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Abstract of the Dissertation 

The mammalian Ajuba LIM proteins (Ajuba, LIMD1, WTIP) are cytosolic adapter 

proteins recruited to nascent epithelial adherens junctions, where they are thought to 

contribute to junctional assembly and/or stability.  They also shuttle into the nucleus 

acting as corepressors of the Snail family of transcriptional repressors, thereby 

contributing to epithelial mesenchymal transition. As such they have the potential to 

communicate cell adhesive events with nuclear responses to remodel epithelia.  

Determining their role(s) in vivo, however, has been challenging due to shared interacting 

proteins, overlapping tissue expression and functional redundancy in cells. Thus, we 

turned to the Drosophila model system where a single gene, CG11063 or djub, exists. 

The generation and analysis of Drosophila containing djub mutant loss-of-function 

alleles or depleted of dJub by RNAi identify djub as an essential gene required for normal 

development and a novel regulator of epithelial organ growth as a component of the 

conserved Hippo pathway, which has been implicated in both tissue size control and 

cancer development. djub-deficient epithelial tissues were small due to decreased cell 

numbers resulting from increased apoptosis and decreased proliferation due to the 

downregulation of DIAP1 and cyclin E, phenocopying tissues deficient for Yorkie (Yki), 

the downstream target of the Hippo pathway. djub genetically interacts with the Hippo 

pathway, and genetic epistasis suggests that djub influences wts activity. In mammalian 

and Drosophila cells, Ajuba LIM proteins/dJub specifically interact with LATS/Wts and 

WW45/Sav to inhibit phosphorylation of YAP/Yki. This work describes a novel role for 

the Ajuba LIM proteins as negative regulators of the Hpo signaling pathway.  
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Growth Control and the Hippo Pathway 

 

How animals, organs and tissue know when to stop growing is an unanswered 

question. Each organ in an animal has a specific architecture and pattern, and develops to 

a defined final size in proportion with the rest of the animal (Dong, Feldmann et al. 2007; 

Harvey and Tapon 2007; Saucedo and Edgar 2007). Several examples exist of 

experimental systems to dissect organ size control, one such being the regeneration of 

tissue after tissue injury or experimental procedures. For instance, after partial 

hepatectomy, the hepatocytes in the liver mobilize to proliferate rapidly and thereby 

increase the size of the regenerating liver. Once the liver reaches the original 

predetermined size, the cells stop dividing ensuring that the regenerating liver is not over-

grown (Fausto, Campbell et al. 2006).  The myth of Prometheus suggests Greeks were 

aware of the regeneration capabilities and growth regulating abilities of the liver.  

As in the case of the regenerating liver, the development of a functional organ 

requires both regulated patterning mechanisms that allow its constituent cells to acquire 

proper identities, and growth-regulatory mechanisms that determine final organ size. 

Over the past two decades, developmental geneticists have identified most of the key 

signaling pathways that regulate cell fate decisions. Such as, Notch, Wnt, TGF-β, 

Hedgehog, receptor tyrosine kinase, nuclear receptor, and Jak/STAT pathways (Barolo 

and Posakony 2002).  More recently, genetic approaches have identified two signaling 

cascades that govern organ growth. One is the tuberous sclerosis tumor suppressor 

complex (TSC)–target of the rapamycin (TOR) pathway. This pathway controls organ 

size by regulating cell growth and size (Pan, Dong et al. 2004). The other is the Hippo 
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(Hpo) pathway, which controls organ size by regulating cell growth, proliferation, and 

apoptosis. 

Genetic studies in Drosophila have been at the forefront of the identification of 

the pathways that control organ size. The Drosophila imaginal discs (small sacs of cells 

within Drosophila larvae that give rise to the adult structures of the adult fly) provide an 

ideal system to study growth control. Imaginal discs are first set aside during late 

embryogenesis after which they proliferate exponentially during the larval stages, thereby 

increasing their mass almost one-thousand fold. During metamorphosis they differentiate 

into their respective adult structures like the eye, wing or leg (Cohen 1993).  A key 

advance that enabled identification of genes that govern growth control in flies was the 

application of FRT/FLP- based site recombination events towards the ability to generate 

mosaics. This is especially relevant for genes that regulate growth control as animals that 

lack the function of one such gene die early in embryogenesis preventing the analysis of 

imagnial disc development. Thus, the generation of small patches of cells homozygous 

mutant for these genes in a heterozygous background in an imaginal disc was essential to 

be able to follow the effect of these genes on growth control (Figure 1).  

In the past fifteen years, many groups have carried out genetic screens in 

Drosophila to identify mutants that specifically affect growth and not patterning (St 

Johnston 2002).  Through these screens the first three members, hippo (hpo), salvador 

(Sav), and warts (wts), that later came to be known as the Hippo pathway were identified 

due to their overgrowth phenotype. Warts (also known as lats) was one of the very first 

genes isolated using the FLP/FRT based mosaic screen (Figure 1). Wts is a tumor 
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suppressor, and encodes a kinase of the Nuclear Dbf-2-related (NDR) family (Xu and 

Rubin 1993; Justice, Zilian et al. 1995). Loss of wts leads to severe cell-autonomous 

overgrowth in epithelial structures, but has no affect on cell fate determination.  Next, the 

binding partner of wts, salvador (sav or shar-pei), was identified (Figure 3A). This tumor 

suppressor gene encodes a WW domain-containing protein and mutations in sav lead to 

cell-autonomous overgrowth as well (Kango-Singh, Nolo et al. 2002; Tapon, Harvey et 

al. 2002). Importantly, it was found that loss of wts or sav coordinately regulates both the 

increase in cell proliferation and a reduction in apoptosis. Future experiments revealed 

that the increase in proliferation and decrease in apoptosis is brought about by the 

misregulation of the pathway’s downstream transcriptional targets CyclinE, Drosophila 

inhibitor of apoptosis protein DIAP1 respectively (Nolo, Morrison et al. 2006; Willecke, 

Hamaratoglu et al. 2006).  

The hpo tumor suppressor gene, which encodes a Ste-20 family protein kinase 

(Harvey, Pfleger et al. 2003; Pantalacci, Tapon et al. 2003; Udan, Kango-Singh et al. 

2003; Wu, Huang et al. 2003) and phenocopies the wts and sav loss of function 

overgrowth phenotypes (Figure 2), was the next critical member of the pathway 

identified. Interestingly, Hpo phosphorylates and activates Wts, with Sav further 

potentiating this phosphorylation reaction (Figure 3A) (Wu, Huang et al. 2003). Another 

NDR family regulatory protein, Mob1-related protein, termed Mats in Drosophila, was 

isolated as a binding partner of Wts, and found to potentiate the intrinsic kinase activity 

of Wts (Lai, Wei et al. 2005).  Mutations in mats yield loss of function phenotypes 

essentially identical to those observed for hpo, sav and wts. Thus, within the Hippo 

pathway kinase cascade the Hpo and Wts kinases both associate with and are stimulated 
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by regulatory proteins, Sav and Mats, respectively. In total, the Hpo kinase cascade 

inhibits proliferation by downregulating CyclinE levels, and promotes cell death by 

downregulating DIAP1 levels. The Hippo pathway mediates its effects on CycE and 

DIAP1 via its negative effect on the function of the transcriptional coactivator Yorkie 

(yki). Yki is the critical substrate and directly inhibited by the kinase activity of Wts 

(Huang, Wu et al. 2005). Wts phosphorylates Yki on residue S168, which inactivates Yki 

by promoting its cytoplasmic retention through an interaction with 14-3-3 binding 

proteins (Huang, Wu et al. 2005; Dong, Feldmann et al. 2007).  Overexpression of Yki 

phenocopies the wts loss of function phenotype with respect to both the morphological 

overgrowth phenotypes and the downregulation of diap1 and cyclinE transcription. In 

contrast, yki loss of function leads to tissue atrophy (Figure 3).   

Diap1 and cyclinE are two of the target genes regulated by Yki/Hippo pathway 

with additional targets being identified recently. The microRNA bantam, is a positive 

regulator of imaginal disc growth that regulates both cell proliferation as well as 

apoptosis, (Brennecke, Hipfner et al. 2003) is one of these as the levels of bantam 

increase in tissue overexpressing Yki (Nolo, Morrison et al. 2006). Bantam binds the IAP 

inhibitor head involution defective (hid) as one of its targets, (Brennecke, Hipfner et al. 

2003) however loss of bantam only partially reverts the yki overgrowth phenotype 

suggesting that the overgrowth phenotype results from a combination of other Yki targets 

such as DIAP1, CyclinE and others.  

Yki is a transcriptional coactivator. Thus, Yki-interacting transcription factors 

must provide Yki with its promoter selectivity. Scalloped (Sd), a TEAD-domain 
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containing transcription factor, has been reported to mediate Yki-induced gene 

expression as well as the overgrowth phenotype. Sd is a crucial regulator of cell 

proliferation and survival in wing imaginal disc cells (Halder, Polaczyk et al. 1998; 

Goulev, Fauny et al. 2008; Wu, Liu et al. 2008). Although Yki and the Hippo pathway 

function ubiquitously throughout the Drosophila tissue, Sd is expressed in narrower 

spectrum of cells (Campbell, Inamdar et al. 1992). Also yki mutants have a much more 

severe growth defect as compared to sd mutant clones and in fact Yki mutants that are 

unable to bind Sd still induce an overgrowth defect (Huang, Wu et al. 2005; Wu, Liu et 

al. 2008; Zhao, Ye et al. 2008). This suggests that other transcription factors exist that 

mediates the function of Yki and the Hippo pathway in tissues other than the wing and/or 

in a partially redundant manner with Sd. 

Upstream signaling to the Hippo pathway 

Merlin (Mer) and its related protein Expanded (Ex) have been identified as 

potential upstream regulators of Hpo (Figure 3A). Both Mer and Ex are FERM, 4.1, 

Ezrin, Radixin, Moesin, domain containing proteins. This family of proteins typically 

function as adapter proteins that link transmembrane proteins to the cytoskeleton or to 

cytoskeleton-associated proteins (Hamaratoglu, Willecke et al. 2006). Mer has a human 

ortholog, neurofibromatosis 2 (NF2), a tumor suppressor gene that has been found to be 

mutated in central nervous system tumors (McClatchey and Giovannini 2005).  Both Mer 

and Ex localize adherens junctions Drosophila.  Furthermore, Mer and Ex also 

heterodimerize with each other and seem to function redundantly to promote signaling 

through the Hippo pathway to inhibit yki function, as tissue doubly mutant for ex and mer 

yield overgrowth phenotypes that are virtually indistinguishable from hpo, wts or sav 
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mutant tissue based on morphology and molecular criteria (McCartney, Kulikauskas et al. 

2000). Genetic epistasis tests place mer and ex upstream of hpo, with the overexpression 

of Mer and Ex leading to an increase in Wts phosphorylation and a downregulation of 

Yki activity (Willecke, Hamaratoglu et al. 2006; Feng and Irvine 2007).  How Mer and 

Ex activate the Hippo kinase cascade is still unknown since neither bind Hpo directly 

(Hamaratoglu, Willecke et al. 2006).  

Most of the Hippo pathway components in Drosophila are ubiquitously expressed 

throughout imaginal disc development. The pathway may be regulated by a specific 

signal given out in a spatial or temporal fashion, triggering cell death or cell cycle exit at 

the appropriate time during development. Another view with respect to the mode of 

regulation of the Hippo pathway is that the pathway is typically constitutively active 

however its signaling capacity is modulated by other pathways. Data suggest that such 

cues may come from morphogens such as Decapentaplegic (DPP) and wingless or other 

growth regulatory pathways such as JAK-STAT (Janus kinase -signal transducer and 

activator of transcription), epidermal growth factor receptor (EGFR) and Delta-Notch 

(Hariharan and Bilder 2006). For instance, membrane proteins such as EGF receptor, 

Notch, E-cadherin and the Hedgehog receptor Patched, are found to be upregulated in the 

mer;ex double mutants suggesting that transmembrane receptor signaling is altered in 

these cells (Maitra, Kulikauskas et al. 2006).  Mer and Ex might therefore regulate the 

activity of the Hippo pathway by regulating the abundance of some of these receptor 

proteins at cell surfaces.  
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The transmembrane protein Fat (Ft), an atypical cadherin, may be the upstream 

receptor that activates the Hippo pathway (Bennett and Harvey 2006; Silva, Tsatskis et 

al. 2006; Willecke, Hamaratoglu et al. 2006). Ft is a tumor suppressor gene that acts 

linearly upstream of Ex and Hpo (Figure 3A). Ft mutant cells have a phenotype similar to 

that of hpo or wts, including the upregulation of cycE and diap1 along with increased cell 

proliferation and decreased cell death. Fat has been shown to regulate Hippo pathway 

activity by promoting the stability and/or localization of Ex to the apical membranes of 

cells (Bennett and Harvey 2006; Silva, Tsatskis et al. 2006; Willecke, Hamaratoglu et al. 

2006). The regulation of Ex is crucial since its expression is in fact stimulated when the 

Hippo pathway activity drops via a negative feedback loop.  In fact both Ex and Mer are 

upregulated in clones lacking Hippo pathway genes, hpo, sav and wts. The upregulation 

is a result of derepressed tanscription, since the levels of ex transcripts is elevated in the 

mutant clones. Ex and Mer were both found in higher levels in hpo, sav and wts mutant 

clones. This regulation is independent of the development al stage of the tissue or the 

position of the clone. Thus, the expression of the Hippo signaling pathway components 

regulates itself via the feedback loop. The regulation of mer and ex expression levels by 

Hippo signaling suggests that feedback mechanism might be an important system in place 

to keep Hippo signaling in a steady state.  

Ft is capable of regulating the Hippo pathway independent of Ex and Hpo in a 

parallel pathway. ft mutant clones show decreased Wts protein levels. Ft controls the 

abundance of the Wts protein by negatively regulating Dachs, an unconventional myosin 

(Cho, Feng et al. 2006). Dachs directly binds Wts acting as a scaffold to bring Wts to 

proteins that will promote Wts proteolysis. Both Fat and Dachs localize to apical cell 
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junctions, however so far no direct interaction between them has been established. 

Furthermore, the overexpression of Wts can rescue ft mutants to viability (Cho, Feng et 

al. 2006; Mao, Rauskolb et al. 2006; Feng and Irvine 2007). Thus the Ft-Dachs and the 

Hpo-Sav pathways act in parallel to control the levels of Wts or the activity of Wts 

respectively.  

In summary, the Drosophila Hippo pathway model as it stands now involves a 

series of events that leads to the activation of the Hippo pathway that leads to 

phosphorylation of Warts, phosphorylating Yki. This phosphorylation of Yki on Ser168 

in turn introduces a 14-3-3 binding site sequestering Yki in the cytoplasm. In its 

unphosphorylated state, Yki is not inhibited by the Hippo pathway and can bind to the 

cofactor Scalloped (Sd) and enter the nucleus where it is able to induce the transcription 

of genes, CyclinE and DIAP1, required to promote cell growth and inhibit apoptosis. 

Finally, Ex, Merlin and Fat can activate the Hippo pathway and the activation of the 

Hippo pathway can also be affected by Dachs, which binds to Wts and promotes its 

degradation (Figure 3A).  

Hippo signaling in mammals 

The Hippo pathway is highly conserved throughout evolution and the function of 

the fly proteins and their mammalian counterparts are conserved as well. Mst1/2 are the 

mammalian homologs of Hpo, WW45 the homolog of Sav, Lats1/2 are the mammalian 

homologs of Wts, Mob1 is Mats homolog, YAP is the Yki homolog, NF2 the Mer 

homolog and to lesser extent FRMD6 is the mammalian homolog of Ex homolog and 

Fat4 the Fat homolog (Figure 3B). Expression of the mammalian proteins in several of 
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the loss of function mutant flies have been rescued with their respective human 

counterparts; namely YAP, Lats1, Mst1, and Mob1 in flies mutant for the orthologous fly 

gene (Tao, Zhang et al. 1999; Wu, Huang et al. 2003; Lai, Wei et al. 2005). The strong 

rescue of the mutant phenotype indicates that these proteins are functionally conserved 

from Drosophila to mammals. The Hippo pathway function is conserved in mammalian 

cells or models with respect to organ size control since the overexpression of YAP in a 

mouse liver results in a striking increase in liver size and leads to tumor metastasis 

(Camargo, Gokhale et al. 2007; Dong, Feldmann et al. 2007). 

The conservation of the pathway for the upstream components Fat and Ex is less 

clear in mammalian cells. However, similarlar to Hpo in Drosophila, Mst is crucial in the 

mammalian Hippo pathway and functions to phophorylate the core components of the 

pathway. Mst1/2 phosphorylates Lats1/2 on its activation loop and in addition, Lats is 

capable of autophosphorylation (Chan, Nousiainen et al. 2005). Further, WW45 interacts 

with Mst, following which Mst phosphorylates WW45 (Callus, Verhagen et al. 2006). 

Mst1/2 also phosphorylates Mob1 which in turn strengthens the Mst-Lats interaction 

(Praskova, Xia et al. 2008). Similar to their Drosophila counterparts, Mst, WW45, Lats 

and Mob induce the phosphorylation, cytoplasmic translocation and inhibition of YAP 

(Overholtzer, Zhang et al. 2006; Zhang, Smolen et al. 2008). Also TEAD family 

transcription factors which are mammalian homologs of Drosophila Sd have been found 

to mediate YAP function in mammalian cells (Zhao, Ye et al. 2008). In fact, Lats directly 

phosphorylats YAP on serine residues in five conserved motifs, one of them being S127 

(Hao, Chun et al. 2008). As in the case of Yki, the S127 phsophoryaltion on YAP by Lats 

generates a 14-3-3 binding site which sequesters YAP in the cytoplasm leading to its 
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nucleus to cytoplasm translocation (Figure 3) (Lee, Kim et al. 2008). In fact using mutant 

S168 YkiA or S127A YAP transgenes in Drosophila, where the serine residues are 

changed to Alanine and cannot be phosphorylated, leads to overgrowth. This function of 

YAP being negatively regulated by the Hippo pathway is evolutionarily conserved since 

YAP’s role in promoting cell proliferation and oncogenic transformation are both 

inhibited by co-expressing Lats1 and Mst1(Zhang, Smolen et al. 2008).  

 

Hippo pathway and cancer 

The inactivation of the Hippo pathway promotes growth by promoting cell 

proliferation and inhibiting cell death, and thus may lead to cancer. In addition, several of 

the Drosophila Hippo pathway mammalian homologs have been implicated in 

tumorigenesis. The mammalian homolog of Hpo, Mst1/2, is known to be proapoptotic in 

cultured mammalian cells, (Cheung, Ajiro et al. 2003, Lehtinen, Yuan et al. 2006). Mice 

lacking the wts mammalian homolog lats, develop soft-tissue sarcomas and ovarian 

tumors (St John, Tao et al. 1999).  Lats has also been implicated in the control of mitosis 

and cytokinesis in mammalian cells, and its loss can lead to multinucleation, centrosome 

amplification and genomic instability (McPherson, Tamblyn et al. 2004). Also, Lats1 and 

Lats2 have been found to have methylation dependant silencing that correlate with the 

aggressive phenotype in human breast cancers (Takahashi, Miyoshi et al. 2005) and Lats2 

can be regulated by microRNAs miR-371 and miR-373 which are upregulated in 

testicular cancer lines and tumor samples (Aylon, Michael et al. 2006; Voorhoeve, le 

Sage et al. 2006). Therefore, the downregulation of Lats via several different mechanisms 

may promote tumor formation. WW45, the human orthologs of sav is deleted in several 
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renal cancel cell lines and in fact the WW45 knockout mouse displays hyperplasia and 

differentiation defects in mouse epithelial structures (Lee, Kim et al. 2008). MOB1K1B 

(mats) has been found to be deleted in cell lines derived from human melanoma samples 

and mouse mammary gland carcinomas (Tapon, Harvey et al. 2002; Lai, Wei et al. 2005). 

NF2 or mer is a known tumor suppressor gene mutations in which can lead to 

neurofibromatosis. Mutations in NF2 have been observed in sporadic tumors of the 

nervous system as well as other tumors like mesothelioma (McClatchey and Giovannini 

2005). Recently YAP (Yki) has been implicated in mammalian cancers. The amplicon 

11q22 in humans contains both YAP and cIAP2 and has been found to be amplified in 

several human cancers including liver, lung, pancreatic, ovarian and oesphageal (Imoto, 

Yang et al. 2001; Dai, Zhu et al. 2003; Snijders, Schmidt et al. 2005). Besides the 

genomic amplification, YAP expression and its nuclear localization has also been 

reported to be elevated in multiple types of human cancers (Zender, Spector et al. 2006; 

Steinhardt, Gayyed et al. 2008).  Also Yap when overexpressed is able to transform 

immortalized mammary epithelial cells in vitro including the ability to induce growth-

factor and anchorage-independent growth, epithelial-mesynchymal transition and 

resistance to apoptosis (Dai, Zhu et al. 2003; Overholtzer, Zhang et al. 2006). Thus, both 

yki and Yap act as oncogenes.  

 
LIM domain containing proteins 

 As a result of the studies conducted in this thesis, we have discovered a novel 

regulator of the Hippo pathway, namely the Ajuba subfamily of LIM proteins. The Ajuba 

LIM proteins are a subgroup of a larger group of LIM domain containing proteins that are 

known for their ability to carry out protein-protein interactions. LIM domains were 
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originally identified as novel cysteine-rich protein motifs, common to the Caenorhabditis 

elegans cell-lineage protein LIN-11, the rat insulin gene-enhancer-binding protein Isl1, 

and C. elegans neuronal specification gene MEC-3 (Freyd, Kim et al. 1990; Karlsson, 

Thor et al. 1990). LIM domains are protein-protein interaction domains that act as key 

components of the regulatory machinery in a cell. These domains enable LIM proteins to 

recruit specific target proteins via protein-protein interactions to specific subcellular 

compartments, modulate the activity of their targets or help nucleate the assembly of 

multi-component complexes.  Thus, through the specific binding of their targets LIM 

domain proteins are able to regulate a diverse array of cellular circuits.  

Although LIM domains are absent in prokaryotes, they are found in almost every 

eukaryotic organism whose genome has been sequenced, such as yeast, slime moulds and 

plants to Drosophila and humans. In the human genome, 135 LIM domains have been 

identified within 58 proteins (Hobert and Westphal 2000). A LIM domain contains 2 

tandem zinc-finger motifs, and LIM proteins can contain up to 5 LIM domains. Each 

LIM domain typically consists of approximately 55 amino acids. The LIM consensus 

sequence is CX2CX16–23HX2CX2CX2CX16–21CX2(C/H/D) (Schmeichel and Beckerle 

1994), however the consensus sequence becomes more variable between species and also 

within the array of LIM sequences (Michelsen, Schmeichel et al. 1993).   

