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Abstract 

Heart failure is one of the leading causes of death worldwide, with rising impact with the 

increasing ageing population. This is in sharp contrast with the limited and non-ideal 

therapies available. Approximately 50% of deaths from heart failure are sudden and 

unexpected, and presumably the consequence of lethal ventricular arrhythmias. Despite 

significant reduction of mortality from sudden cardiac death achieved by ICDs and drugs 

such as beta-blockers, there remains a large room for improving the survivability of heart 

failure patients by advancing our understanding of arrhythmogenesis from molecular level to 

multi-cellular tissue level. Another important aspect of heart failure is abnormal excitation-

contraction (EC) coupling and calcium handling, functional changes of which exert great 

impact on both arrhythmia vulnerability and pump failure. Advancing the understanding the 

remodeling of EC coupling and calcium handling might provide potential molecular and 

anatomical targets for clinical intervention.  

    In this dissertation, I first developed two optical imaging systems (both hardware and 

software) for quantifying the conduction, repolarization and excitation-contraction coupling. 

The first one is the panoramic imaging system for mapping the entire ventricular epicardium 

of a rabbit heart. The second one is the dual imaging system for simultaneous measurement 

of action potential and calcium transient.  

    Using the systems I developed, I conducted two rabbit studies to investigate the role 

electrical instability and structural heterogeneity in the induction and maintenance of 

arrhythmias. We first identified the importance of both dynamic instability and effective 
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tissue size in the spontaneous termination of arrhythmia in the normal rabbit heart. We then 

identified novel mechanism of how healed myocardial infarction promotes the induction of 

ventricular arrhythmia.  

    Finally, guided by the knowledge from the animal studies, I studied the failing human 

heart with the aim to advance our understanding of cardiac electrophysiology in human heart 

failure. We first demonstrated the transmural heterogeneity of EC coupling in nonfailing 

heart and identified potential mechanisms of electrical and mechanical dysfunction by 

quantifying the remodeling of EC coupling. We then studied the remodeling of conduction 

and repolarization with the aim to determine of the role of dispersion of repolarization and 

electrical instability in the induction of arrhythmia in human heart failure.  
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1. Introduction 

1.1 Background and Motivation 

Heart failure is one of the leading causes of death worldwide. It claims over 250,000 lives 

annually in the United States alone (2). Despite great basic and clinical research efforts and 

advances, the available therapies for heart failure remain limited and not ideal. This is largely 

due to the complex nature of the disease and difficulties in translating the knowledge from 

animal studies to patients with heart failure. It is therefore important to continue advancing 

our understanding of the underlying mechanisms leading to electrical and mechanical 

dysfunction in both animal models and heart failure patients for the development of device-

based and molecular therapies.  

    There are two important intertwined areas of research in heart failure. One area is the 

study of ventricular arrhythmia, which is responsible for the sudden cardiac death that 

accounts for approximately 50% of deaths from heart failure. Despite the significant 

reduction of mortality achieved by ICDs and non-antiarrhythmic drugs such as beta-blockers, 

it remains a big challenge to reverse the prognosis and cure the disease. A better 

understanding of the arrhythmic mechanism will help early diagnosis, target identification of 

intervention and hopefully lead to therapies that completely eliminate the trigger and 

substrate of the lethal ventricular arrhythmia.  

    Another important aspect of heart failure is the impaired excitation-contraction (EC) 

coupling and calcium handling, abnormal remodeling of which enhances both arrhythmia 
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vulnerability and pump failure. Molecular therapies targeting the key EC coupling proteins 

are under intensive basic and clinical investigation and might become an attractive 

therapeutic alternative in the near future. On the other hand, clinical translation is limited by 

our incomplete understanding of the molecular and functional remodeling of EC coupling in 

heart failure.  

    Basic studies of heart failure using animal models allow detailed and controlled 

mechanistic investigations of cardiac electrical and mechanical dysfunction. However, direct 

extrapolation of animal model results to patients are complicated not only by the great 

variations in normal cardiac electrophysiology in animal species, but also by the array of 

heart failure models used (including ischemic, pacing-induced, toxin-induced, genetic 

modification, pressure overload, and volume overload models). Therefore, any hypotheses 

derived from the animal models should be tested directly in human heart.  

1.2  Scope and Outline of the Dissertation 

In this dissertation, we aimed to first develop advanced optical imaging systems for the 

functional studies of cardiac electrophysiology, then to explore the role of conduction, 

repolarization, and EC coupling in the rabbits, and finally to test the obtained hypothesis 

directly in the humans with and without heart failure.   

    Chapter 2 will describe the development of panoramic optical imaging system. The dual 

optical imaging system will be briefly described in the Appendix B. Chapter 3 will present my 

first rabbit study exploring the mechanisms of arrhythmia maintenance and self-termination. 

Chapter 4 describes my second rabbit study exploring the arrhythmogenesis in the presence 

of healed myocardial infarction. Chapter 5 is a description of a human study to test the 
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hypothesis obtained from my animal studies in human heart failure. Before further 

experimental data are presented, Chapter 6 provides an overview of the remodeling of 

calcium handling in human heart failure. Afterwards, a study of EC coupling remodeling in 

failing human heart is presented in Chapter 7. Finally, summary and future direction are 

presented in Chapter 8.  
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2. Quantitative Panoramic Imaging of Epicardial 

Electrical Activity 

2.1 Abstract 

Fluorescent imaging with voltage- and/or calcium-sensitive dyes has revolutionized cardiac 

physiology research. Here we present improved panoramic imaging for optically mapping 

electrical activity from the entire epicardium of the Langendorff-perfused rabbit heart. 

Combined with reconstruction of the 3D heart surface, the functional data can be 

conveniently visualized on the realistic heart geometry. Methods to quantify the panoramic 

data set are introduced by first describing a simple approach to mesh the heart in regular grid 

form. The regular grid mesh provides substrate for easy translation of previously available 

non-linear dynamics methods for 2D array data. It also simplifies the unwrapping of curved 

three-dimensional surface to 2D surface for global epicardial visualization of the functional 

data. The translated quantification methods include activation maps (isochrones), phase 

maps, phase singularity and electric stimulus induced virtual electrode polarization (VEP) 

maps. We also adapt a method to calculate the conduction velocities on the global epicardial 

surface by taking the curvature of the heart surface into account.  

2.2  Introduction 

Transmembrane potential on the epicardial surface of the heart can be recorded optically 

(178). To maximize the field of view, panoramic optical imaging was introduced by Lin et al. 

(151) to map the entire ventricular epicardium from three different angles around the heart. 

Later, more efforts were devoted to this novel imaging methodology. Bray et al. (28) 
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proposed to reconstruct the heart geometry and texture map the optical signal onto the 

geometric surface for better visualization. Kay et al. (124) implemented panoramic optical 

mapping on swine hearts, and Rogers et al. (223, 224) applied this technology in research of 

ventricular fibrillation. More recently, our group (213) developed a panoramic imaging 

system using three photo-diode arrays (PDAs, Hamamatsu) with high temporal resolution 

for research on mechanisms of cardiac defibrillation. A sketch of this system is shown in 

Appendix A.  

    While panoramic imaging systems are being improved, the data analysis methods designed 

for panoramic data sets are still limited. One reason is that the available analysis tools do not 

easily lend themselves to the unstructured triangular mesh of the heart surface geometry. In 

this study, we employed a way to mesh the heart surface for translation of some common 

2D analysis methods. Additionally, conduction velocity vector fields were estimated from the 

panoramic data set for the first time.   

2.3 Methods 

2.3.1 Optical Mapping Experiments 

The panoramic optical mapping system and Langendorff-perfused rabbit heart have been 

described previously (213). Briefly, three photo-diode arrays facing the heart were spaced 

120 apart in the perfusion chamber. Light emitting diode arrays were used as excitation light 

source for the voltage-sensitive dye. This system provides high temporal resolution (5000 

frames/s) and sufficient spatial resolution (1.72mm without interpolation). The excitation-

contraction uncoupler blebbistatin (75) was used to suppress motion artifacts during optical 

recording. Thirty-six images of the heart were taken every 10 as the heart was rotated a full 
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360 at the end of the experiments for geometric reconstruction. Optical signals were 

registered with and texture-mapped onto the surface of the reconstructed geometry.  

 

Figure 1. Reconstruction of heart geometry. (A) Pillars used as the building block for the geometry. (B) 
Digital image of the heart and silhouette image. (C) Refinement of the pillars using the silhouette image. First 
the two end points of pillars were projected onto the images. The projections were then connected by a line 
which might intersect with the contour of the heart. The portions outside the contour were cropped off. And the 
corresponding part of the pillar was also cropped off. (D) The final reconstructed geometry of one heart.  
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2.3.2 Geometry Reconstruction and Registration 

The geometry of the rabbit heart was reconstructed through thirty-six digital images of the 

heart using Niem’s method(192). The procedures are illustrated in Fig. 1. A volume cube 

composed of pillar elements (Fig. 1A) was used as the first crude model of the heart for 

further refinement. The individual pillar was then projected consecutively into the digital 

images and tested for intersections with the object silhouettes (Fig. 1C). The part whose 

projection was outside the object silhouettes was carved off. By refining the volume cube 

with all the silhouettes in digital images, the geometry of the heart is reconstructed with 

sufficient details (Fig. 1D).  

 

Figure 2. Registration of the recorded fluorescent signal with the reconstructed geometric surface. The images in 
the first row are digital images of the heart at the image plane of the PDAs. Red dots in second-row images 
are projections of the surface points of reconstructed geometry of the heart. Good registrations were reached 
when the shape of projections match and overlap the heart in the digital images. 
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    The registration of the signal with the geometric surface is accomplished by first 

projecting the reconstructed geometry onto the image plane of every PDA and then 

matching the projection with region of the heart ―seen‖ by every PDA. Before each optical 

mapping study, a frosted glass was placed in the same location of image plane of every PDA 

and a digital image of the frosted glass was acquired. From these images the heart region for 

optical mapping from individual PDA was determined. Good registration is achieved when 

the projection (red dots in Fig. 2) perfectly matches the heart regions in the image plane of 

PDAs.   

2.3.3 Unwrapping Heart Surface into 2D Map 

Taking an approach similar to those used in cartography, the surface of the heart was 

―unwrapped‖ into a 2D flat map. This allows (1) global visualization of the data in a flat 

plane and (145) the direct utilization of well-established 2D analysis methods, such as 

isochronal mapping, estimation of conduction velocity vectors, and phase mapping.  

    The starting point of the unwrapping procedure is the identification of a large number of 

points (Fig. 3A) lying on the surface of the heart geometry; the coordinates of these points 

are obtained from geometric reconstruction described in the previous section. The 

geometrical center of the heart is found by averaging the coordinates of all the heart surface 

points. Then the ―longitude and latitude‖ of each point are calculated by transforming the 

Cartesian coordinates (x, y, z) to spherical coordinates (θ, φ, r), where θ, φ are the 

counterparts of longitude and latitude in the case of earth, and r  is the distance between that 

point and the geometric center of the heart. The magnitude of r is represented by color in 

Fig. 3B. By redrawing every point in the θ - φ plane, we unwrap the heart surface into a two-

dimensional ―map‖. Again, the color of each point in Fig. 3C represents the magnitude of r.  
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Figure 3. Meshing the heart surface. (A) Surface points obtained from geometric 3D reconstruction from 
multiple views. (B) Surface points coded with color which represents the distance to the geometric center of the 
heart. (C) Surface points unwrapped onto the (θ, φ) plane. (D) Linear interpolation of surface points into an 
evenly spaced (θ, φ) grid. (E) Meshed surface wrapped from interpolated grid. (F) Completed meshed surface. 

 

We then define an evenly spaced (θ, φ) grid, and interpolate r on this grid (Fig. 3D). Each 

grid element corresponds to a specific (θ, φ) pair. This procedure creates a 2D-grid 

representation of the heart surface which is compatible with many available data analysis 

tools. By connecting points with the same θ, and also points with the same φ in 3D space, we 

can generate a mesh (Figs. 3E&F) with lines mimicking the longitudes and latitudes in the 

Earth globe.  

    The resultant (θ, φ) plane is the 2D representation of the originally curved and 

topologically closed 3D surface. While it is a distorted representation of the curved heart 

surface, it provides an alternative way to visualize the epicardial activation, especially for 
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global visualization without the necessity of rotating the heart. More importantly, it 

transforms the data structure into grid form so that common 2D analysis methods can be 

easily applied. Furthermore, if correlation between electrical activity and anatomical features 

is essential, we can also texture-map the anatomy onto the (θ, φ) plane.  

2.3.4 Translate Data Analysis Methods 

A variety of techniques to visualize and analyze the data were implemented, including maps 

of transmembrane voltage (V), dV/dt, phase, phase singularities, activation times, 

conduction velocity, and electric stimulus induced VEP. Fluorescent signals were recorded 

from the PDAs. The signals were first normalized and then interpolated before being 

texture-mapped onto the surface.  

    Phase map is a unique tool for arrhythmic activity. It is based on phase plane analysis and 

facilitates visualization of wave fronts and wave breaks. Phase can be obtained using the 

method proposed by Bray et al. (29). Briefly, the phase  , ,t   is obtained by  

 
 

 

' , ,
, , arctan

' , ,

V t
t

H V t

 
  

 


  

 , 

where  ' , ,V t   is the transmembrane voltage processed by the proper orthogonal 

decomposition, and  ' , ,H V t     is the Hilbert transform of  ' , ,V t   and represents a 

signal with a 2  phase lag relative to  ' , ,V t  .  

    Rotors or wave breaks during cardiac fibrillation correspond to the phase singularities in 

the phase map. The calculation of phase singularity was implemented based on the method 
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described by Bray et al. (31). Briefly, the gradient of phase was first calculated along two 

dimensions of the θ - φ grid,  

[ , ] [ 1, ] [ , ];

[ , ] [ , 1] [ , ];

m n m n m n

m n m n m n





  

  

   

   
 

    Topological charge is then calculated using convolution between the gradients and 3×3 

kernel which mimic the line integral of phase gradients along a closed curve surrounding a 

point. That is,  

        where 

0 0 0 0 1 1

1 0 1 , 0 0 0

1 0 1 0 1 1

 

   
   

    
   
        

. A point is recognized 

as a phase singularity if its topological charge is 2 or 2 .   

    Activation time was obtained using   
max

, ,dV t dt  , from which the isochrones were 

generated.  

    All the methods described in this section can be first implemented in the (θ, φ) plane, and 

then wrapped back onto the 3D heart surface. It should be noted that we cannot directly 

apply this procedure to calculate the conduction velocity because distance is distorted in the 

(θ, φ) plane.  

2.3.5 Conduction Velocity on the 3D Surface 

Conduction velocity is an important parameter in determining the heart’s susceptibility to 

arrhythmia. With the knowledge of the epicardial geometry, we are able to quantify 

conduction velocity on the whole heart surface.  
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    One approach to calculate the conduction velocity in a 2D (x-y) plane has been proposed 

by Bayly et al. (11) Since the heart surface is essentially three dimensional, this method 

cannot be directly applied. We adapted this method and extended its usage in our panoramic 

data set. First, we define the activation time t as a function of θ and φ like 

  2 2,t a b c d e f            , where θ and φ are spherical coordinates and has 

been calculated when we mesh the heart. Coefficients a,b,…,f are obtained by polynomial 

fitting using (t, θ, φ) in the pre-defined time and space windows. ∂t/∂θ and ∂t/∂φ can then be 

calculated. The gradient of t is determined using 
1 1ˆ ˆ ˆ

sin

t t t
t r

r r r
 

  

  
   

  
. Since 

∇ t is zero along the direction normal to the surface, its projection on the direction normal 

to the surface should be equal to zero, that is,   

 0............
1 1ˆ ˆ ˆ ˆ 1

sin
n

t t t
r e

r r r
 

  


   
   

   
 

where ˆ
ne  is the unit vector normal to the surface, and ̂  ̂  r̂  are unit vectors in 

spherical coordinates. Since we know ∂t/∂θ and ∂t/∂φ, we can get ∂t/∂r by solving equation 

(1).  

    We then define two orthogonal axes, x and y, which are tangent to the surface; and 

calculate ∂t/∂x and ∂t/∂y by 
t r

r x
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.  ∂t/∂x and ∂t/∂y fully represent ∇ t because 

∇ t is tangent to the surface. Finally we can calculate the conduction velocity (CV) using 
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Simulations were performed to test the accuracy of this method on a meshed sphere 

which mimics the geometry of the heart. The mesh density of the sphere is set to be close to 

that of the reconstructed heart surface. A propagating wave is initiated from one surface 

point of the sphere, and radially propagates out on the surface at constant speed (Fig. 4A). 

The propagating wave with square cross sections was generated by the function

    , , , sin rf x y z t sign wt k r  , where r is the surface distance away from the wave 

initiation site. The surface distance is the shortest distance between two points on the 

surface. The exact speed of propagation is / rw k . The performance of this method was 

tested by calculating the deviation of the estimated from the exact propagation speed.  

 

Figure 4. Simulation of pacing in a spherical surface. (A) Activation map in the sphere surface by point 
stimulation at the location noted by an asterisk. The wave propagates radially in a constant speed on the 
surface. (B) Dependence of the error of conduction velocity on the spatial and temporal “windows” of the 
fitting region. Suppose one active point, named as center point, is active at Ta. Other active points, which are 
active at Ti, are included in fitting if their distance from the center point is less than Δr, and |Ti-Ta|< Δt.  
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2.4 Results 

2.4.1 Function Together with Anatomy 

Figure 5 shows the unwrapped anatomy, transmembrane voltage (V), dV/dt, phase map, and 

phase singularity in the (θ, φ) plane. Figure 5A is the anatomy map, which is obtained by first 

texture mapping the digital images of anatomy onto the reconstructed geometric surface and 

then unwrapping it into a flat plane. This unwrapped anatomy provides a unique way to 

correlate the functional data to the anatomy. Figure 5B is a snapshot of transmembrane 

voltage 230ms after initiation of ventricular fibrillation. The value is normalized into -

85~15mV from the recorded fluorescent signal. Figure 5C is a snapshot of normalized 

dV/dt, where the largest values correspond to the wave fronts. Figure 5D is the phase map, 

with phase zero corresponding to the wave front. Figure 5E shows the distribution of phase 

singularities. Blue dots are the rotors of clockwise rotation of wavefront, while red dots are 

the rotors of counterclockwise rotation.  

    While the unwrapped view provides a global sense of wave propagation on the 

epicardium, data visualization on the reconstructed heart geometry provide an undistorted 

image of the electrical activation. It also allows for easy registration with the anatomy in the 

digital images at different angles. Figure 6 includes all the data presentations on the 

reconstructed geometry.  

By mapping the whole ventricle, we are able to globally track the positions of phase 

singularities, which reveal the dynamics of the ventricular arrhythmia. The first image of 

Figure 7 shows the combined image of anatomy and trajectories of phase singularities during 
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a certain time period of self-terminated arrhythmia. The phase singularity starts from point A, 

then travels to points B, C, D, and finally hits the AV boundary and terminates. The  

 

Figure 5. Unwrapped presentations. (A) Unwrapped epicardium obtained from digital photographs of the 
heart. The dashed line represents the septum. (B) Unwrapped epicardial transmembrane voltage (V) during 
ventricular fibrillation. The data is transformed to -85mV to 15mV range from normalized fluorescent 
signal. (C) Unwrapped dV/dt map with value normalized to 0~1. (D) Unwrapped phase map. (E) Phase 
singularities. Blue dots represent clockwise rotation while red dots represent counterclockwise rotation.  
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Figure 6. Wrapped presentations. Specific notations are present in the figure. The time interval of isochrones 
is 2ms. 

 

 

Figure 7. Trajectories of phase singularity (PS). The left-most panel is the trajectories of phase singularities 
on the anatomy. The phase maps corresponding to four phase singularities (A, B, C and D) are also shown. 
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remaining images of Fig. 7 show the corresponding phase map when the phase singularity is 

at individual point A, B, C and D. Overall, the ability of global visualization of phase 

singularities allows the investigation of the nonlinear dynamics of the ventricular arrhythmia 

especially when the phase singularity is meandering. Furthermore, the ability to correlate 

phase singularity with anatomy provides the potentials to investigate the relationship 

between phase singularity and structural heterogeneities. 

 

Figure 8. Shock-induced virtual electrode (VEP) map. (A) Anterior view. (B) Posterior view. 

