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ABSTRACT OF THE DISSERTATION 

 

Effect of design parameters and intercalation induced stresses in lithium ion batteries 

by 

Sumitava De 

Doctor of Philosophy in Energy, Environmental and Chemical Engineering 

Washington University in St. Louis, 2014 

 Dr. Venkat R. Subramanian, Chair 

 

Electrochemical power sources, especially lithium ion batteries have become major players in 

various industrial sectors, with applications ranging from low power/energy demands to high 

power/energy requirements. But there are some significant issues existing for lithium ion 

systems which include underutilization, stress-induced material damage, capacity fade, and the 

potential for thermal runaway. Therefore, better design, operation and control of lithium ion 

batteries are essential to meet the growing demands of energy storage. Physics based modeling 

and simulation methods provide the best and most accurate approach for addressing such issues 

for lithium ion battery systems. This work tries to understand and address some of these issues, 

by development of physics based models and efficient simulation of such models for battery 

design and real time control purposes. 

This thesis will introduce a model-based procedure for simultaneous optimization of design 

parameters for porous electrodes that are commonly used in lithium ion systems. The approach 

simultaneously optimizes the battery design variables of electrode porosities and thickness for 

maximization of the energy drawn for an applied current, cut-off voltage, and total time of 

discharge. The results show reasonable improvement in the specific energy drawn from the 

lithium ion battery when the design parameters are simultaneously optimized. 



xiii 

The second part of this dissertation will develop a 2-dimensional transient numerical model used 

to simulate the electrochemical lithium insertion in a silicon nanowire (Si NW) electrode. The 

model geometry is a cylindrical Si NW electrode anchored to a copper current collector (Cu CC) 

substrate. The model solves for diffusion of lithium in Si NW, stress generation in the Si NW 

due to chemical and elastic strain, stress generation in the Cu CC due to elastic strain, and 

volume expansion in the Si NW and Cu CC geometries. The evolution of stress components, i.e., 

radial, axial and tangential stresses in different regions in the Si NW are studied in details.  

Lithium-ion batteries are typically modeled using porous electrode theory coupled with various 

transport and reaction mechanisms with an appropriate discretization or approximation for the 

solid phase diffusion within the electrode particle. One of the major difficulties in simulating Li-

ion battery models is the need for simulating solid-phase diffusion in the second radial dimension 

r within the particle. It increases the complexity of the model as well as the computation 

time/cost to a great extent. This is particularly true for the inclusion of pressure induced diffusion 

inside particles experiencing volume change. Therefore, to address such issues, part of the work 

will involve development of efficient methods for particle/solid phase reformulation – (1) 

parabolic profile approach and (2) a mixed order finite difference method. These models will be 

used for approximating/representing solid-phase concentration variations within the active 

material. Efficiency in simulation of particle level models can be of great advantage when these 

are coupled with macro-homogenous cell sandwich level battery models. 
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Chapter 1 
 

 

Introduction 
 

 

1.1 Electrochemical energy storage 

Energy is an important issue for mankind. In recent years, there has been a resurgence of interest 

in developing new clean and renewable energy systems primarily due to concerns about human’s 

environmental footprint, such as that due to carbon dioxide, and concerns about security and 

rapid global development. Significant development has been made in renewable energy 

technologies like wind, solar, etc. With these, comes the need for developing state of the art 

energy storage devices.  

Electrochemical energy storage devices such as lithium ion batteries, redox flow batteries, fuel 

cells, electrochemical capacitors have been identified as the leading EES technologies as a result 

of their scalability and versatility. Fig 1-1[1] shows the power and energy density features of the 

above mentioned devices. Capacitors are more suitable for high power applications because of 

their high power densities and sub-second response times. Batteries and fuel cells/redox flow 

batteries have large energy densities which make them suitable for large scale energy storage like 

electrical grids. 
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Fig. 1-1. Energy and power densities of various EES systems 

 

1.2 Lithium-ion battery  

Due to their high theoretical and practical energy density, lithium-ion batteries are attractive 

power sources for portable consumer electronic applications, Plug-in Hybrid Electric Vehicles 

(PHEVs) and Electric Vehicles (EVs). Lithium-ion battery is a type of rechargeable battery 

which has four primary components namely a lithium metal oxide positive electrode (cathode), a 

graphite/silicon negative electrode (anode), a porous polymer separator and an organic 

electrolyte. The separator separates the positive and negative electrodes while allowing ions to 

pass through. The anode, cathode and the separator are submerged in the electrolyte solution. In 

a lithium battery, Li ions migrate repeatedly between the anode and cathode. During charging, 

ions of lithium move through the electrolyte from the cathode to the anode while the electrons 

flow through the external circuit. The reverse phenomenon occurs while discharging. Fig. 1-2 [2] 

shows a pictorial representation of lithium-ion battery cell sandwich architecture and the 

phenomena taking place during its operation. 
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Fig. 1-2. A schematic representation of a lithium-ion battery  

 

The intercalation/de-intercalation reaction is the most important reaction mechanism for Li-ion 

rechargeable batteries, and involves the insertion of Li ions into interstitial sites in the crystal 

without changing the basic crystal structure.  

1.3 System engineering approach to address issues 

Significant issues persist with existing lithium-ion battery technology including underutilization, 

stress-induced material damage, capacity fade, and the potential for thermal runaway [3]. Current 

issues with lithium-ion batteries can be broadly classified at three different levels i.e. market 

level, system level, and single cell sandwich. At the market level, factors such as cost, safety, and 
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life become most important as the consumers are the major target. At the system level, issues 

such as cell underutilization, capacity fade, thermal runaways, and lower energy density are most 

critical. These issues can be examined and understood more fundamentally at the cell sandwich 

level, by studying phenomena occurring at the electrodes, electrolyte, separator, and their 

interfaces more critically. These shortcomings are generally attributed to major issues associated 

with Solid-Electrolyte Interface (SEI)-layer growth, unwanted side reactions, mechanical 

degradation, loss of active materials, and the increase of various internal resistances such as 

ohmic and mass transfer resistance. Application of modeling, simulation, and systems 

engineering techniques is a viable option to address these issues at the cell sandwich level to 

enhance system level performance to improve commercial marketability.  

Fundamental modeling approaches coupled with systems engineering techniques can provide a 

set of powerful tools for better design, creation, and operation of lithium-ion battery systems. 

The development of new materials (including choice of molecular constituents and material 

nano- and macro-scale structure), electrolytes, binders, and electrode architecture are likely to 

contribute towards improving the performance of batteries. For a given chemistry, better 

fundamental understanding along with systems engineering approach can be used to optimize the 

electrode architecture, operational strategies, cycle life, and device performance by maximizing 

the efficiency and minimizing the potential problems usually observed in batteries. 

The schematic in Fig. 1-3 shows four systems engineering tasks and the interactions between 

these tasks. Ideally, the eventual goal of this approach applied to Li-ion batteries would develop 

a detailed multiscale and multiphysics model formulated so that its equations can be simulated in 

the most efficient manner and platform, which would be employed in robust optimal design or 

control. 
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Fig. 1-3. Schematic of system engineering tasks and the interplay between them : In the 
figure, u, y and p are vectors of algebraic variables, differential variables and design 
parameters respectively 

 

Fundamental model development coupled with other systems engineering approaches can 

address a wide range of issues in batteries such as: 

1. Understanding degradation mechanisms in lithium-ion batteries 

2. Capacity fade modeling 

3. Improved life by changing operating conditions and material properties 

4. Improved energy density/power density by manipulating design parameters and operating 

protocols 

5. Model predictive control that incorporates real-time estimation of State-of-Charge (SOC) and 

State-of-Health (SOH). 
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1.4 Modeling of lithium-ion batteries 

Model development is the core of the systems engineering approach for developing real time 

control strategies and achieving optimal design of batteries. Generally, the cost of developing a 

detailed multiscale/multiphysics model with high predictive capability is computationally very 

expensive, so model development efforts start with a simple model and then add 

complexity/additional physics until the model predictions are sufficiently accurate to address the 

objectives. Another important task after development of model is to experimentally validate it to 

ensure that the model predicts the experimental data to the required precision with a reasonable 

confidence. However, for a lithium-ion battery, most variables in the system are not directly 

measurable during charge-discharge cycles, and hence are not available for comparison, to verify 

the accuracy of the assumptions made in the derivation of the model. Also, model parameters 

that cannot be directly measured experimentally typically have to be obtained by comparing the 

experimental data with the model predictions.  

Mathematical models for lithium-ion batteries vary widely in terms of complexity, computational 

efficiency, and accuracy of their predictions. Fig. 1-4[4] shows a comparison of the lithium ion 

battery models reported in literature with respect to their predictability and computational cost. 

As obvious, inclusion of additional physics in an existing battery model improves its predictions 

but also increases computational costs which are not useful for real time control and optimization 

purposes. Therefore, use of simplified or complicated battery models is driven by the particular 

needs of the application. Lithium ion battery models can be roughly classified into four groups: 

empirical models, electrochemical models, multiphysics models and molecular/atomic models. 
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Fig. 1-4. Comparison of lithium-ion battery models (images taken from various sources on 
the internet and literature) 

 

Empirical models – These models are computationally most efficient as past experimental data 

is used to predict future behavior of lithium-ion batteries. Empirical models consist of 

polynomial, exponential, power law, logarithmic, and trigonometric functions and they 

completely ignore physico-chemical principles. Such battery models are also useless for the 

design of new battery chemistries or materials. Moreover, as these models are developed by 

fitting experimental data for specific operating conditions, very low accuracy is expected when 

empirical models are used for a different set of operating conditions.  

Electrochemical engineering models – Continuum scale models which couple 

chemical/electrochemical kinetics with transport phenomena to predict battery behavior fall 

under this category. They are more accurate in predictions compared to empirical models.   
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The single particle model (SPM), developed by Zhang et al. [5], approximates the anode and 

cathode of the cell sandwich each as a single particle with the same surface area as the electrode. 

In this model, diffusion and intercalation are considered within the particle i.e. it solves for mass 

and charge balance in solid phase. Concentration and potential effects in the solution phase 

between the particles are neglected. On the computational cost scale, this model is on the lower 

side but it is valid for limited conditions such as low rates, thin electrodes as a result of its 

assumptions. 

Ohmic porous-electrode model [6-9] represents the next level of complexity in this category of 

lithium ion battery models. It incorporates solid and electrolyte phase potentials and current but 

neglects the spatial variations in concentration. Either linear, Tafel or exponential kinetics are 

chosen to represent electrochemical reactions in this model. Furthermore, mass and charge 

transport parameters like diffusivities, conductivities etc. are varied as functions of porosity of 

electrodes.   

The pseudo two dimensional or P2D model [10]  is by far the most widely used model in battery 

literature. It has been shown to be very accurate for a wide range of operating conditions and has 

been experimentally validated for high/low rates of charge and discharge. Doyle et al. [10] 

developed the P2D model based on concentrated solution theory  capturing the internal behavior 

of a lithium-ion cell sandwich consisting of positive and negative porous electrodes, a separator, 

and  current collectors. P2D model solves for both the electrolyte and solid-state mass and charge 

balances within the porous electrodes and the electrolyte concentration and electrolyte potential 

within the separator. This model, based on the principles of transport phenomena, 

electrochemistry, and thermodynamics is represented by coupled nonlinear partial differential 
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equations (PDEs) in x, r, and t that can take seconds to minutes to simulate. Although, this model 

provides excellent predictive capability, this has a greater computational cost. 

Multiphysics models – Multiscale and multiphysics models are necessary to understand 

complicated physics occurring during lithium-ion battery operation especially for applications 

demanding high power/energy. Thermal models include temperature effects into the P2D model 

which adds complexity to the model but increases its predictability. To overcome the additional 

computational load, many researchers solve for a global energy balance by decoupling the 

thermal model from the electrochemical model [11-15]. One major limitation of this decoupling 

technique is the inability to monitor local current densities and state of charge which affect 

thermal gradients inside the cell. Global energy balance is only valid for uniform reaction 

distribution within the cell. Moreover, these models cannot be employed to understand effects on 

cell performance as a result of temperature changes. Some papers have presented 2D thermal-

electrochemical coupled models for lithium-ion cells to understand the effects of local heat 

generation [16,17]. Recently, researchers have begun developing 3D thermal- electrochemical 

models for better understanding of the dynamic operation and control of lithium-ion batteries for 

large-scale applications. As these models are computationally expensive, several approximations 

are usually made, resulting in various shortcomings. Some models cannot monitor the thermal 

effect of electrochemical parameters [14,18], while other models require empirical input from 

experiments or other simulations [19,20]. A Multi-Scale Multi-Dimensional (MSMD) model 

[21] and a model derived from a grid of 1D electrochemical/thermal models [22] have also been 

implemented for 3D thermal simulation of batteries. 

Lithium intercalation/de-intercalation into the electrode particles during charge/discharge of 

battery causes expansion/contraction of the active material and this develops stresses which can 
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result in fracture of particles finally leading to reduction in battery capacity due to loss of active 

material. Moreover, the pressure gradients inside the particles dictate concentration profiles. 

Therefore, multiphysics models are needed to be developed which capture the pressure induced 

diffusion and stress generation in active material particles in lithium-ion batteries. Detailed 

literature review of such models has been presented in a later chapter. 

In general, porous materials rarely have uniform particle size and shape. During cycling, active 

material particles de-laminate form substrate or agglomerate to form larger sized particles. 

Therefore to capture effect of particle size distribution on battery performance, researchers have 

reported the development of continuum models in literature [23,24]. To capture the effect of 

morphology within battery active material, mesoscale models [25] have been developed which 

enable materials degradation due to spatially-varying and time-varying changes in the particle 

size and shape distribution to be explicitly addressed. 

Molecular/Atomistic models –Such models are required to understand phenomena occurring at 

the lattice/molecular scale during operation of lithium-ion battery. The Kinetic Monte Carlo 

(KMC) method is a stochastic technique that has been employed to study diffusion of lithium 

between lattice sites within an electrode particle including the effect of crystal structures on 

mobility of ions etc. [26,27] . The growth of passive solid electrolyte interface (SEI) layer on the 

surface of anode particles have been studied extensively with KMC methods which has 

identified as one of the major causes behind capacity fade of batteries [28] .  

Molecular dynamics (MD) techniques have been employed to gain insight into the mechanisms 

of SEI layer growth especially at the start of lithiation ( like the first tens of picoseconds) [29]. 

