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List of Figures 

Figure 1.1 Perfluorocarbon nanoparticle (~250 nm diameter) theranostic contrast agent can be 
functionalized by inserting various targeting ligands and drug payloads into the 
lipid monolayer. [Graphics courtesy of Kereos, Inc.] 

 
Figure 1.2 Gd-bearing nanoparticles targeted to angiogenesis provide T1-weighted signal to 

create 3D maps of neovasculature. 3D Neovasculature maps indicating “angiogenic 
switch” in VX2 tumor. Bars indicate percent of tumor volume enhancing. [Figure 
reprinted with permission from Schmieder et al.] 

 
Figure 1.3 (Top) Black blood image of the thoracic aorta (arrow) and segmentation of the 

vessel wall (outlined in yellow) is shown for the week 0 image. The color-coded 
overlay of signal enhancement (%) shows patchy areas of high angiogenesis. On the 
week 1 image, the signal enhancement has clearly decreased due to the 
antiangiogenic effect of targeted fumagillin treatment. (Bottom) The level of signal 
enhancement gradually increases at weeks 2 and 3 after fumagillin treatment, until 
week 4, when the level of enhancement is practically identical to the week 0 image. 
[Figure reprinted with permission from Caruthers et al.] 

 
Figure 1.4 Cardiac magnetic resonance signal enhancement up to 8 weeks after treatment with 

targeted fumagillin nanoparticles with and without oral atorvastatin. (Top) Cardiac 
magnetic resonance enhancement in untreated (triangles), atorvastatin-treated 
(circles) and fumagillin-treated animals (squares) during 8 weeks of follow-up 
imaging. Untreated and statin-treated animals showed a constant level of 
angiogenesis in the aortic wall. Animals treated with targeted fumagillin 
nanoparticles at 0 and 4 weeks showed decreased angiogenesis (*p < 0.05) after 
each dose, which returned to baseline levels within 4 weeks. (Bottom) 
Enhancement in rabbits receiving atorvastatin alone (triangles) or in conjunction 
with 1 (squares) or 2 (circles) doses of targeted fumagillin nanoparticles. The 
combination of 2 fumagillin doses and statin produced a sustained decrease in 
angiogenesis (*p < 0.05). [Figure reprinted with permission from Winter et al.] 

 
Figure 1.5 19F imaging and spectroscopy of crown ether nanoparticles bound to fibrin in 

ruptured plaque of human carotid artery specimen. The separate 1H and 19F images 
(top, left) can be combined with 19F overlaid on 1H anatomy (magnified, right). 
[Figure reprinted with permission from Caruthers et al.] 

 
Figure 1.6 Left: T1-Weighted Imaging of Fibrin Clots. (A) Paramagnetic CE nanoparticles, 

bound to the clots in cross section, appear as a bright line of signal enhancement 
with intensity decreasing linearly as the concentration of paramagnetic CE 
nanoparticle decreases (left to right). Maximum intensity projection through the 3D 
data depicts the clots en face (B). Mid Left: Volume selective 19F spectra from clots 
show the concentration of crown ether (CE) decreases inversely with perfluorooctyl 
bromide (PFOB). Mid Right: 19F MR Imaging of PFC NP Bound to Fibrin Clots. 
These three fluorine images, which have no proton “background,” are oriented 
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perpendicular to the clots as in A. They illustrate the fibrin-bound PFC 
nanoparticles of various mixtures applied to the clots. In a broad bandwidth 
excitation (top), all fibrin clots enhance brightly. Narrow bandwidth excitation 
allows independent visualization of the CE or PFOB nanoparticles. Right: 19F 
Image-based quantification allows relative quantification of NP concentration on 
clots. [Figure reprinted with permission from Caruthers et al.] 

 
Figure 1.7 19F MRI (ex vivo) of disrupted human carotid artery endarterectomy specimen with 

atherosclerotic plaque and overlying thrombus using fibrin-targeted PFC NP. Left: 
an optical image of a human carotid endarterectomy sample shows moderate 
luminal narrowing and several atherosclerotic lesions. Middle: A 19F projection 
image acquired through the entire thickness of carotid artery sample shows high 19F 
signal along the lumen because of the binding of nanoparticles to fibrin. Right: The 
calculated concentration map of bound nanoparticles (nM) in the carotid sample 
based on 19F signal intensity in each voxel. [Figure reprinted with permission from 
Morawski et al.] 

 
Figure 1.8 Localization of PFC NPs labeled cells in mice using 19F MRI. (a) 19F MRI 

trafficking of stem/progenitor cells labeled with either perfluorooctyl bromide 
(PFOB) (green) or perfluoropolyether (PFPE) (red) nanoparticles. Labeled cells 
were locally injected into the skeletal muscle of mouse thigh before MRI. (b)–(d) 
At 11.7-T field strength, 19F spectral discrimination permits respective imaging of 
∼∼1×106 PFOB-loaded cells (b) and PFPE-loaded cells (c). The composite 19F 
(displayed in color) and 1H (displayed in grayscale) images (d) reveal the location 
of PFOB labeled cells in the left leg and PFPE labeled cells in the right leg (dashed 
line indicates 3 × 3 cm2 field of view for 19F images). [Figure reprinted with 
permission from Partlow et al.] 

 
Figure 1.9 The imaging chain of a commercial MR scanner includes many steps in which 

measurements and adjustments are made, from determining the power settings for 
accurate flip angles, to B0 shimming, to inhomogeneities in B1 for RF transmit and 
receive; even during the scan eddy currents, B0 variations, J-coupling, etc. can 
affect quantification outcomes. 

 
Figure 2.1 Left: Longitudinal (spin-lattice) relaxation, described by T1 relaxation time. Right: 

Transverse (spin-spin) relaxation, described by T2 relaxation time. 
 
Figure 2.2 Timing diagram for a 90° RF pulse (top) followed by a free induction decay (FID) 

signal (bottom) of net magnetization in the transverse plane, detectable by a RF 
receiver coil. 

 
Figure 2.3 Left: Chemical structure of perfluoro-15-crown-5-ether (PFCE). 19F NMR spectrum 

of PFCE, resulting in a single resonance peak since all 19F nuclei experience the 
same local magnetic field. 
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Figure 2.4 (a) Chemical structure of perfluorooctyl bromide (PFOB; CF3-(CF2)6-CF2Br). (b) 
Representative MR spectrum of PFOB. The J-coupling constant between CF3 and 
the adjacent CF2 group is 12.3 Hz. 

 
Figure 2.5 Schematic diagram of a coupled resonator circuit. (a) the resonator formed by 

capacitor Ct2 and probe (with inductance L) is capacitively coupled, by capacitor Cc, 
to the secondary resonator formed by capacitor Ct1 and inductor L. (b & c) the 
equivalent circuit of in-phase and anti-phase mode. (d) coupled resonator is 
capacitively matched to 50 Ohm with Cm. [Figure reprinted with permission from 
Hu et al. (29)] 

 
Figure 2.6 19F/1H dual-tuned RF coil circuit. (a) Equivalent circuit diagram of two separate 

LCR resonators (L1, C1, R1) and (L2, C2, R2) electrically coupled via capacitor C3. 
(b) Image of second resonator circuit with coupling capacitors (C3A and C3B) and 
matching capacitors (C4A and C4B) labeled. (c) Theoretical impedance magnitude 
output of a SPICE simulation of two capacitively coupled resonators. [Figure 
reprinted with permission from Hockett et al. (28)] 

 
Figure 2.7 Photographs of single-turn solenoid RF coils. (a) Smaller coil (8 cm diameter). (b) 

Larger coil (11.5 cm diameter). (c) T/R box that interfaces with clinical scanner. 
 
Figure 2.8 Simultaneous dual-frequency return loss (S11) of single-turn solenoid coil 

measured using network analyzer. Return loss, better than -30 dB, is observed at 
both the 1H (127.8 MHz) and 19F (120.2 MHz) resonance frequencies. 

 
Figure 2.9 Arrangement of capacitors used to spread out the current in the 8 cm diameter 

19F/1H dual-tuned single-turn solenoid coil. 
 
Figure 2.10 (a) T1-weighted 1H FFE image of saline phantom using 8 cm diameter 19F/1H dual-

tuned solenoid coil. (b) Signal intensity profile over the distance of the phantom, as 
indicated. 

 
Figure 2.11 (a) AFI B1 map of saline phantom using 8 cm diameter 19F/1H dual-tuned solenoid 

coil (119.76% ± 0.03% actual/requested flip angle). (b) AFI intensity profile over 
the distance of the phantom, as indicated. 

 
Figure 2.12 1H (a) and 19F (b) images of a rat lung model of asthma using simultaneous 19F/1H 

imaging of ανβ3-integrin targeted PFC NP. 
 
Figure 3.1 a: Perfluorooctyl bromide (PFOB: CF3-(CF2)6-CF2Br) 19F spectrum. b: All 
 chemical shift components of PFOB CF2 line group (β, γ, δ, ε, ζ, ρ) remain within a 
 phase range of ± 90° for 0.5 ms. c: 19F signal evolution of the (CF2)6 line group with 
 and without apparent T2 relaxation. During a fast FID readout as in the balanced 
 UTE-SSFP technique, the relative signal remains above 60%, which cannot be 
 recovered for later echo times. [Figure reprinted from Goette, et al. In press] 
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Figure 3.2 A simultaneous 3D 19F/1H balanced UTE-SSFP pulse sequence, consisting of 
 simultaneous 19F/1H RF excitation and subsequent FID acquisition at an ultra-short 
 echo time, using balanced gradients (m, mr) with a Wong-type (39) radial readout 
 trajectory. [Figure reprinted from Goette, et al. In press] 
 
Figure 3.3 Magnitude 19F image of sensitivity imaging phantom, showing PFOB signal 

acquired with balanced UTE-SSFP sequence. ROI show locations of 19F signal (I0) 
[middle], and noise [right] used for SNR calculations. [Figure reprinted from 
Goette, et al. In press] 

 
Figure 3.4 Molecular imaging of ανβ3-integrin targeted NP on VX2 tumors (arrows) in  rabbits 

by 19F MRI. Gd-free (a,b,c) or Gd-containing (d,e,f) NP with a perfluorooctyl 
bromide (PFOB) core were used and imaged with a novel balanced UTE-SSFP 
based 3D radial sequence. 1H images show T1-based enhancement only with Gd NP 
(d), while the 19F signal is clearly detected in both cases (b&e). Image overlays 
(c&f) demonstrate the anatomical co-localization. [Figure reprinted from Goette, et 
al. In press] 

 
Figure 3.5 Simultaneous 19F/1H molecular imaging of angiogenesis targeted perfluorooctyl 
 bromide nanoparticles in a rabbit model of atherosclerosis using 3D radial balanced 
 UTE-SSFP. Proton image (a) with 1.25 mm isotropic voxels show anatomy, upon 
 which 19F image can be overlaid (b). The ROI in (b) is surrounding the aorta, which 
 has a diameter of about 5 mm. The 19F overlay within the aortic region is in green, 
 and extra-aortic 19F signal is blue. 
 
Figure 3.6  Modeled steady-state gradient echo signal as a function of flip angle (α) for 

balanced SSFP (“R-FFE”, red line), GRE (“N-FFE”, blue line), and RF-spoiled 
GRE (“T1-FFE”, green line) using an estimated actual T2 of 110 ms. 

 
Figure 4.1 19F/1H dual-tuned RF coils. (a) Single loop rectangular surface coil (7×12 cm, 

Philips Healthcare, Best, The Netherlands). (b) Custom-built 6-element semi-
cylindrical coil (15 cm diameter), and (c) single-turn solenoid coil (11.5 cm 
diameter, 14 cm length). [Figure reprinted from Goette, et al. In review] 

 
Figure 4.2 Representative flip angle sweep (10°-210°) on 19F nucleus (top) and 1H nucleus 

(bottom) using the same power setting (peak power = 122.9 W) with a 19F/1H dual-
tuned surface coil indicating correct power settings for 19F, but too high for 1H. 
[Figure reprinted from Goette, et al. In review] 

 
Figure 4.3 3D Ball plot representation of optimized RF power settings (peak power, W) for 19F 

(a) and 1H (b) nuclei using a 19F/1H dual-tuned surface coil and a point source 
phantom of PFCE NP emulsion. (c) Ratio of optimum 19F/1H power setting yields a 
spatially independent calibration value (1.48 ± 0.06 for surface coil). [Figure 
reprinted from Goette, et al. In review] 
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Figure 4.4 Power settings (peak power, W) needed to optimize 90° flip angle for 19F and 1H 
signals from point source phantom at 9 mm, 15 mm, and 27 mm above 19F/1H dual-
tuned surface coil (a), semi-cylindrical coil (b), and within single-turn solenoid coil 
(c). [Figure reprinted from Goette, et al. In review] 

 
Figure 4.5 19F MRI of phantom with two vials of 1.0 M NaF in agar using a simultaneous 

19F/1H bFFE sequence and a 19F/1H dual-tuned surface coil. Before correction, 19F 
image (a) and 19F/1H overlay image (b) illustrate the inhomogeneous RF field 
produced by the surface coil, resulting in a mean signal intensity of 2537 ± 31 a.u. 
and 863 ± 7 a.u. in each vial. 1H B1-field was mapped with actual flip angle imaging 
(% actual/requested FA) (c), and input into bFFE signal model to create a correction 
factor (d), which was used to compensate 19F and 1H signal intensities. The 
corrected 19F image (e) and 19F/1H overlay image (f) demonstrate the image-based 
compensation technique, resulting in a mean signal intensity of 2621 ± 27 a.u. and 
2681 ± 23 a.u. in each vial. [Figure reprinted from Goette, et al. In review] 

 
Figure 4.6 One-way ANOVA analysis of the 19F signal intensity from phantom of two PFC NP 

vials (1: closer to coil; 2: farther away) before (left) and after (right) B1-mapping 
compensation. 

 
Figure 4.7 19F MRI of homogeneous phantom (1.0 M NaF in 2% agar) using a simultaneous 

19F/1H bFFE sequence and a 19F/1H dual-tuned surface coil. Before correction, 19F 
image (a) and 19F/1H overlay image (b) show result of inhomogeneous RF field 
produced by surface coil. 1H B1-field was mapped with actual flip angle imaging (% 
actual/requested FA) (c), and input into bFFE signal model to create correction ratio 
(d), which was used to correct 19F and 1H signal intensities. Corrected 19F image (e) 
and 19F/1H overlay image (f) demonstrate image-based correction technique. 
[Figure reprinted from Goette, et al. In review] 

 
Figure 4.8 B1-mapping compensation of in vivo cancer model in rabbit with the use of ανβ3-

integrin-targeted PFC NP nanoparticles captured by 19F MRI with a 19F/1H dual-
tuned surface coil (located at image right). In the uncorrected 19F image overlaid on 
the high-resolution 1H image (a), PFC NP concentration was quantified as 20.0 ± 
0.12 mM19F, compared to an external standard of known concentration (150 
mM19F). Illustrated are: B1-field mapping with AFI (% actual/requested FA) (b) and 
calibration mask calculated from a balanced UTE-SSFP signal model (c). In the 
corrected 19F image overlaid on the high-resolution 1H image, PFC NP 
concentration was quantified as 25.5 ± 0.10 mM19F. [Figure reprinted from Goette, 
et al. In review] 

 
Figure 5.1 (a) 1H TSE image of unilateral permanent occlusion of renal artery in rat left 

kidney. (b) 19F bFFE image of PFCE NP emulsion injected i.v. (3 ml/kg). Location 
of kidneys outlined in red (arrow: injured left kidney). (c) 19F image false-colored in 
green overlaid on 1H image. 
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Figure 5.2 (a) 1H TSE image of ex vivo rat kidney cross-section showing cortex [C] and 
medulla [M]. In vivo rat kidney cross sections showing renal perfusion via 19F 
imaging of PFCE NP emulsion (3 ml/kg) in the following: (b, c) normal controls-L, 
R; (d, e) permanently occluded-L, contralateral control-R; (f, g) 
ischemia/reperfusion-L, contralateral control-R. (h, i) Ex vivo 19F imaging of 
ischemia/reperfusion-L, contralateral control-R. 

 
Figure 5.3 (a) Cross-sectional 1H image of rat anatomy, showing left injured kidney in an 

ischemia/reperfusion model of AKI and external 19F standard outlined in red. (b) 
19F MR image using simultaneous 19F/1H bFFE sequence of PFCE NP emulsion (3 
ml/kg) circulating for 5 min. Compared to external PFCE standard (150 mM19F), 19F 
signal was quantified in the kidney, which showed lower renal perfusion in the 
medulla (63.8 ± 10.9 mM19F) than in the cortex (82.8 ± 6.9 mM19F). (c) 19F image 
overlaid in green on 1H image showing colocalization of standard and renal 19F 
signal. (d) B1 map using AFI (% actual/requested flip angle) demonstrating that 
nearly the same flip angle was achieved in the 19F standard (95.2 ± 6.0 %) as in the 
kidney (95.9 ± 3.4 %) with the 19F/1H dual-tuned solenoid coil. 

 
Figure 5.4 (a) Long-axis 1H image of rat anatomy, showing left injured kidney in an 

ischemia/reperfusion model of AKI outlined in red. (b) B1 map using AFI (% 
actual/requested flip angle) showing homogeneous RF field within field-of-view 
(FOV) (~ 5 cm long) of 19F/1H dual-tuned solenoid coil (c), which falls off outside 
coil FOV. 

 
Figure 5.5 19F MRI of 1 ml/kg PFC NP emulsion injected into normal chow rabbit 3 min prior 

to imaging. (a) 19F bFFE image without REST slab shows long-axis view of the 
rabbit, with 19F signal detectable in aorta, liver, and kidney, confirmed with 
colocalization in 19F/1H overlay image (c). A REST slab perpendicular to the 
imaging slice eliminates 19F signal from image (b & d). REST slab and imaging 
slice location (e). 

 
Figure 5.6 Cross-sectional 19F MR images without (a) and with (b) one parallel REST slab 

proximal to the imaging slice, which eliminates only aortic 19F signal from 
circulating PFC NPs, confirmed with 19F overlays (green) on 1H images (c & d). 

 
Figure 5.7 Locations of saturation bands used to eliminate 19F signal from flowing blood 

proximal and distal to imaging slice (which continued beyond the image FOV). 
Aorta, shown in red, was imaged with a time-of-flight angiogram. [Figure reprinted 
from Palekar, Goette, et al. In preparation] 

 
Figure 5.8 Cross-sectional 1H images of (a) normal chow rabbit and (d) cholesterol fed rabbit 

showing location of abdominal aorta (red box). 19F bFFE images of PFCE 
nanoparticle 19F signal in the region of interest for (b) normal chow rabbit and (e) 
cholesterol fed rabbit. Saturation bands proximal and distal to imaging slice 
eliminate 19F signal from blood. 19F signal (green) overlaid on 1H image showing 
19F signal colocalization for the region of interest in a (c) normal chow rabbit and 
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(f) cholesterol fed rabbit, demonstrating deposition of PFC-NP only in inflamed 
abdominal aorta (AA) and vena cava (VC). Representative oil red O stains of the 
imaged area showing plaque elements in (g) normal chow rabbit and (h) cholesterol 
fed rabbit. Scale bars denote 500 µm. [Figure reprinted from Palekar, Goette, et al. 
In preparation] 

 
Figure 6.1 (a) T1-weighted 1H FFE coronal image of leg phantom. Setup of MR angiography 

of phantom with flowing (~ 8 cm/s) saline doped 5000:1 with Gd3+ using M2D TOF 
(multiple 2D, time-of-flight) 1H imaging with REST slab position (b). MRA 
maximum intensity projection (MIP) and MIP overlay on 1H image without (c&d) 
and with a REST slab (e&f) saturating the spins in the return flow. 

 
Figure 6.2 (a) Semi-cylindrical 19F/1H dual-tuned coil. (b) Leg phantom, consisting of tubing 

encased within 2% agar in 2L bottle. Actual Flip Angle Imaging (% 
Actual/Requested Flip Angle) maps in the transverse (c) and sagittal (e) views with 
corresponding profile plots (d & f) increasing in distance away from the coil 
(location illustrated in red). 

 
Figure 6.3 T1-weighted 1H FFE transverse (a) and coronal (b) images of leg phantom. 

Simultaneous 19F/1H imaging of PFCE NP emulsion in leg phantom tubing (static) 
using bFFE sequence in transverse (c) and coronal (d) planes. Note: banding 
artifacts from coil are present in coronal slice. 19F image using balanced UTE-SSFP 
sequence in transverse plane (e), with coronal MIP (f). 

 
Figure 6.4 MR angiography of leg with flowing (600 ml/hr) saline using M2D TOF (multiple 

2D, time-of-flight) 1H imaging. Maximum intensity projections (MIP) in coronal 
(a), sagittal (b), and transverse (c) planes. MRA setup and slice orientation (d). 

 
Figure 6.5 (a) High-resolution T1-weighted 1H FFE transverse image of leg anatomy (arrow: 

cannulated artery). (b) 19F imaging of PFCE NP emulsion (~ 2 ml/kg) in artery 
using balanced UTE-SSFP sequence in transverse plane. Other 19F signal from PFC 
NP emulsion that pooled outside the specimen due to leaking from an absence of a 
return circuit. 

 
Figure 7.1 Unique 19F/1H dual-tuned coil design (left) and circuit diagram (right) with active 

switching, allowing for transmission using an outer coil element and reception 
using an inner coil element. 
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Medical imaging is undergoing a transition from an art that is used to make static images 

of human physiology into a scientific tool that employs advanced techniques to measure 

clinically relevant data. Recently, the role of magnetic resonance imaging in cardiovascular and 

oncological research has grown, largely due to the implementation of new quantitative 

techniques in the clinic. Magnetic resonance imaging (MRI) and spectroscopy (MRS) are 

particularly rich in their capability to quantify both physiology and disease via biomarker 

detection. While this is true for many applications of MRI in cardiovascular and oncological 

research, 19F MR molecular imaging is particularly useful when coupled to the use of emerging 

site-targeted molecular imaging agents for diagnosis and therapy, such as αvβ3 integrin-targeted 

perfluorocarbon (PFC) nanoparticle (NP) emulsions. Unfortunately, the radiological world is 

realizing that although image quality may be consistently high, the absolute quantitative values 

being calculated vary widely across time, techniques, laboratories, and imaging platforms. 
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The overall objective of this work is to advance the state of the art for 19F MR molecular 

imaging of perfluorocarbon nanoparticle emulsion contrast agents. To reach this objective, three 

specific aims have been identified: (1) to create new tools and techniques for 19F MR molecular 

imaging of PFC nanoparticles, (2) to develop translatable procedures for absolute quantification 

of 19F nuclei with MR molecular imaging, and (3) to evaluate the potential for clinical translation 

with ex vivo and in vivo preclinical experiments. Robust, standardized techniques are developed 

in this work to improve the accuracy of in vivo quantitative 19F MR molecular imaging, validate 

system performance, calibrate measurements to ensure repeatability of these quantitative metrics, 

and evaluate the potential for clinical translation. As these quantitative metrics become routine in 

medical imaging procedures, these standardized calibrations and techniques are expected to be 

critical for accurate interpretation of underlying pathophysiology. This will also impact the 

development of new therapies and diagnostic techniques/agents by reducing the variability of 

image-based measurements, thereby increasing the impact of the studies and reducing the overall 

time and cost to translate new technologies into the clinic. 
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Chapter 1. Introduction 

 

1.1 Quantitative Magnetic Resonance Molecular and Functional Imaging 

 Medical imaging is undergoing a transition from an art that is used to make static images 

of human physiology into a scientific tool that employs advanced techniques to measure 

clinically relevant data. This is particularly true for magnetic resonance imaging (MRI), which 

has been widely adopted as a powerful diagnostic imaging modality with superior soft tissue 

contrast and an excellent human safety profile, due to a lack of ionizing radiation (1). MRI is 

increasingly being used to generate quantitative metrics of human physiological function, as seen 

in the clinic with measurements of myocardial function and viability (2), apparent diffusion 

coefficient in acute stroke (3), blood flow velocity through a stenotic vessel (4), and first-pass 

contrast agent kinetics (5), among many others. Alongside the implementation of new imaging 

procedures is the development of new contrast agents, which include targeted imaging agents 

and detectable therapeutics. The potential of these “theranostic” agents to offer personalized 

diagnosis, precise therapy delivery, and unparalleled post-therapy response arises from their 

quantitative nature (6). 