 LIM domains can be linked to many different proteins domains within LIM-

containing proteins such as, SH or PDZ domains, homeodomains, catalytic domains, 

cytoskeletal-binding domains etc and finally the LIM domains can be C-terminus, N-

terminus or internal. Structural studies have made it clear that the LIM domains are 
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multiple protein binding adapters and several can use their additional motifs to mediate 

interactions with a variety of proteins, both sequentially as well as at the time with 

multiple proteins (Kadrmas and Beckerle 2004). The LIM domains can form dimers with 

other LIM domains or bind structurally varied protein motifs. LIM domain containing 

proteins are found in the nucleus as well as in the cytoplasm. The proteins are broadly 

categorized into actin associated LIM proteins, nuclear LIM proteins, LIM only proteins, 

and catalytic LIM proteins (Kadrmas and Beckerle 2004).  

The actin associated LIM proteins like the members of the zyxin, paxillin and 

enigma proteins are able to shuttle between the cytoplasmic and nuclear compartments 

therefore influencing gene expression (Breen, Agulnick et al. 1998). This group of LIM 

proteins interact with a wide variety of partners. These proteins also contain various other 

protein-protein interaction motifs such as PDZ, LD (leucine-aspartate repeat) and actin 

target domains (Figure 4). Several of these proteins localize to focal adhesions (Zyxin, 

Paxillin).  Extracellular signals induce the translocation of these proteins into the nucleus 

potentiating the transcriptional regulation of target genes. Once in the nucleus these 

proteins also act as transcriptional co-activators and co-repressors (Wang and Gilmore 

2003). The Ajuba subfamily of proteins are members of this group and will be the focus 

of the thesis in the following chapters. 

Nuclear proteins like the LIM homeodomain proteins (LHX) and nuclear LIM 

only proteins (LMO) contain N terminal tandem LIM domains and are primarily involved 

in transcription during development (Figure 4) (Hobert and Westphal 2000). The LHX 

and LMO proteins also play a role in cell lineage determination and pattern formation 
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during development (Breen, Agulnick et al. 1998). The LMO proteins are transcriptional 

co-factors and form complexes with other transcription factors in order to regulate 

transcription. LHX proteins however are transcription factors that bind DNA through 

their homeodomain. (Jurata and Gill 1997; Matthews and Visvader 2003; Deane, Ryan et 

al. 2004).  

 The LIM only proteins include four-and-a-half LIM (FHL), cysteine rich proteins 

(CRP) and particularly interesting new cystein- and histidine-rich proteins (PINCH) as 

well as some nuclear LMOs (Figure 4). These are found both in the nucleus as well the 

cytoplasm and both associate with the cytoskeleton (Weiskirchen and Gunther 2003). 

FHL2 and FHL3 are examples of proteins that are components of the adhesion complexes 

(Li, Kotaka et al. 2001; Samson, Smyth et al. 2004).  

The third group, the catalytic LIM protein group is similar to the actin-associated 

group with respect to containing other protein-protein interaction motifs but this group 

contains the mono-oxygenase or kinase catalytic motif (Figure 4), which distinguishes 

them from the other LIM proteins (Kadrmas and Beckerle 2004). This group includes 

LIM-kinases and molecules interacting with CasL (MICALs), which are involved in cell 

cycle regulation and actin polymerization and depolymerization.  

Ajuba/Zyxin family of LIM proteins 

The Ajuba/Zyxin families of LIM proteins are actin binding proteins, and consist 

of six members: Zyxin family; Zyxin, lipoma preferred partner (LPP), thyroid hormone 

interacting protein 6 (Trip6), and Ajuba family; Ajuba, LIM domain-containing protein 1 
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(LIMD1), Wilms tumor 1 interacting protein (WTIP) (Figure 5) (Crawford, Michelsen et 

al. 1992; Petit, Mols et al. 1996; Beckerle 1997; Goyal, Lin et al. 1999; Kiss, Kedra et al. 

1999; Wang and Gilmore 2003). These proteins are characterized by the presence of three 

tandem homologous LIM domains in the carboxyl terminus (LIM region) and unique 

proline-rich N-terminal PreLIM regions (Figure 5) (Schmeichel KL et al., 1997). The 

proteins all share high sequence homology within the LIM domain region.  

These proteins are also components of the cell-cell junction adhesive complexes 

in epithelial cells and fibroblasts (Hoffman, L. M et al., 2003, Marie et al 2003).  As such, 

they have been shown to regulate cell migration in fibroblasts and contribute to the 

establishment and/or maintenance of cell-cell junctions in epithelial cells (Marie, H.S. et 

al., 2003 Crawford and Beckerle, 1991). In addition, these proteins are capable of 

shuttling to and from the nucleus as each one contains a nuclear export signal (NES) in 

their individual PreLIM regions (Figure 5) (Nix and Beckerle 1997; Kanungo, Pratt et al. 

2000). This characteristic renders them strong candidates to mediate signal transduction 

steps from the cell surface to the nucleus. The purpose of this thesis is to further examine 

the role of this family in signal transduction. In fact understanding how these proteins 

function at the level of junctions as well as in other compartments will shed light on the 

outside-in signaling that cells are able to orchestrate.   

Ajuba/Zyxin LIM proteins have been implicated in cell motility regulation, 

localize to focal adhesion sites, and associate with the actin cytoskeleton (Crawford, 

Michelsen et al. 1992; Petit, Fradelizi et al. 2000; Yi, Kloeker et al. 2002). Zyxin family 

members have the ability to bind α-actinin and contribute to the bundling of actin fibers. 
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Abrogating the Zyxin- α-actinin interaction displaces Zyxin from its normal subcellular 

localization and the cells show inhibited migration and spreading (Drees, Andrews et al. 

1999). The Zyxin family members, and not the Ajuba family members, are recruited to 

the leading edge of cells where they influence the actin assembly via an interaction with 

Ena/VASP proteins (Renfranz and Beckerle 2002).  

 With respect to the nuclear function of the Ajuba/Zyxin proteins, although the 

significance of Zyxin family members nuclear localization is not clear, we know that the 

accumulation of Ajuba in the nucleus plays a role in growth control and cell 

differentiation (Kanungo, Pratt et al. 2000). Overexpression of just the LIM domain 

region alone, which lacks the nuclear export sequence will accumulate in the nucleus and 

induce endodermal differentiation. Exactly how the Ajuba proteins are recruited to these 

different cellular is not well understood. As for the Zyxin family members, these proteins 

can localize to the nucleus but what their nuclear biological function and the regulation of 

their nuclear localization is not understood (Crawford and Beckerle 1991; Crawford, 

Michelsen et al. 1992; Nix and Beckerle 1997). Also both Ajuba and Zyxin have been 

implicated in mitotic cell cycle regulation. Both can associate with the tumor suppressor 

Lats1 and Ajuba can also interact with mitotic kinase Aurora A (Hirota, Morisaki et al. 

2000; Abe, Ohsugi et al. 2006).  

 The zinc finger structures in the LIM domains are known to mediate DNA 

binding in transcription factors. Evidence suggests that the Ajuba/Zyxin family members 

may not directly bind DNA but may act in the nucleus to affect transcription. These 

proteins are able to bind several nuclear proteins as well as transcription factors and have 
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been shown to have transactivation ability as measured by reporter gene assays (Lee, 

Choi et al. 1995; Petit, Fradelizi et al. 2000; Yang, Guerrero et al. 2000; Wang and 

Gilmore 2003). Based on the present data it appears that the LIM domains mediate the 

interaction with the transcription factors and the N-terminal domains act to enhance the 

transcriptions. It is also possible that the domains may act as sites for nucleation for the 

recruitment of transcription factor co-activators. 

 The Ajuba/Zyxin LIM proteins have been shown to regulate other signaling 

pathways as well. For instance, the PreLIM region consists of a putative SH3 recognition 

motif and in fact Ajuba and Zyxin interact with the SH3 domains of Grb2 and Vav 

respectively (Hobert, Schilling et al. 1996; Goyal, Lin et al. 1999). The functional 

relevance of the Zyxin-Vav interaction is unclear but the Ajuba-Grb2 interaction leads to 

an increase in Ras-dependent serum stimulated extracellular signal-regulated kinase 

(ERK) activation. The ERK acticvity in turn results in increased fibroblast proliferation 

(Goyal, Lin et al. 1999). 

 In summary, the Ajuba/Zyxin families play a robust and sometimes overlapping 

role in signal transduction within the cellular system. However, the roles of the Ajuba 

subfamily start to diverge from that of the Zyxin subfamily in epithelial systems.  

 

Cellular roles of the Ajuba subfamily of LIM proteins 

Studies have shown that Ajuba LIM proteins influence cell migration without 

impacting cell adhesion and cell spreading. In these studies, Ajuba acts upstream of focal 
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adhesion protein p130Cas localizing it to nascent adhesive sites in migrating fibroblast 

cells. The p130Cas–Crk complex leads to activation of Rac1, via an interaction with the 

DOCK180–ELMO guanine nucleotide exchange factor (GEF).  Previous studies from our 

lab have also shown that Ajuba null primary MEFs are defective in cell migration. In 

response to the migratory cues Rac activation was found to be defective in the null cells, 

in part through aberrant assembly and localization of the p130Cas–Crk–DOCK180-

ELMO Rac GEF (Pratt SJ et al., 2005). These data show that Ajuba regulates cell 

motility by activating Rac through regulating the recruitment of p130Cas to nascent 

adhesion sites.   

In experiments conducted to further understand the signal transducing role of the 

Ajuba LIM proteins, it was found that the LIM region of Ajuba interacts with the atypical 

protein kinase C (aPKC) scaffold protein, p62, to regulate IL-1 induced NF-κB activation 

by impacting the assembly and activity of the aPKC/p62/Traf6 multiprotein signaling 

complex (Feng and Longmore 2005).  

In the nucleus, the Ajuba family members were identified as interactors of the 

SNAG domain of Snail, a transcriptional repressor. Interestingly none of the Zyxin 

family members interacted with the SNAG domain. In both in vitro as well as in vivo 

studies Ajuba LIM proteins function as SNAIL co-repressors to repress the transcription 

of E-cadherin. The Ajuba LIM proteins are recruited to the endogenous E-cadherin 

promoter in a SNAIL dependent manner (Langer, Feng et al. 2008). In vivo studies 

showed that expression of the Ajuba family members is similar to the expression pattern 

of SNAIL and they cooperate with each other during neural crest development in 
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Xenopus. In another study with respect to the nuclear function of Ajuba LIM proteins, it 

was found that the gene transcription regulating protein arginine methyltransferase 

(PRMT5), is a component of the SNAIL-silencing complex and does so being bound to 

Ajuba (Krause, Yang et al. 2007).  

The Ajuba subfamily of LIM proteins are most abundantly expressed in tissue 

with extensive epithelia such as skin, kidney, and lung. In primary human keratinocytes 

Ajuba LIM proteins co-localize with cadherin adhesive complexes at sites of cell-cell 

contacts. Ajuba is recruited to cadherin adhesive complexes at AJ, in response to calcium 

addition, and occurs via a direct interaction with -catenin bound to cell surface E-

cadherin. Ajuba null mice appear to be completely viable, healthy and fertile with no 

gross morphological defects. However, Ajuba null mice keratinocytes exhibit abnormal 

cell-cell junction formation and/or stability and function. The Ajuba LIM domains 

responsible for targeting Ajuba to epithelial cell junctions do so through a regulated 

interaction with -catenin (Reinhard, Zumbrunn et al. 1999; Kanungo, Pratt et al. 2000; 

Marie, Pratt et al. 2003), while the PreLIM region of Ajuba directs its interaction with 

filamentous actin (Marie et al 2003). These data suggest that Ajuba may contribute to the 

bridging of the cadherin adhesive complexes to the actin cytoskeleton (Marie H et al., 

2003).  

Although the molecular mechanism for many of these processes is not completely 

understood these data provide us with clues to the roles the Ajuba subfamily of LIM 

proteins may play within the context of cellular processes. Based on previous studies and 

the shuttling ability of the Ajuba LIM proteins, the family members make strong 
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candidates for signal transduction between cell-cell junctions, the cytosol and the 

nucleus. Further investigations are necessary to determine other signaling pathways that 

are targets of the Ajuba LIM proteins and also the impact of the subcellular localization 

of the LIM proteins on their function. One issue that has not yet been overcome is the 

potential for functional redundancy between Ajuba, LIMD1 and WTIP, which would 

make it difficult to dissect their roles. This thesis will focus on creating an epithelial 

system to assay for the function of the Ajuba LIM protein subfamily as a whole. Further, 

it will establish a novel growth regulatory role for the Ajuba subfamily of LIM proteins 

and also signaling mechanism of this regulation via the Hippo pathway.  
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Figure 1: FLP FRT mediated clonal analysis allows the induction of mitotic 

recombination in a heterozygous (+/-) background of cell (light green) that leads to one 

homozygous mutant (-/-) daughter cell (GFP negative) and another homozygous wild-type 

(+/+) cell (GFP positive- dark green) following cell division. Ensuing rounds of cell 

proliferation of the two sister-cell populations is then assessed later in development. Cells 

that are homozygous null for a growth-promoting gene (yki or bantam) will form smaller 

clones as compared to the darker green wild type cells (top, right panel). Cells that 

become homozygous null for the mutation in a growth-restrictive gene (such as hippo or 

warts) form larger clones relative to their wild-type sisters (bottom, right panel). And if 

there is no growth defect then the GFP negative clone of cells remain comparable to the 

wild-type twin spot (middle, right panel).  
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Figure 2: Growth control by the hippo pathway. (A-C) SEM images of adult 

Drosophila eyes the following genotypes: Wild type (A), Flies homozygous null for hpo 

displaying an overproliferation eye phenotype (B) and adult fly eye homozygous null for 

yki displaying severely reduced eye structure (C). BRDU staining in a hpo null clone 

(GFP negative cells) generated using eyeless-flp method. Increase in proliferation is 

reflected by the increase in BRDU (red) staining (D). TUNEL (red) staining in a hpo null 

clone (GFP negative cells) generated using Eyeless-flp method. There is a decrease in 

cell death (E). Overexpression of Yki in a larval wing disc (right) shows a dramatic 

increase in cell proliferation as seen by the overgrowth as compared to the wild-type 

wing disc on the left. The phenotype is similar to hpo null tissue (F). 
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Figure 3: The Hippo pathway in Drosophila and in mammals as elucidated by genetic 

epistasis analysis and biochemical tests. Salvador/WW45 and Mats/MOB activate the 

kinase activity of Hippo/Mst and Warts/Lats, respectively. The membrane-associated 

proteins Merlin and Expanded promote the phosphorylation and activation of Warts/Lats 

by Hippo/Mst. Once activated, Warts phosphorylates and inactivates the transcriptional 

co-activator Yorkie/Yap. The green arrows represent the Hippo pathway in its ON state 

which leads to the phosphorylation of Yki/Yap and its sequestration in the cytoplasm. 

The red arrows represents the Hippo pathway in its OFF state which would allow 

Yki/Yap to enter the nucleus and act as a transcriptional coactivator to turn on growth 

genes.  
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Figure 4: Classification and the domain structures of LIM domain proteins. LIM 

domain proteins are roughly classified into four groups according to the arrangement and 

position of LIM domains. The groups are: Nuclear LIM proteins, LIM only proteins, 

actin associated LIM proteins and catalytic LIM proteins. The individual LIM domains 

are shown as black boxes; other domains are shown as white boxes and indicated 

respectively on the Figure. HD: homeodomain; SH3, Src homology-3.  
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Figure 5: Schematic diagram of the Ajuba/Zyxin family of LIM proteins. This 

subgroup of LIM proteins is characterized by three homologous C-terminal LIM domains 

and a non-homologous N-terminal PreLIM region. Phylogenetically, the family can be 

split into two subfamilies as shown, one being the Ajuba subfamily consisting of Ajuba, 

LIMD1 and WTIP and the other being the Zyxin subfamily comprising of Zyxin, LPP 

and TRIP6.  
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The role of Ajuba in cell-cell adhesion and epithelial polarity 
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Introduction: 

In multicellular organisms epithelia constitute the boundary that separates the 

individual from the environment. Epithelial cells organize tissue architecture by acting as 

physiological and mechanical barriers by providing sites of exchange for ions and 

molecules (Rodriguez-Boulan and Nelson, 1989). The establishment of cell-cell adhesion 

contact sites or junctions is required for epithelia function. Once the junctions are formed, 

their integrity is preserved by the segregation and maintenance of specific proteins and 

lipids in distinct plasma membrane domains (i.e., epithelial polarity). 

The link between epithelial cells is made possible by complexes such as 

desmosomes, gap junctions, adherens junctions (AJs) and tight junctions (TJ’s) that 

together constitute the Intercellular Junctional Complex (Figure 1). The three main 

functions achieved by cell-cell junctions are: (1) adhesion, or mechanically attaching 

cells to one another, (2) communication between cells, which allows passage of chemical 

or electrical signals, and (3) establishment of epithelia apico-basal polarity. The 

junctional complexes contain transmembrane receptors, usually glycoproteins that 

mediate binding at the extracellular surface. The associated cytoplasmic proteins of these 

receptors structurally link them to the cytoskeleton. This connection helps establish 

molecular lines of communication to other cell-cell junctions and to cell-substratum 

junctions. The link between cell-cell junctions and the cytoskeleton allows single cells of 

an epithelial sheet to function as a coordinated tissue (Figure 1). Thus, intercellular 

junctions function to integrate a number of cellular processes ranging from cytoskeletal 

dynamics to proliferation, transcription, and differentiation (Kowalczyk et al. 1999 and 

Kowalczyk et al. 1999).          
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 Recent evidence has uncovered a key role for AJs not only in directing 

coordinated cellular organization and movements within epithelia, but also in conveying 

information from the environment to the interior of cells. AJs are cadherin-dependent 

adhesive structures that are intricately linked to the actin microfilament network (Figure 

1). The establishment and stability of AJs is tightly regulated and essential for processes 

such as wound healing, epithelial mesenchymal transition during normal development 

and in cancer metastasis, tissue morphogenesis and development. AJs consist of calcium 

independent (nectins) and calcium dependent (cadherins) transmembrane cell adhesion 

molecules (Perez-Moreno et al. 2003; Takai et al. 2003; Takai & Nakanishi 2003). 

Associated with the cytoplasmic tails of cadherins are the linker proteins, catenins that, in 

part, facilitate an interaction with the actin cytoskeleton. Precisely how cadherin 

engagement triggers AJ formation, epithelial polarity, and epithelial integrity is an area of 

active investigation. In addition to a structural role, AJ also generate local signals or cues 

that influence cell shape and motility (Gumbiner 1990). The activation of junctional 

complexes is thought to initiate various events such as epithelial polarization, assembly 

of other junctional components, such as desmosomes and TJs (Marrs et al 1995) and also 

initiating signaling cascades to trigger nuclear events leading to growth (proliferation via 

cell cycle genes) or cell death. Although the molecular and regulatory mechanisms are 

not fully understood, novel signaling events at AJ-cytoskeletal intersections are yet to be 

discovered. 

The Ajuba LIM proteins are most abundantly expressed in tissue with extensive 

epithelia such as skin, kidney, and lung. As compared the Zyxin family of LIM proteins, 

the Ajuba subfamily are more highly expressed in epithelial tissue as compared to 
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fribroblasts (Figure 2A). In primary human keratinocytes Ajuba co-localizes with 

cadherin adhesive complexes at sites of cell-cell contacts. Ajuba is recruited to cadherin 

adhesive complexes at AJ, in response to calcium addition (Figure 2B), and occurs via a 

direct interaction with -catenin bound to cell surface E-cadherin. Ajuba null mice 

appear to be completely viable, healthy and fertile with no gross morphological defects. 

However, Ajuba null mice keratinocytes exhibit abnormal cell-cell junction formation 

and/or stability (Figure 3) and function. The Ajuba LIM domains responsible for 

targeting Ajuba to epithelial cell junctions through a regulated interaction with -catenin  

(Marie et al., 2003), while the PreLIM region of Ajuba directs its interaction with 

filamentous actin (Marie et al 2003). These data suggest that Ajuba may contribute to the 

bridging of the cadherin adhesive complexes to the actin cytoskeleton (Marie H et al., 

2003). Although the exact role of Ajuba at cellular junctions and its downstream 

consequences are unclear, the LIM proteins may play a part in the assembly of protein 

complexes involved in processes leading up to stable junction formation between cells. 

We also know that Ajuba is recruited to cell-cell contacts at early stage of assembly of 

junctional complexes making it a good candidate for regulating the assembly of 

junctions.  Many of the structural proteins at TJs and AJs act not only as structural 

components but also as signal transducers that may be involved in junctional biogenesis. 

However the molecular mechanisms by which Ajuba may be involved in cell adhesion as 

well as cell polarity are far from clear. Here we find that the depletion of Ajuba LIM 

proteins results in disrupted cell junctions and loss of cell polarity leading to a functional 

defect in both AJs and TJs in PDV and MDCK cells.  
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Results: 

Establishing a cell based model to investigate the role of Ajuba LIM proteins in 

epithelia.  

All previous studies regarding the epithelial role of Ajuba LIM proteins were 

done in primary keratinocytes from Ajuba null mice which although illustrative of the 

importance of Ajuba LIM proteins are not an ideal model system. The precise molecular 

mechanisms whereby Ajuba regulates junction formation and, or function are still not 

clear. The observed defects from the absence of Ajuba LIM proteins may arise from the 

inability to initiate the formation of proper junctions or the inability of Ajuba null cells to 

maintain proper junctions. To answer these questions the use of primary keratinocytes are 

not ideal owing to their inability to polarize precluding an analysis of epithelial polarity 

response and also for biochemical assays, since they do not proliferate.  