MD methods have been extensively used for simulation of effective diffusivities [30] .  Density 

functional theory (DFT) simulations have been also used for detailed study and understanding of 
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several phenomena occurring during battery operations such as structural changes in particles 

during repetitive cycling [31], stability of organic electrolytes crucial for SEI layer growth [32] 

etc.  

1.5 Simulation of lithium-ion battery models 

Battery models can be simulated using multiple numerical methods. Simple empirical models 

can be solved analytically. Non-linearities in such models can be handled with analytical series 

solutions using perturbation approaches [33]. Single particle (SPM) models can have analytical 

solutions for some special cases. Analytical solutions do not exist for models beyond single 

particle and ohmic resistance models. Finite difference method has been typically employed for 

solution of P2D model [10]. For example, a P2D model with polynomial approximation [34] for 

the solid phase diffusion, when discretized with 50 node points in the spatial direction for each 

variable, results in a system of 250 DAEs for each electrode and 100 DAEs for the separator. 

Thus, the total number of DAEs to be solved for the P2D model across the entire cell is 250 + 

250 + 100 = 600 DAEs. Adding thermal effects to the model increase the number of DAEs to be 

solved. Stack models become extremely computationally heavy, as they introduce N times the 

number of equations coming from a cell sandwich where N corresponds to the number of cells in 

the stack.  

In general, adding complicated physics to the lithium ion battery models increase their accuracy 

and predictability but increases the computational load which is not favorable for real time 

control and optimization purposes. Therefore, there is a need for developing faster 

computationally efficient but accurate models. Model reformulation and model reduction 

techniques have been reported in literature for efficient battery models. Methods such as proper 

orthogonal decomposition (POD), Galerkin based approaches, orthogonal collocation etc. have 



25 

all been employed for of fast efficient lithium-ion battery simulations [35-37]. These techniques 

will be discussed in details in a later chapter.  

1.6 Optimization applied to lithium ion batteries 

Optimization of design parameters is an essential step towards achieving better utilization and 

safer operation of batteries, especially for high power and energy demanding applications. 

Battery design parameters such as cell thickness and electrode porosity and operating profiles 

can be optimized using the same numerical algorithms, for objectives such as maximization of 

performance (e.g., energy density, life) or minimization of capacity fade and mechanical 

degradation. These optimization problems are solved subject to the model equations and any 

physical constraints. The optimal estimation of unmeasured states in lithium-ion batteries can 

also be formulated in terms of a constrained model-based optimization.  
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Design Parameters  Minimum Detail of Model Required 

lp   (Thickness of cathode) Pseudo 2D 

ln    (Thickness of anode) Pseudo 2D 

εp  (Porosity of cathode) Pseudo 2D 

εn  (Porosity of anode) Pseudo 2D 

εf,p (Porosity of cathode filler) Pseudo 2D 

εf,n (Porosity of anode filler) Pseudo 2D 

ls    (Thickness of separator) Pseudo 2D 

Rp (Radii of cathode particle) Pseudo 2D with stress-strain effects 

Rn (Radii of anode particle) Pseudo 2D with stress-strain effects 

lcc (Thickness of current collectors) Pseudo 2D with thermal 

H  (Height of cell) 2D / 2D with thermal 

Tab Positions 2D / 2D with thermal 

Initial Electrolyte Concentration Pseudo 2D 

  

Table 1-1. List of possible design parameters for lithium ion batteries 

 

All the parameters reported in Table 1-1 cannot be optimized independently and optimizing all 

parameters may not be significant towards the improvement of performance. Nevertheless, the 

table presents a list of all possible design parameters. Model based design has been reported in 

literature for some of the parameters and limited situations. . A detailed literature review of all 

battery architecture optimization studies attempted will be presented in a later chapter [38]. One 

consideration in battery optimization is the computational cost of simulating these types of 
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battery models. Therefore, as explained earlier it is necessary to develop efficient but accurate 

battery models.  

1.7 Capacity fade for lithium-ion batteries 

The capacity of lithium-ion battery decreases overtime with repetitive cycling. This is one of 

major drawbacks in lithium-ion battery systems which ultimately increase operational costs of 

such systems. There are several factors which can lead to capacity fade in lithium ion batteries. 

Some of the processes include lithium deposition due to overcharge conditions, electrolyte 

decomposition, dissolution of active material, sharp phase boundaries in phase changing active 

materials, passive SEI layer formation over electrode surfaces etc. [39]. Mechanical degradation 

of active material is another major cause of capacity fade as it causes breakup of particles, 

delamination etc. which finally lead to loss in capacity. Fracture and delamination of active 

material is caused by stress development in particles due to lithium intercalation/deintercalation. 

Fig. 1-5 [40] shows the buildup of stresses layer by layer of a spherical particle when lithium is 

inserted during charging. At the beginning of lithium insertion, the outer shell expands creating a 

strain differential between the lithium rich outer layers and the lithium deficient inner layers of 

the particle. This strain differential gives rise to stress within the particle.  
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Li

Expansion (Charging)
 

Fig. 1-5. Schematic of particle expansion during lithium insertion (charging) 

 

Studies have shown that especially for high energy capacity materials like silicon, germanium 

etc., bulk electrodes are not the most feasible option as repeated cycling causes huge stress 

development leading to volume expansion which finally results in fracture and loss of active 

materials resulting in capacity loss. Fig. 1-6 shows a pictorial representation of bulk electrode 

materials before and after repeated cycling. Therefore use of nanostructured materials have been 

suggested for high energy density anodes for lithium ion batteries. In a thin film configuration, 

the substrate effect is felt throughout the film and therefore very high stresses are developed. As 

for a 1 D nanostructure like nanowire, the aspect ratio being very high, the substrate effects are 

only experienced close to the interface. Moreover, these structures provide other advantages like 

efficient electron transport, good current collector contact as they are directly grown on them and 

also aid in reducing dead weight as materials like binders are not used in such architecture. 
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Fig. 1-6. Mechanical degradation of bulk electrode material after cycling 

 

Extensive modeling and simulation studies are required to understand stress development in such 

nanostructures and decide on the best configuration for use as anodes in lithium ion batteries.  

1.8 Research objectives 

The objective of this dissertation is to develop modeling and simulation approaches to 

understand fundamental issues related to lithium ion batteries on one hand and use those 

approaches for system level studies like real time control during battery operation and optimal 

design of battery architecture. Chapter 2 will discuss about a method for simultaneous 

optimization of battery design parameters for improved performance. Chapter 3 shows the 

detailed development of a 2 D axisymmetric model to understand stress development due to 

lithium insertion during charging for a silicon nanowire. Efficient reformulation of solid phase 

pressure induced diffusion problem for fast computation enabling real time control and 

optimization studies is presented in chapter 4. 



30 

Chapter 2 
 

Model-based simultaneous optimization of 

multiple design parameters for lithium-ion 

batteries for maximization of energy density 

 
 

2.1 Introduction 

Electrochemical power sources have been identified as major players in sectors like automobiles, 

power storage, military, and space applications. Lithium-ion batteries, in particular, have a wide 

range of applications ranging from low power/low energy applications such as implantable 

cardiovascular defibrillators (ICDs) to high power/high energy applications such as hybrid cars 

and power grids. This paper considers the simultaneous optimization of battery design 

parameters such as the thickness of the electrodes and porosity of the materials to maximize the 

specific energy of the battery to meet the needs of future applications.  

Although mathematical modeling of lithium-ion batteries is still considered challenging, major 

contributions have been made in this field. Doyle et al. [10] developed a first-principles model 

based on concentrated solution theory for a lithium-ion sandwich consisting of a porous 

electrode, separator, and current collectors. This is the most widely used physics based model in 

the battery literature giving accurate predictions even for high rates of charge and discharge and 

has been used previously for optimization purposes [41-44].  
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Models for lithium-ion batteries were further developed [4,45-55], with several literature reviews 

available [4,53-55]. Transport phenomena models are most suitable for the design of batteries 

due to their ability to provide accurate predictions of the internal and external behavior at the 

system level. These models are based on porous electrode theory coupled with transport 

phenomena and electrochemical reaction engineering [10,45-53,56]. One consideration in battery 

optimization is the computational cost of simulating these types of battery models. Circuit-based 

empirical battery models are convenient due to their low computational costs but have the 

tendency to fail at many operating conditions and can produce inaccurate predictions [57,58]. 

These considerations have motivated the application of model reduction methods to porous 

electrode theory models. Proper orthogonal decomposition has been applied to the full numerical 

solution of a lithium-ion battery model to fit a reduced set of eigenvalues and nodes to obtain a 

lower order approximate solution [35]. An alternative approach is model reformulation of 

lithium-ion battery porous electrode theory models to increase the computational efficiency 

without losing accuracy. Previously, Subramanian et al. [36] reformulated the widely used 

isothermal pseudo-2D porous electrode model for galvanostatic boundary conditions. That model 

and approach provided for simulating battery models in milliseconds without sacrificing 

accuracy, but had difficulties when nonlinear properties and thermal effects were considered. 

Northrop et al. [37] presented a coordinate transformation combined with an orthogonal 

collocation based reformulation for the simulation of lithium-ion battery operation. This 

reformulation [37] is designed to be computationally efficient while maintaining the fidelity of 

the porous electrode theory model even for high rates of charge and discharge. Forman et. al. 

[59] developed a reduced order electrochemistry based battery model which has sufficient speed 

and fidelity to enable design, optimization and control.  Newman and others have reported 
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methods to obtain optimal values of design parameters such as electrode thickness [8,9,41-44] . 

Newman [8] describes the use of a reaction zone model for fast electrode kinetics to optimize for 

electrode thickness and porosity. Although these studies have the advantage of having analytical 

solutions, they have some limitations and do not include all the physics of the original models. 

Newman and his co-workers report the use of Ragone plots for studies on the optimization of 

battery design parameters [41-44]. By changing one design parameter, such as the electrode 

thickness, at a time and keeping other parameters constant, Ragone plots for different 

configurations can be obtained. Hundreds of simulations are required when the applied current is 

varied to generate a single curve in a Ragone plot, which is tedious and has many computational 

constraints. Previous work by Ramadesigan et al. [9] optimized the porosity distribution by 

minimizing ohmic resistance of a porous electrode, as a proof of concept. 

Golmon et al. [60] attempted a multiscale design optimization for improving electrochemical and 

mechanical performance of the battery by manipulating both micro- and macro-scale design 

variables such as local porosities, particle radii and electrode thickness to minimize internal 

stresses and maximize the capacity of the battery. A surrogate-based framework using global 

sensitivity analysis has been used to optimize electrode properties [61]. 

To our knowledge, simultaneous optimization of multiple battery design parameters using first-

principles physics-based models have not been reported in the literature due to high 

computational expense coupled with the need to perform numerous simulations during the 

optimization. The objective of this study is to simultaneously optimize battery design parameters 

(i.e., electrode thickness, porosity of active materials) to maximize the specific energy obtained 

from the battery. A robust optimization routine is implemented that employs the reformulated 

model developed by Northrop et al. [37] in order to take advantage of its computational 
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efficiency. The continuous need for improving the performance of electrochemical power 

sources motivates the investigation of robust optimization of battery design and operating 

conditions.  

2.2 Optimization and design considerations 

The integral of the instantaneous power delivered over the time of discharge of the battery gives 

the specific energy E in J kg
-1

 [41] 

 0

1 dt

appE Vi dt
M

 
 (2.1) 

which is dependent on the applied current (input) and potential (output, that change with time). 

Simulations were run ranging from 0.1 C to 6 C (relative to the base parameters) for a discharge 

cut-off potential of 2.8 V and the values of E were calculated and maximized. The mass per unit 

area of cell M in units of kg m
-2

 is defined by the following equation Eq. (2.2) 
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 (2.2) 

which includes composite electrodes and separator, but not current collectors or residual masses. 

As M is a function of the electrode thicknesses lp and ln and porosities εp and εn, specific energy 

depends on these design parameters. There is a scope for optimization of these design parameters 

to maximize the specific energy drawn from the battery for a desired value applied current and 

cut-off potential (in other words, for a specific application). Particle radius although being an 

important design parameter was neglected here.  If this model was used for optimization of 

particle radius, it would have predicted the smallest particle radius to minimize diffusion 

limitations across the particle. Other problems related to small particle size exist like more 
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solvent reduction and oxidation, particularly on the first cycle and difficulty in achieving current 

efficiency of more than 0.9999 for 5000 deep discharge cycles. As our model is not designed to 

capture these phenomena, the exclusion of particle size from the optimized parameters list can 

still be justified. Generally, electrolyte is added in bulk as it just acts as an excess source for Li 

ions and a conducting medium for the ions from one electrode to other, hence, electrolyte 

concentration may not be a design variable. When optimization tests were run, it was found that 

for any concentration >0.5M, there was no significant limitation arising from concentration 

limitations. However, this can change for a different cell, chemistry or an electrolyte. The cross-

sectional area of the cell could be included as an additional optimization parameter and would 

likely provide very interesting results. However,  for simplicity we decided to limit our analysis 

it thickness and porosity of the electrodes. Optimization of width was beyond the scope, and the 

height and width of electrodes are kept constant. This is done to keep the number of optimized 

variables manageable. 

A general formulation for the optimization of a system is 

 

( ), ( ),
min

. .  ( ( ), ( ), ( ), ),   ( (0)) 0, ( (1)) 0

( ( ), ( ), ( ), ) 0,

( ) ,   ( ) ,   ( )

z x u x p

L U L U L U

d z
s t f z x y x u x p f z g z

dx

g z x y x u x p

u u x u y y x y z z x z



  



     
 (2.3) 

where   is the dependent variable being optimized, z(x) is the vector of differential state 

variables, y(x) is the vector of algebraic variables, u(x) is the vector of control variables, and p is 

the vector of parameters. The control vector parameterization (CVP) [62] is a widely applied 

method employed in this study, due to its ease of implementation. This parameterization 

approximates the infinite-dimensional optimal control problem (3) by a finite-dimensional 
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optimization. Different optimization formulations are possible depending on how the gradient of 

the resulting nonlinear program is calculated; the computational efficiency of CVP can be 

increased by incorporating parameter sensitivities. While there have been advances in recent 

years in the field of dynamic and global optimization [63], these algorithms are still too 

computationally expensive to be used for applications such as electrochemical systems, which 

are usually highly stiff in nature with highly nonlinear kinetics requiring adaptive time-stepping, 

stiff solvers, etc. It is not expected that the simultaneous simulation-optimization approach [62], 

which fixes the time or independent variable discretization a priori will be computationally 

efficient for most lithium-ion battery applications.  