Molecular imaging offers extraordinary potential for studying cell biology, detecting 

disease biomarkers, and monitoring targeted drug delivery using noninvasive techniques (7-11). 

Its hallmark is the ability to visualize and characterize the presence of specific cellular indicators 

of biological processes using a variety of targeting ligands, such as fibrin (12), ανβ3 integrin (13), 

epidermal growth factor receptor (EGFR) (14), and vascular cell adhesion molecule 1 (VCAM-

1) (15). Perhaps more profoundly and clinically useful is the potential for quantification, not only 

of biomarkers, but also of targeted drug delivery and therapy response (16-18). While relative 
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values derived from images are helpful, absolute and accurate measures are required for pre-

clinical and clinical studies, as well as ultimate clinical therapy utility. Accurate and stable 

quantification is especially vital where time-varying biomarker information is required, such as 

in pharmacodynamic studies.  

Functional imaging presents an opportunity to observe and quantify pathophysiological 

changes to tissue or organ functionality in response to disease or external stimulus. Recent 

developments in MRI techniques and contrast agents afford numerous opportunities for direct 

and noninvasive readouts of essential functional indexes such as diffusion (19), perfusion (5), pH 

(20), and blood oxygenation (21). Since molecular and functional imaging offer different but 

complementary insights into the same pathophysiological processes, there is a growing interest 

in devising reliable platforms that permit accurate and repeatable quantitative molecular and 

functional readouts of the underlying biological mechanism of disease states in a more 

comprehensive manner (22,23). 

While molecular and functional imaging are generally robust due to the combination of 

various imaging modalities, magnetic resonance imaging alone is a rich molecular and functional 

imaging modality because of the inherent ability to image various contrasting tissue 

characteristics, and the ability to take spectroscopic and parametric measurements. Most current 

MR techniques are qualitative (i.e., relative), often requiring pre- and post-agent imaging with 

subsequent image registration and comparison. Current “absolute” methods are still, in reality, 

relative measures in that they vary temporally and spatially within an imaging system (e.g., due 

to hardware sensitivity, tuning, scaling, etc.) and across imaging systems (e.g., due to differences 

in hardware, techniques, etc.). 
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As these new quantitative imaging techniques undergo clinical evaluation, their precision, 

accuracy, and repeatability must be fine-tuned and standardized before they can be fully 

integrated into the clinical setting. Robust methods of quantitative imaging will also be essential 

in the pre-clinical development of novel contrast agents, therapeutics, and diagnostic protocols. 

Just as imaging techniques with known endogenous and exogenous contrast mechanisms require 

thorough testing, the eventual translation of these new agents into the clinic will require robust, 

precise, and repeatable quantitative imaging protocols. 

 

1.1.1 Proton MR Molecular and Functional Imaging 

 Magnetic resonance molecular and functional imaging is generally divided into two 

options based on the imaging nucleus of choice: proton and non-proton. Non-proton MRI is 

employed to directly visualize clinically relevant exogenous contrast agents or molecules that 

contain nuclei other than hydrogen exhibiting net nuclear spin in external magnetic fields. Proton 

imaging utilizes intrinsic or agent-induced local relaxation modulation of hydrogen (1H) nuclei, 

which contain a single proton and no accompanying neutron. In proton imaging, detected 1H 

spins are correlated with the expression of biochemical markers or the quantitative value of 

specific functional indexes. 1H MR molecular and functional imaging offers a wide variety of 

contrast mechanisms that can be utilized by modifying the contrast agent, pulse sequence, and 

imaging protocol. Contrast can be generated either by manipulating endogenous tissue relaxation 

properties, or by detecting the effects of exogenous contrast agents. 

Several relevant endogenous contrast-based functional imaging approaches are in or 

entering clinical use. Among them, diffusion tensor MRI (DTI) correlates water diffusion in soft 

tissue with a magnetic resonance readout and delineates tissue microstructures resulting from 
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restricted boundaries for water diffusion (19). Arterial spin labeling (ASL) utilizes a special 

pulse sequence and applies RF power to magnetically label arterial blood flow (24). ASL is 

widely studied as an alternative method to traditional perfusion imaging techniques, which 

utilize potentially nephrotoxic contrast agents. Blood-oxygenation-level-dependent (BOLD) MRI 

permits non-invasive detection of tissue functionality by measuring T2* contrast generated by 

deoxyhemoglobin in metabolically active tissues that are extracting and using oxygen (21). 

 Exogenous 1H contrast agents are engineered for several clinical applications by utilizing 

a variety of targeting ligands, many of which exhibit well-characterized biochemical properties. 

NMR scientists exploit a wide range of physical properties of these agents, which typically 

generate contrast by modulating the local relaxation of 1H nuclei in one of the following 

manners. Superparamagnetic iron oxide (SPIO) particles generate local magnetic field 

inhomogeneities that can be visualized using T2*-weighted gradient echo imaging sequences 

(25). Additionally, paramagnetic contrast agents containing metals such as gadolinium (Gd3+) 

and manganese (Mn2+) encode agent concentration into signal intensity on T1-weighted images 

(26). New techniques to image endogenous cellular proteins or exogenous agent-introduced 

peptides by indirectly affecting 1H resonances include chemical exchange saturation transfer 

(CEST) (27) and amide proton transfer (APT) (28,29). Finally, techniques like spin-lattice 

relaxation time in the rotating frame (T1ρ) (30) have drawn attention recently, but the clinical 

adoption of these newer methods still remains under investigation. 

Hydrogen has been the dominant imaging nucleus of choice largely due to the numerous 

mechanisms to quickly generate high-contrast clinical images with proton MRI; however, 1H 

molecular and functional imaging is not without its drawbacks. All 1H-based imaging techniques 

are best performed with a pre-contrast baseline scan as well as the endogenous or exogenous 
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contrast scan of interest. As such, these imaging approaches are highly susceptible to patient 

motion between the two scans, which make accurate and repeatable image coregistration difficult 

in the clinic. In addition, proton molecular and functional applications often suffer from the 

omnipresent 1H background signal, which may hinder the unambiguous identification of sparse 

molecular targets or detection of small changes in tissue functionality. 

 

1.1.2 Non-proton MR Molecular and Functional Imaging 

Non-proton MR molecular and functional imaging, on the other hand, is not plagued by 

the abundant proton background signal because 1H nuclei are ignored, which might allow in 

certain circumstances for the specific and sensitive detection of various disease biomarkers and 

metrics of tissue functionality if the imaged nuclear spectrum is unique with no confounding 

background. As an unavoidable tradeoff, however, non-proton MRI is more technically 

challenging because of lower gyromagnetic ratios and inherently lower natural abundance of 

detectable nuclei in patients compared to 1H MRI (31). 

Table 1.1 shows several non-proton nuclei exhibiting net nuclear spin in an external 

magnetic field, which are detectable with MR. Compared to 1H with a gyromagnetic ratio (γ) of 

42.5 MHz/T, phosphorus (31P) and sodium (23Na) have much lower resonance frequencies (31P: γ 

= 17.2 MHz/T, 23Na: γ = 11.3 MHz/T). Since MR sensitivity is roughly proportional to γ2 

according to Curie’s Law (32), 31P and 23Na exhibit much lower relative sensitivities when 

detected with MR, calculated in Table 1.1 as 0.066 and 0.092, respectively, compared to 1H 

(1.000). Despite relatively low MR sensitivity, 31P and 23Na are widely exploited as endogenous 

non-proton nuclei for functional imaging in evaluating tissue metabolism and electrophysiology 

because they are key components in many important organic and inorganic molecules that are 
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naturally present in animals and humans (33,34). Sodium imaging, in particular, has been 

successfully utilized to enhance knee imaging in the clinic (35,36). 13C also has a very low 

relative sensitivity (0.01591), but can be hyperpolarized yielding several thousand fold increases 

in sensitivity, allowing researchers to probe several key biochemical pathways including 

glycolysis, the citric acid cycle, and fatty acid synthesis (37,38). 

Table 1.1 NMR Properties of Proton and Non-proton Nuclei with Net Nuclear Spin 

Nucleus Abundance (%)a Net Nuclear 
Spin, I 

Gyromagnetic 
Ratio, γ (MHz/T) 

Relative 
Sensitivityb 

1H 99.9885 1/2 42.5775 1.00000 
2H 0.0115 1 6.5359 0.00965 
31P  100 1/2 17.2515 0.06652 

23Na  100 3/2 11.2688 0.09270 
14N 99.636 1 3.0777 0.00101 
13C 1.07 1/2 10.7084 0.01591 
19F 100 1/2 40.0776 0.83400 

a Natural abundance of the isotope in percent. 
b Sensitivity relative to 1H (1.000) assuming an equal number of nuclei and 
constant temperature. Values were calculated from expression for constant 
applied field (M0): 0.0076508(µ/µN)3(I+1)/I2, where I is the net nuclear spin, and 
µ/µN is the nuclear magnetic moment in units of the nuclear magneton µN (39). 

 

 The gyromagnetic ratio of fluorine (19F) nuclei (40.1 MHz/T), on the other hand, is very 

close to 1H (42.5 MHz/T), only 6% different (a separation of 7.6 MHz at 3T) (40). As such, 19F 

spins generate favorably comparable MR signal to 1H spins with a relative sensitivity of 0.834, 

or about 83% that of 1H; this is much stronger than the other non-proton imaging nuclei that are 

detectable with MR. Additionally, there is essentially no 19F background signal in the human 

body (or other small animals) under physiological conditions, as seen by Table 1.2. Therefore, 

19F MR imaging, typically performed with a fluorinated contrast agent, is a promising molecular 

imaging approach with the potential for extraordinary specificity. As a point of clarification, the 

19F nomenclature is used throughout to distinguish this 100% naturally-occurring (non-

radioactive) isotope of fluorine (with an atomic number of 19) from radioactive 18F, which is 
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frequently used in fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) scans. 

Finally, because 19F atoms can be readily engineered into various organic molecules by 

substituting for existing 1H atoms, 19F MRI with appropriately functionalized contrast agents 

represents a versatile imaging paradigm for quantitatively probing biomarker expression at the 

molecular level (41,42). 

Table 1.2 Biological Abundance of Relevant NMR Nuclei in the Human Body 

Element Relevant 
NMR Nucleus 

Biological 
Abundancea 

Hydrogen 1H 0.63 
Phosphorus 31P 0.0024 

Sodium 23Na 0.00041 
Nitrogen 14N 0.015 
Carbon 13C 0.094 
Fluorine 19F 0.000012 

a Biological abundance is the fraction of one type 
of atom in the human body, calculated from (43). 

 

1.2 Perfluorocarbon Nanoparticle Emulsion Contrast Agents 

 On the forefront of this new molecular and functional imaging paradigm are the ligand-

targeted perfluorocarbon (PFC) nanoparticle (NP) emulsions invented in our labs at Washington 

University. This multifunctional agent (Fig. 1.1) is comprised of a lipid monolayer encapsulating 

a hydrophobic perfluorocarbon core with PFCs such as perfluoro-15-crown-5-ether 

(PFCE; C10F20O5) or perfluorooctyl bromide (PFOB; CF3-(CF2)6-CF2Br), which generate 

nanoparticles following an emulsification process (44). These perfluorocarbons are a type of 

fluorine-containing molecule derived from hydrocarbons by complete substitution of 1H with 19F 

atoms. PFOB in particular has been clinically approved as a blood substitute for over 20 years 

and has displayed a very good bio-safety profile because it is biologically inert and not 

metabolized by human body. The nominal size of a PFC NPs is approximately 250 nm in 

diameter. The half-life of PFC NPs in the blood stream is ~2-4 hours, and particles are 
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sequestered by the liver and spleen, with the perfluorocarbon component then cleared by 

volatilization and exhalation from the lungs. 

PFC nanoparticles have proved to be a highly adaptable delivery vehicle for targeted 

molecular and functional imaging. Targeting ligands can be conjugated covalently or 

noncovalently to the lipid surface to functionalize the particles. Some have termed these particles 

“theranostic” agents, combining therapeutic drug payloads into the lipid monolayer along with 

diagnostic imaging agents such as chelated gadolinium (Gd) (~100,000 chelates per particle), 

which can be detected with T1-weighted proton (1H) imaging. Additionally, fluorine (19F) 

magnetic resonance imaging (MRI) and spectroscopy (MRS) can be used to sensitively detect, 

specifically identify, and directly quantify the perfluorocarbon core of these nanoparticles in a 

wide variety of applications (45-50). In addition to their extensive applications in diagnostic 

imaging, and due to an opportune half-life in the blood stream, PFC NPs have also been 

exploited as a potential vehicle for drug delivery (6,51-53). For example, PFC nanoparticles have 

been used pre-clinically to detect thrombus and plaque angiogenesis in atherosclerosis and to 

deliver antiangiogenic therapy with an image-based readout of dosing efficacy (54,55). 

 
Figure 1.1 Perfluorocarbon nanoparticle (~250 nm diameter) theranostic contrast agent can be 
functionalized by inserting various targeting ligands and drug payloads into the lipid monolayer. 
[Graphics courtesy of Kereos, Inc.] 
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1.2.1 1H MR Molecular Imaging of Targeted PFC NP 

Applications of PFC nanoparticles as a 1H contrast agent for molecular imaging have 

been extensively investigated in preclinical models of cancer and cardiovascular disease, 

particularly with angiogenesis targeted imaging (54). Conjugation of an RGD peptide or mimetic 

to the lipid monolayer functionalizes the nanoparticles to the presence of ανβ3 integrin, offering 

active targeting of these particles to neovasculature, or the formation of new blood vessels. When 

Gd chelates are incorporated into the lipid surface of the particles, there is a direct inner-sphere 

dipole-dipole interaction between Gd and the water molecules surrounding the biomarker sites, 

leading to shorter T1 relaxation times. It has been shown that the chemical structure of the Gd 

chelates affects the relaxivity of the PFC NP as a 1H contrast agent, and that chelates with longer 

linker chains (e.g. DOTA-PE) enhance water relaxation more efficiently than those with shorter 

chains (e.g. DOTADTPA) (56). Through T1-weighted imaging, 3D maps of angiogenesis can be 

constructed to visualize angiogenesis patterns and temporal development (Fig. 1.2) (57). We 

have shown that not only visualizing but also assigning values to the extent of angiogenesis 

present in various tumor models is beneficial in the non-invasive characterization of 

angiogenesis (55,57-62) and in monitoring (and even predicting) response to therapy (45,63,64). 

 
Figure 1.2 Gd-bearing nanoparticles targeted to angiogenesis provide T1-weighted signal to 
create 3D maps of neovasculature. 3D Neovasculature maps indicating “angiogenic switch” in 
VX2 tumor. Bars indicate percent of tumor volume enhancing. [Figure reprinted with permission 
from Schmieder et al. (57)] 
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One series of studies by our group investigated the diagnosis and treatment of 

angiogenesis in early-stage atherosclerosis with paramagnetic αvβ3-integrin-targeted 

nanoparticles (63,65,66). It was shown that angiogenesis can be specifically targeted with these 

nanoparticles and imaged in an in vivo hyperlipidemic rabbit model (Fig. 1.3). Furthermore, 

using a semi-quantitative method to measure MR signal enhancement from digitally segmented 

rabbit aortas, the response to a combination of antiangiogenic and cholesterol lowering therapy 

(i.v. fumagillin-loaded nanoparticles plus orally-administered atorvastatin) could be monitored 

and quantified over time (Figs. 1.3 & 1.4). The combination of targeted fumagillin nanoparticles 

and atorvastatin synergistically sustained an antiangiogenic effect over several weeks.  

 
Figure 1.3 (Top) Black blood image of the thoracic aorta (arrow) and segmentation of the vessel 
wall (outlined in yellow) is shown for the week 0 image. The color-coded overlay of signal 
enhancement (%) shows patchy areas of high angiogenesis. On the week 1 image, the signal 
enhancement has clearly decreased due to the antiangiogenic effect of targeted fumagillin 
treatment. (Bottom) The level of signal enhancement gradually increases at weeks 2 and 3 after 
fumagillin treatment, until week 4, when the level of enhancement is practically identical to the 
week 0 image. [Figure reprinted with permission from Caruthers et al. (9)] 
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Figure 1.4 Cardiac magnetic resonance signal enhancement up to 8 weeks after treatment with 
targeted fumagillin nanoparticles with and without oral atorvastatin. (Top) Cardiac magnetic 
resonance enhancement in untreated (triangles), atorvastatin-treated (circles) and fumagillin-
treated animals (squares) during 8 weeks of follow-up imaging. Untreated and statin-treated 
animals showed a constant level of angiogenesis in the aortic wall. Animals treated with targeted 
fumagillin nanoparticles at 0 and 4 weeks showed decreased angiogenesis (*p < 0.05) after each 
dose, which returned to baseline levels within 4 weeks. (Bottom) Enhancement in rabbits 
receiving atorvastatin alone (triangles) or in conjunction with 1 (squares) or 2 (circles) doses of 
targeted fumagillin nanoparticles. The combination of 2 fumagillin doses and statin produced a 
sustained decrease in angiogenesis (*p < 0.05). [Figure reprinted with permission from Winter et 
al. (67)] 
 

In addition to Gd and ανβ3 integrin, other combinations of targeting ligands (e.g. α5β1 (57) 

and Robo4 (68)) and imaging labels (e.g. manganese (69)) can be incorporated into the PFC NP 

construct to investigate other preclinical disease models. Finally, although these studies show 

that there is great promise for image-guided therapy using MRI, this process still inherently 

yields relative measures of disease. From this research, we have experienced firsthand what 

many others have also observed: that the confidence limits on image-based “quantification” can 

be quite broad , particularly for MRI. 
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1.2.2 19F MR Molecular Imaging of Targeted PFC NP 

Targeted PFC nanoparticles actively bind to molecular biomarkers at sites of disease and 

can be imaged using 19F MRI by detecting the particles’ perfluorocarbon core. It has been shown 

that 19F MRI at clinical field strengths can be used to detect the sparse distribution PFC NPs at 

very low concentration (picomolar) (70). Additionally, 19F MR can be used to image PFC NPs 

without conjugated 1H contrast payloads, and thus avoid potential renal damage that can be 

triggered by conventional 1H contrast agents, as is the case with increased risk of nephrogenic 

systemic fibrosis (NSF) associated with Gd-containing agents (71-74). 

Applications of 19F MR molecular imaging have been demonstrated in multiple 

preclinical animal models of cardiovascular disease and cancer. For example, tumor 

angiogenesis has been successfully imaged with 19F MRI of ανβ3 integrin-targeted PFC NP (75). 

The same particle with fibrin targeting ligands has been shown to progressively bind to 

atherosclerotic plaques on arterial walls. We have exploited this technology to target and image 

in vitro thrombus and ruptured plaque in human endarterectomy samples (Fig. 1.5). In addition, 

when combined with multiple PFCs, it can provide “multi-color” (spectral), highly specific 

detection and quantification of individual targeted agents (Fig. 1.6) (49). 

  
Figure 1.5 19F imaging and spectroscopy of crown ether nanoparticles bound to fibrin in 
ruptured plaque of human carotid artery specimen. The separate 1H and 19F images (top, left) can 
be combined with 19F overlaid on 1H anatomy (magnified, right). [Figure reprinted with 
permission from Caruthers et al. (49)] 
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Figure 1.6 Left: T1-Weighted Imaging of Fibrin Clots. (A) Paramagnetic CE nanoparticles, 
bound to the clots in cross section, appear as a bright line of signal enhancement with intensity 
decreasing linearly as the concentration of paramagnetic CE nanoparticle decreases (left to 
right). Maximum intensity projection through the 3D data depicts the clots en face (B). Mid 
Left: Volume selective 19F spectra from clots show the concentration of crown ether (CE) 
decreases inversely with perfluorooctyl bromide (PFOB). Mid Right: 19F MR Imaging of PFC 
NP Bound to Fibrin Clots. These three fluorine images, which have no proton “background,” are 
oriented perpendicular to the clots as in A. They illustrate the fibrin-bound PFC nanoparticles of 
various mixtures applied to the clots. In a broad bandwidth excitation (top), all fibrin clots 
enhance brightly. Narrow bandwidth excitation allows independent visualization of the CE or 
PFOB nanoparticles. Right: 19F Image-based quantification allows relative quantification of NP 
concentration on clots. [Figure reprinted with permission from Caruthers et al. (49)] 

 

Another goal of quantitative 19F MR molecular imaging of site-targeted agents is akin to 

non-invasive immunohistochemistry (Fig. 1.7) (50). In this particular application, 19F MRI 

provides a quantitative readout of retained particle concentration in human endarterectomy 

samples and confirms a heterogeneous accumulation of PFC NPs throughout the entire lesion 

(50). Researchers have recently discovered that the porous structure of vulnerable plaques allows 

plain PFC NP, without any targeting ligands, to penetrate into and accumulate within these 

plaques through disrupted endothelial barriers (76). Moreover, advanced MR pulse sequences 

(e.g. diffusion weighted 19F sequences (77)) and other targeting mechanisms (e.g. VCAM (15)) 

have been developed to extend 19F MR molecular imaging of PFC NP to more diverse clinical 

applications. Finally, recent work by Zhang et al. suggests that PFC NPs without a targeting 

moiety that passively collect in the vasculature may be of use in atherosclerosis imaging (76). 
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Figure 1.7 19F MRI (ex vivo) of disrupted human carotid artery endarterectomy specimen with 
atherosclerotic plaque and overlying thrombus using fibrin-targeted PFC NP. Left: an optical 
image of a human carotid endarterectomy sample shows moderate luminal narrowing and several 
atherosclerotic lesions. Middle: A 19F projection image acquired through the entire thickness of 
carotid artery sample shows high 19F signal along the lumen because of the binding of 
nanoparticles to fibrin. Right: The calculated concentration map of bound nanoparticles (nM) in 
the carotid sample based on 19F signal intensity in each voxel. [Figure reprinted with permission 
from Morawski et al. (50)] 
 

1.2.3 Cell Tracking using 19F MRI of PFC NP 

 One important application of PFC nanoparticles as a 19F MR imaging agent is cell 

tracking. Several cells types have been labeled with PFC NPs and in vivo tracking of these cells 

has been confirmed in preclinical models of heart ischemia (78), lung injury (79) and organ 

transplant (80), among others. Macrophages are the most widely studied cell type due to their 

role in inflammatory processes, and can be labeled with PFC NPs either through in vitro 

incubation or in vivo labeling in the blood stream. Macrophages internalize PFC NPs through 

endocytosis and actively home to the site of disease without an observable loss of bioactivity. 19F 

MRI enables noninvasive measurement of macrophage recruitment, which is believed to be an 

essential indicator of the severity of inflammation (81). In addition to macrophages, stem cells 

(46) and dendritic cells (82) have been labeled and quantified with 19F MRI of PFC NP. In vivo 

tracking of stem cells could provide a useful imaging approach for ongoing clinical trials of 

stem-cell therapy (Figure 1.8). 
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Figure 1.8 Localization of PFC NPs labeled cells in mice using 19F MRI. (a) 19F MRI trafficking 
of stem/progenitor cells labeled with either perfluorooctyl bromide (PFOB) (green) or 
perfluoropolyether (PFPE) (red) nanoparticles. Labeled cells were locally injected into the 
skeletal muscle of mouse thigh before MRI. (b)–(d) At 11.7-T field strength, 19F spectral 
discrimination permits respective imaging of ∼∼1×106 PFOB-loaded cells (b) and PFPE-loaded 
cells (c). The composite 19F (displayed in color) and 1H (displayed in grayscale) images (d) 
reveal the location of PFOB labeled cells in the left leg and PFPE labeled cells in the right leg 
(dashed line indicates 3 × 3 cm2 field of view for 19F images). [Figure reprinted with permission 
from Partlow et al. (46)] 
 

1.3 Challenges of Quantitative 19F MR Molecular Imaging 

 The imaging chain of a clinical MR system has many steps that may confound absolute 

signal calibration (Fig. 1.9). This is especially true for non-proton nuclei, for which specialized 

transmit/receive (T/R) coils must be used. For example, coil tuning and RF drive power (i.e., flip 

angle) settings must be calibrated and center frequency determined for tracers such as fluorine 

that are in miniscule concentrations lending little signal on which to perform these vital measures 

that drive not only image quality, but ultimately accuracy of quantification. In addition, the 
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spatial distribution of imaging labels in molecular imaging is generally heterogeneous, due to the 

intrinsically sparse expression pattern of pathological epitopes in tissue. 