Thus to address these questions we developed a stable cell based system by 

making clones of cultured kidney epithelial cells (Madin-Darby canine kidney; MDCK) 

and mouse epithelial cells (PDV) deficient in Ajuba LIM proteins.  MDCK cells are ideal 

for imaging epithelial formation because of their ability to polarize in both 2- and 3-

dimensional culture systems and undergo nascent cell-cell junction formation in response 

to added calcium.  First we established the localization of Ajuba in PDV cells as well 

MDCK cells. Ajuba localized to the cell-cell junctions in PDV cells. In MDCK cells 

using filters we were able to distinguish the adherens junctions from the tight junctions 

and found that Ajuba specifically colocalized with E-cadherin to the adherens junctions 

(Figure 4A-B). To modulate Ajuba protein levels in PDV cells we used a lentivirus 
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system expressing shRNAs against mouse Ajuba.  This FLR lentivirus system allowed 

for controls against off-target effects of RNAi and structure-function analyses of genes of 

interest by allowing for concurrent endogenous gene product knock down and exogenous 

rescue with GFP-tagged, RNAi-resistant forms of the gene under study, in the same cell 

(Figure 5).  The presence of a puromycin selection cassette permit selection of transduced 

cells.  The lentiviral vector system provided high efficiency, stable integration, and thus, 

expression of the shRNA (Figure 5). Using this stable lentivirus system, we knocked 

down Ajuba in mouse PDVs and MDCK cells. Ajuba protein levels were reduced by 85 

%, as detected by Western blots of cell lysates from the cells infected with the lentivirus 

system (Figure 5B). Moreover, the blots also show the reintroduction of RNAi resistant 

YFP-Ajuba protein in the knocked down cells (Figure 5B). This enabled us to confirm 

that any defective phenotype from the knock down is specific to Ajuba and not an artifact 

of RNAi off-target affects. Also this knock down was specific to Ajuba as there were no 

observable change in protein levels of other junctional proteins such as PAR-3 and E-

cadherin (Figure 6B) or other Ajuba family members LIMD1 (Figure 6B), between 

knock down and control lysates. Ajuba RNAi knock-down was also confirmed by 

immunofluorescence (Figure 6A). We also used a transient transfection method with 

double stranded RNAi oligos (Ambion), to knock down Ajuba in MDCK cells (Figure 

6C, top panel).  
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Cells depleted for Ajuba LIM proteins display delayed nascent junction formation 

  
To manipulate the process of cell-cell junction assembly in the MDCK cells we 

used the calcium switch method (Gao et al., 2002). The experiment involves the 

withdrawal of calcium from the cell media causing the rapid loss of cell−cell adhesion 

and endocytosis of surface E-cadherins. This process is then reversed by the re-addition 

of calcium (a calcium switch), which allows for the rapid reformation of nascent 

epithelial junctions (Figure 7A-C and 8A-A’’). Removal of calcium from the media 

results in the disassociation of cell-cell junctions and the re-distribution of E-cadherin and 

Occludin. In wt and Ajuba -/- cells when calcium was removed from the media, the 

intracellular staining of E-cadherin and Occludin increased and the plasma membrane 

labeling decreased at cell-cell contacts (Figure 8A, B, C, D). As a result cells loose their 

cell-cell junctions. Following calcium addition, recruitment of Occludin and E-cadherin 

back to the cell surface takes place within two hours in wild type cells (Figure 8A-A’’), 

however this relocalization of the junctional proteins is significantly delayed in the Ajuba 

kd cells (Figure 8B- B’’ and F-F’’). These results show that the absence of Ajuba results 

in a kinetic delay of the recruitment of E-cadherin and Occludin to the lateral membrane 

during junctional complex assembly. Interestingly when we knocked down LIMD1 we 

observed a similar kinetic delay in the relocalization of Occludin and E-cadherin (Figure 

8C-C’’, G-G’’). In MDCK cells deficient for both Ajuba and LIMD1 (Figure 6C) the 

recruitment of Occludin and E-cadherin to nascent junctions was more severely affected 

than when only the individual proteins were knocked down (Figure 8D-D’’ and H-H’’).  
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Cells depleted for the LIM proteins display defective cellular morphology 
 
 

In addition to carrying out a calcium switch we also looked at the morphology of 

cells when they were knocked down for the LIM proteins. PDV cells infected with 

control virus maintained a flat monolayer of cells, while cells infected with Ajuba siRNA 

appeared to be mounded or taller than control cells (Figure 9A-B). We further were able 

to confirm this morphology defect in MDCK cells with Z-stack analysis of confocal 

images.  MDCK cells were infected with lentiviral vectors encoding Ajuba siRNA, 

resulting in a loss of about 90% of Ajuba.  The lentiviral vectors used also encoded either 

YFP alone or YFP-tagged murine Ajuba to rescue the Ajuba siRNA.  Expression of YFP-

mAjuba was also confirmed by western blot (Figure 5). Immunofluorescence was then 

performed on control, Ajuba knock down and rescue cells for E-cadherin. In MDCK cells 

with Ajuba knockdown, E-cadherin levels were not altered by knock down of Ajuba 

(Figure 9, E as compared to F, E-cadherin in red).  Z-stack analysis using confocal 

microscopy revealed that the Ajuba knockdown cells are taller and have E-cadherin 

expressed on the apical surface, suggesting a possible effect on cell polarity as well 

(Figure 9E-F).  This phenotype was rescued by the reintroduction of murine Ajuba, 

showing specificity of the siRNA (Figure 9G).  Another phenotype observed in cells 

depleted for Ajuba in MDCK cells was that the cells appeared to form projections that 

either were trying to form stable junctions with the adjacent cells or were unable to 

maintain or preserve the junctions. This was seen by nucleofecting MDCK cells with 

Ajuba and LIMD1 siRNA and comparing them to the control pool of cells nucleofected 

with LucsiRNA and then stained with E-cadherin (Figure 9 C-D).   
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Ajuba LIM proteins are necessary the normal function of epithelial cells measured 

by cell aggregate formation and functional tight junctions.  

The immunofluorescence data suggested that the Ajuba LIM proteins may play a 

role in cell-cell adhesion and junction formation. However, the calcium switch assays did 

not provide any functional assessment on the stability of the junctions in the absence of 

Ajuba LIM proteins. To determine whether the Ajuba LIM proteins affect junctional 

stability we performed the hanging drop assay (Figure 10A) that measure initial junction 

formation and the stability of formed junctions. Wild type cells formed large cell 

aggregates faster than the knock down and also acquire resistance to the trituration forces 

(strengthening of junctions) at a higher rate than the knock down cells (Figure 10B-I). 

This suggested that Ajuba contributes to cell-cell junction formation and/ or the 

stabilization of newly formed junctions.  The results indicated that Ajuba depletion 

delays or inhibits the formation of large cell clusters.  

The delay in the recruitment of Occludin to the tight junctions during calcium 

switch (by immnuofluorescence) suggested that Ajuba might play a role in the 

establishment of tight junctions. We next sought to determine if Ajuba depletion affected 

the establishment of apical-basal polarity. Although the tight junctions appear intact at 

the end of 6 hours of a calcium switch in the knockdown cells, do they function properly? 

To answer this question, we measured the pericellular permeability of control and 

knockdown cells by trans-epithelial resistance (TER) during a calcium switch at various 

time points. Tight junctions serve as a selective permeability barrier for paracellular ion 

flow and generating a resistance (the TER) between the apical and basolateral media 
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(Figure 11A). Thus, the TER measurements can be used to monitor the tightness of the 

seal between neighboring cells serving as a functional measure of tight junction integrity. 

Control and rescued Ajuba kd cells showed a rapid increase in TER after the re-addition 

of calcium, while in contrast, Ajuba kd cells exhibited a significant delay in TER 

development (Figure 11B). These results suggested that Ajuba contributes to the 

assembly of tight junctions between epithelial cells. 

 

Establishing an Ajuba family null system in epithelial cells 

 The above results confirmed that creating a family null would be critical so as to 

understand the role of this protein family. The results from Figure 8 make it clear that the 

depletion of multiple family members (phenotype of Ajuba and LIMD1 double knock 

down is worse that the two individual knockdowns) worsens the delay in nascent junction 

formation during a calcium switch. To achieve this, we next established a way to knock 

down the third Ajuba subfamily member, WTIP. This would allow us to perform 

junctional formation and maintenance assays in the absence of all three proteins to dissect 

the role of this family in epithelia. As with knocking down Ajuba in MDCK cells using 

synthetic oligos custom made by Ambion, we used the same technique to knock down 

canine WTIP.  First, we established the ability to carry out immunofluorescence against 

the WTIP antibody in MDCK cells. Like Ajuba and LIMD1, WTIP localizes to cell-cell 

junctions (Figure 12A-A’’).  Next we subjected MDCK cells to nucleofection using 

siRNA made to WTIP. For images taken with the same exposure we were successfully 

able to reduce the levels of WTIP in the cells (Figure 12B compared to A). After 
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establishing that we can knock down WTIP we next wanted carry out triple knock down 

experiments in MDCK cells to achieve a family null. We accomplished this by first 

generating a stable MDCK line depleted of Ajuba using lentiviruses expressing canine 

Ajuba shRNA, and then transiently depleting Limd1 and WTIP using RNAi oligos. The 

Ajuba and LIMD1 double null cells were viable, but when these cells were depleted of 

WTIP to generate Ajuba/LIMD1/WTIP triple depleted MDCK cells, we found significant 

amounts of cell death, precluding planned cell biologic analyses. 
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Discussion 

 
 The Ajuba family of LIM proteins, comprising of Ajuba, LIMD1 and WTIP are 

proteins that are predominantly found at cell-cell E-cadherin junctions in normal 

epithelia. Ajuba plays an important role in the formation of nascent epithelial junctions. 

In fact if the LIM proteins are depleted in epithelia, cells display a disruption of E-

cadherin staining and cell morphology is altered. A similar phenotype is observed with 

knocking down LIMD1 or WTIP.  

In this chapter, we established cell lines, namely PDV and MDCK cells, to 

circumvent the drawbacks of using primary keratinocytes for our analysis of the LIM 

proteins. The MDCK cells proved to be ideal for imaging the formation of epithelial 

sheets given their ability to polarize on filters undergo nascent cell-cell junction 

formation in response to added calcium and grow in large numbers for biochemical 

experiments.  

To assay for the role the Ajuba LIM proteins play in nascent junction formation, 

cells depleted for the LIM proteins were subject to calcium switch experiments. Removal 

of calcium from the media resulted in the disassociation of cell-cell junctions and the re-

distribution of E-cadherin and Occludin. In wt as well as in cells depleted for Ajuba, 

LIMD1 and Ajuba/LIMD1 double knock down, the intracellular staining of E-cadherin 

and Occludin increased and the plasma membrane labeling decreased at cell-cell contacts. 

However, following calcium addition, recruitment of Occludin and E-cadherin back to 

the cell surface was delayed in the Ajuba LIM protein kd cells. The immunofluorescence 

data suggested a role for Ajuba LIM proteins in cell-cell adhesion and junction formation.  
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To assay for the junctional stability of cells depleted for the Ajuba LIM proteins, 

we carried out cell-cell aggregation assays that measure initial junction formation and the 

stability of formed junctions. We found that in case of wild type cells, they formed large 

cell aggregates faster than the knock down and also acquire resistance to the trituration 

forces (strengthening of junctions) at a higher rate than the knock down cells. This 

suggested that Ajuba contributes to cell-cell junction formation and/ or the stabilization 

of newly formed junctions.  These results indicated that Ajuba depletion delays or 

inhibits the formation of large cell clusters. The delay in the recruitment of Occludin to 

the tight junctions during calcium switch (by immnuofluorescence) suggested that Ajuba 

might play a role in the establishment of tight junctions as well. So to measure the 

function of the tight junctions we measured the paracellular permeability of control and 

knockdown cells by trans-epithelial resistance (TER). TER measurements are a 

functional measure of tight junction integrity. The lowered resistance of the knock down 

cells indicates that the tightness of the seal between neighboring cells is weakened. These 

results suggested that Ajuba LIM proteins contribute to the assembly of tight junctions 

between epithelial cells.    

From all the assays carried out to understand the role of the Ajuba subfamily of 

LIM proteins, it appeared that the defect was a kinetic delay. The results shed light on a 

possible mechanism, however they also suggested that each of the family members 

compensate for any defect brought out by the depletion of the other. This was brought out 

by the analysis of cells knocked down for LIMD1 in MDCK cells in addition to Ajuba to 

look at the effect of the double knock down on cell-cell junction formation integrity. In 

MDCK cells deficient for both Ajuba and LIMD1 the recruitment of E-cadherin 
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(adherens junctions protein) and Occludin (tight junction protein) to nascent junctions 

was more severely affected than when only the individual proteins were knocked down. 

Given the possibility of functional redundancy, the next obvious direction was to create a 

family null. However although we were able to successfully knock down WTIP, we ran 

into technical difficulties with respect to the triple knock down or depletion of Ajuba, 

LIMD1 and WTIP. These cells showed extensive cell death making analysis of their 

epithelial integrity very difficult. Thus, future experiments will involve methods to 

circumvent this limitation by moving to different model system. The main issue within 

the mammalian system is the problem with redundancy of the three Ajuba LIM proteins. 

Future experiments were designed in a simpler model organism namely, Drosophila 

melanogastor where only a single gene for this family exists.  
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Methods: 

Lentivirus experiment 

 To modulate Ajuba protein levels in MDCK cells we used a lentivirus system expressing 

shRNAs against canine Ajuba.  This FLR lentivirus system allows for controls against 

off-target effects of RNAi and structure-function analyses of genes of interest by 

allowing for concurrent endogenous gene product knock down and exogenous rescue 

with GFP-tagged, RNAi-resistant forms of the gene under study, in the same cell.  The 

presence of a puromycin selection cassette permits selection of transduced cells.  The 

lentiviral vector system provides high efficiency, stable integration, and thus, expression 

of the shRNA.  

Calcium Switch assay 

 To manipulate the junction assembly in the MDCK cells we used a calcium switch 

method (Gao et al., 2002). The experiment involves the withdrawal of calcium from the 

medium causing the rapid loss of cell−cell adhesion and endocytosis of surface E-

Cadherins. This process is then reversed by the re-addition of calcium (a calcium switch), 

which allows for the rapid reformation of nascent epithelial junctions. MDCK cells are 

plated on Transwell collagen filters in 1XMEM media with 1.8mM calcium (normal 

calcium medium HCM). After 40-44 hours once a confluent monolayer of cells has 

formed the cells are washed with PBS and incubated in media containing no calcium 

(LCM) for 16-18 hours. The following day the media was switched back to HCM for 

indicated times, after which cells are washed, fixed, and stained with antibodies to Ajuba, 

E-cadherin (AJ), and Occludin (TJ) and visualized via confocal microscopy (Fig 4). 
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Hanging Drop Assay 

To examine how Ajuba functions in cell-cell adhesion we used a cell aggregation assay 

called the hanging drop assay (Elbert M et al., 2006, Redfield et al., 1997). In this assay 

the cells are placed in suspension culture and allowed to aggregate for various times. The 

cells are then counted and binned into fours groups 0-5, 5-10, 11-50 or >50 cell 

aggregates. Over time cells incorporate into larger aggregates reflecting the rate of cell-

cell junction assembly or the ability of cells to form intercellular connections with one 

another. Next the cells are triturated to break weak cell-cell interactions while strong cell-

cell junctions allow cells to remain as aggregates. So the ability of the cells to remain in 

an aggregate after trituration with a micropipette tip relative to the number of cells that 

were initially in the aggregate before trituration gives the rate at which the cell-cell 

junctions are strengthened (Fig 5). 

Transepithelial Resistance Assay 

The assay requires a confluent layer of MDCK cells grown on the Transwell collagen 

filters and subject to a calcium switch. The TER is then measured using voltage and 

current clamps (EVC4000 Precision V/I Clamp, World Precision Instruments) over a 10 

hour time period (Fig 6). The same numbers of cells are plated per filter allowing the 

TER from Ajuba knocked down to be compared with wild type or cells expressing the 

rescue construct. 

MDCK cell culture and transfection 

MDCK canine kidney cells were cultured in 1X MEM (Gibco) containing 10% FBS 
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(Invitrogen) and 50 µg/mL penicillin/streptomycin. If the cells were grown on filters 

media was applied above the cells on the filter as well below the cells in the well in 

which the filter was placed. Nucleofections (Amaxa cell line Nucleofection Kit L) was 

used to transfect MDCK cells with siRNAi directed against Ajuba and LIMD1, according 

to the manufacturer’s instructions. Equal numbers of cells were immediately plated on 

three different sized dishes so as to have cells plated at low, medium and high densities. 

Forty-eight hours after nucleofection the cells were harvested for immunoblot analysis.   

 
MDCK and PDV Immunofluorescence on Cover slips and filters: 
 
MDCK cells as well as PDV cells were plated at desired confluency on cover slips. If 

using filters for MDCK cells (Transwell, 6.5 mm diameter [3495 Cat #] or 12 mm 

diameter, 0.4micron pore ize by corning) cells must be a monolayer. When ready, the 

cover slips (or filters) were rinsed once with PBS (1X) and then fixed in 4% 

Paraformaldehyde. If using filters, cells were fixed in Borisy Stabilization Buffer- 10mM 

Pipes, pH6.5; 127mM NaCl; 5mM KCl; 1.1mM NaH2PO4; 0.4mM KH2PO4; 2mM 

MgCl2; 5.5mM glucose; 1mM EGTA; 4% Paraformaldhyde). The Borisy Stabilization 

Buffer was made as a 2X stock and stored at 4C. After fixation, the process can be 

stopped by washing the cover slips/filters 3X times in PBS (5min each) and storing the 

cells in the last PBS wash at 4C. Next the cells were permeabilized by washing them 3X 

times, 5min each wash, in PBST (PBS + 0.2% Triton X-100).  If the LIMD1 or WTIP 

antibody was used the cells were further subjected to Guanadine Hydrochloride treatment 

(GHCl). Cells were treated with 6N GHCl for 10min at Room Temp. Following this, the 

cells (cover slips and fliters) were washed thoroughly with PBS. For these washes 3 

beakers with PBS were set up and each cover slip or filter was dipped10-15 times in each 



 55 

beaker to make sure all the GHCl has come off). After the GHCl step, the cells were 

blocked for 1hr in PBST + 3% BSA (IgG free). After blocking, the cells were incubated 

in primary antibody for 1hr at 37C (Antibodies were diluted in PBST +3% BSA and then 

spun down 20min at 4C before using). After the primary antibody incubation, the cells 

were wash 3X times for 5min each in PBST. Next, the cells were incubated with 

secondary antibody. Once again, the antibody was diluted in PBST +3% BSA and spun 

down for 20min at 4C before using. The cells were incubated in secondary antibody for 

30min at 37C or Room Temp. The cells were then washed 3Xtimes in PBS. If using 

DAPI to stain nuclei, incubate cells for 5 min in DAPI (1:1000 in PBS) at Room temp 

and wash 3X for 5 min each with PBS. If using cover slips, mount cover slips on glass 

slides and seal with nail polish. Vectasheild mounting media was used (with or without 

DAPI). If using filters, at this point, filters were cut out using sharp scalpels and placed 

facing up (cells on top and filter towards the glass slide) on the slides. Mounting media 

was applied and a cover slip was placed on top before sealing with nail polish.  

Antibodies for immunofluorescence were used at: Rab anti-Ajuba: 1:250, Rab 

anti-LIMD1 (Affinity purified from Wistar): 1:250, WTIP: 1:250 and Mouse anti-E-

cadherin: 1:500. Secondary antibodies were used at 1:250. In case of cover slips, the top 

of a 12 well dish was covered in parafilm and then 30 microliters of the antibody 

(primary or secondary) was applied. The cover slip was then placed (cells down toward 

the antibody drop) to incubate. If using filters between 100-300 microliters of antibody 

was applied to the filters. In both cases, the 12 well dishes were placed in a tupper ware 

(either with a lid or with paraflim) box lined with water-soaked tissue to prevent the 

antibody from drying off.  
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Immunoblotting and Antisera used 
 
Cells were lysed in RIPA buffer [150 mM NaCl, 10 mM Tris-HCl (pH 7.5), 1mM EDTA, 

1% Triton-X100, 0.35% DOC, 0.25% NP-40, 0.1%SDS], PMSF and protease inhibitor 

cocktail (Sigma). Lysates were then cleared by centrifugation and boiled for 5 minutes in 

SDS sample buffer and resolved by 10% SDSPAGE, under reducing conditions. Proteins 

were transferred to nitrocellulose in transfer buffer (48mM Tris, 390mM, glycine, 0.1% 

SDS, 5% methanol) and immunoblots were probed with primary antibodies: rabbit α-

Ajuba (1:1000), mouse α –Ecadherin (1:1000), rabbit α- LIMD1 (1:1000) and Wtip: 

1:1000.  For quantification, blots were minimally exposed and then scanned for 

quantification using ImageJ software. 
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Figure 1: Schematic representation of a polarized epithelial cell. Adapted from 

Miyoshi J and Takai Y Jan 5; (57):815-55. Tight junction- TJ, Adherens junction- AJ. TJ 

proteins Occludin, Claudin and JAM are connected to the actin cytoskeleton via the ZO 

proteins. The E-cadherin-catenin system lies below the TJ proteins at the AJ.  
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Figure 2: Ajuba is rapidly recruited to newly formed cell-cell contacts in 

keratinocytes. (A) Western blot analyses of Ajuba subfamily members (Ajuba and 

LIMD1) and Zyxin family members (LPP, TRIP6 and Zyxin) in primary mouse 

embryonic fibroblasts (MEF) (left column) and primary mouse keratinocytes (right 

column) with equal amounts of protein loaded in each lane. (B) Cells grown in low 

calcium medium loose cell-cell adhesion and E-cadherin (red) and Ajuba (green) proteins 

are internalized into the cell. Cells from Low calcium media (Column 1) were then 

transferred to standard medium for 5min (Column 2), 15min (Column 3) or 60 min 

(Column 4) to induce the formation of cell-cell contacts. Cells were stained for E-

cadherin (a, d, and g) and Ajuba (b, e, and h). Merged images are shown in the bottom 

row. The four columns in the merge images show the distinct staining pattern of Ajuba 

(green) and E-cadherin (red) in the absence of junction formation. However with the 

addition of calcium and Ajuba and E-cadherin get recruited to the same compartments at 

the newly formed junctions.  
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Adapted from Marie et al. 2002 

Figure 2 
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Figure 3: Primary keratinocytes from Ajuba knock out mice display defects in 

junctional stability. Adapted from Marie H et al. J. Biol. Chem. January 10, 2003; 

278(2): 1220-1228. Primary keratinocytes isolated from Ajuba null and wild type 

newborn littermates. A, once confluent, cells were switched to low calcium medium, to 

initiate cell-cell junction formation, calcium was added back into the media. Cells were 

fixed and stained for E-cadherin. Significant gaps remain between cells even though E-

cadherin is recruited to the cell surfaces normally.  
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Figure 4: Ajuba localizes to the Adherens junctions. (A-A’’) MDCK cells plated on 

collagen filters and allowed to polarize and then fixed and stained with E-cadherin (A), 

Ajuba (A’) and merged (A’’). (B) Z- stack view of the merged images from A’’ showing 

the exact localization of Ajuba with respect to Adherens junction protein E-cadherin.   



 64 

 

Figure 4 
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Figure 5: (A) Map of the lentivrial vector pFLRu containing 2 multiple cloning sites 

(MCS); MCS at 5’ of Ubic for the shRNA expression cassette, and 3’ of Ubic for the 

RNAi-resistant isoform of shRNA targeted gene containing an in-frame C-terminal GFP 

tag. The vector is also designed to contain a puromycin (puro) resistance cassette. 
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Figure 5 
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Figure 6. Ajuba knockdown in MDCK cells. Ajuba shRNAs were generated against 

canine Ajuba sequence and expressed in MDCK cells. Control samples expressed 

shRNAs against luciferase. (A) Immunofluorescence staining of cells expressing 

luciferase shRNA or Ajuba shRNA with GFP tags. (B) Western blot analysis of cell 

lysates from control, Ajuba kd and rescue cells, actin was used as the loading control. (C) 

MDCK cells knocked down for Ajuba and LIMD1 using tranisent Ambion dsRNA oligos 

using nucleofections and blotted for various junctional proteins as labeled.  
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Figure 6 
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Figure 7: Calcium Switch in MDCK cells. (A) Cells are originally plated on collagen 

transwell filters so as to form a polarized monolayer of cells in normal calcium media. 