The adopted procedure employs an efficient mathematical reformulation of the pseudo-2D 

battery model [36,37] that is much more computationally efficient than using a full-order finite-

difference model and is a viable candidate to be used for the optimization of electrode design 

parameters. This model ignores stress and capacity fade mechanisms. It neglects micro-structural 

effects and the pseudo continuum model is assumed to be valid at the range of design 

parameters. 

The model simulation with base parameters was performed for the specified cut-off voltage to 

obtain the base discharge time, which was later used to implement a time constraint in the 

optimization procedure.  Numerical algorithms for optimization can get stuck in local optima, 

which can be nontrivial to troubleshoot when the number of optimization parameters is large. 

This problem can at least be partly addressed using a sequential step-by-step approach. The steps 

below show the procedure of advancing from one parameter to four parameter optimization by 

using the optimized results from previous step as the initial conditions in the next step which 

facilitate rapid convergence and achievement of global maxima. The model was simulated with 
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the optimized parameters to compare the electrochemical behavior with the base case.  This 

entire optimization protocol is shown graphically in Fig. 2-1, and can be summarized in the 

following steps: 

1. Choose a battery model that can predict the optimization objective and is sensitive to the 

manipulated variables (e.g., a P2D model) 

2. Develop a reformulation or reduce the order of the model for efficient simulation. This model 

should be valid in the range of manipulated variables for optimization. 

3. Simulate model obtained in step (2) with the base parameters to obtain the time constraint for 

optimization. 

4. Maximize specific energy by optimizing the first chosen parameter i.e. lp providing the base 

parameter value as the initial guess.  

5. Simulate model obtained in step (2) with the optimized parameter to check whether the time 

constraint is satisfied or not and to compare the electrochemical performance with the base 

parameters. 

6. Using the solution from step (4) for lp and base value for porosity εp , as the initial guesses 

maximize specific energy by optimizing the two parameters simultaneously. 

7. Repeat step (5) with the optimized parameters. 

8. Add the other variables to be optimized one by one following steps similar to (6) and (7) and 

finally reach optimal performance with multiple optimized parameters. 
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Fig. 2-1. Steps for evaluation of the importance of and simultaneous optimization of 
electrode design variables 

 

Although not described in detail in many textbooks, such approaches that optimize the most 

sensitive parameters first and then move on to less sensitive parameters are commonly applied in 

practice as a way to accelerate convergence. Our objective for using this procedure, however, 

was different. We were interested in knowing whether the potential benefits of optimizing the 

thickness of a positive electrode would be limited if the porosities were fixed. The model was 

simulated with the optimized parameters to compare the electrochemical behavior with the base 

case. The parameters were optimized within respective bounds to ensure against model failure 

due to prediction of physically unacceptable optimized parameter values. Note that battery 

models often fail due to  difficulties finding consistent initial conditions, which were handled by 

using robust initialization procedures described elsewhere [64]. The model is likely to break 
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down for very small particle radius or very large particle radius, poor conductivity of solid phase 

material, and other extreme situations, but validity of the continuum model is the beyond the 

scope of this paper. Simulation was performed with the reformulated model [37] using the dsolve 

solver in Maple
®
, multivariable optimization with Maple’s globalsolve function (Global 

Optimization Toolbox), and fmincon in Matlab
®
. The protocol in Figure 1 consistently converged 

to the same optima found using the more computationally expensive software platforms.  The 

optimization involved optimizing for a fixed rate (say 2 C) with the nonlinear constraint so that 

the performance was not compromised at lower rates (1 C). 

Simulations were first run for different values of applied current and a specific cut-off potential 

with the base parameters for the thickness and porosities of electrodes to determine the total 

discharge time td0 for the battery. The applied currents were varied from 0.1 C to 6 C rates. The 

value for a 1 C rate was found using the applied current for which the total time of discharge was 

1 hour for the base parameters. Table 2-1 shows the applied discharge currents for which 

optimization was performed as well as the total discharge time for each rate.  

 

 Applied Current Density 

 (A/m
2
) 

Discharge Time  

(s) 

2.89875 36,478 

14.49375 7274 

28.9875 3600 

43.48125 2189 

57.975 1318 

72.46875 852 

86.9625 592 

115.95 329 

144.9375 204 

173.925 136  

Table 2-1. Applied discharge currents and total discharge times 
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The obtained energy decreases gradually with increase in iapp, the applied current density, which 

is expected because mass transport and kinetic limitations increase the internal resistance of the 

cell. 

 

Fig. 2-2. Energy density drawn from battery vs. applied current for the base case 

 

Fig. 2-2 presents the variation of specific energy with changing iapp when simulated using the 

base parameters listed in Table 2-2. The optimization of the electrode design parameters was 

performed in such a manner that the total discharge time  td  determined from simulation with the 

optimized parameters was not less than 99% of the original discharge time obtained with the 

base parameters  (i.e. 0 00.99 d d dt t t  ) for a specific applied current and fixed cut-off potential 

of 2.8 V. If this nonlinear constraint is not specified, a higher total energy density could be 

obtained but the battery may not last long enough for a given application (i.e. for a specific cycle, 

the battery will get depleted at a shorter time which is not useful for the application).  
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Definition of parameters Base values 

Thickness of cathode (lp) 80 μm 

Thickness of anode (ln) 88 μm 

Porosity of cathode (εp) 0.385 

Porosity of anode (εn) 0.485 

  

Table 2-2. Base battery design parameters 

 

2.3 One –parameter optimization 

The first optimized design parameter was the thickness of the positive electrode (i.e. cathode). 

Although the thickness of the positive electrode, lp, was directly optimized, the ratio of the 

thicknesses of electrodes was fixed as ln/lp=1.1 to ensure that the battery was cathode-limited. 

The cathode to anode thickness ratio was kept fixed but the anode thickness varied according to 

it for the optimization protocol.  Lower and upper bounds for lp were set as 40 and 90 microns. 

The aim can be stated as: maximize the energy density, E, such that the partial differential 

equations governing the battery model are satisfied with optimized parameter values within their 

respective bounds along with the constrained conditions for ln, while ensuring that the battery 

lasts for a specified minimum duration for a given rate of discharge. Mathematically, this can be 

represented as follows: 
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where the differential and algebraic equations were derived from the partial differential equations 

for the battery model. 

Fig. 2-3 compares specific energy densities drawn from the battery for the 1-parameter 

optimization vs. the base case, which are very similar due to the tight constraint on the discharge 

time. 

 

Fig. 2-3. Energy density drawn from battery vs. applied current for the base case and the 
one-parameter optimization case 

 

As mentioned earlier, an increase in applied current density results in a decrease in the specific 

energy for both the base parameters and one parameter optimization cases but no considerable 

improvement is observed for the optimized case from the base case.  Any reduction in the 

electrode thickness will reduce the mass per unit area of the cell, but also reduces the capacity, 

ensuring that the battery does not meet the minimum discharge time requirements, while 

increasing the thickness results in increasing the capacity but results in underutilization. This 

limits our ability to optimize lp for the battery with strict discharge time constraint to give 
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optimized parameters which make physical sense. Due to this reason, the specific energy 

obtained from the cell with optimized cathode thickness does not increase much compared to 

those from the base parameters. The optimal electrode thickness would be different from the 

base case if the discharge time constraint was relaxed and a considerable improvement in the 

specific energy drawn from the cell would be observed. This result shows simultaneous 

optimization of two or more parameters is necessary if an increase in energy drawn is desired 

without loss in capacity and fulfilling discharge time requirements for specific applications.   

2.4 Two-parameter optimization 

Here the thickness (lp) and porosity (εp) of the cathode were the design parameters optimized to 

maximize the energy density. The optimization was again performed by considering a fixed 

electrode thickness ratio of 1.1. Lower and upper bounds for εp were maintained at 0.29 to 0.5, 

respectively, while the bounds for lp were retained as in the previous case. The optimization 

statement is given below. 
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 (2.5) 

Fig. 2-4 compares the specific energy profiles for this case with the one parameter optimized and 

base parameter cases. 



43 

 

Fig. 2-4. Energy density drawn from battery vs. applied current for the base case and the 
two and one-parameter optimization cases 

 

The strict constraint for minimum discharge time was maintained during the optimization 

protocol.  A significant improvement in the specific energy was obtained compared to both the 

base and one-parameter optimization cases thus proving the importance of simultaneous 

optimization of design parameters. The improvement is not considerable for lower current 

densities but is significant for the higher values of current density. Quantitatively, there is almost 

a 25% increase in energy density compared to the base case for an applied current density, iapp, 

of 86.9625 A m
-2

. The enhanced performance compared to the base case for some values of iapp 

is due to improved behavior of the internal variables which will be discussed in the later sections. 

For operation at higher current densities, more transport limitations are faced compared to lower 

currents. Therefore, optimization of cathode design parameters, improves the performance of the 

kinetic and transport variables which in turn provides the enhanced performance of the cell by 

increasing the energy drawn significantly. By inspection of the optimal (lp, εp) for each value of 

the applied current, it was observed that allowing the porosity to be adjusted freed the electrode 
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thickness to be adjusted much more significantly while satisfying the constraints. The behavior 

of the optimized parameters will be discussed in detail in the coming sections. Nevertheless, this 

study proved the importance of simultaneous design parameter optimization for improvement of 

cell behavior. 

2.5 Three-parameter optimization 

The parameters optimized were the electrode thickness, porosity of the cathode, and porosity of 

the anode (εn). The upper and lower bounds on the porosity of the anode were 0.36 and 0.61, 

respectively. The bounds for the cathode parameters were identical to those mentioned for the 

previously discussed cases. The constraint for minimum discharge time requirements is still valid 

for the scheme. The optimization protocol is given below. 
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                                                                                                                                                                                    (2.6) 

Fig. 2-5 compares the specific energy drawn from the cell for the 3 parameter optimization case 

with the previously discussed optimization protocols and base parameters. 
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Fig. 2-5. Energy density drawn from battery vs. applied current for the base case and the 
three, two and one-parameter optimization cases 

 

Three parameter optimization achieved higher specific energy compared to one parameter 

optimization and base parameter cases, but for low values of the applied current density, the 3-

parameter optimization results have much higher energy density than the 2-parameter 

optimization (see Fig. 2-5). For high values of applied current density (e.g., for iapp = 86.9625 A 

m
-2 

and beyond), optimization of the anode porosity provided a small increase in energy density 

over optimization of the cathode porosity and cathode thickness. This is because the parameters 

were optimized with the discharge time constraint which does not allow them to go beyond a 

certain limit.  As soon as the anode porosity was made to be an optimized parameter within 

specified physically acceptable bounds, it allowed the cathode porosity and cathode thickness to 

be adjusted accordingly to give high specific energy, especially at the low current density cases 

while still maintaining the conditions for discharge time constraint. This is because it lowers the 

porosities for the electrodes which enhances the kinetic and transport behavior at low rates rather 

than high rates which are discussed in detail later. These results also tell us that at all applied 
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current densities 3 parameter optimization is not necessary to get the best performance from the 

cell. As shown here, optimization of cathode parameters are enough to get more specific energy 

for high current densities. This analysis is true for the chemistry chosen, and might vary for other 

chemistry or designs. 

2.5 Four-parameter optimization 

In this case all the four electrode design parameters (thickness and porosity for both the 

electrodes) were selected for optimization simultaneously. For this optimization protocol, the 

anode thickness was optimized just like the other parameters, with upper and lower bounds of 32 

microns and 108 microns respectively. The electrode thickness ratio of 1.1 maintained for each 

of the previously discussed optimization schemes was therefore neglected. The strict discharge 

time constraint was still applied to the protocol. Previously the optimization protocols always 

maintained that the anode thickness was always greater than the cathode thickness. This case was 

simulated to allow the anode thickness to drop below the cathode thickness. The other 

parameters retained the same upper and lower bounds as in the previous routines.       
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Fig. 2-6. Energy density drawn from battery vs. applied current for the base case and the 
four, three, two and one-parameter optimization cases 

 

It should be noted that the four parameter estimation is shown only for demonstration purposes. 

Typically, lithium ion batteries are manufactured such that the anode capacity is greater than 

cathode capacity, due to cost. Moreover, the maintenance of the cathode to anode thickness is 

necessary to match the capacities on both positive and negative sides of the cell.  For this reason, 

the fixed ratio of the electrode thicknesses used for the other optimization cases is considered 

more meaningful for real world applications. Fig. 2-6 is intended to show the comparison of 

energy drawn for four parameter optimization compared to all the other previously mentioned 

cases of simulation. As expected four parameters optimized simultaneously is the best option 

from the point of view of maximization of energy, but not practically relevant because of the 

relatively inexpensive anode materials compared to cathode materials. Examining the plot, it is 

visible that for higher applied current values the results from four parameter optimization case 

show significant improvement compared to 3 parameter optimization case. Previously it was 

seen that the 3 parameter optimization did not improve the drawn specific energy compared to 
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the 2 parameter optimization case at higher values of applied current. As mentioned earlier these 

results are just for demonstration purposes and they may not be of practical significance as the 

anode thickness was optimized simultaneously with the other variables without maintaining the 

electrode thickness constraint.   

2.6 Electrochemical behavior 

One of the main advantages of using physics-based models is the ability to understand the 

physical behavior associated with an optimal battery design. Empirical models are often valid 

only across a small range of scenarios. When empirical models are used for optimization, they 

usually converge to meaningless solutions and the internal non-measurable variables cannot be 

analyzed. The design parameters from the results from empirical model-based optimization may 

not make sense when given as input and simulated with physics-based models. The below 

simulations were performed with the optimized parameters obtained from all the cases for all the 

values of discharge current. 

