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ABSTRACT OF THE DISSERTATION 

Mechanisms mediating adaptive presynaptic muting induction 

by 

Devon Christine Crawford 

Doctor of Philosophy in Neurosciences 

Washington University in St. Louis, 2012 

Professor Steven Mennerick, Chairperson 

 

Neurons are responsible for information processing within the nervous system, so 

strong perturbations of neuronal function have far-reaching consequences within the 

neural network.  Damage in response to excess excitation, as occurs during stroke or 

seizure, is known as excitotoxicity.  One method utilized by neurons for reducing 

excitotoxicity within an overly activated neuronal network is to arrest excitatory 

neurotransmitter release from presynaptic terminals.  The mechanisms responsible for 

inducing this presynaptic silencing (or “muting”), however, have been elusive.  In order 

to elucidate the signals responsible, I used molecular techniques in defined networks of 

cultured neurons from the mammalian hippocampus, a well-studied brain region known 

to be important for learning and memory but susceptible to excitotoxic damage.  

Calcium serves as a signal transducer during excitotoxicity and many forms of 

synaptic plasticity, but the signaling cascades in presynaptic silencing were previously 

unknown.  In neurons individually depolarized via heterologous ion channel activation, I 

showed that calcium influx led to cell death while channel expression led to synaptic 

depression, although muting was not confirmed.  Calcium, however, was not necessary 
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for presynaptic muting after strong depolarization.  Instead, inhibitory G-protein 

signaling induced silencing through cyclic adenosine monophosphate (cAMP) reduction 

but surprisingly not via activation of likely candidate receptors.  This cAMP reduction 

contributed to loss of proteins important for vesicle fusion at the presynaptic terminal. 

I also found that astrocytes, support cells in the nervous system that have garnered 

attention recently for their ability to modulate neuronal function, were required for the 

proper development of presynaptic muting in hippocampal neurons.  Soluble factors 

released by astrocytes were permissive, but not instructive, for silencing induction.  

Thrombospondins were identified as the astrocyte-derived factors responsible for muting 

competence in neurons, and they act through binding to the α2δ-1 subunit of voltage-

gated calcium channels.  cAMP-activated protein kinase A exhibited dysfunctional 

behavior in the absence of thrombospondins, potentially explaining the presynaptic 

muting deficit in an astrocyte-deficient environment. 

Together these results clarify the molecular mechanisms responsible for an 

underappreciated form of neuroprotective synaptic plasticity and provide potential 

therapeutic targets for a number of disorders expressing excitotoxic damage.  
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Chapter 1 

 

Introduction and thesis objectives 

 

 

 

 

 

 

 

 

 

 

This chapter contains text excerpts and figures (Figures 1, 2, and 4) from a 

previously published manuscript: 

Crawford DC, Mennerick S (2012). Presynaptically silent synapses: dormancy and 

awakening of presynaptic vesicle release. Neuroscientist 18(3): 216. 

 

Author contributions for the citation above: 

D.C.C. wrote the paper and made the figures.  S.M. edited the manuscript. 
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Adaptive presynaptic muting 

Neurons transmit electrical signals as the basis of information processing in the 

nervous system.  Chemical synapses mediate much of the communication between 

neurons.  Synapses pivotally influence the flow of information throughout the neural 

network and are primary sites of malleability that may underlie behavioral alterations and 

memory formation.  Modulation of synaptic strength takes many forms.  One form 

includes mature, functioning synapses rendered dormant, but the mechanisms underlying 

this are poorly understood.  These “silent” synapses are deficient either in 

neurotransmitter release or in postsynaptic receptors (Fig. 1).  Here I will focus on 

presynaptically silent synapses, as postsynaptically silent synapses have been discussed 

extensively elsewhere and are not the focus of this dissertation (Kerchner and Nicoll, 

2008).     

Presynaptically silent synapses are identified throughout the literature also as 

“dormant,” “mute,” “non-functional,” or “inactive” presynaptic terminals.  They are 

characterized by terminals that fail to release transmitter in response to strong calcium 

influx and are found in a variety of species and neurotransmitter systems.  Dormant 

presynapses are distinct from weakly transmitting terminals because they are release-

incompetent even after accounting for the normal heterogeneity of vesicle release 

probability at presynaptic terminals.  Dormancy, therefore, represents a qualitative 

change in release competence.  It remains unclear how the absence of vesicle fusion at 

strategic synaptic locations alters signaling within a network, but this phenomenon may 

play important roles in information processing and in pathology.   
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Figure 1. Categories of silent synapses. A. Active synapses consist of presynaptic 
terminals with functional vesicle docking, priming, and probabilistic release upon 
calcium influx, all powered primarily by mitochondrial ATP production. The probability 
of vesicle release (pr) is modulated without altering the qualitative release competence of 
the terminal. Neurotransmitter released from active presynaptic terminals binds to 
postsynaptic receptors and causes a postsynaptic response. At glutamate synapses, for 
example, glutamate released via presynaptic vesicle fusion will bind to AMPA receptors, 
allowing net cation influx that directly depolarizes the target cell and relieves voltage-
dependent magnesium block of NMDA receptors (not depicted). Depolarizing effects of 
activated AMPA and NMDA receptors contribute to action potential generation. B. In 
presynaptically silent synapses, vesicle docking is intact, but priming and fusion are 
impaired, even with strong depolarization and calcium influx that overcomes low vesicle 
release probability. Without transmitter release, there is no postsynaptic response. C. 
Postsynaptically silent synapses maintain active presynaptic terminals, but the 
postsynaptic membrane is missing receptors necessary to generate a response. At 
glutamate synapses, AMPA receptors are absent, leaving NMDA receptors unable to 
overcome voltage-dependent block.    
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Evidence for presynaptic muting: 

Early evidence for presynaptic silencing, or muting, came from studies using 

quantal analysis to calculate the number of release sites for neurotransmitter. By 

analyzing the underlying statistical structure of transmitter release, quantal analysis 

describes the size of postsynaptic current due to fusion of a single vesicle (quantal size, 

q), the number of functional release sites (n), and the probability that an action potential 

will cause vesicle fusion (probability of vesicle release, pr) (Del Castillo and Katz, 1954; 

Redman, 1990).  These calculations allow for inferences about the function of a synaptic 

connection.  Using quantal analysis in multiple systems, including crayfish and rodent 

neurons, studies have demonstrated that quantal n is smaller than the number of physical 

synaptic connections between neurons (Neale et al., 1983; Wojtowicz et al., 1991).  In 

other words, there are typically some non-functional synaptic connections present. 

 Strong evidence for a presynaptic locus of dormancy came from studies of the 

Mauthner cell, which functions in an auditory escape response pathway in goldfish.  

Membrane potential changes are reliably transmitted from stimulated presynaptic fibers 

to the lateral dendrite of the Mauthner cell through electrotonic coupling via gap 

junctions.  Some presynaptic fibers, however, fail to transmit information through parallel 

chemical synapses (Faber et al., 1991).  The maintained amplitude of the electrotonic 

potential argues against action potential conduction failure as an explanation for synaptic 

inefficacy between some neuron pairs.  A small minority of the chemical synapses, 

however, can be activated by loading the presynaptic neuron with a cesium-containing 

solution (Faber et al., 1991).  This manipulation blocks potassium channels, which 

broadens the action potential and provides prolonged depolarization to the presynaptic 
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terminal.  The ability to awaken the synapse with a presynaptic manipulation suggests a 

presynaptic deficit but a full complement of postsynaptic receptors.  Although the 

awakened terminals could simply have low vesicle release probability, the synapses that 

could not be awakened may represent truly dormant terminals.  This discovery prompted 

studies of the induction and expression mechanisms for silent synaptic connections. 

 More recently, fluorescence visualization of presynaptic function has allowed the 

direct study of presynaptic muting without ambiguities introduced by calculating n from 

statistical models.  Styryl dyes like FM1-43 partition into extracellularly-exposed 

membrane to reveal recycling vesicles.  The number of active terminals, labeled with 

FM1-43 staining, is smaller than the total number of synaptic varicosities in dissociated 

hippocampal neurons (Ma et al., 1999), supporting the findings from previous studies that 

not all structurally-defined synapses are active.  Dormant presynaptic terminals are 

presently defined as those terminals that label positively for synaptic proteins but not 

with styryl dyes during strong stimulation that should empty all release-competent 

vesicles.  For example, synapses from cultured neurons that immunolabel for 

synaptophysin, Piccolo, GABAA receptors, or vesicular glutamate transporter 1 but not 

with FM1-43 are stereotypic examples of inactive presynaptic terminals (Kannenberg et 

al., 1999; Altrock et al., 2003; Moulder et al., 2004; Fig. 2).  Typically, these terminals 

have normal ultrastructure, including vesicle arrangement, and normal postsynaptic 

receptor function (Moulder et al., 2004; Moulder et al., 2006).   

 An increase in silent presynaptic terminals is registered in electrophysiological 

measures of excitatory postsynaptic currents as a decrease in the size of a neuron’s 

readily releasable pool of vesicles rather than a decrease in the vesicle release probability 
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(Moulder et al., 2004).  Dormant presynaptic terminals cannot be forced to release 

vesicles by strong stimulation or by secretagogues that elicit calcium-independent vesicle 

fusion.  These findings suggest that dormant presynaptic terminals are structurally mature 

and intact but have a deficit in vesicle fusion that renders the synapse unable to function.  

Some evidence suggests that this deficit is at the level of vesicle priming (Moulder et al., 

2006; Jiang et al., 2010), the maturation of release competence after vesicle docking but 

prior to calcium-dependent fusion.  Thus, altered presynaptic priming protein function 

may induce dormancy. 

 

Induction of presynaptic muting: 

Silent presynaptic terminals are present in the absence of any manipulations, but 

the mechanisms controlling dormancy can be examined by manipulating the number of 

dormant terminals.  In cultured hippocampal neurons, prolonged strong depolarization 

increases dormancy selectively in glutamatergic terminals (Fig. 2A, B), and this is slowly 

reversible (Moulder et al., 2004).  Weaker depolarization and increased spiking over 

several days also increase dormancy in a tetrodotoxin-sensitive manner (Moulder et al., 

2006).  Hypoxic depolarization also induces dormancy (Hogins et al., 2011; also see 

Appendix).  Dormancy does not simply represent arrested synaptic development because 

the dormant terminals identified after depolarization come from a previously active 

population (Moulder et al., 2004).  One major outstanding unknown in the literature has 

been the pathway leading from depolarization to silent presynaptic terminals.   

 Prior studies have found that reduced cyclic adenosine monophosphate (cAMP)  
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Figure 2. Malleability of the number of dormant presynaptic terminals. A. The 
percentage of active glutamate terminals is measured using FM1-43 dye uptake (green) 
and its co-localization with a presynaptic marker (vesicular glutamate transporter 1 or 
vGluT-1; red); dormant terminals are, therefore, represented by red puncta without any 
overlying green.  Activity also modulates the number of dormant terminals.  For example, 
co-localization occurs more often in control than in depolarized (4 h 30 mM KCl) 
cultured hippocampal neurons. This suggests that fewer glutamatergic presynaptic 
terminals are competent to recycle vesicles after depolarization. Modified with 
permission from Crawford et al., 2011 (Chapter 3). B. The percentage of active terminals 
correlates with the size of the readily releasable pool of vesicles. Excitatory postsynaptic 
currents (EPSCs) measured in autaptic cultured hippocampal neurons are depressed after 
prolonged (16 hr) depolarization with 30 mM KCl. Top: EPSCs were elicited after action 
potential stimulation, which are probabilistically dependent on calcium influx into the 
presynaptic terminal. Bottom: EPSCs were elicited by application of hypertonic sucrose, 
which causes calcium-independent fusion of all release-ready vesicles. Because both 
types of EPSCs are depressed after depolarization, this suggests that the size of the 
readily releasable pool of vesicles is decreased rather than the probability of vesicle 
release. C. The percentage of glutamatergic (red) terminals in cultured hippocampal 
neurons that take up the dye FM1-43 (green) increases after 4 h 50 μM forskolin 
treatment, which increases adenylyl cyclase activity and, therefore, cAMP production. 
This suggests that more terminals are release-competent after increased cAMP signaling. 
Modified with permission from Moulder et al., 2008. D. EPSCs in autaptic hippocampal 
neurons are increased after 4 h 50 μM forskolin application. Because both calcium-
dependent action-potential evoked EPSCs and calcium-independent sucrose-evoked 
EPSCs are increased after forskolin, this suggests that the readily releasable pool is 
increased rather than the probability of vesicle release. Modified with permission from 
Moulder et al., 2008. 
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signaling increases the number of dormant presynaptic terminals (Moulder et al., 2008).  

This suggests that dormancy can be modulated through alterations in cAMP levels, 

potentially implicating adenylyl cyclase signaling as the upstream control point in 

dormancy induction.  Because a major target of cAMP is protein kinase A (PKA), PKA 

substrates may modulate presynaptic vesicle release during dormancy induction (Fig. 3).  

One PKA substrate that is also involved in vesicle priming is the presynaptic protein 

Rim1 (Lonart et al., 2003; Calakos et al., 2004).  Rim1 levels, and levels of an associated 

priming protein Munc13-1, are decreased in cultured hippocampal neurons after 

induction of depolarization-induced dormancy (Jiang et al., 2010).  This is consistent 

with prior literature that suggests loss of Munc13-1 increases presynaptic muting 

(Augustin et al., 1999).  Overexpression of Rim1 prevents depolarization from inducing 

presynaptic dormancy (Jiang et al., 2010), strengthening the evidence that the levels of 

priming proteins at the presynaptic terminal are vital for determining dormancy status.  

Although Rim1 and Munc13-1 are the only proteins found to be degraded during 

depolarization-induced muting at glutamatergic terminals (Jiang et al., 2010), genetic loss 

of other presynaptic proteins, like bassoon, also increases dormancy (Altrock et al., 

2003).  Interestingly, activity deprivation also reduces connectivity between CA3 

pyramidal neurons in the hippocampus via presynaptic dormancy in a cyclin-dependent 

kinase 5 (CDK5)-dependent, but cAMP-independent, manner (Mitra et al., 2012).  CDK5 

may reduce connectivity between CA3 neurons by removing vesicles from the recycling 

pool (Kim and Ryan, 2010), although this remains unclear.  Presynaptic proteins involved 

in vesicle coordination and release, therefore, appear to modulate dormancy through 

altered levels or function. 
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Figure 3. Signaling cascades participating in presynaptic dormancy induction. 
Prolonged strong depolarization or increased action potential firing induces presynaptic 
dormancy through reduction of cAMP signaling cascades and through activation of the 
ubiquitin-proteasome system. Depolarization increases proteasome activity through 
unknown mechanisms. Reduced cAMP likely reduces protein kinase A (PKA) signaling 
during silencing induction. PKA phosphorylates presynaptic priming proteins like Rim1, 
a modification that may render Rim1 resistant to proteasome degradation; therefore, less 
Rim1 phosphorylation is expected after depolarization. Increased proteasome activity, 
combined with a vulnerable presynaptic protein population, may then lead to priming 
protein degradation. This model provides a plausible mechanism for priming protein level 
reduction and dormancy induction by depolarization. Postsynaptic protein levels are 
unaltered by induction of presynaptic dormancy.  Modified from Crawford and 
Mennerick, 2012. 
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The ubiquitin-proteasome system, a protein tagging and degradation pathway, is 

in a unique position to manipulate presynaptic dormancy.  Increased degradation could 

decrease presynaptic protein levels and, therefore, cause dormancy in protein-deficient 

terminals.  In fact depolarization- and hypoxia-induced silencing of presynaptic terminals 

are prevented by pharmacological proteasome inhibition (Jiang et al., 2010; Hogins et al., 

2011).  Together, these studies suggest that depolarization activates pathways to reduce 

cAMP and upregulate proteasome-dependent degradation of proteins vital for vesicle 

fusion at the presynaptic terminal (Fig. 3). 

 

Induction of presynaptic unsilencing: 

Depolarization increases dormancy, but neuronal inactivity reduces dormancy.  

Thus, activity levels appear to set the percentage of release-competent terminals.  The 

percentage of active glutamate terminals in primary hippocampal cultures increases after 

6-10 days of tetrodotoxin treatment to block action potentials (Moulder et al., 2006).  

Postsynaptic receptor blockade, but not activity deprivation, produces presynaptic 

unsilencing in less than 24 h (Jakawich et al., 2010).  Unsilencing occurs within 4 h when 

dormancy-inducing depolarization is removed from neurons, which accounts for a return 

to baseline synaptic functionality (Moulder et al., 2004).  Together, these studies suggest 

that presynaptic silencing is a compensatory, homeostatic adaptation to altered neuronal 

activity. 

 Signaling cascades for both silencing and unsilencing of presynaptic terminals 

appear to utilize cAMP.  As described earlier, decreased cAMP signaling increases 

dormancy.  In turn, increased cAMP signaling reduces dormancy (Fig. 2C, 2D, and 4).  
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Sp-cAMPS, a phosphodiesterase-resistant cAMP analog that activates downstream 

protein kinases like PKA, increases the number of functional release sites (Bolshakov et 

al., 1997; Ma et al., 1999; Kohara et al., 2001).  This same effect is induced by forskolin, 

which increases adenylyl cyclase activity (Kohara et al., 2001; Moulder et al., 2008; Fig. 

2C, D).  Recovery from depolarization-induced silencing of glutamate terminals depends 

on adenylyl cyclase 8 and PKA signaling, suggesting that cAMP signaling is important 

for this type of unsilencing as well (Moulder et al., 2008).  Interestingly, Sp-cAMPS-

induced increases in the number of functional terminals are blocked with protein 

synthesis inhibitors (Ma et al., 1999), and the presynaptic protein synapsin has been 

implicated in a PKA-dependent form of presynaptic awakening (Cousin and Evans, 

2011).  A non-cAMP-dependent form of unsilencing requires postsynaptic brain-derived 

neurotrophic factor (BDNF) synthesis and release (Jakawich et al., 2010), although 

retrograde signaling of BDNF is contentious because BDNF is localized presynaptically 

(Dieni et al., 2012).  The dependence of unsilencing on protein synthesis mirrors the 

evidence that protein degradation induces dormancy and strengthens the hypothesis that 

presynaptic protein levels or function are important for modulating dormancy status of 

presynaptic terminals.   

 Although dormancy is modulated homeostatically in some contexts, it may also 

be modulated in a Hebbian fashion.  Some stimuli that induce long-term potentiation 

(LTP), a persistent enhancement of synaptic efficacy, also unsilence presynaptic 

terminals.  Although the role of the presynaptic terminal in LTP induction is debated in 

the literature (Voronin and Cherubini, 2004; Kerchner and Nicoll, 2008; Kullmann, 

2012), there are a few studies that show an increase in the number of active presynaptic  
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Figure 4. Signaling cascades participating in presynaptic dormancy reduction. 
Under some conditions, inactivity and increased cAMP activate previously dormant 
terminals. Calcium-dependent adenylyl cyclase VIII (AC8) knockout prevents recovery 
of active terminals when elevated neuronal activity is removed, so AC8 may be the 
cAMP source responsible for this form of unsilencing. In other contexts multiple bursts 
of high frequency stimulation (HFS), which often causes strong calcium influx and long-
term potentiation, lead to presynaptic awakening. Both activity reduction and HFS 
require protein kinase A (PKA) signaling for presynaptic activation, but how ostensibly 
opposite changes in activity both recruit PKA in different experimental contexts remains 
unknown.  Once PKA is activated, phosphorylation events may slow priming protein 
degradation.  Additionally, PKA phosphorylates and thereby activates nuclear 
transcription factors (blue arrow and inset) like cAMP response element-binding protein 
(CREB), and this may increase synthesis of presynaptic proteins vital for vesicle priming 
and release (purple arrow and inset). A third pathway to unsilencing is via phorbol esters, 
which enhance function of the priming protein Munc13-1. Under this model of dormancy 
reduction, postsynaptic responses are restored once the presynaptic terminal regains the 
ability to release neurotransmitter.   
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terminals after LTP has been induced.  In one study, for example, Sp-cAMPS, known to 

reduce dormancy, potentiates synapses and increases quantal n in rodent hippocampal 

slices (Bolshakov et al., 1997).  Another study used multiple bursts of high frequency 

stimulation in cultured dentate granule neurons to induce a form of PKA-dependent LTP.  

Using a slowly reversible NMDA receptor antagonist, MK801, to block postsynaptic 

receptors at all active synapses, this study showed that new active release sites appear 

after LTP induction (Tong et al., 1996).  PKA is also important for activation of 

presynaptic terminals in immature cultured hippocampal neurons after repetitive 

depolarization challenges, although the possibility of enhanced synaptic maturation rather 

than awakening of established terminals is not ruled out (Yao et al., 2006).  Another 

study in more mature cultured hippocampal neurons showed that glutamate-induced 

synaptic potentiation increases the number of terminals that stain for FM1-43 (Ninan and 

Arancio, 2004).  Hebbian unsilencing of presynaptic terminals is also induced by 

serotonin in Aplysia sensory neurons prior to subsequent synaptogenesis (Kim et al., 

2003).  Presynaptic dormancy modulation, therefore, may be important for some Hebbian 

forms of synaptic plasticity, and the direction of cAMP change may critically determine 

whether silencing or unsilencing results from a particular stimulus. 

 Phorbol esters, which are analogues of diacylglycerol, also potentiate synaptic 

function.  Among other presynaptic effects, phorbol esters unsilence presynaptic 

terminals within two minutes application to cultured hippocampal neurons (Chang et al., 

2010).  This form of unsilencing is much faster than the cAMP-dependent forms of 

unsilencing described previously.  Phorbol esters upregulate protein kinase C signaling, 

but they also act directly on Munc13-1 (Betz et al., 1998).  Although PKA-induced 
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unsilencing may involve protein synthesis, phorbol ester-induced unsilencing is likely too 

rapid to require protein synthesis.  Instead, phorbol esters appear to alter Munc13-1 

function, potentially via translocation to the plasma membrane (Betz et al., 1998).  

Altogether, these findings suggest that there are multiple signaling cascades that cause 

presynaptic unsilencing (Fig. 4).  These cascades alter synaptic function on very different 

time scales, but they likely converge on presynaptic proteins responsible for vesicle 

maturation or fusion. 

 

Implications of presynaptic dormancy: 

Because dormant presynaptic terminals are widespread and modulated by a 

variety of mechanisms, dormancy status may represent an important facet of synaptic 

malleability.  It is currently unknown how dormancy levels affect network function and 

what role this may play during neuropathology.  Why should some synapses exist but not 

function?  What benefit or difference in function is gained from dormancy over a more 

classical presynaptic change, like acute, reversible G-protein-coupled receptor (GPCR)-

mediated depression of calcium influx and the corresponding decreased vesicle release 

probability (Brown and Sihra, 2008)?  An intriguing possibility is that dormancy is an 

activity-dependent mechanism for modulating connectivity between neurons.  This would 

add another dimension to neural computation since dormancy provides a digital signal 

that is either “on” or “off,” similar to synaptogenesis and synaptic pruning but without 

the same resource requirements of these mechanisms.  Having multiple methods for 

modulating synaptic connectivity likely increases flexibility of neural computation in the 

system. 
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 It is also interesting that dormancy can be adaptive or reinforcing, depending on 

the context and the direction of cAMP change.  Presynaptic muting of glutamate 

terminals often increases with prolonged elevated neuronal activity but decreases with 

inactivity.  This counteractive change in excitatory neurotransmitter release could 

potentially maintain signaling within an optimal range, one of the hypothesized roles of 

homeostatic synaptic plasticity (Pozo and Goda, 2010).  For example, induction of 

dormancy occurs during pathological insults, leading to reduced glutamate release and 

enhanced neuronal survival (Hogins et al., 2011; Appendix).  In this context, all-or-none 

muting seems well-tailored to self-defense; other forms of presynaptic depression through 

reduced calcium influx might quickly be overwhelmed by hypoxic or ischemic 

depolarizing insults.  Dormancy can also be decreased rather than increased after 

stimulation, however, leading to potentiated synapses.  Some of these Hebbian forms of 

unsilencing utilize cAMP signaling, which, like LTP, has been linked to memory 

processing in multiple systems (Alberini et al., 1995).  So in addition to its potentially 

homeostatic role, modulation of dormancy may also play a role in Hebbian plasticity and 

memory.  Therapeutic exploitation of the signaling cascades increasing or decreasing 

dormancy could have valuable clinical implications. 

 Dormancy may also be more efficient than ostensibly similar forms of synaptic 

plasticity.  Modulation of dormancy achieves similar changes in neuronal connectivity as 

synaptogenesis and synaptic pruning but appears to work on a faster time scale (minutes 

to hours rather than hours to days).  This likely preserves physical resources the cell 

would otherwise require for large-scale structural alterations and allows the neuron to 

respond more quickly to perturbations to the system.  Additionally, it is important to note 
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that presynaptic function requires a large amount of energy, as evidenced by the nearly 

ubiquitous presence of mitochondria in presynaptic terminals (Palay, 1956).  If the 

system requires a dormant synaptic connection, it would arguably waste less energy to 

preserve postsynaptic function and shut down presynaptic vesicle cycling than to 

preserve transmitter release onto a non-receptive postsynaptic membrane for the duration 

of the dormancy period.  Although it is unclear whether unsilencing a presynaptic 

terminal would require more energy than unsilencing a postsynaptic terminal, 

maintaining presynaptically silent synapses may be more energy efficient than 

maintaining postsynaptically silent synapses.  Therefore, it is unclear how presynaptically 

silent and postsynaptically silent synapses interact.  It is also unclear how the relatively 

fast digital changes in information flow created by dormancy alter neural computation, 

but it is evident that presynaptically silent terminals are a potentially economical way to 

introduce this dimension into the system.  Clearly, understanding the mechanisms 

responsible for muting induction and its implications would be of benefit. 
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Mediators of synaptic plasticity 

 

Calcium: 

 Calcium is a well-studied participant in neuronal and synaptic plasticity induction, 

but it is unknown if presynaptic muting induction requires calcium signaling.  Calcium 

influx into the presynaptic terminal is vital for action potential-evoked synaptic 

transmission (Sudhof, 2004, 2012), but calcium can also modulate other signaling 

cascades within the neuron, including cAMP levels (Hanoune and Defer, 2001).  

Induction of many persistent, Hebbian forms of synaptic plasticity requires calcium 

signaling (Malenka, 1991; Malenka, 1994; Teyler et al., 1994).  For example, NMDA 

receptor-dependent LTP of synapses onto CA1 pyramidal neurons in the hippocampus 

require postsynaptic calcium influx (Wigstrom et al., 1979; Lynch et al., 1983; Malenka 

et al., 1988; Malenka et al., 1992).  LTP of inhibitory synapses onto CA1 pyramidal cells 

after theta burst electrical stimulation and LTP of mossy fiber synapses onto CA3 

pyramidal cells are likewise dependent on postsynaptic calcium (Williams and Johnston, 

1989; Patenaude et al., 2003).  Both LTP and its Hebbian counterpart, long-term 

depression (LTD), onto dentate granule cells in the hippocampus are inhibited by 

postsynaptic calcium chelation (Xie et al., 1992).  LTD onto CA1 pyramidal neurons as 

well as mossy fiber LTD onto CA3 neurons also require calcium (Wickens and Abraham, 

1991; Mulkey and Malenka, 1992; Tzounopoulos et al., 1998).  Calcium is vital, 

therefore, for many Hebbian forms of plasticity. 

Calcium dependence of Hebbian plasticity is not just observed in intact 

hippocampal networks, however.  LTP induced in cultured dentate granule neurons and 
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the awakening of presynaptic terminals in dissociated hippocampal neurons after high-

frequency stimulation both require presynaptic calcium (Tong et al., 1996; Shen et al., 

2006).  Autaptic hippocampal neurons grown in culture require the release of calcium 

from intracellular calcium stores for maintenance of CB1 cannabinoid receptor-

dependent LTD (Kellogg et al., 2009).  These culture systems recapitulate basic findings 

found in more intact networks. 

Despite the large number of Hebbian forms of plasticity that require calcium, 

some do not.  For example, some hippocampal forms of LTD that depend on 

metabotropic glutamate receptors (mGluRs) are induced despite calcium chelation 

(Fitzjohn et al., 2001; Ireland and Abraham, 2009; Kasten et al., 2012).  Similarly, 

unsilencing of cerebellular granule presynaptic terminals via cAMP signaling does not 

require calcium (Chavis et al., 1998).  Depotentiation of Schaffer collateral LTP by 

temporoammonic path stimulation does not require L-type calcium channels, although it 

is unclear if calcium from other sources contributes (Izumi and Zorumski, 2008).  

Calcium is, therefore, a common but not ubiquitous signal mediating many forms of 

Hebbian plasticity.  

 The contributions of calcium signaling to other forms of neuronal and synaptic 

plasticity have also been studied in detail.  Subtypes of homeostatic and short-term 

plasticity have been found to require calcium (Fisher et al., 1997; Fioravante and Regehr, 

2011; Mochida, 2011; Turrigiano, 2012).  For example, activity in CA1 pyramidal 

neurons causes calcium influx through L-type channels that subsequently increases spike 

adaptation via potassium channels (Wu et al., 2008).  Although this may be a homeostatic 

mechanism for reducing excitability, some calcium-dependent changes in intrinsic 
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excitability are reinforcing, like the increased excitability in layer V cortical neurons after 

electrical stimulation (Cudmore and Turrigiano, 2004).  In Drosophila, postsynaptic 

glutamate receptor blockade increases presynaptic glutamate release via increased vesicle 

release probability.  This homeostatic effect is blocked in mutants with reduced 

functional CaV2.1, a presynaptic voltage-gated calcium channel (Frank et al., 2006).  In 

cultured rat cortical neurons, activity blockade homeostatically increases postsynaptic 

AMPA receptor levels in a process known as synaptic scaling.  The AMPA receptor 

increase is triggered by decreased calcium influx into the postsynaptic neuron (Ibata et 

al., 2008).  Although short-term depression of synaptic transmission via vesicle depletion 

does not require calcium (Betz, 1970; Stevens and Tsujimoto, 1995; Garcia-Perez et al., 

2008), recovery from this depression does (Garcia-Perez and Wesseling, 2008).  Other 

forms of synaptic plasticity that do not require calcium include nitric oxide-induced 

neurotransmitter release via vesicle-associated protein assembly as well as hormone-

induced increases in AMPA receptor levels (Meffert et al., 1996; Zadran et al., 2009).  

Calcium is an important messenger for many forms of plasticity, but it remains unknown 

if calcium mediates presynaptic muting induction. 

 

G-proteins: 

 Another group of molecular signals important for many forms of synaptic 

plasticity is that of guanine nucleotide-binding proteins (G-proteins).  G-proteins are 

heterotrimeric protein complexes associated with GPCRs, which are transmembrane 

receptors that alter their conformation upon ligand binding.  Activated receptors convert 

guanosine diphosphate bound to the Gα subunit to guanosine triphosphate.  Canonically, 
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this causes dissociation of the Gα subunit and the Gβγ subunit complex from the receptor, 

allowing these subunits to bind to and alter the activity of downstream effectors.  In the 

nervous system, G-proteins mediate multiple functional and modulatory roles, including 

synaptic plasticity (Brown and Sihra, 2008).  G-protein signaling cascades, therefore, are 

well-poised to modulate neural communication, but it is unknown if they play a role 

during glutamatergic synaptic muting. 