(B) When Calcium is withdrawn from the cell media the cells loose calcium dependant 

junctions and all junctional proteins become cellularized. (C) Finally the process can be 

reversed by the re-addition of calcium (a calcium switch), which allows for the rapid 

reformation of nascent epithelial junctions.  
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Figure 7 
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Figure 8.  Knockdown of the LIM proteins results in aberrant cell morphology.    (A-

B)  Phase contrast images of PDV control (A) and Ajuba knockdown lines showing 

altered cell morphology (B). (C-D) Confocal images of MDCK cells stained with E-

cadherin in red and subject to control RNAI using Luc siRNA (C) and Ajuba and LIMD1 

siRNA (D). (E-G) Z-stack analysis of confocal images of MDCK control (E), Ajuba 

knockdown (F), and rescue cell lines (G).  YFP (green) shows infected cells, E-cadherin 

staining is shown in red.   
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Figure 8 
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Figure 9: Ajuba deficiency delays recruitment of cadherin TJ protein Occludin and 

AJ protein E- to nascent junctions. (A-H) MDCK cells plated on collagen filters and 

grown in standard media until a confluent layer of cells was formed and then switched to 

LCM for 10-12 hrs, after which the media was switched back to HCM to induce a 

calcium switch. (A-D) Wild type cells (A-A’’), Ajuba knock down cells (B-B’’), LIMD1 

knock down cells (C-C’’) and Ajuba and LIMD1 double knock down cells (D-D’’) 

stained for AJ protein E-cadherin, fixed before reintroducing calcium (0 min), 2 hours or 

6 hours after addition of calcium. (E-H) Wild type cells (E-E’’), Ajuba knock down cells 

(F-F’’), LIMD1 knock down cells (G-G’’) and Ajuba and LIMD1 double knock down 

cells (H-H’’) stained for AJ protein E-cadherin, fixed before reintroducing calcium (0 

min), 2 hours or 6 hours after addition of calcium. 
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Figure 9 
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Figure 10: Ajuba knock down cells have weakened cell-cell adhesion: (A) Stable lines 

of MDCK epithelial cells, expressing either Luc shRNA or Aj shRNA were aliquoted 

into 50 ul drops and placed on the underside of the lid of a dish. The drops were allowed 

hang down for 4 hours. At every hour the number of aggregates (3-5 cell, 5-10 cells, 11-

50 cells and >50 cells) formed were counted by phase microscopy before and after 

trituration (carried out by a 20ul pipette tip) for each cell line.  (B-E) Control MDCK 

cells (B, C) and Aj RNAi cell (D, E) aggragates were counted for thei size and number of 

cells within the aggregate before trituration (B and D respectively) and after trituration (C 

and E respectively). (F-I) The aggragate size and number were then graphically 

quantified for comparison.  
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Figure 10 
 
 



 77 

Figure 11:  Cells lacking Ajuba show delayed tight junctions formation. (A) Stable 

lines of MDCK expressing either Luc shRNA, Aj shRNA or AjshRNA-mAj-YFP were 

plated on collagen filters. Once the cells formed a confluent layer, normal media was 

switched to low calcium media for 10-12 hrs, after which the media was switched back to 

high calcium media. The TER was then measured at every hour for 10 hours following 

the addition of calcium in the media. (B) A graphical representation of the TER 

measurements taken from control cells, Ajuba knock down cells and Ajuba knock down 

cells rescued using mouse wild type RNAi resistant Ajuba.  
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Figure 12: WTIP knock down in MDCK cells via nucleofection. (A-A’’)  MDCK cells 

stained for WTIP in green and E-cadherin in red in control Luc siRNA cells (A-A’’) and 

MDCK cells knocked down for WTIP (B-B’’).   



 80 

 
 

Figure 12 
 



 81 

References: 
 
Adams, C.L., and Nelson, W.J. 1998. Cytomechanics of cadherin-mediated cell-cell 
adhesion.Curr Opin Cell Biol. 10: 572-577. 
 
Beckerle M C. 1988. Identification of a new protein localized at sites of cell-substratum 
adhesion. J Cell Biol. 103:1679–1687. 
 
Brady-Kalnay SM, Rimm DL, Tonks NK. 1995. Receptor protein tyrosine phosphatase 
PTPmu associates with cadherins and catenins in vivo. J. Cell. Biol. 4:977–986. 
 
Braga VM. Cell−cell adhesion and signalling. 2002. Curr Opin Cell Biol 14: 546−556. 
Chen YM, Lee NP, Mruk DD, Lee WM, Cheng CY. 2003. Fer kinase/FerT and adherens 
junction dynamics in the testis: an in vitro and in vivo study. Biol. Reprod. 2:656-72. 
 
Crawford, A.W., and M.C. Beckerle. 1991. Purification and characterization of zyxin, an 
82,000-dalton component of adherens junctions. J. Biol. Chem. 266: 5847-5853 
 
Cynthia L. Adams, Yih-Tai Chen, Stephen J Smith, and W. James Nelson. 1998. 
Mechanisms of Epithelial Cell-Cell Adhesion and Cell Compaction Revealed by High-
resolution Tracking of E-Cadherin- Green Fluorescent Protein. J. Cell Biol. 142:1105-
1119. 
 
Cowin, P.M., and B. Burke. 1996. Cytoskeleton-membrane interactions. Curr. Opin. Cell 
Biol. 8: 56-65.  
 
Crawford, A. W., J. W. Michelson, and M. C. Beckerle. 1992. An interaction between 
zyxin and alpha-actinin. J. Cell Biol. 116:1381-1393.  
 
Eaton, S., P. Auvinen, L. Luo, Y.N. Jan, and K. Simons. 1995. CDC42 and Rac 1 control 
different actin-dependent processes in the Drosophila wing disc epithelium. J. Cell Biol. 
131: 151-164.  
 
Ebnet K, Suzuki A, Ohno S, Vestweber D. Junctional adhesion molecules (JAMs): more 
molecules with dual functions? 2004 J Cell Sci 117: 19−29. 
 
Elbert M, Cohen D, Musch A. PAR1b promotes cell-cell adhesion and inhibits 
dishevelled-mediated transformation of Madin-Darby canine kidney cells. 2006. Mol Biol 
Cell. 8:3345-55.  
 
Feng Y and Longmore GD. 2005 The LIM protein Ajuba influences interleukin-1-
induced NF-kappa B activation by affecting the assembly and activity of the protein 
kinase C/p62/TRAF6 signaling complex. Mol Cell Biol 25:4010–4022. 
 



 82 

Garrard SM, Capaldo CT, Gao L, Rosen MK, Macara IG, Tomchick DR. 2003. Structure 
of Cdc42 in a complex with the GTPase-binding domain of the cell polarity protein, Par6. 
EMBO J 22:1125–1133  
 
Gao, L., Joberty, G. & Macara, I. G. Assembly of epithelial tight junctions is negatively 
regulated by Par6. 2002. Curr. Biol. 12: 221−225.  
 
Goyal, R. K., Lin, P., Kanungo, J., Payne, A. S., Muslin, A. J., and Longmore, G. D. 
1999. Mol. Cell. Biol. 19: 4379-4389.  
 
Hoffman, L. M., D. A. Nix, B. Benson, R. Boot-Hanford, E. Gustafsson, C. Jamora, A. S. 
Menzies, K. L. Goh, C. C. Jensen, F. B. Gertler, E. Fuchs, R. Fassler, and M. C. 
Beckerle. 2003. Targeted disruption of the murine zyxin gene. Mol. Cell. Biol. 23:70-79.  
 
I.G. Macara, 2004. Parsing the polarity code, Nat. Rev., Mol. Cell Biol. 5: 220–231. 
 
Itoh M, Nagafuchi A, Moroi S, Tsukita S. Involvement of ZO-1 in cadherin-based cell 
adhesion through its direct binding to alpha catenin and actin filaments. 1997. J Cell Biol 
138: 181−192.  
 
Jamora, C., and Fuchs, E. 2002. Intercellular adhesion, signalling and the cytoskeleton. 
Nat Cell Biol 4: E101-108. 
 
Joberty G, Petersen C, Gao L, Macara I.G. The cell-polarity protein Par6 links Par3 and 
atypical protein kinase C to Cdc42. 2000. Nat Cell Biol 2: 531−539. 
Jou, T.S. & Nelson, W.J. 1998. Effects of regulated expression of mutant RhoA and Rac1 
small GTPases on the development of epithelial (MDCK) cell polarity. J. Cell Biol. 142, 
85–100.  
 
Jou TS, Schneeberger EE, Nelson WJ (1998) Structural and functional regulation of tight 
junctions by RhoA and Rac1 small GTPases. J Cell Biol 142: 101−115 
 
Kanungo, J., Pratt, S. J., Marie, H., and Longmore, G. D. 2000 Mol. Biol. Cell 11: 3299-
3313.  
 
Kowalczyk, A.P., Bornslaeger, E.A., Norvell, S.M., Palka, H.L. and Green, K.J., 1999. 
Desmosomes: intercellular adhesive junctions specialized for attachment of intermediate 
filaments. Int. Rev. Cytol. 185:237–302. 
 
Lin D, Edwards AS, Fawcett JP, Mbamalu G, Scott JD, Pawson T. 2000. A mammalian 
PAR-3−PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell 
polarity. Nat Cell Biol 2: 540−547. 
 
Marie, H., S. J. Pratt, M. Betson, E. H., J. Kittler, L. Meek, S. Moss, S. Troyanosky, D. 
Attwell, G. D. Longmore, and V. M. M. Braga. 2003. The LIM protein Ajuba is recruited 



 83 

to cadherin-dependent cell junctions through an association with α-catenin. J. Biol. 
Chem. 278:1220-1228. 
 
Masato Nakagawa, Masaki Fukata, Masaki Yamaga, Naohiro Itoh and Kozo Kaibuchi. 
Recruitment and activation of Rac1 by the formation of E-cadherin-mediated cell-cell 
adhesion sites.  
 
Matter K, Aijaz S, Tsapara A, Balda MS. Mammalian tight junctions in the regulation of 
epithelial differentiation and proliferation. 2005. Curr. Opin. Cell Biol. 5:453-8. 
 
Marzesco AM, Dunia I, Pandjaitan R, Recouvreur M, Dauzonne D, Benedetti EL, 
Louvard D, Zahraoui A.  2002. The small GTPase Rab13 regulates assembly of 
functional tight junctions in epithelial cells. Mol Biol Cell. 6:1819-31. 
 
Macara I.G. Parsing the polarity code. 2004. Nat Rev Mol Cell Biol 5: 220−231. 
 
Nelson WJ. Adaptation of core mechanisms to generate cell polarity. 2003.  Nature 422: 
766−774. 
 
Noren NK, Niessen CM, Gumbiner BM, Burridge K. 2001. Cadherin engagement 
regulates Rho family GTPases. J Biol Chem 276: 33305−33308. 

A Nusrat, CA Parkos, P Verkade, CS Foley, TW Liang, W Innis-Whitehouse, KK 
Eastburn and JL Madara. 2000. Tight junctions are membrane microdomains. Journal of 
Cell Science. 10: 1771-1781 

Nusrat, A., M. Giry, J.R. Turner, S.P. Colgan, C.A. Parkos, D. Carnes, E. Lemichez, P. 
Boquet, and J.L. Madara. 1995. Rho protein regulates tight junctions and perijunctional 
actin organization in polarized epithelia. Proc. Natl. Acad. Sci. USA. 92: 10629-10633. 
 
Ohno, S. 2001. Intercellular junctions and cellular polarity: the PAR-aPKC complex, a 
conserved core cassette playing fundamental roles in cell polarity. Curr. Opin. Cell Biol. 
13: 641-648. 
 
Perez-Moreno M, Jamora C, Fuchs E. Sticky business: orchestrating cellular signals at 
adherens junctions. 2003. Cell 112:535−548. 
 
Pratt SJ, Epple H, Ward M, Feng Y, Braga VM, Longmore GD. 2005. The LIM protein 
Ajuba influences p130Cas localization and Rac1 activity during cell migration.. J Cell 
Biol. 5:813-24.   
 
Pollack, A. L., Runyan, R. B. & Mostov, K. E. Morphogenetic mechanisms of epithelial 
tubulogenesis: MDCK cell polarity is transiently rearranged without loss of cell-cell 
contact during scatter factor/hepatocyte growth factor-induced tubulogenesis. 1998.  Dev. 
Biol. 204: 64-79. 
 



 84 

Rodriguez-Boulan, E. and Nelson, W. J. 1989. Morphogenesis of the polarized epithelial 
cell phenotype. Science. 245: 718-725. 
 
Redfield, A., Nieman, M. T., Knudsen, K. A. 1997. Cadherins promote skeletal muscle 
differentiation in three-dimensional cultures. J. Cell Biol. 138. 1323–1331 
 
Schmeichel, K. L., and Beckerle, M. C. 1997. Mol. Biol. Cell 8: 219-230. 
 
Takai, Y., Irie, K., Shimizu, K., Sakisaka, T. & Ikeda, W. 2003. Nectins and nectin-like 
molecules: roles in cell adhesion, migration, and polarization. Cancer Sci. 94: 655–667. 
 
Takai, Y. & Nakanishi, H. 2003. Nectin and afadin: novel organizers of intercellular 
junctions. J. Cell Sci. 116:17–27. 
 
Takeichi, M. 1991. Cadherin cell adhesion receptors as a morphogenetic regulator. 
Science (Wash. DC). 251: 1451-1455.  
 
Takashi Nishimura, Tomoya Yamaguchi, Katsuhiro Kato, Masato Yoshizawa, Yo-ichi 
Nabeshima, Shigeo Ohno, Mikio Hoshino & Kozo Kaibuchi. PAR-6−PAR-3 mediates 
Cdc42-induced Rac activation through the Rac GEFs STEF/Tiam1. 2005. Nature Cell 
Biology . 7: 270 – 277. 
 
Tsukita, S., Furuse, M. and Itoh, M., 2001. Multifunctional strands in tight junctions. Nat. 
Rev. Mol. Cell Biol. 2: 285–293.  
 
Vania M.M. Braga, Laura M. Machesky, Alan Hall, and Neil A. Hotchin. The small 
GTPases Rho and Rac are required for the establishment of cadherin-dependant cell-cell 
contacts. 1997 
 
Xinyu Chen & Ian G. Macara. 2005. Par-3 controls tight junction assembly through the 
Rac exchange factor Tiam1. Nature Cell Biology  7: 262 – 269.  
 
Yap, A.S., and Kovacs, E.M. 2003. Direct cadherin-activated cell signaling: a view from 
the plasma membrane. J Cell Biol 160, 11-16. 
 
Yeaman, C., Grindstaff, K. K. and Nelson, W. J. 1999. New perspectives on mechanisms 
involved in generating epithelial cell polarity. Physiol. Rev. 79: 73-98.   



 85 

 

 

 

 

 

 

 

Chapter 3 

 

Ajuba LIM Proteins are Negative Regulators of the Hippo Signaling Pathway 
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 Chapter 3 has been adapted from a submitted manuscript, Ajuba LIM Proteins are 

Negative Regulators of the Hippo Signaling Pathway. It also includes some unpublished 

data. All of this work was performed autonomously. The submitted manuscript has the 

following citation:  

 

Meghna Das Thakur, Yunfeng Feng, Radhika Jagannathan, Midori J. Seppa, James B. 

Skeath and Gregory D. Longmore. Under review, 2010.  
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Abstract 

 The mammalian Ajuba LIM proteins (Ajuba, LIMD1, WTIP) are cytosolic 

adapter proteins recruited to nascent epithelial adherens junctions, where they are thought 

to contribute to junctional assembly and/or stability (Marie, Pratt et al. 2003).  They also 

shuttle into the nucleus acting as corepressors of the Snail family of transcriptional 

repressors, thereby contributing to epithelial mesenchymal transition (Langer, Feng et al. 

2008). As such they have the potential to communicate cell adhesive events with nuclear 

responses to remodel epithelia.  Determining their role(s) in vivo, however, has been 

challenging due to shared interacting proteins, overlapping tissue expression and 

functional redundancy in cells. Thus, we turned to the Drosophila model system where a 

single gene, CG11063 or djub, exists. The generation and analysis of Drosophila 

containing djub mutant loss-of-function alleles or depleted of dJub by RNAi identify djub 

as an essential gene required for normal development and a novel regulator of epithelial 

organ growth as a component of the conserved Hippo pathway, which has been 

implicated in both tissue size control and cancer development (Tapon, Harvey et al. 2002; 

Iida, Hirota et al. 2004; Lai, Wei et al. 2005). djub-deficient epithelial tissues were small 

due to decreased cell numbers resulting from increased apoptosis and decreased 

proliferation due to the downregulation of DIAP1 and cyclin E, phenocopying tissues 

deficient for Yorkie (Yki), the downstream target of the Hippo pathway. djub genetically 

interacts with the Hippo pathway, and genetic epistasis suggests that djub influences wts 

activity. In mammalian and Drosophila cells, Ajuba LIM proteins/dJub specifically 

interact with LATS/Wts and WW45/Sav to inhibit phosphorylation of YAP/Yki. This 
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work describes a novel role for the Ajuba LIM proteins as negative regulators of the Hpo 

signaling pathway. 
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Introduction 

During development cell intrinsic as well as extrinsic factors coordinate to specify 

organ or tissue specific cell size and number. For all the diverse cell types, the final 

number of cells is determined by a balance of cell proliferation and cell death. Normal 

healthy tissue and the cells within cease to proliferate and grow once they have reached 

their final size. The question still remains of how these processes are regulated in normal 

healthy tissue and how cancer genes first initiate proliferation, which can then disrupt the 

intricate epithelial architecture.  

Recent studies have established the role of the Hippo pathway in regulating size 

in Drosophila (Tapon, Harvey et al. 2002; Iida, Hirota et al. 2004; Lai, Wei et al. 2005) 

and has been implicated in cancer development in humans (Overholtzer, Zhang et al. 

2006; Dong, Feldmann et al. 2007; Zhao, Wei et al. 2007; Steinhardt, Gayyed et al. 

2008). The activation of the pathway enfolds a kinase cascade where Hpo, a Ste-20-type 

kinase, forms a complex with Salvador (Sav), a WW-repeat adapter protein, and then 

activates Warts (Wts), a nuclear Dbf-2-related type kinase, by phosphorylation. Wts in 

turn binds to the Mats, Mob-as-tumor-suppressor protein, and phosphorylates the 

transcriptional coactivator Yorkie (Yki) at the Serine 168 site (Harvey, Pfleger et al. 

2003; Pantalacci, Tapon et al. 2003; Udan, Kango-Singh et al. 2003). Phosphorylated Yki 

binds 14-3-3 proteins, which inhibit Yki from shuttling into the nucleus and induce the 

transcription of the Hpo pathway target genes. Yki has been ascertained to be an activator 

of proliferation and anti-apoptotic genes (Dong, Feldmann et al. 2007; Zhao, Wei et al. 

2007). Also integral to the pathway is the ERM (ezrin/radixin/moesin) domain containing 

cytoskeleton proteins, Merlin (Mer) and Expanded (Ex) and the protocadherin Fat (Ft) 
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that are upstream of the pathway and function in the activation of the signaling cascade 

(Bennett and Harvey 2006; Badouel, Gardano et al. 2009).  

Loss of function mutants of hpo, sav, wts and overexpression of yki all result in 

overgrowth of Drosophila epithelial tissue. The increase in proliferation and decrease in 

apoptosis is brought about by the misregulation of yki transcriptional targets such as 

cyclinE , Drosophila inhibitor of apoptosis protein DIAP1 and the microRNA bantam 

(Nolo, Morrison et al. 2006; Willecke, Hamaratoglu et al. 2006). Studies have also shown 

that the mammalian components of the Hpo/Sav/Wts/Yki pathway, namely Mst1/2, 

WW45, Lats1/2 and YAP and their size regulatory function are conserved in mammals. 

Furthermore, the Drosophila loss of function mutants for yki, wts and hpo can all be 

functionally rescued by their mammalian orthologs, YAP, Lats1 and Mst2 respectively 

(Tao, Zhang et al. 1999; Harvey, Pfleger et al. 2003; Dong, Feldmann et al. 2007). 

Our studies have identified a novel negative regulator of the Hpo growth 

regulatory pathway, namely, the Ajuba LIM proteins. The family of Ajuba LIM proteins, 

namely Ajuba, LIMD1 and WTIP are closely related to the Zyxin (Zyxin, LPP, Trip6) 

family of LIM proteins. These proteins contain 3 homologous C-terminal protein 

interacting LIM domains and unique prelim region on their N-terminal region.  Ajuba 

LIM proteins can be found in the cytosol, plasma membrane associated, or nuclear.  In 

each subcellular compartment they appear to have distinct functions.  They are present in 

most epithelia, in varying relative amounts.  In epithelial cells Ajuba is actively recruited 

to newly forming cell-cell adhesions through an association with a-catenin bound to 

surface E-cadherin, where it can influence cell-cell adhesion formation or stabilization 

(Marie, Pratt et al. 2003).  Ajuba LIM proteins also shuttle into the nucleus where they 
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have been shown to function as transcriptional co-repressors for Retinoblastoma protein 

(LIMD1) and Snail family proteins, where they can influence developmental epithelial 

mesenchymal transitions (EMT) (Goyal, Lin et al. 1999; Marie, Pratt et al. 2003).  These 

results suggest that the Ajuba LIM proteins have the capacity to communicate cell 

surface events (adhesion) with nuclear responses (EMT, tumor transformation). These 

roles of the Ajuba family of LIM proteins make them excellent candidates for the 

coordination of cell surface roles resulting in a nuclear response. Since all three family 

members have largely overlapping expression in epithelia, albeit at different relative 

levels, a determination of their role in development, in vivo, has proven challenging.  

Both Ajuba-/- and LIMD1-/- mice are viable, and although LIMD1 mice are somewhat 

smaller, both develop normally.  Likewise Ajuba/LIMD1 double null mice are also viable 

and develop normally.    

 To determine what role, if any, the Ajuba LIM proteins have in development, 

specifically in epithelial development, we decided to approach this problem in 

Drosophila. The main advantages of using the Drosophila as a model to ask our question 

was that flies have only a single Ajuba LIM protein family gene, CG11063 on the X 

chromosome, thereby significantly reducing potential functional redundancy issues 

apparent in prior mouse experiments.  Secondly, the fly system is well established as a 

model to study epithelium and the genetic tools available allow studying the effects of 

manipulating a gene in an in vivo system. To determine the role of Ajuba LIM proteins in 

epithelial development we generated drosophila lines expressing two different RNAis 

directed against CG11063 and also a genetic null allele of CG11063, namely djub.  

 In the studies presented here we show that djub is an essential gene necessary for 
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normal Drosophila development. Moreover, our data suggest that djub regulates 

expression of CycE and DIAP1, key regulators of cell cycle progression and apoptosis. 

We provide evidence that djub acts through the Hippo pathway to regulate tissue size. 