2.7 Internal behavior 

Simulations performed with the optimized parameters for all cases show improved 

electrochemical and transport behavior, which increases the specific energy. We compare the 

electrochemical behavior at higher rates (e.g.2C rate) as improved performance is more visible at 

high rates. Fig. 2-7 shows the surface solid-phase concentration at the interfaces for a 2 C rate of 

discharge. 
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Fig. 2-7. Solid-phase surface concentration throughout discharge for a 2 C rate 

 

In all cases, the capacity in the electrodes is nearly fully utilized in the region near the separator, 

as indicated by the rapid increase (for the cathode) and decrease (in the anode) of the surface 

concentration at the beginning of discharge which tapers off near the end (□ & ◊). However, less 

capacity is used near the current collectors for all cases (○ & ∆) due to the mass transfer 

resistance of the porous electrodes. The optimization minimized this resistance and allows a 

greater portion of the electrodes to be utilized, as shown in the solid line of Figure 7a. It is clear 

from the plots that there is an enhancement in the utilization of the active material in the 

electrodes to improve performance with the simultaneous optimization of multiple design 

parameters. For 1 parameter optimization there is no significant performance enhancement but 

the 3 parameter optimization clearly improves the utilization marked with improved cell 

performance and increased specific energy. Fig. 2-8 shows the variation of electrolyte 

concentration within the cell at different regions, the cathode, the separator and the anode during 

discharge for different optimization scenarios for 2C discharge rate.  
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Fig. 2-8. Electrolyte concentration throughout discharge for a 2 C rate 

 

We see that the electrolyte concentration for the two parameter optimization is closer to the 

equilibrium (initial) concentration of 1000 mol m
-3

 compared to the other cases. If the specific 

system cannot withstand or handle a high drain in the liquid phase or very low electrolyte 

concentrations in the anode region, the two parameter optimization results should be used 

ignoring the three parameter optimization results. On the other hand, if the system can withstand 

the magnitude of starvation of electrolyte, the three parameter optimization results can be used to 

get the maximum energy density. Thus, based on variations of the intrinsic variables, we can 

decide on the number of design parameters to be optimized or the type of results that we can use 

for that specific system. This is not possible when doing a trial and error based design, or model 

based design based on empirical models, and is one of the advantages of using a physics based 

model for optimal design. 



51 

2.8 Optimized parameters 

Variation of the optimized parameters vs. applied current density for all of the optimization 

protocols were plotted and compared with the base values, which is represented as a straight line 

in the plots given in Figs. 2-9 to 2-12 .Figure 2-9 shows the variation of optimal cathode 

thickness for specified applied current densities, while Figs. 2-10 and 2-11 show the optimal 

cathode and anode porosity variations. Fig. 2-12 represents the optimal anode thickness ln 

variation for specified applied current densities which is only valid for 4 parameter optimization 

case. Data for optimized values for cathode thickness lp is available for all four cases of 

optimization while cathode  porosity can be plotted only for 2,3 and 4  parameter optimization 

cases and anode porosity for 3 and 4 parameter optimization cases only.  In general, but not 

always, applications with higher discharge rates require higher porosities and smaller electrode 

thicknesses. This design reduces mass transfer resistances within the cell, which can be a limiting 

factor at higher rates. At low discharge rates, the cell capacity is limiting, so lower porosities and 

greater thicknesses are preferred. The strict discharge time constraint in the optimization protocol 

helps control all the factors affecting the kinetic and transport behavior of the cell correctly so as 

to obtain optimized design parameters which are suitable for specific applications and make 

physical sense.  Looking at the variation of the optimized cathode thickness, for 1 parameter 

optimization there is not much change in optimized values compared with the base values which 

is reflected in the negligible improvement of specific energy for this optimization protocol from 

the base parameter case. For the 2 parameter optimization case, the cathode thickness does not 

vary considerably from the base values at low current densities, but for higher current densities 

the optimized values decrease from the base value. 
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Fig. 2-9. Variation in the optimal cathode thickness (lp) with applied current for all 
optimization cases 

 

The cathode porosity variation for 2 parameter optimization shows that for low current densities 

the optimized values do not deviate considerably from the base values. For the lowest current 

density value it starts at a higher magnitude compared to the base value and decreases until it 

becomes almost equal to it for iapp=43.48125 A m
-2

. After that they increase from the base value 

as the current density increases. Therefore, the improvement in specific energy obtained is 

considerable for higher current densities as the optimized parameters obtained from the two 

parameter optimization facilitate enhanced transport and kinetic behavior. For the 3 parameter 

optimization case, the optimized values for cathode thickness is less than the base values at low 

current densities but it increases and at iapp=43.48125 A m
-2

 it becomes almost equal to the base 

parameter value. After that it again decreases considerably from the base value. The optimized 

cathode porosity variation for the three parameter optimization follows a similar trend. 
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Fig. 2-10. Variation in the optimal cathode porosity (εp) with applied current for all 
optimization cases 

 

It nearly hits the lower bound for low current densities but then climbs gradually as it approaches 

the base value at similar value of iapp mentioned previously. With the increase in current density 

the optimized cathode porosities continue to increase beyond the base value. It is observed that, 

at high current densities, the optimized cathode porosity and thickness do not vary much from 

the 2 parameter optimization case to the 3 parameter optimization protocol. This causes the 

negligible improvement observed in the specific energy for high iapp values between the two 

protocols. The variation in optimized anode porosity with current density approaches the lower 

bound at low applied current densities but increases and at higher current densities but does not 

appear to follow any particular trend. It should be noted that the anode porosity was optimized 

along with the cathode parameters and the cell is cathode limited. 



54 

 

Fig. 2-11. Variation in the optimal anode porosity (εn) with applied current for all 
optimization cases 

 

For increasing specific energy, lower values of electrode thickness and porosity look to be more 

desirable but the parameters are optimized in such a fashion that the strict minimum discharge 

time constraint is satisfied all times to give physically and practically meaningful optimized 

design parameters. This probably justifies the irregular variation of some of the optimized 

parameters. 

For four parameter optimization case, the variation of the optimized cathode thickness shows a 

trend similar to the 3 parameter optimization protocol. The optimized cathode porosity variation 

for 4 parameter optimization is again of similar trend as seen for the 3 parameter optimization 

case. For lower values of current densities, both 3 and 4 parameter optimization cases predict 

somewhat similar values for optimized cathode porosities but at higher currents slightly lower 

values are predicted which are very close to the base value. 
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Fig. 2-12. Variation in the optimal anode thickness (ln) with applied current for all 
optimization cases 

 

The optimized anode porosity profile shows similar irregular trends as the 3 parameter 

optimization case especially for the higher current densities. But for most current values, the 

optimized anode porosity gives lower values compared to those shown for 3 parameter 

optimization case except for iapp=173.925 A m
-2

. The optimized anode thickness profile is only 

available for the four parameter optimization case. As mentioned earlier, the criterion for 

electrode thickness ratio was not maintained for this protocol. For all values of applied current, 

the optimized anode thickness values are below the base parameter values. For other cases of 

optimization, the electrode thickness ratio criterion maintained the anode thickness to be greater 

than the cathode thickness. It should be kept in mind that the optimized parameter values for the 

4 parameter optimization case, do not make any practical sense as the anode thickness was 

optimized simultaneously with the other variables without considering cost or possible 

discrepancies like unbalance of capacity on positive and negative sides of the sandwich etc. 

which are accounted for when using the electrode thickness constraint used in the other 
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optimization schemes. These results are just for demonstration purposes and although they show 

increase in specific energy they should not be considered for design purposes.   

2.9 Optimality of optimized parameters 

There is a need to verify that the optimized electrode design parameters obtained are indeed 

optimal i.e. maximum specific energy is obtained when the electrode architecture is designed 

accordingly. To perform this check, the reformulated battery model was run with values of one 

of the optimized parameters ranging from lower bound to upper bound while the others were 

held at optimal conditions or at base conditions. From each simulation, the maximized specific 

energy obtained was plotted against the varied design parameter for all performed protocols of 

optimization. For example, optimized cathode thickness was plotted on the x-axis and 

maximized energy density on the y-axis, with cathode and anode porosities held at their optimal 

values for three parameter optimization. Such plots will show the optimal solutions as peaks. The 

optimization protocols discussed in the paper follow a strict time constraint. The simulations for 

all values of varied optimized parameter does not satisfy this constraint and therefore maximized 

specific energy obtained has been set to zero for these cases. The x mark on the plots represents 

the optimal values of the varied selected parameter obtained from the optimization schemes. 
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Fig. 2-13. Energy density drawn from the battery vs. varying cathode thickness (lp) 

 

Fig. 2-13 shows the plots of maximized energy density with variable cathode thickness for the 

different protocols of optimization at 2 C discharge rate. As expected, the optimal solutions are 

at the peaks of the plots. Another interesting observation is that after the optimal peak with 

decreasing magnitude of cathode thickness, the specific energy continues to decrease. This is the 

effect of thicker electrodes.  
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Fig. 2-14. Energy density drawn from the battery vs. varying cathode porosity (εp) 

 

Fig. 2-14 show similar plots for variable cathode porosity at 2 C discharge rate. For all the plots, 

the optimal values represent the peaks of the profiles. This trend verifies that the optimization 

protocols indeed give optimal values of design parameters for which the corresponding values of 

drawn specific energy are maxima.  

 

List of symbols 

E = specific energy density of the cell (Watt hour kg
-1

) 

V = potential drop across the cell (Volt) 

iapp = applied current density (Ampere m
-2

) 

t = time (seconds) 

M = mass per unit area (kg m
-2

) 

ρn = density of negative electrode (kg m
-3

) 

ln = thickness of negative electrode (m) 

ρp = density of positive electrode (kg m
-3

) 
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lp = thickness of positive electrode (m) 

εn = porosity of negative electrode  

εp = porosity of positive electrode  

εf,n = volume fraction of filler in negative electrode 

εf,p = volume fraction of filler in positive electrode 

ρe = density of electrolyte (kg m
-3

) 

ls = thickness of separator (m) 

td0 = total discharge time obtained by model simulation with base parameters (s) 

td = total discharge time obtained by model simulation with optimized parameters (s) 
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Chapter 3  
 

Mathematical model for lithium intercalation 

for silicon electrode 
 

 

3.1 Introduction 

Silicon electrode is pursued as a potential negative electrode for lithium-ion batteries owing to its 

high gravimetric (mAh/g) and volumetric capacity (mAh/L) compared to the existing state of the 

art graphite electrode [65]. One of the critical challenges in the commercialization of Si electrode 

is to minimize particle fracture developed during lithiation and delithiation of the Si electrode 

[66,67]. Recent experimental studies have demonstrated the use of nano-size Si structures as 

electrodes. These electrode structures exhibited minimal particle fracture and also enabled 

repeated cycling [68-70]. While different mechanisms have been proposed for this behavior, a 

detailed physics based analysis combining the electrochemical and structural aspects of lithium 

insertion in such nanostructures have not been undertaken. A variety of detailed 

phenomenological models exists in the literature for lithium intercalation in porous electrodes, 

which treat the transport of electrolyte due to diffusion and migration, reaction kinetics at 

interfaces, and transport of Li and electrons in solid phase [10,47,48,51,71-73]. The general 

modeling framework presented in these papers cannot be directly used to simulate advanced high 

capacity electrodes, specifically the alloy type electrodes such as Si, Sn etc., because (a) the 

stresses developed during lithium insertion/deinsertion and (b) volume change associated with 
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lithium insertion/deinsertion are not considered. So to accurately model such type of high 

capacity electrodes which undergo substantial volume changes, particle level 

expansion/contraction and electrode level displacement along with buildup of stresses have to be 

captured. Early research by Prussin [74] demonstrated that the diffusion induced stresses 

generated by concentration distributions are of similar nature to the thermal stresses developed in 

elastic medium. Modeling of diffusion induced stresses was also studied in detail by other 

researchers for different geometries such as hollow cylinders, plates etc.[75-78] . Similar 

approaches were extended to battery electrode chemistries on a particle level to calculate 

intercalation induced stresses assuming no volume changes. Zhang et. al. [79] presented a 

numerical model to calculate diffusion induced stresses for spherical and ellipsoidal shaped 

LiMn2O4  single particle. Also, the work by Cheng and Verbrugge [80,81] derived analytical 

expressions (assuming negligible pressure induced diffusion and no volume change) to calculate 

stresses that arise from concentration gradients for a spherical particle. This modeling framework 

was also incorporated into a porous electrode framework [82]. All the above referenced models 

in addition to other published work [83-85] were developed assuming dilute solution theory for 

diffusion within particle, with no moving boundaries (negligible volume change) and for low 

expansion materials. 

Christensen et. al. [40] presented a more rigorous mathematical framework based on 

concentrated solution theory, which incorporates volume expansion and stress build up in a 

single spherical particle electrode and case studies for lithiation in a spherical carbon particle 

(8% volume expansion) were discussed. The same framework was also used to calculate the 

stresses in LiMn2O4 single spherical particle electrode [86] and was also later extended to porous 

electrodes [87] containing graphitic mesophase-carbon-microbead (MCMB) anode and lithium 



62 

manganese oxide spinel cathode. The author also emphasizes the importance of thermodynamic 

factor, pressure driven diffusion and extent of volume change in determining the cell potential 

profiles and initiation of fracture. However most of the above mentioned work was based on 

electrodes which undergo volume change in the order of 10%. To model large volume expansion 

in electrodes, Chandrasekaran et. al. [88] modeled a single particle Si electrode under 

galvanostatic and potentiodynamic control of lithiation of Si  to Li3.75Si associated with a 270% 

volume change. In a later paper [89], the same approach was extended to a porous electrode to 

describe how particle level expansion affects the porosity of the electrode. The authors ignored 

stress calculations based on the assumption that the nano sized particles would not build 

appreciable concentration gradients to generate diffusion induced stresses. Gao et. al. [90] 

modeled stress buildup due to concentration gradients for a 1-d (radial) cylindrical geometry for 

a nano sized Si electrode for a dilute solid solution with constant density. The authors also 

discuss the strong coupling between stress enhanced diffusion and diffusion induced stresses for 

electrodes associated with large volume expansion. In this paper (Part I), we present a model to 

describe diffusion and stress build up in a 2-d silicon nanowire (Si NW) geometry anchored to a 

Cu substrate under galvanostatic conditions. The model in general follows the framework 

described in reference [40] but applied to Si electrode with a maximum lithiation to Li3.75Si   

associated with a 270% volume change.     

3.2. Model assumptions 

The geometry of the Si NW anchored to the Cu CC substrate is shown in Fig. 3-1 (left); the 

initial unexpanded radius and the length of the Si NW are RNW=50  nm and HNW = 10 μm   

respectively. The model geometry consists of a 2-d axisymmetric cut from the overall geometry 
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as shown in Fig. 3-1 (right), wherein the dependence of the variables in the θ direction was 

ignored. 

 

Fig. 3-1 Schematic of the Si NW anchored to the Cu-CC substrate (left). 2-d axisymmetric 
slice of Si NW anchored to Cu-CC base substrate used as the geometry for the 2-d model 
(right). 

 

Other key assumptions in the model were 

1. The charge storage mechanism in the Si electrode is modeled by considering the 

electrochemical reaction of Li at the surface of the Si NW followed by transport of Li into the 

Si NW. The lithiated Si mixture is represented as a solid solution, therefore phase transitions 

are ignored. 

