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Rapid advancements of techniques for the synthesis of Li-ion battery materials are critically 

needed to address the requirement of a clean and efficient transportation sector. The current 

research serves this goal by developing an approach to producing layered cathode materials with 

superior electrochemical performance for electric vehicles (EVs). Current widespread application 

of EVs is primarily limited by their short range and their high price, which is primarily driven by 

the cost of the battery pack. The cost of the battery pack is driven by the cost of the cathode 

material that empowers it.  

Novel, high throughput and inexpensive synthesis methods delivering nanostructured materials 

are a key to meeting these requirements. The synthesis techniques need to be scalable, robust, 

and reproducible while producing high-density materials for lithium ion batteries. To this end we 

advance spray pyrolysis for the synthesis of the layered NMC composite materials, which are 

showing high promise as a cathode material. Spray pyrolysis produces high purity materials, and 

the limited number of process parameters allows for low cost and excellent control over product 

properties and outstanding batch-to-batch reproducibility.  



xvii 

 

Layered Li-excess composite materials show nearly twice the capacity of commercial LiCoO2 

cells. The materials are inexpensive, have improved safety characteristics and long cycle life. 

Yet, as recently demonstrated, the materials suffer from an inherent layered-spinel phase change. 

This leads to a voltage fade over extended cycling, and this shortcoming needs to be addressed 

before commercial implementation is feasible.  

In this work spherical-shape layered xLi2MnO3·(1-x)LiNi1/3Mn1/3Co1/3O2 composites were 

synthesized. The relationship between composition and material stability under different 

synthesis conditions (350 °C – 800°C reactor temperatures, 0.5 – 2.5 M concentration, 6.6 – 10.4 

lpm flow rates) were explored. We found that from among the compositions corresponding to x 

= 0.3, 0.5 and 0.7, the composition for x = 0.3, or Li1.14Mn0.46Ni0.2Co0.2O2, provides improved 

stability and the least amount of voltage fade while displaying capacities around 190 mAhg-1 

after 100 cycles at C/10 rate at room temperature. At the same time, for x = 0.5, or 

Li1.2Mn0.54Ni0.13Co0.13O2, the material delivers 205-210 mAhg-1 discharge capacities at C/3 rate 

at room temperature after 100 cycles, but displays more voltage fade over cycling.  

This work demonstrated that the major process parameters (flow rate, reactor synthesis 

temperature and concentration) can be accurately controlled and the synthesis method is robust. 

The reproducibility of the process was evaluated using charge and discharge tests and the 

standard deviation for cycling tests was 4 mAhg-1 at C/3 rate based on 4 batches produced under 

identical conditions on different dates. This indicates excellent batch-to-batch reproducibility.  

Post-synthesis annealing temperature optimization was performed for cobalt doped samples at 

850 °C and 900 °C and we found that annealing for 900 °C for 2 hours improves the cycling 
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stability of the samples. We evaluated the effect of lithium content between 3.3 wt% excess and 

3.3 wt% deficiency and annealed the materials for 2, 5 and 20 hours at 900 °C. This helped 

develop a fundamental understanding between surface area and internal structural changes 

related to the Li2MnO3 structural component of the materials. Spray pyrolysis uniquely allows 

for the accurate control of stoichiometry and composition to trace contaminant level at these 

concentrations. 

Furthermore, through a collaborative research between Argonne National Laboratory, X-Tend 

Energy, LLC and Washington University in St. Louis a novel, highly scalable patent-pending 

slurry spray pyrolysis process was developed, which allows the production of battery materials 

with excellent electrochemical performance and provides a general platform for oxide materials 

at greater than 50 gh-1 scale. This unique process is the only known solution to the hollow sphere 

issue that has challenged spray pyrolysis synthesis for decades, namely producing particles 

greater than 2 m size with a solid (non-hollow) but porous interior morphology. Tap densities 

greater than 1.0 gcm-3 are achieved at greater than 50 gh-1 scale as compared to 0.4-0.6 gcm-3 at 2 

gh-1 scale. Li1.2Mn0.54Ni0.13Co0.13O2 produced by this novel process delivered ~205 mAhg-1 

discharge capacity after 100 cycles at C/3 rate at room temperature, reproducing the 

electrochemical performance of the laboratory scale synthesis process and meeting or exceeding 

the performing of materials produced by co-precipitation.  

Voltage fade was addressed in the latter part of the work by varying the compositional ratio and 

using trace elemental doping. Results demonstrated for the first time that by selectively doping 

the xLi2MnO3·(1-x)LiNi1/3Mn1/3Co1/3O2 materials voltage fade can be reduced, as indicated by 

dQ/dV curves.  



xix 

 

The spray pyrolysis process for xLi2MnO3·(1-x)LiNi1/3Mn1/3Co1/3O2 materials, in particular for 

layered Li1.2Mn0.54Ni0.13Co0.13O2 displayed the highest capacity (c.a. 205-210 mAhg-1 after 100 

cycles at C/3 rate at room temperature) among all cathode materials synthesized via spray 

pyrolysis to date.  
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Preface 

 

Energy supply has become critical to maintain sustainable global development in the 21st 

century. With the rapidly growing economies and populations there is an increasing global 

demand for energy, especially crude oil. According to the Energy Information Administration 

(EIA), the U.S. consumed approximately 18.6 million barrels of oil per day in 2012, 40% of 

which was imported primarily from the Western Hemisphere (Canada). The consumption of 

petroleum in transportations leads to the emission of greenhouse gases, which have adverse 

effects on global climate. Electric vehicles have the potential to reduce the petroleum 

consumption by introducing vehicles that have zero tailpipe emission when combined with 

carbon neutral energy generation. Lithium-ion batteries are also projected to play a role in grid 

scale stationary storage, enabling the effective use of renewable energies.  

In recent years, the primary focus of Li-ion battery research has been to develop new materials 

and new chemistries, which deliver higher energy density, high power and long cycle life for 

Plug-In Hybrid Electric Vehicle (PHEV) and Electric Vehicle (EV) applications. Due to the 

advancement of battery technologies, EVs are now a commercial reality. Several new models 

were launched over the past 3 years using lithium ion battery packs. Tesla Motors manufactures 

EVs, such as the Roadster and Model S, that offer a competitive mileage range to gasoline-

powered vehicles at a sticker price of about 100,000 USD. These vehicles primarily use lithium 

transitional metal oxide material (e.g. NCA) for their batteries. The current demand for these 

vehicles is so high that Tesla Motors recently announced that besides partnering with additional 
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battery manufacturers to diversify their battery supplier portfolio, they will establish their own 

battery production facility. Rimac Automobili created an EV sports car using LiFePO4 based 

chemistries for their battery packs, with a price tag between 800,000 – 1,000,000 USD. Nissan 

Motors manufactures the Leaf, having a 70 mile/charge range, but they have announced 

improvements to their transitional metal oxide batteries to extend the range of the vehicle. 

PHEVs are becoming commercially available as well with the Chevrolet Volt and the Toyota 

Prius Plug-in Hybrid, for example. Current widespread application of PHEVs and EVs is either 

limited by their range or by their price, which is primarily driven by the cost of the battery pack. 

A leading driver of the high cost is the cost of the cathode material.  In general, current batteries 

use inexpensive graphite anodes. Besides these issues the lifetime of the battery pack of an EV is 

expected to be 8 years compared to the average 15-year life expectancy for a gasoline powered 

engine. Currently no materials exist that satisfies all three criteria of energy density, cost and 

lifetime. Novel, high throughput and inexpensive synthesis methods that can deliver state-of-the-

art nanostructured materials are a key to meeting these criteria.  

This research applies spray pyrolysis to produce high-quality layered cathode materials to meet 

the above-mentioned goals and improve the performance of the layered chemistry.  
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 “I wonder often whether any other generation has seen such astounding revolutions of data and 

values as those through which we have lived. Scarcely anything material or established which I 

was brought up to believe was permanent and vital, has lasted. Everything I was sure or taught to 

be sure was impossible, has happened.” 

 

- Winston Churchill: My Early Life: A Roving Commission 

(1874-1965) 

 

 

  

http://en.wikipedia.org/wiki/My_Early_Life
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Chapter 1 

Introduction 
1.1 Demand for Li-ion Batteries 

Due to their high theoretical and practical energy density, lithium-ion batteries are attractive 

power sources for portable consumer electronic applications, Plug-in Hybrid Electric Vehicles 

(PHEVs) and Electric Vehicles (EVs). Since the demonstration of a reversible cathodic 

electrochemistry in layered LiCoO2 by Goodenough et al. and its introduction in a commercial 

cell by Sony in the early 1990’s, the Li-ion battery industry rapidly expanded both in research 

and market because of the high volumetric and gravimetric energy density delivered by these 

cells compared to other battery technologies, as shown in Figure 1 1, 2. Li-ion batteries are 

considered the most attractive choice of electronic energy storage for portable electronics, 

transportation and grid scale energy storage devices, as demonstrated by the vast number of 

papers published in the field 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16.  

 

Figure 1 - Comparison of energy density of different battery technologies 12. 
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For grid scale energy storage different technologies, such as molten salt batteries (e.g. sodium-

beta alumina), pumped hydro and Compressed Air Energy Storage (CAER) technologies are 

being developed to compete with industrial scale lithium ion battery storage plants 5, 17, 18. 

Recently, the idea of recycling depleted EV batteries in grid scale applications has surfaced to 

find a potential use for the expensive battery packs, but these are preliminary discussions. An 

alternative technology for grid scale storage is presented by redox flow batteries 19. These 

technologies are currently under development and may hold the potential of revolutionizing 

renewable energy storage and load leveling at grid scale.  

Currently, the main driving force for the rapid development of Li-ion battery technologies is the 

need for batteries for PHEVs and EVs. PHEVs allow for mileage in a fully electric mode and 

have a gasoline engine to mitigate the range criteria. For example Toyota’s Prius Plug-in Hybrid 

has a small, 12 mile range in a fully electric mode, while the Chevy Volt offers 35 miles on a 

single charge. Such a battery needs to supply high energy with weight and volume constraints for 

long-range driving, and it needs to be functional after 5,000 deep cycles (≥ 50% state of charge, 

SOC) for EVs and 300,000 cycles for PHEVs. EVs do not include a gasoline engine. Therefore 

either they need to be recharged once the battery is depleted or as an alternative solution the 

battery pack needs to be “swapped” to extend the range. Beyond the range and the cycleability 

criteria the batteries need to meet strict safety standards (including environmental safety 

concerns), need to be inexpensive to allow widespread commercial application and need to be 

lightweight. Figure 2 summarizes the major development goals for PHEVs and EVs. 
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Figure 2 – Summary of the primary development goals for PHEVs and EVs. 

Recently, several EVs were successfully introduced to the market. The Nissan Leaf offers a 75 

mile range per charge starting at 30,000 USD, which is a competitive range typically in urban 

environments. The Tesla Model S and Roadster can be purchased with an 85 kWh battery pack 

that offers a 265 mile driving range starting at 100,000 USD, which is the only known fully 

electric vehicle with such a range. Clearly these costs cannot compete with other inexpensive 

gasoline powered vehicles and further advancement of the battery technologies primarily on the 

manufacturing side are needed to allow widespread commercial implementation. 

 

1.2 Lithium-ion Battery Basics 

Lithium ion batteries are comprised of an anode and a cathode, separated by a porous separator 

membrane (see Figure 3). In a lithium battery, Li ions migrate repeatedly between the anode and 
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cathode. During charge for the intercalation compounds, which are currently the most widely 

used chemistries, the lithium ions migrate from the cathode and deposit on the anode, while 

electrons migrate in an external circuit. The entire process is reversed during discharge. During 

charge, energy is consumed from an external power supply and this is almost completely utilized 

during discharge (except for, for example, parasitic losses and thermal effects, which decrease 

efficiency). In commercial batteries the anode materials are almost exclusively carbon (graphite) 

based materials. While other materials, such as lithium titanate (Li4Ti5O12), metallic lithium, 

silicon anodes and graphene have been widely researched, none of these competing technologies 

has reached maturity yet 20, 21, 22, 23, 24, 25, 26, 27. Cathode materials are typically transition metal 

oxides, such as layered Li[M]O2 (M = Co, Ni, Mn), spinel Li[M’]2O4, olivine-type Li[M”]PO4 

(M” = Fe, Mn) and their derivatives 28, 29.  
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Figure 3 - A schematic representation of a lithium ion battery 5. 

 

The intercalation/de-intercalation reaction is the most important reaction mechanism for Li-ion 

rechargeable batteries, and involves the insertion of Li ions into interstitial sites in the crystal 

without changing the basic crystal structure. Intercalation chemistry for Li-ion battery systems 

was first proposed by M.S. Whittingham 30. The intercalation reaction ideally is a reversible 

process, where Li ions can be repeatedly extracted and reinserted into the host materials without 

any structural degradation. The insertion reaction normally occurs when the host has an open 

framework or a layered-type crystal structure. Typically Li resides in the interstitial sites while 

the host framework primarily consists of transitional metal ions.  
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1.3 Anode Materials for Li-ion Batteries 

Lithium metal anodes are typically used for the initial development of both lithium ion battery 

anodes and cathodes as an “infinite” source of lithium compared to the other electrode’s 

capacity. Often anode host structures are synthesized without the lithium and then lithium is 

subsequently inserted during the initial discharge. Commercial application of lithium metal 

anodes is limited primarily because of safety limitations associated with dendrite formation and 

its reactivity with organic electrolytes. Lithium air batteries (as discussed below) try to develop 

integrated solutions for lithium anodes as well, however to date the necessary breakthroughs 

have not been obtained 31, 32, 33.  

Carbon, specifically graphite, has been extensively studied as an anode material due to its 

extremely low cost, excellent safety characteristics and availability. The practical capacity of the 

graphite electrode is about 372 mAhg-1 and allows the intercalation of one Li ion per six carbons 

(LiC6). Graphite’s electrochemistry is also based on the intercalation mechanism. Similar to 

more advanced cathode materials, graphite also forms a surface electrolyte interface (SEI) during 

cycling, which adds to the capacity fade mechanism of the cell. The capacity fade mechanisms 

have been extensively studied and the understanding of these nanoscale phenomenon 

considerably improved over recent years 34, 35, 36, 37, 38, 39, 40, 41. A variety of carbon-base materials 

anode materials, such as carbon fibers, carbon nanotubes, mesocarbon microbeads (MCMB) and 

graphene nanosheets were also studied to improve the Li to carbon ratio and improve the 

capacity of the anode material 22, 23, 42, 43, 44, 45, 46, 47, 48. Another attractive anode material is 

elemental silicon, which offers a tenfold increase in capacity (~4,200 mAhg-1) compared to 

carbon based anodes 20, 22, 26, 49, 50, 51. Si can intercalate 4.4 Li ions per Si atom 50. Due to the 
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resulting negative charge repulsion the material undergoes extreme expansion (300-400 %) 

during a single charge, which causes severe cracking that leads to delamination of the electrode 

over cycling 52. Current research focuses on nanostructured morphologies to improve cycleability 

of the material 49, 50, 53. A novel, scalable approach was recently developed by Nexeon Co. in the 

UK for the production of columnar silicon anodes and is being commercialized showing high 

potential for this material. 

 

1.4 Cathode Materials in Li-ion Batteries 

Olivine-type lithium iron phosphate (LiFePO4) is considered to be one of the safest cathode 

materials for large-scale applications. Olivine-phase LiFePO4 was first discovered by Padhi, et 

al. in 1997, synthesized by a solid-state reaction 54. The material is very stable, however as the 

material is essentially an insulator, significant challenges were present related to its application. 

LiFePO4 has a medium theoretical capacity of 170 mAhg-1, which can be activated when 

synthesized by various techniques with a nanostructured, carbon-coated morphology. The 

material has a flat voltage plateau at 3.5 V versus Li/Li+. Once a novel method of production was 

developed by Chiang et al at MIT, the material was successfully commercialized via A123 

materials and received significant funding as an early target material for automotive applications 

55, 56, 57, 58, 59, 60, 61. Alternative synthesis technologies (including spray pyrolysis and hydrothermal 

synthesis) that involve intimate mixing with carbon to improve the conductivity were 

successfully developed and as demonstrated by Rimac Automobili, may find application in the 

EV industry. Primary development of these materials focuses on grid scale applications due to its 

mediocre capacity.  



9 

 

LiCoO2, the most well-known layered cathode material was originally developed by 

Goodenough et al. in the 1980s 1. LiCoO2 is iso-structural to α-NaFeO2 (R�̅�m symmetry) with 

oxygen atoms in a cubic-close-packed (ccp) arrangement (Figure 4). In the ideal layered 

materials, Li and Co atoms occupy the octahedral and interstitial sites 62, 63. During charging after 

50% of the Li is extracted from the cathode Co+4 atoms form, which may react violently with the 

organic electrolyte and lead to thermal runaway as observed by various battery abuse tests (ARC, 

punctuation tests) 64. This limits the practical capacity of layered LiCoO2 to ~ 140 mAhg-1 

compared to the theoretical 280 mAhg-1. Various studies focused on stabilizing this material by 

doping with Ni and Mn, however without changing the chemistry substantially no significant 

improvements were achieved. This limits LiCoO2 to portable electronic application and does not 

permit PHEV /EV implementation. 
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Figure 4 – Ideal structure of lithium cobalt oxide. The purple dots represent lithium ions in the interstitial 

sites, while the octahedra represent the cobalt atoms (from http://en.wikipedia.org/wiki/File:Lithium-cobalt-

oxide-3D-polyhedra.png) 

LiMnO2 is thermodynamically stable compound, however upon cycling it converts to a spinel 

material, which has poor cycling performance primarily due to the disproportionation and 

subsequent dissolution of Mn+3 62, 63. LiMnO2 and similar oxides represent a widely researched 

class of cathode materials with similar derivatives, such as LiNi0.5Mn1.5O4 being candidate 

materials for high voltage spinel materials 65, 66, 67, 68, 69, 70, 71, 72, 73. One of the key challenges is 

identifying a stable electrolyte that will not decompose and allow the utilization of the 5 V 

voltage plateau of these materials. Li2MnO3 is an alternative layered-type material with rock-salt 

structure and has a theoretical capacity of ~ 458 mAhg-1 74, 75, 76, 77. The material cannot easily be 

activated (electrochemical or chemical methods may be necessary) and upon cycling fades 

rapidly as demonstrated by recent studies performed at Sanyo 78, 79, 80. By “combining” Li2MnO3 

with LiMO2 (where M=Mn, Ni, Co, etc.) structural components “composite” materials may be 

http://en.wikipedia.org/wiki/File:Lithium-cobalt-oxide-3D-polyhedra.png
http://en.wikipedia.org/wiki/File:Lithium-cobalt-oxide-3D-polyhedra.png
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formed delivering capacities in excess of 200 mAhg-1 80, 81, 82, 83. Figure 5 shows a schematic 

diagram of the integrated structural components as proposed in reference 84. 

 

Figure 5 Layered structures of (a) Li2MnO3, (b) LiMO2 (M= Mn, Ni, Co) from 84. 

Originally, when the materials were designed the Li2MnO3 was primarily considered to be 

electrochemically inactive and to play a stabilizing role in the structure. Several excellent papers 

were published and a co-precipitation and a solid state synthesis route was pioneered out of 

Argonne National Laboratory by Thackeray, Dahn, Manthiram and others 84, 85, 86, 87, 88, 89, 90. 

These studies revealed that by charging the material to greater than 4.6 V vs. Li the Li2MnO3 

component becomes electrochemically active thus delivering capacities in excess of 250 mAhg-1 

reproducibly. To date the exact details of the activation process are not known, although 

extensive studies indicated that it is coupled to a virtual loss of “Li2O” from the structure 91, 92, 93, 

94, 95. Recent modelling and simulation work further developed the understanding of the 

activation process and structural ordering in the materials 96, 97, 98, 99. The materials have often 

been referred to both being layered-layered composites and layered-spinel composites. During 

this thesis the composites will be termed layered-layered composites, although it is understood 

that the structure is more complex.  

When synthesized by co-precipitation the materials demonstrate excellent electrochemical 

properties, although the reproducibility of the process is questionable, particularly at large scale. 
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To improve the electrochemical properties and capacity retention nanostructured and core-shell 

structured materials were tested, but overall none of these improved the capacity retention 

significantly 100, 101, 102, 103, 104, 105, 106, 107, 108. Surface treatment primarily with LiNiPO4 and F-

based materials achieved partial success in improving the electrochemical performance but these 

processes are often complicated, add complexity to the synthesis and are not always scalable e.g. 

if aluminum coating is applied by PVD methods 85, 96, 109, 110, 111, 112.  

 

Figure 6 – Voltage fade of Li1.2Co0.1Mn0.55Ni0.15O2 over 1500 cycles at room temperature 113. 
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Over cycling the materials display a voltage fade over that is caused by an internal layered-spinel 

phase change (see Fig. 6) and has been studied extensively recently 113, 114, 115, 116, 117, 118. As of 

this writing the voltage fade is speculated to be a layered-spinel transition occurring due to the 

complicated structure of the materials and causes an overall loss of power, which needs to be 

addressed before commercial implementation of these materials is possible. To date the only 

know solution is that demonstrated by Tarascon et al. and lies with the development of similar 

chemistries 119. Recently, our group achieved partial success for the chemistries as discussed in 

Chapter 6 120. Therefore, demonstrating a scalable, reproducible synthesis method and improving 

the stability of these materials is of great importance and will be the primary focus in the 

following chapters.  

1.5 Batteries beyond conventional lithium ion chemistries 

This section will briefly discuss a few chemistries, which offer advantages vs. conventional 

lithium ion batteries either in terms of safety or energy density. 

Intercalation chemistries can be obtained by other small elements similar in size to lithium, 

which can occupy interstitial sites in the host’s lattice without altering it significantly. 

Magnesium represents such an example and magnesium batteries are intensely researched by 

Aurbach et al 121, 122, 123. Advantages of a magnesium based battery include the safety, stability 

over cycling as no SEI layer forms from the electrolyte due to the lower working potential due to 

the reduced reactivity and oxidizing nature of magnesium. The low operation voltage yields 

lower energy density and the diffusion coefficient of magnesium in the primarily Mo based 

structures is low. Finding a scalable synthesis method poses another challenge due to the 

metastable phases, which are currently used in the prototype materials.  
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Lithium sulfur batteries were proposed several decades ago due to the extremely high potential 

energy density (1675 mAhg-1) that can be obtained with combining sulfur and lithium 124. 

Several challenges exist for this battery configuration. First, elemental sulfur is an insulator and 

with no mechanism to prevent it, agglomeration of sulfur and surface precipitation lead to rapid 

capacity fade due to deactivation of the active material. The insulating nature of sulfur causes 

low rate capability. A shuttling mechanism that allows sulfur to pass through the separator 

membrane from the cathode to the anode side also leads to the loss of active material on the 

anode. 

Recently, with advanced synthesis techniques allowing more elaborate carbon structure 

formation tunnel and graphene type structures were developed by Cairns et al., Nazar et al. and 

Scrosati and coworkers 125, 126, 127, 128, 129, 130. These advanced graphite host structures provide an 

inexpensive host, encapsulate the sulfur and the charge / discharge product and reduce the 

shuttling mechanism. Due to these recent advancements 1500 cycles were successfully 

demonstrated and these materials are becoming more attractive candidates for 

commercialization, with companies such as Oxis Energy (UK) and Sion Power (Tucson, AZ) 

evaluating commercial implementation. 

Lithium-air batteries (including other metal air, such as Zn-air batteries) received extensive 

interest over the past several years due to the high capacity that could be obtained by reacting 

lithium with oxygen. A lithium-air cell offers significant weight advantages with no active 

cathode material stored and the highest energy density that could easily compete with gasoline 

based vehicles. Depending on the calculation the materials may offer capacities in excess of 

4000 mAhg-1. Fundamental challenges still exist and will need to be addressed before 
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commercial implementation is possible and a brief overview of these challenges is provided 

based upon several reviews 25, 31, 32, 131, 132, 133, 134. 

The first major challenge is that to date it has not been demonstrated unambiguously, that Li can 

reversibly combine with oxygen and form either Li2O or Li2O2. The proposed lithium air cells 

either use aqueous electrolytes or organic electrolytes and a metallic lithium anode, which 

already represents significant challenges related to the safety of the cell. In case of aqueous 

electrolytes an additional protective membrane is required, while organic electrolytes typically 

easily decompose under such an oxidizing environment and most of the reviews cite this as the 

main reaction instead of the desired recombination of lithium with oxygen. No active cathodic 

catalyst has been developed and advanced synthesis techniques controlling the pore size and 

surface area are necessary to advance the technology. If the reaction would be supplied by air 

instead of oxygen, the air needs to be prepurified, while adding an oxygen tank would 

significantly complicate the setup and increase costs. It is understood that significant research 

needs to be done for all the battery parts (cathode, anode, separator, electrolyte) before such a 

cell can reach maturity. 

1.6 Overview of Synthesis Processes for Cathode Materials 

This section will briefly discuss the numerous synthesis methods that are currently being studied 

for the production of battery materials. Solid-state reactions are widely used due to their 

simplicity and ease of scale-up. Layered LiCoO2, spinel-LiMn2O4 and olivine-type LiFePO4 

were initially synthesized via solid-state reaction 1, 68, 135. Solid-state reaction has been widely 

applied for the synthesis of lithium transition metal oxides and other battery materials 136, 137, 138, 

139, 140, 141, 142. Ball-milling is an alternative version of solid-state reactions 112, 143. While the 
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simplicity is clearly an advantage, the long processing times, the difficulty of controlling 

morphology and impurity phases pose significant challenges to delivering robustness and 

reproducible, high quality products. Freeze-drying represents another derivation of solid state 

synthesis posing similar challenges 144. 

Wet-chemistry processes, including the state-of-the art co-precipitation process for the 

production of layered cathode materials, require solvents and additives to produce the cathodes. 

A variety of materials can be produced via wet-chemistry processes including layered LiMO2 

(M=Li, Co, Mn, Ni etc), spinel LiMn2O4, olivine LiFePO4 and silicates. Wet chemistry processes 

allow us to produce various morphologies due to the different complexing agents used (see Fig. 

7) 83, 145, 146, 147, 148, 149, 150.  

 

Figure 7 - Effect of triethyl citrate concentration from aqueous solution precipiation 150. 
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Sol-gel methods are very similar, the major difference being that a sol is formed, which turns 

into a gel and then is heated to high temperatures (> 300 °C) to form the product. The organic 

gelation agents and surfactants increase the manufacturing cost significantly, which limits the 

commercial potential of the process 151.  

Recently the Dahn research group developed a combinatorial chemistry approach for the 

production of battery materials 152. This high throughput screening method is more typically 

applied in the pharmaceutical industry for drug discovery, however as demonstrated by Wildcat 

Technologies in San Diego, CA, it may lead to novel battery materials as well.  

A molten salt synthesis method represents a transition between wet chemistry processes and 

solid-state processes. The method was successfully applied for producing layered cathode 

materials, although it is expected that the high temperature process would significantly increase 

manufacturing costs 153. 