Also djub acts genetically and biochemically upstream of Wts/LATS.   Taken together 

the data suggest that djub is a negative regulator of the Hpo pathway.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 93 

Results  

The Drosophila orthologue of mammalian Ajuba LIM proteins, dJub, regulates 

organ size 

 In Drosophila there is a single orthologue of the mammalian Ajuba subfamily of 

LIM proteins encoded by the CG11063 locus in the X chromosome (Renfranz, Siegrist et 

al. 2003). CG11063 exhibits greater sequence similarity to the three mammalian Ajuba 

subfamily proteins, than to dZyx, the Drosophila orthologue of the Ajuba-related Zyxin 

subfamily of LIM proteins (Zyxin, LPP, and Trip6) (Fig. S1A). We designate CG11063 

as djub (Drosophila Ajuba LIM proteins).    

 To determine the in vivo function(s) of djub in Drosophila we generated two 

different dJub RNAi lines: djub-RNAi 22.5 and djub-RNAi 18.1 (Fig. S1A). Ubiquitous 

expression of either, using GAL4/UAS and actin-GAL4, resulted in pharate lethality, 

suggesting that djub is an essential gene. Both RNAi constructs yielded similar 

phenotypes in all subsequent assays. Since djub-RNAi 22.5 consistently induced stronger 

phenotypes we use RNAi 22.5 when referring to dJub RNAi.  

 Since Ajuba LIM proteins are abundant in mammalian epithelia (Goyal, Lin et al. 

1999) and have been implicated in epithelia functions (Marie, Pratt et al. 2003), we 

selectively depleted djub function in larval wing and eye imaginal disc epithelium. djub 

RNAi expression in the wing, using 1096-gal4, decreased wing size to 65% of wild type 

(Fig. 1B and E). Western blot analysis of tissues expressing dJub RNAi revealed an 

approximate 60% reduction of dJub protein level (Fig. 1H). The small wing phenotype 

was due to decreased cell number, not cell size, and wing patterning appeared unaffected 

(Fig. 1F).  Similarly, GMR-GAL4-mediated expression of dJub RNAi in the pupal eye 
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epithelium resulted in a 25% reduction in interommatidial cells, without significant 

disruption to ommatidial patterning (Fig. 1J, K).  These RNAi phenotypes were specific 

for dJub depletion, as overexpression of a wt djub transgene in dJub RNAi-expressing 

cells partially rescued both wing and eye phenotypes (Fig. S1D, H). Furthermore, 

overexpression of human LIMD1 (most closely related to dJub) also rescued the dJub 

RNAi wing phenotype (Fig. S1G, H), suggesting that this function of Ajuba LIM proteins 

is conserved between Drosophila and mammals. dJub and hLIMD1 overexpression in wt 

wings and eyes also resulted in a modest increase in size, due to increased cell number 

(Fig. 1C, E, F, R and data not shown). In pupal eye epithelium dJub localized to adherens 

junctions (AJs), predominantly in interommatidial cells, co-localizing with DE-cadherin 

in a punctate pattern (Fig. 1L-O). The HA-LIMD1 transgene also localized to AJs in 

wing larval disc epithelia (Fig. S1I). This cellular localization of dJub is similar to that 

for mammalian Ajuba LIM proteins in mammalian epithelia (Marie, Pratt et al. 2003). 

 We next generated djub mutant alleles using FLP-FRT based methods (Parks, Cook 

et al. 2004). Two distinct, yet overlapping, deficiencies of the djub locus were made (Fig. 

S2). The first alelle, djub I deletes djub, CG11092 and the 5’ region of CG10997 (Fig. 

S2A). The second allele, djub II removes djub and CG32626 and the 3’most region of 

CG11092 (Fig. S2A).   In addition, both deficiencies yielded identical results for all 

phenotypic studies detailed below.  Flies hemizygous for each deficiency died at late 

embryonic to first instar larval stage. Female flies (heterozygous for djub I or djub II) 

expressed 50% level of WAL-d protein, as determined by Western blot (Fig. S2C). 

Importantly, ubiquitous expression of wt djub transgene rescued lethality of both alleles, 

confirming that the loss of djub, and not the flanking genetic material, was responsible 
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for this phenotype and that djub as an essential gene.   

 When dJub was selectively deleted in the eye, using eyeless-FLP (EGUF/hid) to 

produce eyes composed of over 90% djubI mutant cells (Stowers and Schwarz 1999), 

adult eyes were severely reduced in size (Fig. 1Q). Genetic mosaic analysis of djubI 

mutant and wt twin-spot clones in eye and wing imaginal discs resulted in djubI mutant 

clones (Fig 1T, U yellow arrows) that were significantly smaller than wt twin-spot clones 

(Fig 1S, U red arrow).  To verify that these growth defects were specific to loss of djub 

function, we induced djubI mutant clones throughout the wing imaginal disc while 

simultaneously expressing a wt mCherry-tagged djub transgene only in the posterior half 

of the wing disc using engrailed-gal4. In the anterior compartment djubI mutant clones 

were small and few in number (Fig. S2E). In contrast, the posterior compartment 

contained more and larger clones, similar to wt clones induced in a wt background (Fig. 

S2D-F).  

 

djub mutant clones exhibit reduced proliferation and increased apoptosis  

 The growth phenotype of djubI mutant clones could result from decreased cell 

proliferation and/or increased apoptosis. In wt larval eye imaginal discs undifferentiated 

cells lie anterior to the morphogenetic furrow and undergo asynchronous cell divisions 

(Fig. 2A, white arrow).  Posterior to the furrow cells either differentiate or undergo one 

more cell division – the second mitotic wave (Fig. 2A, yellow arrow) – after which they 

differentiate or die (Ready, Hanson et al. 1976; Tomlinson and Ready 1987). 

Bromodeoxyuridine (BrdU) labeling of wt and djubI mutant eye discs, generated via the 

EGUF-Hid method, revealed that djubI eye discs displayed a strong reduction in the 
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number of cells undergoing asynchronous cell division anterior to the furrow (Fig. 2A’, 

white arrow) and a near complete loss of the second mitotic wave (Fig. 2A’, yellow 

arrow).  During eye development apoptosis determines the final number of cells in the 

eye (Baker 2001). Staining eye discs for activated caspase-3 revealed that djubI mutant 

eye discs contained increased number of caspase-3-positive cells (Fig. 2B, B’), and when 

the caspase inhibitor P35 was coexpressed throughout a djubI mutant adult eye the small 

eye phenotype was partially rescued (Fig. S3B, C). Relative to wt, djubI mutant clones 

exhibited decreased levels of Drosophila inhibitor of apoptosis-1 (DIAP1) (Fig. 2C) and 

Cyclin E (Fig. 2E). dJub appeared to control transcription of DIAP1 as djubI mutant 

clones expressed less lacZ, under control of the diap1 gene promoter (Fig. 2D). These 

data indicate that dJub regulates organ size by inhibiting apoptosis and promoting cell 

proliferation through influencing DIAP1 and Cyclin E expression, respectively. Although 

loss of dJub reduced eye size, photoreceptors cells (ELAV-positive cells) still developed 

(Fig. S3A), suggesting that dJub did not influence cell specification steps and that the 

differentiated cells did not require dJub for their survival. Furthermore, dJub deletion did 

not affect adherens junction organization, as determined by DE-cadherin staining of djubI 

mutant clones (Fig. S3D). 

 

DJub genetically interacts with the Hippo pathway    

 The djub loss of function phenotype resembles that of yorkie (yki), which encodes 

a transcriptional coactivator, the activity of which is antagonized by the Hippo signaling 

pathway. Active Yki promotes proliferation and inhibits apoptosis by facilitating 

transcription of Cyclin E and DIAP1 (Huang, Wu et al. 2005; Oh and Irvine 2008). Given 
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the similarity between the djub and yki loss of function phenotypes we hypothesized that 

dJub governs organ size by affecting Yki activity either directly, or indirectly by 

inhibiting Hippo pathway function.   Hippo pathway mutants (hpo, sav, wts) produce 

overgrown adult eyes and pupal eyes with increased interommatidial cells (Fig. 3C, E, G, 

and J, J’, L, L’, N, N’, P respectively) (Harvey, Pfleger et al. 2003; Udan, Kango-Singh et 

al. 2003). Removing a copy of djub reduced the magnitude of hpo and sav mutant 

phenotype (Fig. 3D, K, K’, P and F, M, M’, P), and modestly affected the wts phenotype 

(Fig. 3H, O, O’, P). In a reciprocal manner, a 50% reduction in Wts suppressed the dJub 

RNAi small wing phenotype (Fig. S4A-E), while a 50% reduction of Yki enhanced this 

phenotype (Fig. S4F-J). Taken together these two analyses suggest the possibility that 

djub and the Hippo pathway genetically interact. If so, then djub specifically interacted 

with the Hippo pathway of organ growth control as no genetic interactions were observed 

between dJub and Myc or components of the Insulin receptor signaling pathway, known 

to regulate organ size by affecting cell size (Fig. S4K). DJub localization to AJ was 

unaltered in wts, hpo, and sav mutant pupal eyes (Fig. S3E-G). 

  

Epistatic analysis suggests that djub acts upstream of wts and yki but downstream of 

hpo                                                                                                                                  

 If djub genetically interacts with the Hippo pathway then there should be an 

epistatic relationship to components of the Hippo pathway. To determine where in the 

Hippo pathway dJub acts we performed genetic epistasis experiments between djub and 

yki, wts and hpo. MARCM pupal eye clones of djubI alone result in small clones (Fig. 4B, 

I), whereas MARCM clones overexpressing Yki or depleted of Wts or Hpo result in 
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increased clonal area as well as overproliferation of interommatidial cells (Pantalacci, 

Tapon et al. 2003; Wu, Huang et al. 2003; Huang, Wu et al. 2005; Edgar 2006) (Fig. 4C, 

E, G, I and Fig. 5C, E, G and I, respectively). djubI mutant MARCM clones 

overexpressing Yki displayed a phenotype identical to overexpression of Yki alone (Fig. 

4D, I and Fig. 5D, I). djubI mutant MARCM clones depleted of Wts, resembled wts 

RNAi clones (Fig. 4F, I and Fig. 5F, I), however, removing djub in hpo RNAi MARCM 

clones resulted in a djubI-like phenotype (Fig. 4H, I and Fig. 5H and I). This epistatic 

analysis suggested that djub acts downstream to hpo but upstream of wts and yki, but 

since the core Hippo pathway proteins (Hpo, Sav, Wts, and Mats) are thought to function 

as a complex, a precise epistatic relationship is difficult to conclude.  

 

Ajuba LIM proteins/dJub  associate with LATS/Wts and WW45/Sav in mammalian 

and Drosophila cells, respectively,  and influence YAP activity in mammalian cells 

The Hippo pathway is highly conserved between Drosophila and vertebrates 

(Tao, Zhang et al. 1999; Wu, Huang et al. 2003; Lai, Wei et al. 2005; Dong, Feldmann et 

al. 2007), and human LIMD1 rescues the cell growth defects of dJub depleted Drosophila 

wings (Fig. S1G, H). To determine whether Ajuba LIM proteins interact with Hippo 

pathway components in cells, and if so whether these interactions are functionally 

relevant, we tested whether the mammalian homologs of dJub (Ajuba, LIMD1 and 

WTIP) associated with mammalian orthologues of Hippo pathway members in human 

HEK293 epithelial cells, through co-immunoprecipitation experiments. All three Ajuba 

subfamily members associated strongly with LATS1/2, and Ajuba and WTIP associated 
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with WW45, but none associated with MST1/2 or YAP (Fig. 6A-C). The interaction 

between LATS and WW45 and Ajuba family proteins was specific as Zyxin, the most 

closely related LIM protein to Ajuba family members, failed to associate with either 

LATS or WW45 (Fig. 6D). In transfected Drosophila S2 cells dJub associated with Wts 

and Sav but not Hpo (Fig. S4L left panel). A weak association between dJub and Yki was 

noted but this was >10 fold less than that observed for Wts and Sav, and may well be 

nonspecific as transfected Yki was massively overexpressed in S2 cells (Fig. S4L, right 

panel). 

 To determine if these protein-protein interactions were functionally relevant we 

asked whether Ajuba LIM proteins affected YAP activity (i.e., YAP phosphorylation) 

(Dong, Feldmann et al. 2007; Oh and Irvine 2008; Reddy and Irvine 2008). Transfection 

of MST1, WW45, LATS1/2 alone into HEK293 cells resulted in variable increase in 

phospho-S127-YAP levels, however, when co-transfected with LIMD1 phospho-YAP 

levels were decreased in all instances (Fig. 6E). Overexpression of dJub in drosophila 

imaginal discs did not appreciable change the level or subcellular localization pattern of 

Yki or other Hippo pathway targets namely, Ex and Diap1. This may be due to the fact 

that only a small 10% increase in wing size occurs in wings overexpressing dJub (Fig. 

1C, E, F). In another approach, Ajuba and LIMD1 were RNAi-depleted in MDCK cells, 

and phospho-YAP levels determined in cultures of cells at differing density. Analysis of 

MDCK cells depleted of all three Ajuba LIM proteins was not possible as cells died, like 

drosophila cells lacking dJub. Compared to control MDCK cells, in cells depleted of 

Ajuba and LIMD1 basal phospho-YAP levels were increased 2.5 fold in all three 

densities (Fig. 6F). Taken together, these results demonstrated that mammalian Ajuba 
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LIM proteins and dJub specifically associate with LATS/Wts and WW45/Sav in cells, 

and in mammalian cells these associations antagonize the phosphorylation of YAP. 
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Discussion 

The recently described Hippo pathway has been established as one of the vital 

mechanisms that restrict organ size in Drosophila, and is well conserved in mammals as 

well (Tapon, Harvey et al. 2002; Iida, Hirota et al. 2004; Lai, Wei et al. 2005). Moreover 

mutations in components of the Hippo pathway have been implicated in the development 

of human cancers (Tapon, Harvey et al. 2002). The pathway accomplishes this by 

controlling the function/subcellular localization of the transcriptional coactivator Yki 

through a core protein kinase cascade (Hpo and Wts) that leads to selective 

phosphorylation of Yki, by Wts, resulting in the cytoplasmic accumulation of Yki, and 

thus, transcriptional inactivity (Huang, Wu et al. 2005; Oh and Irvine 2008). We now 

report that the single Drosophila ortholgue of the Ajuba LIM protein family, djub, 

impinges on the function of Yki by inhibiting the Hpo pathway.   Both biochemical and 

genetic evidence implicates dJub as a negative regulator of the Hpo/Wts pathway.   In the 

first instance, mammalian Ajuba, LIMD1 and WTIP as well as Drosophila dJub LIM 

proteins specifically associate with Lats (Wts) and WW45 (Sav) in cells and their 

overexpression limits the phosphorylation of YAP (Yki) (Fig. 6 and Fig. S4).  In 

Drosophila djub genetically interacts with Hpo pathway mutants, and based on epistasis 

analysis djub appears to act upstream of yki and warts yet downstream of hpo.   

We provide several lines of genetic evidence that places the activity of djub 

downstream of Hpo and upstream of Wts.  First, the growth defect of djub null mutants is 

phenotypically similar to yki loss of function and hpo and wts gain of function 

(Hamaratoglu, Willecke et al. 2006), where tissue size is severely reduced due to an 

increase in apoptosis and a decrease in cell proliferation with a corresponding 



 102 

downregulation of the target genes DIAP1 and Cyclin E. (Fig. 1P, Q and Fig.2 C-E).  

Second, the phenotypes induced by removing hpo, wts or sav in the eye are reversed by 

removing one copy of djub (Fig. 3). Similarly, removing one genomic copy of wts 

suppresses the dJub RNAi phenotype while removing one genomic copy of yki enhances 

the dJub phenotype (Fig. S4). Third, the epistasis experiments show that overexpressing 

Yki and Wts RNAi in the absence of djub manifests as a Yki overexpression and a Wts 

RNAi phenotype respectively, and the Hpo RNAi phenotype persists in the absence of 

djub, indicating that the Wts RNAi and Yki overexpression phenotypes do not require the 

activity of djub, suggesting that djub functions upstream of wts and yki. The fact that the 

Hpo RNAi phenotype is masked in the absence of djub suggests that hpo functions 

upstream of djub (Fig. 4, 5, and 6).  These genetic and biochemical data (Fig. 6) suggest 

the possibility that dJub may influence the Hpo pathway by affecting Wts activity. 

Precisely how Ajuba LIM proteins (dJub) influence LATS/Wts mediated inactivation of 

YAP/Yki remains to be determined, but possibilities include: inhibition of activation of 

LATS/Wts by upstream kinases (MST/Hpo), inhibition of the ability of LATS/Wts to 

phosphorylate YAP/Yki, or affecting the subcellular localization of LATS/Wts or 

WW45/Sav and thus their access to the Hippo pathway. Moreover, the regulatory 

relationship between Ajuba LIM proteins (dJub) and LATS/Wts may not be simply 

unidirectional as LATS has been shown to phosphorylate Ajuba (Abe, Ohsugi et al. 

2006).  

Although this is the first time the Ajuba family of LIM proteins have been 

implicated in the Hpo pathway, prior work has described an interaction between Ajuba 

and LATS at centrosomes that influences mitotic centrosome/spindle organization. That 
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study showed that Ajuba and Lats2 co-localize to centromeres and further, associate with 

each other during mitosis. This interaction requires the kinase activity of Lats2 and 

results in the phosphorylation of the LIM protein Ajuba (Abe, Ohsugi et al. 2006).  With 

respect to the Hippo pathway there is some data that shows Mats and Wts colocalize at 

the centrosome (Shimizu, Ho et al. 2008). Therefore we cannot exclude the possibility of 

the cenrtrosome being a functional site for the interactions, as mitotic damage can lead to 

apoptotic cell death, nor that dJub’s effects upon the Hpo pathway are cell cycle 

dependent.  

Ajuba LIM proteins are components of AJs in mammalian and Drosophila 

epithelia. Upstream members of the Hippo pathway include atypical cadherins (Fat, 

dachsous), and Expanded and Merlin – also localize to adherens junctions, leading to the 

hypothesis that AJs could be nodal points for initiation/regulation of Hippo signaling 

(Bennett and Harvey 2006; Cho, Feng et al. 2006; Silva, Tsatskis et al. 2006; Willecke, 

Hamaratoglu et al. 2006; Feng and Irvine 2007; Tyler and Baker 2007; Reddy and Irvine 

2008), however how these upstream components actually activate MST/Hpo kinase is 

unknown.  The Hippo pathway is thought to regulate cell contact growth inhibition 

(Zhao, Wei et al. 2007). Interestingly, in sub-confluent non-contacted cells, Ajuba LIM 

proteins are cytosolic while YAP is nuclear and cells proliferate (Zhao, Wei et al. 2007). 

When cells achieve confluence Ajuba proteins are recruited to AJs while YAP is 

phosphorylated and re-localized to the cytosol and cell proliferation ceases. Whether 

these events are related is not known, but given that Ajuba proteins associate with and 

inhibit LATS/Wts-mediated phosphorylation of YAP raises the possibility that the 

recruitment of Ajuba proteins/dJub to AJ in confluent cell cultures may “release” 
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LATS/Wts allowing for Hippo pathway mediated YAP/Yki phosphorylation, 

inactivation, and growth arrest. 
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Experimental Procedures and Materials 
 
Drosophila genetics and strains 

djub RNAi lines 

djub RNAi constructs were cloned as inverted repeats (Bao and Cagan 2006). Briefly, an 

approximately 500bp fragment of the coding region was amplified from a Canton S 

cDNA library and subcloned into pGem-WIZ (Bao and Cagan 2006). Subsequently a 

copy of the fragment was inserted in the opposite direction. The mini-white gene 

separated the inverted fragments. The entire piece “fragment – mini-white – inverted 

fragment” was then sub-cloned into pUAST, and this vector was used to generate 

transgenes via standard P element-mediated transformation (Rainbow Transgenics, Inc). 

UAS-djub-RNAi 22.5 targets a 445bp fragment starting at 226bp before the start codon 

and UAS-djub-RNAi 18.1 targets the 593bp fragment starting 500bp after the start codon 

(Fig. S1A). 

 

Generation of djub deficiency lines 

Djub deficiencies were generated as described in Parks, A.L et al (Parks, Cook et al. 

2004). djub I was generated by FRT-mediated recombination between PA (P[XP]d05713) 

and PB (PBac[RB]CG11063e03614 ) in flies heterozygous for chromosomes bearing each 

P element (Fig. S1A). djub II was generated by FRT-mediated recombination between PX 

(PBac[RB]CG11092e03640 ) and PY (P[XP]d02874) (Fig. S1A). Genomic deletion was 

confirmed by PCR, and immunoblotting for djub gene product (Fig. S1B).  

 

Construction of djub-mCherry and HA-LIMD1 transgenes 
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cDNA was prepared from tissue obtained from 3rd instar larvae. The tissue was 

homogenized in Trizol and chloroform (1:5) and then subjected to centrifugation. The 

mRNA was precipitated with 100% isopropanol and the pellet was washed in RNAse free 

75% ethanol. The pellet was dissolved in DEPC-dH2O and the DNA digested by DNAse 

treatment. The mRNA was extracted with a pheno-chroloform isoamyl alcohol mixture 

and after centrifugation precipitated with 3 volumes of RNAse free 100% ethanol. The 

pellet was washed with 75% ethanol and reverse-transcribed using standard techniques. 

The PCR products were confirmed to represent dJub cDNA by sequence analysis. dJub 

was amplified by PCR and cloned into pUAST+N-mCherry vector to construct UAS-

djub-mCherry and transgenic flies were generated as detailed above. To construct the 

HA-LIMD1 construct, human LIMD1 cDNA was cloned into HA-pUAST vector.  

 

Twin-spot analysis and gene expression studies.  

All mutant clones were induced using the FLP/FRT system (Xu and Rubin 1993). Clones 

in the eye were generated in flies/larvae of the following genotype: djub,FRT19a /Ubi-

GFP, FRT19a; eyeless-FLP and NeoFRT19a /Ubi-GFP, FRT19a; eyeless-FLP. Ubi-

GFP, FRT19a; eyeless-FLP (from N. Dyson).  For rescue experiments in the wing 

imaginal discs, clones were generated in flies of the following genotype: djub,FRT19a/ 

Ubx-FLP tub-GFP FRT19a;en-gal4/ UAS-djub-mcherry and NeoFRT19a/ Ubx-FLP tub-

GFP FRT19a as a wild type control. Ubx-FLP tub-GFP FRT19a (J.A Knoblich, IMBA, 

Austria).  
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Generation of djub EGUF/HID clones  

Eyes composed almost entirely of mutant tissue were generated by the EGUF/Hid 

method (Stowers and Schwarz 1999). djub mutant eyes were created in flies of the 

following genotype: FRT19A djub/GMR-hid, FRT19A, l(1)Cell Lethal1; eyeless-GAL4-

ey,UAS-FLP/+ and the control flies were of the genotype: NeoFRT19A/GMR-hid, 

FRT19A, l(1)Cell Lethal1; eyeless-GAL4,UAS-FLP/+. djub mutant eyes in which cell 

death was blocked by eye-specific expression of P35 were generated in flies of the 

genotype: FRT19A djub/GMR-hid, FRT19A, l(1)Cell Lethal1;eyeless-GAL4,UAS-

FLP/UAS-P35. For the genetic interaction studies, female fly eyes mutant for sav, wts, 

hpo and heterozygous for djub were of genotypes: FRT19A djub/+; FRT42D 

HpoKC202/FRT42D, GMR-hid, l(2)CL-R1; eyeless-GAL4,UAS-FLP/+,  FRT19A 

djub/+;eyeless-GAL4,UAS-FLP/+;FRT82B savshrp3/FRT82B GMR-hid, l(3)CL-R1 and 

FRT19A djub/+;eyeless-GAL4,UAS-FLP/+;FRT82B wtsp1/FRT82B GMR-hid, l(3)CL-R1. 