2. The transport of the host silicon is solely due to the convective flux, whereas the transport of 

lithium is due to the combined effect of gradients in concentration and pressure, and 

convective flux. 
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3. Lithium diffusion into Cu CC substrate is ignored and therefore the Si NW/Cu CC interface 

acts as a Li blocking interface. 

4. Stress strain relationship was assumed to obey Hooke's law (linear) in the entire lithiation 

regime. For particles of nanometer radii, the stress generated due to insertion is typically less 

than the yield stress limit for onset of plasticity, therefore the system is assumed to stay elastic 

throughout lithiation. 

5. For galvanostatic studies, the total current to the Si NW was maintained constant; the current 

density at the surface of the Si NW was taken to be constant spatially, however it changes 

with time in accordance with the increase in surface area related to volume expansion. 

6. Isothermal conditions were assumed during lithiation of the Si NW.  

3.3 Model equations 

The electrochemical equilibrium reaction between Li and Si is written in the form  

 
1

1

x
zzLi ze Si Li Si

x 

  
  (3.1) 

The above reaction can be thought of a single electron transfer reaction ( )Li e Li   , 

followed by lithium alloying with 1
x

Si


, where z  is the intercalation fraction of LiS , and x  is 

the maximum number of moles of Li that can reversibly alloy with Si. The binary species chosen 

are the empty (Li free) host lattice and the lithiated host lattice. Note, the host lattice in this work 

is 1
x

Si


 and the lithiated host is 1
x

LiSi


 and will be denoted hereafter as S  and LiS  respectively. 

The value of Δx was measured to be 22
5

  at high temperatures in an earlier work [91]. In our 
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work, the value of Δx is taken as 15
4

 which was measured at room temperature by different 

groups [92-94]. 

In the Si-NW electrode, the flux of LiS  is obtained through the generalized Maxwell-Stefan 

equation [95]. Considering ideal solution, ignoring thermal and external forced diffusion effects 

in the generalized Maxwell-Stefan relation and rearranging for the flux of species 
LiSN  we obtain  

 

  LiS LiS
LiS LiS LiS S T LiS S LiS LiS LiS

x M
N x N N c D x pV

RT





  
        

    (3.2) 

where LiSN
, SN

and LiSx
, Six

are the molar fluxes and mole fractions of the respective species, 

LiM
and LiSV  are the molar mass and molar volume of LiS , Tc

 is the total concentration, i.e. 

T LiS Sc c c   LiS
is the thermodynamic factor and   is the density of the material  

 T i ic x M  
 (3.3) 

The flux of S is considered purely to be convective, and the lattice velocity is defined through the 

molar averaged velocity, i.e. LiS LiS S Sv x v x v   . The total molar flux is related to the molar 

average velocity as  

 LiS S TN N c v 
 (3.4) 

The partial molar volume of species LiS , 
LiSV  is given as a function of the molar volume of the 

host material 
SV and the expansion factor where   is defined as the percentage volume 

change expressed in fraction.  
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1
LiS S

max

V V
z

 
  

   (3.5) 

The mass balance for the species LiS  is written as  

 
0T LiS

LiS

c x
N

t


 

  (3.6) 

The total concentration 
Tc  and the pressure p  will be described after discussion of the diffusion 

induced stresses.  

At the outer boundary of the Si-NW, a constant current flux condition was used as the boundary 

condition, while at the center an axial symmetry condition was used. In actual electrodes, the 

kinetics and the mass transfer of the species in solution could determine the actual current 

distribution, however in this study, we have restricted our simulations for the case of uniform 

current distribution along the nanowire.  
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 


  


  

  (3.7) 

 

 0
0LiS r z

n N
 

  
 (3.8) 

The Eulerian strain for the case of small deformation can be described in the tensor notation as  

 

  T1

2
   x xu u

 (3.9) 
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For large deformation analysis, the strains have to be calculated using the non-linear form for the 

Eulerian strain as  

 
 

T1
.

2
x x x xu u u u

 
 
 
 

     
 (3.10) 

where u  is the displacement vector calculated from the current and the initial configuration of 

the volume element . For finite deformation, the strain tensor for the 2D axial symmetry case, in 

the cylindrical co-ordinates is written as  
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          (3.11) 

where u , v , w  are the displacements with respect to the initial configuration in the r ,  , and z  

directions respectively. The displacement v  in the   direction is zero based on the axi-symmetry 

assumption; subsequently r  and z  are also zero. The symmetric stress tensor describes the 

stress components in the material and contains three normal stress rr zz     and the three 

symmetric shear stresses, i.e. r z rz      and the components are given as  
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 (3.12) 
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The elastic stresses are correlated to the strains using the elastic moduli matrix, which is a fourth 

order tensor, but because of the symmetry and isotropic assumptions, the number of independent 

parameters in this matrix is reduced to 2, i.e. the Lame parameters,  and  . The stress-strain 

relationship therefore reduces to  

 
    2   tr I

 (3.13) 

The Lame parameters could be related to the more commonly used material properties, Young’s 

Modulus ( )E  and Poisson’s ratio ( )  through the relations 

 

 

 

3 2

2
E

   


   


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 
 (3.14) 

In this system, the insertion of Li into the Si host introduces a significant volume change, 

atypical of common insertion electrodes such as 2 4LiMn O   2LiCoO   5 12LiTi O etc. where the total 

volume change is typically less than 10% and therefore ignored in most models. To include the 

volume change formalism into the modeling framework, the total strain in the electrode is 

defined as the summation of the two components, chemical strain (stress free) and elastic 

component T ch el  ; and the chemical strain is expressed as a function of the partial molar 

volumes and mole fractions of the species LiS  and S , (note 1LiS sx x  ):  

 

 1 I
3

 
  

 

LiS LiS
ch

S

x V

V  (3.15) 

Consequently, the elastic strain can be written as the difference between the total strain and the 

chemical strain, which can be plugged back into Eq. (3.12) to obtain the stress-strain relationship 

for electrodes undergoing elastic and chemical strains.  
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 T ch 
 (3.16) 

The total concentration Tc  as described in Eq. (3.6) is written as a function of composition and 

pressure, which is related to the trace of the stress tensor  

 
    T LiS Sc x x tr   

 (3.17) 

The function   is purely composition dependent and can be defined as a function of partial 

molar volumes of the individual species. The function   is evaluated similar to the work of 

Christensen et. al. [40] using the definition of a compressibility factor in terms of differential 

volume element and mean normal pressure. Subsequently, Eq. (3.17) is expressed as  
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1 1
exp

3
T LiS sLiS S

c x x trV V
K
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where K  is the bulk modulus of the material. The pressure defined in Eq. (3.2) is the 

thermodynamic pressure, which is assumed to be equivalent to the mean normal pressure, and is 

expressed as  

 
 

1

3
p tr  

 (3.19) 

Finally, the equilibrium force balance equation in the 2-d axi-symmetry geometry is expressed as  
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The individual velocity components of v  in Eq. (3.4) is calculated from the time derivatives of 

corresponding displacement fields.  
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 (3.22) 

 
z

r z

w
v

t 





 (3.23) 

Eqs. (3.20), (3.21), (3.6) and (3.18) were used to solve for the variablesu , w , LiSx , and Tc  

respectively in the Si-NW domain. The equilibrium force balance Eqs. (3.20) and (3.21) are also 

valid in the Cu-CC domain, with the exception that the total strain, T  is purely elastic and the 

chemical strain component is absent based on the assumption that lithium does transport into the 

Cu substrate.  

The equilibrium force balance Eqs. (3.20) and (3.21) are also valid in the Cu-CC domain, with 

the exception that the total strain, T  is purely elastic and the chemical strain component is 

absent based on the assumption that lithium does transport into the Cu substrate. Therefore the 

displacement componentsu , w  are the only variables to be solved for in the Cu-CC domain.  

The force balance equation in the Si-NW was constrained to the following boundary conditions  
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The base of the Cu-CC substrate is subjected to fixed constraint boundary conditions  
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The outer surface of the Si-NW, the top unanchored portion of the Cu-CC and the outer surface 

of the Cu-CC are assumed to be free surfaces i.e.  

                                                                    . 0n                                                                (3.26)                                                                                                                            

3.4 Solving methodology & parameters 

The equations are solved using COMSOL Multiphysics with the structural mechanics module to 

solve for the displacement components u, w (Eqs. 3.20 & 3.21) and a general PDE interface to 

solve for xLiS (Eq. 3.6). The mass balance equations were re-written in terms of material 

derivatives for the ease of implementation in the material framework in COMSOL.  

Since the dimensions of the Si NW change significantly upon lithiation, the initial mesh 

configuration has to be updated at each time step to accommodate for the updated geometry. In 

this model, the deformation of the mesh is determined by the displacement components (u , w)  

calculated from structural mechanics module. The technique for mesh movement is called an 

Arbitrary Lagrangian-Eulerian (ALE) method, which is an intermediate between the Lagrangian 

and Eulerian methods, and it allows moving boundaries without the need for the mesh movement 

to follow the material. For the 2-d model, the Si NW part of the geometry was mapped with 300 

mode points along the axial direction, and 100 points along the radius, while the base Cu CC 

structure was mapped with 150 node points along the axial direction and 150 node points along 

the radius. In all, the geometry consisted of 52,500 quadrilateral, 1,300 line and 7 vertex 

elements. An absolute tolerance of 10
-15 

 and 10
-6 

  was used for the displacement variables (u , 
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w) and xLiS respectively, and a relative tolerance of 10
-5 

  was used to establish convergence. 

Automatic time stepping (based on the solver) was used, and the computational run time taken 

for a complete charge (167 time steps) was 17281 s, using a 16 core Intel Xeon 2.27 GHz 

processor. The parameters used in the model are given in Table 3-1. 

Parameter Value Units 

Partial molar volume of LiS 13.11 ml mol
-1

 

Molar volume of S 3.214 ml mol
-1

 

Maximum number of moles of Li that can reversibly alloy per 

mole of Si 

15/4 No units 

Maximum insertion coefficient of Li in LiS, 1 No units 

Diffusion coefficient of Li in Si 2e-12 cm
2 

s
-1

 

Young's modulus of LiS 92.16 GPa 

Poisson's ratio of LiS 0.27 No units 

Young's modulus of Cu substrate 110 GPa 

Poisson's ratio of Cu substrate 0.35 No units 

Thermodynamic factor 1 No units 

Expansion factor  (measured at room temperature) 3.079 No units 

 

 

Table 3-1. List of parameter values used in the simulation 
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3.5 Diffusion induced stresses 

Fig. 3-2 shows the mole fraction distribution of LiS in the Si NW at the end of lithiation. 

 

Fig. 3-2. Mole fraction profile of LiS, in the entire Si NW geometry 

 

The lithiation rate in this simulation corresponds to a surface current density of 0.02 mA/cm
2 

(initial) equivalent to a 1-h rate. The solid line in the plot marks the initial undeformed 

configuration of the Si NW anchored to the Cu CC substrate. In this study, the simulation was 
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terminated when the local mole fraction reached, xLiS=1 anywhere within the electrode. As 

observed from the plot, the top surface of the Si NW is mass transfer limited and gets completely 

lithiated (xLiS=1) while the bulk of the Si NW is still partially lithiated (xLiS =0.86), which limits 

complete electrode utilization. The final deformed configuration of the Si NW shows the 

increase in the radial and axial dimensions of the Si NW due to the combination of chemical and 

elastic strains during lithiation. The top of the Si NW is expanded more, due to maximum 

lithiation in that region resulting in increased chemical strain, and regions very close to the Si 

NW/Cu CC interface (as shown in Fig. 3-3) are minimally expanded as the lithiation is limited 

due to the high stresses developed at the lithium blocking interface. Fig. 3-3 also shows the 

displacement of the Si NW/Cu CC interface from the initial configuration due to the interfacial 

stresses. Note, the Si NW region is pushed into the Cu CC region (z  axis) by ~ 1 nm. 
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Fig. 3-3. Mole fraction profile of LiS, close to the Si NW/Cu CC interface 

 

Fig. 3-4 shows a snap shot of the local volumetric strain distribution in the structure at the end of 

lithiation. The volumetric strain in the Si NW is non-uniform in the axial direction, especially at 

the top and the Si NW/Cu CC interface regions. In general, the local volumetric strain 

distribution in the Si NW domain correlates to the concentration distribution in Fig. 3-2, because 

the total volumetric strain, defined in Eq. (3.16) is predominantly determined by the chemical 

strain. In the Cu domain, the volumetric strains are purely elastic and mostly tensile, except at 
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regions close to the Si NW/Cu CC and away from the center where some regions are 

compressive. 

 

Fig. 3-4. Volumetric strain distribution in the Si NW/Cu CC at the end of lithiation 

Fig. 3-5 compares the radial, tangential and axial stress components across the radius of the Si 

NW at different times during lithiation. The radial cut section in this plot is taken at half the 

initial height of the Si NW (z=HCu+HNW/2) .  
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Fig. 3-5. Profiles of radial, tangential and axial stresses across the radius of Si NW at half of 
the height of Si NW at various times 

 

Several features are observed in this plot; firstly the radial stress across the radius of the Si NW 

is always tensile, and is maximum at the center. This is because of the concentration build up at 

the surface which causes volumetric strain in the outer layers, which in turn radially pulls the 

inner layers to create the tensile stresses throughout the radius of the Si NW (as plotted in Fig. 3-

5 a, b, c, & d). As a function of time, the maximum radial stresses (at the center of the Si NW) 

increases up to the first 10 s (~ 43 MPa observed at 10 s) and continuously decreases at longer 

times (~ 2 MPa observed at 1000 s). Also, the maximum tangential and the axial stresses follow 

a similar trend. This behavior is due to the competing effects of the chemical diffusion term and 
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the pressure induced term in Eq. (3.2) towards the overall flux of the species. At short times, the 

species flux is dominated by the chemical diffusion term, while at longer times, is dominated by 

pressure gradient term, resulting in reduced concentration gradients. Since the buildup of stresses 

is proportional to concentration gradients based on Eq. (3.16) and the force balance relations 

(Eqs. 3.20 & 3.21), the stresses decrease when the flux is dominated by the pressure gradients. 