Many different signaling cascades lie downstream of G-protein activation, but one 

important downstream target is cAMP.  The Gαs subunit stimulates cAMP production 

through activation of adenylyl cyclase, an enzyme that catalyzes the formation of cAMP 

from adenosine triphosphate (ATP).  In contrast, Gαi and Gαo, which are sensitive to 

pertussis toxin, inhibit adenylyl cyclase.  In neurons, acute activation of inhibitory G-

proteins (Gi/o) also induces rapidly reversible effects on ion channels through Gβγ 

signaling.  Gβγ causes synaptic depression through presynaptic inhibition of calcium 

channels that reduces vesicle pr.  Gβγ signaling also decreases neuronal excitability 

through postsynaptic activation of inwardly rectifying potassium channels that 

hyperpolarizes the neuron (Brown and Sihra, 2008).  These acute effects of Gβγ on ion 

channels do not desensitize quickly, as evidenced by their ability to be elicited after 4 h 

exposure to GPCR agonist (Wetherington and Lambert, 2002a, b), suggesting that this is 

a robust mechanism for altering neuronal function.  G-protein signaling cascades are 

diverse but utilize common mechanisms to alter intracellular processes. 

G-protein signaling is involved in more slowly induced synaptic changes as well.  

One well-studied example is LTD of excitatory synapses onto CA1 pyramidal neurons in 

the hippocampus.  This form of LTD is induced by stimulation of mGluRs, which are one 
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type of GPCR expressed in the hippocampus (Oliet et al., 1997; Palmer et al., 1997; 

Kasten et al., 2012).  Similarly, mossy fiber synapses onto CA3 pyramidal neurons in the 

hippocampus produce an NMDA receptor-independent, mGluR-dependent LTD that 

requires decreases in cAMP levels (Tzounopoulos et al., 1998).  Interestingly, mGluR-

independent depotentiation of Schaffer collateral LTP by temporoammonic path 

stimulation requires A1 adenosine receptor activation (Izumi and Zorumski, 2008), a 

GPCR in excitatory presynaptic terminals and astrocytes (Yoon and Rothman, 1991; 

Biber et al., 1997).  Although LTD of inhibitory synapses onto CA1 pyramidal neurons 

can be induced by mGluR stimulation (Patenaude et al., 2003), CB1 cannabinoid 

receptors, another class of hippocampal GPCR, also mediate a form of inhibitory synapse 

LTD in this region (Chevaleyre and Castillo, 2004).  Activation of CB1 cannabinoid 

receptors also produces presynaptic muting of GABAergic terminals in hippocampal 

slices (Losonczy et al., 2004), but it is unclear how this interacts with LTD.  It is also 

unknown if G-protein signaling is involved in other forms of muting like in hippocampal 

glutamatergic synapses.   

  Classical G-protein signaling requires extracellular ligand binding to GPCRs, so 

intercellular communication mediates most G-protein signals.  Cell autonomous 

mechanisms for activating GPCRs exist, however.  Some GPCRs or downstream targets 

are voltage-sensitive (Reddy et al., 1995; Ben-Chaim et al., 2006; Parnas and Parnas, 

2007; Okamura et al., 2009), so neuronal depolarization or increased action potential 

firing could modulate G-protein signaling through voltage signals.  Additionally, 

activators of G-protein signaling (AGS proteins) are recently-described modulators of G-

protein subunits that do not require GPCR activation (Cismowski, 2006; Blumer et al., 
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2007; Blumer et al., 2012).  AGS proteins are expressed in the brain, including the 

hippocampus, but their role in neuronal function and their activation mechanisms are still 

being investigated (Fang et al., 2000; Takahashi et al., 2003; Schwendt and McGinty, 

2010).  These examples highlight the diversity in G-protein signaling cascades that alter 

neuronal and synaptic function.  

 

Astrocyte-derived molecular signals: 

 Glial cells have historically been regarded as support cells for the neurons that 

relay information in the nervous system.  The name “glia” was originally derived from a 

Greek word for “glue” to describe their role in physically supporting neural networks.  

Glial promotion of blood-brain barrier integrity, neuronal development, electrical signal 

propagation, immune function, and transporting waste from the extracellular space have 

been well-studied (Abbott et al., 2010; Sofroniew and Vinters, 2010; Saijo and Glass, 

2011; Nualart-Marti et al., 2012; Parpura et al., 2012).  One important contribution that 

astrocytes, one glial type, make to neuronal development is promotion of synaptogenesis 

(Eroglu and Barres, 2010).  Factors released by astrocytes increase the total number of 

synapses and speed synaptic development (Hama et al., 2004; Christopherson et al., 

2005; Eroglu et al., 2009; Xu et al., 2010; Kucukdereli et al., 2011). Astrocytes and other 

glial cells are important for the development and function of neurons. 

Recently, it was discovered that astrocytes communicate with neurons to 

modulate neuronal and synaptic function more acutely than previously thought.  

Astrocytes release neurotransmitters, neuromodulators, and precursors to 

neuromodulators via transporters or vesicle fusion to modulate neural function (Volterra 
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and Meldolesi, 2005; Bergersen and Gundersen, 2009; Hamilton and Attwell, 2010; 

Paixao and Klein, 2010; Debanne and Rama, 2011; Santello et al., 2011; Min and 

Nevian, 2012).  Examples of these “gliotransmitters” include the neurotransmitter 

glutamate (Parpura et al., 1994; Bonansco et al., 2011), the NMDA receptor co-agonist 

D-serine (Mothet et al., 2005; Oliet and Mothet, 2006; Debanne and Rama, 2011), and 

ATP that is converted to adenosine in the extracellular space (Queiroz et al., 1997; 

Pascual et al., 2005; Butt, 2011).  This newly described ability of glial cells is 

controversial and its physiological relevance remains to be determined.   

Many reports have described effects of astrocytes on synaptic plasticity.  

Although astrocytes are thought to mediate many forms of synaptic function via 

downstream events after intracellular calcium rises (Volterra and Meldolesi, 2005; Perea 

et al., 2009; Dityatev et al., 2010; Halassa and Haydon, 2010; Di Castro et al., 2011; 

Dityatev and Rusakov, 2011; Honsek et al., 2012), this property is not universal and is 

sometimes contentious (Fiacco et al., 2007; Agulhon et al., 2010; Halassa and Haydon).  

In the hippocampus, calcium-dependent D-serine release from astrocytes is required for 

LTP of Schaffer collateral synapses onto CA1 pyramidal neurons (Henneberger et al., 

2010).  Additionally, astrocyte-derived tumor necrosis factor α is required, but not 

directly instructive, in hippocampal and cortical neurons for homeostatic scaling of 

glutamate receptor levels after activity deprivation (Beattie et al., 2002; Stellwagen and 

Malenka, 2006; Perea et al., 2009; Steinmetz and Turrigiano, 2010; Sullivan et al., 2011).  

SPARC (secreted protein, acidic, rich in cysteine) is a factor released by astrocytes that 

promotes AMPA receptor stabilization and prevents their over-accumulation and may, 

therefore, modulate synaptic strength (Jones et al., 2011; Kucukdereli et al., 2011).  
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Interestingly, microglia increase spontaneous activity onto CA1 pyramidal neurons 

through activation of astrocytic purinergic receptors upstream of neuronal mGluR 

activation (Pascual et al., 2011).  Outside of the hippocampus, glial cells have been linked 

to synaptic plasticity or acute changes in neuronal function in rodent barrel cortex 

(Eroglu et al., 2009; Benedetti et al., 2011; Takata et al., 2011), hypothalamus (Gordon et 

al., 2009), thalamus (Pirttimaki et al., 2011), cerebellum (Lee et al., 2010), septal nucleus 

(Navarrete et al., 2012), trigeminal ganglion (Ceruti et al., 2011), and neuromuscular 

junction (Todd et al., 2010).  One study, however, found that controlled calcium 

elevations in astrocytes did not increase spontaneous EPSC frequency or amplitude onto 

CA1 pyramidal neurons and had no effect on LTP (Agulhon et al., 2010).  This study 

questions the role of astrocytic calcium transients in synaptic plasticity but does not rule 

out the possibility that astrocytes communicate through other means to modulate 

synapses.  Additionally, the source of adenosine involved in synaptic depression after 

excitatory synapse stimulation was found to be neuronal and not astrocytic (Lovatt et al., 

2012), as had been hypothesized.  Despite the evidence that astrocytes play an important 

role in synapse development and plasticity in some contexts, it remains unclear whether 

astrocytes modulate presynaptic muting induction. 
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Summary and thesis objectives 

 Clarifying the induction signals responsible for presynaptic muting will increase 

our understanding of synaptic modulation and also potentially lead to new therapeutics 

for nervous system insults.  For this reason, the overall aim for this dissertation project is 

to elucidate the molecular signals responsible for muting induction.  Downstream 

expression mechanisms are better understood than upstream induction signals, so I will 

focus on upstream triggers for muting.  I will study muting in response to depolarization 

because it is a robust phenomenon with clear neuroprotective effects during excitotoxic 

injury.   

Cultured hippocampal neurons are used as the model system for studying muting 

induction for many reasons.  Not only is the hippocampus a vital structure for learning 

and memory (Naber et al., 2000; Silva et al., 2009), but it is also well-known for long-

term synaptic plasticity and is vulnerable to excitotoxic injury (Cervos-Navarro and 

Diemer, 1991; Davolio and Greenamyre, 1995; Harry and Lefebvre d'Hellencourt, 2003; 

Kemp and Manahan-Vaughan, 2007; De Roo et al., 2008; Howland and Wang, 2008).  

Studying hippocampal synaptic plasticity, therefore, could have broad implications in 

human health and disease.  Additionally, early work from our lab found muting of 

glutamatergic hippocampal synapses to be robust, reproducible, and induced with 

relatively brief challenges that do not cause other, confounding synaptic changes 

(Moulder et al., 2004; Moulder et al., 2006).  Small networks of neurons also allow for 

clear separation and interpretation of electrical and optical signals gathered from 

electrophysiology and microscopy, respectively.  Importantly, manipulation of molecular 

signals is more simply and completely achieved in a culture system where cell layers, 
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density, and identity are controlled.  Dissociated hippocampal cultures, therefore, are a 

useful model system for this project. 

A major underlying question for the work described herein is whether muting 

induction is cell autonomous or whether it requires intercellular signaling.  If muting 

induction is cell autonomous, for example via calcium influx during neuronal 

depolarization, then neurons likely sense increased activity and subsequently decrease 

their output of neurotransmitter without further input from the environment.  For this 

reason, I will attempt to develop methods for depolarizing individual neurons for long 

periods of time through heterologous cation channel expression.  The involvement of 

non-cell autonomous mechanisms, like ligand-gated GPCR activation or astrocytic 

modulation of muting, would imply that the neural network contributes to this 

homeostatic process.  Calcium, G-proteins, and astrocyte signaling will be tested because 

of their established roles in synaptic plasticity and potential to interact with known 

mediators of muting.  Clarifying mechanisms of muting induction could answer 

fundamental questions about how the nervous system adapts to changes in network 

activity levels.   

In summary, synapses represent the main junctures of communication between 

neurons in the nervous system.  In many neurotransmitter systems, a fraction of 

presynaptic terminals fails to release vesicles in response to action potential stimulation 

and strong calcium influx.  These silent presynaptic terminals exhibit a reversible 

functional dormancy beyond low vesicle release probability, and dormancy status may 

have important implications in neural function.  Recent advances have implicated 

presynaptic proteins interacting with vesicles downstream of cAMP and protein kinase A 



28 
 

signaling cascades in modulating the number of these mute presynaptic terminals, but it 

remains unclear how these changes are induced.  Muting may represent a homeostatic 

neuroprotective mechanism active during pathological insults involving excitotoxicity, 

but it may also be induced during Hebbian plasticity.  The goals of this dissertation are to 

ask whether important mediators of other forms of synaptic plasticity, like calcium, G-

proteins, and factors released by astrocytes, also mediate muting induction.  This project 

aims to clarify molecular signaling cascades responsible for muting induction and 

identify potential targets for therapeutic intervention.  
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Abstract 

Heterologous channel expression can be used to control activity in select neuronal 

populations, thus expanding the tools available to modern neuroscience.  However, the 

secondary effects of exogenous channel expression are often left unexplored.  We 

expressed two transient receptor potential (TRP) channel family members, TRPV1 and 

TRPM8, in cultured hippocampal neurons.  We compared functional expression levels 

and secondary effects of channel expression and activation on neuronal survival and 

signaling.  We found that activation of both channels with appropriate agonist caused 

large depolarizing currents in voltage-clamped hippocampal neurons, exceeding the 

amplitude responses to a calibrating 30 mM KCl stimulation.  Both TRPV1 and TRPM8 

currents were reduced but not eliminated by 4 hr incubation in saturating agonist 

concentration.  In the case of TRPV1, but not TRPM8, prolonged agonist exposure 

caused strong calcium-dependent toxicity.  In addition, TRPV1 expression depressed 

synaptic transmission dramatically without overt signs of toxicity, possibly due to low-

level TRPV1 activation in the absence of exogenous agonist application.  Despite 

evidence of expression at presynaptic sites, in addition to somatodendritic sites, TRPM8 

expression alone exhibited no effects on synaptic transmission.  Therefore, by a number 

of criteria, TRPM8 proved the superior choice for control over neuronal membrane 

potential.  This study also highlights the need to explore potential secondary effects of 

long-term expression and activation of heterologously introduced channels. 
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Introduction 

There has been strong recent interest in heterologous control over electrical 

activity in neurons and other excitable cells (Miesenbock, 2004; Deisseroth et al., 2006; 

Gorostiza and Isacoff, 2008).  These approaches offer the possibility of remotely 

controlling the activity of select populations of neurons, thereby gaining experimental or 

therapeutic influence over network activity.  For instance, heterologously introduced 

channels have been used recently to control courtship and escape behavior in flies and 

fish (Clyne and Miesenbock, 2008; Douglass et al., 2008; Peabody et al., 2009; 

Zimmermann et al., 2009) and to control sleep-wake behavior and motor behavior, 

including Parkinsonian and epileptic symptoms, in mammals (Adamantidis et al., 2007; 

Aravanis et al., 2007; Arenkiel et al., 2007; Arenkiel et al., 2008; Gradinaru et al., 2009; 

Tonnesen et al., 2009).  Because electrical activity is critical for neuronal survival, 

development, and plasticity (Zito and Svoboda, 2002; Akerman and Cline, 2007; Li et al., 

2009), these techniques also have experimental potential to help unravel the downstream 

signaling mechanisms responsible for these important facets of neuronal function 

(Burrone et al., 2002; Sohal et al., 2009).   

 Heterologous expression of ligand-gated receptors and leak channels received 

initial attention (Burrone et al., 2002; Zemelman et al., 2003; Lima and Miesenbock, 

2005; Hou et al., 2008; Okada and Matsuda, 2008), but this approach has largely been 

supplanted by optogenetic approaches that employ channels directly activated by light 

(Chambers et al., 2006; Zhang et al., 2006; Szobota et al., 2007; Han et al., 2009).  

Multiple approaches for heterologous control over activity are probably needed, however, 

as one single method is unlikely to be appropriate in all situations.  Introduction of leak 
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channels (Burrone et al., 2002; Hou et al., 2008; Okada and Matsuda, 2008) suffers from 

a lack of control over the degree of activity change and typically is limited to an 

inhibitory influence, and one obvious disadvantage of optogenetic approaches is the need 

for a light source.  A light source of appropriate wavelength will not be feasible or cost-

effective in all circumstances.  In the intact nervous system, light implantation may be 

prohibitively invasive.  Furthermore, some applications may require activation of a 

spatially dispersed set of neurons over a large area, in which case a single light source 

may not be adequate.   

 For these reasons, we have explored further the advantages and disadvantages of a 

heterologous ligand-gated receptor approach. This approach offers the possibility of 

global administration of ligand for activating populations of heterologously transfected 

neurons.  We explored two candidate heterologous ligand-gated channels: transient 

receptor potential vanilloid receptor 1 (TRPV1) and transient receptor potential cation 

channel, subfamily M, member 8 (TRPM8), which normally are responsible for pain and 

temperature signal transduction in sensory neurons and respond to the pharmacological 

ligands capsaicin and menthol, respectively (Caterina et al., 1997; McKemy et al., 2002; 

Peier et al., 2002).  These channels were chosen for their ability to be controlled readily 

by agonist application and their lack of strong endogenous role in hippocampal function.  

To test advantages and disadvantages of expressing each channel in hippocampal 

neurons, we used sparse transfection of neurons to avoid complications and confounds of 

widespread neuronal activation and associated release of neurotransmitters and 

modulators. We tested the activation of these channels relative to depolarizing currents 

activated by elevated extracellular potassium as a calibration standard.   
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 Acute activation of both TRPV1 and TRPM8 induced large currents in response 

to saturating agonist concentration.  Both showed evidence of desensitization with 

prolonged receptor activation, although these responses still compared favorably with 

non-desensitizing potassium-induced depolarizing currents.  TRPM8 exhibited less 

agonist-induced toxicity and less interference with normal synaptic communication in the 

absence of agonist.  In addition to soma expression of channels, we observed evidence for 

direct depolarization of axon terminals of TRPM8- and TRPV1-transfected neurons, 

suggesting cell-wide expression.  Because our results suggest that TRPM8 is expressed 

throughout the cell with no detectable secondary effects on cell function, TRPM8 is the 

better choice for studies requiring exogenous control over the membrane potential of 

neuronal subpopulations.  Our results also stress the importance of fully characterizing a 

heterologous expression system to avoid confounding and other unintended effects of 

manipulating that system. 
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Materials and Methods 

 

Tissue culture and transfection: 

All experimental procedures involving animals were performed using protocols 

approved by the Washington University in St. Louis School of Medicine Animal Studies 

Committee as well as the Guide for the Care and Use of Laboratory Animals published 

by the U.S. National Institutes of Health.  Primary hippocampal neuron cultures were 

prepared as previously described (Mennerick et al., 1995).  Briefly, postnatal day 0-3 rat 

pups were anesthetized with isofluorane and decapitated.  Hippocampi were removed, cut 

into 500 μM-thick transverse slices, and treated enzymatically with 1 mg/mL papain.  

Cells were then mechanically dissociated and plated as mass cultures (~650 cells/mm2 

onto a uniform layer of collagen) or as microcultures (~100 cells/mm2 onto “islands” 

made of collagen droplets).  The plating medium used was Eagle’s medium (Invitrogen, 

Carlsbad, CA, USA) supplemented with heat-inactivated horse serum (5%), fetal bovine 

serum (5%), 17 mM D-glucose, 400 μM glutamine, 50 U/mL penicillin, and 50 μg/mL 

streptomycin.  Cultures were housed in a humidified incubator at 37ºC under controlled 

atmospheric conditions (5% CO2 / 95% air).  To inhibit cell division 3-4 days after 

plating, 6.7 μM cytosine arabinoside was added.  Half of the culture medium was 

replaced with Neurobasal medium (Invitrogen) with B27 supplement 4-5 days after 

plating.  Transfections were performed 8-12 days after plating using a 

DNA:Lipofectamine 2000 (Invitrogen)  ratio of 1:1.5-2 according to the manufacturer’s 

protocol.  Dishes were transfected with synaptophysin-YFP (0.5-2.5 μg), TRPV1 (2 μg), 

and/or TRPM8 (1.5 μg).  Experiments were performed usually 1 day, but up to 3 days, 
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after transfection. 

 

Electrophysiology: 

Whole-cell voltage-clamp and cell-attached patch experiments were performed 

using an Axopatch 200B amplifier (Molecular Devices, Sunnyvale, CA, USA), Digidata 

1322A acquisition board (Molecular Devices), and pClamp software (Molecular 

Devices).  All recordings were made in voltage-clamp mode at room temperature 

(~25ºC).  Whenever solutions were acutely applied to neurons, a multi-barrel perfusion 

system was used with the perfusion port placed < 0.5 mm from the neuron under study.  

For all experiments, controls consisted of either neurons from sibling cultures plated the 

same day or non-transfected neurons within the same dish as the transfected neurons 

under study unless otherwise described.  All experiments, except for those depicted in 

Figure 6, were performed in conventional mass cultures.   

Membrane potential was held at -70 mV for experiments unless otherwise 

indicated.  Electrode resistances of 6-11 MΩ were used for cell-attached patch 

recordings.  For all other recordings, electrode resistances were 2.5-6 MΩ.  A 5 kHz low-

pass filter was used for all experiments except cell-attached patches in which 1kHz 

filtering was utilized.  Access resistance was compensated 85-100% for all experiments 

except where small currents were measured: cell-attached patches, miniature postsynaptic 

current recordings, acute agonist applications to non-transfected neurons, and acute 

ruthenium red applications to transfected and non-transfected neurons.  Action potential 

stimulation for the autaptic recordings was achieved by 1.5 ms voltage pulses from -70 

mV to 0 mV (Mennerick et al., 1995).   
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Extracellular recording media consisted of 138 mM NaCl, 4 mM KCl, 2 mM 

CaCl2, 1 mM MgCl2, 10 mM glucose, 10 mM HEPES, and 25 µM D-APV (Tocris, 

Bristol, UK) with a pH of 7.25.  For all agonist-induced current recordings (i.e. excluding 

microisland autaptic current and miniature postsynaptic current recordings), 1 μM NBQX 

(Tocris) was added to the extracellular media to inhibit secondary glutamate-mediated 

synaptic currents.  For most experiments, internal pipette solution consisted of 130 mM 

cesium methanesulfonate (CsMeSO4), 4 mM NaCl, 0.5 mM CaCl2, 5 mM EGTA, and 10 

mM HEPES at a pH of 7.25.  For cell-attached patch experiments, however, 140 mM K-

gluconate was substituted for CsMeSO4, and for microisland autaptic recordings, 140 

mM KCl was substituted for CsMeSO4 to provide similar driving force on excitatory and 

inhibitory postsynaptic currents (PSCs) at the holding potential of -70 mV.   

For some experiments, agonist-induced responses were compared with responses 

elicited by 30 mM KCl application.  Prolonged exposure (4 hr) to 30 mM KCl has been 

shown to induce strong synaptic change in cultured hippocampal neurons and clamps the 

membrane potential near -20 mV (Moulder et al., 2004; Moulder et al., 2006).  

Normalizing the agonist-induced current to the KCl current, therefore, controls for 

variability in absolute current size due to neuronal geometry and provides a within-cell 

comparator to a calibrated depolarizing stimulus.   

 

Epifluorescence imaging and cell counts: 

All imaging was performed using an Eclipse TE2000-S inverted microscope 

(Nikon, Melville, NY, USA) with epifluorescence provided by a metal halide lamp.  

Light was routed through Chroma filter set 41001 (Chroma Technology Corp., 
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Rockingham, VT, USA), with an HQ480/40 nm excitation filter and an HQ535/50 nm 

emission filter, and through Chroma filter set 41002 (Chroma Technology Corp.), with an 

HQ535/50 nm excitation filter and an HQ610/75 nm emission filter.  Images were 

acquired using Metamorph software (Universal Imaging, Downingtown, PA, USA) with 

a cooled 12-bit CCD camera (Photometrics, Tucson, AZ, USA) through a 40X objective 

(0.6 numerical aperture).  To determine transfection efficiency, the number of transfected 

and non-transfected neurons was counted in 10 randomly-selected fields for each culture 

dish by an observer naïve to the DNA combination.  For cell health experiments, dishes 

were fixed for 10 min in 4% paraformaldehyde / 0.2% glutaraldehyde after agonist 

treatments.  After washing 3 times in phosphate-buffered saline, transfected neurons were 

assessed for health under 40X magnification by an observer naïve to both the treatment 

conditions and the DNA combination.   

 

Data analysis: 

For all electrophysiological experiments, data were analyzed using Clampfit 9.2 

(Molecular Devices) and Excel (Microsoft, Redmond, WA, USA) software.  Graphs and 

traces were plotted using SigmaPlot software (SPSS Science, Chicago, IL, USA).  

Transfection efficiency was calculated by averaging the percentage of transfected 

neurons in each dish.  This percentage was determined by dividing the number of 

transfected neurons by the total number of neurons counted in 10 fields and multiplying 

by 100.  For Figures 1 and 3, an action potential was counted if there was a 1-10 pA 

transient and primarily negative current deflection above noise lasting ≥ 1 ms.  Except for 

electrically-evoked currents elicited in autaptic neurons in microisland culture, current 
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amplitudes were measured by averaging ~500 ms of baseline and subtracting this from 

the average of ~500 ms around the peak and/or steady state amplitude.  For Figure 4, the 

current ratio is measured by dividing the agonist-induced current amplitude by the KCl-

induced current amplitude.  For Figure 6, the baseline leak amplitude was subtracted 

from the peak amplitude for at least 3 traces from each cell and averaged.  For autaptic 

experiments, cells with leak currents > 300 pA were excluded from analysis.  To 

determine the percentage of healthy transfected neurons after agonist treatment, the 

number of healthy neurons was divided by the total number of transfected neurons 

counted in a particular culture dish and multiplied by 100.  Miniature postsynaptic current 

frequency was calculated from 10 s of recording using MiniAnalysis software 

(Synaptosoft, Decatur, GA, USA).  Baseline frequency was measured before application 

of agonist while the frequency in agonist was measured beginning ~1 s after application 

onset.  The percentage of baseline frequency was calculated by dividing the frequency in 

agonist by the frequency at baseline and multiplying by 100.  Data are presented in the 

text and figures as mean ± SEM unless otherwise stated.  Student’s unpaired t test, 

ANOVA, post hoc Tukey honestly significant difference test for multiple comparisons, 

Tukey-Kramer method for unequal sample sizes, binomial test, and Fisher’s exact test 

were used to determine statistical significance where described in the text.  A p-value of 

less than 0.05 was required for significance. 

 

Materials: 

Alexa Fluor 568 was purchased from Invitrogen.  Synaptophysin-YFP and 

TRPV1 constructs were graciously provided by Dr. Ann Marie Craig (University of 
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British Columbia) and Dr. David Julius (University of California San Francisco), 

respectively.  TRPM8 has been used previously (Macpherson et al., 2006; Cruz-Orengo 

et al., 2008).  The calcium-free culture medium used for toxicity experiments was made 

by the Tissue Culture Support Center at Washington University by excluding 1.8 mM 

calcium chloride from Neurobasal medium recipe (Brewer et al., 1993).  Unless 

otherwise stated, all other chemicals and reagents were purchased from Sigma (St. Louis, 

MO, USA).  When DMSO concentration in experimental solutions was > 0.1% after 

addition of reagents from DMSO stock solutions, control and experimental conditions 

were matched for final DMSO concentration. 

 



52 
 

Results 

 

TRPV1 transfection: 

We transfected neurons in our primary mass hippocampal cultures with 

heterologous ligand-gated ion channels to spatially and temporally control neuronal 

depolarization.  We co-transfected a yellow fluorescent protein-tagged synaptophysin 

construct (Syn-YFP), which served as a marker for somata and presynaptic terminals in 

transfected neurons (Fig 1A, 3A).  We first co-expressed the ligand-gated, nonselective 

cation channel TRPV1 (Fig 1A, B).  Whole-cell currents (see Fig 1E, F) from YFP-

positive and YFP-negative neurons in cultures co-transfected with TRPV1 showed that, 

at a 1:4 Syn-YFP:TRPV1 DNA ratio, no neurons expressed one construct without the 

other (N = 38 transfected and 19 non-transfected neurons).  Assessed by YFP 

fluorescence, transfection efficiency was 1.1 ± 0.3% (N = 3 dishes).   

To determine whether current amplitudes generated by TRPV1 were sufficiently 

large to cause action potentials in transfected cells, we performed cell-attached patch 

recordings from neurons.  Cell-attached patch methods were used in order to prevent cell 

rupture, which would cause cytosolic mixing with internal patch pipette solution and, 

therefore, potentially alter the intracellular milieu and neuronal responses to 

environmental manipulation.  Application of a saturating concentration (500 nM) of the 

TRPV1 agonist capsaicin (Caterina et al., 1997; Tominaga et al., 1998), which was 

chosen in order to maximize neuronal depolarization and potential secondary effects of 

channel activation, induced a pattern of 1-9 action potentials in TRPV1-expressing 

neurons but no action potentials in non-transfected neurons (Fig 1C, D; N = 15  
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Figure 1. TRPV1-transfected neurons respond strongly to the agonist capsaicin. A. 
Fluorescence image of a neuron in mass culture transfected with synaptophysin-YFP 
(Syn-YFP) and TRPV1. Scale bar denotes 100 μm. B. Phase contrast image of the same 
field as A. C. Example of a Syn-YFP/TRPV1-transfected neuron recorded in cell-
attached patch configuration in voltage-clamp mode during 5 s 500 nM capsaicin 
application (top trace) or 5 s 30 mM KCl application (bottom trace). Note that action 
potentials could be elicited by both treatments in the same cell. The suboptimal seal, 
evident in the slow current excursions, was characteristic of nearly all TRPV1-transfected 
neurons. D. Example of a non-transfected neuron recorded under the same conditions as 
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C. Note that action potentials were only elicited during KCl application. E. Example of a 
Syn-YFP/TRPV1-transfected neuron recorded in whole-cell voltage-clamp mode during 
10 s acute 500 nM capsaicin or 30 mM KCl application. TRPV1-transfected neurons 
responded with robust currents to both capsaicin and KCl application. F. Example of a 
non-transfected neuron recorded under the same conditions as E. Non-transfected 
neurons never responded to capsaicin but always responded with robust KCl-induced 
currents.  
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transfected and 5 non-transfected neurons).  From the same cells, 30 mM KCl application 

caused 1-6 action potentials in both transfected and non-transfected neurons (Fig 1C, D; 

N = 19 neurons).  Hippocampal neurons are capable of sustaining action potential firing 

for periods of at least as long as our 5 s agonist application shown in Figure 1C, but 

spiking typically ceased soon after the start of capsaicin application.  This may result 

from small or rapidly desensitizing capsaicin-induced currents or from very large currents 

that cause strong inactivation of the sodium channels necessary for spiking.  This latter 

explanation almost certainly applied to the effects of KCl, a strong depolarizing stimulus 

(Hodgkin, 1947; Hodgkin and Horowicz, 1959; Moulder et al., 2006).   

To determine if rapid desensitization of capsaicin-induced current is responsible 

for abbreviated spiking in response to capsaicin, we examined capsaicin- and KCl-

elicited currents in voltage-clamped neurons.  YFP-positive neurons, unlike non-

transfected neurons (5.3 ± 4.4 pA; N = 4), reliably responded to the TRPV1 agonist 

capsaicin with robust (-1385.7 ± 574.8 pA; N = 6) currents measured via whole-cell 

voltage clamp (Fig 1E, F).  As a comparison, we examined the response to current 

induced by 30 mM KCl application, which is known to clamp the membrane potential at 

steady state near -20 mV (Moulder et al., 2006).  Non-transfected neurons responded with 

a KCl-induced current amplitude of -159.5 ± 62.3 pA (N = 4) while transfected neurons 

responded with a similar amplitude of -204.0 ± 30.8 pA (N = 6).  The capsaicin current 

desensitized but remained large during the application period, suggesting that rapid 

desensitization of capsaicin-induced current is not likely to be responsible for the 

abbreviated spiking observed in cell-attached patch experiments.  The robust sustained 

current in capsaicin, however, does implicate voltage-gated sodium channel inactivation 
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or other voltage-dependent processes as a possible explanation.  We conclude that 

currents elicited by capsaicin in transfected neurons are similar to or larger on average 

than those elicited by KCl and, therefore, that 500 nM capsaicin elicits a strong yet 

selective depolarization in TRPV1-transfected neurons.   