GMR-hid,FRT19A,l(1)CL1/FM7a;eyeless-GAL4,UAS-FLP,  FRT42D,GMR-hid,l(2)CL-

R1/Cyo; eyeless-GAL4,UAS-FLP,  eyeless-GAL4,UAS-FLP/Cyo;/FRT82B GMR-hid, 

l(3)CL-R1/TM2 and UAS-P35 (Bloomington Drosophila Stock Center). 

 

Generation of MARCM clones  

MARCM clones(Lee and Luo 1999) for the epistasis experiments were generated by heat 

shocking third instar larvae for 1 h at 37°C and dissecting female pupal eyes of the 

following genotypes 40 h APF : (a) hsFLP, tub-gal80, FRT19A/+; UAS-GFP, UAS-

lacZ/+; UAS-yki /tub-gal4 (b) djub, FRT19a/ hsFLP, tub-gal80, FRT19A; UAS-GFP, 

UAS-lacZ/+; UAS-yki/tub-gal4 (c) hsFLP, tub-gal80, FRT19A/+; UAS-hpoRNAi/UAS-
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GFP, UAS-lacZ; tub-gal4/dicer (d) djub, FRT19a/ hsFLP, tub-gal80, FRT19A; UAS-

hpoRNAi/UAS-GFP, UAS-lacZ; tub-gal4/dicer (e) hsFLP, tub-gal80, FRT19A/+; UAS-

GFP, UAS-lacZ/dicer; UAS-wtsRNAi/tub-gal4 and (f) djub, FRT19a/ hsFLP, tub-gal80, 

FRT19A; UAS-GFP, UAS-lacZ/dicer; UAS-wtsRNAi tub-gal4. UAS-yki (K. Irvine, 

Rutgers University), UAS-hpoRNAi (N. Tapon, Cancer Research UK) and UAS-wtsRNAi 

(Vienna Drosophila RNAi Center).  

 

GAL4/UAS analysis 

Gene over-expression and RNAi assays were carried out using the GAL4/UAS system 

(Brand and Perrimon 1993). GAL4 driver lines used: 1096-gal4, GMR-gal4, and 

engrailed-GAL4. UAS lines used: UAS-djub-mCherry, UAS-djubRNAi (22.5 and 18.1) 

and UAS-P35.  

 

Fly lines and staging of pupae 

All crosses took place at 25°C. Pupae were staged at 0hrs after puparium formation 

(APF) as white pre-pupae and maintained at 25°C. , Wandering third instar larvae were 

used for third instar imaginal disc dissections. 

 

Mounting of Adult wings, cell counting and statistics 

Adult flies were stored in 80% ethanol until ready for dissections. Only female flies were 

used for analyses. Wings were removed in 75% glycerol (in PBS) for mounting. 

Coverslips were sealed with nail polish. Wing cells were counted in the area bounded by 

the L4 and L5 veins and the second intervein, and the average and standard deviation 
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were plotted using Image J and Microsoft Excel. The Mann-Whitney U non-parametric 

test was used to calculate statistical significance of the number of cells, and the area of 

the wing region between various genotypes. 

 

Other fly strains  

DIAP1-LacZ and UAS-Ex flies were from G. Halder (University of Texas M. D. 

Anderson Cancer Center), Ft422 flies were from K. Harvey (Peter MacCallum Cancer 

Centre, Australia), INREx15 flies were from L. Pick (University of Maryland), Chico1 flies 

were from D.L Stern (Princeton University), Foxo25 flies were from E. Hafen (Institute of 

Molecular Systems Biology, Switzerland) and dmyc1 flies were from P. Gallant 

(Zoologisches Institut, Switzerland).  

 

Scanning Electron Microscopy  

Scanning electron microscopy (SEM) of adult flies was carried out as previously 

described (Cordero, Larson et al. 2007). Adult fly samples were dehydrated and sputter-

coated before being imaged using a Hitachi S-2600H scanning electron microscope 

(Department of Otolaryngology, Washington University in St Louis).  

 

Immunohistochemistry  

Pupal retina and eye and wing imaginal disc dissections were carried out in PBS 

following which the tissue was fixed in 4% paraformaldehyde dissolved in PBS. After 

fixation, tissues were washed in PBST (PBS + 0.5% Triton X-100) and incubated at 4°C 

overnight with primary antibody diluted in PAXDG buffer (0.1% BSA, 0.3% Triton X-
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100, 0.3% deoxycholate, 5% normal goat serum in PBS). Tissues were then washed 3 

times with PBST for 10 mins each, and incubated for 3 hrs at room temperature or 

overnight at 4°C with secondary antibody diluted in PAXDG (1:1000). Tissues were then 

rinsed with PBST and transferred onto slides for mounting in vectasheild mounting 

medium containing DAPI (Vector Labs).  Images were captured at room temperature on a 

LSM 510 Zeiss confocal microscope using 63x oil objective. Image J and Photoshop 

(Adobe) were used to process images. The following antibodies were used: rat α-DE-

cadherin (IC) (1:10, DSHB), rabbit α-dJub (1:400), mouse α-DIAP1 (1:200, B. Hay, 

California Institute of Technology), mouse α-BrdU (1:20, Becton-Dickinson), mouse α-

CyclinE (1:40, H. Richardson, Peter MacCallum Cancer Center, Australia), rabbit α-

Activated Caspase3 (1:100, Abcam) and mouse α-b-gal (1:2000, Promega). Secondary 

antibodies used were Alexa Fluor 488 and 568 (Invitrogen), rabbit α-HA (1:100, Abcam) 

and Cy5 (Jackson ImmunoResearch Laboratories). 

 

Immunoprecipitation 

HEK 293 T cells (4X105 plated in 12-well plates 24 hours prior to transfection) were 

transfected with the specified constructs. Drosophila S2 cells were cultured at room 

temperature in Express Five SFM media (Invitrogen) and 50 µg/mL 

penicillin/streptomycin were transiently transfected by using FuGene6. 48 hours after 

transfection, cells were harvested by washing with cold PBS, and lysed with 200ml of IP 

buffer (20 mM HEPES [pH 7.5], 120 mM NaCl, 5 mM NaF, 1 mM sodium 

orthovanadate, 0.5 mM EDTA, 1 mM DTT, 5% glycerol, 0.1% NP-40, and protease 

inhibitor cocktail from Sigma). Extracts were sonicated briefly, and then subjected to 
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centrifugation at 15,000xg for 15 min for clearing. 10ml of lysate was saved (mixed with 

20ml of SDS sample buffer) as 5% input.  For each IP (HEK 293T cells), the remaining 

cell lysate was mixed with 5 ml of IP buffer washed M2AG beads (1:1 [vol/vol], Sigma), 

for 1 hour at 4°C with gentle rotation. For S2 cells, lysates were precleared with protein 

G beads alone for 1 hr, then incubated overnight with 1mg of mouse α-myc antibody 

(Upstate), following which Protein G beads were then added for 1 hr.  The 

immunoprecipitates were then washed with 1ml of IP buffer 4 times and finally boiled in 

25�l SDS loading buffer. 8ml of boiled samples were run on SDS-PAGE under reducing 

condition and then transferred to nitrocellulose membranes for Immunoblot analysis.  

 

MDCK cell culture and transfection 

MDCK canine kidney cells were cultured in 1X MEM (Gibco) containing 10% FBS 

(Invitrogen) and 50 µg/mL penicillin/streptomycin. Nucleofections (Amaxa cell line 

Nucleofection Kit L) was used to transfect MDCK cells with siRNAi directed against 

Ajuba and LIMD1, according to the manufacturer’s instructions. Equal numbers of cells 

were immediately plated on three different sized dishes so as to have cells plated at low, 

medium and high densities. Forty-eight hours after nucleofection the cells were harvested 

for immunoblot analysis.   

 

Immunoblotting and Antisera used.  

Fly tissue, S2 cells or HEK 293T cells were lysed in RIPA buffer [150 mM NaCl, 10 mM 

Tris-HCl (pH 7.5), 1mM EDTA, 1% Triton-X100, 0.35% DOC, 0.25% NP-40, 

0.1%SDS], PMSF and protease inhibitor cocktail (Sigma). Lysates were then cleared by 
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centrifugation and boiled for 5 minutes in SDS sample buffer and resolved by 10% SDS-

PAGE, under reducing conditions. Proteins were transferred to nitrocellulose in transfer 

buffer (48mM Tris, 390mM, glycine, 0.1% SDS, 5% methanol) and immunoblots were 

probed with primary antibodies: rabbit α-dJub (1:1000), mouse α -Flag (1:10000, Sigma), 

rabbit α -YAP (1:1000, Cell Signaling), rabbit α-P-YAP(S127) (1:1000, Cell Signaling), 

mouse α-myc (0.1�g/ml, A. Shaw, Washington University St. Louis), rabbit α-Warts 

(1:1000, K. Irvine, Rutgers University), rabbit α-YFP (1:1000, Invitrogen), rabbit α- 

Ajuba (1:1000) (RAKESH K. GOYAL and ANTHONY J. MUSLIN) and rabbit α- 

LIMD1 (1:1000) (Feng, Zhao et al. 2007). For quantification, blots were minimally 

exposed and then scanned for quantification using ImageJ software.  

 

Djub Antibody Generation 

Rabbits were immunized with a dJub N-terminal peptide (TTQRTQTQARNPGNSDSDYETL) 

coupled to KLH. Polyclonal antiserum was affinity-purified using the immunizing peptide 

(Proteintech Group, Inc).  
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Figure 1. dJub regulates tissue size by controlling cell number. (A-C) Wings from 

females wt flies (A), female flies expressing dJub RNAi (B), or dJub-mCherry transgene 

(C). 1096-Gal4 was used to drive RNAi or transgene expression. (D) Outlines of the 

wings in panels A-C. (E, F) Quantification of relative wing areas (E) and cell numbers 

(F) of genotypes in A-C. Area and cell number measurements were taken from the wing 

region located between veins L4 and L5, and wt defined as 100% (N=20 for each). (G) 

Extracts of mammalian HEK293 cells transfected with myc-dJub immunoblotted with 

dJub antiserum (left) or Myc antiserum (right). (H) Immunoblot analysis of dJub protein 

levels in wt or dJub RNAi-expressing larval eye imaginal discs. Actin serves as loading 

control. Relative amount of dJub protein is indicated below each lane. Mid-pupal wt eyes 

(I) or dJub RNAi expressing eyes (J) stained for DE-cadherin.  Secondary (arrows) and 

tertiary (arrowheads) interommatidial cells are highlighted. Loss of interommatidial cells 

in dJub RNAi expressing pupal eyes denoted by arrows (J). (K) Quantification of relative 

numbers of interommatidial cells in wt versus dJub RNAi pupal eye. Interommatidial 

cells were counted in 20 fields, each containing a cluster of at least 7 ommatidia. (L-O) 

Mid-pupal wt eyes stained for DE-cadherin (L), dJub (M), and merged image (N). Z-

stack analysis of line in N is shown above panel N (N). (O) Immunostaining with dJub 

antiserum preabsorbed with immunizing peptide. (P-R) Scanning electron micrographs 

(SEMs) of female adult eyes. WT (Q), djubI generated via the EGUF-Hid method, which 

results in eyes composed almost entirely of mutant tissue (Q), and GMR-gal4 driven 

overexpression of UAS-dJub-mCherry transgene (R). (S-U) Female third-instar larval eye 

imaginal discs containing wt (S) or djubI mutant (T, U) clones marked by the absence of 

GFP expression (black). (U) Enlarged view of djubI and wt twin spot clones. Yellow 
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arrow identifies djubI clones, red arrow identifies wt twin spot clone containing two 

copies of Ubi-GFP, and white arrow identifies tissue carrying one copy of Ubi-GFP. In 

all experiments wings and eyes were dissected from female flies. In graphs data are 

shown as mean percentages +/- standard deviation, with N= 20 for each genotype. (***) 

Represents p-value < 0.001 and (*) represents p-value < 0.05. Anterior is to the left for all 

larval imaginal discs. 
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Figure 2. djub affects cell proliferation and apoptosis and affects expression of 

DIAP1 and Cyclin E. Wt (A, B) or djubI (A’, B’) Female larval eye imaginal discs, 

composed almost entirely of cells homozygous for either a lethal-free FRT19A 

chromosome (A, B), or an FRT19A chromosome carrying djub I deficiency (A’, B’).  (A, 

A’) Proliferation detected by BrdU incorporation (green). Cells anterior to the 

morphogenetic furrow (white arrowhead). Cells posterior to the furrow (yellow arrow). 

(B, B’) Apoptosis detected by an antibody specific for activated caspase 3. (C-E) Third-

instar larval eye imaginal discs containing djubI clones (GFP –ve, yellow arrows) stained 

for DIAP1 (C’), DIAP1-lacZ (D’), or Cyclin E (E’) expression. Anterior is to the left for 

all larval eye imaginal discs. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 117 

 

 

 

 



 118 

Figure 3. djub genetically interacts with the Hippo pathway. (A-H) Genetic interaction 

analyses. SEMs of adult female Drosophila eyes of wt and Hippo pathway mutants 

(A,C,E,G) and djubI  or Hippo pathway mutants containing a deletion of a single copy of 

djub (B,D,F,H), as indicated. Mid-pupal eye dissections of wt and Hippo pathway 

mutants at low and high magnifications (I, J, L, N and I’, J’, L’, N’ respectively) or 

Hippo pathway mutants containing a deletion of a single copy of djub (K, M, O and K’, 

M’ and O’), as indicated, and stained for DE-cadherin to identify interommatidial cells. 

Scale bars in (A-H) equal 100mm and (I-O) equal 10mm. (P) Quantification of 

interommatidial cell numbers in 10 random fields containing 10 ommatidia each of 

genotypes in A-H. Data are shown as mean percentages +/- standard deviation and (***) 

represents p-value < 0.001.  
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Figure 4. djub is epistatic to hpo based on clonal area. (A-H) Genetic epistasis analysis.  

Female mid-pupal eyes stained for DE-cadherin (red).  Wt showing normal sized GFP 

positive wt MARCM clones (A).  (B) djubI MARCM clones (GFP +ve) are smaller than 

Wt. (C) MARCM clones overexpressing Yki (GFP +ve). (D) MARCM clones mutant for 

djubI and overexpressing Yki (GFP +ve). (E) MARCM clones expressing wts RNAi 

(GFP +ve). (F) MARCM clones mutant for djubI and expressing wts RNAi (GFP +ve). 

(G) MARCM clones expressing hpo RNAi (GFP +ve). (H) MARCM clones mutant for 

djubI and expressing hpo RNAi (GFP +ve). (I) Graphical representation of the clonal area 

(GFP +ve) for each genotype as a percentage of the entire pupal eye area.  In graphs data 

are shown as mean percentages +/- standard deviation, with N= 10 for each genotype. 

(***) Represents p-value < 0.001. Scale bars in (A-H) equal 20mm. 
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Figure 5. djub is epistatic to hpo based on interommatidial cell number. (A-H) 

Genetic epistasis analysis.  Female mid-pupal eyes stained for DE-cadherin (red/white). 

Wt showing normal pattern of secondary and tertiary interommatidial cells and GFP 

positive wt MARCM clones (A, A’).  (B, B’) djubI MARCM clones (GFP +ve) showing 

a loss of interommatidial cells. (C, C’) MARCM clones overexpressing Yki (GFP +ve). 

(D, D’) MARCM clones mutant for djubI and overexpressing Yki (GFP +ve). (E, E’) 

MARCM clones expressing wts RNAi (GFP +ve). (F, F’) MARCM clones mutant for 

djubI and expressing wts RNAi (GFP +ve). (G, G’) MARCM clones expressing hpo 

RNAi (GFP +ve). (H, H’) MARCM clones mutant for djubI and expressing hpo RNAi 

(GFP +ve). Arrows identify changes in interommatidial cell numbers. (I) Graphical 

representation of the percent increase of interommatidial cells within the clonal area 

(GFP +ve) as compared to wild type (set at 100% IOCs) for each genotype.  In graphs 

data are shown as mean percentages +/- standard deviation, with N= 10 for each 

genotype. (***) Represents p-value < 0.001. Scale bars in (A-H) equal 10mm. 
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Figure 6. Ajuba LIM proteins associate with components of the Hippo pathway in 

mammalian cells and influence YAP phosphorylation. (A-D) HEK293 cells were co-

transfected with LIMD1-YFP (A), Ajuba-YFP (B), Myc-WTIP (C), or Myc-Zyxin (D) 

and Flag-tagged Mst1, Lats1/2, WW45 or YAP, as indicated.  Cell lysates were 

immunoprecipitated for each Hippo pathway member (anti-Flag), and bound products 

Immunoblotted (IB) for the presence of each LIM protein (anti-YFP or anti-Myc).  

Immunoblots of input controls (5%) are shown on the right side of each panel.  

(E) HEK293 cells were transfected with the indicated member of the Hippo pathway in 

the absence or presence of LIMD1-YFP.  Levels of phospho-S127-YAP (upper panel) or 

total YAP (lower panels) were then determined by immunoblot (IB) analysis. Relative 

amounts of phospho-S127-YAP with respect to total YAP protein is indicated below each 

lane. (F) MDCK cells were transfected with control Luc siRNA (lanes 1-3) or Ajuba and 

LIMD1 siRNAs (lanes 4-6) and then plated at low (LD), medium (MD) and high density 

(HD). Amount of S127-YAP phosphorylation relative to total YAP for each density 

within control and Ajuba/LIMD1 depleted cells was determined by immunoblotting. The 

relative level of YAP phosphorylation for each density between control and 

Ajuba/LIMD1 depleted cells was determined and is indicated above the lanes. (G) 

Working model, based upon results herein, for how Ajuba LIM proteins could influence 

Hippo pathway signaling.  
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 Supplemental Figure 1. dJub is the Drosophila ortholog of the Ajuba sub-family of 

mammalian LIM domain-containing proteins and dJub regulation of wing size is 

evolutionarily conserved. (A) Schematic of the human and drosophila members of the 

Ajuba and Zyxin sub-families of LIM proteins. Orange circles denote LIM domains in 

each protein. LIM domain homology is listed to the right. Red lines above indicate the 

regions in dJub targeted by two RNAi hairpin constructs (22.5 and 18.1). Adult fly wings 

from wt (B, E), dJub RNAi 22.5 (C, F), dJub RNAi plus dJub-mCherry rescue transgene 

(D), and dJub RNAi plus human HA-LIMD1 rescue transgene (G) flies. In all cases 

1096-GAL4 was used to drive transgenes specifically in the wing. (H) Quantification of 

wing area relative to wt wings. Data are shown as mean percentages +/- standard 

deviation, with N= 20 for each genotype. (***) Represents p-value < 0.001 and (*) 

represents p-value < 0.05. (I) Immunolocalization of human HA-LIMD1 transgene in 

larval wing imaginal discs. DE-cadherin staining (I, red), HA-LIMD1 staining (I’, green), 

and merged images (I’’). 
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Supplemental Figure 2. Generation of djub deficiency alleles and rescue of djub null 

phenotype. (A) Schematic of the genomic region containing djub, including the location 

of the FRT-bearing P elements (black/grey triangles) used to generate the djub 

deficiencies. A1 through C2 refer to PCR primers used to verify the presence of each 

FRT-mediated deletion. (B) Genomic PCR confirmation of deficiencies. Due to the size 

of intervening genomic DNA, primer pairs A1-A2 and B1-B2 fail to amplify a PCR 

product unless the desired deletion has occurred. Primer Pairs C1-C2 amplify a product 

only if the desired deletion has not occurred. (C) Immunoblot blot (IB) analysis of dJub 

protein levels in cell lysates prepared from larval eye imaginal discs from wt or 

heterozygous djubI flies.  Actin serves as loading control, and the relative amount of dJub 

protein is listed below each lane. (D-F) Third-instar larval wing imaginal discs containing 

wt clones (GFP -ve) (D), or djubI mutant clones (GFP -ve) (E and E’) expressed 

throughout the wing discs using Ubx-flp. dJub-mCherry transgene (red) was expressed 

only in the posterior compartment of the wing using en-gal4 (E or E’). djubI mutant + 

dJub-mCherry clones in the posterior compartment (red arrows E’), anterior compartment 

djubI mutant only clones (yellow arrows E’). (F) Quantification of the relative area 

occupied by wt clones (from D), posterior compartment djubI mutant clones co-

expressing djub-mCherry (from E), and anterior compartment djubI mutant clones (from 

E) calculated as percent area occupied by GFP-negative clones relative to total tissue area 

(wt clonal area was calculated relative to entire wing). Anterior is to the left for all larval 

imaginal discs. 
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Supplemental Figure 3. Loss of dJub function does not affect neuronal differentiation 

or adherens junctions organization. Loss of function Hippo pathway mutants do not 

affect dJub localization. (A) Larval eye imaginal disc containing djubI mutant clones 

(GFP negative), generated by Eyeless-flp, and stained for the neuronal marker ELAV. 

White arrows indicate ELAV-positive photoreceptors. (B) SEM of djubI mutant adult eye 

(EGUF-Hid method). (C) SEM of djubI mutant eyes also expressing the anti-apoptotic 

factor P35 in all eye cells via GMR-GAL4.  (D, D’) Third-instar larval eye imaginal discs 

containing djubI mutant clones marked by the absence of GFP expression (black) stained 

for DE-cadherin (red in D, white in D’). (D”) Enlarged view of djubI mutant clones; 

white arrow identifies normal DE-cadherin staining in djubI mutant clones. (E-G) Mid-

pupal eyes from wtsx1 (E), hpo (F), and savshrp3 (G) loss of function mutants stained for 

DE-cadherin (red) and dJub (green). 
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Supplemental Figure 4. DJub genetically interacts with the Hippo pathway but not 

the Insulin Receptor Pathway or Myc (A-J) Wings from adult wt flies (A, F), dJub 

RNAi-expressing flies (B, G), or expressing dJub RNAi in a background heterozygous 

for wtsX1 (C) or ykiB5 (H). (D and I) Schematics of the outline of  wings shown in (A-C) 

and (F-H), respectively. (E, J) Quantification of the relative wing areas for the indicated 

genotypes. 1096-GAL4 was used for wing-specific expression of UAS-dJub RNAi. (K) 

Table summarizing whether enhancement or suppression of the fat eye and of the djub 

RNAi small wing phenotype occurred for the indicated genotypes (i.e., genetic 

interaction). Hippo pathway (Wts, Yki, Ex, Fat), Insulin Receptor pathway (INR, Chico, 

FOXO), and Myc. (L) S2 cells co-transfected with dJub-myc and Hpo-Flag, Sav-HA and 

Yki-HA and Wts, as indicated.  Cell lysates were immunoprecipitated for dJub (anti-

Myc), and bound products Immunoblotted (IB) for the presence of each Hippo pathway 

member.  Immunoblots of input controls (5%) are shown on the left side of each panel. 