 
Figure 1.9 The imaging chain of a commercial MR scanner includes many steps in which 
measurements and adjustments are made, from determining the power settings for accurate flip 
angles, to B0 shimming, to inhomogeneities in B1 for RF transmit and receive; even during the 
scan eddy currents, B0 variations, J-coupling, etc. can affect quantification outcomes. 

 

Although interest in 19F MR molecular imaging of PFC NPs has grown significantly over 

the past decade, this new imaging paradigm requires further technical advancement to overcome 

these challenges to bridge the gap between laboratory and clinic. Since there is little-to-no 

naturally occurring fluorine in the body, the available signal for 19F MRI is principally limited by 

the administered dose of PFC NPs. Therefore, it is critical to improve imaging techniques by 

enhancing sensitivity of PFC NP detection at concentrations low enough for clinical translation 

(~ 1 ml/kg). Moreover, accurate quantification of PFC NPs in vivo requires image acquisition 

techniques that are robust against potential field inhomogeneities associated with clinical 

imaging systems (e.g. B0 and B1 field in homogeneities). Finally, unlike 1H atoms in water, 19F 

atoms in perfluorocarbons experience more complicated chemical environments, which often 

result in large chemical shifts and scalar coupling (J-coupling) between different line groups. 

 

1.3.1 Signal-to-Noise Ratio 

 Two major factors limit the potential signal-to-noise ratio (SNR) for 19F MRI: the total 

number of 19F imaging labels targeted to a particular site, and the small fraction of 19F nuclear 

spins that generate a detectable MR signal, governed by Boltzmann statistics and magnetic field 
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strength. Several approaches have been proposed to overcome these limitations and improve 

SNR in 19F MRI. Improving the sensitivity of the radio frequency (RF) coils, which transmit and 

receive the 19F signal, is the most straightforward approach to increase SNR and subsequently 

improve image quality. It is necessary to design application-specific RF coils that are suited to 

particular imaging subjects, to avoid unnecessary signal loss. In addition to improved RF coils, 

choosing or designing an appropriate pulse sequence (i.e., the organization and timing of RF 

energy deposition, gradient application, and image formation) is also critical for optimizing 19F 

imaging. Giraudeau et al. have recently shown that SNR can vary significantly (up to threefold 

differences) in 19F MRI scans of fluorinated labels like PFOB depending on which sequences and 

parameters (e.g. echo time, or TE) are used (83). 

 

1.3.2 Quantitative Imaging Artifacts 

 19F MRI is potentially quantitative in nature because 19F spin density (and signal) is 

linearly correlated to the deposition and resultant concentration PFC NPs at a particular site in 

the body. However, in most in vivo applications, several other factors come into play that may 

affect the accuracy of quantitative 19F MR measurements. For example, the measured 19F signal 

might not directly reflect 19F concentration, but instead be convolved with image acquisition 

factors such as variable T1 and T2 relaxation characteristics within a perfluorocarbon molecule. 

Similar to 1H MRI, 19F is also susceptible to imaging artifacts, such as motion and eddy current 

artifacts, all of which can hamper image quality and can result in quantification errors (75). 

Lastly, and importantly for this work, 19F quantification suffers from field inhomogeneities 

inherent to many transmit and receive RF coils. Since the concentration of PFC NPs at a site of 

disease measured with 19F MR is determined by a comparison to an external standard of known 
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concentration, local differences in the B1 (RF) field between the targeted region of interest and 

the location of the standard lead to errors in the quantified 19F signal. Therefore, to achieve 

accurate and reproducible 19F MRI measurements across different applications, it is necessary to 

implement robust correction methods and optimized, artifact-resistant pulse sequences. 

 

1.3.3 Chemical Shift and J-coupling 

 Clinically useful perfluorocarbon molecules can exhibit more complicated nuclear 

magnetic resonance (NMR) spin characteristics, and hence 19F MRI properties, than do protons 

with 1H MRI. As noted in Table 1.3, NMR-detectable 19F nuclei can be observed over a much 

wider spectral range (240 kHz) than 1H (1.28 kHz) or other non-proton nuclei. Chemical shift is 

a term to describe how some nuclei resonate at different Larmor frequencies than others due to 

differing gyromagnetic ratios (inherent to the element), or in the case of PFC molecules, to 

describe how spins of the same isotope experiencing the same local magnetic field resonate at 

different frequencies due to varying molecular environments (i.e. chemical bonds). Many PFC 

molecules, like PFOB, contain 19F nuclei that exhibit multiple chemical shifts, which can cause 

chemical shift artifacts along the readout gradient direction, and special reconstruction 

algorithms are needed to correct for these artifacts (75). Moreover, these PFC 19F nuclei within 

different molecular environments can have strong interactions with each other, which results in a 

process called homonuclear scalar coupling, or J-coupling. J-coupling between different 

chemical groups in PFC molecules causes a T2-shortening behavior in spin echo MRI (i.e. J-

modulation), which significantly reduces the detectable signal intensity for 19F MRI. However, 

once an understanding of the underlying physics of these unique NMR properties of PFC NPs is 
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achieved, the resultant artifacts can be compensated, or even taken advantage of to expand 19F 

MRI to new applications (84). 

Table 1.3 NMR Spectral Ranges for Different Nuclei 
Nucleus Range (ppm) Range (kHz at 3T)a 

1H 10 1.28 
31P 30 1.54 
13C 200 10.0 
19F 2000 240 

a Spectral ranges in kHz at 3T calculated from (85). 
 

1.4 Dissertation Objective, Significance, and Organization 

1.4.1 Objective 

 The objective of this thesis is to advance the state of the art for 19F MR molecular 

imaging of perfluorocarbon nanoparticle emulsion contrast agents. To achieve this objective, 

three specific aims have been identified:  

1. Create new tools and techniques for 19F MR molecular imaging of PFC nanoparticles. 

2. Develop translatable procedures for absolute quantification of 19F nuclei with MR 

molecular imaging. 

3. Evaluate the potential for clinical translation with ex vivo and in vivo preclinical 

experiments. 

As the quantification of these PFC NP contrast agents becomes more widely used, the 

validity, accuracy, and repeatability of these metrics becomes essential to their clinical 

implementation. Robust, standardized techniques are developed in this work to improve the 

accuracy of quantitative MR molecular imaging, validate system performance, calibrate 

measurements to ensure repeatability of these quantitative metrics, and evaluate the potential for 

clinical translation. As these quantitative metrics become routine in medical imaging procedures, 

these standardized calibrations and techniques are expected to be critical for accurate 
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interpretation of underlying pathophysiology. This will also impact the development of new 

therapies and diagnostic techniques/agents by reducing the variability of image-based 

measurements, thereby increasing the impact of the studies and reducing the overall time and 

cost to translate new technologies into the clinic. 

 

1.4.2 Significance and Innovation 

 In biomedical research, there is a clear and present need for repeatable, accurate 

quantitative imaging as is evidenced by the recent emphasis of many interdisciplinary 

committees on standardization for quantitative imaging. While true for all imaging modalities, 

this is particularly true for MRI and even more so for emerging 19F MR molecular imaging 

applications where measuring biomarker concentrations accurately over time makes the 

difference between success and failure – success, for example, in drug development, clinical 

trials, or clinical diagnosis. Recently, NIST and others have jointly implemented traceable 

phantoms to test imaging systems with standardized approaches (86), which is vital for 

quantifying intra- and inter-lab variability in imaging. Characterizing system stability (or 

identifying problems and having service engineers correct malfunctions) is useful for robust 

signal analysis and time-resolved signal changes as is needed for first-pass dynamic contrast 

enhancement (DCE). However, characterizing signal stability is not the same as calibrating 

accurate derived values such as concentrations of site-targeted contrast agents, and it does not 

necessarily incorporate system-specific and patient-specific settings such as power settings and 

field inhomogeneity corrections. This work addresses both the validation of MR system 

performance specifications and correction techniques, both prospectively and retrospectively, 

with the ultimate goal of accurate, repeatable quantification in MRI. Furthermore, it expands on 
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the current efforts in the area of DCE to include imaging and spectroscopy of multiple nuclei 

other than hydrogen. 

 The innovative aspect of this work is in the creation of novel techniques to calibrate 19F 

MR molecular imaging of PFC NP emulsions where there is a low expected concentration of the 

agent. Advanced dual-tuned 19F/1H RF coils are used so that coil-specific (and, therefore, 

anatomy-specific) calibrations can be performed on the 1H signal, and directly ported to the 

nuclear signal of the test agent (e.g., 19F), regardless of its location or concentration. Fast, 

automatable methods will be established to increase quantitative MR molecular imaging 

accuracy, precision, and repeatability. Importantly, this capability has the potential to be 

translated into user-friendly applications for clinical diagnosis and therapy monitoring. These 

tools, based on high-performance, readily available clinical imaging systems, will be directly 

implemented for pre-clinical and clinical trials, potentially increasing the efficiency and 

effectiveness of future translational research. 

 

1.4.3 Organization 

 In Chapter 2, the underlying principles behind 19F NMR physics and image acquisition 

are explored, as well as the unique properties of 19F/1H dual-tuned RF coils. First, the NMR 

physics governing all magnetically susceptible nuclear spins is reviewed, and distinctions are 

drawn between 1H atoms and 19F nuclei. Then, resultant magnetic resonance properties of 19F 

spins, such as J-coupling, are examined, along with their effect on perfluorocarbon molecules 

like PFOB. Next, the theory behind image acquisition with 19F/1H dual-tuned RF coils is 

considered, which includes a coupled resonator model with appropriate impedance matching to 

create two distinct resonant peaks for each nuclei. This enables truly simultaneous acquisition of 
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the 1H and 19F signals, yielding co-registered images of anatomy and function. A new dual-tuned 

single-turn-solenoid RF coil is designed and constructed to open up new applications to this 

simultaneous imaging. Experimental results with this new coil are then presented, including 

bench tests of electromagnetic performance, as well as phantom and in vivo imaging capabilities. 

Chapter 3 introduces a new pulse sequence, termed “balanced UTE-SSFP”, for highly 

sensitive 19F MR imaging of agents with complex spectra. The NMR properties of molecules 

with non-proton nuclei such as PFOB are first discussed to understand their broad chemical 

shifts and complex relaxation characteristics. Then, the CF2 spectral peak signatures of PFOB are 

modeled, which contain 12 of the 17 available 19F nuclei in the molecule. This line group quickly 

dephases and decays due to T2 relaxation, yet can be utilized if acquired quickly. 

A new 3D 19F/1H pulse sequence is then designed and implemented to capture these CF2 

resonances, which consists of 19F/1H RF excitation using FID acquisition at an ultra-short echo 

time (UTE) and a balanced steady-state free precession (SSFP) gradient scheme with a Wong-

type radial readout trajectory. The sensitivity of this new balanced UTE-SSFP pulse sequence is 

compared to existing sequences with the use of an imaging phantom, and shown to have a 

sensitivity twofold better than other sequences. Finally, in vivo imaging of angiogenesis-targeted 

PFOB nanoparticles is demonstrated in a rabbit model of cancer on a clinical 3T scanner, to 

validate the translational potential for the new pulse sequence. 

In Chapter 4, a new approach to overcome challenges for accurate in vivo quantitative 19F 

MR molecular imaging is presented, which includes flip angle calibration between the relevant 

1H and 19F nuclei of interest, as well as B1-mapping compensation to offset expected RF 

inhomogeneities. A disparity in the required power settings of 19F/1H dual-tuned RF coils to 

achieve optimum flip angles for the 19F and 1H nuclei is first reported and investigated. Then, an 
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approach to remediate this difference in requisite power settings is proposed and tested, which 

involves a coil-specific, but spatially independent calibration ratio for each coil. This strategy 

permits determination of the optimum power setting for the 19F nuclei, which are typically sparse 

at least at the beginning of a typical imaging experiment, by utilizing the abundant 1H signal as a 

reference.  

Another challenge to accurate quantitative 19F MRI involves inhomogeneous RF (B1) 

fields produced by many RF coils. A solution is proposed that entails mapping this B1 field and 

performing an image-based correction using a signal model of the acquisition technique, which is 

tested in phantom and in vivo experiments in a rabbit model of cancer. 

Chapter 5 examines two in vivo applications of 19F MR molecular imaging at 3T. First, a 

new technique to image renal perfusion in acute kidney injury (AKI) at clinically relevant field 

strengths is presented. A model of AKI is implemented in rats by ligation and occlusion of the 

left renal artery, followed by reperfusion. Renal perfusion is then imaged at 3T with a 19F/1H 

dual-tuned coil after administration of PFC NPs via the tail vein. These in vivo results are 

confirmed with ex vivo imaging of excised kidneys, also at 3T. Next, the impact of diet-induced 

atherosclerotic plaque erosions is investigated with quantitative 19F MRI of a hyperlipidemic 

rabbit model in vivo. A method is introduced and tested that seeks to visualize nontargeted PFC 

nanoparticles that accumulate passively in the intimal plaque regions of the rabbit aorta as a 

consequence of endothelial erosions and vascular barrier disruption with the use of 19F MR 

molecular imaging combined with saturation bands to eliminate signal from the flowing blood 

pool, which allows 19F imaging of the vessel wall itself. 

Chapter 6 investigates the potential use of 19F MR molecular imaging at 3T in the clinic 

with a pilot study of atherosclerosis imaging using nontargeted PFC NP in human tissue 
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specimens. Initial imaging results in a phantom and an amputated human lower limb are 

presented, which show promise for the use of 19F imaging in human atherosclerosis imaging in 

the future. 

In Chapter 7, the major findings of the thesis are summarized and the main conclusions 

that are drawn from the work are contextualized. Future directions for the work are suggested, 

which include other potential clinical applications of 19F MR molecular imaging in humans. 
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Chapter 2. Principles of 19F NMR Physics and Image Acquisition 

with 19F/1H Dual-Tuned RF Coils 

 

2.1 Principles of 19F NMR Physics 

2.1.1 NMR Background 

 To further understand the principles underlying 19F nuclear magnetic resonance (NMR) 

physics, the basic concepts behind the NMR experiment will be summarized. As first theorized 

by Wolfgang Pauli, certain nuclei (collection of protons and neutrons at the core of an atom) 

possess an inherent angular momentum, or spin. All nuclei (or ‘spins’, which will be used here 

interchangeably) with an uneven atomic number have a characteristic spin quantum number (I) 

greater than zero. The spinning nature of these nuclei induces a magnetic field coincident with 

the axis of spin, and can be viewed as a magnetic moment (µ) (1). These magnetic moments can 

be imagined as tiny bar magnets that have the potential to interact with other magnetic fields. 

 Normally, the magnetic moments in a collection of nuclei will be randomly oriented, as 

determined by the principles of Brownian motion. However, when a static magnetic field is 

applied, these spins align either with (parallel) or against (antiparallel) the direction of the 

applied field. These orientations correspond to quantum mechanical energy states, with the 

number of energy levels being determined by the spin quantum number, I. As listed in Table 1.1, 

nuclei with I = 1/2 (e.g. 1H, 19F, 31P, and 13C) and I = 3/2 (e.g. 23Na) have a net nuclear spin and 

are detectable by NMR (2). 

 In the presence of an applied magnetic field (B0), the nuclear spins experience a torque, 

which causes them to rotate around the axis of the applied field with a precise frequency. This 

rotation, similar to the rotation of a spinning top in the presence of Earth’s gravitational field, is 
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called Larmor precession. The rate of precession is dependent on the specific physical 

characteristics of the isotope involved and the strength of the applied magnetic field, which is 

expressed as 

ω = γ*B0          [2.1] 

where ω is the Larmor or resonance frequency (MHz), γ is a constant of proportionality 

(gyromagnetic or magnetogyric ratio) specific to the nucleus involved, and B0 is the magnetic 

field strength measured in tesla (T) (3). Larmor precession is a resonance phenomenon, meaning 

a system of nuclei has a natural resonance, or frequency of oscillation, at which energy can be 

most efficiently transferred to the system. With a gyromagnetic ratio of 42.58 MHz/T, 1H nuclei 

precess at 127.8 MHz at 3T, while the resonance frequency of 19F nuclei (γ = 40.08 MHz/T) is 

120.2 MHz (6% different). Therefore, 1H and 19F nuclei can be manipulated using 

electromagnetic energy at those specific frequencies, which lie in the radiofrequency (RF) 

spectrum (4). 

 When an external magnetic field is applied to a collection of nuclei, the parallel- or 

antiparallel-aligning spins have a nearly identical probability of occupying either orientation at 

room temperature. Luckily, however, there is a slight excess favoring the parallel (low-energy) 

orientation, only about 15 parts per million (ppm) with a 1.5 T magnetic field at 300 K, governed 

by the Boltzman distribution. This inequity between the two alignments contributes to the NMR 

signal, yielding a bulk magnetization (M), which although rather weak, can be strengthened by 

increasing the magnetic field (B0) to 3T (or to higher field strengths such at 4.7T, 7T, or 11.7T). 

 To obtain information about the spins, they must be perturbed or excited, to induce a 

current in an RF coil by Faraday’s law of induction. This is achieved by irradiating the spin 

system with an RF pulse, which is a short burst of radio frequency energy matching the Larmor 
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frequency of the nuclei of interest. In a rotating frame of reference (since the spins are precessing 

about the B0 field in reality), this RF excitation pulse can be represented by an additional 

magnetic field (B1), which is perpendicular to B0. This B1 field rotates or ‘tips’ the initial 

magnetization (M0) away from the longitudinal direction along B0 and into the transverse plane 

(Mxy), at an angle that is a function of the amplitude and duration of the applied RF pulse, 

expressed as 

θ = γ*B1*t         [2.2] 

where θ is the angle of rotation, B1 is the amplitude of the RF pulse, γ is the gyromagnetic ratio, 

and t is the duration of the RF pulse. The angle of rotation, θ, is commonly referred to as the RF 

flip angle (FA), and careful consideration must be made to achieve accurate flip angles for 

quantitative 19F MR (as seen in Chapter 4). The energy required to tip a nucleus is defined by the 

Planck equation: 

E = h*ν          [2.3] 

where h is Planck’s constant (6.62×10-34 J-s), and ν is the frequency of the spin. This suggests 

that different energy, and hence coil power, might be required for 1H and 19F spins. 

 After excitation, the nuclei return to equilibrium, losing energy by emitting 

electromagnetic radiation and by transferring energy to the lattice or between them. This process 

is called relaxation and begins immediately after the RF pulse ends. During this relaxation 

process, both the longitudinal (Mz) and transverse (Mxy) components of the net magnetization 

return to their equilibrium values, when Mz is equal to the initial M0. These relaxation processes 

are independent of one another, and the transverse magnetization always disappears before, 

sometimes long before, the longitudinal magnetization is restored. 
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 The time constant that describes how Mz returns to its equilibrium value is called the 

longitudinal (spin-lattice) relaxation time (T1) (Figure 2.1, left), which is described in the 

following equation: 

Mz = Mo(1 - e-t/T1).        [2.4] 

The time constant that describes the return of the transverse magnetization (Mxy) to equilibrium 

is called the transverse (spin-spin) relaxation time (T2) (Figure 2.1, right), which is described in 

the following equation: 

Mxy = Mxy,0*e-t/T2.        [2.5] 

The spin-spin relaxation time (T2) is a result of the transfer of energy between nuclei in different 

energy states, as one nucleus absorbs energy from a neighboring nucleus. These interactions 

between individual spins create local magnetic field variations, which results in a gradual 

dephasing of the spins causing a decay in the magnitude of the transverse component of the net 

magnetization. This process is also sensitive to inhomogeneities in the applied magnetic field, 

which when combined with the exponential decay of spin-spin relaxation, is referred to as T2*, 

the effective transverse relaxation time (always smaller than T2). 

  
Figure 2.1 Left: Longitudinal (spin-lattice) relaxation, described by T1 relaxation time. Right: 
Transverse (spin-spin) relaxation, described by T2 relaxation time. 
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 In a typical NMR measurement, the application of a 90° RF pulse causes the net 

magnetization vector to rotate into the transverse plane, inducing a signal in an RF detection coil 

after the excitation pulse is terminates. This signal, which is a result of the free precession of the 

net magnetization in the transverse plane, is called the free induction decay (FID) signal, since it 

gradually decays due to the aforementioned relaxation mechanisms (Figure 2.2).  

 
Figure 2.2 Timing diagram for a 90° RF pulse (top) followed by a free induction decay (FID) 
signal (bottom) of net magnetization in the transverse plane, detectable by a RF receiver coil. 
 

When a Fourier transform is applied to this time-domain FID, the result is a NMR 

spectrum, which reveals the frequency components that make up the FID signal, typically 

reported in terms of chemical shift frequency in ppm (independent of B0), rather than MHz. If 

each nucleus experiences the same local magnetic field, as is the case with perfluoro-15-crown-

5-ether (PFCE: C10F20O5), a single observed resonance peak is observed (Figure 2.3). When 

nuclei experience different local magnetic fields, as a result of their molecular structure, more 

complex spectral patterns can occur, which will be discussed in upcoming sections. 



 41 

  
Figure 2.3 Left: Chemical structure of perfluoro-15-crown-5-ether (PFCE). 19F NMR spectrum 
of PFCE, resulting in a single resonance peak since all 19F nuclei experience the same local 
magnetic field. 

 

Although there are more intricacies to nuclear magnetic resonance, this describes the 

basic process needed to excite and detect nuclear spins, which governs both 1H and 19F nuclei 

alike. MRI builds upon these NMR principles to create images of the spatial distribution of these 

spins, described even more briefly as follows. Gradient coils are used to change the static 

magnetic field strength in all three component directions (x, y, z), in any physical orientation. 

These gradient fields are used to encode spatial information into the spins by changing their 

frequency and phase, since the frequency at which the nuclei precess is dependent upon field 

strength (Eq. 2.1). This process generates a map of spatial frequencies, termed ‘k-space’, which 

when Fourier transformed, provides an image of the distribution of the spins. Several imaging 

schemes have been developed to generate MR signal, such as spin echo and gradient echo, as 

well as numerous mechanisms to generate contrast, some of which will be covered in later 

chapters. 

 

2.1.2 J-coupling in 19F MR of PFC NP 

 In NMR spectroscopy, there are two major mechanisms of spin-spin interactions. The 

strongest is the direct dipole-dipole interaction between nuclear spins, and the other is the 

indirect dipole-dipole interaction between nuclei mediated through electron spins. The first type 
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of interaction can affect NMR relaxation properties (e.g. T1 and T2) of nuclear spins, but it does 

not lead to a split resonance peak because fast molecular tumbling usually averages out its effect. 

The second type, however, generally results in a spectral peak split on the order of Hz with high-

resolution NMR. The indirect dipole-dipole interaction is also called J-coupling or scalar 

coupling, because the coupling terms in the Hamiltonian of nuclear spins can be described as 

scalars (5,6). 

 The chemical structure and NMR spectrum of perfluorooctyl bromide (PFOB; CF3-

(CF2)6-CF2Br) is shown in Figure 2.4, which exhibits a more complex spectral pattern than 

PFCE. PFOB contains three distinct groups of 19F nuclei, termed ‘line groups’ since each group 

results in different spectral lines, which include CF2Br, CF3, and (CF2)6. In a weak coupling 

system, in which the electron cloud between two nuclear spins is not dense, J-coupling is only 

related to the z component of the spins (Mz). J-coupling in most PFC molecules including PFOB 

are weak couplings (e.g. the coupling between the CF3 and CF2 groups, as well as the CF2Br and 

CF2 groups). The 19F nuclear spins in CF3 and the adjacent CF2 group form a typical “A2B3” J-

coupling system with a coupling constant of 12.3 Hz (7-9).  

