turns (see Results), PCI was collapsed across turning directions, leaving 

four gait tasks (forward walking, backward walking, large radius turns, and small radius 

turns). Therefore, a two-way mixed model ANOVA (group, 3 levels x walking condition, 

4 levels) was used to determine the effects of both group and gait task on PCI as well 

as both components of PCI (PφABS and φCV, see methods). Bonferroni correction for 

multiple comparisons was applied to all post hoc analyses. A recent review by Nutt and 

colleagues noted that while not all individuals with PD will experience FOG, those who 

do are likely on a spectrum of freezing severity (Nutt et al. 2011). With this in mind, we 

further tested the relationship between FOG and coordination by calculating 

Spearman’s ρ correlation statistic between severity of freezing (total FOG-Q score) and 

mean PCI across all tasks. Statistical analyses were run in SPSS (Chicago, IL).  

 

RESULTS  
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There was no age difference between groups (Table 1; p=0.75), and individuals 

with PD+FOG and PD-FOG were of similar disease severity (MDS-UPDRS-3, p=0.43; 

Hoehn & Yahr stage, p=0.26) and duration (p=0.44). The PD+FOG group exhibited 

significantly higher (p<0.001) total FOG-Q scores than the PD-FOG group (Table 1). 

Seven of twelve individuals in the PD+FOG group experienced FOG during the gait 

protocol. Within this group, backward walking and turning in small radius circles elicited 

freezing most frequently. Twenty five, 29, and 27 freezing events were observed during 

turning in small radius circles to the left, small radius circles to the right, and backward 

walking, respectively. In contrast, only one, two, and 7 freezing events were observed 

during forward walking, turning in large radius circles to the left and turning in large 

radius circles to the right, respectively.  

As PCI data were not different when turning to the left or right (large turns: 

p=0.37; small turns: p=0.63; paired sample t-test), data from both turn directions were 

combined for large and small turns. Exemplar data from one control, one PD-FOG, and 

one PD+FOG subject are shown in Figure 2.1. PCI values were smallest during forward 

walking, increased slightly (i.e. coordination worsened) during large radius turning, 

further increased during backward walking, and were highest during small radius 

turning, where the highest shifts from anti-phase coordination (i.e, 180°) were observed.  

In all walking conditions, the control subject had the lowest and the PD+FOG subject 

had the highest PCI values.  

These differences were also observed at the group level (Figure 2.2), as a 

significant group effect was present (F2,38=16.5; p<0.001). Post hoc tests revealed 

PD+FOG had significantly higher PCI than PD-FOG (p=0.01), and PD-FOG had 
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significantly higher PCI than controls (p=0.005; Bonferroni corrected). There was also a 

significant task effect (F2,83=78, p<0.001). Post hoc analyses showed PCI was 

statistically higher (i.e., worse bilateral coordination) when turning in small radius circles 

than when walking forward (p<0.001), turning in large radius circles (p<0.001), or 

walking backward (p=0.002; Figure 2.2). Backward walking also resulted in higher PCI 

than turning in large radius circles (p<0.001) and forward walking (p<0.001). Large turns 

had a significant effect on PCI with respect to forward (p=0.002), but this effect was 

substantially less pronounced than the effect of small turns or backward walking on PCI. 

In addition, there was a task by group interaction effect (F4,83=3.0, p=0.02) such that the 

difference in PCI across groups was largest during backward walking and small turns. 

The two subcomponents of PCI, PφABS  and φCV, represent the temporal accuracy and 

consistency of steps, respectively (see Methods). Both subcomponents exhibited 

significant group and task effects similarly to PCI (PφABS: Group effect: F2,38=14.9, 

p<0.001, Task effect F2,71=44, p<0.001; φCV: Group effect F2,38=13.6, p<0.001, Task 

effect F2,87=95, p<0.001).   

A significant relationship was observed between freezing severity (total FOG-Q 

score) and global coordination of steps (mean PCI across all tasks- 'global PCI') such 

that higher FOG-Q scores were associated with higher global PCI (Spearman’s ρ=0.54, 

p=0.002, Figure 2.3). Additional analyses confirmed that PCI values for each walking 

task (forward, backward, large radius turns, and small radius turns) were each 

statistically significantly related to total FOG-Q score (0.37< Spearman’s ρ <0.46, 

0.009< p <0.04, data not shown). These correlations were shown to arise primarily from 

the PD+FOG group. When global PCI – FOG-Q correlation was run on PD-FOG and 
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PD+FOG groups separately, only the PD+FOG group showed a significant relationship 

(global PCI vs. FOG-Q for PD+FOG: Spearman’s ρ=0.85, p<0.001; for PD-FOG group: 

Spearman’s ρ=0.11, p=0.65).  

DISCUSSION  

Previous reports suggest spatial and temporal gait kinematics, including bilateral 

coordination of stepping, may be altered in individuals who experience freezing 

(Nieuwboer et al. 2001; Nieuwboer et al. 2004; Iansek et al. 2006; Nieuwboer et al. 

2007; Plotnik and Hausdorff 2008). To better understand the relationship between 

bilateral coordination and FOG, we measured coordination during turning and backward 

walking, gait tasks associated with freezing. Our three primary results showed that 1) 

PD+FOG had worse coordination than PD-FOG, 2) gait tasks related to FOG resulted in 

worse coordination than those that less commonly elicit FOG, and 3) a direct correlation 

was observed between severity of freezing and coordination, with worse coordination 

predicting more severe freezing symptoms. Together, these results provide additional 

support for a relationship between coordination of steps and FOG. 

It has been hypothesized that there may be a threshold for gait characteristics 

(including bilateral coordination of steps) which when crossed, triggers freezing of gait 

(Plotnik and Hausdorff 2008). This threshold may be modulated by numerous factors, 

including how much one attends to the gait task, environmental stressors (e.g., crowds, 

doorways), and the individual’s postural stability. In the current study, all groups 

exhibited worse coordination during tasks associated with FOG with respect to forward 

walking. Therefore, the higher PCI during turning and backward walking, particularly in 
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PD+FOG, may place one near this hypothetical FOG threshold, potentially contributing 

to the increased frequency of freezing during these tasks. In addition, correlation 

analyses showed individuals with PD who exhibit worse coordination experience more 

severe FOG. This relationship was strongest in the PD+FOG group and suggests the 

possibility that amongst those who freeze, coordination may modulate freezing severity. 

However, correlation results must be interpreted with caution, as only 31 individuals with 

PD (12 with PD+FOG), were analyzed. Future research with larger sample sizes is 

necessary to better understand this observation. 

The reason some tasks elicit worse coordination and frequent freezing is not well 

understood. It is possible that tasks such as turning pose an increased challenge to 

lower limb coordination with respect to forward walking, due in part to the inherent 

asymmetries of inner and outer legs during this task (Courtine and Schieppati 2003a; 

Courtine and Schieppati 2003b). This increased challenge to coordination posed by 

turning, along with the already diminished coordination of those with PD (Almeida et al. 

2002; Abe et al. 2003; Plotnik et al. 2007; Plotnik et al. 2008; Wu et al. 2010) may bring 

subjects closer to the hypothetical FOG threshold described above. Indeed, results from 

the current study show that the higher PCI during turns with respect to forward gait is 

more pronounced in those with PD than controls (as noted by the task by group 

interaction), suggesting that individuals with PD who are prone to freezing may have 

particular difficulty meeting the coordination challenges posed by turning. 

We also assessed coordination of steps during backward walking, a task without the 

inherent step length asymmetry of turning. Similarly to turning, coordination during 

backward walking was worse than forward walking.  Among all tasks presented in this 
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study, prolonged backward gait (i.e., ~10 m) is the most foreign to gait usually 

performed during daily living conditions.  It is therefore suggested that subjects had to 

invest attention and cognitive resources when confronted with this relatively unfamiliar 

task.  It is possible that the increased cognitive faculties required to spatially orient and 

plan backward gait may interfere with the autonomous activation of gait. Therefore, the 

relative novelty and complexity of this gait task may result in less automated gait and 

reduced bilateral coordination (Plotnik et al. 2009a).  

Results from a recent report show that freezers turn with a wider arc than non-

freezers (Willems et al. 2007). In addition, walking in large arc circles is a technique 

used in the clinic to improve turning in freezers (Morris 2006). In the current study, 

coordination of steps was significantly better during large turns than during small turns. 

The improved coordination during large radius turning with respect to small radius 

turning may, in part, drive the strategy observed in PD+FOG to walk in large radius 

circles while turning. This improvement in coordination could pull individuals further 

away from a FOG threshold (Plotnik and Hausdorff 2008) and may partially explain why 

large turns seem to reduce FOG during turning. 

Other factors have been shown to increase the prevalence of FOG. For example, 

if the individual is stressed, or distracted from the gait task as with dual tasking, freezing 

is more common (Camicioli et al. 1998). Other external stimuli such as transitions in 

flooring or doorways can pull attention from gait and elicit freezing (Almeida and Lebold 

2010; Cowie et al. 2010). Walking with split attention also results in worse coordination 

(Plotnik et al. 2009a), exemplifying a covariance of coordination and FOG. Gait 

initiation, like turning, may be considered an instance of high temporal asymmetry of 
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steps, needing a large degree of lower limb coordination to be completed effectively. 

The increased coordination needs during asymmetric tasks such as turning and gait 

initiation may be related to the high incidence of FOG during these tasks. These 

studies, in conjunction with results from the current investigation further support the 

relationship between bilateral coordination of steps and FOG.   

Conclusions 

Previous literature suggests that impaired coordination of steps during gait may 

be related to, or even on the causal pathway of FOG. The present study provides 

support for a relationship between these variables in three ways. Coordination of steps 

was 1) worse in those who experience freezing compared to those who do not, 2) worse 

during tasks associated with freezing, and 3) directly correlated to freezing severity.  

Impaired coordination of steps likely contributes to FOG.  



 

Figure 2.1:  Stepping phase (φ

PD+FOG) for different walking tasks.
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Stepping phase (φ) data of one subject from each group (control, PD

PD+FOG) for different walking tasks. 

) data of one subject from each group (control, PD-FOG, 

  



 

Figure 2.2:  Mean and SD of Phase coordination index (PCI) for PD+FOG, PD

and controls across gait tasks. Individual subject data plotted around mean of each 

group. Significant task (p<0.001) and group (p<0.001) effects were observed.
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Mean and SD of Phase coordination index (PCI) for PD+FOG, PD

and controls across gait tasks. Individual subject data plotted around mean of each 

group. Significant task (p<0.001) and group (p<0.001) effects were observed.

Mean and SD of Phase coordination index (PCI) for PD+FOG, PD-FOG, 

and controls across gait tasks. Individual subject data plotted around mean of each 

group. Significant task (p<0.001) and group (p<0.001) effects were observed. 

 



 

Figure 2.3:  Scatter plot of mean PCI across tasks (global PCI) and FOG

subjects with PD. PCI and FOG

p=0.002). 
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of mean PCI across tasks (global PCI) and FOG-

subjects with PD. PCI and FOG-Q were significantly correlated (r=0.54; r2

 

-Q for all 

2=0.29; 
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Table 2.1:  Subject characteristics; Mean (SD). 

 Control 
n=10 

PD-FOG 
n=19 

PD+FOG 
n=12 

p-value 

Age 69 (11) 71 (9) 72 (9) 0.75 
Yrs with PD - 6.6 (5.1) 8.0 (4.5) 0.44 
MDS-UPDRS-3 - 41.6 (6.4) 45.5 (15.2) 0.34 
Hoehn & Yahr Stage - 2.37 (0.40) 2.63 (0.83) 0.26 
FOG-Q Total score - 4.2 (3.9) 12.6 (4.1) <0.001 
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Table 2.2 : PCI, φCV, and PφABS for all subjects and across tasks.  

Forward Large Radius Turns Backward Small Radius Turns 

Con 
PD-
FOG PD+FOG Con 

PD-
FOG PD+FOG Con PD-FOG PD+FOG Con PD-FOG PD+FOG 

PCI* 4.3(1.3) 6.1(2.5) 7.3(2.5) 4.7(1.0) 6.8(2.2) 9.0(3.9) 7.3(2.7) 10.9(3.8) 13.9(3.9) 9.1(2.4) 13.5(3.5) 17.7(4.7) 

φCV* 2.0(0.5) 3.0(1.2) 3.7(1.2) 2.4(0.5) 3.4(1.2) 4.4(1.9) 3.7(1.1) 5.6(1.9) 6.4(1.4) 4.4(1.2) 6.5(1.8) 8.3(2.0) 

PφABS* 2.3(1.1) 3.2(1.4) 3.7(1.5) 2.3(0.8) 3.5(1.2) 4.6(2.2) 3.6(1.6) 5.3(2.1) 7.4(3.2) 4.7(1.5) 7.0(2.2) 9.4(2.2) 

* Significant group and task effects 
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ABSTRACT 

PURPOSE: The pathophysiology underlying gait dysfunction in those with 

Parkinson disease (PD) is not well understood. Motor imagery during functional 

magnetic resonance imaging (fMRI) is a commonly used technique to assess brain 

function during tasks, such as walking, that cannot be completed in a scanner. The goal 

of this study was to use gait imagery to assess the neural pathophysiology of 

locomotion in PD. 

METHODS: We used fMRI to measure blood oxygen level dependent (BOLD) 

signals while participants imagined simple (walking forward), and complex (backward, 

and turning in small (0.6m radius) circles to the left and right) gait tasks. BOLD 

responses were analyzed in five a-priori locomotor regions: supplementary motor area 

(SMA), globus pallidus (GP), putamen, mesencephalic locomotor region (MLR), and 

cerebellar locomotor region (CLR). To determine whether BOLD signals correlated with 

a functional measure of actual walking, we also measured overground walking velocity.  

RESULTS: In the SMA, complex gait imagery produced increased BOLD 

responses in those with PD compared to controls, whereas simple gait imagery did not. 

Across all tasks, PD exhibited reduced BOLD responses in the GP compared to 

controls. Finally, in those with PD, walking speed correlated with BOLD responses in 

several locomotor regions.  

CONCLUSIONS: These results further elucidate the changes in activity of 

locomotor regions during gait imagery tasks in PD and in controls and underscore the 

importance of testing simple and complex tasks. Further, we provide evidence 
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supporting a relationship between increased BOLD responses in locomotor regions and 

improved walking function. 
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INTRODUCTION 

People with Parkinson disease (PD) frequently have gait abnormalities impacting 

stride length (Morris et al. 1996), step frequency (Iansek et al. 2006), side-to-side step 

coordination (Plotnik et al. 2008), and variability (Hausdorff et al. 1998) of steps. In 

addition, complex gait tasks such as turning and backward walking exacerbate gait 

dysfunction, possibly due to the increased need for coordination and balance control 

(Schaafsma et al. 2003; Hackney and Earhart 2009; Spildooren et al. 2010; Peterson et 

al. 2012b). These gait difficulties lead to falls (Foreman et al. 2011) and reduce quality 

of life (Muslimovic et al. 2008).  Rational approaches to therapeutic interventions require 

a better understanding of the pathophysiology underlying these gait abnormalities. 

Motor imagery during functional magnetic resonance imaging (fMRI) is a 

commonly used technique which allows investigators to assess brain activity during 

whole-body motions, such as locomotion, which cannot be overtly implemented in the 

scanner. This approach relies heavily on the substantial overlap in supraspinal 

activation during imagined and overt movements (Jeannerod and Decety 1995; Porro et 

al. 1996; Deiber et al. 1998; Miyai et al. 2001) including walking (Miyai et al. 2001; la 

Fougere et al. 2010). Recent investigations have used gait imagery during fMRI to 

identify neural regions related to walking. The so-called “locomotor regions” identified 

via this method overlap with several locomotor centers in quadrupeds (Orlovsky 1969; 

Shik et al. 1969; Mori et al. 1999), and include the supplementary motor area (SMA), 

basal ganglia (BG), cerebellar locomotor region (CLR), and tegmental regions of the 

brainstem (including the mesencephalic locomotor region; MLR), among others (Jahn et 

al. 2008a; Jahn and Zwergal 2010).  
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Individuals with PD exhibit altered activation patterns and brain atrophy in many 

of these locomotor regions. For example, across a variety of motor and imagined tasks, 

pre-motor regions (i.e. SMA) (Hanakawa et al. 1999; Malouin et al. 2003; Snijders et al. 