 

    Shock-induced VEP is an important mechanism for success and failure of defibrillations 

(40, 64, 66). Figure 8 shows the VEP induced by far field shock at approximately 85% of 

APD80. It is already known (64) that shock-induced VEP could generate higher VEP 

gradient at both base and apex than region in between from anterior view (Fig. 8A), thus 

creating condition for reentry. With the panoramic setup, not only is the anterior VEP 



18 

 

pattern visible, but also the posterior (Fig. 8B). In Fig. 8B, the posterior view shows higher 

gradient in the base and apex also, similar to what we saw from the anterior. Overall there 

are four phase singularities created, two in the anterior and two in the posterior. This creates 

a condition for quatrefoil reentry. Since reentry is unstable in a young normal rabbit heart, 

the arrhythmia self-terminates after one rotation.  

2.4.2 Conduction Velocity in Simulations and Epicardial Pacing 

In the simulation, radially propagating waves were constructed on a meshed sphere to mimic 

epicardial pacing in the heart surface. We optimized the velocity estimation method and 

tested its validity while changing the size of the spatiotemporal region (the ―time window‖ 

and ―space window‖) used for polynomial fitting.  

    We found that estimates of conduction velocity depend weakly on analysis parameters, 

such as the extents in space and time of the local polynomial fit. Results from simulations 

with resolution and surface parameters similar to experiment, were used to choose 

parameters for analysis of experimental data. In the simulation, deviations from exact speed 

can be tracked. The deviations first decrease, and then increase as the spatial extent of fitting 

region increases. Figure 4B shows the normalized error of conduction velocity at different 

spatial and temporal extent of the fitting region. Values for the space and time windows that 

correspond to the lowest error in simulation were chosen. Note that this non-ideal 

dependence of velocity estimates on fitting parameters would be reduced if temporal and 

spatial resolution of activation times were increased significantly. In summary, we found the 

values of time window and space window that produced the lowest errors in our simulations, 

and used them for our experimental data set.  
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The accuracy of the conduction velocity estimation depends on the polynomial fitting of 

activation time  ,t   . Polynomial fitting eliminates the inaccuracy due to the noise or 

insufficient resolution by its smoothing effect. This explains why the normalized error 

initially decreases when the space window increases in Figure 4B. On the other hand, the 

error increases when  ,t    is not well fitted. This happens when large space window 

and/or time window are chosen. This is evident from Figure 4B that the normalized error 

starts to increase monotonically as space window becomes larger than certain value. 

 

Figure 9. Conduction velocity in epicardium during pacing. (A) Conduction velocity vectors after epicardial 
pacing. The activation isochrones has an interval of 2ms. (B) Anatomy and snapshot of transmembrane 
voltage. (C) Conduction velocity versus angles of conduction velocity. The angle of zero corresponds to the 
direction pointing to right. Angle increases in the counterclockwise manner. The yellow bar represents the 
condition when curvature of the surface is accounted for during the calculation of conduction velocity, while 
green bar is the opposite case. 
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    Figure 9A shows result of application of our method during epicardial pacing. The 

isochrones and conduction velocity vectors (red arrows) are shown. A snapshot of 

transmembrane voltage and anatomy are in Fig. 9B. Because of anisotropic conductance, the 

conduction velocity distribution over various angles has a sinusoidal shape (yellow bars in 

Fig. 9C). The peak value corresponds to the conduction velocity parallel to fibers; and the 

minimum value corresponds to the conduction velocity perpendicular to the fiber direction.  

    Figure 9C also shows the effect of surface curvature on the conduction velocity. If we 

simplify the calculation by assuming that all signals come from a focal plane, the resultant 

conduction velocity distribution will be like that in green bars. The green bars are generally 

shorter than the yellow bar, especially at the peaks. This means that the conduction velocity 

is underestimated when the velocity component normal to the plane is ignored. Since peak 

conduction velocity appears more on the edges of the field of view, where surface curves 

away, the deviations of peak conduction velocity is usually more significant. We quantified 

the effects of curvature in four hearts on the ratio of conduction velocity along longitudinal 

and transverse direction. The ratio is 2.45 ± 0.78 when no curvature is considered, different 

from the ratio 2.98 ± 0.84 when curvature is considered. The ratio is underestimated 

approximately by 17.8% if the curvature is not considered.  

This method can also be applied to reentrant activity during arrhythmia, i.e. ventricular 

tachycardia, when the conduction is mostly parallel to the epicardium. Figure 10 shows the 

conduction velocity vectors during stable reentrant spiral waves around a line of block.  
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Figure 10. Epicardial conduction velocity during reentry. Wave propagates around a line of block which is 
represented by clustered isochrones. The interval of activation isochrones is 2ms. 

 

2.5 Discussion 

In this paper, we presented methods to quantify the panoramic imaging data sets which have 

not been systematically presented before. We first transformed the mapping data from three 

PDAs into one 2D array, and then implemented quantitative analysis including dV/dt map, 

phase map, activation map and electric stimulus induced VEP map. We also adapted the 

method of Bayly et al. (11) for conduction velocity to the panoramic data sets. This method 

is tested on simulated, radially-propagating waves on a spherical surface. 

    Rogers (223) introduced anther framework for analysis of panoramic data sets by allowing 

locating phase singularity in an unstructured triangular mesh. This method is more general 

and works on the complex geometry. Our method, on the other hand, takes advantage of 
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simple geometry of the ventricles and simplicity of grid data set. It is simpler to implement 

and computationally less expensive.  

    All the methods mentioned in this paper can be implemented within a reasonable time 

period during experiment. Once silhouette images are obtained, a low resolution (e.g. 2mm) 

heart surface geometry can be obtained in about 20 seconds on a Windows PC (Pentium (R) 

4, 3.19 GHz CPU, 1.99 GB of RAM) using Matlab 7.0.1 (The Mathworks, Natick, MA).  

Higher resolution (e.g. 1mm) reconstruction takes about 75 seconds.  The user must 

manually register the heart surface to each PDA field of view, which takes approximately 

5~10 minutes.  Then, the heart geometry can be saved and used for texture mapping.  This 

fast and convenient method allows us to reconstruct and analyze every heart mapped in a 

reasonable amount of time.  

    The panoramic imaging setup optically mapped almost all the regions of the ventricles and 

parts of the atria. It should be noted that the spatial resolution at the tip of the apex can be 

low since the bottom curves away from every PDA. For the same reason, the spatial 

resolution is low at the edges of the field of view of every PDA. However, signals generated 

by these side regions are always simultaneously captured by two PDAs. As a result, sufficient 

resolution and signal to noise ratio can be restored from signals recorded from two PDAs 

(213).  

    Epicardial conduction velocities can be quantified on nearly the entire ventricular 

epicardium. However, caution needs to be taken to interpret the conduction velocity because 

conduction is three-dimensional in nature. The apparent epicardial conduction velocity is an 
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accurate representation of actual conduction velocity only when the wavefront propagates 

nearly parallel to the epicardial surface.  

    The analysis of panoramic mapping data introduced here enhances our ability to 

investigate the electrophysiology and non-linear dynamics of the heart. This provides an 

improved global perspective from which to investigate the cardiac conduction in normal and 

diseased conditions.  
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3. The Role Of Dynamic Instability And 

Wavelength In Arrhythmia Maintenance Revealed 

By Panoramic Optical Imaging With Blebbistatin 

Versus 2,3-Butanedione Monoxime 

3.1 Abstract 

Unlike other excitation-contraction uncouplers, blebbistatin has few electrophysiological side 

effects, and has gained increasing acceptance as an excitation-contraction uncoupler in 

optical mapping experiments. However, the possible role of blebbistatin in ventricular 

arrhythmia has hitherto been unknown. Furthermore, experiments with blebbistatin and 2,3-

butanedione monoxime (BDM) offer an opportunity to assess the contribution of dynamic 

instability and wavelength of impulse propagation to the induction and maintenance of 

ventricular arrhythmia.  

    Recordings of monophasic action potentials were used to assess effects of blebbistatin in 

Langendorff-perfused rabbit hearts (n = 5). Additionally, panoramic optical mapping 

experiments were conducted in rabbit hearts (n = 7) which were sequentially perfused with 

BDM, then washed out, and subsequently perfused with blebbistatin. The susceptibility to 

arrhythmia was investigated using shock-on-T protocol. We found that (i) application of 

blebbistatin did not change action potential duration (APD) restitution; (ii) in contrast to 

blebbistatin, BDM flattened APD restitution curve and reduced the wavelength; (iii) 

incidence of sustained arrhythmia was much lower under blebbistatin than under BDM 

(2/123 vs. 23/99). While arrhythmias under BDM were able to stabilize, the arrhythmias 

under blebbistatin were unstable and terminated spontaneously. 
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    In conclusion, the lower susceptibility to arrhythmia under blebbistatin than under BDM 

indicates that blebbistatin has less effects on arrhythmia dynamics. A steep restitution slope 

under blebbistatin is associated with higher dynamic instability, manifested by the higher 

incidence of not only wave breaks but also wave extinctions. This relatively high dynamic 

instability leads to the self-termination of arrhythmia, because of the sufficiently long 

wavelength under blebbistatin.   

3.2 Introduction 

Optical imaging techniques have been widely used to study the cardiac electrophysiology in 

species ranging from embryonic zebrafish to human beings (68, 89, 126). Optical mapping 

offers several important advantages over alternative mapping techniques: easily adjustable 

high spatial resolution, no physical contact with the tissue, absence of stimulation artifacts, 

and the capacity to simultaneously map different physiological parameters (68). Despite 

these advantages, optical mapping suffers from the need to utilize excitation-contraction (EC) 

uncouplers in order to remove motion artifacts from the optically recorded signals. 

Unfortunately, most of these uncouplers have electrophysiological side effects. For example, 

a popular inexpensive uncoupler 2,3-butanedione monoxime (BDM) results in changes of 

the action potential (AP) and conduction velocity (CV) in a species-dependant manner by 

affecting the ion channels, Ca2+ handling, and gap junctional coupling (46, 158, 226, 251, 

258). Another EC uncoupler, Cytochalasin D, also changes AP morphology (8, 22, 39) by 

affecting various ion channels (170, 188, 219, 244).  
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    Our group has previously shown that blebbistatin could completely eliminate mechanical 

contraction without appreciable electrophysiological effects on AP morphology, ECG 

parameters, conduction, and refractoriness in the rabbit heart (76). Following this 

introduction of blebbistatin as an EC uncoupler (76), it has increasingly gained popularity in 

cardiac electrophysiological studies. As of today, it was successfully applied in optical 

mapping studies of the hearts from embryonic zebrafish (120), mouse (61), rabbit (76, 176, 

191), dog (78, 129), horse (80), and the human beings (73, 74, 89, 159).  

    Both BDM and cytochalasin D were found to affect the vulnerability to ventricular 

arrhythmias (39) and the pattern of ventricular fibrillation (110, 143, 221). However, the 

effect of blebbistatin on ventricular arrhythmia is unknown. The aim of this study was to 

determine the vulnerability and characteristics of shock-on-T-induced arrhythmias under 

blebbistatin compared with BDM. Since shock-induced arrhythmia typically self-terminates 

in normal rabbit hearts in vivo (167) and in vitro (39) in the absence of EC uncoupler, we 

hypothesized that sustainability of shock-induced arrhythmia will be lower under blebbistatin 

versus BDM.  

3.3 Methods 

3.3.1 Experimental protocols 

New Zealand White rabbit hearts (n = 12, 4 months old) were Langendorff-perfused with 

oxygenated 37 °C Tyrode’s solution as previously described (161, 214). In the first set of 

experiments (n = 5), we recorded monophasic action potentials (MAP) using a MAP 

electrode (Harvard Apparatus, Holliston, MA) under control condition (i.e., no drug) and 

under 10µM blebbistatin. We applied the S1S2 ventricular pacing protocol consisting of an 
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initial train of 15 S1 stimuli with an S1-S1 interval of 300ms followed by a single S2 stimulus. 

We gradually decreased the S1-S2 interval from 400ms to the refractory period. Pacing 

current was adjusted to twice the pacing threshold. Continuous MAP recordings were 

maintained under both conditions. No voltage-sensitive dye was used in this part of the 

study. 

  In the second set of experiments (n = 7), the heart was stained with di-4-ANEPPS 

(20~40μL of 1.25mg/ml, Invitrogen, Carlsbad, CA). The heart was perfused in the following 

sequence: (1) Tyrode’s solution with 15mM BDM (Fisher Scientific, Hampton, NH); (2) 

Tyrode’s solution alone to wash out the BDM; (3) Tyrode’s solution with 10µM blebbistatin 

(Tocris Bioscience, Ellisville, MO). The S1S2 pacing protocol and vulnerability grid 

measurement for shock-induced arrhythmia were conducted under both BDM and 

blebbistatin.  

    The same S1S2 pacing protocol used in the first experimental set was applied for the 

quantification of APD restitution and CV restitution. The bipolar pacing electrode was 

placed epicardially in the center of the anterior view of the heart to allow the measurement 

of the CV in both longitudinal and transverse directions of the fiber orientation, as described 

earlier (162, 214).  

    The vulnerability to shock-induced arrhythmia was quantified using the vulnerability grid 

(70, 148), in which inducibility of arrhythmia was determined for varying shock strengths (2 - 

14 V/cm) and varying coupling intervals spanning the T-wave (equivalently, 70% - 140% of 

the averaged APD). Uniform far-field square monophasic shocks (10ms in duration) were 

delivered via two mesh electrodes on opposite sides of the heart (63, 148) after a train of 15 
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stimuli with S1-S1 interval of 300 ms and varying coupling interval between the last S1 and 

the shock. The arrhythmia was  categorized as "nonsustained" if it lasted >6 beats but ≤1 

min after the shock. The arrhythmia was defined as ―sustained‖ if it lasted for >1 min, which 

always required a defibrillation shock for termination. To avoid excessive shocks applied to 

the heart, the vulnerability grid was tested for just one polarity configuration where the mesh 

electrode facing the right ventricle (RV) was the cathode and the mesh facing the left 

ventricle (LV) was the anode.  

3.3.2 Optical imaging system 

The panoramic optical imaging system could record the optical AP from almost the entire 

ventricular epicardium of the rabbit heart (149, 222). Details of the panoramic imaging 

system and corresponding data analysis methods have been described earlier (162, 214). This 

system, including three photo-diode arrays (PDAs), optically maps the action potentials at 

three different angles (120° apart). In order to combine the data from three PDAs into one 

unified surface, the epicardial three-dimensional surface of every experimented rabbit heart 

was first reconstructed from 36  silhouette images of that heart. The optical signals were 

then registered onto the reconstructed surface. After that, various parameters, including 

APD, CV, wavelength (APD × CV) and wave propagation, were quantified and can be 

visualized on the reconstructed surface. To characterize Winfree’s ―elbow room‖ needed for 

reentry to sustain, we introduce a new factor - wavelength surface area, computed as the 

product of longitudinal and transverse wavelengths. 

3.3.3 Data analysis 

The APD was measured at 80% repolarization (APD80). The longitudinal and transverse 

CVs were measured near the pacing site at the epicardial surface. The phase was calculated 
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by Bray's method (30) and was used to visualize the wavefronts and phase singularities 

during reentrant arrhythmias. Comparisons were made between results under blebbistatin 

and BDM, as well as between control and blebbistatin. The Student’s paired t-test was used 

to determine the level of statistical significance. P<0.05 was considered statistically 

significant. Values were given as means ± S.D. 

3.2 Results 

3.2.1 Monophasic action potential with and without blebbistatin 

To determine the effects of blebbistatin on the AP morphology and APD, the MAP were 

recorded before and after the application of blebbistatin under multiple pacing rates. We did 

not detect significant differences between the control and blebbistatin in the measurement of 

APD. Figure 11 shows representative MAP recordings (Fig.11A) and the statistical summary 

(Fig.11B). The overlap between the MAP recordings and ECG for the control (blue color) 

and blebbistatin (red color) in Fig.11A indicates no change of AP morphology after the 

application of blebbistatin. This is further demonstrated in the summary in Fig.11B, which 

showed no significant effects of blebbistatin on APD.  
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Figure 11. Monophasic action potential (MAP) recordings. (A) Representative MAP and ECG recordings 
for S1S2 = 300ms and 200ms. (B) Summary of MAP durations at 80% repolarization (MAPD80) at 
various S1S2s. MAPD80 was not significantly changed under blebbistatin.  

 

3.2.2 Vulnerability to shock-induced ventricular tachyarrhythmia   

Figure 12 shows the arrhythmic incidence at different shock strengths and various coupling 

intervals under BDM (Fig.12A-Left) and blebbistatin (Fig.12A-Right). In total, 99 shocks 

were applied under BDM and 123 shocks were applied under blebbistatin in all hearts. The 

overall incidence of arrhythmia (including both nonsustained and sustained arrhythmia) was 

38/99 under BDM and 33/123 under blebbistation (Fig.12A-Top row). On average, the 

incidence was significantly  lower under blebbistatin (27±12% under blebbistatin versus 

51±20% under BDM, p = 0.046, Fig.12B ). Furthermore, the total incidence of sustained 

arrhythmia is 23/99 under BDM and 2/123 under blebbistatin (Fig.12A-Bottom row). That is, 

the average probability of sustained arrhythmia under blebbistatin was drastically lower than 

under BDM (1±4% under blebbistatin versus 30±14% under BDM, p = 0.001, Fig.12B). 
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Figure 12. Vulnerability grid and incidence of shock-induced arrhythmia. (A) Vulnerability grid with the 
inducibility of arrhythmia shown for various shock strengths and coupling intervals for both BDM (left, n=7) 
and blebbistatin (right, n=7). The top row shows the incidence of nonsustained and sustained arrhythmia 
combined. The bottom row shows the incidence of sustained arrhythmia only. It can be seen that the 
inducibility of sustained arrhythmia is significantly lower under blebbistatin (23/99 under BDM vs. 2/123 
under blebbistatin). (B) Summary of the incidence of shock-induced arrhythmia. 
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Figure 13. Induction of arrhythimia by a T-wave shock. (A) Representative action potential recordings with 
shock marked by the orange stripe. (B) The virtual electrode polarization pattern induced by a 10 V/cm 
shock at a coupling interval of 160ms. The red color indicates the positive polarity (virtual cathode); the blue 
color indicates the negative polarity (virtual anode). (C) Post-shock activation snapshots with the end of shock 
indicated by 0ms. The shock-induced wavefront initiates from the border between positive and negative virtual 
electrode polarization and propagates in the form of figure-of-8 reentry.  
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3.2.3 Induction of arrhythmia 

The induction of arrhythmias was similar under both conditions and was due to a well-

established mechanism termed virtual electrode-induced phase singularity (65). Figure 13 

shows a representative example of arrhythmia induction (under BDM). Essentially, the far-

field shocks produced spatially heterogeneous virtual electrode polarizations at different 

regions of the heart (Fig.13A&B), consisting of a virtual anode (blue) and a virtual cathode 

(red). Fig.13C shows a sequence of snapshots of activation wavefronts (dark red) over the 

course of arrhythmia induction, starting immediately after the shock. A wavefront of 

excitation arises at the boundary between the virtual cathode and the virtual anode via the 

break-excitation mechanism (see emerging red area in the snapshots for 10ms and 30ms at 

Fig.13C). Then it spreads to the de-excited region of the virtual anode, leading to the 

initiation of reentrant arrhythmia maintained by two phase singularities with opposite 

topological charges. Phase singularities are seen in Fig.13C as points where all phases, 

represented by different colors, converge.   

3.2.4 Stabilization of arrhythmia under BDM 

In the beginning of the shock-induced reentrant arrhythmia, the phase singularity (or 

singularities) of the reentry was (were) mostly not stable and were meandering under both 

BDM and blebbistatin. Differing from the arrhythmia under blebbistatin, phase singularities 

under BDM were much more likely to stabilize and stop meandering. This difference is 

indicated by the dramatic difference in the incidence of sustained arrhythmia (Fig.12). 

Fig.14A shows an example, with the snapshots of wavefronts (dark red) showing the steps 

of the stabilization of the reentry under BDM. In the first beat, there are multiple lines of 

conduction blocks, indicated by the crowded isochrones. The number of conduction blocks 
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is reduced to one in the 2nd beat since we know that the left side connects with the right 

side in that unwrapped map. After that, this line of conduction block starts to shrink until 

the reentry has stabilized (3rd to 8th beats). 

 

Figure 14. Stabilization and anchoring of reentry under BDM. (A) Stabilization of a meandering wave to 
stable reentry under BDM. Activation maps of eight consecutive beats before the stabilization of the single 
reentry. The activation is from blue to red with 2 ms interval between two neighboring isochrones. (B) 
Summery of the anchoring sites of stable reentry under BDM. Three different views from left to right: view 
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toward RV free wall, anterior view of the heart with left anterior descending coronary artery sketched, view 
toward LV free wall. The anchoring sites for each heart are shown with each color corresponding to one heart. 
The area of RV insertion to the septum is shown in gray color in those three views as well as in a cross-
section shown on the right.  