 
Figure 2.4 (a) Chemical structure of perfluorooctyl bromide (PFOB; CF3-(CF2)6-CF2Br). (b) 
Representative MR spectrum of PFOB. The J-coupling constant between CF3 and the adjacent 
CF2 group is 12.3 Hz. 
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 Typical full width at half maximum (FWHM) of 19F spectral peaks for in vivo MRI at 3T 

is around 100 Hz, which is an order of magnitude larger than the J-coupling frequency for PFOB 

for example. Therefore, instead of inducing splits in spectral peaks, J-coupling in 19F MRI causes 

amplitude modulation of 19F resonance peaks, i.e. J-modulation (6,10). J-modulation originates 

from the phase difference among different peaks in a J-coupling induced multiplet (a split in a 

spectral peak). As a result of J-modulation, the regular T2 decay of 19F nuclear spins is modulated 

into sinusoidal oscillations, the frequency of which is dependent on the J-coupling constant. Such 

an oscillating behavior dramatically shortens the apparent T2 value (T2’) and reduces the 

detectable signal intensity in 19F imaging (11). To achieve consistent quantitative 19F MRI 

measurements of PFC NP emulsions, it is important to understand the effect of J-modulation on 

the PFOB-CF3 group, which will be further explored in Chapter 3. 

 

2.2 Image Acquisition with 19F/1H Dual-Tuned RF Coils 

2.2.1 Introduction 

To utilize nuclei other than hydrogen, MR systems require hardware tuned to the Larmor 

frequency of that nucleus. Fortunately, many 3T clinical scanners are prepared for such multi-

nuclear transmit capabilities and simply require additional RF coils. Since the resonant 

frequencies of 1H and 19F are only about 6% different (127.8 MHz and 120.2 MHz, respectively 

at 3T), as seen in section 2.1, specialized RF coils can be designed to resonate at one or both 

frequencies.  

Many early 19F/1H MR imaging techniques used single-frequency RF coils. A common 

approach was to use tunable coils, in which the coil had to be manually tuned to either the 19F or 

1H frequency to maximize signal-to-noise ratio (SNR). There are several drawbacks to this 
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approach, which requires added time to the imaging study for manual tuning, as well as the 

potential for misregistration of the 19F and 1H images due to patient motion between scans (12). 

Alternatively, a two-coil setup with a volume coil for 1H imaging and surface coil for 19F 

imaging introduces inherent sensitivity profile differences at the two frequencies (13). Finally, 

the use of auto-tuned RF coils that can switch resonance frequencies with the assistance of an 

external program entails extra complexity, a higher associated cost of the imaging system, and 

the potential for tuning errors (14). The use of these single-frequency RF coils for 19F/1H MRI 

poses a number of limitations including challenges in simultaneously achieving high sensitivity 

and B1 field homogeneity, and inaccurate co-registration of 19F/1H signals due to positional 

artifacts caused by coil retuning (15).  

These limitations can be minimized with the use of dual-frequency, or dual-tuned, RF 

coils for multinuclear MRI/MRS (16). Dual-tuned RF coils offer several benefits, among them 

being user friendliness (i.e. no replacing coils between scans) without compromising sensitivity. 

Truly simultaneous 19F/1H image acquisition is possible since these coils can either transmit or 

receive at both frequencies at the same time. This dual-tuned feature can also add the possibility 

of calibrating the coil for tracer volumes of 19F agent based on the ubiquitous and large field of 

view 1H signal from anatomy, as seen in Chapter 4. 

The commonly used shunting method and multiple poles method for designing dual-

frequency coils work well when the two resonant frequencies are well separated, e.g. for 1H 

(42.58 MHz/T) and 13C (10.71 MHz/T). However, such methods are not well suited for 

designing 19F/1H MRI coils (17,18) because the gyromagnetic ratio of 19F (40.08 MHz/T) is too 

close to that of 1H (19). Several dual-frequency strategies have been proposed for MRI/MRS at 

close frequencies but each has limitations. A universal matching circuit for multi-nuclear NMR 
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has been proposed (20), but it requires multi-port inputs for multi-frequency imaging. 

Alternatively, several dual-frequency strategies for close and well-separated frequencies have 

been proposed based on the special resonant property of a birdcage resonator (21-23). In these 

designs, two crossed cages or two different modes of a birdcage are utilized to achieve the 

double resonance, so these techniques are only suitable for coils with birdcage geometry, and 

could lead to different B1 field profiles at the two frequencies. Recently, a novel 19F/1H dual-

frequency solenoid coil with identical field distribution at two frequencies at 3T has been 

proposed by researchers at Philips Research based on the coupled resonator model (24). 

However, it remains unknown whether this concept establishes a general RF design approach for 

such RF coils considering the various geometrical and electrical parameters required to fit the 

needs of diverse experimental situations (25). 

 This work explores the coupled resonator model as a technique to design and fabricate 

19F/1H dual-tuned RF coils in diverse configurations. Due to the different impedances at the two 

resonance frequencies, matching for a dual-tuned coil remains a critical challenge in practical 

applications. Accordingly, the electrical properties of the coupled resonator model were 

considered and a numerical calculations were executed to prove that a series capacitive matching 

network is effective in matching the coupled resonator to 50 Ohm at both 19F and 1H frequencies 

(18,26). A 19F/1H dual-tuned single-turn solenoid RF coil for in vivo imaging at 3T was designed 

and constructed to illustrate the feasibility of the model, and tested for imaging performance. 

 

2.2.2 Methods 

 The following coupled resonator model for 19F/1H dual-tuned coils was largely 

established by Hockett et al. (27) and expanded upon by Hu et al. (28). 
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2.2.2.1 Coupled Resonator Model 

 In the coupled resonator model, the RF sample coil is connected to a secondary inductor 

and capacitor (LC) resonator with a coupling capacitor in series (Figure 2.5a). For nuclei with 

close resonance frequencies, such as 1H and 19F, the inductance of a MR sample coil can be 

treated as a constant value. Following the theoretical analysis proposed by Haase et al (29), when 

the secondary resonator is built with identical frequency to the sample coil, two possible 

oscillating modes are formed within the circuit, namely in-phase and anti-phase modes. When 

resonating in the in-phase mode, the two resonators of the circuit have equal electrical potentials, 

and thus the voltage and current across the coupling capacitor always remains zero. In this case, 

the coupling capacitor can be virtually removed and then the equivalent circuit of the coupled 

resonator can be drawn as Figure 2.5b with the resonance frequency 

         [2.6] 

In contrast, for the anti-phase mode, the electrical potential at both sides of the coupling 

capacitor is opposite, so the voltage at the middle point of coupling capacitor remains zero. For 

circuit analysis, a virtual short wire can be added between the ground and the middle point of the 

coupling capacitor (Figure 2.5c), and thus it gives rise to a different resonant frequency 

       [2.7] 

Given the gyromagnetic ratios of 1H and 19F, when 

         [2.8] 

the two frequencies of the coupled resonator correspond to 1H and 19F frequencies, in agreement 

with the analytic calculation of transfer impedance (27). 
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2.2.2.2 Impedance Matching 

 Impedance matching is critical in dual-tuned coil design because the circuit impedance 

could be different at the two resonant frequencies. For the coupled identical resonator model 

(Figure 2.6d), by inverting the admittance of the parallel components, the impedance of the 

coupled resonator is 

  [2.9] 

at high frequency or in-phase mode; and 

 [2.10] 

at low frequency or anti-phase mode. 

 In the dual-tuned coil design (Figure 2.5d), the coupled resonator is connected to the MR 

scanner at the end of the secondary resonator in series with a capacitor matching circuit. In this 

case, a small detuning of two resonators, which renders them slightly off-resonance, is able to 

introduce an extra degree of freedom and compensate for the impedance difference (29). To 

show the coupled resonator can always be matched to 50 Ohm with the use of appropriate values 

for tuning, coupling and matching capacitors, we numerically calculated several realistic circuit 

examples corresponding to various combinations of internal resistances of the sample coil and 

secondary resonator. We assumed that the sample coil with an inductance 47 nH, which is equal 

to the inductance of the secondary resonator, is designed to work at 3T for dual-frequency 19F 

and 1H imaging. A custom-developed program in MATLAB (MathWorks, Natick, MA, USA) 

was used to seek for the appropriate values of Ct1, Ct2, Cc, and Cm to match the circuit at both 

frequencies (120.2 MHz and 127.8 MHz). In the program, the preset values of Ct1, Ct2, Cc were 

first calculated according to Eqs. 2.6-2.8. Then, Cm was set to be a qualitatively correct value 
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according to Eqs. 2.9-2.10. Finally, a nonlinear root-seeking algorithm was carried out to vary all 

the capacitances around their preset values to successively achieve impedance matching. 

 
Figure 2.5 Schematic diagram of a coupled resonator circuit. (a) the resonator formed by 
capacitor Ct2 and probe (with inductance L) is capacitively coupled, by capacitor Cc, to the 
secondary resonator formed by capacitor Ct1 and inductor L. (b & c) the equivalent circuit of in-
phase and anti-phase mode. (d) coupled resonator is capacitively matched to 50 Ohm with Cm. 
[Figure reprinted with permission from Hu et al. (30)] 
 

2.2.2.3 Construction of Volume Coils for 19F/1H MRI at 3T 

 To the concept at 3T, two 19F/1H volume coils were designed and constructed, with the 

intention to be use for rat imaging. The first design was a transmit/receive single-turn solenoid 

coil (8 cm diameter, 11 cm length) and the second was a similar, but larger design (11.5 cm 

diameter, 14 cm length). Both coils were designed to work on a Philips 3T clinical whole-body 

scanner, with 19F and 1H resonant frequencies of 120.2 MHz and 127.8 MHz, respectively. 

 The smaller single-turn solenoid coil was constructed with adhesive copper tape on an 

acrylic tube 8 cm in diameter and 11 cm in length. The 1st resonant mode of the coil was tuned to 
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the 1H frequency, 127.8 MHz (31). The secondary resonator was built with a tunable capacitor in 

parallel with a custom-made inductor, which has a diameter of 4 mm and the same inductance as 

the sample coil. The secondary resonator was positioned > 2 cm away from the sample coil to 

minimize inductive coupling between two circuits. The coupling between the sample coil and 

secondary resonators was implemented with another tunable capacitor in series with a fixed 

value capacitor on the other port for the purpose of balancing. The secondary loop also was 

tuned to resonance at 127.8 MHz. The value of the coupling capacitor was then adjusted to over-

couple these two resonators giving rise to the second distinct frequency at 120.2 MHz (31). The 

feed point for this coil (connected to a custom T/R box that interfaces with the clinical Philips 

scanner) was located at the secondary resonator input and the whole circuit was matched to 50 

Ohm with a tunable capacitor and fixed value capacitor. Figure 2.6 shows the circuit design as 

well as an electrical simulation of the resonance properties of the coil in SPICE software. 

 
 

Figure 2.6 19F/1H dual-tuned RF coil circuit. (a) Equivalent circuit diagram of two separate LCR 
resonators (L1, C1, R1) and (L2, C2, R2) electrically coupled via capacitor C3. (b) Image of second 
resonator circuit with coupling capacitors (C3A and C3B) and matching capacitors (C4A and 
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C4B) labeled. (c) Theoretical impedance magnitude output of a SPICE simulation of two 
capacitively coupled resonators. [Figure reprinted with permission from Hockett et al. (27)] 
 

2.2.2.4 Bench Test of Electromagnetic Performance 

 Laboratory bench tests were performed on a network analyzer (Hewlett Packard 8751A). 

For the tuning and matching procedure, there are a total of four variable capacitors to be adjusted 

for each coil. Tuning capacitors for the sample coil and secondary resonator were first adjusted 

to tune the two resonators to the 1H frequency, 127.8 MHz. Then the coupling and matching 

capacitors were adjusted to achieve the second 19F frequency at 120.2 MHz, followed by 

matching the dual-tuned coil impedance to 50 Ohm. The coil return loss (S11) of two coils was 

tested by using a 300 ml tube filled with 1% saline to mimic the electrical load of a live rat. S21 

measurements of the B1 field produced by the sample coil were performed with a 10 mm 

shielded loop for signal pick up. These measurements were used to spread the capacitance of the 

coupled capacitor (C1, or Ct1 in Eq. 2.6) over the length of the solenoid. 

 

2.2.2.5 Phantom and In Vivo Imaging 

 Imaging performance of the smaller (8 cm diameter) coil was tested with a 300 ml bottle 

of 1% saline. T1-weighted gradient echo (FFE) imaging was performed with the following 

parameters were: FOV 128 mm, 256×256 matrix, slice thickness = 2 mm, voxel size = 

0.5×0.5×2 mm, α = 35°, TR/TE = 20.16/6.02 ms, 25 NSA, and a scanning time of 2.1 minutes. A 

signal intensity profile was calculated along the coronal direction of acquired images. RF field 

homogeneity was analyzed by acquiring B1 maps with an actual flip angle imaging (AFI) 

sequence with the following parameters: 128 mm FOV, 256×256 matrix, 15 2-mm slices, 

0.5×0.5×2 mm resolution, α = 70°, 2.8 min scan time. 
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 The potential for 19F MR molecular imaging was tested in a rat model of asthma. In 

accordance with institution approved protocols, an airway inflammation model was developed in 

brown Norway rats induced with injection of house dust mite (HDM) into the airway (32). After 

14 days, the lungs were imaged 2h post-injection (i.v.) of 1.0 ml/kg ανβ3-integrin targeted PFOB 

NP as previously described (33). To avoid signal contamination from inhaled fluorinated 

anesthesia, a xylazine (10mg/kg) / ketamine (85 mg/kg) i.m. injection was used for anesthesia 

induction, which was maintained with a ketamine i.v. infusion (18 mg/kg/hr). A radial 3D 

balanced UTE-SSFP sequence (as described in Chapter 3) was used with the 8 cm diameter 

19F/1H dual-tuned transmit/receive solenoid coil with the following parameters: FOV = 140 mm, 

matrix 643, isotropic voxel Δx = 2.19 mm, α = 30°, excitation bandwidth exBW = 5 kHz 

centered on the PFOB-CF2 line group, pixel bandwidth pBW = 900 Hz, TR = 1.75 ms, TE = 

90 µs (FID sampling), and a scanning time of 30 minutes.  

 

2.2.3 Results 

 Photographs of dual-tuned 19F/1H solenoid coils are shown in Figure 2.7, along with the 

transmit/receive box that interfaces with the clinical scanner via a BNC connector. 

 
Figure 2.7 Photographs of single-turn solenoid RF coils. (a) Smaller coil (8 cm diameter). (b) 
Larger coil (11.5 cm diameter). (c) T/R box that interfaces with clinical scanner. 
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2.2.3.1 Bench Tests 

 The coil return loss (S11) of two coils was tested by using a 300 ml tube filled with 1% 

saline to mimic the electrical load of a live rat. Although the original images could not be saved 

due to older network analyzer software, Figure 2.8 shows representative log magnitude and 

Smith charts of the signal loss measurements of a different phantom (50 mL saline tube) 

captured with a newer network analyzer. 

 
Figure 2.8 Simultaneous dual-frequency return loss (S11) of single-turn solenoid coil measured 
using network analyzer. Return loss, better than -30 dB, is observed at both the 1H (127.8 MHz) 
and 19F (120.2 MHz) resonance frequencies. 
 

S21 measurements of the B1 field produced by the smaller solenoid coil were used to 

spread the capacitance of the coupled capacitor over the length of the solenoid, as seen in Figure 

2.9. This arrangement, proposed by an experience RF engineer, resulted in S21 measurements at 

15 locations throughout the coil (measured as dB signal loss) that varied by no more than 2.1% at 
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the 19F frequency and no more than 2.6% on the 1H frequency (as opposed to 17% and 20% at 

both frequencies without spreading the capacitance out). 

 
Figure 2.9 Arrangement of capacitors used to spread out the current in the 8 cm diameter 19F/1H 
dual-tuned single-turn solenoid coil. 
 

2.2.3.2 Phantom and In Vivo 19F/1H Imaging 

 Figure 2.10 shows the 1H imaging characteristics of the 8 cm diameter solenoid coil, with 

a cross-sectional T1-weighted FFE image and a profile drawn through the center of the image. 

Taking into account the inherent noise in this high-resolution image, it is apparent that the coil 

produces a very homogeneous RF field. This is supported by the AFI B1 map (Figure 2.11), in 

which the ratio of the actual/requested flip angle produced by the coil is 119.76% ± 0.03% 

(standard error of the mean). 
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Figure 2.10 (a) T1-weighted 1H FFE image of saline phantom using 8 cm diameter 19F/1H dual-
tuned solenoid coil. (b) Signal intensity profile over the distance of the phantom, as indicated. 
 

 
Figure 2.11 (a) AFI B1 map of saline phantom using 8 cm diameter 19F/1H dual-tuned solenoid 
coil (119.76% ± 0.03% actual/requested flip angle). (b) AFI intensity profile over the distance of 
the phantom, as indicated. 
 

 Figure 2.12 displays the in vivo imaging capability of the 8 cm 19F/1H dual-tuned 

solenoid coil. When tuned to better than -30dB signal loss on both frequencies, the coil enables 

high-quality 1H and 19F images (Fig. 2.13a&b, respective) of ανβ3-integrin targeted PFC NP in a 

rat lung model of asthma using a truly simultaneous 19F/1H balanced UTE-SSFP sequence. 
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Figure 2.12 1H (a) and 19F (b) images of a rat lung model of asthma using simultaneous 19F/1H 
imaging of ανβ3-integrin targeted PFC NP. 
 

2.2.4 Discussion 

 This work described a generalized strategy for designing and fabricating 19F/1H dual-

tuned coils based on the coupled resonator approach. The single-turn solenoid coil tested here 

with phantom and in vivo imaging experiments on a clinical 3T scanner was shown to produce 

high-quality 1H and 19F images, with sensitive detection of PFC NP. A unique feature of this 

design is that it preserves the B1 field homogeneity of the RF coil at both resonance frequencies. 

By eliminating the effects of patient motion between 1H and 19F image acquisition, this coil 

design enables direct co-registration of 19F and 1H images for localizing delivered 19F PFC NP 

agents.  

The coupled resonator paradigm for designing dual-tuned coils may be limited when 

imaging nuclei with well-separated frequencies. In this case, the frequency-dependent inductance 

of the sample coil will be significantly different at the two working frequencies. It will be 

difficult to construct a small copper loop inductor that has the same frequency-dependent 

inductance as the sample coil, and thus it will hinder the equivalence of the sample coil and the 

secondary resonator. The “in-phase” and “anti-phase” modes, as described previously, will not 

form as expected. Therefore, the strategy of using the coupled resonator model to fabricate a 
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dual-frequency MRI coil is only suitable for close Larmor frequencies, e.g. 19F/1H or possibly 

13C/23Na. 

 

2.2.5 Conclusion 

 As the installed-base clinical scanners with multinuclear capabilities continues to grow, 

this coupled resonator dual-tuned coil design may help facilitate ultimate clinical adoption of 

simultaneous 19F/1H MR molecular imaging techniques. 
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Chapter 3. Balanced UTE-SSFP for 19F MR Imaging of Complex 

Spectra 

3.1 Introduction 

 Magnetic resonance methods are emerging for functional and quantitative physiological 

detection of nuclei other than hydrogen (1), all of which require specific optimization of imaging 

techniques and hardware. Sodium imaging has been successfully utilized in knee imaging (2,3), 

while hyperpolarized and non-hyperpolarized gases are also proving useful in lung imaging (4,5). 

Concomitant development of novel contrast agents has created possibilities for imaging a variety 

of nuclei, for example recently the multiple molecular species of liquid perfluorocarbons in 

nanoparticle formulations (6). Targeted perfluorocarbon (PFC) imaging agents profess the 

opportunity to target and quantify markers of disease in cardiovascular, oncological, and other 

applications. Some of the early work involved targeted cells, both in vitro and in vivo, and 

tracking the cells by detecting their unique fluorine signatures (7,8). Other techniques involve the 

accumulation of tracers by macrophages, which can then be imaged by their fluorine signals (9). 

Still other agents have been shown to target pathological tissues to detect and quantify biomarker 

concentration, as exemplified by ανβ3-integrin targeting of angiogenesis in cancer and 

atherosclerosis (10-13). Moreover, commercial interest in such agents by pharmaceutical 

companies has been demonstrated by recent reports of angiogenesis targeting and imaging with 

19F compounds (14). 

 19F magnetic resonance spectroscopy and imaging offer several advantages over 

hydrogen-based methods, including highly specific detection due to an absence of biological 

background signal, and the ability to quantify local concentration of fluorinated agents (15). As 

such, 19F MRI bears a high potential for molecular imaging allowing the direct quantification of 
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targeted PFC nanoparticle (NP) emulsions (16). Previous in vivo reports of PFC NP have 

exploited the single resonance peak of perfluoro-15-crown-5-ether (PFCE; C10F20O5) (17). 

However, perfluorooctyl bromide (PFOB; CF3-(CF2)6-CF2Br) is a more clinically-relevant NP 

core with a better understood human safety profile (18), but it exhibits a more complex spectrum 

with seven 19F resonance peaks and multiple relaxation conditions (19). Furthermore, although 

gadolinium (Gd) chelates have been shown to enhance the 19F signal through T1 shortening 

(20,21), the absence of Gd is more attractive from a translational point of view, due to the risk of 

nephrogenic systemic fibrosis (NSF) associated with Gd agents (22-24). 

 While true for any non-proton contrast agent, fluorine-based agent detection incurs 

several inherent technical challenges. Many agents have short apparent T2’ relaxation times, 

which can vary across their spectral peaks (25). In addition, rich spectra and large chemical shifts 

(CS) like those found in PFOB add significant complexity that challenges optimal signal 

detection. Several methods have been developed to manage CS artifacts and cope with short 

apparent T2’ times encountered in multinuclear MR. Mastropietro et al. have recently optimized 

the sequence parameters of fast spin-echo (FSE/RARE) for some 19F reporters, but different 

fluorinated agents will likely require individual parameter tuning based on their spectral 

properties and the local environment (26). Single 19F resonances, such as the CF3 line group in 

PFOB, have been utilized (27), but significant tradeoffs in SNR efficiency remain when other 

lines are ignored. Others have investigated chemical species separation using an iterative 

decomposition with echo asymmetry and least-squares estimation (IDEAL), which requires a 

complex δB0 correction (28,29). In an effort to capture signal from all PFOB spins, echo-time 

encoding with relaxation correction has been implemented (30), in addition to pulse-phase 

encoding (PPE) (31). Lastly, chemical shift independent techniques like fluorine ultrafast turbo 
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spectroscopic imaging (F-uTSI) have been employed to register the entire 19F spectrum (32,33), 

albeit with a significant acquisition time penalty. 

Perhaps the most straightforward method to image complex 19F spin systems in 

consideration of destructive phase interference is to acquire the signal before the spins dephase, 

as in ultra-short echo time (UTE) imaging (34). Line dephasing occurs over time, when the spin 

species of an imaging agent are subject to individual Larmor precession according to their 

respective chemical shift, which can lead to destructive signal overlay. In addition, transverse 

relaxation prevents a full signal recovery at later time points. Short echo time sequences like 

UTE offer the ability to capture these spins before line dephasing occurs, and thus retain their 

NMR signal to potentially boost the SNR (35). Balanced steady-state free precession (SSFP) is a 

technique in which each gradient pulse within one TR is compensated by a gradient pulse with 

an opposite polarity, resulting in a single, rephased magnetization vector (36). As such, the SSFP 

sequence retains much of the initial magnetization (M0), which yields a steady state MR signal 

with high achievable SNR. Furthermore, the elimination of gradient-induced dephasing within 

each TR would further counteract the line dephasing that occurs in complex spectra.  