Secondly, the tangential and the axial stresses are always compressive towards the outer surface 

and tensile towards the inner core. This behavior is due to the radial expansion of the outer 

surface which creates compressive strains in the tangential and the axial direction towards the 

outer surface, while the inner core is pulled outwards in all coordinates creating tensile stresses 

in the tangential and axial directions. Thirdly, at the center of the Si NW, the radial and the 

tangential stresses are equal, and the magnitude of the axial stress is twice the radial or tangential 

stress. This scenario is representative of a 1-d plane strain condition with infinitesimal 

deformation, where the condition σrr = σθθ = σzz/2   is satisfied at the center (r=0)   in cylindrical 

coordinates. This behavior suggests that far away from the Si NW/Cu CC interface, the stress 

behavior is similar to a 1-d plane strain condition. 

Fig. 3-6 compares the radial, tangential and axial stress components close to the Si NW/Cu CC 

interface on the Si NW side. 
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Fig. 3-6. Profiles of radial, tangential and axial stresses across the radius of Si NW, close to 
the Si NW/ Cu CC interface at various times 

 

At short times, t=1 and t=10s, the stress profiles across the radius matched quantitatively with the 

stresses profiles across the radius in the center region of the Si NW(as discussed in the earlier 

section), while at longer times the presence of the constraint (substrate) significantly alters the 

stress profiles. At 100s, the radial and tangential stress profiles are similar to short time behavior, 

however the axial stress becomes less tensile at the center and at longer times (t=1000s) the axial 

stress reverses its general trend and becomes compressive in the inner part and tensile at the 

outer part. Furthermore, the magnitudes of all the stress components increase considerably and 

are in the range of 250 - 500 MPa. This is possibly because of the constant lithiation flux 
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(imposed by the boundary conditions) in the regions close to the interface, while simultaneously 

the interface is also being constrained by the Cu substrate resulting in the large tensile and 

compressive stress regions. These enormous stress components could potentially cause the Si 

NW structure to yield or fracture in these regions close to the interface. 

Fig. 3-7 shows the evolution of maximum stress for each component with time during lithiation 

of the Si NW. 

 

Fig. 3-7. Evolution of maximum radial stress, maximum tangential stress and maximum 
axial stress with time at half the height of the nanowire 

In this plot, the z co-ordinate is halfway through the initial height of Si NW, i.e. z=HCu+HNW/2 

and the r co-ordinate is chosen corresponding to where the maximum value of stress in each 

component occurs. The maximum radial and axial stresses are tensile and always occur at the 

center (r=0) of the Si NW, while the maximum tangential stresses are compressive and occurs at 
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the outer surface of the Si NW, i.e. r=RNW (t). For the parameters used in the simulation, the 

values for the stress components peak at ~ 4s and decreases subsequently. As explained in the 

earlier section, this behavior is due to the competing effects of the chemical diffusion term and 

the pressure induced term in Eq. (3.2) towards the overall flux of the species. The plot in the 

subset of Fig. 3-7 clearly shows the shift from the diffusion dominated transport at short times, to 

pressure driven transport at longer times. 

3.6 Effect of lithiation rate 

Figs. 3-8 and 3-9 show the effect of lithiation rate on the evolution of the maximum radial and 

tangential stresses with time. Here C rate corresponds to a 1-h rate equivalent to an initial current 

density of 0.02 mA/cm
2
.  
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Fig. 3-8. Evolution of maximum radial stresses as a function of lithiation rates 

 

The inset plots in Figs. 3-8 and 3-9 show a linear increase in maximum radial and tangential 

stresses with lithiation rate. Also at higher lithiation rates, the peak maximum stresses also occur 

at shorter times as seen from the shift in the peak towards the left. This behavior suggests 

possibility for mechanical fracture at very short times under high current conditions, typically 

seen in hybrid electric vehicle, fast charge or regenerative braking applications, despite the 

nanoscale dimensions of the electrode. The occurrence of peak maximum stresses at shorter 

times at higher lithiation rates, could also be explained through the interplay between the 

diffusive and the pressure induced flux. At higher rates, large concentration gradients (due to 

chemical diffusion) are established at shorter times, creating a large stress field at the surface. 
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Consequently, a larger pressure gradient is built up, which then dominates the species flux, 

compared to the chemical diffusion mode in the bulk of the Si NW.  

 

Fig. 3-9. Evolution of maximum tangential stresses as a function of lithiation rates 

 

3.7 Effect of Si NW radius 

Figs. 3-10 and 3-11 show the effect of Si NW radius on the evolution of maximum radial and 

tangential stresses with time for 1-h lithiation rate. The 1-h lithiation rate (C rate) for the Si NW 

radii of 50, 100, 200, 300 and 500 nm corresponds to a current density of 0.0208, 0.0415 and 

0.0826, 0.0826, and 0.1251 mA/cm
2 

 respectively. 
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Fig. 3-10. Evolution of maximum radial stresses as a function of radius of the Si NW 

 

The increased surface current density explains the higher radial and tangential stresses observed 

in structures with larger radii. Also, the increased current densities (for larger radius), shift the 

peak maximum stresses to longer times, which is contrary to the effect observed at higher current 

densities for constant radius (Figs. 3-10 and 3-11). This behavior suggests that the increase in the 

current density (for larger radius structures) is not large enough to counter the longer diffusion 

length, which in turn delays the time for maximum stresses to develop. Consequently, the 

contribution from pressure induced flux takes a longer time to offset the diffusion dominated flux 

for nanowires with larger radius. Further, since the stress values for particles of larger radius are 

at any time higher than that for the particles with smaller radius, the latter is preferred especially 
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for high rate applications. While smaller particles are not preferred due to lower compressed 

density and higher exposed surface area to the electrolyte, they clearly offer an advantage from a 

mechanical stand point. Design of optimal particle size should however be considered based on 

the energy and power requirements for specific applications.  

 

Fig. 3-11. Evolution of maximum tangential stresses as a function of radius of the Si NW 
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Chapter 4 
 

Efficient reformulation of solid-phase 

diffusion in electrochemical-mechanical 

coupled models for lithium-ion batteries- 

effect of intercalation induced stresses 
 

 

4.1 Introduction 

Electrochemical power sources are expected to play a vital role in the future in automobiles, 

power storage, military, mobile, and space applications. Lithium-ion chemistry has been 

identified as a good candidate for high-power/high-energy secondary batteries. Progress has been 

made towards modeling and understanding of lithium-ion batteries using physics based first 

principles models which typically solve electrolyte concentration, electrolyte potential, solid-

state potential and solid-state concentration in the porous electrodes [10,79]  as well as 

electrolyte concentration and electrolyte potential in the separator. These models are represented 

by coupled nonlinear partial differential equations (PDEs) in 1-2 dimensions, include physics 

such as transport phenomena, electrochemistry and thermodynamics and are typically solved 

numerically which require few minutes to hours to simulate depending on the solver and 

schemes used. 

Currently, silicon, germanium etc. are being pursued as potential anode materials for lithium-ion 

batteries owing to their high gravimetric (mAh/g) and volumetric capacities (mAh/L) compared 
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to graphite, for high energy and high power applications of the future [65] . During 

intercalation/de-intercalation these materials exhibit significant stress development as well as 

volume and density changes [40,79,82,86]. The concentration gradient inside the particle is 

affected due to the stress generated within the particle and cannot be captured solely by simple 

Fickian diffusion. Therefore, pressure induced diffusion must be included when solving for solid 

phase diffusion in the pseudo radial dimension r within the particle [40,79,82,86]. One of the 

major difficulties in the electrochemical engineering models is the inclusion of solid phase 

diffusion in a second dimension r which increases the complexity of the model as well as the 

computation time/cost to a great extent. The inclusion of pressure induced solid phase diffusion 

physics not only increases the complexity of the model but significantly increases the 

computational cost/time as it increases the number of equations to be solved in the pseudo r 

dimension. For every point in x for the macro-scale, pressure induced solid phase equations have 

to be solved in r and the number of equations depends on the discretization scheme chosen for 

the r dimension. Traditional discretization approaches, such as finite difference (FD), when used 

in the second pseudo dimension r increase the number of equations by many folds thereby 

making simulation of the system slower and complex. 

This chapter presents a method for computationally efficient representation for pressure induced 

diffusion in the solid phase. The chapter discusses briefly about the model used for the study of 

pressure induced diffusion within the electrode particle and the simulation procedure adopted. 

Then, two computationally efficient representations for pressure induced solid phase diffusion 

are discussed. At first, a reformulation method is discussed based on the parabolic profile 

approximation for solid phase diffusion [96] which  approximately captures the behavior for low 

rates and long times. Then, a robust solid phase reformulation technique based on a mixed order 
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finite difference (MFD) method with optimal node spacing is introduced [97]. Results from the 

parabolic profile approximation are compared with results from the converged solution with 45 

internal node points (referred to as full order numerical solution in this chapter). Results from the 

MFD technique are also compared with the full-order finite difference solutions for both 

galvanostatic charging conditions and for current varying as a function of time which suggest 

that reformulation can be done without compromising on accuracy for a wide range of operating 

conditions.  

4.2 Model equations, boundary conditions and numerical simulation 

This chapter deals with a one dimensional (1D) continuum scale model that includes pressure 

induced diffusion in a spherical particle and predicts the stress distribution and volume 

expansion during charging. This is an important phenomenon to study especially for high 

capacity electrode materials because during lithium insertion volume expansion of the particle 

results in strain differential between the inner and outer regions which increases the rate of 

insertion and therefore develops stress within the particle. This model has been presented in 

details in Christensen et.al. [40] The model accounts for lithium transport, solid mechanics, 

lithium transport-induced stresses, and volume expansion. Next the model equations and 

boundary conditions in non-dimensionalized form are briefly reviewed [40]. For the model, the 

electrode material is treated as a binary system i.e. a host material occupied with lithium (LiS) 

and pure host material (S). Table 4-1 presents the dimensionless independent and dependent 

variables in the system along with their definitions. The equations and boundary conditions for 

the model were non-dimensionalized accordingly and are presented in Table 4-2. Therefore, 

there are 8 spatial and time dependent variables along with the moving boundary,     (particle 

radius). 
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Independent Variables Definition 

  Dimensionless time 

  
Dimensionless radial distance w.r.t. moving 

boundary 

Dependent Variables Definition 

 ,LiSx    Mole fraction of species LiS,  

 ,u    Lattice displacement 

 ,LiSN    Flux of species LiS 

 ,SN    Flux of  species S 

 ,    Total concentration 

 ,r    Stress in radial direction 

 ,t    Stress in tangential direction 

 ,    Thermodynamic pressure 

 ,w    Dummy variable used to simplify the equations 

    Particle radius  

 

 

Table 4-1. List of dimensionless independent and dependent variables for the model 

 

The system of governing equations and boundary conditions generates a set of highly coupled 

and non-linear equations. 
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Table 4-2. Model equations and boundary conditions in dimensionless form 
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A total of 45 internal node points in the radial direction r were used to achieve a converged 

solution consistent with the simulation results reported earlier by Christensen et. al. [40] An 

absolute error of 10
-10

 was set for the numerical integration accuracy in time. The simulations 

were terminated as the surface LiS mole fraction reached the maximum value of 
maxx .The set of 

dimensionless parameters used for simulation is given in Table 4-3. The dimensionless total 

current I for galvanostatic conditions is calculated based on the C rate and
maxx . Simulations for 

both high and low rates and time varying currents were performed.     

Dimensionless Parameter Value 

,  fractional expansivity  0.08  

,   elatic moduluse  399.5  

,  molar mass ratiobM  1.09362  

max ,  maximum mole fraction for lithiationx  0.6   

,  ratio of diffusive to elastic energyD  8.09 23e  

    

Table 4-3. List of dimensionless parameters used for simulation 

 

When converted to finite difference form, the number of equations equals  var 2 1N N   where 

varN  is the number of variables in the system and N is the number of internal node points in r . 

The time dependent moving boundary provides an additional ordinary differential equation 

(ODE).  For example, when N = 1 internal node point is used in r, it results in 25 differential 

algebraic equations (DAEs) of which 4 are of index 2. Higher index DAEs are difficult to solve 

compared to pure ODEs and DAEs of index 1 [98]. Using adaptive solvers in time gives an 

advantage in numerical simulation in terms of efficiency, but also requires additional robustness 

on the choice of DAE solvers. Discussion of the difficulty of index-2 DAEs is beyond the scope 

of the paper.  
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4.3 Reformulation of pressure induced solid phase diffusion: parabolic profile 

approximation 

A first attempt to approximate the model is to assume a parabolic polynomial profile for spatially 

dependent variables. In the past, [34,96] this method has shown reasonable accuracy and has 

been used in the macroscopic P2D battery model [10]. This approximation method for pressure 

induced solid phase diffusion is based on assuming profiles inside the particle as parabolic in 

nature and generating volume averaged equations. This method has been discussed for a radial 

Fickian diffusion equation previously by other authors [34,99,100]. The following section 

describes the step by step derivation of the approximate profiles and volume averaged equations 

based on this method. For demonstration purposes, we choose a representative variable from the 

model e.g. the flux of species LiS . Therefore, assuming parabolic profile we can write, 

                                                
  2

0 1 2, 1 ( ) 1 ( ) 1 ( )LiSN a a a        
                                            (4.1)                        

All the other spatial variables of the system can be expressed with similar profiles. For the 

simulation of such a system, we need to solve the time dependent coefficients which appear in 

the assumed profiles. As a first step, to eliminate one of the coefficients, a volume averaged 

quantity is introduced into the system. For the demonstration case considered here,  LiSN   is the 

volume averaged flux of species LiS  which can be represented by  

                                                     

   
1

2

0

3 ( ,  LiS LiSN N d     
                                                 (4.2)       

Replacing Eq. 4.1 in Eq. 4.2 and performing the integration, the time dependent coefficient 

21 ( )a   can be removed in terms of the volume averaged quantity and other coefficients as 



97 

                                                 
 2 1 0

5 3
1 ( ) 1 ( ) 1 ( )

3 4
LiSa N a a   

 
   

                                          (4.3)    

Replacing this value in Eq. 4.1, the parabolic profile equation for ( , )LiSN   becomes  

                                  
    2

0 1 1 0

5 3
, 1 ( ) 1 ( ) 1 ( ) 1 ( )

3 4
LiSLiSN a a N a a        

 
     

                        (4.4)

                                                            

Now there are 2 time dependent coefficients along with the volume averaged quantity. The 

boundary conditions are to be used for eliminating the time dependent coefficients. Using the 

boundary condition for ( , )LiSN    at 0  , the coefficient 
01 ( )a  can be eliminated and the 

parabolic profile can be rewritten as 

                                           
    2

1 1

5 3
, 1 ( ) 1 ( )

3 4
LiSLiSN a N a      

 
   

                                       (4.5)

 

The remaining time dependent coefficient is eliminated by using the boundary condition at 

1  . It has to be noted that due to the non-linearity and implicit nature of the system, the 

application of boundary condition at 1   does not generate explicit expressions for the 

coefficients to be directly incorporated into the parabolic profiles. Therefore, these boundary 

conditions were solved as a coupled set of equations within the final system. Finally, the volume 

averaged quantity was evaluated by volume averaging the entire governing equation. In general, 

this step can be mathematically represented as 

                                                       

 
1

2

0

3 ( , )  0GE d    
                                                      (4.6)       

where ( , )GE    is any governing equation of the system. Direct analytical integration was 

performed in   for most of the governing equations except for some (Sr. No. 3, 4 & 5 from 

Table 4-2). Numerical integration in   was performed for these particular equations using 
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Simpson's rule. Simulations were performed with an increasing number of integration points to 

verify the convergence of the solution. These mathematical steps are performed for all spatially 

varying quantities to generate the reformulated parabolic profile model for the simulation of 

pressure induced diffusion within the electrode particle. 