These observations were confirmed by neuronal responses to exogenous 

compounds recorded in whole-cell current-clamp, where transfected neurons produced a 

burst of 4-6 action potentials in response to 5 s 500 nM capsaicin and depolarized to a 

steady state of -4.0 ± 1.7 mV (N = 5) while non-transfected neurons did not respond to 

capsaicin (N = 5; Fig S1A, B; Text S1).  Both transfected and non-transfected neurons 

produced a burst of 0 (in 1/10 cells) to 9 action potentials in response to 5 s 30 mM KCl 

while the membrane potential depolarized to a non-steady state value of -33.9 ± 3.4 mV 

during application.  These results support the conclusion that acute application of 

capsaicin to transfected neurons can meet or exceed the strength of depolarization 

achieved by a calibrating KCl stimulation. 

We noticed that TRPV1-transfected neurons tended to have larger basal holding 

currents (-177.7 ± 60.9 pA; N = 30) than control neurons (-51.1 ± 10.0 pA; N = 32; 

Student’s unpaired t test, p < 0.05) when voltage-clamped at -70 mV.  We wondered 

whether this observation could reflect non-ligand-gated channel opening of TRPV1.  We 

tested this explicitly by applying the non-competitive TRPV1 antagonist ruthenium red 

(10 µM), which blocked 91.8 ± 5.3% of the capsaicin-gated current in our TRPV1-

transfected (500 nM capsaicin; N = 11) but caused no effect in non-transfected (N = 8) 

neurons (Fig 2A).  When we applied 10 µM ruthenium red to agonist-naïve, TRPV1-

transfected neurons at the holding potential of -70 mV, we noticed that ruthenium red  
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Figure 2. Capsaicin-induced and capsaicin-independent currents are blocked by 
ruthenium red in TRPV1-transfected neurons. A. Examples of  TRPV1-transfected 
(left panel) and non-transfected (right panel) neurons exposed to acute application of 500 
nM capsaicin for 15 s with 10 µM ruthenium red added during the last 5 s. TRPV1-
transfected neurons, but not non-transfected neurons, respond to capsaicin with a robust 
current that is blocked by ruthenium red. B. Examples of TRPV1-transfected (left panel) 
and non-transfected (right panel) neurons exposed to acute application of 10 µM 
ruthenium red in the absence of capsaicin. Leaky (more than -200 pA standing inward 
current) TRPV1-transfected neurons reliably responded to ruthenium red while non-leaky 
TRPV1-transfected neurons and non-transfected neurons did not. 
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blocked standing inward current, especially in the leakiest (> -200 pA) TRPV1-

transfected cells (Fig 2B).  Ruthenium red blocked 12.3 ± 3.1% (N = 15) of standing 

inward current in TRPV1-transfected neurons while not affecting non-transfected 

neurons (1.5 ± 1.8%; N = 9; Student’s unpaired t test, p < 0.05).  This suggests that at 

least some TRPV1-transfected neurons exhibit capsaicin-independent channel openings, 

even in defined recording media, which could be detrimental to the goal of controlling 

TRPV1-mediated depolarization.  

 

TRPM8 transfection: 

We also transfected cultured hippocampal neurons with the ligand-gated 

nonselective cation channel TRPM8 (Fig 3A, B).  At a 1:3 Syn-YFP:TRPM8 DNA ratio, 

we confirmed that transfected neurons responded to acute application of the TRPM8 

agonist menthol at a saturating concentration (100 μM; N = 38) (McKemy et al., 2002; 

Liu and Qin, 2005), once again chosen to maximize effects of channel activation, while 

non-transfected cells did not respond (N = 10).  Similar to the experiments above with 

TRPV1, transfection efficiency was 1.2 ± 0.4% as assessed by YFP fluorescence (N = 3 

dishes).   

YFP-positive neurons recorded in the cell-attached patch configuration responded 

with a pattern of 1-7 action potentials during 100 μM menthol application, as they did 

during KCl application (Fig 3C; N = 13 transfected neurons).  These action potential 

responses were similar to those seen in TRPV1-transfected neurons (Fig 1C), and non-

transfected neurons responded to KCl with 1-8 action potentials but did not respond to 

menthol (Fig 3D; N = 26 non-transfected neurons).  When we applied these exogenous  
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Figure 3. Menthol induces large depolarizing currents in TRPM8-transfected 
neurons. A. Fluorescence image of a neuron in mass culture transfected with 
synaptophysin-YFP (Syn-YFP) and TRPM8. Scale bar denotes 50 μm. B. Phase contrast 
image of the same field as A. C. Example of a Syn-YFP/TRPM8-transfected neuron 
recorded in cell-attached patch configuration in voltage-clamp mode during 5 s 100 μM 
menthol application (top trace) or 5 s 30 mM KCl application (bottom trace). Note that 
action potentials were elicited by both treatments in the same cell. D. Example of a non-
transfected neuron recorded under the same conditions as C. Note that action potentials 
were only elicited during KCl application. E. Example of a Syn-YFP/TRPM8-transfected 
neuron recorded in whole-cell voltage-clamp during 10 s acute 100 μM menthol or 30 
mM KCl application. TRPM8-transfected neurons responded with robust currents to both 
menthol and KCl application. F. Example of a non-transfected neuron recorded under the 
same conditions as E. Non-transfected neurons did not respond to menthol but always 
responded with robust currents to KCl at the holding potential of -70 mV. G. A non-
transfected neuron recorded in whole-cell voltage clamp held at 0 mV during 15 s acute 
application of 100 μM menthol with 100 μM picrotoxin added during the last 5 s. Note 
that picrotoxin decreased the current gated by menthol. 
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compounds while recording from TRPM8-transfected neurons in current-clamp, we again 

observed bursts of 1-6 action potentials and a steady state membrane potential of -13.1 ± 

6.2 mV elicited by 5 s 100 µM menthol application (N = 6; Fig S1C; Text S1).  Non-

transfected neurons did not respond to menthol application (N = 5; Fig S1D).  In these 

experiments, 30 mM KCl consistently elicited 1-3 action potentials in all cells and a 

membrane potential after 5 s, though not yet at steady state, of -37.1 ± 1.9 mV.  TRPM8-

transfected neurons exhibited large inward currents measured in voltage-clamp during 

acute menthol application (-396.4 ± 69.6 pA; N = 28) while YFP-negative neurons did 

not respond with inward current (23.9 ± 20.1 pA; N = 10) at -70 mV (Fig 3E, F).  As seen 

with TRPV1-transfected neurons, these menthol-induced currents in TRPM8-transfected 

neurons were similar to or larger than currents induced by 30 mM KCl (-153.4 ± 27.8 pA; 

N = 8 transfected neurons; -326.6 ±96.2 pA; N = 10 non-transfected neurons).  We 

conclude that both TRPV1 and TRPM8 generate sufficiently large currents in transfected 

hippocampal neurons to cause strong, sustained (for several seconds) depolarization with 

acute agonist application, equivalent to or larger than the effects of 30 mM KCl 

application.  

Standing inward current in TRPM8-transfected neurons (-44.7 ± 16.9 pA; N = 32) 

was not significantly different from non-transfected cells (-57.2 ± 36.5 pA; N = 8), 

suggesting that TRPM8 does not suffer from the same non-ligand-gated channel opening 

as TRPV1.  However, in some non-transfected cells held at 0 mV, we observed a small 

sustained outward current in the presence of 100 μM menthol (13.1 ± 1.3 pA; Fig 3G; N 

= 8).  This current was observed even in the presence of 0.5 μM TTX and changed 

direction appropriately with alterations in the chloride gradient (Fig S2; Text S1).  This 
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latter result excludes the possibility that the current is mediated by endogenous TRPM8 

in non-transfected neurons, and no published evidence currently indicates endogenous 

TRPM8 expression in rodent hippocampus.  A previous report suggests, however, that 

menthol can directly gate GABAA receptor-mediated chloride currents in hippocampal 

neurons (Zhang et al., 2008).  Picrotoxin (100 μM), a noncompetitive GABAA receptor 

antagonist, reduced the outward current in non-transfected neurons by 85.4 ± 12.9% (Fig 

3G; N = 8 neurons).  Therefore, these data provide evidence that menthol may weakly 

gate endogenous GABAA receptors in cultured neurons. 

 

Prolonged channel activation: 

To control neuronal activity and evaluate the effects on development, synaptic 

function, or network activity, it may be desirable to depolarize neurons for long periods 

of time.  For this reason, we activated TRPV1 and TRPM8 in cultured neurons for 4 hr to 

determine if depolarization was sustained throughout the period of agonist exposure.  We 

chose to activate these channels for hours, instead of a shorter time period, to account for 

slow forms of channel desensitization or inactivation that may be induced (i.e. by cellular 

adaptation).  These slower changes may be important considerations for studies using 

heterologous channels in vivo or for studies of neuronal circuit activity that utilize 

changes in activity of subsets of neurons for long periods.  To activate TRPV1, we added 

500 nM capsaicin to the culture media in the presence of D-APV (25 µM) and NBQX (1 

µM) while the neurons remained at 37 oC in an atmospherically-controlled incubator.  

Similarly, TRPM8-transfected cultures were exposed to 100 μM menthol under the same 

conditions.   
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At the end of incubation, neurons were recorded in the continued presence of 

agonist, and agonist-induced currents were determined by removing the agonist with a 

fresh saline wash and measuring the change in current amplitude.  This amplitude was 

then compared to the current amplitude of an acute application of 30 mM KCl in the 

same cell (Fig 4A, B).  Compared to brief (0-30 min) application of agonist, normalized 

current amplitudes for both TRPV1- and TRPM8-transfected neurons were significantly 

decreased after 4 hr application of their respective agonists (Fig 4C, D).  The ratio of 

capsaicin current to KCl current in TRPV1-transfected neurons decreased from 3.04 ± 

0.73 (N = 32 neurons treated acutely with capsaicin) to 0.32 ± 0.08 (N = 11 neurons 

treated 4 hr with capsaicin; Student’s unpaired t test, p < 0.05).  The ratio of menthol 

current to KCl current in TRPM8-transfected neurons decreased from 8.28 ± 3.24 (N = 7 

neurons treated acutely with menthol) to 1.56 ± 0.40 (N = 10 neurons treated 4 hr with 

menthol; Student’s unpaired t test, p < 0.05).   The inward current present after 4 hr, 

however, was still comparable to the current induced by acute 30 mM KCl.  In both acute 

and prolonged protocols, the average KCl-normalized menthol current in TRPM8-

transfected neurons trended toward being larger than the corresponding normalized 

capsaicin current in TRPV1-transfected cells.  In summary prolonged agonist application 

produced sustained, effective depolarization for both channels, although the amplitude 

was reduced with time. 

 The smaller average agonist-gated current after prolonged exposure probably 

results partly from receptor desensitization.  However, it is also possible that strong, 

prolonged channel activation is toxic to neurons, and the smaller average currents arise as 

a result of selective survival of cells with weaker channel expression and smaller  
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Figure 4. Agonist-induced currents in both TRPV1- and TRPM8-transfected 
neurons are decreased after prolonged exposure. A. Examples of TRPV1-transfected 
neurons exposed to bath application of 500 nM capsaicin, 25 µM D-APV, and 1 µM 
NBQX acutely (top panel) or for 4 hr (bottom panel) prior to recording in whole-cell 
voltage clamp.  Capsaicin was retained in the bath recording solution.  After the whole-
cell recording was established, capsaicin was briefly removed by perfusing fresh 
recording saline for 10 s before 5 s application of 30 mM KCl. B. Examples of TRPM8-
transfected neurons exposed to bath application of 100 μM menthol, 25 µM D-APV, and 
1 µM NBQX acutely (top panel) or for 4 hr (bottom panel) prior to recording in whole-
cell voltage clamp.  Similar to A, menthol was added to the bath recording solution.  
Menthol was removed by perfusing fresh, menthol-free recording saline for 10 s before 5 
s application of 30 mM KCl. C. The average ratio of capsaicin current amplitude to KCl 
current amplitude was calculated for acute and 4 hr applications of capsaicin. Error bars 
represent SEM.  The ratio of capsaicin to KCl current is significantly decreased after 4 hr 
capsaicin exposure (Student’s unpaired t test, p < 0.05). D. Similar to C except the ratio 
of menthol to KCl currents in TRPM8-transfected neurons is depicted. Error bars 
represent SEM, and the menthol to KCl current ratio is significantly decreased after 4 hr 
exposure to menthol (Student’s unpaired t test, p < 0.05). 
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resulted in many unsuccessful electrophysiological recordings of cells with abnormally 

swollen morphology.  To determine more systematically whether prolonged channel 

activation affects neuronal health, mass cultures were transfected with Syn-YFP control 

DNA with or without TRPV1 or TRPM8.  Neurons were assigned a binary (“healthy” or 

“unhealthy”) survival designation by a naïve observer using cell appearance under phase 

contrast optics.  Healthy neurons had a phase-bright soma and thin neurites.  Unhealthy 

neurons had distorted or swollen somata and neurites (Fig 5A).  In some cases, 

classification was verified by patch-clamp recordings; membrane seals were never 

possible on neurons designated unhealthy.   

Neurons were assessed for health after 4 hr of channel activation using the same 

treatment protocol as the electrophysiology experiments in Figure 4.  It is possible that 

transfection alone caused some baseline toxicity; however, after 4 hr of capsaicin 

exposure, the percentage of healthy TRPV1-transfected neurons was significantly 

decreased from control cultures transfected with only Syn-YFP (Fig 5B; ANOVA, p < 

0.01; post hoc Tukey honestly significant difference test, p < 0.05; N = 5 dishes per 

condition with each dish representing 19.9 ± 1.3 transfected neurons).  In contrast, a 4 hr 

menthol challenge to TRPM8-transfected neurons caused no significant change in the 

percentage of healthy neurons relative to sibling cultures transfected with Syn-YFP (Fig 

5C; N = 5 dishes per condition with each dish representing 22.3 ± 2.4 transfected 

neurons).  

Calcium influx may differ between transfected neurons due to differences in 

TRPV1 and TRPM8 calcium permeability (Caterina et al., 1997; McKemy et al., 2002).   
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Figure 5. Agonist-induced toxicity in transfected neurons. A. An example TRPV1-
transfected neuron designated “unhealthy” (arrow) in the same field as a “healthy” non-
transfected neuron (arrowhead). Syn-YFP fluorescence (left panel) and phase contrast 
(right panel) images are shown. Note the swollen cell body of the unhealthy cell. Scale 
bar represents 30 μm. B. Transfected neurons treated 4 hr with 500 nM capsaicin, 25 μM 
D-APV, and 1 μM NBQX in culture media with (2 mM) or without (0 mM plus 500 µM 
EGTA) calcium were assessed as “healthy” or “unhealthy” by a naïve observer.  
Significantly fewer TRPV1-transfected neurons treated in calcium were healthy than 
either YFP-transfected neurons treated in calcium or TRPV1-transfected neurons treated 
without calcium (ANOVA, p < 0.01; post hoc Tukey test, p < 0.05). C. Transfected 
neurons treated 4 hr with 100 μM menthol, 25 μM D-APV, and 1 μM NBQX in culture 
media with or without calcium were assessed as “healthy” or “unhealthy” as in B. There 
was no significant change in health of TRPM8-transfected neurons compared to YFP-
transfected neurons regardless of whether or not they were exposed to extracellular 
calcium. Error bars represent SEM. 
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Because calcium influx is known to contribute to some forms of cellular toxicity (Choi, 

1987; Stout et al., 1998; Mattson et al., 2000), we wished to determine if toxicity in 

TRPV1-transfected neurons after prolonged channel activation was due to calcium influx.  

We assayed toxicity after 4 hr of agonist exposure in calcium-free extracellular media 

supplemented with 500 μM of the calcium chelator ethylene glycol-bis (β-aminoethyl 

ether)-N, N, N ′, N ′-tetraacetic acid (EGTA).  Calcium-free media protected TRPV1-

expressing neurons exposed to 500 nM capsaicin compared to those in calcium-

containing media (Fig 5B); neurons exposed to capsaicin in calcium-free media appeared 

similar to control neurons not expressing TRPV1.  Survival of TRPM8-expressing 

neurons exposed to 100 μM menthol in calcium-free media did not differ from either 

Syn-YFP-transfected controls or from TRPM8-transfected neurons treated in calcium-

containing media (Fig 5C).  This suggests that calcium influx during TRPV1 activation, 

but not during TRPM8 activation, is toxic to neurons. 

 

Effects of channel expression on synaptic transmission: 

For the utility of heterologous channels to be realized, it is important to ensure 

that channel introduction alone does not alter endogenous neuronal function outside of 

intended experimental manipulations.  To determine if expression of heterologous ion 

channels alters synaptic properties of cultured hippocampal neurons, we transfected 

neurons in microisland culture with TRPV1 or TRPM8.  Microisland cultures, unlike 

mass cultures, contain isolated “islands” of astrocytes with neurons plated on top (Fig 

6A).  Measuring the autaptic responses of single neurons that synapse only onto 

themselves is a useful method for studying synaptic efficacy in the absence of  
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Figure 6. TRPV1 transfection, but not TRPM8 transfection, alters synaptic 
transmission. A. Fluorescence (left panel) and phase contrast (right panel) images of a 
single-neuron (autaptic) island in microisland culture transfected with synaptophysin-
YFP (Syn-YFP). Scale bar denotes 50 μM. B. Representative examples of excitatory 
postsynaptic currents (EPSCs) evoked in transfected autaptic neurons 1 day after 
transfection. Stimulus artifact has been blanked in each trace for clarity. Note that 
TRPV1-transfected neurons produced EPSCs with smaller amplitudes than TRPM8-
transfected neurons or Syn-YFP-transfected controls. C. Quantification of average PSC 
amplitudes for transfected autaptic neurons. Error bars represent SEM. TRPV1-
transfected neurons produced significantly smaller evoked PSCs than Syn-YFP-
transfected or TRPM8-transfected neurons (ANOVA, p < 0.01; Tukey-Kramer method, p 
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< 0.01). D. Percentage of transfected autaptic neurons that did not respond to electrical 
stimulation with a detectable PSC. When non-responders were analyzed as “failures” 
from a binomial distribution, the percentage of TRPV1-transfected neurons that 
successfully responded to stimulation was significantly decreased from YFP-transfected 
controls (binomial test, p < 0.01). Error bars represent SEM based on the binomial 
distribution. 
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polysynaptic complications (Mennerick et al., 1995).  Only a minority of island cultures 

contains a solitary autaptic cell.  Because of this low percentage, combined with low 

transfection efficiency, we pooled synaptic responses from glutamatergic and 

GABAergic cells.  We used KCl internal pipette solution to create a driving force of 

approximately 70 mV for both excitatory postsynaptic currents (EPSCs) and inhibitory 

postsynaptic currents (IPSCs) at the holding potential of -70 mV.   

TRPV1-transfected autaptic neurons exhibited action potential-evoked autaptic 

PSC amplitudes (-790.9 ± 228.3 pA; N = 9) that were significantly decreased from Syn-

YFP-transfected controls (-3870.9 ± 444.1 pA; N = 28; Fig 6B, C; ANOVA, p < 0.01; 

Tukey-Kramer method, p < 0.01).  TRPM8-transfected autaptic neurons, however, 

exhibited PSC amplitudes of -3590.8 ± 557.3 pA (N = 17), which were comparable to 

Syn-YFP-transfected controls (Fig 6B, C).  In addition to smaller amplitudes of evoked 

PSCs, we observed that more cells in TRPV1-transfected cultures exhibited no PSC in 

response to action potential stimulation.  In autaptic neurons, 50% of TRPV1-transfected 

neurons failed to produce a response, which was significantly more than Syn-YFP-

transfected controls (21%; Fig 6D; binomial test, p < 0.01; N = 18 TRPV1-transfected 

and 33 Syn-YFP-transfected autaptic neurons recorded in microisland culture).  With a 

failure rate of 11%, TRPM8-transfected neurons were not significantly different from 

controls (N = 19 TRPM8-transfected neurons).  This phenomenon appears to be an 

extension of the observation of smaller evoked PSCs in TRPV1-transfected neurons.  In 

summary TRPV1 transfection, in the absence of added ligand, depressed evoked synaptic 

transmission in autaptic hippocampal neurons whereas TRPM8 transfection had no 

effect. 



71 
 

One possible reason that TRPM8 does not interfere with synaptic transmission is 

that neurons may not express the channel at synaptic sites.  TRPM8 seems targeted 

robustly to the somatodendritic compartment as evidenced by currents recorded from the 

soma (Fig 3E).  Whether the channel is targeted to presynaptic terminals is less clear.  If 

it is, axon terminal expression of TRPM8 could also be useful for probing functional 

connections between neurons of disparate brain regions.  We used a functional test of 

presynaptic TRPM8 expression by investigating if TRPM8 drives synaptic 

neurotransmitter release independent of action potential propagation.  We recorded from 

non-transfected target cells apposed to Syn-YFP-positive puncta (Fig 7A).  We applied 

100 μM menthol to neurons in the presence of 0.5 µM TTX to block action potential-

driven transmitter release.  If agonist-induced miniature EPSCs (mEPSCs) were not 

observed at a holding potential of -70 mV when using a cesium methanesulfonate internal 

pipette solution, then the holding potential was switched to 0 mV to record miniature 

IPSCs (mIPSCs).  Baseline mPSC frequency, which presumably arose from mEPSCs and 

mIPSCs from both transfected and non-transfected presynaptic terminals, was highly 

variable in postsynaptic targets of both TRPM8-transfected (0.1-119.8 Hz) and control 

(0.4-108.0 Hz) neurons.  Therefore, we expressed the changes in frequency that occurred 

during menthol application as a percentage of baseline frequency.  Acute menthol 

application to TRPM8-transfected neurons (N = 26) increased mPSC frequency in the 

postsynaptic cell to 1090.4 ± 532.1% of baseline frequency from before menthol 

application.  This was significantly increased from non-transfected neurons or neurons 

transfected with only Syn-YFP (N = 13), which produced a mPSC frequency in menthol 

of 104.1 ± 6.3% of baseline frequency (Fig 7B, C; Fisher’s exact test, p < 0.005).  We 
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conclude that it possible to depolarize presynaptic terminals directly with menthol, which 

suggests that functional TRPM8 protein is expressed on or very near axon terminals.   

Since synaptic transmission is depressed in TRPV1-transfected neurons (Fig 6), 

we tested whether TRPV1 is expressed near synaptic sites and whether presynaptic 

release is hindered.  The baseline mPSC frequency, like with TRPM8 transfection, varied 

greatly in the postsynaptic targets of control (0.5-93.2 Hz) and, less so, TRPV1-

transfected (1.0-35.1 Hz) neurons, although the mean baseline mPSC frequency (9.5 ± 

7.1 Hz and 15.3 ± 5.2 Hz, respectively) did not differ significantly.  When 500 nM 

capsaicin was applied to Syn-YFP-positive puncta of TRPV1-transfected neurons 

apposed to non-transfected neurons in the presence of 0.5 µM TTX, the mPSC frequency 

increased to 1016.8 ± 323.2% of baseline frequency (N = 7; Fig 7D).  This significantly 

differed from control neurons not in contact with transfected neurons (N = 9), for which 

capsaicin induced a mPSC frequency of only 121.3 ± 34.7% of baseline frequency (Fig 

7D; Fisher’s exact test, p < 0.01).  Like with TRPM8-transfected neurons, this suggests 

that functional TRPV1 protein is expressed on or very near axon terminals. 
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Figure 7. Agonist treatment in 0.5 μM tetrodotoxin (TTX) increases presynaptic 
transmitter release in transfected neurons. A. Fluorescence image of a TRPM8-
transfected neuron (green) forming presumed presynaptic contacts onto a 
postsynaptically-recorded cell (red) filled with Alexa Fluor 568, which was included in 
the recording pipette. Scale bar denotes 50 μM. B. Example of miniature excitatory 
postsynaptic currents (mEPSCs) recorded from non-transfected postsynaptic partners of 
TRPM8-transfected neurons (bottom panel) or from non-transfected neurons not in 
contact with transfected neurons (top panel) in 0.5 μM TTX.  During 100 μM menthol 
application, mEPSC and mIPSC frequency increased in neurons postsynaptic to TRPM8-
transfected neurons but not in control neurons. C. Quantification of the mPSC frequency 
during 100 μM menthol application compared to the baseline frequency (dashed line). 
Error bars represent SEM. In neurons postsynaptic to TRPM8-transfected neurons, but 
not in control neurons, the mPSC frequency increased significantly in menthol (Fisher’s 
exact test, p < 0.005). D. Quantification of the mPSC frequency during 500 nM capsaicin 
application compared to baseline frequency (dashed line) in neurons postsynaptic to 
TRPV1-transfected neurons or to control neurons. Error bars represent SEM. In neurons 
postsynaptic to TRPV1-transfected neurons, but not to non-transfected neurons, the 
mPSC frequency in capsaicin increased significantly (Fisher’s exact test, p < 0.01). 
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Discussion 

In this study we compared transfection of cultured hippocampal neurons with 

TRPV1 or TRPM8 nonselective cation channels, which both allow specific activation of 

a small subset of neurons within the neuronal network (Fig 1, 3).  Although TRPM8 

activation mediates similar current densities to TRPV1 (Fig 4), TRPV1 has larger 

secondary effects on cell function, including interference with endogenous synaptic 

transmission in the absence of exogenous agonist stimulation (Fig 6) and overt calcium-

dependent toxicity with agonist exposure (Fig 5).  Our results highlight substantial 

differences between two related channels and suggest that care is needed in investigating 

secondary effects of heterologous channels before employing them as tools. 

Our observations suggest that transfection of TRPV1 alone, in the absence of 

capsaicin stimulation, has important effects on neuronal function.  Although we did not 

detect overt cell loss or swelling of capsaicin-naïve TRPV1-transfected cells in estimates 

of transfection efficiency 24 hr following transfection, cell-attached patch recordings 

from TRPV1-transfected cells exhibited markedly more seal instability (Fig 1C) and 

spontaneous rupture compared with TRPM8-transfected cells (Fig 3C).  In addition, 

evidence suggests that at least some TRPV1 channels are activated in the absence of 

exogenous capsaicin application (Fig 2).  Seal instability could represent an early sign of 

toxicity from low-probability non-ligand-gated channel openings and/or from low-level 

presence of endogenous activators in the culture medium (e.g. pH, lipid compounds, or 

heat) in the absence of capsaicin (Tominaga and Tominaga, 2005).  Since the effects of 

TRP channel agonists are enhanced at more depolarized membrane potentials (Voets et 

al., 2004), it is possible that spontaneous activity may shift the heat sensitivity of TRPV1 
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enough to cause a persistent leak current while in the incubator.  However, this cannot 

explain the persistent current measured electrophysiologically (Fig 2) since all recordings 

were performed at room temperature.  Alternatively, TRPV1 overexpression itself (in the 

absence of channel activity) could promote these signs of compromised membrane 

integrity.  

These same explanations (low-level channel openings or channel overexpression 

itself) may account for the strong synaptic depression observed in TRPV1-transfected 

neurons in the absence of capsaicin stimulation (Fig 6).  Since these synaptic changes 

were measured in autaptic neurons, they could be presynaptic or postsynaptic.  Because 

action potential-independent transmitter release from TRPV1-tranfected presynaptic 

terminals appeared intact (Fig 7), autaptic depression may represent a postsynaptic 

change, but it is also possible that TRPV1 expression disrupts presynaptic action 

potential propagation (e.g. as a result of a leaky axonal membrane) and/or action potential 

coupling to transmitter release.  We have previously found that neuronal depolarization in 

cultured hippocampal neurons leads to a homeostatic decrease in EPSC amplitude and 

mEPSC frequency (Moulder et al., 2004).  It is possible that low-level TRPV1 channel 

openings induce a similar phenomenon, although we might have expected stronger 

evidence of reduced mPSC frequency from TRPV1-transfected neurons (Fig 7).  One 

possibility is that contributions from non-transfected presynaptic cells reduced the 

sensitivity of this experiment to detect synaptic depression.  The autaptic experiments did 

not suffer this limitation.  Regardless of the mechanism, this autaptic depression in the 

absence of added exogenous agonist is a poorly controlled, unintended consequence of 

TRPV1 overexpression and represents a major disadvantage of heterologous TRPV1 
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expression.   

Prolonged capsaicin-induced TRPV1 activation led to increased overt signs of cell 

toxicity (Fig 5B).  This again contrasted with TRPM8-transfected cells (Fig 5C) despite 

similar normalized depolarizing currents (Fig 4).  By activating TRPV1 in the absence of 

extracellular calcium, we determined that the toxicity most likely results from calcium 

influx into the cell (Fig 5B).  Since ionotropic glutamate receptor blockers were present 

during these experiments, toxicity cannot be attributed to calcium influx through NMDA 

receptors via indirect increases in network excitability.  Thus, the high calcium 

permeability of the TRPV1 channel relative to TRPM8 (Caterina et al., 1997; McKemy et 

al., 2002) is likely a strong contributor to toxicity.  These results are akin to higher 

toxicity of calcium-permeable NMDA receptor activation relative to AMPA receptor 

activation (Choi, 1987; Iino et al., 1990; Goldberg and Choi, 1993; Spruston et al., 1995).  

It is possible that activation-dependent pore dilation, which occurs in TRPV1 (Meyers et 

al., 2003; Chung et al., 2008) but not TRPM8 (Chen et al., 2009), also participates in the 

stronger toxicity induced by capsaicin treatment.  Using saturating concentrations of 

agonists for these treatments may have exacerbated toxicity, so it is possible that lower 

concentrations could be titered to produce significant depolarizations without concurrent 

toxicity or other secondary effects. 

Together, the experiments in this study suggest serious disadvantages of TRPV1 

overexpression.  To complicate matters, recent evidence also suggests that functional 

TRPV1 is expressed endogenously in the central nervous system (e.g. the hippocampus) 

in addition to its well-known expression in the peripheral nervous system (Toth et al., 

2005; Cristino et al., 2008; Gibson et al., 2008).  Use of heterologous channels for 
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selective stimulation obviously requires the demonstrated absence of contributions from 

endogenous channels.  In our experiments, we never observed capsaicin-induced effects 

in non-transfected neurons (e.g. Fig 1D, 1F, 2, 7D, and S1B), suggesting that endogenous 

receptor had a negligible contribution.  This lack of detection of endogenous TRPV1 

activation may be due to differences in expression in cultured neurons or to experimental 

manipulations that, for whatever reason, did not measure the effects of endogenous 

channel activation. 

TRPM8 appears to be a much better candidate than TRPV1 for studies utilizing 

heterologous channel expression.  TRPM8 activation produced robust currents (Fig 3, 4) 

but induced less toxicity than TRPV1 (Fig 5C) and did not alter baseline synaptic 

transmission (Fig 6).  Additionally, we have demonstrated that TRPM8, like TRPV1, can 

be used to manipulate local presynaptic function.  Agonist application to transfected 

neurites in the absence of action potentials increased miniature PSC frequency in the 

postsynaptic cell (Fig 7).  This suggests that agonist application stimulates calcium entry 

into presynaptic terminals through the TRP channel and/or through local voltage-gated 

calcium channels to cause neurotransmitter release.  Using menthol as a TRPM8 agonist, 

however, has its caveats; menthol induced a small current mediated by GABAA receptors 

(Fig 3G, S2).  This current, however, was easily reduced by applying the GABAA 

antagonist picrotoxin, and other agonist choices for TRPM8 activation exist (McKemy et 

al., 2002).  We conclude that TRPM8 is superior for most purposes and has fewer caveats 

than TRPV1.   