2011), basal ganglia (Kish et al. 1988; Bruck et al. 2006; Prodoehl et al. 2010; Spraker 

et al. 2010), CLR (Hanakawa et al. 1999; Jahn et al. 2008b; Schweder et al. 2010; 

Cremers et al. 2012a), and MLR (Karachi et al. 2010; Snijders et al. 2011; Cremers et 

al. 2012a), have altered activity in people with PD relative to healthy older adults. 

Further, regions including the pedunculopontine nucleus (PPN), a subsection of the 

MLR, are atrophied in those with PD with respect to healthy older adults (Hirsch et al. 

1987). The overlap between brain regions associated with locomotion and altered 

activity in PD spurred several recent studies to investigate the neural control of gait in 

PD (Hanakawa et al. 1999; Snijders et al. 2011; Cremers et al. 2012a; Wai et al. 2012). 

Despite some inconsistent findings across studies, gait imagery in those with PD 

typically produces altered activation in several locomotor regions (i.e. SMA (Hanakawa 

et al. 1999), CLR (Hanakawa et al. 1999; Cremers et al. 2012a), and MLR (Cremers et 

al. 2012a)).  

Previous studies investigating supraspinal control of locomotion in those with PD 

have focused primarily on simple gait imagery tasks such as forward walking. However, 

assessments of BOLD signal during complex gait imagery may enhance differences 

between healthy adults and those with PD, providing additional insights into the neural 

dysfunction underlying PD gait abnormalities. Indeed, recent work in healthy adults 

suggests complex gait imagery may alter brain activation in regions which are 

dysfunctional in PD including the putamen and SMA (Wagner et al. 2008; Godde and 
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Voelcker-Rehage 2010). One study of imagery of gait initiation and stepping over 

obstacles reported that those with PD had altered BOLD responses in lateral pre-motor 

regions, pre-cuneus, and inferior parietal lobule (Wai et al. 2012). Although this report 

provided important insights into neural control of gait in PD, the authors acknowledged 

that they did not assess the ability of participants to imagine movements or imagery 

compliance during scans raising a question of task performance differences across 

groups. Further, people with PD have gait dysfunction with other complex gait tasks, 

such as turning and backward walking that remain to be investigated.  

Therefore, we used gait imagery during fMRI to investigate the neural 

components of gait dysfunction in PD during both simple and complex gait imagery 

tasks. In addition, we correlated regional BOLD signals to a measure of locomotor 

function, overground walking speed. We hypothesized that during imagery of complex 

gait tasks (turning, backward walking), those with PD would exhibit reduced BOLD 

signal in the SMA (Hanakawa et al. 1999; Snijders et al. 2011), BG (putamen and GP) 

(Prodoehl et al. 2010), and MLR (Cremers et al. 2012a), and increased BOLD signal in 

the CLR (Hanakawa et al. 1999; Palmer et al. 2010). Further, we expected BOLD signal 

in locomotor regions of interest to positively correlate with actual overground walking 

velocity. 

METHODS 

Participants 

Standard clinical criteria were used to diagnose idiopathic PD (Hughes et al. 

1992; Racette et al. 1999). All participants had to be free of lower limb injuries, not have 
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any contraindications for MRI, and demonstrate at least a moderate ability to imagine 

motor tasks. Specifically, participants were included if they averaged ≥ 3 on both the 

visual and kinesthetic components of the Kinesthetic Visual Imagery Questionnaire 

(KVIQ) (Malouin et al. 2007), representing at least “moderate” clarity and intensity of 

imagined movements. This imagery vividness threshold excluded nine controls and 

seven individuals with PD (no fMRI data were collected). Participants were excluded if 

they had any neurological problems other than PD or cognitive dysfunction (Mini Mental 

State Exam; MMSE < 27). Two of the PD group and two of the control group were left-

handed. After screening, fMRI data were collected from 27 control and 27 PD 

participants.  

All data collection, including the Movement Disorders society Unified Parkinson 

Disease Rating Scale motor sub-score (MDS-UPDRS-III) to measure motor severity of 

parkinsonism, was conducted after a 12-hour withdrawal of anti-Parkinson medication. 

All participants provided informed written consent prior to participation in accord with the 

procedures approved by the Human Research Protection Office of the Washington 

University School of Medicine and the Declaration of Helsinki. 

Procedure 

Gait training 

Participants were trained to complete five overground locomotor tasks: forward 

walking, backward walking, turning to the left in small radius (r=0.6m) circles, turning to 

the right in small radius circles, and standing quietly. Participants were instructed to 

walk at a natural, comfortable speed for each task. Each participant completed each 
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task at two different distances (4 and 8 meters for forward and backward gait, and 2 or 3 

revolutions for turning). The time necessary to complete each gait task was recorded. 

Training lasted approximately 20 minutes, in which participants completed each task a 

minimum of 2 times. Participants also practiced imagining each task. The Gait Imagery 

Questionnaire (GIQ) (Pickett et al. 2012) was also administered at this time to assess 

the kinesthetic and visual vividness of gait imagery. Participants were not given 

feedback on their actual overground gait times and were not coached to imagine 

walking faster or slower based on actual walking times. We used this approach because 

we wanted subjects to imagine walking at a self-selected pace and because coaching 

participants to alter imagery times based on actual walking times could have resulted in 

differences in gait imagery times between groups during fMRI. In addition, imagining 

walking faster than preferred can alter BOLD signal (Suzuki et al. 2004; Karachi et al. 

2010; Cremers et al. 2012b). 

Imaging 

MR was done with a Siemens 3T Magnetom TrioTim scanner. A T1-weighted 

sagittal, magnetization prepared rapid acquisition with gradient echo (MP-RAGE, 

TR=2400 ms, TI=1000 ms, TE=3.16 ms, FA=8°, 0.9mm 3, 8:09 min) scan was collected 

for identification of ROIs and T2* co-registration. We collected three T2*-weighted 

gradient echo multislice sequence scans (TR=2200ms, TE=3ms, 4.0 mm3 voxels, 

FA=90°, 9:45 min ). Thirty-six slices covering the whole brain and the cerebellum were 

collected. During imagery scans, participants completed four gait imagery tasks 

(forward walking, backward walking, turning to the left, and turning to the right) each 

separated by an 11 second rest period. Similar to the practice gait tasks outside the 
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scanner, participants imagined completing each gait task at two different distances (4 

and 8 meters for forward and backward gait, and 2 or 3 revolutions for turning), all at a 

natural, comfortable speed. Participant responses were logged using a custom made 

MRI compatible button box (Mag Design and Engineering, Redwood City, CA, USA) 

and a Matlab data logging interface.  Participants’ eyes were closed for all imagery 

tasks to improve the quality of the imagery. During rest periods, however, participants’ 

eyes were open and fixated on a crosshair to permit them to read the upcoming task. 

This baseline rest task imbedded in the scan with gait tasks allowed us to normalize 

beta weights within each participant (i.e. by subtracting the beta weight during rest from 

the beta weight during imagined walking; see Statistical Analysis) Subtracting rest beta 

weights from gait beta weights removes some inter-subject variability and decreases 

potential baseline differences across groups. Imagined standing was assessed in a 

separate scan following imagined walking. During this 4 minute scan, participants 

imagined standing quietly with eyes closed for 20 seconds, followed by an 11 second 

eyes-open rest period. Duration of imagery was controlled by a tactile cue indicating the 

end of the imagined stand bout.  

During the fMR scans, stimuli were projected onto a screen behind the head of 

the participant and were viewed via a mirror mounted on the head coil. Imagery and rest 

instructions were presented using E-Prime v1.0 (Psychology Software Tools, Inc, 

Sharpsburg, PA). Following imagery cues, participants closed their eyes and pressed a 

button to denote the beginning of gait imagery. At the end of imagery tasks, participants 

again pressed a button and opened their eyes. Timing of each button press was 

recorded and used for post hoc assessment of imagery times. During imagery, 
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participants were instructed to imagine in a first person perspective, and not to count 

steps. All participants were monitored via an eye tracker to ensure eyes were open and 

closed during the appropriate times during all imagery tasks.  

 

fMRI analysis 

FMR pre-processing 

Functional data were preprocessed using Brain Voyager (v. 2.4.0.2000, 32-bit). 

3D motion correction was completed via sinc-interpolation. 3D motion for each volume 

was included in the general linear model (see Statistical Analysis). Slice scanning time 

differences were corrected by sinc interpolation, and data were high pass filtered (the 

lowest two cycles were removed). Functional scans were then coregistered (i.e. 

spatially aligned) to participant-specific T1-weighted images which were normalized to 

Talairach space (Talairach and Tournoux 1998) 

Task conditions were modeled with an event related design and convolved with 

the canonical hemodynamic response function, which accounts for the delayed cerebral 

blood oxygenation and flow changes following neuronal activity. The first two volumes 

from each scan were excluded to achieve steady-state MRI signal. Any scan in which 

more than 2mm or 2° of motion in any direction was detected was not included in the 

analysis. The average maximum motion during scans and standard deviation of motion 

during scans were not different between the two groups (maximum motion measured in 

mm or degree: PD: 1.17 (0.46), control: 1.06 (0.41), p=0.28; standard deviation of 

motion: PD: 0.31 (0.16), control: 0.27 (0.13), p=0.34, independent samples t-tests).  
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ROI analysis 

We chose to analyze BOLD signal only within a-priori regions of interest (ROIs). 

This approach was used for two reasons. First, participant-specific identification of 

regions provides a more precise picture of regional activity than typical full-brain 

analyses due to the structural variance of brain regions across individuals. This is 

particularly true when comparing across healthy and PD groups, as those with PD have 

been shown to exhibit alterations of brain volume compared to healthy older adults 

(Kostic et al. 2012). Second, the hypothesis driven a-priori specified regions limits the 

need for multiple comparison correction.  

Therefore, nine ROIs (bilateral supplementary motor area [SMA], bilateral 

putamen, bilateral globus pallidus [GP], bilateral mesencephalic locomotor region 

[MLR], and cerebellar locomotor region [CLR] were included in the analysis. These 

regions were chosen due to their link to human locomotion (Jahn et al. 2008a; Jahn and 

Zwergal 2010) and dysfunction in those with PD (Kish et al. 1988; Hanakawa et al. 

1999; Malouin et al. 2003; Bruck et al. 2006; Karachi et al. 2010; Prodoehl et al. 2010; 

Schweder et al. 2010; Spraker et al. 2010; Snijders et al. 2011; Cremers et al. 2012a). 

Since our tasks of interest involved imagined movements, primary motor cortex was not 

included as a ROI, as this area does not typically responded to imagined motor tasks 

(de Lange et al. 2005; Bakker et al. 2008; Cremers et al. 2012b). The ROIs were 

identified manually for each participant on a high resolution MP-RAGE image warped to 

Talairach space. One experienced operator, blinded to BOLD activation results, 

identified all ROIs. The SMA was identified as the midline grey matter dorsal to the 

cingulate sulcus. The rostral and caudal boundaries of the SMA were lines through the 



60 

 

anterior commissure (AC), posterior commissure (PC), respectively, perpendicular to 

the AC-PC plane (Immisch et al. 2001). Globus pallidus and putamen were identified 

using standard human atlases (DeArmond et al. 1989; Woosley et al. 2008). The MLR 

was identified as a 54-voxel region of the brainstem lateral to the cerebellar peduncle 

decussation and medial lemniscus, and includes approximately the cuneate, 

subcuneate and pedunculopontine nuclei (Pahapill and Lozano 2000; Karimi et al. 

2008). The CLR was identified as a 72-voxel region of the midline white matter of the 

cerebellum, approximately anterior to the fastigial nuclei (Mori et al. 1999). Although this 

definition was created for the cat, no other clear definition has been proposed for the 

CLR in humans. In addition, this approximate region has been shown specifically to be 

active during locomotion in previous gait imagery experiments in humans (Jahn et al. 

2008b). Each region was identified bilaterally except for the CLR since it lies along the 

midline. Examples of each ROI are shown in Figure 3.1.  

 

Statistical analyses 

Behavioral measures 

A 3-way repeated measures ANOVA (task, length, group) was run on actual and 

imagined gait times to investigate changes in imagery times across gait tasks in PD and 

control.  

fMRI measures 

We constructed a general linear model (GLM) for the imagined gait BOLD data to 

determine beta weight changes associated with 5 tasks (rest, forward, backward, 
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turning left, and turning right) incorporating 6-dimensional (translation: x,y,z; and 

rotation: θ,φ,ψ) head motion. Similarly, we calculated beta weights for imagined stand 

and rest for the imagined stand scan. Tactile cues used to indicate the end of imagined 

stand bouts were also modeled in the “stand” GLM to account for any changes in BOLD 

signal due to the cueing procedure. These GLMs were run separately for each ROI. 

Each ROI therefore had one beta weight for each task, which represents the average 

change in BOLD signal associated with each task across the whole region of interest. 

As each beta weight represents the average change in BOLD signal for all voxels within 

the ROI, no multiple corrections were applied.  

To determine whether BOLD signal was higher (for either group) during gait 

tasks compared to stand, paired sample two-sided t-tests were run to compare 

imagined gait (beta weights combined over all imagined gait tasks) to imagined stand 

for each ROI and for each group.  

To investigate differences across groups and across tasks, beta weights during 

imagined stand were subtracted from those of each imagined gait task. Then, two-way 

mixed model ANCOVAs assessing group (PD, Con), task (forward, backward, turning), 

and group by task interaction were run on these stand-corrected beta weights for each 

ROI.  Average gait imagery times were included in the ANCOVA as a covariate to 

account for the possible confound of altered behavior across groups. 

Correlations between actual overground walking speed and BOLD signal during 

gait imagery within each ROI were conducted using Spearman’s Rho correlation 

statistics.  

RESULTS 
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Participants 

 Data from 15 participants (7 controls and 8 PD) were excluded. Six excluded 

controls were removed due to head motion over two millimeters of translation or two 

degrees of rotation. Following analysis, one control was excluded because beta weights 

from over 50% of our a-priori regions of interest were >2 standard deviations different 

than the mean of the group. Six PD participants also were excluded due to head 

movement over 2mm or 2°, one individual later repor ted prior head trauma, and one 

individual had poor imagery performance. Thus, 19 individuals with PD and 20 healthy 

older adults were included for analysis. Among these included participants, healthy and 

PD groups had similar age, handedness, KVIQ, and GIQ scores (Table 3.1). Average 

score on the MDS-UPDRS part III for those with PD was 31.2. 

Behavioral 

As expected, actual gait times showed a length effect (longer gait tasks took 

longer than short tasks; F3,25=577; p<0.001) and a group effect (PD took longer than 

controls; F1,37=19; p<0.001). Imagined walking times (in the scanner), showed a length 

effect, such that when participants were prompted to imagine longer distances, gait 

imagery times increased (F1,36=197.7; p<0.001). There was no group effect of imagery 

times (Figure 3.2). Gait imagery times in the scanner were longer than the actual 

overground gait times outside of the scanner (p=0.001, paired sample t-test, all 

participants). Imagery times were, however, positively correlated to actual gait times 

(ρ=0.473; p=0.003; Figure 3.3). 

fMRI results (ANCOVA) 
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Across all participants, there was no significant difference in regional BOLD 

responses when turning left or turning right (paired sample t-tests between turning left 

and turning right > 0.05 for each ROI). Therefore, turns to the left and right were 

collapsed for all subsequent analyses.  

Gait imagery, compared to imagined standing, produced significant increases in 

BOLD signal from nearly all locomotor regions of interest (See Table 3.2: Gait vs. Stand 

columns). In addition, there were main effects for the right SMA and the left GP. 