Accordingly, a new technique—dual-frequency 19F/1H UTE with a balanced SSFP pulse 

sequence and 3D radial readout—was developed to permit highly sensitive detection of multi-

resonant imaging labels like PFOB without the need for Gd. It was hypothesized that the 19F/1H 

UTE-SSFP pulse sequence with 3D radial acquisition would image PFOB NP with higher 

detection sensitivity than tradition Cartesian k-space filled 19F sequences including gradient echo 

(GRE), balanced SSFP, and fast spin echo (FSE) on the PFOB (CF2)6 group, as well as the PFOB 

CF3 peak sampled with FSE. The preclinical objective of this study was to image angiogenesis in 

a rabbit adenocarcinoma model with the simultaneous 19F/1H UTE-SFFP technique using ανβ3-
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targeted PFOB nanoparticles with and without Gd to establish the feasibility of high sensitivity 

MR molecular imaging of Gd-free, fluorine-based, clinically relevant contrast agents. Such a 

technique will be critical for the clinical implementation of targeted molecular MRI. 

 

3.2 Methods 

3.2.1 Pulse Sequence Design 

To optimize pulse sequence parameters, the spectral characteristics and NMR relaxation 

properties of the PFOB molecule were analyzed (Figure 3.1). In addition to single 19F resonance 

peaks for the PFOB CF2Br and CF3 groups, the CF2 line group contains twelve of the seventeen 

fluorine nuclei, which result in five spectral components (at 3T: 0, ± 100 Hz, ± 500 Hz). As 

shown in Figure 3.1b, the five proximate chemical shift (CS) components of the CF2 group, 

represented by different spin vectors (β, γ, δ, ε, ζ, ρ), lead to destructive signal overlay at larger 

echo times (e.g., 2.8 ms). However, all CS components remain within a phase range of ± 90° for 

0.5 ms and are not yet significantly affected by the apparent T2’ relaxation (10 ms) (37). Using a 

UTE-SSFP sequence with an echo time of 100 µs, a typical gradient performance of 200 Tm-1s-1 

and a pixel bandwidth of 1 kHz, the FID readout requires ~0.6 ms resulting in a spatial resolution 

of ~1 mm, which is well suited for the detection and quantification of targeted PFOB-NP. During 

a fast FID readout, as in the balanced UTE-SSFP technique presented here, the relative signal 

from the CF2 resonances remains above 60%, which cannot be recovered at later echo times. 
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Figure 3.1 a: Perfluorooctyl bromide (PFOB: CF3-(CF2)6-CF2Br) 19F spectrum. b: All chemical 
shift components of PFOB CF2 line group (β, γ, δ, ε, ζ, ρ) remain within a phase range of ± 90° 
for 0.5 ms. c: 19F signal evolution of the (CF2)6 line group with and without apparent T2’ 
relaxation. During a fast FID readout as in the balanced UTE-SSFP technique, the relative signal 
remains above 60%, which cannot be recovered for later echo times. [Figure reprinted from 
Goette, et al. In press] 
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A simultaneous 3D 19F/1H balanced UTE-SSFP pulse sequence was designed to capture 

these CF2 resonances (Fig. 3.2). The sequence consists of simultaneous 19F/1H RF excitation (38) 

and subsequent FID acquisition at an ultra-short echo time, using balanced gradients with a 

Wong-type (39) radial readout trajectory. The UTE excitation and FID acquisition are designed 

to acquire the 19F signal before dephasing develops, while the balanced SSFP gradients are 

designed to exploit the achievable high steady-state signal and to synergistically reduce 

extraneous line dephasing. The simultaneous 1H excitation and acquisition is not necessarily part 

of the sensitive 19F detection sequence but is beneficial for an efficient scan time and precise co-

localization of fluorine signals with the underlying anatomy. 

 
Figure 3.2 A simultaneous 3D 19F/1H balanced UTE-SSFP pulse sequence, consisting of 
simultaneous 19F/1H RF excitation and subsequent FID acquisition at an ultra-short echo time, 
using balanced gradients (m, mr) with a Wong-type (39) radial readout trajectory. Logical 
gradient lobes (m, mr) are superimposed into a single continuous gradient waveform when 
executed on the physical gradient coils. [Figure reprinted from Goette et al. In press] 
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3.2.2 Phantom Imaging Experiments 

 The study was performed on a 3T clinical whole-body scanner (Achieva, Philips 

Healthcare, The Netherlands), outfitted with a dual 19F/1H spectrometer system (38). Dual-

resonant 19F/1H RF coils were used, which can either transmit or receive at both frequencies 

simultaneously (40). 

 Feasibility of balanced UTE-SSFP imaging was demonstrated in a phantom experiment 

using a bottle containing a flask (inner diameter 38 mm) filled with perfluorooctyl bromide (CF3-

(CF2)6-CF2Br) surrounded by water. The simultaneous 19F/1H 3D balanced UTE-SSFP sequence 

with Wong-type radial readout was implemented using a 19F/1H dual-tuned transmit/receive 

small-animal solenoid coil (inner diameter 7 cm) with the following parameters: FOV = 128 mm, 

matrix 1283, isotropic voxel Δx = 1.0 mm, α = 30°, excitation bandwidth exBW = 5 kHz 

centered on the PFOB-CF2 line group, pixel bandwidth pBW = 900 Hz, TR = 2.1 ms, TE = 90 µs 

(FID sampling), Texp = 71 s. 

 The effect of the balanced gradient scheme on sequence performance was determined by 

acquiring an additional 3D radial UTE gradient-echo (GRE) data set using identical acquisition 

parameters (α = 30°), but without balanced gradients (TR = 3.6 ms). Additionally, a 3D radial 

UTE GRE sequence at Ernst angle (α = 5°) was tested, following determination of the T1 

relaxation time for the PFOB-CF2 line group (840 ms) (41). The GRE sequences do not apply RF 

spoiling, such that the signal may be optimized at α > αE, depending on the actual T2 relaxation 

time. Slab-selective (10 mm) serial spectroscopic acquisitions were employed on both the CF2 

and CF3 line groups of the PFOB phantom to determine T1 using inversion recovery, FID 

sampling, and variable TI delay (10-2810 ms in 200 ms steps), as well as apparent T2’ using 

spin-echo TE delay (13-53 ms in 2 ms steps for CF2 and 13-583 ms in 30 ms steps for CF3). 
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 For comparison to existing techniques, 3D gradient-echo (GRE), balanced SSFP, and fast 

spin-echo (FSE) sequences with Cartesian k-space sampling were used with identical FOV (128 

mm) and spatial resolution (1×1×1 mm3 voxels). An elliptical restriction of the two phase 

encoding dimensions was applied to the 3D Cartesian sampling such that the actually sampled 

portion of k-space was similar to the radial sampling in the UTE and balanced UTE-SSFP 

sequences. Other gradient-echo imaging parameters included α = 30°, exBW = 5 kHz, pBW = 

900 Hz, TR/TE = 4.8/2.1 ms, Texp = 104 s. Balanced SSFP was used with α = 30°, exBW = 

5 kHz, pBW = 900 Hz, TR/TE = 4.2/2.1 ms, Texp = 89 s. Fast spin-echo parameters included α = 

90°, FSE acceleration factor 116, pBW = 660 Hz, exBW = 2830 Hz, TR/TE = 4000/7.4 ms, Texp 

= 1032 s. For further comparison to alternative line selection methods (27), a fast spin-echo 

sequence was performed on the CF3 line using the same FSE parameters. 

 

3.2.3 Sensitivity Comparisons 

 In the phantom imaging experiments, sensitivity was selected as a metric to compare 

imaging techniques to take into account SNR as well as scan time for each sequence. Detection 

sensitivity (S) was defined and calculated as: 

 

S = SNR
mol/voxel × Texp

          [3.1] 

 

where SNR is the achieved signal-to-noise ratio, Texp is the duration of the sequence, and 

(mol/voxel) is the amount of PFOB agent within an imaging voxel. To assess the signal-to-noise 

ratio, 19F signal I0 was measured on the magnitude image in a rectangular region of interest (ROI) 

within the PFOB phantom. Noise was determined from the standard deviations σ[Re] and σ[Im] 
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in a rectangular ROI at the border of real and imaginary images. An area separated from the 

phantom and free of coherent background signal in any sequence type (e.g., by signal blurring) 

was chosen. From this data, SNR was calculated as: 

 

SNR = I0
σ Re 2+σ Im 2          [3.2] 

 

3.2.4 In Vivo Imaging Experiment 

 For in vivo validation, targeted PFOB NPs were imaged in rabbit models of cancer and 

atherosclerosis. All animal procedures were approved by the Animal Studies Committee of 

Washington University in St. Louis.  

 Oncological applications of this sequence were investigated with Male New Zealand 

White rabbits (~2 kg, n = 4) that were implanted in the popliteal fossa of the left hind leg with 2-

3 mm VX2 adenocarcinoma tumors (National Cancer Institute, MD), which grew to ~15 mm 

within 2 weeks (42). Imaging was performed 3h post-injection of 1.0 ml/kg ανβ3-integrin 

targeted NP with PFOB core as previously described (43), either with or without Gd-DTPA-

bisoleate incorporated on the outer layer. To avoid signal contamination from inhaled fluorinated 

anesthesia, a xylazine (10mg/kg) / ketamine (85 mg/kg) i.m. injection was used for anesthesia 

induction, which was maintained with a ketamine i.v. infusion (18 mg/kg/hr). The radial 3D 

balanced UTE-SSFP sequence was implemented using a 19F/1H dual-tuned transmit/receive 

surface coil (7×12 cm) with the following parameters: FOV = 140 mm, matrix 643, isotropic 

voxel Δx = 2.19 mm, α = 30°, excitation bandwidth exBW = 5 kHz centered on the PFOB-CF2 

line group, pixel bandwidth pBW = 900 Hz, TR = 1.75 ms, TE = 90 µs (FID sampling), and a 

scanning time of 30 minutes. 
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 Additionally, cardiovascular applications of this sequence were investigated by inducing 

atherosclerosis in Male New Zealand White rabbits, which were fed high cholesterol chow for 20 

weeks. Imaging was performed 2h post-injection of 1.0 ml/kg of the ανβ3-targeted PFOB-NP. 

The simultaneous 19F/1H balanced UTE-SSFP sequence with 3D radial readout was acquired at 

six time points post-injection with the following parameters: FOV = 140mm, matrix 1123, 

isotropic voxel Δx = 1.25mm, α = 30°, excitation bandwidth exBW = 9kHz, pixel bandwidth 

pBW = 900Hz, TR = 2.0ms, TE = 100µs (FID sampling), and a total scan time of 28 minutes. 

 For the in vivo experiments, the radial k-space data were reconstructed at full resolution 

for the 1H component, and a lower resolution with higher signal-to-noise for the 19F component. 

The latter was achieved by applying a flat k-space weighting to the data outside a radius 

corresponding to a percentage of the fully sampled sphere in k-space (20% of the Nyquist radius 

for the adenocarcinoma-implanted rabbits; 7% of the Nyquist radius for the atherosclerotic 

rabbits) and using the usual quadratic weighting for the center of k-space (44). Since most signal 

intensity is located close to the center of k-space, flat weighting of higher k-values does not lead 

to signal losses but reduces noise amplification in high k-values and thus further improves SNR 

at the expense of spatial resolution. 

 

3.3 Results 

 The balanced UTE-SSFP pulse sequence was successfully implemented and run on a 3T 

whole-body scanner. Figure 3.3 shows a magnitude image of the phantom bottle containing 

PFOB, acquired with the balanced UTE-SSFP sequence, with ROI drawn to show locations for 

measuring 19F signal (I0), and the location of the noise calculation that was performed on the real 

and imaginary images to calculate SNR as per Eq. 3.2. 



	
  

 
	
  

71 

 
Figure 3.3 Magnitude 19F image of sensitivity imaging phantom, showing PFOB signal acquired 
with balanced UTE-SSFP sequence. ROI show locations of 19F signal (I0) [middle], and noise 
[right] used for SNR calculations. [Figure reprinted from Goette et al. In press] 
  

 Table 3.1 summarizes the observed sensitivity for the investigated sequence types, as 

calculated by Eq. 3.1. With S = 51 µmolPFOB
-1min-1/2, the proposed balanced UTE-SSFP 

technique demonstrates a sensitivity of at least twice that of other sequence types. 3D UTE GRE 

sequences without balanced gradients at α = 30° and α = 5° (Ernst angle) exhibit substantially 

lower sensitivities (20 and 8 µmolPFOB
-1min-1/2, respectively). Analysis of the spectroscopic series 

data revealed a T1 of 840±40 ms and 1000±40 ms for the CF2 and CF3 peaks, respectively, and 

an apparent T2’ of 10±1 ms and 230±10 ms for the CF2 and CF3 peaks, respectively. 

The second-best sequence is balanced SSFP with a Cartesian k-space trajectory 

(23 µmolPFOB
-1min-1/2), demonstrating the value of using balanced gradients for the detection of 

perfluorocarbons. For the CF2 group, the proximate CS components lead to destructive signal 

overlay at larger echo times (e.g., 2.8 ms), which are difficult to separate with line selection 

techniques. The 3D gradient-echo acquisition demonstrates this signal loss (TE = 2.1 ms), with a 

measured sensitivity of 12 µmolPFOB
-1min-1/2. Fast spin-echo techniques are typically highly SNR 
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efficient, but are not optimal for perfluorocarbons like PFOB (16 µmolPFOB
-1min-1/2), since the 

achievable echo times (here TE = 4.7 ms) do not allow full signal combination of the CF2-group. 

Selecting the CF3 group is possible, but this choice only uses 3 of the 17 available fluorine nuclei, 

which resulted in lowered sensitivity (7 µmolPFOB
-1min-1/2). 

  Table 3.1 Sensitivity of 19F MR Acquisition Techniques 

PFOB Line(s) 19F Sequence Sensitivity 
(µmolPFOB

-1min-1/2)a 
CF3 Cartesian fast spin-echo 7 

(CF2)6 

Cartesian gradient-echo (α=30º) 12 
Cartesian fast spin-echo 16 
Cartesian balanced SSFP (α=30º) 23 
Radial UTE gradient-echo (α=5º)b 8 
Radial UTE gradient-echo (α=30º) 20 
Radial balanced UTE-SSFP (α=30º) 51 

aSensitivity measured as S = SNR×(mol/voxel)-1×Texp
-1/2, where SNR is the achieved 

signal-to-noise ratio, Texp the sequence duration, and (mol/voxel) the amount of 
PFOB agent within an imaging voxel. 
bErnst angle calculated as α = cos-1(exp-(TR/T1)), where TR = 3.6 ms, and T1 was 
measured at 840 ms. 

 

 In vivo imaging of angiogenesis-targeted PFOB nanoparticles was successful in a rabbit 

model of cancer, demonstrating heterogeneous areas of neovasculature at the tumor rim (Fig. 

3.4a&d, arrows) as expected in this established VX2 tumor model. On 1H images, the bound 

nanoparticles that carry Gd give rise to T1-based signal enhancement (Fig. 3.4d), whereas the 

Gd-free NP are invisible in 1H MRI (Fig. 3.4a). The fluorinated core of this PFOB NP emulsion 

was imaged with the simultaneous 19F/1H balanced UTE-SSFP sequence using parameters that 

were tested in the phantom experiment. For PFOB-NP both without and with Gd, the resultant 

19F signal clearly elucidates the heterogeneous distribution of detected NP (Fig. 3.4b&e, 

respectively), which is overlaid on 1H anatomy to demonstrate anatomical co-localization (Fig. 

3.4c&f). 
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Figure 3.4 Molecular imaging of ανβ3-integrin targeted NP on VX2 tumors (arrows) in rabbits 
by 19F MRI. Gd-free (a,b,c) or Gd-containing (d,e,f) NP with a perfluorooctyl bromide (PFOB) 
core were used and imaged with a novel balanced UTE-SSFP based 3D radial sequence. 1H 
images show T1-based enhancement only with Gd NP (d), while the 19F signal is clearly detected 
in both cases (b&e). Image overlays (c&f) demonstrate the anatomical co-localization. [Figure 
reprinted from Goette et al. In press] 
 

 In vivo imaging of atherosclerosis with angiogenesis-targeted PFOB nanoparticles was 

also successful using the 19F/1H balanced UTE-SSFP sequence. Figure 3.5a shows an example of 

the proton image quality in a selected slice at the aorta, which is robust against motion due to the 

simultaneous 3D radial acquisition. The isotropic voxels allow multi-planar reformatting for 

visualizing anatomy and prescribing ROIs for analyzing the directly corresponding 19F NP signal. 

In this example, ανβ3-targeted PFOB-NP were detected in the aorta ROI (Fig. 3.5b) in 

concentrations ranging from 10 to 16 mM. 
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Figure 3.5 Simultaneous 19F/1H molecular imaging of angiogenesis targeted perfluorooctyl 
bromide nanoparticles in a rabbit model of atherosclerosis using 3D radial balanced UTE-SSFP. 
Proton image (a) with 1.25 mm isotropic voxels show anatomy, upon which 19F image can be 
overlaid (b). The ROI in (b) is surrounding the aorta, which has a diameter of about 5 mm. The 
19F overlay within the aortic region is in green, and extra-aortic 19F signal is blue. 
 

3.4 Discussion 

 This study introduced and tested a novel pulse sequence, 19F/1H balanced UTE-SSFP 

with 3D radial readout, for the imaging of non-proton nuclei with complex spectra. The sequence 

was implemented on a clinical 3T scanner to enable detection of multi-resonant fluorine imaging 

labels like PFOB with high sensitivity as compared to traditional techniques. A majority of the 

PFOB fluorine nuclei (12 of 17) are located in the CF2 resonances, which are distributed over a 

wide chemical shift range. Within the 90 µs echo time of the balanced UTE-SSFP sequence 

however, we showed that dephasing does not lead to destructive superposition of these 

resonances, which serves to maximize the obtained signal. The signal gain by constructive 

addition of all CF2 lines over-compensates the loss in SNR-efficiency imposed by 3D radial 

sampling (25%) and the FID readout, which requires twice the number of k-space lines, since all 

start at kx,y,z = 0 (45). Point-spread function effects of the k-space sampling might change the 

actually sampled voxel volume and thus influence the sensitivity comparison. Because of the 
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chosen elliptical restriction of the phase encoding in Cartesian sampling, these effects were 

considered to be negligible. 

The sensitivity obtained for the spoiled gradient-echo sequence using radial UTE readout 

allows separating the contributions of short echo times (reduced dephasing) and the use of 

balanced gradients. Without the spoiler gradients used in GRE, TR is decreased for the balanced 

case, which accounts for about 30% of the observed sensitivity gain (20 to 51 µmolPFOB
-1min-1/2). 

Thus, the application of balanced gradients can be estimated to result in a twofold sensitivity 

gain for the CF2 line group. This result is similar to the sensitivity gain found by introducing 

balanced gradients in the Cartesian CF2 acquisitions (12 to 23 µmolPFOB
-1min-1/2). 

The experimental results show a substantial, 2.5-fold increase in the UTE GRE signal 

from Ernst angle (αE = 5° for T1 = 840 ms) to α = 30°. According to GRE signal theory without 

RF spoiling (see e.g. (46), Eq. 4.22, TR = 4.8 ms, T1 = 840 ms) this is only expected for species 

with actual T2 values much larger than the measured apparent T2’ of 10 ms (consistent with (25)). 

At an estimated actual T2 of 110 ms, the GRE signal theory predicts a 2.5-fold signal increase 

when changing from α = 5° to 30°, while the signal gain would be lower at any significantly 

shorter T2. The apparent T2’, as measured by multiple spin echo times, is known to be strongly 

influenced and shortened by homonuclear J-coupling (25). Recent work by Jacoby et al. (19) 

demonstrates this point, measuring the T2 of emulsified PFOB, which varies over the CF2 peaks 

from 75 to 80 ms; however, the narrow band excitation and refocusing used by this group likely 

does not completely eliminate the effects of J-coupling, leading to a measured T2 that is still 

shorter than the actual T2 of the CF2 peaks. Additionally, Giraudeau et al. (27) have shown 

exceptionally high actual T2 values of 400 to 900 ms for the PFOB CF3 group when using 

narrow band refocussing in spin-echo to reduce J-coupling effects. Interestingly, the T2 is shown 
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to increase at shorter echo time, which is hypothesized to be due to a reduced influence of the 

coupled (quantum) state on relaxation at shorter TE. Furthermore, the actual T2, and hence signal, 

depends on whether the PFOB is neat, encapsulated, or bound to a target (19,27). Our results 

suggest that an actual T2 value (and not apparent T2’) is required to correctly model the signal 

gain obtained by flip angle optimization and by applying balanced gradients. 

To further elucidate the cause for this observed signal increase in the balanced UTE-

SSFP sequence, signal models (MT denoting the modeled transverse magnetization) were 

generated for GRE (N-FFE, FAST, GRASS, FISP), balanced SSFP (B-FFE, R-FFE, true FISP), 

as well as RF spoiled GRE (T1-FFE, FLASH, SPGR) according to Vlaardingerbroek et al. (46) 

as follows: 

E1= e
-TR

T1           [3.3] 

E2= e
-TR

T2           [3.4] 

 

GRE (N-FFE, FAST, GRASS, FISP) [Eq. 4.22 from (46)]: 

MT = sin α cos α +1 * 1+ cos α -A A2+B2+1      [3.5] 

A = 1-E1*E22+ cos α * E22-E1 1-E1        [3.6] 

B = 1+ cos α *E2          [3.7] 

 

Balanced SSFP (B-FFE, R-FFE, true FISP) [Eq. 4.24 from (46)]: 

MT = sin α * 1-E1 1-E1 cos α -E2* E1- cos α       [3.8] 

 

RF-spoiled GRE (T1-FFE, FLASH, SPGR) [Eq. 4.16 from (46)]: 

MT= sin α ∗ 1-E1 1-E1 cos α         [3.9] 

 



	
  

 
	
  

77 

Figure 3.6 shows the result of this signal modeling, with transverse magnetization (MT) 

plotted as a function of flip angle (α, degrees), using the measured T1 of the PFOB CF2 line 

group (840 ms) and the estimated actual T2 of 110 ms. A 50% gain in signal is observed in the 

balanced SSFP (R-FFE) signal model at α = 30°, compared to the gradient echo signal (GRE, N-

FFE). With RF-spoiled GRE (T1-FFE), the maximum signal occurs at the Ernst angle as 

expected; however, GRE remains rather T2-dependent, so the Ernst angle does not apply for this 

signal model. For the steady-state signal in both GRE and balanced SSFP, only the actual T2 

decay (not apparent T2’) is relevant for the signal build-up. This is because J-coupling only leads 

to destructive interference in the sum of the splitted components, but not to an accelerated 

relaxation of the transverse magnetization of each component. 
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Figure 3.6 Modeled steady-state gradient echo signal as a function of flip angle (α) for balanced 
SSFP (“R-FFE”, red line), GRE (“N-FFE”, blue line), and RF-spoiled GRE (“T1-FFE”, green 
line) using an estimated actual T2 of 110 ms. 
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The flip angle choice of α = 30° in the present study was suggested by a previous study 

using a Cartesian GRE sequence on fibrin target bound PFOB nanoparticles (47), which showed 

a signal optimum at α = 30° to 35° and a signal decay for larger flip angles. While a sequence 

comparison at a fixed flip angle, as performed in this study, is clearly demonstrating the 

respective signal gain by using ultra short echo time and balanced gradients, the individual 

optimum flip angle for each sequence type was not explored. Inserting the estimated actual T2 of 

110 ms (neat PFOB) into the signal theory for balanced SSFP (Eq. 3.8) allows one to estimate an 

optimum flip angle and to predict the signal gain by introducing balanced gradients as compared 

to GRE. According to this theory, balanced gradients at α = 30° resulted in a 50% signal increase 

and the signal maximum would be expected at 40°, as seen in Figure 3.6. The actually observed 

signal gain (twofold) does not match this calculation, likely due to the fact that the actual T2 is 

not well known and may depend on sequence parameters. A more detailed analysis of the actual 

T2 relaxation of the PFOB CF2 line group for neat and encapsulated PFOB forms would provide 

important information to optimize balanced UTE-SSFP sequences (e.g. flip angle choice). A flip 

angle of 30° could be a practical choice for in vivo applications of the proposed balanced UTE-

SSFP technique for PFOB loaded nanoparticles, where T2 relaxation may be faster due to 

restricted motion. The current parameter choice in balanced UTE-SSFP led to the successful 

observation of ανβ3-integrin targeted NP with a PFOB core, as shown in the VX2 tumor model. 