Recently, a co-precipitation process originally developed by Argonne National Laboratory for 

the synthesis of layered cathode materials was licensed by Envia Systems, Toda America and 

General Motors for producing layered cathode materials 88, 105, 149, 154, 155. The materials 

demonstrated excellent electrochemical performance if the desired phase is formed, however the 

process has known issues with reproducibility due to the lack of accurate control of system 

variables (pH, precipitating agents, etc.). This may lead to different colors due to phase 

separation, i.e., Li2MnO3 phase, which are detrimental to the electrochemical performance. The 

process requires high temperature heat treatment to perform post-synthesis lithiation combined 

with annealing and several purification steps are necessary to reduce the contaminations of the 

product.  
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Wet-chemistry and solid state processes often consist of multi-steps requiring precise control 

over precursor chemistry, reaction temperature and pH as well as long-annealing times are 

required at high temperatures. While some of these parameters can be tolerated and eliminated 

over scale up, a simple aerosol based process may offer a solution to most of these challenges. 

Aerosol based synthesis methods became popular for the production of electrochemically active 

materials. The term aerosol generally means small particulates suspended in gas phase. Particles 

can be spherical, fiber-like, or irregular shaped and can have dense or hollow interior. Compared 

to other processes aerosol-based processes provide a scalable approach to produce 

nanostructured powders with narrow size distribution reproducibly in an inexpensive method.  

Aerosol methods involve gas-to-particle reactions and liquid-droplet-to-particle reactions for 

powder synthesis. Gas-to-particle processes are more prevalent for single component oxides 

typically used in chemical vapor deposition (CVD) and physical vapor deposition (PVD) 

processes. This research will focus on the liquid droplet-to-particle synthetic route for the 

production of layered transitional metal oxides using the spray pyrolysis process originally 

developed by Zhang 156. Spray drying and flame spray pyrolysis are also often discussed in the 

literature for producing electrochemically active materials 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 

168.  

During spray pyrolysis the short residence time in the reactor allows large throughput; the 

process is scalable; no further post-synthesis purification steps are required; batch-to-batch 

reproducibility is excellent and the contamination profile of the product meets or exceeds the 

purity of the precursor. The mesoporous morphology of the product allows complete activation 
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of the material. These properties coupled to the excellent electrochemical performance show 

great potential for future implementation. 

Spray pyrolysis reactions proceed through the following basic steps: (1) droplet formation; (2) 

transport of the droplets into a high-temperature environment; (3) evaporation of the solvent; (4) 

thermal decomposition to form products (schematic provided in Figure 8). These steps involve a 

wide range of physical and chemical processes (evaporation, sintering, diffusion, decomposition, 

combustion, etc.).  

 Figure 8 – Stages of spray pyrolysis 169 

Spray pyrolysis has its technical challenges: phase segregation and morphology control. 

Morphology control primarily consists of the ability to influence the interior hollowness of the 

product powder during particle formation 169, 170, 171. This affects macroscopic properties, such as 

the tapped density of the material, which affects the energy density.  

During the initial formation of the particles the precursor droplets may undergo rapid drying, 

which can lead to surface precipitation instead of volume precipitation, resulting in a hollow 

interior 169, 172, 173. Similarly, due to rapid gas evolution following the decomposition of the 

precipitated salts an impermeable melt may form, and thus the particles can be “inflated”, which 

can also lead to a hollow interior 169, 172. High temperature densification can be used to reduce the 
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hollowness of the product powders to some extent, although this will lead to increased sintering 

of the primary particles and will not prevent hollow sphere formation for particles greater than 2 

m 174.  

Several experimental and modeling studies were established primarily for single component 

oxides to overcome hollow sphere formation. For single component oxides Jain et al. found that 

melt formation during precipitation may be a critical criteria to judge the ability of solid or 

hollow interior formation 170. By changing the concentration of the precursor solution partial 

success was obtained for barium titanate particles 175, 176. Hydrolysis assisted spray pyrolysis was 

also partially successful for CeO2 powders, but adding a precipitating aid may initiate phase 

segregation in multi-component oxide materials 177. Solid silver particles were successfully 

produced by complexing Ag atoms with NH3 
178. These studies demonstrate that in order to 

overcome and prevent hollow shell formation the fundamental solution phase cluster formation 

needs to be affected in the precursor solution. Grinding the as-synthesized particles and 

combining spray pyrolysis and spray drying allowed Taniguchi and coworkers to demonstrate 

partial success in obtaining particles with a solid interior morphology as well 179. 

Phase segregation can occur during the formation of the particles, when due to the different 

chemical nature of the components, they precipitate at different times during the solvent 

evaporation phase of particle formation 169, 172, 180. To date no report indicates that the 

electrochemical performance of cathode materials synthesized by spray pyrolysis would be 

compromised by phase segregation. 
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Spray pyrolysis methods have been reported to produce layered LiCoO2 
181, 182, LiNiO2 

183, spinel 

LiMn2O4 
168, 184, 185, 186, 187, 188, 189, 190, LiNi0.5Mn1.5O4 

167, 191, 192, 193, 194, 195, olivine LiFePO4 

powders 196, 197, 198, 199, layered composite materials 156, 200, 201, 202 and other electrochemically 

active materials, such as semiconductors 170, 171, 172. The advanced, nanostructured morphology of 

materials prepared by spray pyrolysis allowed the materials to display equal or improved 

performance compared to materials synthesized by other methods due to the high purity of the 

products 203, 204. 

1.7 Objectives and Dissertation Outline 

The objective of this dissertation is to advance the spray pyrolysis method for layered composite 

materials and to further develop our understanding of the process and the materials, and to 

improve capacity fade properties, cycle life and capacity retention. In addition, a goal of this 

work is to identify a path to overcome the voltage fade associated with these materials. Parallel 

to these efforts the scale up of the process will be studied with the goal of increasing the 

production rate to greater than 10 gh-1 as well as to overcome hollow sphere formation and 

increase the tap density of the materials.  

With these objectives, the dissertation will have five chapters. Chapter 2 will discuss the 

methodology and experimental apparatus in detail. Chapter 3 will focus on compositional 

variations of xLi2MnO3(1-x)LiNi1/3Mn1/3Co1/3O2. Using the optimal composition identified, 

Chapter 4 will discuss the effects of synthesis properties on the electrochemical performance of 

layered materials. Chapter 5 will address the effects of surface area, lithium content and 

annealing conditions. Chapter 6 will show results related to the voltage fade and doping. Chapter 
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7 will discuss the results related to scale up of the process and overcoming hollow sphere 

formation.   
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Chapter 2 

Research Methodology 

 
2.1 Powder Synthesis – Spray Pyrolysis 

Throughout the thesis spray pyrolysis or slurry spray pyrolysis will be used for the production of 

lithium ion battery cathode materials. During spray pyrolysis the particles’ size distribution and 

morphology are defined by the atomization method. Prior work indicates that the chemistry of 

precursor salts, additives and the synthesis conditions can have some effects on the secondary 

particle size of the product 169, 170, 171, 172, 173, 176, 178, 180, 205. The hollowness of the powder above 2 

m size can sometimes be mitigated, but previously no work discussed an ultimate solution to 

the problem. Typical atomization techniques use atomizers, nebulizers and various spray nozzles 

(high pressure nozzles, rotary atomizers, two-fluid nozzles). When the droplets enter the furnace 

the solvent rapidly evaporates, the salts precipitate and form a solid or hollow shell like structure. 

Before entering the hot furnace reactor, the precursor droplets enter a low-temperature 

evaporator, which allows the slow evaporation of water. This effect is more prominent for 

smaller droplets, which are typically generated by atomizers, such as a BGI Collison jet 

atomizer. For larger droplets synthesized by an ultrasonic nebulizer the drying temperature’s 

effect did not have a beneficial contribution to reduce the interior hollowness. 
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Figure 9 - Schematic diagram of the tubular furnace reactor setup: (1) Bubbler; (2) Ultrasonic nebulizer; (3) 

22 inch long preheater; (4) Thermocouple; (5) Ceramic tube; (6) Temperature controller; (7) Porous 

membrane filter. 
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The aerosol flow reactor (AFR – Fig. 9) consists of a preheater that is maintained at a constant 

200 C wall temperature and a ceramic flow reactor maintained typically at 575 C wall 

temperature unless otherwise indicated. Typical residence time in the system was 6 seconds, 

which corresponds to 6.6 lpm flow rate. The ultrasonic nebulizer (Sonaer Inc.) requires a special 

swirling air motion at the inlet to entrain the generated droplets in the flow. Below this flow rate 

most of the generated droplets fall back to the nebulizing chamber and particle production is 

minimal.  

Modelling of the elemental steps of particle formation is beyond the goals of the current thesis. 

The drying rates for a typical droplet were estimated according to results reported in Aerosol 

Technology for droplets and a comprehensive modelling study 206, 207. Based upon these sources 

the droplet evaporation rates and times in the hot furnace reactor are in the order of 109gs-1 and 

10 ms, respectively. These short time frames indicate that the initial droplet formation will 

primarily determine the shell formation tendency of the droplets.  

The droplet size of the ultrasonic nebulizer is primarily determined by the Lang-equation 174, 208: 

𝑑𝑑 = 0.34 (
8𝜋𝛾

𝜌𝑓2
)
1 3⁄

 

where andpresents the density and f the frequency of the ultrasonic crystal. This equation 

can be used to estimate the final particle size, for example using the procedure reported in 209: 

𝑑𝑝 = 𝑑𝑑 (
𝑐𝑝𝑟𝑀𝑝

𝜌𝑝𝑀𝑝𝑟
)

1/3



Where cpr is the concentration of the solute in a precursor, Mp and Mpr are the molecular masses 

of the precursor and the final products and p is the density of the product. 
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Figure 9 shows that the aerosolized precursors first enter the preheater followed by the hot 

furnace reactor, where the precursors decompose to form the as-synthesized powders. The gas 

temperature at the exit of the hot furnace reactor is also monitored and is typically maintained 

between 490-510 °C. The powder is collected downstream of the reactor using porous, 

polycarbonate membrane filters and vacuum. To control the moisture level of the air entering the 

system near the exhaust additional compressed and pre-dried air is supplied. The precursor 

solution is prepared by dissolving typically the appropriate amounts of Li, Ni, Mn and Co 

nitrates in ultrapure (18.6 M water and stirring the solution at room temperature until 

complete dissolution is achieved. 

 

2.2 Annealing heat-treatment 

In order to obtain the desired, highly crystalline materials an annealing heat treatment was 

necessary. In Chapter 4 the effects of reactor synthesis temperature are discussed in details. 

When the synthesis temperatures were below 575 °C the powders were hygroscopic due to the 

presence of unreacted lithium nitrate in the powder. Above 575 °C the nitrates fully decompose 

although the primary particle sizes are small. Therefore the as-synthesized materials are typically 

subject to a short annealing heat-treatment at temperatures between 800-900 °C for 2 hours to 

improve the crystallinity of the samples in a box furnace (Thermal Product Solution). A typical 

annealing heat treatment will proceed as follows: 1 hour 20 minutes of ramp up to 900 °C (~ 

10 °Cmin-1 heating rate), 2 hours hold at 900 °C followed by 4 hours and 20 minutes of cooling 

(~ 3 °Cmin-1 cooling rate). The cooling typically proceeds slower at the low temperatures due to 

natural convection.  
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Alternative solutions to increasing the primary particle size have also been reported for lithium 

ion battery cathode materials. By extending the hold time in the aerosol phase as in case of 

applying a fluidized bed reactor the primary particle coarsening can be improved, such that no or 

reduced annealing heat treatment is necessary to obtain good electrochemical performance 210, 

211. 

 

2.3 Particle Size Measurements 

The particle size distribution is an important characteristic of powder products. In situ aerosol 

measurements are indicative of final product properties and were measured with an electric low-

pressure impactor (ELPI - DEKATI). Preliminary studies were performed using a Welas 2100 

aerosol particle sizer (APS Palas Instruments) and an Optical Particle Sizer (TSI – OPS 3330). 

After synthesis the particle size distributions can be characterized with other instruments. A 

Dynamic Light Scattering instrument (Malvern Instruments) was tested to measure particle size 

distribution after annealing. It was discovered that the instrument’s setup and the lack of 

additional detectors in the unit was not capable of accurately measuring the particle size 

distribution, due to the polydisperse nature of the product. Measurements using a miniMOUDI 

cascade impactor provided us with an offline method to measure particle size distribution. 

Alternatively, scanning electron microscopy (SEM) measurements gave us an indication of the 

particle size distribution. These images indicate that the secondary particle size varied between 

0.2 ~ 10 m. These data were supplemented by tap density measurements (Quantachrome tap 

density analyzer) to characterize bulk density of the product. 
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2.4 Crystallographic Analysis - Powder Diffraction 

X-ray powder diffraction is a common physical measurement to investigate and characterize the 

structure of the crystalline powders. In this research, X-ray powder diffraction was performed 

using a Rigaku Geigerflex D-MAX/A Diffractometer using Cu-K radiation. The instrument is 

equipped with a vertical goniometer and a scintillation counter. The following settings were used 

for data collection: power is 1.5 kW with 35 kV voltage and 35 mA current. Data was collected 

using MDI’s Datascan software and processed using Jade 9 software. Typical scan step size is 

0.04 ° (2θ) with 1 s dwell time for equilibration.  

Cell refinement was performed using MDI’s Jade software to identify the crystal phase and 

refine the cell parameters with whole pattern fitting (WPF) using the formula card of 

LiNi1/3Mn1/3Co1/3O2 as the reference structure. Alternatively Rietveld-refinement was applied to 

further characterize the results using the EXPGUI software package. To extract preliminary 

instrument parameters NIST’s silicon standard was measured at the experimental conditions 

mentioned above.  

2.5 Morphological Studies 

Particle morphology was primarily examined with a scanning electron microscope (FEI Nova 

Nano SEM) that has Energy Dispersive X-Ray Spectroscopy (EDAX) capabilities. Typical 

working distance is 5 mm and the operating voltage is 10-15 kV for best results.  

In the current research a Tunneling Electron Microscope (TEM TecnaiTM G2 Spirit) will be 

applied to examine primary particle characteristics and interior morphology. 
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2.5 Other Characterization Techniques 

Specific surface area of the powders was measured by Brunauer-Emmett-Teller surface analyzer 

(BET, Quantachrome Autosorb-1 Series, Nova) using N2 as the adsorbent. Thermogravimetric 

analysis (TGA – TA instruments) was used to characterize the decomposition properties of the 

precursor solutions. Inductively coupled plasma mass spectrometry and optical emission 

spectroscopy (ICP-MS / ICP-OES – Perkin Elmer) were used to verify the composition and the 

contamination profile of the precursor solutions and the annealed powders.  

 

2.6 Battery Performance Evaluation 

A Li-ion battery consists of an anode and a cathode separated by a conductive membrane 

separator. All the components in a Li-ion cell were soaked in electrolyte containing Li salts. In 

the current research, the powders were tested as cathode active materials in 2032-type coin cells 

vs. a lithium anode. To prepare the cathode laminate, a mixture of the annealed powder, 

polyvinylidene-fluoride (PVdF – KF Polymer, Japan), Super-P or Super C45 conductive carbon 

black (Timcal) were suspended in N-methyl-2-pyrrolidene (NMP – Sigma Aldrich) and then 

homogenized to form a slurry. A typical cathode film contained 80 wt % active material, 10 

wt % carbon black and 10 wt % PVdF. The cathode slurry was coated on an Al foil using the 

doctor blade technique to form a thin, cathode film. By varying the thickness of the film various 

loading densities between 0.5 – 6 mgcm-2 can be obtained. On average a loading density of 3-4 

mgcm-2 is a typical value for the tested cathode discs. Two further processing methods were 

tested. Initially, after casting the cathode films were dried overnight in mild vacuum, then 
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vacuum dried at 130 °C overnight and then cathode discs are punched. Later, this process was 

modified. First, following the casting a 40 °C temperature is applied with light vacuum drying 

for 1 hour, which is followed by a high temperature drying at 130 °C for greater than 2 hours in 

light vacuum. Equivalent performance was verified by comparing electrochemical performance 

of 5 films. No adhesion studies were performed and from an electrochemical perspective the 

cathode discs did not demonstrate better electrochemical performance when calendered. 

Therefore, typically non-calendered electrodes, or only mildly calendered (95 % of the original 

thickness) were tested. The films were used to prepare 13 mm diameter cathode discs and then 

tested in 2032 type coin cells. 

 

The 2032 coin-type test batteries were assembled in a glove box filled with ultra high purity 

argon. The cells consist of the following components, in the order listed: cathode housing, 

cathode disc, electrolyte, separator, lithium anode, spacer, spring and anode housing with a 

gasket. A thin Li foil is typically used as an anode and a polypropylene membrane (Celgard 

2500) is used as the separator. The electrolyte was either 1M LiPF6 in ethylene carbonate/diethyl 

carbonate/dimethyl carbonate solution (EC:DEC:DMC = 1:1:1 by volume – MTI Corp.) or 1.2 

M LiPF6 in ethylene carbonate/ ethyl-methyl carbonate (EC:EMC = 3:7 by weight – Tomiyama 

High Purity Chemicals) for samples provided by Argonne National Laboratory. The 

electrochemical performance of the cells was tested using either MTI battery analyzers (MTI 

BST8-WA) or using a Gamry reference 600 potentiostat or an Arbin Instruments tester at various 

charge/discharge rates. Typically the following cycle and rate capability test protocols were 

applied for the battery testing, as detailed in Tables 1 and 2. The applied protocol will be 
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mentioned in the respective chapters. Battery testing was carried out at room temperature (22 °C) 

unless otherwise specified. Some batteries were tested at 55 °C in an environmental chamber.  

 

 

Cycle test protocol 1 (1C = 280 

mAhg-1) 

Cycle test protocol 2 (1C=200 

mAhg-1) 

Activation 1 cycle 2.0-4.8 V at C/10 1 cycle 2.0-4.8 V at C/10 

Subsequent cycles 99 cycles 2.0-4.8 V at C/10 

3 cycles 2.0-4.6 V at C/10 

96 cycles 2.0-4.6 V at C/3 

Table 1 Cycling test protocols used in this research. 

 

 

 

Rate capability test 

protocol 1 (1C=280mAhg-

1) 

Rate capability test 

protocol 2 (1C=200mAhg-

1) 

Activation 

5 cycle 2.0-4.9 V at C/10 

(28 mAg-1) 

1 cycle 2.0-4.8 V at C/10 

(20 mAg-1) 

Subsequent cycles 

5 cycles 2.0-4.9 V at C/5 

(56 mAg-1) 

5 cycles 2.0-4.9 V at C/2 

(140 mAg-1) 

4 cycles 2.0-4.6 V at C/10 

(20 mAg-1) 

10 cycles 2.0-4.6 V at C/5 

(40 mAg-1) 
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5 cycles 2.0-4.9 V at C3/4 

(210 mAg-1) 

5 cycles 2.0-4.9 V at 1C 

(280 mAg-1) 

75 cycles 2.0-4.9 V at C/10 

(28 mAg-1) 

20 cycles 2.0-4.6 V at C/2 

(100 mAg-1) 

40 cycles 2.0-4.6 V at 1C 

(200 mAg-1) 

25 cycles 2.0-4.6 V at C/10 

(20 mAg-1) 

Table 2 Rate test protocols used in this research. 

 

Part of the battery tests were validated at Argonne National Laboratory (ANL) throughout this 

research. The battery test results obtained at Washington University show consistency to the data 

acquired at ANL. Cycle and rate test protocol 1 were adopted from a previous collaboration with 

Dr. Vincent Battaglia at Lawrence Berkeley National Laboratory (LBNL), while protocol 2 was 

adopted from ANL. The application of protocol 2 showed certain advantages. By increasing the 

rate of cycle tests from C/10 to C/3 rate the electrochemical test better represents an intermediate 

usage, similar to what could be expected on a highway if applied in an EV and also significantly 

reduces battery testing time from 3 months to approximately 1 month. The rate test in protocol 2 

has similar advantages. Also by cycling the material at elevated rates for more cycles one can 

evaluate if additional capacity fade effects can potentially arise in the material. 

 

Cell testing and characterization typically required 1-3 months. Thus, new chemistries can be 

evaluated on a 3-month interval including material synthesis and characterization. Throughout 

this research we will build upon the knowledge obtained by Zhang during his research at 
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Washington University to further improve the layered chemistry and optimize its electrochemical 

performance 156.  

 

The current research will focus on understanding the synthesis parameters that govern the 

physical and electrochemical properties of the material. To this end the flow rate, the precursor 

concentration and the aerosol flow reactor’s temperature will be studied, as these key parameters 

define the physical properties and crystallography of the product synthesized in an aerosol based 

process. Lower synthesis temperatures or insufficient residence time at a given temperature leads 

to necking between the particles, which will lower the bulk (tap) density of the material. 

Complete decomposition at a temperature will lead to isolated spheres and thus increase the tap 

density of the material. Rapid precipitation throughout the drying phase can lead to hollow 

spheres and large primary particles, which are typically undesired for a good cycle and rate 

capability. The primary particle size needs to be accurately controlled during the aerosol 

synthesis and the annealing to lead to an optimal primary particle size that delivers good 

capacities with a desirably low surface area to avoid side reactions has. Additionally, as it will be 

demonstrated in the current work, spray pyrolysis uniquely allows the control of the composition 

to the trace level. As it is discussed in later chapters this permits accurate control of the 

material’s composition, which is unlikely to be reproduced by any other synthesis technique, 

thus allowing further stabilization of the layered or any similar chemistry.  

 

The author of this thesis was responsible for the first-hand performance of the vast majority of 

the synthesis work and electrochemical testing experiments described in this thesis. Experimental 
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Chapter 3  

Composition Optimization of Layered 

Lithium Nickel Manganese Cobalt Oxide 

Materials Synthesized Via Ultrasonic Spray 

Pyrolysis 
 

3.1 Introduction 

Due to their high theoretical and practical energy density, lithium-ion batteries are attractive 

power sources for consumer electronic applications, Plug-in Hybrid Electric Vehicles (PHEVs) 

and Electric Vehicles (EVs). To allow for practical implementation, the cathode materials need 

to display high capacity (capacities greater than 200 mAhg-1), good rate capability and capacity 

retention over cycling, and excellent safety characteristics. EV and PHEV applications require 

inexpensive cathode materials synthesized by scalable, rapid and reproducible methods. The Mn 

and Ni based layered materials are relatively inexpensive and display improved safety 

characteristics compared to their Co-based counterparts. Significant research has been performed 

to improve the capacity and the safety of these cathode materials by adopting a layered-layered 

composite structure 13, 84, 86, 106, 112, 212, 213. The composite materials are considered to be an 

integrated mixture of Li2MnO3 and LiMO2 (where M=Mn, Ni, Co), forming a rock-salt-type -

NaFeO2 structure. The Li2MnO3 component was originally integrated into the material to 

improve the cycling stability of the LiMO2 component 86, 214. Later it was discovered that the 
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Li2MnO3 component can be electrochemically activated by charging to 4.6 V vs. Li/Li+ yielding 

a high total theoretical capacity (240-280 mAhg-1 between 2.0-4.8 V) thus making the material 

an attractive candidate for PHEV applications 88, 215. Due to their high capacities (>200 mAhg-1), 

good cycling stability and inexpensive raw materials, much work has been done to analyze the 

lithium-rich layered-layered materials and understand the activation of Li2MnO3 
90, 92, 93, 94, 216. 

During the initial charging, the Li2MnO3 component of the material undergoes activation, 

coupled to oxygen release, which causes a net loss of “Li2O” from the structure. The resulting 

structural component only allows the reinsertion of a single lithium ion per transition metal, 

thereby causing a large, irreversible first cycle capacity loss 85, 217.  

Several synthesis techniques have been evaluated for layered composite materials, including sol-

gel methods, solid state processes, co-precipitation synthesis, combustion synthesis and ball 

milling 102, 103. While the methods are promising they have challenges associated with purity, 

uniformity and reproducibility for commercial scale production.  

Aerosol based synthesis methods offer a promising alternative. Compared to co-precipitation, 

spray pyrolysis delivers high-purity nanostructured materials in a rapid, simple and scalable 

process. The nanostructured morphology allows for fast lithium-ion diffusion and increases the 

rate capability of the composite materials 11, 101, 218, 219. While controlling the primary particle size 

accurately is beneficial for improving the rate capability, it is important to maintain secondary 

particle sizes above 1 m, to minimize particle agglomeration that arises from van der Waals 

interactions 220. Together, this allows for high power densities and high volumetric energy 

densities 221. Aerosol processes typically allow accurate control of both the primary and 

secondary particle size with the application of appropriate aerosolizing equipment and annealing 
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conditions 174, 222. Spray pyrolysis has another significant advantage: since the formation of 

particles occurs from the pyrolysis of individual precursor droplets, the chemical composition 

can be controlled accurately, which results in excellent particle-to-particle and batch-to-batch 

reproducibility 172, 180.  

Aerosol based synthesis methods have been widely reported for producing lithium ion battery 

anode and cathode materials. A few examples include layered LiNi1/3Mn1/3Co1/3O2, spinel 

LiMn2O4, LiFePO4, LiAl0.05Mn1.95O4 and similar materials, such as Co3O4 
58, 61, 179, 223, 224, 225, 226, 

227. Waser et al reported a flame-assisted synthesis for producing LiFePO4 materials 228. 

Recently, Kang and coworkers obtained promising results using aerosol-based synthesis methods 

for producing a number of nanostructured layered cathode materials and similar chemistries 

including composites of Li2MnO3 and LiMO2, Li4Ti5O12, Co3O4 
115, 200, 201, 229, 230, 231, 232, 233, 234, 

235, 236, 237, 238. A recent study by Oljaca et al. from Cabot Corp. compared the electrochemical 

performance of LiNi1/3Mn1/3Co1/3O2 synthesized via spray pyrolysis and co-precipitation 

demonstrating advantages for materials synthesized via spray pyrolysis 203.  

Earlier a spray pyrolysis synthesis method was developed by this group for producing high-

energy, layered cathode materials of Li(1+y)Ni0.25Mn0.75O(2.25+y/2) materials with excellent 

electrochemical performance  239, 240, 241, 242. To improve the capacity retention and rate capability 

of these materials the effect of cobalt doping was evaluated on Li1.2Mn0.54Ni0.13Co0.13O2 

synthesized both with a Collison-type jet atomizer and a 2.4 MHz ultrasonic nebulizer 243. Cobalt 

addition improved the capacity retention and the cycling performance of the materials as the 

cobalt-containing material had a discharge capacity of 238 mAhg-1 at cycle 50, when cycled 

between 2.0-4.8 V vs. Li at C/10 rate (where 1C= 280 mAhg-1) while the cobalt-free material 
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displayed 220 mAhg-1 discharge capacity at cycle 50 when cycled between 2.0-4.8 V vs. Li at 

C/10 rate (where 1C= 230 mAhg-1). Increasing the secondary particle size of the powders from 

below 1 m to a mean particle size of 1.7 m improved the stability and capacity retention of the 

product 243.  