Data are shown as mean percentages +/- standard deviation, with n=20 for each genotype. 

(***) Represents p-value < 0.001 and (*) represents p-value < 0.05. 
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Introduction 

A junctional role for the dJub and the Hippo pathway members in Drosophila 

Studies carried out in this thesis as well as previous studies from the lab have 

shown that the Ajuba LIM proteins are highly expressed in epithelial cells, interact with 

α-catenin, and localize specifically to adherens junctions (Figure 1). This has been shown 

to be true in both mammalian and Drosophila epithelial cells. In chapter 2, I show that 

Ajuba LIM proteins appear to regulate the kinetics of nascent junction formation by 

delaying the establishment of functional Adherens and Tight junctions, and in chapter 3 

we establish a novel tissue-growth regulatory role for the Ajuba LIM proteins. So, the 

question remains if there is a link between the junctional and growth control roles of the 

Ajuba LIM proteins.  

Interestingly, in Drosophila, mutations in a number of genes (scribbled, discs 

large, lethal giant larvae) have been show to disrupt cell polarity and also induce 

overproliferation (Bilder, Li et al. 2000; Bilder and Perrimon 2000; Bilder 2004). Zygotic 

mutations in several of the Drosophila junctional proteins lead to a “giant larva” 

phenotype, the result of excessive growth and proliferation. Importantly, the epithelia in 

these mutants are not composed of the typical flat columnar cells, but rather a mass of 

rounded, poorly adhesive cells that sit on top of each other. These results suggest that a 

mutation in a single gene can, in fact, simultaneously induce junctional and growth 

defects, and also that these two mechanisms are under similar genetic control.  

Based on these results, we decided to investigate how Ajuba functions to both 

stabilize junctions as well as to promote growth. Of note, unlike the genes previously 
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described (scrib, dlg, lgl) that are at junctions and induce overproliferation when 

perturbed, Ajuba LIM proteins have the opposite phenotype. That is, loss of function 

mutations in Ajuba LIM proteins in Drosophila leads to tissue atrophy. One possible 

mechanism by which the Ajuba LIM proteins carry out this dual function, junctional 

stability and growth promotion, is that the loss of stable junctions when the LIM proteins 

are depleted may lead to growth defects by leading to the activation of the Hippo 

pathway and therefore increased in cell death and decreased cell proliferation and/or by 

inappropriately triggering the poorly understood mechanisms of contact inhibition. 

Another possibility is that the Ajuba LIM proteins have other undiscovered interacting 

partners and co-ordinate different polarity and growth control pathways.  

We have shown in Chapter 3 that the Ajuba LIM proteins directly interact with 

the Hippo pathway to negatively regulate the pathway’s growth regulatory role. The 

Hippo pathway plays a critical role in regulating organ size by transcriptionally 

regulating growth and apoptosis genes. Mutations in the upstream members of the 

pathway induce massive hyperplastic overgrowth phenotypes of epithelial tissue (hpo, 

wts, sav). The upstream regulators of the Hippo pathway namely Fat, Expanded and 

Merlin all localize to the Sub-Apical Region (Figure 1), and thus may be involved in 

relaying information about cell density and organ size to the downstream elements of the 

Hippo Pathway. Whether or not, and how, these upstream members and/or the Ajuba 

LIM proteins are capable of linking signals from cell junctions to the level growth 

regulation is yet to be determined.  
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Recent studies have shown that wts is capable of enhancing the dlg phenotype in 

Drosophila ovaries (Zhao, Szafranski et al. 2008). These data are exciting since it 

provides a possibility of cross-talk between the Scrib/Lgl/Dlg pathway at the Sub-Apical 

region in Drosophila and the Hippo growth control pathway. However, in this study the 

upstream members of the Hippo pathway namely, Ft, Ex and Mer did not enhance the dlg 

mutant phenotype, suggesting that multiple signals may converge at the level of Wts. 

Whether the Ajuba LIM proteins are the connection from junctions to Wts is not known.  

The investigations in Chapter 3 were conducted in larval eye and wing tissue where dJub 

did not seem to affect cell junctions in any obvious manner. In this chapter we further 

analyzed the epithelial junctional role of dJub in Drosophila at other developmental 

stages namely, the embryo and in the pupal eye. We also analyzed Hippo pathway 

mutants to see if they also give rise to defects in cell junctions in addition to giving rise to 

the overproliferation phenotype.  

The Ajuba LIM proteins and the Hippo pathway in the context of cell density and 

contact inhibition 

 The phenomenon of “contact inhibition” is a hallmark of cells growing in culture, 

where normal cells stop proliferating upon achieving confluency. Cancer cells, typically, 

have lost contact inhibition, and thus continue to grow even after reaching their final 

tissue size. However, the phenomenon of contact inhibition is still poorly understood. 

Recent studies have shown that components of the Hippo pathway may regulate contact 

inhibition. For instance, as cell density increases and cells become confluent, Mer 

becomes dephosphorylated and activated, which has been shown to be necessary and 
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sufficient to mediate contact inhibition and the cessation of proliferation (Shaw, 

McClatchey et al. 1998; Morrison, Sherman et al. 2001). In further support of a role for 

the Hippo pathway in mediating contact inhibition Lats (Wts) and WW45 (Sav) null 

mouse embryonic fibroblasts display a loss of contact inhibition as well. And finally, 

YAP is phosphorylated and translocates to the cytoplasm upon but not prior to cells 

achieving confluence (Zhao, Wei et al. 2007). In fact, the ACHN cancer cell line, which 

has a WW45 mutation and therefore activated YAP, does not respond to contact 

inhibition, instead, these cell continue to proliferate even after confluency is reached.  

However, the introduction of dominant negative form of YAP restores the ability of these 

cells to undergo contact inhibition (Zhao, Wei et al. 2007). Based on the data, a possible 

model is that when cells in culture reach confluence, cell-cell interactions trigger 

signaling events that lead to the activation of the Hippo pathway. The Hippo pathway 

mediates the downregulation of the pro-growth and anti-apoptotic genes sends the “stop 

proliferation” signal leading to contact inhibition. Identification of the upstream signal, 

and the method by which the pathway senses confluency is still a mystery. The results in 

this Chapter describe a possible role of the Ajuba LIM proteins in a cell density 

dependent manner in regulating the Hippo Pathway.   
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Results 

  
djub is essential for organization of epithelia in the Drosophila embryo  
 

 My work on the function of Ajuba LIM proteins in mammalian cell culture showed 

that epithelial cells require Ajuba LIM proteins to form nascent, stable, and functional 

adherens and tight junctions in a timely manner. However, the existence of the three 

Ajuba subfamily proteins, and the likelihood of functional redundancy between them 

made it difficult to assay the phenotype of simultaneously deleting all three via siRNA. 

Having established the fly system (Chapter 3), as an appropriate mode to assess the effect 

of removing Ajuba family function, we decided to investigate the role of djub in the 

Drosophila embryonic epidermis. The Drosophila embryonic epidermis provides a good 

model system for both genetic analysis as well as the establishment of epithelial polarity 

in vivo. During the process of Drosophila embryonic development, a fully functional 

epithelium forms, and it contains separate apical and basolateral compartments. Adherens 

junctions are the first junctional complex to form post cellularization, and these junctions 

gradually mature to form zonula adherens belts around the apex of the cells (Figure 1). 

This is the region to which the cadherin/catenin complexes localize. Also, unlike MDCKs 

or other cells in vertebrates, these cells do not have Tight junctions, but rather Septate 

Junctions below the adherens junction (Figure 1). In addition, a Subapical Region 

develops which is important for the cells to polarize. The two main complexes that 

localize to this region are the Crumbs complex and the Bazooka complex, both are 

essential for cells to establish polarity. 

 To see if djub may play a role in he formation of cell-cell junctions, we first asked 
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if we can detect dJub in Drosophila embryos. We stained early to late stage embryos with 

dJub as well as DE-cadherin (Figure 2). We found that similar to the pupal eye in 

Drosophila and to MDCK cells, dJub colocalized with DE-cadherin in fly embryos 

(Figure 2A-B).   Next, we asked whether loss of djub function gives rise to a phenotype 

in Drosophila embryos. The removal of zygotic djub function did not yield any obvious 

embryonic phenotypes. However, djub is supplied maternally, thus we made germline 

clones that lack djub function and found that djub maternal clones yielded embryos with 

severe epidermis defects (Figure 2C). The phenotype of djub null embryos are 

reminiscent of mutations in genes like crumbs and bazooka, which are reqired to establish 

the initial apical-basal polarity of cells (Figure 2D-E). These data suggest that dJub may 

play a role in establishing the polarity of epithelial cells in embryos, either by affecting 

the localization or activity of other polarity complexes, or by directly stabilizing the 

junctions.  

 

Djub effects primary cells in Drosophila pupal eye 

 The above results suggest that djub governs the formation of cel-cell junctions in 

mammalian as well as Drosophila epithelial cells. Thus, we decided to take a closer look 

at the function of djub in epithelial cells at later stages of development. We have 

established that cell junctions remain normal in the absence of djub (Chapter 3) both in 

larvae as well as in the pupal eye, as opposed to in the fly embryos where junctions do 

not seem to form properly. The difference between these tissues is that cell junctions are 

already formed in larval tissue and must still form in embryos. However, a closer look 

inspection of the pupal eye phenotype of djub mutant cells revealed that, in addition to 
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the cell death phenotype, we also observe a change in the primary cell size (Figure 3). It 

appears that primary cells lacking djub are often smaller than their pair. It is unclear what 

role dJub may have in maintaining the size and shape of these primary cells. This effect 

also seems to be specific to primary ommatidial cells. One possibility is that djub is 

necessary for the normal function of the cadherin-catenin complex at Adherens junctions, 

where djub localizes. Studies show that in arm mutations in follicle cells, the cadherin-

catenin complex breaks down and disrupts the architecture of the apical domain causing 

the cells to loose their shape and size, but retain a monolayered epithelial arrangement 

(Tanentzapf, Smith et al. 2000). A similar effect is seen in the djub mutant pupal eyes, 

where only the primary cell size changes with no effect on the surrounding tissue 

architecture. Further experiments are necessary to understand the mechanisms behind 

maintenance of primary cells and exactly how dJub plays a part in this.     

 

The Hippo pathway induces apical expansion 

 In addition to excessive proliferation and decreased apoptosis, hpo or wts mutant 

cells also show morphological defects consistent with perturbations to junctional 

complexes (Justice, Zilian et al. 1995; Xu, Wang et al. 1995; Wu, Huang et al. 2003). In 

fact previous studies have shown that clones that are homozygous null for wts produce 

abnormal bristles, and the mutant cells themselves show apical hypertrophy (Justice, 

Zilian et al. 1995), which in most ways is the opposite of the djub phenotype. During our 

analyses, we also made cull or overexpression clones for the Hippo pathway components. 

As expected, wts, hpo null clones and clones over expressing yki all had an 

overproliferation phenotype. However we noticed that in addition to the 
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overproliferation, the clones or cells marked with GFP, had an additional apical 

expansion phenotype (Figure 4A, B and C).  In each image the blue or red arrows point at 

secondary interommadial cells that show apical expansion as compared to the wild-type 

secondary cell marked by the yellow arrows. The apical expansion was seen in primary, 

secondary and tertiary interommatidial cells. This was different from the djub pupal eye 

phenotype, which only seemed to affect the primary ineterommatidial cells. Recent 

studies have shown that in the wing imaginal disc epithelium in clones deficient for 

Hippo pathway components, there is an increase in the expression levels of apical 

polarity proteins like aPKC, Crb and DE-cadherin which belong to the Bazooka and 

Crumbs polarity complexes (Genevet, Polesello et al. 2009; Hamaratoglu, Gajewski et al. 

2009). Both in our results as well as these studies, basolateral marker Dlg is not affected. 

These studies also show that the accumulation of the apical proteins was not necessary 

for the Hippo overgrowth phenotype, suggesting that the polarity genes do not in fact 

contribute to the Hippo signaling based overproliferation phenotype. Thus the apical 

expansion as well as the hypertrophy may be a separate non-growth control function of 

the Hippo pathway. It may be that djub and the Hippo pathway have opposite phenotype 

in the context of apical expansion and may, in fact, functionally interact here as well, but 

further experiments are required to confirm this.   

 

Ajuba LIM proteins and YAP localization correlate with Hippo activity in a cell 

density dependent manner 

 The data from Chapter 3 show that the Ajuba LIM proteins inhibit the Hippo 

pathway in the context of epithelial cells. We know from Chapter 2 that Ajuba LIM 
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proteins are important for the formation of nascent epithelial cell junctions. We next 

asked if there was a developmental context for this inhibition or if the Ajuba and Hippo 

pathway interaction along with Ajuba’s role at cell junctions contributed to contact 

inhibition. The Hippo pathway transcriptional coactivator, YAP has been shown 

previously to localize in a cell density dependent manner. We confirmed this 

phenomenon in PDV mouse epithelial cells. In low cell density, YAP predominantly 

localized in the nuclei of the cells. In contrast, YAP translocated to the cytoplasm at high 

density (Figure 5A and B). As described in previous work. We know that under 

conditions of high density, the Hippo pathway turns on and this leads to the 

phosphorylation of YAP by Lats, which in turn directs YAP to the cytoplasm, where it is 

sequestered.  

To examine for a possible role of djub in this process, we carried out the same 

experiment and assayed whether Ajub exhibits any cell density dependent function in its 

subcellular localization. At low cell densities, Ajuba localized mostly to the cytoplasm 

with almost no colocalization with E-cadherin (stains cell-cell junctions). However, at 

high densities, Ajuba localizes almost entirely to cell-cell junctions and completely 

colocalizes with E-cadherin (Figure 5C and D). These results were very intriguing as they 

again a tight functional link between the Hippo pathway and the Ajuba LIM proteins. For 

example, under conditions of low density, Ajuba may bind to Lats and in the cytoplasm 

and therefore inhibit Lats from phosphorylating YAP allowing cell proliferation to 

proceed. However at high densities, Ajuba LIM proteins may be recruited to the cell 

membrane by other means and this change in its subcellular localization may either free 

Lats to phosphorylate and inhibit YAP.  
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Ajuba LIM proteins and E-cadherin expression is related to cell density 

 Ajuba and LIMD1 proteins accumulate to higher levels in epithelial cells than in 

fibroblast cells. And, from Figure 5, we see that Ajuba localizes to distinct subcellular 

compartments in non-confluent vs confluent cells. Thus we hypothesize that Ajuba 

becomes stabilized once it localizes to Adherens junctions. Junctional proteins such as β-

catenin have been shown to be expressed at higher levels and sequestered at junctions 

under conditions of high confluency in HaCaT human keratinocytes.  Thus, we tested if 

Ajuba expression levels are altered as a result of cell density. We found that Ajuba is 

stabilized as a result of increasing cell density in multiple epithelial cell lines, namely 

PDV mouse cells as well as MDCK canine cells (Figure 6 A and C). Also, we found that 

LIMD1, like to Ajuba, also stabilized with increase in cell density in culture (Figure 6B). 

Interestingly we see a similar stabilization of E-cadherin with increased density of cell 

with equal actin loading (Figure 6 A-C). In addition to increased levels of both LIMD1 

and Ajuba LIM proteins in these cell, we also noticed a mobility shift. It appeared that 

with increase in cell density the mobility of Ajuba on the gel increases, suggesting the 

presence of some form of modification (Figure 6A). However, we have not yet been able 

to establish the molecular nature of this modification, though phosphorylation is an 

obvious possibility. Ajuba may undergo a post-translational modification as a result of 

increased cellular junctions. Other studies have shown that Ajuba is capable of being 

phosphorylated (Hirota, Kunitoku et al. 2003; Haraguchi, Ohsugi et al. 2007). In many 

instances a phosphorylation modification of a protein, will strengthen or weaken 

interactions with other proteins. Further studies are necessary to establish if in fact the 

mobility shift is due to the phosphorylation of Ajuba, whether the phosphorylation is cell 
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density dependent, and the effect the absence or presence of the phosphorylation on 

Ajuba’s signal transduction to regulate junctions or growth control.  
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Discussion: 

Our experiments on cell density dependent localization, and possibly 

modification, link general cellular events to the modification and function of Ajuba 

proteins (Figure 5). For example the negative regulatory role of the LIM protein may, in 

fact, depend on the localization of the Ajuba LIM proteins to junctions. Ajuba’s 

cytoplasmic as well as membrane localizations may both be necessary for its growth 

enhancing function. Based on these and previous experiments we think that Ajuba LIM 

proteins may play a critical role as scaffolding proteins that provide a regulated link 

between membrane proteins and the cytoskeleton and participate in signal transduction 

pathways. We are presently carrying out experiments where we will ask if mutant forms 

of the Ajuba LIM proteins that are either always tethered to the membrane via a CAAX 

motif or are unable to localize to junctions, effect the role of the Ajuba LIM proteins in 

tissue growth control.    

We also observe that Ajuba and LIMD1 as well as E-cadherin seem to be 

stabilized at junctions. It appears that in low density cells or if the junctions are 

downregulated, Ajuba fails to be recruited or comes off the junctions. Other than the 

levels of the Ajuba LIM proteins we also observed that the Ajuba LIM proteins are 

modified in response to an increase in cell density. In denser cell cultures, Ajuba runs 

more slowly on the gel (Figure 6A) as compared to lower density cell cultures where 

Ajuba runs a little faster. Further investigations will clarify if the mobility shift is due to a 

phosphorylation modification or something else. Previous studies have shown that Ajuba 

can be phosphorylated, in one case GSK3β phosphorylates Ajuba to stabilize it and in 

another Ajuba is phosphorylated by Lats during mitosis and is important for spindle 
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formation (Abe, Ohsugi et al. 2006; Haraguchi, Ohsugi et al. 2007).  Further experiments 

are necessary to determine the other signals that appear to respond to cell density and 

modify Ajuba. Also how is Ajuba modified and what the effect of this modification is on 

Ajuba function, and interactions with other proteins.  

The fact Ajuba can localize to regions of cell-cell contacts indicates a role in 

direct intercellular communication. The Ajuba/djub loss-of-function studies in this thesis 

indicate that Ajuba may play a role in contact inhibition and in the formation of stable 

adherens junctions. Ajuba/djub colocalize with and associate with adherens junction 

components in wild type cells. We know that Ajuba interacts with α-catenin and actin. 

These and/or other undiscovered interactions with Ajuba may control the assembly and 

stabilization of mature adherens junctions.  The establishment of polarity, a crucial step 

for differentiation and morphogenesis may also depend on the function of djub/Ajuba 

proteins. In this way djub/Ajuba LIM proteins may also play a role in establishing or 

maintaining epithelial cell polarization. Thus by functioning to stabilize junctions in a 

density-dependent manner and establishing cell polarization the Ajuba LIM proteins/dJub 

might coordinate the control of cell-cell communication with cell proliferation in 

developing tissue.  

Interestingly although the Hippo pathway components lead to tissue overgrowth 

in various somatic tissue, unlike djub, germline clones of fat, expanded, hippo, sav and 

warts do not display any overgrowth of the mutant cells (Sun, Zhao et al. 2008). 

However, we do see a role for the Hippo pathway components at the pupal stage. From 

the data presented here and from other studies, it is clear that the Hippo pathway has an 
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effect on junctions. Whether this happens through the junctional members of the pathway 

like Ex, Mer or dJub or if in fact the apical expansion phenotype is a result of one or 

several polarity genes that are transcriptional targets of Yki is yet to be determined. It is 

possible that dJub and the Hippo pathway interact to maintain junctions as well. This 

interaction may be similar or distinct from the growth control interaction.  

The experiments in this chapter highlight the fact that the Ajuba LIM proteins as 

well as the Hippo pathway play a role in junctions and in return the junctions are 

important not only in the organization of epithelia but also in the regulation of tissue 

growth. The ability of the Ajuba LIM proteins to localize to junctions and also be 

involved in regulating the Hippo pathway suggests junctions might provide an ideal 

platform of communication between cells. Further the dual role of growth function and 

junction stabilization gives us a hint towards how junctional proteins integrate polarity 

and density signals from neighboring cells and consequently regulate the necessity for 

proliferation. 
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Methods: 

Generation of MARCM clones  

MARCM clones(Lee and Luo 1999) for the Hippo pathway apical expansion 

experiments were generated by heat shocking third instar larvae for 1 h at 37°C 

and dissecting pupal eyes of the different genotypes 40 h APF.   

 

Immunohistochemistry for pupal eyes  

Pupal retina dissections were carried out in PBS following which the tissue was fixed in 

4% paraformaldehyde dissolved in PBS. After fixation, tissues were washed in PBST 

(PBS + 0.5% Triton X-100) and incubated at 4°C overnight with primary antibody 

diluted in PAXDG buffer (0.1% BSA, 0.3% Triton X-100, 0.3% deoxycholate, 5% 

normal goat serum in PBS). Tissues were then washed 3 times with PBST for 10 mins 

each, and incubated for 3 hrs at room temperature or overnight at 4°C with secondary 

antibody diluted in PAXDG (1:1000). Tissues were then rinsed with PBST and 

transferred onto slides for mounting in vectasheild mounting medium containing DAPI 

(Vector Labs).  Images were captured at room temperature on a LSM 510 Zeiss confocal 

microscope using 63x oil objective. Image J and Photoshop (Adobe) were used to process 

images. The following antibodies were used: rat α-DE-cadherin (IC) (1:10, DSHB).  

 

Generating X chromosome Germline Clones 

The first step was to generate females that are heterozygous for the djub deletion and the 

ovo D1 (Bloomington Stock number 23880) DFS chromosome by crossing ovo D1 males in 

the first cross (Cross 1). The djub females were balanced over FM6 and contained a FRT 

site on 19A (deletion distal to the FRT site). Recombination was induced between FRT 
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sites on these chromosomes by heat shock to drive the FLP recombinase. For the cross 

(Cross 1) about 30 virgin females (djub FRT19a/FM6) were crossed to 10-15 males 

(OvoD1-hsp70hsFLP FRT 19A/>) for 2 days of egg laying before being transferred to a 

new vial. Flies were flipped everyday after the first 2 days period, and then heat shocked 

for two consecutive days for 1.5 hrs in 37C water bath. For the next cross, non-FM6 

female virgin flies were collected that contained germlines with the homozygous djub 

mutation. These female flies were crossed to FM7-GFP males and the non-GFP embryos 

laid were djub null germline clones.  

 

Collection of Germline clone embryos 

Embryos were collected on a hard agar media made with grape juice, supplemented with 

some yeast paste after the agar has solidified. The females are more likely to lay their 

eggs on the yeast paste.  

