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ABSTRACT OF THE DISSERTATION 
 

Mitofusin 2 Regulated Transport of Mitochondria is Necessary for Axonal Integrity 
By 

Albert Lawrence Misko 

Doctor of Philosophy in Biology and Biomedical Sciences 

Neurosciences 

Washington University in St. Louis, 2012 

Professor Robert Baloh, Chairperson 

 

The ubiquitous finding of axonal degeneration in a number of the most prevalent 

neuropathologies marks the importance of understanding axonal biology and the axonal self-

destruct mechanism. Though our understanding of axonal degeneration remains largely 

incomplete, several down-steam steps of the molecular cascade have been elucidated. While this 

insight has emerged from models of axon degeneration following physical injury or toxic insult, a 

more comprehensive understanding of the upstream events may be gained from studying primary 

axonopathies with defined genetic causes.  

 This dissertation aims to elucidate a molecular mechanism underlying the loss of axons 

in Charcot-Marie-Tooth Disease type 2A, which is caused by mutations in the mitofusin 2 (MFN2) 

gene. Utilizing an in vitro culture system, we find that CMT2A associated MFN2 mutants disrupt 

the transport of axonal mitochondria in DRG neurons. Though MFN2 has a previously defined 

role in facilitating mitochondrial fusion, we propose a direct role for MFN2 in mediating transport 

based on its interaction with key components of the mitochondrial transport apparatus and 

perturbation of transport in MFN2 null DRG neurons. MFN2 does not provide a direct link 

between mitochondria and microtubule based motors, but is poised to mediate transport by a still 

undefined mechanism. The ability of MFN2 to mediate transport is separate from its ability to 

mediate fusion as MFN2 disease mutants, that have been shown to retain their ability to fuse 

mitochondria, cannot rescue the transport deficit in MFN2 null neurons. Additionally, loss of 

mitochondrial fusion by knockdown of opa-1 is not sufficient to disrupt mitochondrial transport
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despite reduced mitochondrial function. These findings may explain why mutations in or haplo-

insufficiency of opa-1 leads to Dominant Optic Atrophy (DOA) but not degeneration of long 

peripheral axons, highlighting the potential importance of mitochondrial transport for axon 

integrity. 

 To further test our hypothesis that mitochondrial transport is critical for the integrity of 

axons, we expressed MFN2 mutants in cultured DRG neurons and looked for signs of 

degenerating axons. High levels of Ca2+ or reactive oxygen species (ROS) delineated a 

population of degenerating axons that we not observed in opa-1 knock down cultures. 

Mitochondria in MFN2 mutant expressing cells showed little change in membrane potential 

compared to a significant change in the mitochondrial membrane potential of opa-1 silenced cells; 

however, both groups of cultured neurons upregulated glycolysis and were sensitive to treatment 

with 2DG. We hypothesize that these changes in the MFN2 mutant expressing cells could be 

explained by lack of mitochondrial flux across segments of axon which must resort to use of 

glycolysis. The absence of mitochondria could cause segments of axon to become vulnerable to 

local perturbations in energy or Ca2+ levels and explain the axonal degeneration observed in 

culture. In this way, disrupted redistribution of mitochondria in CMT2A patients would put the 

longest axons at the highest risk due to the probability of incurring at least one insult along its 

length for which mitochondria could not compensate. 

 Finally we attempted to study an animal model of CMT2A to see if our in vitro findings we 

recapitulated in vivo. To this end we obtained a mouse line in which the R94Q mutation had been 

knocked in to the endogenous allele. To accurately mirror conditions in CMT2A patients we chose 

to analyze heterozygous mice. Though homozygous mice die by the third postnatal week, 

heterozygous mice are phenotypically normal showing no signs of axon loss or muscle 

denervation. Differential expression of the MFN2 homologue MFN1, absolute length of axons or 

absolute time to disease may account for the discrepancy between the mouse model and human 

patients.  Hopefully this work will help elucidate the molecular mechanisms underlying CMT2A 

and contribute toward a more general understanding of why axons degenerate.

iii 



Acknowledgements 

 

My graduate school tenure has been a winding course in both intellectual endeavors and 

personal growth. That I consider my time a success in my development as a scientifically thinking 

person and generally rational human being, I owe to numerous individuals with whom I’ve had the 

privilege of sharing time. On account of their friendship and guidance I have always had the good 

fortune of landing on my feet.  

I would like to first thank my thesis advisor Bob Baloh for the endless amount of support and 

encouragement he has provided. His uncanny depth of knowledge and passion for science have 

been a continual source of inspiration. I am also thankful for the pragmatism and deeper 

appreciation of sarcasm he has instilled in me. I consider myself extremely lucky to have had Bob 

as a role model so early on in my career as I know any success I may find in the future will have 

roots in the time we worked together.  

I would also like to thank Jeff Milbrandt for his help early on and sharing his creativity and 

enthusiasm for science. For the advice, mentorship and friendship of many others I would also 

like to thank Yo Sasaki, Jason Gustin, Biplab Dasgupta, Iga Wegorzewska, Maria Udan, Andreu 

Viader and all the members of my committee.  

I thank my parents Albert J. Misko and Lucy Misko for their unending love and support. I can 

never thank them enough for the sacrifices they have made my entire life to put my interests 

before theirs. They are my heroes in life. All that I am today or ever will be I owe to them. I would 

also like to thank Lauren Misko whom I’m very proud to call my sister for her love and continual 

support 

I would also like to acknowledge the NIH MSTP training grant at Washington University through 

which this work was funded. 

iv 



Table of Contents 

Abstract ………………………………………………………………………........…………………….…ii 

Acknowledgements ……………………………………………………………………….......……….....iv 

Table of Figures……………………………………………………………………………………………vii 

 

Chapter 1. Introduction and Background Research 

Axonal degeneration in neurodegenerative disease………………………………….………………..1 

Charcot-Marie-Tooth disease type 2A is an inherited axonopathy……………………………….…..5 

Mitochondrial disease: the role of mitochondrial dynamics and MFN2……………………..………..8 

Mitochondrial transport in axons………………………………………………………………...……...13 

Mechanisms of axonal degeneration………………………………………………………….………..17 

Thesis organization………………………………………………………………………………....….…21 

References……...…………………………………………………………………………………………23 

 

Chapter 2. Mitofusin 2 is necessary for transport of axonal mitochondria and interacts  
with the miro/milton complex 

Introduction……………………………………………………………………………………………..….31 

Materials and Methods…...………………………………………………………………………………33 

Results...…………………………………………………………………………………………………...36  

Discussion……...………………………………………………………………………………………….42 

References…………...……………………………………………………………………………………46 

 

Chapter 3. Movement and active redistribution of the mitochondrial network  

supports axon integrity 

Introduction………………………………………………………………………………………………...59 

Materials and Methods……………………………...……………………………………………………62 

Results……………………………………………………………………………………………………..65  

Discussion…………………………………………………………………………………………………72 

References………………………………………………………………………………………………...76

v 
 



Chapter 4. An R94Q knock-in mouse model of CMT2A 

Introduction………………………………………………………………………………………………...90 

Materials and Methods…………………………………………………………………………………...92 

Results……………………………………………………………………………………………………..94  

Discussion…………………………………………………………………………………………….…...97 

References…………………………………………………………………………………….………..…99 

 

Chapter 5. Conclusions and Future Directions 

Mitofusins regulating mitochondrial transport………………………………………………………...106 

Mitochondrial transport and axonal degeneration……………………………………………………108 

Mitochondrial biogenesis in axons…………………………………………………………………….109 

Mitochondria in axons of CMT2A patients……………………………………………………………110 

Increasing the levels of neuronal MFN1 to treat CMT2A……………………………………………111 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vi 
 



Table of Figures 

 

Chapter 1 

Figure 1-1. Representation of mitofusins tethering mitochondria before mediating fusion…………9 

Figure 1-2. Common topology of Mfn1, Mfn2, and Atlastins with both C- and N-terminal  

oriented toward cytoplasm.............................................................................................................10 

Figure 1-3. Schematic representation of the mitochondrial transport apparatus illustrating  

the indirect connection of mitochondria to kinesin…………………………………………………….15  

 

Chapter 2 

Figure 2-1. CMT2A-associated MFN2 mutants alter the transport of axonal mitochondria………50 

Figure 2-2. CMT2A associated Mfn2 mutants specifically disrupt mitochondrial transport……….51 

Figure 2-3. Mfn2 is required for normal axonal transport of mitochondria………………………….52 

Figure 2-4. Mfn2 and Mfn1 interact with Miro and Milton proteins, key components of  

microtubule based mitochondrial transport…………………………………………………………….54 

Figure 2-5. Depletion of Miro2 produces a mitochondria transport abnormality similar to that 

observed with loss of Mfn2 in DRG neurons………………………………………………………..…56 

Figure 2-6. Disruption of mitochondrial fusion by knockdown of Opa1 does not alter  

mitochondrial axonal transport…………………………………………………………………………..57 

Figure 2-7. Fusion competent CMT2A associated Mfn2 mutants cannot compensate for  

the mitochondrial transport abnormality in Mfn2-/- neurons………………………………………….58 

 

Chapter 3 

Figure 3-1: CMT2A associated MFN2 mutants cause axonal degeneration in cultured DRG 

neurons…………………………………………………………………………………………………….79 

Figure 3-2: Axons of R94Q expressing DRG neurons are actively degenerating…………………81 

Figure 3-3: Disruption of mitochondrial fusion is not sufficient to cause axonal degeneration......82 

Figure 3-4: Axonal mitochondria are abnormally distributed in R94Q expressing neurons………83

vii 
 



Figure 3-5: Quantification of axonal mitochondrial content and transport into axons……………..85 

Figure 3-6: R94Q and siopa1 expressing DRG neurons are reliant on glycolytic production  

of ATP………………………………………………………………………………………………………86 

Figure 3-7: TTX treatment prevents axonal degeneration in cultured DRG neurons expressing 

MFN2 disease mutants…………………………………………………………………………………..88 

Figure 3-8: Expression of Mfn1 ameliorates degenerative effects of the R94Q disease mutant  

on cultured DRG neurons………………………………………………………………………………..89 

 

Chapter 4 

Figure 4-1: Electrophysiology studies of R94Q heterozygous knock-in animals at 2 and 6  

months of age……………………………………………………………………………………………100 

Figure 4-2: Tibial nerve sections from R94Q heterozygous mice reveal the absence of  

Wallerian degeneration or axon loss………………………………………………………………….101 

Figure 4-3: Mitochondria show normal distribution in R94Q heterozygous tibial nerve and  

properly populate presynaptic terminals at neuromuscular junctions……………………………..102 

Figure 4-4: Mitochondiral transpost and axonal integrity are uncompromised in Drg neurons 

cultured from R94Q heterozygous mice………………………………………………………………103 

Figure 4-5: R94Q heterozygous mice display normal tolerance to 2-deoxy-glucose…….………104 

Figure 4-6: R94Q/+; TrJ/+ dihybrid mutants do not display an increase in axon loss……………105 

 

 

 

 

viii 
 



Chapter 1 

 

Introduction and Background Research 

 

Axonal degeneration in neurodegenerative disease 

Recognizing that a single neuron contains a unique and compartmentalized biology in both its 

axon and soma has been a fundamental advance in our understanding of neuronal cell 

physiology. Over the last century, experimentation has revealed that axons and somas employ 

unique schemes of cytoskeletal organization and transport (Setou et al., 2004), appropriate 

different ion channels and membrane receptors (Lasiecka et al., 2008), and even instigate 

separate programs of self-destruction (Raff et al., 2002). The marked differences between the 

axon and soma necessitates that both be considered in a comprehensive description of neuronal 

physiology. 

 Evidence that axons utilize a non-apoptotic program of self-destruction combined with a 

growing appreciation for the prominence of axon loss in several neurodegenerative paradigms 

has prompted researchers to reevaluate the prevailing “apoptosis-centered” approach to 

understanding neurodegeneration. Many studies suggest that axonal degeneration precedes cell 

death in ALS (Fischer and Glass, 2007), Parkinson’s disease (Cheng et al., 2010), Alzheimer’s 

disease (Vickers et al., 2000) and Multiple Sclerosis (MS) (Dziedzic et al., 2010)and is the most 

important factor contributing to morbidity in MS and demyelinating peripheral neuropathies. 

Understanding the molecular mechanisms underlying axonal degeneration will be pivotal to both 

our understanding of neurodegeneration, and our ability to prevent it.  

 

Axonal degeneration in the peripheral nervous system 

Axonal degeneration occurs in the peripheral nervous system in response to number of toxic, 

metabolic and infectious insults as well as occurring in a number of hereditary neuropathies. 

Patients most commonly experience a progressive loss of sensation and/or motor function 

beginning in the feet and later progressing up the legs. The spreading of symptoms gives the 
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impression that axons are progressively degenerating distally toward their cell bodies, earning the 

phenomenon the name “dying back” (Cavanagh, 1964) (Blakemore and Cavanagh, 1969). Dying 

back neuropathies occur in a length dependent manner where the longest axons show a 

predilection for degeneration before their shorter counter parts. This explains why symptoms first 

occur in the long axons innervating the feet and later progress to affect the shorter axons 

innervating the hands. Causes of such dying back neuropathies include diabetes (Sima et al., 

1983), excessive alcohol consumption (Low et al., 1975), acrylamide poisoning (Schaumburg et 

al., 1974), the chemotherapeutic agent vincristine (Silva et al., 2006) (Guiheneuc et al., 1980), 

AIDS (Smith et al., 1990), and a number of inherited gene mutations. Because longitudinal 

observation of axonal degeneration is difficult to achieve in vivo, it is still unclear if axonal 

degeneration always starts at the neuromuscular junction and retracts backwards, or if 

degeneration can be initiated at other areas along the length of an axon. An alternate explanation 

of the “dying back” phenomenon is that the longest axons are also more frequently targeted by 

disease processes and are therefore statistically more likely to degenerate first. If axons were to 

degenerate roughly in the order of their length, it would give the appearance of “dying back”. 

 At least in culture, axons do have the ability to progressively degenerate in a manner that 

resembles “dying back”. When a distal segment of an axon is locally deprived of nerve growth 

factor (NGF), the axon degenerates back toward a proximal segment still exposed to NGF 

(Campenot, 1982). Though this demonstrates the ability of cultured neurons to degenerate at the 

distal axon while keeping the proximal intact, whether or not this in vitro behavior recapitulates 

some aspects of what happens in a dying back neuropathy is still not clear.  

 Regardless of the mechanistic basis of the dying back pattern of axonal degeneration in 

the PNS, one fact remains constant; the longest axons are the most sensitive to degeneration. 

Because the longest axons in the body are in the periphery, global dying back neuropathies 

should emerge first in the PNS. There are, however long descending axons in the motor tracts of 

the spinal cord and these axons are also involved in certain length dependent neuropathies.  
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Axonal degeneration in the central nervous system 

Though length dependent neuropathies are among the clearest examples of primary axon 

diseases, other neurodegenerative processes may also originate in axons. In fact, axons of the 

central nervous system are primary players in the development MS (Dziedzic et al., 2010) and 

possibly Alzheimer’s disease (Vickers et al., 2000)and Parkinson’s disease (Cheng et al., 2010). 

 Though primarily a disease of CNS myelin, MS also has a prominent neurodegenerative 

component. Approximately 85% of MS patients first experience a relapsing remitting (RRMS) 

syndrome in which discrete foci of inflammatory demyelination lead to reversible neurological 

deficits followed by a secondary progressive phase of the disease (SPMS) which results in an 

irreversible decline in neurological function. Though RRMS is predominately characterized by 

acute episodes of demyleination, axon loss has been demonstrated in active brain lesions 

(Ferguson et al., 1997; Trapp et al., 1998). During this phase, the plastic nature of the brain is 

able to compensate for the modest loss of axons. However, loss of axons beyond this capacity 

marks the transition to SPMS where the continued loss of axons underlies a gradual neurological 

decline (Trapp and Nave, 2008).    

 In addition to MS, axonal degeneration is also seen in Alzheimer’s, Parkinson’s and 

Huntington’s disease. In Alzheimer’s disease, dystrophic axons can be seen in contact with Aβ 

plaques, and it has even been suggested that the plaques may compress axons and disrupt 

axonal transport (Vickers et al., 2009). Degenerating axons associated with α-synuclein 

containing Lewy-bodies and huntingtin protein aggregates have been seen in Parkinson’s and 

Huntington’s disease respectively (Braak et al., 2001)(Li et al., 2001). Importantly, evidence 

suggests that axonal degeneration occurs at an early stage in these diseases and may play a 

driving role in their pathophysiology. 

 

The pmn/pmn mouse is a model of motor neuron disease illustrating the importance of axonal 

degeneration in disease progression 

Up to this point the association of axonal degeneration with a broad spectrum of 

neurodegenerative disease has been demonstrated by numerous studies, however the most 
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definitive proof that neurodegenerative processes can originate in axons has come from an 

animal model of progressive motor neuron (pmn) disease and an advance in the understanding of 

Wallerian degeneration.   

The pmn mouse is a widely used model of peripheral motor neuron disease. Mice 

homozygous for the mutant allele develop progressive hindlimb paralysis that later involves the 

forelimbs and eventually the descending cortical motor neurons. By six weeks of age 

homozygotes die concomitant with severe loss of ventral horn motor neurons. Interestingly 

however, the disease first manifests as a dying-back axonopathy that begins with denervation at 

motor end plates (Schmalbruch et al., 1991). 

 To assess the differential roles of cell death and axon loss on disease progression and 

morbidity, pmn mice were crossed with transgenic mice overexpressing the human bcl-2 gene to 

inhibit apoptotic loss of motor neurons (Sagot et al., 1995). As expected, expression of bcl-2 

prevented the loss of ventral horn motor neuron cell bodies. However, it had no affect on axonal 

degeneration, disease progression or survival. This suggested that axonal degeneration and not 

the loss of neuronal cell bodies was more important to the neurodegenerative phenotype.   

  

Axonal degeneration as an actively regulated process 

The realization that axons contained a unique program of self-destruction came with the 

discovery of a spontaneously occurring mutant dubbed the Wallerian degeneration slow (Wlds) 

mouse in which distal nerve segments continue to survive and propagate action potentials up to 

three weeks following nerve transection (Lunn et al., 1989). The genetic basis of this defect was 

mapped to the distal end of chromosome 4 where a tandem triplication of an 85kb region created 

an aberrant fusion protein containing part of the ubiquitin ligase E4b and the entire nicotinamide 

adenine mononucleotide transferase 1 (NMNAT1) (Lyon et al., 1993) (Coleman et al., 1998) 

(Conforti et al., 2000). Further studies went on to prove that NMNAT’s enzymatic activity was 

responsible for the slowed axonal degeneration (Araki et al., 2004), though the precise molecular 

mechanisms underlying the phenomenon remain unclear.  
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 The Wlds mice were also used to obtain final proof that axonal degeneration was a more 

important contributing factor to the death of motor neurons than apoptosis in the pmn/pmn 

mouse. An experiment crossing the pmn/pmn mice with the Wlds mice demonstrated that double 

mutants showed delayed axonal degeneration, attenuated symptoms, increased life span and 

rescue of motor neuron number and size (Ferri et al., 2003). 

 

Targeting axon degeneration to treat neurodegenerative disease 

The pmn/pmn and Wlds mice have provided us with three important insights concerning axonal 

degeneration: 1) Degeneration of axons can drive a neurodegenerative process leading to 

secondary loss of cell bodies; 2) Preventing axon loss can be an effective means of ameliorating 

neurodegeneration; 3) Axon degeneration is an active process that may serve as a common 

target in different paradigms of neurodegeneration. 

 Despite our increased appreciation for the role axonal degeneration in disease, we have 

yet to delineate the cascade of molecular events that underlie its propagation. One useful line of 

investigation to define the molecular pathways critical for axon maintenance and degeneration is 

to study an inherited axonopathy that has an established genetic cause, as this approach 

immediately provides candidate molecules to investigate experimentally. The line of investigation 

described in this dissertation takes this approach. Starting with the prior knowledge that mutations 

in the mitofusin 2 (MFN2) gene cause the inherited peripheral neuropathy Charcot-Marie-Tooth 

disease type 2A, we explore the function of MFN2 and it role in supporting axonal integrity. 

 

Charcot-Marie-Tooth disease type 2A is an inherited axonopathy 

Charcot-Marie-Tooth disease type 2A (CMT2A) is an inherited peripheral neuropathy 

characterized by a progressive dying back degeneration of the longest axons in the body. The 

dominantly inherited disease usually presents in the first or second decade of life, first 

manifesting symptoms in the feet and later spreading to the hands and other proximal body 

regions.  
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 The most commonly identified mutations associated in with CMT2 are in the MFN2 gene 

(Zuchner et al., 2004) (Lawson et al., 2005) (Verhoeven et al., 2006). MFN2 is an outer 

mitochondrial membrane protein that has been shown to have a role in both mitochondrial fusion 

and transport (Chen et al., 2003) (Baloh et al., 2007). Sural nerve biopsies from CMT2A patients 

with identified mutations in MFN2 have demonstrated the presence of clustered mitochondrial 

with abnormal cristae structure in axons (Verhoeven et al., 2006). Though these data suggest 

that CMT2A results from an abnormality in mitochondrial function, the nature of this abnormality 

remains unclear.  Most importantly, the reason why mutations in this ubiquitously expressed 

protein manifest as selective degeneration of long peripheral axons has not yet been 

demonstrated. 

 

CMT2A animal models 

Currently there are two transgenic animal models of CMT2A that have been reported. The first 

model reported utilized the Hb9 promoter, which expresses specifically in motor neurons at very 

high levels  prenatally and declines to low levels at around three weeks of age, to overexpress 

the T105M MFN2 disease mutant (Detmer et al., 2008). These Hb9 transgenic animals 

developed a severe hindlimb gait defect, motor axon degeneration, motor neuron death and 

severe atrophy of the tibialis anterior muscle. Cultured motor neurons from the animals also 

demonstrated an abnormality in the distribution of axonal mitochondria, which were tightly 

clustered along the length of the axon. All of these features recapitulate to some extent the 

findings in human patients with CMT2A. However, the high levels of mutant protein expression 

early in development and the complete absence of expression following birth, suggests that the 

animals may suffer from a developmental syndrome rather than a neurodegenerative disease.  

 Importantly, the animals described in the study had to be bred to homozygosity to obtain 

a noticeable phenotype. This is an important point, since in human patients the gene dosage of 

normal to abnormal MFN2 is 1:1, however, the mice do not show an overt phenotypic 

consequence without significant overexpression of the mutant allele. In fact, a second transgenic 
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line created by the authors only expressed ~70% as much mutant protein as the first line and did 

not show any abnormalities even when bred to homozygosity.  

 An additional complication comes from the use of the HB9 promoter, which specifically 

expresses in motor neurons. The strong overexpression of a toxic MFN2 mutant may have 

caused degeneration of the motor neurons simply because it was only expressed in motor 

neurons. A toxic affect of the mutant in other cells types would have been missed in this animal 

model altogether. This is important to consider when interpreting its ability to explain the human 

disease where the mutant MFN2 allele is expressed throughout the body yet selectively affects 

motor and sensory axons.  

 A second CMT2A model was recently reported in which the neuron specific enolase 

promoter was used to drive expression of the R94Q mutant MFN2 allele (Cartoni et al.). These 

mice showed locomotor deficits on rotor rod tests and walked with abnormal posture where their 

body was kept low to the ground. These mice also showed a gene dosage affect as only the 

homozygous animals showed early signs of locomotor abnormalities.  Despite their behavioral 

phenotype, neither axon degeneration nor signs of muscle atrophy were observed in these 

animals. Only a population shift toward smaller diameter axons with an apparent increase in the 

number of mitochondria in smaller diameter axons was seen in mutant transgenics. The 

difference between this line and the previously described ones may have been due to differences 

in gene dosage but unfortunately neither of these models offers an accurate recapitulation of the 

human disease.  