The purpose of the current study is to evaluate the effect of the composition of layered lithium 

nickel manganese cobalt oxides when produced by ultrasonic spray pyrolysis. Three chemistries 

(Li1.14Mn0.46Ni0.2Co0.2O2, Li1.2Mn0.54Ni0.13Co0.13O2 and Li1.26Mn0.6Ni0.07Co0.07O2) are studied and 

their electrochemical properties evaluated. 

3.2. Experimental 

The spray pyrolysis process incorporates a tubular aerosol flow reactor to produce Li-rich 

composite materials. The precursor solutions were prepared by dissolving LiNO3, 

Mn(NO3)2·4H2O, Ni(NO3)2·6H2O and Co(NO3)2·6H2O (Alfa Aesar) in the desired ratios in 

deionized water. The precursor solution was aerosolized using a 2.4 MHz ultrasonic nebulizer 

(Sonaer Inc.). The dry particles had a mean particle size of 1.7 m as measured using an 

electrical low-pressure impactor (ELPI Dekati) 243. Water-saturated compressed air was used as 

the carrier gas at a constant flow rate of 6.6 liters per minute (lpm). The aerosol gas stream was 

carried into a 22 inch long preheater, which was kept at 200 °C (wall temperature), followed by a 

vertical furnace reactor that was kept at 450 °C. The residence time in the system was 6 seconds. 

The decomposed powders were collected downstream of the reactor using porous polycarbonate 

membrane filters (Whatman, GE). Details of the method and the system are reported elsewhere 

239, 243. The as-synthesized powders were annealed for 2 hours either at 850 °C or 900 °C.  
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The annealed powders were characterized by X-ray powder diffraction (XRD) using a Rigaku 

Diffractometer (Geigerflex D-MAX/A) at a scan rate of 0.04 °s-1. The primary particle size was 

estimated from SEM-images. Structural refinement was accomplished using the whole pattern 

fitting (WPF) method with Jade software. The formula card of LiNi1/3Mn1/3Co1/3O2 was used as 

the reference structure for the refinement. Rietveld-refinement was performed using the EXPGUI 

software package. 

The particle morphology was examined with an FEI Nova 2300 Field Emission scanning 

electron microscope. The elemental analysis of the precursor solutions and the annealed powders 

was obtained by inductively-coupled-plasma mass spectrometry (Perkin Elmer Elan DRC II ICP-

MS). In order to analyze the oxide samples by ICP-MS, the samples were dissolved in a mixture 

of concentrated HNO3 and 30% high-purity H2O2. Brunauer-Emmett-Teller (BET) surface area 

measurements were conducted to characterize the specific surface area of the samples (Autosorb-

1, Quantachrome Instruments). 

Cathode film fabrication was performed according to the procedure reported earlier 239. The 

cathode slurry was prepared using polyvinylidene fluoride (PVdF) binder solution (Kureha Corp. 

Japan) and Super-P conductive carbon black (Timcal) suspended in 1-methyl-2-pyrrolidinone 

(NMP). 2500 Celgard membranes (Celgard LLC) were used to separate the cathode discs and the 

pure lithium anode. Two electrolytes were studied: 1 M LiPF6 in ethylene carbonate/diethyl 

carbonate/dimethyl carbonate solution (EC:DEC:DMC = 1:1:1 by volume) (MTI Corp.) and 1.2 

M LiPF6 in ethylene carbonate/ethyl-methyl-carbonate solution (EC:EMC = 3:7 by weight) 

(Tomiyama High Purity Chemicals).  
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The powders were tested in 2032-type coin cells (Hohsen Corporation) assembled in an argon-

filled glove box. Cycling tests were performed between 2.0-4.8 V at C/10 rate (28 mAg-1) unless 

otherwise indicated. Rate capability tests were performed between 2.0-4.9 V at C/10, C/5, C/2, 

C3/4, 1C and C/10 rates. Both cycling and rate capability tests were conducted using an MTI- 

BST8-WA-type battery tester. All electrochemical tests were performed at room temperature, 22 

C. 

3.3 Physical and crystal properties 

Table 3 shows that the measured stoichiometry of the precursor solution and the annealed 

powders, as determined by ICP-MS, match the target values closely. No detectable evaporative 

loss of lithium occurred during the annealing heat treatment. 
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Target Stoichiometry 

Precursor stoichiometry as 

measured by ICP-MS 

Annealed powder 

stoichiometry as measured by 

ICP-MS 

Li1.130Mn0.464Ni0.203Co0.203O2 Li1.148Mn0.451Ni0.210Co0.209O2 Li1.141Mn0.457Ni0.207Co0.206O2 

Li1.200Mn0.533Ni0.133Co0.133O2 Li1.223Mn0.531Ni0.134Co0.135O2 Li1.160Mn0.532Ni0.133Co0.135O2 

Li1.259Mn0.593Ni0.074Co0.074O2 Li1.288Mn0.588Ni0.076Co0.077O2 Li1.310Mn0.589Ni0.076Co0.076O2 

 

Table 3 ICP-MS analysis of the precursor solutions for Li1.14Mn0.46Ni0.2Co0.2O2, Li1.2Mn0.54Ni0.13Co0.13O2, 

Li1.26Mn0.6Ni0.07Co0.07O2 and their respective annealed powders. 
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Figure 10 XRD patterns of Li1.14Mn0.46Ni0.2Co0.2O2, Li1.2Mn0.54Ni0.13Co0.13O2 and Li1.26Mn0.6Ni0.07Co0.07O2. The 

arrows indicate the broad peak between 20- 25° 2 due to the ordering between the structural components. 

Figure 10 compares the XRD patterns of Li1.14Mn0.46Ni0.2Co0.2O2, Li1.2Mn0.54Ni0.13Co0.13O2 and 

Li1.26Mn0.6Ni0.07Co0.07O2 after annealing at 900 °C for 2 hours. No impurity phases can be 
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observed in the patterns and the results are comparable to those obtained when the materials 

were prepared by co-precipitation or molten salt synthesis 102, 103, 153, 244. The XRD patterns for 

Li1.14Mn0.46Ni0.2Co0.2O2, Li1.2Mn0.54Ni0.13Co0.13O2 and Li1.26Mn0.6Ni0.07Co0.07O2 display a broad 

peak between 20-25° 2 θ, due to the existence of integrated Li2MnO3-type domains in the 

structure 239. The peak becomes more intense with increased Li2MnO3 content in the materials, as 

indicated by the arrows. The clear splitting of the (006), (012) and (018), (110) peaks is 

indicative of the layered structure of the materials 113. The XRD patterns of the powders annealed 

at 850 °C show nearly identical features and therefore are not displayed.  

Rietveld refinement was performed on Li1.14Mn0.46Ni0.2Co0.2O2, Li1.2Mn0.54Ni0.13Co0.13O2 and 

Li1.26Mn0.6Ni0.07Co0.07O2. The structures were modeled as a mixture of Li2MnO3 and 

LiNi1/3Mn1/3Co1/3O2, in 3:7, 5:5 and 7:3 molar ratios, respectively 245, 246, 247 and the reliability 

factors validate the assumed structural model. Table 4 shows the atomic positions and unit cell 

parameters following the structural refinement. Comparing the three materials annealed at 

850 °C and 900 °C, the Li1.2Mn0.54Ni0.13Co0.13O2 material shows almost identical atomic 

positions and cell parameters at both temperatures, whereas minor differences can be observed at 

the two temperatures for both Li1.14Mn0.46Ni0.2Co0.2O2 and Li1.26Mn0.6Ni0.07Co0.07O2. The unit cell 

parameters do not change significantly, which makes them consistent with the composite 

structure assumption.  
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Li1.14Mn0.46Ni0.2Co0.2O2 

Phase I: Li2MnO3 (C2/m) 

Element Site Fractional coordinate  

(850 °C/900 °C) 

                Occup. 

(850 °C/900 °C) 

Li1 2b 0/ 0 0.5/ 0.5 0/ 0 0.8540/ 0.8540 

Mn1 2b 0/ 0 0.5/ 0.5 0/ 0 0.1460/ 0.1460 

Li2 2c 0/ 0 0/ 0 0.5/ 0.5 1.0/ 1.0 

Li3 4h 0/ 0 0.6700/ 0.6641 0.5/ 0.5 0.9860/ 0.9860 

Mn2 4h 0/ 0 0.8595/ 0.4466 0.5/ 0.5 0.0140/ 0.140 

Li4 4g 0 0.6648/ 0.1687 0/ 0 0.0870/ 0.0870 

Mn3 4g 0 0.1867/ 0.1642 0/ 0 0.9130/ 0.9130 

O1 4i 0.1495/ 0.3112 0/ 0 0.1939/ 0.2229 1/ 1 

O2 8j 0.1732/ 0.3036 0.3321/ 03298 0.2424/ 0.2433 1/ 1 

a (850 °C/900 °C) 4.957 Å/ 4.922 Å    

b (850 °C/900 °C) 8.519 Å/ 8.626 Å    

c (850 °C/900 °C) 5.014 Å/ 5.071 Å    

β (850 °C/900 °C) 108.90°/ 109.43°    

Phase II: LiNi1/3Mn1/3Co1/3O3 (R�̅�m) 

Element Site Fractional coordinate Occup. 

Li1 3b 0/ 0 0/ 0 0/ 0 0.9700/ 0.9700 

Ni1 3b 0/ 0 0/ 0 0/ 0 0.0300/ 0.0300 

Li2 3a 0/ 0 0/ 0 0.5/ 0.5 0.0300/ 0.0300 

Ni2 3a 0/ 0 0/ 0 0.5/ 0.5 0.3050/ 0.3050 

Mn1 3a 0/ 0 0/ 0 0.5/ 0.5 0.3350/ 0.3350 

Co1 3a 0/ 0 0/ 0 0.5/ 0.5 0.3300/ 0.3300 

O1 6c 0/ 0 0/ 0 0.2408/ 0.2432 1.0/ 1.0 

a (850 °C/900 °C) 2.852 Å/ 2.856 Å    

c (850 °C/900 °C) 14.223 Å/ 14.236 Å    

wRp (850 °C/900 °C) 0.1902/ 0.2091 Rp (850 °C/900 °C) 0.1346/ 0.1535 

Chi2 (850 °C/900 °C) 1.552/ 1.617 Phase ratio 3:7 
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Li1.2Mn0.54Ni0.13Co0.13O2 

Phase I: Li2MnO3 (C2/m) 

Element Site Fractional coordinate  

(850 °C/900 °C) 

Occup. 

(850 °C/900 °C) 

Li1 2b 0/ 0 0.5/ 0.5 0/ 0 0.8540/ 0.8540 

Mn1 2b 0/ 0 0.5/ 0.5 0/ 0 0.1460/ 0.1460 

Li2 2c 0/ 0 0/ 0 0.5/ 0.5 1.0/ 1.0 

Li3 4h 0/ 0 0.7191/ 0.6810 0.5/ 0.5 0.9860/ 0.9860 

Mn2 4h 0/ 0 0.6810/ 0.8310 0.5/ 0.5 0.0140/ 0.140 

Li4 4g 0 0.1687/ 0.1687 0/ 0 0.0870/ 0.0870 

Mn3 4g 0 0.1767/ 0.1708 0/ 0 0.9130/ 0.9130 

O1 4i 0.2731/ 0.2663 0/ 0 0.1939/ 0.2105 1/ 1 

O2 8j 0.2719/ 0.2690 0.3342/ 03298 0.2439/ 0.2370 1/ 1 

a (850 °C/900 °C) 4.949 Å/ 4.947 Å    

b (850 °C/900 °C) 8.526 Å/ 8.529 Å    

c (850 °C/900 °C) 5.010 Å/ 5.009 Å    

β (850 °C/900 °C) 108.91°/ 108.94°    

Phase II: LiNi1/3Mn1/3Co1/3O3 (R�̅�m) 

Element Site Fractional coordinate Occup. 

Li1 3b 0/ 0 0/ 0 0/ 0 0.9700/ 0.9700 

Ni1 3b 0/ 0 0/ 0 0/ 0 0.0300/ 0.0300 

Li2 3a 0/ 0 0/ 0 0.5/ 0.5 0.0300/ 0.0300 

Ni2 3a 0/ 0 0/ 0 0.5/ 0.5 0.3050/ 0.3050 

Mn1 3a 0/ 0 0/ 0 0.5/ 0.5 0.3350/ 0.3350 

Co1 3a 0/ 0 0/ 0 0.5/ 0.5 0.3300/ 0.3300 

O1 6c 0/ 0 0/ 0 0.2427/ 0.2415 1.0/ 1.0 

a (850 °C/900 °C) 2.851 Å/ 2.850 Å    

c (850 °C/900 °C) 14.218 Å/ 14.216Å    

wRp (850 °C/900 °C) 0.2040/ 0.2152 Rp (850 °C/900 °C) 0.1393/ 0.1482 

Chi2 (850 °C/900 °C) 1.602/ 1.833 Phase ratio 5:5 
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Li1.26Mn0.6Ni0.07Co0.07O2 

Phase I: Li2MnO3 (C2/m) 

Element Site Fractional coordinate  

(850 °C/900 °C) 

Occup. 

(850 °C/900 °C) 

Li1 2b 0/ 0 0.5/ 0.5 0/ 0 0.8540/ 0.8540 

Mn1 2b 0/ 0 0.5/ 0.5 0/ 0 0.1460/ 0.1460 

Li2 2c 0/ 0 0/ 0 0.5/ 0.5 1.0/ 1.0 

Li3 4h 0/ 0 0.7385/ 0.6810 0.5/ 0.5 0.9860/ 0.9860 

Mn2 4h 0/ 0 0.7863/ 0.1520 0.5/ 0.5 0.0140/ 0.140 

Li4 4g 0 0.1687/ 0.1687 0/ 0 0.0870/ 0.0870 

Mn3 4g 0 0.1749/ 0.1831 0/ 0 0.9130/ 0.9130 

O1 4i 0.2182/ 0.2663 0/ 0 0.2216/ 0.2105 1/ 1 

O2 8j 0.2422/ 0.2363 0.3209/ 03211 0.2481/ 0.2479 1/ 1 

a (850 °C/900 °C) 4.950 Å/ 4.945 Å    

b (850 °C/900 °C) 8.493 Å/ 8.506 Å    

c (850 °C/900 °C) 5.007 Å/ 5.016 Å    

β (850 °C/900 °C) 108.84°/ 108.87°    

Phase II: LiNi1/3Mn1/3Co1/3O3 (R�̅�m) 

Element Site Fractional coordinate Occup. 

Li1 3b 0/ 0 0/ 0 0/ 0 0.9700/ 0.9700 

Ni1 3b 0/ 0 0/ 0 0/ 0 0.0300/ 0.0300 

Li2 3a 0/ 0 0/ 0 0.5/ 0.5 0.0300/ 0.0300 

Ni2 3a 0/ 0 0/ 0 0.5/ 0.5 0.3050/ 0.3050 

Mn1 3a 0/ 0 0/ 0 0.5/ 0.5 0.3350/ 0.3350 

Co1 3a 0/ 0 0/ 0 0.5/ 0.5 0.3300/ 0.3300 

O1 6c 0/ 0 0/ 0 0.2430/ 0.2428 1.0/ 1.0 

a (850 °C/900 °C) 2.845 Å/ 2.846 Å    

c (850 °C/900 °C) 14.215 Å/ 14.221Å    

wRp (850 °C/900 °C) 0.2197/ 0.2377 Rp (850 °C/900 °C) 0.1558/ 0.1693 

Chi2 (850 °C/900 °C) 1.761/ 1.919 Phase ratio 7:3 

Table 4 Result of the two-phase Rietveld-refinement assuming a phase ratio of 3:7, 5:5 and 7:3 between 

Li2MnO3 and LiNi1/3Mn1/3Co1/3O2 for Li1.14Mn0.46Ni0.2Co0.2O2, Li1.2Mn0.54Ni0.13Co0.13O2, Li1.26Mn0.6Ni0.07Co0.07O2, 

respectively. 

Figure 11 shows the SEM micrographs of the powders after annealing at 900 °C for 2 hours. The 

secondary particles are spherical in shape and consist of nano-sized primary grains, forming a 

porous morphology. The primary particle size varies between 120-300 nm after annealing at 

900 °C for 2 hours. The mean secondary particle size of the powder is approximately 1.7 m, as 

measured by ELPI 239, 243. The secondary particle size is largely defined by the particle 
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generation method. Compared to materials synthesized with the Collison-nebulizer the ultrasonic 

powder generation allowed an increase in both the production rate and the particle size 242. SEM 

micrographs of the powders after annealing at 850 °C show similar features and therefore are not 

displayed.  

 

Figure 11 SEM micrographs of powders after annealing at 900 °C for 2 hours: (a) Li1.14Mn0.46Ni0.2Co0.2O2; (b) 

Li1.2Mn0.54Ni0.13Co0.13O2; and (c) Li1.26Mn0.6Ni0.07Co0.07O2. 

Table 5 shows the average primary particle size of the annealed powders estimated by the SEM-

images. The primary particle sizes were estimated by measuring the longest axis of 100 primary 

particles and averaging them 248. Increasing the annealing temperature from 850 °C to 900 °C 

promotes crystal growth and coarsening, and consistently increases the primary grain size of the 

powders as observed in the SEM images. The primary particle size of Li1.2Mn0.54Ni0.13Co0.13O2 is 

smaller than that of Li1.14Mn0.46Ni0.2Co0.2O2 or Li1.26Mn0.6Ni0.07Co0.07O2. A possible explanation 

is as follows: Li1.14Mn0.46Ni0.2Co0.2O2, has a larger content of LiMn1/3Ni1/3Co1/3O2, which as a 

single component crystallizes in a trigonal R3̅m structure; therefore the preferential growth of 

layered LiMn1/3Ni1/3Co1/3O2 increases the primary particle size. Similarly, 

Li1.26Mn0.6Ni0.07Co0.07O2 contains more layered Li2MnO3, which as a single material crystallizes 

in a C2/m structure, and thus the preferential growth leads to an increase in the primary particle 

c a b 

3 m 3 m 3 m 
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size. There is no preferential phase growth in Li1.2Mn0.54Ni0.13Co0.13O2 (x = 0.5), and this 

minimizes the primary particle size. A similar behavior was reported earlier for Pb-based 

perovskite structures 249. 

  Primary particle size (nm) 

Annealing temperature 850 °C 900 °C 

Li1.14Mn0.46Ni0.2Co0.2O2 150 190 

Li1.2Mn0.54Ni0.13Co0.13O2 130 165 

Li1.26Mn0.6Ni0.07Co0.07O2 160 175 

Table 5 Estimated primary particle sizes based on SEM-images. 

The BET surface area measurements, shown in Table 6, confirm that the surface area of the 

powders is consistently reduced when the annealing temperature is increased from 850 °C to 

900 °C, with the most significant coarsening occurring for Li1.2Mn0.54Ni0.13Co0.13O2. Table 6 also 

shows that the increased lithium and manganese content of Li1.2Mn0.54Ni0.13Co0.13O2 and 

Li1.26Mn0.6Ni0.07Co0.07O2 promotes the coarsening compared to that observed for 

Li1.14Mn0.46Ni0.2Co0.2O2. This is consistent with earlier reports for similar chemistries 239, 242. 

Although all materials have relatively high surface area and display phase-pure layered structures 

at both annealing temperatures, it is expected that structural rearrangement and the reduction in 

surface area at higher temperature will improve the capacity retention of these materials.  
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Composition BET 850 °C (m2g-1) BET 900 °C (m2g-1) % reduction 

Li1.14Mn0.46Ni0.2Co0.2O2 7.33 6.45 12 

Li1.2Mn0.54Ni0.13Co0.13O2  9.35 6.40 32 

Li1.26Mn0.6Ni0.07Co0.07O2  12.23 6.45 47 

Table 6 BET surface area of Li1.14Mn0.46Ni0.2Co0.2O2, Li1.2Mn0.54Ni0.13Co0.13O2 and Li1.26Mn0.6Ni0.07Co0.07O2 

annealed at 850 °C and 900 °C for 2 hours. 

 

3.4 Electrochemical testing results  

Earlier we reported the synthesis of Li1.2Mn0.54Ni0.13Co0.13O2 via spray pyrolysis and compared 

materials performance when synthesized with a Collison-nebulizer and ultrasonic nebulizer 243. 

For this material, optimal electrochemical properties were obtained at an annealing temperature 

of 900 °C for 2 hours. The secondary particle size was increased when the materials were 

synthesized with an ultrasonic nebulizer, which was found to improve the capacity retention of 

the materials. Since Li1.14Mn0.46Ni0.2Co0.2O2, Li1.2Mn0.54Ni0.13Co0.13O2 and 

Li1.26Mn0.6Ni0.07Co0.07O2 have different compositions and coarsen differently, the effect of 

annealing temperature was studied and the materials were annealed for either 850 °C or 900 °C 

for 2 hours. The electrochemical properties of the six cathode materials were tested in 2032 type 

coin cells vs. Li anodes. 
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Figure 12 Initial charge and discharge profiles at a constant current density of 28 mAg-1 between 2.0 and 4.8 

V: Li1.14Mn0.46Ni0.2Co0.2O2, Li1.2Mn0.54Ni0.13Co0.13O2 and Li1.26Mn0.6Ni0.07Co0.07O2 after annealing at (a) 850 °C 

and (b) 900 °C. 
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Figure 12 shows the initial charge and discharge profiles of the six materials, when charged at a 

constant current density of 28 mAg-1 between 2.0 - 4.8 V (1C = 280 mAg-1). A constant-current, 

constant-voltage cycling protocol was applied for the cells 113, 243. All of the materials display a 

two-staged charge profile: the first plateau between 3.5 V and 4.4 V is associated with the 

Ni2+/Ni4+ and the Co3+/Co4+ redox couples, while the second plateau above is associated with the 

activation of the Li2MnO3-domains in the material 94. The Li1.14Mn0.46Ni0.2Co0.2O2, 

Li1.2Mn0.54Ni0.13Co0.13O2 and Li1.26Mn0.6Ni0.07Co0.07O2 materials annealed at 850 °C display initial 

charge capacities in reasonable agreement with their theoretical capacities (Table 7).  

Material Composition Theoretical initial 

charge capacity 

(mAhg-1) 

Initial charge capacity 

at 850 °C (mAhg-1) 

Initial charge capacity at 

900 °C (mAhg-1) 

Li1.14Mn0.46Ni0.2Co0.2O2 331 379 262 

Li1.2Mn0.54Ni0.13Co0.13O2 367 339 341 

Li1.26Mn0.6Ni0.07Co0.07O2 404 395 326 

Table 7 - Theoretical and measured initial charge capacities of materials after annealing at 850 °C and 900 °C 

for 2 hours. 

The initial charge capacity of Li1.2Mn0.54Ni0.13Co0.13O2 is 339 mAhg-1 and 341 mAhg-1 after 

annealing at 850 °C and 900 °C, respectively. As noted from Table 5, the primary particle size of 

Li1.2Mn0.54Ni0.13Co0.13O2 remains smaller than that of the other chemistries. The smaller primary 

particles may be responsible for allowing complete activation of the Li2MnO3 and 

LiMn1/3Ni1/3Co1/3O2 components of the materials at both 850 °C and 900 °C 250. 

Li1.14Mn0.46Ni0.2Co0.2O2 and Li1.26Mn0.6Ni0.07Co0.07O2 display lower initial charge capacities after 
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annealing at 900 °C, which may be caused by the larger primary particle size 250, 251. Figure 12b 

also shows that the second plateau during the first charge curve for these two chemistries 

becomes shorter, which indicates that increasing the primary particle size of Li2MnO3 beyond a 

certain size no longer allows complete activation, presumably due to the lower lithium ion 

diffusion coefficient of this component 76. Ultimately this leads to a loss of capacity and a 

reduced rate capability at room temperature. However, based on results from co-precipitation the 

higher annealing temperature is expected to yield improved cycling stability 250, 251, 252, 253. 
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Figure 13 Cycling performance of Li1.14Mn0.46Ni0.2Co0.2O2, Li1.2Mn0.54Ni0.13Co0.13O2 and 

Li1.26Mn0.6Ni0.07Co0.07O2 annealed at (a) 850 °C for 2 hours and (b) 900 °C for 2 hours. 

The cycling performance of the materials was tested between 2.0-4.8 V at a C/10 rate, 

corresponding to a constant current density of 28 mAg-1. Figures 13a and b compare the cycling 

performance of the materials annealed at 850 °C and 900 °C for 2 hours. The high-purity 

synthesis method combined with optimal annealing conditions leads to significant improvements 

in terms of capacity retention compared to results obtained for these chemistries when 

synthesized by other methods 102, 201, 244. Cobalt doping allowed us to increase the annealing 

temperature, which in turn improves the capacity retention of the materials. Overall, the powders 

that were annealed at 900 °C display a better capacity retention compared to powders annealed at 

850 °C, they are also better than those reported by Son et al. for similar compositions and 
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annealed at 800 °C for 5 hours 201, 238. This is further supported by the observed efficiencies in 

Fig. 14.  

 

Figure 14 Coulombic efficiency of Li1.14Mn0.46Ni0.2Co0.2O2, Li1.2Mn0.54Ni0.13Co0.13O2 and 

Li1.26Mn0.6Ni0.07Co0.07O2 annealed at (a) 850 °C for 2 hours and (b) 900 °C for 2 hours. 

The higher annealing temperature has the greatest impact on the performance of the 

Li1.26Mn0.6Ni0.07Co0.07O2 chemistry. Whereas rapid fading is observed in cells made from this 

material when annealed at 850 °C, with only 80.8% of the initial discharge capacity retained at 

cycle 50, the material annealed at 900 °C displays 95.4% capacity retention at cycle 50. This is 

speculated to be partially caused by the reduced activation of the Li2MnO3 component. The 

increased amount of residual lithium remaining in the interstitial sites of the sample promotes 

cycling stability and leads to less structural change. Similarly, Li1.14Mn0.46Ni0.2Co0.2O2 shows 
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less capacity fade and higher efficiencies at 900 °C. However, when annealed at 850 °C, 

Li1.14Mn0.46Ni0.2Co0.2O2 displays higher capacity, yielding 239 mAhg-1 at cycle 50 as compared 

to 193 mAhg-1 at 900 °C. No phase separation is observed in the XRD pattern of the 

Li1.14Mn0.46Ni0.2Co0.2O2 material. Annealing at 900 °C renders part of the Li2MnO3 component 

difficult to be activated, which causes a drop in capacity 251, 252. At both annealing temperatures 

the Li1.2Mn0.54Ni0.13Co0.13O2 chemistry displays the highest reversible charge and discharge 

capacities, with a discharge capacity of 236 mAhg-1 at cycle 100 for the sample annealed at 

900 °C. According to the cycle and rate tests the electrochemical performance of 

Li1.14Mn0.46Ni0.2Co0.2O2 and Li1.26Mn0.6Ni0.07Co0.07O2 changes with increased annealing 

temperature whereas it is almost identical at both temperatures for Li1.2Mn0.54Ni0.13Co0.13O2, 

which agrees well with the results of the Rietveld-refinement. 
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Figure 15 Rate performance of Li1.14Mn0.46Ni0.2Co0.2O2, Li1.2Mn0.54Ni0.13Co0.13O2 and Li1.26Mn0.6Ni0.07Co0.07O2 

annealed at (a) 850 °C for 2 hours and (b) 900 °C for 2 hours. 