 

We observed 17 morphologies of stable reentries, with each having a single or double phase 

singularity (or singularities) at the epicardium under BDM. The locations of all phase 

singularities from seven hearts are summarized in Figure 14B at three different views 

(anterior, RV, and LV). It can be seen that the anchoring of reentry was geometrically 

asymmetrical, with the highest probability at the gray area in Fig.14B, where RV inserts into 

the septum and LV. Less frequently, the reentry anchored at the apex or at the RV freewall 

(Fig.14B). Interestingly, no epicardial anchoring at the LV was observed.  

3.2.5 Unstable maintenance and self-termination under blebbistatin 

Despite a similar mechanism of arrhythmogenesis, the dynamic maintenance of shock-

induced arrhythmia was different under blebbistatin. Similar to the in vivo observations (167), 

more than 98% of the shock-induced arrhythmia self-terminated under blebbistatin within 

one minute. Wave breaks and wave collisions were common, and the wave propagation was 

unstable with beat-to-beat variations under blebbistatin. Figure 15 shows snapshots of wave 

propagations under BDM (Fig.15A) and blebbistatin (Fig.15B) in the same heart. It can be 

seen that the reentry under both conditions anchors at the apex of the heart. Despite the 

similarity in the anchoring site, the regularity or stability of reentry differs under these two 

conditions. The bottom-right plot in each panel shows the activation sequence of all the 

recorded epicardial sites over the course of three consecutive beats. That is, each green dot 

in this panel indicates the activation of a particular mesh element (y-axis) at a particular time 
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(x-axis). The repeatability of the activation pattern for every beat shown in Fig.15A-Bottom 

right indicates the regular and stable conduction under BDM. On the other hand, small local 

conduction blocks (arrows in Fig.15B) were frequent under blebbistatin. Fig.15B-Bottom right 

shows the beat-to-beat variation in propagation. The holes within the green stripes in 

Fig.15B-Bottom right indicate the local wave breaks and subsequent wave extinctions (or 

collisions) . While the stable reentry under BDM was terminated by a defibrillation shock, 

the unstable reentry under blebbistatin self-terminated during the intermission between two 

consecutive data acquisitions. 

  Figure 16 is an example of self-termination of an unstable figure-of-8 reentry under 

blebbistatin, which was anchored at two phase singularities (white dots). Fig. 16A is an AP 

recording over the course of pacing, shock, arrhythmia, and self-termination. Fig. 16B shows 

phase maps (in polar view with the apex in the center) indicating the two phase singularities 

with opposite topological charges induced by the shock. It is clear that the locations of phase 

singularities gradually changed over time. The reentry self-terminated due to the collision 

and annihilation of two phase singularities in the last beat. Fig.16C-E are several other 

snapshots of activation in the same recording, and shows two characteristics of reentry 

frequently observed under blebbistatin but not under BDM. One characteristics is the ―stop-

sign phenomenon‖, during which the wavefront appears to stop for a while and then 

continues from where it stopped (Fig.16C). This behavior is also evident from the temporal 

gaps between activations from all mapped areas on the epicardium (Fig.16D). Another 

characteristics is that a breakthrough often appears ahead of the wavefront (Fig.16E). Both 

characteristics suggest the presence of transmural activations. 
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Figure 15. The stability of reentrant arrhythmia under BDM (A) and blebbistatin (B) in one heart. A 
representative action potential recording is shown on the top of each panel. Phase maps within a cycle of 
reentry are shown in each panel with the view toward the apex of the heart. The white arrows shown in the 
phase maps for blebbistatin point out transient conduction blocks, which were frequently observed under 
blebbistatin. It can be seen that both reentries anchor at the apex of the heart. While the reentry last under 
BDM, the reentry terminated spontaneously under blebbistatin. The activation pattern of three consecutive 
beats is plotted on the bottom right of each panel, with each green dot indicating an activation of every 
individual element of the meshed surface. The beat-to-beat variation is evident from the plot for blebbistatin.  

 

3.2.6 APD and CV restitution and wavelength 

Fig.17A shows representative optical AP recordings, and Fig.17C-top summarizes APD 

restitution curves under blebbistatin and BDM. Fig.17B shows representative activation 

maps, and Fig.17C-middle shows CV restitution curves along both longitudinal and transverse 

directions under blebbistatin and BDM. As expected, the APD was shorter and the APD 

restitution curve was flatter under BDM; the CV was slower under BDM in both directions. 

Wavelength was computed for longitudinal and transverse conduction and was significantly 

longer under blebbistatin than BDM (Fig.17C-bottom). At different cycle lengths, the 

wavelength surface area, which is a simple estimation of area needed for sustaining reentry, 

ranged from 19~34 cm2 under BDM and 39~60 cm2 under blebbistatin. The average 

ventricular epicardial surface area was 39.4±4.9 cm2 (n=7), which was well above the 

wavelength surface area of BDM but close to or below the wavelength surface area of 

blebbistatin.  
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Figure 16. Self-termination of reentry under blebbistatin. (A) A representative action potential recording. Shock is 

indicated by the orange stripe. (B) Phase maps from 12 consecutive beats (time points indicated by the asterisks in 
panel A) with phase singularity indicated by white dots. The map is shown in polar form with apex in the center. It is 
evident that the pivots of figure-of-8 reentry meanders overtime. The collision of the two phase singularities with opposite 
topological charge led to the termination of arrhythmia. (C) Wave front and tail collision. Three consecutive phase maps 
shows that the wavefront stops for 45 ms before it continues. (D) The activation plot with each dot corresponding to an 
activation of one pixel. Each pixel is coded with an unique color. The y-axis is the cycle length. The gray stripes 
indicate the gap where no epicardial activation is observed and correspond to the wave front and tail collision seen in the 
panel C. (E) Breakthrough excitation ahead of the wavefront. Three consecutive phase maps are shown with the 
breakthrough excitation (indicated by the white asterisk) visible on the second one. 
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Figure 17. Comparison of action potential duration (APD) restitution, conduction velocity (CV) restitution, and 

wavelength (APD × CV) between blebbistatin and BDM. (A) Representative AP recordings under blebbistatin (red) 
and BDM (62) at various S1S2 coupling intervals. (B) Representative activation maps under BDM and blebbistatin 
for both anterior and posterior view of the heart. (C) .(C) APD, CV and wavelength at varying cycle lengths. CV and 
Wavelength are shown for both longitudinal and transverse conduction. It can be seen that BDM significantly decreases 
APD and flattens APD restitution, significantly reduces CV and wavelength on both longitudinal and transverse 
direction 
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3.3 Discussion  

In this study, we investigated the effect of blebbistatin on the vulnerability to shock-induced 

ventricular arrhythmias in the normal rabbit heart. We found that (1) APD restitution under 

blebbistatin was not significantly different from the control condition, (2) BDM significantly 

reduced APD, CV, and wavelength; and flattened APD restitution, and (3) the sustainability 

to shock-induced arrhythmia was much lower under blebbistatin (2/123) than under BDM 

(23/99). These results showed that blebbistatin did not affect the vulnerability to shock-

induced arrhythmia and suggested blebbistatin as a superior EC uncoupler to BDM in the 

arrhythmia studies using optical mapping. In addition, both dynamic instability and 

wavelength appear to contribute to the self-termination of arrhythmia under blebbistatin, 

and therefore explain the lower susceptibility to sustaining arrhythmia under blebbistatin 

than under BDM. 

3.3.1 Effect of blebbistatin on electrophysiology 

It has been previously shown that the ventricular arrhythmia in the normal rabbit heart is 

prone to self-termination (12, 39, 167). The resistance to sustained arrhythmia under 

blebbistatin observed in this study suggests the preservation of normal electrophysiology by 

blebbistatin. We did not observe any changes of ventricular AP morphology under 

blebbistatin, which is consistent with other studies in the rabbit heart (76, 125), mouse heart 

(61), embryonic zebrafish heart (120), and equine heart (80). Taken together, these results 

suggest insignificant electrophysiological side effects of blebbistatin.  

    While blebbistatin appears to be a ―clean‖ drug for the normal heart, whether blebbistatin 

changes the electrophysiology in the diseased heart remains to be determined. Blebbistatin 
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inhibits myosin ATPase and thus prevents a significant amount of ATP from being 

consumed by mechanical contractions, making it available to electrogenic pumps. This effect 

could enhance the metabolic state of excitation and calcium handling in a diseased heart. 

Baudenbacher et al. (10) showed that Ca2+ desensitization of myofilaments by blebbistatin 

could reduce the arrhythmia in transgenic mice expressing troponin-T mutations. By 

inhibiting the contraction, blebbistatin could also prevent sarcolemmal rupture and cell death 

by reducing the mechanical stress occurring at the onset of reperfusion after ischemia (87, 

116). These protective effects of blebbistatin suggest that caution should be taken in 

applying blebbistatin when studying diseased heart. 

3.3.2 Functional reentry in the rabbit heart 

Since there is no structural obstacle (such as myocardial infarction scar) in these normal 

rabbit hearts, the anchoring of reentry under BDM is achieved at the normal anatomical 

structures. This observation suggest that an abnormal structure is not necessary for 

sustaining the arrhythmia. The observed asymmetrical distribution of anchoring points of 

stable reentrant arrhythmia (Fig.14B) indicates that the anterior RV insertion area (gray area 

in Fig.14B) is the most favorable area for anchoring. A computer simulation study by Park et 

al. (199) also identified the anterior RV insertion area as a distinct substrate for arrhythmia. 

In their whole rabbit ventricular model with global reduction of Na+ currents (199), they 

found that the RV insertion area was more susceptible to arrhythmia because of a source-

sink mismatch in the RV insertion area (199).   

    These results suggest that global electrical remodeling does not necessarily lead to a 

spatially homogeneous increase in the arrhythmia susceptibility. Washout of BDM and 

application of blebbistatin in our study almost completely abolished the maintenance of 
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ventricular arrhythmia, suggesting that idiopathic ventricular tachycardia with normal heart 

structure might respond well with pharmacological intervention, despite the presence of 

several preferential anchoring points of reentry.  

3.3.3 Dynamic instability under blebbistatin 

According to the computer simulations, steep APD restitution is associated with enhanced 

dynamic instability (36, 193, 216, 218). This association could partially explain the more 

unstable wave dynamics under blebbistatin than under BDM. The instability of wave 

propagation under blebbistatin was reflected by frequent wave breaks and wave extinctions. 

The dynamic instability is further reflected by the frequent occurrence of breakthrough 

excitation ahead of the reentrant wavefront under blebbistatin (Fig.16E). This type of 

breakthrough excitation on the surface of 3D tissue has been previously observed in an 

elegant computer simulation study of scroll wave dynamics by Qu et al. (216), who 

demonstrated correlation between the breakthrough activity with the strong dynamic 

instability. In a 3D tissue like the rabbit heart in this study, a scroll wave faces excitable tissue 

not only in its own layer but also in the neighboring layers. According to the simulation (216), 

the strong dynamic instability and fiber orientations could result in different speed of spiral 

waves at different layers of the tissue. When the spiral wave at a depth (or intramural 

conduction) is faster than the spiral wave on the surface, an upward propagation towards the 

epicardial surface could occur and thus produce the breakthrough excitation on the 

epicardial surface. The "first stop, and then continue" wavefront (Fig.16C) observed under 

blebbistatin also suggests the presence of intramural conduction connecting the epicardial 

activation gaps (Fig.16D).  
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3.3.4 Dynamic instability and self-termination of arrhythmia 

Dynamic instability alone is not sufficient to prevent the maintenance of arrhythmias. Mines 

(175) and Garrey (88) postulated that the wavelength in comparison to tissue size is the 

major determinant of reentry maintenance. Numerous studies confirmed Mines and Garrey's 

theory. For example, Qu et al.'s simulation indicated that whether dynamic instability 

promotes or prevents the maintenance of arrhythmia depends on the effective tissue size, 

which is determined by the wavelength and the actual tissue size (215). This is supported by 

the experimental findings by Harada et al. (102). Compared with the control, severe 

hypothermia did not change the incidence of sustained arrhythmia despite a dramatic 

increase of dynamic instability, because severe hypothermia decreased the wavelength (102). 

On the other hand, mild hypothermia did not alter the wavelength while it increased the 

dynamic instability, resulting in a significant reduction in the incidence of sustained 

arrhythmia (102). The limited tissue size versus longer wavelength under blebbistatin was 

evident from the wavefront and waveback collisions (Fig.16).  

    It is difficult to quantify the individual contribution of dynamic instability and wavelength 

in the maintenance of arrhythmia, because the experimental approach does not have the 

luxury to finely tweak the dynamic instability and effective tissue size in three dimensions as 

the computer simulations so elegantly do. Nevertheless, our results indicate the beneficial 

role of dynamic instability and wavelength combined in preventing the maintenance of 

arrhythmia.   
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3.4 Limitation 

There are limitations in this study. First, we could not measure the true wavelength during 

the arrhythmia, because the apparent epicardial CV might not reflect the true CV and the 

baseline (minimum of the signal) might not represent the resting state. Nevertheless, the 

wavelength surface area, which was calculated from wavelengths during pacing, works 

surprisingly well in predicting the sustainability of arrhythmia in this study. The second 

limitation is that reentry dynamics are only studied in the normal heart in this study. Caution 

is needed to extrapolate the results to diseased hearts. Third, the vulnerability of the heart to 

arrhythmia between the control condition and under blebbistatin are not compared in this 

study. However, low arrhythmia vulnerability is expected in the normal heart and has been 

demonstrated previously both in vivo and ex vivo (39, 167). Finally, we cannot exclude the 

effects of edema, which might develop in the mechanically silent preparations. 

  In conclusion, the low incidence of sustained arrhythmia and the preserved APD resitution 

under blebbistatin suggest blebbistatin as a superior EC uncoupler to BDM. The 

combination of dynamic instability and wavelength facilitates the spontaneous termination 

of arrhythmia.   
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4. The Susceptibility to Alternans is Enhanced in a 

Rabbit Model of Chronic Myocardial Infarction 

4.1 Abstract 

Repolarization alternans plays an important role in the genesis of deadly arrhythmia, 

especially in patients with chronic myocardial infarction. It remains elusive how the healed 

myocardial infarct contribute to the repolarization alternans and dispersion of repolarization.  

    In this study, we studied inducibility and dynamics of action potential duration (APD) 

alternans using optical mapping in a rabbit model of healed myocardial infarction 

(>3months, n=9) and control rabbit hearts (n=9). We observed that (1) spatially concordant 

APD alternans occurred at a significantly slower heart rate in infarcted heart with control 

hearts (294 ± 27 bpm vs. 369 ± 25 bpm, P < 0.001), (2) the pacing rate threshold for 

spatially discordant alternans also significantly decreased in the infarcted heart compared 

with control heart (366 ± 47 bpm vs. 458 ± 53 bpm, P = 0.014), (3) increased alternans 

susceptibility is closely associated with the infarct border zone, (4) dynamic APD restitution 

curve could not predict and always overestimate the pacing rate at the onset of APD 

alternans in the infarcted heart, (5) conduction velocity alternans proceeded the occurrence 

of spatially discordant alternans in the infarcted heart, and (6) there existed a distinct pattern 

spatially discordant alternans in the form of small islands in the infarct border zone.  

    In conclusions, healed myocardial infarction promotes repolarization alternans especially 

in the infarct border zone. The subsequent increase of  dispersion of repolarization could 

provide the substrate for the induction of ventricular arrhythmia.  
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4.2 Introduction 

Sudden cardiac death is a leading cause of death and is most commonly associated with 

ventricular arrhythmias (225). Healed myocardial infarction is present in approximately half 

of sudden cardiac death cases presenting ventricular fibrillation (238). Despite the prevalence 

of healed myocardial infarction in the cardiac arrest victims, there has been little study of 

arrhythmia mechanism in the setting of a healed myocardial scar. Better understanding of 

mechanism could facilitate the development of anti-arrhythmic therapies such as the novel 

gene therapy (227).  

    Several clinical  studies have identified reentry as the main mechanism for the ventricular 

tachycardia in the chronic phase of myocardial infarction (51, 261, 262). Using optical 

imaging technique, we have previously found that the maintenance of shock-induced 

ventricular tachycardia is closely associated the anchoring of mother rotors at the scar (148, 

149). Ohara et al. showed that increased dynamic instability in the healed infarct border zone 

lead to a higher wavelet density which sustained the ventricular fibrillation (196). Compared 

with the knowledge of arrhythmia maintenance in the heart with healed myocardial 

infarction, the induction of arrhythmia is less known.  

    T-wave alternans, reflecting the beat-to-beat repolarization alternation, was found 

clinically to be a predictive marker for sudden cardiac death in patients with healed 

myocardial infarction (115, 189). Narayan et al. (189) found that T-wave alternans was 

spatially correlated with the scar in those patients, suggesting infarct border zone as the 

substrate of the repolarization alternans. Optical mapping technique has greatly enhanced 

the mechanistic understanding of T-wave alternans (or repolarization alternans) and its 
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linkage to the induction of arrhythmia (44, 176, 200, 201, 212, 265). Pastore et al. (200) nicely 

demonstrated that close correspondence between T-wave alternans and alternans of action 

potentials duration (APD) in normal rabbit heart. They also showed that spatially discordant 

alternans (APD alternans being out of phase between neighboring cells) lead to conduction 

block against steep gradient of repolarization and thus the initiation of reentrant arrhythmia 

(200).  

    In this study, we aimed to use optical mapping technique to explore the susceptibility to 

repolarization alternans in a rabbit model of healed myocardial infarction (>3 months), to 

determine the spatial correlation between alternans-susceptible regions and the scar, and to 

examine the contribution of APD restitution and conduction velocity alternans in the APD 

alternans in producing the APD alternans.  

4.3 Methods 

The experimental protocol was approved by the Institutional Animal Care and Use 

Committee of Washington University in St. Louis. New Zealand White rabbits (n=18) of 

either sex were used in this study. Half of the rabbits (n=9) underwent in vivo survival 

surgery as previously described (148, 149) to create chronic MI via ligation of a descending 

branch of the left circumflex artery. These rabbits were allowed to heal for at least 3 months 

before optical mapping experiments. The other half of the rabbits (n=9) were not subject to 

the surgery and were used as controls.  

    Rabbits were injected intravenously with sodium pentobarbital (50 mg/kg) and 1000-2000 

U heparin. Hearts were quickly excised, and then Langendorff-perfused with 37°C Tyrodes' 

solution (in mmol/l: 128.2 mM NaCl, 4.7 mM KCl, 1.19 NaH2PO4, 1.05 mM MgCl2, 1.3 mM 
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CaCl2, 20.0 mM NaHCO3, and 11.1 mM glucose, and gassed with 95% O2-5% CO2; 

pH=7.35±0.05) at an arterial pressure of 60–70 mmHg. The excitation-contraction 

uncoupler blebbistatin (10μM; TOCRIS) was added to the perfusate to suppress motion 

artifacts in optical recordings (76). The heart was stained with voltage sensitive dye RH237 

(Invitrogen, CA) for optical action potential (AP) measurement. Fluorescent signals were 

recorded by CMOS camera (SciMedia, CA).  

    Dynamic restitution protocol was conducted starting at a basic cycle length (BCL) of 

300ms. The heart was paced at the apical side of the right ventricle and optically mapped 

from the anterior surface.  The pacing interval was gradually decreased until the heart cannot 

be paced or arrhythmia was induced. APD was quantified at the 80% repolarization (APD80) 

at each pixel of the camera. Dynamic APD restitution curves were constructed by plotting 

APD80 against the preceding diastolic interval (DI) for each pacing rate. DI was measured 

by the time from the 80% repolarization to the upstroke of next AP. The restitution curve 

was constructed by fitting the measurement using a single exponential (i.e.,         

           , where  ,   and   were coefficients and obtained by nonlinear least-square fits) 

or using a biexponential function (i.e.,                             

           , where  ,   ,   ,   ,and    were coefficients and obtained by nonlinear 

least-square fits).  

    APD alternans was measured by ΔAPD (i.e, the difference in APD80 between two 

consecutive beats). The threshold of APD alternans was defined as the lowest pacing rate at 

which at least 10% of mapped region has APD alternans (i.e., ΔAPD ≥ 4ms). The spatial 

organization of APD alternans will be presented by alternans maps with positive values 
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color-coded by red, negative values color-coded by blue, and zero by white. Sometimes 

APD80 of certain region cannot be quantified during alternans if the upstroke occurs before 

the decline of the previous action potential to 80% repolarization. In such cases, this region 

was color-coded by the saturated colors (deep red or blue) in the alternans map. Activation 

cycle length (CL) is measured based on the time duration between two consecutive AP 

upstrokes at each pixel. Activation CL alternans was also measured to reveal the conduction 

alternans. It should be noted that activation CL is different from the BCL.  