 Although the focus of this work was on PFOB nanoparticle emulsions, the balanced 

UTE-SSFP technique offers several benefits for multinuclear imaging of many non-proton 

agents, such as perfluorodecalin (C10F18) or perfluorooctane (C8F18) (19,48). This pulse sequence 

is optimal for contrast agents with a short apparent T2’ relaxation, due to the ultra-short echo 

time and fast FID acquisition. Agents bound to molecular targets may be of particular interest, 
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since they exhibit reduced T2’ relaxation due to decreased molecular motion (47). In addition, the 

balanced SSFP approach yields high SNR, in particular for imaging labels with characteristically 

unfavorable long T1 relaxation for gradient-echo methods due to M0 saturation, as is the case 

with PFOB. Although T1-shortening of Gd has been shown to be beneficial in fluorine imaging, 

the balanced UTE sequence provides high signal even for PFOB-NP without Gd with a T1 of 

about 1 second. Moreover, the balanced gradient technique is advantageous for the detection of 

agents with complex spectra due to the elimination of extraneous gradient-induced line 

dephasing. The combination of these two schemes offers a flexible pulse sequence for complex 

resonant structures, which can be customized to the agent of choice by altering offset frequency 

and excitation bandwidth to dial in a particular line group. 

 As shown in this study, the proposed balanced UTE-SSFP sequence can be combined 

with simultaneous dual-nuclei techniques for efficient anatomical localization and quantitative 

calibration of the non-proton signal. Once the complex spectral signal is acquired with this 

sequence, the 3D radially-filled k-space data can be directly reconstructed, and does not require 

post-processing as would chemical shift imaging. As an added benefit, the 3D radial data set 

offers the potential for multi-resolution reconstruction, allowing analysis of the 19F and 1H data 

at different spatial resolution (44). Note that the reconstruction of the 19F data at a lower 

resolution and higher SNR was only performed for the in vivo experiment to demonstrate this 

capability in sparse molecular imaging environments; all 19F data were reconstructed at full 

resolution in the phantom experiments when comparing balanced UTE-SSFP to existing 

techniques. Finally, this unique simultaneously acquired data provides an opportunity for motion 

correction of the non-proton signal with temporal sub-sampling of the 1H data (38). Although a 

prototype dual 19F/1H spectrometer system was used for simultaneous acquisition in this study, a 
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similar 19F UTE-SSFP sequence was also successfully implemented on a standard multinuclear 

scanner platform. 

 In this study, the balanced UTE-SSFP sequence was shown to be more sensitive than 

traditional acquisition techniques in the context of multinuclear imaging of contrast agents with 

short T2 and complex spectra. However, some agents may not require advanced line combination, 

such as those with single resonance peaks. Application of the balanced UTE-SSFP sequence for 

such agents might result in decreased SNR-efficiency due to the 3D radial sampling and FID 

readout. In addition, the bandwidth of this technique may not be large enough to cover all lines 

of an agent, because of the large chemical shifts found in 19F. Thus, a particular line group must 

be selected within a bandwidth of approximately 1-2 kHz, for an appropriate spatial resolution of 

the 3D radial readout with standard gradient systems. While advantageous for the detection of 

PFOB since a majority of 19F spins are found in the CF2 line group covering ~1 kHz, this 

bandwidth restriction may be a limitation for other chemical species. Another obstacle for this 

sequence was found in the classic balanced SSFP banding artifacts that were observed in both 

the 1H and 19F components in some images, but these were reduced by shortening TR and can be 

moved out of the region of interest by adjusting the offset frequency for the balanced signal. 

  

3.5 Conclusion 

 Radial 3D balanced UTE-SSFP is a robust pulse sequence that yields high SNR, with 

detection sensitivity more than two-fold improved over more traditional techniques, while also 

alleviating problems associated with extended longitudinal relaxation times, short apparent T2’, 

and complex spectral properties of imaging agents. This technique was demonstrated for dual-

frequency 19F/1H MRI on a clinical scanner that allows highly sensitive in vivo detection of 
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multi-resonant imaging labels like perfluorooctyl bromide, which could play a central role in 

human translation of 19F MR-based targeted molecular imaging. The synergistic combination of 

an optimized imaging technique and a gadolinium-free, biocompatible contrast agent should 

facilitate translation into clinical use. 
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Chapter 4. Improved Quantitative 19F MR Molecular Imaging with 

Flip Angle Calibration and B1-Mapping Compensation 

 

4.1 Introduction 

MR molecular imaging with the use of ligand-targeted contrast agents has proven capable 

of noninvasively detecting the presence of cellular indicators of biological processes for many 

classes of pathologies (1-4). Common exogenous contrast mechanisms have employed either 

paramagnetic or superparamagnetic readouts based on the composition of the core materials of 

nanoparticulate agents that function by altering the local relaxation properties of protons in T1 or 

T2/T2* weighted images to reveal local changes in MRI contrast indicative of a binding event (5). 

Of the paramagnetic agents, one of the first to become useful for a broad range of imaging 

applications was a perfluorocarbon core nanoparticle decorated with several hundred thousand 

gadolinium atoms with the use of conventional chelating chemistries, and a smaller population of 

molecular targeting ligands (e.g., antibodies, small molecules, peptides, etc.) covalently coupled 

into a surrounding lipid/surfactant monolayer (6-9). Further model-based efforts have been 

pursued to quantify these sparse binding events in attempts to compute the concentrations of the 

targeted epitopes (10). Yet all of these approaches that rely on indirect readouts of binding 

through altered proton relaxation suffer from high background proton signals, susceptibility 

artifacts (11), potential toxicities of the contrast agent itself (12,13), and most importantly, the 

need for both pre- and post-contrast images to accurately delineate changes in local contrast 

(14,15). 

For some time, it has been appreciated that the ability to create local MRI contrast based 

on detection of alternative nuclei such as fluorine (19F) might offer a direct and quantifiable 
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readout of molecular binding events (16-18). Fluorine exhibits well-known advantages of being a 

high signal nucleus with a natural abundance of its stable isotope, favorable toxicity profiles, a 

convenient gyromagnetic ratio close to that of protons (D: ~6%) (19), and a unique spectral 

signature with no detectable background at clinical field strengths (20). However, clinical 

development of this approach has been slowed by the need to deposit sufficient concentrations of 

the contrast material within a voxel to yield a detectable signal, and by the lack of imaging 

hardware and software (e.g., coils, multinuclear spectrometers, pulse sequences, etc.). Over the 

past 15 years, our own efforts in 19F contrast agent development and imaging at 1.5 and 3T with 

the assistance of commercial partners have yielded translatable solutions to many of these 

imaging hardware needs (21,22), while simultaneously validating the utility of the PFC-core 

nanoparticle agents as targetable molecular imaging probes (23-25). 

However, for 19F MRI to mature as a truly robust whole body detection approach for 

quantifying molecular binding events noninvasively, additional obstacles must be overcome. 

Although 19F MRI is potentially quantitative in nature because 19F spin density (and signal) is 

linearly correlated to the deposition and resultant concentration PFC NPs at a particular site in 

the body (17), the imaging chain of a clinical MR system comprises many steps that can 

confound absolute signal calibration, even when specialized transmit/receive (T/R) coils are used 

(26). Coil tuning and RF drive power (i.e., flip angle) settings must be calibrated and center 

frequency determined for 19F tracers that are in miniscule concentrations lending little signal on 

which to perform these measures that drive not only image quality, but ultimately accuracy. 19F 

MRI also is susceptible to imaging artifacts, such as motion, partial volume, and eddy currents, 

all of which can degrade image quality and produce quantification errors (21). Lastly, B1-field 

inhomogeneities that are inherent to many transmit and receive RF coils must be accounted for 
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(27,28). Because the concentration of PFC NPs within a voxel is determined by a comparison to 

an external standard of known 19F concentration, local differences in the B1 field between the 

targeted region of interest and the location of the standard may lead to errors in the quantified 19F 

signal. 

This study pursues additional measures that are intended to improve accuracy for in vivo 

quantitative 19F MR molecular imaging, including flip angle calibration (between the relevant 1H 

and 19F nuclei of interest), and B1 field mapping compensation to offset anticipated RF 

inhomogeneities. Herein, we hypothesize that the RF power settings that are typically optimized 

for 1H might also be used to determine the correct RF power settings for 19F signals acquired 

with 19F/1H dual-tuned RF coils. Furthermore, a solution to overcome inhomogeneities 

associated with RF coils is proposed that relies on mapping the B1 field on the 1H signal and then 

performing an image-based correction to the 19F and 1H data by signal modeling, which is then 

tested in phantom and in vivo experiments in a cancer model in rabbits for tumor angiogenesis 

targeting. 

 

4.2 Methods 

4.2.1 Magnetic Resonance Spectroscopy 

 All magnetic resonance spectroscopy and imaging data were acquired on a 3T clinical 

whole-body scanner (Achieva, Philips Healthcare, The Netherlands) with a dual 19F/1H 

spectrometer system (21). Dual-resonant 19F/1H RF coils were used, which can either transmit or 

receive at both resonance frequencies simultaneously (29). Three dual-tuned coils were used for 

the MRS experiment including a single loop rectangular surface coil (7×12 cm, Philips 

Healthcare, The Netherlands), a custom-built semi-cylindrical coil (13 cm diameter, 15 cm 
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length), and a custom-built single-turn solenoid coil (11.5 cm diameter, 14 cm length) (Fig. 4.1). 

Before each MRS experiment, the 19F/1H coils were tuned to resonate at both the fluorine and 

hydrogen frequencies (120.1 and 127.7 MHz, respectively at 3T) on a network analyzer 

(National Instruments, Austin, TX, USA) at -30 dB signal loss or better. 

 
Figure 4.1 19F/1H dual-tuned RF coils. (a) Single loop rectangular surface coil (7×12 cm, Philips 
Healthcare, Best, The Netherlands). (b) Custom-built 6-element semi-cylindrical coil (15 cm 
diameter), and (c) single-turn solenoid coil (11.5 cm diameter, 14 cm length). [Figure reprinted 
from Goette, et al. In review] 
 

4.2.2 PFC NP Formulation and Phantom Setup 

 A nontargeted perfluoro-15-crown-5-ether (PFCE: C10F20O5) NP emulsion was prepared 

as previously published (30), which was composed of 20% (v/v) PFCE (Exfluor Research Corp., 

Round Rock, TX, USA), 2.0% (w/v) surfactant commixture, and 1.7% (w/v) glycerin, with water 

comprising the remaining balance. An MRS point source phantom was created by filling a 1 mL 

clear glass shell vial (6 mm inner diameter, National Scientific, Rockwood, TN, USA) with 50 

mM PFCE NP emulsion in 2% agar (0.2 mL volume, 5 mm height in vial), with 2% agar 

comprising the rest of the volume. The phantom was positioned in a 1 L beaker filled with 275 

mL 1.0% saline using a custom-built holder allowing translational movement in two directions 

(± 18 mm) at three different heights (9 mm, 15 mm, and 27 mm) above the surface and semi-

cylindrical coils, and within the solenoid coil. 
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4.2.3 Power Setting Optimization and Flip Angle Calibration 

 Flip angle sweep experiments were performed on the 19F and 1H frequencies 

independently to determine optimal RF output settings for flip angle calibration. Slice-selective 

spectroscopic echo sampling was first performed on the 19F signal as a single series, sweeping 

the flip angle setting from 10° to 210° in 10°-increments with the following parameters: 10 mm 

slice, 8 kHz excitation BW centered on single PFCE peak, TR/TE = 2000/2.6 ms, 4 NSA, scan 

time 4 min, automated power optimization preparation phase turned off. Peak power settings 

were adjusted according to the offset between real and requested 90° pulse, and the sequence was 

repeated in an iterative fashion until the optimal power setting was achieved, denoted by a 

maximum spectral height at the requested 90° pulse (Fig. 4.2a). 

After acquiring a similar data set at this same power setting on the 1H channel for 

comparison, the process was repeated at the 1H frequency until an optimal power setting was 

achieved, which was then compared to the 19F setting. This experiment was repeated in triplicate 

with the phantom located at 15 distinct locations for each coil, with replicates occurring on 

separate days after detuning and retuning the coils. 

Optimized RF power settings for the 19F and 1H nuclei were depicted with a 3D ball plot 

in MATLAB (MathWorks, Natick, MA), with both spherical radius and color representing peak 

power (W) for each nucleus, averaged over each replicate. A ratio of 19F/1H peak power at each 

phantom location is also visualized with a ball plot, and a global average of 19F/1H peak power 

from all locations is reported for each RF coil, termed flip angle calibration ratio. 
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4.2.4 MRI Phantom Setup and B1-Mapping Compensation 

 Two fluorine-containing phantoms were created to design and test a B1-mapping 

compensation technique to correct for RF inhomogeneities in 19F MRI with 19F/1H dual-tuned 

coils. A discrete sample phantom was made with two 5 mL glass vials (inner diameter 15 mm) 

filled with 1.0 M sodium fluoride (NaF) in 2% agar, aligned 2 cm apart in 200 mL bottle of 1.0% 

saline. A homogeneous 19F phantom consisted of a 300 mL glass bottle (inner diameter 6 cm) 

filled with 1.0 M NaF in 2% agar. 

A simultaneous 19F/1H 2D balanced FFE (bFFE) imaging sequence was used to generate 

transverse 19F and 1H images of the phantoms, with identical parameters as follows: 140 mm 

FOV, matrix 64×64, 4 mm slice thickness, 2.18×2.18×4 mm resolution, exBW = 4 kHz centered 

on the single NaF peak, pBW = 500 Hz, α = 25°, TR/TE = 3.64/1.82 ms, NSA = 1000, 3.8 min 

scan time. The B1 field was mapped using an actual flip angle imaging (AFI) sequence with the 

following parameters for both phantoms: 140 mm FOV, matrix 64×64, 13 4-mm slices, 

2.18×2.18×4 mm resolution, α = 70°, TR/TE = 13.43/2.23 ms, 1.0 min scan time.  

To correct for RF inhomogeneities present in the simultaneous 19F/1H bFFE image 

acquisition, the sequence was modeled following rephased gradient echo theory as per Eq. 4.24 

in Vlaardingerbroek et al. (31) as 

,     [4.1] 

where αnom is the nominal flip angle and . From this signal model, a calibration factor 

(ρ) can be defined as 

,     [4.2] 

MT =M0 sinαnom E2
1−E1

1−E1E2 − (E1 −E2 )cosαnom

E1,2 = e
−TR/T1,2

ρ = sin(AFI ∗αnom )
1−E1

1−E1E2 − (E1 −E2 )cos(AFI ∗αnom )
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where AFI represents the voxel values from the B1 map (αrequested/αnominal). A spatially dependent 

calibration mask was calculated from Eq. 4.2 in MATLAB and used to compensate the 1H and 

19F signal intensities of the bFFE molecular imaging sequence by dividing each image by ρ, on a 

voxel-by-voxel basis. 

 

4.2.5 In Vivo 19F MRI Experiment 

 An in vivo 19F MR imaging study was performed at 3T with the 19F/1H dual-tuned single 

loop surface coil previously mentioned (7×12 cm). In accordance with institution-approved 

protocols, New Zealand White Rabbits (2 kg) (n = 3) were implanted with a VX2 

adenocarcinoma tumor (2-3 cm) in the hind leg (30), and allowed to grow for two weeks prior to 

imaging to achieve a tumor size ~ 15 mm. An ανβ3-integrin-targeted PFCE NP emulsion (20 

vol%) was injected intravenously and allowed to circulate 3 hours before imaging. To avoid 

signal contamination from inhaled fluorinated anesthesia, a ketamine (85 mg/kg) / xylazine 

(10mg/kg) i.m. injection was used for anesthesia induction, which was maintained with a 

ketamine i.v. infusion (18 mg/kg/hr). 

A simultaneous 19F/1H balanced UTE-SSFP imaging sequence with Wong-type 3D radial 

readout trajectory (32) was used with the following parameters: 140 mm FOV, matrix 963, 

isotropic voxel Δx = 1.46 mm, exBW = 4 kHz centered on the PFCE peak, pBW = 400 Hz, α = 

30°, TR/TE = 2.32/0.13 ms, NSA = 56, 35 min scan time. For this in vivo experiment, the radial 

k-space data were reconstructed at full resolution for the 1H component and a lower resolution 

with higher signal-to-noise for the 19F component. The latter was achieved by applying flat k-

space weighting to the data outside a radius corresponding to 23% of the fully sampled sphere in 

k-space (23% of the Nyquist radius) and using the usual quadratic weighting for the center of k-
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space (33,34). After anatomical colocalization of 19F signal was confirmed with the 

simultaneously acquired 1H image, a high-resolution gradient echo 1H image was used to display 

the overlaid 19F signal with the following parameters: FOV = 128×128 mm, matrix = 256×256, 

slice thickness = 4 mm, voxel size = 0.5×0.5×4 mm, α = 35°, TR/TE = 25.16/7.02 ms, 23 NSA, 

and a scanning time of 2.5 minutes. 

The B1 field was mapped with an AFI sequence with the following parameters: 140 mm 

FOV, 96×96 matrix, 15 1.46-mm slices, 1.46×1.46×1.46 mm resolution, α = 70°, TR/TE = 

16.0/2.93 ms, 1.9 min scan time. Because balanced UTE-SSFP follows the same balanced 

gradient echo theory as the bFFE sequence in the phantom experiment, a spatially dependent 

calibration mask (ρ) was calculated from Eq. 4.2 in MATLAB and used to compensate the 1H 

and 19F signal intensities on a voxel-by-voxel basis. Importantly, the same correction scheme 

was performed on the imaging slice that contained the fluorine standard (150 mM19F PFCE NP in 

agar) to which the in vivo bound PFC NP 19F signal was compared for quantification. 

 

4.2.6 Statistical Analysis 

 MR spectroscopy and imaging data were analyzed with analysis of variance (ANOVA) or 

student t-tests as appropriate with MATLAB. For all statistical tests, p < 0.05 denotes statistical 

significance. Standard errors of the mean are reported for MRS and MRI measurements, and 

used to display error bars. Measures of 19F image homogeneity were calculated as a root-mean-

square value over all 19F signal-containing voxels. 
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4.3 Results 

4.3.1 Power Setting Optimization and Flip Angle Calibration 

 Power settings were optimized for 19F and 1H nuclei, such that a requested 90° flip angle 

yielded a maximum spectral height in FA sweep measurements of a PFC NP point source 

phantom. Figure 4.2 shows a representative FA sweep that was optimized for 19F (top), and the 

resultant 1H FA sweep (bottom) using the same power setting (peak power = 122.9 W), which 

obviously was too high for 1H, yielding a maximum 1H spectral height at 20°. 

 
Figure 4.2 Representative flip angle sweep (10°-210°) on 19F nucleus (top) and 1H nucleus 
(bottom) using the same power setting (peak power = 122.9 W) with a 19F/1H dual-tuned surface 
coil indicating correct power settings for 19F, but too high for 1H. [Figure reprinted from Goette, 
et al. In review] 
 

Power settings for 19F and 1H nuclei are depicted in a 3D ball plot (Fig. 4.3), in which the 

spherical radius and color correspond to the requested peak power (W) for a point source PFCE 
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NP phantom at 15 distinct locations in the FOV of the surface coil, averaged over three 

replicates. These plots exemplify the need for higher power settings to accurately measure 

sources farther away from a surface coil, as well as the obvious difference in optimal power 

settings between 19F and 1H nuclei. However, a ratio of optimum 19F/1H power requirements 

yields a spatially independent calibration value for the surface coil (1.48 ± 0.06). 

 
Figure 4.3 3D Ball plot representation of optimized RF power settings (peak power, W) for 19F 
(a) and 1H (b) nuclei using a 19F/1H dual-tuned surface coil and a point source phantom of PFCE 
NP emulsion. (c) Ratio of optimum 19F/1H power setting yields a spatially independent 
calibration value (1.48 ± 0.06 for surface coil). [Figure reprinted from Goette, et al. In review] 
 

Figure 4.4 displays the MRS phantom data for all three 19F/1H dual-tuned coils, with 

averaged measurements from all five locations at each height (9, 15, 27 mm). Optimized 19F 

peak power was significantly different than was the 1H power requirement at each height for 

each coil (p < 0.05 in all cases). Taking a ratio of 19F/1H power settings for the semi-cylindrical 

coil yielded a calibration value of 1.71 ± 0.02, and 1.92 ± 0.03 for the single-turn solenoid coil. 

 
Figure 4.4 Power settings (peak power, W) needed to optimize 90° flip angle for 19F and 1H 
signals from point source phantom at 9 mm, 15 mm, and 27 mm above 19F/1H dual-tuned surface 
coil (a), semi-cylindrical coil (b), and within single-turn solenoid coil (c). [Figure reprinted from 
Goette, et al. In review] 
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4.3.2 B1-Mapping Compensation in Phantom Experiments 

 Figure 4.5 demonstrates a technique for B1-mapping compensation of 19F MRI using the 

1H signal in a phantom containing two vials of 1.0 M NaF in agar, imaged with a simultaneous 

19F/1H bFFE sequence and a 19F/1H dual-tuned surface coil. Before correction, the 19F image 

(Fig. 4.5a) and 19F/1H overlay image (Fig. 4.5b) exhibit the effects of the inhomogeneous RF 

field produced by the surface coil. Mean signal intensity in the vial closest to the coil was 2537 ± 

176 arbitrary units (a.u.), while the 19F signal from the identical vial 2 cm further from the coil 

was 66.0% lower (863 ± 40, p < 0.001). The B1-field was mapped using the 1H signal with actual 

flip angle imaging (% actual/requested FA) (Fig. 5c), and input into Eq. 4.2 to create a correction 

ratio (Fig. 4.5d). This factor was used to correct both 19F and 1H signal intensities, as displayed 

in Figure 5e&f. After correction, the mean signal intensity in the vial closest to the coil (2621 ± 

156 a.u.) was not significantly different (p = 0.85) than that in the vial farther from the coil (2681 

± 129 a.u.). 

 
Figure 4.5 19F MRI of phantom with two vials of 1.0 M NaF in agar using a simultaneous 19F/1H 
bFFE sequence and a 19F/1H dual-tuned surface coil. Before correction, 19F image (a) and 19F/1H 
overlay image (b) illustrate the inhomogeneous RF field produced by the surface coil, resulting 
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in a mean signal intensity of 2537 ± 31 a.u. and 863 ± 7 a.u. in each vial. 1H B1-field was 
mapped with actual flip angle imaging (% actual/requested FA) (c), and input into bFFE signal 
model to create a correction factor (d), which was used to compensate 19F and 1H signal 
intensities. The corrected 19F image (e) and 19F/1H overlay image (f) demonstrate the image-
based compensation technique, resulting in a mean signal intensity of 2621 ± 27 a.u. and 2681 ± 
23 a.u. in each vial. [Figure reprinted from Goette, et al. In review] 
 

Figure 4.6 shows the results of the one-way ANOVA analysis of the phantom before and after 

correction. 

 
Figure 4.6 One-way ANOVA analysis of the 19F signal intensity from phantom of two PFC NP 
vials (1: closer to coil; 2: farther away) before (left) and after (right) B1-mapping compensation. 

 

Figure 4.7 shows the B1-field compensation applied to a homogeneous phantom of 1.0 M 

NaF in 2% agar. Before correction, the 19F (Fig. 4.7a) and 19F/1H overlay images (Fig. 4.7b) 

display the inhomogeneity of the surface coil, with a mean signal intensity of 1145 ± 35 and a 

RMS value of 1320. B1-mapping compensation with AFI and calculated correction ratio (Fig. 