Specifically, within the right SMA, there was a main effect of task (F2,72=3.6, p=0.031) 

and a group by task interaction (F2,72=3.33, p=0.042). This interaction indicates that 

turning produced a more pronounced effect on BOLD signal in those with PD than 

controls (Table 3.2, Figure 3.4a). Post-hoc paired sample t-tests in those with PD 

demonstrated that beta weights during turning were larger than forward or backward 

imagined walking in the SMA (Figure 3.4a&c). Those with PD exhibited significantly 

smaller beta weights (across all tasks) in left GP than healthy older adults (group effect: 

F1,36=12.79, p=0.001).  

fMRI results (Correlations)  

Beta weights during imagined walking correlated with actual overground walking 

velocity for those with PD, but not for healthy older adults (Table 3.3, Figure 3.5).  

Larger beta weights for several regions (SMA, putamen, GP, and MLR) positively 

correlated with faster gait velocity (Table 3.3).  

DISCUSSION 
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We assessed the change in BOLD signal within brain regions associated with 

locomotion in healthy older adults and those with PD during complex gait imagery tasks. 

Three main findings of this work are: 1) PD exhibited significant BOLD responses in 

SMA during imagined turning while controls did not, 2) across gait tasks, PD exhibited 

reduced BOLD responses in left GP than controls, and 3) actual overground walking 

speed correlated with BOLD responses during imagined walking in several locomotor 

regions in PD and not in controls. 

Brain Activity during Complex Gait Imagery in PD 

We chose to enhance the motor behavioral deficits in PD compared to controls 

by increasing the difficulty of the gait task with imagined backward walking and turning. 

This strategy should magnify changes in brain BOLD responses. In support of this 

strategy, imagined forward walking revealed no differences in SMA responses across 

groups, whereas imagined turning yielded significant BOLD responses in PD but not 

healthy controls. Interestingly these  BOLD responses contrast with some previous 

studies reporting reduced SMA activity in PD during actual motor tasks (Playford et al. 

1992; Jahanshahi et al. 1995; Hanakawa et al. 1999; Prodoehl et al. 2010; Wu et al. 

2010). However, imagined movements elicited variable group differences in SMA 

activity in different studies (Snijders et al. 2011; Cremers et al. 2012a; Wai et al. 2012). 

For example, Snijders and colleagues reported reduced SMA activity during motor 

imagery only for individuals who experience freezing with respect to non-freezers 

(Snijders et al. 2011). Further, two additional gait imagery studies in those with PD 

showed no differences in SMA activity with respect to controls (Cremers et al. 2012a; 

Wai et al. 2012). Indeed, in the current study imagined forward walking produced similar 
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levels of SMA BOLD responses between PD and controls. However, during complex 

gait imagery PD had higher SMA BOLD responses. Actual turning typically causes more 

pronounced gait dysfunction in those with PD than forward walking, possibly due to the 

higher bilateral coordination necessary to complete the task (Schaafsma et al. 2003; 

Peterson et al. 2012b). Therefore, the larger increase in SMA signal during turning 

imagery in PD (but not in controls) may indicate that people with PD require more 

activation in this region to plan and coordinate complex gait tasks, while controls do not. 

The positive correlation between SMA BOLD response and actual overground walking 

velocity suggests that the increase in BOLD signal during complex gait tasks may be 

compensatory in nature. Alternatively, it is possible that this is a pathological adaptation, 

as those with PD exhibit worse gait function during complex gait tasks and exhibit 

elevated SMA activity while healthy controls do not. Regardless, this result underscores 

the importance of including both simple and complex tasks as a tool to examine 

potential neural alterations in those with PD.  

Interestingly, backwards walking did not increase BOLD responses relative to 

forward walking for any ROI in either group. This surprising result contrasts with a 

previous study that suggested backward walking may elicit larger BOLD responses in 

the putamen (Godde and Voelcker-Rehage 2010). Gait imagery may not permit 

capturing certain aspects of complex gait tasks. For example, backwards walking is 

typically more difficult for those with PD (Hackney and Earhart 2009) possibly due to 

more pronounced postural instability in that direction (Horak et al. 2005). However, with 

gait imagery, deficiency in balance and weight-shifting are likely less apparent. 

Therefore, part of the difference in difficulty across gait tasks (i.e. balance requirements) 
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may not be fully captured by gait imagery paradigms, yielding non-significant changes 

across tasks in the current study. Alternatively, turning (both actual and imagined) 

necessitates altered foot placement and coordination of steps, possibly increasing 

BOLD signal in the SMA of those with PD. Another possible explanation for the lack of 

difference across gait imagery tasks is the imagery speed of different tasks. Imagery 

speeds were considerably slower for backward walking and turning than forward. 

Therefore, one may predict smaller signal in locomotor regions during backward walking 

and turning. However, all gait tasks in the current study were imagined walking at 

comfortable speeds. Previous investigations demonstrating alterations in neural signal 

at different walking speeds (Jahn et al. 2004; Karachi et al. 2010; Cremers et al. 2012b) 

note differences when subjects deviated from “preferred” (i.e. brisk walking vs. 

preferred).  

Brain Activity during All Gait Imagery in PD 

Few studies have investigated the neural activity of locomotion in those with PD. 

Though results from these investigations vary, data from the current study match fairly 

well with previous results. For example, Cremers et al. 2012 found that during imagined 

locomotion, both PD and control participants exhibited increased BOLD signal in pre-

motor regions, with control participants also showing higher BOLD in several locomotor 

regions, including the GP, MLR, and cerebellum. We also observed increased BOLD 

responses in several of these locomotor regions, albeit with greater consistency in PD 

participants than in this previous study (Cremers et al. 2012a). Across groups, Cremers 

and colleagues observed PD to exhibit reduced BOLD signal in midline cerebellar and 

MLR regions, among others. In the current study, we also noted a decrease in BOLD in 
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those with PD in the CLR with respect to control participants, though this difference did 

not reach statistical significance.  

Previous studies on gait imagery have been mixed with respect to MLR 

activation, showing increases (Snijders et al. 2011), decreases (Karachi et al. 2010; 

Cremers et al. 2012a), and no change (Wai et al. 2012) across healthy and PD. This 

variability may be due to differences in protocol, however they may also be due to the 

vast heterogeneity of symptoms of those with PD. A novel finding of the current study is 

the significant reduction in BOLD signal during imagined gait in the left GP in those with 

PD with respect to controls. This result is not surprising considering the critical role that 

GP plays in motor control through cortico-basal ganglia-thalamic circuits known to be 

disrupted in those with PD (Prodoehl et al. 2010). The classical model of basal ganglia 

dysfunction in PD involves altered activity of several regions, including the GP, resulting 

in increased inhibition of the thalamus (Wichmann and DeLong 1996). This thalamic 

inhibition results in decreased facilitation of cortical motor areas, bradykinesia and 

hypokinetic movements. During walking, this typically manifests as reduced walking 

velocity and small steps. Though we did not observe group differences during imagined 

walking in the putamen, the activity in GP was altered, possibly contributing to 

overground gait dysfunction. Indeed, overground walking velocity was lower in PD than 

controls. The reason for a reduction in the left GP, but not the right GP is unclear, 

although it seems to be driven to some degree by the bilateral differences observed in 

both controls and PD. Within those with PD, we observed significantly lower activity in 

the left GP than the right, and within controls, we observed higher activity in the left GP 

with respect to the right, though this difference did not reach significance. One previous 



68 

 

investigation also noted increased BOLD signal in the left pallidum (but not the right) for 

healthy adults during imagined walking (Cremers et al. 2012b) however the bilateral 

changes in PD have not previously been reported. Structural asymmetries in bilateral 

GP regions may have contributed to the asymmetric across group differences in the 

current study. Previous investigations show the left globus pallidus may be larger 

(Kooistra and Heilman 1988) and contain more dopamine (Glick et al. 1982) than the 

right in healthy adults. This is in conjunction with our the fact that, in controls, there was 

more activity in the left GP than the right GP. Therefore, it is possible that the left GP 

may play a larger role in normal gait imagery than the right GP. If true, dysfunction in 

the left GP in people with PD (as seen in the current study) could result in more 

pronounced disruption of overground walking than dysfunction in the right GP.  

It is unlikely that this difference is due to motor asymmetries in our population. 

Post-hoc analyses showed that GP activity during imagined gait in those with greater 

right side signs (based on unilateral components of the MDS-UPDRS-III) was not 

different from those who had greater involvement of the left side. This was true both in 

the left and right GP. The bilateral difference was also not due to the inclusion of 4 left-

handed individuals (2 PD and 2 control), as removal of these individuals did not alter the 

result. 

Correlation to Overground Gait Speed 

One goal of this study was to identify whether correlations exist between BOLD 

signals within locomotor regions and actual gait and balance function. We chose to 

correlate BOLD signal during imagined gait tasks to actual overground walking speed 
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because walking speed may reflect global gait and balance function (Fritz and Lusardi 

2009), and reduction in gait speed may relate to negative outcomes including falls 

(Verghese et al. 2009) quality of life (Schmid et al. 2007), and mortality (Studenski et al. 

2011).  

Average walking positively correlated with BOLD response magnitude in several 

locomotor brain regions only in the PD group and not in the controls. Though the 

strength of correlations varied across regions, all these regional BOLD responses 

directly correlated with walking speed. These results suggest that higher BOLD 

responses predict faster walking speeds (better clinical outcome) for individuals with 

PD. Prodoehl and colleagues found similar results in upper limb motor function, showing 

less BOLD signal in PD with respect to controls during finger tapping, and indirect 

relationships between BOLD signal and disease severity in numerous regions (Prodoehl 

et al. 2010). These results together suggest that reductions in BOLD signal in locomotor 

regions (including basal ganglia) may be pathological in those with PD. The group 

differences in GP BOLD signal in the current study further supports this notion. The 

significant negative relationship between GP BOLD signal and walking speed, along 

with the reduced GP BOLD signal in PD compared to control participants, suggests the 

possibility that reduction of activity in this region is pathological.  

Gait Imagery 

Few current methods permit investigation of the neural circuitry underlying gross 

motor control such as locomotion and even fewer allow collection of these data with 

high spatial and temporal resolution. fMRI BOLD measures during gait imagery provides 
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a reasonable experimental paradigm. This technique, which relies upon the large 

degree of overlap between actual and imagined movements (Jeannerod and Decety 

1995; la Fougere et al. 2010), permits investigation of the brain activity associated with 

locomotion (Malouin et al. 2003; Jahn and Zwergal 2010; Snijders et al. 2011; Zwergal 

et al. 2012). There are several benefits to this type of data collection. First, compared to 

other cortical and subcortical brain imaging techniques used in humans, fMRI provides 

relatively high spatial (~2-4mm) and temporal (~2 sec) resolution. Second, imagery of 

gait allows individuals to imagine movements similarly across groups, thereby 

minimizing the potential performance confound associated with other task-based BOLD 

measurements. This is particularly important when investigating those with reduced 

overground gait speed, as alterations in speed of movement can significantly affect 

BOLD signal (Jahn et al. 2004; Suzuki et al. 2004; Karachi et al. 2010; Cremers et al. 

2012b). Finally, with this paradigm, it is possible to differentiate descending neural 

signals from proprioceptive signals or the integration of proprioceptive information into 

motor plans, which may be altered in those with PD (Almeida et al. 2005).  

An important limitation with gait imagery is the difficulty in assessing participants’ 

adherence to gait imagery tasks during scans. We took several steps to address this 

concern. First, we screened all participants for their ability to imagine movements, and 

ability to imagine both single limb (KVIQ) and whole body (GIQ) movements were 

similar across groups. Second, gait imagery times reflected the distance participants 

were asked to imagine, suggesting individuals adhered to the gait tasks while in the 

scanner. These results, along with previous reports showing the overlap between 

imagined and executed movements (including gait (la Fougere et al. 2010)), provide 
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support that the BOLD signal observed during imagined gait in the current study relates 

to actual locomotion.  

Limitations 

Several limitations of the current study are noted. First, the speed at which 

individuals imagine gait tasks can alter neural activity (Suzuki et al. 2004; Jahn et al. 

2008b; Karachi et al. 2010; Cremers et al. 2012b). In the current study, there were no 

differences in time to imagine during scans, however, due to the importance of 

accounting for differences in behavior during scans, we incorporated the average 

imagined gait time for each participant into our statistical analysis. Second, fast walking 

may produce larger BOLD responses, potentially explaining, in part, the observed 

relationship between walking speed and amplitude of BOLD response. However, post 

hoc analysis showed that no correlation between imagined walking speed and BOLD 

signal in any region which showed an actual walking / BOLD correlation. Further, actual 

walking time did not significantly correlate with BOLD signal in healthy older adults. 

Therefore, we think that the correlations between actual overground walking speed and 

BOLD signal during gait imagery in those with PD represent a true relationship between 

walking ability and BOLD signal within locomotor regions. Third, those with PD may not 

be able to imagine gait tasks while in the “Off” medication state. However, recent 

evidence suggests that anti-Parkinson medication state does not significantly affect 

ability to imagine movements, and further, those with PD (both “On” and “Off” anti-

Parkinson medication) have similar imagery ability to healthy older adults (Peterson et 

al. 2012a). Finally, although head motion while in the scanner was similar across 

groups, those with PD may have more motion of extremities (i.e. tremor) than healthy 
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older adults. We were unable to capture electromyography in this investigation, however 

we directly visualized all participants, and no participants exhibited tremor while in the 

scanner. Still, some muscular activity may not cause visually apparent motion and could 

potentially confound our results.  

Conclusion 

Novel findings of this study include: 1) in the SMA, complex gait imagery 

produced greater BOLD responses in those with PD than controls, 2) PD exhibited 

reduced BOLD signal in GP with respect to controls, and 3) in those with PD, walking 

speed was related to BOLD signal in several locomotor regions. These results suggest 

that: 1) people with PD may require more activity in the supplementary motor area than 

controls to complete complex gait tasks, and this increase may be compensatory in 

nature; 2) gait dysfunction in people with PD (i.e. reduced gait velocity) may be related 

to altered function of the GP; and 3) elevated BOLD signal in locomotor regions may 

predict improved gait function.  Together, these results further elucidate the changes in 

activity of locomotor regions during gait imagery tasks in PD and in controls, and 

provide evidence supporting a relationship between increased BOLD signal in 

locomotor regions and improved walking function. 



 

Figure 3.1: Regions of interest. Regions we

based on standard definitions (See Methods). Shown are examples of regions defined 
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Regions of interest. Regions were identified for each individual separately 

based on standard definitions (See Methods). Shown are examples of regions defined 

for four subjects: supplementary motor area (a), putamen (blue) and globus pallidus

locomotor region (c), and mesencephalic locomotor region (d). 
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Figure 3.2: Imagined walking times for PD and

fMRI scans. Both ‘short’ and ‘long’ tasks are shown for each group. 

significantly more time to complete than short tasks (denoted by *, F

p<0.001). Differences between PD and control subjects did not reach significance. Error 

bars represent standard deviation.
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Imagined walking times for PD and healthy old (Con) participants during 

fMRI scans. Both ‘short’ and ‘long’ tasks are shown for each group. Long tasks took 

significantly more time to complete than short tasks (denoted by *, F1,36=197.7; 

p<0.001). Differences between PD and control subjects did not reach significance. Error 

bars represent standard deviation. 

participants during 

Long tasks took 

=197.7; 

p<0.001). Differences between PD and control subjects did not reach significance. Error 
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Figure 3.3: Correlation between actual and imagined walking times (all subjects). 