Our study has shown how two related ligand-gated ion channels, TRPV1 and 

TRPM8, behave differently when expressed in the same neuronal preparation.  Although 
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we have shown that these channels, but especially TRPM8, are useful tools for 

controlling neuronal activity, this study also emphasizes the care needed in characterizing 

the nature of a newly introduced tool like heterologous channel expression.  In the future, 

it will be important to ensure that other heterologous channels or proteins used to 

manipulate neuronal activity behave as predicted, especially after long periods of 

activation.  Controlling neuronal activity in subsets of neurons within a network will 

facilitate studies of neuronal development, functional anatomy, synaptogenesis, and 

synaptic plasticity as well as provide a framework for studies manipulating neuronal 

populations in vivo.   
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Text S1  
 

Materials and Methods 

 

Electrophysiology: 

 Whole-cell current-clamp experiments were performed on DIV 12-13 neurons in 

mass culture 1 day after transfection with TRPV1 or TRPM8.  External recording media 

contained 138 mM NaCl, 4 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 10 mM glucose, 10 

mM HEPES, 25 µM D-APV, and 1 μM NBQX (pH = 7.25).  Internal pipette solution 

contained 140 mM K-gluconate, 4 mM NaCl, 0.5 mM CaCl2, 5 mM EGTA, and 10 mM 

HEPES at a pH of 7.25.  Recording electrode resistances of 6-9 MΩ and a 10 kHz low-

pass filter were used for these experiments.  The membrane potential of each cell was 

manually adjusted to -65 mV by injecting bias current before the start of recording. 

 For voltage-clamp experiments measuring small menthol-induced currents in non-

transfected neurons, methods from the main text were utilized except that an internal 

pipette solution of 130 mM cesium chloride, 3 mM NaCl, 0.5 mM CaCl2, 5 mM EGTA, 

and 10 mM HEPES (pH of 7.25) was used as described in addition to the solution with 

130 mM cesium methanesulfonate, 4 mM NaCl, 0.5 mM CaCl2, 5 mM EGTA, and 10 

mM HEPES (pH of 7.25).  Also, the external recording media was as described above 

except  that 0.5 μM tetrodotoxin was added.  The multi-barrel perfusion system described 

in the main text was utilized for locally applying compounds.  
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Figure S1. Agonist application to transfected neurons causes action potentials and 
strong depolarization. A. Example of a TRPV1-transfected neuron exposed to 5 s acute 
30 mM KCl (black trace) or 500 nM capsaicin (red trace).  Neurons were recorded in 
whole-cell current-clamp after adjusting the baseline membrane potential to -65 mV with 
small bias current when necessary. Although capsaicin-induced voltage changes were 
slow to return to baseline, they did so within ~20 s. B. The same as A except recording 
from a non-transfected neuron in the same culture.  C. Example of a TRPM8-transfected 
neuron exposed to 5 s acute 30 mM KCl (black trace) or 100 µM menthol (red trace).  
Neurons were recorded in current clamp after adjusting the baseline membrane potential 
to -65 mV as described in A. D. The same as C except recording from a non-transfected 
neuron in the same culture.   
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Figure S2. Menthol application to non-transfected neurons induces a current that 
changes direction with the chloride gradient. A. Example of a non-transfected neuron 
recorded in whole-cell voltage-clamp in the presence of 0.5 μM tetrodotoxin (TTX) with 
a cesium methanesulfonate internal pipette solution held at various membrane potentials 
during a local 5 s 100 μM menthol application.  Note the change in current direction with 
potentials above and below ~-60 mV. B. Example of a non-transfected neuron recorded 
in the presence of 0.5 μM TTX with a cesium chloride internal pipette solution held at 
various membrane potentials during a local 5 s 100 μM menthol application.  Note the 
change in current direction with potentials above and below ~-20 mV. These data are 
consistent with menthol gating a small GABAA receptor-mediated current in non-
transfected hippocampal neurons (see Fig 3G). 
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Chapter 3 

 

Calcium-independent inhibitory G-protein 

signaling induces persistent presynaptic muting of 

hippocampal synapses 

 

 

 

 

This chapter contains a previously published manuscript: 

Crawford DC, Chang CY, Hyrc KL, Mennerick S (2011). Calcium-independent 

inhibitory G-protein signaling induces persistent presynaptic muting of hippocampal 

synapses. J Neurosci 31(3): 979. 

 

Author contributions for the citation above: 

D.C.C. designed and performed experiments, analyzed data, and wrote the paper.  C.Y.C. 

performed electrophysiological experiments for Figure 2.  K.L.H. performed calcium 

imaging experiments for Figure 1.  S.M. designed experiments, performed experiments 

for Figure 2, analyzed data, and wrote the paper. 
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Abstract 

Adaptive forms of synaptic plasticity that reduce excitatory synaptic transmission 

in response to prolonged increases in neuronal activity may prevent runaway positive 

feedback in neuronal circuits.  In hippocampal neurons, for example, glutamatergic 

presynaptic terminals are selectively silenced, creating “mute” synapses, after periods of 

increased neuronal activity or sustained depolarization.  Previous work suggests that 

cAMP-dependent and proteasome-dependent mechanisms participate in silencing 

induction by depolarization, but upstream activators are unknown.  We, therefore, tested 

the role of calcium and G-protein signaling in silencing induction in cultured 

hippocampal neurons.  We found that silencing induction by depolarization was not 

dependent on rises in intracellular calcium, either from extracellular or intracellular 

sources.  Silencing was, however, pertussis toxin-sensitive, which suggests that inhibitory 

G-proteins are recruited.  Surprisingly, blocking four common inhibitory G-protein-

coupled receptors (GPCRs; adenosine A1 receptors, GABAB receptors, metabotropic 

glutamate receptors, and CB1 cannabinoid receptors) and one ionotropic receptor with 

metabotropic properties (kainate receptors) failed to prevent depolarization-induced 

silencing.  Activating a subset of these GPCRs (A1 and GABAB) with agonist application 

induced silencing, however, which supports the hypothesis that G-protein activation is a 

critical step in silencing.  Overall our results suggest that depolarization activates 

silencing through an atypical GPCR or through receptor-independent G-protein 

activation.  GPCR agonist-induced silencing exhibited dependence on the ubiquitin-

proteasome system, as was previously shown for depolarization-induced silencing, 

implicating the degradation of vital synaptic proteins in silencing by GPCR activation.  
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These data suggest that presynaptic muting in hippocampal neurons employs a G-protein-

dependent but calcium-independent mechanism to depress presynaptic vesicle release. 
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Introduction 

Adaptive forms of plasticity, including homeostatic synaptic plasticity, help 

maintain neuronal firing rates and prevent over-excitation, excitotoxicity, and 

information degradation caused by positive feedback inherent in glutamate signaling 

(Turrigiano, 1999; Turrigiano and Nelson, 2004; Maffei and Fontanini, 2009; Pozo and 

Goda, 2010).  We have described adaptive presynaptic silencing after increased neuronal 

activity (Moulder et al., 2004; Moulder et al., 2006).  Indeed, presynaptically silent 

(mute) synapses have been observed in several preparations, but induction and expression 

mechanisms remain unclear (Malenka and Nicoll, 1997; Voronin and Cherubini, 2004; 

Atasoy and Kavalali, 2006).   

In hippocampal neurons, depolarization-induced presynaptic silencing is induced 

rapidly by strong depolarization akin to that generated by stroke, seizure, and spreading 

depression (Gido et al., 1997; Walz, 2000; Somjen, 2001; Moulder et al., 2004).  

Physiological action potential firing induces silencing over more protracted periods 

(Moulder et al., 2006), so presynaptic muting operates over a range of physiological, and 

perhaps pathophysiological, conditions.  Adaptive presynaptic silencing is selective for 

glutamatergic terminals and is slowly reversible (Moulder et al., 2004).  Expression 

involves altered vesicle priming and requires the ubiquitin-proteasome system (Moulder 

et al., 2006; Jiang et al., 2010), but upstream induction mechanisms remain uncertain. 

Circumstantial evidence implicates calcium and cyclic adenosine monophosphate 

(cAMP) alterations in silencing induction.  Calcium is involved in many forms of 

synaptic plasticity (Malenka, 1994; Fisher et al., 1997; Turrigiano, 2008).  Prolonged 

decreases in cAMP signaling produce presynaptic silencing, and cAMP increases occlude 
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depolarization-induced silencing (Moulder et al., 2008).  Furthermore, calcium-sensitive 

adenylyl cyclase activity, which increases cAMP levels, is important for normal recovery 

from silencing (Moulder et al., 2008).  If decreased cAMP signaling is needed for 

depolarization-induced presynaptic silencing, we might expect involvement of inhibitory 

G-proteins in its induction.  Despite this evidence, double knockout mice of the two 

major calcium-sensitive isoforms of adenylyl cyclase exhibit intact depolarization-

induced silencing (Moulder et al., 2008), thereby questioning a direct role for either 

calcium or G-protein signaling.  Clarification of how adaptive presynaptic silencing is 

induced will be crucial in identifying potential targets for therapies aimed at 

excitotoxicity-related dysfunction. 

Here we explored whether calcium and inhibitory G-protein signaling are 

necessary for hippocampal adaptive presynaptic silencing.  Surprisingly, intracellular 

calcium rises are unnecessary.  However, we found that pertussis toxin, which inhibits 

Gi/o signaling, reduced depolarization-induced silencing.  Direct agonist activation of two 

classes of G-protein-coupled receptors (GPCRs) induced silencing, supporting the 

hypothesis that silencing is G-protein-dependent.  In contrast, pharmacological blockade 

of five candidate receptors, including the two that induced silencing, failed to block 

depolarization-induced silencing.  This suggests that depolarization activates an 

uncommon GPCR or a pertussis toxin-sensitive G-protein through a receptor-independent 

mechanism.  Nevertheless, depolarization- and GPCR-induced muting share downstream 

mechanisms because both are sensitive to proteasome inhibition.  Thus, adaptive 

presynaptic silencing is a unique form of calcium-independent, G-protein-dependent 

synaptic plasticity.  Furthermore, we show that prolonged G-protein activation leads to 
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persistent presynaptic silencing, an effect distinct from classical acute presynaptic GPCR 

effects on vesicle release probability.  
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Materials and Methods 

 

Cell culture: 

 Cultures of primary hippocampal neurons were prepared as previously described 

(Mennerick et al., 1995).  Briefly, hippocampi were removed from postnatal 0-3 d male 

and female Sprague Dawley rat pups and enzymatically treated with papain (1 mg/ml) 

before mechanical dissociation.  Cells were then plated in 35 mm culture dishes pre-

coated with 0.15% agarose as either mass cultures, seeded at ~650 cells/mm2 on a 

confluent layer of type I collagen (0.5 mg/ml), or as microisland cultures, seeded at ~100 

cells/mm2 on microdots of collagen.  Plating medium contained Eagle’s medium 

(Invitrogen) supplemented with 5% heat-inactivated horse serum, 5% fetal bovine serum, 

17 mM D-glucose, 400 μM glutamine, 50 U/ml penicillin, and 50 μg/ml streptomycin.  

Cultures were maintained at 37ºC in a humidified incubator under controlled atmospheric 

conditions (5% CO2/95% air).  Cytosine arabinoside (6.7 μM) was added 3-4 d after 

plating to inhibit cell division.  One half of the culture media was exchanged with 

Neurobasal medium (Invitrogen) plus B27 supplement 4-5 d after plating.  All 

experiments were performed 10-14 d in vitro, and controls consisted of sibling cultures 

from the same litter that were treated and/or recorded on the same day to control for 

synapse development and culture conditions that vary by age and plating conditions.  All 

4 hr treatments were performed in the presence of ionotropic glutamate receptor blockers 

D-(-)-2-amino-5-phosphonopentanoic acid (D-APV; 50 μM; Tocris) and 2,3-dioxo-6-

nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX; 1 μM; Tocris), and 

non-depolarized controls always consisted of equimolar NaCl addition to the media to 
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control for osmotic changes.  Controls for calcium-free Neurobasal medium (Washington 

University Medical School Tissue Culture Support Center) supplemented with B27 and 

ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) were given the 

identical medium except with 2 mM calcium and without EGTA. 

 

Electrophysiology: 

 All whole-cell voltage-clamp recordings were performed on autaptic neurons in 

microisland culture.  To control for variability in maturity and development, all 

experiments utilized similar numbers of neurons from sibling cultures on any given day.  

Data were collected with an Axopatch 200B or Multiclamp 700B amplifier interfaced to 

a Digidata 1322A or 1440A data acquisition board (Molecular Devices).   

Before recording, the culture medium was exchanged for saline solution 

containing 138 mM NaCl, 4 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 10 mM glucose, 10 

mM HEPES, and 25 µM D-APV with a pH of 7.25.  For most experiments measuring 

excitatory postsynaptic currents (EPSCs), internal pipette solution consisted of 140 mM 

K-gluconate, 4 mM NaCl, 0.5 mM CaCl2, 5 mM EGTA, and 10 mM HEPES at a pH of 

7.25.  For experiments measuring both EPSCs and inhibitory postsynaptic currents 

(IPSCs), 140 mM KCl was substituted for K-gluconate to provide a similar PSC driving 

force at the holding potential of -70 mV. 

Electrode pipettes pulled from borosilicate glass (World Precision Instruments) 

had resistances of 2.5-6 MΩ, and access resistance was compensated 85-100%.  Signals 

were sampled at 5-10 kHz and low-pass filtered at 2-5 kHz.  Recordings were performed 

at room temperature, and membrane potential was typically clamped at -70 mV.  Neurons 



95 
 

were recorded within 1 hr of exchanging the culture medium with the saline solution.  

 PSCs were evoked by a brief (1.5 ms) depolarization to 0 mV.  Paired-pulse 

responses were evoked by 2 such depolarizations with an inter-stimulus interval of 50 ms.  

Sucrose-evoked EPSCs were elicited by 3 s local application of 0.5 M sucrose.  All local 

solution applications utilized a multi-barrel perfusion system with the common perfusion 

port placed within 0.5 mm of the neuron under study and yielding solution exchange 

times of ~100 ms. 

 

Calcium imaging: 

All calcium imaging experiments utilized mass cultures.  For fura-2 experiments, 

neurons were plated on glass-bottom dishes (MatTek Corporation).  Cells were loaded 

with fura-2 by 60 min incubation with 5 μM fura-2-acetoxymethyl ester (Invitrogen) and 

0.1% Pluronic F-127 (Invitrogen) in Neurobasal medium (pH of 7.2) at room 

temperature, washed with Neurobasal medium and incubated for another 60 min to allow 

for ester hydrolysis.  After loading, the cells were imaged on an Eclipse TE300 inverted 

microscope using a 40x (1.3 numerical aperture) oil immersion objective (Nikon).  The 

microscope was equipped with a 75 W xenon arc lamp and a cooled CCD camera (Cooke 

Corp.).  The fluorescence excitation was provided by a band-specific filter (340 and 380 

nm; Semrock) in combination with DM400 dichroic beam splitter (Nikon). Pairs of 

images were collected at alternate excitation wavelengths.  The images were divided by 

one another to yield ratio values for individual cell bodies after subtracting the matching 

background.  Imaging was performed at room temperature, but cultures were returned to 

37ºC for the period between images early in the treatment and images at the end of the 4 
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hr treatment.  For this reason, the same neurons were represented at baseline and 5 min 

time points, but separate fields of neurons were used for 4 hr time points in Figure 1.  

MetaFluor software (Molecular Devices) was used for image acquisition and analysis. 

 Fluo-4 was loaded into cells by addition of Fluo-4 AM (2 μM; Invitrogen) to the 

culture media 30 min prior to the end of the 4 hr KCl treatment.  Medium was then 

exchanged for extracellular recording saline containing elevated KCl (34 mM total) and 0 

mM CaCl2.  Cells were imaged at room temperature using an Eclipse TE2000-S inverted 

microscope with 40x (0.6 numerical aperture) objective (Nikon) and a cooled 12-bit CCD 

camera (Photometrics).  Epifluorescence was provided by a metal halide lamp, and 

images were acquired at 1 Hz using MetaMorph software (Molecular Devices).  Calcium 

was briefly elevated to 0.5 mM for 5-10 s after 5 s of baseline in 0 mM calcium.   

 

FM1-43 loading and immunocytochemistry: 

All FM1-43 imaging experiments utilized mass cultures plated on glass 

coverslips.  FM1-43 loading and vesicular glutamate transporter 1 (vGluT-1) 

immunolabeling experiments were performed as previously described (Moulder et al., 

2006; Moulder et al., 2010).  Briefly, within 60 s of replacing media with fresh saline, 

active presynaptic terminals were labeled for 2 min with 10 μM fixable FM1-43 (FM1-

43FX; Invitrogen) in recording saline supplemented with 45 mM KCl and 1 μM NBQX.  

Cultures were immediately washed for 5 s with extracellular recording saline containing 

500 μM Advasep-7 (CyDex) and 1 μM NBQX followed by saline plus 1 μM NBQX for 

10 min.  Afterwards, cells were fixed for 10 min in 4% paraformaldehyde/0.2% 

glutaraldehyde in phosphate buffered saline (PBS), washed with PBS, and incubated in a 
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blocking solution (2% normal goat serum/0.08% Triton X-100) for 15 min before 3 hr 

incubation in guinea pig anti-vGluT-1 antibody (Millipore) diluted 1:2000 in blocking 

solution.  After washing with PBS, cells were incubated for 40 min in Alexa Fluor 647-

conjugated anti-guinea pig antibody (Invitrogen) diluted 1:500 in PBS.  After washing 

again with PBS, coverslips were removed from culture dishes and mounted onto glass 

microscope slides with Fluoromount-G (Southern Biotechnology). 

 Confocal images were acquired at random locations throughout the dish by an 

observer naïve to the experimental conditions using a C1 scanning confocal laser attached 

to an inverted Eclipse TE300 microscope with a 60x objective (1.4 numerical aperture) 

and EZ-C1 software (Nikon).  Alternating 543 nm and 633 nm laser lines were used to 

obtain z-stack images while pixel dwell time, image resolution, gain settings, field of 

view size, and z-stack parameters were held constant throughout all conditions from a 

single experiment.  Monochrome images were converted into two-dimensional projected 

images and analyzed using MetaMorph software.   

 

Trypan blue staining: 

For experiments assessing toxicity via trypan blue staining, mass cultures were 

treated for 5 min with 0.4% trypan blue at 37ºC in a humidified incubator under 

controlled atmospheric conditions (5% CO2/95% air).  After one PBS wash at room 

temperature, neurons were fixed for 10 min in 4% paraformaldehyde/0.2% 

glutaraldehyde in PBS.  After 3 additional PBS washes, 10 random fields of cells were 

counted in each dish using a 20x objective.  Trypan-positive nuclei were counted under 

bright field and identified as unhealthy neurons, and phase-bright cell bodies devoid of 
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trypan staining were counted under phase contrast and identified as healthy neurons.  

 

Data analysis: 

 Electrophysiology data were collected and analyzed with pClamp 9 software 

(Molecular Devices).  For electrically-evoked PSCs, leak was subtracted offline before 

measuring peak amplitude, and the amplitudes of at least three responses were averaged 

for each cell.  For sucrose-evoked EPSCs, currents were integrated over the rise and 

decay of the response to 10% of the steady-state current.  This provided an estimate of 

the postsynaptic charge transfer corresponding to the readily releasable vesicle pool.   

In calcium-imaging experiments using fura-2, the ratio values were normalized to 

the baseline values (in which no treatment had been applied) to control for differences in 

baseline calcium concentration.  Normalization was achieved by dividing by the first 

value for each cell under baseline conditions, and 4 hr time points were normalized to the 

average of the ratios at baseline.  Values from at least 5 images were averaged for each 

neuron at each time point.  To calculate the change in fluorescence in fluo-4 experiments, 

somatic fluorescence intensities from three images were averaged at baseline and 

subtracted from the average intensity of three images near the peak of fluorescence.  The 

change in fluorescence was normalized to the average baseline fluorescence value to 

account for variability in fluo-4 loading.   

To determine the percentage of active glutamatergic synapses, regions were 

manually drawn around 10 vGluT-1 puncta each from 5 images (fields) for each 

coverslip in a single experiment by an observer naïve to experimental conditions.  The 

strategy of using 5 fields per condition equalized the contribution of a single condition to 
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the final results.  Regions were drawn to include the pixels above threshold in the vGluT-

1-positive punctum but not larger than the punctum in order to minimize the contribution 

of background pixels and/or neighboring puncta to the analysis.  Thresholds were applied 

to all FM1-43FX images before vGluT-1 regions were loaded into the FM1-43FX image.  

“Active” synapses were defined as those regions that reached at least 10 pixels above 

threshold in the FM1-43FX image (Moulder et al., 2006).  Cluster correlation analyses 

(Galbraith et al., 2010) and ANOVA statistics applied to the first FM1-43FX/vGluT-1 

correspondence experiment (Fig. 1D) found no significant correlations between fields 

within an experiment (data not shown), so we treated the percentage of active synapses 

from each field as statistically independent samples throughout the manuscript.   

For trypan blue toxicity experiments, the total numbers of healthy and unhealthy 

neurons were added together from all 10 fields in each dish.  The percentage of healthy 

neurons was then calculated as the number of healthy neurons divided by the total 

neurons counted (healthy and unhealthy) in each dish.   

Graphs were created using SigmaPlot software (Systat Software Inc.).  All data 

were presented as mean ± SEM unless otherwise indicated.  To reduce type 1 error that 

may result from non-significant cluster correlations (Galbraith et al., 2010), all 

experiments utilized yoked controls (e.g. sibling cultures; see methods above), and we 

analyzed data conservatively using unpaired statistics with additional corrections (i.e. for 

multiple comparisons) as appropriate.  Unpaired Student’s t test was used to determine 

significance for comparisons of two groups while Bonferroni correction for multiple 

comparisons was applied to analyses of experiments involving more than two conditions.  

A p value of < 0.05 was required for significance.   
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Materials: 

SCH50911, bicuculline, LY341495, (1S,3R)-ACPD (ACPD), and 2-chloro-N6-

cyclopentyladenosine (CCPA) were purchased from Tocris.  BAPTA-AM 

(acetoxymethyl ester derivative of bis(2-aminophenoxy)ethane tetraacetic acid) was 

purchased from Invitrogen while 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) was 

purchased from Research Biochemicals Inc.  Carbobenzoxy-L-leucyl-L-leucyl-L-leucinal 

(MG-132) was purchased from Enzo Life Sciences.  All other chemicals and reagents 

were purchased from Sigma unless otherwise stated. 
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Results 

 

Depolarization silences presynaptic terminals in the absence of extracellular calcium: 

Calcium is necessary for multiple forms of hippocampal synaptic plasticity, so we 

determined the role of calcium influx in adaptive presynaptic silencing by removing 

calcium from the extracellular media during a depolarizing induction challenge known to 

produce strong presynaptic muting.  We used an induction paradigm of 30 mM KCl for 4 

hr in the presence of ionotropic glutamate receptor blockers D-APV (50 μM) and NBQX 

(1 μM).  The short, strong induction circumvents inevitable developmental confounds of 

longer interventions with calcium and G-protein signaling and mimics pathophysiological 

extracellular potassium concentrations during stroke or seizure (Gido et al., 1997; Walz, 

2000).  30 mM KCl clamps the membrane potential at -20 to -30 mV (Moulder et al., 

2003; Crawford et al., 2009) and induces adaptive presynaptic silencing without 

detectable changes in synaptic structure, vesicle release probability (pr), or postsynaptic 

function (Moulder et al., 2004; Moulder et al., 2006).  We incubated mass cultures in 

either calcium-rich culture media or calcium-free culture media supplemented with 500 

µM EGTA to buffer residual free calcium.  Using the ratiometric calcium indicator fura-

2, we verified that calcium-free media prevented rises in cytosolic free calcium 

concentration normally produced by KCl depolarization (Fig. 1A, B).  Control neurons 

also exhibited a late rise in cytosolic free calcium concentration (Fig. 1B).  We speculate 

that temperature and pH variations between imaging sessions (at room temperature) and 

intervening periods (at 37°C) may have contributed to cellular stress and calcium influx 

in non-depolarized neurons.  Regardless, calcium-free media prevented the rise in  
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Figure 1. Depolarization-induced presynaptic silencing is not dependent on calcium 
influx. A. Pseudo-colored images of the fura-2 ratio (indicating calcium concentration) in 
neuronal cell bodies before (baseline) and < 1 min after (depolarized) application of 30 
mM KCl.  Neurons were switched from calcium-containing media to either calcium-
containing (control) media or to calcium-free media supplemented with 500 μM EGTA 
when KCl depolarization began. Scale bar denotes 25 μm. B. Summary of fura-2 ratio 
normalized to baseline values in neurons similar to A at two time points following 
addition of either 30 mM NaCl (control) or 30 mM KCl (depolarized) to calcium-
containing media or calcium-free media supplemented with 500 μM EGTA. All 
comparisons within a single time point were significantly different (p < 0.05 with 
Bonferroni correction for multiple comparisons) except those indicated with “N.S.” 
meaning “not significant” (n = 17-62 neurons).  Thus, the calcium-free media with EGTA 
effectively prevented cytosolic free calcium level rises in both control and depolarized 
neurons. C. Vesicular glutamate transporter 1 (vGluT-1) immunoreactivity to identify 
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glutamatergic presynaptic terminals (red) with superimposed FM1-43FX labeling of 
active presynaptic terminals (green). Neurons were treated 4 hr with either 30 mM NaCl 
(baseline) or 30 mM KCl (depolarized) in either calcium-containing media (control) or 
calcium-free media supplemented with 500 μM EGTA (calcium-free). Scale bar denote 5 
μm. D. Summary of the percentage of active glutamatergic presynaptic terminals based 
on vGluT-1/FM1-43FX correspondence as shown in C. All comparisons were 
significantly different (p < 0.05 with Bonferroni correction for multiple comparisons) 
except those indicated with “N.S.” (n = 20 fields of 10 vGluT-1 puncta each from 4 
independent experiments). 
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cytosolic free calcium concentration in both control and depolarized neurons over 4 hr 

(Fig. 1B).  We conclude, therefore, that our calcium-free media supplemented with 

EGTA effectively prevented calcium influx. 

To assess presynaptic silencing after depolarization in the absence of calcium 

influx, we performed FM1-43FX labeling in the presence of calcium followed by 

retrospective immunostaining for vesicular glutamate transporter 1 (vGluT-1) to identify 

active glutamatergic terminals.  In agreement with previous experiments under normal 

calcium conditions (Moulder et al., 2004), neurons depolarized in calcium-free media 

plus EGTA exhibited a decrease in the percentage of vGluT-1 terminals that co-localize 

with FM1-43FX (Fig. 1C, D).  This suggests that calcium influx is not necessary to 

induce adaptive presynaptic silencing.   

 

Depolarization silences presynaptic terminals in the absence of intracellular free calcium: 

Although influx of extracellular calcium is not necessary for induction of adaptive 

presynaptic silencing, calcium rises from intracellular sources may participate.  To 

prevent intracellular calcium rises, we loaded cells with the fast intracellular calcium 

chelator BAPTA using the cell-permeant precursor BAPTA-AM.  Because normal action 

potential-driven neurotransmitter release is dependent on fast rises in local presynaptic 

calcium concentration and would be depressed by BAPTA-AM incubation, we used 

calcium-independent hypertonic sucrose-evoked excitatory postsynaptic currents 

(EPSCs) to determine the size of the readily-releasable pool of vesicles (Rosenmund and 

Stevens, 1996), which is proportional to the total number of active synapses (Moulder et 

al., 2004).  For these experiments, we used autaptic neurons in microisland cultures and 
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applied hypertonic sucrose to evoke EPSCs during whole-cell recordings.  Autaptic 

neurons were used because their isolation eliminates confounding polysynaptic effects 

during electrophysiological measurements.  Similar to previous results (Rosenmund and 

Stevens, 1996), sucrose-evoked EPSCs were unaffected by 4 hr incubation with 20 μM 

BAPTA-AM in calcium-free media (Fig. 2A, B).  In contrast electrically-evoked EPSCs, 

which are dependent on presynaptic calcium influx, were strongly depressed after 4 hr 

BAPTA chelation (Fig. 2A, B).  These results suggest that 4 hr BAPTA incubation 

strongly chelates intracellular free calcium. 

To test if intracellular rises in calcium concentration are necessary for presynaptic 

silencing, we depolarized neurons for 4 hr in 30 mM KCl in the presence of 2 mM 

calcium or in calcium-free media containing 20 μM BAPTA-AM.  To ensure that 

intracellular calcium rises during induction did not saturate the ability of BAPTA to 

chelate calcium, we performed calcium imaging of treated neurons using the calcium 

indicator fluo-4.  Briefly raising extracellular calcium from 0 mM to 0.5 mM increased 

cytosolic free calcium concentration in control neurons after 4 hr depolarization in 

calcium-rich media, as assessed by changes in somatic fluo-4 fluorescence (45.5 ± 4.5% 

increase; n = 40; Fig. 2C).  This rise in cytosolic free calcium was not observed in 

neurons after incubation in calcium-free media supplemented with BAPTA-AM (1.0 ± 

1.2% increase; n = 40; p = 1.0 x 10-15; Fig. 2C).  BAPTA, therefore, effectively chelates 

intracellular free calcium, even following a sustained depolarization. 

To test whether BAPTA-AM incubation blocks presynaptic silencing, we 

incubated in BAPTA-AM and compared neurons after the KCl challenge to neurons 

challenged with an equimolar NaCl control.  As shown previously, the 4 hr depolarizing  
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Figure 2. Depolarization-induced presynaptic silencing is not dependent on 
increases in intracellular free calcium from any source. A. Representative examples 
of sucrose-evoked excitatory postsynaptic currents (EPSCs) and action potential-evoked 
EPSCs elicited in autaptic neurons after 4 hr treatment in normal calcium-containing 
media (control) or calcium-free media supplemented with 20 μM of the cell-permeant 
fast calcium chelator BAPTA-AM. B. Summary of results for sucrose-evoked EPSC 
charge and action potential-evoked EPSC amplitude after treatment with control or with 
calcium-free, BAPTA-AM-supplemented extracellular media in sister cultures (n = 9-11 
neurons). *p < 0.05. C. Example fields of neurons filled with the calcium indicator fluo-4 
before (0 mM) and after (0.5 mM) perfusion of CaCl2. Neurons were pre-treated for 4 hr 
with 30 mM KCl in either calcium-containing media (depolarized) or calcium-free media 
supplemented with 20 μM BAPTA-AM (depolarized BAPTA-AM). Scale bar denotes 50 
μm. D. Representative examples of sucrose-evoked EPSCs in autaptic neurons after 4 hr 
treatment in calcium-free media supplemented with 20 μM BAPTA-AM and either 30 
mM NaCl (baseline) or 30 mM KCl (depolarized). 
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challenge in calcium-rich media depressed sucrose-evoked EPSCs by ~45% (control: 

1224.9 ± 147.7 pC; depolarized: 670.1 ± 135.7 pC; n = 29-30 neurons; p < 0.01; see also 

Moulder et al., 2004).  Despite BAPTA-AM incubation in calcium-free media, the charge 

of sucrose-evoked EPSCs was still significantly depressed in KCl-challenged neurons 

compared with sibling controls (control: 581 ± 100 pC; depolarized: 168 ± 27 pC; n = 26-

29; p < 0.0001; Fig. 2D).  These results argue strongly that adaptive presynaptic silencing 

is calcium-independent.   

 

Activation of inhibitory G-proteins is necessary for depolarization-induced presynaptic 

silencing: 

Indirect evidence has previously implicated decreased cAMP levels in 

depolarization-induced presynaptic silencing (Moulder et al., 2008).  Thus, prolonged 

activation of inhibitory G-proteins, which inhibit adenylyl cyclase activity and cAMP 

production, could participate in adaptive muting.  We, therefore, tested the hypothesis 

that inhibitory G-proteins are necessary for depolarization-induced silencing. 