 An animal model of CMT2A will be extremely import both for studying mechanisms 

underlying axonal degeneration and testing therapeutic interventions aimed at preventing axonal 

degeneration. Though the two transgenic models thus far described offer some insight, an MFN2 

knock-in animal (as described in Chapter 4) more closely models the genetic situation in humans, 

and would theoretically be the best model to understand the cell type specificity observed in 

CMT2A.   
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Mitochondrial disease: the role of mitochondrial dynamics and MFN2 

Mitochondrial disorders are multisystem diseases that result from mutations in mitochondrial DNA 

(mtDNA) or nuclear genes that encode for mitochondrial proteins. Classical mitochondrial 

disorders are maternally inherited and affect proteins involved in mitochondrial respiration (Chan, 

2006) (Dimauro and Davidzon, 2005). These diseases usually affect the brain and muscle 

presumably because energy demand is at a premium. MERRF (myoclonic epilepsy associated 

with ragged-red fibers) and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and 

stroke-like episodes) syndromes are prime examples where defective mitochondrial respiration 

leads to neurological and myopathic symptoms. Interestingly, though both disorders stem from 

defective mitochondrial respiration, they are clinically distinct diseases. Patients with MERRF 

syndrome present with myoclonic seizures, ataxia, and muscle weakness while MELAS 

syndrome is predominated by stroke-like brain infarctions. This suggests that while the nervous 

system and musculature are sensitive to mitochondrial dysfunction in general, there is still an 

issue of selectivity depending on the exact cause of disease.  

 In addition to mutations in mtDNA that directly affect mitochondrial respiration, mutations 

in nuclear encoded mitochondrial genes can also cause disease. As discussed previously, 

CMT2A results from mutations in the MFN2 gene and selectively affects axons of peripheral 

motor and sensory axons. Though MFN2 does not directly participate in mitochondrial respiration, 

MFN2 regulates mitochondrial fusion and potentially plays a role in mitochondrial transport (Chen 

et al., 2003) (Eura et al., 2003) (Baloh et al., 2007). Haploinsufficiency or mutations in OPA-1, 

another regulator of mitochondrial fusion, also affects the nervous system resulting in dominant 

optic atrophy (DOA) (Delettre et al., 2000) (Alexander et al., 2000). Lastly, mutations in GDAP-1, 

a protein implicated in mitochondrial fission, cause CMT4A (Baxter et al., 2002) (Cuesta et al., 

2002) (Nelis et al., 2002), a recessive axonal and demyleinating neuropathy.  

 The common theme emerging from these three diseases is the disruption of 

mitochondrial fusion and fission. To better understand how disruption of these processes cause 

disease, mitochondrial fusion and fission will be discussed below more in depth. 
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Molecular mechanisms of mitochondrial fusion and fission 

In addition to undergoing frequent movement, mitochondria are constantly changing their shape. 

The bulk of mitochondrial mass in any given cell is divided into individual organelles that can fuse 

with each other or divide into smaller units. A balance of fusion and fission mechanisms controls 

the size and number of individual mitochondria. 

Fusion and fission regulate several important 

aspects of mitochondrial function: they control 

mitochondrial morphology, allow exchange of 

membrane and matrix constituents, and facilitate 

the induction of apoptosis by controlling release of 

proteins from the inter-mitochondrial membrane 

space (Detmer and Chan, 2007a). In mammals, the 

fusion machinery consists of two outer 

mitochondrial membrane (OMM) anchored 

GTPases, mitofusin 1 (Mfn1) and mitofusin 2 

(Mfn2) and a single inner mitochondrial membrane (IMM) anchored GTPase, OPA1. Mfn1 and 

Mfn2 are thought to tether adjacent OMMs by forming homo or heterodimers and facilitate 

membrane fusion in a GTP dependent manner (Figure 1) (Koshiba et al., 2004)(Hales and Fuller, 

1997) (Hermann et al., 1998; Santel and Fuller, 2001; Rojo et al., 2002; Eura et al., 2003; Santel 

et al., 2003). Following fusion of the OMMs, OPA1 then fuses the IMMs (Cipolat et al., 

2004)(Song et al., 2009). Fission on the other hand is achieved by recruiting dynamin-related 

protein 1 (Drp1) from the cytoplasm to the OMM where it localizes in a punctate fashion with Fis1, 

an integral OMM protein that facilitates recruitment of Drp1 (Lee et al., 2004) (Smirnova et al., 

2001). Fission is then thought to occur as molecules of Drp1 assemble into a ring and constrict 

the mitochondrial tubule into separate organelles. 
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Mitofusin 1 and 2 mediate docking and fusion of the outer mitochondrial membrane 

Mfn1 and Mfn2 belong to the family of large dynamin-like GTPases. Defining structures of 

classical dynamins include a large GTPase domain and a 

self contained GTPase activating domain (GED) (Praefcke 

and McMahon, 2004). While the mitofusins retain the large 

GTPase domain, it is not clear from their structure or 

function that any part of the proteins acts as a GED domain. 

Instead, mitofusins have two coiled-coil domains separated 

by two transmembrane domains. Their topology is such that 

both the carboxy and amino terminal are oriented toward the 

cytoplasm with the two transmembrane domains situated in 

the OMM (Rojo et al., 2002). This topology is common to 

mitofusins and atlastins, which are also members of the large dynamin-like GTPase family and 

play a role in ER membrane fusion and tubulation (Figure 2) (Hu et al., 2009).  

 The coiled-coil domains on Mfn1 and Mfn2 allow the molecules to form homo and hetero 

dimmers in cis or trans across two juxtaposed mitochondria (Koshiba et al., 2004). When two 

mitofusins interact in trans their second coiled-coil domains from and antiparallel coiled-coil 

structure and tether the two juxtaposed mitochondria together. This docking step is followed by 

fusion of the OMM membranes, the exact steps of which are still unclear, that is dependent on 

the GTPase activity of the mitofusins (Ishihara et al., 2004) (Hales and Fuller, 1997) (Hermann et 

al., 1998).  

 Both Mfn1 and Mfn2 are important to mitochondrial fusion. Mouse embryonic fibroblasts 

(MEFs) derived from Mfn1 or Mfn2 null animals, both show small fragmented mitochondria that 

are deficient in their ability to fuse (Chen et al., 2003). Notably the mitochondria also show 

abnormal patterns of movement but do not show a global collapse in mitochondrial membrane 

potential or oxidative respiration Chen, 2003 #372}(Chen et al., 2005). Mfn1 and Mfn2 null 

animals die before birth due to placental defects Chen, 2003 #372}. If Mfn2  is conditionally 

knocked out in all other tissues except the placenta, mfn2 null mice survive until 2 weeks after 
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birth. In contrast, if is conditionally knocked out in all other tissues except placenta, Mfn1 null 

mice survive into adulthood (Chen et al., 2007). It has thus become evident that Mfn1 and Mfn2 

have some redundant but not completely overlapping functions. In support of this idea, one study 

has reported that the complete fusion of the IMM and OMM is dependent on the function of mfn1 

and opa1 but not mfn2 (Cipolat et al., 2004). Mfn1 also displays and eight fold higher GTPase 

activity than mfn2 and more efficiently tethers mitochondria at a much higher efficiency than Mfn2 

(Ishihara et al., 2004). Additionally, Mfn2 has been found on the ER membrane where it helps 

establish ER –mitochondrial contacts whereas mfn1 is only found on the OMM of mitochondria 

(de Brito and Scorrano, 2008).  

 

Mitochondrial fusion and fission regulate mtDNA stability 

mtDNA resides within the matrix of a mitochondrion as a structure called a nucleoid. A single 

mitochondrion can contain several nucleoids and hence several complete copies of the 

mitochondrial genome (Garrido et al., 2003). If one nucleoid contains an inherited or acquired 

mutation, the other copies can dilute out the effect of the mutation. Fusion and fission of 

mitochondria allows for the exchange of nucleoids and can help ameliorate the effects of a 

mutation (Yoneda et al., 1994)(Nakada et al., 2001). This was elegantly demonstrated in mice 

conditionally lacking both mitofusin 1 and 2 in muscle (Chen et al., 2010). Double knockout mice 

(mfn1 -/-; mfn2 -/-)  had over a 10-fold reduction in the number of mtDNA copies present in their 

muscle, a 5-fold increase in mtDNA point mutations and a 14-fold increase in the number of 

mtDNA deletions by 7 weeks of age. Additionally, a synergistic lethality was demonstrated 

between the loss of mfn1 and a mutation in the mtDNA polymerase (making it more error prone). 

This experiment demonstrated that a decrease in mitochondrial fusion made  mice less able to 

cope with mtDNA mutations.  

 The importance of mitochondrial fusion could then reasonably support the hypothesis that 

mutations in MFN2 could lead to a decrease in mitochondrial fusion that would then make 

patients more susceptible to spontaneously arising mutations in mtDNA. However, closer 

examination of MFN2 disease mutants and their affects on mitochondrial fusion along with a 
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possible role of MFN2 in mitochondrial transport has made the significance of mitochondrial 

fusion in CMT2A questionable, as discussed below.  

 

The role of mitochondrial fusion in CMT2A 

The role of mitochondrial fusion in the pathogenesis of CMT2A came into question with a closer 

investigation of the ability of CMT2A associated MFN2 mutants to mediate mitochondrial fusion. 

Out of the eight disease mutants tested, four (V69F, L76P, R274Q and W740S) were able to 

mediate mitochondrial fusion in mfn1 -/-; mfn2 -/- double knockout cells (Detmer and Chan, 

2007b). While the other mutants tested (R94Q, R94W, T105M and P251A) could not mediate 

mitochondrial fusion alone, all mutants tested could be complemented by mfn1 and thus mediate 

fusion under normal circumstances. Though it is not certain how the fusion enabling mutants 

could lead to disease, it was suggested that mfn1 maybe be absent or expressed at low levels in 

motor and sensory neurons where mitochondrial fusion would then be disrupted in CMT2A 

patients. 

  Our lab began its study by expressing six different MFN2 mutants (three of which 

retained their ability to mediate mitochondrial fusion) in cultured rat DRG neurons and observed 

both their affect on mitochondrial morphology and movement (Baloh et al., 2007). The striking 

finding was that all seven mutants disrupted mitochondrial movement while high-level expression 

of wild type MFN2 had no effect. This was the first consistent attribute that all tested MFN2 

mutants demonstrated. Also remarkable was the lack of effect on levels of ATP or oxidative 

phosphorylation (OXPHOS) when the mutants were expressed in 293T cells. This suggested that 

the effect of the mutants was centered on disrupting mitochondrial transport rather than function. 

Unfortunately this study did not address whether MFN2 was playing a direct role in mitochondrial 

transport, nor provide an explanation how it might be disrupting transport.    

 

A new focus on mitochondrial transport  

Functional mitochondria are essential to cells, which rely on the organelles to produce ATP, 

buffer cytosolic Ca2+, and orchestrate apoptosis. Crucial to the integrity of mitochondria is their 
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ability to undergo fusion and fission with one another to assure the integrity of their DNA. Though 

the association between mutations in MFN2 and CMT2A suggest a connection between 

mitochondrial fusion and disease, the data from our first investigation suggests that disruption of 

mitochondrial transport may actually be the central phenomenon explaining the degeneration of 

axons. 

 

Mitochondrial transport in axons 

Mitochondria have evolved to mediate a multiplicity of functions including oxidative 

phosphorylation, Ca2+ sequestration, and initiation of apoptosis. Integral to their successful 

functioning is their proper distribution to subcellular domains where they are required. In 

peripheral neurons, mitochondria are recruited to areas of high-energy demand such as active 

growth cones (Morris and Hollenbeck, 1993), the distal region of the initial segment (Li et al., 

2004), Nodes of Ranvier (Berthold et al., 1993), and presynaptic boutons (Misgeld et al., 2007) 

where they may replenish ATP levels or buffer calcium. Presumably, interfering with the proper 

distribution of axonal mitochondria would hamper their ability to meet the needs of the 

intracellular environment and compromise axon viability. Indeed, several neurodegenerative 

disorders have been associated with abnormal mitochondrial transport (Chang and Reynolds, 

2006) marking the importance of understanding this process.  

 The transport and distribution of mitochondria are regulated processes that bring 

mitochondria from the soma, where the majority of mitochondrial biogenesis is thought to occur 

(Amiri and Hollenbeck, 2008), across great spans of axon, up to a meter in peripheral sensory 

and motor neurons. Unlike other transported organelles, mitochondria move in a salutatory and 

bidirectional manner constantly pausing or reversing their direction of travel (Hollenbeck and 

Saxton, 2005). This dynamic motion presumably results from mitochondria responding to 

intracellular or extracellular cues. In neurons, both increased levels of ADP and cytosolic Ca2+ act 

as intracellular signals to modulate mitochondrial mobility, while NGF can affect mitochondrial 

trafficking from signaling outside of the cell (Mironov, 2007) (Rintoul et al., 2003) (Chada and 

Hollenbeck, 2003) (Chada and Hollenbeck, 2004). Though a diversity of signals may 
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simultaneously modulate mitochondrial transport, their affects most likely converge on common 

targets, the motor proteins and their adaptors that associate with mitochondria.          

 

Motor proteins mediating transport  

Axonal mitochondria move along both microtubule and microfilament tracks; fast mitochondrial 

movements are microtubule based while slow transport is dependent on microfilaments (Morris 

and Hollenbeck, 1995). Mitochondria may also remain stationary while docked to cytoskeletal 

elements to maintain their proper distribution (Hollenbeck and Saxton, 2005)(Kang et al., 2008). 

Movement along microtubule tracks is achieved by associating with kinesin or dynein motors. The 

stereotypic arrangement of microtubules in axons, with the plus ends orientated toward the 

growth cone and negative ends toward the soma, dictates that all kinesin based movement is 

anterograde and all dynein based movement is retrograde. Out of the six kinesin families that 

mediate axonal organelle transport only two have been associated with mitochondria in 

mammals: kinesin-1 and kinesin-3. The kinesin-1 family member Kif1B associates with both 

mitochondria and other transported organelles (Hollenbeck and Saxton, 2005) while the kinesin-3 

family member Kif5C specifically associated with mitochondria in neurons (Nangaku et al., 1994). 

In mammals there are only three dynein heavy chains that are expressed in the cytoplasm 

(Vaisberg et al., 1996) which are thought to regulate retrograde movement of mitochondria. 

Interestingly, dynein mediated retrograde axonal transport seems to also depend on the presence 

of functional kinesin-1. Perfusing squid axoplasm with kinesin-1 antibodies produces a marked 

decrease in organelle transport in both anterograde and retrograde directions (Brady et al., 1990) 

while in Drosophila, mutations in kinesin-1 result in decreased retrograde transport in axons 

(Pilling et al., 2006). These observations point to an interdependent relationship between 

anterograde and retrograde transport mechanisms though no specific molecular complexes of 

kinesin and dynein heavy chains have been identified (Hollenbeck and Saxton, 2005). This 

phenomenon may however, be a due to the disrupted function of adaptor proteins that link 

cytoskeletal motors to the mitochondrial membrane and presumably regulate their function. 
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Mitochondrial motor protein adaptors  

In mammals, there are four known adaptor proteins that link mitochondria to kinesin proteins: 

GRIF1, OIP106, syntabulin and kinesin binding protein (KBP) (Frederick and Shaw, 2007). GRIF1 

and OIP106 are both coiled-coil domain proteins that are known homologues of the Drosophila 

Milton protein (Brickley et al., 2005). When the 

single Drosophila Milton homologue is knocked 

out in photoreceptors, aberrant synaptic 

transmission and a striking absence of 

mitochondria in synaptic terminals and axons is 

observed (Stowers et al., 2002). These findings 

led the further characterization of Milton as a 

mitochondrial associated protein that bound the 

Drosophila kinesin heavy chain (KHC). It was 

then assumed that Milton was necessary for 

anterograde transport of mitochondria out of 

neuronal bodies but the nature of its 

mitochondrial localization was still a mystery, as Milton’s protein structure does not suggest it is 

an integral outer mitochondrial membrane (OMM) protein. Later work demonstrated that Milton 

interacts with the integral OMM protein dMiro and that this interaction could affect the localization 

of Milton to mitochondria (Figure 3) (Glater et al., 2006). To date, dMiro is the only known 

“receptor” for a mitochondrially localized motor protein adaptor, though other unidentified 

receptors are postulated to exist for syntabulin and KBP (Frederick and Shaw, 2007). Because 

some of the adaptor proteins such GRIF1 and OIP106 have been shown to also link other 

organelles to motor proteins, their specific roles in mitochondrial transport is likely regulated by 

dMiro which is only localized to mitochondria 
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The mitochondrial Miro GTPase proteins  

The Miro gene is highly conserved with isoforms present from yeast up to humans. While single 

cell organisms and Drosophila only contain a single Miro gene, two separate but highly 

homologues isoforms of Miro exist in mammals. These two genes both encode integral outer 

mitochondrial membrane (OMM) proteins that are prominently expressed in the mammalian 

nervous system. Both Miro isofroms contain classical domains associated with signaling 

processes: a Rho GTPase related domain, a Rab-like GTPase domain and two calcium binding 

EF hand domains (Fransson et al., 2003; Fransson et al., 2006). Both Miro isoforms are anchored 

to the OMM by a C-terminal transmembrane domain proceeded by a short tail in the inter-

mitochondrial membrane space (Figure 3). The juxtaposition of these evolutionarily conserved 

motifs portends a unique regulatory function for these mitochondrial proteins. 

 

Miro proteins and axonal transport of mitochondria  

In developing Drosophila larvae, absence of the dMiro allele results in abnormal locomotion and 

death during early larval stages. Other alterations in these animals include conspicuous loss of 

mitochondria in axons, dendrites, presynaptic terminals and NMJs along with an abnormal 

organization of mitochondria in neuronal cell bodies and muscle (Guo et al., 2005). Presynaptic 

boutons were also structurally abnormal displaying a reduced volume and appearing in 

aggregated “cauliflower-like” bundles. While microtubules normally extend into presynaptic 

boutons as easily identifiable loops, Miro mutant boutons lacked the same number of loops and 

often the loops failed to extend into the last bouton of an axonal branch. Despite the lack of 

mitochondria at NMJ’s in the knockout flies, trafficking of neurotransmitter vesicles and baseline 

neurotransmission appeared unperturbed. However in response to prolonged bouts of 

stimulation, Ca2+ buffering and neurotransmitter release were greatly hampered indicating that 

the presence of mitochondria was necessary to access reserve stores of neurotransmitter 

vesicles. Interestingly, reintroduction of Miro protein solely into the nervous system but not 

muscle rescued the knockout animals stressing the critical importance of Miro function in neurons 

(Guo et al., 2005).  
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 In contrast to the loss of mitochondria in distal axons of the Miro knockout fly, 

overexpression of Miro in vivo led to in an increased accumulation of mitochondria in distal 

synaptic buttons suggesting that the protein promoted anterograde transport of mitochondria in 

axons (Guo et al., 2005). The connection between Miro and anterograde transport was later 

solidified with the identification of its binding partner Milton (Glater et al., 2006). In mammals, 

Miro1 and Miro2 both associate with Grif1 and OIP106, the two known Milton homologues 

(Fransson et al., 2006). 

 Disruption of mitochondrial transport is conceptually similar to directly decreasing 

mitochondrial function. Perhaps another measure to consider would be “effective” mitochondrial 

function, which would encompass both the intrinsic ability of mitochondria to generate ATP and 

buffer Ca2+ as well as their ability to effectively complete these tasks in the cell. Disrupting 

mitochondrial transport and preventing proper localization of mitochondria to areas of high energy 

and Ca2+ flux would therefore decrease effective mitochondrial function. Other insults that 

negatively affect mitochondria, such as hypoxia or mitochondrial toxins, are known to incite 

axonal degeneration. We hypothesize that disruption of mitochondrial transport by MFN2 disease 

mutants will affect axons in a similar manner to directly inhibiting mitochondrial function and lead 

to the degeneration of axons. 

Mechanisms of axonal degeneration 

Anoxia/ischemia models of axonal degeneration 

The nervous system accounts for a large percentage of the body’s total energy consumption. The 

conduction of action potentials along nerves and white matter tracks is costly, requiring energy to 

pump ions across the plasma membrane and establish the resting membrane potential. Despite 

the high demands of action potential propagation, neurons have low intrinsic energy reservoirs 

and require a continuous supply of oxygen and glucose. Accordingly, within minutes of onset, 

anoxia or hypoxia in optic nerve causes conduction block and depolarization of the resting 

membrane potential (Stys et al., 1990)(Malek et al., 2005). Peripheral nerves on the other hand 

are more resistant to anoxia or hypoxia and can remain excitable for up to 60 minutes before 
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succumbing to conduction failure (Kugelberg, 1944)(Waxman et al., 1995). An elegant 

demonstration of this phenomenon was performed with explants of dorsal spinal roots and slices 

of the dorsal column which contain the peripheral and central axon processes of dorsal root 

ganglion cells respectively. Though both the peripheral and central processes extended from the 

same population of cells, the peripheral axons were able to tolerate the complete replacement of 

O2 with N2 in their bath solution while the central processes were unable to conduct action 

potentials or maintain their resting membrane potential within minutes of hypoxia. Because the 

axons originate from the same cell, the difference in hypoxia tolerance is likely attributable to 

differences in glia or extracellular matrix surrounding the processes rather than an intrinsic 

difference in the metabolisms of the axons (Utzschneider et al., 1991). 

 In either case, disruption of energy production in axons of the CNS or PNS leads to an 

accumulation of axoplasmic Na+ and Ca2+ and an efflux of K+, which instigates the depolarization 

of the resting membrane potential and subsequent conduction block. The proposed series of 

events leading to the ionic dysregulation involve 1) failure of the Na+-K+ pump from lack of ATP 2) 

Na+ accumulation through persistent Na+ channels and K+ efflux 3) reversal of the Na+- Ca2+ 

driven by high axoplasmic Na+ and consequent accumulation of intracellular Ca2+ (Trapp and 

Nave, 2008). Though influx of extracellular Ca2+ plays an important role in accumulation of intra-

axonal Ca2+, intracellular stores also play a role. In response to prolonged anoxia, Ca2+ can be 

released from ryanodine and IP3 sensitive channel on the axoplasmic reticulum and from 

mitochondria through the mitochondrial Na+- Ca2+ exchanger (Nikolaeva et al., 2005) (Ouardouz 

et al., 2003).  

 An abrupt increase in cytoplasmic Ca2+ plays a definitive role in the induction of axon 

degeneration. In response to increased Ca2+ levels, activated phosphatases dephosphorylate 

neurofilaments, destabilizing the intermediate filament network (Strack et al., 1997). Calcium 

responsive calpains also act to degrade neurofilaments as well as spectrin and other structural 

elements of the axon (Stys and Jiang, 2002). In addition to changes in neurofilment, fast axonal 

transport, which is mediated by the microtubule network, also becomes compromised. 

Accumulation of APP and other cargo of the fast axonal transport system are routinely used to 
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identify dystrophic axons in a variety of diseases (Ferguson et al., 1997; Sheetz et al., 1998; 

Terwel et al., 2002). But perhaps one of the most significant consequences of increase axonal 

Ca2+ is the activation of nitric oxide synthase (NOS) and the production of NO. In addition to 

modifying ion channels, transporters and glycolytic enzymes, NO directly inhibits mitochondrial 

respiration (Pacher et al., 2007). The energy deficit augments the ionic imbalance by depleting 

Na+-K+ function and propagating further influx of Na+, reversal of the Na+-Ca2+ exchanger and 

influx of Ca2+. In this way, a severe ionic imbalance in the axon will create a positive feedback 

loop by inhibiting any mitochondrial energy production instigating the described chain of events.  

 Though anoxia/hypoxia induced axonal degeneration has been extensively studied in the 

optic nerve, work in peripheral nerves suggests that a similar chain of events occurs. In fact the 

described scheme can be applied to axonal degeneration in general. Whatever the inciting insult, 

a severe ionic imbalance or energy deficit will propagate itself through a vicious cycle.  