Spearman’s Rho and p-value reported. 
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Figure 3.4: Beta weights during imagined walking (with respect to stand) for the right 

SMA (a), and left GP (b). Data in panel (c) shows the difference in beta weights for each 

group across imagined gait tasks (i.e. the difference between backward and forward 

imagery) in the right SMA. *Repeated Measures ANCOVA; &Paired sample t-test, 

turning vs. backward in those with PD; $Paired sample t-test, turning vs. forward in 

those with PD. Error bars represent standard error of the mean. 
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Figure 3.5:  Significant correlations between beta weights and overground walking 

speed observed in those with PD. a) right SMA, b) left SMA, c) left putamen d) right GP 

e) left GP, and f) right MLR. 
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Table 3.1: Subject Characteristics  
 
 Healthy Old  PD  
N  20 (6m) 19 (11m)  
Age (yrs)  66.6 (7.6) 64.9 (7.6) p=0.51 

MDS-UPDRS-III#  -- 31.2 (10.0) 
 

KVIQ*  80.6 (11.1) 78.0 (12.4) p=0.49 
GIQ*  31.0 (3.8) 28.8 (4.7) p=0.12 
#Movement Disorders Society Unified Parkinson’s Disease Rating Scale (part III) 
*KVIQ: Kinesthetic Visual Imagery Questionnaire (maximum score = 100); GIQ: Gait 
Imagery Questionnaire (maximum score=40) 
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Table 3.2 : ANCOVA results for all regions of interest. P-values shown.  

 ANCOVA Main Effects Gait vs. Stand (paired 
sample t-test) 

ROI Group Task 
Group by 

Task 
interaction  

Control PD 

Right SMA 0.668 0.031 0.042 0.012 0.002 

Left SMA 0.907 0.093 0.050 0.011 0.001 

Right PUT 0.768 0.690 0.610 0.019 0.009 

Left PUT 0.536 0.169 0.774 0.012 0.002 

Right GP 0.616 0.870 0.556 0.001 0.001 

Left GP 0.001 0.973 0.572 0.000 0.053 

Right MLR 0.842 0.986 0.819 0.001 0.038 

Left MLR 0.869 0.290 0.100 0.02 0.000 

CLR 0.085 0.925 0.189 0.000 0.012 
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Table 3.3 : P-values (Spearman’s ρ) of all correlations between beta weights during 

imagined gait (averaged across all gait imagery tasks) and actual overground walking 

velocity (m/s; averaged across all gait tasks). 

  SMA R  SMA L PUT R PUT L GP R GP L MLR R  MLR L CLR 

Gait beta 
weight vs. 

actual  
walking 
velocity 

Control 
p(ρ) 

0.56 
(-0.14) 

0.30 
(-0.24) 

0.47 
(-0.17) 

0.31 
(-0.24) 

0.65 
(-0.11) 

0.18 
(-0.30) 

0.40 
(-0.20) 

0.83 
(-0.05) 

0.05 
(-0.43) 

PD 
p(ρ) 

0.004 
(0.63) 

0.02 
(0.55) 

0.06 
(-044) 

0.04 
(0.47) 

0.049 
(0.46) 

0.03 
(0.51) 

0.048 
(0.46) 

0.65 
(0.11) 

0.25 
(0.28) 

 



81 

 

REFERENCES CITED 

Almeida QJ, Frank JS, Roy EA, Jenkins ME, Spaulding S, Patla AE, Jog MS (2005) An 
evaluation of sensorimotor integration during locomotion toward a target in 
Parkinson's disease. Neuroscience 134: 283-293 

Bakker M, De Lange FP, Helmich RC, Scheeringa R, Bloem BR, Toni I (2008) Cerebral 
correlates of motor imagery of normal and precision gait. Neuroimage 41: 998-
1010 

Bruck A, Aalto S, Nurmi E, Vahlberg T, Bergman J, Rinne JO (2006) Striatal 
subregional 6-[18F]fluoro-L-dopa uptake in early Parkinson's disease: a two-year 
follow-up study. Mov Disord 21: 958-963 

Cremers J, D'Ostilio K, Stamatakis J, Delvaux V, Garraux G (2012a) Brain activation 
pattern related to gait disturbances in Parkinson's disease. Mov Disord  

Cremers J, Dessoullieres A, Garraux G (2012b) Hemispheric specialization during 
mental imagery of brisk walking. Hum Brain Mapp 33: 873-882 

de Lange FP, Hagoort P, Toni I (2005) Neural topography and content of movement 
representations. J Cogn Neurosci 17: 97-112 

DeArmond S, Fusco M, Maynard M (1989) Structure of the Human Brain: A 
Photographic Atlas. Oxford University Press, New York 

Deiber MP, Ibanez V, Honda M, Sadato N, Raman R, Hallett M (1998) Cerebral 
processes related to visuomotor imagery and generation of simple finger 
movements studied with positron emission tomography. Neuroimage 7: 73-85 

Foreman KB, Addison O, Kim HS, Dibble LE (2011) Testing balance and fall risk in 
persons with Parkinson disease, an argument for ecologically valid testing. 
Parkinsonism Relat Disord 17: 166-171 

Fritz S, Lusardi M (2009) White paper: "walking speed: the sixth vital sign". J Geriatr 
Phys Ther 32: 46-49 

Glick SD, Ross DA, Hough LB (1982) Lateral asymmetry of neurotransmitters in human 
brain. Brain Res 234: 53-63 

Godde B, Voelcker-Rehage C (2010) More automation and less cognitive control of 
imagined walking movements in high- versus low-fit older adults. Front Aging 
Neurosci 2 

Hackney ME, Earhart GM (2009) Backward walking in Parkinson's disease. Mov Disord 
24: 218-223 

Hanakawa T, Katsumi Y, Fukuyama H, Honda M, Hayashi T, Kimura J, Shibasaki H 
(1999) Mechanisms underlying gait disturbance in Parkinson's disease: a single 
photon emission computed tomography study. Brain 122 ( Pt 7): 1271-1282 

Hausdorff JM, Cudkowicz ME, Firtion R, Wei JY, Goldberger AL (1998) Gait variability 
and basal ganglia disorders: stride-to-stride variations of gait cycle timing in 
Parkinson's disease and Huntington's disease. Mov Disord 13: 428-437 



82 

 

Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F (1987) Neuronal loss in the 
pedunculopontine tegmental nucleus in Parkinson disease and in progressive 
supranuclear palsy. Proc Natl Acad Sci U S A 84: 5976-5980 

Horak FB, Dimitrova D, Nutt JG (2005) Direction-specific postural instability in subjects 
with Parkinson's disease. Exp Neurol 193: 504-521 

Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of 
idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J 
Neurol Neurosurg Psychiatry 55: 181-184 

Iansek R, Huxham F, McGinley J (2006) The sequence effect and gait festination in 
Parkinson disease: contributors to freezing of gait? Mov Disord 21: 1419-1424 

Immisch I, Waldvogel D, van Gelderen P, Hallett M (2001) The role of the medial wall 
and its anatomical variations for bimanual antiphase and in-phase movements. 
Neuroimage 14: 674-684 

Jahanshahi M, Jenkins IH, Brown RG, Marsden CD, Passingham RE, Brooks DJ (1995) 
Self-initiated versus externally triggered movements. I. An investigation using 
measurement of regional cerebral blood flow with PET and movement-related 
potentials in normal and Parkinson's disease subjects. Brain 118 ( Pt 4): 913-933 

Jahn K, Deutschlander A, Stephan T, Kalla R, Hufner K, Wagner J, Strupp M, Brandt T 
(2008a) Supraspinal locomotor control in quadrupeds and humans. Prog Brain 
Res 171: 353-362 

Jahn K, Deutschlander A, Stephan T, Kalla R, Wiesmann M, Strupp M, Brandt T 
(2008b) Imaging human supraspinal locomotor centers in brainstem and 
cerebellum. Neuroimage 39: 786-792 

Jahn K, Deutschlander A, Stephan T, Strupp M, Wiesmann M, Brandt T (2004) Brain 
activation patterns during imagined stance and locomotion in functional magnetic 
resonance imaging. Neuroimage 22: 1722-1731 

Jahn K, Zwergal A (2010) Imaging supraspinal locomotor control in balance disorders. 
Restor Neurol Neurosci 28: 105-114 

Jeannerod M, Decety J (1995) Mental motor imagery: a window into the 
representational stages of action. Curr Opin Neurobiol 5: 727-732 

Karachi C, Grabli D, Bernard FA, Tande D, Wattiez N, Belaid H, Bardinet E, Prigent A, 
Nothacker HP, Hunot S, Hartmann A, Lehericy S, Hirsch EC, Francois C (2010) 
Cholinergic mesencephalic neurons are involved in gait and postural disorders in 
Parkinson disease. J Clin Invest 120: 2745-2754 

Karimi M, Golchin N, Tabbal SD, Hershey T, Videen TO, Wu J, Usche JW, Revilla FJ, 
Hartlein JM, Wernle AR, Mink JW, Perlmutter JS (2008) Subthalamic nucleus 
stimulation-induced regional blood flow responses correlate with improvement of 
motor signs in Parkinson disease. Brain 131: 2710-2719 



83 

 

Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the 
striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and 
clinical implications. N Engl J Med 318: 876-880 

Kooistra CA, Heilman KM (1988) Motor dominance and lateral asymmetry of the globus 
pallidus. Neurology 38: 388-390 

Kostic VS, Agosta F, Pievani M, Stefanova E, Jecmenica-Lukic M, Scarale A, Spica V, 
Filippi M (2012) Pattern of brain tissue loss associated with freezing of gait in 
Parkinson disease. Neurology 78: 409-416 

la Fougere C, Zwergal A, Rominger A, Forster S, Fesl G, Dieterich M, Brandt T, Strupp 
M, Bartenstein P, Jahn K (2010) Real versus imagined locomotion: a [18F]-FDG 
PET-fMRI comparison. Neuroimage 50: 1589-1598 

Malouin F, Richards CL, Jackson PL, Dumas F, Doyon J (2003) Brain activations during 
motor imagery of locomotor-related tasks: a PET study. Hum Brain Mapp 19: 47-
62 

Malouin F, Richards CL, Jackson PL, Lafleur MF, Durand A, Doyon J (2007) The 
Kinesthetic and Visual Imagery Questionnaire (KVIQ) for assessing motor 
imagery in persons with physical disabilities: a reliability and construct validity 
study. J Neurol Phys Ther 31: 20-29 

Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, Tsunazawa Y, Suzuki T, Yanagida 
T, Kubota K (2001) Cortical mapping of gait in humans: a near-infrared 
spectroscopic topography study. Neuroimage 14: 1186-1192 

Mori S, Matsui T, Kuze B, Asanome M, Nakajima K, Matsuyama K (1999) Stimulation of 
a restricted region in the midline cerebellar white matter evokes coordinated 
quadrupedal locomotion in the decerebrate cat. J Neurophysiol 82: 290-300 

Morris ME, Iansek R, Matyas TA, Summers JJ (1996) Stride length regulation in 
Parkinson's disease. Normalization strategies and underlying mechanisms. Brain 
119 ( Pt 2): 551-568 

Muslimovic D, Post B, Speelman JD, Schmand B, de Haan RJ (2008) Determinants of 
disability and quality of life in mild to moderate Parkinson disease. Neurology 70: 
2241-2247 

Orlovsky GN (1969) Spontaneous and induced locomotion of the thalamic cat. 
Biophysics 14: 1154-1162 

Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson's 
disease. Brain 123 ( Pt 9): 1767-1783 

Palmer SJ, Li J, Wang ZJ, McKeown MJ (2010) Joint amplitude and connectivity 
compensatory mechanisms in Parkinson's disease. Neuroscience 166: 1110-
1118 

Peterson DS, Pickett KA, Earhart GM (2012a) Effects of levodopa on vivedness of 
motor imagery in Parkinson Disease. Journal of Parkinson's Disease 2: 127-133 



84 

 

Peterson DS, Plotnik M, Hausdorff JM, Earhart GM (2012b) Evidence for a relationship 
between bilateral coordination during complex gait tasks and freezing of gait in 
Parkinson's disease. Parkinsonism Relat Disord  

Pickett KA, Peterson DS, Earhart GM (2012) Motor imagery of gait tasks in individuals 
with Parkinson Disease. Journal of Parkinson's Disease 2: 19-22 

Playford ED, Jenkins IH, Passingham RE, Nutt J, Frackowiak RS, Brooks DJ (1992) 
Impaired mesial frontal and putamen activation in Parkinson's disease: a positron 
emission tomography study. Ann Neurol 32: 151-161 

Plotnik M, Giladi N, Hausdorff JM (2008) Bilateral coordination of walking and freezing 
of gait in Parkinson's disease. Eur J Neurosci 27: 1999-2006 

Porro CA, Francescato MP, Cettolo V, Diamond ME, Baraldi P, Zuiani C, Bazzocchi M, 
di Prampero PE (1996) Primary motor and sensory cortex activation during motor 
performance and motor imagery: a functional magnetic resonance imaging study. 
J Neurosci 16: 7688-7698 

Prodoehl J, Spraker M, Corcos D, Comella C, Vaillancourt D (2010) Blood oxygenation 
level-dependent activation in basal ganglia nuclei relates to specific symptoms in 
de novo Parkinson's disease. Mov Disord 25: 2035-2043 

Racette BA, Rundle M, Parsian A, Perlmutter JS (1999) Evaluation of a screening 
questionnaire for genetic studies of Parkinson's disease. Am J Med Genet 88: 
539-543 

Schaafsma JD, Balash Y, Gurevich T, Bartels AL, Hausdorff JM, Giladi N (2003) 
Characterization of freezing of gait subtypes and the response of each to 
levodopa in Parkinson's disease. Eur J Neurol 10: 391-398 

Schmid A, Duncan PW, Studenski S, Lai SM, Richards L, Perera S, Wu SS (2007) 
Improvements in speed-based gait classifications are meaningful. Stroke 38: 
2096-2100 

Schweder PM, Hansen PC, Green AL, Quaghebeur G, Stein J, Aziz TZ (2010) 
Connectivity of the pedunculopontine nucleus in parkinsonian freezing of gait. 
Neuroreport 21: 914-916 

Shik ML, Severin FV, Orlovsky GN (1969) Control of walking and running by means of 
electrical stimulation of the mesencephalon. Electroencephalogr Clin 
Neurophysiol 26: 549 

Snijders AH, Leunissen I, Bakker M, Overeem S, Helmich RC, Bloem BR, Toni I (2011) 
Gait-related cerebral alterations in patients with Parkinson's disease with freezing 
of gait. Brain 134: 59-72 

Spildooren J, Vercruysse S, Desloovere K, Vandenberghe W, Kerckhofs E, Nieuwboer 
A (2010) Freezing of gait in Parkinson's disease: the impact of dual-tasking and 
turning. Mov Disord 25: 2563-2570 



85 

 

Spraker MB, Prodoehl J, Corcos DM, Comella CL, Vaillancourt DE (2010) Basal ganglia 
hypoactivity during grip force in drug naive Parkinson's disease. Hum Brain Mapp 
31: 1928-1941 

Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, Brach J, Chandler J, 
Cawthon P, Connor EB, Nevitt M, Visser M, Kritchevsky S, Badinelli S, Harris T, 
Newman AB, Cauley J, Ferrucci L, Guralnik J (2011) Gait speed and survival in 
older adults. JAMA 305: 50-58 

Suzuki M, Miyai I, Ono T, Oda I, Konishi I, Kochiyama T, Kubota K (2004) Prefrontal 
and premotor cortices are involved in adapting walking and running speed on the 
treadmill: an optical imaging study. Neuroimage 23: 1020-1026 

Talairach J, Tournoux P (1998) Co-planar stereotaxic atlas of the human brain. Thieme, 
New York 

Verghese J, Holtzer R, Lipton RB, Wang C (2009) Quantitative gait markers and 
incident fall risk in older adults. J Gerontol A Biol Sci Med Sci 64: 896-901 

Wagner J, Stephan T, Kalla R, Bruckmann H, Strupp M, Brandt T, Jahn K (2008) Mind 
the bend: cerebral activations associated with mental imagery of walking along a 
curved path. Exp Brain Res 191: 247-255 

Wai YY, Wang JJ, Weng YH, Lin WY, Ma HK, Ng SH, Wan YL, Wang CH (2012) 
Cortical involvement in a gait-related imagery task: comparison between 
Parkinson's disease and normal aging. Parkinsonism Relat Disord 18: 537-542 

Wichmann T, DeLong MR (1996) Functional and pathophysiological models of the basal 
ganglia. Curr Opin Neurobiol 6: 751-758 

Woosley T, Hanaway J, Gado M (2008) The Brain Atlas: A Visual Guide to the Human 
Central Nervous System. John Wiley & Sons, Hoboken, New Jersey 

Wu T, Wang L, Hallett M, Li K, Chan P (2010) Neural correlates of bimanual anti-phase 
and in-phase movements in Parkinson's disease. Brain 133: 2394-2409 

Zwergal A, Linn J, Xiong G, Brandt T, Strupp M, Jahn K (2012) Aging of human 
supraspinal locomotor and postural control in fMRI. Neurobiol Aging 33: 1073-
1084 

 



86 

 

Chapter 4: Gait Related Brain Activity in People wi th Parkinson Disease Who 

Experience Freezing of Gait 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is in preparation: 

Peterson DS, Pickett KA, Duncan R, Perlmutter JS, Earhart GM. Gait-Related Brain 

Activity in People with Parkinson Disease Who Experience Freezing of Gait 



87 

 

ABSTRACT 

PURPOSE: Approximately 50% of people with Parkinson disease (PD) 

experience freezing of gait, described as a transient inability to produce effective 

walking. Complex gait tasks such as turning or backward walking typically elicit freezing 

more commonly than simple gait tasks, such as forward walking. Despite the frequency 

of this debilitating and dangerous symptom, the brain mechanisms of freezing remain 

unclear. Gait imagery during functional magnetic resonance imaging (fMRI) permits 

investigation of brain activity associated with locomotion. We used this approach to 

better understand neural function during gait-like tasks in people with PD who do freeze 

(freezers) and people who do not freeze (non-freezers).  