 

Immunohistochemistry for Drosophila embryos  

Embryos were collected from grape caps placed underneath bottles containing the cross 

to generate the desired genotype. Collections were made overnight (0–16 h) and all day 

(0–8 h). Once embryos were collected, dead flies were removed with dissecting forceps. 

The embryos were then transferred into glass vials covered in mesh on one side and open 

on the other. Using a soft bristle brush and water, embryos were removed from the grape 

cap and transferred into the glass vials to dislodge the yeast paste.  The yeast paste was 

completely removed using the brush and water running into the vial and flowing out the 

mesh where the embryos collected. The chorion layer of the embryos were removed by 
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placing the collection vial into a small beaker with a 50% bleach solution an incubated 

for 3–5 min. During the incubation, the embryos were gently swirled in the collection 

vials and rinsed with the bleach solution using a pasteur pipet. After this the embryos 

were washed extensively to remove the bleach. For the antibody staining, embryos were 

then fixed and stained using previously described methods (Patel 1994).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 155 

Figure 1: Organization of Drosophila epithelium. The proteins of the Baz and Cbs 

complexes localize to the Subapical region (green), apical to the Adherens junctions 

(blue). Scrib, Dlg and Lgl form a complex basally to the Adherens junctions (red). Some 

regulators of growth and proliferation signaling pathways, such as EGFR, Fat, Expanded, 

Merlin and Dachs, localize to the apical junction in the Drosophila epithelium. 
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Figure 2: djub germline clones have severe epithelial defects. (A-B) Wild-type 

Drosophila embryos stained for dJub (Green) and DE-cadherin (Red) at early stages of 

embryonic development (A-A’’) and towards the end of embryonic development (B-B’’). 

djub germline clone without dJub staining, stained for DE-cadherin in red. (D-D’) 

Crb11A22 mutant embryo TEM image (D) and stained for Nrx (D’). BazXi zygotic 

mutant embryo stained for coracle (E).  
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Figure 3: djub mutant pupal eyes display primary cell defects. Mid-pupal eye 

containing djub null mutant clones (GFP negative) expressed throughout the pupal eye 

using Eyeless-FLP and stained for DE-cadherin (red/white). Blue or red arrows point at 

primary cells that are mutant for djub or GFP negative. The white versus the red astrix 

(*), show a comparison of the pair of primary cells. The primary cells marked by red 

astrix are smaller than the primary cells marked with a white astrix.     
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Figure 4: Apical expansion in Hippo pathway mutant cells. Mid-pupal eyes stained for 

DE-cadherin (red/white). GFP positive hpo null MARCM clones (A-A’); GFP positive 

wts null MARCM clones (B-B’); MARCM clones overexpressing Yki (GFP positive) (C-

C’). Arrows identify apical expansion. Blue and red arrows in each genotype point at the 

same cell that mutant for hpo or wts or overexpressing Yki. The yellow arrows point at 

wild-type interommatidial cells.  
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Figure 5: YAP and Ajuba localization change with respect to cell density. (Top two 

panels) YAP nuclear versus cytoplasmic localization is cell density dependent. PDV cells 

were cultured sparsely (Row 1) or to confluence (Row 2). YAP was stained with anti-

YAP antibody (green). (Bottom two panels) Ajuba Cytoplasmic versus junctional 

localization is affected by cell density. PDV cells were cultured sparsely (Row 3) or to 

confluence (Row 4). Ajuba was stained with anti-Ajuba antibody (green). Cell outlines 

are visualized by E-cadherin staining (red). 
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Figure 6: Ajuba LIM proteins and E-cadherin expression levels are regulated by cell 

density.  (A-C) Cell lysates from PDV mouse epithelial cells immunoblotted for Ajuba 

The black arrow points at the Ajuba band in low density cells and the red arrow shows 

the shift in Ajuba at higher densities as compared to the lower density (A). Cell lysates 

from PDV mouse epithelial cells immunoblotted for E-cadherin, LIMD1 and actin (B) 

and MDCK cells immunoblotted for E-cadherin Ajuba and Actin (C). PDV and MDCK 

epithelial cells were plated at increasing densities and then western blotted for the 

presence of E-cadherin, Ajuba and LIMD1.  Actin served as a loading control.   
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The Ajuba family of LIM domain containing proteins localize to cell-cell or cell  

matrix adhesion sites in epithelia and fibroblasts, respectively, and can influence the 

stability of cell adhesive complexes. Some LIM proteins can also shuttle to and from the 

nucleus giving them the potential to coordinate cell surface adhesive signals with nuclear 

responses (Goyal, Lin et al. 1999; Kanungo, Pratt et al. 2000; Langer, Feng et al. 2008). 

Compared to the Zyxin sub-family members, the Ajuba subfamily of LIM proteins are 

highly expressed in organs abundant in epithelia, like skin, kidney, liver etc. Previous 

studies have shown that Ajuba interacts with a-catenin at the cadherin adhesive 

complexes, and this interaction is required for efficient recruitment of Ajuba to cell-cell 

junctions. Ajuba also directly interacts with F-actin via its PreLIM domain (Marie, Pratt 

et al. 2003). However, to what extent Ajuba proteins act as a bridge to stabilize the 

cadherin adhesive complexes, and/or contribute to the stability, formation, and function 

of nascent junctions remains unclear. Furthermore, since three Ajuba subfamily members 

exist in mammals, Ajuba, LIMD1 and WTIP, functional redundancy greatly complicates 

the ability to dissect the functional roles of the proteins. Thus, creating a system where 

one can assay the Ajuba family null phenotype- as I have done during my thesis research- 

should accelerate the ability to shed light on novel roles of these proteins.  

 

Ajuba LIM proteins in epithelia 

 
Here, I have established that the Ajuba LIM proteins play a role in the 

establishment of epithelial cell-cell junctions. We show that Ajuba LIM proteins 

influence de novo assembly of tight junctions and adherens junctions, maintain stable 

cell-cell junctions, and are necessary for the establishment of epithelia polarity. More 
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importantly, we show that Ajuba and LIMD1 each display similar junctional phenotypes, 

which worsen when the function of both LIMD1 and Ajuba are depleted. To overcome 

the issue of functional redundancy, which has hampered precise and systematic 

investigation of Ajuba proteins in mammalian systems, I generated null mutations of the 

only member of the Ajuba family in flies, djub. I found that djub is an essential gene that 

when specifically depleted in the eye or wing epithelium inhibits growth by increasing 

apoptosis and decreasing proliferation simultaneously. Through the investigations carried 

out in this thesis, I observed genetic and biochemical evidence that dJub negatively 

regulates the Hippo pathway by activating Wts (Lats1/2) kinase. We also find that in both 

Drosophila S2 cells, as well as in mammalian cells, Ajuba, LIMD1, and WTIP associate 

specifically with Lats and WW45 to influence YAP phosphorylation in cells. Thus, as is 

observed with the function of the Hippo signaling  pathway, these results suggest that the 

functional link between Ajuba proteins and the Hippo signaling pathway is also 

conserved from flies to humans.  

 

Subcellular compartment-dependent regulation of the Hippo pathway by the Ajuba 

LIM proteins  

 
My genetic and biochemical data (Chapter 3, Figure. 6) suggest that dJub 

influences the Hpo pathway by affecting Wts activity. Future experiments will focus on 

determining the molecular basis for Ajuba-mediated inhibition of Lats/Wts activity as 

well as the subcellular localization of this interaction. The possible modes by which 

Ajuba LIM proteins inhibit the activation of Lats/Wts is by inhibiting upstream kinases 

MST/Hpo from accessing and/or activating Lats/Wts, inhibiting the ability of Lats/Wts to 
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phosphorylate YAP/Yki, or affecting the subcellular localization of Lats/Wts or 

WW45/Sav and thus their access to the Hippo pathway. The other possibility is that the 

regulatory relationship between Ajuba LIM proteins (dJub) and Lats/Wts may not be 

simply unidirectional as Lats has been shown to phosphorylate Ajuba (Abe, Ohsugi et al. 

2006).  With respect to the subcellular localization of this interaction, accumulated 

studies of mammalian Ajuba LIM proteins have indicated that they function as adapter 

proteins (Langer, Feng et al. 2008) in multiple subcellular compartments, namely, 

adherens junctions, (Marie, Pratt et al. 2003), cytosol (Feng, Zhao et al. 2007), and the 

nucleus (Langer, Feng et al. 2008). Thus, the next question is, do the Ajuba LIM proteins 

need to be available in a specific compartment for their interaction and inhibition of the 

Hippo pathway. Future experiments will include using different constructs of LIMD1 (or 

Ajuba, dJub) where the proteins are either nuclear only, unable to translocate to the 

nucleus or tethered to the membrane using CAAX to check if the LIM proteins can still 

functionally regulate the Hippo pathway by measuring the phosphorylation state of Yap 

or Yki or if they can rescue the in vivo djub phenotype.  

 

Upstream regulation of the Hippo pathway 

One important factor that still remains unknown is what cellular or molecular 

signal initiates the activation of the Hippo signaling pathway. While my thesis work has 

added additional players, and complexity to the Hippo signaling pathway, this 

fundamental question still remains unanswered. The Hippo pathway upstream members 

Expanded (Ex) and Merlin (Mer), both FERM domain-containing proteins localize to the 
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plasma membrane and act in parallel to regulate Hpo. Also, upstream member Ft acts 

through modulating levels of Wts, by affecting Wts stability (Cho, Feng et al. 2006). We 

have shown that dJub, like its mammalian orthologs, localizes to cell-cell junctions in 

Drosophila epithelia (Chapter 3, Figure1L-O). Therefore, Ajuba LIM proteins may be an 

additional mode of regulation of the Hippo pathway besides the atypical cadherin Fat and 

Ex/Mer. There still remains the possibility that dJub influences the Hippo pathway higher 

up in the signaling cascade, at the level of Fat, Ex and Mer. Ajuba/dJub may act in 

conjunction with Mer and Ex or parallel to Hpo and lastly there is also the possibility of 

cross talk between these pathways all of which are as of yet undetermined.  Ajuba/dJub 

may also influence the pathway indirectly by regulating the levels or localizations of 

these proteins. It is also worth mentioning that although dJub localizes to junctions, the 

staining appears to be punctate. We have yet to determine the significance of the non-

uniform staining pattern. Thus, the regulation may not be linear, but occur via more 

complicated scenarios where the regulation of the Hippo pathway occurs downstream of 

Fat or in between Ex/Mer and Hippo. 

Recent studies have described new findings that suggest an apical polarity 

complex regulation role for Hpo independent of the pathway’s growth control function 

(Maitra, Kulikauskas et al. 2006; Genevet, Polesello et al. 2009; Hamaratoglu, Gajewski 

et al. 2009).  This finding and also the data from Chapter 4 that describe the apical 

junctional phenotype for mutants of the Hippo pathway members further provides 

evidence for the possibility of dJub having a junctional role with respect to the Hpo 

pathway. Whether the Ajuba LIM proteins are capable of directly interacting with Fat, or 
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whether the Ajuba LIM proteins link Ex or Mer to Hpo or whether this role is played by 

some other component is yet to be determined. 

 

Universality of the Hippo pathway  

Another aspect of the Hippo pathway that needs further investigation is in what 

cell types does the Hippo pathway normally function to regulate apoptosis and cell 

proliferation. In case of Drosophila the pathway as well as dJub are expressed and 

function to restrict growth in imaginal discs, which are essentially columnar epithelia. So 

the question arises if the pathway modulates size of tissue or tumor formation only in a 

subset of cell types or human tissues that are similar to Drosophila imaginal discs in their 

properties of growth, proliferation and apoptosis. As far as the Ajuba LIM proteins go, 

they are most highly expressed in epithelial tissue in mammals (RAKESH K. GOYAL 

and ANTHONY J. MUSLIN). With respect to the Hippo pathway, interestingly there are 

multiple types of tumors that develop spontaneously in NF2 mice, which include bone 

tumors and malignant mesothelioma. However, in humans it is predominantly central 

nervous system tumors that develop as a result of NF2 deficiency (McClatchey and 

Giovannini 2005). Lats1 deficient mice will develop soft tissue sarcomas and ovarian 

tumors but there are reports on these mice developing nervous system tumors or even 

mesothelioma (St John, Tao et al. 1999). Thus, the Hippo pathway seems to be consistent 

in its regulation in other non-epithelial tissues as well. However, to what extent are the 

Ajuba LIM proteins expressed in these tissues and whether they continue to inhibit the 

Hippo pathway is not known.  
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Hippo signaling and the Ajuba LIM proteins role in cell adhesion and contact 

inhibition 

We have established that Ajuba LIM proteins have a clear role in the overall 

morphology as well as stability and formation of epithelial cells. The depletion of Ajuba 

LIM proteins results in defects in stability or formation of epithelial sheets as well as cell-

cell adhesion of MDCK and PDV cells in suspension (Chapter 2, Figure 10). We show in 

Chapter 4, components of the Hippo pathway namely, Hpo, Wts and Yki induce 

aberrations in epithelial cell morphology. These results are intriguing as they raise the 

possibility that the Hippo pathway may respond to adhesion or cell-cell contacts between 

cells. In the Hippo pathway, mutations in several components lead to a distinctly rounded 

morphology of the mutant clone, indicative of altered cell adhesion (Nolo, Morrison et al. 

2006; Thompson and Cohen 2006). Furthermore, various mutations in the pathway 

appear to modify the adhesive properties of the cells in a way that the mutant cells 

preferentially bind to cells of the same genotype instead of a neighboring wild type cell. 

NF2-null MEFs have weakened cell-cell adhesion and do not undergo contact inhibition 

(Lallemand, Curto et al. 2003). In case of the Hippo pathway it is still not clear if the 

adhesion phenotype is a result of massive overproliferation or if there are downstream 

targets of the Hippo pathway that directly control cell-cell adhesion. However, the fact 

that several Hippo pathway activity regulators, namely, Ajuba LIM proteins, which are 

involved cell-cell adhesion strengths, and other upstream members such as Fat, Ex and 

Mer, which connect the cytoskeleton with the extracellular matrix receptors such as 

CD44 (Bretscher, Edwards et al. 2002), suggests that the Hippo pathway may in fact 

respond to adhesion or cell-cell contacts between cells.   
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Contact Inhibition and the Hippo pathway 

 Although we know that the Hippo pathway responds to contact inhibition, it is 

unclear how this process is carried out. In cell culture, high cell density activates the 

Hippo pathway, resulting in YAP shuttling into the cytoplasm, suggesting a role of YAP 

and the Hippo pathway on contact inhibition (Zhao, Wei et al. 2007; Lei, Zhang et al. 

2008). In fact this is also seen in vivo, in the mouse embryo trophectoderm, YAP 

localizes to the nucleus in the outer peripheral cells, but toward the inner cell mass where 

the cell density is higher, YAP is phosphorylated by Hippo and localized to the 

cytoplasm (Nishioka, Inoue et al. 2009). These data suggest that the Hippo pathway and 

YAP may be able to receive signals from cell contacts and interpret these cues and 

accordingly activate different developmental pathways. Further investigation is necessary 

to define the molecular pathway that links the detection of cell density to Yki/YAP 

regulation.  It is also not clear how Yki/YAP gets into the nucleus when the Hippo 

pathway is turned off.  One mechanism for the nuclear translocation of Yki/YAP is 

through an interaction with target transcription factors such as scalloped as shown in 

Drosophila S2 cells with Yki (Goulev, Fauny et al. 2008; Wu, Liu et al. 2008), and with 

TEAD4 and YAP in mammalian cells. But in many cases, such as with Sd, the target 

transcription factor is only expressed in a small subset of tissue where as Yki/YAP 

functions in a much more ubiquitous manner. Thus it will be interesting to see if different 

transcription factors play a role in regulating the nuclear localization of Yki/YAP and the 

mechanism by which this happens.  
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The data described in Chapter 4 regarding the subcellular localization of the 

Ajuba LIM proteins with respect to cell density is intriguing. The Ajuba LIM proteins are 

predominantly cytoplasmic at low cell densities, but at higher cell densities, Ajuba 

localization shifts to the junctions. At this point the implications of this change in 

localization with respect to cell density is not fully understood. Future experiments are 

necessary to measure the presence of a density dependent regulation of the Hippo 

pathway by the Ajuba LIM proteins. It will be interesting to see if the Ajuba LIM 

proteins interact with Lats in a cell density dependent manner. Like the rest of the Hippo 

pathway components, Fat mutant cells also have the rounded morphology and can impact 

Yki localization. Future experiments may also identify the extent to which Fat is involved 

in this process. 

 

Mammalian roles of the Ajuba LIM proteins and the Hippo pathway  

The novel growth-promoting role of the Ajuba LIM proteins, and their ability to 

inhibit the Hippo pathway has raised many new questions. Although these findings have 

begun to answer some of the queries regarding organ size regulation, as well as the role 

of the Ajuba family in epithelia, the studies were mainly carried out in a Drosophila 

model system. Thus, while the mammalian orthologs of Hippo and dJub proteins interact 

physically, it remains unclear whether they also control organ size in mammals. 

However, the Hippo pathway or components of the Hippo pathway have been implicated 

in tumorigenesis in mammals, for example, NF2 or mer is a known tumor suppressor 

gene and mutations in NF2 mutations can lead to neurofibromatosis. These studies alone, 

do not establish a role for the Hippo pathway members in size regulation, since many 
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other processes other than the Hippo pathway’s size regulatory role can lead to 

tumorigeneis. Two complementary reasons for the absence of a clear demonstration of a 

size regulatory role of the Hippo pathway in mammals may be, the apparent genetic 

redundancy of specific Hippo components (eg. Lats1) resulting in knock-out mice that 

are either viable and lack any obvious overgrowth characteristics of the parallel 

Drosophila mutant (St John, Tao et al. 1999) or embryonic lethal making it difficult to 

assess the involvement in size regulation (eg. YAP) (McPherson, Tamblyn et al. 2004; 

Morin-Kensicki, Boone et al. 2006). Recent studies have begun characterizing the Hippo 

pathway in mammals, for instance transgenic models that overexpresses YAP specifically 

in the mouse liver gave rise to a Hippo regulated overgrowth phenotype (Dong, 

Feldmann et al. 2007).   

Analysis of in vivo function of mammalian Ajuba family members, also suffers 

from the problem of genetic redundancy. For example, mice singly mutant for Ajuba or 

LIMD1 or doubly mutant for Ajuba/LIMD1 appear grossly normal and do not display 

any overt defects. No mouse model yet exists WTIP. Therefore, knock out or transgenic 

models, which allow us to manipulate the Ajuba LIM proteins and Hippo pathway 

components in a spatially and temporally restricted manner, are necessary. This would 

allow us to get around issues of lethality and more importantly investigate the role of 

these proteins in a developmental context. Further, such models would also allow the 

analysis of the Hippo pathway/Ajuba proteins function in other cellular processes, such 

as the possible role of the Hippo pathway in dendrite morphogenesis as has been recorded 

in Drosophila (Emoto, Parrish et al. 2006). Further investigation of the roles of the Hippo 

pathway in the mammalian system will also provide a way to ask whether the functions 
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of the Hippo pathway and Ajuba family proteins also intersect during the process of 

tissue organ regeneration, where tissues such as the liver regenerate back to, but not 

beyond, a critical size (Michalopoulos and DeFrances 1997). Clearly, future work on the 

nexus between Hippo pathway and Ajuba proteins I mammals holds promise to reveal 

new genetic and molecular insights into clinically relevant fields such tumorigenesis and 

regeneration.    

Hippo and Beyond 

Mechanisms that coordinate both cell proliferation and cell death in flies and 

mammals are critical for the normal development and homeostasis of these organisms. 

The combination of the two processes is an important failsafe mechanism to inhibit 

inappropriate proliferation of somatic cells. In most cases, activation of an oncogene (eg. 

myc) or a mutation in a tumor suppressor, leads to unscheduled proliferation. This 

untimely proliferation in turn signals other pathways that counter the excessive 

proliferation by increased apoptosis. The Hippo pathway though is able to override this 

phenomenon since mutating the members of the pathway (Hpo, Wts, Sav, Mats) leads to 

increased cell proliferation accompanied by inhibition of cell death. The Hippo pathway’s 

ability to both inhibit cell proliferation and promote apoptosis simultaneously makes it a 

great candidate for a robust mechanism of swiftly stopping organ growth during 

development. The pathway acts as an on/off switch for growth, making it susceptible to 

single component perturbations leading to detrimental uncontrolled growth.  

It is important to note that the Hippo pathway is likely regulated at many nodes. 

In fact my thesis work suggests that Ajuba LIM proteins regulate Hippo signaling at the 
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level of Warts, whereas previous works have shown regulation of Hippo activity by 

Ex/Mer or by Fat.  Fat itself will also regulates the levels of Wts via a parallel pathway 

through Dachs. We also don’t know if there are players downstream of Ex/Mer that 

activate the pathway. Fat has been shown to regulate Ex, but the receptor upstream of 

Mer is yet to be identified. Finally, Chapter 4 suggests there may be still other players 

such as the junctional proteins Scrib/Dlg/Lgl, that cross-talk with the Hippo pathway.  

Given the diversity of phenotypes that arise as a result of mutations in the Hippo 

pathway in Drosophila and mammals, the biological effect of Hippo signaling may be 

context dependent. For instance, in addition to its nuclear coactivating role and regulation 

of growth genes CyclinE and DIAP1, Yap can also promote cell death by binding to P73 

(a p53 family member) in the nucleus (Strano, Munarriz et al. 2001; Strano, Monti et al. 

2005). The fact that YAP can carry out these opposing roles suggests that YAP probably 

binds and activates different transcriptional factors to regulate progrowth versus 

proapoptotic genes. This may depend on the specific upstream signaling or a 

posttranslational modification that affects the stability and/or localization of YAP. In flies 

the Hippo pathway plays a role in several types of processes namely, retinal cell 

patterning, dendrite morphogenesis, regulation of oocyte polarity and even salivary gland 

degeneration. The role of Hpo in the salivary gland is Yki independent and PI3K 

dependent. This suggests that in addition to Yki there must be other downstream effectors 

of the pathway. In Drosophila, oocyte polarity by which the posterior follicle cell fate 

identity is determined during oogenesis is Fat in independent, suggesting there are other 

upstream effectors that can regulate the Hippo pathway.  Thus, the Hippo pathway is far 
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more complex than a direct linear regulatory mechanism of organ growth control. Future 

experiments will broaden our knowledge help us reconcile many of these findings. 

In summary, the work described in this thesis shows that the Ajuba LIM proteins 

have a novel and crucial role in epithelial cells in regulating the overall size of an organ. 

The Ajuba LIM proteins mediate the effect by acting as direct negative regulators of the 

Hippo growth regulatory pathway. They play an influential role in both Drosphila as well 

as mammals to regulate the transcriptional output of the pathway by impacting the 

phosphorylated levels of Yki (or Yap in mammals) and thereby the transcriptional levels 

of growth-regulating and apoptotic genes. It will be important, in the future, to 

understand the precise mechanism by which djub or Ajuba/LIMD1/WTIP regulate the 

Hippo pathway, and where in epithelial cells this regulation occurs.  
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