 

Demyelination, energy imbalance and axonal degeneration 

The initial symptoms of MS are precipitated by inflammatory demyelination in CNS with matter. 

Even in these early stages, axon loss is visible. As the disease progresses, axonal degeneration 

becomes the predominate cause of symptoms and permanent disability. Studies into the 

mechanisms of axon loss in MS have elucidated a fascinating connection to axonal mitochondria 

suggesting that models of axonal degeneration constructed from studies of anoxia/hypoxia may 

also apply to MS (Trapp and Nave, 2008). 

  Demyleination of axons results in the rearrangement of axolemmal domains, 

redistributing voltage gated Na+ channels and Na+/K+ pumps to denuded axon segments where 

energy and Ca2+ flux consequently increase (Arroyo et al., 2002; Devaux and Scherer, 2005). 

Axons stripped of myelin are essentially in the same predicament as unmyelinated nerve fibers, 

which deal with high-energy demands by supplying axons with greater numbers of mitochondria. 

Interestingly, axons in different models of CNS demyelination employ the same technique and 

recruit additional mitochondria to demyelinated segments (Andrews et al., 2006; Hogan et al., 

2009; Witte et al., 2009). As levels of ADP and Ca2+ both influence mitochondrial transport 
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(Mironov, 2007; MacAskill et al., 2009; Wang and Schwarz, 2009), both energy demands and 

ionic imbalances can act as recruiting signals. Though it has not been directly tested, the failure 

of mitochondria to redistribute in response to these demands should compromise the axon. 

 Another recognized insult in the early phases of MS is the production of NO from 

invading immune cells (Smith and Lassmann, 2002). Increased levels of NO can directly inhibit 

mitochondrial respiration and compromise local supplies of ATP (Brown et al., 1995; Pacher et 

al., 2007). Application of NO to myelinated axons was demonstrated to induce conduction block 

and structural damage with high frequency electrical stimulation (Redford et al., 1997; Smith et 

al., 2001). These outcomes are the same seen in anoxia/hypoxia experiments and suggest that 

NO induces a state of “virtual hypoxia” in the axon. Exposure to NO also results in the same ionic 

imbalances observed in anoxia/hypoxia and its affects can be ameliorated with pharmacological 

blockade of Na+ channels (Kapoor et al., 2003).  

 Exposure of axons to NO also occurs in Guillan-Barre syndrome (GBS), where 

inflammatory demyelination of peripheral axons induce a similar cascade of events to that seen in 

MS. Experimental exposure of peripheral nerves to NO results in conduction block, intra-axonal 

accumulation of Na+ and Ca2+, and inhibition of mitochondrial respiration (Kapoor et al., 2003). In 

addition to causing reversible conduction block, a brief exposure of sciatic nerve to NO also 

produces some degree of Wallerian degeneration distal to the site of administration. The same 

effects are seen with a brief administration of DNP, an uncoupler of the IMM (Alvarez et al., 

2008). The striking conclusion is that a transient deficit in mitochondrial metabolism is sufficient to 

trigger axonal degeneration.  

 In summary, mitochondrial metabolism is essential to the integrity of axons. The ATP 

provided by mitochondria is necessary for the function of the Na+-K+ pump and the regulation of 

intra-axonal ion levels. Failure of mitochondrial metabolism leads to a viscous cycle of events that 

perpetuates an increase in axonal Ca2+ levels and a decrease in levels of ATP. Importantly 

mitochondrial metabolism can fail in various ways: mitochondrial respiration can be directly 

affected by a toxin or signaling intermediate like NO, or mitochondria could fail to accumulate in 

sufficient numbers to areas of high metabolic demand. The fact that even a brief inhibition of 
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mitochondrial function can trigger axonal degeneration stresses the importance of actively 

distributing mitochondria to areas of demand. Taken together with our initial observations in 

MFN2 mutant expressing neurons, a logical path from disrupted mitochondrial transport to axonal 

degeneration may now help to explain the loss of axons in CMT2A.  

 

Thesis organization 

This thesis describes evidence for a direct role of Mfn2 in the regulation of mitochondrial transport 

and the role of mitochondrial transport in supporting axon integrity. At the beginning of the study 

we already had data suggesting that CMT2A associated Mfn2 mutants disrupted mitochondrial 

transport, but we did not know if Mfn2 was directly involved in transport nor whether the disrupted 

transport could explain the axonal degeneration seen in CMT2A. 

 Chapter one describes data suggesting that Mfn2 and Mfn1 are directly involved in 

mediating mitochondrial transport. We show that transport of axonal mitochondria is disrupted in 

Mfn2 null mice and that Mfn2 and Mfn1 interact with the Miro/Milton/kinesin complex. We also 

provide evidence that disrupted mitochondrial fusion is not sufficient to disrupt mitochondrial 

transport indicating that the mitofusins play a role in mediating transport distinct from their 

function in mitochondrial fusion. 

 Chapter 2 describes evidence that CMT2A associated Mfn2 disease mutants cause 

axonal degeneration by disrupting mitochondrial transport and that inhibiting mitochondrial fusion 

alone is not sufficient to incite axonal degeneration. We also show that abnormal transport 

prevents mitochondria from uniformly distributing across axons, leaving segments devoid of 

mitochondria. We propose that the abnormal distribution of mitochondria coupled with their 

inability to redistribute to areas in need of ATP or Ca2+ buffering leads to the axon degeneration 

observed in CMT2A. 

 Chapter 3 describes the characterization of R94Q heterozygous knock-in mice. We 

believed that these mice would most accurately reflect the genetic condition in CMT2A patients 

and provide more insight than previously reported models. We found that the heterozygous 

21 
 



animals were unremarkable up to 6 months in age and did not display an emergent phenotype 

when challenged metabolically or when challenged with genetically induced demyelination. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22 
 



References 

 
Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Rodriguez M, Kellner U, 
Leo-Kottler B, Auburger G, Bhattacharya SS, Wissinger B (2000) OPA1, encoding a dynamin-
related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat 
Genet 26:211-215. 

Alvarez S, Moldovan M, Krarup C (2008) Acute energy restriction triggers Wallerian degeneration 
in mouse. Exp Neurol 212:166-178. 

Amiri M, Hollenbeck PJ (2008) Mitochondrial biogenesis in the axons of vertebrate peripheral 
neurons. Dev Neurobiol 68:1348-1361. 

Andrews H, White K, Thomson C, Edgar J, Bates D, Griffiths I, Turnbull D, Nichols P (2006) 
Increased axonal mitochondrial activity as an adaptation to myelin deficiency in the Shiverer 
mouse. J Neurosci Res 83:1533-1539. 

Araki T, Sasaki Y, Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation 
prevent axonal degeneration. Science 305:1010-1013. 

Arroyo EJ, Xu T, Grinspan J, Lambert S, Levinson SR, Brophy PJ, Peles E, Scherer SS (2002) 
Genetic dysmyelination alters the molecular architecture of the nodal region. J Neurosci 22:1726-
1737. 

Baloh RH, Schmidt RE, Pestronk A, Milbrandt J (2007) Altered axonal mitochondrial transport in 
the pathogenesis of Charcot-Marie-Tooth disease from mitofusin 2 mutations. J Neurosci 27:422-
430. 

Baxter RV, Ben Othmane K, Rochelle JM, Stajich JE, Hulette C, Dew-Knight S, Hentati F, Ben 
Hamida M, Bel S, Stenger JE, Gilbert JR, Pericak-Vance MA, Vance JM (2002) Ganglioside-
induced differentiation-associated protein-1 is mutant in Charcot-Marie-Tooth disease type 
4A/8q21. Nat Genet 30:21-22. 

Berthold CH, Fabricius C, Rydmark M, Andersen B (1993) Axoplasmic organelles at nodes of 
Ranvier. I. Occurrence and distribution in large myelinated spinal root axons of the adult cat. J 
Neurocytol 22:925-940. 

Blakemore WF, Cavanagh JB (1969) "Neuroaxonal dystrophy" occurring in an experimental 
"dying back" process in the rat. Brain 92:789-804. 

Braak E, Sandmann-Keil D, Rub U, Gai WP, de Vos RA, Steur EN, Arai K, Braak H (2001) alpha-
synuclein immunopositive Parkinson's disease-related inclusion bodies in lower brain stem nuclei. 
Acta Neuropathol 101:195-201. 

Brady ST, Pfister KK, Bloom GS (1990) A monoclonal antibody against kinesin inhibits both 
anterograde and retrograde fast axonal transport in squid axoplasm. Proc Natl Acad Sci U S A 
87:1061-1065. 

Brickley K, Smith MJ, Beck M, Stephenson FA (2005) GRIF-1 and OIP106, members of a novel 
gene family of coiled-coil domain proteins: association in vivo and in vitro with kinesin. J Biol 
Chem 280:14723-14732. 

Brown GC, Bolanos JP, Heales SJ, Clark JB (1995) Nitric oxide produced by activated astrocytes 
rapidly and reversibly inhibits cellular respiration. Neurosci Lett 193:201-204. 

23 
 



Campenot RB (1982) Development of sympathetic neurons in compartmentalized cultures. II. 
Local control of neurite survival by nerve growth factor. Dev Biol 93:13-21. 

Cartoni R, Arnaud E, Medard JJ, Poirot O, Courvoisier DS, Chrast R, Martinou JC (2010) 
Expression of mitofusin 2(R94Q) in a transgenic mouse leads to Charcot-Marie-Tooth neuropathy 
type 2A. Brain 133:1460-1469. 

Cavanagh JB (1964) Peripheral Nerve Changes In Ortho-Cresyl Phosphate Poisoning In The 
Cat. J Pathol Bacteriol 87:365-383. 

Chada SR, Hollenbeck PJ (2003) Mitochondrial movement and positioning in axons: the role of 
growth factor signaling. J Exp Biol 206:1985-1992. 

Chada SR, Hollenbeck PJ (2004) Nerve growth factor signaling regulates motility and docking of 
axonal mitochondria. Curr Biol 14:1272-1276. 

Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 
125:1241-1252. 

Chang DT, Reynolds IJ (2006) Mitochondrial trafficking and morphology in healthy and injured 
neurons. Prog Neurobiol 80:241-268. 

Chen H, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heterogeneity 
and dysfunction. J Biol Chem 280:26185-26192. 

Chen H, McCaffery JM, Chan DC (2007) Mitochondrial fusion protects against neurodegeneration 
in the cerebellum. Cell 130:548-562. 

Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003) Mitofusins Mfn1 and Mfn2 
coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell 
Biol 160:189-200. 

Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, Chan DC (2010) 
Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA 
mutations. Cell 141:280-289. 

Cheng HC, Ulane CM, Burke RE (2010) Clinical progression in Parkinson disease and the 
neurobiology of axons. Ann Neurol 67:715-725. 

Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L (2004) OPA1 requires mitofusin 1 to 
promote mitochondrial fusion. Proc Natl Acad Sci U S A 101:15927-15932. 

Coleman MP, Conforti L, Buckmaster EA, Tarlton A, Ewing RM, Brown MC, Lyon MF, Perry VH 
(1998) An 85-kb tandem triplication in the slow Wallerian degeneration (Wlds) mouse. Proc Natl 
Acad Sci U S A 95:9985-9990. 

Conforti L, Tarlton A, Mack TG, Mi W, Buckmaster EA, Wagner D, Perry VH, Coleman MP (2000) 
A Ufd2/D4Cole1e chimeric protein and overexpression of Rbp7 in the slow Wallerian 
degeneration (WldS) mouse. Proc Natl Acad Sci U S A 97:11377-11382. 

Cuesta A, Pedrola L, Sevilla T, Garcia-Planells J, Chumillas MJ, Mayordomo F, LeGuern E, Marin 
I, Vilchez JJ, Palau F (2002) The gene encoding ganglioside-induced differentiation-associated 
protein 1 is mutated in axonal Charcot-Marie-Tooth type 4A disease. Nat Genet 30:22-25. 

24 
 



de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. 
Nature 456:605-610. 

Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P, Pelloquin L, Grosgeorge 
J, Turc-Carel C, Perret E, Astarie-Dequeker C, Lasquellec L, Arnaud B, Ducommun B, Kaplan J, 
Hamel CP (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is 
mutated in dominant optic atrophy. Nat Genet 26:207-210. 

Detmer SA, Chan DC (2007a) Functions and dysfunctions of mitochondrial dynamics. Nat Rev 
Mol Cell Biol 8:870-879. 

Detmer SA, Chan DC (2007b) Complementation between mouse Mfn1 and Mfn2 protects 
mitochondrial fusion defects caused by CMT2A disease mutations. J Cell Biol 176:405-414. 

Detmer SA, Vande Velde C, Cleveland DW, Chan DC (2008) Hindlimb gait defects due to motor 
axon loss and reduced distal muscles in a transgenic mouse model of Charcot-Marie-Tooth type 
2A. Hum Mol Genet 17:367-375. 

Devaux JJ, Scherer SS (2005) Altered ion channels in an animal model of Charcot-Marie-Tooth 
disease type IA. J Neurosci 25:1470-1480. 

Dimauro S, Davidzon G (2005) Mitochondrial DNA and disease. Ann Med 37:222-232. 

Dziedzic T, Metz I, Dallenga T, Konig FB, Muller S, Stadelmann C, Bruck W (2010) Wallerian 
Degeneration: A Major Component of Early Axonal Pathology in Multiple Sclerosis. Brain Pathol. 

Eura Y, Ishihara N, Yokota S, Mihara K (2003) Two mitofusin proteins, mammalian homologues 
of FZO, with distinct functions are both required for mitochondrial fusion. J Biochem 134:333-344. 

Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis 
lesions. Brain 120 (Pt 3):393-399. 

Ferri A, Sanes JR, Coleman MP, Cunningham JM, Kato AC (2003) Inhibiting axon degeneration 
and synapse loss attenuates apoptosis and disease progression in a mouse model of 
motoneuron disease. Curr Biol 13:669-673. 

Fischer LR, Glass JD (2007) Axonal degeneration in motor neuron disease. Neurodegener Dis 
4:431-442. 

Fransson A, Ruusala A, Aspenstrom P (2003) Atypical Rho GTPases have roles in mitochondrial 
homeostasis and apoptosis. J Biol Chem 278:6495-6502. 

Fransson S, Ruusala A, Aspenstrom P (2006) The atypical Rho GTPases Miro-1 and Miro-2 have 
essential roles in mitochondrial trafficking. Biochem Biophys Res Commun 344:500-510. 

Frederick RL, Shaw JM (2007) Moving mitochondria: establishing distribution of an essential 
organelle. Traffic 8:1668-1675. 

Garrido N, Griparic L, Jokitalo E, Wartiovaara J, van der Bliek AM, Spelbrink JN (2003) 
Composition and dynamics of human mitochondrial nucleoids. Mol Biol Cell 14:1583-1596. 

Glater EE, Megeath LJ, Stowers RS, Schwarz TL (2006) Axonal transport of mitochondria 
requires milton to recruit kinesin heavy chain and is light chain independent. J Cell Biol 173:545-
557. 

25 
 



Guiheneuc P, Ginet J, Groleau JY, Rojouan J (1980) Early phase of vincristine neuropathy in 
man. Electrophysiological evidence for a dying-back phenomenon, with transitory enhancement 
of spinal transmission of the monosynaptic reflex. J Neurol Sci 45:355-366. 

Guo X, Macleod GT, Wellington A, Hu F, Panchumarthi S, Schoenfield M, Marin L, Charlton MP, 
Atwood HL, Zinsmaier KE (2005) The GTPase dMiro is required for axonal transport of 
mitochondria to Drosophila synapses. Neuron 47:379-393. 

Hales KG, Fuller MT (1997) Developmentally regulated mitochondrial fusion mediated by a 
conserved, novel, predicted GTPase. Cell 90:121-129. 

Hermann GJ, Thatcher JW, Mills JP, Hales KG, Fuller MT, Nunnari J, Shaw JM (1998) 
Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J Cell Biol 143:359-
373. 

Hogan V, White K, Edgar J, McGill A, Karim S, McLaughlin M, Griffiths I, Turnbull D, Nichols P 
(2009) Increase in mitochondrial density within axons and supporting cells in response to 
demyelination in the Plp1 mouse model. J Neurosci Res 87:452-459. 

Hollenbeck PJ, Saxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118:5411-
5419. 

Hu J, Shibata Y, Zhu PP, Voss C, Rismanchi N, Prinz WA, Rapoport TA, Blackstone C (2009) A 
class of dynamin-like GTPases involved in the generation of the tubular ER network. Cell 
138:549-561. 

Ishihara N, Eura Y, Mihara K (2004) Mitofusin 1 and 2 play distinct roles in mitochondrial fusion 
reactions via GTPase activity. J Cell Sci 117:6535-6546. 

Kang JS, Tian JH, Pan PY, Zald P, Li C, Deng C, Sheng ZH (2008) Docking of axonal 
mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132:137-
148. 

Kapoor R, Davies M, Blaker PA, Hall SM, Smith KJ (2003) Blockers of sodium and calcium entry 
protect axons from nitric oxide-mediated degeneration. Ann Neurol 53:174-180. 

Koshiba T, Detmer SA, Kaiser JT, Chen H, McCaffery JM, Chan DC (2004) Structural basis of 
mitochondrial tethering by mitofusin complexes. Science 305:858-862. 

Kugelberg E (1944) Accommodation in human nerves. Acta Physiol Scand:1-105. 

Lasiecka ZM, Yap CC, Vakulenko M, Winckler B, Kwang WJ (2008) Chapter 7 
Compartmentalizing the Neuronal Plasma Membrane: From Axon Initial Segments to Synapses. 
In: International Review of Cell and Molecular Biology, p 303: Academic Press. 

Lawson VH, Graham BV, Flanigan KM (2005) Clinical and electrophysiologic features of CMT2A 
with mutations in the mitofusin 2 gene. Neurology 65:197-204. 

Lee YJ, Jeong SY, Karbowski M, Smith CL, Youle RJ (2004) Roles of the mammalian 
mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 
15:5001-5011. 

Li H, Li SH, Yu ZX, Shelbourne P, Li XJ (2001) Huntingtin aggregate-associated axonal 
degeneration is an early pathological event in Huntington's disease mice. J Neurosci 21:8473-
8481. 

26 
 



Li YC, Zhai XY, Ohsato K, Futamata H, Shimada O, Atsumi S (2004) Mitochondrial accumulation 
in the distal part of the initial segment of chicken spinal motoneurons. Brain Res 1026:235-243. 

Low PA, Walsh JC, Huang CY, McLeod JG (1975) The sympathetic nervous system in alcoholic 
neuropathy. A clinical and pathological study. Brain 98:357-364. 

Lunn ER, Perry VH, Brown MC, Rosen H, Gordon S (1989) Absence of Wallerian Degeneration 
does not Hinder Regeneration in Peripheral Nerve. Eur J Neurosci 1:27-33. 

Lyon MF, Ogunkolade BW, Brown MC, Atherton DJ, Perry VH (1993) A gene affecting Wallerian 
nerve degeneration maps distally on mouse chromosome 4. Proc Natl Acad Sci U S A 90:9717-
9720. 

MacAskill AF, Brickley K, Stephenson FA, Kittler JT (2009) GTPase dependent recruitment of 
Grif-1 by Miro1 regulates mitochondrial trafficking in hippocampal neurons. Mol Cell Neurosci 
40:301-312. 

Malek SA, Adorante JS, Stys PK (2005) Differential effects of Na-K-ATPase pump inhibition, 
chemical anoxia, and glycolytic blockade on membrane potential of rat optic nerve. Brain Res 
1037:171-179. 

Mironov SL (2007) ADP regulates movements of mitochondria in neurons. Biophys J 92:2944-
2952. 

Misgeld T, Kerschensteiner M, Bareyre FM, Burgess RW, Lichtman JW (2007) Imaging axonal 
transport of mitochondria in vivo. Nat Methods 4:559-561. 

Morris RL, Hollenbeck PJ (1993) The regulation of bidirectional mitochondrial transport is 
coordinated with axonal outgrowth. J Cell Sci 104 (Pt 3):917-927. 

Morris RL, Hollenbeck PJ (1995) Axonal transport of mitochondria along microtubules and F-actin 
in living vertebrate neurons. J Cell Biol 131:1315-1326. 

Nakada K, Inoue K, Ono T, Isobe K, Ogura A, Goto YI, Nonaka I, Hayashi JI (2001) Inter-
mitochondrial complementation: Mitochondria-specific system preventing mice from expression of 
disease phenotypes by mutant mtDNA. Nat Med 7:934-940. 

Nangaku M, Sato-Yoshitake R, Okada Y, Noda Y, Takemura R, Yamazaki H, Hirokawa N (1994) 
KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of 
mitochondria. Cell 79:1209-1220. 

Nelis E, Erdem S, Van Den Bergh PY, Belpaire-Dethiou MC, Ceuterick C, Van Gerwen V, Cuesta 
A, Pedrola L, Palau F, Gabreels-Festen AA, Verellen C, Tan E, Demirci M, Van Broeckhoven C, 
De Jonghe P, Topaloglu H, Timmerman V (2002) Mutations in GDAP1: autosomal recessive CMT 
with demyelination and axonopathy. Neurology 59:1865-1872. 

Nikolaeva MA, Mukherjee B, Stys PK (2005) Na+-dependent sources of intra-axonal Ca2+ 
release in rat optic nerve during in vitro chemical ischemia. J Neurosci 25:9960-9967. 

Ouardouz M, Nikolaeva MA, Coderre E, Zamponi GW, McRory JE, Trapp BD, Yin X, Wang W, 
Woulfe J, Stys PK (2003) Depolarization-induced Ca2+ release in ischemic spinal cord white 
matter involves L-type Ca2+ channel activation of ryanodine receptors. Neuron 40:53-63. 

Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. 
Physiol Rev 87:315-424. 

27 
 



Pilling AD, Horiuchi D, Lively CM, Saxton WM (2006) Kinesin-1 and Dynein are the primary 
motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell 17:2057-2068. 

Praefcke GJ, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and 
fission molecules? Nat Rev Mol Cell Biol 5:133-147. 

Raff MC, Whitmore AV, Finn JT (2002) Axonal self-destruction and neurodegeneration. Science 
296:868-871. 

Redford EJ, Kapoor R, Smith KJ (1997) Nitric oxide donors reversibly block axonal conduction: 
demyelinated axons are especially susceptible. Brain 120 (Pt 12):2149-2157. 

Rintoul GL, Filiano AJ, Brocard JB, Kress GJ, Reynolds IJ (2003) Glutamate decreases 
mitochondrial size and movement in primary forebrain neurons. J Neurosci 23:7881-7888. 

Rojo M, Legros F, Chateau D, Lombes A (2002) Membrane topology and mitochondrial targeting 
of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci 
115:1663-1674. 

Sagot Y, Dubois-Dauphin M, Tan SA, de Bilbao F, Aebischer P, Martinou JC, Kato AC (1995) 
Bcl-2 overexpression prevents motoneuron cell body loss but not axonal degeneration in a mouse 
model of a neurodegenerative disease. J Neurosci 15:7727-7733. 

Santel A, Fuller MT (2001) Control of mitochondrial morphology by a human mitofusin. J Cell Sci 
114:867-874. 

Santel A, Frank S, Gaume B, Herrler M, Youle RJ, Fuller MT (2003) Mitofusin-1 protein is a 
generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci 116:2763-
2774. 

Schaumburg HH, Wisniewski HM, Spencer PS (1974) Ultrastructural studies of the dying-back 
process. I. Peripheral nerve terminal and axon degeneration in systemic acrylamide intoxication. 
J Neuropathol Exp Neurol 33:260-284. 

Schmalbruch H, Jensen HJ, Bjaerg M, Kamieniecka Z, Kurland L (1991) A new mouse mutant 
with progressive motor neuronopathy. J Neuropathol Exp Neurol 50:192-204. 

Setou M, Hayasaka T, Yao I (2004) Axonal transport versus dendritic transport. J Neurobiol 
58:201-206. 