    Comparison was made between infarction group and control group. Levels of significance 

were determined by a Student’s paired or unpaired t-test, where p<0.05 was considered 

statistically significant. Values were given as means ± S.D.   

4.4 Result 

4.4.1 Pacing Rate Threshold for APD alternans 

To quantify the susceptibility to the repolarization alternnas, the pacing rate threshold for 

spatially concordant APD alternans and spatially discordant APD alternans were quantified. 

The threshold for the concordant alternans was significantly decreased in the infarction 

group relative to control (294 ± 27 bpm vs. 369 ± 25 bpm, P < 0.001). Similarly, the 

threshold for discordant alternans was also significantly decreased in the infarction group 

(366 ± 47 bpm vs. 458 ± 53 bpm, P = 0.014). Figure 18A shows APD alternans maps of an 

infracted heart (top row) and a control heart (bottom row) at multiple BCLs. Note that APD 

alternans starts to appear at a much slower BCL in the infarcted heart (210 ms or 286 bpm) 

compared with the control heart (150 ms or 400 bpm, at which more arrhythmogenic 

spatially discordant alternans started to occur in the infarcted heart). Figure 18B shows 
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sample optical AP traces from these two hearts at the BCL of 150 ms, where the APD 

alternans was much more evident in the recording from infarcted heart compared with the 

control.  

 

Figure 18. APD alternans maps and traces in control and in a heart with healed myocardial infarction. (A) APD 

alternans maps at basic cycle length (BCL) of 210 ms, 200 ms, 180 ms and 150 ms in a heart with healed 
myocardial infarction (top row) and in control heart (bottom row). The myocardial infarct (MI) is indicated in the a 
phtograph of the heart. The color indicates ΔAPD of two consecutive beats. (B) Sample action potential recordings 
from these two hearts at the BCL of 150 ms. It is evident that the alternans of action potential duration is much 
stronger in the recording from the infarcted heart (left) compared to the control (right). 

 

    The susceptibility to repolarization alternans was not spatially homogeneous in both 

infarction and control group. In the control hearts, the APD alternans consistently appeared 

first in the left ventricle (Figure 19-top row with the solid black line indicating the location 

of left anterior descending coronary artery). In comparison, in the hearts with healed 

myocardial infarction, APD alternans appeared first in the infarct adjacent area or infarct 
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border zone (Figure 19-bottom row), suggesting myocytes close to the scar were more 

susceptible to repolarization alternans.   

 

Figure 19. APD alternans map at the onset of alternans in 6 control hearts (CT1-CT6, top row) and 6 infarcted 

hearts (MI1-MI6, bottom row). The left anterior descending coronary artery (LAD) is indicated in every map. The 
scar area is circled by the dashed line. 

 

4.4.2 Dynamic APD restitution and APD alternans 

APD alternans occurs when the pacing rate is faster than a critical pacing rate. According to 

the restitution hypothesis, APD restitution curve determines the dynamic instability and 

predicts the critical pacing rate for APD alternans when its slope is equal to one. To test 

whether the APD restitution curve could precisely predict the actual critical pacing rate, we 

compared the predicted value with the measured value.  

    We found that the predicted pacing rate threshold for APD alternans was always higher 

than the actual pacing rate threshold for APD alternans, especially in the infarcted heart. 

Figure 20A is a representative plot with measurement of APDs and DIs of two consecutive 

beats (circles and squares) at multiple pacing rates from an infarcted heart. The circle and 

square are connected by a green line if they were neighboring beats from the same recording. 
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The increased APD alternans at increasing pacing rate is evident by the gradual separation of 

the paired circle and square toward the bottom left corner of the plot. A close examination 

of the plot revealed that the separation of paired circle and square (or the incidence of APD 

alternans) starts at the cycle length of 230 ms (261 bpm).  

 

Figure 20. Inaccurate prediction of action potential duration (APD) alternans by dynamic APD restitution curve. 

(A) Dynamic APD restitution curve reconstructed from action potential recordings from one pixel of an infarcted heart. 
Measurement of APD and diastolic interval of two consecutive beats (red circle and blue square connected by a green 
line in the plot) at 13 different cycle lengths are plotted. The black line is the APD restitution curve reconstructed by a 
biexponential fitting. The purple line of slope -1 intersect with the APD restitution curve (black line) at a point where 
the slope is 1, and predict the alternans to occur beyond the cycle length of ~162ms. This prediction is much lower than 
the maximum of measured cycle length for APD alternans where the paired circle and square are not overlapped in the 
plot (230ms). (B) Summery of the measured APD alternans cycle length threshold minus predicted threshold from 
APD restitution curves reconstructed by a single exponential function (left) and a biexponential function. 

 

    Dynamic APD restitution curve (black line in Fig. 20A) was reconstructed by fitting the 

measurements (circles and squares) using a biexponential function in Fig. 20A. The slope of 

this dynamic restitution curve is equal to one at the crossing of the black line and the pink 
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line (slope of -1) in Fig. 20A, which is supposed to predict the onset of APD alternans at the 

cycle length of 162 ms (370 bpm) according to the restitution hypothesis. Compared with 

the measured threshold for APD alternans at 261 bpm, the predicted pacing rate threshold 

for the onset of APD alternans is much higher than the actual value, suggesting APD 

restitution alone does not predict the APD alternans. And this is especially true in the 

infarction group (Fig. 20B).  

4.4.3 Spatially Discordant Alternans 

 

Figure 21. Dynamics of spatially discordant alternans. (A) APD alternans maps at multiple basic cycle lengths from 

a control heart (top row) and a heart with healed myocardial infarction (MI, bottom row). Pacing sites are indicated by 
a pulse square in each map. The myocardial infarct is circled by a black dashed line. The white nodal line (without 
APD alternans) separates regions of opposite sequence of APD alternans. (B) Representative action potential 
recordings from three locations a, b and c (indicated in the bottom-left map in panel A) from the infarcted heart. 

 

Since dynamics of the nodal lines were shown to reflect the underlying mechanism of the 

formation of spatially discordant alternans (111), we quantified the movement of nodal lines 

in both control and infarcted heart. The top row in Figure 21A is a representative example 

of the control heart. The nodal lines correspond to the white region in the APD alternans 

maps. The first nodal line appeared close to the base of the right ventricle (i.e., the top-left 
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side of the map), and a second nodal line was later formed at a distal end from the pacing 

site. Both nodal lines gradually moved toward the apex as the pacing rate was increased. We 

consistently observed the movement of nodal lines towards the pacing site at increasing 

pacing rate, suggesting that engagement of CV restitution in the creation of spatially 

discordant alternans in the control heart (111, 176).  

    The bottom row of Figure 21A is a representative example of the infarcted heart. The 

myocardial infarct is circled by a dashed line. In the non-infarcted area, the behavior of the 

nodal line moves towards the pacing site and is very similar to the control heart. On the 

other hand, the dynamics of nodal lines appears to be different within the infarct border 

zone. Small islands with opposite sequence of alternans within the infarct border zone were 

observed (Fig. 21A-bottom row). These islands are small in size compared to that in non-

infarcted area or in control heart. AP recordings within the island (site c), close to the island 

(site b), and far from the island (site a) are shown in Figure 21B. Close examination reveals 

that the odd beats are morphologically very different at these three sites while even beats are 

similar, indicating a different type of spatially discordant alternans compared with the those 

observed in control and noninfarcted region. In addition, close examination of these 

recordings suggests that the difference in the odd beats appears to result from the depression 

of the AP plateau in the infarct border zone (site c). As shown in the bottom row of Figure 

21A, the island with out-of-phase alternans remained pinned in the same position as pacing 

rate increases, and gradually shrank and then disappeared. This unique island within the 

myocardial infarct region was observed in 3 out of 9 infracted hearts.  

    To further demonstrate the role of CV alternans in the induction of spatially discordant 

alternans, we quantified the activation CL alternans (representing the CV alternans) and 
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examined its temporal relation to the appearance of spatially discordant APD alternans in 2 

infarcted hearts. We found that the alternans of activation CL preceded the alternans of 

SDA in these two hearts (Fig. 22). Top row in Figure 22 shows the maps of activation CL 

alternans and the bottom row of Figure 22 shows maps of APD alternans. Left column in 

Figure 22A&B are the maps created from data recorded immediately after increasing the 

pacing rate (0 min), and the right column are from data recorded 2 minutes later. In both 

examples, the regions with significant activation CL alternans at 0 min is the same region 

(blue region) where regions of opposite sequence of APD alternans appears at 2 min.  

 

Figure 22. Activation cycle length alternans precedes the occurrence of APD alternans in the infarcted heart. (A) 

Activation cycle length (CL) map (top row) and APD alternans map (bottom row) immediately after the shortening of 
CL (0 min, left column) and 2 min after (right column). It can be seen that the region with strongest alternans in the 
activation CL map at 0 min (the up-left map) corresponds to the blue area in the APD alternans map at 2 min (the 
bottom-right map). (B) Example from another infarcted heart, which showed similar phenomenon as in panel A.   
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4.5 Discussion 

In the present study, we quantified the susceptibility to APD alternans in a rabbit model of 

healed myocardial infarction. The pacing rate threshold for APD alternans was significantly 

decreased for both spatially concordant and discordant alternans in the infarcted heart. This 

enhancement was most significant in the infarct border zone. Dynamic APD restitution 

could not predict the increased dynamic instability in the infarcted heart. Conduction 

velocity alternans plays an important role in producing spatially discordant alternans in both 

control and infarction group, while some unknown mechanism  is responsible for a distinct 

pattern of spatially discordant alternans within the infarct border zone.  

4.5.1 Mechanism of APD Alternans 

Steep APD restitution was hypothesized to produce APD alteranns (193). If APD is solely 

dependent on the preceding DI, APD alternans should start at the cycle length at which the 

APD restitution slope is equal to one. APD restitution has been quantified in canine heart 

with healed myocardial infarction (196) and patient with structural heart disease (SHD) (128), 

45% of which had old myocardial infarction. Ohara et al. (196) found that the DI range over 

which the dynamic restitution slope > 1 is significantly increased in the endocardial 

infarction border zone in the infarction group compared to the control group. Koller et al. 

(128) found a significantly earlier onset of alternans of monophasic APs in patients with 

SHD compared with patients without SHD. 

    This hypothesis is not confirmed in the present study because APD alternans occurred at 

a much slower heart rate than that predicted by the APD restitution, especially in the 

infarction group. This incapability of APD restitution in predicting APD alternans was also 
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observed in other studies (121, 212, 242), suggesting other mechanisms responsible for the 

induction of APD alternans. In isolated rabbit myocyte, Chudin et al. showed that the 

calcium transient alternans was not affected by the clamping the voltage with AP of fixed 

duration (43), suggesting the calcium transient alternans as the driving force for APD 

alternans via calcium-dependent ionic currents. The key role of calcium handling in alternans 

has been implicated in other experimental studies (91, 137, 212).  

    The remodeling of calcium handling in the presence of healed myocardial infarction has 

been described in several studies. Litwin et al. showed that (155) the rising time and 

declining time were significantly prolonged in the rats 6 weeks post myocardial infarction. 

Mackiewicz (165) showed moderate decrease of decay rate of calcium transient in rats with 3 

months post myocardial infarction, which suggest moderate functional change of 

sarcoplasmic reticulum calcium ATPase (SERCA) and sodium/calcium exchanger (NCX). 

However, Andriy et al. (13) did not observe any change on the calcium uptake by SERCA 

and calcium transport by NCX in the myocytes from dog with more than 4 weeks 

myocaridal infarct. They found that pacing rate threshold of APD alternans and calcium 

transient alternans was significantly reduced, and they attributed the decreased alternans 

threshold to leaky ryanodine receptors due to steeper dependence of sarcoplasmic reticulum 

(SR) calcium release on the SR calcium content.  

4.5.2 Mechanism of Spatially Discordant Alternans 

Spatially discordant alternans describes the presence of out-of-phase APD in neighboring 

regions and a large APD gradient across the nodal lines. Spatially discordant alternans 

increases the dispersion of repolarization and was observed to precede the induction of 

ventricular arrhythmias (130, 200). Computer simulations (216, 257) and an experimental 
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study (53) have shown that spatially discordant alternans could be induced in spatially 

homogeneous tissue through the interactions of APD restitution and CV restitution. In 

addition, it was suggested that functional heterogeneity (111, 257) and structural 

heterogeneity (59, 201) might facilitate the formation of spatially discordant alternans. it was 

not unclear whether dynamic or functional/structural heterogeneity is the dominant 

mechanism for the formation of spatially discordant alternans in the presence of healed 

myocardial infarction.  

    We showed that the pacing rate threshold for the spatially discordant alternans was 

decreased in the rabbit heart with healed myocardial infarction. This is in line with the 

decreased alternans threshold in the rabbit heart with structural barriers created by laser 

epicardial lesions (201), suggesting the cellular uncoupling as one of the underlying 

mechanisms for spatially discordant alternans. The tissue discontinuities caused by the 

cellular uncoupling were known to produce abnormal conduction velocity restitution (59), 

which could underlie the induction of spatially discordant alternans as shown in computer 

simulations (216). The dynamics of the nodal lines in the noninfarct region in our study 

indicated the CV alternans as the cause of the spatially discordant alternans. The underlying 

mechanism of the distinct island of spatially discordant alternans within the infarct border 

zone remains to be investigated. It might be explained by fibrolast-myocyte coupling which 

was shown to promote alternans at a slower heart rate (266) and by reduced electronic 

effects which was shown to facilitate alternans (41).  
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4.6 Limitations 

Despite that the pacing rate of pacing rate threshold in the heart with healed myocardial 

infarction was significantly compared with control, it remains higher than the regular heart 

rate of the rabbit. However, this pacing rate threshold for alternans might be lower in vivo 

and become close to the range of regular heart rate, because denervation in ex-vivo 

condition could decrease the level of adrenergic stimulation and thus reduce the incidence of 

APD alternans (52, 101). This hypothesis remains to be tested in future. 

    Another limitation is that only epicardial action potential were measured in the present 

study. It remains unknown whether the increased cellular uncoupling in the infarct border 

zone could promote transmurally discordant alternans at relatively slow heart rate.  

    We did not test other mechanisms that might promote the induction of arrhythmia in the 

presence of healed myocardial infarction. It remains to be determined how important the 

enhanced APD alternans due to myocardial infarction contribute to the arrhythmogenesis in 

vivo. To avoid a lengthy protocol, only dynamic pacing protocol was used. It is possible that 

single or multiple premature stimuli could produce significant APD alternans that might be 

responsible for the arrhythmogenesis in the infarcted heart (138, 139). Furthermore, 

blebbistatin was used to abolish the contraction to remove the motion artifact. It remains to 

be determined how the stretch at the boundary between viable tissue and non-contracting 

scar during contraction could contribute to the alternans of repolarization.  
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5. Remodeling and Dispersion of Repolarization in 

the Right Ventricle of Failing Human Heart 

5.1 Abstract 

Increased dispersion of repolarization was suggested to underlie the increased 

arrhythmogenesis in human heart failure (HF). However, we have recently found no 

evidence of increase in left ventricular transmural dispersion of repolarization in the failing 

human heart. In this study, we sought to determine whether dispersion of repolarization was 

enhanced across the endocardium of the right ventricle (RV) of the failing versus non-failing 

human heart.  

  RV free wall preparations were dissected from five failing and five nonfailing human hearts, 

cannulated and coronary-perfused. Optical mapping was conducted at the endocardium 

from a ~6.3 × 6.3 cm field of view. Action potential duration (APD), dispersion of APD, 

and conduction velocity (CV) were quantified for the basic cycle length ranging from the 

refractory period to 2000 ms. APD was significantly prolonged in the failing group as 

compared to the nonfailing group. Dispersion of APD was significantly increased in only 

three failing hearts. APD alternans was induced by rapid pacing only in these three failing 

hearts. CV was significantly slower in the failing group than in the nonfailing group. 

Arrhythmia was induced only in two failing hearts, which had an abnormally wide cycle-

length range with steep CV restitution and were among the three hearts with increased 

dispersion of repolarization.  
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  In conclusion, dispersion of repolarization could be enhanced due to heterogeneous 

prolongation of APD, enhanced APD alternans, and slower conduction in failing human 

heart. Arrhythmia in the failing human heart was closely associated with increased dispersion 

of APD, APD alternans, and abnormally steep CV restitution.   

5.2 Introduction 

Ventricular arrhythmia is common in patients with heart failure (HF) (83, 171). It 

significantly increases the risk of sudden cardiac death (171, 210), which accounts for more 

than half of the congestive HF-related deaths (83). Our limited understanding of 

mechanisms of arrhythmogenesis confined our ability to obviate the risk of sudden cardiac 

death of patients with HF.  

  Remodeling and dispersion of repolarization play important roles in arrhythmogenesis. 

Dispersion of repolarization represents the heterogeneous recovery of excitability in 

neighboring myocytes. Enhanced dispersion of repolarization increases the vulnerable 

window for unidirectional block by a single premature beat (217), and increases the 

likelihood of arrhythmia (5). Compelling experimental evidence has demonstrated the 

correlation between the enhanced dispersion of repolarization and increased susceptibility to 

arrhythmia (69, 93, 100, 134, 248). Clinical studies have also shown strong links between 

dispersion of QT interval (reflecting dispersion of repolarization (270)) and ventricular 

tachyarrhythmia in patient with HF (9, 86, 209). Since the action potential duration (APD) is 

mainly responsible for the repolarization, changes in APD reflect the remodeling of 

repolarization. An important question is how HF affects the regional differences in APD 
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(243). The answer to this question could help identify the origin of the increased dispersion 

of repolarization and the potential target for clinical intervention in HF patients.   

  Akar et al. demonstrated that heterogeneous prolongation of left ventricular APD caused 

increased dispersion of repolarization and arrhythmia in a dog model of tachypacing-induced 

HF (3). They found that transmural dispersion of repolarization was markedly augmented in 

the failing dog heart due to more pronounced prolongation of action potential (AP) at the 

mid-myocardial and endocardial layers. Enhanced ventricular transmural dispersion of 

repolarization was also observed in other animal models of heart diseases and closely 

associated with the development of reentrant arrhythmias (5). 

  Thus a number of animal models of HF provided evidence of mechanistic link between the 

enhanced transmural APD dispersion and increased arrhythmogenesis. Recently we used 

optical mapping to investigate APD dispersion in the failing human left ventricle (89). In 

contrast to previous findings in animal models of HF, we found no evidence of enhanced 

APD dispersion in the failing human left ventricle. On the contrary, we found that despite 

overall increase in APD, the transmural dispersion of repolarization was surprisingly reduced 

in the failing human heart (89). This reduction of transmural dispersion of repolarization was 

also observed in a mouse model of pressure-overload HF (253), in a study of a dog model of 

tachypacing-induced HF (146), and was confirmed in a more recent study of excitation-

contraction coupling in the failing human heart (159).  

  It has been shown that the dispersion of endocardial repolarization of right ventricle (RV) 

could be enhanced in patients with sustained ventricular tachycardia (179) and in patients 

with long QT syndrome (26). We hypothesized that RV endocardium undergoes remodeling 
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during HF, which increased dispersion of repolarization, prolongs APD, and slows the 

conduction velocity (CV). All these three changes could contribute to increased propensity 

to arrhythmia. To test this hypothesis we applied optical mapping of action potentials at a 

large area of RV endocardium, 63 mm by 63 mm. Then we quantified the dispersion of APD, 

and restitution properties of both APD and CV.  Arrhythmia inducibility was tested using 

rapid pacing. 

5.3 Methods  

The protocol of the study was approved by the Washington University Institutional Review 

Board. Failing human hearts were obtained during transplantation from Barnes-Jewish 

Hospital of Washington University in St. Louis, MO. Donor hearts were provided by Mid-

America Transplant Service (St. Louis, MO) and used as the nonfailing group. Both failing (n 

= 5) and nonfailing (n = 5) human hearts were optically mapped. Patient information is 

shown in Table 1.    