METHODS: Nine freezers and nine non-freezers imagined complex (turning, 

backward walking) and simple (forward walking) gait tasks during measurements of 

blood oxygen level dependent (BOLD) signal.  Changes in BOLD signal were analyzed 

in five a-priori locomotor regions: supplementary motor area (SMA), globus pallidus 

(GP), putamen, mesencephalic locomotor region (MLR), and cerebellar locomotor 

region (CLR) and then compared across groups (freezer/nonfreezer) and across tasks 

(forward, backward, turning).  

RESULTS: BOLD responses in these locomotor regions did not differ for 

complex tasks compared to simple tasks in either group. Freezers, however, exhibited 

reduced BOLD responses in the CLR with respect to non-freezers. Overground gait 

speed significantly correlated with BOLD signal in the right SMA and right MLR in non-

freezers but not in freezers.   
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CONCLUSIONS: Individuals with PD who freeze, as compared to non-freezers, 

had reduced BOLD response in the CLR during imagined gait tasks. This suggests the 

cerebellum may play a role in freezing of gait.  
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INTRODUCTION 

Gait dysfunction commonly occurs in Parkinson disease (PD), and includes short 

steps (Morris et al. 1996), increased step time variability (Hausdorff et al. 1998), and 

poor step-to-step coordination (Plotnik et al. 2008). Furthermore, approximately 50% of 

people with advanced PD also experience Freezing of Gait (FOG) (Giladi et al. 2001; 

Bartels et al. 2003), defined as a transient inability to complete effective stepping (Giladi 

and Nieuwboer 2008). FOG is a disabling and distressing symptom, contributing to falls 

and reduced quality of life (Gray and Hildebrand 2000; Giladi et al. 2001; Bloem et al. 

2004; Moore et al. 2007; Kerr et al. 2010), and common PD treatments such as anti-

Parkinson medication do not consistently provide adequate benefit (Schaafsma et al. 

2003). Although FOG is transient, freezers may exhibit altered gait even during normal 

walking (i.e. periods of non-freezing or festination), suggesting that the underlying 

pathophysiology also affects non-freezing locomotion (Hausdorff et al. 2003; Plotnik et 

al. 2008; Peterson et al. 2012).  

The brain mechanisms of freezing of gait remain unknown. Only one report 

directly compared brain activity in freezers and non-freezers during a gait-like task 

(Snijders et al. 2011). In this study, participants imagined walking while functional 

magnetic resonance imaging (fMRI) measured Blood Oxygen Level Dependent (BOLD) 

signal. Freezers had an increase in BOLD response in the MLR compared to non-

freezers, supporting the notion that brainstem regions may relate to freezing of gait. Gait 

imagery during fMRI, as used by Snijders and colleagues, has become a commonly 

used technique to assess neural function during locomotion (Malouin et al. 2003; 

Bakker et al. 2008; Wagner et al. 2008; Wang et al. 2008; Godde and Voelcker-Rehage 

2010; Jahn and Zwergal 2010; Snijders et al. 2011; Cremers et al. 2012a; Cremers et 
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al. 2012b; Zwergal et al. 2012). This approach relies on the substantial overlap in brain 

activation responses during imagined and overt movements (Jeannerod and Decety 

1995; Porro et al. 1996; Deiber et al. 1998; Miyai et al. 2001) including walking (Miyai et 

al. 2001; la Fougere et al. 2010). Despite limitations, this approach has provided 

important insight into the brain activation during locomotion in humans (Bakker et al. 

2008; Jahn et al. 2008b; Cremers et al. 2012b). 

The report by Snijders and colleagues focused on imagined forward walking 

(Snijders et al. 2011). However, more complex gait tasks increase freezing risk and gait 

dysfunction (Schaafsma et al. 2003; Spildooren et al. 2010; Snijders et al. 2012), and 

such tasks may amplify differences across groups. The underlying mechanisms are not 

well understood, yet asymmetry and reduced coordination of steps during complex gait 

tasks, such as turning, may precipitate freezing (Plotnik and Hausdorff 2008). Turning 

necessitates asymmetries in step length and leg velocity (Courtine and Schieppati 

2003), and leads to discoordinated stepping in people with PD. Further, turning by 

walking in large rather than small circles provides a clinical strategy to improve 

coordination and reduce freezing (Morris 2006). Therefore, increased freezing during 

complex gait tasks such as turning may be due to the inherent asymmetry and 

discoordination of movement.   

Our goal was to assess the brain activity of freezers and non-freezers with PD 

during simple and complex gait tasks to further elucidate the neural underpinnings of 

freezing of gait. Assessing gait imagery during both complex and simple gait tasks may 

result in more pronounced differences between freezers and non-freezers due to the 

fact that these gait tasks typically elicit freezing more often than simple forward walking.  
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We hypothesized that freezers would have abnormal BOLD responses to 

imagined gait tasks in several locomotor regions of interest (ROIs), including 

supplementary motor area (SMA), globus pallidus (GP), putamen, mesencephalic 

locomotor region (MLR), and cerebellar locomotor region (CLR). Further, we expected 

imagery of complex tasks (turning, backward walking) compared to forward walking 

would enhance these differences. To test this hypothesis, we measured BOLD 

response during imagery tasks of simple forward walking and complex (backward, 

turning) gait in freezers and non-freezers.  

METHODS 

Participants 

Inclusion criteria included diagnosis of idiopathic PD as described by Racette et 

al. (Racette et al. 1999) and based on established criteria (Hughes et al. 1992), free 

from lower limb injuries for the previous 6 months, no contraindications for MRI, and 

ability to effectively imagine movement based on the Kinesthetic Visual Imagery 

Questionnaire (KVIQ) (Malouin et al. 2007). All included participants demonstrated an 

average score of at least 3 on both the kinesthetic and visual component of this 

measure, indicating moderate clarity or intensity of imagery. Seven individuals with PD 

were excluded (no fMRI data were collected) based on this imagery vividness threshold. 

All participants also completed the Gait Imagery Questionnaire (Pickett et al. 2012) 

(GIQ)  to permit post-hoc comparisons of ability to imagine gait across groups, though 

this score was not used to exclude participants. Exclusion criteria included neurological 

problems other than PD and cognitive dysfunction (Mini Mental State Exam; MMSE < 

27).  
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Individuals were classified as “freezer” or “non-freezer” by the New Freezing of 

Gait Questionnaire (NFOGQ) (Nieuwboer et al. 2009). People who identified 

themselves as freezers in question 1 went on to answer 8 questions assessing the 

severity of freezing and its effects on daily life. All data collection was conducted after a 

12-hour withdrawal of anti-Parkinson medication. Freezers and non-freezers were 

matched as closely as possible for disease severity level. Motor severity was assessed 

by the motor subscale of the Movement Disorders Society Unified Parkinson’s Disease 

Rating Scale (MDS-UPDRS part III). 

Written informed consent was provided by all subjects in accordance with the 

Human Research Protection Office at Washington University School of Medicine and 

the Declaration of Helsinki. 

Procedure 

Participants completed three T2*-weighted gradient echo multislice sequence 

scans (EPI, TR=2200ms, TE=3ms, 4.0 mm3 voxels, FA=90°, 9:45 min ). BOLD signal 

was captured for 36 slices covering the brain and the cerebellum. A T1-weighted 

sagittal, magnetization prepared rapid acquisition with gradient echo (MP-RAGE, 

TR=2400 ms, TI=1000 ms, TE=3.16 ms, FA=8°, 1.0mm 3, 8:09 min) scan was also 

collected for identification of ROIs and co-registration to T2* scans. MR was done with a 

Siemens 3T Magnetom TrioTim scanner. 

During BOLD acquisition scans, participants imagined four walking tasks 

(forward walking, backward walking, turning to the left in small radius (0.6m) circles, and 

turning to the right in small radius circles) in pseudo-random order and separated by 11-

second rest periods in which eyes were open. It was necessary to have individuals open 
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their eyes during rest scans to permit them to detect the visual signal of the upcoming 

task. In addition, modeling this rest period provided a baseline condition for each 

participant within each scan. This allowed us to normalize beta weights within each 

participant by subtracting the beta weight during rest from the beta weight during 

imagined walking. Subtracting a scan- and subject-specific beta weight from each gait 

imagery beta weight removes inter-subject variability and potential baseline differences 

across group not related to imagined locomotion. Participants tapped their index finger 

on a custom made MRI compatible button box (Mag Design and Engineering, Redwood 

City, CA, USA) once at the beginning and once at the end of each gait task to log the 

start and finish of each imagery epoch (Figure 4.1). Two gait imagery scans were 

collected for each participant. 

In a third, four minute long T2*-weighted scan, participants alternated between 

imagined upright standing (20 seconds) and rest (11 seconds). For this scan a tactile 

cue on the leg indicated the end of imagery and the beginning of rest. This tactile cue 

was modeled into the GLM to account for any associated changes in BOLD signal. 

Imagined standing was used as the control task for this study because it controls for 

brain activity associated with first-person imagery. Participants’ eyes were closed during 

imagery of standing and open during rest, analogous to that done for the imagined gait 

task.  

Stimuli were projected onto a screen behind the participant and were viewed via 

a mirror mounted on the head coil. Instructions were presented using E-Prime v1.0 

(Psychology Software Tools, Inc, Sharpsburg, PA). An MRI-compatible eye tracker 

documented that the eyes were closed and open at appropriate times. Presence of 
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tremor of the eyes, head, lower legs and hands during scans was assessed qualitatively 

by observation. Two participants were excluded due to tremor during the scans (See 

Results).  

For each gait imagery task, participants imagined walking two different distances 

(4 and 8 meters for forward and backward gait, and 2 or 3 revolutions for turning). By 

measuring the time taken to imagine walking short and long distances, we could assess 

the degree to which participants adhered to the tasks during scans. Before scanning, 

participants practiced the execution and imagery of each of the gait tasks. Time to 

complete all actual gait tasks (forward, backward, turns) was captured. None of the 

individuals noted freezing while imagining gait tasks either during practice or while in the 

scanner. 

   

FMR pre-processing 

Functional data were preprocessed using Brain Voyager (v. 2.4.0.2000, 32-bit). 

The first two image volumes from each imaging run were discarded for all trials. 3D 

motion correction was completed via sinc-interpolation and output for inclusion in the 

general linear model (see Statistical Analysis). Slice scan time differences were 

corrected via sinc interpolation, and data were high pass filtered (the lowest two cycles 

were removed). Functional scans were then coregistered (i.e. spatially aligned) to 

participant-specific T1-weighted images which were normalized to Talairach space 

(Talairach and Tournoux 1998). Task conditions were modeled with an event-related 

design and convolved with the canonical hemodynamic response function, which 

accounts for the delayed cerebral blood oxygenation and flow changes following 
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neuronal activity. In addition to the 3D motion correction, any scan in which more than 

2mm or 2° of motion in any direction was detected w as not included in the analysis. 

Neither maximum head movement (p=0.56), nor standard deviation of head movement 

(p=0.91) during scans differed between groups. 

 

ROI analysis 

BOLD signal was analyzed only within a-priori ROIs. We chose this approach for 

two reasons. First, ROIs can be identified manually on each participant more precisely 

than using a standardized template. This is particularly critical for this investigation 

given the small regions we targeted. Second, a-priori identification of ROIs limits the 

need for multiple comparison correction. We chose nine ROIs (bilateral SMA, bilateral 

putamen, bilateral GP, bilateral MLR, and CLR)  due to their link to human locomotion 

(Mori et al. 1999; Mori et al. 2004; Jahn et al. 2008a; Jahn and Zwergal 2010) and 

dysfunction in individuals with PD (Kish et al. 1988; Hanakawa et al. 1999b; Malouin et 

al. 2003; Bruck et al. 2006; Karachi et al. 2010; Prodoehl et al. 2010; Schweder et al. 

2010; Spraker et al. 2010; Snijders et al. 2011; Cremers et al. 2012a); particularly in 

people who experience freezing (Hashimoto 2006; Lewis and Barker 2009; Schweder et 

al. 2010; Snijders et al. 2011). Since our tasks of interest involved imagined 

movements, primary motor cortex was not included as a ROI, as this area does not 

typically responded to imagined motor tasks (de Lange et al. 2005; Bakker et al. 2008; 

Cremers et al. 2012b). ROIs were identified manually for each participant on a high 

resolution MP-RAGE image warped to Talairach space (Talairach and Tournoux 1998). 

A single operator, blinded to BOLD activation and group status, identified all ROIs. The 
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SMA was identified as the midline grey matter superior to the cinglulate sulcus. Parallel 

vertical lines through the anterior commissure (AC) and posterior commissure (PC),  

marked rostral and caudal boundaries (Immisch et al. 2001). The MLR was identified as 

a 54-voxel region of the brainstem lateral to the cerebellar peduncle decussation and 

medial lemniscus, including approximately the cuneate, subcuneate and 

pedunculopontine nuclei (Pahapill and Lozano 2000; Karimi et al. 2008). The CLR was 

identified as a 72-voxel region of the midline white matter of the cerebellum, 

approximately rostral to the fastigial nuclei (Mori et al. 1999). Globus pallidus and 

putamen were identified using standard human atlases (DeArmond et al. 1989; Woosley 

et al. 2008). Examples of each ROI are shown in Figure 4.2.  

 

Statistics 

Analyses of variance (ANOVAs) assessed actual and imagined gait times in both 

groups. Pearson correlation statistics assessed the relationship between actual and 

imagined gait times.  

A general linear model (GLM) was constructed for imagined gait BOLD data to 

determine how well the design matrix model explains data. Beta weight changes 

associated with 5 tasks (rest, forward, backward, turning left, and turning right) and 

incorporating 6-dimensional head motion were determined using the GLM. Beta weights 

represent how much of the BOLD signal change is attributed to each of the five tasks. 

The inclusion of 6-dimensional head motion in the GLM helps to account for alterations 

in signal due to movements of the brain. Beta weights were also calculated for imagined 

stand and rest for the imagined stand scan. During stand scans, tactile cueing was used 



97 

 

to notify participants when to stop imagining. To account for any changes in BOLD 

signal due to this approach, cues were also modeled into the GLM for the stand dataset. 

GLMs were run separately for each ROI. 

We used paired sample, two-sided t-tests to determine whether BOLD signal 

differed during imagined gait tasks (average of all gait imagery beta weights) from 

imagined standing. This analysis was carried out for each ROI. 