Rate performance tests were conducted between 2.0 – 4.9 V at C/10, C/5, C/2, C3/4, 1C for 5 

cycles each and C/10 rate for 70 cycles. These rates correspond to current densities of 28 mAg-1, 

56 mAg-1, 140 mAg-1, 210 mAg-1 and 280 mAg-1. The results of the rate capability tests of the 

materials annealed at 850 °C and 900 °C are compared in Figs. 15a and b. The figures show 

similar trends to those observed in the cycling tests. Although the capacity retention of all the 

materials improves when annealed at 900 °C, the rate performances of both the 

Li1.14Mn0.46Ni0.2Co0.2O2 and the Li1.26Mn0.6Ni0.07Co0.07O2 are inferior at this temperature due to 

the significant coarsening of Li2MnO3. Li1.2Mn0.54Ni0.13Co0.13O2  annealed at 900 °C delivers 146 

mAhg-1 at a current density of 280 mAg-1, which shows a slight improvement from 140 mAhg-1 
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delivered by the material annealed at 850 °C. The enhanced rate capability compared to other 

chemistries can be the result of the smaller primary particle size, which yields better integration 

between the two structural components. The increasing capacity of Li1.2Mn0.54Ni0.13Co0.13O2 and 

Li1.26Mn0.6Ni0.07Co0.07O2 over cycling may be the result of side reactions or a structural 

transformation due to the high cutoff voltage 34, 254, 255, 256, 257. The powders produced by spray 

pyrolysis yield comparable or slightly improved rate capability results compared to pristine 

material synthesized via co-precipitation 100, 258. 

In Fig. 16 the dQ/dV curves for Li1.14Mn0.46Ni0.2Co0.2O2, Li1.2Mn0.54Ni0.13Co0.13O2 and 

Li1.26Mn0.6Ni0.07Co0.07O2 are compared for materials annealed at 850 °C and 900 °C for 2 hours. 

All of the materials display a sharp peak above 4.5 V during the first cycle, which is in good 

agreement with the activation of the Li2MnO3 component of the materials. Comparing the curves 

for cycle 1 and 50, all of the chemistries develop additional charge peaks between 3.1-4.0 V, 

similar to other reports 113, 115, 201, 242, 244. The discharge curves for cycle 50 display an additional 

peak between 2.8-3.2 V. The peak is slightly reduced for Li1.14Mn0.46Ni0.2Co0.2O2 when annealed 

at 900 °C. The intensity of the additional peaks emerging during the charge curves increases at 

cycle 50, with an increase in x of the composition. Comparing Figures 16a and d, and 16c and f 

both show that Li1.14Mn0.46Ni0.2Co0.2O2 and Li1.26Mn0.6Ni0.07Co0.07O2 indicate less structural fade 

in charge and discharge curves after 50 cycles during the high temperature annealing. While the 

increased amount of residual lithium may in part be responsible for the improved stability, this 

will ultimately lead to lower charge and discharge capacities.
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Figure 16 - dQ/dV curves of cycle 1 and cycle 50 for˙(a) Li1.14Mn0.46Ni0.2Co0.2O2, (b) Li1.2Mn0.54Ni0.13Co0.13O2 and (c) Li1.26Mn0.6Ni0.07Co0.07O2 annealed at 

850 °C for 2 hours; and (d) Li1.14Mn0.46Ni0.2Co0.2O2, (e) Li1.2Mn0.54Ni0.13Co0.13O2 and (f) Li1.26Mn0.6Ni0.07Co0.07O2  annealed at 900 °C for 2 hours. Cells 

were cycled with protocol 1. 
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3.5 Voltage Fade  

Aging in lithium ion batteries is typically observed through capacity fade over cycling. Most 

commercial battery materials display a stable charge-discharge profile and no major changes are 

observed in the shape of the curves over time 35, 259. On the other hand, lithium-rich, layered 

transitional metal oxides are known to display a voltage fade over cycling 116, 242, 244, 257, 260. The 

decreasing voltage causes an overall loss of energy of the battery and is a challenge to the battery 

management systems. While a complete understanding of voltage fade is lacking at present, 

recent studies agree that it is a result of a complex, structural change including segregation and 

selective migration of the transitional metals (e.g. Ni) occurring in the material 115, 116, 261, 262. 

 Protocol 1 (1C = 280 mAhg-1) Protocol 2 (1C=200 mAhg-1) 

Activation 1 cycle 2.0-4.8 V at C/10 1 cycle 2.0-4.8 V at C/10 

Subsequent cycles 99 cycles 2.0-4.8 V at C/10 

3 cycles 2.0-4.6 V at C/10 

96 cycles 2.0-4.6 V at C/3 

Table 8 Cycling protocols used for studying the voltage fade. 

To characterize the nature of the voltage fade during cycling, two electrolytes and two cycling 

protocols were compared for the Li1.2Mn0.54Ni0.13Co0.13O2 material annealed at 900 °C for 2 

hours (protocols 1 and 2 in Table 8). The two different electrolytes were compared because 

several studies have noted that phase transition begins at the surface, involving transitional metal 

migration, which may be affected by the chemical composition of the electrolyte and the 

associated SEI layer forming on the surface 114, 256, 263. Recent studies that have focused on 

understanding voltage fade have indicated that high voltage may reduce the stability and 

accelerate phase transition for these materials 116, 117. In Fig. 17 the voltage profile evolution for 
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the 4 cells is compared for cycles 1, 20, 60 and 100. Two cells were fabricated with the 

EC:DEC:DMC electrolyte (a and c) and two with the EC:EMC electrolyte (b and d). One cell 

was tested with protocol 1 and the other using protocol 2. All cells display voltage fade as a 

result of structural change over cycling, especially when protocol 1 is used, a result that is similar 

to that with other synthesis methods 244. The discharge potentials of the cells are increasing, and 

the charge and discharge profiles are changing continuously. The application of protocol 1 leads 

to spinel-like voltage characteristics, which is highlighted by the circles 244. When protocol 2 is 

applied (and thus the upper cutoff voltage is decreased to 4.6 V) the spinel-like voltage fade is 

less significant. Thus, a reduction of the upper cut-off charge voltage reduces the observed 

voltage fade of the material 113, 244. By applying protocol 2, the Li2MnO3 component of the 

material is not fully activated and apparently residues are stabilizing the structure. The Li2MnO3 

is slowly activated over cycling and this postpones the layered-spinel transition. Nevertheless, a 

decrease in the charge voltage reduces the cell capacity, as seen in Figure 17.  
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Figure 17 - Comparison of the voltage fade of Li1.2Mn0.54Ni0.13Co0.13O2 with (a) 1M LiPF6 in EC:DEC:DMC 

1:1:1 cycled with protocol 1; (b) 1.2 M LiPF6 in EC:EMC 3:7 cycled with protocol 1 (c) 1 M LiPF6 in 

EC:DEC:DMC 1:1:1 cycled with protocol 2; (d) 1.2 M LiPF6 in EC:EMC 3:7 cycled with protocol 2.
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Figure 18 - dQ/dV curves of cycle 1 and cycle 100 for Li1.2Mn0.54Ni0.13Co0.13O2 with (a) 1M LiPF6 in EC:DEC:DMC 1:1:1 cycled with protocol 1; (b) 1.2 

M LiPF6 in EC:EMC 3:7 cycled with protocol 1 (c) 1 M LiPF6 in EC:DEC:DMC 1:1:1 cycled with protocol 2; (d) 1.2 M LiPF6 in EC:EMC 3:7 cycled 

with protocol 2. 

 



63 

Figure 18 compares the dQ/dV curves for cycle 1 and 100 for the two different electrolytes and 

protocols. The initial charge curves display two peaks during activation and are similar in shape 

and location in the discharge curves irrespective of electrolyte. When comparing protocols 1 and 

2, it is clear that lowering the upper cutoff voltage induces less structural transformation in the 

materials. Both protocols display a difference in the locations of the peaks emerging at cycle 100 

during charging between the two electrolytes.  

There are two possible sources of the evolution of voltage profile: interfacial phenomenon and 

bulk structure evolution. The former is a change in the SEI layer at the electrode interface over 

cycling, which increases the polarization of the cell. Increasing the upper cutoff voltage to 4.8 V 

increases electrolyte decomposition for both electrolytes 264, 265, 266. Electrolyte decomposition 

will lead to a constant change in the SEI layer and can also be responsible for excess and 

increasing capacities observed when using protocol 1 for battery testing.  

The bulk structure evolution of the material, or more precisely layered-spinel phase transition 

over cycling, alters the overall shape of the profiles, which is highly dependent on the test 

protocols. Several studies have identified the possibility of a layered-spinel phase transition over 

cycling 116, 256, 260, 267, 268, 269. Such a transformation can explain the rapid voltage profile evolution 

observed in these materials. The results imply that the Li2MnO3 may be a key component 

affecting the voltage fade. 

3.6 Conclusions 

Li1.14Mn0.46Ni0.2Co0.2O2, Li1.2Mn0.54Ni0.13Co0.13O2 and Li1.26Mn0.6Ni0.07Co0.07O2 were synthesized 

via spray pyrolysis to identify a chemistry with optimal electrochemical properties and to 

compare the performance of the materials to other synthesis methods. Cycling performance and 
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rate capability studies identified Li1.2Mn0.54Ni0.13Co0.13O2 annealed at 900 °C for 2 hours as 

having exceptionally high capacity, displaying 236 mAhg-1 after 100 cycles. The primary particle 

size has a significant effect on the electrochemical behavior of the materials. In order to evaluate 

the effect of primary particle size on stability and electrochemical performance, two annealing 

temperatures were studied. Smaller primary particles at the same annealing temperature promote 

electrochemical activation of both the Li2MnO3 and the LiMn1/3Ni1/3Co1/3O2 components. 

Increased stability is obtained when the materials are annealed at 900 °C.  

Voltage fade is observed upon cycling for all chemistries. The dQ/dV curves obtained for the 

different materials indicate that Li1.14Mn0.46Ni0.2Co0.2O2 shows the least amount of voltage fade 

for the three chemistries studied. This suggests that the amount of Li2MnO3 in the material can 

be correlated to the voltage fade. Increasing amounts of Li2MnO3 seems to induce more 

structural change. The high cycle capacity and excellent activation at both temperature seems to 

identify Li1.2Mn0.54Ni0.13Co0.13O2 as the optimal chemistry while Li1.14Mn0.46Ni0.2Co0.2O2, with a 

lower Li2MnO3 content, indicates better stability and less fade.  

Regardless of the voltage fade observed, powders synthesized via spray pyrolysis have very high 

capacities and good cycling stability. Uniformity in chemical composition, nanostructure and 

consistency can be valuable in understanding and studying the chemistry and electrochemistry of 

these and similar types of materials.  

Two cycling protocols were tested to study voltage fade. Increasing the upper cutoff voltage to 

4.8 V causes the cycling profile to develop spinel-like characteristics more rapidly. When the 

upper cutoff voltage is reduced to 4.6 V, the voltage fade seems to be less pronounced, which 

indicates that besides additional electrolyte decomposition occurring at 4.8 V, the structural 

transformation is accelerated.  
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Chapter 4 

Effects of synthesis conditions on the physical 

and electrochemical properties of 

Li1.2Mn0.54Ni0.13Co0.13O2 prepared by spray 

pyrolysis 
 

4.1 Introduction 

Layered composites of Li2MnO3 and LiMO2 (where M = Mn, Ni, Co, etc.) have received 

significant attention, delivering reversible discharge capacities in excess of 200 mAhg-1 84, 87, 88, 

89. To enable commercial implementation of these materials in plug-in hybrid electric vehicles 

(PHEVs) and electric vehicles (EVs), a robust synthesis method is required. Conventional 

synthesis methods include co-precipitation processes, solid-state processes and sol-gel processes 

100, 112, 270. Recently, modified versions of these synthesis techniques were successfully 

developed, such as polymer assisted synthesis routes, solid state combustion synthesis and freeze 

drying for producing battery materials 102, 144, 271. Most of these processes present significant 

challenges that can hinder large-scale implementation, such as long reaction times, 

compositional variations in the product, impurities and batch-to-batch inconsistencies. Solid-

state synthesis methods are limited by the solid-state diffusivities and therefore can lead to 

impurity phases or differences in stoichiometry within the powder, which can compromise the 

electrochemical performance of the product 272, 273, 274, 275. Sol-gel methods can yield high-quality 

products, but in general precursors can be expensive and can leave residues in the material 275, 276, 

277.  
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Co-precipitation is considered to be the state-of-the-art for the synthesis of layered 

composite materials capable of producing advanced cathode morphologies, such as core-shell 

type materials with improved stability 107. Nonetheless, co-precipitation has its technological 

challenges. Co-precipitation can yield non-uniform composition due to differences in solubility 

of the various precursors, leading to impurity phases 155, 231, 277, 278, 279, 280. While non-uniformities 

can be reduced via heat treatment, the hold times are long (>10-20 hours) and temperatures are 

high (800-1000 °C) 230, 281. Furthermore, the precipitating agents require several purification 

steps to be removed and their residues can negatively affect electrochemical performance 231. 

These difficulties can also lead to challenges in terms of batch-to-batch reproducibility during 

large-scale production 231, 277.  

Spray pyrolysis is a versatile synthesis technique for the production of multi-component 

metal oxides (e.g.: YBa2Cu3O7, 0.3Li2MnO3·0.7LiNi0.5Mn0.5O2), including layered lithium-ion 

battery cathode materials 169, 223, 282, 283. The technical advantages of the process include short 

residence time (few seconds) in the reactor that allows large throughput; no further post-

synthesis purification steps are required; batch-to-batch reproducibility is excellent and the 

contamination profile of the product meets or exceeds the purity of the precursor 171, 284, 285, 286. 

Furthermore, spray pyrolysis typically utilizes inexpensive precursor solutions and simple 

equipment 171. Finally, the mesoporous morphology of the product allows for complete activation 

of the material 219, 287, 288. These properties, coupled with excellent electrochemical performance, 

suggest great potential for commercial implementation. 

In spray pyrolysis first a precursor solution is prepared by dissolving the appropriate 

amounts of metal salts, corresponding to the desired stoichiometry 169, 171. The precursor solution 

is aerosolized to form droplets and particles are subsequently formed in a flow reactor due to the 
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evaporation of the solvent, followed by precipitation and thermal decomposition of the precursor 

salts 239, 243, 289.  

The authors have previously reported the synthesis of cobalt-doped materials and 

Li1.2Mn0.54Ni0.13Co0.13O2 materials were found to display excellent electrochemical performance 

243, 289. Therefore, this chemistry was selected for further optimization.  The goal of the present 

study is to evaluate the effect of synthesis conditions on the electrochemical performance of 

Li1.2Mn0.54Ni0.13Co0.13O2 in order to demonstrate the robustness of the process. Synthesis 

conditions were varied (reactor and pre-heater wall temperature, aerosol flow rate, precursor 

concentration) and their effects on the electrochemical performance and bulk properties of the 

material were evaluated. 

4.2 Experimental 

Figure 19 shows a schematic diagram of the modified aerosol flow reactor used for the 

production of the materials.  
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Figure 19 - Schematic diagram of the tubular furnace reactor setup: (1) Bubbler; (2) Ultrasonic nebulizer; (3) 

22 inch long preheater; (4) Thermocouple; (5) Ceramic tube; (6) Temperature controller; (7) Porous 

membrane filter. 

The precursor solution was prepared by dissolving LiNO3, Mn(NO3)2·4H2O, Ni(NO3)2·6H2O and 

Co(NO3)2·6H2O (Alfa Aesar) in deionized water at the ratio corresponding to 

Li1.2Mn0.54Ni0.13Co0.13O2. The total dissolved salt concentration was typically 2.5 molL-1(M). 
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The precursor solution was aerosolized using a 2.4 MHz ultrasonic nebulizer (Sonaer Inc.). 

Water-saturated air was used as the carrier gas at a constant flow rate of 6.6 liters per minute 

(lpm). Residence time in the system was typically 6 seconds. The aerosol gas stream was carried 

into a 22 inch long preheater, which was kept at 200 °C, followed by a 3-zone vertical furnace 

reactor, which had a uniform wall temperature of either 350 °C, 450 °C, 550 °C, 575 °C or 

650 °C. One additional high temperature test was conducted where the preheater was kept at 

250 °C and the wall temperature was set to 800 °C. The as-synthesized powders were collected 

downstream of the reactor on a porous polycarbonate membrane filter (Whatman, GE). The 

effects of residence time and concentration were studied with fixed preheater wall temperature of 

200 °C and reactor wall temperature of 575 °C.  

The aerosol particle size distribution was measured using an electrical low-pressure impactor 

(ELPI Dekati). The as-synthesized powders were subject to annealing heat treatment for 2 hours 

at 900 °C in a box furnace (Thermal Product Solutions). Thermal decomposition of the 

precursors was analyzed using a thermogravimetric analyzer (TGA Q5000, TA Instruments). 

The annealed powders were characterized by XRD using a Rigaku Diffractometer (Geigerflex D-

MAX/A) at a scan rate of 0.04 °s-1 between 10° and 80° 2θ. Structural refinement was performed 

using the whole pattern fitting (WPF) method in the Jade software. The formula card of 

LiNi1/3Mn1/3Co1/3O2 was used as the reference structure for structural refinement. Rietveld-

refinement was performed using the EXPGUI software package. 

Particle morphology was examined with an FEI Nova 2300 Field Emission scanning electron 

microscope (SEM). The primary particle size was estimated from SEM images. EDX 

spectroscopy was used to determine elemental uniformity in the product. Inductively-coupled-
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plasma mass spectrometry (ICP-MS Perkin Elmer Elan DRC II ICP-MS) was used to determine 

the composition of the precursor solutions and the annealed powders.  

The interior morphology of the product was analyzed by embedding the particles in a Ted Pella 

epoxy-based resin. Sections 120 nm thick were cut from the dry resin using a Leica 

Ultramicrotome and the sections were examined by SEM. Tapped powder density was measured 

using a Quantachrome Autotap tapped density analyzer. 

Cathode film fabrication was performed according to the procedure reported earlier 239. The 

cathode slurry was prepared using a polyvinylidene fluoride (PVdF) binder solution (Kureha 

Corp. Japan) and Super-P conductive carbon black (Timcal) suspended in 1-Methyl-2-

pyrrolidinone (NMP). Electrochemical performance of the powders was evaluated in 2032-type 

coin cells (Hohsen Corporation) assembled in an argon-filled glove box. Half-cells were 

assembled for electrochemical tests using pure lithium anodes and 2500 Celgard membranes 

(Celgard, LLC). The electrolyte solution was 1.2 M LiPF6 in an ethylene carbonate/ethyl-methyl-

carbonate solution (EC:EMC = 3:7 by weight) (Tomiyama High Purity Chemicals).  

Cycling tests and rate capability tests were performed according to the procedures listed in Table 

9. Both cycling and rate capability tests were performed using an MTI-BST8-WA battery tester 

at room temperature, 22 C. 
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Cycling test protocol 

(1C=200 mAhg-1) 

Rate capability test 

protocol (1C=200mAhg-1) 

Activation 

1 cycle 2.0-4.8 V at C/10 

(20 mAg-1) 

1 cycle 2.0-4.8 V at C/10 

(20 mAg-1) 

Subsequent cycles 

3 cycles 2.0-4.6 V at C/10 

(20 mAg-1) 

96 cycles 2.0-4.6 V at C/3 

(66.67 mAg-1) 

4 cycles 2.0-4.6 V at C/10 

(20 mAg-1) 

10 cycles 2.0-4.6 V at C/5 

(40 mAg-1) 

20 cycles 2.0-4.6 V at C/2 

(100 mAg-1) 

40 cycles 2.0-4.6 V at 1C 

(200 mAg-1) 

25 cycles 2.0-4.6 V at C/10 

(20 mAg-1) 

Table 9 - Testing protocol for rate capability and cycling tests. 

4.3 Results and Discussion 

4.3.1 Precursor characterization 

In a spray pyrolysis process the aerosolized droplets are exposed to significant heating rates. In 

order to better understand the decomposition reactions occurring in our system, TGA analysis 

was performed on the precursor solution for Li1.2Mn0.54Ni0.13Co0.13O2 at three different ramp 

rates: 0.5 °C min-1, 5 °C min-1 and 100 °C min-1. As indicated by the solid line in Fig. 20 a, 



72 

which is for a ramp rate of 0.5 °C min-1 rate, the water (including the crystalline water of the 

transitional metals) evaporates and then the sample starts to decompose by 70-75 °C. At 5 °C 

min-1 and 100 °C min-1 the high heating rate does not permit slow evaporation and drying, thus 

solvent boiling and material decomposition occur almost simultaneously. At 0.5 °C min-1, 5 °C 

min-1 rate and 100 °C min-1 the thermal decomposition is complete by 400 °C, 475 °C and 

525 °C, respectively, indicating a similar behavior to our earlier results 156, 240. Although pure 

LiNO3 decomposes around 750 °C, the mixture is completely decomposed by 525 °C at all three 

ramp rates. As earlier studies have indicated, this result suggests that the decomposition 

temperature profiles can be affected by the presence of water and transitional metals 290, 291, 292. 

These studies demonstrated that without further analysis of the individual decomposition events, 

unambiguous assignment of the peaks in the decomposition profile cannot be made. This is due 

to the various decomposition reactions involved, as a result of the variable oxidation states of the 

Ni, Mn and Co ions. 
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Figure 20 TGA analysis of decomposition of Li1.2Mn0.54Ni0.13Co0.13O2 at 0.5 °Cmin-1, 5 °Cmin-1 and 100 °Cmin-

1. 
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Figure 21 XRD patterns of the as-synthesized powders synthesized at 350 °C, 575 °C and 800 °C. The arrows 

indicate the peaks corresponding to LiNO3 residues in the sample. 
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4.3.2 Reactor temperature effects 

Several studies have focused on identifying the effects of reactor temperature on the 

electrochemical properties of various materials synthesized via spray pyrolysis 174, 222, 293. For a 

given precursor solution concentration, increasing the synthesis temperature is expected to 

increase the primary particle size of the materials while having only a minor effect on secondary 

particle size. Primary particle size can be increased further via post-synthesis annealing, which 

can lead to longer lithium ion diffusion pathways. Figure 21 shows the XRD patterns of the as-

synthesized powders prepared at reactor temperatures of 350 °C, 575 °C and 800 °C. At a 

synthesis temperature of 350 °C unreacted lithium nitrate residues were found, as indicated by 

the arrows in Fig. 21. As expected, these powders were hygroscopic. These results are consistent 

with results of the TGA study. 

The as-synthesized particles had a mean particle size of 1.7 m 243, 289. Increasing the reactor 

temperature improves the crystallinity of the powder by promoting growth of the primary 

particles, as indicated by the increase in the intensity of the peaks with temperature. Similar 

results for reactor temperature were reported by Kang and Wang for phosphors 174, 222. Based on 

the XRD patterns of the as-synthesized materials, the following production temperatures were 

selected for electrochemical testing: 350 °C, 450 °C, 575 °C, 650 °C and 800 °C. All materials 

were calcined at 900 °C for 2 hours before electrochemical testing. Thus, the residual LiNO3 in 

the as-synthesized samples does not appear in the final product. 
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Figure 22 XRD patterns of the annealed powders synthesized at 350 °C, 575 °C and 800 °C. The insets show 

the superlattice-reflections occurring between 20-25° 2. The standard pdf card is added to the 800 °C 

pattern using PDF # 04-014-4549. 

 

Figure 22 shows the XRD patterns of powders synthesized at 350 °C, 575 °C and 800 °C after 

annealing at 900 °C for 2 hours. The products are phase pure materials and the spectra are in 



77 

excellent agreement with those for Li1.2Mn0.54Ni0.13Co0.13O2 reported in the literature 89, 102, 113. 

All the materials display the broad-peak between 20-25° 2θ corresponding to the ordering 

between the Li2MnO3 and the LiMO2 structural components. Rietveld refinement was performed 

on Li1.2Mn0.54Ni0.13Co0.13O2 synthesized at 350 °C, 575 °C and 800 °C. The structures were 

modeled as a mixture of Li2MnO3 and LiNi1/3Mn1/3Co1/3O2 at a 5:5 ratio 245, 246, 247. Table 10 

shows the atomic positions, unit cell parameters and reliability factors, which validate the 

structural model of the refinement. The different synthesis temperatures cause some variation in 

the atomic position. 
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Phase I: Li2MnO3 (C2/m) 

Element Site Fractional coordinate                     Occup. 

Li1 2b 0/ 0/ 0 0.5/ 0.5/ 0.5 0/ 0/ 0 0.8540/ 0.8540/ 

0.8540 

Mn1 2b 0/ 0/ 0 0.5/ 0.5/ 0.5 0/ 0/ 0 0.1460/ 0.1460/ 

0.1460 

Li2 2c 0/ 0/ 0 0/ 0/ 0 0.5/ 0.5/ 0.5 1.0/ 1.0/ 1.0 

Li3 4h 0/ 0/ 0 0.6976/ 0.6810/ 

0.7780 

0.5/ 0.5/ 0.5 0.9860/ 0.9860/ 

0.9860 

Mn2 4h 0/ 0/ 0 0.7283/ 0.8310/ 

0.6529 

0.5/ 0.5/ 0.5 0.0140/ 0.0140/ 

0.0140 

Li4 4g 0/ 0/ 0 0.1729/ 0.1687/ 

0.1687 

0/ 0/ 0 0.0870/ 0.0870/ 

0.0870 

Mn3 4g 0/ 0/ 0 0.1705/ 0.1708/ 

0.1735 

0/ 0/ 0 0.9130/ 0.9130/ 

0.9130 

O1 4i 0.2988/ 0.2663/ 

0.1908 

0/ 0/ 0 0.1939/ 0.2105/ 

0.2086 

1/ 1/ 1 

O2 8j 0.3040/ 0.2690/ 

0.1968 

0.3252/ 03298/ 

0.3312 

0.2236/ 0.2370/ 

0.2281 

1/ 1/ 1 

a  4.963 Å/ 4.947 Å/ 4.940 

Å 

   

b  8.530 Å/ 8.529 Å/ 8.521 

Å 

   

c  5.025 Å/ 5.009 Å/ 5.021 

Å 

   

β  109.17°/ 108.94°/ 

109.05° 

   

Phase II: LiNi1/3Mn1/3Co1/3O3 (R�̅�m) 

Element Site Fractional coordinate Occup. 