Sheetz MP, Pfister KK, Bulinski JC, Cotman CW (1998) Mechanisms of trafficking in axons and 
dendrites: implications for development and neurodegeneration. Prog Neurobiol 55:577-594. 

Silva A, Wang Q, Wang M, Ravula SK, Glass JD (2006) Evidence for direct axonal toxicity in 
vincristine neuropathy. J Peripher Nerv Syst 11:211-216. 

Sima AA, Bouchier M, Christensen H (1983) Axonal atrophy in sensory nerves of the diabetic BB-
Wistar rat: a possible early correlate of human diabetic neuropathy. Ann Neurol 13:264-272. 

Smirnova E, Griparic L, Shurland DL, van der Bliek AM (2001) Dynamin-related protein Drp1 is 
required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245-2256. 

Smith KJ, Lassmann H (2002) The role of nitric oxide in multiple sclerosis. Lancet Neurol 1:232-
241. 

28 
 



Smith KJ, Kapoor R, Hall SM, Davies M (2001) Electrically active axons degenerate when 
exposed to nitric oxide. Ann Neurol 49:470-476. 

Smith T, Jakobsen J, Gaub J, Trojaborg W (1990) Symptomatic polyneuropathy in human 
immunodeficiency virus antibody seropositive men with and without immune deficiency: a 
comparative electrophysiological study. J Neurol Neurosurg Psychiatry 53:1056-1059. 

Song Z, Ghochani M, McCaffery JM, Frey TG, Chan DC (2009) Mitofusins and OPA1 mediate 
sequential steps in mitochondrial membrane fusion. Mol Biol Cell 20:3525-3532. 

Stowers RS, Megeath LJ, Gorska-Andrzejak J, Meinertzhagen IA, Schwarz TL (2002) Axonal 
transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron 
36:1063-1077. 

Strack S, Westphal RS, Colbran RJ, Ebner FF, Wadzinski BE (1997) Protein serine/threonine 
phosphatase 1 and 2A associate with and dephosphorylate neurofilaments. Brain Res Mol Brain 
Res 49:15-28. 

Stys PK, Jiang Q (2002) Calpain-dependent neurofilament breakdown in anoxic and ischemic rat 
central axons. Neurosci Lett 328:150-154. 

Stys PK, Ransom BR, Waxman SG, Davis PK (1990) Role of extracellular calcium in anoxic 
injury of mammalian central white matter. Proc Natl Acad Sci U S A 87:4212-4216. 

Terwel D, Dewachter I, Van Leuven F (2002) Axonal transport, tau protein, and 
neurodegeneration in Alzheimer's disease. Neuromolecular Med 2:151-165. 

Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu 
Rev Neurosci 31:247-269. 

Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the 
lesions of multiple sclerosis. N Engl J Med 338:278-285. 

Utzschneider DA, Kocsis JD, Waxman SG (1991) Differential sensitivity to hypoxia of the 
peripheral versus central trajectory of primary afferent axons. Brain Res 551:136-141. 

Vaisberg EA, Grissom PM, McIntosh JR (1996) Mammalian cells express three distinct dynein 
heavy chains that are localized to different cytoplasmic organelles. J Cell Biol 133:831-842. 

Verhoeven K, Claeys KG, Zuchner S, Schroder JM, Weis J, Ceuterick C, Jordanova A, Nelis E, 
De Vriendt E, Van Hul M, Seeman P, Mazanec R, Saifi GM, Szigeti K, Mancias P, Butler IJ, 
Kochanski A, Ryniewicz B, De Bleecker J, Van den Bergh P, Verellen C, Van Coster R, Goemans 
N, Auer-Grumbach M, Robberecht W, Milic Rasic V, Nevo Y, Tournev I, Guergueltcheva V, 
Roelens F, Vieregge P, Vinci P, Moreno MT, Christen HJ, Shy ME, Lupski JR, Vance JM, De 
Jonghe P, Timmerman V (2006) MFN2 mutation distribution and genotype/phenotype correlation 
in Charcot-Marie-Tooth type 2. Brain 129:2093-2102. 

Vickers JC, Dickson TC, Adlard PA, Saunders HL, King CE, McCormack G (2000) The cause of 
neuronal degeneration in Alzheimer's disease. Prog Neurobiol 60:139-165. 

Vickers JC, King AE, Woodhouse A, Kirkcaldie MT, Staal JA, McCormack GH, Blizzard CA, 
Musgrove RE, Mitew S, Liu Y, Chuckowree JA, Bibari O, Dickson TC (2009) Axonopathy and 
cytoskeletal disruption in degenerative diseases of the central nervous system. Brain Res Bull 
80:217-223. 

29 
 



Wang X, Schwarz TL (2009) The mechanism of Ca2+ -dependent regulation of kinesin-mediated 
mitochondrial motility. Cell 136:163-174. 

Waxman SG, Kocsis JD, Stys PK (1995) The Axon: structure, function, and pathophysiology: 
Oxford University Press. 

Witte ME, Bo L, Rodenburg RJ, Belien JA, Musters R, Hazes T, Wintjes LT, Smeitink JA, Geurts 
JJ, De Vries HE, van der Valk P, van Horssen J (2009) Enhanced number and activity of 
mitochondria in multiple sclerosis lesions. J Pathol 219:193-204. 

Yoneda M, Miyatake T, Attardi G (1994) Complementation of mutant and wild-type human 
mitochondrial DNAs coexisting since the mutation event and lack of complementation of DNAs 
introduced separately into a cell within distinct organelles. Mol Cell Biol 14:2699-2712. 

Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, Zappia M, Nelis 
E, Patitucci A, Senderek J, Parman Y, Evgrafov O, Jonghe PD, Takahashi Y, Tsuji S, Pericak-
Vance MA, Quattrone A, Battaloglu E, Polyakov AV, Timmerman V, Schroder JM, Vance JM 
(2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth 
neuropathy type 2A. Nat Genet 36:449-451. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30 
 



Chapter 2 

 

Mitofusin 2 is necessary for transport of axonal mitochondria and interacts 

with the miro/milton complex 

 

Introduction 

As principal mediators of ATP production and calcium buffering, mitochondria actively distribute 

to areas of high energy demand and calcium flux (Berthold et al., 1993; Li et al., 2004; Misgeld et 

al., 2007).  Based on this principle, disruption of axonal transport has long been proposed as a 

potential mechanism in human neurodegenerative diseases (Duncan and Goldstein, 2006; De 

Vos et al., 2008). 

 Mitochondrial transport is regulated by a series of molecular adaptors which mediate the 

attachment of mitochondria to molecular motors (Hollenbeck and Saxton, 2005; Kang et al., 2008; 

Li et al., 2009).  In Drosophila, connection of mitochondria to kinesin motors involves the outer 

mitochondrial membrane (OMM) protein dMiro, which indirectly attaches to kinesin heavy chain 

via the adaptor protein Milton (Guo et al., 2005; Glater et al., 2006).  In mammals, two isoforms of 

Miro (Miro1 and Miro2) and Milton (OIP106 and GRIF1) have been identified and are proposed to 

act in a similar manner (Fransson et al., 2006). 

 In addition to constant movement, mitochondria also undergo frequent fission and fusion 

events (Chan, 2006). The mitochondrial fusion apparatus consists primarily of Mitofusin 1 and 

Mitofusin 2 (Mfn1 and Mfn2) located in the OMM, and Opa1 located on the inner mitochondrial 

membrane (IMM) (Rojo et al., 2002; Chen et al., 2003; Eura et al., 2003; Wong et al., 2003; 

Cipolat et al., 2004).  Both the mitofusins and Opa1 are dynamin family GTPases, and are 

believed to tether opposing membranes and facilitate their fusion. Though the precise reason for 

mitochondrial fusion remains unclear, interruption of mitochondrial fusion (via loss of Opa1 or 
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Mfn1/2) leads to loss of mitochondrial potential and oxidative phosphorylation indicating it is 

critical for maintaining mitochondrial function (Olichon et al., 2003; Chen et al., 2005). 

 Dominantly inherited point mutations in MFN2 are the most commonly identified cause of 

axonal Charcot-Marie-Tooth disease (designated CMT2A), however it is still not clear how 

mutations in this ubiquitously expressed protein lead to relatively selective degeneration of long 

peripheral axons (Zuchner et al., 2004; Lawson et al., 2005; Verhoeven et al., 2006).  Mutations 

in OPA1 disrupt mitochondrial fusion and lead to degeneration of optic nerve axons, referred to 

as dominant optic atrophy (Votruba et al., 2003; Newman, 2005).  In some cases, CMT2A mutant 

forms of MFN2 are unable to mediate mitochondrial fusion in fibroblasts, whereas others are 

completely competent to promote fusion (Detmer and Chan, 2007).  Interestingly, exogenous 

expression of disease mutant forms of Mfn2 in cultured sensory neurons leads to a profound 

abnormality mitochondrial transport (Baloh et al., 2007), and mice overexpressing disease mutant 

MFN2 in motor neurons show markedly abnormal axonal mitochondrial distribution (Detmer et al., 

2008).  These data support that Mfn2 influences mitochondrial transport, however the molecular 

basis of this effect has not been defined, and it has only been observed in the context of Mfn2 

overexpression. 

 Here we show that loss of Mfn2 profoundly and selectively disrupts axonal mitochondrial 

transport, and that Mfn2 directly interacts with OMM proteins and adaptors involved in 

mitochondrial transport.  Furthermore we show that disrupting mitochondrial fusion via OPA1 

knockdown does not itself disrupt axonal mitochondrial transport. These data indicate that Mfn2 

plays an integral role in the regulation of mitochondrial transport, and have important implications 

for understanding the pathophysiology of CMT2A and dominant optic atrophy. 
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Materials and Methods 

Plasmids and silencing RNAs: Human wild type MFN2 and MFN2 disease mutant constructs 

were previously described (Baloh et al., 2007).  For siRNA constructs targeting sequences were 

generated using the Dharmicon siDesign Center and cloned into the FSP-i construct as 

previously described (Araki et al., 2004).  Silencing was confirmed via either western blotting or 

quantitative PCR.  Myc-tagged Miro1 and Miro2 constructs were a gift from Dr. Pontus 

Aspenström, and were subcloned into a lentiviral expression vector.  For Mfn1, GRIF1 and 

OIP106 constructs cDNAs were obtained from Openbiosystems (Huntsville, Alabama), and amino 

terminal tags (His-Mfn1; Flag-GRIF1 and Flag-OIP106) were inserted via PCR mutagenesis and 

sequenced fully. 

Production of Mfn2 knockout mice: A targeting construct which inserted the full length human 

MFN2 cDNA with the H361Y mutation and an HA tag, as well as a PGK-neo selection cassette 

into the first coding exon of mouse Mfn2 was electroporated into mouse ES cells.  Clones were 

screened for homologous recombination via southern blotting, a properly targeted clone was 

injected into blastocysts to generate chimeras, and germline transmission confirmed.  Due to 

either the PGK promoter or the removal of other endogenous mouse sequences, we found that 

the chimeric mRNA transcript was barely detectable, and no HA tagged protein was expressed 

from the targeted allele.  Living homozygous Mfn2H361Y/H361Y mice were not observed from 

Mfn2H361Y/+ x Mfn2H361Y/+ breedings.  However, timed pregnancies of Mfn2H361Y/+ x Mfn2H361Y/+ mice 

showed E12.5 embryos at 25%, indicating that they die between this time and birth, slightly later 

than a previously characterized Mfn2 null line (Chen et al., 2003).  Immunoblotting of nervous 

tissue from Mfn2H361Y/H361Y embryos showed that no Mfn2 protein was being generated, indicating 

these mice represent a complete knockout of Mfn2 protein, and hence we refer to them as Mfn2-/- 

in this manuscript. 

DRG cultures. Dorsal root ganglion cultures were performed from embryonic rats or mice on 

gestational day 15.5 or 12.5 respectively. Dorsal root ganglia were dissected out, dissociated 

using trypsin/EDTA and plated directly onto 24-well plates coated with laminin and poly-D-lysine. 
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Cultures were maintained in Neurobasal medium with B27 supplement (Invitrogen, Carlsbad, CA), 

50 ng/ml NGF, 5 mM glutamine, and antibiotics. Addition of 5-fluorouracil for the first 4 days in 

culture was used as an antimitotic treatment.  

Lentivirus production and infection. Lentiviruses were produced as described previously (Baloh et 

al., 2007).  Briefly, HEK 293T cells were plated onto six-well plates and transfected using Mirus 

reagent (Mirus, Madison, WI) with a packaging vector (∆8.91), envelope vector (vesicular 

stomatitis virus-glycoprotein), and transfer vector encoding the gene to be expressed. Media was 

changed once at 12hr and collected at 24 and 48hrs, pooled and applied directly to DRG cultures 

resulting in  >95% infection efficiency. 

Transfection of DRG cultures. To label mitochondria in a small subset of neurons within a culture, 

Liptofectamine 2000 (Invitrogen, Carlsbad, CA) was used according to the manufacturer’s 

specifications to introduce a mitochondrially targeted DsRed.  Briefly, 0.4ug of plasmid DNA was 

diluted in 25uL of OPTI-MEM and combined with 0.5uL of transfection reagent diluted in 25uL. 

The mixture was incubated for 20 minutes and added to cells. Media was changed 6hrs later to 

remove the transfection reagent. 

Measurement of mitochondrial transport. For imaging of rat DRG neurons expressing Mfn2 wild 

type or disease constructs or silencing RNA constructs, cultures were infected at 4 days in vitro 

(DIV4) and subsequently transfected with mitochondrial marker on DIV7. Imaging mitochondrial 

movements was possible on DIV10-13. For mouse DRG neurons from Mfn2-/- mice, infections 

were performed on DIV4 and infected again with mitochondrial marker on DIV7. Imaging was 

then performed on DIV 10-13. All imaging was performed in a climate controlled chamber (In Vivo 

Scientific) at 37°C and 5% CO2 and images acquired with a Cool Snap HQ2 CCD camera 

(Photometrics, Ottobrunn, Germany) mounted on a Nikon Eclipse Ti-U microscope. Images were 

aquired at 40x magnification every 1 second for 5 minutes. Kymographs were then generated and 

analyzed using MetaMorph Software (Molecular Devices, Sunnyvale, CA). Mitochondria were 

classified as either moving or stationary based on whether they achieved a displacement >2μM. 

Constant velocity movement segments identified on kymographs were measured for mitochondria 
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that were classified as moving. Measurements were pooled and the amount of time that 

mitochondria spent moving at a given velocities were binned and represented on a histogram. A 

velocity cut off of 0.1 μM/second was established and all movements below this velocity were 

treated as time spent paused. Pauses in movement segments were measured between 

consecutive anterograde or retrograde movements.  

Coimmunoprecipitation. HEK293T cells were transfected using Mirus with constructs containing 

His-Mfn1, EGFP-Mfn2, myc-Miro1, myc-Miro2, flag-GRIF1, flag-OIP106 or Bluescript plasmid as 

a vector control.  Cells were lysed in 1% Triton X-100, 5 mM EDTA, 300 mM NaCl, and 50 mM 

Tris-HCl, pH 7.5 (Glater et al., 2006) with complete protease inhibitor cocktail (Roche, Basel, 

Switzerland). Cells were lysed at 4°C for 30min, clarified by spinning at 10,000g and protein 

concentration determined using the BCA protein assay (Thermo Scientific, Rockford, IL).  Equal 

amounts of protein from each lysate were raised to a final volume of 500μL, precleared with 

protein A sepharose beads (Invitrogen, Carlsbad, CA), incubated with 1μL anti-myc (Cell 

Signaling, Danvers, MA) or anti-flag (Sigma, St. Louis, MO) antibody for 1hr at RT and then 

incubated over night at 4°C with protein  A sepharose beads. Beads were washed three times 

with lysis buffer and boiled in laemmli buffer before separation by SDS-PAGE.

35 
 



Results 

CMT2A associated MFN2 mutants disrupt both anterograde and retrograde mitochondrial 

transport, but do not alter transport of other organelles 

 Previous studies indicate that CMT2A associated MFN2 mutants produce a marked decrease in 

overall mitochondrial mobility in axons of cultured sensory neurons (Baloh et al., 2007), and alter 

mitochondrial distribution in motor axons of transgenic mice (Detmer et al., 2008).  To clearly 

define the abnormality in mitochondrial transport in CMT2A expressing dorsal root ganglion 

(DRG) neurons, we introduced wild-type (wtMFN2) or mutant MFN2 constructs using lentivirus 

(>99% infection), followed by transfection with a mitochondrial targeted RFP which labels only a 

small number of neurons, allowing precise analysis of anterograde and retrograde movements in 

single axons. In wtMFN2 expressing cells, kymograph analysis of mitochondrial movements 

consistently depicted fast persistent movements in both anterograde and retrograde directions, 

accompanied by slower moving and stationary mitochondria.  By contrast CMT2A disease mutant 

MFN2 (R94Q) expressing neurons showed a striking absence of the fast persistent movements, 

with the amount of time spent paused between anterograde and retrograde movements 

significantly greater in mutant expressing neurons than in wtMFN2 expressing controls (Fig.2-

1A,B).  Additionally, mitochondria from mutant expressing neurons moved at slower velocities in 

the anterograde and retrograde directions (Fig.2-1C).  These findings indicate that mitochondria 

in MFN2 mutant expressing cells were unable to either initiate or sustain fast processive 

movements, supporting a disruption of microtubule based mitochondrial transport. 

To determine whether this was a direct effect on mitochondrial mobility or a global 

disruption of all organellar transport, we performed sequential timelapse imaging of mitochondria 

and either endosomes or peroxisomes in single axons of DRG neurons expressing wtMFN2 or 

MFN2 disease mutants (R94Q and H361Y) (Fig. 2-1D-J).  Axons expressing wild-type or mutant 

MFN2 were co-infected with a mito-RFP mitochondrial marker (Fig 2-1D) and a RhoB-GFP 

endosomal marker (Fig. 2-1E), and timelapse imaging with kymograph analysis was performed 

on endosomes and mitochondria.  Despite the marked abnormality in mitochondrial transport 
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observed in mutant Mfn2 expressing axons (Fig. 2-1D,H), endosomes imaged in the same axons 

showed normal movement (Fig. 2-1E,I).  Similarly, imaging of peroxisomes (visualized with a 

GFP-SKL fusion protein) showed normal movement in both wild-type and mutant MFN2 

expressing axons (Fig. 2-1F,G,J).  These observations indicate that Mfn2 disease mutants 

specifically alter mitochondrial transport, and do not globally disrupt organellar transport via 

alterations in microtubules or intra-axonal signaling pathways. 

 

Mfn2 is necessary for the proper transport of axonal mitochondria 

The specific disruption of mitochondrial transport by MFN2 disease mutants suggests that MFN2 

may directly regulate microtubule-based mitochondrial transport.  To determine whether MFN2 is 

necessary for mitochondrial transport, we cultured DRG neurons from Mfn2 knockout embryos.  

Lentivirus infection of DRG neurons with mito-RFP showed a marked delay in the migration of 

mitochondria out into axons of Mfn2-/- neurons compared to DRG neurons from wild type 

littermates (Fig. 2-2A,B).  As expected, mitochondria from Mfn2-/- axons were smaller than 

controls, consistent with a mitochondrial fusion defect (Fig. 2-2D).  Live imaging and kymograph 

analysis revealed abnormal mitochondrial movement patterns in Mfn2-/- neurons that mirrored the 

movement abnormalities seen in MFN2 disease mutant expressing neurons (Fig. 2-2A,B 

kymographs).  This effect was again specific to mitochondrial transport as peroxisomal transport 

was normal in these neurons.  Reintroduction of wild type Mfn2 by lentiviral infection into Mfn2-/- 

cultures fully rescued both the delay in migration and the abnormal mitochondrial movement 

patterns (Fig. 2-2C and kymograph). Similar to Mfn2 disease mutant expressing neurons, 

mitochondria in Mfn2-/- neurons spent a greater amount of time paused between anterograde and 

retrograde movements (Fig. 2-2E,F), and more time at slower velocities in both anterograde and 

retrograde directions than in controls (Fig. 2-2G).  

 Interestingly, overexpression of Mfn1 also restored mitochondrial pause time and velocity 

distributions to normal levels (Fig. 2-2E,F). Mfn2 and Mfn1 are highly homologous and are known 
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to have overlapping functions in mediating mitochondrial fusion (Chen et al., 2003).  Analysis of 

Mfn1 and Mfn2 expression in embryonic fibroblasts and DRG neurons showed that both Mfn1 

and Mfn2 are expressed in DRG neurons, though Mfn2 is higher in neurons than in fibroblasts. 

Therefore although both are able to mediate mitochondrial transport, the severe transport 

abnormalities in Mfn2-/- DRG neurons suggests that Mfn1 levels in these cells are not sufficient to 

compensate for the loss of Mfn2. 

 These findings indicate that Mfn2 is necessary for proper mitochondrial transport, and 

indicates that CMT2A associated Mfn2 mutants disrupt this function in a dominant negative 

fashion. The increased pause time of mitochondria observed in Mfn2-/-axons suggests that Mfn2 

may either directly promote mitochondrial attachment to microtubules, or maintain the 

processivity of the microtubule motors kinesin and dynein. 

 

Mfn2 and Mfn1 interact with components of the mitochondrial transport apparatus.  

The findings that loss of Mfn2 or expression of CMT2A disease mutants leads to a selective 

disruption of fast processive mitochondrial movements suggest that mitofusins could play a direct 

role in the regulation of microtubule based mitochondrial transport.  We therefore investigated 

whether MFN2 could interact with molecules that link mitochondria to microtubule-based transport 

motors.  Miro1 and Miro2 are OMM Rho-like GTPases that link mitochondria to kinesin, and are 

essential for proper mitochondrial transport in Drosophila (Fransson et al., 2006; Glater et al., 

2006; Macaskill et al., 2009b; Russo et al., 2009). Co-immunoprecipitation experiments 

demonstrated that Mfn2 and Mfn1 are capable of interacting with either Miro1 or Miro2 when 

exogenously expressed in HEK293T cells, with an apparently stronger interaction observed 

between Mfn2:Miro2 (Fig. 2-3A,B).  We next examined OIP106 and GRIF, homologues of the 

Drosophila Milton protein that interacts with both Miro proteins and kinesin (Fransson et al., 

2006).  We found that Mfn2 and Mfn1 also coimmuniprecipitated with OIP106 and GRIF1 (Fig. 2-

3C-F).  Finally we investigated whether the mitofusins directly interact with kinesin. Because 
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Kif5C, a conventional kinesin-1 superfamily member, is highly expressed in neurons we used 

exogenously expressed Kif5C for our coimmunoprecipitation experiments but found that neither 

Mfn2 nor Mfn1 directly interacted with Kif5C (Fig. 2-3G,H).  Similarly no interaction between Mfn2 

and kinesin light chain was observed (not shown).  These experiments demonstrate that Mfn2 

and Mfn1 interact with components of the mitochondrial molecular transport apparatus, providing 

an explanation for how loss of Mfn2 disrupts mitochondrial transport. Of note, the CMT2A 

associated MFN2 mutants (R94Q and H361Y) maintained the ability to interact with Miro1/2 and 

OIP106/GRIF1, and both Miro1 and Miro2 coimmunoprecipitated with OIP106 and GRIF1 in the 

presence of MFN2-R94Q or MFN2-H361Y (not shown). Therefore the disruption of mitochondrial 

transport observed with disease mutant Mfn2 expression is likely through altered regulation of the 

kinesin transport apparatus (processivity, attachment to microtubules) rather than simple 

disruption of Mfn:Miro:OIP106 complex formation. 