We pre-incubated neurons for 24 hr in 500 ng/ml pertussis toxin, which, by 

adenosine diphosphate-ribosylation of the αi/o subunit, prevents inhibitory G-protein 

activation.  This interferes with α subunit signaling and blocks the association of Gαi/o 

subunits with their upstream GPCRs (Brown and Sihra, 2008).  To confirm that pertussis 

toxin treatment itself did not induce toxicity, we used trypan blue staining to identify 

unhealthy neurons.  The percentage of healthy neurons did not differ between control 

neurons and those treated 24 hr with 500 ng/ml pertussis toxin (control: 92.2 ± 1.6%; 

pertussis toxin: 93.5 ± 1.0%; n = 4 dishes; p = 0.54).  After 24 hr in pertussis toxin, we 
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co-incubated with 30 mM KCl or an equimolar control during an additional 4 hr in 

pertussis toxin.  After treatment, we assessed synaptic function by measuring EPSC 

amplitudes in autaptic neurons and vGluT1/FM1-43FX correspondence in mass cultures.  

Pertussis toxin had no effect on EPSC amplitude in non-depolarized neurons, confirming 

that the toxin did not compromise cell health, but it prevented depolarization-induced 

depression of EPSC amplitude (Fig. 3A, B).  Pertussis toxin did not, however, alter 

paired-pulse depression in any of the experimental groups (control: 29.9 ± 5.6%; 

pertussis toxin: 18.0 ± 4.3%; depolarized: 8.3 ± 6.2%; depolarized + pertussis toxin: 20.7 

± 5.9%; n = 13-14 neurons per condition; p > 0.05; also see supplemental Fig. 1A), as is 

expected from acute effects of GPCR activation on vesicle release probability 

(Mennerick and Zorumski, 1995; Dobrunz and Stevens, 1997; Zucker and Regehr, 2002; 

Brown and Sihra, 2008).  Similarly pertussis toxin prevented the depolarization-induced 

decrease in active synapses measured via FM1-43FX/vGluT-1 correspondence (Fig. 3C, 

D).  Together these results suggest that activation of inhibitory G-proteins is necessary 

for depolarization-induced presynaptic silencing. 

 

A1 receptor activation is not required for depolarization-induced presynaptic silencing: 

To explore the role of GPCRs upstream of inhibitory G-proteins in presynaptic 

silencing, we examined whether the G-protein-coupled A1 adenosine receptor is 

involved.  The A1 receptor is an excellent candidate since increased adenosine levels in 

the extracellular space occur via calcium-independent mechanisms:  conversion from 

adenosine triphosphate (Latini and Pedata, 2001), which is released from astrocytes 

(Wang et al., 2000), and release by transporters (Dunwiddie and Masino, 2001).   
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Figure 3. Activation of inhibitory G-proteins is necessary for depolarization-induced 
presynaptic silencing. A. Example action potential-evoked EPSCs from autaptic neurons 
treated 24 hr with or without 500 ng/ml pertussis toxin before 4 hr co-application with 30 
mM NaCl (baseline) or 30 mM KCl (depolarized). B. Summary of EPSC amplitudes 
from autaptic neurons treated as in A (n = 13-14 neurons). *p < 0.05 with Bonferroni 
correction for multiple comparisons. C. Example images of vGluT-1 (red) and FM1-
43FX (green) correspondence in neurons treated 24 hr with or without 500 ng/ml 
pertussis toxin before 4 hr baseline or depolarized. Scale bar denote 5 μm. D. Summary 
of conditions represented in C (n = 25 fields from 5 independent experiments). *p < 0.05 
with Bonferroni correction for multiple comparisons. 
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Adenosine release has also been implicated in neuroprotection, in part through acute A1 

receptor-mediated inhibition of presynaptic glutamate release (Stone et al., 2009).  

Additionally, A1 receptors selectively inhibit synaptic transmission at excitatory, not 

inhibitory, terminals in the hippocampus (Yoon and Rothman, 1991), possibly explaining 

the selectivity of adaptive presynaptic silencing for excitatory over inhibitory terminals 

(Moulder et al., 2004). 

To test whether A1 receptor activation is necessary for depolarization-induced 

presynaptic silencing, we incubated neurons with depolarizing KCl or equimolar NaCl 

control in the presence of the selective A1 antagonist 200 nM DPCPX.  The decrease in 

EPSC amplitude in depolarized neurons treated with DPCPX was comparable to ESPC 

depression from neurons incubated in the absence of DPCPX (Fig. 4A, B).  DPCPX 

incubation also did not alter paired-pulse depression (control: 11.8 ± 4.8%; DPCPX: 16.4 

± 5.1%; depolarized: 11.0 ± 8.7%; depolarized + DPCPX: 7.3 ± 11.7%; n = 9 neurons per 

condition; p > 0.05; also see supplemental Fig. 1B).  Additionally, we assessed 

presynaptic silencing by measuring the percentage of active glutamatergic presynaptic 

terminals via FM1-43FX/vGluT-1 correspondence.  In neurons treated 4 hr with 30 mM 

KCl, the percentage of vGluT-1-positive presynaptic terminals that co-localize with 

FM1-43FX fluorescence was decreased from control, regardless of whether the neurons 

had been co-incubated with DPCPX (Fig. 4C, D).  We noticed a trend-level difference in 

the percentage of active synapses in depolarized neurons treated with DPCPX compared 

to depolarized neurons without DPCPX (depolarized: 10.6 ± 1.5%; depolarized + 

DPCPX: 17.4 ± 2.1%; p = 0.052 after correction for multiple comparisons), potentially 

suggesting a minor role of adenosine A1 receptors in depolarization-induced silencing.   
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Figure 4. A1 adenosine receptor activation is not necessary for depolarization-
induced presynaptic silencing. A. Example action potential-evoked EPSCs from 
autaptic neurons treated 4 hr with 30 mM NaCl (baseline) or 30 mM KCl (depolarized) in 
the presence or absence of 200 nM DPCPX, an A1 receptor antagonist. B. Summary of 
EPSC amplitudes from autaptic neurons treated as in A (n = 9 neurons). All comparisons 
were significantly different (p < 0.05 with Bonferroni correction for multiple 
comparisons) except those indicated (N.S.). C. Example images of vGluT-1 (red) and 
FM1-43FX (green) correspondence in neurons treated 4 hr under baseline or depolarized 
conditions in the presence or absence of 200 nM DPCPX. Scale bar denotes 5 μm. D. 
Summary of conditions represented in C (n = 65 fields from 13 independent 
experiments). All comparisons were significantly different (p < 0.05 with Bonferroni 
correction for multiple comparisons) except those indicated (N.S.). 
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Despite this trend, however, there was still a significant decrease in the percentage of 

active synapses in the presence of DPCPX compared to control (DPCPX: 42.6 ± 3.4%; 

depolarized + DPCPX: 17.4 ± 2.1%; p = 1.7 x 10-8 after correction for multiple 

comparisons).  Together these data suggest that blocking A1 receptor activation during 

depolarization does not prevent the induction of adaptive presynaptic silencing. 

 

GABAB, metabotropic glutamate, CB1, and kainate receptors are not required for 

depolarization-induced presynaptic silencing: 

Although A1 adenosine receptor activation is not necessary to induce adaptive 

presynaptic silencing (Fig. 4), activation of inhibitory G-proteins is critical (Fig. 3).  

Multiple GPCRs linked to inhibitory G-proteins are expressed in rodent hippocampus.  

Our culture preparation, however, does not contain modulatory projection neurons from 

outside the hippocampus, so the list of GPCRs with ligands available in vitro is restricted.  

The calcium independence of induction also excludes transmitters/modulators released by 

classical calcium-dependent exocytosis.  Nevertheless, reverse transport of γ-

aminobutyric acid (GABA; Schwartz, 1982; Gaspary et al., 1998), reverse transport of 

glutamate (Nicholls and Attwell, 1990; Szatkowski et al., 1990), and non-classical 

cannabinoid signaling (Di Marzo and Deutsch, 1998; Di Marzo et al., 1998; Wilson and 

Nicoll, 2001) could elevate ambient modulator levels and induce silencing in response to 

depolarization. 

We first tested whether the G-protein-coupled GABAB receptor is responsible for 

inducing adaptive presynaptic silencing.  To prevent GABAB receptor activation, we 

incubated neurons in the presence of the GABAB receptor antagonist SCH50911 (50 



113 
 

μM).  To test effectiveness of SCH50911 in our system, we co-applied SCH50911 

acutely to our autaptic neurons with the GABAB receptor agonist baclofen (10 μM).  

Baclofen depressed evoked EPSCs and IPSCs by 65.4 ± 8.1%, and addition of 

SCH50911 recovered the PSCs to 96.0 ± 4.8% of their original amplitude (n = 10 

neurons; Fig. 5A).  Incubation of mass cultures in SCH50911 for 4 hr significantly 

increased the percentage of active glutamatergic presynaptic terminals from baseline 

(Fig. 5B), suggesting a small endogenous GABAB receptor tone in this data set.  Despite 

this effect on baseline silent synapses, SCH50911 did not prevent the decrease in the 

percentage of active synapses induced by depolarization (Fig. 5B).  These results 

demonstrate that, despite effectiveness of SCH50911, GABAB receptor activation is not 

involved in depolarization-induced adaptive presynaptic silencing.  Similar results were 

obtained with the GABAA receptor antagonists bicuculline and picrotoxin (supplemental 

Fig. 2), confirming that GABA signaling is not involved in depolarization-induced 

presynaptic silencing.  

Other plausible candidate GPCRs for the induction of adaptive presynaptic 

silencing include Gi/o-coupled metabotropic glutamate receptors (mGluRs).  LY341495, a 

non-selective mGluR antagonist at concentrations above 22 μM (Schoepp et al., 1999), 

reversed acute EPSC depression by a near-saturating concentration of the mGluR agonist 

ACPD (33.9 ± 7.2% depression in 50 μM ACPD; 92.2 ± 6.8% recovery in ACPD plus 25 

μM LY341495; n = 7-8 neurons; Fig. 5C).  However, LY341495 failed to alter baseline 

active glutamatergic synapses or presynaptic silencing in response to depolarization (Fig. 

5D).  These results indicate that antagonism of mGluR activation does not prevent 

depolarization-induced presynaptic silencing. 
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Figure 5. None of likely candidate GPCRs is necessary for depolarization-induced 
silencing. A. Example action potential-evoked IPSCs from a single autaptic neuron after 
acutely-applied extracellular saline (control), 10 μM baclofen (a GABAB receptor 
agonist), or 10 μM baclofen plus 50 μM SCH50911 (a GABAB receptor antagonist). B. 
Summary of experiments measuring vGluT-1/FM1-43FX correspondence in neurons 
treated 4 hr with 30 mM NaCl (baseline) or 30 mM KCl (depolarized) in the presence or 
absence of 50 μM SCH50911 (n = 35 fields from 7 independent experiments). All 
comparisons were significantly different (p < 0.05 with Bonferroni correction for 
multiple comparisons) except those indicated (N.S.). C. Example action potential-evoked 
EPSCs from a single autaptic neuron after acutely-applied control, 50 μM ACPD (a 
mGluR agonist), or 50 μM ACPD plus 25 μM LY341495 (a mGluR antagonist). D. 
Summary of experiments measuring vGluT-1/FM1-43FX correspondence in neurons 
treated for 4 hr under baseline or depolarized conditions in the presence or absence of 25 
μM LY341495 (n = 25 fields from 5 independent experiments). All comparisons were 
significantly different (p < 0.05 with Bonferroni correction for multiple comparisons) 
except those indicated (N.S.). E. Example action potential-evoked EPSCs from two 
different autaptic neurons: one after acutely-applied control or 200 nM WIN55,212-2 (a 
CB1 agonist) and the other after 1-2 hr pre-treatment with 1 μM AM251 (a CB1 
antagonist), and continued AM251 application or AM251 plus WIN55,212-2. The 
AM251 pretreatment with between-cell comparison was used to mitigate against the very 
slow reversibility of WIN55,212-2. F. Summary of experiments measuring vGluT-
1/FM1-43FX correspondence in neurons treated for 4 hr under baseline or depolarized 
conditions in the presence or absence of 1 μM AM251 (n = 20 fields from 4 independent 
experiments). All comparisons were significantly different (p < 0.05 with Bonferroni 
correction for multiple comparisons) except those indicated (N.S.). G. Summary of 
experiments measuring vGluT-1/FM1-43FX correspondence in neurons treated for 4 hr 
under baseline or depolarized conditions in the presence or absence of 200 nM DPCPX, 
50 μM SCH50911, 25 μM LY341495, and 1 μM AM251 (cocktail; n = 20 fields from 4 
independent experiments). All comparisons were significantly different (p < 0.05 with 
Bonferroni correction for multiple comparisons) except those indicated (N.S.). H. 
Summary of experiments measuring EPSC amplitude in neurons treated 4 hr under 
baseline or depolarized conditions in the presence of either 1 μM NBQX or 10 μM 
NBQX to ensure kainate receptor block (n = 14-16 neurons).  Neurons treated for 4 hr 
with 1 μM NBQX were treated acutely (~1 min) with 10 μM NBQX prior to recording as 
a control for any residual acute NBQX effects. All comparisons were significantly 
different (p < 0.05 with Bonferroni correction for multiple comparisons) except those 
indicated (N.S.). 
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To test G-protein-coupled CB1 cannabinoid receptor involvement, we incubated 

mass cultures in 1 μM 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-

piperidinyl-1H-pyrazole-3-carboxamide (AM251), a CB1 antagonist, during depolarizing 

or control challenge.  To ensure that AM251 inhibited CB1 activation, we applied the 

CB1 agonist (R)-(+)-WIN55,212-2 (WIN; 200 nM) acutely to autaptic neurons.  WIN 

acutely depressed PSCs by 34.6 ± 8.6% (Fig. 5E) while pre-incubation in AM251 

prevented the WIN-induced depression (101.1 ± 2.5% of baseline; n = 8 neurons per 

condition; Fig. 5E).  AM251 incubation during the 4 hr depolarization challenge, 

however, altered neither the baseline percentage of active glutamatergic synapses nor 

depolarization-induced silencing (Fig. 5F).  We conclude that CB1 activation does not 

participate in depolarization-induced presynaptic silencing. 

 It is plausible that multiple GPCRs are simultaneously activated by strong 

depolarization.  If this occurs, then each receptor might contribute individually to a small, 

statistically insignificant effect on the percentage of active presynaptic terminals.  

Simultaneous activation, however, may synergistically upregulate the activity of 

downstream signaling cascades.  To test this hypothesis, we incubated mass cultures for 4 

hr in a cocktail of GPCR antagonists (200 nM DPCPX, 50 μM SCH50911, 25 μM 

LY341495, and 1 μM AM251) to simultaneously block the activation of A1 adenosine 

receptors, GABAB receptors, mGluRs, and CB1 receptors.  This antagonist cocktail did 

not alter the percentage of active glutamatergic presynaptic terminals at baseline (Fig. 

5G), indicating that transmitter tone over 4 hr was not sufficient to induce additional 

muting.  Additionally, this cocktail of GPCR antagonists did not prevent silencing in 

response to depolarization (Fig. 5G).  Interestingly, we failed to observe the trend-level 
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increase in the percentage of active synapses produced in depolarized neurons exposed to 

DPCPX (Fig. 4D).  This suggests that these four receptor classes, although linked to 

inhibitory G-proteins, are not responsible for the induction of depolarization-induced 

presynaptic silencing. 

 Although 1 μM NBQX was present during all depolarization challenges to 

prevent ionotropic glutamate receptor activation, kainate receptors may not be blocked at 

this concentration (Bureau et al., 1999; Crowder et al., 2002).  Kainate receptors can 

induce metabotropic effects dependent on G-proteins in addition to their ionotropic 

effects (Cunha et al., 1999; Lerma, 2003; Rodriguez-Moreno and Sihra, 2007).  To ensure 

that kainate receptors and their downstream metabotropic signaling cascades are not 

activated during 4 hr depolarization, we co-incubated with 10 μM NBQX, which should 

block both kainate receptors and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPA) receptors (Lauri et al., 2001; Delaney and Jahr, 2002).  After a 4 hr depolarizing 

or control challenge, we recorded EPSC amplitudes in autaptic neurons.  Control cultures 

were treated acutely for 1 min with 10 μM NBQX just before recording to account for 

any residual effects of the high NBQX concentration on AMPA receptors.  The higher 

concentration of NBQX did not prevent depolarization-induced silencing and did not 

alter the EPSC amplitude compared with control neurons (Fig. 5H).  This suggests that 

metabotropic effects downstream of kainate receptor activation are unimportant for 

depolarization-induced silencing. 

 

A1 receptor activation and GABAB receptor activation induce presynaptic silencing: 

It is intriguing that A1 receptor, GABAB receptor, mGluR, CB1, and kainate 
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receptor activation are not necessary for induction of presynaptic silencing despite our 

evidence that depolarization-induced silencing depends on pertussis toxin-sensitive G-

proteins.  These results suggest that inhibitory G-proteins are activated during strong 

depolarization but not by activation of these particular receptors.  To further test our 

hypothesis that a G-protein-dependent mechanism, regardless of the source of activation, 

controls adaptive presynaptic silencing, we tested whether direct activation of several 

GPCR classes induces silencing.   

We first determined whether increases in exogenous extracellular adenosine 

concentration induce presynaptic silencing.  We incubated cultures in the presence of 100 

μM adenosine for 4 hr.  A high concentration was chosen to counteract any degradation 

that may occur from the natural activity of extracellular enzymes or uptake through 

transporters (Dunwiddie and Masino, 2001).  We used FM1-43FX loading of presynaptic 

terminals followed by vGluT-1 immunostaining to determine the percentage of active 

glutamatergic terminals.  Incubation for 4 hr with 100 μM adenosine decreased the 

percentage of active synapses (Fig. 6A, B).  To determine if this effect of adenosine 

resulted from activation of the A1 receptor, we co-incubated with DPCPX (200 nM).  

DPCPX incubation alone did not alter the percentage of active glutamatergic synapses, 

but it prevented the adenosine-induced silencing (Fig. 6A, B).  This result also serves as 

an effective positive control for experiments testing DPCPX effects on depolarization-

induced muting (Fig. 4).  Note that FM1-43FX uptake should be immune to the well-

known transient, acute effects of adenosine agonists on pr since agonists and antagonists 

were washed out of the cultures before the FM1-43FX challenge (Wu and Saggau, 1994; 

Brown and Sihra, 2008).  Also, FM1-43FX loading was conducted during 2 min of a  
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Figure 6. A1 adenosine receptor activation and GABAB receptor activation induce 
presynaptic silencing. A. Example images of vGluT-1 (red) and FM1-43FX (green) 
correspondence in neurons treated 4 hr with control or 100 μM adenosine in the presence 
or absence of 200 nM DPCPX. Scale bar denotes 5 μM. B. Summary of conditions 
represented in A (n = 40 fields from 8 independent experiments). *p < 0.05 with 
Bonferroni correction for multiple comparisons. C. Summary of experiments measuring 
vGluT-1/FM1-43FX correspondence in neurons treated 4 hr with control medium, with 
10 nM CCPA, or with 10 nM CCPA co-applied with 200 nM DPCPX (n = 35 fields from 
7 independent experiments). *p < 0.05 with Bonferroni correction for multiple 
comparisons. D. Example action potential-evoked EPSCs recorded from autaptic neurons 
after acute (< 1 min; control) or 4 hr treatment with 10 nM CCPA. E. Summary of EPSC 
amplitudes from autaptic neurons treated acutely (< 1 min; control) or for 4 hr with 50 
μM baclofen (n = 9-10 neurons) and FM1-43FX/vGluT-1 correspondence after 4 hr 
control or 50 μM baclofen treatment (n = 30 fields from 6 independent experiments). *p 
< 0.05. 



120 
 

strong depolarization designed to empty the entire recycling pool of vesicles regardless of 

pr.  Thus, these results suggest that extracellular adenosine induces presynaptic silencing 

through an A1 receptor-dependent mechanism. 

 Results with adenosine do not exclude a contribution from A2 or A3 receptors, 

although this contribution is presumably minimal because the A1-specific antagonist 

DPCPX blocked the silencing.  To confirm that A1 receptor activation alone is sufficient 

for presynaptic silencing induction, we incubated mass cultures in the presence of the 

highly selective A1 receptor agonist CCPA.  CCPA (10 nM for 4 hr) decreased the 

percentage of active glutamatergic terminals, and the CCPA effect was blocked by co-

incubation with 200 nM DPCPX (Fig. 6C).  We also confirmed that CCPA persistently 

depressed presynaptic action potential-driven vesicle release by measuring autaptic EPSC 

amplitudes after 4 hr of CCPA incubation.  Electrophysiological recordings were 

performed in extracellular recording saline in the absence of CCPA, so acute effects are 

unlikely.  However, to ensure that EPSC depression was not caused by residual acute 

effects of CCPA, a high-affinity ligand which might have failed to dissociate from A1 

receptors during the media exchange (Lohse et al., 1988), we used neurons from sibling 

cultures acutely exposed to 10 nM CCPA (< 1 min) as our control.  EPSC amplitudes 

were significantly decreased in neurons recorded after 4 hr treatment with CCPA 

compared to those treated acutely with CCPA (control: -8.92 ± 1.19 nA; 4 hr CCPA: -

2.59 ± 1.10 nA; n = 10; p = 0.001; Fig. 6D).  Additionally, we measured paired-pulse 

depression in order to assess if lingering CCPA altered vesicle pr.  An increased paired-

pulse ratio (e.g. a decreased paired-pulse depression) is typically interpreted to reflect 

decreased pr, which could be caused by presynaptic GPCR activation (Mennerick and 
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Zorumski, 1995; Dobrunz and Stevens, 1997; Zucker and Regehr, 2002; Brown and 

Sihra, 2008).  The paired-pulse depression in neurons treated acutely with CCPA (23.4 ± 

5.5%; n = 10) was not significantly different from the depression in neurons treated for 4 

hr (25.8 ± 7.0%; n = 9; p = 0.79; supplemental Fig. 1C).  Together, these results suggest a 

novel presynaptic muting by prolonged selective activation of A1 adenosine receptors.  

Presynaptic silencing outlives agonist exposure and does not result from altered pr. 

 We next incubated neurons in 50 μM baclofen, the GABAB receptor agonist, for 4 

hr before evaluation in baclofen-free solutions.  Baclofen, in the absence of any 

depolarizing stimulus, persistently depressed autaptic EPSC amplitudes and reduced the 

percentage of active glutamatergic presynaptic terminals (Fig. 6E).  Baclofen did not, 

however, have a persisting effect on the paired-pulse depression (control: 20.8 ± 7.3%; 

baclofen: 1.1 ± 7.7%; n = 9; p = 0.08; supplemental Fig. 1D).  Additionally, we have 

confirmed that the effects of CCPA and baclofen on FM1-43FX/vGluT-1 correspondence 

do not result from transient actions of these agonists.  We co-applied CCPA and baclofen 

for 4 hr and allowed 10 min of recovery in untreated media before FM1-43FX loading.  

Neurons treated with CCPA and baclofen maintained a decreased percentage of active 

glutamatergic presynaptic terminals after this period of recovery (control + recovery: 79.0 

± 4.3%; CCPA/baclofen + recovery: 51.5 ± 4.5%; n = 20 fields from 4 coverslips; p = 

0.00009).  In contrast, saturating concentrations of neither ACPD nor another mGluR 

agonist L-AP4 induced silencing (supplemental Fig. 3A, B).  Similarly, CB1 agonist 

WIN did not induce silencing at a saturating concentration (supplemental Fig. 3C), and 

kainate receptor agonist kainic acid did not produce silencing at concentrations of 1 μM 

or 10 μM (supplemental Fig. 3D, E).  These results suggest that GPCR-induced silencing 
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is induced by only a select group of receptors.  The lack of silencing induced by mGluR 

and CB1 activation may be caused, for example, by low receptor expression levels in 

presynaptic terminals of cultured hippocampal neurons (as suggested by the weak acute 

effects of near-saturating agonist concentrations in Figure 5C, E) or by divergent 

downstream signaling cascades.   

 

GPCR-induced silencing is proteasome-dependent: 

 Inhibitory G-protein activation links depolarization-induced silencing and GPCR 

agonist-induced silencing, but it is unclear whether GPCR-dependent presynaptic 

silencing invokes similar downstream signaling cascades as depolarization-induced 

presynaptic silencing.  For instance, maximum GPCR agonist-induced silencing tends to 

be weaker than depolarization-induced silencing (see Fig. 6C, E), which could hint at 

different underlying mechanisms.  It was recently shown that depolarization-induced 

muting is ultimately dependent on activity of the ubiquitin proteasome system (UPS).  

Depolarization-induced presynaptic silencing is prevented by co-incubation with the 

proteasome inhibitor MG-132 (Jiang et al., 2010).  To test whether GPCR agonist-

induced silencing also recruits the UPS, we blocked proteasome activity by 30 min pre-

incubation with MG-132 alone before co-applying MG-132 with GPCR agonists for 4 hr.  

To maximize the inhibitory G-protein signal, we co-applied 10 nM CCPA and 50 μM 

baclofen to simultaneously activate both A1 receptors and GABAB receptors.  This 

treatment did not result in more silencing than either agonist alone (compare Fig. 6C, D, 

E with Fig. 7) as expected from convergent downstream signaling in the two receptor 

systems (Brown and Sihra, 2008).  MG-132 and CCPA/baclofen treatment did not alter 
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paired-pulse depression in autaptic neurons (control: 21.1 ± 4.0%; MG-132: 24.3 ± 5.7%; 

CCPA/baclofen: 22.3 ± 5.8%; CCPA/baclofen + MG-132: 24.7 ± 7.9%; n = 14-15 

neurons per condition; p > 0.05; also see supplemental Fig. 1E).  To confirm that a pr 

change should have been detected by paired-pulse measurements with our protocols and 

sample sizes, we tested the effect of acute 10 μM baclofen application on EPSC paired-

pulse depression.  As expected, paired-pulse modulation was significantly altered by 

acute baclofen (3.7 ± 5.2% depression in saline control; 32.3 ± 15.6% facilitation in 

baclofen; n = 12; p = 0.04; supplemental Fig. 1F).  MG-132 alone did not alter the 

baseline EPSC amplitude, but it prevented silencing normally induced by GPCR agonist 

application (Fig. 7A, B).  This was confirmed with FM1-43FX labeling of presynaptic 

terminals.  The percentage of active glutamatergic presynaptic terminals was not altered 

by MG-132 alone, but co-incubation with GPCR agonists prevented presynaptic silencing 

(Fig. 7C, D).  These results suggest that GPCR agonist-induced silencing also recruits a 

proteasome-dependent mechanism, supporting our hypothesis that persistent GPCR-

dependent depression utilizes similar signaling cascades as depolarization-induced 

silencing.  This also supports our model that depolarization-induced silencing occurs 

through a calcium-independent inhibitory G-protein-dependent mechanism that 

ultimately depends on activation of the UPS. 
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Figure 7. GPCR-dependent silencing requires proteasome activity. A. Example 
action potential-evoked EPSCs from autaptic neurons treated acutely (< 1 min; control) 
or for 4 hr with 10 nM CCPA and 50 μM baclofen with or without 3 μM MG-132.  MG-
132 was added 30 min prior to the start of (and remained during) the 4 hr treatment. B. 
Summary of EPSC amplitudes from autaptic neurons treated as in A. *p < 0.05 with 
Bonferroni correction for multiple comparisons (n = 15 neurons). C. Example images of 
vGluT-1 (red) and FM1-43FX (green) correspondence in neurons treated 4 hr with or 
without 10 nM CCPA and 50 μM baclofen in the presence or absence of 3 μM MG-132. 
MG-132 was added 30 min prior to the start of the 4 hr treatment. Scale bar denotes 5 
μm. D. Summary of experiments measuring vGluT-1/FM1-43FX correspondence in 
neurons treated as in C. *p < 0.05 with Bonferroni correction for multiple comparisons (n 
= 35 fields from 7 independent experiments). 
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Discussion 

Adaptive modulation at synapses has been studied extensively, but induction 

mechanisms remain unclear (see Pozo and Goda, 2010).  We tested whether calcium and 

G-protein signaling, two potential upstream regulators of cAMP, are necessary for 

presynaptic muting.  Surprisingly, depolarization-induced presynaptic silencing is not 

dependent on calcium rises from extracellular or intracellular sources.  Depolarization-

induced muting is pertussis toxin-sensitive, implicating Gi/o signaling, and prolonged, 

direct activation of two classes of Gi/o-linked GPCRs induces silencing, suggesting novel 

presynaptic Gi/o-induced modulation.  Blocking five receptor classes failed to prevent 

depolarization-induced silencing, suggesting that G-protein signaling is activated by a 

pathway that remains untested.  Furthermore, GPCR-dependent silencing is proteasome-

dependent, as previously documented for depolarization-induced silencing.  Our results 

support the model that prolonged depolarization upregulates inhibitory G-protein 

signaling, possibly independent of receptor activation, to ultimately degrade vital 

regulators of neurotransmission. 

 

Calcium and persistent forms of synaptic plasticity: 

Calcium from neither the extracellular space (Fig.1) nor intracellular stores (Fig. 

2) is necessary for adaptive presynaptic silencing. This result is surprising because 

multiple persistent forms of hippocampal synaptic plasticity depend on calcium 

(Dunwiddie et al., 1978; Wigstrom et al., 1979; Lynch et al., 1983; Williams and 

Johnston, 1989; Wickens and Abraham, 1991; Mulkey and Malenka, 1992; Xie et al., 

1992; Tzounopoulos et al., 1998; Patenaude et al., 2003; Kellogg et al., 2009).  Other 
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adaptive forms of plasticity, including synaptic scaling and plasticity of intrinsic 

excitability, require changes in intracellular calcium (Thiagarajan et al., 2002; Cudmore 

and Turrigiano, 2004; Frank et al., 2006; Ibata et al., 2008; Wu et al., 2008).  Although it 

is possible that depolarization-induced presynaptic silencing requires postsynaptic 

depolarization, our BAPTA-AM experiments exclude an important induction role for any 

source of calcium, including presynaptic, postsynaptic, and glial sources.  These results 

are consistent with our previous finding that calcium-sensitive adenylyl cyclase isoforms 

play no role in silencing induction (Moulder et al., 2008).   

Depolarization-induced muting is among a few examples of calcium-independent 

plasticity.  These include short-term, frequency-dependent synaptic depression (Betz, 

1970; Stevens and Tsujimoto, 1995; Garcia-Perez et al., 2008), transient modulation by 

non-traditional messengers like nitric oxide and steroid hormones (Meffert et al., 1996; 

Zadran et al., 2009), and some forms of hippocampal mGluR-dependent long-term 

depression (Fitzjohn et al., 2001; Ireland and Abraham, 2009).  Because none of these 

mechanisms is implicated in presynaptic muting, the silencing described herein appears 

to be unique. 

 

Presynaptic inhibition by G-protein activation: 

Acute activation of pertussis toxin-sensitive presynaptic and postsynaptic 

inhibitory G-proteins induces well-known, rapidly reversible effects on calcium currents 

and inwardly rectifying potassium channels (Brown and Sihra, 2008).  Although acute 

presynaptic depression elicited by Gi/o stimulation persists for at least 4 hr in the 

continued presence of agonist (Wetherington and Lambert, 2002a, b), several major 
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features distinguish the depolarization-induced and GPCR-induced presynaptic silencing 

observed here from this classical presynaptic GPCR-induced depression.   