The advantage of this method of reformulation is that it reduces the number of state variables 

thereby reducing number of equations which facilitates faster simulation. This method is 

accurate for low rates and long times. After the reformulation technique is applied, the equations 

are only functions of dimensionless time  and can be solved using a time adaptive solver 

(DASKR) [53] with proper initialization. 

The model for pressure induced diffusion has 8 dependent variables varying spatially and in time 

(Table 4-1). The moving radius is tracked by     which is a time dependent variable. 

Therefore, if discretized with N=1 internal node point (FD method), the total number of states is 

equal to  8*3 1 25  . For the parabolic profile, the general representation of a dependent 

variable is given by 

                                             
  2

0 1 2, 1 ( ) 1 ( ) 1 ( )f f f f        
                                             (4.7)     

Therefore, there are three time dependent coefficients per variable which generates 8 x 3 = 24 

states for the model discussed in this paper. Taking the moving boundary variable into account, 

the reformulated parabolic profile pressure induced diffusion model generates 25 state variables 

before mathematical manipulation which is exactly similar to the case when the original model is 

discretized with N=1 internal node point. Therefore, it is logical to compare the parabolic profile 

approximation results with full-order numerical solution of the model discretized using FD 

method for N=1 internal node point. The dimensional surface concentration csurf(x,t) is the 
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quantity of interest because it is required by the macro-homogeneous battery model to keep track 

of the local current density as a function of time. Therefore, results for surface concentration are 

compared in Fig. 4-1 from the full-order solution and the reformulated model for a C/3 rate. Note 

that a low rate was chosen for this case as the parabolic profile approximation is likely to be 

valid only for low rates. The converged numerical solution with N=45 internal node points was 

chosen as the benchmark for the comparison of the results.   
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Fig. 4-1. Comparison of parabolic profile method with finite difference numerical solution 
with 45 and 1 equally spaced internal node points 

 

The results of Fig. 4-1 clearly show that at short times i.e. at the start of lithiation of electrode 

particle, the parabolic profile approximation predicts erroneous results compared to the 

numerical solution with N=45 internal nodes.  But the parabolic profile predictions become 
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reasonable at longer times. This behavior is observed because the  model fails to capture the 

effect of the moving front depicted by steep concentration gradients at short times when 

lithiation initiates [40]. As time increases and lithiation continues, the effect of pressure induced 

diffusion decreases and the parabolic profile predicts surface concentration ( , )surfc x t  with 

reasonable accuracy. As expected, the FD simulation with N=1 node point gives erroneous 

results for both short and long times. Therefore, if we are only concerned about the accuracy of 

surface concentration at long times and very low rates, then the parabolic profile approximation 

is a good choice as it has significantly less number of states compared to the FD simulation with 

45 internal node points ( 25 states compared to 477 states)  which facilitates a reduction in the 

computational cost/time. In the next section, the mixed finite difference method with optimal 

node spacing is introduced which is robust and accurate for both short and long times. Note that 

volume averaging provides good enough results and conserves mass and charge at long times.   

4.4 Reformulation of pressure induced solid phase diffusion: mixed finite difference 

approach with unequal node spacing 

Finite difference method is one of the most widely used numerical techniques to solve ordinary 

and partial differential equations. Use of finite difference method has been the first choice for 

solving first principles based lithium-ion battery models. However, for full order battery models, 

when dealing with a second radial dimension r for discretization, the number of equations 

increases by many folds, thereby increasing the computational cost [4,34,97]. As mentioned 

previously, over 40 internal node points in r are needed to obtain a converged solution for 

simulation of the model. Use of such a large number of node points in the r direction will 

increase the number of equations by a great deal and hence, we used a mixed order finite 

difference approach, wherein we use less number of node points with unequal node spacing. It is 
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to be noted that, the macroscopic battery model requires only the lithium concentration at the 

surface of the particle, ( , )surfc x t , as a function of local reaction current density, ( )j t . For this 

reformulation method, the node points are chosen optimally. Derivation of finite difference 

notations for different approximation for the derivatives is given in the following section 

[97,101].  

Taylor series expansions at x = x+hi+1 and x – hi are written as 

                               

       
2

2

1 1 12

1

2
i i i

d d
f x h f x f x h f x h

dx dx
  

  
      

                               (4.8)          

                             

       
2

2

2

1

2
i i i

d d
f x h f x f x h f x h

dx dx

  
      

                                        (4.9)      

where hi is the unequal node spacing between  i
th

 and (i-1)
th

 nodes in the domain. Truncating the 

series expansion with the required amount of accuracy and solving for the first and second order 

derivatives, we can obtain central finite difference formulas for the first and second order 

derivatives. We use an order of h
2
 accuracy for all of our approximations. 

                                           
 

2 2 2 2

1 1 1 1

1 1

i i i i i i i i

central i i i i

c h c h h c h cdc

dx h h h h

   

 

    
 

                                  (4.10)                     

                                          
 

2

1 1 1 1

2

1 1

2 i i i i i i i i

i i i icentral

c h c h h c h cd c

dx h h h h

   

 

    
 

                                       (4.11)                                                                                         

Similarly forward and backward finite differences relations for the derivatives can be obtained, 

and used for boundary conditions. 
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 

2 2 2 2

2 1 1 1 1 2 1 1 2 2 1 2

2 1 2 1

2 2i i i i i i i i i i i i i i

forward i i i i

c h h c h h c h h c h c h cdc

dx h h h h

           

   

     
  

             (4.12)

    

              
 

2 2 2 2

2 1 1 1 1 1 1 1

1 1

2 2i i i i i i i i i i i i i i

backward i i i i

c h h c h h c h h c h c h cdc

dx h h h h

       

 

     
 

                          (4.13)    

    

Fig. 4-2 presents a general methodology for obtaining efficient reformulation/representation of 

the pressure induced solid-phase diffusion equations in the pseudo radial r dimension within the 

particle. 
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Fig. 4-2. Schematic of steps involved in mixed FD method for optimized node spacing and 
hence reformulation of pressure induced diffusion in solid-phase. Ypredicted and Yexpected are 
the values of the center and surface concentrations as predicted from full order numerical 
simulation and MFD simulation respectively 

  

First, a Mixed-FD representation is written with N = 5 internal node points. For the optimization 

scheme, using 0.001< hi <0.999 as the constraint, the error between expected full-order 

numerical solution and the mixed-FD method is minimized to a set tolerance. At first, the 
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optimal node spacing for a lower rate of charge was found (by setting equal node spacing as 

initial guess). This is done because at low rates only geometry dictates the optimal node spacing 

(similar to primary current distribution in electrochemical systems). The optimal node spacing 

from low rates was used as initial guess to predict optimal node spacing for higher rates during 

which severe mass transfer limitations occur. The optimal node spacing obtained for higher rates 

was then used as initial guess to predict the best node spacing distribution for time dependent 

current which is reflective of spatially distributed and highly transient pore wall flux for macro-

homogenous battery models.   Mathematically, it can be represented as: 

( , , )

( , , ) 0

0.001 0.999

min

subject to:

i

i

ih

i

dy
f y u h

dt

g y u h

h

E





 
                                                                         (4.14) 

 

Here E is RMS error between full order numerical solution and the reformulated MFD solution, 

while y and u represent the differential and algebraic states in the model respectively. Numerous 

methods are available for solving constrained dynamic optimization problems, including (i) 

variational calculus, (ii) Pontryagin’s maximum principle, (iii) control vector iteration, (iv) 

control vector parameterization, and (v) simultaneous nonlinear programming [62,102]. The 

control vector parameterization (CVP) [62] is a widely applied method employed in this study, 

due to its ease of implementation.. Typically, Jacobian based methods are sufficient for 

convergence [103]. For difficult/severe nonlinearities, global optimization techniques including 

genetic algorithms might be required for convergence and robustness [104,105] though they are 

likely to be very slow. For performing the multivariable optimization scheme discussed above, 

the inbuilt gradient based optimization algorithms in Maple’s GlobalSolve function (Global 
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Optimization Toolbox) were used. Typically computational times for the simulation of 

optimization schemes range from minutes to hours. 

One of the advantages of the MFD method is that, the radial concentration gradient is more 

significant near the surface compared to the center and hence, strategically placing more node 

points near the surface and less node points at the center can capture that behavior without 

increasing the fineness of the mesh everywhere. However, radial stress is maximum at the center 

of the particle and an optimization scheme is needed to allow for accurate prediction at the center 

of the particle (as opposed to arbitrarily using a finer mesh near the surface). Lesser node points 

in r leads to less state variables and equations and hence faster simulation for the whole battery 

model. The placement of these node points is important and in order to find the exact position of 

these node points we ran an optimization algorithm to find the best h1, h2, h3, etc. and minimize 

N and the CPU time for efficient coupling with macro-homogenous models. This method is very 

accurate for short times/high rates/pulses; and is applicable for a wide range of operating 

conditions. Therefore this approach is very robust.  

The model was then simulated with the optimally spaced node points using similar operating 

conditions and parameters which  were used for full order numerical simulation using a DAE 

solver [53] with consistent initial values.  We applied a mixed finite difference optimal node 

spacing approach for higher rates of galvanostatic charge and also for a time varying current 

case. For the mixed FD method we used 5 optimally placed internal node points in the pseudo 

dimension r within the particle and compared the results (dimensional surface 

concentration ( , )surfc x t ) with full order numerical solution with 45 internal node points in r. To 

show the efficiency and accuracy of the optimally spaced node point method, we also compared 

surface concentration results for simulations with 5 equally spaced internal node points in r.  We 
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chose high rates of charge, ranging from 2 to 10 C as the concentration gradient within the 

particle is more prominent for these cases. This makes it difficult to predict the surface 

concentration accurately with a small number of node points when not placed optimally. Figs. 4-

3 to 4-6 show the comparisons between the above mentioned cases for 2, 3 5 and 10 C rates 

respectively. 
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Fig. 4-3. Comparison of mixed finite difference method with 5 optimally placed internal 
node points with finite difference numerical solution with 45 and 5 equally spaced internal 
node points for a charging rate of 2C 
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Fig. 4-4. Comparison of mixed finite difference method with 5 optimally placed internal 
node points with finite difference numerical solution with 45 and 5 equally spaced internal 
node points for a charging rate of 3C 

 

It is to be noted that for all the plots, we compared ( , )surfc x t  for the first 2 to 3 seconds at the 

start of lithiation. This is because stress reaches maximum value within the first few seconds of 

lithiation and then decreases and finally equilibrates with time. The effect of pressure induced 

diffusion is thus most significant at short times [40]. This effect alters the concentration gradient 

within the particle significantly. Therefore, it is best to compare the results within that time 

frame because the efficiency and accuracy of the mixed FD model will be more visible compared 

to equally spaced node point simulation cases. However, the reformulated model is valid for the 

entire lithiation regime.  From the plots it is clear that the MFD reformulated model agrees 

accurately with the full-order numerical solution. The results from the equal node spacing case 



107 

for low number of node points are clearly erroneous showing the importance and strategic 

benefits of placing the points optimally.  
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Fig. 4-5. Comparison of mixed finite difference method with 5 optimally placed internal 
node points with finite difference numerical solution with 45 and 5 equally spaced internal 
node points for a charging rate of 5C 
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Fig. 4-6. Comparison of mixed finite difference method with 5 optimally placed internal 
node points with finite difference numerical solution with 45 and 5 equally spaced internal 
node points for a charging rate of 10C 

 

Table 4-4 presents the values of optimized node spacing obtained in this case for different values 

of dimensionless current. As expected, the density of optimally placed node points increases 

along the radial direction r from the center to the surface following the direction of increment of 

concentration gradient within the particle. 
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C rate Optimized node spacing ( hi ) 

2 [0.4764,0.1361,0.1699,0.1403,0.0525,0.0264] 

3 [0.4762,0.1385,0.1675,0.1427,0.0505,0.0263] 

5 [0.4780,0.1405,0.1629,0.1450,0.0491,0.0262] 

10 [0.4779,0.1443,0.1582,0.1474,0.0478,0.0262] 

 
 

Table 4-4. Optimized node spacing for different C rates for mixed finite difference 
reformulation method 

 

The simulation times from the MFD method are compared with the times from full-order 

numerical solution with 45 internal node points in r in Table 4-5. The MFD method shows 

increased computational efficiency compared to full-order numerical solution as shown by the 

simulation times presented. 

C rate Simulation time for 

full-order numerical 

solution (s) 

Simulation time 

for MFD 

reformulation (s) 

2 1229.272 186.951 

3 810.269 130.697 

5 451.373 78.920 

10 245.593 38.142 

  

Table 4-5. Simulation times for different C rates for mixed finite difference reformulation 
method and full-order numerical solution with 45 equally spaced internal node points 

 

The CPU times reported are based on simulations run on a computer using a 3.33 GHz Intel 12 

core processor with 24 GB RAM . The compiled version of Maple is 10-20 times faster than the 
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non-compiled version. For larger number of equations, the compiled version of Maple is slower 

than a typical DASKR/IDA [53] call for the same number of equations as Maple does not use 

sparse storage methods for its DAE solvers. Nevertheless, it is clear that 1-2 orders of magnitude 

difference in CPU time is observed for the MFD reformulated model compared to the full-order 

model for the solid phase diffusion. Therefore, one can conclude that the reformulated MFD 

approach decreases the computational cost, and will play a key role in simulation efficiency 

when coupled with macroscopic battery models. 