Li1 3b 0/ 0/ 0 0/ 0/ 0 0/ 0/ 0 0.9700/ 0.9700/ 

0.9700 

Ni1 3b 0/ 0/ 0 0/ 0/ 0 0/ 0/ 0 0.0300/ 0.0300/ 

0.0300 

Li2 3a 0/ 0/ 0 0/ 0/ 0 0.5/ 0.5/ 0.5 0.0300/ 0.0300/ 

0.0300 

Ni2 3a 0/ 0/ 0 0/ 0/ 0 0.5/ 0.5/ 0.5 0.3050/ 0.3050/ 

0.3050 

Mn1 3a 0/ 0/ 0 0/ 0/ 0 0.5/ 0.5/ 0.5 0.3350/ 0.3350/ 

0.3350 

Co1 3a 0/ 0/ 0 0/ 0/ 0 0.5/ 0.5/ 0.5 0.3300/ 0.3300/ 

0.3300 

O1 6c 0/ 0/ 0 0/ 0/ 0 0.2419/ 0.2415/ 

0.2407 

1.0/ 1.0/ 1.0 

a  2.851 Å/ 2.850 Å/ 2.848 

Å 

   

c  14.233 Å/ 14.216 Å/ 

14.221 Å 

   

wRp  0.2131/0.2152/0.2220 Rp  0.1475/0.1482/0.1557 

Chi2 1.726/ 1.833/ 1.862 Phase ratio 5:5 

Table 10 Result of the two phase Rietveld-refinement assuming a phase ratio of 5:5, between Li2MnO3 and 

LiNi1/3Mn1/3Co1/3O2 for Li1.2Mn0.54Ni0.13Co0.13O2 synthesized at 350 °C, 575 °C and 800 °C. 

The SEM-images of Fig. 23 (among other synthesis temperatures omitted for clarity) were used 

to evaluate the primary particle size of the annealed powders synthesized at different reactor 

temperatures. The primary particles show crystallinity and the crystal orientation within the 
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secondary particles is random. The particles are nearly equiaxed, allowing the average primary 

particle size to be estimated according to the procedure of Buesser and Pratsinis 248. The primary 

particle size was determined by averaging the results of 100 primary particle measurements. The 

primary particle sizes were found to be 335±10 nm, 235±10 nm, 230±10 nm, 320±10 nm and 

320±10 nm for powders synthesized at 350 °C, 450 °C, 575 °C, 650 °C and 800 °C, respectively, 

and annealed at 900 °C for 2 hours. At a 350 °C reactor temperature the decomposition is 

incomplete, as shown in Fig. 21, and this apparently increases the average primary particle size. 

As discussed below, this may in part be the result of the ill-defined primary particles, which is 

caused by the incomplete decomposition. 
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Figure 23 - SEM photographs of powder synthesized at (a) 350 °C; (b) 575 °C; (c) 800 °C. The first column 

shows pictures of the as-synthesized material, and the second column shows pictures after annealing at 

900 °C for 2 hours. 

a 

b 

c 

2 m 2 m 

2 m 3 m 

2 m 2 m 
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Figure 23 shows the morphology of the annealed powders produced at 350 °C, 575 °C and 

800 °C as observed by SEM. The powder synthesized at 350 °C displays an ill-defined cluster of 

material (Fig. 23a). Spherical particles are apparent, but the particles display necked structures. 

The as-produced powder is extremely hygroscopic due to the large amount of LiNO3 still 

remaining in the sample. It is speculated that this morphology is a result of partial redissolution 

of the unreacted nitrates remaining in the sample. After annealing, a spherical shape is more 

prevalent, but the particles continue to show necks. When the synthesis temperature increases 

above 575 °C, necking is no longer observed (Fig. 23b). Smaller particles appear to be porous 

and spherical. Larger particles, typically above 1.5-2 m, have dents and are irregularly shaped, 

indicating that the particles have a hollow interior. Powders synthesized at 650 °C and 800 °C 

display similar morphologies to powders synthesized at 575 °C (Figs. 23c). The larger primary 

particles obtained for the as-synthesized powders at reactor temperatures of 650 °C and 800 °C, 

as indicated by the XRD results in Fig. 21, show that reactor temperature is important in defining 

the ultimate particle size 174. The tap densities of the powders synthesized at various 

temperatures are listed in Table 12. . The largest tap density of 0.86 gcm-3 can be observed at the 

temperature when the powder fully decomposes. Below 575 °C, smaller tap densities are likely 

to be caused by the observed necking, whereas above 575 °C the tap density does not change 

beyond measurement error. These tap density results are comparable to other lithium-ion battery 

cathode powders prepared via spray pyrolysis 179. Further improvements of the tap density are 

necessary to meet energy density requirements of electric vehicles. Results of recent 

improvements, where the tap density is increased to > 1 gcm-3, will be discussed in an upcoming 

paper. 
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Synthesis temperature (°C) Tapped density (gcm-3) 

450 0.60 

550 0.64 

575 0.86 

650 0.78 

700 0.77 

Table 11 - Tap density of the powders synthesized at various reactor temperatures after annealing at 900 °C 

for 2 hours. 

A microtome study was performed on the powder synthesized at 575 °C to characterize the 

interior morphology, which was observed by SEM (Fig. 24). The particles are composed from 

100-400 nm size primary particles.  
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Figure 24 - SEM image showing the interior morphology of the powder. 

When the secondary particles are above 1.8-2.0 m the particles begin to display a hollow 

interior. As discussed by Messing and Jain, hollow sphere formation is a complex phenomenon 

affected by many parameters 169, 170. Once the precursor solution is aerosolized to form droplets, 

particles form due to the evaporation of the solvent and the subsequent precipitation of the 

precursor salts 169. During the rapid drying period if the surface concentration reaches 

supersaturation before the core reaches saturation, the likelihood to form hollow spheres 

3 m 

2.6 m 

1.6 m 
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increases. Yet, hollow spheres were experimentally observed even for solutions with saturated 

concentrations throughout the particles 169.  

Jain et al. found that hollow sphere formation strongly correlates with the tendency of the 

precursor salt to melt before the decomposition reaction occurs 170. For example they observed 

that nitrates of Mn, Ni or Co melt before decomposition and that this property correlates with a 

tendency to form hollow spheres. This can be further complicated if the gases that evolve during 

decomposition are not able to leave the surface of the particle, i.e., the permeability of the 

surface during decomposition is low for the evolving gases. This can yield an inflated particle 

with a hollow interior. Further study is necessary to understand and overcome hollow sphere 

formation, but this goes beyond the goals of the current study.  

ICP-MS measurements indicate good agreement between the composition of the materials and 

the desired chemistry, similar to our earlier report 289. EDX spectroscopy was performed on the 

powder synthesized at 575 °C to evaluate the elemental distribution of Mn, Ni, Co and O inside 

the powder (Fig. 25). The distribution of the elements is uniform throughout the powder. No 

impurity peaks can be detected by EDX spectroscopy and therefore the XRD pattern of the 

sample is not displayed. 

Mn     Ni        Co         O2 

 

Figure 25 Elemental distribution of Mn, Ni, Co and O2 in the powder synthesized at 575 °C at 6.6 lpm flow 

rate as observed by EDX spectroscopy at 10000 times magnification. 

10 m 10 m 10 m 10 m 
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In summary, the reactor synthesis temperature does not indicate any difference in the XRD-

patterns of the powders, and Rietveld-refinement shows minor deviations in the atomic positions. 

Unreacted LiNO3, which is present in samples synthesized at 350 °C fully decomposes during 

the annealing heat treatment. Changes in the synthesis temperature provide us with a method to 

control primary particle size and the tap density of the powder, but do not present us with a 

method to reduce the interior hollowness of the structures. Hollow spheres appear to be the main 

reason behind the low tap density of these materials. 

4.3.3. Precursor Concentration Effects  

Studies indicate that the concentration of the precursor solution correlates with the secondary 

particle size of the product 170, 225, 294. At a fixed reactor temperature a reduction in concentration 

reduces the secondary particle size 174. Several studies demonstrated that by reducing the 

precursor solution concentration to << 0.5 M the secondary particle size can be controlled 

accurately for single and simple multi-component oxides, allowing for partial control of hollow 

sphere formation 169, 170, 172, 173, 174, 176, 205. While these low-concentration studies may help in 

understanding the fundamental mechanisms of particle formation they do not present a viable 

option for commercial scale production. Increasing the precursor concentration can also lead to 

an increase in the number of nucleation sites, which can in turn reduce the primary particle size 

of the product and this may improve the electrochemical performance of the material 294, 295. To 

identify the effect of concentration on the electrochemical performance, three precursor 

concentrations were studied: 0.5 M, 1 M and 2.5 M. The 0.5 M and 1 M solutions were prepared 

by diluting the 2.5 M solution to preserve the stoichiometry of the original precursor.  

The morphologies of these powders are identical to those in Fig. 23 and therefore are not 

displayed. The primary particle size of the powder made from the 1 M precursor solution is 
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240±10 nm, which is very similar to that of the powders synthesized from the 2.5 M precursor. 

Further dilution of the precursor solution to 0.5 M precursor results in an increase in primary 

particle size to 350±10 nm. According to Fig. 26 the average secondary particle size of the 

material synthesized with the 1 M precursor is larger than that for the material synthesized from 

the 2.5 M precursor. Apparently, the reduced viscosity of the 1 M precursor solution allows 

larger droplets to form without affecting the nucleation characteristics, as was found in 172, 174, 205. 

According to these studies the nucleation properties and the droplet size of sprays typically only 

change when the concentration is decreased below 1 M. The current results display similar trends 

with the primary particle sizes being 350±10 nm, 240±10 nm and 230±10 nm for the 0.5 M, 1 M 

and 2.5 M precursor solution, respectively. These results are consistent with homogeneous 

nucleation theory wherein a more dilute solution will yield less nucleation sites, and the fewer 

sites will lead to a larger primary particle size 89, 174, 296. 
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Figure 26 Particle size distribution of the powder synthesized from 0.5 M, 1 M and 2.5 M precursor solutions. 
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Changing the concentration of the precursor solution provides us with an additional method to 

control the primary particle size of the product without impacting phase purity. XRD results 

indicated no significant difference between the different samples and therefore are not displayed. 

For the range of concentrations considered here, concentration has a minor effect on secondary 

particle size. The secondary particle size is essentially determined by the nebulizer used in the 

synthesis process. Significant reduction in the concentration would be necessary to provide 

accurate control over the particle size of the product, which would limit the practical application 

of spray pyrolysis. 

4.3.4. Effects of flow rate 

The aerosol flow rate and the residence time in the aerosol flow reactor are synonymous 

parameters in a spray pyrolysis process. Residence time in the reactor will define the time 

available for decomposition and coarsening at a given reactor temperature, both of which can 

affect the electrochemical performance of the material. Therefore it is essential to evaluate the 

effect of residence time on the electrochemical properties at a given reactor temperature. Two 

flow rates were studied: 6.6 lpm and l0.4 lpm corresponding to 6 s and 4 s residence time. 

Figure 27 shows the particle size distribution of the powders synthesized at these flow rates. The 

median particle sizes are around 1.5 m. Increasing the flow rate leads to a drop in the number 

density, which is speculated to be the result of impaction 171, 297. 
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Figure 27 Particle size distribution of the powder synthesized at 6.6 lpm and 10.4 lpm flow rates. 

The morphologies of the as-synthesized and annealed powders prepared at a flow rate of 10.4 

lpm are displayed in Fig. 28. The as-synthesized powders form interconnected structures and 

display similar morphologies to those observed for powders synthesized at 350 °C as displayed 

in 28a. The interconnected structures are indicative of unreacted nitrates. The reduction in 

residence time shows that at this temperature the amount of heat transported into the droplets is 

insufficient to ensure complete decomposition. It is clear that a certain minimum temperature 

must be determined and maintained for a given residence time to ensure complete 

decomposition. Following the annealing heat treatment at 900 °C for 2 hours the particles 

separate into spheres and no obvious necking is observed. The primary particle size due to the 

incomplete decomposition increases to 325±10 nm. 

0.00E+00

1.00E+04

2.00E+04

3.00E+04

4.00E+04

5.00E+04

6.00E+04

7.00E+04

8.00E+04

9.00E+04

0.01 0.10 1.00 10.00

N
u

m
b

e
r 

d
e

n
si

ty
 (

#g
.1

)

Dp (μm)

10.4 LPM

6.6 LPM



90 

Figures 26 and 27 indicate that the secondary particle size is primarily determined by the droplet 

generation method, with reactor and flow parameters having only a secondary effect. The 

oscillation frequency of the ultrasonic nebulizer determines the mean droplet size through the 

Lang equation 169, 208. The resulting particle size (dp) can be empirically estimated based on the 

droplet size (dh). The former is dependent on the densities of the precursor solution and the 

synthesized oxide, and the latter is dependent on the concentration of the precursor solution, 

which affects the surface tension and viscosity 208, 209, 298. In order to change the secondary 

particle size, either a different ultrasonic crystal or a different atomization technique (such as air-

assisted atomizers or two-fluid nozzles) must be used 176, 178, 242, 299. 

 

Figure 28 - Morphology of the powder synthesized at 10.4 lpm. (a) as-synthesized; (b) annealed. 

a b 

2 m 2 m 
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Figure 29 - Cycling performance of cells synthesized at (a) 350 °C, 450 °C, 575 °C, 650 °C and 800 °C; (b) 6.6 

lpm and 10.4 lpm; (c) 0.5 M, 1 M and 2.5 M precursor solution; Rate capability tests of cells synthesized at (d) 

350 °C, 450 °C, 575 °C, 650 °C, and 800 °C; (e) 6.6 lpm and 10.4 lpm; (f) 0.5 M, 1 M and 2.5 M precursor 

solution. The open/solid symbols show charge/discharge capacities, respectively. 
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4.4.1. Cycling and rate capability tests  

To evaluate the effects of synthesis conditions on cycle and rate capability, 8 samples were 

tested. Half cells were assembled from the materials synthesized at the different temperatures, 

flow rates and concentrations. The reproducibility of the process was evaluated using charge and 

discharge tests performed on the material synthesized at 575 °C. The standard deviation for 

cycling tests was 4 mAhg-1 at C/3 rate during cycle tests based on 4 batches produced under 

identical conditions on different dates. This indicates excellent batch-to-batch reproducibility. 

Figures 29 a, b, and c compare the cycling performance of the materials synthesized at different 

temperatures, flow rates and concentrations, respectively. Increasing the testing rate from C/10 to 

C/3 (20 mAg-1 to 66.67 mAg-1) leads to a drop of 35±3 mAhg-1 for the studied chemistries. The 

average values were obtained by averaging the differences between the respective discharge 

capacities for the eight materials studied. Among the different synthesis temperatures the powder 

synthesized at 575 °C displays the highest absolute capacity, showing a 206 mAhg-1 discharge 

capacity after 100 cycles at C/3 rate. The powder synthesized at 800 °C displays the lowest 

capacity: after 100 cycles it retains 162 mAhg-1 at C/3 rate. The cycling test results can be 

correlated to the average primary particle size of the materials (Fig. 30).  
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Figure 30 - Particle size vs. discharge capacity after 100 cycles at C/3. 

The smaller primary particle size apparently allows the materials to be fully activated at 22 °C. It 

is speculated that at a primary particle size of around 320-340 nm the core of the primary 

particles can no longer be fully activated, leading to a reduction in charge and discharge 

capacity. The sample synthesized at 350 °C has an estimated primary particle size of 335±10 nm, 

which is larger than that of the samples synthesized at 800 °C (320±10 nm). Nonetheless, the 

capacity is slightly higher. 

The powder synthesized at a flow rate of 6.6 lpm, displays 206 mAhg-1 at cycle 100 at C/3 rate, 

while the powder synthesized at 10.4 lpm only displays 172 mAhg-1. This is consistent with our 
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observation that the primary particle size of the material synthesized at 10.4 lpm increased to 

325±10 nm and that the larger size leads to lower capacity. 

The effect of precursor concentration on the cycling performance shows a strong correlation with 

the primary particle size of the material. The cell prepared from the 0.5 M precursor displays 

only 177 mAhg-1 capacity at cycle 100. The electrochemical performances of the materials 

prepared from the 1 M and 2.5 M precursor solutions are comparable, as the cells display 206 

mAhg-1 and 212 mAhg-1 capacities, respectively. Thus increasing the precursor concentration 

enhances the electrochemical performance of the material.  

Similar trends can be observed for the rate capability tests of the materials (Fig. 29 d, e ,f). For 

the rate capability tests the increase in testing current from C/10 to C/5, C/2, and C/1 (which 

corresponds to current densities of 20 mAg-1, 40 mAg-1, 100 mAg-1 and 200 mAg-1, respectively) 

leads to an average drop of 20 ± 3, 30 ± 3 and 26 ± 3 mAhg-1 for each step, respectively. The 

cells fabricated from the materials synthesized at 450 °C and 575 °C display the highest 

reversible capacity values. At cycle 79, during the last cycle at 1 C the materials retain 174 

mAhg-1 and 169 mAhg-1 capacities respectively, which is comparable to materials synthesized 

via co-precipitation 100, 258. No irreversible capacity loss is observed. The material synthesized at 

10.4 lpm displays lower capacities. While the powder synthesized at 6.6 lpm shows 169 mAhg-1 

capacity at cycle 79 at 1C, rate the 10.4 lpm powder only displays 128 mAhg-1. The change in 

the particle size with the precursor concentration has the same effect, and the powder synthesized 

from the 1 M and 2.5 M precursor solution retains 160 mAhg-1 and 169 mAhg-1, respectively, at 

cycle 79 at 1C rate, while the powder synthesized from the 0.5 M solution only shows 138 

mAhg-1. 
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According to Fig. 29, for the synthesis temperatures, residence times and precursor 

concentrations considered, the capacity fade rate or the capacity retention of the material is 

similar for the conditions studied. 

Although some differences can be observed in the morphology of the powder due to differences 

in the synthesis temperature, no correlation can be identified between the morphology and the 

electrochemical performance. While studies have revealed that particle shape can be varied with 

synthesis method 300, 301, the spherical morphology is expected to be the most desirable for 

packing density, provided that hollow spheres can be avoided. 

4.4.2. Voltage Fade  

Layered materials are known to experience a structural change occurring during cycling that is 

speculated to be a layered-spinel phase transition 113, 116, 257, 260, 289. This leads to voltage fade, 

which has been discussed by recent studies 113, 116. Over cycling, the shapes of the charge and 

discharge curves change significantly with a shift towards lower voltages, which causes a fade in 

the battery’s energy density. 

Figure 31 compares the dQ/dV curves for cycles 1 and 100 for the materials synthesized at 

350 °C, 450 °C, 575 °C, 650 °C and 800 °C. The first cycle curves all display two activation 

peaks, where the peak above 4.5 V can be associated with the activation of the Li2MnO3 

component in the structure. The curves at cycle 100 show that reactor temperature has some 

effect on the voltage fade but the differences are minor, indicating that this structural change 

cannot be overcome by changes in the synthesis conditions alone. 
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Figure 31 - dQ/dV curves of cycle 1 and cycle 100 of powders synthesized at (a) 350 °C, (b) 575 °C and (c) 800 °C. 
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4.5 Conclusions 

Layered cathode materials were synthesized via spray pyrolysis. The primary and secondary 

particle sizes of the powders are affected by reactor synthesis temperature, concentration of the 

precursor and residence time in the reactor. These parameters need to be controlled to achieve 

optimal electrochemical performance but the spray pyrolysis process is rather robust in that 

major changes were not observed and the batch-to-batch reproducibility was excellent. 

Variations in these parameters provide limited control over the morphology of the particles in 

terms of size, hollowness and shape.  

The three analyzed synthesis parameters (synthesis temperature, concentration and flow rate) 

allow us to improve the rate capability by changing the primary particle size. Minor differences 

can be observed in the charge and discharge curves of the materials synthesized at different 

temperatures. The results clearly show that variations in the synthesis conditions are not capable 

of preventing the structural change that leads to the voltage fade of these materials.  

Compared to other synthesis techniques, our study did not reveal any challenges with batch-to-

batch reproducibility, compositional non-uniformities or contaminations in the material. The 

materials produced in the spray pyrolysis process are phase pure and their contamination meets 

or exceeds that of the precursor salts. Results indicate that a wide range of process variables 

exist, wherein spray pyrolysis consistently yields cathode materials with excellent 

electrochemical performance. Nonetheless, improvements to the tap density are necessary. This 

study demonstrates that spray pyrolysis is a promising alternative synthesis method for the 

production of layered cathode materials.  
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Chapter 5 

Effects of surface area and lithium content on 

the electrochemical performance of 

Li1.2Mn0.54Ni0.13Co0.13O2 

 

5.1 Introduction 

Layered composites of Li2MnO3 and LiMO2 (where M = Mn, Ni, Co, etc.) have received 

extensive attention in recent years as candidates for cathode materials for PHEV and EV 

applications due to their attractive qualities, including high capacity, low cost and safety 67, 84, 87, 

109, 112, 212, 258. Various synthesis methods have been studied for the production of these materials, 

such as solid-state synthesis, co-precipitation and combustion synthesis 100, 102, 143. Among these 

co-precipitation is the conventional method being studied for commercial scale production. The 

materials synthesized via co-precipitation generally demonstrate good electrochemical 

performance 101, 103, 302. In the typical co-precipitation process first the transitional metal oxides 

are precipitated, followed by a post-lithiation step. As such, to obtain uniformity the as-

synthesized powders typically require an extensive (> 10-20 hours) annealing heat treatment at 

high temperatures (800-1000 °C). Several studies have indicated that lithium in excess of 

stoichiometry is required to counter the evaporative lithium loss or to obtain good performance 

91, 229, 303. Only a few studies have discussed the effect of lithium content on the electrochemical 

performance of materials to any extent. Xiao et al. found that for co-precipitation the addition of 

5% excess lithium is necessary to compensate for evaporative losses and obtain the desired 

layered composition 304. Choi et al obtained good results with the application of 7% excess 
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lithium for layered LiNi1/3Mn1/3Co1/3O2 for a synthesis that combines co-precipitation and solid 

state synthesis 305. Ryu et al. used a Couette-Taylor reactor to co-precipitate 

0.3Li2MnO3·0.7LiMn0.60Ni0.25Co0.15O2 and found that 15 mol % excess lithium was necessary 

to form the desired layered compound 306. Deng et al. found that co-precipitated materials are 

very sensitive to lithium concentration and lithium deficiency in the precursor solution can lead 

to the formation of spinel LiNi0.5Mn1.5O4 upon lithiation, which was found to improve the rate 

capability of the materials upon cycling 100, 101. 

Since many synthesis methods are used to prepare the layered cathodes, different 

annealing conditions are applied to the as-synthesized powders, and this is sometimes combined 

with a post-lithiation reaction 100, 112, 306. Generally, as the annealing time and temperature 

increase, the primary particles undergo coarsening 307, 308, 309. However, it has also been observed 

that increasing the lithium content of the material promotes coarsening and thus, reduces surface 

area 239. Several studies have discussed this effect for various materials and have suggested that 

the reduction in surface area is coupled to internal structural changes of the material, such as 

transitional metal migration, which typically occurs at the surface 310, 311, 312. Xia et al. found that 

for Mn-based spinels a reduction in surface area improves the stability of the material, but they 

did not investigate the mechanism behind this 313. 

Spray pyrolysis is a versatile synthesis technique for the production of various oxide 

materials (ceramic oxides, supercapacitors) and lithium ion battery materials 169, 170, 171, 172, 201, 228, 

232, 282. It is widely applicable for the synthesis of both anode (e.g. Li4Ti5O12) and cathode 

materials (including LiMn0.5Ni0.5O2, Li1.2Mn0.54Ni0.13Co0.13O2 and LiFePO4). Spray pyrolysis 

consists of the following steps. First, a precursor solution is prepared by dissolving the desired 

precursor salts in a solvent (typically water). The solution is aerosolized into fine droplets which 
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are dried, and the resulting aerosol particles are decomposed, typically in a hot furnace reactor, 

and then collected downstream of the reactor 171. Spray pyrolysis has several distinguishing 

features over other synthesis methods: each sprayed droplet acts as a microreactor, allowing 

stoichiometry to be accurately maintained; no precipitating agents are required, ensuring that 

impurities can be controlled to trace levels; and finally, the short residence times allows for large 

throughput, which makes the process commercially attractive 200, 314. As a result, spray pyrolysis 

has been studied by several groups for mass production of lithium ion battery cathode materials 

201, 203, 228, 282. Recently, Cabot Corp. in a comparative study demonstrated excellent 

electrochemical performance of LiNi1/3Mn1/3Co1/3O2 compared to materials synthesized via co-

precipitation and demonstrated the viability of spray pyrolysis at different production scales 203. 

Nonetheless, a challenge associated with spray pyrolysis  is the difficulty avoiding interior 

hollowness in the product particles169, 172. While this lowers powder tap density, the 

electrochemical performance of the material is not affected by the interior morphology.  

This group has been developing spray pyrolysis for the production of layered cathode 

materials 242, 289. Various layered composites of Li2MnO3 and LiMO2 (where M = Mn, Ni and/or 

Co) have been synthesized using this process, yielding excellent electrochemical performance. 

The process has also demonstrated excellent reproducibility and robustness for producing 

layered cathode materials 203, 315. These and earlier studies with co-precipitation have indicated 

that the Li1.2Mn0.54Ni0.13Co0.13O2 chemistry shows excellent electrochemical properties for PHEV 

applications 84, 88, 89, 90, 102, 103. However, there have not been extensive studies to understand the 

effect of surface area on the electrochemical performance of materials synthesized by spray 

pyrolysis.  
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Due to the high potential of the layered Li1.2Mn0.54Ni0.13Co0.13O2 chemistry, the goal of the 

current study is to use spray pyrolysis to synthesize Li1.2Mn0.54Ni0.13Co0.13O2 materials with a 

controlled amount of excess and deficient lithium content to evaluate the effect on morphological 

and electrochemistry. The annealing conditions were extensively varied for these samples to 

understand the effect of surface area on the electrochemical properties and to see if the structural 

changes can be reduced by changes in the lithium content of the material. 

5.2. Experimental 

The precursor solution was prepared by dissolving LiNO3, Mn(NO3)2·4H2O, Ni(NO3)2·6H2O and 

Co(NO3)2·6H2O at the desired ratios in deionized water corresponding to the compositions listed 

in Table 12. The excess and deficient lithium content indicated in the text (e.g. 3.3% excess) 

corresponds to the weight % differences compared to the stoichiometric composition 

(Li1.2Mn0.54Ni0.13Co0.13O2) and both notations are provided in Table 12. The compositions were 

calculated according to the following procedure. Adding all the chemical components of 

0.5Li2MnO3 0.5LiMn0.33Ni0.33Co0.33O2 leads to the following composition: 

Li1.5Mn0.67Ni0.17Co0.17O2.5. Increasing the lithium content by 0.1 from the previous composition 

to Li1.6Mn0.67Ni0.17Co0.17O2.5 leads to 6.7 wt% excess Li. To preserve the electroneutrality using 

the +1 oxidation state of lithium the proportion of transitional metal ions (Mn+4, Co+3 and Ni+2) is 

reduced accordingly to have a total oxidation state of +3.4, leading to a composition of 

Li1.6Mn0.6Ni0.15Co0.15O2.5. The previous theoretical composition is then multiplied by 2/2.5 to 

result in the compositions listed in Table 12. The Li excess or deficiency is defined by dividing 

the lithium content by the stoichiometric lithium content. Seven compositions including the 

stoichiometric composition were studied. Prior research has indicated that composition can be 

accurately controlled with spray pyrolysis at these low dopant levels 203, 289. Elemental analysis 
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of the annealed powders were obtained by inductively-coupled-plasma mass spectrometry 

(Perkin Elmer Elan DRC II ICP-MS) according to the procedure reported earlier 289. The 

precursor salts were obtained from Alfa Aesar. The total dissolved salt concentration was fixed 

at 2.5 molL-1 (M). 