  Explanted hearts were cardioplegically arrested. Details of tissue harvest, vessel ligation, 

and coronary perfusion can be found in our previous publications (89, 159). During 

dissection, entire RV free wall was isolated and cannulated at the origin of the right coronary 

artery. Care was taken so that the tissues were not stretched when they were pinned down 

onto a silicon sheet. Tissue was immobilized by 10~20 µM blebbistatin to suppress the 

motion artifacts in optical recordings. Optical APs were recorded from the majority of RV 

endocardium (63 ± 7 mm by 63 ± 7 mm). We did not map the epicardium because the 

entire epicardium of the failing human heart was often covered by a layer of fat which 

prevented the recording of optical signals.  
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Table 1. Patient Information 

   # Group Gender Age Diagnosis 

1 Failing Male 53 Non-ischemic Cardiomyopathy 

2 Failing Male 55 Ischemic Cardiomyopahty 

3 Failing Female 67 Non-ischemic cardiomyopathy 

4 Failing Male 59 Non-ischemic cardiomyopathy 

5 Failing Female 53 Non-ischemic Cardiomyopathy 

6 Nonfailing Female 51 Cerebrovascular/Strock 

7 Nonfailing Male 31 Gunshot wound to the head 

8 Nonfailing Male 40 

Head Trauma, Motor Vehicle 

Accident 

9 Nonfailing Female 59 Cerebrovascular/Stroke 

10 Nonfailing Male 76 Cerebrovascular/Stroke 

 

  In order to measure the dynamics of dispersion of repolarization at different cycle lengths, 

we stimulated the isolated RV using steady-state pacing. We commenced pacing at a cycle 

length (CL) of 2000 ms, and then gradually decreased CL until reaching refractory period or 

arrhythmia was induced. All the preparations were stimulated at the bottom of the field of 

view (close to the apex) at the voltage double the pacing threshold. Figure 23 shows a 

representative RV preparation and AP recordings from a nonfailing human heart. The APD 

was the duration from the upstroke (maximum derivative of the signal) to the 80% 

repolarization (APD80), and was measured at all recording sites. Global CV across the field 
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of view was also quantified at different cycle lengths. Dispersion of APD was quantified by 

the difference between 95th percentile and 5th percentile of APD80 from all the recorded 

sites. Dispersion of repolarization depends on both activation time difference and APD 

difference. Since the activation time differences during pacing and during sinus rhythm are 

not the same, only the dispersion of APD was quantified to study the changes in the 

dispersion of repolarization.  

  Comparison was made between failing group and nonfailing group. Levels of significance 

were determined by the Student’s paired or unpaired t-test. Bonferroni adjustment was used 

to account for multiple comparisons. P<0.05 was considered statistically significant. Values 

were given as means ± S.D.    
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Figure 23. Representative RV free wall preparation and optical action potentials (AP).  (A) RV free wall 
preparation and mapping field of view (FOV). (B) Close-up view of two action potential recordings. (C) 
Representative optical action potentials from an evenly spaced array of locations spanning the whole FOV. 
Red and green dots in panel A and squares in panel C correspond to recordings in panel B. 
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5.4 Results 

5.4.1 Action Potentials in Failing Human RV 

Figure 24 shows AP recordings of five failing hearts (blue traces) and five nonfailing hearts 

(red traces) at the basic CL of 2000 ms. Three different columns of recordings are 

representative maximum APD, mean APD, and minimum APD, respectively. It can be seen 

that APD was longer in the failing group, especially for the maximum APD. The 

prolongation of APD could be associated with slower repolarization of APD (e.g., maximum 

APD of failing heart #1), or longer plateau of AP (e.g., maximum APD of failing heart #5). 

Furthermore, there existed heterogeneity of APD at the RV endocardium, as evident from 

the different duration of APs between the left column and the right column in Figure 24.  

 

Figure 24. Representative action potential (AP) recordings from individual failing (n=5, blue traces) and 
nonfailing (n=5, red traces)  human hearts at the pacing cycle length of 2000ms. On the left, the AP 
recordings with the maximum APD in the field of view (FOV). In the middle, the AP recordings with the 
mean APD in the FOV. On the right, the AP recordings with the minimum APD in the FOV. 
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Quantitative measurements of APD is shown in Figure 25. Figure 25-left shows APDs at 

multiple CLs for all 10 hearts. Blue and red curves correspond to five failing hearts and five 

nonfailing hearts respectively. The visual separation of the blue curves and red curves 

indicates that APDs of the failing group were different from and significantly longer than the 

nonfailing group. This difference was indeed statistically significant as shown in the Figure 

25-right. 

 

Figure 25. Individual APD restitution and summary APD restitution. On the left, APD at 80% 
repolarization (APD80) at various basic cycle lengths from 500ms to 2000ms from failing (blue lines) and 
nonfailing (red lines) human hearts. On the right, averaged APD80 of failing and nonfailing hearts, and P-
values for each comparison between failing and nonfailing groups. 

 

5.4.2 Dispersion of Repolarization 

One of the main goals of this study was to determine whether dispersion of APD was 

enhanced in the RV endocardium of failing human heart. We did observe dramatically 

increased dispersion of APD in the RV endocardium in three out of five failing hearts. 

Figure 26 shows one example from a failing heart (Fig. 26-top row) and one example from a 

nonfailing heart (Fig. 26-bottom row). Figure 26-left shows activation maps where we can 

see that the waves propagated from the bottom to the top of the field of view in both 
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examples. Figure 26-middle is the APD map, where APDs were color-coded within the same 

range of color map for both preparations. The APDs in the failing heart span from 420ms to 

640ms, the range of which is much larger than the range in the nonfailing heart (400ms to 

530ms). There was an apparent association between the APD heterogeneity and the 

structures of fiber bundles and trabeculae carneae at the RV endocardium, as shown in 

Figure 26-right.   

 

Figure 26. Representative examples of dispersion of repolarization at the endocardium of RV freewall from a 
failing heart and a nonfailing heart at the pacing cycle length of 2000ms. On the left, maps of activation 
(from blue to red) after a stimulus at the bottom of the field of view. In the middle, maps of APD80. It can 
be seen that the range of APD80 is much larger in the example of the failing heart (the top row) compared 
with that of the nonfailing heart (the bottom row). This indicates the dispersion of repolarization was 
enhanced in this failing heart. On the right, field of view with inverted color for better visualization of the 
structure.   
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    We quantified the dispersion of APD by measuring the difference between 95th and 5th 

percentiles of APD in the mapped area. Figure 27-left showed dispersion of APD in all 10 

hearts at multiple cycle lengths, with blue curves indicating failing hearts and red curves 

indicating nonfailing hearts. It can be seen that three blue curves corresponding to three 

failing hearts (#1, #2, #5) are separated from all the other curves, suggesting increased 

dispersion of APD in these three hearts. The increased dispersion of APD is due to 

heterogeneous prolongation of APD. The other two failing hearts did not have increased 

dispersion of APD, and their corresponding blue curves were clustered together with the 

nonfailing hearts (Figure 27-left). Due to the variations in different failing human hearts, the 

overall dispersion of APD in the failing group was not significantly different from the 

nonfailing group (Figure 27-right).  

 

Figure 27.Dispersion of repolarization quantified by APD80 at 95th percentile minus APD80 at 5th 
percentile. On the left, dispersion of repolarization at various basic cycle lengths from 500ms to 2000ms from 
failing (blue lines) and nonfailing (red lines) human hearts. On the right, averaged dispersion of 
repolarization within failing and nonfailing groups. It can be seen from the left panel that three failing hearts 
(#1, #2, #5) stand out from the other hearts by showing significant enhancement of dispersion of 
repolarization.  
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    Interestingly, APD alternans were induced by rapid pacing only in those three failing 

hearts with large APD dispersion (failing hearts #1, #2, #5), and occurred in regions with 

the maximum APD prolongation. The pacing rate at the onset of APD alternans was 164 ± 

12 bpm. These APD alternans could increase the dispersion of repolarization at fast heart 

rate, and provide the substrate for the initiation of arrhythmia, which was induced in failing 

heart #2 and #5. No alternans were observed in the other 2 failing and 5 non-failing hearts.   

5.4.3 Dynamics of Conduction Velocity 

The CV restitution for all individual hearts was shown in Figure 28-left. CV was significantly 

smaller in the failing group than the nonfailing group (Figure 28-right). In all the nonfailing 

hearts and three failing hearts, as we gradually decreased the pacing cycle length, the CV 

remained constant until the basic cycle length approached the refractory period. In contrast, 

the CV decreased progressively, starting at a much longer basic cycle length (1000ms) in two 

failing human hearts (failing hearts #2 and #5, Figure 28-left). As a result, the CV restitution 

for these two hearts had a much wider range of pacing CL with steep CV restitution than all 

the other curves. It was only in these two failing hearts that arrhythmia was induced. In 

addition, these two hearts were among the three hearts, which had enhanced dispersion of 

APD.    
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Figure 28. Conduction velocity (CV) restitution. On the left, individual CV restitution from failing (blue 
lines) and nonfailing (red lines) human hearts. On the right, averaged CV restitution. Since not every heart 
was paced faster than BCL of 500ms, CV was only averaged for BCL from 500ms to 2000ms. Note that 
the CV was significantly decreased in the failing hearts. Also note that CV restitutions in failing hearts #2 
and #5 have nonflat slope over a much wider range of basic cycle length.   

 

5.4.4 Induction of Arrhythmia by Rapid Pacing 

How the arrhythmia was initiated by rapid pacing in a failing human heart (#2) is illustrated 

in Figure 29, which shows the transition from paced beats to arrhythmia. Figure 29A shows 

the activation maps for beats 7, 8, 10, 11 and 12 and a dominant frequency map during the 

arrhythmia, which was initiated at beat 12. Figure 29B are the AP recordings from 4 different 

sites a, b, c and d, which are marked in the top-left activation map in Figure 29A. As 

described in the previous section, we observed in this heart APD alternans, which is evident 

from sites b, c and d. Dispersion of repolarization is increased due to dyssynchrony of APD 

alternans in different regions (i.e., no APD alternans in site a, 2:2 APD alternans in site b, 

and 3:3 APD alternans in sites c and d). The increased dispersion of repolarization due to 

alternans provided the substrate for arrhythmia. There were recurrent ectopic beats at site c 

(every three beats as marked by * in Figure 29B), which provided triggers for the induction 
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of arrhythmia. Arrhythmia was induced at beat 12 (marked by # in Figure 29B) due to an 

early arrival of an ectopic beats at site c.   

 

Figure 29. Arrhythmia induced by rapid pacing in failing heart #2. (A) The induction of arrhythmia is 
showed by sequential activation maps of beat 7 to beat 12. The dominant frequency map of the first 5 seconds 
of the arrhythmia is also shown. (B) Action potential recordings from four sites a, b, c and d. Asterisks (*) 
indicate activation were initiated by both the stimulus (square wave) at the bottom  and a foci at the site c 
(See beat 8 and 10 in panel A). Arrhythmia is induced by a early activation at site c at Beat 12(marked by 
#). Large dispersion of repolarization resulted from APD alternans, which are obvious in traces b, c and d. 
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5.5 Discussion 

In this study, we examined the remodeling and dispersion of repolarization in the RV 

endocardium using optical mapping of APs in a relatively large field of view. The major 

findings in this study include that (i) APD was significantly increased in the RV endocardium 

of the failing group compared to the nonfailing group, (ii) dispersion of APD was 

significantly enhanced in three out of five failing hearts, (iii) APD alternans was induced in 

those same three failing hearts with enhanced dispersion of APD, but not in the other two 

failing hearts, (iv) endocardial CV was significantly reduced in the failing group compared 

with the nonfailing group, and (v) ventricular arrhythmias were induced in failing hearts (#2 

and #5), which had enhanced dispersion of APD, APD alternans, and abnormal CV 

restitution. 

5.5.1 Prolongation of APD in Human Heart Failure 

APD prolongation has been consistently observed in various animal models of heart failure 

in both isolated cells and tissues, and has been reviewed previously (243). Compared with 

animal models of HF, human studies of APD remodeling in heart failure are rather limited 

and mostly in the isolated cells (19, 21, 131, 147) or isolated small-sized RV trabeculae (94, 

250), where spatial heterogeneity was not studied. We have recently explored transmural 

heterogeneity in the human LV wedge preparations and found that prolongation of APD 

was only observed at the epicardium but not the endocardium and midmyocardium (89). In 

contrast to the absence of APD prolongation in the LV endocardium (89), prolongation of 

APD was a consistent phenomenon in the RV endocardium in this study. It should be noted 

that this prolongation was heterogeneous in three failing hearts, leading to increased 

dispersion of APD. This spatial heterogeneity in APD prolongation suggests that the 
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location of tissue biopsy should be an independent variable in interpreting and comparing 

data from studies of isolated cells from the RV endocardium. It is likely that this spatial 

heterogeneity might also exist across RV epicardium, LV endocardium, and LV epicardium. 

This heterogeneity across the endocardium or epicardium has been implicated in several in 

vivo studies in patients and animal models of various heart diseases (26, 135, 179, 198, 248). 

  Based on previous studies of isolated human ventricular myocytes, the prolongation of 

APD could result from the down-regulation of transient outward K+ current (Ito) (19, 187, 

263), down-regulation of inward rectifier K+ current (IK1) (131), and slow delayed rectifier K+ 

current (IKS) (256). Since most studies focused on the transmural heterogeneity, it remains to 

be determined why the prolongation of APD in the RV endocardium is spatially 

heterogeneous. Li et al. (147) provided some insights in a study of isolated cells from the RV 

epicardium from failing human heart. They showed that reduced Ito, IK1, and IKS in the cells 

from tissues with fibrosis and necrosis lead to significantly longer APDs in these cells than 

cells from tissues without histological abnormalities (147).  

  Prolonged duration increases the lability of AP, and could increase the susceptibility to 

secondary depolarization, such as early after-depolarization (EAD) or delayed after-

depolarization (DAD). No EAD was observed in failing hearts or nonfailing hearts in the 

present study. The only possible DAD observed in this study is the apparent ectopic beats 

during rapid pacing in one failing human heart, as shown in Figure 29. However, because the 

tissue is three dimensional, the apparent ectopic beats could also be explained as a 

breakthrough from a transmural conduction. The resistance to EAD and DAD even in the 

failing hearts is similar to the observation by Vermeulen et al. (250), who showed that when 

isolated RV trebeculae from failing human hearts was perfused with normal Tyrode's 



77 

 

solution, no DAD and EAD could be induced. They also showed that when the tissue was 

perfused with modified Tyrode's solution (mimic the extracellular milieu of patients with 

severe HF), DAD but not EAD was observed (250). The presence and underlying 

mechanism for DAD and EAD in HF patients remains to be determined in future studies.   

5.5.2 Dispersion of Repolarization in Human Heart Failure 

Increased QT dispersion in HF patients (9, 86, 209) suggested the existence of exaggerated 

dispersion of repolarization, which may predispose to ventricular arrhythmia (69, 93, 100, 

134, 248). While increased transmural repolarization heterogeneity was consistently not 

observed in the LV of failing human heart (89, 159), we demonstrated in this study that 

dispersion of APD could be enhanced in the RV endocardium (Figure 27-left) in three 

failing hearts. Increased dispersion of APD in these failing human hearts reflected the 

heterogeneous prolongation of APD, and could contribute to the increased dispersion of 

repolarization. It is true that the enhanced dispersion in the failing hearts was most 

significant at nonphysiologically slow rates, and approached the nonfailing hearts at more 

physiological rates. However, pauses after premature beats are common in HF patients and 

may produce significantly large dispersion at physiological heart rates (243). 

  The dispersion of repolarization could also be enhanced by the APD alternans. Pastore et 

al. (200) showed that spatially discordant APD alternans (i.e., out-of-phase APD alternans at 

different regions of the heart) resulted in a large dispersion of repolarization, which 

promoted initiation of arrhythmia.  The presence of discordant APD alternans preceding the 

induction of arrhythmia in Figure 29 supports the causal relationship between APD 

alternans and arrhythmia. It is intriguing that enhanced dispersion of APD and APD 

alternans occurred in the same failing hearts in this study. This association has been 
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implicated in an in vivo patient study by Chauhan et al. (38), who showed that dispersion of 

activation-recovery interval was higher in patients with T-wave alternans.   

5.5.3 Remodeling of Conduction Velocity and Arrhythmia 

We observed significantly decreased CV in the RV endocardium of the failing human heart. 

Since decreased cellular coupling occurs in the ischemic and hypertrophied human heart 

(202) and the failing human heart (89), this reduced cell-to-cell coupling might be 

responsible for the reduced CV in this study. Normal intercellular coupling allows 

electrotonic currents, which reduced the heterogeneity of APD between neighboring cells. 

The reduced coupling could decrease the electrotonic effects and increase the heterogeneity 

of repolarization. It could also promote the incidence of APD alternans (41).  

  Abnormal CV restitution has been shown to contribute to the susceptibility to arrhythmia 

(36, 216, 228). This correlation is consistent with our observation that arrhythmia was only 

induced when the CV restitution had a wide range of cycle length at which the restitution 

curve was steep (failing heart #2 an d #5 in Figure 28A). According to a computer 

simulation study by Qu et al. (216), in order to produce spatially discordant alternans and 

subsequent induction of arrhythmia, pacing rate needs to be fast enough to engage the steep 

portion of CV restitution. A wider steep portion of CV restitution allows this engagement to 

occur at a slower pacing rate and therefore increases the likelihood of arrhythmia. This 

abnormal CV restitution has been previously reported in the failing human hearts by Kawara 

et al. (123), and was found to be closely associated with stringy and patchy fibrosis (123). 

Derksen et al. (59) further showed that delayed inactivation of depolarizing currents at tissue 

discontinuities contributed to the abnormal CV restitution.  
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5.5.4 Variability in Human Heart Failure 

In this study, while the RV endocardium from failing hearts shared similar functional 

remodeling (e.g., prolongation of APD), there clearly was significant variability. We did not 

observe increased dispersion of repolarization, alternans, and abnormal CV in two out of 

five failing hearts. Even the consistently observed prolongation of APD appears to have 

different mechanisms in different hearts (Figure 24), because the prolongation was due to a 

slow repolarization phase (phase 3) in one failing heart (#1), while it was due to a longer 

plateau (phase 2) in other failing hearts. Nevertheless, there was a close correlation between 

the functional remodeling (in repolarization and conduction) and the susceptibility to 

arrhythmia. Advancing the understanding of the arrhythmic mechanisms could facilitate the 

development of strategies to identify the HF patients who are more likely to benefit from 

anti-arrhythmic therapies, such as implantable cardioverter defibrillator (ICD).  

5.6 Limitation 

There are limitations in this study. First, the etiology of HF, its duration, and medical 

treatment are varied and uncontrolled, and we did not have access to clinical data due to de-

identified tissue protocol. Therefore, only remodeling common to all the failing human 

hearts can be revealed in the study. Second, we did not study other pacing protocols, such as 

S1-S2-S3 protocol and short-long-short sequence of pacing, which have been shown to 

enhance the dispersion of repolarization (69, 93). Third, the isolated tissue preparations were 

mechanically unloaded due to the surgical opening of the tissue and the application of 

excitation-contraction uncoupler. It remains to be determined how the mechanical loading 

affects the electrical property in the human heart. Fourth, in isolated denervated preparations 

we did not use sympathetic stimulation and could not study the effects of heterogeneity of 
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innervation, which was shown to affect the dispersion of repolarization (168). Fifth, we did 

not quantify the local gradient of APD, which was a more sensitive marker for arrhythmia 

vulnerability than global dispersion of repolarization. We chose not to quantify it because 

there were many boundaries of fiber bundles and trabeculae carneae, the gradient across 

which was not an accurate representation of the true gradient in the same layers of 

myocardium. Finally, the failing human hearts in this study were all in the end stage of HF. 

These results might not apply to the failing human heart in earlier stages of HF.  
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6. Remodeling of Calcium Handling in Human 

Heart Failure 

6.1 Abstract 

Heart failure (HF) is an increasing public health problem accompanied by the rapidly aging 

global population. Despite considerable progress in managing the disease, the development 

of new therapies for effective treatment of HF remains a challenge. To identify targets for 

early diagnosis and therapeutic intervention, it is essential to understand the molecular and 

cellular basis of calcium handling and the signaling pathways governing the functional 

remodeling associated with HF in humans. Calcium cycling is essential mediator of cardiac 

contractile function. Thus, remodeling of calcium handling is thought to be one of the major 

factors contributing to the mechanical and electrical dysfunction in HF. Active research in 

this field aims to bridge the gap between basic research and effective clinical treatment of 

HF. This chapter reviews the most clinically relevant human studies regarding the 

remodeling of calcium handling. We also discuss their connections to the current and 

emerging clinical therapies for HF patients.  

6.2 Introduction 

Heart failure (HF) is a rising public health problem, with a prevalence of over 5.8 million in 

the USA, over 23 million worldwide, and continue to increase (33, 157). The contractile 

dysfunction and arrhythmogenesis associated with HF is closely related to the remodeling of 

calcium handling (18), which, in turn, is partially controlled by several signaling pathways in 

which Ca2+ has a prominent role (15). Deriving a mechanistic understanding of alterations in 
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calcium handling and calcium signaling is a critical step towards the development and 

improvement of physiology-based treatments for HF. 