Fig. 4-7 shows the comparison of the mixed FD method, with the traditional finite difference 

(full-order) numerical solution with 45 and 5 equally spaced internal node points in r for 

dimensionless total current I varying with dimensionless time. The current applied is chosen 

as 1 sin(100* )I   . When the flux at the surface varies with time, then it is a real challenge to 

predict concentration profile accurately with less node points which is evident from the results 

obtained with 5 equally spaced internal nodes in r. The simulation was stopped when the surface 

mole fraction of LiS  reached 
maxx . From this figure it is clear that results obtained with the full-

order numerical solution (45 equally spaced internal node points in r) can be efficiently obtained 

at reduced computational time with no compromise in accuracy with the mixed FD reformulated 

model. The optimal node spacing for the MFD simulation was [0.59, 0.15, 0.11, 0.1, 0.01, 0.02]. 

The simulation time taken is 8.908 seconds which is significantly less than that for the full-order 

numerical solution (103 seconds). This result shows the robustness of the MFD reformulation 

approach which can be confidently used for a large set of operating conditions. 
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Fig. 4-7. Comparison of mixed finite difference method with 5 optimally placed internal 
node points with finite difference numerical solution with 45 and 5 equally spaced internal 
node points for current I varying as a function of time 

 

For optimizing the node spacing hi in the radial direction r, the error for the surface concentration 

( , )surfc x t  of species LiS between the expected full-order numerical solution and the mixed-FD 

method was minimized to a set tolerance. But this approach compromises on the concentration 

profile at the center of the particle and therefore affects the radial stress profile at center [79]. As 

radial stress is maximum (tensile stress) at the center during charging, correct prediction of this 

quantity is important because the magnitude plays a critical role in determining the conditions for 

the fracture of the particle during lithium insertion. Moreover, for development of micro-

macroscale electrochemical- mechanical coupled models for lithium ion batteries, the prediction 

of maximum radial stress becomes important. Therefore to achieve reasonable predictions for the 
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maximum stresses, the MFD method was modified such that the errors from both the center and 

surface LiS concentrations between expected full-order numerical solution and the mixed-FD 

method were minimized for optimization of node spacing . It is to be noted that unequal weights 

were applied to each of the individual errors and the sum of the weighted errors was assigned as 

the objective function to minimize with similar constraints used earlier for the optimization 

protocol. 5 internal node points were found to be sufficient for the model chosen.  In our opinion, 

minimizing the error for center concentration can facilitate more accurate predictions for the 

maximum radial stress. Zhang et.al. [79] showed that with a slightly different and simpler stress 

strain modeling approach (strain splitting or thermal analogy modeling) without consideration of 

moving boundary and assuming constant density, both the radial and tangential stresses can be 

explicitly expressed as a function of average concentration and concentration at center and 

surface of particle. For our system, this relationship is not explicit but as both average (Faraday’s 

law for charge conservation) and surface concentration are accurately predicted by MFD method, 

maximum tangential stress is always predicted accurately in the MFD approach irrespective of 

whether both center and surface concentrations or only surface concentration is considered for 

minimization of error. The maximum radial stress is more difficult to predict with approximate 

methods as the concentration moves towards the center. This drives our attempt to introduce the 

new weighted MFD method where errors for both the center and surface concentrations are 

minimized simultaneously. 

Fig. 4-8 compares the results from the two MFD methods discussed and the full-order numerical 

solution with 45 internal node points in r for the surface concentration ( , )surfc x t  for 2C rate of 

charge.  
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Fig. 4-8. Comparison of surface LiS concentration from the MFD reformulated models and 
full-order numerical simulation with 45 equally spaced internal node points for charging 
rate of 2C 

 

It is clear from the plot, that the weighted error minimization MFD technique compromises on 

the surface concentration predictions slightly, especially at short times where the concentration 

profile has a steep gradient. The maximum radial stress profiles at the center of the particle for 

the MFD techniques are compared with the full-order numerical solution in Fig. 4-9 for 2C rate.  
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Fig. 4-9. Comparison of maximum radial stress from the MFD reformulated models and 
full-order numerical simulation with 45 equally spaced internal node points for charging 
rate of 2C 

 

Simulation from the weighted error MFD method predicts the stress values with reasonable 

accuracy. But simulation results from the MFD method minimizing error for only the surface 

concentration, shows significant error compared to the full-order numerical solution. Fig. 4-10 

shows the comparison of the maximum tangential stress profiles obtained from the two MFD 

methods with the full order numerical solution for 2C rate. As discussed earlier, both the MFD 

methods predict the maximum tangential stress at the surface with reasonable accuracy.  The 

optimal node spacing obtained for the weighted error MFD method simulation was [0.41, 0.03, 

0.28, 0.14, 0.10, 0.04]. 
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Fig. 4-10. Comparison of maximum tangential stress from the MFD reformulated models 
and full-order numerical simulation with 45 equally spaced internal node points for 
charging rate of 2C 

 

Therefore, minimizing errors for both the center and surface concentrations simultaneously to 

optimize node spacing, leads to errors in the prediction of surface variables as seen from the 

results. It is to be noted that the weighted error MFD method is a case of multi-objective 

optimization and minimizing both errors with as low as 5 node points is difficult. This is the 

reason for which a small compromise in the surface concentration predictions is observed. In our 

opinion, using higher order finite difference discretization schemes (third or fourth order) or 

larger number of node points, this error can be remedied, but higher order approximations can 

induce instability in numerical simulation. As our final aim is to reduce computational cost, 

obtaining reasonably accurate predictions with minimum number of node points is our priority.  
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4.5 Generality of the proposed mixed finite difference approach  

The results discussed from both the MFD approaches in the previous section were derived for 

isotropic graphite as the electrode particle material. At present, for high energy/power 

applications, novel materials like silicon are emerging as the suitable candidates for state-of-art 

electrodes. An attempt was made to verify the generality of the MFD approach by using the 

optimal node spacing obtained for graphite to predict the surface concentration and stress 

profiles for silicon. Simulations were performed for a spherical particle of silicon of 50 nm 

radius for a 1 C rate of charge. The optimal node spacing obtained from the weighted MFD 

method discussed earlier was used to predict the silicon profiles.  
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Fig. 4-11. Comparison of maximum radial stress from the weighted MFD reformulated 
models and full-order numerical simulation with 45 equally spaced internal node points for 
charging rate of 1C for silicon using optimal node spacing derived for graphite 
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Fig. 4-11 and 4-12 show the comparison of the maximum radial and tangential stress profiles 

predicted by the weighted MFD approach with the full order numerical solution. It is evident 

from the plots that the MFD simulation using optimal node spacing corresponding to graphite 

predicts the stress profiles with reasonable accuracy for silicon. Although it is advisable to derive 

a separate set of optimal node spacing for a specific material, this study proves the generality and 

robustness of the proposed MFD approach. 
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Fig. 4-12. Comparison of maximum tangential stress from the weighted MFD reformulated 
models and full-order numerical simulation with 45 equally spaced internal node points for 
charging rate of 1C for silicon using optimal node spacing derived for graphite 

 

 

 

 



118 

List of symbols 

 

 dimensional radial distance within the particle (m)r   

 dimensional time (secs)t   

 dimensionless radial distance within the particle   

 dimensionless time   

 ,  dimensionless mole fraction of species LiSx LiS  
 

 ,  dimensionless lattice displacementu   
 

 ,  dimensionless flux of species LiSN LiS  
 

 ,  dimensionless flux of species SN S  
 

 ,  dimensionless total concentration of binary species   
 

 ,  dimensionless radial stressr   
 

 ,  dimensionless tangential stresst   
 

 ,  dimensionless pressure   
 

   dimensionless time varying particle radius   
  

 fractional expansivity 
    

 

 dimensionless molar mass ratio of binary species = LiS
b

S

M
M

M
  

molar mass of species ,  ,iM i i LiS S 
    

max  maximum mole fraction for lithiationx 
 
 

  0
 dimensionless elastic modulus =

1 1 2

S

s

EM
e

RT  


 
   

 Young's modulusE 
 

 Poisson's ratio 
 

 universal gas constant R 
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 temperature T 
 

0  density of pure unlithiated host s 
 

  0

,

2

0

1 1 2
 dimensionless ratio of diffusive to elastic energy =

LiS S sD
D

R E

   
    

,  binary diffusion coefficient LiS SD   

0 = initial particle radiusR
 

0

0 ,

 dimensionless current =
4

p S

LiS S s

I M
I

R FD 
   

= applied currentpI
   

= Faraday constantF  

 number of internal node pointsN 
    

 

var  number of variables in systemN 
     

 

 ,  dimensionless volume averaged flux of  LiS iSN L  

   3,  dimensional surface concentration of  (mol/m )surfc x t LiS
 

  2 dimensional local reaction current density (A/m )j t 
 

 optimal node spacing in radial directionih 
 

 host material occupied with lithiumLiS   

 pure host materialS   

 

 

 

 

 

 



120 

Chapter 5 

 
 

Conclusions and future directives 
 

 

5.1 Conclusions from optimization of design variables 

Smart and efficient design of lithium ion batteries is desired to achieve enhanced performance 

and operational safety for use in advanced high power/energy devices of future. Motivated by the 

achievement of this goal, simultaneous multi-parameter optimization of battery design 

parameters using a physics-based porous electrode theory model was implemented for the 

efficient design of porous electrodes that are commonly used in advanced secondary batteries. 

Use of an orthogonal collocation-based reformulated model with increased computational 

efficiency facilitated the implementation. The results indicate that the simultaneous optimization 

of electrode design parameters can result in a significant improvement in energy drawn from a 

battery. This study can be extended to the optimal design of state-of-the-art batteries for 

minimizing the temperature gradient across a cell for safe operation and prevention of thermal 

runaway. The adopted approach has applications in better design of batteries that can meet 

energy and power requirements for emerging applications in vehicles, satellites, and in the 

military. This procedure can also be extended to optimize other objectives such as maximizing 

the available discharge capacity given size constraints, rather than time constraints.  
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The analysis is based on a pseudo 2D macro-homogeneous model. Recent advances in the 

literature include multiscale models. Optimization based on those models will give results that 

will increase the utility of the proposed approach. However, note that as of today, dependency on 

having a fit for open circuit potential limits the applications of these new multi-scale models. 

5.2. Conclusions from stress modeling for Si anodes for lithium-ion batteries 

Stress development is a major factor behind capacity fade for lithium ion batteries as it causes 

fracture and loss of active materials in electrodes specially for high energy capacity materials 

like silicon, germanium etc. Therefore detailed fundamental study of stress development in 

electrodes as a result of lithium intercalation is required to understand and resolve the existing 

issues. This is the motivation behind this particular study. 

A 2-d transient numerical model to simulate the stress development due to electrochemical 

lithiation of Si NW was developed. The model predicts non-uniform volumetric strain along the 

length of the Si NW, with regions of maximum expansion at the top of the Si NW and almost no 

expansion close to the Cu CC interface. Results indicate that the magnitude of the stress 

components are very high at the Si NW/Cu CC interface, compared to the stresses developed far 

away from the interface. The stress evolution with time is strongly dependent on the relative 

magnitudes of chemical and the pressure diffusion fluxes. The maximum stresses occur during 

the time when the flux is dominated by the chemical diffusion term, i.e. ~ 1 - 10 s for the rates 

and radius chosen for the simulations. Increase in radius of the nanowire and increase in 

lithiation rates develop larger radial and tangential stresses. Further, the peak maximum stresses 

occur at shorter times with increase in lithiation rates, while it occurs at longer times with 

increase in the radius of the nanowire. 
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5.3 Conclusions from solid phase reformulation of pressure induced diffusion 

Use of lithium-ion batteries is increasing for various applications including high power/energy 

demanding applications. For ensuring safety during operation and better cycle life, smarter 

control of such systems is required. Real time control requires efficient simulation of lithium ion 

battery models in real time. This particular requirement motivated the development of two 

efficient reformulation techniques for pressure induced solid phase diffusion within a lithium ion 

battery active material particle. The parabolic profile reformulation method was developed based 

on assuming parabolic profiles for dependent variables in the radial dimension r within the 

particle and generating volume averaged equations. The mixed finite difference reformulation 

approach is based on using lesser number of optimally spaced node points in radial dimension r 

within the particle. Both of the methods reduce the number of states compared to full-order 

numerical solution using large number of node points and therefore reduce computational 

cost/time. The parabolic profile reformulation method is accurate for low rates and long times. 

The mixed finite difference approach is an accurate and robust method for low/high rates, 

short/long times and can be used with confidence for a wide range of operating conditions. 

Moreover, the generality of the MFD approach was shown when the node spacing obtained for 

graphite was used for predicting silicon stress profiles with reasonable accuracy. The effect of 

reformulated models will be most significant when they are coupled with the macroscopic 

battery models 

5.4. Future directives 

Lithium ion batteries are being extensively used for products ranging from consumer electronics 

to electric vehicles. The demand is increasing and to ensure operational safety, reduced costs and 
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increased cycle life, better design and improving control strategies during operation are the key 

tools. Therefore model based fundamental and applied studies for lithium ion batteries are very 

important to achieve these final goals. Target of achieving these goals influenced the modeling 

and simulation problems tackled in the thesis. 

The design of battery architecture presented in the thesis can be further enriched and made more 

usable for industrial implementation by including other parameters like particle radius, separator 

thickness etc. for optimization. Moreover, thermal and stress-strain (solid mechanics) physics 

can be added to the model used for optimization purpose which can lead to better and more 

meaningful results. A two dimensional model can be also implemented which would take in to 

account the tab and current collector dimensions and use them as additional optimization 

parameters.  

Concentration dependent diffusion coefficient, phase transitions between amorphous and 

crystalline silicon, non-ideality of solution, plastic deformation are some of the parameters and 

physics neglected during development of the 2 D model for studying stress development in Si 

nanowire. Including these in the models will improve the predictability and give us more insight 

into the phenomena occurring. The model can be used to study other nanostructures like Si 

nanotubes, core-shell structures to determine the best structure with respect to minimum stress 

developed for use as anode in lithium ion battery. Other reformulation techniques can be used 

and implemented for solid phase pressure induced diffusion within the active material particle. 

As finite difference based methods are not inherently conserving by nature, exploring finite 

volume based methods are important. Moreover, coupling of this particle level reformulated 

model with the macro-homogenous model [10] and reformulated models [36,37] will be 

beneficial for real time control and optimization purposes [38] for batteries. 
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These set of fundamental and applied studies are important for better control and utilization of 

batteries. The results from these studies can lead to the development of a new battery 

management system based on very fast models capable of predicting states in batteries accurately 

and efficiently and respond with quick control decisions. 
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