Target Composition Composition 

Composition measured by ICP-MS 

900 °C 2 hours 900 °C 20 hours 

Li1.28Mn0.52Ni0.13Co0.13O2 +6.7 wt% Li Li1.29Mn0.52Ni0.14Co0.11O2 Li1.18Mn0.55Ni0.14Co0.11O2 

Li1.24Mn0.54Ni0.13Co0.13O2 + 3.3 wt% Li Li1.26Mn0.55Ni0.14Co0.11O2 Li1.25Mn0.55Ni0.14Co0.11O2 

Li1.22Mn0.54Ni0.13Co0.13O2 + 1.3 wt% Li Li1.22Mn0.52Ni0.14Co0.15O2 Li1.22Mn0.52Ni0.14Co0.15O2 

Li1.21Mn0.54Ni0.13Co0.13O2 + 0.7 wt% Li Li1.21Mn0.53Ni0.14Co0.15O2 Li1.21Mn0.53Ni0.14Co0.15O2 

Li1.20Mn0.54Ni0.13Co0.13O2 

Stoich. 

composition 

Li1.20Mn0.54Ni0.13Co0.13O2 Li1.24Mn0.55Ni0.13Co0.12O2 

Li1.19Mn0.54Ni0.13Co0.13O2 - 0.7 wt% Li Li1.20Mn0.55Ni0.13Co0.12O2 Li1.20Mn0.55Ni0.14Co0.11O2 

Li1.18Mn0.54Ni0.13Co0.13O2 - 1.3 wt% Li Li1.19Mn0.56Ni0.13Co0.12O2 Li1.19Mn0.56Ni0.13Co0.12O2 

Li1.16Mn0.54Ni0.14Co0.14O2 - 3.3 wt% Li Li1.16Mn0.55Ni0.14Co0.11O2 Li1.16Mn0.55Ni0.14Co0.11O2 

Table 12 - Target stoichiometry for the lithium excess and deficient materials. Composition of the materials 

as identified by ICP-MS. 

The precursor solution was aerosolized using a 2.4 MHz ultrasonic nebulizer (Sonaer Inc.). 

Water-saturated air at 50 °C was used as the carrier gas at a constant flow rate of 6.6 liters per 

minute (lpm). Details of the experimental setup were reported earlier 315. Residence time in the 

system was fixed at 6 seconds. The aerosol gas stream was carried into a 22 inch long preheater, 

which was kept at 200 °C, followed by a vertical furnace reactor that was kept at 575 °C. All 

indicated temperatures are wall temperatures. The as-synthesized powders were collected 



103 

downstream of the reactor using porous polycarbonate membrane filters (Whatman, GE). The as-

synthesized powders were subject to annealing heat treatment at 900 °C for various durations as 

indicated in the text. 

The annealed powders were characterized by XRD using a Rigaku Diffractometer (Geigerflex D-

MAX/A) at a scan rate of 0.04 °s-1 between 10° and 80° 2θ. Structural refinement was done 

using the whole pattern fitting (WPF) method in the Jade software. The formula card of 

LiNi1/3Mn1/3Co1/3O2 was used as the reference structure for the refinement. Rietveld-refinement 

was performed using the EXPGUI software package to guide the discussion. 

The particle morphology was examined with an FEI Nova 2300 Field Emission Scanning 

Electron Microscope (SEM). Brunauer-Emmett-Teller (BET) surface area measurements were 

conducted to characterize the specific surface area of the samples (Autosorb-1, Quantachrome 

Instruments). 

Cathode film fabrication was done according to the procedure reported earlier 239. The cathode 

slurry was prepared using polyvinylidene fluoride (PVdF) binder solution (Kureha Corp. Japan) 

and C45 conductive carbon black (Timcal) suspended in 1-methyl-2-pyrrolidinone (NMP). Half-

cells were assembled for the electrochemical tests using pure lithium anodes and 2500 Celgard 

membranes (Celgard LLC). The electrolyte solution was 1.2 M LiPF6 in ethylene 

carbonate/ethyl-methyl-carbonate solution (EC:EMC = 3:7 by weight, Tomiyama High Purity 

Chemicals).  

The powders were tested in 2032-type coin cells (Hohsen Corporation) assembled in an argon-

filled glove box. Cycling tests and rate capability tests were performed according to the 

procedures reported earlier 315. Both cycling and rate capability tests were performed using an 
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MTI-BST8-WA-type battery tester. All the electrochemical tests were performed at room 

temperature, 22 C. 

5.3 Results and Discussion 

5.3.1 Physical Properties  

In order to identify the annealing conditions for the current study and to understand, which 

annealing times lead to significant coarsening, we synthesized a 6.7% excess lithium-containing 

sample (Li1.28Mn0.52Ni0.13Co0.13O2). The as-synthesized material was annealed at 900 °C for 2, 5, 

10, 20 and 40 hours and the surface area of the powder was measured using BET. According to 

Fig. 32 the BET surface area of the sample is reduced from approximately 9.1 m2g-1 to 3.0 m2g-1, 

when the annealing time is increased from 2 hours to 20 hours. When the annealing time is 

increased from 2 hours to 5 hours the surface area is reduced from 9.1 m2g-1 to 5.3 m2g-1. 

Increasing the annealing time to 10 hours reduced the surface area to 4.7 m2g-1. Similarly, when 

the annealing time is increased to 20 hours, the surface area is reduced to 3.0 m2g-1 and a further 

increase to 40 hours yields only a minor reduction to 2.7 m2g-1 (data not displayed). The change 

in BET surface area with annealing condition is shown in Fig. 32 for the seven materials. The 

surface area is continuously reduced with time for all seven samples and the increased lithium 

content promotes coarsening for the materials 249, 289.   
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Figure 32 - BET surface area for 6.7 %, 3.3 %, 1.3 % and 0.7% excess Li, stoichiometric Li and, 0.7 %, 1.3 % 

and 3.3 % deficient Li materials annealed at 900 °C for 2, 5 and 20 hours. 
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Figure 33 - SEM micrographs of Li1.28Mn0.54Ni0.13Co0.13O2 powders after annealing at 900 °C for (a) 2 hours, 

(b) 10 hours, (c) 20 hours, (d) 40 hours. 

The SEM images for the 6.7 wt% excess Li samples (Fig. 33 a-d) clearly display this trend. The 

samples annealed for 5 hours (image not shown) and 10 hours maintain an open porous structure 

without significant visual differences from the sample annealed for 2 hours, while the samples 

annealed for 20 hours and 40 hours display very large primary particles and do not display open 

porosity due to the extensive coarsening. A significant change occurred for the sampled annealed 

for 5 hours, and then again to for the sample annealed for 20 hours. Therefore, in the current 

c 
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2 m 2 m 

d 
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study annealing times of 2, 5 and 20 hours at 900 °C were further evaluated. According to the 

results of the ICP-MS study listed in Table 13, the 20 hour annealing resulted in measureable 

evaporative lithium loss for the 6.7% excess lithium sample. Therefore, this sample was omitted 

from the following studies as evaporative lithium losses would significantly complicate the 

interpretation of results. Other samples did not display evaporative lithium loss even after 

annealing for 20 hours. 

Figure 34 compares the SEM micrographs of Li1.24Mn0.54Ni0.13Co0.13O2, Li1.2Mn0.54Ni0.13Co0.13O2 

and Li1.16Mn0.54Ni0.14Co0.14O2 annealed at 900 °C for 2 and 20 hours. Significant coarsening can 

be observed when the annealing time is increased to 20 hours, which is in good agreement with 

the BET results. Primary particle size was estimated by averaging the longest diameter of 100 

primary particles based on SEM images. As the lithium content of the samples is reduced the 

materials gradually lose their open pore structure.  
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Figure 34 - SEM micrographs of (a) Li1.24Mn0.50Ni0.13Co0.13O2, (b) Li1.2Mn0.54Ni0.13Co0.13O2, and (c) 

Li1.16Mn0.56Ni0.14Co0.14O2 annealed at 900 °C for 2 hours; and 900 °C for 20 hours (d) Li1.24Mn0.50Ni0.13Co0.13O2, 

(e) Li1.2Mn0.54Ni0.13Co0.13O2, (f) Li1.16Mn0.56Ni0.14Co0.14O2. 
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Figure 35 - Estimated primary particle size of the samples based upon SEM-images.  

As indicated in Fig. 35 all the materials display a primary particle size close to 500 nm after 

annealing for 20 hours. 

Figure 36 compares the XRD profiles of the 3.3 % excess lithium, stoichiometric and the 3.3 % 

deficient materials after annealing at 900 °C for 2 hours. No impurity phases can be observed in 

the spectra of the material and all the materials display a broad peak between 20-25° 2θ 

corresponding to the superlattice ordering of the structure or a composite structure 92, 94, 103, 105. 

The clear splitting of the (006), (012) and (018), (110) peaks indicate layered structures 113. Two 

important features can be observed. As the lithium content of the material is decreased, the 

relative intensities of the two major peaks at (003) and (104) become inverted: the (003) peak is 
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more intense for the excess lithium containing materials, whereas when the lithium content is 

reduced to below stoichiometric amounts, the (104) peak becomes more intense. The XRD 

spectra of Li1.2Mn0.54Ni0.13Co0.13O2 synthesized via co-precipitation or solid-state synthesis 

displays similar trends: due to the excess lithium content applied during the synthesis the I003 is 

more intense than the I104 
84, 94. 

 

Figure 36 - XRD patterns of Li1.24Mn0.50Ni0.13Co0.13O2, Li1.2Mn0.54Ni0.13Co0.13O2 and Li1.16Mn0.56Ni0.14Co0.14O2 

annealed at 900 °C for 2 hours. The insets magnify the broad peak between 20- 25° 2 due to the superlattice 

ordering between the structural components. 
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Figure 37 - XRD patterns of Li1.24Mn0.50Ni0.13Co0.13O2, Li1.2Mn0.54Ni0.13Co0.13O2 and Li1.16Mn0.56Ni0.14Co0.14O2 

annealed at 900 °C for 20 hours. The insets magnify the broad peak between 20- 25° 2 due to the 

superlattice ordering between the structural components. 
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The reduction of the lithium content results in the preferential growth of the Li2MnO3 (C2/m) 

phase component. This can be observed by the increased intensity of the reflections between 20-

25° 2θcorresponding to the C2/mphase which become more intense with the reduction of the 

lithium content and can be clearly observed in the insets of Fig. 36. This effect is less 

pronounced for the stoichiometric powder annealed for 2 hours. When the annealing time is 

increased to 20 hours similar trends can be observed as indicated by the insets in Fig. 37. The 

results indicate no new phase formation. The relative intensities of the (003) and (104) peaks are 

inverted for the stoichiometric and deficient powders, but are preserved for the lithium excess 

sample. The preferential growth of the Li2MnO3 phase and the corresponding peaks become even 

more pronounced, as indicated by the insets of Fig. 37 and these peaks start to emerge in the 

XRD spectrum of the 3.3 % excess lithium containing material as well. Intermediate 

compositions display similar trends and therefore are omitted from both Figs. 36 and 37 for 

clarity. Interestingly, the (018) and (110) peaks increase in relative intensity compared to the 

(003) and (104) peaks for the stoichiometric and deficient samples as the annealing time is 

increased from 2 hours to 20 hours. Yi and coworkers recently studied the aging of 

Li1.2Mn0.54Ni0.13Co0.13O2 using a synchrothron XRD at the Advanced Photon Source 113. Their 

results indicated that as the material is extensively cycled the lithium is extracted from their 

interstitial positions, and the transitional metal (TM) planes undergo  structural reorganization, 

which leads to an expansion along the c axis and an increase in the intensity of the (110) plane. 

Overall, these changes lead to reduced capacities due to the loss of electrochemically active 

component from the structure. As discussed below, a similar transition may occur for these 

materials, which may lead to the reorganization of the structure and a Li-TM exchange between 

the two respective layers. 
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Composition 

Annealing time 

 at 900 °C (h) 

Li2MnO3 (C2/m) LiNi1/3Mn1/3Co1/3O2     

a b c  a c Rp Chi2  

+ 3.3 wt% Li 

2 4.941 8.541 5.024 109.14 2.850 14.213 0.145 1.848 

20 4.944 8.542 5.030 109.10 2.851 14.219 0.134 1.689 

Stoich. 

2 4.947 8.529 5.009 108.95 2.850 14.216 0.148 1.833 

20 4.940 8.562 5.031 109.44 2.853 14.249 0.174 1.643 

- 3.3 wt% Li 

2 4.936 8.552 5.015 109.16 2.850 14.229 0.159 1.906 

20 4.943 8.566 5.036 109.34 2.855 14.253 0.173 1.544 

Table 13 - Cell parameter and reliability factor results for two phase Rietveld-refinement assuming a phase 

ratio of 5:5 and between Li2MnO3 and LiNi1/3Mn1/3Co1/3O2 for Li1.24Mn0.50Ni0.13Co0.13O2
,
 

Li1.20Mn0.54Ni0.13Co0.13O2 and Li1.16Mn0.56Ni0.14Co0.14O2 annealed at 900 °C for 2 hours and 20 hours. 

Two-phase Rietveld refinement was performed on Li1.24Mn0.54Ni0.13Co0.13O2, 

Li1.2Mn0.54Ni0.13Co0.13O2 and Li1.16Mn0.54Ni0.14Co0.14O2 annealed at 900 °C for 2 and 20 hours. 

The structures were modeled as a mixture of Li2MnO3 and LiNi1/3Mn1/3Co1/3O2, with a 5:5 molar 

ratio 245, 247, 305.  Table 13 shows the cell parameters and the reliability factors for the materials 

after refinement. It is clear that the cell parameters of the Li2MnO3 structural component display 

changes, which agrees well with the above results. The 3.3 % excess materials 

(Li1.24Mn0.54Ni0.13Co0.13O2) have almost identical cell parameters at both annealing conditions. 

The increased annealing time leads to larger b and c parameters for both the stoichiometric and 

the 3.3 % deficient material. Similarly, the LiNi1/3Mn1/3Co1/3O2 component shows a minor 
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increase along the c axis for the stoichiometric and the 3.3 % deficient materials, but is 

essentially intact for the 3.3 % excess material. 

 

Figure 38 - Initial charge and discharge profiles at a constant current density of 20 mAg-1 between 2.0 and 4.8 

V: 3.3 %, 1.3 %, and 0.7 excess Li, stoichiometric Li, 0.7 %, 1.3 % and 3.3 % deficient Li materials after 

annealing at (a) 900 °C for 2 hours, (b) 900 °C for 5 hours, (c) 900 °C for 20 hours. 
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5.3.4 Electrochemical testing results 

Figure 38 shows the initial charge and discharge profiles of the materials annealed for 2, 5 and 

20 hours, when charged at a constant current density of 20 mAg-1 between 2.0-4.8 V (1C=200 

mAg-1). A constant-current, constant-voltage cycling protocol was applied for all the 

electrochemical tests 239. All the materials display a two-staged charge profile: the first plateau 

between 3.5 V and 4.4 V is associated with the Ni2+/Ni4+ and the Co3+/Co4+ redox couples, while 

the second plateau above is associated with the activation of the Li2MnO3-domains in the 

material 94. As can be observed in Fig. 38 (a),  

when the materials are annealed for 2 hours the 1.3% and 3.3% deficient materials display lower 

capacities compared to the stoichiometric and excess lithium containing materials. A possible 

explanation is that below stoichiometry a rock-salt type NixO1-x phase may exist or form in the 

materials due to the reorganization of the TM layers. This leads to the elongation of the c axis, 

and the phases remain undetectable by the XRD used in the current study 316. The formation of 

the NixO1-x phase may cause the Li2MnO3 domains in the material to be partially deactivated. 

This could potentially reduce the amount of electrochemically-available Li, which can cause the 

observed loss in capacity.  

Similar trends are present for the stoichiometric and Li-deficient materials annealed for 5 hours, 

and further for the 0.7% excess and 1.3% excess materials annealed for 20 hours. The originally 

stoichiometric powders may undergo an internal structural reorganization causing a loss of 

electrochemically active Li in the structure, which can be the reason behind the observed 

capacity drop. This is speculated to be the main mechanism behind the observed loss of capacity 

observed in Table 12 since no significant Li-loss can be observed by ICP-MS with increased 

annealing time. The capacity drop is most severe when the annealing time is increased to 20 
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hours. Only the 3.3% excess Li containing powder is able to compensate for the loss in 

electrochemically active Li and the associated structural reorganization at these long hold times. 

Figure 38 b shows that after annealing for 5 hours the materials containing excess lithium 

become fully active and display initial discharge capacities > 250 mAhg-1. Interestingly the 

stoichiometric composition displays an unexpected drop in electrochemical performance, causing 

it to behave similar to the 1.3% deficient and 3.3% Li deficient samples. The excess lithium 

content of the samples seem to offset the drop in the electrochemical performance of the samples 

compared to the ones annealed for 2 hours. When the annealing time is further increased to 20 

hours, the 3.3 % deficient material displays a significant reduction in performance, while the 

3.3% excess material maintains a discharge capacity > 250 mAhg-1. All of the intermediate 

compositions behave similar to each other, displaying initial discharge capacities close to 220 

mAhg-1. Although the discharge capacities clearly drop with increasing annealing time, the 

charge capacities remain close to 300 mAhg-1 for most of the materials for all three annealing 

conditions. Besides the structural reorganization the reduction in discharge capacities can be 

partially explained by the increased primary particle size, which has a more pronounced effect on 

the integrated Li2MnO3 component of the material 76, 317.  

The cycle performance of the materials was tested under a constant current density of 20 mAg-1 

between 2.0-4.6 V at C/10 and C/3 rate. Details of the cycle and rate test protocol were reported 

earlier 315. 

Figure 39 compares the cycle performance of the materials after annealing for 2, 5 and 20 hours 

at 900 °C. No significant differences can be observed in the capacity retention of the materials 

annealed for these three durations, and the materials show very stable cycle performance. The 

3.3% deficient material displays the most rapid fade after annealing for 2 hours, probably due to 
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the least amount of residual lithium in the structure, or more precisely Li2MnO3 nano domains, 

which could help with structure stabilization. When the duration of the annealing heat treatment 

is further increased leading to a structural reorganization and partial deactivation of Li2MnO3 for 

electrochemical cycling, the capacity fade of this sample shows similar trends to other materials. 

When the materials are annealed for 2 hours the stoichiometric, excess lithium containing and 

0.7% lithium deficient materials display excellent electrochemical performance with discharge 

capacities, between 195 – 205 mAhg-1 after 100 cycles at C/3 rate. When the annealing time is 

increased to 5 hours only the excess lithium containing materials retain this performance with a 

discharge capacities after 100 cycles of 195 mAhg-1. These capacities indicate essentially 

identical electrochemical performance, with the difference in the electrochemical performance of 

the materials being less than the standard deviation of the process 315. A further increase to 20 

hours only allows the sample with 3.3% excess lithium to retain discharge capacities close to 200 

mAhg-1 after 100 cycles. The originally 1.3% and 0.7% excess lithium samples drop to close to 

170 mAhg-1 and display a slow activation of the nano domains of Li2MnO3, which may have a 

stabilizing effect on the materials as proposed earlier 84, 318.  

Rate capability tests for these materials show similar trends to those observed for the cycle tests. 

Materials with stoichiometric or deficient lithium content show slightly faster capacity fade in 

the samples annealed for 2 hours. However, when the annealing time is increased all the 

materials become more stable. The results indicate that adding 3.3% excess lithium is sufficient 

to offset structural changes occurring during the increased annealing times and yield good 

capacity without significant lithium loss from evaporation. Fell et al. concluded similarly for 

cobalt-free layered materials 316. 
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Figure 39 - Cycling performance of 3.3 %, 1.3 %, and 0.7 excess Li, stoichiometric Li, 0.7 %, 1.3 % and 3.3 % 

deficient Li materials after annealing at (a) 900 °C for 2 hours, (b) 900 °C for 5 hours, (c) 900 °C for 20 hours; 

Rate capability tests of 3.3 %, 1.3 %, and 0.7 excess Li, stoichiometric Li, 0.7 %, 1.3 % and 3.3 % deficient Li 

materials after annealing at (d) 900 °C for 2 hours, (e) 900 °C for 5 hours, (f) 900 °C for 20 hours. The solid 

symbols show discharge capacities. 

5.3.2 Voltage Fade 

Recently several studies have discussed the voltage fade of layered materials, which is a critical 

issue that needs to be addressed for these materials before application in PHEVs and EVs 113, 114, 
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115, 116, 289. Due to an internal phase change, which is typically observed as a layered-spinel 

transition, the voltage profile of the materials continuously decays. 

 

 

Figure 40 - dQ/dV curves of cycle 1 and cycle 100 of 3.3 % excess Li (a) annealed at 900 °C for 2 hours, (b) 

900 °C for 20 hours; and 3.3 % deficient Li annealed at (c) 900 °C for 2 hours, and (d) 900 °C for 20 hours. 

According to the results discussed above, the 3.3% excess lithium leads to additional stability 

with higher overall charge and discharge capacities, while the 3.3% deficient material and/or the 

long annealing times results in preferential growth of Li2MnO3 phase in the material. To 

determine if these conditions also affect voltage fade, dQ/dV curves are compared for cycles 2 

and 100 in Fig. 40 for the 3.3% excess and deficient materials annealed for 2 hours and 20 hours. 

All the materials display two peaks during cycle 2. Typically these two peaks are associated with 

the electrochemical activation of the two structural components. The existence of the second 
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minor peak above 4.5 V indicates that the Li2MnO3 structural component undergoes extended 

activation, which is more pronounced in the lithium deficient samples compared with the excess 

lithium containing materials. No significant difference can be observed for cycle 100 for the 

3.3% excess material annealed at 2 hours and 20 hours. Apparently the excess lithium does not 

affect the voltage fade of the structure. The 3.3% deficient material annealed for 2 hours already 

displays significantly smaller new peaks compared to the excess lithium containing materials, 

especially during the discharge curve around 3.1 V, which indicates a reduction in the layered-

spinel conversion of the sample. When the annealing time is increased to 20 hours, the intensity 

of the new peaks is further reduced, which implies less voltage fade. The electrochemical 

performance of these materials demonstrates a prolonged activation or partial deactivation of the 

Li2MnO3 phase due to the reorganization occurring in the TM layers, as discussed above, leading 

to lower capacities. These results imply that the Li2MnO3 component has a key role in the 

voltage fade of the materials, and in order to overcome it, the Li2MnO3 structural component 

needs to be stabilized. 

 

5.4. Conclusions 

Lithium excess and deficient Li1.2Mn0.54Ni0.13Co0.13O2 materials were synthesized via spray 

pyrolysis and annealed between 2 to 20 hours at 900 °C. XRD results indicate that a reduction in 

the lithium content or an increase in the annealing time leads to a preferential growth of the 

Li2MnO3 phase, coupled to a reorganization of the internal structure in the TM layers in the 

material in addition to a reduction in the surface area of the samples. Minor compositional 

variations are sufficient to induce significant changes in the electrochemical performance of the 

materials. Reduction of the BET surface area is coupled to an internal structural change. 
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Although the electrochemical performance of the material can be maintained by the addition of 

excess lithium, which allows some control over surface area, these are likely coupled to minor 

changes in the internal composition of the material. These changes do not affect the capacity fade 

and do not provide us with a method to further stabilize the structure. Compared to earlier reports 

with other synthesis methods our results indicate that 3.3 % excess lithium is sufficient to 

maintain high discharge capacities over cycling even after 20 hours of annealing at 900 °C for 

materials synthesized via spray pyrolysis. 

With a reduction in lithium content and extended annealing, the Li2MnO3 domains phase out, 

which is coupled to an internal structural reorganization. This results in lower discharge 

capacities, which is speculated to be due to the reorganization of the transitional metal layers 

occurring inside the material. The smaller extent of activation of this structural component 

however leads to a reduction in the voltage fade of these materials, as observed in the dQ/dV 

plots. These results imply that in order to overcome voltage fade the Li2MnO3 structural 

component needs to be further stabilized. 
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Chapter 6  

Trace level doping to improve capacity 

retention and prevent voltage fade 
 

6.1. Introduction 

Lithium rich layered NMC cathode materials following the composition xLi2MnO3·(1-

x)Li(Ni1/3Mn1/3Co1/3)O2 have received significant attention as cathode materials for PHEV and 

EV applications 89, 91, 103, 318. The materials can deliver capacities in excess of 200 mAhg-1 when 

charged above 4.6 V vs. Li/Li+ by activating the Li2MnO3 structural component. Numerous 

papers have analyzed the activation process and the large irreversible first cycle capacity loss to 

understand the simultaneous structural reorganization 10, 85, 92, 94, 114, 153, 217, 316, 319, 320. Most studies 

agree that the activation is coupled to a virtual loss of “Li2O” from the structure, which 

progresses via a complex mechanism that leads to an irreversible structural transformation. 

Several studies have discussed the activation process 94, 321, 322, 323. A study by Simonin and 

coworkers is of particular importance to the current study as it suggests that during the initial 

cycle, a new cubic spinel phase forms that is very similar in nature to the original structure and is 

carried over throughout subsequent cycles influencing the capacity fade of the material 323.  

Despite their high capacities, it has been recently determined that these materials display voltage 

fade due to an internal layered-spinel phase transition, which leads to an overall loss of power 

from the cathode material throughout cycling 115, 116, 117, 324, 325. Gu and coworkers found that for 

cobalt free materials the voltage fade is related to a continuous migration of Ni to the surface 

coupled to a layered-spinel phase transition 262. Mohanty et al. found a similar transformation of 
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the materials during high voltage hold and cycling and their in situ XRD studies indicated a 

layered-spinel phase transformation coupled to formation of a new phase due to migration of 

transitional metal (TM) ions between the lithium and TM layers 116, 117. The same authors found 

that when the upper cutoff voltage is 4.8 V, the cation ordering of the structure diminishes after 

the activation process; however the cation ordering is retained if the upper cutoff voltage is 4.2 V 

324. Li and coworkers used synchrotron XRD techniques to understand the structural evolution of 

these materials 113. Their results suggest a migration of cations between the TM layers similar to 

other reports. Other studies discussing the gradual activation of the Li2MnO3 component, 

electrolyte additives, surface effects and analogous materials offer further insights to structural 

causes behind voltage fade 326 327 119. Lee and Manthiram synthesized Ti doped and layered 

composites of Li, Ni, Mn and Co 328. Their results indicated that the length of the second plateau 

during the first cycle, which is typically associated to the activation of the Li2MnO3 structural 

component, governs the voltage fade of the material and thus appropriate design of the cathode 

chemistry may reduce voltage fade. Earlier several studies (including those from our laboratory) 

found that compositions with a lower Li2MnO3 content display better structural stability and less 

voltage fade 103, 201, 242, 244, 289, 329. Significant progress has been made to understand voltage fade, 

however at this point no solution for stabilizing the materials and overcoming voltage fade has 

been advanced. 