4.7c&d), yielded a more homogeneous corrected 19F image (Fig. 4.7e), as measured by a mean 

signal intensity of 2332 ± 29 and a RMS value of 1157. 
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Figure 4.7 19F MRI of a homogeneous phantom (1.0 M NaF in 2% agar) imaged with a 
simultaneous 19F/1H bFFE sequence and a 19F/1H dual-tuned surface coil. Before correction, the 
19F image (a) and 19F/1H overlay image (b) illustrate the inhomogeneous RF field produced by 
the surface coil. 1H B1-field was mapped with actual flip angle imaging (% actual/requested FA) 
(c), and input into bFFE signal model to create correction ratio (d), which was used to correct 19F 
and 1H signal intensities. The corrected 19F image (e) and 19F/1H overlay image (f) demonstrate 
the image-based compensation technique. [Figure reprinted from Goette, et al. In review] 
 

4.3.3 In Vivo 19F MRI Experiment 

 PFC NP targeted to the tumor neovasculature provided a highly localized 19F signal as 

expected (Fig. 4.8, tumor enhancement circled in red). In the uncorrected 19F image 

superimposed on a high-resolution 1H image of the rabbit anatomy (Fig. 4.8a), the concentration 

of PFC NP localized to the tumor was measured at 20.0 ± 0.12 mM19F, when compared to an 

external standard (150 mM19F). By using the AFI B1-field map and calibration mask (Fig. 

4.8b&c) to compensate the 19F image for inhomogeneities introduced by the RF surface coil, 

local targeted PFC NP was calculated at 25.5 ± 0.10 mM19F, or a 27.5% increase (p < 0.05). 
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Figure 4.8 B1-mapping compensation of in vivo cancer model in rabbit with the use of ανβ3-
integrin-targeted PFC NP nanoparticles captured by 19F MRI with a 19F/1H dual-tuned surface 
coil (located at image right). In the uncorrected 19F image overlaid on the high-resolution 1H 
image (a), PFC NP concentration was quantified as 20.0 ± 0.12 mM19F, compared to an external 
standard of known concentration (150 mM19F). Illustrated are: B1-field mapping with AFI (% 
actual/requested FA) (b) and calibration mask calculated from a balanced UTE-SSFP signal 
model (c). In the corrected 19F image overlaid on the high-resolution 1H image, PFC NP 
concentration was quantified as 25.5 ± 0.10 mM19F. [Figure reprinted from Goette, et al. In 
review] 
 

4.4 Discussion 

 This study describes a strategy to more accurately quantify sparse 19F MR signals from 

targeted perfluorocarbon nanoparticle emulsions by means of 19F flip angle calibration that 

utilizes the abundant 1H signal, and a 1H image-based B1-mapping correction to the 19F and 1H 

images. The requisite peak power to achieve a requested flip angle for 19F and 1H nuclei was 

shown to be different for three 19F/1H dual-tuned RF coils. However, a ratio of the two optimized 

power settings results in a spatially independent calibration ratio that was unique to each coil. 

Once established, the coil-dependent calibration ratio can be used to set the power settings for 

19F imaging based on the 1H signal for all imaging with the coil, regardless of location within the 

field of view. For sparse fluorine signals as would be expected in clinical MR molecular 

imaging, power settings and calibrations cannot be performed easily on the 19F nuclei a priori. 

However, 19F flip angle calibration can be performed based on the rich 1H signal by multiplying 

the 1H-derived power settings by the calibration ratio before any 19F contrast agent is even 

introduced. 
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This work also demonstrated the utility of an image-based B1-mapping compensation to 

correct signal intensities for simultaneously acquired 1H and 19F images. The deleterious effects 

of coil inhomogeneities on quantitative 19F MRI were demonstrated in a phantom experiment 

where two significantly different signal intensities were demonstrated for identical fluorine 

samples with the use of a 19F/1H dual-tuned surface coil. However, the proposed B1-mapping 

compensation technique corrected the signal intensity for both the 19F and 1H images, thereby 

removing the effects of the inhomogeneous RF field. This method was further tested in a 

homogeneous fluorine phantom, which corrected for the characteristic signal drop-off observed 

with surface coils, as a consequence of employing the proposed B1 correction technique to 

improve 19F image homogeneity. Finally, the preclinical utility of this correction technique was 

tested with an in vivo cancer model of the B1 compensation technique that apparently improved 

the measurement accuracy of bound ανβ3-integrin-targeted PFC NP with 19F imaging. 

Unfortunately, independent direct comparison of 19F signals to tissue levels of PFC NP is 

technically complex due to extraction difficulties and PFC volatility, but given the clear benefit 

of the compensations in phantoms, we propose that the derived answers will be more satisfactory 

following correction.  

This study was performed with 19F/1H dual-tuned coils, which consist of the same coil 

elements, and hence generate the same B1 field for both 19F and 1H nuclei (29). The observed 

difference in requisite power settings between the two nuclei demonstrates the effective 

difference in detection sensitivity of these dual-resonant coils, because they are electrically tuned 

in the same manner for both nuclei. However, this difference is consistent for each coil, and 

allows for the determination of a specific coil-dependent calibration ratio. Notably, this property 

is likely unique to dual-resonant coils, which cannot be replicated with single-tuned coils or 



 104 

other double-frequency coils with significantly different geometry between 19F and 1H resonator 

elements. On the other hand, although the B1 correction technique using 1H-derived B1 maps to 

correct 19F and 1H images also benefits from the use of dual-tuned RF coils, this technique 

should apply to single-tuned coils if the B1 fields for the two nuclei are the same. In the future, 

additional testing with both dual-tuned and single-tuned coils would be valuable to determine 

translatability of this technique to such coils. 

 

4.5 Conclusion 

 In conclusion, this study devised and tested a new approach to overcome certain 

challenges for accurate in vivo quantitative 19F MR molecular imaging, which comprises a 

combination of flip angle calibration between 1H and 19F nuclei, and B1-mapping compensation 

to offset RF inhomogeneities. Correction techniques such as this one should facilitate improved 

accuracy and repeatability of measurements of non-proton molecular imaging agents used in 

preclinical and clinical trials at routine field strengths. 
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Chapter 5. Novel In Vivo Applications of 19F MR Molecular Imaging at 3T 

  

 The third aim of this thesis was to evaluate the potential for clinical translation with ex 

vivo and in vivo preclinical experiments. To successfully translate the techniques presented in 

this work, and the work of many other molecular imaging scientists, into the clinic to help 

diagnose and treat diseases in humans, there must be thorough testing and validation with 

controlled animal experiments. In addition to the oncological applications of improved 19F MR 

molecular imaging of ανβ3-integrin-targeted PFC NPs presented in Chapter 4, two more 

potentially translatable applications are presented here: renal perfusion imaging and 

atherosclerotic plaque imaging. Importantly, translation of both of these applications to humans 

requires their implementation at clinical field strengths, so a clinical 3T MR scanner is used 

instead of a small animal scanner at a higher field strength. 

 

5.1 Imaging Renal Perfusion in Acute Kidney Injury at 3T 

5.1.1 Introduction 

 Acute kidney injury (AKI) affects a significant portion of hospitalized patients in the 

United States and has an attendant mortality of up to 76.8% (1). AKI is characterized by reduced 

renal blood flow and abnormal intrarenal oxygenation as a consequence of inflammatory 

signaling molecules that affect tubular function and renal microcirculation (2). Noninvasive 

imaging of intrarenal perfusion in AKI patients could be useful for diagnosing the extent of 

damage, as well as monitoring response to therapy. However, in many cases the use of contrast 

agents is restricted due to associated renal toxicity (3), and no specific agents have been 

approved to target the well-defined molecular mechanisms involved in AKI (4).  
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While arterial spin labeling (ASL) has been reported as a noninvasive technique to 

measure renal perfusion in AKI (5), there are challenges to accurate perfusion quantification 

such as variations in blood T1 (6), which is often present in AKI subjects with abnormal 

intrarenal oxygenation. Recently, perfluorocarbon (PFC) nanoparticle (NP) emulsions have been 

evaluated as a promising nontoxic agent for MR molecular imaging of renal damage and 

perfusion on an 11.7T Varian small animal MR scanner (7). Furthermore, 19F MR using a 19F/1H 

dual-tuned RF coil has been utilized to directly image and quantify the fluorinated core of PFC 

NP emulsions at clinical field strengths (8), where the signal is directly proportional to local 

blood volume. In this study, we investigated the imaging of renal perfusion using simultaneous 

19F/1H MRI of PFC NPs in an ischemia/reperfusion rat model of AKI at 3T. 

 

5.1.2 Methods 

 All protocols, including animal handling, surgery, and treatment, as well as MRI 

procedures were approved by the Animal Studies Committee of Washington University in St. 

Louis. Under anesthesia with ketamine (85 mg/kg) and xylazine (13 mg/kg), adult male Sprague 

Dawley rats (n = 6) (Harlan Laboratories, USA) underwent a surgical procedure to induce 

unilateral warm ischemia, followed by reperfusion. Following a laparotomy to expose the 

vasculature of the left kidney, the left renal artery was ligated and either permanently occluded (n 

= 2) or occluded for 45 min followed by reperfusion (n = 2). Age-matched normal rats were 

included as controls (n = 2). Animal body temperature was maintained at 37°C using a small 

animal heating system. The surgical wound was then closed in layers, after which the animal 

recovered and was returned to its cage. Following recovery for 24 hr, the injured kidney and 
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contralateral control kidney were imaged either in vivo or excised, fixed in 10% formalin, and 

imaged ex vivo.  

A nontargeted perfluoro-15-crown-5-ether (PFCE: C10F20O5) nanoparticle emulsion (20 

vol%) was prepared as previously published (9), and injected i.v. into the tail vein (3 ml/kg) 5 

min before imaging or excision. MR data were acquired on a 3T clinical whole-body scanner 

(Achieva, Philips Healthcare, Best, The Netherlands) with a dual 19F/1H spectrometer system and 

a dual-tuned transmit/receive solenoid RF coil (7 cm diameter for in vivo; 4 cm diameter for ex 

vivo). Following 19F/1H flip angel calibration (as seen in Chapter 4), a simultaneous 2D 19F/1H 

balanced FFE (bFFE) imaging sequence was used with the following parameters: 140 mm FOV 

(cross-sectional images: 64 mm FOV), matrix 64×64, 3 mm slice thickness, exBW = 4 kHz 

centered on the single PFCE peak, pBW = 500 Hz, α = 25°, TR/TE = 4.198/2.10 ms, NSA = 500, 

5 min scan time. The low-resolution 1H images (not shown) were used to confirm kidney 

visualization and anatomical coregistration. For display, higher-resolution 1H images were 

acquired with a 2D TSE sequence and similar geometry: 140 mm FOV (cross-sectional image: 

64 mm FOV), matrix 256×256, 3 mm slice thickness, TR/TE = 500/27.8 ms, NSA = 4, 2 min 

scan time. The B1 field was mapped (on 1H) using an actual flip angle imaging (AFI) sequence 

with geometry matching the cross-sectional images: 64 mm FOV, matrix 64×64, 7 3-mm slices, 

1×1×3 mm resolution, α = 70°, 40 s scan time. Renal perfusion in the cortex and medulla was 

measured in the injured kidney by quantification of local PFC NP concentration via comparison 

to an external standard of known PFCE concentration (comprising 150 mM19F PFCE NP in 2% 

agar). 
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5.1.3 Results 

 Figure 5.1 demonstrates the feasibility to image renal perfusion in vivo with 19F MRI at 

3T. Fig. 5.1a shows the anatomical 1H image along the long-axis of the permanently occluded 

left kidney and the normally perfused right kidney. Functional 19F image (Fig. 5.1b) shows the 

blood pool PFCE signal in the same animal with kidney locations outlined in red (arrow: injured 

left kidney). The coregistered 1H (gray scale, Fig. 5.1c) and 19F (color coded in green) image 

shows no PFCE signal, reflecting no perfusion to the occluded left kidney, but normal perfusion 

to the right kidney. Additional 19F signal is observed in the vasculature as well as the liver and 

spleen, which are included in the mechanism by which the PFCE particles are cleared. 

 
Figure 5.1 (a) 1H TSE image of unilateral permanent occlusion of renal artery in rat left kidney. 
(b) 19F bFFE image of PFCE NP emulsion injected i.v. (3 ml/kg). Location of kidneys outlined 
in red (arrow: injured left kidney). (c) 19F image false-colored in green overlaid on 1H image. 
 

Figure 5.2 demonstrates the capability of 19F MRI to distinguish cortical (C) from 

medullary (M) renal perfusion, labeled in (Fig. 5.2a), in vivo at 3T (b-g). Compared to a normal 

control rat (b&c), the permanently occluded left kidney (d) shows no discernable signal, and the 

45-min injured kidney shows lower medullary signal (f) than its contralateral control (g). The in 

vivo AKI imaging is supported by ex vivo imaging that qualitatively shows lower medullary 

signal in the injured kidney (h) as compared to its contralateral control (i). 
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Figure 5.2 (a) 1H TSE image of ex vivo rat kidney cross-section showing cortex [C] and medulla 
[M]. In vivo rat kidney cross sections showing renal perfusion via 19F imaging of PFCE NP 
emulsion (3 ml/kg) in the following: (b, c) normal controls-L, R; (d, e) permanently occluded-L, 
contralateral control-R; (f, g) ischemia/reperfusion-L, contralateral control-R. (h, i) Ex vivo 19F 
imaging of ischemia/reperfusion-L, contralateral control-R. 

 

After feasibility of renal imaging with 19F MRI of PFC NPs at 3T was established with 

proof of concept in vivo and ex vivo results, the ability to quantitate renal perfusion was tested in 

an additional in vivo experiment. Figure 5.3 displays the results of this in vivo warm 

ischemia/reperfusion rat model of AKI. A 1H cross-sectional image of the rat (Fig. 5.3a) shows 

the left, injured kidney (with cortex, corticomedullary junction, and medulla delineable) and the 

external 19F standard outlined in red. 19F MR imaging with a 19F/1H bFFE sequence can be used 

to quantify circulating PFCE NPs (3 ml/kg for 5 min) (Fig. 5.3b); by comparison to the external 

19F PFCE standard (150 mM19F), lower renal perfusion is observed in the medulla (63.8 ± 10.9 

mM19F) than in the cortex (82.8 ± 6.9 mM19F) of the injured left kidney.  

Colocalization of the 19F signal in the kidney and external standard are confirmed by 

overlaying the 19F signal (green) on the 1H signal in Figure 5.3c, which shows additional 19F 

signal in the vasculature, spine, and likely a portion of the spleen. A B1 map of the same imaging 

slice (Fig. 5.3d) demonstrates the homogeneity of the RF field produced by the 19F/1H dual-tuned 

solenoid coil, with the percent actual/requested flip angle achieved in the 19F standard (95.2 ± 6.0 

%) nearly the same as in the kidney (95.9 ± 3.4 %), as measured by actual flip angle imaging 
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(AFI). As such, B1-mapping compensation (as presented in Chapter 4) was not needed here since 

it yielded the same quantitative results as the non-compensated image.  

 
Figure 5.3 (a) Cross-sectional 1H image of rat anatomy, showing left injured kidney in an 
ischemia/reperfusion model of AKI and external 19F standard outlined in red. (b) 19F MR image 
using simultaneous 19F/1H bFFE sequence of PFCE NP emulsion (3 ml/kg) circulating for 5 min. 
Compared to external PFCE standard (150 mM19F), 19F signal was quantified in the kidney, 
which showed lower renal perfusion in the medulla (63.8 ± 10.9 mM19F) than in the cortex (82.8 
± 6.9 mM19F). (c) 19F image overlaid in green on 1H image showing colocalization of standard 
and renal 19F signal. (d) B1 map using AFI (% actual/requested flip angle) demonstrating that 
nearly the same flip angle was achieved in the 19F standard (95.2 ± 6.0 %) as in the kidney (95.9 
± 3.4 %) with the 19F/1H dual-tuned solenoid coil. 
 

Although homogeneous in the plane transverse to the long axis of the coil, the RF field 

produced along the solenoid coil’s long axis (Figure 5.4) exhibits a characteristically 

inhomogeneous B1 field outside the well-defined field of view. This highlights the need for 

appropriate placement of the animal inside the solenoid coil, which is confirmed with a series of 

scout scans at the beginning of an imaging experiment. 

 
Figure 5.4 (a) Long-axis 1H image of rat anatomy, showing left injured kidney in an 
ischemia/reperfusion model of AKI outlined in red. (b) B1 map using AFI (% actual/requested 
flip angle) showing homogeneous RF field within field-of-view (FOV) (~ 5 cm long) of 19F/1H 
dual-tuned solenoid coil (c), which falls off outside coil FOV. 
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5.1.4 Discussion 

 These data confirm that renal perfusion can be imaged at clinical field strengths with 

simultaneous 19F/1H MRI of circulating PFC NPs. 19F MRI of injured kidneys qualitatively 

reveals reduced signal from PFC NPs in the medulla as compared with contralateral controls, 

denoting decreased local renal perfusion. Furthermore, qualitative in vivo and ex vivo imaging 

results are confirmed by quantitative 19F MRI, which show reduced medullary renal perfusion by 

comparison to an external 19F standard.  

Interestingly, the B1 field produced by this solenoid coil, when properly placed in the coil 

FOV, is quite homogeneous and did not necessitate B1-mapping compensation. Instead of 

invalidating the B1-mapping compensation technique of Chapter 4 (especially since the flip angle 

calibration technique was still necessary here), this suggests that small, homogeneous 19F/1H 

dual-tuned solenoid coils can be used for small animal experiments, as in this rat experiment, 

without the need for post-processing. However, when the imaging geometry requires a non-

solenoidal coil, as in human kidney imaging applications, this technique will be valuable to 

ensure quantitative 19F renal imaging results match those found in preclinical settings. 

 

5.1.5 Conclusion 

This study presented and validated a technique to use quantitative 19F MRI to detect 

accumulation of circulating PFC NPs as a means to measure local renal perfusion, which was 

importantly shown at 3T. The ability to noninvasively image and quantify renal perfusion at 

clinical field strengths affords many other potentially translatable applications of kidney imaging 

with 19F MRI in the clinic. Recent work by this group has demonstrated that direct targeting and 

pharmaceutical knockdown of activated thrombin at the sites of acute kidney injury with a 
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selective PFC NP-based thrombin inhibitor, PPACK (phenylalanine-proline-arginine-

chloromethylketone), improves kidney reperfusion and protects renal function after transient 

warm ischemia (Chen, Vemuri, Goette, et al. In review). Additionally, 19F MR has been shown to 

exploit variations in blood pool T1 relaxation to quantify renal oxygenation, because 19F T1 is 

inversely proportional to the local oxygen content (pO2) (7,10). Thus, 19F MR with PFC NP 

emulsions offers a promising opportunity to image and quantify renal perfusion in AKI on 

clinical MR scanners. 

 

5.2 Quantifying the Impact of Diet-Induced Atherosclerotic Plaque Erosions with 19F MRI 

5.2.1 Introduction 

Atherosclerosis is the leading cause of death in the developed world, manifesting high 

morbidity and mortality as a consequence of recurrent acute vascular events that are nearly 

unpredictable in individuals despite maximal medical therapy (11,12). Recent focus on the 

pathophysiology of atherosclerosis has shifted to the wide array of inflammatory cell types and 

necrotic debris that engage a host of prothrombotic signaling events resulting in acute focal 

clotting and vascular obstruction, unstable angina, and infarction (13,14). Pathological studies on 

victims of acute coronary syndromes (15,16) have suggested that these acute vascular events are 

a consequence of plaque erosions in 33% of cases, which are not necessarily associated with 

plaque ruptures (17,18).  

Disruption of the normally anti-thrombotic endothelial layer in an atherosclerotic vessel 

results in exposure of circulating blood elements to a reservoir of inflammatory cell types, lipids, 

cytokines, and coagulation factors that contribute to a pro-inflammatory hypercoagulable state 

(19). Early descriptions of the “vulnerable plaque” by Ambrose and others were expressed in 
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terms of a propensity to focal thrombosis rather than morphological or biochemical descriptors 

(20,21). Yet regardless of the definition, there are still no predictive data that delineate 

endothelial barrier disruption in patients with atherosclerosis and their related propensity to focal 

thrombosis, because no generally applicable noninvasive techniques are available for their 

detection prior to death and autopsy. 

 We recently reported the development of a long-term dietary regimen and an MR 

molecular imaging approach for the detection and quantification of plaques accumulating 

semipermeant PFC nanoparticles at 11.7 T, as a potential diagnostic surrogate for endothelial 

barrier disruption (22). 19F MRI allowed specific localization and quantification of the 

concentration of PFC NPs in endothelial barrier disrupted plaques in older rabbits ex vivo, as 

well as in human carotid endarterectomy samples that were incubated ex vivo with the PFC NPs. 

Our goal here is to quantify the presence of diet-induced erosions by passive accumulation of 

nontargeted PFC NP emulsion in an in vivo atherosclerotic animal model at clinical field 

strength. Accordingly, we show that atherosclerotic plaque erosions are detectable by 19F MRI at 

3T, suggesting a clinically translatable strategy for quantitative plaque staging in terms of 

endothelial barrier disruption. 

 

5.2.2 Methods 

5.2.2.1 Atherosclerotic Animal Model 

 All procedures were performed with approval from the Washington University Animal 

Studies Committee. Male New Zealand White rabbits were maintained on a Western diet, 

consisting of 0.25% cholesterol feed (Cat. 9433, TestDiet, St. Louis, MO) for 9 months. This 

hyperlipidemic rabbit model has been consistently shown to generate significant atherosclerotic 
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plaque burden throughout arterial vessels (23). For control images without plaque development, 

young rabbits were fed normal chow. Both control and atherosclerotic rabbits were anesthetized 

and given a 1 ml/kg intravenous bolus of nontargeted PFC nanoparticles 2-3 hours prior to 19F 

MRI. 

 

5.2.2.2 In Vivo 19F MR Molecular Imaging 

 The imaging study was performed on a 3T clinical whole-body scanner (Achieva, Philips 

Healthcare, The Netherlands), outfitted with a dual 19F/1H spectrometer system (24). A dual-

resonant 19F/1H surface RF coil was used (15×15 cm), which can either transmit or receive at 

both resonance frequencies simultaneously (25). Imaging was performed 3h post-injection of 1.0 

ml/kg PFC NP with perfluoro-15-crown-5-ether (PFCE; C10F20O5) core as previously described 

(26). To avoid signal contamination from inhaled fluorinated anesthesia, a xylazine (10mg/kg) / 

ketamine (85 mg/kg) i.m. injection was used for anesthesia induction, which was maintained 

with a ketamine i.v. infusion (18 mg/kg/hr). A 2D simultaneous 19F/1H bFFE sequence was used 

with the following parameters: FOV = 128×128 mm, matrix = 96×96, slice thickness = 20 mm, 

voxel size = 1.33×1.33×20 mm, α = 25°, exBW = 5 kHz centered on single PFCE peak, pBW = 

500 Hz, TR/TE = 14/1.72 ms, 1000 NSA, and a scanning time of 33 minutes.  

Employing the above technique without alteration, however, would yield 19F signal from 

both the PFC NP located in the plaque as well as the circulating blood pool. Although some 

protocols have been used to selectively eliminate certain 19F NMR peaks, such as chemical shift 

selective (CHESS) saturation (27), or to generate contrast by saturation recovery as in blood 

flow-enhanced-saturation-recovery (BESR) (28), no protocols were found to selectively 

eliminate 19F signal in flowing blood. Selective saturation of spins with the regional saturation 
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technique (REST) is typically used to eliminate 1H signal from fat surrounding a particular 

region of interest, and was investigated here as a method to eliminate 19F signal from the blood 

pool, leaving only 19F signal from PFC NPs in plaque erosions. Two parallel saturation bands 30-

mm in thickness both 10-mm proximal and distal to the imaging slice were applied to eliminate 

19F signal from the blood pool, using REST slabs at the PFCE resonance frequency, after testing 

to confirm REST slab effectiveness on 19F nuclei.  

The imaging slice was centered on the abdominal aorta, located 2-3 cm distal to the renal 

artery via an angiogram consisting of a multi-2D time-of-flight gradient echo sequence with the 

following parameters: FOV = 100×78 mm, matrix = 112×112, slice thickness = 2 mm, α = 60°, 

TR/TE = 13.54/4.06 ms, 4 NSA, and a scanning time of 3 minutes. After anatomical 

colocalization of 19F signal was confirmed with the simultaneously acquired 1H image, a high-

resolution gradient echo 1H image was used to display the overlaid 19F signal with the following 

parameters: FOV = 128×128 mm, matrix = 256×256, slice thickness = 4 mm, voxel size = 

0.5×0.5×4 mm, α = 35°, TR/TE = 25.16/7.02 ms, 23 NSA, and a scanning time of 2.5 minutes. 