 

Knockdown of Miro2 produces a mitochondrial transport abnormality similar to loss of 

Mfn2 

Drosophila Miro is required for both anterograde and retrograde transport of axonal mitochondria 

(Guo et al., 2005; Russo et al., 2009).  Although the mammalian Miro proteins interact with Milton 

homologues (Fransson et al., 2006), the effect of loss of Miro proteins on axonal mitochondrial 

transport in mammalian cells has not been examined.  We used lentiviral delivered siRNAs to 

knock down Miro1 or Miro2 in sensory neurons and analyzed the effect on mitochondrial 

transport. Knockdown of Miro1 altered mitochondrial distribution in the soma, but did not affect 

axonal mitochondrial transport.  In contrast, knockdown of Miro2 markedly disrupted axonal 

mitochondrial motility (Fig. 2-4). The pattern of mitochondrial movements on kymograph analysis 

was similar to that seen in Mfn2-/- neurons, with loss of fast sustained movements (Fig. 2-4A,B).  

Unlike loss of Mfn2, which produced concurrent mitochondrial fusion and transport defects with 

smaller fragmented mitochondria, loss of Miro2 did not alter the length of axonal mitochondria 

(Fig. 2-4C). Mitochondria in Miro2 depleted neurons spent more time paused between 
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anterograde and retrograde movements, and the velocity distributions were skewed toward 

slower velocities (Fig. 2-4D,E).  Of note, overexpression of Miro2 in Mfn2-/- cultures was not able 

to rescue transport deficits (data not shown).  Taken together, the fact that Mfn2 interacts directly 

with the Miro proteins, and that loss of Mfn2 or Miro2 disrupt axonal mitochondrial transport in a 

nearly identical fashion, suggests that an intact Mfn2:Miro2 complex must be present for proper 

axonal mitochondrial transport. 

 

Disruption of mitochondrial fusion by knockdown of Opa1 does not affect the axonal 

transport of mitochondria 

Some of the CMT2A disease mutant MFN2 alleles are unable to mediate mitochondrial fusion 

(Detmer and Chan, 2007).  Given that loss of mitochondrial fusion leads to dissipation of Δψ and 

diminished oxidative phosphorylation (Lodi et al., 2004; Chen et al., 2005), it is possible that the 

observed alterations in mitochondrial transport could be secondary to loss of mitochondrial fusion.  

To investigate whether diminishing mitochondrial fusion directly or indirectly disrupts axonal 

mitochondrial transport, we used lentiviral delivered siRNA to knockdown Opa1 in cultured DRG 

neurons.  Knockdown of Opa1 severely disrupts mitochondrial fusion in non-neuronal cells, 

leading to a decrease in mitochondrial size similar to loss of Mfn1/Mfn2 (Cipolat et al., 2004; 

Chen et al., 2005).  Measurement of mitochondrial lengths in confirmed that the mitochondria 

were significantly shorter in Opa1 knockdown DRG axons (Fig. 2-5C), consistent with the 

expected decrease in mitochondrial fusion (Cipolat et al., 2004; Chen et al., 2005).  However, 

timelapse imaging and kymograph analysis revealed that patterns of mitochondrial movement in 

Opa1 knockdown neurons were indistinguishable from controls (Fig. 2-5A,B). Mitochondria in 

neurons depleted of Opa1 spent equal amounts of time paused between movements in 

anterograde and retrograde directions, and moved at similar velocities compared to controls (Fig. 

2-5D,E).  These data indicate that disrupting mitochondrial fusion alone via Opa1 knockdown 

does not itself affect mitochondrial transport, and further supports that Mfn2, via its interactions 

with other proteins at the OMM, plays a direct role in regulating mitochondrial transport. 
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CMT2A associated MFN2 mutants cannot compensate for the mitochondrial transport 

abnormality in Mfn2-/- neurons 

As described above, some CMT2A-associated MFN2 mutants are unable to mediate 

mitochondrial fusion (R94Q), whereas others are fusion competent (L76P, W740S) (Detmer and 

Chan, 2007).   However, exogenous expression of all of these mutants produced a mitochondrial 

transport deficit in DRG neurons (Baloh et al., 2007), suggesting that the ability of CMT2A 

mutants to mediate fusion and transport may be separable.  To determine whether the role of 

Mfn2 in mitochondrial fusion could be dissociated from its role in transport, we expressed the 

L76P and W740S mutants (fusion competent), and the R94Q mutant (fusion incompetent), in 

cultured Mfn2-/- neurons and assessed their ability to rescue the transport defect.  In contrast to 

wtMFN2, none of the CMT2A associated mutants were able to completely normalize the time 

mitochondria spent paused between movements, or to fully restore the faster movement 

segments seen on velocity distributions (Fig. 2-6A-C), with the fusion incompetent R94Q allele 

being least capable of rescuing the defect in transport in Mfn2-/- neurons. Therefore, CMT2A 

MFN2 mutants were not able to normalize axonal mitochondrial transport in DRG axons, whether 

they are fusion competent (L76P, W740S) or incompetent (R94Q).  This finding indicates that 

disruption of axonal mitochondrial transport correlates better with pathogenicity of CMT2A 

associated MFN2 mutants than the loss of the ability to mediate mitochondrial fusion. 

 

 



Discussion 

These experiments provide evidence for a direct role for Mfn2 in mediating mitochondrial 

transport, distinct from its role in mitochondrial fusion.  Both loss of Mfn2, and expression of 

CMT2A-associated MFN2 disease mutants, specifically alter mitochondrial movement patterns 

causing mitochondria (but not other organelles) to move at slower velocities and pause for 

greater lengths of time, consistent with an inability to attach/move via the microtubule-based 

kinesin and dynein transport systems.  Together with the finding that Mitofusins interact with Miro 

proteins and OIP106/GRIF1, these data indicate that Mfn2 is a key component of the 

linker/adaptor complex between mitochondria and kinesin/microtubules. 

 

Mfn2 as a multifunctional regulator of mitochondrial dynamics and function 

Outer mitochondrial membrane proteins are well positioned to play a key role in coordinating and 

regulating diverse aspects of mitochondrial function.  Perhaps it should not be a surprise then that 

Mitofusins have been reported to perform numerous functions, including the regulation of 

mitochondrial fusion (Chan, 2006), ER-mitochondrial tethering (de Brito and Scorrano, 2008), 

apoptotic cell death and outer membrane permeability (Suen et al., 2008), oxidative 

phosphorylation and gradient coupling (Pich et al., 2005), and microtubule-based mitochondrial 

transport.  

Our data indicates that regulation of mitochondrial transport by Mfn2 is achieved by 

interacting with the Miro:Milton complex.  The increased pause time and slower movement 

velocities in both anterograde and retrograde directions due to loss of Mfn2 closely resemble the 

mitochondrial movement abnormalities seen in Miro2 depleted DRG neurons, and in dMiro 

knockout flies (Russo et al., 2009).  Other reports found that overexpression of Miro proteins can 

either increase (Guo et al., 2005) or decrease (Russo et al., 2009) axonal mitochondrial transport.  

Importantly, we observed that overexpression of Miro2 could not rescue the transport deficit in 

Mfn2-/- neurons, indicating that a functional Mfn:Miro complex is required to cooperatively mediate 

mitochondrial transport. 
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While Miro proteins have only been shown to interact with anterogradely moving kinesin 

motors, loss of either Mfn2 or Miro2 led to disruption of both anterograde and retrograde 

mitochondrial transport, similar to loss of dMiro in flies (Russo et al., 2009).  The Mfn:Miro 

complex may also bind to dynein and direct alternating engagements of either motor with 

microtubule tracks.  However this does not have to be the case, as anterograde and retrograde 

organellar transport are coordinately regulated, and selective disruption of either kinesins or 

dynein/dynactin typically diminishes bidirectional transport, though the exact reason remains 

unclear (Brady et al., 1990; Waterman-Storer et al., 1997; Martin et al., 1999; Deacon et al., 

2003).  The increased time mitochondria spend paused in axons from neurons lacking Mfn2 or 

Miro2 may also indicate a disruption of motor processivity.  Taken together, this suggests that the 

Miro2:Mfn2 complex plays a role in regulating the processivity of kinesin motors, and in 

orchestrating the switch between engaging anterogradely moving kinesins and retrogradely 

moving dyneins (Russo et al., 2009). 

Given the interaction between Miros and Mitofusins, it is perhaps not surprising that 

several studies have suggested that Miros may also influence mitochondrial morphology and 

fusion.  Examples include the expression of constitutively active Miro1 producing long thread-like 

mitochondria in COS-7 cells, hippocampal neurons, and H9c2 cells (Fransson et al., 2006; 

Saotome et al., 2008; MacAskill et al., 2009a), and the overexpression of dMiro in Drosophila 

increasing the mean length of axonal mitochondria (Russo et al., 2009). These studies highlight 

the notion that membrane transport and fusion are intimately related processes that must be 

coordinately regulated to achieve proper organellar trafficking, and it is likely that molecular 

adaptor complexes at the outer mitochondrial membrane will serve dual roles in transport and 

fusion.  

Alterations in mitochondrial dynamics in human disease 

Mitochondrial dysfunction is involved in numerous neurodegenerative and metabolic diseases, 

however whether mitochondrial dysfunction plays a primary role in disease pathogenesis, or is 

simply a consequence of other aspects of cellular dysfunction (disruption of protein homeostasis, 

43 
 



environmental toxins, etc), is unclear.  In this context, studying the molecular mechanisms by 

which mutations in mitochondrial proteins (such as MFN2 or OPA1) cause human disease is 

helpful, as altered mitochondrial function likely plays a primary role in disease.  One of the 

fundamental mysteries of inherited neurodegenerative diseases is the selective vulnerability of 

particular populations of neurons to mutations in universally expressed proteins.  CMT2A and 

dominant optic atrophy are associated with mutations in MFN2 and OPA1 respectively, both 

ubiquitously expressed proteins essential for mitochondrial fusion (Alexander et al., 2000; 

Delettre et al., 2000; Zuchner et al., 2004).  However, instead of leading to identical human 

diseases, mutations in MFN2 cause a severe peripheral neuropathy affecting the longest axons in 

the body, whereas mutations in OPA1 (typically via haploinsufficiency) result in degeneration of 

optic nerve axons.   Our findings suggest that the fundamental difference in the pathogenesis of 

these diseases lies in the fact that loss of OPA1 disrupts mitochondrial fusion without altering 

mitochondrial transport.  Interestingly, early changes in mitochondrial dynamics are seen in 

neurons expressing mutant forms of neurofilament which cause CMT2E, suggesting that 

alterations in mitochondrial transport and distribution may be a final common pathway leading to 

axonal degeneration in multiple types of CMT (Baloh, 2008; Tradewell et al., 2009).  A viable 

working hypothesis is that the long peripheral nerves affected in CMT are more vulnerable to 

disruption of mitochondrial transport and distribution than other cell types.  Defining evidence for 

or against this hypothesis from patient samples or animal models remains to be demonstrated, 

and is a focus of ongoing research. 

Although our studies indicate Mfn2 is clearly required for mitochondrial transport, the 

precise molecular mechanism by which Mfn2 disease mutants disrupt this process remains 

unclear, as they maintain the ability to interact with Miro1/2 and with OIP106/GRIF1.  These data 

indicate the CMT2A disease mutants do not simply disrupt formation of the molecular adaptor 

complex linking mitochondria to kinesins, but instead disrupt the proper function of this complex, 

and hence further studies will be needed to understand exactly how Mfn2 disease mutants alter 

the properties of the adaptor complex on a molecular level. 
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The role of Mfn1 and Mfn2 in controlling mitochondrial dynamics 

Though Mfn2 and Mfn1 are highly homologous proteins with overlapping functions, several lines 

of evidence have shed light on properties which are divergent between them. Mfn1 more 

effectively tethers mitochondrial membranes and alone is sufficient to mediate fusion with Opa1 

(Cipolat et al., 2004; Ishihara et al., 2004).  Though both Mfn1 and Mfn2 null mice show early 

embryonic lethality due to a placental defect (Chen et al., 2003), loss of Mfn1 outside of the 

placenta (using a Cre-lox system) led to no detectable abnormalities, whereas similar non-

placental loss of Mfn2 caused severe multisystem defects and early postnatal death (Chen et al., 

2007).  Additionally, recent evidence suggested that Mfn2 but not Mfn1 is involved in ER-

mitochondrial tethering (de Brito and Scorrano, 2008). 

In our study, loss of Mfn2 alone is sufficient to produce a severe mitochondrial transport 

deficit in DRG neurons, which could be restored by expression of either Mfn2 or Mfn1, consistent 

with the fact that both can interact with the Miro:Milton complex.  Indeed, we found that 

exogenous expression of Mfn1 was able to compensate for loss of Mfn2 in DRG neurons, raising 

the possibility that identifying drugs which would augment Mfn1 expression may represent a valid 

therapeutic strategy for CMT2A. 

45 
 



References 
 
Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Rodriguez M, Kellner U, 
Leo-Kottler B, Auburger G, Bhattacharya SS, Wissinger B (2000) OPA1, encoding a dynamin-
related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat 
Genet 26:211-215. 
 
Araki T, Sasaki Y, Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation 
prevent axonal degeneration. Science 305:1010-1013. 
 
Baloh RH (2008) Mitochondrial dynamics and peripheral neuropathy. Neuroscientist 14:12-18. 
Baloh RH, Schmidt RE, Pestronk A, Milbrandt J (2007) Altered axonal mitochondrial transport in 
the pathogenesis of Charcot-Marie-Tooth disease from mitofusin 2 mutations. J Neurosci 27:422-
430. 
 
Berthold CH, Fabricius C, Rydmark M, Andersen B (1993) Axoplasmic organelles at nodes of 
Ranvier. I. Occurrence and distribution in large myelinated spinal root axons of the adult cat. J 
Neurocytol 22:925-940. 
 
Brady ST, Pfister KK, Bloom GS (1990) A monoclonal antibody against kinesin inhibits both 
anterograde and retrograde fast axonal transport in squid axoplasm. Proc Natl Acad Sci U S A 
87:1061-1065. 
 
Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 
125:1241-1252. 
 
Chen H, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heterogeneity 
and dysfunction. J Biol Chem 280:26185-26192. 
 
Chen H, McCaffery JM, Chan DC (2007) Mitochondrial fusion protects against neurodegeneration 
in the cerebellum. Cell 130:548-562. 
 
Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003) Mitofusins Mfn1 and Mfn2 
coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell 
Biol 160:189-200. 
 
Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L (2004) OPA1 requires mitofusin 1 to 
promote mitochondrial fusion. Proc Natl Acad Sci U S A 101:15927-15932. 
de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. 
Nature 456:605-610. 
 
De Vos KJ, Grierson AJ, Ackerley S, Miller CC (2008) Role of axonal transport in 
neurodegenerative diseases. Annu Rev Neurosci 31:151-173. 
 
Deacon SW, Serpinskaya AS, Vaughan PS, Lopez Fanarraga M, Vernos I, Vaughan KT, Gelfand 
VI (2003) Dynactin is required for bidirectional organelle transport. J Cell Biol 160:297-301. 
 
Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P, Pelloquin L, Grosgeorge 
J, Turc-Carel C, Perret E, Astarie-Dequeker C, Lasquellec L, Arnaud B, Ducommun B, Kaplan J, 
Hamel CP (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is 
mutated in dominant optic atrophy. Nat Genet 26:207-210. 
 
Detmer SA, Chan DC (2007) Complementation between mouse Mfn1 and Mfn2 protects 
mitochondrial fusion defects caused by CMT2A disease mutations. J Cell Biol 176:405-414. 

46 
 



Detmer SA, Vande Velde C, Cleveland DW, Chan DC (2008) Hindlimb gait defects due to motor 
axon loss and reduced distal muscles in a transgenic mouse model of Charcot-Marie-Tooth type 
2A. Hum Mol Genet 17:367-375. 
 
Duncan JE, Goldstein LS (2006) The genetics of axonal transport and axonal transport disorders. 
PLoS Genet 2:e124. 
 
Eura Y, Ishihara N, Yokota S, Mihara K (2003) Two mitofusin proteins, mammalian homologues 
of FZO, with distinct functions are both required for mitochondrial fusion. J Biochem 134:333-344. 
 
Fransson S, Ruusala A, Aspenstrom P (2006) The atypical Rho GTPases Miro-1 and Miro-2 have 
essential roles in mitochondrial trafficking. Biochem Biophys Res Commun 344:500-510. 
 
Glater EE, Megeath LJ, Stowers RS, Schwarz TL (2006) Axonal transport of mitochondria 
requires milton to recruit kinesin heavy chain and is light chain independent. J Cell Biol 173:545-
557. 
 
Guo X, Macleod GT, Wellington A, Hu F, Panchumarthi S, Schoenfield M, Marin L, Charlton MP, 
Atwood HL, Zinsmaier KE (2005) The GTPase dMiro is required for axonal transport of 
mitochondria to Drosophila synapses. Neuron 47:379-393. 
 
Hollenbeck PJ, Saxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118:5411-
5419. 
 
Ishihara N, Eura Y, Mihara K (2004) Mitofusin 1 and 2 play distinct roles in mitochondrial fusion 
reactions via GTPase activity. J Cell Sci 117:6535-6546. 
 
Kang JS, Tian JH, Pan PY, Zald P, Li C, Deng C, Sheng ZH (2008) Docking of axonal 
mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132:137-
148. 
 
Lawson VH, Graham BV, Flanigan KM (2005) Clinical and electrophysiologic features of CMT2A 
with mutations in the mitofusin 2 gene. Neurology 65:197-204. 
 
Li Y, Lim S, Hoffman D, Aspenstrom P, Federoff HJ, Rempe DA (2009) HUMMR, a hypoxia- and 
HIF-1alpha-inducible protein, alters mitochondrial distribution and transport. J Cell Biol 185:1065-
1081. 
 
Li YC, Zhai XY, Ohsato K, Futamata H, Shimada O, Atsumi S (2004) Mitochondrial accumulation 
in the distal part of the initial segment of chicken spinal motoneurons. Brain Res 1026:235-243. 
 
Lodi R, Tonon C, Valentino ML, Iotti S, Clementi V, Malucelli E, Barboni P, Longanesi L, Schimpf 
S, Wissinger B, Baruzzi A, Barbiroli B, Carelli V (2004) Deficit of in vivo mitochondrial ATP 
production in OPA1-related dominant optic atrophy. Ann Neurol 56:719-723. 
 
MacAskill AF, Brickley K, Stephenson FA, Kittler JT (2009a) GTPase dependent recruitment of 
Grif-1 by Miro1 regulates mitochondrial trafficking in hippocampal neurons. Mol Cell Neurosci 
40:301-312. 
 
Macaskill AF, Rinholm JE, Twelvetrees AE, Arancibia-Carcamo IL, Muir J, Fransson A, 
Aspenstrom P, Attwell D, Kittler JT (2009b) Miro1 is a calcium sensor for glutamate receptor-
dependent localization of mitochondria at synapses. Neuron 61:541-555. 
 
Martin M, Iyadurai SJ, Gassman A, Gindhart JG, Jr., Hays TS, Saxton WM (1999) Cytoplasmic 
dynein, the dynactin complex, and kinesin are interdependent and essential for fast axonal 
transport. Mol Biol Cell 10:3717-3728. 

47 
 



Misgeld T, Kerschensteiner M, Bareyre FM, Burgess RW, Lichtman JW (2007) Imaging axonal 
transport of mitochondria in vivo. Nat Methods 4:559-561. 
 
Newman NJ (2005) Hereditary optic neuropathies: from the mitochondria to the optic nerve. Am J 
Ophthalmol 140:517-523. 
 
Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, Lenaers G (2003) Loss of OPA1 
perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c 
release and apoptosis. J Biol Chem 278:7743-7746. 
 
Pich S, Bach D, Briones P, Liesa M, Camps M, Testar X, Palacin M, Zorzano A (2005) The 
Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression 
of OXPHOS system. Hum Mol Genet 14:1405-1415. 
 
Rojo M, Legros F, Chateau D, Lombes A (2002) Membrane topology and mitochondrial targeting 
of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci 
115:1663-1674. 
 
Russo GJ, Louie K, Wellington A, Macleod GT, Hu F, Panchumarthi S, Zinsmaier KE (2009) 
Drosophila Miro is required for both anterograde and retrograde axonal mitochondrial transport. J 
Neurosci 29:5443-5455. 
 
Saotome M, Safiulina D, Szabadkai G, Das S, Fransson A, Aspenstrom P, Rizzuto R, Hajnoczky 
G (2008) Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. 
Proc Natl Acad Sci U S A 105:20728-20733. 
 
Suen DF, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 
22:1577-1590. 
 
Tradewell ML, Durham HD, Mushynski WE, Gentil BJ (2009) Mitochondrial and axonal 
abnormalities precede disruption of the neurofilament network in a model of charcot-marie-tooth 
disease type 2E and are prevented by heat shock proteins in a mutant-specific fashion. J 
Neuropathol Exp Neurol 68:642-652. 
 
Verhoeven K, Claeys KG, Zuchner S, Schroder JM, Weis J, Ceuterick C, Jordanova A, Nelis E, 
De Vriendt E, Van Hul M, Seeman P, Mazanec R, Saifi GM, Szigeti K, Mancias P, Butler IJ, 
Kochanski A, Ryniewicz B, De Bleecker J, Van den Bergh P, Verellen C, Van Coster R, Goemans 
N, Auer-Grumbach M, Robberecht W, Milic Rasic V, Nevo Y, Tournev I, Guergueltcheva V, 
Roelens F, Vieregge P, Vinci P, Moreno MT, Christen HJ, Shy ME, Lupski JR, Vance JM, De 
Jonghe P, Timmerman V (2006) MFN2 mutation distribution and genotype/phenotype correlation 
in Charcot-Marie-Tooth type 2. Brain 129:2093-2102. 
 
Votruba M, Aijaz S, Moore AT (2003) A review of primary hereditary optic neuropathies. J Inherit 
Metab Dis 26:209-227. 
 
Waterman-Storer CM, Karki SB, Kuznetsov SA, Tabb JS, Weiss DG, Langford GM, Holzbaur EL 
(1997) The interaction between cytoplasmic dynein and dynactin is required for fast axonal 
transport. Proc Natl Acad Sci U S A 94:12180-12185. 
 
Wong ED, Wagner JA, Scott SV, Okreglak V, Holewinske TJ, Cassidy-Stone A, Nunnari J (2003) 
The intramitochondrial dynamin-related GTPase, Mgm1p, is a component of a protein complex 
that mediates mitochondrial fusion. J Cell Biol 160:303-311. 
 
Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, Zappia M, Nelis 
E, Patitucci A, Senderek J, Parman Y, Evgrafov O, Jonghe PD, Takahashi Y, Tsuji S, Pericak-
Vance MA, Quattrone A, Battaloglu E, Polyakov AV, Timmerman V, Schroder JM, Vance JM 

48 
 



(2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth 
neuropathy type 2A. Nat Genet 36:449-451. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

49 
 



 

Figure 2-1. CMT2A-associated MFN2 mutants alter the transport of axonal mitochondria. 

Mitochondria in cultured DRG neurons expressing wtMFN2 or R94Q were labeled with mito-RFP 

and imaged by time-lapse microscopy. A , Kymograph analysis of mitochondrial movements in 

R94Q-expressing cells reveal diminished numbers of moving mitochondria. B , Mitochondria from 

R94Q-expressing neurons spent more time paused between anterograde and retrograde 

movements than did mitochondria from controls. (*p < 0.005, t test; n = number of axons from 

which image stacks were created). Each condition contained a total of at least 500 observed 

mitochondria. C , Velocity distributions representing the amount of time that mitochondria from 

wtMFN2- or R94Q-expressing neurons spent moving at indicated velocities. Anterograde 

velocities are above the x-axis, and retrograde velocities are below the x-axis. There was a shift 

in both the anterograde and retrograde velocity distributions of mitochondria from R94Q-

expressing neurons toward slower velocities. The differences were statistically significant as 

determined by rank-sum test analysis (p < 0.001). D , Size–frequency distributions of axonal 

mitochondria from wtMFN2-, R94Q-, and H361Y-expressing cells show that CMT2A disease 

mutants decrease mitochondrial lengths.  
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Figure 2-2. CMT2A-

associated MFN2 

mutants specifically 

disrupt mitochondrial 

transport. A , B , DRG 

neurons expressing the 

H361Y or R94Q MFN2 

disease mutants were 

coinfected with mito-RFP ( 

A ) and RhoB-GFP ( B ) 

mitochondrial and 

endosomal markers, 

respectively. Mutant-

expressing neurons 

revealed diminished 

mitochondrial mobility ( A , 

kymograph) in the same 

axons that showed normal 

endosomal transport ( B , 

kymograph). C , D , The 

percentage of mobile 

mitochondria is significantly decreased in R94Q- and H361Y- compared with wtMFN2-expressing 

neurons (*p < 0.001), whereas the percentage of mobile endosomes in these axons was normal. 