6.3 Overview of Cardiac Calcium Signaling 

Ca2+ plays a central part in regulating excitation-contraction (EC) coupling and in modulating 

systolic and diastolic function in the heart as shown in Figure 30. Ca2+ signal transduction in 

the EC coupling comprises four steps (15, 107, 180). Firstly, the trigger Ca2+ current (ICa) is 

generated by the L-type Ca2+ channels expressed in the transverse tubules (T-tubules) 

following membrane depolarization. Secondly, the Ca2+ ions diffuse across the narrow 

junctional zone to activate ryanodine receptors (RyRs) and generate Ca2+ sparks, which is a 

considerable amplification of the original trigger Ca2+ signal. This process is known as Ca2+-

induced Ca2+ release (CICR). Thirdly, the Ca2+ influx from the sarcoplasmic reticulum (SR) 

then diffuses out to activate contraction following Ca2+ binding to troponin-C. Lastly, Ca2+ is 

transported back to SR by SR Ca2+-ATPases (SERCA) and out of cell via Na+/Ca2+ 

exchanger (NCX). Abnormal handling of intracellular Ca2+ at any of these steps can cause 

cardiac dysfunction in HF (122).  

    Intracellular Ca2+ homeostasis of cardiac myocytes is regulated by the phosphorylation of 

several key Ca2+-handling proteins. One important regulatory kinase is cAMP-dependant 

protein kinase (PKA), which has been shown to regulate L-type Ca2+ channels, RyR and 

phospholamban (PLN). Despite the fact that global PKA activity is not changed in the 

failing human heart (24, 127), its local activity in the RyR macromolecular signaling complex 

might be locally increased (144, 169).  
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Figure 30. Intracellular Ca2+ cycling and regulation by signaling pathways. After the activation of 
sarcolemma (including T-tubules), Ca2+ enters cytoplasm through L-type Ca2+ channel. The entered Ca2+ 
then induces a much larger Ca2+ release from the sarcoplasmic reticulum (SR) via the ryanodine receptor 
(RyR). The released Ca2+ binds with Troponin C to activate contraction. The relaxation starts when Ca2+ is 
returned by sarcoplasmic reticulum Ca2+ ATPase (SERCA) back to SR and via Na+/Ca2+ exchanger 
(NCX) outside of the cell. Some Ca2+ enters mitochondria to stimulate the production of ATP which is 
utilized for contraction and transcription. SERCA is inhibited by the dephosphorylated phospholamban 
(PLN). PLN can be phosphorylated by protein kinase A (PKA) and Ca2+/calmodulin-dependent kinase 
(CAMKII), both of which can be activated by β-adrenergic stimulation. PLN can be dephosphorylated by 
protein phosphotase 1 (PP1), which can be activated through Gαq-coupled receptor (angiotensin II receptor, 
endothelin 1 receptor, or α-adrenergic receptor). A portion of Ca2+ enters into mitochondria to stimulate the 
production of ATP, which is used for contraction and transcription. α, G-protein subunit α; β, G-protein 
subunit β; γ, G-protein subunit γ; AC, adenylyl cyclase; cAMP, cyclic adenosine monophosphate. 



84 

 

    Another important regulatory kinase is the Ca2+/calmodulin-dependent protein kinase II 

(CaMKII).(166) CAMKII is a protein kinase that modulates several intracellular Ca2+-

handling proteins such as RyR, PLN, L-type Ca2+ channels as well as Na+ channels (166). 

CAMKII is associated directly with the RyR and modulates the activity of RyR (48, 98, 260). 

Phosphorylation of PLN via CAMKII or PKA enhances the SR Ca2+ uptake via increased 

SERCA activity. Activity of CAMKII was shown to be significantly increased in the failing 

human heart and is correlated with the impaired ejection fraction (127, 239). Both PKA and 

CAMKII can be activated by β-adrenergic stimulation. 

    Finally, multiple isoforms of protein kinase C (PKC) might also play a role in regulating 

the Ca2+ handling. PKCα is the dominant isoform of PKC in the human heart (99) and is 

triggered by the activation of Gαq coupled receptors (angiotensin II receptor, endothelin-1 

receptor, and the α-adrenergic receptor) (268). PKCα could phosphorylate protein 

phosphatase inhibitor 1 (I-1), consequently increasing the activity of protein phosphotase 1 

(PP1), and then leading to enhanced phosphorylation of PLN and thus decreasing the 

activity of SERCA (32). The level of PKC is increased in human HF (27, 233, 252). The role 

of other isoforms of PKC in regulating calcium handling remains to be elucidated.  

6.4 Alteration in intracellular Ca2+ and Mechanical 

Dysfunction in Failing Human Heart 

The amount of Ca2+ delivered to the cytoplasm and the rate of Ca2+ removal from the 

cytoplasm are the two of the major factors determining the rate, intensity and duration of the 

contraction (269). Understanding of alterations in the intracellular Ca2+ concentration ([Ca2+]i) 

and their causal role in contractile dysfunction in the failing human heart has been greatly 
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advanced by the use of fluorescent [Ca2+]i indicators (20, 21, 94, 96, 97, 160, 180, 204, 206, 

245), which reflect changes in the free [Ca2+]i necessary for the activation of contractile 

proteins (4, 23). 

    In isolated cells and tissues from failing human hearts, decreased amplitude of Ca2+ 

transient measured by the fluorescent intracellular Ca2+ indicators implies reduced Ca2+ 

release from SR (21, 133, 204). This is correlated with decreased peak stretch amplitude, a 

measure of myocardial contraction (105, 107). The reduced amplitude of Ca2+ transient is 

associated with decreased EC coupling gain (92) and decreased SR Ca2+ content (60, 112, 

154, 204, 207, 208). 

    Moreover, the Ca2+ transient from failing human heart exhibits a reduced rate of Ca2+ 

removal (21, 94, 204). The slower rate of recovery of Ca2+ transient recovery is associated 

with a marked delay in tension relaxation in the failing human heart (94). Finally, failing 

human heart exhibits increased the resting intracellular Ca2+ level, leading to diastolic 

dysfunction (21, 97).  

    Altered [Ca2+]i is frequency-dependent and most obvious at high heart rate (106). 

Normally, the amplitude of [Ca2+]i transient is larger at higher stimulation frequencies (4). In 

human HF, however, the amplitude of Ca2+ transient was decreased at faster stimulation 

rates, leading to a reduced tension development at higher frequencies (97, 206). Increased 

resting [Ca2+]i and a fusion of Ca2+ transient at fast frequencies may also occur, leading to an 

increase of end-diastolic tension and a decrease of active tension generation associated with 

incomplete relaxation and twitch fusion (97). The blunted or negative force frequency 

relationship (FFR) observed in both in vivo and in vitro studies in failing human hearts is in 



86 

 

contrast with the positive FFR in nonfailing human hearts (79, 97, 108, 184), and is 

associated with altered Ca2+ and Na+ homeostasis as well as an inability to increase the SR 

Ca2+ content at increasing stimulation frequencies (207, 208).  

    The alteration of Ca2+ transient in failing human hearts is also region-dependent. We 

recently demonstrated the transmural heterogeneous remodeling of Ca2+ handing in the 

coronary-perfused left ventricular wedge preparations from failing and nonfailing human 

hearts (160). The sequence of Ca2+ transient relaxation is from epicardium to endocardium in 

both failing and nonfailing human heart at a slow heart rate (e.g., 0.67Hz/40 BPM) during 

endocardial pacing, because the difference of Ca2+ transient duration between 

subendocardium and subepicardium (or duration difference) is larger than the conduction 

time from subendocardium to subepicardium (Figure 31). Interestingly, this sequence is 

reversed at a fast heart rate (e.g., 1.67Hz/100 BPM) in the failing human heart due to a 

significant decrease of this duration difference (Figure 2C&D). In contrast, this sequence is 

not reversed in the nonfailing human heart because the duration difference is not 

significantly changed at faster frequencies (Figure 2B&D). We hypothesize that this reversed 

sequence of relaxation at fast heart rates could contribute to the end-systolic dysfunction (79) 

in the failing human heart. The maintenance of the normal relaxation sequence at slow heart 

rates in the failing hearts provides another mechanism for the beneficial effects of the heart-

rate reduction in the patients with HF (241).  

6.5 Molecular and Cellular Basis of Abnormal Calcium 

Handling and Signaling in Human HF 

Alteration in the [Ca2+]i is attributed to the abnormal calcium handling in the EC coupling 

process, which is operated by sarcolemma and SR, including L-type Ca2+ channels, RyR, 
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NCX, SERCA2a, etc. Changes of EC coupling in HF have been reviewed in detail elsewhere 

(18, 106, 268). Here we mainly focus on reviewing the results regarding the failing human 

heart.  

 

Figure 31. Region-dependent and cycle-length-dependent calcium transient duration (CaTD) in failing 
human heart. (A) CaTD was quantified at 80% relaxation (CaTD80). (B) CaTD80 at nonfailing 
human hearts (n=6) at subendocardium (sub-ENDO), midmyocardium (MID), and subepicardium (sub-
EPI). (C) CaTD80 at failing human hearts (n=5). (D) The difference of CaTD80 between sub-ENDO 
and sub-EPI. It can be seen that this difference is significantly reduced in failing heart at faster heart rate 
(cycle length at 600ms).(160) These data are obtained from Ca2+ transient measured using Rhod-2AM 
from the coronary-perfused wedge preparations from both failing and nonfailing human hearts. 

 

6.5.1 Calcium-Induced Calcium Release (CICR)  

Triggering of CICR (i.e., ICa) in the failing human heart is mostly unchanged (20, 21, 172, 

204), though inhibition of ICa was observed at higher frequencies (234). Thus, the smaller 
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Ca2+ transient observed in HF is mainly due to a reduced capability of ICa to trigger Ca2+ 

release from the SR (or a reduced EC coupling gain).  

    The reduced EC coupling gain may result from the hyperphosphorylation of RyRs in the 

failing human heart (169). PKA hyperphosphorylation of RyRs leads to the dissociation of 

the FKBP12.6 regulatory subunit, which inhibits the coupled gating of arrays of RyR 

channels and thus could result in a loss of EC coupling gain (169). This is supported by the 

reduced amplitude and changed properties of Ca2+ sparks measured from isolated ventricular 

myocytes from failing human hearts (153). More discussion of RyRs can be found in the 

section 6.5.2. 

    Rapid activation of RyRs by the ICa is facilitated by the close proximity of the L-type Ca2+ 

channels and RyRs. Reduced EC coupling gain in HF could thus also originate from the 

geometric disarrangement of RyRs and L-type Ca2+ channels, as suggested by the 

spontaneous hypertensive rat with HF (SHR-HF) (92). Disorganization of T-tubules and a 

decrease in the colocalization of L-type Ca2+ channels and RyRs have been demonstrated in 

the fixed ventricular samples from failing human hearts (47). The actual loss of T-tubules in 

isolated myocytes from failing human heart was reported in one study (164) but not in 

another (197), findings that might be explained by the large spatial variations in T-tubule 

remodeling in human HF (47).  

    The unltrastructural defects in the T-tubule system were demonstrated to cause the 

dyssynchronous Ca2+ release (or defective EC coupling) by confocal line scanning techniques 

in the isolated ventricular myocytes from SHR-HF, with Ca2+ release being delayed in certain 

regions of a myocyte compared to the other normally coupled areas (237). Louch et al. 
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showed modest dyssynchrony of Ca2+ release in the isolated myocytes from failing human 

hearts (163). While the local delayed SR Ca2+ release was confirmed in the whole heart level 

in SHR-HF (255), no study has been done so far to demonstrate the dyssynchronous Ca2+ 

release in tissue levels from the failing human heart. However, the morphological changes of 

Ca2+ transient observed in our recent left ventricular wedge preparations from failing human 

hearts imply the potentially important role of dyssynchronous Ca2+ (160). We observed two 

components in the rising portion of Ca2+ transient, with a slow rising component following 

an initial fast rising component (Figure 32A&B) (160). It is possible that the first fast-rising 

component corresponds to the normally triggered Ca2+ release and the second slow-rising 

component corresponds to the delayed Ca2+ release, which has been showed in SHR-HF 

(255). Interestingly, this morphological change of Ca2+ was only observed at the 

subendocardium in 60% of the studied failing human hearts (160). This regional difference 

might result from higher susceptibility to ischemia of endocardium compared with 

epicardium (81, 117), and suggests that the extrapolation of results from one region (e.g., 

epicardium) to another region (e.g., epicardium) in human studies should be done with 

caution. This delayed Ca2+ release might be also underlie the slower recovery of intracellular 

Ca2+ relative to the recovery of the action potential observed in our study (Figure 3A&C).  

That is, the Ca2+ transient outlasts the action potential at the subendocardium of the failing 

human heart, which might lead to phase-3 early afterdepolarization (34).   

    The reduced EC coupling gain could also result from decreased SR Ca2+ content, which 

has been extensively demonstrated in human HF (60, 154, 204, 207, 208). The success of 

molecular therapies aimed at restoring SR Ca2+ content further underscores the importance 

of SR Ca2+ content (118, 236). Reduced SR Ca2+ content in the failing human heart could 
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result from leaky RyRs, reduced SR Ca2+ uptake via SERCA2a, and increased Ca2+ 

extrusion via NCX, which are reviewed in the sections below (6.5.2-6.5.3).  

 

Figure 32. Morphological changes of calcium transient (CaT) and its relation to action potential (AP). (A) 
Simultaneous recordings of AP and CaT at one site at subendocardium from a failing human heart (F, top) 
and a nonfailing human heart (NF, bottom). (B) The two CaTs from panel A are overlapped for easy 
comparison. Compared to the CaT from NF, there is a distinct second rising component (labeled by “II”) in 
the CaT from failing human heart. Note that this second component was only observed at the sub-
endocardium in 60% of the studied failing human hearts. (C) CaT duration at 80% relaxation (CaTD80) 
minus AP duration at 80% (APD80). It can be seen that this duration difference is significantly longer at 
the subendocardium in the failing human heart compared with nonfailing human heart, which is reflected in 
the example shown in panel A.(160) 

 

6.5.2 RyR 

Most studies showed no change in the protein expression of RyR in human HF (18, 106). 

However, the characteristics of Ca2+ sparks are altered in isolated myocytes from failing 

human hearts (153). Furthermore, RyRs in human HF are ―leaky‖ (169), contributing to the 

reduction of SR Ca2+ content (132). The SR Ca2+ leak occurs in despite of the reduced SR 

Ca2+ loading in a canine model of HF (132).  

    Leaky RyR is thought to result from hyperphosphorylation of RyR by PKA or CAMKII. 

Increased Ca2+ sensitivity and open probability of RyR in failing human heart was first 
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observed by Marx et al. (169) They concluded that the increased local PKA-phosphorylation 

of RyR in HF lead to the disassociation of FKBP12.6 from RyRs, leading to higher open 

probability at rest (169). They also observed decreased association of phosphatases (PP1, 

protein phosphotase 2A [PP2A]) to RyR, which may exacerbate PKA-hyperphosporylation 

of RyR (169). The PKA-hyperphosphoryation of RyRs could also result from the deficiency 

of phosphodiesterase 4D (PDE4D), which resides in the RyR macromolecular signaling 

complex and regulates the local concentration of cAMP that activate PKA (144). The 

capability of PKA phosphorylation in reducing the RyR/FKBP12.6 association remains 

controversial because it was not confirmed by some groups (119, 150). 

    Increased SR Ca2+ leak in isolated myocytes from failing rabbit heart was shown to relate 

to the hyperphosphoryation of RyR by CAMKII (1). The Ca2+ leak was reduced by the 

inhibition of CAMKII but not altered by PKA inhibition (1), suggesting the potential role of 

CAMKII inhibition in improving the Ca2+ handling in HF. This hypothesis is further 

supported by a recent study by Sossalla et al. (239), who showed a significant increase in the 

expression the CAMKII in both left and right ventricles of the failing human heart , and that 

the inhibition of CAMKII reduced the SR Ca2+ leak and increased the Ca2+ content. 

Importantly, they also showed that inhibition of CAMKII improved contractility in isolated 

ventricular trabeculae.(239) They reported that CAMKII inhibition restored the positive 

FFR.(239) This is in sharp contrast to the study by Kushiner et al. (136), which showed that 

CAMKII inhibition completely abolished the positive FFR in mouse heart. The result from 

Kushiner et al.'s study is consistent with the hypothesis that CAMKII is responsible for 

sensing the frequency of Ca2+ oscillation (54) as well as for causing the positive FFR via the 

increase of phosphorylation of RyR and PLN at increasing frequencies (260, 271). Kushiner 
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et al. also showed that RyR phosphorylation by CAMKII was decreased in failing human 

heart in despite of the global increase of CAMKII (136), and suggested that the impaired 

RyR phosphorylation by CAMKII plays a role in blunted FFR in human HF. Further studies 

are needed to resolve the areas of controversy and clarify the molecular mechanism and the 

promise of CAMKII inhibition in improving the Ca2+ handling in human HF.  

    While much evidence supports altered regulation and function of the RyR leading to 

abnormal Ca2+ handling in failing human heart, there are studies indicating the opposite. 

Recordings of currents through the RyR from failing human hearts did not reveal any 

significant alterations at a single channel level (113). Jiang et al. observed neither structural 

nor functional change of RyRs from the failing human heart but did report a significant 

reduction in SERCA2a expression, suggesting that abnormal Ca2+ uptake may contribute 

more to the altered Ca2+ handling in human HF (119).  

6.5.3 SERCA2a, PLN and NCX 

SR Ca2+ uptake was reduced in the failing human heart (57, 108, 204, 230). This might be 

due to depressed protein expression of SERCA2a. Hasenfuss et al. observed downregulation 

of SERCA2a expression as well as a significant correlation between SERCA protein levels 

and SR Ca2+ uptake in failing human hearts (108). Overexpression of SERCA2a has shown 

to restore the Ca2+ handling and the contractile function with positive FFR in isolated failing 

human myocytes (56, 57). While some studies observed the downregulation of protein 

expression of SERCA2a in the failing human heart, others did not find any change in the 

protein expression of SERCA2a (85). This inconsistency might be explained by our recent 

findings (160). We observed down-regulation of SERCA2a expression in samples from the 

subendocardium of failing human hearts with ischemic cardiomyopathy but not in samples 
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from epicardium or from failing hearts with dilated cardiomyopathy, suggesting that the 

alteration of SERCA2a expression might be region-dependent as well as the HF etiology-

dependent (160).  

    Besides the potential decrease in protein expression, the decreased activity of SERCA2a in 

HF might also result from altered regulation. This is supported by the findings that 

decreased SR Ca2+ uptake was observed in despite of unchanged protein levels of SERCA2a 

(57, 230, 231). 

    SERCA2a is directly regulated by PLN which is mainly phosphorylated by PKA and 

CAMKII (85). PLN inhibits SERCA2a activity when it is not phosphorylated, while its 

phosphorylated form disassociate from SERCA2a. In the failing human heart, majority of 

the studies indicate no change in the protein expression of PLN (85, 160), which is 

consistent with our recent study (160), However, phosphorylation state of PLN was 

decreased in the failing human heart (49, 57, 231), suggesting increased inhibition of 

SERCA2a by PLN in the failing human heart. PLN is mainly phosphorylated by PKA at 

serin-16 and by CAMKII at threonine-17. Phosphorylation at threonine-17 is decreased due 

to increased dephosphorylation by calcineurin in the failing human heart with dilated 

cardiomyopathy (186). PLN phosphorylation at serin-16 is decreased presumably due to 

increased level of PP1 in the failing human heart (177, 231), which might be due to an 

increased level of PKCα (27, 32). Interventions to attenuate the inhibitory effect of PLN on 

SERCA2a have been tested in animal models. Minamisawa et al. found that knockout of 

PLN significantly increased SR Ca2+ content and completely rescued the spectrum of heart-

failure phenotype in a mouse model of HF (174). Decreased PLN expression via adenoviral 

gene transfer of antisense of PLN was shown to improve both contraction and relaxation in 
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isolated myocytes from failing human hearts (56). Inhibition of PKCα was shown to increase 

the SR Ca2+ load and protect the mouse from HF (32, 156). The importance of PKCα and 

other isoforms of PKC in the Ca2+ handling in human HF remains to be determined.  