To investigate differences across groups and across tasks, we first subtracted 

beta weights during imagined standing from beta weights during imagined gait tasks. By 

subtracting standing beta weights, we removed BOLD responses associated more 

generally with imagining and were left with beta weights specific to imagined 

locomotion. Analyses of covariance (ANCOVAs) were then used to assess the change 

in beta weights for each region of interest between groups and across tasks for each 

ROI. To account for differences in motor severity across freezing and non-freezing 

groups, MDS-UPDRS-III was included as a covariate in the ANCOVA. Also, given the 

importance of accounting for differences in behavior, average gait imagery times were 

included as a covariate in the analysis. Spearman’s ρ statistics were used to correlate 

BOLD signal in each region of interest to behavioral measures (actual overground gait 

velocity and freezing severity [NFOG total score]).  

 

RESULTS 

Participants 

fMRI data were collected from 26 participants with PD. Data from six participants 

were excluded due to head movement over 2mm or 2°. Of these 6, two also had severe 
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hand tremor. Another individual was excluded because he later reported prior head 

trauma, and one individual was excluded due to poor imagery performance. Thus, 18 

individuals with PD (nine freezers and nine non-freezers) were included for further 

analysis. Freezers and non-freezers were of similar age. The freezer group did not have 

significantly worse disease severity based on MDS-UPDRS part III and Hoehn and Yahr 

stage. Imagery ability (KVIQ and GIQ) was similar across groups (Table 4.1).  

Behavioral 

Actual overground walking times and gait imagery times were similar across 

groups (F1,16=1.26; p=0.28 and F1,16=1.4; p=0.25, respectively). As expected, “long” gait 

imagery tasks took longer than “short” (F1,16=34.6; p<0.001, Figure 4.3). Gait imagery 

times were not quite significantly longer than actual overground gait times, (p=0.053, 

paired sample t-test). Actual and imagined gait times correlated with each for all 

subjects (r=0.61, p=0.007, Figure 4.4). One participant, a freezer, exhibited 

considerably longer imagery time (37 seconds on average) than actual time (18 

seconds on average). Though no freezing was noted during imagery, this participant 

may have experienced altered imagined gait with respect to overground walking. 

Therefore, we completed BOLD signal analyses with and without this participant; no 

changes were noted. Furthermore, inclusion of imagined walking time in the ANCOVA 

attenuated the affect of this outlier. Therefore, all data presented herein include this 

individual.   

fMRI 

Beta weights while imagining turning to the left and to the right did not differ in 

either group. Therefore, we combined left and right turns for subsequent analyses. Gait 
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imagery, with respect to imagined standing, produced increased BOLD signal in all 

regions except the left GP and right MLR for non-freezers. People in the freezer group 

exhibited increased BOLD responses during gait only in the left MLR (Table 4.2).  

Freezers exhibited smaller beta weights in the CLR than non-freezers 

(F1,14=17.7, p=0.001; Table 4.2, Figure 4.5). A task effect was also noted across all 

groups in the right SMA (F2,28=4.30; p=0.023). However, pair-wise post hoc analyses 

(Bonferroni corrected) of SMA BOLD revealed no significant differences between 

specific tasks in this region. No other significant effects were noted across groups or 

tasks. Beta weights did not significantly correlate with freezing severity (NFOGQ) or gait 

speed within the freezers, whereas, in the non-freezers, actual gait speed significantly 

correlated with beta weights in the right SMA and right MLR (Table 4.3). 

 

DISCUSSION 

Our primary result is that during gait imagery, freezers exhibited reduced change 

in BOLD signal in the CLR with respect to non-freezers. Surprisingly, we did not detect 

any significant differences in other locomotor regions between groups or across tasks.  

The alteration of CLR activity in freezers fits with past investigations relating CLR 

to locomotion in animals and humans. Mori and co-workers noted that in cats, 

microstimulation of the CLR evokes controlled locomotion along a moving treadmill 

(Mori et al. 1999; Mori et al. 2004). This result has not been reproduced in humans, 

however  this region is active in healthy adults during both imagined (Jahn et al. 2008b; 

Wagner et al. 2008; la Fougere et al. 2010) and actual (Hanakawa et al. 1999a; la 

Fougere et al. 2010) locomotion. For example, imagined walking elicits a cerebellar 
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response, and imagined running enhances this activation (Jahn et al. 2008b), 

suggesting that the cerebellum drives a relatively automated task like imagined running. 

These findings support the notion that freezing reflects dysfunction of the relationship 

between automation of locomotion and cerebellar activity. This also fits with the 

observation that dual tasking increases the automaticity of gait and increases the risk 

and severity of freezing.   Either visual or auditory step cueing disrupts automaticity and 

may alleviate freezing (Dunne et al. 1987; Dietz et al. 1990).  Therefore, tasks which 

increase the automaticity of walking (i.e. dual task walking) may cause an 

overdependence on a dysfunctional CLR, enhancing freezing. Similarly, less automated 

gait (i.e. during the use of visual cues) may partially bypass this dysfunctional circuitry, 

reducing severity of freezing. 

Studies of brain control of actual human gait support the role of cerebellum in 

locomotion. Hanakawa and colleagues (1999) found that walking over transverse lines 

(compared to parallel lines) activated the left cerebellar hemisphere in PD and controls 

(Hanakawa et al. 1999a) possibly reflecting the relationship of the lateral hemisphere to 

visually guided leg movements (Yu and Eidelberg 1983; Armstrong and Marple-Horvat 

1996; Marple-Horvat et al. 1998). As noted, visual cueing (i.e. stepping over lines on the 

ground) can improve gait and reduce freezing in people with PD (Dunne et al. 1987; 

Dietz et al. 1990). This relationship between changes in cerebellar activation and visual 

cueing (which may improve freezing) further supports a relationship between cerebellar 

function and freezing. That investigation, however, only included non-freezers. As noted 

in the current investigation, cerebellar function may be altered in freezers with respect to 

non-freezers, possibly limiting the applicability of these results to freezers. Additional 
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investigations of how visual or auditory cues affect neural control of locomotion in 

freezers may provide greater insight into these pathophysiologic mechanisms. 

Finally, people with PD, and particularly freezers, may have altered connectivity 

between the cerebellum and other supraspinal regions (Wu and Hallett 2013). The 

basal ganglia and cerebellum are structurally connected (Hoshi et al. 2005; Bostan et al. 

2010), and people with PD have altered functional connectivity between the striatum 

and the extended brainstem/cerebellum (Hacker et al. 2012). Cerebellar functional 

connectivity has also been linked to freezing. A recent preliminary report found reduced 

functional connectivity between the cerebellum and the pedunculopontine nucleus 

(PPN; a sub-region of the MLR)  in freezers compared to non-freezers and healthy 

adults (Schweder et al. 2010). Although this study only included two freezers, their 

results support our findings, further implicating a relationship between cerebellar 

dysfunction and freezing of gait.  

Complex gait imagery tasks did not induce changes in BOLD signal with respect 

to simple gait imagery, despite the fact that actual gait is typically more dysfunctional 

during complex tasks. Differences in actual and imagined locomotion may contribute to 

this finding. For example, imagined locomotion may require less balance and postural 

control than actual gait, limiting the differences in complexity across tasks. Despite 

these gait imagery limitations, Godde and colleagues showed a small increase in 

activity (14 voxels) in the left putamen during backward walking compared to forward 

walking, whereas we found no difference in putamen. Three factors may contribute to 

this discrepancy between studies.   First, the previous report included a larger number 

of participants (n=51), increasing their power to detect subtle across-task differences. 
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Second, they had participants practice and imagine tandem backward walking while on 

a treadmill, while we had participants walk normally overground. Tandem walking is 

more difficult than normal gait, particularly in older adults (Vereeck et al. 2008), and may 

have led to a more pronounced BOLD signal change compared to imagined forward 

walking. Perhaps most importantly, they investigated healthy older adults, whereas we 

focused on people with PD, making direct comparisons across studies difficult (Godde 

and Voelcker-Rehage 2010). 

Only one previous report examined differences in BOLD signal during imagined 

locomotion in freezers and non-freezers. In that investigation, freezers exhibited 

significantly higher BOLD signal changes in the MLR (Snijders et al. 2011). 

Discrepancies between that study and ours may be due in part to methodological 

differences. They used a visual imagery task (a disc moving down a hallway) as a 

control to remove the effects of visual stimulation, while we used an imagined standing 

task. The use of different baseline tasks can lead to substantially different outcomes 

(i.e. imagined lying vs. imagined standing (Jahn et al. 2008b)) and therefore may have 

played a role in the different results of these two investigations. Also, we used a ROI-

based analysis, while the primary analysis of the previous report was a full-brain 

random effects GLM. There are pros and cons to each method. An ROI analysis allows 

for more precise identification of regions to test specific hypotheses.   However, we 

average all voxels within a region (we assume homogeneity within each ROI) and could 

miss subtle signal changes in a subregion within the ROI.  This is particularly true for 

larger regions such as the SMA and the putamen. Finally, we may have been 

underpowered to detect small differences in BOLD responses in regions such as the 
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MLR. However, in our study, the effect size of freezing status on MLR BOLD signal was 

0.5 for the left MLR and 0.0028 for the right MLR. To detect a significant difference in 

the left MLR with this small effect size would require a sample of 128 and more than 

1000 for the right MLR.   

 

LIMITATIONS 

 Functional neuroimaging during gait imagery permits investigation of brain 

pathophysiology that underlies gait tasks. However, this approach has several 

limitations. Although actual and imagined gait tasks activate similar brain circuits (la 

Fougere et al. 2010), inherent differences likely exist.  Any task-related neuroimaging 

study depends upon accurate measurement and control of task performance. The 

covert nature of an imagined task makes this challenging.  To ensure participants were 

able to effectively imagine movement, we screened for vividness of motor imagery 

(KVIQ score), and matched groups on ability to imagine both single limb movements 

(measured via the KVIQ), and imagined walking (measured via the GIQ).  Furthermore, 

we tried to measure performance by comparing the length of time the participant 

imagined walking two different distances while in the scanner. Imagery times for longer 

distances were larger than short distances, suggesting participants were adhering to 

imagery tasks. This provided at least a rank order measure of performance of this 

covert task.  Imagination of freezing during the imagery task also could confound task 

performance.  However, no participants reported freezing events during gait imagery. 

Despite these various approaches to control imagery performance, we included 

imagined walking time as a covariate in statistical analyses when comparing across 
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groups as imagined walking at different speeds does alter BOLD responses (Suzuki et 

al. 2004; Karachi et al. 2010; Cremers et al. 2012b). Controlling for variability of other 

characteristics between participant groups is another challenge.  In our study, we 

recognize that PD freezers often have greater cognitive impairments than non-freezers 

(Amboni et al. 2008; Amboni et al. 2010). To minimize this potential confound, we 

applied strict cognitive screening criteria for all participants (MMSE score had to exceed 

26/30), and we matched freezers and non-freezers on this measure. Differences in 

motor severity between freezers and non-freezers also could be a confound. Therefore, 

we included MDS-UPDRS part III scores as a covariate in statistical analyses 

contrasting groups. Finally, our relatively small sample size, limited in part to the strict 

cognitive and imagery ability screening, may have reduced our power to detect more 

modest changes in BOLD responses in some regions. Nevertheless, we had adequate 

power to detect the pronounced reduction in CLR BOLD signal observed in freezers.   

 

CONCLUSION 

Individuals with PD who freeze have reduced BOLD signal changes in the 

cerebellar locomotor region during imagined gait tasks. This result suggests the 

cerebellum may play an important role in freezing of gait.  



 

Figure 4.1:  Gait imagery task. After reading the cue, the participant closes his e

pushes a button, and begins imagining. At the completion of gait imagery, he again 

presses the button and opens his eyes. 
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pushes a button, and begins imagining. At the completion of gait imagery, he again 



 

Figure 4.2: Regions of interest. Regions were identified for each individual separately 

based on standard definitions (see M

for four subjects: supplementary motor area (a), putamen

(green) (b), cerebellar locomotor region (c), and 

Anterior; P-Posterior; R-Right; 

a) 

c)  
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Regions of interest. Regions were identified for each individual separately 

based on standard definitions (see Methods). Shown are examples of regions defined 

for four subjects: supplementary motor area (a), putamen (blue) and globus pallidus

locomotor region (c), and mesencephalic locomotor region (d). A

Right; L-Left 

b)  

 d)  

Regions of interest. Regions were identified for each individual separately 

ethods). Shown are examples of regions defined 

and globus pallidus 

locomotor region (d). A-

 



 

Figure 4.3:  Gait imagery times in non

imagery tasks. “Long” gait imagery tasks took significantly longer than “short” gait 

imagery tasks (denoted by *, F

Differences between non-freezers (PD

significance.  
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Gait imagery times in non-freezers and freezers during short and long gait 

imagery tasks. “Long” gait imagery tasks took significantly longer than “short” gait 

imagery tasks (denoted by *, F1,16=34.6; p<0.001, repeated measures ANOVA) . 

freezers (PD-FOG) and freezers (PD+FOG) did not reach 

freezers and freezers during short and long gait 

imagery tasks. “Long” gait imagery tasks took significantly longer than “short” gait 

d measures ANOVA) . 

FOG) and freezers (PD+FOG) did not reach 
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Figure 4.4 : Correlation between actual and imagined walking times for freezers and 

non-freezers. Correlation statistics represent all participants. 
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Figure 4.5: Mean beta weights across gait tasks in non-freezers (PD-FOG) and 

freezers (PD+FOG) in the CLR. PD-FOG demonstrated significantly higher BOLD signal 

than PD+FOG (*p=0.001). Error bars represent standard error of the mean. 
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Table 4.1:  Participant characteristics 
 

   PD-FOG PD+FOG p-value 

N  9 (7 male) 9 (5 male) 
 

Age (yrs)  62.7 (8.5) 66.6 (6.7) 0.29 

MDS-UPDRS-III#  27.7 (8.8) 36.1 (9.3) 0.06 

Hoehn & Yahr  2.22 (0.26) 2.5 (0.35) 0.08 
Years since 
Diagnosis  4.1 (8.8) 9.4 (7.2) 0.07 

NFOG-Q total score $ - 13.0 (8.2)  
KVIQ *  81.4 (11.8) 74.3 (12.4) 0.22 

GIQ *  28.1 (4.4) 25.3 (10.8) 0.33 
#Movement Disorders Society Unified Parkinson’s Disease Rating Scale (part III) 
$New Freezing of Gait Questionnaire 
*KVIQ: Kinesthetic Visual Imagery Questionnaire, max score 100 
*GIQ: Gait Imagery Questionnaire, max score 40 
One left handed participant was included in the PD+FOG group 
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Table 4.2: ANCOVA results for each ROI. P-values shown. 

 ANCOVA Main Effects Gait vs. stand  (paired 
sample t-test) 

ROI Group Task 
Group by 

Task 
interaction  

Non-
freezers Freezers 

Right SMA 0.861 0.023 0.226 0.025 0.088 

Left SMA 0.984 0.09 0.341 0.003 0.073 

Right PUT 0.623 0.889 0.137 0.008 0.153 

Left PUT 0.306 0.951 0.481 0.013 0.094 

Right GP 0.505 0.080 0.565 0.004 0.134 

Left GP 0.922 0.762 0.087 0.182 0.407 

Right MLR 0.424 0.322 0.139 0.232 0.14 

Left MLR 0.59 0.183 0.108 0.001 0.032 

CLR 0.001 0.869 0.813 <0.001 0.723 
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Table 4.3:  P-values (Spearman’s ρ) of all correlations between beta weights during 

imagined gait (averaged across all gait imagery tasks) and actual overground walking 

speed (averaged across all gait tasks). 