 

5.2.2.3 Histology 

 Histological sections were created from samples of the fat-fed and control rabbit aortas, 

and analyzed for lipid content by light microscopy with an oil red O stain (29). Sections of rabbit 

aorta from hyperlipidemic and normal rabbits were frozen in O.C.T. media and cryosectioned 

into 8 µm slices, dried, and fixed in 10% formalin. After rinsing with 60% isopropanol, sections 

were stained with a freshly prepared 0.3% oil red O (Sigma-Aldrich, St. Louis, MO) working 

solution in isopropanol for 15 min, followed by another 60% isopropanol rinse (30). Nuclei were 

lightly stained with alum haematoxylin and rinsed with distilled water, and finally the sections 
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were mounted on slides with aqueous mountant. Microscopy was performed under 100X 

magnification. 

 

5.2.3 Results 

 Figure 5.5 shows the proof-of-concept experiment to refine the in vivo 19F MRI protocol 

in a control rabbit. Within three minutes of the 1 ml/kg nontargeted PFC NP emulsion injection 

(instead of the typical 2-3 hour circulation time), 19F MR imaging was performed to test the coil 

performance and effectiveness of REST slab saturation. Figure 5.5a shows a long-axis view of 

the rabbit, with 19F signal detectable in the aorta, liver, and kidney, confirmed with colocalization 

in the 19F/1H overlay image (Fig. 5.5c). A REST slab perpendicular to the imaging slice (Fig. 

5.5e) was used to saturate the 19F spins from the aorta and liver, which was successful, as seen in 

Figure 5.5b&d. However, since the saturation band was applied in the imaging slice, all 19F 

signal was eliminated from that portion of the image. Figure 5.6 displays resultant cross-

sectional 19F images using one parallel saturation band proximal to the imaging slice in the 

control rabbit, which successfully eliminates only aortic 19F signal from circulating PFC NPs. 
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Figure 5.5 19F MRI of 1 ml/kg PFC NP emulsion injected into normal chow rabbit 3 min prior to 
imaging. (a) 19F bFFE image without REST slab shows long-axis view of the rabbit, with 19F 
signal detectable in aorta, liver, and kidney, confirmed with colocalization in 19F/1H overlay 
image (c). A REST slab perpendicular to the imaging slice eliminates 19F signal from image (b & 
d). REST slab and imaging slice location (e). 
 

 
Figure 5.6 Cross-sectional 19F MR images without (a) and with (b) one parallel REST slab 
proximal to the imaging slice, which eliminates only aortic 19F signal from circulating PFC NPs, 
confirmed with 19F overlays (green) on 1H images (c & d). 
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Upon further investigation with other experimental iterations, it was determined that two 

30-mm thick REST slabs 10-mm proximal and distal to a cross-sectional imaging slice would 

provide optimum saturation of 19F signal from flowing aortic and venous blood, while allowing 

for sensitive 19F MR detection of PFC NPs in plaque. The position of these REST slabs can be 

seen in Figure 5.7, which also shows an overlay of the angiogram that was used for slice 

positioning in the control and atherosclerotic rabbits.  

 
Figure 5.7 Locations of saturation bands used to eliminate 19F signal from flowing blood 
proximal and distal to imaging slice (which continued beyond the image FOV). Aorta, shown in 
red, was imaged with a time-of-flight angiogram. [Figure reprinted from Palekar, Goette, et al. In 
preparation] 
 

To demonstrate the potential for in vivo delineation of endothelial barrier disruption with 

a clinical 3T MRI scanner, 19F MRI was performed on rabbits with or without diet-induced 

atherosclerotic plaque and erosions (Fig. 5.8). Proton images of abdominal cross-sections (Fig. 

5.8a&d) show the position of the aorta in rabbits fed normal chow and Western diet, 

respectively. Figure 5.8e shows the 19F MR signature after PFC NP circulation for 180 minutes 

in the hyperlipidemic rabbit. Compared to an external standard of PFCE NP in agar (150 
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mM19F), the aortic plaque 19F signal was quantified as 26.1 mM19F. Note the suppression of 

luminal blood 19F signal in normal chow rabbit (Fig. 5.8b) due to saturation band placement (Fig. 

5.7), indicating that no signal arises from the circulating PFC NP in the blood pool. Figure 

5.8c&f displays 19F/1H overlays showing the aortic and adjacent vena cava wall 19F signal 

(green) emanating from PFC NP permeating into arterial plaques, and interestingly into inflamed 

venous structures under the same hyperlipidemic drive (31,32). Figure 5.8c demonstrates that in 

a healthy rabbit, no measurable nanoparticle retention occurs in the aorta or vena cava. Figure 

5.8g&h shows representative oil red O stains of the previously imaged regions of interest 

showing aortic lipid-containing plaque elements in the normal chow rabbit and cholesterol fed 

rabbit, respectively. 

 
Figure 5.8 Cross-sectional 1H images of (a) normal chow rabbit and (d) cholesterol fed rabbit 
showing location of abdominal aorta (red box). 19F bFFE images of PFCE nanoparticle 19F signal 
in the region of interest for (b) normal chow rabbit and (e) cholesterol fed rabbit. Saturation 
bands proximal and distal to imaging slice eliminate 19F signal from blood. 19F signal (green) 
overlaid on 1H image showing 19F signal colocalization for the region of interest in a (c) normal 
chow rabbit and (f) cholesterol fed rabbit, demonstrating deposition of PFC-NP only in inflamed 
abdominal aorta (AA) and vena cava (VC). Representative oil red O stains of the imaged area 
showing plaque elements in (g) normal chow rabbit and (h) cholesterol fed rabbit. Scale bars 
denote 500 µm. [Figure reprinted from Palekar, Goette, et al. In preparation] 
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5.2.4 Discussion 

 These data show that atherosclerotic plaque erosions infiltrated by passive accumulation 

of nontargeted PFC NP emulsion are detectable by 19F MRI of at 3T. Two REST slabs, at a 

frequency matching that of the PFCE NPs, parallel to the cross-sectional imaging slice 

successfully eliminated 19F signal from the blood pool, allowing for the direct imaging and 

quantification of accumulated emulsion. Quantification was performed by comparison of the 

isolated 19F signal from the aortic plaque to an external standard of known concentration at the 

same distance away from the 19F/1H dual-tuned coil. Although the RF field was not mapped for 

this study, a B1-mapping compensation as presented in Chapter 4 would ensure accuracy and 

repeatability of these measurements over time and across sites. 

Note that the voxel size required for recording a sufficient 19F signal to enable fluorine 

MRI necessarily yields a comparatively low-resolution 19F image in the rabbit (Fig. 5.8b&e), as 

contrasted with the 1H image. However, the ability to image voxels containing PFC NP at 3T on 

a multispectral clinical scanner in rabbits suggests that this approach might be sufficient for 

human MRI where higher voxel fluorine concentrations might be achieved to enhance sensitivity 

due to the greater masses of tissues involved. The present results also suggest potential for 

adding value in the detection of individuals prone to thrombosis based on delineation of the 

"anatomical burden of atherosclerosis," as recently discussed by Mancini et al (33) as a predictor 

of vascular outcomes, with the use of non-invasive MRI quantification of biocompatible 

nanoparticles bearing a direct relationship to hypercoagulability. 
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5.2.5 Conclusion 

 This study demonstrated the potential to image atherosclerotic plaque erosions with 

accumulation of nontargeted PFC NP at clinical field strengths. Although further in vivo 

evaluation will be required to assess translational relevance of this approach, the in vivo 3T 19F 

MRI data obtained in this and other settings suggests feasibility (26,34). 
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Chapter 6. Imaging of Peripheral Arterial Disease in Amputated 

Human Lower Extremity Specimens 

  

As a step beyond preclinical imaging, but before a full clinical trial, human tissue 

specimens offer an opportunity to image in real-world applications, but without the need for 

extensive clinical trials. One such study was designed and approved, which involved the 

procurement of amputated human lower extremity specimens with peripheral arterial disease 

from the department of surgery. The work is presented here as a pilot project for human 

atherosclerosis imaging with nontargeted PFC NP at 3T, instead of in Chapter 5, because only 

one specimen was procured and imaged. The initial phantom and human specimen results, 

however, are promising and are a strong candidate for furthering the work of this thesis. 

 

6.1 Introduction 

 Peripheral arterial disease (PAD) has a total disease prevalence of up to 10% in the 

general population and in up to 20% of the US population over the age of 70 (1). Symptoms may 

range from mild cramping while walking to debilitating pain at rest. Current medical and 

surgical therapies for patients with PAD are aimed at temporizing the disease process and 

providing symptom relief. Unfortunately, many patients become debilitated with intractable pain 

or have to undergo lower extremity amputation (2). Nanotechnology may be able to fill the 

significant clinical need to diagnose atherosclerotic disease earlier and to halt or reverse disease 

progression by imaging and potentially treating the disease with nanoparticles (3). Our 

laboratory has made significant progress in the creation and testing of PFC nanoparticles specific 

to cardiovascular disease, with extensive work with in vitro and in vivo animal models, as well as 
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human vascular tissue specimens (4-9). While we have characterized the behavior in sections of 

tissue or plaques (10), the behavior, ability to image and therapeutic potential in intact human 

vasculature is not known. This study entails the perfusion of nanoparticles into intact vasculature 

in lower extremity amputation specimens. The specific particles used will include those we have 

studied in the past for cardiovascular imaging and for local thrombin inhibition (5). We 

hypothesize that these particles will localize to areas of atherosclerotic disease, will be able to be 

detected by 19F MRI, and therefore, may be useful in the diagnosis and targeted therapy of PAD. 

 

6.2 Methods 

 A phantom was first designed and constructed to mimic blood flow and imaging 

properties of a human lower leg specimen by encasing tubing (~ 3 mm diameter) within 2% agar 

inside of a 2 L bottle (Fig. 6.2b). The tubing was connected to an anesthesia infusion pump, 

rigged as a continuous circuit, with a flow rate of 600 ml/hr (10 ml/min) resulting in a flow 

velocity of approximately 8 cm/s in the tubing. 1H MR angiography (MRA) was performed by 

circulating 1% saline doped 5000:1 with Gd3+, and 19F MRI was performed with static PFCE NP 

emulsion in the tubing. This human specimen portion of the study was performed in accordance 

with protocols approved by the Departments of Surgery and Pathology at Washington University 

in St. Louis. Amputated human lower extremity specimens were obtained directly from the 

surgical operating room from patients who had undergone amputation for terminal peripheral 

vascular disease. The intact arterial vasculature of these limbs was cannulated and immediately 

perfused with a solution containing 1% saline, 4% sodium citrate, and 0.01% heparin, using the 

previously-mentioned portable pump system at 600 ml/hr. 
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 MR data were acquired on a 3T clinical whole-body scanner (Achieva, Philips 

Healthcare, Best, The Netherlands) with a dual 19F/1H spectrometer system and a dual-tuned 

transmit/receive semi-cylindrical RF coil (7×12 cm) (Fig. 6.2a). MRA was first performed on the 

flowing saline solution, using a multiple-2D time-of-flight (M2D TOF) sequence with a REST 

slab to eliminate return flow distal to the imaging slice, using the following parameters: 120 mm 

FOV, matrix 1123, 69 2-mm slices, α = 60°, TR/TE = 12.83/3.94 ms, NSA = 11, 3.3 min scan 

time. Maximum-intensity-projections (MIP) were reconstructed by the scanner software from the 

stack of MRA images in all three orthogonal imaging planes. A similar sequence was tested on 

the phantom with and without REST slabs. 

PFC NP emulsion with a perfluoro-15-crown-5-ether core and a PPACK antithrombotic 

agent was circulated at 2 ml/kg for 2 hours during 19F imaging. A simultaneous 19F/1H 3D 

balanced UTE-SSFP imaging sequence with Wong-type (11) 3D radial readout trajectory (as 

presented in Chapter 3) was used with 140 mm FOV, matrix 643, isotropic voxel Δx = 2.3 mm, 

exBW = 4 kHz centered on PFCE peak, pBW = 400 Hz, α = 30°, TR/TE = 2.32/0.13 ms, Nyquist 

radius = 0.23, NSA = 56, 35 min scan time. For the phantom experiment, a simultaneous 19F/1H 

2D bFFE sequence was also used with 140 mm FOV, matrix 128×128, 3 mm slice thickness, 

exBW = 4 kHz centered on the single PFCE peak, pBW = 500 Hz, α = 25°, TR/TE = 4.198/2.10 

ms, NSA = 500, 5 min scan time. The B1 field was mapped using an actual flip-angle imaging 

(AFI) sequence with: 140 mm FOV, 962 matrix, 15 4-mm slices, 1.4×1.4×0.6 mm resolution, α = 

70°, 2.8 min scan time. 
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6.3 Initial Results 

 Figure 6.1a shows T1-weighted 1H FFE coronal images of leg phantom. MR angiography 

(MRA) of phantom was performed with flowing (~ 8 cm/s) saline doped 5000:1 with Gd3+ using 

M2D TOF (multiple 2D, time-of-flight) 1H imaging with REST slab position (Fig. 6.1b). A 

MRA maximum intensity projection (MIP) and MIP overlay onto the 1H image without (Fig. 

6.1c&d) and with a REST slab (Fig. 6.1e&f) demonstrate the ability to saturate the spins in the 

return flow. 

 
Figure 6.1 (a) T1-weighted 1H FFE coronal image of leg phantom. Setup of MR angiography of 
phantom with flowing (~ 8 cm/s) saline doped 5000:1 with Gd3+ using M2D TOF (multiple 2D, 
time-of-flight) 1H imaging with REST slab position (b). MRA maximum intensity projection 
(MIP) and MIP overlay on 1H image without (c&d) and with a REST slab (e&f) saturating the 
spins in the return flow. 
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Figure 6.2a displays the semi-cylindrical 19F/1H dual-tuned coil, as well as the leg 

phantom, consisting of tubing encased within 2% agar in 2 L bottle (Fig. 6.2b). Actual flip angle 

imaging (% actual/requested flip angle) maps in the transverse (Fig. 6.2c) and sagittal (Fig. 6.2e) 

views with corresponding profile plots (Fig. 6.2d&f) demonstrate signal drop-off with increasing 

in distance away from the coil (illustrated in red). 

 
Figure 6.2 (a) Semi-cylindrical 19F/1H dual-tuned coil. (b) Leg phantom, consisting of tubing 
encased within 2% agar in 2 L bottle. Actual flip angle imaging (% actual/requested flip angle) 
maps in the transverse (c) and sagittal (e) views with corresponding profile plots (d & f) 
increasing in distance away from the coil (location illustrated in red). 
 

Figure 6.3 exhibits T1-weighted 1H FFE transverse (Fig. 6.3a) and coronal (Fig. 6.3b) 

images of the leg phantom. Simultaneous 19F/1H imaging of PFCE NP emulsion in leg phantom 

tubing is performed using a bFFE sequence in transverse (Fig. 6.3c) and coronal (Fig. 6.3d) 

planes. Note the banding artifacts from the coil and imaging protocol that are present in the 

coronal slice. Figure 6.3e show a 19F image using balanced UTE-SSFP sequence in the 

transverse plane, along with a coronal MIP (Fig. 6.3f). 
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Figure 6.3 T1-weighted 1H FFE transverse (a) and coronal (b) images of leg phantom. 
Simultaneous 19F/1H imaging of PFCE NP emulsion in leg phantom tubing (static) using bFFE 
sequence in transverse (c) and coronal (d) planes. Note: banding artifacts from coil are present in 
coronal slice. 19F image using balanced UTE-SSFP sequence in transverse plane (e), with 
coronal MIP (f). 
 

 Imaging of the human lower leg specimen is displayed in Figure 6.4, demonstrating MR 

angiography of the leg with flowing (600 ml/hr) saline using M2D TOF (multiple 2D, time-of-

flight) 1H imaging. Maximum intensity projections (MIP) in coronal (Fig. 6.4a), sagittal (Fig. 

6.4b), and transverse (Fig. 6.4c) planes are displayed. The MRA setup and slice orientation can 

be seen in Figure 6.4d. 
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Figure 6.4 MR angiography of leg with flowing (600 ml/hr) saline using M2D TOF (multiple 
2D, time-of-flight) 1H imaging. Maximum intensity projections (MIP) in coronal (a), sagittal (b), 
and transverse (c) planes. MRA setup and slice orientation (d). 
 

Figure 6.5a shows a high-resolution T1-weighted 1H FFE transverse image of the leg 

anatomy (arrow: cannulated artery). Figure 6.5b demonstrates 19F imaging of PFCE NP emulsion 

(~ 2 ml/kg) in the cannulated artery using a balanced UTE-SSFP sequence in the transverse 

plane.  

 
Figure 6.5 (a) High-resolution T1-weighted 1H FFE transverse image of leg anatomy (arrow: 
cannulated artery). (b) 19F imaging of PFCE NP emulsion (~ 2 ml/kg) in artery using balanced 
UTE-SSFP sequence in transverse plane. Other 19F signal from PFC NP emulsion that pooled 
outside the specimen due to leaking from an absence of a return circuit. 
 

6.4 Discussion 

 This proof-of-concept pilot study shows how a molecular imaging experiment goes from 

conception to phantom imaging to ultimate application in human tissue. Although more work is 
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required to optimize the protocol (i.e. a return circuit to circulate PFC NPs) and more specimens 

will be required to reach significance, this study offers a promising direction for future research. 
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Chapter 7. Conclusion 

 

 The objective of this thesis was to advance the state of the art for 19F MR molecular 

imaging of perfluorocarbon nanoparticle emulsion contrast agents. It is the assertion of this 

dissertation that this objective was achieved in the following ways: (1) new tools and techniques 

for 19F MR molecular imaging of PFC nanoparticles were created, (2) translatable procedures for 

absolute quantification of 19F nuclei with MR molecular imaging were developed, (3) the 

potential for clinical translation with ex vivo and in vivo preclinical experiments was evaluated. 

 

7.1 Summary of Major Findings 

  In Chapter 2, the underlying principles behind 19F NMR physics and image acquisition 

were explored, as well as the unique properties of 19F/1H dual-tuned RF coils. The NMR physics 

governing all magnetically susceptible nuclear spins was reviewed, and distinctions were drawn 

between 1H atoms and 19F nuclei. Then, resultant magnetic resonance properties of 19F spins, 

such as J-coupling, were examined, along with their effect on perfluorocarbon molecules like 

PFOB. The theory behind image acquisition with 19F/1H dual-tuned RF coils was then 

considered, which included a coupled resonator model with appropriate impedance matching. A 

new dual-tuned single-turn-solenoid RF coil was designed and constructed to open up new 

applications for simultaneous 19F/1H imaging. Experimental results with this new coil were then 

presented, including bench tests of electromagnetic performance, as well as phantom and in vivo 

imaging experiments. 

Chapter 3 introduced a new pulse sequence, termed “balanced UTE-SSFP”, for highly 

sensitive 19F MR imaging of agents with complex spectra. The NMR properties of molecules 
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with non-proton nuclei such as PFOB were discussed to understand their broad chemical shifts 

and complex relaxation characteristics. Then, the CF2 spectral peak signatures of PFOB were 

modeled, which quickly dephases and decays due to T2 relaxation, but can be utilized if acquired 

quickly. A new 3D 19F/1H pulse sequence was then designed and implemented to capture these 

CF2 resonances, which consists of 19F/1H RF excitation using FID acquisition at an ultra-short 

echo time (UTE) and a balanced steady-state free precession (SSFP) gradient scheme with a 

Wong-type 3D radial readout trajectory. The sensitivity of this new balanced UTE-SSFP pulse 

sequence was compared to existing sequences, and shown to have a sensitivity twofold better 

than other sequences. Finally, in vivo imaging of angiogenesis-targeted PFOB nanoparticles was 

demonstrated in a rabbit model of cancer on a clinical 3T scanner, to validate the translational 

potential for the new pulse sequence. 

In Chapter 4, a new approach to overcome challenges for accurate in vivo quantitative 19F 

MR molecular imaging was presented, which includes flip angle calibration between the relevant 

1H and 19F nuclei of interest, as well as B1-mapping compensation to offset expected RF 

inhomogeneities. A disparity in the required power settings of 19F/1H dual-tuned RF coils to 

achieve optimum flip angles for the 19F and 1H nuclei was reported and investigated. Then, an 

approach to remediate this difference in requisite power settings was proposed and tested, which 

involves a coil-specific, but spatially independent calibration ratio for each coil. This strategy 

permitted determination of the optimum power setting for the 19F nuclei by utilizing the abundant 

1H signal as a reference. A solution to inhomogeneous RF fields was proposed that entailed 

mapping the B1 field and performing an image-based correction using a signal model of the 

acquisition technique, which was tested in phantom and in vivo experiments in a rabbit model of 

cancer. 
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Chapter 5 examined two in vivo applications of 19F MR molecular imaging at 3T. First, a 

new technique to image renal perfusion in acute kidney injury (AKI) at clinically relevant field 

strengths was presented. A model of AKI was implemented in rats by ligation and occlusion of 

the left renal artery, followed by reperfusion. Renal perfusion was then imaged at 3T with a 

19F/1H dual-tuned coil after administration of PFC NPs via the tail vein. These in vivo results 

were confirmed with ex vivo imaging of excised kidneys. Next, the impact of diet-induced 

atherosclerotic plaque erosions was investigated with quantitative 19F MRI of a hyperlipidemic 

rabbit model in vivo. A method was introduced and tested to visualize nontargeted PFC 

nanoparticles that accumulate passively in the intimal plaque regions of the rabbit aorta as a 

consequence of endothelial erosions and vascular barrier disruption with the use of 19F MR 

molecular imaging combined with saturation bands to eliminate signal from the flowing blood 

pool, which allowed 19F imaging of the vessel wall itself. 

Chapter 6 investigated the potential use of 19F MR molecular imaging at 3T in the clinic 

with a pilot study of atherosclerosis imaging using nontargeted PFC NP in human tissue 

specimens. Initial imaging results in a phantom and an amputated human lower limb were 

presented, which show promise for the use of 19F imaging in human atherosclerosis imaging in 

the future. 

 

7.2 Future Work 

7.2.1 19F/1H Dual-Tuned RF Coils 

 As new applications of 19F MR molecular imaging of PFC NP emulsions arise, there are 

new opportunities to design and build specialized 19F/1H dual-tuned coils. One such opportunity 

arose during the renal imaging study (section 5.1), when a coil specific to the rat kidney anatomy 
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could have provided more 19F sensitivity and better image quality. This coil was designed and 

simulated in SPICE (Figure 7.1), and consisted of a unique transmit/receive switch that would 

allow for simultaneous 19F/1H imaging with whole-(rat)-body transmission using an outer coil 

element and focused receiving using an inner coil element. However, this design was not built, 

so this could be a future direction stemming from this work. 

  
Figure 7.1 Unique 19F/1H dual-tuned coil design (left) and circuit diagram (right) with active 
switching, allowing for transmission using an outer coil element and reception using an inner 
coil element. 
 

In addition to this design with different physics transmit/receive elements, the ability to 

perform the flip angle calibration and B1-mapping compensation presented in Chapter 4 could be 

evaluated with this type of coil, as well as other single-tuned coils. It was hypothesized that the 

flip angle calibration would require dual-tuned coils with the same physical element, and that the 

B1-mapping compensation could potentially work with single-tuned coils with the same physical 

coil elements. This hypothesis would be an interesting direction for future work. 

 

7.2.2 Human In Vivo Applications 

 The ultimate goal of this work, in addition to the aspiration of most all molecular imaging 

scientists, is to translate the imaging techniques tested in phantom and preclinical experiments 
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into the clinic. The potential applications of this work are numerous, and include cancer and 

atherosclerosis imaging with ανβ3-integrin targeted or nontargeted PFC NP emulsions (1). In 

addition, the renal imaging work offers a promising opportunity to image human kidneys in 

patients who have acute kidney disease, especially since no potentially harmful Gd-containing 

agents are necessary. Of course, however, all human applications require years of development 

and thorough testing of agents and protocols before they can be implemented in clinical trials. 
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