    While protein expression of NCX was found upregulated in most animal models of HF 

(18), it is less consistent in the failing human heart with either increased or unchanged 

protein expression of NCX (106). In contrast to reduced SR Ca2+ uptake, the NCX current 

density as a function of [Ca2+] was not changed in the failing human heart (204). However, 

the contribution of NCX to the [Ca2+]i relaxation was increased due to the depressed SR 

Ca2+ uptake (204). Furthermore, the preference of NCX current direction during the action 

potential plateau shifted from inward direction (Ca2+ efflux) to outward direction (Ca2+ influx) 

due to a reduced submembrane [Ca2+]i and increased [Na+]i in the failing human heart (259). 

The reversed-mode NCX during AP plateau could contribute to a slow decay of [Ca2+]i 

transient (60, 259), which may facilitate contraction at slow heart rates but may also lead to 

diastolic dysfunction at faster heart rates (208).  

6.5.4 Loss of metabolic capacity 

Ca2+ handling and energy homeostasis are interdependent (249). Ca2+ homeostasis relies on 

efficient energy-driven ionic fluxes, i.e., through SERCA2a and Na+-K+ ATPase, while 

[Ca2+]i in turn determines energy consumption through contraction and Ca2+ transport as 

well as energy production via the regulation of ATP generation in mitochondria (16, 249). 

Disturbance of the finely tuned balance between the two could be responsible for abnormal 

Ca2+ handling and diminished contractility that are hallmarks of HF.  
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    HF is associated with defects in energy metabolism, with decreased energy production as 

well as impaired energy transfer and utilization (249). These impaired cardiac energetics may 

represent the thermodynamic limit for Ca2+ handling (55). Reduced local ATP/ADP ratio, 

due to a local lack of creatinine kinase, could affect the kinetic and thermodynamic efficiency 

of SERCA in HF (55), providing another mechanism for impaired SR Ca2+ uptake. Indeed, 

ATP was reported to protect SERCA2a from being denatured by hydroxyl radicals (267), 

implying that energy starvation might render SERCA2a unprotected from increased 

oxidative stress in human HF.  

    Improving the myocardial energetics has been shown to normalize the Ca2+ cycling in 

isolated failing human myocytes (103). β-blockers, which decrease the energy demand and 

thus ameliorate the mismatch between energy production and consumption, has been shown 

to normalize the function and regulation of key Ca2+ handling proteins in failing human 

hearts (220). Similarly, left ventricular assist devices (LVADs), which unload the heart and 

support the circulation, impart improved Ca2+ handling in human HF (37, 169). Finally, 

hemodynamic improvement by cardiac resynchronization therapy (CRT) is correlated with 

improved Ca2+ handling in the subset of HF patients who respond to this therapy (247). On 

the other hand, restoration of Ca2+ homeostasis may result in improved cardiac energetics 

(58).  

6.6 Conclusion 

It has been well recognized that abnormal Ca2+ handling is the key pathophysiological 

mechanism in human HF. On the other hand, the understanding of the underlying molecular 
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and cellular mechanisms for the altered calcium handling in the failing human heart remains 

incomplete.  

    The is partly due to the complexity of system, which involves the interplay between a 

number of signaling pathways that regulates the Ca2+ homeostasis at different time scales 

(114, 236). That is, while interrupting or augmenting one of pathways in the cascade might 

lead to expected beneficial therapeutic effects; it might also produce unexpected deleterious 

effects (236). Nevertheless, the structure of this complex system are continuingly being 

revealed by ongoing basic and clinical researches, which carry the hope of facilitating the 

development of effective diagnosis and treatment of HF. The progress is also slowed by 

limited data from human studies. While many mechanistic hypothesis and potential 

therapeutic intervention for the abnormal Ca2+ handling in HF are being proposed and 

tested in the animal models of HF, the examination of these hypothesis and therapies using 

functional studies of isolated cells or tissues from the failing human heart are rather limited. 

We believe that the basic understanding and clinical translation can be greatly facilitated by 

testing the hypothesis in the explanted human heart donated for research by patients and 

donors (67).  

    Gaining a clearer understanding of the causative mechanisms of abnormal Ca2+ handling 

is crucial to developing promising new therapies to treat HF. Despite our best efforts, there 

are currently only two major medical pharmacological approaches available to the clinician 

for the treatment of patients with HF: blockade of the -adrenoreceptor and inhibition of 

the RAA axis. These first line agents are used to treat non-ischemic (the majority of which 

are idiopathic), ischemic and valvular cardiomyopathies, even though we recognize 

fundamental differences in the insults that cause these separate conditions. Such blanket 
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approaches demonstrate the limits of our current knowledge, and the need for further 

observation and testing before new therapies can be delivered to the patient. Moreover, it is 

clear that many pathways involving Ca2+ handling converge on and act through a few key 

molecules. Thus, the complex biological processes leading to HF must be further dissected 

with respect to specific isoforms, subcellular locations and etiology of HF. Similarly, it is 

important to realize that individual drugs effects must be categorized based on the species 

and type of animal model used. Finally, we must recognize that the road to developing a 

human therapeutic agent, i.e., going from the bench to the bedside, is a time consuming and 

expensive one, and littered with failures. These complexities may explain why after years of 

research, the clinical armamentarium for reversing HF remains rather limited. Despite these 

drawbacks, it is encouraging that many promising new therapies to ameliorate abnormal 

calcium handling are visible on the horizon, based on findings in animal models of HF. 

Increased research on functional human heart tissue would facilitate translation of these 

findings to clinic.   
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7. Transmural Heterogeneity and Remodeling of 

Ventricular Excitation-Contraction Coupling in 

Human Heart Failure 

7.1 Abstract  

Excitation-contraction (EC) coupling is altered in the end-stage heart failure (HF). However, 

spatial heterogeneity of this remodeling has not been established at the tissue level in failing 

human heart. The objective is to study functional remodeling of EC coupling and calcium 

handling in failing and nonfailing human hearts.  

    We simultaneously optically mapped action potentials (AP) and calcium transients (CaT) 

in coronary-perfused left ventricular wedge preparations from nonfailing (n = 6) and failing 

(n = 5) human hearts. Our major findings are: (1) CaT duration minus AP duration was 

longer at sub-endocardium in failing compared to nonfailing hearts during bradycardia (40 

beats/min). (2) The transmural gradient of CaT duration was significantly smaller in failing 

hearts compared with nonfailing hearts at fast pacing rates (100 beats/min). (3) CaT in 

failing hearts had a flattened plateau at the midmyocardium; and exhibited a ―two-

component‖ slow rise at sub-endocardium in three failing hearts. (4) CaT relaxation was 

slower at sub-endocardium than that at sub-epicardium in both groups. Protein expression 

of sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) was lower at sub-endocardium than 

that at sub-epicardium in both nonfailing and failing hearts. SERCA2a protein expression at 

sub-endocardium was lower in hearts with ischemic cardiomyopathy compared with 

nonischemic cardiomyopathy.  
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    In conclusion, for the first time, we present direct experimental evidence of transmural 

heterogeneity of EC coupling and calcium handling in human hearts. End-stage HF is 

associated with the heterogeneous remodeling of EC coupling and calcium handling.  

7.2 Introduction 

Congestive heart failure (HF) is one of the leading causes of death in Western countries (7). 

Depressed contractility during congestive HF is associated with altered excitation-

contraction (EC) coupling, in general, and calcium handling, in particular (14, 17, 203, 235).  

    Most experimental studies of EC coupling in human hearts were conducted in isolated 

cells or muscle strips (21, 95, 104, 107, 181, 182, 205, 246), where anatomical differences 

could not be investigated. However, the anatomical location of the region from which cells 

are harvested could be very important (235). Animal studies suggest that transmural 

heterogeneities of EC coupling and intracellular calcium exist. For example, Cordeiro et al. 

observed that the latency to onset of contraction was shorter, and SR Ca2+ content is larger 

in epicardial cells as compared to endocardial cells in normal canine left ventricle (45). 

Investigating calcium handling, Laurita et al. showed that the recovery of intracellular 

calcium in canine left ventricle was slower in cells near the endocardium (ENDO) compared 

with cells near the epicardium (EPI) (140). We have recently described spatial heterogeneity 

of action potential (AP) in human ventricle and its implication for the vulnerability to 

arrhythmias (90). However, spatial heterogeneity of EC coupling and intracellular calcium 

handling in human heart remains unclear.  

    It was suggested by a molecular study by Prestle et al. that the transmural heterogeneity of 

calcium handling was enhanced in the failing human hearts compared with nonfailing human 
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hearts (211). In failing human hearts, the protein expression of the sarcoplasmic reticulum 

Ca2+-ATPase 2a (SERCA2a) was reduced significantly in the sub-ENDO compared to the 

sub-EPI,(211) which might lead to the heterogeneous uptake of intracellular calcium and 

facilitate the induction of ventricular arrhythmias (140, 141, 264). In spite of the molecular 

evidence, it remains unknown if the heterogeneity of EC coupling and calcium handling is 

present and how it is functionally remodeled in heart failure. Furthermore, it is unknown if 

this remodeling could contribute to the increased ventricular arrhythmogenesis and 

mechanical dysfunction associated with human HF.  We hypothesize that across the intact 

transmural wall there exists intrinsic heterogeneities of EC coupling and calcium handling 

and thus the susceptibility to remodeling during HF differs in different transmural layers of 

the left ventricle. To test this hypothesis, dual optical mappings of AP and calcium transient 

(CaT) were conducted in left ventricular (LV) wedge preparations from both failing and 

nonfailing human hearts.  

7.3 Methods 

7.3.1 Experimental Protocol 

The study was approved by the Washington University Institutional Review Board. Both 

failing (n = 5) and nonfailing (n = 6) human hearts were optically mapped in this study. For 

Western blot assay, we used tissue from 19 hearts. Patient information is shown in Table 2. 

    The isolated LV wedge preparation has been described in our previous paper (90). Briefly, 

a piece of LV wedge from the scar-free post-lateral LV free wall perfused by the left 

marginal artery (Figure 33A) was isolated and cannulated. Tissue was immobilized by 

blebbistatin (10~20 µM, Tocris Bioscience, Ellisville, MO) to suppress motion artifacts in  
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Table 2.  

Patient Information     

# Group Gender Age Diagnosis Experiment 

1 Nonfailing Male 55 Death from stroke Mapping, WB 

2 Nonfailing Female 59 Anoxic brain injury  post cardiac arrest Mapping, WB 

3 Nonfailing Male 53 Intracranial hematoma Mapping, WB 

4 Nonfailing Male 56 Intracranial hematoma Mapping, WB 

5 Nonfailing Female 47 Brain death due to anoxia Mapping, WB 

6 Failing Female 65 Ischemic cardiomyopathy Mapping, WB 

7 Failing Male 63 Ischemic cardiomyopathy Mapping, WB 

8 Failing Male 49 Idiopathic cardiomyopathy Mapping, WB 

9 Failing Female 54 Idiopathic cardiomyopathy Mapping, WB 

10 Failing Female 54 Idiopathic cardiomyopathy Mapping, WB 

11 Nonfailing Female 50 Brain death from anoxia Mapping 

12 Nonfailing Female 66 Brain Death from hemorrhaging WB 

13 Failing Male 61 Ischemic cardiomyopathy WB 

14 Failing Male 64 Ischemic cardiomyopathy WB 

15 Failing Female 49 Ischemic cardiomyopathy WB 

16 Failing Male 50 Ischemic cardiomyopathy WB 

17 Failing Male 47 Idiopathic dilated cardiomyopathy WB 

18 Failing Female 44 Idiopathic cardiomyopathy WB 

19 Failing Male 70 Idiopathic dilated cardiomyopathy WB 

Mapping indicates optical mapping experiments  

WB, Western blotting assay 
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optical recordings (77). The tissue was co-stained with RH237 and Rhod-2 AM for 

simultaneous mapping of AP and CaT. Representative recordings of voltage and calcium 

collected at different layers of the LV wedge are shown in Figure 33C. The definition of 

quantified parameters are shown in Figure 33D. Signals from an array of pixels spanning the 

whole field of view are presented in the Figure 34 to demonstrate the uniform quality of 

recordings. Details of the dual imaging system are described in Appendix B.  

 

Figure 33. Left ventricular wedge preparation and optical recordings of action potentials (AP) and calcium 
transients (CaT). (A) An explanted nonfailing human heart. The region indicated by white rectangle was 
dissected and cannulated for wedge preparation. (B) The left ventricular wedge preparation from the same 
heart. (C) Pseudo-ECG (p-ECG) and representative optical recordings of AP and CaT from locations 
within sub-endocardium (sub-ENDO), midmyocardium (MID), and sub-epicardium (sub-EPI), which are 
indicated by the black stars shown in the panel B. (D) Terminology. Left: superimposed AP and CaT with 
illustrations of AP duration at 80% repolarization (APD80), CaT duration at 30% and 80% recovery 
(CaTD30 and CaTD80). Right: Close-up view of upstrokes (thin lines), and the derivatives (thick lines, 
labeled as dF/dt) with illustrations of AP-CaT delay and 10%-90% rise time of CaT. 
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Figure 34. Representative simultaneous optical recordings of action potential (AP, blue) and calcium 
transient (CaT, red). Signals are taken from the evenly spaced local regions (labeled by the brown squares) 
which span the entire mapping field of view of a left ventricular wedge preparation. The endocardium 
(ENDO) and epicardium (EPI) are labeled by the white lines. 

 

    The LV wedge preparations were paced at the ENDO at twice the diastolic pacing 

threshold. Dynamic restitution protocol was conducted in which pacing was started at a 

basic cycle length (BCL) of 1500 ms and it was gradually decreased until the ventricular 

functional refractory period was reached. Two Ag/AgCl electrodes were placed near the 

ENDO and EPI surfaces respectively to measure the pseudo-ECG. For more details of the 

Methods (tissue preparation, optical mapping system, and Western blot).  
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7.3.2 Western Blot 

Immediately after the delivery of the heart to our research lab, tissue samples at sub-

endocardium (sub-ENDO, 2 mm to the endocardium) and sub-epicardium (sub-EPI, 2 mm 

to the epicardium) were dissected from LV, frozen in liquid nitrogen, and stored at -80°C 

until use. Standard Western blot procedures were used. We used the anti-SERCA2a 

monoclonal antibody and an anti-phospholamban monoclonal antibody (Affinity 

BioReagent, Golden, CO) as well as anti-GAPDH monoclonal antibody (Sigma, St. Louis, 

MO). Chemiluminescence was measured by luminescent image analyzer LAS-4000 (Fujifilm, 

Tokyo, Japan). Protein bands were quantified by software Multi-Gauge 3.0 (Fujifilm, Tokyo, 

Japan). Protein expression was analyzed in three groups of hearts (Table 2): nonfailing hearts 

(n=6), and failing hearts due to different etiologies: nonischemic/idiopathic cardiomyopathy 

(n=6) and ischemic cardiomyopathy (n=6).  

7.3.3 Data Analysis 

All signals were low-pass filtered at 60Hz. The voltage-calcium delay was defined as the 

delay between the upstrokes of AP and CaT (Figure 33D). Each upstroke was defined at 

(dF/dt)max, where F is the voltage or calcium fluorescent signal (42). AP duration (APD) was 

measured as the time from the upstroke to 80% repolarization (i.e., APD80, Figure 33D). 

Similarly, the CaT duration (CaTD) was measured as the time from the upstroke to 30% and 

80% recovery (i.e., CaTD30 and CaTD80, Figure 33D). The 10-90% rise time of CaT was 

measured as the time from 10% CaT (close to the baseline) to 90% CaT (close to the peak, 

Figure 33D). Relaxation of CaT was quantified by the time constant (τ) of a single 

exponential fit of the CaT tail, i.e., the time from the minimum of d(CaT)/dt to the resting 

level of CaT. Sub-EPI was defined as the region within 2mm from the epicardial surface (See 
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Figure 2B on the right); midmyocardium (MID) was the 2mm-wide midmyocardial layer; and 

sub-ENDO was the region within 2mm from the endocardial surface. 

7.3.4 Statistical Analysis 

For statistical analysis, we used ANOVA. Specifically, we fit a linear mixed effects repeated 

measures model, where the patient was a random effect and other factors (failing/nonfailing, 

tissue layers, and basic cycle lengths [BCL]) were fixed effects. Models contained parameters 

that allow heterogeneous variance among levels of the failing/nonfailing by tissue-layer 

interaction and repeated measures correlation among tissue layers. We compared models by 

the small-sample-size−corrected version of Akaike information criterion. Contrasts were 

used to test the significance of differences between the failing and nonfailing groups within 

different tissue layers (sub-ENDO/MID/sub-EPI). Bonferroni adjustment was used to 

account for multiple comparisons. Detailed specifications of statistical analysis for individual 

figure are provided in the Online Data Supplement. P value less than 0.05 was considered 

statistically significant. Values were given as means ± S.D.  

7.4 Results 

7.4.1 Voltage-Calcium Delay (AP-CaT Delay) 

To quantify the EC coupling, the delay between the AP upstroke and CaT rise was measured. 

As expected, the upstroke of the AP was always followed by the rise of CaT (Figure 33D). 

To quantify the transmural heterogeneity, this delay was measured and averaged at all three 

tissue layers (sub-ENDO, MID, and sub-EPI). Figure 35A&B is a representative example 

displaying AP and CaT activation maps as well as the voltage-calcium delay. This delay is 

summarized in Figure 35C for the BCL of 1500 ms. We observed a transmural gradient of 
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this delay within the failing group. That is, the delay was significantly larger at sub-ENDO 

than sub-EPI (P = 0.015, see Figure 35B as an example). 

 

7.4.2 APD and CaTD 

We quantified APD, CaTD, and the difference between the two (i.e., CaTD - APD). Figure 

3 shows one example from a nonfailing heart (Figure 36A) and one from a failing (Figure 

36B) heart. Maps of APD80 and CaTD80 are shown for both hearts. It should be noted that 

Figure 35. Voltage-calcium (AP-CaT) 
delay. (A) Activation maps for AP 
and CaT from a failing human heart 
(#10). (B) Map for AP-CaT delay 
and the anatomic definition of sub-
ENDO, MID and sub-EPI from the 
same heart. (C) Summarized results for 
AP-CaT delay at the sub-ENDO, 
MID, and sub-EPI at a basic cycle 
length (BCL) of 1500ms in failing (F, 
n=5) and nonfailing (NF, n=6) 
hearts. 
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the color scales for APD and CaTD maps are different. It can be seen that APD80 mildly 

increased in this failing heart compared with that in the nonfailing heart, while CaTD80 was 

increased in a more substantial manner. Because of the disproportionate prolongation of  

 

Figure 36. Representative maps of APD80 and CaTD80 at the basic cycle length (BCL) of 1500ms. (A) 
APD and CaTD maps from a nonfailing human heart. (B) APD and CaTD maps from a failing human 
heart. ENDO indicates endocardium, EPI, epicardium. 
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Figure 37. APD, CaTD and the duration difference (APD-CaTD). (A) APD80, CaTD80 and the 
duration difference at the basic cycle length (BCL) of 1500ms in failing (F, n=5) and nonfailing (NF, n=6) 
hearts at sub-ENDO, MID, and sub-EPI. (B) Dynamics of APD80, CaTD80 and the duration 
difference at various cycle lengths at sub-ENDO, MID and sub-EPI. The top row in panel B is for 
nonfailing hearts, and the bottom row in panel B is for failing hearts. (C) Transmural APD and CaTD 
gradients. The gradient is calculated as the difference between the values of sub-ENDO and sub-EPI. 
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CaTD relative to APD, (CaTD80 - APD80) in the failing heart was larger than that in the 

nonfailing heart.  

    APD80, CaTD80, and (CaTD80-APD80) for both failing and nonfailing groups are 

shown in Figure 37A for the BCL of 1500 ms and are summarized in Figure 37B for 

multiple BCLs. The transmural APD and CaTD gradient represented by the sub-ENDO and 

sub-EPI duration differences are shown in Figure 37C. Transmural APD gradients are 

present in both failing and nonfailing human hearts. Similar to our previous study (90), at 

slow heart rates, this gradient was less pronounced in the failing group compared with the 

nonfailing group (Figure 37A&C-left). CaTD80 (Figure 37A-middle) also exhibited gradients 

from the endocardium to the epicardium. Interestingly, this gradient (Figure 37C) was 

significantly smaller in the failing group compared with the nonfailing group at fast heart 

rates (e.g., 100 beats/min [bpm] or BCL=600 ms) but not at slow heart rates (e.g., 40 bpm 

or BCL=1500 ms).  

    The duration difference (CaTD80 - APD80) was significantly increased at sub-ENDO in 

the failing hearts during bradycardia (P = 0.022, Figure 37A-right). As the BCL decreased, 

the duration difference was significantly decreased within the failing group, while it remained 

unchanged in the nonfailing group (Figure 37B-right). Both APD80 and CaTD80 were 

decreased as the BCL was decreased (Figure 37B-left and middle).  