E , F , Overlay images of phase contrast and EGFP-SKL (which labels peroxisomes) in wtMFN2 ( 

E )- and H361Y ( F )-expressing DRG axons. G , Similar to endosomes, the percentage of mobile 

peroxisomes was unaltered by the expression of MFN2 mutants. 
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Figure 2-3. Mfn2 is required for normal axonal transport of mitochondria. To assess the 

effects of loss of Mfn2 on mitochondrial mobility, we analyzed mitochondrial transport in DRG 

neurons cultured from Mfn2 knock-out animals. A – C , DRG cultures from wild-type ( A ) or 

Mfn2−/− ( B ) mice infected with mito-RFP and imaged 4 d after infection at 10× magnification 

coupled with corresponding kymographs from single axons. Corresponding axons are presented 
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above each kymograph as an embossed image for clarity. B , Diminished numbers of 

mitochondria are observed in Mfn2−/− axons due to a delay in the overall outward migration of 

mitochondria that is corrected by reintroduction of wild-type human MFN2 ( C , Mfn2 rescue). D , 

Size–frequency histogram of mitochondria shows a decrease in the lengths of mitochondria 

observed in Mfn2−/− axons that is restored with reintroduction of MFN2 (Mfn2 rescue). E – G , 

Kymograph analysis of mitochondrial movements in individual MFN2−/− axons showed a profound 

abnormality in transport, resembling the deficit observed with expression of MFN2 disease 

mutants. The moving mitochondria from Mfn2−/− axons spent more time paused between 

movements ( E , F ) (*p < 0.001, t test; n is number of axons from which kymographs were 

generated), moved at slower velocities in the anterograde and retrograde directions ( G ), and 

were completely rescued by expression of either Mfn2 or Mfn1.  
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Figure 2-4. Mfn2 and Mfn1 interact with Miro and Milton proteins, key components of 

microtubule-based mitochondrial transport. HEK 293T cells were transiently transfected with 

the indicated epitope-tagged constructs, followed by immunoprecipitation (IP) and 

immunoblotting. A , B , Both Mfn2 and Mfn1 were able to interact with Miro1 and Miro2 by 
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coimmunoprecipitation. The Mfn2:Miro2 interaction was consistently more robust than the 

Mfn2:Miro1 interaction, suggesting there may be selectivity for the formation of this complex. C – 

F , Mfn2 and Mfn1 interact with the Milton homologues OIP106 and GRIF1, proteins known to 

function as linkers between mitochondria and kinesins motors. G , H , Neither Mfn2 nor Mfn1 

coimmunoprecipitated with Kif5C, indicating that they do not directly link mitochondria to kinesin. I 

, Additionally, Mfn2 was unable to interact with syntaphilin, an outer mitochondrial membrane 

protein that anchors mitochondria to microtubules.  
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Figure 2-5. Depletion of Miro2 produces a mitochondrial transport abnormality similar to 

that observed with loss of Mfn2 in DRG neurons. A , B , Kymograph analysis reveals that 

siRNA-mediated knockdown of Miro2 dramatically altered patterns of mitochondrial transport. C , 

Size–frequency histogram of axonal mitochondria demonstrated that depletion of Miro2 altered 

mitochondrial transport without changing mitochondrial morphology. D , Similar to Mfn2−/− 

cultures, mitochondria spent a greater percentage of time paused between anterograde 

movements in Miro2 knockdown cultures (*p < 0.001, t test; n is the number of axons from which 

image stacks were created). Pauses between retrograde movements trended toward longer 

pause times but did not reach statistical significance. E , Mitochondria velocity distributions were 

also skewed toward slower movements in Miro2 knockdown cultures, similar to effects seen with 

loss of Mfn2.  
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Figure 2-6. Disruption of mitochondrial fusion by knockdown of Opa1 does not alter 

mitochondrial axonal transport. To assess whether disrupting mitochondrial fusion is itself 

sufficient to alter mitochondrial transport, we used siRNA to knock down Opa1 in DRG neurons. 

A, B , Embossed images of representative axons and the corresponding kymographs showing 

Opa1 knockdown (>90%) did not alter mitochondrial movement patterns. C , Mitochondrial size–

frequency histogram showed that loss of Opa1 significantly decreased mitochondrial length 

similar to that seen in Mfn2−/− cultures, reflective of decreased mitochondrial fusion. D , E , Pause 

times between anterograde or retrograde movements ( D ) and velocity of movements ( E ) were 

not altered by Opa1 knockdown (n is the number of axons from which kymographs were 

generated), unlike loss of Mfn2, indicating that loss of mitochondrial fusion alone does not alter 

mitochondrial transport. 
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Figure 2-7. Fusion-

competent, CMT2A-

associated MFN2 mutants 

cannot compensate for the 

mitochondrial transport 

abnormality in Mfn2−/− 

neurons. To compare the 

ability of fusion-competent 

(L76P, W740S) and fusion-

incompetent (R94Q) MFN2 

mutants to mediate 

mitochondrial transport, we 

reintroduced these mutants 

into Mfn2−/− neurons and 

assessed their ability to rescue 

the mitochondrial transport 

abnormality. As compared with 

wtMFN2, neither the fusion-

competent (L76P, W740S) nor 

fusion-incompetent (R94Q) 

mutants were able to fully 

restore mitochondrial pause 

time ( A , B ) (n is number of 

axons from which kymographs were generated) or mitochondrial velocities ( C ).  
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Chapter 3 

 

Active redistribution of the mitochondrial network supports  

 

troduction 

hat axons employ a non-apoptotic program of self-destruction has been a 

fundamental advance in our understanding of neurodegeneration. The regulated nature of this 

process suggests that relevant molecular players could be targeted for therapeutic intervention. 

The need for such targets is highlighted by the prominence of axon loss in several 

neurodegenerative paradigms. Many studies suggest that axonal degeneration precedes cell 

death in ALS (Fischer and Glass, 2007), Parkinson’s disease (Cheng et al.), Alzhiemer’s disease 

(Vickers et al., 2000) and Multiple Sclerosis (MS) (Dziedzic et al.) and may be the most important 

factor contributing to morbidity in MS and a number of demyelinating neuropathies. 

Understanding the molecular mechanisms underlying axonal degeneration will be pivotal to both 

our understanding of neurodegeneration and our ability to prevent it. 

 energy reservoirs, neurons 

require continual delivery of glucose and oxygen. Within minutes of onset, anoxia in optic nerve 

causes conduction block and degeneration of axons (Stys et al., 1990) (Malek et al., 2005). A 

similar scenario of “virtual hypoxia” instigates axonal degeneration in MS where increases in nitric 

oxide (NO) levels inhibit mitochondrial respiration (Trapp and Nave, 2008). The integrity of an 

entire axon is dependent on all of its local energy demands being met; energy failure in one area 

can compromise the entire segment distal to the site. In peripheral nerve explants, a local, 

transient application of DNP (a mitochondrial membrane decoupler) inhibits mitochondrial 

respiration at the site of exposure and triggers Wallerian degeneration of the distal axon (Alvarez 

axon integrity 

In

Recognizing t

 Because of their high-energy requirements and low intrinsic
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et al., 2008). Axons are thus dependent on mitochondrial production of ATP and even a brief 

failure to meet local energy demands can lead to the degeneration of the entire distal axon 

segment. 

 To meet local energy demands in axons, mitochondria are actively transported to areas 

f high-

 In a previous study, we gave evidence for a direct role of mitofusin 2 (MFN2) in the 

anspo

 In this study we asked whether disruption of mitochondrial transport could explain the 

o energy demand including the distal portion of the initial segment (Li et al., 2004), Nodes of 

Ranvier (Berthold et al., 1993), and presynaptic boutons (Misgeld et al., 2007). These areas also 

experience high Ca2+ flux, which mitochondria help regulate by taking up cytosolic Ca2+ through 

the mitochondrial Ca2+ uniporter (Murchison and Griffith, 2007). Both ADP and Ca2+ have been 

shown to regulate movement of mitochondria, explaining their localization (Mironov, 2007) 

(Macaskill et al., 2009) (Wang and Schwarz, 2009). Though the dependence of axons on the 

continual redistribution of mitochondria is logically implicit, it has not been experimentally 

demonstrated.  

tr rt of axonal mitochondria that is distinct from its ability to mediate fusion of the outer 

mitochondrial membrane (Misko et al., 2010). Charcot-Marie-Tooth disease type 2A (CMT2A), a 

primary peripheral axonopathy, is most commonly associated with mutations in the MFN2 gene 

(Zuchner et al., 2004) (Lawson et al., 2005) (Verhoeven et al., 2006). Because MFN2 has a well 

established role in mitochondrial fusion, disruption of this process was first assumed to underlie 

the axon degeneration in CMT2A. However, later investigation demonstrated that some of the 

MFN2 disease mutants retained their ability to mediate mitochondrial fusion (Detmer and Chan, 

2007). We have found that MFN2 plays a direct role in mediating mitochondrial transport distinct 

from its role in fusion and that MFN2 disease mutants disrupt mitochondrial transport in a 

dominant fashion (Baloh et al., 2007; Misko et al., 2010).  

loss of axons in CMT2A. We find that expression of MFN2 disease mutants trigger axonal 

degeneration in cultured DRG neurons. Because specific disruption of mitochondrial fusion by 

opa1 knock-down is not sufficient to cause degeneration, the affect of the MFN2 mutants is better 
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explained by their ability to disrupt mitochondrial transport. Furthermore, we show that abnormal 

transport impedes the uniform distribution of mitochondria across axons. This creates axon 

segements devoid of mitochondria that are more reliant on glycolysis and in a state of “virtual 

hypoixia” making them more prone to metabolic failure.  
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Materials and Methods 

NAs. Human wild-type MFN2, MFN2 disease mutants, mouse Mfn1 and 

opa1 siRNA constructs were previously described (Misko et al., 2010).  

orsal root ganglion cultures. Dorsal root ganglion (DRG) cultures were obtained from embryonic 

rats gestational day 15.5. Dorsal root ganglia were dissected out, dissociate using trypsin/EDTA, 

and plated directly onto 24-well plates coated with laminin and poly-D-lysine. Cultures were 

maintained in Neurobasal medium with B27 supplement (Invitrogen), 50 ng/ml NGF, 5 mM 

glutamine, and antibiotics. Addition of 5-fluorouracil for the first 3 d in culture was used as an 

antimitotic treatment.  

entivirus production and infection. Lentiviruses were produced as described previously (Baloh et 

al., 2007). Briefly, human embryonic kidney (HEK) 293T cells were plated onto six-well plates and 

transfected using Mirus reagent with a packaging vector (8.91), envelope vector (vesicular 

stomatitis virus-glycoprotein), and transfer vector encoding the gene to be expressed. Media was 

changed once at 12 h and collected at 72hrs, and applied directly to DRG cultures resulting in 

95% infection efficiency. 

alcium and ROS imaging. Cell permeant Fluo-4 AM (Invitrogen) was incubated at a final 

concentration of 1μM with cultured neurons for 30min at 37°C, washed with media and incubated 

μ °

without B27 supplement, washed out and incubated again for 20min before imaging. All 

microscopy including time-lapse imaging was performed with in a climate-controlled chamber (In 

Plasmids and silencing R

 

D

 

L

 

C

again for 30min before imaging. 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate (carboxy-

DCFDA) was loaded at a final concentration of 1 M for 10min at 37 C in Neural Basal media 
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Vivo Scientific) at 37°C and 5% CO2 and images were acquired with a Cool Snap HQ 2 CCD 

camera (Photometrics) mounted on a Nikon Eclipse Ti-U microscope. 

 

Measuring mitochondrial distribution and trasnport. Trasnfection of DRG neuron cultures with 

mito-RFP and time-lapse imaging of mitochondrial movement were performed as previously 

described (Misko et al., 2010). To assess mitochondrial distribution, we adapted the protocol from 

(Miller and Sheetz, 2004) with minor changes. Time-lapse image stacks of axonal mitochondria 

within ~100μm axon segments were used to create kymographs using MetaMorph software 

(Molecular Devices) for accurate identification of individual mitochondria. At least 10 different 

axons from separate neurons were imaged and divided into 10μm bins. The number of 

mitochondria per bin was counted and bins were pooled for each condition. Distributions were 

described by comparing the average number of mitochondria (μ) per bin to the variance (var) 

such that μ>var is considered uniform, μ=var random and μ<var clustered. To determine 

significance levels we used a χ2 analysis of the goodness of fit of the Poisson distribution. For 

each condition the frequency distribution of bins with a certain number of mitochondria (i=0,1,…5) 

was determined (fAi) and compared with the frequency distribution predicted by the Poisson 

distribution (fEi). The predicted frequency distribution was predicted as follows:  

P(X) = (e^-μ) μ^X / X!                   (1) 

where P(X) is the probability of there being X mitochondria in a bin an μ being the average 

number of mitochondria per bin as empirically determined for the condition being compared. 

fEi= P(X)(n)          (2) 

where n is the total number of bins counted. The χ2 statistic is then calculated by comparing the 

observed and predicted frequency distributions. 

χ2
 = Σ (i=0 to i=5) (fAi-fEi)^2/fEi         (3) 
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where i is the number of mitochondria per bin and degrees of freedom is df=5-2=3. 

Mitochondrial flux represents the average number of mitochondria passing through the center of a 

bin in 1min. 

 

Estimating Δψ. To measure mitochondrial membrane potentials we adopted the protocol 

developed by (Verburg and Hollenbeck, 2008) 2008. Briefly, DRG cultures were incubated with 

20nM tetramethylrhodamine methyl ester (TMRM) for 20min at 37°C, which was then exchanged 

for media containing 5nM TMRM in which images were acquired. A volume corrected 

mitochondrial to cytoplasmic fluorescence ratio (Fm/Fc) was calculated for at least 500 

mitochondria per condition by measuring the fluorescence of mitochondria and the fluorescence 

of the immediate surrounding axoplasm and applying the formula Fm/Fc = (Flmitochondria – (2/3) 

Flcytoplasm)/(1/3) Flcytoplasm.  

 

Measuring axonal mitochondrial content. For imaging with Mitotracker green, cultured neurons 

were incubated with 75nM Mitotracker Green (Invitrogen) for 30min at 37°C, washed and imaged. 

Labeling with TMRM is described above. To measure mitochondrial content, images of 

mitochondrial fluorescence were filtered with an inverted mexican hat kernel and thresholded and 

the total number of pixels representing mitochondria were counted. Phase images of 

corresponding areas were background subtracted and thresholded and corresponding pixels 

representing axons were used to normalize the mitochondrial content.  

 

2-deoxy-glucose treatments. Media was changed on cultures 12hrs prior to 2DG administration to 

minimize fluctuations in metabolism from week to week. 2DG was added to cultures at a final 

concentration of 15mM in H2O and imaged at 48hrs. 
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Results 

CMT2A associated MFN2 mutants cause axonal degeneration in cultured DRG neurons. 

In addition to promoting mitochondrial fusion, MFN2 directly mediates mitochondrial transport, a 

function that CMT2A associated MFN2 disease mutants disrupt in a dominant fashion. To 

determine whether mitochondrial transport is critical for axonal integrity, we introduced wild type 

(wtMFN2) or disease mutant MFN2 (R94Q and H361Y) constructs using lentivirus into cultured 

DRG neurons. As previously reported, axonal mitochondria imaged by time-lapse microscopy 

demonstrated abnormal movement patterns  in cultures expressing the R94Q (Fig.1) or H361Y 

(not shown) MFN2 disease mutants 1 week post infection (Fig.1 A and B). The R94Q and H361Y 

disease mutants are not able to mediate fusion. Accordingly, mitochondrial lengths in these 

cultures were also decreased indicating inhibition of mitochondrial fusion (Fig.1 C).  

 Concomitant with these changes, we could not detect signs axonal degeneration by light 

phase microscopy. To employ a more sensitive approach, we labeled cultures with Fluo-4 or 

DCFDA dyes which detect Ca+2 and reactive oxygen species (ROS) levels respectively. In R94Q 

but not wtMFN2 expressing cultures a fraction of axons that appeared beaded or dilated could be 

visualized with either dye (D-O). Observation of cell bodies over three days revealed that 96.4+/- 

3% and 97.2 +/-3%  percent of cell bodies remained viable in wtMFN2 and R94Q expressing 

cultures respectively. Additionally, virtually no cell death was detected in either condition with 

propidium iodide staining, though a 24 hours treatment with ionomycin resulted in death of all 

cells verifying the staining technique (Fig.1 P). The lack of cell body death confirms that the 

observed degeneration was originating in axons and not a secondary consequence of cell death.  

Taken together, these data suggest that MFN2 disease mutants cause axons to degenerate 

concomitant with disruption of mitochondrial transport and fusion. 

 

MFN2 disease mutants cause axons to actively degenerate in cultured DRG neurons. 

To ensure that the elevated levels of intra-axonal Ca2+ and ROS were labeling actively 

degenerating axons and were not simply marking a transient event in otherwise healthy axons, 
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were performed time lapse microscopy on R94Q expressing cells 1 week after infection. Imaging 

with Fluo-4 dye over a 12hr time period captured numerous degenerative events (Fig. 3 A-C). 

Three patterns of degeneration could be distinguished: 1) An axon displays a uniform rise in 

intracellular Ca2+, beads and then fully degenerates (seen as disappearance of axon after loss of 

membrane integrity and inability to retain dye). 2) A dilated axon segments swells to a spheroid 

like shape and “pops”. 3) An axon breaks apart from a single point and the resulting ends retract 

away from the break point before disappearing. From the onset of increased intracellular Ca2+ 

most axons fully degenerate within ~3hrs.  

 

Disruption of mitochondrial fusion is not sufficient to cause axonal degeneration in 

cultured DRG neurons. 

siRNA mediated knock-down of opa1 in DRG neurons has been shown to disrupt mitochondrial 

fusion while leaving mitochondrial transport intact (Misko et al., 2010). We next asked whether 

disruption of mitochondrial fusion was sufficient explain the degeneration of axon caused by 

MFN2 disease mutants. To this end, we used a previously reported siRNA against opa1 (siopa1) 

to selectively disrupt mitochondrial fusion and looked for signs of degeneration at 1 week post 

infection (the same period of time at which MFN2 mutant expressing cell show signs of 

degeneration). Cultures were transfected with mito-RFP and imaged by time-lapse microscopy to 

demonstrate normal patterns of mitochondrial transport (Fig. 3 A-B; kymographs). While 

movements appeared normal, mitochondria were markedly smaller indicating that fusion had 

been disrupted (Fig. 3 C). At this same time point imaging with Fluo-4 and DCFDA dye showed a 

complete lack of axon degeneration (D-I). These results suggest that disrupting mitochondrial 

fusion alone is not sufficient to cause axon degeneration and that perturbation of mitochondrial 

transport rather than fusion causes degeneration of axons in MFN2 disease mutant expressing 

neurons.  
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Axonal mitochondria are abnormally distributed in MFN2 disease mutant expressing DRG 

neurons. 

In axons, mitochondria distribute to areas of high energy and Ca2+ flux where they supply ATP 

and buffer ions critical to the survival of the axon. In cultured DRG neurons, mitochondria 

distribute uniformly along the axon (Miller and Sheetz, 2004). We asked whether abnormal 

transport of mitochondria compromised the ability of mitochondria to maintain a uniform 

distribution, which could contribute to decreased axon stability in MFN2 disease mutant 

expressing cultures. Mitochondria in DRG neurons infected with wtMFN2, R94Q or siopa1 

constructs were labeled with transfect mito-RFP and imaged by time-lapse microscopy (Fig. 4 A-

D). Kymographs were used to assist in the identification of all stationary mitochondria, which are 

represented as black dots underneath kymographs. Notably, while the mitochondrial distribution 

in wtMFN2 or siopa1 expressing cells appeared uniform (Fig 4. A and D), occasional axon 

segments in R94Q expressing cells were devoid of mitochondria (Fig. 4 C; arrow head) while 

other segments appeared normal (Fig. 4 B). To quantitatively describe distribution patterns, 

axons were divided into 10μm bins and mitochondria were counted in at least 10 bins per axon 

across 10 different axons. A mitochondrial population was considered uniformly distributed if the 

average number of mitochondria per bin (μ) was greater than the variance (var), random if μ=var 

and clustered if μ<var. By this measure, mitochondria were uniformly distributed in wtMFN2 and 

siopa1 expressing cells but randomly distributed in R94Q expressing cells (Fig.4 E). Comparing 

observed distributions to a Poisson distribution with the same mean by using a chi-square 

goodness of fit test confirmed that mitochondrial distributions in wtMFN2 (p=0.000525) and 

siopa1 (p=0.001446) axons differed significantly from the Poisson distribution while the 

population in R94Q expressing neurons did not (p=.0288) (Fig.4 E). The random distribution of 

mitochondria could arise from abnormal mitochondrial movement patterns in mutant expressing 

neurons. To highlight this point, we calculated mitochondrial flux across segments of axon 

between stationary mitochondria. On average, mitochondrial flux decreased 6 fold in R94Q 

expressing cells compared to wtMFN2 and siopa1 neurons (Fig. 4F). The lack of movement could 
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hamper the ability of mitochondria to maintain a uniform distribution across the axon leaving 

mitochondrially depleted areas vulnerable to fluctuations in ATP or Ca2+.  

 To obtain a more complete picture of the mitochondrial network’s state, we also 

estimated the mitochondrial content of axons. Images of axons labeled with MT Green (labels 

mitochondria independent of Δψ) were obtained at 40x and used to estimate the total 

mitochondrial mass normalized to axonal area. Total mass was decreased ~20% and 40% in 

R94Q and siopa1 expressing DRG neurons respectively compared to control (Fig. 5 A). A similar 

decrease of ~15% was seen in R94Q expressing cultures using TMRM dye (labels mitochodnria 

proportional to Δψ), but a slightly larger ~60% decrease was noted in siopa1 expressing cells 

(Fig. 5 B). This difference could be explained by the presence of mitochondria that have lost their 

membrane potential in opa1 knock-down cells, which is consistent with previous reports (Chen et 

al., 2005). Finally, because virally transduced mito-RFP gets incorporated into somatic 

mitochondria, estimation of mitochondrial mass with this marker approximates the rate of 

mitochondrial transport out of cell bodies and into axons. We were surprised to notice an ~50% 

decrease in mitochondrial content in siopa1 cells compared to control which was higher than the 

40% decrease seen with MT Green (Fig. 5 C). Rather than reflecting a deficit in transport, which 

we have not observed by time-lapse microscopy, the decrease could represent the smaller size of 

mitochondria in opa1 knock-down cells. The more severe ~70% decrease observed in R94Q 

expressing cells however (Fig. 5 C), correlates well with the observed transport deficit. 

 While mitochondrial mass is decreased in R94Q expressing neurons, it cannot alone 

explain the degeneration of axons since opa1 knock-down cultures also experience a more 

severe deficit in mitochondrial content but show no signs of degeneration. Instead we 

hypothesize that disrupted mitochondrial transport leads to the uneven distribution of 

mitochondria in axons of MFN2 mutant expressing cells. This lowers the ability of the axons to 

compensate for random fluctuations in energy and Ca2+ levels which then triggers the stochastic 

loss of axons we observed in these cultures. 
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R94Q and siopa1 expressing neurons are reliant on glycolytic production of ATP. 