First, acute Gi/o activation causes synaptic depression with rapid onset and rapid 

offset upon agonist withdrawal (Brown and Sihra, 2008).  Presynaptic muting, in 

contrast, requires prolonged stimulation, and recovery requires hours (Moulder et al., 

2004).  GPCR agonist-induced silencing failed to recover within 10 min in imaging 

experiments and persisted for at least an hour after agonist removal in our 

electrophysiology experiments (Fig. 6, 7).  Furthermore, only 2 of 5 receptor classes 

tested induced presynaptic silencing.  It is possible that persistent silencing requires 

stronger Gi/o stimulation than acute depression, since CB1 and mGluR stimulation 

yielded weak acute depression and no detectable silencing (Fig. 5C, E and supplemental 

Fig. 3).   

Second, acute depression depends on Gβγ-dependent presynaptic inhibition of 

calcium channels to reduce vesicle pr (Brown and Sihra, 2008).  Decreases in pr are 

reflected as increased paired-pulse ratios (Dobrunz and Stevens, 1997; Zucker and 

Regehr, 2002).  Depolarization-induced and GPCR-induced muting did not alter paired-

pulse ratios (supplemental Fig. 1) and may involve degradation of important presynaptic 

proteins through the UPS (Jiang et al., 2010).  This is an unusual profile for presynaptic 

change and might explain why GPCR-induced silencing has been overlooked.  Thus, 

persistent GPCR-dependent presynaptic silencing invokes different mechanisms than 

acute GPCR-dependent synaptic depression.   

Other forms of slowly-induced synaptic depression dependent on GPCRs have 

been described in the hippocampus.  For example, GPCR activation is necessary for 
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certain forms of long-term depression or depotentiation of long-term potentiation (Oliet 

et al., 1997; Palmer et al., 1997; Chevaleyre and Castillo, 2004; Izumi and Zorumski, 

2008; Kellogg et al., 2009).  Although a presynaptic change has been implicated in some 

of these examples, presynaptic muting has not been implicated because these are 

calcium-dependent and/or require activation of receptors that we have shown are 

unnecessary for depolarization-induced presynaptic silencing.   

The finding that prolonged A1 and GABAB receptor activation induces silencing 

is reminiscent of evidence for tonic GPCR activation in situ.  A1 receptors and GABAB 

receptors are constitutively active at low levels under physiological conditions (Canning 

and Leung, 2000; Thummler and Dunwiddie, 2000; Jensen et al., 2003; Kukley et al., 

2005; but see Ariwodola and Weiner, 2004).  Thus, GPCR-induced silencing may 

contribute to basally silent terminals in situ.  Evidence for basal GPCR contributions to 

presynaptically mute synapses in our cultures was limited (Fig. 5B), possibly because of 

much larger dilution of transmitters than occurs in situ.  Because evoked accumulation of 

adenosine and GABA likely achieves higher local concentrations over more prolonged 

periods in intact tissue (Mitchell et al., 1993; Masino and Dunwiddie, 1999; de Groote 

and Linthorst, 2007; Ghijsen et al., 2007), GPCR-induced silencing could play a dynamic 

role in sculpting the pattern of silent and active terminals. 

 

Relationship between G-proteins and proteasome activity: 

Multiple downstream signaling cascades are activated by GPCRs.  Our data 

implicate that, ultimately, GPCR agonist-induced presynaptic silencing is dependent 

upon activity of the UPS since the proteasome inhibitor MG-132 blocked silencing 
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induction (Fig. 7).  One potential model is that inhibition of adenylyl cyclase by G-

proteins decreases cAMP accumulation and associated protein phosphorylation by 

protein kinase A.  We speculate that phosphorylation may protect key presynaptic 

proteins from degradation by the UPS.  This view is consistent with evidence that 

downregulation of cAMP signaling leads to silencing (Moulder et al., 2008) and that 

depolarization-induced silencing is proteasome-dependent (Jiang et al., 2010).  In 

addition Munc13-1 and Rim1α, presynaptic proteins essential for vesicle priming 

(Augustin et al., 1999; Betz et al., 2001; Koushika et al., 2001), are selectively degraded 

relative to other presynaptic proteins after stimuli that induce presynaptic silencing (Jiang 

et al., 2010).  This mirrors work in Drosophila showing that the Munc13 ortholog 

Dunc13 is regulated in a G-protein-dependent, cAMP-dependent, and proteasome-

dependent manner (Aravamudan and Broadie, 2003) as well as work at the calyx of Held 

showing that GABAB receptor activation inhibits vesicle recruitment via reduced cAMP 

levels (Sakaba and Neher, 2003).  Since Rim1α is a protein kinase A and UPS substrate 

(Lonart et al., 2003; Yao et al., 2007), phosphorylation-induced Rim1α stability could 

link increased cAMP levels to preserved presynaptic function.  This speculative scenario 

does not preclude the possibility that induction stimuli modulate proteasome activity 

directly in a cAMP-independent manner (Jiang et al., 2010).  Future work may clarify 

whether cAMP-independent G-protein signaling upregulates proteasome activity or 

whether depolarization increases proteasome activity by a pathway divorced from G-

protein signaling.   

 

G-protein signaling in depolarization-induced silencing: 
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Although depolarization-induced presynaptic silencing requires activation of 

inhibitory G-proteins, how G-proteins are activated during prolonged depolarization 

remains unclear.  We excluded four primary candidate GPCRs as well as metabotropic 

actions of kainate receptors (Fig. 4, 5).  Depolarization may cause release of a ligand for 

Gi/o-linked GPCRs that we did not test.  For example, neuromodulatory GPCRs like 

dopamine and serotonin receptors are possible candidates (Catapano and Manji, 2007), 

but monoaminergic cells are absent from our cultures, making ligand presence extremely 

unlikely.  Furthermore the calcium independence of presynaptic muting excludes an 

important role of synaptic release of these potential mediators.  Clearly, if a ligand is 

involved in induction of depolarization-induced muting, it is released through a non-

classical mechanism.  Alternatively, cell autonomous mechanisms such as voltage-

sensitive proteins, including inhibitory GPCRs activated directly by voltage, could 

mediate silencing induction (Reddy et al., 1995; Ben-Chaim et al., 2006; Parnas and 

Parnas, 2007; Okamura et al., 2009).  One intriguing possibility is that of receptor-

independent activation of G-proteins, for instance through recently-described activators 

of G-protein signaling (AGS; Blumer et al., 2007).  AGS proteins interact with G-protein 

subunits to initiate downstream signaling in the absence of receptor activation.  Some 

AGS proteins are expressed in hippocampal neurons, but it is unclear how they are 

activated (Fang et al., 2000; Blumer et al., 2002; Takahashi et al., 2003). 

Although we have learned much about the induction of presynaptic silencing in 

excitatory neurons (Tong et al., 1996; Ma et al., 1999; Moulder et al., 2004; Voronin and 

Cherubini, 2004; Atasoy and Kavalali, 2006; Moulder et al., 2006; Yao et al., 2006; 

Moulder et al., 2008; Jiang et al., 2010), many segments of the signaling cascade have 
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remained obscure.  We show here that calcium-independent, G-protein-dependent, and 

proteasome-dependent mechanisms induce presynaptic muting, suggesting a unique form 

of synaptic plasticity.  Because adaptive synaptic plasticity may counteract potentially 

damaging changes in neuronal activity (Turrigiano and Nelson, 2004), further 

clarification of silencing induction pathways may lead to new therapeutic strategies. 
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Supplemental Figure 1. Acute, but not prolonged, treatments alter paired-pulse 
modulation in excitatory autaptic neurons. A. Left panel: example action-potential 
evoked EPSCs with 50 ms interstimulus interval from autaptic neurons treated 24 hr with 
or without 500 ng/ml pertussis toxin before 4 hr co-application with 30 mM NaCl 
(baseline) or 30 mM KCl (depolarized). Right panel: summary of percentage change in 
EPSC amplitude during 50 ms paired-pulse stimulus in neurons treated as described in 
the left panel. p = 0.09-1.00 with Bonferroni correction for multiple comparisons (n = 13-
14). B. Left panel: example action-potential evoked EPSCs with 50 ms interstimulus 
interval from autaptic neurons treated 4 hr with 30 mM NaCl (baseline) or 30 mM KCl 
(depolarized) in the presence or absence of 200 nM DPCPX. Right panel: summary of 
percentage change in EPSC amplitude during 50 ms paired-pulse stimulus in neurons 
treated as described in the left panel. p = 0.59-1.00 with Bonferroni correction for 
multiple comparisons (n = 9). C. Left panel: example action-potential evoked EPSCs 
with 50 ms interstimulus interval from autaptic neurons treated either acutely (< 1 min; 
control) or for 4 hr with 10 nM CCPA. Right panel: summary of percentage change in 
EPSC amplitude during 50 ms paired-pulse stimulus in neurons treated as described in 
the left panel. p = 0.79 (n = 9-10). D. Left panel: example action-potential evoked EPSCs 
with 50 ms interstimulus interval from autaptic neurons treated either acutely (< 1 min; 
control) or for 4 hr with 50 μM baclofen. Right panel: summary of percentage change in 
EPSC amplitude during 50 ms paired-pulse stimulus in neurons treated as described in 
the left panel. p = 0.08 (n = 9). E. Left panel: example action-potential evoked EPSCs 
with 50 ms interstimulus interval from autaptic neurons treated acutely (< 1 min; control) 
or for 4 hr with 10 nM CCPA and 50 μM baclofen with or without 3 μM MG-132. MG-
132 was added 30 min prior to the start of (and remained during) the 4 hr treatment. Right 
panel: summary of percentage change in EPSC amplitude during 50 ms paired-pulse 
stimulus in neurons treated as described in the left panel. p = 0.66-0.97 without correction 
for multiple comparisons (n = 14-15). F. Left panel: example action-potential evoked 
EPSCs with 50 ms interstimulus interval from autaptic neurons treated acutely with 
locally perfused saline control or 10 μM baclofen. Right panel: summary of percentage 
change in EPSC amplitude during 50 ms paired-pulse stimulus in neurons treated as 
described in the left panel. *p = 0.04 (n = 12). 
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Supplemental Figure 2. Blocking GABAA receptors does not prevent depolarization-
induced silencing. A. Summary of experiments measuring vGluT-1/FM1-43FX 
correspondence in neurons treated 4 hr with 30 mM NaCl (baseline) or 30 mM KCl 
(depolarized) in the presence or absence of 50 μM bicuculline, a GABAA receptor 
antagonist. *p < 0.05 with Bonferroni correction for multiple comparisons (n = 25 fields 
from 5 independent experiments). B. Summary of experiments measuring vGluT-1/FM1-
43FX correspondence in neurons treated 4 hr with 30 mM NaCl (baseline) or 30 mM KCl 
(depolarized) in the presence or absence of 100 μM picrotoxin, another GABAA receptor 
antagonist. *p < 0.05 with Bonferroni correction for multiple comparisons (n = 30 fields 
from 6 independent experiments).   
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Supplemental Figure 3. mGluR, CB1, and kainate receptor agonists do not induce 
silencing. A. Summary of experiments measuring vGluT-1/FM1-43FX correspondence 
in neurons treated 4 hr with or without 200 μM ACPD (mGluR agonist; n = 30 fields 
from 6 coverslips; p = 0.81). B. Summary of experiments measuring vGluT-1/FM1-43FX 
correspondence in neurons treated 4 hr with or without 10 μM L-AP4 (mGluR agonist; n 
= 15 fields from 3 coverslips; p = 0.69). C. Summary of experiments measuring vGluT-
1/FM1-43FX correspondence in neurons treated 4 hr with or without 1 μM WIN55,212-2 
(CB1 agonist; n = 40 fields from 8 coverslips; p = 0.54). D. Summary of experiments 
measuring EPSC amplitude in neurons treated 4 hr with or without 1 μM kainic acid 
(KA; kainate receptor agonist; n = 12 neurons; p = 0.82). E. Summary of experiments 
measuring EPSC amplitude in neurons treated 4 hr with or without 10 μM kainic acid (n 
= 11 neurons; p = 0.47). 
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Chapter 4 

 

Astrocyte-derived thrombospondins mediate the 

development of hippocampal presynaptic 

plasticity 
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Abstract 

Astrocytes contribute to many neuronal functions, including synaptogenesis, but 

their role in the development of synaptic plasticity remains unclear.  Presynaptic muting 

of hippocampal glutamatergic terminals defends against excitotoxicity and has been 

demonstrated at diverse synaptic terminals. Here we studied the role of astrocytes in the 

development of presynaptic muting at glutamatergic hippocampal synapses.  We found 

that astrocytes were critical for the development of depolarization-dependent and Gi/o-

dependent presynaptic muting.  The ability of cAMP analogues to modulate presynaptic 

function was also impaired by astrocyte deficiency.   Although astrocyte deprivation 

resulted in postsynaptic glutamate receptor deficits, this effect appeared independent of 

astrocytes’ role in presynaptic muting.  Muting was restored with chronic but not acute 

treatment with astrocyte-conditioned medium, indicating that a soluble factor is 

permissive for muting.   Astrocyte-derived thrombospondins (TSPs) are likely 

responsible because TSP1 mimicked the effect of conditioned medium, and gabapentin, a 

high-affinity antagonist of TSP binding to the α2δ-1 calcium channel subunit, mimicked 

astrocyte deprivation.  We found evidence that PKA activity is abnormal in astrocyte-

deprived neurons but restored by TSP1, so PKA dysfunction may provide a mechanism 

by which muting is disrupted during astrocyte deficiency.  In summary our results 

suggest an important role for astrocyte-derived TSPs, acting through α2δ-1, in maturation 

of a potentially important form of presynaptic plasticity. 
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Introduction 

Correct development and plasticity of glutamate synapses is critical to brain 

function.  For example, imbalances between excitatory glutamate and inhibitory GABA 

actions are postulated to underlie brain disturbances as diverse as schizophrenia (Lewis 

and Moghaddam, 2006), developmental disability (Wetmore and Garner, 2010), and 

epilepsy (McCormick and Contreras, 2001).  Diverse cues regulate proper synaptic 

development.  Neuron-to-neuron signaling is clearly important for synaptogenesis (Craig 

et al., 2006), but astrocytic factors are also important (Eroglu and Barres, 2010; Pfrieger, 

2010).  Still unclear is the breadth of astrocyte involvement in synapse development and 

the signaling systems affected.  Astrocytic cues can affect postsynaptic function, 

presynaptic function, synaptic plasticity, or combinations of these elements.   

 Our group and others have studied a form of adaptive presynaptic plasticity 

termed muting whereby the number of terminals releasing transmitter is reduced.  Mute 

presynaptic terminals have been studied in a variety of preparations (Tong et al., 1996; 

Bolshakov et al., 1997; Kannenberg et al., 1999; Ma et al., 1999; Kim et al., 2003; 

Losonczy et al., 2004; Moulder et al., 2004; Cousin and Evans, 2011; Crawford and 

Mennerick, 2012).  Reversible presynaptic muting of hippocampal glutamatergic 

synapses occurs in cultured autaptic neurons, conventional mass cultures, and acute 

hippocampal slices (Moulder et al., 2004; Crawford et al., 2011).  Muting is induced by 

electrical stimulation, depolarization challenges, prolonged Gi/o G-protein activation, and 

hypoxic environmental exposures (Moulder et al., 2004; Moulder et al., 2006; Moulder et 

al., 2008; Crawford et al., 2011; Hogins et al., 2011; Crawford and Mennerick, 2012).  

Presynaptic muting may play a role in defending against excitotoxic glutamate release 
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(Hogins et al., 2011), but it is also engaged by physiological changes in activity (Moulder 

et al., 2006).  Despite the wide variety of preparations and conditions under which muting 

occurs (Crawford and Mennerick, 2012), factors controlling development of muting have 

not been explored.   

Muting occurs in single-neuron networks in culture, but because these neurons 

contact astrocytes it is unclear whether muting is cell autonomous or whether astrocyte 

signals modulate or induce muting.  Here we explored muting mechanisms in a 

reductionist environment where astrocyte numbers could be reduced.  We found that 

global, permissive astrocytic signaling rather than local, instructive astrocytic signaling is 

important for the development of muting.  Astrocyte deprivation prevented muting in 

response to both depolarization and G-protein-coupled receptor stimulation.  Chronic, but 

not acute, treatment with astrocyte-conditioned medium rescued muting.  

Thrombospondin (TSP), an astrocyte-derived glycoprotein previously implicated in 

glutamate synapse development (Asch et al., 1986; Christopherson et al., 2005; Eroglu et 

al., 2009; Xu et al., 2010), also rescued muting.  Gabapentin, an antagonist of the TSP 

receptor α2δ-1 (Gee et al., 1996; Eroglu et al., 2009), mimicked the effects of astrocyte 

deprivation by preventing muting competence.  Gabapentin additionally prevented 

adaptive network plasticity.  Although the downstream pathways initiated by TSP 

binding to α2δ-1 remain unclear, astrocyte deprivation led to altered PKA activity, as 

suggested by abnormal responses to cAMP analogues and over-phosphorylation of PKA 

substrates.  TSP treatment corrected these abnormalities.  Our results suggest that 

astrocyte-derived TSPs are important developmental modulators of presynaptic plasticity.   
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Materials and Methods 

 

Primary Hippocampal Cultures:  

All experiments were performed in accordance with National Institutes of Health 

guidelines and were approved by the Washington University Animal Studies Committee.  

For microcultures, culture dishes (35 mm) were first covered with a thin layer of 0.15% 

agarose and then stamped with 150-200 μm diameter microdots of 0.5 mg/ml collagen 

using a polydimethylsiloxane microstamp as previously described (Moulder et al., 2007).  

Cortical astrocytes from postnatal d 4 male and female rat pups were seeded on these 

islands in Eagle’s medium (Life Technologies) supplemented with 5% heat-inactivated 

horse serum, 5% fetal bovine serum, 17 mM D-glucose, 400 μM glutamine, 50 U/ml 

penicillin, and 50 μg/ml streptomycin.  Glial preplates were maintained in a humidified 

and atmospherically controlled incubator (5% CO2/95% air at 37°C) prior to neuronal 

plating.  Astrocyte-poor cultures were prepared 7-10 d after plating by fixation with 4% 

paraformaldehyde/0.2% glutaraldehyde in phosphate-buffered saline (PBS) at room 

temperature (RT) for 5 min prior to at least 3 washes in PBS.  Alternatively, 70% ethanol 

at -20ºC was applied for 30 min prior to PBS rinses.  Although most experiments used 

aldehyde fixation, both astrocyte fixation protocols produced the finding shown in Figure 

1B.  For mass cultures used in Figure 5, a confluent layer of polylysine/laminin was 

applied to the culture dish prior to neuronal plating. 

 Hippocampal neurons were dispersed on fixed or live astrocyte beds for 

microcultures while astrocytes and neurons were co-plated for mass cultures as 

previously described (Mennerick et al., 1995).  Briefly, male and female postnatal d 0-3 
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Sprague Dawley rat hippocampi were dissected, incubated with 1 mg/ml papain, and 

mechanically dissociated.  To encourage the formation of autaptic (solitary) neurons in 

microcultures, cells were plated at low density (~100 cells/mm2).  For mass cultures, cells 

were plated at high density (~650 cells/mm2) to encourage neuron-astrocyte co-cultures 

to form.  After 3-4 d, 6.7 μM cytosine arabinoside was added to inhibit cell division.  One 

half of the culture medium was exchanged with Neurobasal medium (Life Technologies) 

plus B27 supplement at DIV 4-5.  Conditioned media were from astrocyte cultures or 

from neuron-astrocyte co-cultures; similar results were obtained with both.  Non-

conditioned medium was fresh Neurobasal without supplements.  Unless otherwise 

stated, all experiments were performed at 10-14 DIV, and controls were sibling cultures 

used the same day.   

 

Electrophysiology:  

Whole-cell voltage-clamp recordings were performed on autaptic neurons in 

microisland culture unless otherwise stated.  Data were collected using pClamp 9 

software with a Multiclamp 700B or Axopatch 200B amplifier and Digidata1322A data 

acquisition board (Molecular Devices).  Recording saline typically contained 138 mM 

NaCl, 4 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 10 mM glucose, 10 mM HEPES, and 25 

μM D-APV (Tocris Bioscience) at a pH of 7.25.  For experiments requiring NMDA 

receptor activation, 10 μM glycine (Tocris Bioscience) was added to the saline solution 

and MgCl2 was excluded.  Pipette solution contained 140 mM potassium gluconate, 4 

mM NaCl, 0.5 mM, 0.5 mM CaCl2, 5 mM EGTA, and 10 mM HEPES at a pH of 7.25.  

For experiments in which both excitatory and inhibitory postsynaptic currents (EPSCs 
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and IPSCs) were collected during the same recording session from autaptic neurons, 

potassium gluconate was replaced with 140 mM KCl.  For network activity experiments 

measuring spontaneous EPSCs and IPSCs in mass cultures, 130 mM cesium 

methanesulfonate replaced potassium gluconate. 

 Recordings were performed at room temperature.  Electrode pipettes were pulled 

from borosilicate glass (World Precision Instruments) and had 3-6 MΩ resistance.  

Access resistance was compensated 85-100%, and membrane potential was typically held 

at -70 mV.  For network activity experiments in mass cultures, neurons were voltage-

clamped at -30 mV or -35 mV, midway between IPSC and EPSC reversal potentials, 

without compensation to measure spontaneous network activity due to excitation and 

inhibition simultaneously.  Input resistance (astrocyte-rich: 189.3 ± 39.3 MΩ; astrocyte-

poor: 212.4 ± 76.3 MΩ; n=11-12 neurons; p=0.77, Student’s unpaired t test) and cell 

capacitance (astrocyte-rich: 73.3 ± 7.3 pF; astrocyte-poor: 94.0 ± 10.3 pF; n=14-16 

neurons; p=0.11, Student’s unpaired t test) were similar in neurons from astrocyte-poor 

cultures compared with sibling astrocyte-rich cultures.  Autaptic EPSCs and IPSCs were 

evoked by a 1.5 ms pulse depolarization to 0 mV.  Paired-pulse responses were obtained 

by evoking two such depolarizing pulses 50 ms apart.  Signals were sampled at 10 kHz 

and low-pass filtered at 4 kHz, except for miniature EPSCs collected at 5 kHz and filtered 

at 1 kHz and spontaneous EPSCs and IPSCs collected at 5 kHz and filtered at 2 kHz.  

Autaptic EPSCs were recorded up to 1 h after switch to recording saline.  When solutions 

were applied acutely to neurons, a multibarrel perfusion system was used with a common 

port placed within 0.5 mm of the neuron; solution exchange times were ~100 ms. 

 Glutamate receptor blockers (50 μM D-APV and 1 μM NBQX) were present 
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during all depolarization challenges (30 mM KCl for depolarization or NaCl as a non-

depolarized osmotic control) to prevent toxicity and NMDA receptor-dependent 

plasticity.  Control treatments for all other experiments consisted of vehicle treatment 

unless otherwise specified.   

 

Immunostaining and Microscopy:  

FM1-43 dye labeling was performed as previously described (Moulder et al., 

2010).  Briefly, microisland cultures were treated for 2 min with 10 μM fixable FM1-43 

(FM1-43FX; Life Technologies) in recording saline supplemented with 45 mM KCl and 

1 μM NBQX.  Immediately following, the culture dishes were briefly washed (5s) in 

saline supplemented with 500 μM Advasep-7 (CyDex) and 1 μM NBQX.  Cells rested 

during 10 min of washes with saline plus 1 μM NBQX and were then fixed for 10 min.  

Fixation prior to immunostaining was 4% paraformaldehyde at RT, 4% 

paraformaldehyde/0.2% glutaraldehyde at RT, 4% paraformaldehyde/0.02% 

glutaraldehyde at RT, or 100% methanol at -20 ºC.  All culture dishes were washed with 

PBS at RT followed by 2% normal goat serum in PBS blocking solution plus 0.1% or 

0.04% Triton X-100.  Primary antibodies were vesicular glutamate transporter 1 (vGluT-

1; 1:2000; Millipore), MAP2 (1:2000; Millipore), phospho-synapsin (1:400; Millipore), 

synapsin (1:2000; Millipore), phospho-cAMP response element binding protein 

(phospho-CREB; 1:400; Millipore), γ-aminobutyric acid (GABA; 1:500), and phospho-

dynamin 1 (1:100; Santa Cruz Biotechnology).  Primary antibodies were applied for 2-3 h 

at RT before PBS wash, 30-40 min secondary antibody incubation with Alexa Fluor 

conjugates (Life Technologies), and glass coverslipping with Fluoromount G (Southern 
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Biotechnology Associates). 

 FM1-43FX and immunostaining images were acquired on an inverted Eclipse 

TE2000-S microscope with a 60X objective (1.4 numerical aperture) using a C1 scanning 

confocal laser (488, 543, and/or 633 nm) and EZ-C1 software (Nikon).  Alternating laser 

lines were used to obtain z-stack images while all gain and acquisition settings were held 

constant within a given experiment.  Two-dimensional projected images were created and 

analyzed using MetaMorph 7 software (Universal Imaging). 

 Live cell images were obtained on an Eclipse TE2000-S inverted microscope 

(Nikon) with a 40X objective (0.6 numerical aperture; Nikon) and a metal halide lamp.  

Images were acquired with MetaMorph 7 software and a cooled 12-bit CCD camera 

(Photometrics). 

 

Data Analysis:  

Data were analyzed and graphed using MetaMorph 7, Clampfit 9 (Molecular 

Devices), Mini Analysis 6 (Synaptosoft Inc.), Excel 2007 (Microsoft), and/or SigmaPlot 

10 (Systat) software.  Unless otherwise stated, data are displayed as mean ± SEM, and 

Student’s unpaired t test was used to compare 2 groups while a Bonferroni correction was 

applied when experiments contained more than 2 groups.  A corrected p value of < 0.05 

was required to reach significance. The reported n refers to the sample size of each group 

within an experiment. 

 At least 3 EPSC amplitudes were averaged for each autaptic neuron.  For each 

recording day, responses from experimental treatments were normalized to the average 

response in the control-treated sibling culture.  For dual-component autaptic EPSCs, peak 
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EPSC amplitude estimated the AMPA receptor component while the average current 80-

100 ms following the peak estimated the NMDA receptor component (Hestrin et al., 

1990).  Miniature EPSCs were elicited by perfusion of 100 mM sucrose and analyzed 

using Mini Analysis software with manual confirmation.  The first 57 miniature EPSC 

inter-event interval and amplitude values were used for Kolmorgorov-Smirnov tests 

while values for all miniature EPSCs from a given neuron were averaged for Mann-

Whitney U tests. 

 At least 10 fields per culture dish were used to calculate the percentage of live 

(calcein-positive) islands.  For the percentage of FM1-43-positive vGluT-1 synapses, 

regions of interest were manually drawn around 10 vGluT-1 puncta per field for 5 fields 

per culture dish.  As previously described (Crawford et al., 2011), FM1-43 images were 

thresholded before analyzing vGluT-1-defined regions, and synapses were considered 

active if at least 10 pixels reached threshold.  Similarly, 10 vGluT-1-defined regions were 

manually drawn per field before analyzing synapsin and phospho-synapsin images.  The 

number and intensity of vGluT-1-positive synapses in autaptic neurons was quantified via 

automatic detection in thresholded images using MetaMorph 7 software.  Most 

immunostaining experiments used glutamatergic autaptic neurons, identified by vGluT-1 

immunoreactivity.  Glutamatergic neurons on multi-cell islands were analyzed for 

nuclear phospho-CREB experiments, however, and antibody incompatibility precluded 

double labeling in phospho-dynamin 1 experiments.  For display in figures, all images 

within a panel were pseudocolored and adjusted for brightness and contrast equivalently. 
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Materials:  

Rp-cAMPS and 2-chloro-N6-cyclopentyladenosine (CCPA) were obtained from 

Tocris Bioscience, kainic acid was purchased from BioVectra, calcein-AM was 

purchased from AnaSpec, Inc., human recombinant thrombospondin 1 (TSP1) was 

obtained from Haematologic Technologies, Inc., and tumor necrosis factor alpha (TNFα) 

was obtained from EMD4 Biosciences.  All other materials were obtained from Sigma-

Aldrich unless otherwise specified. 
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Results 

We reduced glial signaling in rat hippocampal cultures by growing neurons on 

fixed or live astrocyte beds (Fig. 1A).  This strategy permitted identical culture conditions 

for astrocyte-rich and astrocyte-poor cultures, except for the number of viable astrocytes.  

It also allowed control neurons the full benefit of local and global astrocytic cues, unlike 

preparations where control neurons only receive soluble astrocytic signals (Kaech and 

Banker, 2006).  EPSCs from day in vitro (DIV) 10-14 autaptic neurons in astrocyte-rich 

microcultures were persistently depressed with as little as 60 min depolarization, as 

assessed up to 1 h following the removal of depolarization (Fig. 1B and 1C), while 30 

minutes of depolarization yielded insignificant muting (p=0.45).  We have shown 

previously that this depolarization-induced depression is selective for glutamate synapses 

and arises from muting in the absence of synapse loss or postsynaptic receptor changes 

(Moulder et al., 2004; Moulder et al., 2006).  By contrast, neurons in astrocyte-poor 

cultures exhibited no EPSC depression with up to 4 h depolarization, which produced 

strong muting in astrocyte-rich cultures (Fig. 1B and 1C).  Muting, therefore, is impaired 

in astrocyte-poor cultures. 

 To evaluate whether astrocyte-deprived neurons simply failed to depolarize 

properly, and to test an alternative method of muting induction, we incubated cells in 

Gi/o-coupled receptor agonists CCPA (an A1 adenosine receptor agonist) and baclofen (a 

GABAB receptor agonist) or in cAMP-activated protein kinase A (PKA) antagonist Rp-

cAMPS, both of which have been shown to induce presynaptic muting (Moulder et al., 

2008; Crawford et al., 2011).  These agents depressed EPSCs in astrocyte-rich cultures, 

as expected, but significantly increased EPSC amplitudes in astrocyte-poor cultures (Fig.  
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Figure 1. Astrocyte deprivation impairs presynaptic muting but not G-protein 
activation. A. Phase-contrast and fluorescence images of autaptic neurons on viable 
(control) or non-viable (4% paraformaldehyde/0.2% glutaraldehyde-fixed) glial “islands” 
acquired 30 min after 5 μg/ml calcein-AM treatment. Fewer islands contained live 
(calcein-positive) astrocytes in fixed cultures (control: 98.8 ± 0.9% live islands; fixed: 
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17.6 ± 2.8% live islands; n=6 dishes; p=7.9 x 10-11, Student’s unpaired t test). Scale bar 
represents 40 μm. B. Representative autaptic EPSCs from astrocyte-rich or astrocyte-poor 
microcultures recorded in normal saline up to 1 h after 4 h control (30 mM NaCl) or 
depolarization (30 mM KCl). C. Summary EPSCs from DIV 10-14 astrocyte-rich (+) or 
astrocyte-poor (-) autaptic neurons after indicated treatment times with 30 mM KCl 
(black bars), 10 nM CCPA (A1 adenosine receptor agonist) plus 50 μM baclofen 
(GABAB receptor agonist) (C+B; yellow bars), or 50 μM Rp-cAMPS (Rp; cyan bars). 
EPSCs were normalized to the average EPSCs from control-treated sibling neurons for 
each recording day (n=14-22 neurons; *p<0.05 vs. treatment controls, Student’s unpaired 
t test). D. Left: EPSCs from astrocyte-rich or astrocyte-poor cultures after acute perfusion 
with recording saline (control) or 20 μM baclofen. Right: summary of EPSC depression 
from acute perfusion of baclofen (n=11 neurons; p=0.14, Student’s unpaired t test). E. 
Left: EPSCs from astrocyte-rich or astrocyte-poor cultures after acute perfusion with 
recording saline (control) or 10 nM CCPA. Right: summary of EPSC depression from 
acute perfusion of CCPA (n=11 neurons; p=0.08, Student’s unpaired t test).  The same 
neurons were used for panel D and panel E experiments, using an interleaved protocol 
between saline and agonist-containing solutions. 
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1C).  This unexpected reversal of EPSC depression indicated an abnormality in muting 

induction.  Meanwhile, canonical acute presynaptic depression, mediated by Gβγ subunit 

signaling (Brown and Sihra, 2008), did not differ in astrocyte-poor cultures (Fig. 1D and 

1E).  Therefore, the muting deficit in astrocyte-deprived neurons is likely downstream of 

depolarization and Gαi/o subunit-mediated cAMP signaling. 