    M cell islands, which contain prolonged APDs and are surrounded by large APD 

gradients, were observed previously in nonfailing human hearts (90). In the majority of the 

hearts in this study, APD decreased gradually from ENDO to EPI without the presence of 

M cells. However, M cells were observed in one nonfailing heart, where we specifically 
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searched for them (Figure 38). As shown in the map of APD80 (Figure 38B), the M-cell area 

was in the form of an isolated island rather than a continuous layer. This region exhibited a 

delayed repolarization (Figure 38E) and was surrounded by steep local APD gradients 

(Figure 38C). As shown in Figure 38D and 38E, the M-cell island had longer CaTD 

compared with neighboring regions. Other M-cell island parameters (AP-CaT delay, CaTD-

APD, CaT rise time, CaTD30/CaTD80, and τ) were not different from neighboring mid-

myocardium regions (Figure 39). 

 

Figure 38. M cell island. (A) Activation propagation from ENDO to EPI. (B) APD map at the basic 
cycle length (BCL) of 1500 ms. An island of prolonged APD is evident in this map. (C) Map of APD 
gradient at the BCL of 1500 ms. This shows that the region of prolonged APD is surrounded by steeper 
APD gradients. (D) Map of CaTD at the BCL of 1500 ms. (E) From top to bottom: psudo-EKG (p-
ECG), action potential (AP), and calcium transient (CaT) from locations (marked by asterisks in panel B) 
at sub-ENDO, sub-EPI and M-cell island.  
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Figure 39. Quantifications of nonfailing heart #11 with an M-cell island. Here shows the maps for 
APD80, AP-CaT delay, CaTD80-APD80, rise time of CaT, CaTD30/CaTD80, and the CaT 
relaxation time constant (τ). 

 

7.4.3 Morphological Changes of CaT 

There were two morphological changes in CaT in the failing hearts compared with that in 

the nonfailing hearts. Figure 40A shows two representative examples of CaT recorded at the 

sub-ENDO of a failing (top) and a nonfailing heart (bottom). The first change was a ―two-

component‖ rising phase, including an initial fast rising phase (labeled by I in Figure 40A) 

and a subsequent second slow rising phase (labeled by II in Figure 40A). This was observed 

in 3 out of 5 failing hearts but not in any of the nonfailing hearts; and it was only present at 

sub-ENDO. The second slow component resulted in a significant increase of the rise time 

of CaT (P < 0.001) from 26 ± 3 ms (nonfailing and two failing) to 49 ± 12 ms (three failing) 
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at sub-ENDO. However, if a comparison is made between nonfailing and failing groups, 

this increase would not be statistically significant (See Figure 40B). The second 

morphological difference was a more flattened plateau of CaT within the failing group, 

which is reflected by an increased ratio of CaTD30 to CaTD80. Figure 40C shows that this 

ratio was significantly increased in failing hearts compared with nonfailing hearts at MID.  

 

Figure 40. Remodeling of CaT due to heart failure. (A) Representative traces of action potential (AP) and 
calcium transient (CaT) from a failing heart and a nonfailing heart. (B) 10-90% rise time of CaT at a 
BCL of 1500ms in failing (F, n=5) and nonfailing (NF, n=6) hearts at sub-ENDO, MID and sub-
EPI. (C) Ratio of CaTD30 and CaTD80 at a BCL of 1500ms at sub-ENDO, MID, and sub-EPI. 

 

7.4.4 Relaxation of CaT  

The time constant of CaT relaxation reflects the rate of Ca2+ reuptake from the cytoplasm by 

SERCA2a and Na+/Ca2+ exchanger. We observed a gradient of the relaxation time constant 

of CaT from ENDO to EPI in both failing and nonfailing hearts. Figure 41A&B shows 

representative examples of the time constant measurement () in a failing human heart. It is 

evident that at sub-ENDO was larger than that at sub-EPI. The difference between failing 



113 

 

and nonfailing groups was not statistically significant although there was a trend of an 

increase in within the failing group (Figure 41C).  

 

Figure 41. 
failing human heart. (B) Representative traces of CaT (solid lines) from sub-ENDO (red) and sub-EPI 
(blue) and their corresponding single exponential fittings (dashed lines). (B) Summary of time constant 

-ENDO, MID, 
sub-EPI at a BCL of 1500ms. 

 

7.4.5 Protein Expression of SERCA2a and Phospholamban 

To determine the molecular mechanism of the observed gradient of presented above, we 

quantified the protein expressions of SERCA2a and phospholamban. In Figure 42, 

representative bands and the statistical summary are shown for SERCA2a (Figure 42A) and 

phospholamban (Figure 42B). We divided our samples into three groups (See Table 2) 

including nonfailing, failing with ischemic cardiomyopathy, and failing with 

nonischemic/idiopathic cardiomyopathy. Each group was subdivided into sub-ENDO and 

sub-EPI. For SERCA2a, there was a significant difference between sub-ENDO and sub-EPI 

(p < 0.001, Figure 42A; interaction between tissue layers and patient groups was not 

significant [P = 0.295]). SERCA2a expression at sub-ENDO in the ischemic group was 
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significantly lower as compared to that in the nonischemic group (P = 0.023, Figure 42A). 

For phospholamban, we did not observe any differences between sub-ENDO and sub-EPI, 

nor among any of the three groups (Figure 42B). 

 

Figure 42. Protein expressions of SERCA2a and phospholamban. Representative examples of Western 
blots (top) and normalized protein expression (bottom) are shown for SERCA2a (A) and phospholamban 
(B). NF (n=6) represents the group of nonfailing hearts; Ischemic-F (n=6) represents the group of failing 
hearts with ischemic cardiomyopathy; Nonischemic-F (n=6) represents the group of failing hearts with 
nonischemic/idiopathic cardiomyopathy. 

 

7.5 Discussions 

In the present study, we conducted for the first time the simultaneous mapping of both 

voltage and calcium in LV wedge preparations from failing and nonfailing human hearts. We 

found that HF-induced remodeling consists of (1) increased differences of AP and CaT 
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durations at sub-ENDO during bradycardia (40 bpm), (2) decreased transmural CaTD 

gradients at fast pacing rates (100 bpm), (3) a slow component of rise and a dome-shaped 

plateau in CaT, and (4) a lowered level of SERCA2a expression at sub-ENDO in failing 

human hearts with ischemic cardiomyopathy. We also found that there existed transmural 

gradients of CaTD80, CaT relaxation time constant (τ), and protein expression of SERCA2a 

in both failing and nonfailing human hearts. 

7.5.1 Implications from CaT Morphology Changes 

There was a two-component rise of CaT at sub-ENDO in three of the failing hearts, with an 

initial fast component followed by a slow second component. This was previously observed 

in isolated myocytes from failing human and canine hearts (194, 203). Piacentino et al. 

suggested that this might result from increased Ca2+ entry during the AP plateau due to less 

calcium-mediated inactivation of L-type calcium currents and increased activity of the 

Na+/Ca2+ exchanger in the reverse mode (Ca2+ influx) (203). The same mechanism could 

also explain the apparent dome shape of CaT observed in the failing hearts.  

    The morphological changes of CaT could also result from dyssynchronous Ca2+ release 

within a cell. The delayed release of Ca2+ in defective regions might be responsible for the 

slow component of rise and subsequent dome shape of CaT observed in the failing human 

hearts. Confocal line scan recordings in whole failing rat hearts revealed that the release of 

Ca2+ at some part within a cell does not occur at the time of initial depolarization but a short 

time after the depolarization (254). It is possible that the normal Ca2+ release corresponds to 

the first fast rising phase of CaT; and delayed Ca2+ release corresponds to the second slow 

component of CaT.  
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    Interestingly, this slow secondary rise of CaT was observed only in sub-ENDO region in 

60% of failing hearts. Further studies will be required to investigate the mechanisms of this 

remodeling at both molecular and tissue structural levels. 

7.5.2 APD, CaTD, and (CaTD − APD) 

The decay of CaT was markedly prolonged in isolated cells from failing human hearts (21). 

In contrast, CaTD in failing hearts was not statistically different from nonfailing hearts in 

our study. This is likely due to differences between isolated cell and tissue preparations as 

well as differences in the pacing cycle length. O’Rourke et al. showed that CaTD was 3-fold 

longer in myocytes from failing hearts at BCL of 6 seconds, but was not significantly 

different at 1-second interval when compared with myocytes from nonfailing hearts (194). 

Another possible explanation for this discrepancy is the afterload dependence of CaT, which 

indicates that mechanical work and metabolic demand is crucial for inducing the pathological 

regulation and morphological changes of CaT (246). Since mechanical work was inhibited in 

our study by blebbistatin to eliminate motion artifacts, changes of CaT therefore might not 

be as evident.  

    (CaTD - APD) was significantly increased at the sub-ENDO at a slow heart rate (40 bpm) 

in failing hearts as compared to nonfailing hearts (Figure 4A-right). That is, CaT significantly 

outlasts AP and is elevated during phase 3 of the AP. This difference in duration was 

previously proposed to promote late phase 3 early afterdepolarization (EAD) by the strong 

recruitment of electrogenic Na+/Ca2+ exchanger currents (35, 195). Though EAD was not 

observed in this study, we speculate that this might contribute to the enhanced 

arrhythmogenesis in HF by promoting EADs under conditions such as metabolic inhibition.  
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7.5.3 Transmural CaTD Gradient  

The transmural gradient of CaTD at fast heart rates (100 bpm) was significantly smaller in 

the failing group as compared to the nonfailing group. This might have important 

physiological implications relevant to the mechanical dysfunction of failing human hearts.  

    The transmural gradient of CaTD was 72 ± 20 ms and 81 ± 16 ms at a slow rate (40 bpm) 

for failing and nonfailing groups during ENDO pacing, respectively (Figure 4C-right). The 

corresponding conduction time from the ENDO to EPI was 49 ± 13 ms and 30 ± 5 ms (40 

bpm). Therefore, the transmural gradient of the time at 80% of CaT relaxation from ENDO 

to EPI (ENDO to EPI CaTD80 difference minus conduction time) was 23 ± 15 ms and 51 

± 19 ms. The positivity of these values indicates that the sequence of relaxation of CaT was 

from EPI to ENDO for both failing and nonfailing groups at 40 bpm. This sequence is the 

same as the transmural sequence of myofiber relaxation measured in vivo in normal canine 

hearts during sinus rhythm (6).  

    At fast heart rates this sequence was maintained in nonfailing human hearts (as expected) 

but was reversed in failing human hearts. At 100 bpm in the failing group, the transmural 

gradient of CaTD was 25 ± 11 ms and conduction time increased to 57 ± 13 ms at (Figure 

4C-right). Therefore, the transmural gradient of the time at 80% of CaT relaxation was -29 ± 

15 ms, the negativity of which indicates that the sequence of CaT relaxation for the failing 

group was from ENDO to EPI.  This reversed sequence of relaxation at fast heart rates 

could be associated with poor mechanical function and might be one of the mechanisms 

underlying the higher risk for primary composite endpoint in HF patients with higher heart 

rates (25).   
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7.5.4 Heterogeneous Calcium Handling  

The protein expression of SERCA2a was significantly lower in ischemic failing hearts than 

the nonischemic failing hearts, at sub-ENDO but not at sub-EPI. This indicates that the 

protein level of SERCA2a is dependent on both the etiology of HF and the anatomic 

location of the myocardium. Previously, SERCA2a was found to be significantly down-

regulated in failing human hearts in some studies (50, 109, 173, 240), while it was not in 

other studies (57, 82, 84, 152, 183, 185, 229). According to our results, the inconsistent 

observations might be related to the anatomic inconsistency within and across studies, and 

due to the etiology dependence of down-regulation.  

    In both failing and nonfailing hearts, the protein level of SERCA2a was less abundant at 

sub-ENDO than that at sub-EPI (Figure 8A). This difference was consistent with previous 

observations in canine and human hearts (140, 211). The lower expression of SERCA2a was 

suggested to lead to the larger relaxation time constant of CaT in canine hearts (140). Our 

results suggest that this causal relationship might also exist in human hearts.   

    No significant increase of the relaxation time constant was observed in failing human 

hearts in this study. Since our failing group consisted of two hearts with ischemic 

cardiomyopathy and three hearts with nonischemic/idiopathic cardiomyopathy for the 

functional part of this study, the lack of statistical significance could be explained by 

different etiologies of HF. Indeed, the time constant in hearts with ischemic cardiomyopathy 

was longer than in hearts with nonischemic/idiopathic cardiomyopathy (i.e., sub-ENDO: 

170 ms vs. 136 ms; MID: 152 ms vs. 124 ms; sub-EPI: 137 ms vs. 114 ms). Due to limited 

samples, future studies are needed to test this hypothesis. Nevertheless, this hypothesis is 

supported by a study in isolated myocytes from human hearts with end-stage HF, which 
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showed that relaxation of CaT and contraction was significantly slower in hearts with 

ischemic cardiomyopathy than that with dilated cardiomyopathy (232). This difference might 

be explained by the significant down-regulation of SERCA2a protein expression in ischemic 

failing group but no change within the nonischemic failing group as shown in this study.  

7.5.5 M Cell Island  

We have recently reported (90) that the M cells were present in the form of spatially discrete 

and isolated islands rather than a continuous layer in 3 out of 5 nonfailing human hearts. 

Moreover, M cells were not observed in failing human hearts due to nonhomogeneous APD 

prolongation and decreased transmural APD gradient (90). In order to compare failing and 

nonfailing hearts under the same pattern of APD distribution, we did not concentrate on 

searching for M cell islands in nonfailing hearts. This explains why we only present M cells in 

one nonfailing heart (Figure 5). In this experiment, we specifically searched for M cells 

which were in the form of isolated islands rather than a continuous layer, as was previously 

described (90). The regions above and below the M cell island had continuous APD gradient 

from ENDO to EPI (similar to Figure 3). To compare failing and nonfailing hearts under 

the same pattern of APD distribution, data only in the region without M cells (e.g., upper 

part of Figure 5B) were used in the statistical analysis. 

    As shown in Figure 5D, CaTD within the M cell island was prominently longer compared 

to the neighboring region. However, CaTD within the M cell island (698±9 ms) was 

comparable to that at the sub-ENDO (711±15 ms, also see Figure 5D), while APD within 

the M cell island (649±7 ms) was longer than that at sub-ENDO (618±13 ms, also see 

Figure 5B). This difference is similar to the observation made in the canine study by 

Cordeiro et al.(45) Interestingly, other parameters related to EC coupling and calcium 
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handling (such as AP-CaT delay, CaT rise time and CaT relaxation time constant) were not 

distinctly different from the surrounding region (Supplemental Figure 2). The role of M cell 

islands in the contraction and their nature in nonfailing hearts remains unclear. 

7.6 Limitations 

This study has several limiations. First, nonfailing donor hearts are not necessarily 

representative of healthy hearts (190). However, none of the donors have a history of HF, 

and were thus the best controls available for this functional study. Second, due to technical 

limitations, only a limited transmural surface of LV with good perfusion was mapped. Due 

to the anatomical heterogeneity of the heart itself, caution should be taken to extrapolate the 

results to the whole heart. Third, due to the limited access to functional human hearts, the 

number of hearts for each group is small, and might compromise the statistical significance 

of potential differences. Because all of the failing hearts with different cardiomyopathy were 

grouped together for the functional data analysis, only changes common to different 

etiologies of cardiomyopathy could be revealed. Changes unique to individual 

cardiomyopathy could be masked. Fourth, several other important aspects of EC coupling 

were not examined in this study, such as the SR calcium content and the EC coupling gain. 

Regional differences of these parameters need to be resolved in future studies. Fifth, 

application of blebbistatin in our study liberated ATP from mechanical contraction and thus 

allowed ample supply of ATP to electrophysiological processes. Pathological changes could 

thus be less evident in the absence of metabolic disturbance that could be unmasked by 

mechanical work.  Finally, as shown in neonatal rat myocyte cultures, the use of high-affinity 

dyes including Rhod-2 may overestimate CaTD, which was about twice as large as APD (71, 

72). This was not likely the case in our measurements because CaTD in normal human 
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hearts was comparable to APD. Also, the main focus of the present study was on regional 

differences of CaTDs rather than on their absolute values. Thus, potential systematic errors, 

if they existed, were likely to be subtracted or minimized. 
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8. Summary and Future Directions 

The panoramic imaging system has demonstrated its use in studying the dynamics of 

reentrant arrhythmias (149). The limitation of the current system is its relatively low spatially 

resolution due to the use of PDA (16 by 16). Incorporation of the high spatial resolution 

CMOS cameras into this system could significantly improve the performance and extend its 

application to large hearts (e.g. dog and human heart).  

     The dual imaging system has also proved its use in mouse, rabbit and human heart tissues. 

The current limitation of this system is the relative small size of the field of view, which can 

be improved by using the tandem lens configuration as showed by Laurita et al. (142).  

    We demonstrated that healed myocardial infarction could enhance the susceptibility to 

electrical alternans. This hypothesis will be tested in the failing human heart targeting the 

regions containing scars tissue. Histology of the tissue should follow the functional study to 

determine the correlation between the heterogeneous functional remodeling and structural 

remodeling.  

    As remodeling of repolarization on the RV endocardium was observed in the failing 

human heart, the next step of this study will be examination of the molecular mechanism by 

investigating the gene and protein expression of key ionic channels in tissue isolated from 

different regions of RV. Furthermore, functional, molecular and structural remodeling at the 

RV outflow tract will be quantified. And hypothesis regarding the distinctively high 

arrhythmogenesis at the RV outflow tract should be tested.  
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    Regarding the study of EC coupling remodeling in failing human heart, we have 

established the "baseline remodeling". The next step is to first determine how the adrenergic 

stimulation would change the substrate and trigger for the ventricular arrhythmia, and then 

to simulate other conditions in vivo such as the loss of metabolic capability using metabolic 

inhibition. If optical mapping of beating heart without motion artifact could be achieved, 

electrical function and arrhythmia vulnerability should be tested before and after the 

application of EC uncoupler to determine whether the mechanical loading has an impact on 

the abnormal electrical function. It remains a question that under what conditions the DAD 

and EAD could occur in the failing human heart. Answering this question could potentially 

shed light to the prevention of arrhythmia triggers in human heart failure.  

    In summary, I think the continuing technical development and ongoing animal and 

human projects in the lab carry great promise in advancing the understanding of human 

cardiac electrophysiology and in opening the door for successful clinical translations to help 

combat the cardiovascular diseases such as heart failure.   
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Appendix A. Sketch of the Panoramic Imaging 

System 

A sketch of the panoramic imaging system is shown in Figure 43.   

 

Figure 43. An overview sketch of the panoramic imaging system. (A) The hardware. The heart is placed in a 
hexagon-shaped chamber. Three photo-diode arrays (PDAs) are placed around the chamber. (B) The 
software. The geometry of the heart is first reconstructed. Then the optical signals from three PDAs are 
registered and textured onto the reconstructed surface. Reentrant arrhythmia can thus be easily visualized on 
the realistic single geometry.    
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Appendix B. Dual Imaging System for 

Simultaneous Measurement of Action Potential 

and Calcium Transient 

The tissue is co-stained via coronary perfusion with voltage sensitive dye RH237 (30μL of 

1.25mg/ml solution in DMSO, Invitrogen, Carlsbad, CA) and calcium indicator Rhod-2 AM 

(0.4-0.6mL of 1mg/ml solution in DMSO, Invitrogen, Carlsbad, CA).   

    Two halogen lamps (Newport Oriel Instruments, Stratford, CT; SciMedia, Costa Mesa, 

CA) equipped with 520 ± 45nm bandpass filters are used for excitation. Fluorescent voltage 

and calcium signals are simultaneously collected from the same field of view. Fluorescence 

emission are separated by a dichroic mirror (635nm cutoff, Omega Optical, Brattleboro, VT), 

and filtered by a 700nm longpass filter (Thorlabs, Newton, New Jersey) for voltage signals 

and by a 590 ± 15nm bandpass filter (Omega Optical, Brattleboro, VT) for calcium signals. 

The two signals are then recorded by a dual CMOS camera system (ULTIMA-L, SciMedia, 

Costa Mesa, CA).  

    A sketch of the dual imaging system is shown in Figure 44. Representative recordings of 

this system from a rabbit heart is shown in Figure 45.   
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Figure 44. A sketch of the dual imaging system. The sample recordings are from a rabbit heart.  

 

Figure 45. Sample recordings by an array of pixels from a rabbit heart. 
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