 

   SMA R SMA L PUT R PUT L GP R GP L MLR R MLR L CLR 

Gait beta 

weight 

vs. actual 

walk 

velocity 

PD-FOG 

p(ρ) 

0.02  

(0.75) 

0.112 

(0.57) 

0.41 

(0.317) 

0.11 

(0.57) 

0.36 

(0.35) 

0.14 

(0.53) 

0.01 

(0.78) 

0.76 

(0.12) 

0.97 

(-0.02) 

PD+FOG 

p(ρ) 

0.41 

(0.32) 

0.24 

(0.43) 

0.52 

(0.25) 

0.83 

(0.08) 

0.24 

(0.43) 

0.55 

(0.23) 

0.67 

(0.17) 

0.90 

(0.05) 

0.52 

(0.25) 
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Chapter 5: Conclusion 

SUMMARY OF MAJOR FINDINGS 

The goal of this dissertation was to better understand biomechanical and neural 

factors associated with gait dysfunction and freezing of gait in individuals with Parkinson 

disease (PD). To this end, we investigated: 1) how coordination of steps was related to 

freezing of gait, 2) the neural correlates of locomotor dysfunction in those with PD, and 

3) the neural correlates of freezing in those with PD. Major findings of each section, 

within the context of current literature, are as follows: 

Chapter 2 

One component of gait dysfunction in PD is inconsistent and small steps (Yogev 

et al. 2007). The variability of the stepping pattern (both in length, and timing) and 

symmetry of left and right steps are altered in PD and may be related to freezing 

(Hausdorff et al. 1998; Hausdorff et al. 2003; Plotnik et al. 2008). In fact, it has been 

hypothesized that there may be a threshold level beyond which increases in variability 

and/or asymmetry may result in freezing (Plotnik and Hausdorff 2008). The phase 

coordination index (PCI) is a recently developed measure which quantifies these 

irregularities in timing and coordination of steps during gait (Plotnik et al. 2007). Recent 

studies using PCI showed that people with PD exhibit abnormalities in gait coordination 

with respect to healthy adults (Plotnik et al. 2007; Plotnik et al. 2009). Further, 

coordination is worse in freezers than non-freezers (Plotnik et al. 2008). This covariance 

between FOG and coordination suggests a relationship may exist between these 

variables. However, previous literature is based on normal forward walking, whereas 

freezing is more common during complex gait tasks such as backward walking or 
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turning. Determining how coordination is affected by tasks which frequently elicit FOG is 

critical to understand the relationship between coordination and freezing. For example, 

if a relationship between coordination and FOG does exist then turning, a task 

associated with FOG, should elicit worse coordination than forward walking. However, if 

turning does not result in worse coordination, it is unlikely that coordination is a strong 

predictor of or contributing factor to FOG. 

We addressed this question in chapter 2. In sum, our results support the 

relationship between coordination (measured by PCI) and freezing. Three main results 

support this. First, as shown in previous investigations, freezers demonstrated worse 

coordination than non-freezers across a variety of tasks. Second, tasks related to 

freezing (turning in small circles, backward walking) resulted in worse coordination than 

simple (forward, turning in large circles) gait tasks. In addition, there was a task by 

group interaction, such that tasks related to freezing had a more pronounced effect on 

those with PD (and freezers in particular) than healthy older adults. Third, there was a 

significant relationship between severity of freezing and extent of dyscoordination. 

Together, these results suggest a relationship between coordination and freezing. More 

research is necessary, however, to test a potential causal link between coordination of 

steps and freezing.  

Chapter 3 

The physical characteristics of gait dysfunction in PD are generally well 

described. However, considerably less is known about their neural underpinnings. Four 

recent studies began to address this question. These investigations showed 

inconsistent alterations in those with PD in a number of regions, including the 
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supplementary motor area (SMA) (Hanakawa et al. 1999; Snijders et al. 2011), 

tegmental brain stem (including the mesencephalic locomotor region; MLR) (Snijders et 

al. 2011; Cremers et al. 2012), and the cerebellum (Hanakawa et al. 1999; Cremers et 

al. 2012), among others. However, these reports largely used simple gait tasks. As with 

chapter 2, we wished to investigate the effects of more complex gait tasks, as these 

tasks may underscore potential differences between controls and those with PD.  

We assessed the differences in blood oxygen level dependent (BOLD) signal in 

people with PD and healthy adults during simple (forward) and complex (backward, 

turning) gait imagery tasks. These effects were assessed in 5 a-priori regions of 

interest, chosen because of their involvement in locomotor control and their known 

dysfunction in PD. These regions were: SMA, globus pallidus (GP), putamen, MLR, and 

cerebellar locomotor region (CLR). There were three main results of this study. First, a 

group by task interaction was noted in the SMA such that turning resulted in a more 

pronounced change in BOLD signal in PD than in controls. Second, individuals with PD 

exhibited reduced change in BOLD signal in the globus pallidus with respect to healthy 

adults. Finally, we observed significant correlations in several regions between change 

in BOLD signal and overground walking speed, a measure of global locomotor function. 

These results suggest that: 1) people with PD may require more activity in the 

supplementary motor area than controls to complete complex gait tasks, and this 

increase may be compensatory in nature; 2) gait dysfunction in people with PD (i.e. 

reduced gait velocity) may be related to altered function of the GP; and 3) elevated 

BOLD signal in locomotor regions may predict improved gait function.  Together these 

results further elucidate the changes in activity of locomotor regions during gait imagery 
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tasks in PD and in controls, and provide evidence supporting a relationship between 

increased BOLD signal in locomotor regions and improved walking function. 

Chapter 4 

Finally, we wished to identify alterations in brain signal which may be related to 

freezing of gait. Only one previous study investigated brain activity associated with 

freezing of gait. This report examined BOLD response during imagined forward walking 

in freezers and non-freezers. Freezers exhibited increased change in BOLD in the MLR 

with respect to non-freezers (Snijders et al. 2011). However, in this study participants 

only imagined forward walking. Similarly to chapters 2 and 3, we wished to understand 

how complex gait tasks (i.e. those which typically elicit freezing) affect BOLD signal in 

those who freeze with respect to those who do not freeze. Thus, we re-analyzed the PD 

data from chapter 3, this time contrasting those who do freeze (n=9), with those who do 

not freeze (n=9). 

Our main result was a reduction in change in BOLD signal in the CLR in freezers 

with respect to non-freezers. There were no task effects or group by task interactions in 

any of the regions of interest. Despite the relationship between overground gait speed 

and change in BOLD observed across those with PD (chapter 3), few correlations 

remained within the freezer and non-freezer groups. No correlations were observed in 

either group to step-to step coordination (measured via PCI), or between freezing 

severity and BOLD signal in freezers. Additional research is necessary to understand 

the neural underpinnings of freezing of gait. However, these results suggest the 

cerebellum may play an important role in freezing of gait  
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SIGNIFICANCE AND CLINICAL IMPLICATIONS 

Understanding factors related to freezing and gait dysfunction may lead to 

improvements in the care of individuals experiencing these symptoms. For example, 

identifying highly quantifiable biomechanical factors which are related to freezing (i.e. 

PCI) may allow researchers and clinicians to more precisely track the development and 

progression of freezing of gait. This is especially important for freezing, as it is difficult to 

elicit in a clinical or laboratory setting. In addition, quantifiable measures related to 

freezing may lead to identification of those at risk for future freezing events, allowing 

early intervention (both behavioral and environmental) which could reduce the negative 

effects of freezing. Finally, this work suggests rehabilitative interventions aimed 

specifically at improving coordination of gait may also be beneficial for ameliorating 

freezing of gait.  

Due to the complex circuitry of locomotion, dysfunction during gait (i.e. 

discoordination and freezing) is likely due to a number of neural factors. However, 

identifying specific regions with dysfunction is a critical step to understanding why 

dysfunction and freezing occur, and provides an important foundation for potential 

improvement of pharmacologic and surgical interventions. Pharmacologic interventions 

are often aimed at addressing alterations in neurotransmitter levels which arise, in part, 

from dysfunction of particular regions (i.e. acetylcholine: PPN, basal nucleus of Meynert; 

dopamine: substantia nigra). Identifying regions which are dysfunctional specifically 

during gait may allow for more focused pharmacologic interventions. In addition, deep 

brain stimulation is becoming a common intervention which can greatly improve 
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symptoms of PD, and in some cases freezing. Identification of regional dysfunction may 

inform future sites for DBS aimed at improving gait and freezing.  

 

LIMITATIONS 

Our design for the experiment in chapter 2 did not allow investigation into the 

potential causal relationship between freezing and coordination. This approach will be 

necessary in future work to provide a more complete understanding of how these 

symptoms are related.  

There are several limitations of using fMRI to investigate brain mechanisms 

underlying gait dysfunction. For example, the temporal resolution of fMRI is not fast 

enough to pick up many components of brain signaling. This limits the ability to assess 

brain function during freezing events. Further, the spatial resolution (commonly ~4cm3) 

makes investigation of small regions, including the MLR and PPN, difficult. Spatial 

distortion of the BOLD signal further limits conclusions from these investigations. 

Finally, to investigate gait function using fMRI, participants must imagine gait tasks. This 

brings about numerous potential problems including similarity between overt and 

imagined movements, adherence to gait tasks, ability to imagine movement, and 

difficulties effectively measuring behavioral responses.  

These limitations aside, there are currently few other methodologies available to 

address this clinically important question. For example, brain imaging which allows for 

actual gait (i.e. Positron Emission Tomography) typically has considerably worse spatial 

and temporal resolution than fMRI.  Further, during actual walking, gait is typically very 

different between PD and controls. Therefore, the use of gait imagery allows for imagery 
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of similar gait tasks, reducing the potential confound of different performance across 

groups. In the current investigation, we took several steps to address limitations of gait 

imagery and fMRI, including assessments of both the ability and adherence to gait 

imagery tasks. Though this approach is far from perfect, we believe we were able to 

effectively address many of these issues.  

 

SUGGESTIONS FOR FUTURE RESEARCH 

To better understand the relationship between dysfunctional coordination and 

freezing, it is necessary to investigate possible causal mechanisms between these 

symptoms. Investigating the effects of specific alterations of coordination (i.e. PCI) on 

the frequency and severity of freezing may yield insights into this relationship.  

Considerable work will be necessary to fully understand the neural underpinnings 

of gait dysfunction and freezing in those with PD. One future direction may be to 

investigate BOLD signal during actual freezing events. There are several technical and 

logistical hurdles to this approach; however recent work is beginning to address the 

issue in upper limb motor blocks (Vercruysse 2012). Another approach may be to use 

electroencephalography (EEG) to assess cortical and subcortical brain function during 

actual gait. Previously, motion artifacts of gait have limited the use of EEG during 

walking. However, recent research showed this is an effective method of assessing the 

neural correlates of gait (Gwin et al. 2010; Gwin et al. 2011). This method provides data 

with very high temporal resolution and as such may be able to identify specific freezing 

events during walking. Another approach may be to assess the functional connectivity 

of freezers and non-freezers using fMRI. This approach allows participants to rest 
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quietly, circumventing differences in motor dysfunction across populations. Functional 

connectivity can also provide important insights into altered circuitry of those with PD.  
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ABSTRACT 

PURPOSE: Motor imagery during functional magnetic resonance imaging is 

commonly used to understand the neural underpinnings of complex movements. This 

approach has recently been applied to individuals with Parkinson disease (PD) to better 

understand how brain function may relate to movement dysfunction. However, the 

ability of individuals with PD to imagine movements when “Off” dopamine replacement 

medication is poorly understood. Therefore, the purpose of the current study is to test 

the ability of people with PD to imagine movements while “On” and “Off” anti-Parkinson 

medication.  

METHODS: Vividness of imagery was assessed in 28 individuals with mild to 

moderate PD (Hoehn and Yahr stages 1-3) via the Kinesthetic Visual Imagery 

Questionnaire (KVIQ-20) both “On” and “Off” anti-Parkinson medication. Vividness of 

imagery of 32 age-matched older adults was also assessed.  

RESULTS: No differences in vividness of imagery were observed between “Off” 

and “On” medication states (p=0.15). Imagery was similar between controls and PD 

both “Off” (p=0.25) and “On” (p=0.46) anti-Parkinson medication. A significant 

correlation was observed between imagery and disease severity while “On” anti-

Parkinson medication (r= -0.49; p=0.008).  

CONCLUSIONS: Vividness of movement imagery was not different between 

“Off” and “On” anti-Parkinson medications or between PD and controls. These results 

suggest that people with PD are able to imagine similarly to older adults both when “On” 

and “Off” anti-Parkinson medication, and supports the use of motor imagery in the “Off” 

medication state.  
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INTRODUCTION 

Motor imagery (MI) is “a dynamic state during which representations of a given 

motor act are internally rehearsed in working memory without any overt motor 

output”(Decety 1996). MI has been used extensively with imaging techniques such as 

functional magnetic resonance imaging to provide insight into the neural underpinnings 

of complex motor processes in healthy adults (Sacco et al. 2006; Bakker et al. 2008; 

Jahn et al. 2008; Wagner et al. 2008; Godde and Voelcker-Rehage 2010; la Fougere et 

al. 2010; Snijders et al. 2011). More recent studies have begun to use MI with imaging 

techniques to better understand how brain pathology in individuals with Parkinson 

disease (PD) relates to movement dysfunction (Cunnington et al. 2001; Samuel et al. 

2001; Helmich et al. 2007; Snijders et al. 2011). In these investigations, PD subjects are 

often studied “Off” anti-Parkinson medication (Levodopa replacement). However, the 

ability of people with PD to imagine movements while “Off” dopamine replacement 

medication is not well understood. One recent investigation showed that individuals with 

PD have similar vividness of imagery as healthy adults (Heremans et al. 2011); 

however, this study tested the vividness of imagery in people with PD while “On” anti-

Parkinson medication. Levodopa has been suggested to normalize brain activity in PD 

in many regions, including the supplementary motor area (SMA) (Rascol et al. 1992; 

Sabatini et al. 2000; Buhmann et al. 2003; Ng et al. 2010). This region is associated 

with motor planning (Tanji and Shima 1994; Makoshi et al. 2011) and has been shown 

to be active during both overt (Rascol et al. 1992) and imagined (Jahn et al. 2008; 

Snijders et al. 2011) movements. Therefore, pathological activation of SMA, as well as 

other regions, may reduce the ability of this group to imagine movement in the “Off” 
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medication state. As imagery studies are often carried out with patients “Off” anti-

Parkinson medications, it is important to determine the degree to which people with PD 

can imagine in this medication state. Further, MI has shown promise as a rehabilitative 

strategy in both healthy individuals (Schuster et al. 2011), and recently, those with 

neurological disorders, specifically stroke (Liu et al. 2004; Page et al. 2007). Though 

rehabilitative MI has not yet been tested in those with PD, understanding changes in 

imagery while “Off” and “On” anti-Parkinson medication could provide insight into which 

medication state is better suited for this potential intervention.  

The purpose of the current study was to test vividness of MI in individuals with 

PD both “On” and “Off” anti-Parkinson medications, as well as how vividness of MI in 

those with PD compares to healthy older adults. Due to the altered activation of brain 

regions (including the SMA) thought to be associated with motor planning while “Off” 

anti-Parkinson medication, we hypothesized that individuals with PD “Off” anti-

Parkinson medication would exhibit worse vividness of imagery with respect to “On” 

medication. We further hypothesized that the normalizing effects of Levodopa would 

result in similar imagery scores between PD “On” and healthy controls.  

 

METHODS 

Participants  

Twenty eight individuals with PD and 32 age-matched healthy older adults 

participated in the study. Six of 28 PD and 2 of 32 controls were left handed. Thirteen of 

28 PD were more affected on their left side. Exclusion criteria included severe 

orthopeadic problems of upper or lower limbs, deep brain stimulation, and any 
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neurological disorders other than PD. Diagnosis of PD was given by a board certified 

neurologist using the diagnostic criteria for “definite PD” (Racette et al. 1999) and based 

on established criteria (Hughes et al. 1992). All individuals with PD were taking 

levodopa (Mean ± SD Levodopa Equivalent Daily Dose=928 ± 566; range 300-3000) 

when enrolled in the study. Written informed consent was provided by all subjects in 

accordance with the Helsinki Declaration of 1975, and all procedures were reviewed 

and approved by the Human Research Protection Office at Washington University 

School of Medicine. 