Trace elemental doping is a widely reported technique for stabilizing cathode materials. Of the 

possible dopants, Mo, Ti, Ag, Mg, Tb, Al and Ru have been reported to improve electrochemical 

performance, safety characteristics and stability of spinel and layered derivatives of LiMO2 

(where M = Mn, Ni, etc.) 330, 331, 332, 333, 334, 335, 336, 337, 338, 339. Improvements were demonstrated 

with the addition of Al, Ti, Zr, Cr, Ru, Ga and Na specifically for the layered xLi2MnO3·(1-
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x)LiMO2 chemistry in terms of rate capability, cycling stability, first cycle Coulombic efficiency 

and first cycle charge and discharge capacities 318, 340, 341, 342, 343, 344, 345, 346, 347. Most studies 

reported that dopants primarily affected the electrochemical properties of the Li2MnO3 structural 

component. While these studies demonstrated improvements of the electrochemical performance 

with the addition of dopants, none of them discussed their effect on voltage fade. The addition of 

rare and expensive dopants (e.g., Ru) may improve the cycleability significantly, however, they 

may not offer cost-competitive solutions for EVs.  

Various synthesis methods exist for producing layered cathode materials including co-

precipitation, solid-state synthesis, polymer-assisted synthesis, ball milling, combustion synthesis 

and spray pyrolysis 84, 102, 143, 155, 202, 228, 242, 282, 330. Among these methods, spray pyrolysis allows 

for a level of control of product purity that is unlikely to be reproduced by any other synthesis 

method. In the spray pyrolysis process each droplet acts as a microreactor, accurately preserving 

the composition of the precursor solution. The main particle formation mechanism is understood 

to be the one-droplet to one-particle (ODOP) mechanism 348. No additives are required, which 

allows accurate control of the dopant profile to trace levels in the product. The lack of 

precipitating aids also leads to an inherent purity of the product and the high temperature of the 

process yields product purity that meets or exceeds the purity of the precursor salts 315. In a 

recent study we demonstrated that the addition of small amounts of Li (<4 wt%) leads to well-

preserved stoichiometries after annealing and that evaporative Li loss during synthesis and 

annealing is negligible, allowing the ultimate particle stoichiometry to be dictated by the 

precursor chemistry 329. 

In the present study our goal is to use inexpensive materials, including alkali (Na, K), alkali earth 

(Mg, Ca, Sr, Ba) and Al as dopants to improve the voltage fade of layered xLi2MnO3·(1-
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x)Li(Ni1/3Mn1/3Co1/3)O2. Of particular interest is Li1.2Mn0.54Ni0.13Co0.13O2 (x = 0.5), but 

Li1.09Mn0.43Ni0.24Co0.24O2 (x = 0.2) and Li1.14Mn0.46AlNi0.2Co0.2O2 (x= 0.3) will also be 

evaluated. 

6.2 Experimental 

The precursor solution was prepared by dissolving LiNO3, Ni(NO3)2·6H2O, Co(NO3)2·6H2O 

(Alfa Aesar) and Mn(NO3)2·4H2O (Sigma Aldrich) at the ratio corresponding to the doped Li1.2-

xMn0.54-yNi0.13Co0.13-zO2 chemistries in deionized water. The list of chemistries used for in the 

current study is displayed in Table 1 and includes the multidoped samples that will be discussed. 

Alkali metals are substitutes for Li, alkali earth metals for Co, and Al is a substitute for Mn. The 

total dissolved salt concentration was fixed at 2.5 molL-1 (M). The as-synthesized powders were 

heat treated at either 850 °C or 900 °C for 2 hours, as indicated in the text. 
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Chemical formula Dopant levels 

Alkali 
Li1.2-xNaxMn0.54Ni0.13Co0.13O2  0.01, 0.025, 0.05, 0.1 

Li1.2-xKxMn0.54Ni0.13Co0.13O2  0.01 

Alkali earth 

Li1.2Mn0.54Ni0.13Co0.13-zMgzO2  0.01, 0.02 

Li1.2Mn0.54Ni0.13Co0.13-zCazO2  0.01 

Li1.2Mn0.54Ni0.13Co0.13-zSrzO2  0.01 

Li1.2Mn0.54Ni0.13Co0.13-zBazO2  0.01 

Al Li1.2Mn0.54-yAlyNi0.13Co0.13O2  0.01 

Multi-doped 

samples 

Li1.13Na0.01Mn0.45Al0.01Ni0.2Co0.19Ba0.01O

2  0.01 

Li1.13Na0.01Mn0.45Al0.01Ni0.2Co0.2O2  0.01 

Li1.08Na0.01Mn0.42Al0.01Ni0.24Co0.23Ba0.01

O2  0.01 

Li1.08Na0.01Mn0.42Al0.01Ni0.24Co0.24O2  0.01 

Table 14 - List of doped samples and dopants synthesized in the current study 

The annealed powders were characterized by XRD using a Rigaku Diffractometer (Geigerflex D-

MAX/A) at a scan rate of 0.04 °s-1 between 10° and 80° 2θ. Particle morphology was examined 

with an FEI Nova 2300 Field Emission SEM.  

The cathode film was fabricated according to the procedure reported earlier 239. A slurry was 

prepared using 10 wt % polyvinylidene fluoride (PVdF) binder solution (Kureha Corp. Japan), 

10 wt % Super-C45 conductive carbon black (Timcal) suspended in 1-Methyl-2-pyrrolidinone 

(NMP – Sigma Aldrich) and 80 wt% active material. The active material loading density was 

between 3.0-5.0 mgcm-2. Half-cells were assembled for the electrochemical tests using pure 

lithium anodes and 2500 Celgard membranes (Celgard, LLC). The electrolyte was 1.0 M LiPF6 

in a solution of ethylene carbonate/diethyl-carbonate/dimethyl-carbonate (EC: DEC: DMC= 

1:1:1 by volume - MTI Corp.). The cells were activated between 2.0 – 4.8 V at 20 mAg-1 (C/10) 

and then cycled between 2.0 – 4.6 V at 20 mAg-1 for 4 cycles and then at 66.67 mAg-1 (C/3) for 
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95 cycles. Rate capability tests ranged between 20 mAg-1 (C/10) to 200 mAg-1 (C/1) according to 

the testing protocols reported earlier 315. 

Electrochemical impedance spectra (EIS) were recorded with a Gamry Reference 600 

potentiostat. The AC amplitude was 10 mV and the scan frequency was in the range of 5.010-4-

1.0106 Hz. The data were analyzed with the Gamry EChem Analyst. 

Electrochemical performance of the powders was evaluated in 2032-type coin cells (Hohsen 

Corporation) that were assembled in an argon-filled glove box. Cycling tests were performed 

using an MTI-BST8-WA-type battery tester. All electrochemical tests were performed at 22 C.  

6.3 Results and Discussion 

MATERIAL CHARACTERIZATION – The goal of this study was to synthesize doped samples of 

NMCs, at dopant levels small enough that they do not lead to detectable phase separation or 

major reductions in electrochemical performance compared to dopant-free samples, with the goal 

of reducing voltage fade. To this end, Na doped samples were prepared at four different 

concentrations to experimentally identify the maximum levels of Na that can be introduced 

without causing phase separation. Figure 41 shows the XRD profiles for Li1.2-

xNaxMn0.54Ni0.13Co0.13O2, where x= 0, 0.025 and 0.05. 
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Figure 41 - XRD patterns of Li1.2-xNaxMn0.54Ni0.13Co0.13O2 for x= 0, 0.025 and 0.05 (x=0.01 and 0.1 are omitted 

for clarity). The arrows indicate the new phase formation in the sample. 
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Most peaks are characteristic of the layered-layered chemistry having a rock salt pattern α-

NaFeO2 R3̅m structure, with the superlattice reflections between 20-25° 2θ, corresponding to 

the ordering of the Li2MnO3 and LiMO2 components in the TM layers. The clear splitting of the 

(006), (012) and (018), (110) peaks indicate the layered structure of the material 113.When Na 

levels reach or exceed 0.05 new peaks in the structure’s XRD pattern are found, as indicated by 

the arrows. These peaks are similar to those reported by Qiu et al. and the additional phase is 

speculated to be a spinel NaMnxOy, 
344 No phase separation can be observed for substituent 

concentrations up to x = 0.025. 

The critical dopant concentration for phase separation is likely dependent on the dopant. 

Nonetheless, as most of the substituents considered have a smaller ionic radii than Na+, and 

phase separation does not occur for Na concentrations below x = 0.025, substituent levels were 

typically kept at 0.01 for most dopants and were not optimized further. At these low dopant 

levels no phase separation was observed by XRD for any of the samples, so these spectra are 

omitted for clarity.  
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Figure 42 - SEM micrograph displaying a typical morphology for powders synthesized in the current paper. 

The SEM shows Li1.2Mn0.54Ni0.13Co0.12Sr0.01O2 after annealing at 900 °C for 2 hours. 

The low dopant levels did not induce noticeable changes in the particle morphology compared to 

our earlier reports 289. Figure 42 shows the typical morphology of the particles synthesized via 

ultrasonic spray pyrolysis. The secondary particles are porous and primarily spherical in shape, 

and have a mean particle size around 1.7 m 289. Primary particles are between 150-300 nm and 

are randomly oriented within the secondary particles. 

ELECTROCHEMICAL TESTING RESULTS – The electrochemical properties of the cathode materials 

were tested in 2032 type coin cells vs. Li anodes. A constant-current, constant-voltage cycling 

protocol was applied for the cells. Details of the cycling and rate capability test protocols were 

reported earlier 315. Figure 43 shows the initial charge and discharge curves for Li1.2-

xNaxMn0.54Ni0.13Co0.13O2, where x= 0.01, 0.025, 0.05 and 0.1. 
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Figure 43 - Initial charge and discharge profiles at a constant current density of 20 mAg-1 between 2.0 and 4.8 

V for Li1.2-xNaxMn0.54Ni0.13Co0.13O2, where x= 0.01, 0.025, 0.05 and 0.1. 

All of the samples display two plateaus associated with the activation of the two structural 

components 84. It can be clearly observed that for x = 0.05 and 0.1 the appearance of the 

additional spinel phase (as seen in Fig. 41) reduces the charge and discharge capacity of the 

materials by ~ 20 mAhg-1, as indicated by the arrow. These results indicate that phase separation 

detectable by XRD suggests significant impact on the electrochemical performance of the 

material. Figure 44 further confirms these observations: comparing the dopant-free (a) sample to 

the 0.01 Na level the additional peak in the charge profile is reduced. Additional substitution of 

Na to 0.05 (c) and 0.1 (d) levels leads to the appearance of new and more pronounced peaks in 

the charge and discharge peaks compared to the 0.01 Na. Therefore, as mentioned earlier, dopant 

levels of samples were typically maintained at 0.01 to ensure that they would have minimal 

effect on the charge and discharge capacities of the materials. 
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Figure 44 -- dQ/dV curves of cycle 2 and cycle 100 of cells doped with (a) Dopant-free; (b) Na 0.01; (c) Na 

0.05; and (d) Na 0.1. 

Figure 45 a-c show the initial charge and discharge profiles of the Li1.2Mn0.54Ni0.13Co0.13O2 

samples doped with Na, K, Mg, Ca, Sr, Ba and Al after annealing at 900 °C for 2 hours. All of 

the materials display the two-stage activation corresponding to the two-layered compounds. The 

initial charge and discharge capacities drop slightly due to the dopants, however, no significant 

drop can be observed, which confirms that at these dopant levels the capacities of the samples 

are not affected. Furthermore, the charge and discharge curves do not display additional peaks or 

shape changes that would imply internal structural changes. 
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Figure 45 - Initial charge and discharge profiles at a constant current density of 20 mAg-1 between 2.0 and 4.8 

V for Li1.2Mn0.54Ni0.13Co0.13O2 samples doped with (a) Na and K; (b) Mg, Ca, Sr and Ba; (c) Al. 

Figure 46 compares the cycle and rate capability test results for the doped samples. The dopants 

clearly affect the capacity retention of the materials, as observed by the different slopes for the 

respective cycle and rate tests. The larger alkali and alkali earth dopants typically cause an 

extended activation in the Li2MnO3 component of the samples, which can be seen by the 

increasing slope of the cycle tests 326. Doping with Al clearly leads to an improved capacity 

retention of the samples, which can be observed both in the cycle and rate capability tests. 
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Figure 47 compares the charge and discharge curves of cycle 6 and 100 for the Na, Al and Ba 

doped Li1.2Mn0.54Ni0.13Co0.13O2 samples. The addition of Al leads to a significant improvement 

in the discharge voltage profiles. While, as shown in Table 15, the dopant-free sample retains 

91.5% of its capacity between cycles 6-100 at C/3 rate this is improved to 99.5% by Al doping. 

This is among the best results for these materials reported in the literature 102, 103, 201. Other alkali 

and alkali earth dopants do not lead to similar improvements. Several samples, which are 

indicated with a * symbol, display an extended activation, probably of the Li2MnO3 component, 

and thus show increasing capacities, which lead to higher observed capacity retention but the 

discharge capacity of these samples is fading by 100 cycles. 
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Figure 46 - Cycling performance of cells doped with (a) Na and K; (b) Mg, Ca, Sr and Ba; (c) Al. Rate 

capability tests of cells synthesized at cells doped with (d) Na and K; (e) Mg, Ca, Sr and Ba; (f) Al. The 

open/solid symbols show charge/discharge capacities, respectively. 
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Figure 47 - Comparison of charge and discharge profile of cycle 6 and 100 for the dopant-free, Na, Al and Ba 

doped samples. The circled area indicates the voltage fade occurring during the discharge cycles. 
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Dopant 

% Capacity Retained  

between Cycles 5-100 

(%) 

Li1.2Mn0.54Ni0.13Co0.13O2  91.5 

Li1.19Na0.01Mn0.54Ni0.13Co0.13O2 91.1 

Li1.19K0.01Mn0.54Ni0.13Co0.13O2* 97.3 

Li1.2Mn0.54Ni0.13Co0.12Mg0.01O2* 104.7 

Li1.2Mn0.54Ni0.13Co0.12Ca0.01O2* 100.1 

Li1.2Mn0.54Ni0.13Co0.12Sr0.01O2* 99.4 

Li1.2Mn0.54Ni0.13Co0.13-zBazO2 92.2 

Li1.2Mn0.53Al0.01Ni0.13Co0.13O2 99.4 

Table 15 - The effect of dopants on the capacity retention of the samples. * indicates  samples where due to the 

slow activation of the electrochemically active structures the capacities increased over time. 

The dQ/dV curves of the samples are compared for cycle 2 and 100 in Figure 48. The alkali and 

alkali earth metals are seen to display reduced spinel phase peaks, primarily during the charge, 

while showing worse performance in the discharge curves at 100 cycles. Ca and Sr doping seems 

to improve the phase transition during discharge as well, while having a smaller effect on the 

charge performance. Interestingly, despite the ability to improve capacity retention, Al does not 

appear to reduce the growth of the spinel charge peak that indicates voltage fade. This implies 

that Al doping improves capacity retention via a different mechanism, for example by reducing 

the strains along the c axis during cycling, as reported for several LiMnxOy based spinel 

materials 349, 350. 
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Figure 48- dQ/dV curves of cycle 1 and cycle 100 of cells doped with (a) Dopant-free; (b) Na 0.01; (c) K 0.01; 

(d) Al 0.01; (e) Mg 0.01; (f) Ca 0.01; (g) Sr 0.01; and (h) Ba 0.01. 

DOPANT CHEMISTRY – In the current study three dopant categories were studied: alkali metals, 

alkali earth metals and Al. As indicated in the Introduction, the dopants are primarily expected to 

affect the stability of the Li2MnO3 structural unit of the materials. The average anticipated 

oxidation states of the transitional metals are assumed to be Ni+2, Co+3 and Mn+4 in the parent 

structures 103. At the same time it is understood that the situation is clearly more complex as 

MAS-NMR results indicate multiple oxidation states are present in the materials concurrently 92. 

Therefore these assumptions will only provide guidance to our discussion. The ionic radii in the 

discussion are based on those defined by Shannon 351. 

Substituting Li+
 with an alkali metal primarily improves the stability of the structure due to steric 

effects caused by the larger size of the dopant, as they also carry a single positive charge. 

Replacing Li+ ions in the interstitial sites with larger alkali metals leads to an increase in the 

residual ions in the interstitial sites after charging because often the dopants do not participate in 

the intercalation reaction, as reported for Na doping 346, 352. Kim et al. found that LixMO2 based 

structures have strong driving forces and low energy kinetic paths to transform into spinel 

structures and that these driving forces do not exist for Na-based counterparts of the materials 353. 
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These spinel-transformation reactions are speculated to proceed via transitional metal hopping. 

The migration of the TM (e.g., Mn) ions has to be coupled to the migration of Li+ ions, which 

becomes hindered due to the larger size of the Na+ ions. This effect is expected to be even more 

pronounced for the larger K ions. Other alkali metals, Rb and Cs, were omitted from the present 

study due to their high cost compared to Na and K, but it is anticipated that Rb and Cs doping 

would lead to similar observations. Alkali metal substitutions are expected to lead to a minor loss 

of capacity due to a small reduction in the amount of intercalatable lithium ions.  

Substituting Mn with Al leads to a slight reduction in the electrochemically active cathode 

material content of the sample with aluminum having only a single +3 oxidation state. Al is 

similar to Mn in size and therefore the similar size allowing substitution and the single oxidation 

state may be the reasons behind the stability of Al doped compounds. Several studies have 

demonstrated the beneficial effect of Al on stabilizing the cathode material primarily by creating 

an Al-coated surface to prevent surface dissolution of the Mn-based active cathode material 111, 

112, 354. Additionally, replacing Mn+4 with Al+3 ions should lead to an increase in the average 

oxidation state of the Mn ions. To maintain charge neutrality this beneficial effect can mitigate 

the potentially arising Jahn-Teller distortion effects 93. 

Alkali earth metals (Mg, Ca, Sr, Ba) have larger ionic radii than Co3+ atoms. Their introduction 

to the structure has been shown to improve the stability similar to Al and may reduce the 

capacity to a minor extent by reducing the available intercalation sites due to their single +2 

oxidation state 278, 331, 333, 335, 355. We have observed by comparing the electrochemical 

performance of Li1.2Mn0.54Ni0.13Co0.13O2 synthesized from cobalt nitrates supplied by different 

vendors, that samples synthesized from cobalt nitrate having a significant amount of Ba 

contaminant displayed enhanced cycling stability compared to their Ba-free counterparts. The 
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alkali earth metals (e.g., Mg) have larger ionic radii and smaller electronegativity than cobalt, 

demonstrated that by initiating a short range ordering in LiNi0.80Co0.15Al0.05O2 enhance cycle 

stability can result due to the stronger bonding 335, 351. Substituting Co+3 for M+2 ions is also 

expected to increase the average oxidation state of the transitional metal ions originally residing 

in the structure thereby improving the stability of the materials. Therefore, we expect a 

stabilizing effect of these dopants on the apparent layered-spinel transformation, especially when 

replacing Co with the larger alkali earth metals (Sr, Ba), due to a combination of steric and 

charge effects.  

Several earlier reports experimentally observed that a reduction in the Li2MnO3 content of the 

materials leads to reduced voltage fade and these studies identified this structural component as a 

major contributor leading to the voltage fade of the layered chemistry 242, 328.  With this in mind, 

we next evaluate the effect of these dopants on xLi2MnO3·(1-x) Li(Ni1/3Mn1/3Co1/3)O2 

chemistries, where x ≤ 0.5, with the understanding that these samples are expected to be more 

easily stabilized and therefore are of higher practical importance. Since, as noted above, for both 

alkali and alkali earth doping reduces the new peaks arising in the dQ/dV curves throughout the 

charge cycling, and for Al doping there was a significant improvement in capacity retention, we 

next chose to synthesize Na, Al and Ba triple-doped samples.  
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Figure 49 - dQ/dV curves of cycle 1 and cycle 100 of (a) Li1.09Mn0.43Ni0.24Co0.24O2 (850 °C); (b) 

Li1.08Na0.01Mn0.42Al0.01Ni0.24Co0.23Ba0.01O2 (800 °C); (c) Li1.14Mn0.46AlNi0.2Co0.2O2 (850 °C); and (d) 

Li1.13Na0.01Mn0.45Al0.01Ni0.2Co0.19Ba0.01O2 (800 °C). The temperatures after the compositions indicate the 

annealing temperature of the samples. 

Figure 49 compares the dQ/dV curves of the dopant-free and triple-doped 

Li1.09Mn0.43Ni0.24Co0.24O2 and Li1.14Mn0.46Ni0.2Co0.2O2 samples for cycles 1 and 100. Both 

materials display significant improvement compared to the dopant-free materials and less spinel 

phase evolution both in their charge and discharge profiles as indicated by the arrows. To the 

best of the author’s knowledge these results demonstrate for the first time experimental 

improvements to the voltage fade of the layered chemistries.  

For the Li1.09Mn0.43Ni0.24Co0.24O2 and Li1.14Mn0.46Ni0.2Co0.2O2 samples the improvements in 

voltage fade compared to Li1.2Mn0.54Ni0.13Co0.13O2 can be summarized as follows. Lowering the 

Li2MnO3 content of the material reduces the structural component that is prone to exhibit a phase 
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change. The residual Li2MnO3 component is electrochemically activated when charged above 

4.6 V as indicated by the peak around 4.5 V in Fig. 48 in all the samples. The addition of Al and 

Ba is expected to increase the average oxidation state of manganese and thus improve the 

stability of the material. Na doping causes some of the lithium sites to have residual interstitial 

Na+ present even at a completely charged state. These dopants apparently reduce the rate of 

transitional ion migration between the TM and Li layers, thereby improving the stability of the 

material. Similar improvements are expected for the Li1.2Mn0.54Ni0.13Co0.13O2 chemistry and 

these studies are currently under way. 

ELECTROCHEMICAL IMPEDANCE TESTING RESULTS – EIS spectra of single-doped 

Li1.2Mn0.54Ni0.13Co0.13O2 cells were recorded after 30 cycles with the Abraham voltage fade 

protocol 327. Examples of Na, K, Al, Mg, Sr and Ba doped results are displayed in Figure 50 and 

the insets show the amplified first semi-circle. Figure 50 (d) shows the equivalent circuit model 

that was applied to analyze the data. The equivalent circuit model contained the following circuit 

elements: (i) resistance from the electrolyte, Rs; (ii) solid electrolyte interface resistance, RSEI; 

(iii) the capacitance of the SEI layer, CSEI with a non-ideality factor SEI; (iv) charge transfer Rct 

at the surface film – particle bulk interface; (v) double-layer capacitance, CDL with a non-ideality 

factor DL; and (vi) a resistance coefficient and its characteristic frequency for diffusion/Warburg 

impedance RD and D. Each Nyquist plot displays two semicircles and a diffusion tail. The first 

semicircle in the high frequency region is primarily related to the migration of Li+ ions through 

the surface film and the conductivity of the material 356, 357, 358. The second lower frequency 

semicircle can mainly be related to contributions from the surface kinetics of the sample and are 

overlapping with the diffusion occurring in the Warburg region of the spectra. The Warburg 

region is mainly due to the solid-state diffusivity of the Li ion in the cathode material. The large 

charge transfer resistance of the samples suggests that this may have a more dominant rate 

limiting effect compared to the diffusivity of Li in the material. Nevertheless, all of the samples 

show that doping significantly improves the conductivity of these cells by lowering the 

impedance of the cells. The high impedance of the dopant-free samples is speculated to be the 
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result of the high purity of the samples, which is due to the intrinsic purity of the spray pyrolysis 

method of synthesis, and additional surface effects, such as SEI layer formation during 

decomposition and voltage interruptions during cycling. 

 

Figure 50 - Nyquist plots of doped Li/Li1.2Ni0.13Co0.13Mn0.54O2 cells measured between 2.0 V and 4.6 V of cells 

after 30 cycles in a discharged state for (a) Na 0.01 and K 0.01; (b) Mg 0.01, Sr 0.01 and Ba 0.01; and (c) Al. 

The insets show the shape of the first semi-circles. The AC amplitude was 10 mV and scan frequency was in 

the range of 5.010-4-1.0106 Hz. (d) The equivalent circuit model used for the interpretation of the EIS 

spectra. 

d 
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6.4 Conclusions 

Layered lithium battery cathode materials were synthesized via spray pyrolysis. By 

taking advantage of the unique ability of spray pyrolysis to control impurities to small levels, 

inexpensive alkali, alkali earth and aluminum doping were tested to improve the capacity 

retention and voltage fade of the layered materials. Alkali and alkali earth metals were found to 

reduce the new phase formation either during the charge or the discharge profiles while on some 

occasions leading to additional phase formation and thus affect voltage fade, while aluminum 

doping improves capacity fade. Alkali dopants are speculated to improve the voltage fade 

primarily via steric effects as these dopants are unlikely to be intercalated during charge 

discharge testing. Alkali earth metals are speculated to increase the average oxidation state of 

transitional metal ions in the sample and thus improve voltage fade. Samples triple-doped with 

Na, Ba and Al displayed less voltage fade character in their charge and discharge voltage curves 

after 100 cycles compared to pristine materials and the multidoping prevented the unwanted 

structural changes in the sample. Although voltage fade was not completely overcome in the 

current study, it is anticipated that further improvements can be obtained by adjusting individual 

dopant levels.   
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Chapter 7  

Development of a Spray Pyrolysis Process for 

the Production of Non-hollow Battery 

Materials  
 

7.1 Introduction 

To attain high quality low-cost batteries, inexpensive, scalable and highly reproducible processes 

are needed for synthesizing electrochemically active materials. Conventional synthesis methods 

for battery materials include sol-gel processes, solid-state synthesis and co-precipitation 13, 86, 88, 

94. Co-precipitation can deliver materials with excellent electrochemical performance and high 

tap density (> 1.0 gcm-3) at a laboratory scale. Yet, the process presents challenges in terms of 

scale up, including long processing times during precipitation (up to 24 hours), extended 

annealing conditions because of post-lithiation (> 5-20 hours at 900-1000 °C), excessive waste 

products due to several purification steps, and issues related to product uniformity and 

reproducibility.   

Recently, spray pyrolysis has been developed for the production of layered cathode materials and 

the materials have shown excellent electrochemical performance, comparable to or exceeding 

that of materials produced by co-precipitation 239, 242. Spray pyrolysis is a fast and inexpensive 

method of producing multicomponent oxides, including lithium ion battery cathode materials 169, 

201, 223. The process is robust and delivers uniform materials due to the one droplet - one particle 

conversion mechanism.  The main process variables can also be controlled accurately 315. 