 Basal EPSC amplitude was smaller in astrocyte-deprived cultures than in 

astrocyte-rich cultures (astrocyte-rich: -18.3 ± 5.7 nA; astrocyte-poor: -5.0 ± 1.4 nA; 

n=15-16; p=0.037, Student’s unpaired t test); however, IPSCs were similar (astrocyte-

rich: -7.6 ± 2.5 nA; astrocyte-poor: -8.7 ± 1.9 nA; n=14 neurons; p=0.74, Student’s 

unpaired t test), suggesting that the basal deficit in amplitude in astrocyte-poor cultures 

localized specifically to glutamatergic synapses.  The decreased amplitude was not 

explained by differences in local astrocytic signaling because neurons in astrocyte-

deprived cultures on an island containing one of the few contaminating live astrocytes did 

not have larger EPSCs than neurons associated with non-viable islands, as assessed by a 

vital stain (Fig. 2A).  A global deficit in astrocyte-poor cultures, therefore, likely explains 

the basal EPSC depression. 

 Decreased functionally active presynaptic terminals did not explain the basal 

EPSC depression or the deficient stimulus-induced muting in astrocyte-poor cultures.  

The percentage of basally mute terminals, as measured via absence of stimulus-induced 

FM1-43FX dye labeling of vesicles at vGluT-1-immunoreactive synapses, was similar in 

astrocyte-rich and astrocyte-poor cultures (Fig. 2B).  Furthermore, neither the number nor 

the intensity of vGluT-1 puncta per cell differed, suggesting normal synapse and vesicle 

numbers (Fig. 2C). Paired-pulse EPSC depression was also normal, suggesting similar  
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Figure 2. Astrocyte deprivation does not impair basal presynaptic function. A. 
EPSCs from autaptic neurons in astrocyte-poor cultures from islands with residual live 
astrocytes (calcein-positive) or no live astrocytes (calcein-negative). The few local 
astrocytes in astrocyte-poor cultures did not significantly affect EPSC amplitude (n=13-
16 neurons; p=0.13, Student’s unpaired t test). B. Left: images of 10 μM FM1-43FX 
labeling of presynaptic terminals (green) after 2 min 45 mM KCl and subsequent vGluT-
1 immunostaining (magenta) in autaptic neurons from astrocyte-rich and astrocyte-poor 
cultures (30 min -20ºC 70% EtOH-fixed astrocytes). Scale bar represents 5 μm. Right: 
quantification of the percentage of active synapses, as defined by FM1-43 co-localization 
with vGluT-1 (n=8 dishes; p=0.44, Student’s unpaired t test). C. Left: vGluT-1 (magenta) 
and MAP2 (cyan) immunostaining in autaptic neurons showing similar density and 
intensity of presynaptic terminals. Scale bar represents 20 μm. Right: summary of vGluT-
1 puncta per autaptic neuron (n=35 neurons; p=0.74, Student’s unpaired t test) and 
vGluT-1 integrated fluorescence intensity (n=35 neurons; p=0.80, Student’s unpaired t 
test). 
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vesicle release probability (astrocyte-rich: 5.1 ± 9.2%; astrocyte-poor: 18.2 ± 8.6%; 

n=15-16; p=0.3, Student’s unpaired t test).  No deficits in presynaptic function, therefore, 

were detected with reduced astrocytic signaling.  

A postsynaptic deficit, rather, appeared to explain the basal EPSC depression in 

astrocyte-poor cultures.  AMPA receptor and NMDA receptor components of EPSCs 

were reduced in parallel (Fig. 3A), and this parallel depression was associated with 

decreased responsiveness to exogenously applied selective agonists for both receptor 

types (Fig. 3B).  Additionally, miniature EPSC (mEPSC) amplitude was reduced (Fig. 

3C), further suggesting that postsynaptic receptor levels are decreased in astrocyte-poor 

cultures.  Frequency of mEPSCs also trended toward reduction (Fig. 3C), but it was 

unclear whether this resulted from an undetected presynaptic change or whether the 

smallest mEPSCs fell below the detection threshold.  To ask whether the decreased basal 

EPSC amplitude contributed to the muting deficit in astrocyte-poor cultures, we 

attempted to induce muting in young (DIV 7-8), astrocyte-rich cultures.  Despite smaller 

basal EPSC amplitudes similar to those found in DIV 10-14 astrocyte-poor cultures (-

3.75 ± 0.95 nA; n=17), these younger neurons in astrocyte-rich cultures expressed muting 

in response to a 4 h depolarization challenge (Fig. 4A and 4E).  Conversely, older (DIV 

21), astrocyte-poor cultures with larger basal EPSC amplitudes (-10.27 ± 4.02 nA; n=12) 

did not exhibit muting (Fig. 4E).  Together with prior published studies suggesting that 

postsynaptic glutamate receptor function is not required for muting induction (Moulder et 

al., 2004; Moulder et al., 2006), these data suggest that the postsynaptic changes caused 

by astrocyte deficiency do not explain the muting deficits.  Because glial modulation of 

glutamate receptor levels and function has been studied previously (Beattie et al., 2002;  
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Figure 3. Glutamate receptor levels are decreased in astrocyte-poor cultures. A. 
Left: Representative dual-component (NMDA and AMPA receptor-mediated) EPSCs 
elicited in autaptic neurons from astrocyte-rich or astrocyte-poor cultures. Right: 
quantification of the ratio of the NMDA to AMPA receptor component of EPSCs (n=14-
15 neurons; p=0.34, Student’s unpaired t test). B. Top traces: currents from autaptic 
neurons in astrocyte-rich or astrocyte-poor cultures in response to acute kainic acid (KA) 
perfusion, a non-desensitizing AMPA receptor agonist. Bottom traces: currents from 
autaptic neurons in astrocyte-rich or astrocyte-poor cultures in response to acute NMDA 
perfusion to selectively activate NMDA receptors. Right: quantification of the current 
density in response to KA (n=14-15 neurons; p=0.004, Student’s unpaired t test) or of the 
ratio of the NMDA response to the KA response (n=14-15 neurons; p=0.16, Student’s 
unpaired t test). Although the overall response to receptor activation was depressed in 
astrocyte-poor cultures, NMDA to AMPA receptor current ratios did not differ 
significantly. C. Left: representative miniature EPSCs from astrocyte-rich or astrocyte-
poor cultures elicited by acute perfusion of 100 mM sucrose. Right: cumulative 
probability plots of inter-event interval (p<0.001 with D=0.3860) and amplitude (p<0.001 
with D=0.2175) of miniature EPSCs from 10 astrocyte-rich and 10 astrocyte-poor 
neurons (Kolmogorov-Smirnov test). Insets: average ± SEM miniature EPSC inter-event 
interval (n=10 neurons; p>0.05, Mann-Whitney U test) and amplitude (n=10 neurons; 
p<0.01, Mann-Whitney U test).  
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Stellwagen and Malenka, 2006; Perea et al., 2009; Sullivan et al., 2011), we did not 

further characterize the mechanisms responsible for this postsynaptic deficit in astrocyte-

poor cultures.   

 Astrocytes could directly instruct muting during depolarization (e.g. through 

gliotransmission), or they could permit development of muting competence (e.g. through 

global cues).  In support of the latter, conditioned medium from mature, live-astrocyte 

cultures added to astrocyte-poor cultures at DIV 7 rescued muting, even when 

conditioned medium was replaced with fresh medium during the depolarization challenge 

(Fig. 4B and 4E).  Conditioned medium was ineffective if applied only during the muting 

induction protocol (Fig. 4C and 4E).  Thus, glial factors are not released instructively 

during muting induction and are, instead, released permissively during synapse 

development.  Because older (DIV 21), astrocyte-poor cultures failed to express muting 

(Fig. 4E), it is unlikely that muting competence is delayed in the absence of astrocytes.  

Rather, it appears that astrocytes provide a fundamental developmental cue that permits 

muting competence. 

   We hypothesized that astrocytes release a permissive substance for muting 

development rather than remove a non-permissive factor.  We tested effects of adding 

human thrombospondin 1 (TSP1; 5 μg/ml) to astrocyte-poor cultures because astrocyte-

derived TSPs foster presynaptic maturation via binding to the neuronal α2δ-1 subunit of 

voltage-gated calcium channels or to neuroligin 1 (Eroglu et al., 2009; Xu et al., 2010).  

Incubation in human TSP1 starting at DIV 7 rescued presynaptic muting competence in 

astrocyte-poor cultures (Fig. 4D and 4E).  In contrast, tumor necrosis factor alpha (TNFα; 

1 ng/ml), an astrocyte-derived factor involved in postsynaptic plasticity (Beattie et al.,  
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Figure 4. Soluble, astrocyte-derived thrombospondin rescues presynaptic muting 
competence. A-D. Representative DIV 7-12 autaptic EPSCs after 4 h control (30 mM 
NaCl) or depolarization (30 mM KCl).  Cultures were (A) astrocyte-rich and challenged 
at DIV 7 without additional treatments, (B) astrocyte-poor and treated with astrocyte-
conditioned medium (CM) at DIV 7 and challenged at DIV 10-12, (C) astrocyte-poor and 
challenged at DIV 10-12 in CM, or (D) astrocyte-poor and treated with 5 μg/ml human 
thrombospondin 1 (TSP) at DIV 7 and challenged at DIV 10-12. E. Summary of EPSCs 
after 4 h 30 mM KCl or 50 μM Rp-cAMPS (Rp) with indicated pretreatments and/or co-
treatments (n=12-20 neurons; *p<0.05 vs. treatment controls, Student’s unpaired t test). 
EPSCs were normalized as in Figure 1C.  Abbreviations: astrocyte-rich cultures (+), 
astrocyte-poor cultures (-), 1 ng/ml tumor necrosis factor alpha (TNFα), 32 μM 
gabapentin (GBP), and fresh, non-conditioned medium (FM). 
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2002; Stellwagen and Malenka, 2006), did not rescue muting in astrocyte-poor cultures 

(Fig. 4E).  These data suggest that TSP1 is capable of promoting muting competence but 

do not clarify whether TSPs are the endogenous astrocytic factors responsible. 

 To test for the receptor through which TSP1 promotes muting, we blocked TSP 

binding to the candidate receptor α2δ-1 using gabapentin, a clinically used drug for the 

treatment of neuropathic pain and epilepsy.  Gabapentin interferes with TSP binding to 

α2δ-1 and prevents TSP’s synaptogenic effects in retinal ganglion neurons (Gee et al., 

1996; Eroglu et al., 2009).  In astrocyte-poor cultures, gabapentin (32 μM) abolished 

conditioned medium rescue of depolarization-induced muting (Fig. 4E), suggesting that 

TSPs are likely the astrocyte-derived regulators of muting competence.  We also 

evaluated the effect of gabapentin in live-astrocyte cultures, where ongoing production of 

astrocytic TSPs was an additional consideration.  In these cultures, a single treatment 

with gabapentin at DIV 7 was ineffective in preventing silencing, as assessed at DIV 10-

12 (Fig. 5A and 5C); however, 3-5 d maintenance of gabapentin by partial medium 

exchange in astrocyte-rich cultures eliminated depolarization-induced muting (Fig. 5B 

and 5C).  These results suggest that gabapentin also blocks endogenously-released factors 

important for muting when the ongoing production of the factors is taken into account.   

To test whether use of this drug to block endogenous TSP could have implications 

for neural network function, we measured spontaneous network activity after muting 

induction in control- and gabapentin-treated cultures.  These astrocyte-rich, conventional 

mass cultures exhibited decreased spontaneous activity after muting induction (Fig. 5D 

and 5E), consistent with an adaptive role for muting (Hogins et al., 2011; Crawford and 

Mennerick, 2012).  In gabapentin-treated cultures, however, a non-significant increase in  



166 
 

 
 
Figure 5. Gabapentin prevents the development of muting competence. A. 
Representative DIV 10-12 autaptic EPSCs after 4 h control (30 mM NaCl) or depolarized 
(30 mM KCl). Astrocyte-rich cultures were treated with 32 μM gabapentin at DIV 7 (1x 
GBP). B. DIV 10-12 autaptic EPSCs after 4 h control or depolarized. Astrocyte-rich 
cultures were treated with 32 μM gabapentin at DIV 7 followed by half-media switches 
of fresh 32 μM gabapentin in astrocyte-conditioned medium every day (3-5x GBP). C. 
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Summary of DIV 10-12 autaptic EPSCs after 4 h 30 mM KCl with indicated 
pretreatments (n=12-14 neurons; *p<0.05 vs. treatment controls, Student’s unpaired t 
test). EPSCs were normalized as in Figure 1C. D. Spontaneous activity in DIV 11-13 
mass cultures after 4 h control (30 mM NaCl) or depolarized (30 mM KCl). Cultures 
were treated at DIV 7 with or without 32 μM gabapentin followed by daily half media 
switches with astrocyte-conditioned medium (CM) or CM plus 32 μM gabapentin (3-5x 
GBP). EPSCs and IPSCs were measured simultaneously at -35 mV. E. Summary of total 
spontaneous synaptic activity (EPSC + IPSC points) in DIV 11-13 mass cultures, 
normalized to control (CM, NaCl) for each recording day (n=23 neurons; *p<0.05, 
Bonferroni corrected). 
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network activity was observed (Bonferroni corrected p=0.16), but no change in network 

activity occurred after the muting induction protocol (Fig. 5D and 5E), suggesting that 

muting was not induced.  Together, these results argue that TSP binding to α2δ-1 fosters 

development of presynaptic muting competence.   

 Although the signaling pathways downstream of α2δ-1 are unclear, we 

hypothesized that PKA signaling, which regulates muting (Moulder et al., 2008), is 

altered in astrocyte-deprived neurons.  This hypothesis was based in part on the 

observations that both Gi/o-coupled receptor agonist-induced muting and Rp-cAMPS-

induced muting were dysfunctional (Fig. 1C).  To test whether PKA activity was normal 

in astrocyte-poor cultures, we measured phosphorylation levels of PKA substrates in 

neurons.  We found that phosphorylation levels of the presynaptic protein synapsin at its 

PKA phosphorylation site were increased in astrocyte-poor cultures despite unchanged 

levels of total synapsin (Fig. 6).  Phosphorylation of cAMP response element-binding 

protein, another PKA substrate, was also abnormally high in neuronal nuclei from 

astrocyte-deprived cultures (Fig. 7A).  In contrast, phosphorylation of dynamin 1, a PKC 

substrate, was unchanged in astrocyte-poor cultures (Fig. 7B), suggesting that the over-

phosphorylation phenotype was restricted to PKA phosphorylation sites.  TSP1 reversed 

abnormal presynaptic phospho-synapsin (Fig. 6A and 6B), so TSP appears to restore 

normal PKA targeting and/or activity.  Furthermore, TSP1 incubation reinstated normal 

Rp-cAMPS-induced persistent EPSC depression in astrocyte-poor cultures (Fig. 4E).  

Together, these results suggest that TSP promotes muting competence via normalization 

of signaling downstream of cAMP pathways. 
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Figure 6. PKA-dependent hyper-phosphorylation is normalized by thrombospondin. 
A.  Phospho-synapsin (PKA phosphorylation site) immunostaining in DIV 10-12 autaptic 
neurons from astrocyte-rich or astrocyte-poor cultures with or without 5 μg/ml 
thrombospondin (TSP) treatment at DIV 7. Red circles are representative regions of 
interest defined by vGluT-1 immunoreactivity (not shown). Scale bar represents 5 μm. B. 
Summary of background-subtracted phospho-synapsin at vGluT-1-positive synapses in 
DIV 10-12 autaptic neurons (n=35 neurons; *p<0.05, Bonferroni corrected). C. Left: 
synapsin immunostaining in autaptic neurons from astrocyte-rich or astrocyte-poor 
cultures. Right: summary of background-subtracted synapsin immunoreactivity (n=35 
neurons; p=0.51, Student’s unpaired t test) at vGluT-1-defined synapses (red circles are 
representative). Scale bar represents 5 μm. 
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Figure 7. A PKA target, but not a non-PKA target, is hyper-phosphorylated in 
astrocyte-poor cultures. A. Left: MAP2, GABA, and phospho-CREB (PKA 
phosphorylation site) immunoreactivity in neurons on multi-cell islands from astrocyte-
rich or astrocyte-poor cultures. Scale bar represents 20 μm. Right: quantification of 
background-subtracted phospho-CREB intensity from GABA-negative nuclei (n=60-89 
neurons; p=3.7x10-13, Student’s unpaired t test). B. Left: phospho-dynamin 1 (PKC 
phosphorylation site) immunoreactivity in autaptic neurons from astrocyte-rich and 
astrocyte-poor cultures. Scale bar represents 20 μm. Right: quantification of background-
subtracted phospho-dynamin 1 intensity from a single primary and two secondary 
dendrites averaged per neuron (n=30 neurons; *p<0.05, Bonferroni corrected).  As a 
positive control, we treated for 30 min with phorbol ester (1 μM PDBu) to increase PKC-
dependent phosphorylation. 
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Discussion 

Here we have demonstrated that astrocytes serve as permissive partners in the 

development of a form of persistent synaptic depression, presynaptic muting.  In 

glutamatergic neurons from astrocyte-poor cultures, basal presynaptic function remained 

intact, suggesting that astrocytes modulate presynaptic plasticity competence differently 

than they regulate other types of presynaptic development.  Astrocytic signaling was 

permissive, but not acutely instructive, for muting induction.  Astrocyte-derived TSPs 

promoted the development of muting ability, as induced with varied stimuli, likely 

through α2δ-1 calcium channel subunits.  Although the signaling pathways immediately 

downstream of α2δ-1 remain to be clarified, PKA appears to be an important downstream 

effector.  PKA-dependent phosphorylation and synaptic behavior were abnormal in 

astrocyte-poor cultures but restored by TSP1 treatment, providing a potential mechanism 

by which TSP modulates muting competence.  

TSPs are a class of proteins originally discovered in intact human blood platelets 

(Baenziger et al., 1971).  In the brain, at least 4 TSPs are expressed in various regions and 

cell types (Iruela-Arispe et al., 1993; Adams and Tucker, 2000).  TSPs are released from 

astrocytes and known to promote synaptogenesis (Asch et al., 1986; Christopherson et al., 

2005; Xu et al., 2010), but because TSP-induced glutamate synapses in retinal ganglion 

cells are postsynaptically silent (Christopherson et al., 2005; Eroglu et al., 2009), TSPs 

may be involved mainly in presynaptic rather than postsynaptic differentiation.  This is 

especially interesting given that TSPs act postsynaptically to produce these presynaptic 

effects (Eroglu et al., 2009; Xu et al., 2010).  TSP increases the total number of synapses 

in retinal ganglion cells (Christopherson et al., 2005; Eroglu et al., 2009) but accelerates 
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synaptogenesis without altering total synapse number in hippocampal neurons (Xu et al., 

2010).  This regional difference in TSP’s synaptogenic effects could explain why 

astrocyte deprivation failed to change total synapse number in our study of hippocampal 

neurons and why these effects of TSP on hippocampal plasticity have been previously 

overlooked.  Because TSP expression increases after injury and is important for 

behavioral recovery after stroke (Lin et al., 2003; Liauw et al., 2008), TSP may be 

important generally for adaptive neuronal responses.  Presynaptic muting, which reduced 

network activity during an excitatory insult during this study, and protected neurons 

against hypoxia in a prior study (Hogins et al., 2011), could be one such TSP-mediated 

synaptic ability contributing to adaptive neural responses during brain insults. 

 TSP promoted muting competence through its interaction with the α2δ-1 calcium 

channel subunit.  This subunit serves as the TSP receptor for synaptogenesis in retinal 

ganglion cells (Eroglu et al., 2009) and as the receptor for the antinociceptive and 

anticonvulsant drug gabapentin (Gee et al., 1996).  Gabapentin’s therapeutic effects may 

arise from alterations in calcium channel organization (Arikkath and Campbell, 2003; 

Field et al., 2006; Bauer et al., 2009; Bauer et al., 2010; Hoppa et al., 2012), among other 

neuronal changes (Freiman et al., 2001; Gu and Huang, 2001; Stefani et al., 2001; Surges 

et al., 2003).  Gabapentin binding to α2δ-1 antagonizes TSP-induced synaptic 

development in retinal ganglion neurons (Eroglu et al., 2009), and we found that 

gabapentin prevented the development of muting competence in hippocampal neurons, 

implicating TSP binding to α2δ-1 in this effect.   

Muting incompetence due to gabapentin could also have clinical implications.  

Previous studies have demonstrated a wide variety of effects of gabapentin on synaptic 
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and behavioral plasticity including no effect (Cilio et al., 2001; Heidegger et al., 2010), 

reduced plasticity (Blake et al., 2007; Eroglu et al., 2009; Kurokawa et al., 2011), and 

enhanced learning (Buccafusco et al., 2010).  In our study gabapentin blocked adaptive 

network changes in response to a stimulus known to selectively induce muting.  Although 

we saw a non-significant increase in total network activity after gabapentin treatment, 

this likely does not explain the lack of muting since muting is promoted by increased 

network activity (Moulder et al., 2004; Moulder et al., 2006).  Our study and a previous 

study (Eroglu et al., 2009) suggest that synaptogenic periods might be particularly 

vulnerable to unintended effects of gabapentin.   

Our work implicates PKA signaling in TSP’s promotion of muting competence.  

Gi/o-linked receptor agonists and PKA inhibitors, which normally produce muting 

(Moulder et al., 2008; Crawford et al., 2011), persistently potentiated EPSCs in astrocyte-

poor cultures.  Additionally, PKA substrates in the presynaptic terminal and the nucleus 

were hyper-phosphorylated in astrocyte-deprived cultures, indicating an abnormal 

increase in PKA site phosphorylation or a decrease in dephosphorylation.  This surprising 

synaptic facilitation may suggest that multiple cAMP-dependent pathways regulate 

synaptic transmission.  It is possible that PKA inhibition normally suppresses 

transmission by dominating or masking other potentiating effects that are then revealed in 

the context of astrocyte deprivation and hyper-phosphorylated PKA substrates, although 

our work does not definitively address whether these changes alter synaptic transmission 

presynaptically, postsynaptically, or both.  Astrocyte-released TSPs, therefore, may 

restrain PKA activity, or phosphorylation levels of downstream substrates, during 

synapse development so that PKA inhibition can produce a meaningful decrease in 
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synaptic function upon exposure to the depolarization challenge.  Other models to explain 

these results are possible, and future work may distinguish them.   

In addition to effects on synaptic plasticity, we also observed effects of astrocyte 

deprivation on basal postsynaptic function.  Neuronal responses to AMPA and NMDA 

receptor agonists were depressed in parallel, supporting prior work suggesting that 

astrocytes are important for postsynaptic development (Beattie et al., 2002; Stellwagen 

and Malenka, 2006; Perea et al., 2009; Sullivan et al., 2011).  Because neurons near 

astrocytes in astrocyte-poor cultures produced EPSCs with the same amplitude as those 

that were not, this postsynaptic effect of astrocytes likely resulted from a deficit in global 

astrocytic signaling rather than a deficit in local signaling.  Astrocyte-derived TNFα 

controls postsynaptic receptor levels (Stellwagen et al., 2005; Stellwagen and Malenka, 

2006; Steinmetz and Turrigiano, 2010), but TNFα did not alter muting competence in our 

study, suggesting that the reduction in postsynaptic receptors was not responsible for the 

muting deficit in astrocyte-deprived cultures.  Additional evidence that postsynaptic 

receptors do not mediate muting includes current and prior work demonstrating muting in 

the presence of complete blockade of AMPA and NMDA receptor function (Moulder et 

al., 2004; Moulder et al., 2006) and the failure to mute in older, astrocyte-deprived 

cultures with larger basal EPSCs.  Our results do not exclude a role for TSP and α2δ-1 in 

basal postsynaptic development, however, but TSP’s role in muting appears independent 

of postsynaptic receptor function. 

 In summary, astrocyte-derived TSPs permit presynaptic muting at hippocampal 

glutamate terminals.  TSPs likely act through α2δ-1 binding to normalize PKA signaling 

in developing synapses.  These results reveal a novel mechanism by which glial-neuronal 
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communication controls adaptive synaptic malleability. 
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Discussion and future directions 
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Summary and significance 

Synapses are critical points of communication between neurons and, therefore, 

mediate information transfer throughout the nervous system.  Because of this vital role in 

neurobiological function, synaptic dysfunction likely contributes to many 

neurodevelopmental and neuropsychiatric disorders (Johnson et al., 2008; Betancur et al., 

2009; Waites and Garner, 2011; Bhakar et al., 2012).  Understanding synaptic function 

and modulation, therefore, is a fundamental goal in neuroscience that has the potential to 

inform processes mediating learning, behavior, and pathology.  Presynaptic muting of 

glutamate release in response to strong depolarization or prolonged increases in neuronal 

activity is one such form of synaptic modulation that is poorly understood.  This 

dissertation project aimed to clarify some of the mechanisms mediating muting induction 

in order to better understand adaptive synaptic phenomena.    

 

Calcium is not necessary for muting induction: 

 In Chapter 2, I explored how introducing ligand-gated cation channels into 

neurons alters synaptic and neuronal function.  I transfected cultured hippocampal 

neurons with TRPV1 or TRPM8 channels, which are thermosensitive cation channels 

important in sensory function (Talavera et al., 2008), with the original intention of 

controlling the activity of individual neurons in a cellular network.  TRPV1-transfected 

neurons responded robustly to a saturating concentration of the TRPV1 agonist capsaicin.  

Similarly, TRPM8-transfected neurons responded robustly to menthol, a TRPM8 agonist.  

Non-transfected neurons did not respond to either capsaicin or menthol application.  

Prolonged ligand application reduced, but did not eliminate, channel-associated current, 
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suggesting that long-term application of agonists could be used effectively for tonic 

depolarization of a subset of neurons within a neuronal network.  Although optogenetic 

strategies have become increasingly popular for manipulating activity of individual 

neurons within a neural network (Fenno et al., 2011; Tye and Deisseroth, 2012), this 

ligand-gated ion channel technique could have advantages in particular model systems.  

For example, neurons located far from each other could be activated with the same 

stimulus via widespread agonist application, and equipment and materials may be less 

costly than with optogenetics.  Recently, exogenous expression of TRPV1 was used to 

control activity of neurons in vivo in mice (Arenkiel et al., 2008; Guler et al., 2012), 

demonstrating the promise of this technique for selectively controlling network activity in 

large, intact networks.   

 One important observation made after transfection with TRP channels was that 

TRPV1-transfected neurons expressed a basal leak current that was larger than that 

expressed in TRPM8-transfected and non-transfected neurons.  This current was reduced 

with the TRP channel blocker ruthenium red, suggesting that it arises from the expression 

of TRPV1 and not from an artifact of the transfection.  TRPV1, therefore, may be 

activated endogenously in our preparation, which is plausible given TRPV1’s many 

known activating stimuli that could be present in our culture conditions (Schumacher, 

2010; Vay et al., 2012).  Additionally, I saw evidence of more agonist-induced toxicity in 

TRPV1-transfected than TRPM8-transfected neurons.  After a 4 h exposure to agonist, a 

higher percentage of TRPV1-transfected neurons, but not TRPM8-transfected neurons, 

were unhealthy.  This TRPV1 activation-associated toxicity was reduced in calcium-free 

extracellular medium, suggesting that calcium influx contributed to cell damage and 
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death.  This dependence on calcium is consistent with prior literature exploring 

excitotoxicity mechanisms (Choi, 1987, 1992).  TRPV1-transfected neurons may be more 

sensitive to calcium-dependent damage than TRPM8-transfected neurons due to 

TRPV1’s higher relative calcium permeability as well as its tendency dilate after 

prolonged activation (Caterina et al., 1997; McKemy et al., 2002; Meyers et al., 2003; 

Chung et al., 2008).  Calcium is not just an important component of excitotoxic signaling 

cascades; it is also an important induction signal for prolonged forms of synaptic 

plasticity like long-term depression and long-term potentiation (Malenka, 1991; Malenka, 

1994; Teyler et al., 1994).  A leak of calcium ions into the cell, therefore, may have 

explained the depressed autaptic, action potential-evoked postsynaptic currents (PSCs) in 

TRPV1-transfected neurons compared to TRPM8-transfected and synaptophysin-YFP-

transfected neurons.  This synaptic depression was not explained by transfection-induced 

alterations in synapse formation because both TRPV1- and TRPM8-transfected neurons 

released transmitter upon agonist exposure, as measured by miniature PSCs onto a 

postsynaptic neuron.  I hypothesized, therefore, that influx of calcium through TRPV1 

under basal conditions induced presynaptic muting.  Because of the wide range of 

depolarizing stimuli that induce muting (Moulder et al., 2004; Moulder et al., 2006; 

Moulder et al., 2008; Hogins et al., 2011), it is plausible that depolarization from calcium 

influx contributes to muting induction.  The role of calcium in muting induction and in 

the observed synaptic depression was not further clarified in this study, however, but 

future work should ask whether this basal EPSC depression in TRPV1-transfected 

neurons arose from muting.  Future work should also clarify whether muting is cell 

autonomous by activating single neurons, potentially via menthol application to TRPM8-
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transfected neurons, and assessing if muting is induced in the absence of input from other 

cells.   

To elucidate whether muting requires calcium, I prevented calcium signaling 

during muting induction as described in Chapter 3.  I used a 4 h high extracellular 

potassium stimulation to depolarize neurons and induce muting in the absence of other, 

confounding neuronal and synaptic changes.  Buffering extracellular calcium with the 

slow calcium chelator EGTA did not prevent muting, as assessed by action potential-

evoked excitatory PSCs (EPSCs) in autaptic neurons and by FM1-43 dye uptake into 

presynaptic terminals.  This suggested that calcium entry from the extracellular space 

during neuronal depolarization is not required for muting induction.  This did not, 

however, rule out the possibility that calcium from other sources, like intracellular 

calcium stores, contributed to muting induction.  To prevent all intracellular calcium 

signaling, I loaded cells with the fast calcium chelator BAPTA by applying the 

extracellular precursor BAPTA-AM.  BAPTA, although capable of preventing fast, 

calcium-dependent vesicle fusion in response to action potentials, did not prevent muting 

induction, as assessed by calcium-independent hypertonic sucrose-evoked EPSCs.  As 

mentioned in Chapter 3, many forms of synaptic plasticity, especially those that are 

slowly and persistently induced, require calcium signaling (Wigstrom et al., 1979; 

Wickens and Abraham, 1991; Xie et al., 1992; Tong et al., 1996; Patenaude et al., 2003; 

Frank et al., 2006; Kellogg et al., 2009; Turrigiano, 2012).  These surprising results 

suggested that muting induction is calcium-independent.  Muting, therefore, is a unique 

form of synaptic plasticity that uses novel, calcium-independent induction mechanisms.  

Calcium-independent, long-term synaptic plasticity is rarely described, but a few known 
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forms are dependent on activation of metabotropic glutamate receptors (Fitzjohn et al., 

2001; Ireland and Abraham, 2009; Kasten et al., 2012).  I hypothesized, therefore that 

muting depends on calcium-independent release of a ligand that activates surface 

receptors important for modulating synaptic function. 