Quantifying Imagery  

To assess imagery ability, the Kinesthetic Visual Imagery Questionnaire (KVIQ-

20) was administered to all subjects in a similar manner to that described in Malouin et 

al (Malouin et al. 2007). The KVIQ-20 was chosen as it was designed specifically to be 

administered to individuals with movement disorders (Malouin et al. 2007), and has 

previously been shown to be reliable for individuals with PD (Randhawa et al. 2010). In 

addition, the ease and speed of administration of this test make it attractive as a 

potential tool to screen for ability to imagine.  

The KVIQ-20 includes 10 motions of the neck, shoulders, upper limb, lower limb, 

and trunk. To administer the KVIQ-20, each motion is demonstrated by the tester, and 

then completed by the participant. The participant then imagines the motion and rates 

the vividness of his visual imagery followed by the vividness of his kinesthetic imagery, 

each on a 5 point scale (5=image or intensity as vivid as completing the motion; 1= no 

image or sensation). Each score is recorded by the examiner. Seven of the 10 motions 
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consist of movement of a single limb. For these motions, imagery of both the left and 

right sides were assessed.  

Kinesthetic and visual scores were calculated as the sum of scores from each 

motion, with scores from bilateral motions averaged across left and right sides giving a 

minimum possible score of 0 and a maximum possible score of 50 (10 motions x 

maximum rating of 5). KVIQ-Total scores were determined as the sum of kinesthetic 

and visual sub-scores (maximum possible score = 100).  

For bilateral movements, scores were compared across more and less affected 

sides (PD) and across dominant and non-dominant sides (PD, control). These side-

specific scores were calculated as the sum of kinesthetic and visual scores for one side 

(more affected, less affected, dominant, or non-dominant) across all bilateral 

movements. As there are 7 bilateral movements, with a maximum total KVIQ score of 

10 for each movement (max kinesthetic score =5; max visual score = 5), the maximum 

possible score for these values is 70. For individuals with PD, more and less affected 

side was determined by summing unilateral components of the MDS-UPDRS III. The 

side which accumulated a larger score was deemed the more affected side. 

Individuals with PD were tested two times, while healthy controls were tested 

once. Individuals with PD were first tested “Off” anti-Parkinson medication (>12 hours 

since last dose; a commonly used criterion used to assess PD symptoms “Off” 

medication (Langston et al. 1992; Cunnington et al. 2001; Samuel et al. 2001; Helmich 

et al. 2007; Snijders et al. 2011)). After taking a normal dose of medication, subjects 

waited for approximately one hour, and the KVIQ-20 was administered again. 
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Approximately 2 hours elapsed between KVIQ-20 testing sessions for individuals with 

PD.  

Subjects’ disease severity was assessed by the part III subscale of the 

Movement Disorders Unified Parkinson Disease Rating Scale (MDS-UPDRS III(Goetz 

et al. 2008)), and the Hoehn and Yahr scale (Hoehn and Yahr 1967) both “On” and “Off” 

medication.  

Statistics  

A paired t-test was used to determine the effects of medication on KVIQ-20 

scores. Independent t-tests were used to compare individuals with PD to healthy older 

adults. To determine whether motor severity predicts one’s ability to imagine, Pearson 

correlation coefficients were used to assess the relationship between KVIQ-20 scores 

and motor severity (MDS-UPDRS III and Hoehn & Yahr scale) both “On” and “Off” anti-

Parkinson medication. All measures are noted as mean + standard deviation, unless 

otherwise noted.  

 

RESULTS 

Individuals with PD were of similar age as healthy controls (PD=71.0 ± 8.9; 

Controls=70.3 ± 10.6; p=0.78). Individuals with PD improved MDS-UPDRS III and 

Hoehn & Yahr scores after administration of anti-Parkinson medication (p<0.001 and 

p=0.01, respectively; Table 1), suggesting subjects did see significant benefit from their 

anti-Parkinson medication.  

Similarly to previous investigations (Heremans et al. 2011), no differences were 

observed between dominant and non-dominant limbs for control (p=0.34), PD “Off” 
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(p=0.06), or PD “On” anti-Parkinson medication (p=0.22). In addition, within the PD 

group, no differences were observed in KVIQ between more and less affected limbs 

“Off” (p=0.10) or “On” (p=0.93) anti-Parkinson medication (Table 2). Therefore, imagery 

scores for bilateral movements were each averaged across limbs for each subject.  

Contrary to our hypothesis, there were no statistically significant differences in 

vividness of imagery in people with PD when “Off” or “On” anti-Parkinson medication 

(Table 1). Further, no differences were observed between vividness of imagery in 

healthy older adults and individuals with PD “On” or “Off” anti-Parkinson medication. 

Kinesthetic and visual KVIQ components were also not different across groups. Across 

all subjects, the visual component of the KVIQ-20 was significantly higher than 

kinesthetic component of the KVIQ-20 score (p<0.001). Six of 32 control subjects and 5 

of 28 PD subjects exhibited scores of <20 on either vividness or kinesthetic components 

of the KVIQ. A score of 20 represents an average response of 2 across all tasks, or a 

“blurred image” and “mildly intense” for visual and kinesthetic imagery, respectively. 

Scores on the KVIQ-20 while “On” anti-Parkinson medication were positively 

correlated to KVIQ-20 scores “Off” anti-Parkinson medication (r=0.94, p<0.0001; Figure 

A.1a). KVIQ “On” was negatively correlated to MDS-UPDRS III “On” (r=-0.49, p=0.008; 

Figure A.1b) such that increased disease severity predicted worse imagery. MDS-

UPDRS III “Off” anti-Parkinson medication was not, however, correlated to KVIQ-20 

“Off” (r=-0.31, p=0.11; Figure A.1c). Finally, no relationship was observed between 

KVIQ score and age for PD (r=-.26, p=0.18), control (r=-0.05, p=0.81) or the 

combination of PD and control subjects together, (r=-0.14, p=0.28; Figure A.1d).  
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DISCUSSION 

Dopamine replacement therapies have been shown to be beneficial for reducing 

many of the symptoms of PD (Cotzias et al. 1967). Until now it has been unclear 

whether dopamine replacement impacts MI in people with PD. As many imagery studies 

are carried out with individuals “Off” anti-Parkinson medication, it is critical to determine 

the degree to which individuals with PD can imagine movement while in the “Off” anti-

Parkinson medication state. Our results suggest that in both the “Off” and “On” 

medication states, individuals with PD have similar imagery vividness as healthy older 

adults. This result provides support for MI testing while people with PD are “Off” anti-

Parkinson medication. Further, MI has been suggested as a rehabilitative strategy for 

individuals with neurological disorders (Liu et al. 2004; Page et al. 2007). The ability of 

individuals with PD to imagine “Off” their anti-Parkinson medication suggests this 

potential rehabilitative strategy may be applicable when subjects are “Off” anti-

Parkinson medication state. 

A recent report suggests that although some areas of the brain are less active 

when “Off” anti-Parkinson medications, other areas may be more active, potentially 

compensating for PD-related deficits and contributing to the relatively normal degree of 

imagery vividness noted in the current study (Cunnington et al. 2001). Cunnington and 

colleagues measured brain activation using positron emission topography during 

imagined movements in individuals with PD both “On” and “Off” anti-Parkinson 

medication. Results showed that while there was less activation while subjects were 

“Off” medication with respect to “On” in the left anterior cingulate gyrus, there was more 

activation while “Off” in the left lingual gyrus and the left precuneus. The precuneus has 
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been suggested to be related to preparation of movements (Kawashima et al. 1995; 

Cavanna and Trimble 2006), potentially compensating in part for reduced activation of 

other regions, and helping individuals retain the ability to vividly imagine movements 

while “Off” anti-Parkinson medication. As noted above, individuals with PD tested in the 

current study ranged from mild to moderate. It is possible that individuals with more 

severe PD may be less able to compensate for neurodegeneration, resulting in a loss of 

imagery vividness. Therefore studies to determine the vividness of imagery for those 

with more severe PD symptoms are warranted. 

Our results generally fit well with previous reports on MI in individuals with PD 

(Randhawa et al. 2010; Heremans et al. 2011) and healthy older adults (Malouin et al. 

2007). Two recent studies have measured imagery vividness among individuals with PD 

using the KVIQ-20 while “On” anti-Parkinson medication (Randhawa et al. 2010; 

Heremans et al. 2011). Randhawa and colleagues (2010) reported vividness of MI of 

individuals with PD were slightly higher (better) than those reported in the current study. 

However, this may be due to the fact that subjects in the current study exhibited more 

severe Parkinsonian symptoms (higher MDS-UPDRS III scores) than those of 

Randhawa and colleagues. Indeed, correlation results from the current study suggest 

the possibility that worse MDS-UPDRS III scores may predict worse imagery in PD.  

Heremans et al. (2011) reported KVIQ-20 values for people with PD “On” anti-Parkinson 

medications as well as healthy adults to be worse than those reported in the current 

study. However, similarly to Heremans and colleagues, we observed no differences in 

vividness of imagery between older adults and individuals with PD while “On” anti-

Parkinson medication. Our results further extend the findings of both Heremans & 
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Randhawa, showing that even when “Off” medication, individuals with PD seem to 

retain the ability to imagine movements.  

KVIQ-20 scores “On” and “Off” anti-Parkinson medication were highly correlated, 

suggesting vividness of imagery was quite consistent across medication states. 

Although MDS-UPDRS III “Off” and KVIQ-20 “Off” were not correlated, we did find a 

medium (Cohen 1988) correlation between MDS-UPDRS III “On” and KVIQ-20 “On” 

scores, such that individuals with worse MDS-UPDRS III scores had worse KVIQ-20 

scores. This correlation suggests that ability to imagine may be related to PD motor 

symptom disease severity. Our investigation included only individuals with mild or 

moderate PD. Further studies determining ability of individuals with moderate to severe 

PD are necessary to better understand how PD severity may be related to vividness of 

imagery.  

Across all subjects, age was not correlated with KVIQ-20 scores. This suggests 

that amongst the participants studied in the current investigation, age did not seem to 

play an important role in subjects’ vividness of imagery. This is consistent with a 

previous assessment of KVIQ-20 across age groups (Malouin et al. 2010) which also 

showed age not to have a significant effect on MI. Studies assessing different aspects 

of imagery, such as timing of imagery, have, however, described age-related 

differences in the ability to imagine movements (Personnier et al. 2008; Personnier et 

al. 2010; Gabbard et al. 2011). For example, Personnier and colleagues showed that 

when imagining gait, older adults systematically over-estimated the duration of imagined 

movements with respect to overt motions (Personnier et al. 2010). Together, these 
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results suggest some aspects of MI (timing of imagery) may be altered across age while 

others (vividness of imagery) seem to be retained. 

 Both PD and control subjects in the current study scored higher on visual 

components of imagery than kinesthetic components. This result is similar to several 

previous reports (Atienza et al. 1994; Malouin et al. 2007; Malouin et al. 2008; 

Heremans et al. 2011), and suggests that like healthy controls (Malouin et al. 2007) and 

individuals who have experienced a stroke (Malouin et al. 2008), individuals with PD 

more vividly imagine the visual component of movement than the kinesthetic 

component. Further, results of the current study show that there is no change in this 

relationship with medication. That is, visual scores tend to be greater than kinesthetic 

scores both “On” and “Off” anti-Parkinson medication. 

Several subjects, both control and PD, demonstrated a marked inability to 

imagine movement (<20 on either Kinesthetic or Visual components of KVIQ). However, 

the proportion of individuals who were unable to imagine were similar in control (6/32; 

19%) and PD groups (5/28; 18%). This is in conjunction with previous reports, which 

show a small population of both healthy controls (Malouin et al. 2007) and those with 

PD (Randhawa et al. 2010; Heremans et al. 2011) to exhibit poor imagery ability. 

Together, these results underscore the importance of assessing imagery ability in all 

individuals completing a task requiring MI. 

Limitations 

In the current study it was not possible to counter-balance the order of KVIQ-20 

testing sessions for individuals with PD. That is, participants with PD were always tested 

“Off” medication first, then again “On” medication. It is therefore possible that “On” 
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medication scores may have been biased due to a practice effect. If this were the case 

we may expect an overestimation of imagery vividness on the second administration 

when “On” medication. Despite the possibility of an overestimation of imagery vividness 

while “On” medication, we still found no differences between “Off” and “On” medication 

testing sessions, suggesting that “Off” medication imagery is likely not diminished with 

respect to imagery in the “On” anti-Parkinson medication state.  

We determined the vividness of imagery in people with mild to moderate PD 

(Hoehn & Yahr stages 1-3). In addition, we showed that while “On” medication, imagery 

(KVIQ-20) was negatively correlated to disease severity (MDS-UPDRS III). It is possible 

that our results do not extrapolate to individuals with more severe PD. It therefore 

remains to be determined whether individuals with severe PD and/or cognitive deficits 

are able to effectively imagine movement.  

Conclusions 

Imagery scores while “On” anti-Parkinson medication and after refraining from 

medication for a commonly used period of time (12 hrs) were both similar to healthy 

adults, suggesting anti-Parkinson medication likely does not have a substantial effect on 

vividness of motor imagery for individuals with mild to moderate PD. Although vividness 

of imagery does not seem to be affected by medication levels, the negative correlation 

between UPDRS and KVIQ in the “On” state suggests the possibility that imagery may 

be degraded in individuals with more severe PD. Further research on individuals with 

more severe PD is necessary to more fully understand this relationship. 



 

Figure A.1 : Relationships between: (A) KVIQ “Off” and “On” anti

(B) Disease severity (MDS-UPDRS III) and KVIQ “On” anti

Disease severity and KVIQ “Off” anti

(Regression line and r2 value represents data from all participants; PD data shown is 

“Off” anti-Parkinson medication).
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: Relationships between: (A) KVIQ “Off” and “On” anti-Parkinson medication, 

UPDRS III) and KVIQ “On” anti-Parkinson medication, (C) 

Disease severity and KVIQ “Off” anti-Parkinson medication, and (D) Age and KVIQ 

value represents data from all participants; PD data shown is 

Parkinson medication). 

Parkinson medication, 

on medication, (C) 

Parkinson medication, and (D) Age and KVIQ 

value represents data from all participants; PD data shown is 
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Table A.1:  Demographic and imagery results across groups 

 

Mean (SD). Maximum score of Visual and Kinesthetic sub-components = 50, Maximum 

score of KVIQ-Total = 100 (See Methods). PD “Off” = PD “Off” anti-Parkinson 

medication, PD “On” = PD “On” anti-Parkinson medication, Control = healthy older 

adults. *Paired t-test; #Independent samples t-test 

Variable 
Control 
(N=32) 

PD “Off” 
(n=28) 

PD “On” 
(n=28) 

*P-value: 
PD “On” 
vs.  PD 
“Off” 

#P-value: 
PD “Off” 

vs. 
Control 

#P-value: 
PD “On” 

vs. 
Control 

Age 70.3 (10.6) 71.0 (8.9) - 0.78 
UPDRS-MDS III - 37.6 (9.9) 26.6 (9.8) <0.001 - - 
Hoehn & Yahr 
Stage 

- 2.4 (0.3) 2.2 (0.4) 0.005 - - 

Disease Duration - 6.5 (3.8) - - 
KVIQ – Visual 38.6 (10.9) 34.6 (10.9) 36.3 (11.6) 0.13 0.16 0.42 
KVIQ - 
Kinesthestic 

33.8 (12.2) 31.2 (12.1) 31.8 (13.0) 0.42 0.45 0.59 

KVIQ – Total 72.2 (20.6) 65.8 (22.0) 68.1 (23.3) 0.15 0.25 0.46 
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Table A.2 : KVIQ scores for more and less affected side, and dominant and non-

dominant side.  

 Dominant Non-Dominant More Affected Less Affected 
PD “Off” 45.5(15.6) 47.1(16.2) 45.6(16.4) 47.0(15.7) 
PD “On” 46.8(16.7) 47.7(16.4) 47.3(16.3) 47.3(16.9) 
Control 50.5(15.0) 51.0(14.4) - - 
 

Mean (SD). Maximum score = 70 (See Methods). PD “Off” = PD “Off” anti-Parkinson 

medication, PD “On” = PD “On” anti-Parkinson medication, Control = healthy older 

adults.  
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