Typical process times in the reactor are on the order of a few seconds, and a post heat treatment 
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at 800-900 °C for 2 hours is typically sufficient to obtain the desired crystallinity and 

electrochemical performance. This offers significant cost advantages compared to other synthesis 

methods, and the materials display excellent reproducibility. A recent study by Oljaca and 

coworkers from Cabot Corp. offered a comprehensive comparison of materials synthesized via 

spray pyrolysis and co-precipitation, demonstrating distinct advantages for spray pyrolysis 203. 

Despite the advantages of spray pyrolysis, hollow and deformed spheres are typically produced 

when the secondary particles are larger than approximately 2 μm.  These particles form from the 

larger droplets and are hollow due to the rapid surface precipitation and melt formation 

encountered in the process 169, 170, 226. If hollow spheres can be eliminated, spray pyrolysis offers 

significant advantages over other synthesis processes in terms of process and equipment costs.  

This paper presents an approach to avoid hollow sphere formation in a scalable process via a 

flame-assisted slurry spray pyrolysis process.  The process is termed Flame Assisted Spray 

Technology - Slurry Spray Pyrolysis (FAST - SSP) 359. Herein we report on the process and the 

electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 synthesized via FAST - SSP. 

7.2. Experimental 

Figure 51a shows the steps of the FAST - SSP process. First, the precursor solution is employed 

in conventional spray pyrolysis to form particles of the desired material. These materials are then 

milled to break-up hollow spheres and the powder is converted into a slurry with a precursor 

solution that has the same composition as the original precursor solution. This slurry becomes 

the precursor for subsequent spray pyrolysis. 
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Figure 51a - Block flow diagram of the FAST - SSP process. 
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Figure 51b – Schematic diagram of the FAST-SSP setup. (1) Precursor/Slurry reservoir; (2) excess 

air supply; (3) burners; (4) mixer and two-fluid nozzle; (5) baghouse filter; (6) powder collection; 

and (7) blower. 
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The spray pyrolysis experimental setup is displayed in Fig. 1b 239, 240. The system, termed Flame 

Assisted Spray Technology (FAST), incorporates a back flame for heating and a two-fluid nozzle 

(Delavan Inc.) to generate the spray. The feed rate of the nozzle is adjusted to produce materials 

at 50 gh-1. The typical residence time in the system is about 1s and the temperature at the exit of 

the reactor is approximately 500-600 °C.  

The precursor solution was prepared by dissolving LiNO3, Mn(NO3)2·4H2O, Ni(NO3)2·6H2O and 

Co(NO3)2·6H2O (Alfa Aesar) in deionized water at the precursor ratio corresponding to the 

chemistry for Li1.2Mn0.54Ni0.13Co0.13O2 . The total dissolved salt concentration was fixed at 2.5 

molL-1 (M).  

The as-synthesized samples after FAST-SSP were subject to an annealing heat treatment at 

900 °C for 2 hours.  The annealed powders were characterized by XRD using a Rigaku 

Diffractometer (Geigerflex D-MAX/A) at a scan rate of 0.04 °s-1 between 10° and 80° 2θ. The 

tapped powder density of the material was measured by a Quantachrome Autotap tapped density 

analyzer. Particle morphology was examined with an FEI Nova 2300 Field Emission SEM. The 

interior morphology of the product powder was observed by embedding the powder in an epoxy-

based resin. Two m thick sections were cut by a Leica Ultramicrotome and the sections were 

examined by SEM microscopy. 

Cathode film fabrication was performed according to the procedure reported earlier 239. The 

cathode slurry was prepared using 10 wt% polyvinylidene fluoride (PVdF) binder solution 

(Kureha Corp. Japan), 10 wt% Super-C45 conductive carbon black (Timcal) suspended in 1-

Methyl-2-pyrrolidinone (NMP – Sigma Aldrich) and 80 wt% active material. The active material 

loading density was between 2.5 - 4.0 mgcm-2. Half-cells were assembled for the electrochemical 

tests using pure lithium anodes and 2500 Celgard membranes (Celgard, LLC). The electrolyte 
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solution was 1.2 M LiPF6 in ethylene carbonate/ethyl-methyl-carbonate solution (EC: EMC = 

3:7 by weight) (Tomiyama High Purity Chemicals). The cells were activated between 2.0 – 4.8 V 

at 20 mAg-1 (C/10) and then cycled between 2.0 – 4.6 V at 20 mAg-1 and then 66.7 mAg-1 (C/3). 

Rate capability tests ranged between 20 mAg-1 (C/10) and 200 mAg-1 (C/1) according to the 

protocols reported earlier 315. 

The electrochemical performance of the powders was evaluated in 2032-type coin cells (Hohsen 

Corporation) assembled in an argon-filled glove box. Cycling tests were performed using an 

MTI-BST8-WA-type battery tester. The electrochemical tests were performed at 22 C. 

7.3 Results and Discussion - Material characterization 

In Fig. 52 the XRD patterns for the Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials synthesized using 

the FAST-SSP are compared with the same material synthesized using a standard Aerosol Flow 

Reactor (AFR) 289. Most of the diffraction peaks can be indexed according to the -NaFeO2 (R-

3m) structure. The splitting of the (006), (012) and (018), (110) peaks indicate a layered 

structure. The broad peak between 20-25° 2θ is characteristic of the superlattice ordering 

between the LiMn0.33Ni0.33Co0.33O2 and the Li2MnO3 components that form the layered 

composite cathodes. 113. Clearly, no significant difference can be observed in the XRD pattern of 

the materials synthesized by the two methods, despite the fact that the production rates of the 

FAST-SSP system are 50 times greater than that of the AFR system. 
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Figure 52 - Comparison of the XRD patterns of Li1.2Mn0.54Ni0.13Co0.13O2 synthesized via (a) AFR and (b) 

FAST-SSP. 
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Figure 53 - Morphology of Li1.2Mn0.54Ni0.13Co0.13O2 synthesized via (a) AFR; (b) interior structure 
after AFR synthesis; (c) FAST–SSP; (d) interior structure after FAST-SSP, as observed by SEM. 

The typical morphology of particles produced from the AFR is spherical provided that the 

particles are less than 2 microns 239. Larger particles can be deformed due to their hollow 

interior, as shown in Fig. 53a.  Figure 53b shows the microtome of the particles produced by 

spray pyrolysis and the hollow interior is clearly visible.  

Figure 53c shows the morphology of the particles synthesized via FAST-SSP. The secondary 

particles are non-spherical and display a relatively wide size distribution ranging from 1 – 10 

m, with a mean particle size between 4-5 m. The primary particle size is between 200 – 400 

10 m 

c 

3 m 

6.2 m 

d 

a b 
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nm.  The interior morphology of the particles is shown in Figure 53d. These results show 

significant improvements in morphology compared to materials synthesized via ultrasonic spray 

pyrolysis 315. Due to the slurry spraying step the interior morphology of larger particles is either 

solid (and porous) or the interior hollowness is significantly reduced. Particles above 6 m in 

size with a solid (non-hollow) interior morphology can be clearly observed. To the best 

knowledge of the authors these are the largest non-hollow particles synthesized via spray 

pyrolysis. The tapped powder density of the material after FAST-SSP was found to be 1.05 gcm-

3 compared to 0.4-0.6 gcm-3 obtained by ultrasonic spray pyrolysis 315. The non-hollow 

morphology is clearly responsible for the improvement in the tapped density of the material. 
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Figure 54 - Comparison of (a) cycling and (b) rate capability of Li1.2Mn0.54Ni0.13Co0.13O2 synthesized via FAST-

SSP and AFR. 

Figure 54 compares the cycle and rate capability test results for materials synthesized via FAST-

SSP with those via the AFR. These results indicate that the electrochemical performance of the 

materials synthesized via FAST-SSP are excellent, similar to those obtained when synthesized 

via the AFR or co-precipitation 100. The reproducibility of the process was evaluated by 

synthesizing five batches of Li1.2Mn0.54Ni0.13Co0.13O2 under identical synthesis conditions on five 

different days. The electrochemical performance was evaluated for each batch in cycle tests and 

the standard deviation of the discharge capacities at C/3 rate was ~11 mAhg-1. Figure 4a shows 

that after 100 cycles at C/3 rate the discharge capacity exceeds 200 mAhg-1. Rate capability tests 

indicate discharge capacities > 170 mAhg-1 at 1C rate. No irreversible capacity loss was 

observed during the rate capability tests. It is clear that improvements in production rate, 

morphology and tapped density can be achieved without compromising the electrochemical 

performance of the material.  

7.4 Conclusions 

A novel slurry spray pyrolysis process (FAST-SSP) was demonstrated by synthesizing powders 

of the layered Li1.2Mn0.54Ni0.13Co0.13O2 material.  The process shows high potential for large 
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scale synthesis of cathode materials and yields improved tapped density compared to traditional 

spray pyrolysis.  For the layered materials the tapped density increased from 0.5 gcm-3 to greater 

than 1.0 gcm-3. FAST-SSP is the only known solution for addressing the hollow spheres during 

spray pyrolysis.  

The electrochemical results for Li1.2Mn0.54Ni0.13Co0.13O2 powders indicate that performance 

comparable to that obtained either via traditional spray pyrolysis or co-precipitation can be 

obtained via FAST-SSP. FAST-SSP is a simple, scalable, rapid process that yields excellent 

reproducibility and offers significant potential for reducing processing and production costs of 

cathode materials, suggesting high potential for commercial scale production. 
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Chapter 8 

Summary and recommendations for future 

work  
 

7.1 Summary of Results 

The work presented in this dissertation studied the optimization of layered composite cathode 

materials synthesized via spray pyrolysis. In particular cathode materials with various 

composition, trace elemental dopants were studied and their optimal composition was identified. 

Improvements of the voltage fade were demonstrated for the first time as of writing this thesis. 

Parallel to this work a novel flame-assisted spray pyrolysis was designed, which represents an 

intermediate step towards the scale up of spray pyrolysis as well as the only known solution to 

the hollow sphere problem. Spray pyrolysis requires external heating and the process is less 

resource and capital intensive than similar methods. The process delivers excellent uniformity 

and reproducibility in terms of electrochemical properties, due to the high purity synthesis 

technique and lack of additives. A brief summary of the key results in this dissertation is 

presented. 

Layered composite materials of xLi2MnO3·(1-x)LiNi0.33Mn0.33Co0.33O2 have shown attractive 

properties including high capacity, good cycle life and are relatively inexpensive cathode 

materials. Their synthesis is often challenging with co-precipitation, due to non-stoichiometry 

that is the result of the lack of accurate control on synthesis parameters (temperature, stirring 

speed, etc.). The advantages of an aerosol based synthesis process were discussed extensively in 

the previous chapters. The layered composites of xLi2MnO3·(1-x) LiNi0.33Mn0.33Co0.33O2 display 
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highly reproducible, excellent electrochemical properties when synthesized via spray pyrolysis. 

When cycled between 2.0-4.6 V at C/3 rate the materials display capacities greater than 200 

mAhg-1 after 100 cycles at room temperature, which places them among the best known cathode 

materials in the field. The annealing heat treatment allows us to control surface area and primary 

particle size accurately, without causing any evaporative lithium loss in the samples. The 

addition of 3.3 wt% excess Li offsets structural changes occurring during the annealing. Voltage 

fade of the layered composites, which is speculated to be caused by a layered-spinel phase 

transition can be affected by the surface area, the composition and trace elemental doping. 

Results to date indicate that by reducing the Li2MnO3 content of the composites and by adding 

trace level dopants of Al, alkali and alkali earth metals the voltage fade can be reduced or 

mitigated.  

Parallel to this research the scale-up efforts lead to the development of a novel slurry spray 

pyrolysis process, which as of writing is the only known solution to the hollow sphere problem. 

By developing this flame-assisted spray pyrolysis process materials having high density, good 

reproducibility and excellent electrochemical properties were successfully produced at greater 

than 50 gh-1 scale. 

In summary slurry spray pyrolysis paves the way for the scale up of spray pyrolysis to 

commercial production levels. Trace level doping of NMC cathode materials shows that by 

additional stabilization this intensely researched chemistry may find applications in commercial 

batteries. 
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7.2 Recommendations for Future Work 

As of writing, some new challenges are identified and could further improve the spray pyrolysis 

process and novel cathode material design.  

1. Cobalt incorporation and trace level doping showed that the process is capable of 

delivering materials with improved performance and reduced / eliminated voltage fade. 

Based upon these results and the results of the study of Tarascon et al. a novel class of 

cathode materials can be designed and synthesized without voltage fade 119. Additional 

dopants may further improve the stability of the material or additional properties, such as 

the cycleability or rate capability. 

2. Preliminary results on the effect of doping on voltage fade were obtained. Dopants were 

not evaluated in terms of their effect on the safety characteristics of the materials. 

Therefore the stability of the materials should be evaluated both at high (55 °C) and low 

(0/-10 °C) temperatures. 

3. Development of larger cells is recommended, to better characterize the fade properties of 

these materials in a more industrially applicable setting. 

4. Recently, layered Na-ion based battery cathode materials were reported in the literature 

as analogs of the layered Li-ion based chemistries. Although the materials will provide 

lower energy due to their lower working potential compared to their Li-based 

counterparts, however they may display significant advantages in terms of safety and 

stability. Therefore a preliminary evaluation of the Na-analogs of the Li-based layered 

materials is suggested. 
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5. Slurry spray pyrolysis demonstrated that non-hollow particles greater than 3 m can be 

produced via spray pyrolysis. The reproducibility of the process is lower than that of the 

original spray pyrolysis process both in terms of electrochemical properties and in terms 

of tap density results. A detailed study unveiling the important process parameters 

(residence time, flow rate, flow patterns, effect of heating rates, used materials, potential 

binders) will help improve consistency as well as drive the discovery of future 

improvements. 

6. An alternative way of future improvements lies with the better understanding of hollow 

sphere formation. Several theories and potential explanations were discussed earlier 

ultimately indicating that improved understanding of local liquid phase structures by a 

combination of modelling and experimental methods may allow us to control and 

eliminate hollow sphere formation. The following studies include the suggested literature 

to start studying additives for potentially overcoming hollow spheres during droplet 

formation: 360, 361, 362.  

7. The current thesis primarily focused on the development of the layered chemistries for 

commercial implementation. During this process many synthesis parameters 

demonstrated the level of control that can easily be exercised with this spray pyrolysis 

process. Other applications have not been explored due to time constraints. Therefore 

exploring the application of the current spray pyrolysis process for producing 

supercapacitor materials, lithium-air battery cathode catalysts are recommended with 

taking advantage of the ability to tune the surface area of the materials accurately. 

8. In wet chemistry processes complexation allows the tuning of surface properties. After 

analyzing the surface of the powders tuning its properties could allow better macroscopic 
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adhesion, which could further improve the bulk density due to the reduction of van der 

Waals forces. 

9. The slurry spray pyrolysis process demonstrated production capability greater than 50 gh-

1. Further scale up could be achieved with different spray sources (rotary atomizer, high 

pressure nozzles), which could lead to a novel system design and pave the way to 

commercial scale production as well as a better understanding of process parameters. 
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Appendix A  

Example recipes 
The following recipes are provided as an example. Detailed recipes of the used precursor 

solutions, binder solutions and for cathode films can be found in the laboratory notebooks. 

Doped 

samples 

       

0.2 NMC 

nominal 

stoich. 

red. 

Stoich. 

Mass of 

nitrate salt 0.3 NMC 

nominal 

stoich. 

red. 

Stoich. 

Mass of 

nitrate salt 

LiNO3 1.188 1.080 14.887 LiNO3 1.288 1.120 15.439 

Mn(NO3)2

.4H2O 0.454 0.413 20.727 

Mn(NO3)2

.4H2O 0.521 0.453 22.736 

Ni(NO3)2·

6H2O 0.267 0.242 14.099 

Ni(NO3)2·

6H2O 0.233 0.203 11.800 

Co(NO3)2·

6H2O 0.254 0.231 13.449 

Co(NO3)2·

6H2O 0.221 0.192 11.177 

Al(NO3)3*

9H2O 0.013 0.011 0.853 

Al(NO3)3*

9H2O 0.013 0.011 0.816 

Na(NO3) 0.013 0.011 0.193 Na(NO3) 0.013 0.011 0.185 

Ba(NO3)2 0.013 0.011 0.594 Ba(NO3)2 0.013 0.011 0.568 

O2 2.200 2.000 

 

O2 2.300 2.000 

 

0.2 NMC 

nominal 

stoich. red. Stoich. 0.3 NMC 0.2 NMC red. Stoich. 

LiNO3 1.188 1.080 14.887 LiNO3 1.288 1.120 15.439 

Mn(NO3)2

.4H2O 0.454 0.413 20.727 

Mn(NO3)2

.4H2O 0.521 0.453 22.736 

Ni(NO3)2·

6H2O 0.267 0.242 14.099 

Ni(NO3)2·

6H2O 0.233 0.203 11.800 

Co(NO3)2·

6H2O 0.267 0.242 14.111 

Co(NO3)2·

6H2O 0.233 0.203 11.810 

Al(NO3)3*

9H2O 0.013 0.011 0.853 

Al(NO3)3*

9H2O 0.013 0.011 0.816 

Na(NO3) 0.013 0.011 0.193 Na(NO3) 0.013 0.011 0.185 

O2 2.200 2.000 

 

O2 2.300 2.000 

 Nominal stoichiometry stands for adding up the nominal composition from the formula. I.e. for 

0.5Li2MnO3 0.5LiNi0.33Mn0.33Co0.33O2 = Li1.5Mn0.67Ni0.17Co0.17O2.5, which can be converted to 

the reduced stoichiometry, by recalculating it using the O content. If we convert the 
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Li1.5Mn0.67Ni0.17Co0.17O2.5 by multiplying 2/2.5, we get the reduced stoichiometry 

Li1.2Mn0.54Ni0.13Co0.13O2. 

Cathode film making 

mact   = 1.01 g 

mbinder  = 1.01/0.0693*20/80=3.64 g 

Details are discussed in the SOP section. 

The target binder amount should be between 3.5-4.5 gram to ensure good uniformity and flow 

properties. Smaller amounts will make the film too viscous. 

Binder solution making (target: 8%) 

mC-black = 10.00 g 

mPVdF 12% = 83.33 g 

mNMP  = 156.67g 

Once the solution has been mixed together and sonicated for 2 hours weigh out 3* 5-6 gram 

samples, vacuum dry them overnight and calculate actual concentrations. 

ICP-MS sample preparation 

Dilute the precursor solution by taking 0.1 ml, diluting it to 10 ml-s with ultrapure water. Repeat 

this for a second time and then take 1 ml out from the twice diluted sample and dilute it to 10 ml 

with 1% HNO3 solution. 

Microtome sample preparation 
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The following section provides a general overview of the process and the NNIN staff has 

the accurate recipe for preparation of the sample. 

1. Suspend 50-100 mg of powder in HPLC grade acetone and let it sit overnight until the 

acetone evaporates. 

2. Add pure NMA + Eponate 12 resin + DDSA + DMP-30 EPco (Ted Pella) – mix them 

with sample until air bubbles are removed 

3. Shake the solution for 1 hour with acetone : Epon 1:1 – after an hour switch to pure Epon 

4. Replace the Epon twice by centrifuging the samples at 8000-13000 rpm after 1-1 hour 

5. Put the samples to the oven for polymerizing at 60 °C overnight 

6. Remarks: Epon alone does not penetrate the particles. While embedding use Epon + 

acetone overnight followed by 1 day Epon, then exchanged for embedding Epon to 

polymerize. 
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Appendix B  

Standard Operating Procedures (SOPs) 
The following SOPs are provided as an example of the standard protocols related to this research 

and are updated as of March 2014. 
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Microburner setup 

Tasks to perform before the first operation of the system: 

 Create a closed system for leak checking so that there is one open inlet for air but no 

outlet is left open. 

 Perform a leak check on the system. Attach an air inlet to the system analyzed using the 

appropriate inlets for the setup (bolts, needle valves, etc).  

 Slowly apply 60 psi pressure with opening the air supply gradually to each closed 

individual system after one another without any flow. After the pressure has been applied 

to the closed system, put “Snoop” liquid behind each piping attachment and observe 

whether or not growing bubbles are present (growing bubbles indicate a leak). If no 

growing bubbles can be observed and the system holds the pressure for at least 20 

minutes, then turn off the gas going in and slowly release pressure with slowly untying a 

bolt on the back of the panel. Make sure no person is in the direction of the bolt being 

released. 

 If no alteration or damage is observed in the system, repeat the leak check every 3 

months. 

 Calibrate the rotameters and measure their response performance to certain gases and 

inlet pressures. The measurement can be performed according to the following: Gilibrator 

Tube Cube Calibration. 

 

Operation of the microflame reactor 

Before the first use 
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 Connect the inlets of the honeycomb burner to the oxidizer (air; this goes to the inlet that 

is on the top part of the burner) and the fuel to the inlet on the bottom of the burner. 

Attach the atomizer gas inlet to the fuel line. If any other combination of fuel/ oxidizer 

(diluted gases) is needed, mount the system with the appropriate joints, such as a T-joint 

or a cross. 

 Check if all the valves on the control panel are turned off. 

 Purge the H2 line with either N2 or Ar, depending on availability. 

 Identify the temperature under the heating tape coiled up around the bubbler containing 

methanol before the first use. Try to identify a setting between 45-55 °C and record that 

setting. 

Daily operation 

 Check the methanol level in the viewing tube attached to the bubbler. Refill with 

detaching the bolt using a funnel if necessary. Recap the system after refilling. 

 Empty the methanol collected inside the bubbler located before the atomizer and pour it 

back into the methanol bubbler column. If the methanol would appear to be contaminated 

dispose of it according to the safety procedures. 

 Turn on the bubbler heating variac. Check if it is at the preset adjustment. It is safe to 

start the experiment if the temperature is above 40 °C, but the temperature should never 

exceed 60 °C, where methanol starts to boil. 

 Turn on the H2 and then the air flow with opening the gas tank for the H2 flow and the 

gas inlet on the fume hood for the air. Turn on the adequate switch valves on the flow 

panel (each switch valve is labeled), and increase the pressure with the regulators to the 

desired operating pressure (generally 40 psi). Open the valve for the H2 flow before the 
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burner and increase the flow rate to approximately 0.5 lpm. Open the valve for the air 

flow before the burner, and increase the air flow rate to above 1-2 lpm. Ignite the mixture 

with an igniter above the glass tube. 

 After ignition increase the air and H2 flow rates to the desired values. Adjust the 

regulators appropriately. 

 Make sure to maintain complete combustion in order to avoid migration of the flame to 

the top of the glass vial. If the flame migrates to the top of the glass vial, turn off fuel 

supply and reignite the burner. During the operation, make sure to regularly check if the 

flow pressures are preserved. 

 Turn on the N2 source and the switch valve on the panel. Turn on the valve before the 

bubbler. 

 Plug in the vacuum pump and check if enough vacuum is in the filter holder inlet above 

the glass tube. 

 Place the filter holder above the glass tube and start collecting the sample. Sample 

collection can be controlled with monitoring the gas temperature flowing into the filter 

support (powder collection is achieved when the flow temperature is around 160-225 °C). 

Make sure not to exceed 250 °C, as both the filter and the filter support can melt. Once a 

sufficient amount has been collected (or after one hour after startup) unplug the vacuum 

pump, turn off the switch valve for the atomizing gas and remove the sample collected. 

Once finished, resume sampling with restarting the atomization and the vacuum. 

 To shut down the system close the needle valves on the gas cylinders first. Turn off the 

N2 source. When the pressure on the external pressure gauge drops to nearly 0, close the 

H2 switch valve (make sure that the N2 pressure reaches 0 earlier) and allow the system 
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to burn the remaining fuel in the tubing. After the burning seizes, close the valves on the 

rotameter and close the air tap (or oxidizer valve). Once the pressure gauge monitoring 

the oxidizer flow rate starts dropping, close the switch valve and then the valve on the 

rotameter. Make sure to close all the pressure regulators. 

  

 

 

 

 
 

 

 

 

 

Rietveld SOP  

Instructions can be found at:   

http://www.aps.anl.gov/Xray_Science_Division/Powder_Diffraction_Crystallography/EXPGUItr

icks.html 

and at 

http://www.ccp14.ac.uk/tutorial/cmpr/manindex.htm 

Emergency shutdown instructions 

 Turn off the H2 switch valve (labeled above the valve “H2”) on the 

bottom of the flow panel. 

 Turn off the N2 switch valve (labeled above the valve “N2”) on the 

bottom of the flow panel. 

 Unplug the vacuum pump to turn it off (labeled “Vacuum pump”). 

 Turn off the heating of the bubbler (labeled “Bubbler heating”). 

 Turn off the air switch valve (labeled above the valve “Air”) on the 

bottom of the flow panel. 

 Close the valve on the H2 cylinder. 

 Close the brown valve labeled “N2” on the side of the fume hood. 

 Close the orange valve labeled “air” on the side of the fume hood. 

 Contact Professor Axelbaum and lab-safety manager if necessary. 

Emergency contact details: 

Miklos Lengyel 

Mobile: 314- 571-0901 

E-mail: mlengyel@wustl.edu 

 

http://www.aps.anl.gov/Xray_Science_Division/Powder_Diffraction_Crystallography/EXPGUItricks.html
http://www.aps.anl.gov/Xray_Science_Division/Powder_Diffraction_Crystallography/EXPGUItricks.html
http://www.ccp14.ac.uk/tutorial/cmpr/manindex.htm
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https://subversion.xor.aps.anl.gov/trac/CMPR 

https://subversion.xor.aps.anl.gov/trac/CMPR/wiki/InstallWindows 

http://www.aps.anl.gov/Xray_Science_Division/Powder_Diffraction_Crystallography/ 

1. Rename .txt to .dat 

2. select dataset 

3. Select peak list 

4. select a region to fit 

5. select peaks 

6. Refine FWHM 

7. refine peak areas (last boxes) 

8. refine backgrounds 

9. refine eta 

10. refine other peak widths (middle column) 

11. refine asymmetry 

12. Increment range by 5 degree (depending on spectrum) 

13. select new peaks  

14. Repeat steps 6-11 

15. Repeat step 12 until spectrum is covered 

16. Go to fitwidths 

17. load peaklist (> 13 peaks) 

18. Fit profile 

19. These will provide initial estimates for u, v, w values 

 

 

https://subversion.xor.aps.anl.gov/trac/CMPR
https://subversion.xor.aps.anl.gov/trac/CMPR/wiki/InstallWindows
http://www.aps.anl.gov/Xray_Science_Division/Powder_Diffraction_Crystallography/
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Appendix C  

Microburner design plans 
Earlier a small microburner was constructed to allow low temperature material synthesis. 

Due to the small capillary tubes the burner was capable of producing low temperature, 

uniform flames. To increase the productivity scale up of the burner was initiated, but the 

setup was never assembled. Appendix C contains the assembly instructions and the 

design plans for future reference. 

 

Figure 55 – Flame structure of the small scale microburner while producing cathode materials. 
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Figure 56 – Example of a temperature profile above the burner. 
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