Mitochondrial production of ATP and buffering of Ca2+ are dependent on maintenance of Δψ. 

Employing a previously described technique we used TMRM dye to calculate the Fm/Fc value of 

axonal mitochondria as an estimate of Δψ (see Materials and Methods)(Verburg and Hollenbeck, 

2008). One week after infection with viral constructs, the mitochondria in R94Q expressing 

neurons maintained an Fm/Fc distribution identical to that of mitochondria in wtMFN2 controls (Fig. 

6 A and B). Mitochondria in siopa1 infected neurons however, showed a shift in the population 

distribution toward lower values of Fm/Fc. (Fig. 6 C) consistent with reported effects of opa1 

knock-down in fibroblasts. These data suggest that mitochondria in opa1 knock-down cells may 

not perform oxidative respiration or buffer Ca2+ as efficiently as mitochondria in control or R94Q 

expressing cells. 

 We also noticed that the media in R94Q or siopa1 expressing cultures began to turn 

yellow one week after infection. To determine whether the change in media pH was due to 

increased out put of lactic acid, we measured media lactate levels. Media from both R94Q and 

siopa1 expressing cultures contained more lactate compared to controls (Fig. 6 D). These data 

suggested that the neurons in R94Q and siopa1 expressing cultures were increasing their 

utilization of glycolysis. To test their reliance on glycolytic production of ATP, cultures were 

treated with 15mM 2-deoxy-glucose (2DG) to inhibit glycolysis. Within 48hrs signs of axonal 

degeneration became apparent in R94Q and siopa1 expressing neurons but not the wtMFN2 

control. Notably, cell bodies did not appear to be undergoing apoptosis or necrosis suggesting 

that axons were more sensitive to the inhibition of glycolysis. From the Δψ measurements we had 

expected that decreased mitochondrial function in opa1 knock-down cells would foster a reliance 

on glycolysis, however, it was less expected in R94Q expressing cells where mitochondrial Δψ 

appears unaltered. One possibility is that the reliance on glycolysis of R94Q and siopa1 

expressing cells may be due to the observed decrease in axonal mitochondrial mass. 

Alternatively, lack of proper mitochondrial distribution and movement in R94Q expressing 

neurons may leave some axon segments dependent on glycolysis.  
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Tetrodotoxin treatment prevents axonal degeneration in MFN2 disease mutant expressing 

cells.  

The cascade of molecular events perpetuating the degeneration of hypoxic axons in has been 

well studied. Energy deficits in an axon lead to failure of the Na+-K+ pump, which allows Na+ to 

accumulate in the cytoplasm. This forces the Na+-Ca2+ exchanger to reverse directions and 

triggers an influx of Ca2+ that elicits the final stages of axon degeneration (Stirling and Stys). In 

experimental hypoxia paradigms, addition of TTX to rat optic nerve obstructs influx of extracellular 

Na+ and prevents downstream degeneration (Wolf et al., 2001). We reasoned that the abnormal 

distribution of mitochondria in MFN2 mutant expressing cells would leave axonal segments 

devoid of mitochondria in a state of energy crisis and that treatment of these cells with TTX could 

prevent their degeneration. To this end we treated R94Q or H361Y expressing DRG cultures with 

1 or 0.25 μM TTX on DIV4 through DIV11 when cultures were imaged with DCFDA dye. 

Treatment with TTX markedly decreased the number of DCFDA positive axons in mutant 

expressing cultures (Fig. 7 A and C). To quantify the effect, fluorescent images were converted 

into binary format (Fig. 7 B and D) and fluorescent pixels were counted. Treatment with either 1 

or 0.25 μM TTX shows a significant protective effect in both R94Q and H361Y expressing cells 

(Fig. 7 E). 

 

Expression of Mfn1 ameliorates degenerative effects of the R94Q disease mutant on 

cultured DRG neurons. 

A previous study revealed that expression of exogenous Mfn1 could restore the axonal transport 

of mitochondria in Mfn2 null DRG neurons (Misko et al., 2010).  Though TTX could never be used 

as a therapeutic agent against axon degeneration, we wondered whether expression of 

exogenous Mfn1 could prevent degeneration of axons in cultures of R94Q expressing neurons. 

Following the initial infection of cells with virus containing an R94Q  construct on DIV3, cells were 

infected again on DIV4 with lentivirus containing an Mfn1 construct. When cultures were imaged 

with Fluo-4 dye on DIV12, signs of axonal degeneration were completely absent (Fig. 8 A-D). 
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Introduction of Mfn1 also increased the number of mitochondria transported into axons and the 

mitochondrial flux of mitochondria along the axon (Fig. 8 E and F). These data support that 

manipulating levels of Mfn1 in affected neurons of CMT2A patients may offer a viable therapeutic 

target for drug development. 
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Discussion 

These experiments demonstrate that CMT2A associated MFN2 disease mutants trigger the 

selective degeneration of axons due to the disruption of mitochondrial transport rather than 

fusion. Abnormal transport slows the incorporation of somatic mitochondria into axons and 

prevents mitochondria from distributing uniformly across axons. Segments of axon left devoid of 

mitochondria must rely on the more inefficient process of glycolytic ATP production and thus have 

reduced energy reserves. This state of local “virtual hypoxia” in axons is supported by the ability 

of TTX to prevent the degeneration of axons in MFN2 disease mutant expressing cultures. 

Finally, the partial rescue of mitochondrial transport by exogenous expression of Mfn1 prevents 

MFN2 disease mutant induced axon degeneration and maybe a viable target for drug 

development in the treatment of CMT2A. 

 

Mitochondrial function in the maintenance of axon integrity 

The conduction of action potentials along nerves and white matter tracks is costly, requiring 

energy to pump ions across the plasma membrane and establish the resting membrane potential. 

Despite the high demands of action potential propagation, neurons have low intrinsic energy 

reservoirs and require a continuous supply of oxygen and glucose.  

 Disruption of energy production in axons initiates a series of events leading to axonal 

degeneration: 1) failure of the Na+-K+ pump from lack of ATP 2) Na+ accumulation through 

persistent Na+ channels and K+ efflux 3) reversal of the Na+- Ca2+ driven by high axoplasmic Na+ 

and consequent accumulation of intracellular Ca2+. High intra-axonal Ca2+ marks a late stage in 

axon degeneration leading to the activation of calpains, and degradation of the neurofilament 

network (Trapp and Nave, 2008). 

 Remarkably, even a transient local deficit in mitochondrial metabolism can be sufficient to 

trigger axonal degeneration. Experimental exposure of peripheral nerves to NO, which inhibits 

mitochondrial respiration, initiates Wallerian degeneration that spreads distal to the administration 

site, even when the NO is removed within 3 hours of exposure. The same effects are seen with a 
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brief administration of DNP, an uncoupler of the IMM (Alvarez et al., 2008). Similar local deficits 

are likely to arise when disruption of mitochondrial transport leave segments of axon devoid of 

mitochondria, creating a state of local “virtual hypoxia”.  Our data suggest that this mechanism 

may be the inciting cause of axon degeneration in CMT2A. 

 Though our study focuses on CMT2A, the importance of mitochondrial mobility is also 

relevant to other neurodegenerative diseases. In demyleinating disorders such as multiple 

sclerosis (MS), mitochondria redistribute to denuded axon segments, presumably to meet the 

increased energy demands of action potential propagation (Andrews et al., 2006; Hogan et al., 

2009; Witte et al., 2009). In damaged axons in brains of humans with multiple sclerosis and of 

mice with cuprizone-induced demyelination, evelvated levels of cytosolic HDAC1 were shown to 

directly inhibit mitochondrial transport (Kim et al.). The increased need for mitochondria at 

denuded axon segments and pathological mechanisms that inhibit mitochondrial transport are 

directly opposed. Developing drugs to increase the efficacy of mitochondrial transport may tip the 

balance in favor of increasing transport and improve the survival of demyelinated axons by 

increasing their mitochondrial reserves.  

Disrupted mitochondrial transport has also been implicated in Alzhiemer’s disease where 

Aβ42 has been shown to disrupt mitochondrial distribution in a Drosophila model of Alzhiemer’s 

disease (Iijima-Ando et al., 2009). Though axonal transport is globally affected in Alzhiemer’s, 

disrupted mitochondrial transport may be an early event, instigating axon degeneration and the 

development of axon spheroids.  

 We are only beginning to understand the downstream consequences of disrupted 

mitochondrial transport. As our understanding develops, new molecular players and signaling 

pathways may emerge with wide spread implications for a number of neurodegenerative disease. 

 

The selective degeneration of axons in CMT2A 

A striking feature of CMT2A is the selective degeneration of neurons with long axonal despite the 

ubiquitous expression of MFN2 in all cells. It is reasonable to consider that long axons may be 
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more susceptible to deficits in mitochondrial transport based on their length for different reasons. 

First, abnormal transport could significantly delay or even prevent the migration of newly 

synthesized mitochondria in the cell body from reaching the most distal axon segments. Though 

we observed this phenomenon in our culture system, diminished mitochondrial populations are 

not evident in sural nerve from CMT2A patients (Verhoeven et al., 2006; Vallat et al., 2008). 

There is also evidence that mitochondrial biogenesis may take place in axons negating the 

dependency on transport of mitochondria from the soma (Amiri and Hollenbeck, 2008; Vincent et 

al., 2010). Alternatively, we suggest that a subtle deficit in regulation of mobility may perturb 

proper mitochondrial distribution and compromise axon integrity in CMT2A patients. This 

mechanism could also explain the length dependence of the axon degeneration as the longer 

length of the axon provides a greater area over which random fluctuations in ATP and Ca2+ thus 

giving rise to more events for which immobile mitochondria could not compensate. Degeneration 

triggered in a single location would soon lead to degeneration of the remaining distal axon.  

  It is also possible that apart from their sensitivity to disrupted mitochondrial transport 

neurons may express lower levels of Mfn1 relative to other cell types. We have previously 

reported that levels of Mfn1 mRNA are similar in mouse embryonic fibroblasts and DRG neurons 

and Mfn1 is present at the protein level in DRG cultures (Misko et al., 2010). Notably, in DRG 

neurons levels of Mfn1 protein were slightly lower and appeared as two distinct bands on western 

blot analysis, one of the expected and one of lower molecular weight. Though it is hard to know if 

the lower levels of Mfn1 are enough to explain the lack of compensatory function in neurons, 

future efforts toward understanding transcriptional and translation regulation of Mfn1 could be 

useful in developing    

 

Targeting Mfn1 in the treatment of CMT2A 

We currently lack a clear understanding of how Mfn1 is regulated at a transcriptional or post-

transcriptional level. One possible approach to increasing Mfn1 in neurons would be to identify 

small molecule that stimulate expression of the gene. Efforts are now being made to map the 

Mfn1 promoter region and develop an in vitro assay that will allow high through put screening of 
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compounds that could increase Mfn1 expression. Selectively targeting of the Mfn1 locus will be 

extremely important however, as increasing the expression of the mutant Mfn2 alleles in a 

CMT2A patient would be counterproductive. Thus potential drugs will have to both increase the 

expression of Mfn1 while not affecting levels of Mfn2 

 Though the implications are unclear, Mfn1 may also be post transcriptionally or post 

translationally processed as suggested by western blot data in DRG neurons. Either type of 

processing may remove functional full length Mfn1 protein and could therefore be a therapeutic 

target. While Morpholino oligomers could be used to favorably affect splicing, enzymes that may 

cleave Mfn1 have not yet been identified.  

 Whichever the case, a deeper understanding of the regulation and function of Mfn1 could 

hold the key to treating patients with CMT2A. 
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Figure 3-1: CMT2A associated MFN2 mutants cause axonal degeneration in cultured DRG 

neurons. (A-B) Mitochondria in cultured DRG neurons expressing virally transduced wtMFN2 or 

R94Q constructs were labeled with mito-RFP and imaged by time-lapse microscopy. Consistent 

with our previous reports, axonal mitochondria in R94Q expressing neurons show abnormal 
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movement patterns (A-B; kymographs) 1 week after infection. (C) Size frequency histogram 

demonstrating shorter mitochondrial lengths indicative of disrupted fusion in R94Q expressing 

neurons. (D-O) Imaging with Fluo-4 and DCFDA dyes revealed a fraction of axons in R94Q 

expressing cultures with elevated levels of intra-axonal Ca2+ and ROS respectively. Axons 

labeled by either dye develop a dilated or beaded appearance (L-M) indicative of degeneration. 

Lack of cell death observed with propidium iodide staining indicates that axons are the primary 

site of degeneration in R94Q expressing neurons (P).  
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Figure 3-2: Axons of R94Q expressing DRG neurons are actively degenerating. R94Q 

expressing neurons were incubated with Fluo-4 dye and axons demonstrating elevated Ca2+ 

levels were visualized by time-lapse microscopy (A-C; 40X magnification). Three main patterns of 

degeneration were noted. First, several axons that were not initially visible with Fluo-4 dye 

demonstrated a rapid elevation in intra-axonal Ca2+ levels followed by beading of the membrane 

and finally disappearing, presumably from the inability to retain dye following loss of membrane 

integrity (A). Second, segmental axonal dilations were noted which swelled to a spheroid like 

shape before completely degenerating (B). Finally, a number of already beaded axons lost 

structural integrity at a single point resulting in retraction of axon ends from the break point (C; 

asterisks label ends of break point).  
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Figure 3-3: Disruption of mitochondrial fusion is not sufficient to cause axonal 

degeneration. Mitochondria in cultured DRG neurons expressing virally transduced control 

siRNA or opa1 targeted siRNA were labeled with mito-RFP and imaged by time-lapse 

microscopy. As reported previously, knock-down of opa1 leaves mitochondrial transport intact (A 

and B; kymographs) but results in smaller fragmented mitochondria (C) due to disrupted fusion. 

Imaging with Fluo-4 (D-G) or DCFDA (E-I) dyes revealed that signs of axonal degeneration were 

absent in opa1 knock-down cultures. 
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Figure 3-4: Axonal mitochondria are abnormally distributed in R94Q expressing neurons. 

Mitochondria in cultured DRG neurons expressing virally induced wtMFN2, R94Q or siopa1 

constructs were labeled with mito-RFP and imaged by time-lapse microscopy 1 week after 

infection. (A-D) Kymographs were used to assist in the proper identification of fluorescently 

labeled mitochondria. Individual mitochondria are represented as black dots below kymographs. 

While mitochondria were evenly distributed along axons of wtMFN2 and siopa1 expressing 

neurons, R94Q expressing cultures contained both axons having evenly distributed mitochondria 

(R94Q segment 1) or axons displaying abnormal segments that were devoid of mitochondria 

(R94Q segment 2; arrow head). (E) Axons from 10 neurons were divided into 10μm bins and the 

number of mitochondria was counted per bin. Distributions were described by comparing the 

average number of mitochondria (μ) per bin to the variance (var) such that μ>var is considered 

uniform, μ=var random and μ<var clustered. While wtMFN2 and siopa1 expressing cell showed 

uniform distributions of mitochondria, mitochondria in R94Q expressing cells were distributed 
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randomly. The measured distributions were also compared to a Poisson distribution with a chi-

square goodness of fit test. Only distributions from wtMFN2 and siopa1 expressing cells were 

significantly different, confirming the random distribution of mitochondria in R94Q expressing 

cells. (F) Within each bin, the number of mitochondria that moved past the center mark in 1 

minute was used to estimate mitochondrial flux.  
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Figure 3-5: Quantification of axonal mitochondrial content and transport into axons. 

Mitochondria in axons of cultured DRG neurons were labeled with Mitotracker Green (A), TMRM 

(B) or Lenti-viral transduced mito-RFP (C), 1 week after cultures were infected with wtMN2, R94Q 

or siopa1 constructs. (A) Total mitochondrial content estimated with Mitotracker Green and 

normalized to axon area (labels mitochondria independent of Δψ) showed decreases in the 

mitochondrial content of R94Q and siopa1 expressing cells. Changes could reflect decreased 

numbers, size or movement of mitochondria in axons. (B) Relative content of polarized 

mitochondria in axons using Δψ sensitive TMRM dye showed the most severe decrease in siopa1 

expressing cultures. (C) Because transduced mito-RFP is incorporated into mitochondria in the 

soma, measurement of axonal mitochondrial content using mito-RFP estimates the rate at which 

mitochondria are moving into axons. Taken together with measurements using Mitotracker 

Green, the severe decrease in mitochondrial content of R94Q expressing cells reflect the 

decreased movement of mitochondria into axons. 
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Figure 3-6: R94Q and siopa1 expressing DRG neurons are reliant on glycolytic production 

of ATP. (A-C) TMRM dye was used to calculate Fm/Fc (an estimate of Δψ that corrects for 

cytoplasmic background) values of mitochondria in wtMFN2 (A), R94Q (B) and siopa1 (C) 

expressing cells. Only the population of mitochondria in opa1 knock-down cells show a shift to 

lower values of Δψ. (D) Increased levels of lactate in the media of R94Q and siopa1 expressing 
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cells indicate increased use of glycolysis. (E-M) Treating cells with 15mM 2DG for 48hrs 

produces signs of axonal degeneration in R94Q and siopa1 expressing cells, supporting their 

shift to a more glycolytic profile.  
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Figure 3-7: TTX treatment prevents axonal degeneration in cultured DRG neurons 

expressing MFN2 disease mutants. Based on TTX’s ability to delay axonal degeneration by 

preventing influx of Na+ in models of optic nerve hypoxia, we treated DRG cultures expressing the 

R94Q or H361Y disease mutants with TTX on DIV4 through DIV11. (A and C) DCFDA imaging 

showed a marked decrease in the number of axons with elevated levels of ROS. To quantify the 

effect, images were converted into binary format (B and D) and fluorescent pixels were counted. 

(E) Compared with untreated controls, DRG cultures treated with TTX show a significant 

decrease in the number of DCFDA positive degenerating axons one week after infection with 

R94Q or H361Y viral constructs.  
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Figure 3-8: Expression of Mfn1 ameliorates degenerative effects of the R94Q disease 

mutant on cultured DRG neurons. Based on our previous findings that increased Mfn1 

expression could restore mitochondrial transport in Mfn2 null DRG neurons, we reasoned that 

overexpression of Mfn1 could ameliorate the degenerative affects of MFN2 disease mutants. (A-

D) Cultured DRG neurons were infected with R94Q construct on DIV 3 and subsequently infected 

with control or Mfn1 constructs on DIV4. Fluo-4 imaging performed on DIV 12 showed a striking 

absence of degenerating axons in cultured neurons expressing both R94Q and Mfn1. Expression 

of Mfn1 also increased the net transport of mitochondria out of the soma and into axons (E) as 

well as increasing the local flux of mitochondira (F).  
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Chapter 4 

 

An R94Q knock-in mouse model of CMT2A 

 

Introduction 

Understanding the mechanisms that orchestrate axonal degeneration is key to our understanding 

of neurodegenerative processes and our ability to prevent them. Though the importance of axon 

degeneration is highlighted by its ubiquitous appearance in a number of neurodegenerative 

diseases (Raff et al., 2002), there are several peripheral neuropathies that are primary axon 

diseases (Zuchner and Vance, 2006). One of these neuropathies, Charcot-Maire-Tooth Disease 

type 2A (CMT2A), is most commonly linked to mutations in the mitofusin 2 (MFN2) gene and may 

serve as a useful model to gaining a more general understanding of how axons die. 

 CMT2A is a hereditary peripheral neuropathy characterized by dying back degeneration 

of the longest axons in the body. Patients usually present within the first two decades of life and 

show varying degrees of motor and sensory disability. Electrophysiology studies reveal normal to 

slightly decreased nerve conduction velocities with significantly decreased amplitudes. As the 

longest axons are affected first, symptoms typically progress from the feet to the hands and affect 

motor more severely than sensory function.  Muscle atrophy following denervation can leave 

patients wheel chair bound leading to a high morbidity rate associated with CMT2A. 

 To date, an animal model that mirrors the genetic condition in CMT2A patients has not 

been established, though two separate transgenic overexpressing mice have been reported. The 

first utilizes the motor neuron specific Hb9 promoter to drive expression of the T105M MFN2 

dominant disease mutant in a transgenic mouse model (Detmer et al., 2008). Though the animals 

exhibit an abnormal gait, loss of motor axons and atrophy of the tibialis anterior muscle, which are 

consistent with the phenotype of CMT2A, there are several problems with this line. First, the 

animals had to be bred to homozygosity to produce a phenotype. This ultra high expression of a 

mutant allele is not congruent with human patients who only have one copy of the mutant allele. 
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Secondly, the Hb9 promotor expresses at high levels early during development and shuts off 

shortly after birth. Consistent with this pattern, the animals appear to have a developmental 

defect rather than a neurodegenerative disease. The second model reported uses the prion 

protein promotor to express the R94Q disease mutant in a transgenic mouse model (Cartoni et 

al.). Though the mutant allele expresses in all neurons, this model does not have a 

neurodegenerative phenotype. Though gait abnormalities are observed when the animal is bred 

to homozygosity, loss of axons or signs of muscle denervation are not observed.   

 In contrast to previous models, knocking in a dominant mutant allele using homologous 

recombination and breeding the mice to heterozygosity would construct a more accurate mouse 

model of CMT2A. To this end, we had obtained an R94Q knock-in mouse line (Detmer and Chan, 

2007) and examined the phenotype of heterozygous mice. Surprisingly, the heterozygous mice 

show no overt phenotype though their homozygous littermates die within three weeks of age. 

Examination of distal nerve fibers revealed no loss of axons and no change in the profile of fiber 

diameters. Additional stresses to the animals, including peritoneal injection of 2-deoxy-glucose or 

introducing a mutant PMP22 allele to induce a demyelinating stress also did not produce a 

remarkable phenotype in R94Q heterozygous animals. 
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Materials and Methods 

Nerve conduction and electromyography 

Animals were anesthetized with avertin and placed in the prone position on a heated pad to 

maintain body temperature. Nerve conduction velocity and EMG studies were performed with a 

Viking Quest portable EMG machine (Nicolet). EMG studies were obtained using a 27-gauge 

monopolar needle electrode with a 70 × 500 μm recording surface (PRO-37SAF; Electrode Store) 

was inserted into the tibialis anterior (TA) or gastrocnemius/soleus muscles. A 29-gauge 

reference needle electrode (GRD-SAF; Electrode Store) was inserted subcutaneously in close 

approximation to the recording electrode and a subdermal ground electrode was placed on the 

back. Spontaneous electrical activity was recorded for 90 s. 

 

Nerve histology and axon counts 

Dissected tibial nerves were fixed over night at 4°C in 3% glutaraldehyde followed by secondary 

fixation in 1% osmium tetroxide, sequential dehydration in 50, 75, 90 and 100% ethanol and 

embedding in plastic resin. Two hundred to 400nm nerve sections were stained with toludine blue 

and used to count the total number of axons in the tibial nerve. 

 

Imaging mitochondrial distribution in tibial nerve and neuromuscular junctions 

Dissected Tibial nerves and soleus muscles from MitoK/+ mice were fixed for 1hr in 4% 

paraformaldehyde and washed in phosphate buffered saline. Nerves were teased, desiccated at -

20°C overnight and visualized with a (SCOPE) using a 60X oil immersion objective. Soleus 

muscles were incubated for 30min with (%) alexa433-conjugated alpha-bungratoxin, washed and 

whole mounted under a coverslip and visualized in the same manner as tibial nerves.  

 

DRG cultures and mitochondrial movement analysis 

Mouse pups from R94Q heterozygous mice breedings were obtained at embryonic day 12.5. 

Dorsal root ganglia were dissected, trypsinized for 15 minutes at 37°C and plated as spot cultures 
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on a 24well plate coated with poly-D-lysine and laminin. Cells were maintained in Neural Basal 

media (Invitrogen) B27 supplement (Invitrogen), 50ng/mL of NGF, 5mM glutamine and antibiotics. 

Cells were treated with 5-flurouracil for the first 3 days to eliminate non-neuronal cells. To 

visualize mitochondrial movements, cultures were infected with Lenti-virus carry a mitochondrially 

targeted RFP on the third day in culture. Four days after infection imaging was performed in a 

climate-controlled chamber (In Vivo Scientific) at 37°C and 5% CO2 and images were acquired 

with a Cool Snap HQ 2 CCD camera (Photometrics) mounted on a Nikon Eclipse Ti-U 

microscope. Images were acquired at 40X magnification every 1s for 5min. Kymographs were 

then generated and analyzed using MetaMorph software (Molecular Devices). 

 

Fluo-4 calcium imaging 

After 1 week in culture mouse DRG neurons were incubated with 25μM Fluo-4 dye (Invitrogen) 

for 30min at 37°C. Media was changed to wash out excess dye followed by a 30min incubation at 

37°C to allow complete esterification of intracellular Fluo-4. Relative levels of intra-axonal calcium 

were then observed using epiflourescent microscopy in a climate-controlled chamber (In Vivo 

Scientific) at 37°C and 5% CO2. 
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Results 

Mice heterozygous for the R94Q allele do not show an overt neurodegenerative 

phenotype. 

In the hopes of obtaining a mouse model of CMT2A, we examined knock-in mice heterozygous 

for the R94Q mfn2 allele (Detmer and Chan, 2007). Mice up to a year in age appear behaviorally 

normal, display a normal gait and no not show signs of muscle atrophy. Electrophysiology studies 

revealed normal conduction velocities along the sciatic nerve in heterozygous animals compared 

to littermate controls at 2 months (Wt: 36.00 +/-4.82 m/s; R94Q/+: 35.00 +/-3.16; Fig.1A) and 6 

months (Wt: 37.00 +/-3.61 m/s; R94Q: 39.00 +/-2.00 m/s; Fig.1B) of age. This indicated that 

patterns of myelination are normal in the heterozygous animal as expected. Conduction 

amplitudes were also did not differ between mutant and control animals at 2 months (Wt: 5.37+/-

1.19 m/s; R94Q: 5.36+/-1.56 m/s; Fig.1A) or 6 months (Wt: 7.63+/-0.62 m/s; R94Q: 7.14+/-2.19 

m/s: Fig.1B) of age. Additionally, EMG findings were unremarkable at 2 and 6 months of age 

(Fig.1C and D). The normal electrophysiology findings corroborate the overtly normal phenotype 

of the animals.  

 Plastic embedded section of tibial nerve from R94Q/+ and Wt littermates showed no 

signs of Wallerian degeneration (Fig.2A-D) and axon counts were normal (Fig.2E and F). To 

assess whether mitochondria were properly distributed along axons in mutant mice, dihybrid 

mutants of the R94Q and MitoK allele were created. MitoK transgenic mice express a 

mitochondrialy targeted CFP molecule driven by the Thy1  promotor in neurons. Tibial nerves 

from double mutants and controls were teased and the mitochondrial content in single axons 

examined. Consistent with the normal phenotype of the heterozygous mice, mitochondria 

appeared normally distributed along axons (Fig.3A and B). Though there was a wide inter-axonal 

variation in mitochondrial content, the intra-axonal variation was low, which was true in both 

mutant and control animals. Whole mount examination of soleus muscles stained with fluorescent 

alpha-bungratoxin revealed that mitochondria populated synaptic boutons in both R94Q/+ and Wt 

animals and that all postsynaptic membranes were appropriately paired with a presynaptic bouton 

(Fig.3 and D). Finally we cultured DRG neurons from E12.5 R94Q/+ embryos or littermate 
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controls. After infecting cultures with a mitochondirally targeted RFP molecule, we observed 

normal patterns of mitochondrial transport in R94Q/+ axons (Fig.4A and B). Consistent with the 

absence of a mitochondrial transport deficit, no signs of axon degeneration were detected using 

Fluo-4 dye (Fig.4C-F).  

  Surprisingly, a single R94Q allele, which produces a severe and early onset form of 

CMT2A, does not seem to affect the peripheral nervous system of mice. Contrary to our 

predictions, mitochondrial distribution was unaltered in peripheral axons indicating that a single 

R94Q allele is not sufficient to disrupt mitochondrial transport in mouse neurons. We speculate 

that the differences between mice and humans could be attributable to the shorter absolute 

length of mouse axons, an absolute length of time necessary for disease manifestation that is 

longer than a year, or compensatory mechanisms present in the mouse such as higher 

expression levels of mitofusin 1.  

 

 Challenging R94Q heterozygous mice with 2-deoxy-glucose or demyelination does not 

bring out a degenerate phenotype.  

We reasoned that R94Q/+ mice might already employ compensatory mechanisms to deal with 

the presence of on dysfunctional MFN2 allele and that challenging the mice might push axons 

beyond their compensatory capacity. Because R94Q overexpressing cultured DRG neurons are 

sensitive to challenge with 2DG (chapter 3), we administered two different daily regimens of 

intraperitoneally injected 2DG over a 7 day period and looked for signs of axonal degeneration in 

plastic embedded tibial nerve sections. Neither the 750mg/kg or 1000mg/kg regimens produced 

signs of Wallerian degeneration or axon loss (Fig.5A and B). Importantly, the doses we used 

represented maximally tolerable doses of 2DG as an injection of 1500mg/kg caused mice to 

become catatonic and seize.  

 Axonal mitochondria have been show to localize to areas of denuded axon in models of 

multiple sclerosis. We have also been able to show that axonal mitochondria localize to 

demyelinated axon segments in peripheral nerves of Trembler J (TrJ) mice (unpublished 

observation), which have a demyelinating disease caused by a point mutation in the PMP22 gene 
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(Valentijn et al., 1992). We reasoned that creating a demyelinating stress that necessitates 

mitochondria to relocate might bring out a subtle mitochondrial transport deficit in the R94Q/+ 

mice. Because a single TrJ allele is sufficient to create a severe demyleinating phenotype we 

created dihybrid mutants that were heterozygous for both the R94Q and TrJ alleles. These mice 

look phenotypically like TrJ/+ littermates and display intention tremors and hind limb grasping 

when lifted by the tail. On examination of plastic embedded sections of tibial nerve, both TrJ/+ 

and R94Q/+;TrJ/+ mice display signs of demyleination and axon loss (Fig.6A-D). Axon loss in 

these animals is consistent with previous electrophysiological evidence of axonal degeneration in 

the TrJ mouse (Meekins et al., 2007). The degree of fiber loss however, did not differ between 

TrJ/+ and R94Q/+;TrJ/+ mice. Though these mice were examined at 2 months of age, the degree 

of demyelination at this time point is sufficient to trigger mitochondrial relocalization. Though 

further observation of these mice over longer time points will be pursued, we expect there is a low 

likely hood of these mice developing a more severe phenotype.  
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Discussion 

Despite the severe degenerative phenotype produced in humans from the presence of a single 

R94Q allele, mice heterozygous for the allele appear completely normal. One possible 

explanation for this difference is the shorter length of mouse axons. As discussed in Chapter 3, 

we hypothesize that longer axons are more susceptible to perturbations in mitochondrial mobility 

because of the longer distances across which metabolic or ionic imbalances may accrue. 

Because there can be an ~10 fold difference in the length of a human and mouse leg, axons in 

mice may be less likely to degenerate from subtle abnormalities in mitochondrial transport. 

Alternatively, there could be a dependency on mitochondrial transport down the entire length of 

the axon making transport over greater distances less efficacious. Another possible explanation 

could involve the shorter life span of mice. Rather than depending on the relative age of the 

mouse, accumulation of insults necessary to cause axonal degeneration could take an absolute 

amount of time beyond 1 year. In humans CMT2A usually appears within the first two decades of 

life. Therefore it could take as long as 20 years for the phenotype to show. Lastly, the repertoire 

of expressed genes in mouse peripheral neurons could differ from humans and confer resistance 

to the mutant MFN2 allele. Specifically, the level of the MFN2 homologue MFN1 may be 

expressed at higher levels in the mouse nervous system and compensate for the function of 

mutant allele.  

 The resilience of the R94Q/+ mice to metabolic or demyelinating stress suggests that 

mitochondrial transport may be completely normal in these animals. This is consistent with the 

absence of mitochondrial transport abnormalities or axonal degeneration in Drg neurons culture 

from heterozygous mice. It is important to note that the disrupted transport and axon 

degeneration we observed in our previous culture conditions (chapter 3) involve high levels of 

mutant protein expression that may out-compete or overwhelm compensatory mechanisms that 

preserve function in heterozygous R94Q mice.  

 Analyzing the R94Q homozygous mice may offer more insight as removing the one wild 

type mfn2 allele will create a functional null. Though the animals are likely to display pathology in 
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multiple tissues, it may be possible to assess the effect of disrupted mitochondrial transport by 

analyzing mice at early time points. Alternatively, R94Q knock-in mice could be crossed to mfn1 

null mice to prevent its compensatory action. 

 Though generating an animal model of CMT2A has been challenging, such a model 

would be invaluable both in understanding the pathophysiology of CMT2A and testing drug 

therapies aimed at stopping axonal degeneration. For these reasons, future attempts at 

generating mutant lines are sure to drive us closer to obtaining a suitable model of CMT2A. 
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Figure 4-1: Electrophysiology studies of R94Q heterozygous knock-in animals at 2 and 6 

months of age. (A and B) Nerve conduction studies were performed on 2 month and 6 month old 

R94Q/+ mice across the sciatic nerve.  Nerve conduction velocity and conduction amplitude were 

identical between mutant and littermate control animals at both time points. (C and D) 

Electromyograms taken at 2 and 6 months of age are unremarkable indicating normal innervation 

of the gastrocnemius muscle. 
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Figure 4-2: Tibial nerve sections from R94Q heterozygous mice reveal the absence of 

Wallerian degeneration or axon loss.  Plastic embedded sections of tibial nerve from 2 month 

(A and B) and 6 month (C and D) old mice show intact nerve fibers and normal patterns of 

myelination. Axon counts (E and F) confirm the absence of axonal degeneration in R94Q/+ mice. 
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Figure 4-3: Mitochondria show normal distribution in R94Q heterozygous tibial nerve and 

properly populate presynaptic terminals at neuromuscular junctions. (A and B) Teased 

nerve fibers from R94Q/+;MitoK/+ mice and MitoK/+ littermate controls reveal relatively uniform 

distribution of mitochondria across nodes and internodal regions. Though intraxonal variation in 

mitochondrial content was qualitatively low, inter axonal variability was high in both 

R94Q/+;MiotK/+ and MitoK/+ preparations. (C and D) In whole mount preparations of soleus 

muscle stained with fluorescent bungratoxin, mitochondria are shown to properly populate 

presynaptic boutons and every presynaptic terminal was properly matched with a post-synaptic 

density in both mutant and control mice.  
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Figure 4-4: Mitochondiral transpost and axonal integrity are uncompromised in Drg 

neurons cultured from R94Q heterozygous mice. Time-lapse microscopy and kymograph 

analysis of mitochondiral transport in Drg neurons cultured from R94Q/+ and control mice (A and 

B) revealed normal patterns of transport in mutant neurons. (C-F) Fluo-4 staining of R94Q/+ and 

control Drg neurons show that axonal degeneration is absent in cultures of mutant neurons. 
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Figure 4-5: R94Q heterozygous mice display normal tolerance to 2-deoxy-glucose. 2DG 

was administered via i.p. injection at 750 mg/kg (A) or 1000 mg/kg (B) every day for 7 days. 

Plastic embedded sections of tibial nerve were used to estimate the number of axons remaining 

after the 2DG regimen. Neither regimen produced differential loss of axons in R94Q/+ mice 

compared to controls. 

 

 

 

104 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6: R94Q/+; TrJ/+ dihybrid mutants do not display an increase in axon loss. While 

plastic embedded sections of +/+ (A) and R94Q/+ (C) tibial nerve appeared normal, while TrJ/+ 

(B) and R94Q/+;TrJ/+ sections showed obvious axonal loss and signs of Wallerian degeneration. 

Quantification of axon loss (F) revealed that the amount of axon loss did not differ significantly 

between TrJ/+ and R94Q/+;TrJ/+ mice indicating that axons from R94Q/+ mice did not display an 

increased sensitivity to demyleination. 
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Chapter 5 

 

Conclusions and Future Directions 

 

The work described in this dissertation helps to establish a new role for mitofusins in the transport 

of axonal mitochondria and provides evidence that proper mitochondrial movement and 

distribution support axonal integrity. We also demonstrate that inhibition of mitochondrial fusion is 

not sufficient to disrupt transport or cause axonal degeneration in culture, arguing that MFN2’s 

role in mitochondrial transport maybe more pertinent to the pathogenesis of CMT2A than its role 

in fusion. This difference also helps to clarify why mutations in MFN2 and OPA1, both known to 

mediate mitochondrial fusion, have distinct neurological consequences. We have also identified 

overlapping roles of MFN1 and 2 in mediating mitochondrial transport, which may offer hope as a 

target for therapeutic intervention in CMT2A. If MFN1 can be upregulated in the affected cell 

population, the effects of mutant MFN2 may be ameliorated.  

 Though this work helps begins to clarify the molecular mechanisms underlying CMT2A, 

there is much future work is needed to fully understand the role mitofusins play in mitochondrial 

transport and elucidate pathways leading to axon degeneration. In conjunction, identifying the 

regulatory elements controlling levels of neuronal MFN1 could offer an avenue for the first viable 

treatment for CMT2A. The following sections will discuss both the contextual significance of some 

of our findings and point out areas of future research to be pursued. 

 

Mitofusins regulating mitochondrial transport 

Mitochondrial transport and fusion are continuous processes. In order to reach a target 

membrane, mitochondria must be actively transported. In fact, if mitochondrial transport is 

disrupted, fusion will also be disrupted as a result of immobility. Control of fusion and transport 

must be integrated to assure that actively fusing mitochondria are not being transported away 

from the target membrane. The selection pressure to integrate these two processes may have 

106 
 



given rise to the novel regulatory role of mitofusins in transport. Since both mfn1 and 2 are 

endowed with this function, the molecular predecessor of the two isoforms must have acquired 

the role. Only one isoform of mitofusin is present in yeast, suggesting that a mitofusin 

predecessor was already an integral component of mitochondrial transport regulation before the 

appearance of metazoan animals. 

 Along with OPA1, DRP1 and several other proteins, mitofusins are categorized as 

members of the large dynamin-like GTPase family. The classic dynamin molecule mediates 

vesicle membrane tubulation and scission, which is directly analogous to DRP1’s function in 

mitochondrial membrane fission. Mitofusins and OPA1 however, seem to perform the opposite 

function and mediate mitochondrial membrane fusion. Common to both processes, however, are 

membrane deformation and the generation of force to fuse or separate the membranes. These 

abilities seem to underlie the primary functions of all members of the large dynamin-like GTPase 

family. The application of membrane deformation and force generation to the regulation of 

transport however, is not easy to surmise. Over the course of natural history, mitofusins may 

have developed a unique function in the control of transport. 

  A mechanistic explanation of how mitofusins regulate transport is still unclear. In chapter 

one of this dissertation evidence is given to support the direct of mfn2 and mfn1 in mediating 

mitochondrial movements. Loss of mitochondrial mobility in axons of mfn2 null mice and the 

interaction of mfn2 and mfn1 with the miro/milton complex, argue strongly for their direct 

involvement. It was also shown that mitofusins do not act as a direct link between the outer 

mitochondrial membrane and microtubule-based motors and MFN2 disease mutants do not 

disrupt the miro/milton or milton/kinesin interactions. Interestingly, recent studies have 

demonstrated that the motor domain of Kif5 can bind to miro in the presence of elevated intra-

axonal Ca2+, disengaging Kif5 from microtubules and allowing mitochondria to cease moving. 

Because mitofusins bind to miro proteins, they could feasibly regulate this interaction. Loss of this 

regulatory function would explain the cessation of mitochondrial movement in mfn2 null DRG 

neurons. The case of the dominant negative MFN2 disease mutants is a bit trickier. If a single 

mitochondrion has multiple miro/milton/kinesin complexes, there is no reason why one complex 

107 
 



containing a mutant MFN2 protein would inhibit movement propagated by another complex on the 

same mitochondrion with a wild type MFN2 molecule. If multiple functional units are required per 

mitochondrion, however, it could explain the markedly slower mitochondrial movements we 

observed with overexpression of mutant proteins. This would also fit with the observation that 

higher levels of mutant protein expression lead to more severe transport deficits, which would 

reflect the increased presence of miro/milton/kinesin complexes interacting with a mutant MFN2 

molecule. Alternatively, if a mitochondrion contains only one miro/milton/kinesin complex, the 

presence of mutant MFN2 protein would easily cause a severe disruption of transport.  

 Though the number of the number of miro/milton/kinesin complexes per mitochondrion is 

still unknown, testing the ability of MFN2 to abrogate the interaction of kinesin motor heads with 

miro proteins would be straight forward. It is however only one possible explanation and another 

molecular player that interact with mitofusins could be key in their ability to regulate transport. 

 Mitofusin 2 also interacts with PINK1 kinase, which localizes to mitochondria and 

decreases the frequency of their movements (unpublished correspondence). Our preliminary data 

shows that MFN2 and MFN2 disease mutants coimmunoprecipitate with PINK1. Though the 

mutants do not show an increased binding affinity for PINK1, their abnormal function may play an 

unforeseen role in balancing the affect of PINK1 activity on mitochondria.    

 Finally we are only beginning to understand the architecture of the mitochondrial 

transport apparatus. There are probably many more proteins that regulate the transport of 

mitochondria that may interact structurally or functionally with mitofusins. As future studies begin 

to elucidate the complete composition of the transport complexes we may be able to fit together 

the missing pieces of the puzzle. 

 

Mitochondrial transport and axonal degeneration 

 Based on the work presented in this dissertation, we hypothesize that mitochondrial transport 

acts not only to deliver mitochondria to distal sites in the axon but also to actively redistribute 

mitochondria along axons. Meeting local energy and Ca2+ buffering demands in this way is 
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probably essential for the integrity of the axons in vivo. We also postulate that the susceptibility of 

long axons in CMT2A may be due to this phenomenon. Because a single critical insult along an 

axon is capable of causing degeneration of the entire axon distal to the site, longer axons would 

be more susceptible to defects in mitochondrial redistribution simply because the probability of 

one such critical insult occurring is greater with increasing axon length.   

 We feel that this explanation is more likely than a catastrophic deficit in the delivery of 

mitochondria to the distal axon based on 2 of our observations: 1) loss of mfn2 in cultured 

neurons results in abnormal mitochondrial movement patterns but mitochondria still populate the 

entire axon and 2) mitochondrial transport in r94Q heterozygous mice appears grossly normal 

suggesting that the transport deficit in CMT2A patients may be subtle. Though Chapter 3 of the 

dissertation discusses how our data supports the importance of local mitochondrial movement in 

supporting axon integrity, there are several topics that should still be addressed. 

Mitochondiral biogenesis in neurons 

The current dogma holds that mitochondrial biogenesis occurs exclusively in the soma of 

neurons. If this is true, given the average velocity of a moving mitochondria is ~1μm/sec, it would 

take a mitochondria originating in the cell body of a motor neuron approximately 11.5 days to 

reach the presynaptic terminals innervating muscles of the feet. The estimated half-life of 

mitochondrial protein in the brain is around 24 days. This would mean that a mitochondrion would 

have turned over roughly 24% of the proteins it started with in the soma by the time it reached the 

neuromuscular junctions in the feet. It’s hard to know if this decrement would have any functional 

consequence on a mitochondrion and it may stand to reason that supplying new mitochondria 

solely from the cell body is a viable strategy. Furthermore, translation of genes encoded in the 

mitochondrial genome could continue at this distant location. Mitochondrial genes encoded in the 

nucleus could only be newly synthesized if mRNA were transported down the axon and 

translated; however, transport of mRNA down axons has been well established for numerous 

genes and translation of mRNA in axons is beginning to be appreciated. Accordingly, distally 

stationed mitochondria may be able to rejuvenate their entire repertoire of proteins.  
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 If mitochondria can only be synthesized in the cell body and distributed to the distal axon 

by active transport, than disruption of mitochondrial transport by MFN2 disease mutants could 

severely decrease the population of viable mitochondria in distal nerves of CMT2A patients. This 

would opposeour view on the central importance of local mitochondrial redistribution in generating 

a length dependent neuropathy. The two explanations however, are not mutually exclusive. 

Hampered delivery of mitochondria down axons and deficits in local redistribution of mitochondria 

could both contribute to the disease pathophysiology.  

 Emerging data does exist to support that occurrence of mitochondrial biogenesis in 

axons. The ability of mitochondria to replicate their genome within axons coupled with the ability 

of axonal mitochondria to increase in number by active fission argues that mitochondrial pools in 

distal axons may not be reliant on transport of new mitochondria from the soma. If this holds true, 

it would lend further credence to our idea that local redistribution of mitochondria is sufficient to 

explain the length dependent degeneration of axons and that trans-axonal transport of 

mitochondria is not necessary to explain the phenomenom. 

 

Mitochondria in the axons of CMT2A patients 

Little is currently known concerning the affects of MFN2 disease mutants on mitochondrial 

function and transport in CMT2A patients.  Conflicting stories have arisen over the functional 

status of mitochondria in patient fibroblasts. Mitochondrial respiration appears either completely 

normal or slightly increased (due to a decoupling effect and inefficient oxidative phosphorylation) 

while mitochondrial fusion is unaffected by several different mutant alleles. The status of 

mitochondrial function and transport in patient neurons however is completely unknown. Currently 

our lab is developing several lines of induced pluripotent stem cells from CMT2A patient 

fibroblasts. After differentiating these cells into neurons, we hope to directly address the function 

and mobility of mitochondria in patient neurons. 

 Direct observation of axonal mitochondria in CMT2A patients has come from two 

sources: 1) EM of sural nerve biopsies and 2) immunoflourescent visualization of mitochondria in 
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sensory nerve endings present in patient skin biopsies. In both cases, mitochondria appear to 

properly populate distal nerve segments, though EM of sural nerve sections reveals scattered 

clusters mitochondria with abnormal cristae against a back drop of normal appearing distribution 

of mitochondria. This argues against a severe transport deficit that limits trans-axonal transport 

but would be consistent with a subtle defect that disrupts local mitochondrial movements and 

distribution.  

 

Increasing the levels of neuronal MFN1 to treat CMT2A. 

Excitingly, increasing levels of MFN1 in cultured DRG neurons expressing MFN2 disease 

mutants, attenuates the mitochondrial transport deficit and eliminates signs of axon degeneration. 

While we have shown that mRNA levels of mfn1 are nearly identical in mouse embryonic 

fibroblasts and DRG neurons, protein levels of mfn1 are slightly lower in DRG neurons and 

appears as two bands on western blot, one lower in weight than expected. Mfn1 may be 

differentially spliced or post translationally processed specifically in neurons. It has be speculated 

that neurons may be selectively vulnerable to mutations in mfn2, if neuronal levels of mfn1 were 

too low to compensate for the dysfunctional mfn2 allele. Perhaps the lower weight molecular 

variant of mfn1 present in mouse DRG neurons does not retain the functions of the full length 

protein and neurons are left with lower levels of mfn1 than fibroblasts, which are not affect in 

CMT2A. Alternatively, the detectable amounts of mfn1 protein in mouse neurons may explain why 

the heterozygous R94Q mice described in chapter 4 do show a phenotype. Further work to 

determine the relative expression levels of MFN1 in human neurons would help clarify the 

situation. 

 Once the expression pattern of MFN1 in human neurons is elucidated, further efforts can 

be made to increase its prese456789 ce by way of small molecules. If MFN1 mRNA levels are 

low, mapping of the MFN1 promotor region would allow construction of a high through put assay 

to identify drugs that would increase expression levels. Alternatively, if diminished levels of MFN1 

are caused by alternative splicing patterns, morpholino oligomers could be designed to favor the 
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full length MFN1 mRNA product. Either way, we to focus our future efforts on testing the viability 

of this treatment strategy and keep a cure for CMT2A within our sights.   
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