 

G-protein signaling is required for muting induction: 

Because muting did not require calcium, many potential molecular mediators of 

muting induction were excluded as candidates.  For example, ligands released via 

calcium-dependent vesicle fusion, like many neurotransmitters and neuromodulators, are 

likely not involved in muting induction.  Our lab recently showed, however, that levels of 

cyclic adenosine monophosphate (cAMP) correlate with the percentage of active 

glutamatergic synapses (Moulder et al., 2008), so cAMP modulators not dependent on 

calcium signaling remained viable candidates.  It was unclear from this study, however, if 

reduced cAMP levels were instructive for depolarization-induced muting and, if so, 

which upstream signaling cascades mediate this cAMP change.  In Chapter 3 I asked 

whether inhibitory G-proteins, which are activated through calcium-dependent and 

calcium-independent mechanisms to reduce cAMP levels and can mediate long-term 

synaptic plasticity (Hanoune and Defer, 2001; Poser and Storm, 2001; Brown and Sihra, 

2008), mediate muting induction.  Pertussis toxin, which prevents inhibitory G-protein 

signaling, blocked muting induction, as assessed with autaptic action potential-evoked 

EPSCs and FM1-43 dye uptake into glutamatergic terminals.  This supported my 

hypothesis that inhibitory G-proteins are necessary for muting induction, but it did not 

clarify which G-proteins are activated and how.   
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To probe whether particular G-protein-coupled receptors (GPCRs) upstream of 

inhibitory G-proteins mediate muting induction, I asked if activation of inhibitory G-

proteins by GPCR agonists was sufficient to induce muting.  Adenosine and CCPA, 

which are nonselective and selective A1 adenosine receptor agonists, respectively, 

induced muting, as evidenced by persistent EPSC depression and a decrease in the 

percentage of glutamatergic terminals that labeled with FM1-43.  Baclofen, a GABAB 

receptor agonist, also produced muting.  These results supported the hypothesis that G-

protein activation produces muting.  Interestingly, agonists for other GPCRs (CB1 

cannabinoid and metabotropic glutamate) and kainate receptors, which can have 

metabotropic actions (Huettner, 2003), did not produce muting.  This receptor behavior 

suggests some selectivity in the signaling cascades responsible for muting induction.  

Additionally, application of baclofen and CCPA together produced no more muting than 

either agonist alone, which would suggest that prolonged A1 and GABAB receptor 

activation converge on the same downstream targets.  Future work should clarify whether 

G-protein cascades activated by A1 and GABAB receptors differ from those of 

metabotropic glutamate, CB1, and kainate receptors via molecular identity, activation 

levels, or spatial organization.  For example, I showed in Chapter 3 that muting produced 

by A1 and GABAB receptors was prevented by MG-132, a proteasome inhibitor.  This 

result suggested that GPCR agonist-induced muting requires proteasome activity and 

aligned with prior published evidence from our lab showing that depolarization-induced 

muting requires proteasome activity (Jiang et al., 2010).  Proteasome activation could be 

induced more strongly by A1 and GABAB receptors than by metabotropic glutamate, 

CB1, and kainate receptors, but more experiments measuring proteasome activity during 
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receptor activation would be required to substantiate this hypothesis.  One complication 

is that the magnitude of muting was smaller after A1 and GABAB activation than after 

depolarization challenges.  It is possible that proteasome activity is more weakly 

activated by agonists for these GPCRs than by depolarization or that depolarization 

activates additional signaling cascades beyond A1 and GABAB-linked G-proteins.  

Pertussis toxin’s ability to prevent muting suggested that G-protein-dependent cascades 

are responsible for muting, but these experiments did not clarify whether A1 and GABAB 

receptors are the receptors activated by depolarization.   

To ask which GPCR is responsible for muting induction, my initial strategy was 

to test likely candidates individually.  Blocking metabotropic glutamate, CB1 

cannabinoid, A1 adenosine, GABAB, and kainate receptors individually with 

pharmacological agents, however, did not prevent muting after a depolarization 

challenge.  This was surprising given A1 and GABAB receptor agonists’ ability to induce 

muting and suggested either that these receptors are not responsible for muting induction 

or that these receptors each contribute only a small fraction of the muting observed after 

the depolarization challenge.  To test whether synergistic activation of multiple GPCRs 

contributes to muting induction, I pharmacologically blocked multiple receptors 

simultaneously.  Blocking multiple receptors did not prevent muting induction, 

suggesting that none of the tested receptors are required for muting induction.  As 

discussed in Chapter 3, this leaves some interesting questions unanswered, including 

whether other, untested receptors are required for muting induction or whether receptor-

independent signals, like activators of G-protein signaling (AGS proteins), are 

responsible.  One possibility is that an orphan GPCR or known inhibitory GPCRs like 
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neuropeptide Y or somatostatin receptors are responsible (Herzog et al., 1992; Cervia et 

al., 2003), but alternatively GPCR activation could be mediated or facilitated by voltage 

instead of a ligand (Ben-Chaim et al., 2006; Parnas and Parnas, 2007; Kupchik et al., 

2011).  Another possibility is that receptor-independent activation is responsible.  If AGS 

proteins were tested for their role in muting, then AGS1 would be a good candidate 

because it is sensitive to pertussis toxin and activates inhibitory G-protein signaling 

cascades (Cismowski et al., 1999; Cismowski et al., 2000; Graham et al., 2004; Blumer et 

al., 2007).  Clarifying the G-protein activation mechanism employed during muting 

induction remains an important goal.  

 

Astrocytic signaling is required for the development of muting competence: 

Because it was not known which receptor, if any, mediates muting induction, no 

additional clues were available to answer whether muting is cell autonomous.  If muting 

requires GPCR activation, then this implies that a ligand is released extracellularly, likely 

from a different cell than the one undergoing muting, and binds to the GPCR; however, 

receptor-independent or ligand-independent activation could occur through cell 

autonomous signaling cascades.  At this point, evidence for a cell autonomous 

mechanism included the expression of muting in autaptic neurons since autaptic neurons 

are physically isolated from other neurons.  Additionally, intercellular communication 

during muting induction through calcium-dependent release of a GPCR ligand is unlikely 

because muting is calcium-independent and not induced via likely candidate GPCRs.  

Depolarization with high extracellular potassium, which depolarizes neurons above a 

membrane potential at which action potentials are blocked, and action potential 

stimulation, which repeatedly but briefly depolarizes neurons, both induce muting 
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(Moulder et al., 2004; Moulder et al., 2006), so voltage could serve as a cell autonomous 

induction signal.  Arguments against cell autonomy, however, included the potential for 

retrograde messengers to pass from postsynaptic membranes to presynaptic terminals in 

autaptic neurons as well as the possibility that astrocytes acutely release gliotransmitters 

that modulate autaptic neuron behavior.  Clarifying whether muting is cell autonomous 

could pinpoint the source of muting induction and narrow the list of candidate activators 

of G-protein signaling during depolarization.  I, therefore, tested whether astrocytes are 

required for muting induction. 

If muting occurs without communication with astrocytes, then muting induction 

may be either a cell autonomous phenomenon or one that requires local retrograde 

signaling at the synapse; in contrast, if muting is absent without astrocytes, then 

intercellular communication is required for muting induction.  I tested for astrocytic 

contributions to muting induction by eliminating astrocytes from astrocyte-neuron co-

cultures.  As described in Chapter 4, I killed astrocytes using light aldehyde or ethanol 

fixation prior to neuronal plating.  This technique allowed for the reduction of live 

astrocytes in the cultures while otherwise maintaining the same culture conditions as 

those used in the previous studies described here.  Other methods for astrocyte 

elimination like glial toxins (Takada and Hattori, 1986; Hassel et al., 1992; Swanson and 

Graham, 1994; Menard et al., 1997), adjusting culture substrates and media to discourage 

astrocyte adhesion (Brewer et al., 1993; Ghosh et al., 1997; Recknor et al., 2004; Peretz 

et al., 2007), or genetic models preventing gliotransmission (Zhang et al., 2004; Li et al., 

2005; Petravicz et al., 2008) have clear disadvantages including loss of astrocyte tissue 

adhered to the culture dish, which serves as the substrate for neuronal attachment, or 
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prevention of only some subtypes of astrocyte-neuron communication. In Chapter 4, I 

showed that astrocyte fixation efficiently killed astrocytes in our cultures without 

abolishing autaptic neuron adhesion and development, validating this method as a way to 

probe the effects of astrocyte deficiency on neuronal and synaptic function.   

Elimination of astrocytes from the co-culture network prior to synapse maturation 

prevented muting induction in response to depolarization, GPCR agonists, and cAMP 

signaling antagonists, suggesting that astrocytes are important for this form of synaptic 

plasticity.  This failure to silence in astrocyte-poor cultures was not linked to an obvious 

deficit in presynaptic function; the probability of vesicle release, number of presynaptic 

terminals per neuron, number of vesicles per synapse, neuronal input resistance, and 

percentage of active glutamatergic synapses were not detectably different in astrocyte-

poor cultures.  Allowing the astrocyte-poor cultures to mature longer also did not restore 

muting, suggesting that the deficiency is fundamental to the lack of astrocytes instead of 

due to delayed development.  A postsynaptic change occurred in astrocyte-poor cultures, 

however, as evidenced by the decreased EPSC amplitude that was linked to diminished 

AMPA and NMDA receptor function, which is consistent with prior literature (Beattie et 

al., 2002; Stellwagen and Malenka, 2006; Perea et al., 2009; Sullivan et al., 2011).  The 

similar EPSC amplitudes between neurons from live (calcein-positive) astrocyte islands 

and dead (calcein-negative) astrocyte islands in astrocyte-poor cultures argued that the 

basal EPSC amplitude decrease was due to loss of global astrocytic cues rather than loss 

of local astrocytic cues.  It was unclear if this postsynaptic deficiency indirectly altered 

presynaptic plasticity; for example, altered retrograde signaling from molecules released 

by the postsynaptic terminal that modulate presynaptic function may cause presynaptic 
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changes.  I demonstrated, however, that young neurons from astrocyte-rich cultures with 

smaller basal EPSC amplitudes expressed muting while older neurons from astrocyte-

poor cultures with larger basal EPSC amplitudes did not express muting.  These results 

suggested that the basal EPSC amplitude does not determine muting competence, 

although this did not distinguish the contribution of total glutamate receptor levels to 

basal EPSC amplitude from that of total synapse number.  Because of this evidence, a 

postsynaptic explanation for the loss of presynaptic plasticity in astrocyte-poor cultures 

seemed unlikely.  Reduced astrocytic signaling, therefore, seems to unmask a deficit in 

presynaptic plasticity without altering presynaptic function per se, which may be why 

this synaptic effect has been overlooked in prior literature. 

To clarify whether acute, instructive or global, permissive astrocytic signals were 

responsible for muting, I applied astrocyte-conditioned medium at different times relative 

to the depolarization challenge.  When present for multiple days prior to muting induction 

attempts, astrocyte-conditioned medium rescued muting.  Muting was also rescued by 

days of astrocyte-conditioned medium exposure even when replaced with non-

conditioned medium during the depolarization challenge.  The presence of muting in the 

absence of acute astrocytic signaling suggested that soluble factors released by astrocytes 

early in synaptic development permit muting competence.  Astrocytes were not 

instructive for muting, arguing against the hypothesis that gliotransmission is involved in 

muting induction.  This was supported by another experiment in which astrocyte-

conditioned medium added only during the depolarization challenge did not restore 

muting induction.  It appeared, therefore, that astrocytic factors promote muting 

competence via synaptic development, and synapses with a history of astrocyte signaling 
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do not require further astrocytic signaling to induce muting.  This finding was especially 

interesting and suggested that astrocytes are metaplastic modulators of synapses; factors 

released by astrocytes mediate the synapse’s ability to undergo future plasticity.  

Astrocytes have a complicated relationship with muting; therefore, muting is not clearly 

cell autonomous or cell non-autonomous.  Intercellular communication was clearly 

required for muting competence to develop in the presynaptic terminal, but synapses with 

a history of astrocytic signaling did not require exposure to acute astrocytic factors for 

plasticity induction.  Cell autonomous mechanisms may be activated upon exposure to 

the depolarization challenge once non-cell autonomous signals have successfully 

promoted maturation, but dilute global signals released by the sparse neurons in the 

culture dish or retrograde signaling from postsynaptic compartments have not been ruled 

out entirely.  Together, these results highlighted an important and novel role for 

astrocytes in synaptic development and narrowed the possible cellular sources of muting 

to either cell autonomous or a small range of cell non-autonomous mechanisms. 

This novel role of astrocytes in the development of muting competence prompted 

a search for the molecular signals responsible.  As described in Chapter 4, one major 

candidate was thrombospondin, a matricellular glycoprotein released by astrocytes that 

was recently found to be important for synapse development (Asch et al., 1986; 

Christopherson et al., 2005; Eroglu et al., 2009; Xu et al., 2010).  Thrombospondins 

promote glutamatergic synaptogenesis in retinal ganglion neurons via binding to the 

structural calcium channel subunit α2δ-1 on the postsynaptic membrane (Christopherson 

et al., 2005; Eroglu et al., 2009).  Interestingly, these thombospondin-induced synapses 

are presynaptically functional but postsynaptically silent, meaning that AMPA receptors 
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are absent from the postsynaptic membrane (Christopherson et al., 2005).  This suggests 

that thrombospondin specifically promotes presynaptic development.  In hippocampal 

neurons, however, thrombospondins appear to modulate the speed of synaptogenesis, but 

not the total number of synapses that develop, via binding to the postsynaptic cell 

adhesion protein neuroligin 1 (Xu et al., 2010).  These findings from hippocampal 

neurons suggesting that thrombospondin is not required for synaptogenesis may explain 

why astrocyte deficiency did not reduce the total number of presynaptic terminals during 

experiments performed in Chapter 4.  Thrombospondin, therefore, was an excellent 

candidate for modulating presynaptic plasticity.  Thrombospondin application to 

astrocyte-poor cultures a few days prior to the depolarization challenge rescued muting 

induction.  Another astrocytic factor important for synaptic plasticity, tumor necrosis 

factor α, did not promote muting competence, suggesting that boosting synaptic function 

does not promote muting competence non-selectively.  Although these results did not rule 

out a contribution to muting competence from other astrocyte-derived factors, they did 

suggest that thrombospondins are a class of molecules capable of mediating the 

development of muting ability.   

To clarify whether thrombospondin endogenously mediates muting competence, I 

blocked thrombospondin signaling during synapse development.  Prior literature suggests 

that thrombospondin’s synaptogenic effects occur through activation of α2δ-1 calcium 

channel subunits or through neuroligin 1 (Eroglu et al., 2009; Xu et al., 2010), but it was 

unclear whether either of these receptors was recruited for thrombospondin’s effects on 

synaptic plasticity competence.  One pharmacological tool that allowed us to test the role 

of α2δ-1 in muting was the clinically used drug gabapentin.  Gabapentin is known to bind 
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to α2δ-1 and prevent thrombospondin’s synaptogenic effects in retinal ganglion cells 

(Gee et al., 1996; Eroglu et al., 2009).  Adding gabapentin to astrocyte-conditioned 

medium prevented muting competence from developing in astrocyte-poor cultures.  

Gabapentin also prevented muting competence in astrocyte-rich cultures if the cultures 

were treated with fresh drug daily.  These effects of gabapentin not only implicated α2δ-1 

as the thrombospondin receptor that promotes muting competence, but they also implied 

that thrombospondin is a major, if not the only, contributor to muting competence in our 

cultures.  Future work should probe the role of neuroligin 1 in muting competence, 

however, since it was not tested in these studies. 

One potentially translational finding from Chapter 4 was that gabapentin altered 

adaptive changes in network activity.  In mass cultures, where large networks of neurons 

develop, the depolarization challenge silenced excitatory and inhibitory spontaneous 

network activity.  This was consistent with muting induction and subsequent failure of 

excitatory signaling, which likely caused a parallel reduction in spontaneous inhibitory 

signaling.  This decrease in spontaneous activity after an excitatory stimulus further 

suggested that muting is an adaptive change; as shown in the Appendix (Hogins et al., 

2011), muting is neuroprotective against excitotoxic insults like hypoxia, likely through 

dampened neuronal excitation.  After chronic gabapentin treatment, however, this 

adaptive network change was absent.  Interestingly, a non-significant increase in total 

network activity occurred after gabapentin treatment, potentially due to its effects on 

ionic conductances (Freiman et al., 2001; Stefani et al., 2001; Surges et al., 2003; Hoppa 

et al., 2012).  It is unclear whether these ionic conductances modulate muting 

competence, but because thrombospondin promoted muting competence during the study, 
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it is likely that gabapentin’s property as a thrombospondin receptor antagonist played a 

large role.  The prevention of muting and adaptive network changes by gabapentin could 

have broader implications for patients treated with this drug.  For example, children still 

undergoing intense synapse development could be more severely impaired than adults by 

gabapentin treatment because thrombospondin signaling appears important for synapse 

maturation.  Also, patients taking gabapentin could experience additional neuronal 

toxicity during excitatory insults like stroke due to the lack of homeostatic network 

dampening during the insult.  Future work should clarify whether the lack of adaptive 

plasticity in gabapentin-treated neurons renders networks more vulnerable to excitotoxic 

death, but the results described here indicate that gabapentin treatment should be 

employed judiciously. 

The synapse-modifying signaling cascades downstream of thrombospondin-bound 

α2δ-1 were unknown prior to the study described in Chapter 4.  Application of GPCR 

agonists or a PKA inhibitor not only failed to induce muting but also increased autaptic 

EPSCs in astrocyte-poor cultures, suggesting that an abnormality developed along this 

signaling cascade due to the lack of astrocytes.  Acute GPCR agonist effects, thought to 

work through Gβγ subunit signaling (Brown and Sihra, 2008), were intact in astrocyte-

poor cultures, however.  This result suggested that signaling downstream of Gα was 

disrupted in astrocyte-poor cultures but that G-protein signaling itself was functional.  

PKA targets were over-phosphorylated in astrocyte-poor cultures while a PKC target 

displayed normal levels of phosphorylation, so PKA activation downstream of Gα may 

be rampant, or dephosphorylation impaired, in the absence of astrocyte-derived 

thrombospondin.  Tellingly, thrombospondin normalized PKA phosphorylation levels, 
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which means that one mechanism by which thrombospondin signaling promotes muting 

competence is likely by maintaining PKA phosphorylation within a functional dynamic 

range.  In a few prior studies, PKA inhibitors have blocked gabapentin-mediated neuronal 

and behavioral phenotypes (Martin et al., 2002; Lee et al., 2008; Takasu et al., 2008; 

Takasu et al., 2009), suggesting that these phenotypes require PKA-dependent pathways.  

Facilitated signaling through α2δ-1, therefore, could conceivably inhibit PKA-dependent 

pathways.  I hypothesize that the increased PKA substrate phosphorylation in astrocyte-

poor cultures overly stabilizes presynaptic priming proteins and, thereby, prevents protein 

degradation and muting induction.  Future work should clarify the signaling cascade 

responsible for PKA-related alterations downstream of α2δ-1; one plausible hypothesis is 

that enhanced calcium signaling through α2δ-1-dependent calcium channel assembly 

inhibits calcium-inhibited adenylyl cyclases (Hanoune and Defer, 2001; Hoppa et al., 

2012), thereby reducing cAMP and PKA signaling.  Overall, these experiments revealed 

a novel role for astrocytes in promoting synaptic plasticity competence, but not induction 

of plasticity per se, through release of thrombospondins that alter signaling cascades 

important for muting induction. 

 

Current muting induction model: 

In summary, muting is induced by a complicated interplay between the state of 

the synapse before an excitatory insult and the signaling cascades recruited by the insult.  

The current model of muting induction is displayed in Figure 1.  This model states that 

this adaptive, reversible form of synaptic plasticity requires astrocytic release of 

thrombospondin during synapse development to activate α2δ-1 calcium channel subunits 
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and normalize PKA signaling.  I hypothesize that PKA activity after thrombospondin 

signaling and α2δ-1 activation, therefore, is reduced and maintained within a dynamic 

range able to produce meaningful changes in protein phosphorylation.  A strong 

depolarization challenge or prolonged increased activity that decreases cAMP signaling 

via inhibitory G-protein activation, therefore, is capable of reducing PKA activity enough 

to decrease vesicle priming protein phosphorylation levels and render these proteins 

vulnerable to proteasomal degradation.  The parallel increase in proteasome activity from 

the excitatory stimulus then causes protein degradation and loss of vesicle priming, 

thereby muting the synapse. 
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Figure 1. Signaling cascades participating in muting. During development (blue lines), 
astrocytic release of thrombospondin activates α2δ-1 receptors postsynaptically, 
presynaptically, or both, resulting in a normalization of PKA signaling.  After synaptic 
maturity (black lines), prolonged strong depolarization or increased action potential firing 
induces presynaptic muting through activation of the ubiquitin-proteasome system and 
through activation of inhibitory G-proteins. Depolarization increases proteasome activity 
through unknown mechanisms, but both depolarization- and G-protein-coupled receptor 
(GPCR) agonist-induced muting require proteasome activity. Inhibitory actions of the Gα 
subunit on adenylyl cyclase (AC) reduce cAMP and protein kinase A (PKA) signaling 
during muting induction. PKA phosphorylates presynaptic priming proteins like Rim1α, a 
modification that may render Rim1α resistant to proteasomal degradation; therefore, less 
Rim1α phosphorylation is expected after depolarization. Increased proteasome activity, 
combined with a vulnerable presynaptic protein population, leads to priming protein 
degradation. This model provides a plausible mechanism for priming protein level 
reduction and muting induction by depolarization. Postsynaptic protein levels are 
unaltered by induction of presynaptic muting. Modified from Crawford and Mennerick, 
2012. 
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Future directions  

 Interesting questions about the mechanisms, roles, and clinical potential of 

adaptive presynaptic muting emerged during these studies.  Some of the immediate 

questions that should be answered include clarifying additional molecular mediators of 

muting competence or induction.  For example, it remains unclear how thrombospondin 

signaling alters PKA activity.  As described in the Summary and Significance, α2δ-1-

dependent calcium channel assembly is one candidate downstream effect (Hoppa et al., 

2012) since the role of calcium in the development of muting competence was never 

tested.  Whether presynaptic or postsynaptic α2δ-1 is important for muting is also 

unclear.  One potential strategy to test this would be to genetically knock down α2δ-1 in 

single neurons before assessing synaptic function on dendrites or axons of these neurons.  

This would reveal whether thrombospondin’s effects are directly altering presynaptic 

function or indirectly altering presynaptic function through a retrograde signal.  To 

clarify how quickly thrombospondin alters muting ability in presynaptic terminals, more 

experiments over differing time scales could be performed.  For example, 

thrombospondin could be added 0-24 h prior to the depolarization challenge to ask 

whether shorter treatments promote muting competence.  Additionally, thrombospondin’s 

actions may have a critical window during synapse development.  Would adding 

gabapentin later in development or for shorter periods of time prevent and/or reverse the 

development of muting competence?  Do neurons from neonatal animals behave 

differently than those from adult animals?  These studies could clarify the developmental 

role of thrombospondin and have important implications for gabapentin’s clinical use.   

   It also remains unknown how inhibitory G-protein signaling is activated by 



201 
 

depolarization.  If GPCRs are activated by a ligand during increased neuronal excitation, 

this ligand must be released by neurons, not astrocytes, since astrocytic signaling is not 

acutely required for muting induction.  It is possible, however, that a non-canonical 

GPCR or G-protein activator is responsible.  Genetic manipulations to knock down AGS 

proteins or other known GPCRs linked to inhibitory G-proteins in the hippocampus could 

identify the responsible G-protein activation mechanism, although this may require a 

high-throughput screening approach.  Also, the dependence of muting on inhibitory G-

protein signaling implies that stimulatory G-protein signaling (Gs) could mediate 

recovery from muting.  Prior work has implicated calcium-dependent adenylyl cyclases 

in muting recovery (Moulder et al., 2008), but whether G-proteins, calcium, and/or 

another molecule are responsible for the adenylyl cyclase activation remains to be tested.  

The dependence of recovery from muting on PKA activity (Moulder et al., 2008) and the 

proteasome-dependence of muting (Jiang et al., 2010) also suggest that protein synthesis 

may be required, potentially through PKA-dependent activation of transcription factors 

like cAMP response element-binding protein (CREB; Sassone-Corsi, 1998).  

Unpublished data from our lab suggest that muting induction does not require protein 

synthesis, but recovery back to basal function does, and that phosphorylation of CREB by 

PKA is a plausible candidate mediator for this protein synthesis.  Future work will have 

to explore the potentially causative role for CREB in recovery from muting.   

 As mentioned in the Summary and Significance, whether muting is cell 

autonomous remains unclear despite much work eliminating many intercellular signaling 

pathways during induction.  Astrocytic signaling is not required during muting induction, 

as long as astrocytes are able to communicate with synapses prior to the induction 
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challenge, and autaptic neurons undergo muting.  It is likely, therefore, that muting is cell 

autonomous, but the possibility of retrograde signaling from the postsynaptic neuron to 

the presynaptic neuron has not been excluded.  To test for a retrograde signal, future 

work could genetically manipulate single neurons within a neural network.  For example, 

optimizing transfection of TRPM8 in cultured hippocampal neurons would allow for 

studies that use tonic channel activation to depolarize neurons and attempt to induce 

muting.  Other methods, like expression of channelrhodopsin and using light exposure to 

activate the channel (Fenno et al., 2011; Tye and Deisseroth, 2012), remain as 

alternatives to TRP channel transfection.  If muting is induced selectively in one neuron 

on a two-neuron microisland using one of these techniques, for example, then paired 

recordings of these two neurons could parse out whether synapses onto the non-

depolarized neuron or synapses onto the depolarized neuron undergo muting.  Clarifying 

whether muting is cell autonomous or whether it requires a retrograde signal would 

narrow the list of candidate activators of G-protein signaling even further.  Additionally, 

identifying the source of the signal to mute could have implications for how muting 

interacts with network activity.  For example, does the neuron being overly activated 

prevent itself from further propagating the overexcitation, or does it signal to the neuron 

prior to it in the circuit to reduce its own overactivation?  Although evidence currently 

supports the hypothesis that muting is cell autonomous (i.e. the presynaptic terminals 

within the neuron being activated are muted without intercellular communication), 

further work is required to clarify this definitively. 

 More fundamentally, the role of mute terminals in information processing in the 

nervous system remains unclear.  For example, why is muting binary, in that the synapse 
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is entirely non-functional but structurally preserved?  Because of this binary nature, does 

muting alter the electrical transfer of information in the same way as synaptic pruning but 

with the added benefit of saving time and cellular resources?  Understanding the 

mechanisms involved in muting could lead to the ability to strategically silence particular 

synapses (within a single neuron, a single circuit, or an entire brain region) and observe 

the consequences on neuronal excitation, subcellular electrical summation, and network 

activation.  It also remains unclear if the synapses that mute in response to depolarization 

are randomly distributed to dampen general excitability or strategically placed to 

modulate firing of particular postsynaptic neurons.  The probability of vesicle release and 

readily releasable pool size increase with distance along the axon from the cell body in 

hippocampal neurons (Peng et al., 2012), so it is possible that the basal state of the 

synapse or its location could determine the probability that a synapse will undergo 

muting.  One could measure muting and unmuting using live-cell imaging to determine if 

the same terminals are vulnerable to muting with repeated depolarization challenges and 

whether the location along the axon or dendrite correlates with this tendency.  Also, 

because cAMP is an important mediator of muting induction, cAMP levels could be 

measured in axonal compartments, using techniques like the FRET construct Epac1-

camps (Nikolaev et al., 2004), to determine whether basal cAMP levels or the dynamic 

range of CAMP levels near particular synapses correlate with a tendency to mute.  

Alternatively, the total percentage of mute terminals, if distributed randomly, may 

correlate with somatic cAMP levels.   

The location of mute terminals may also have important implications for how 

muting interacts with other forms of synaptic plasticity like homeostatic postsynaptic 
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receptor scaling or Hebbian long-term potentiation.  Synaptic scaling purportedly acts at 

all synapses in a neuron (Turrigiano, 2012), but long-term potentiation is specific to 

synapses experiencing strong, correlated presynaptic and postsynaptic activity, leaving 

nearby synapses unaffected (Bear and Malenka, 1994; Kelleher et al., 2004).  Muting 

would be predicted to enhance the effects of reduced postsynaptic receptor levels on 

overall network activity but may cancel the effects of Hebbian plasticity at particular 

synapses.  Computer modeling would facilitate the study of how these forms of plasticity 

interact and what effects simultaneous inductions have on neural computation and 

network activity.  As techniques evolve for inducing multiple forms of synaptic plasticity 

simultaneously or sequentially in living tissue, the physiological consequences of their 

interactions should be tested. 

 One major open question remaining about muting induction is what role it plays 

in vivo.  In mammals, evidence determining whether muting even occurs in vivo is 

needed.  At this time, work outside of cultured neuron networks, like in acute 

hippocampal slices (Moulder et al., 2004; Crawford and Mennerick, 2012; Chapter 1), 

have merely shown correlates of muting due to the technical limitations involved.  Future 

directions should include techniques like high resolution microscopy of presynaptic 

vesicle function or sophisticated electrophysiological measures of individual neurons to 

measure muting in vivo (Kalb et al., 2004; DeWeese, 2007; Ako et al., 2011; Herzog et 

al., 2011; Kodandaramaiah et al., 2012).  Once the presence of and mechanisms for in 

vivo muting have been established, then the field is poised for exploring how muting 

alters learning, behavior, or disease.  For example, establishing whether muting occurs in 

all brain regions and neurotransmitter systems will be important for developing 
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hypotheses about its role in brain function.  Because muting occurs in hippocampal 

glutamatergic neurons and has the potential to interact with Hebbian plasticity, it could 

disrupt or enhance learning and memory.  To test this, muting would need to be induced 

in vivo prior to or during learning and memory tasks.  Muting may also be regulated by 

sleep and circadian rhythms, as has been proposed for Hebbian plasticity (Tononi and 

Cirelli, 2006).  Inducing muting during different phases of the circadian cycle, therefore, 

may cause different behavioral outcomes.  Similarly, neurons may be more or less 

susceptible to muting early in development than later in development, so the effects of 

muting at different developmental ages should also be assessed.  Potentially the most 

translational open question would be whether muting occurs in pathophysiological 

contexts.  Do changes in muting levels mediate alterations in the balance of excitation 

and inhibition observed during disease (Eichler and Meier, 2008; Baroncelli et al., 2011; 

Kapogiannis and Mattson, 2011; Ramamoorthi and Lin, 2011), and could manipulating 

muting in vivo restore balance to unbalanced networks?  Could clinical induction of 

muting be used to prevent or reduce damage from excitatory insults like stroke or 

seizure?  Although these questions will not be answered immediately, clarifying the role 

of muting in cognition, learning, or disease will provide insight about the role of synapses 

in brain function. 
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Conclusions 

 Synaptic function and plasticity are vital to information processing within the 

nervous system.  Presynaptic muting of glutamatergic synapses represents an 

underappreciated form of synaptic plasticity present in hippocampal glutamatergic 

neurons.  For this dissertation project, I have clarified some of the molecular mediators of 

muting development and induction.  Calcium, an important mediator of synaptic 

plasticity, was surprisingly not necessary for muting induction while inhibitory G-protein 

signaling, best known for its role in short-term plasticity, was necessary.  Astrocyte-

derived thrombospondins promoted muting competence of presynaptic terminals, but 

astrocytes were otherwise not necessary for muting induction.  This work revealed novel 

mechanisms by which synapses are regulated and revealed some potentially translational 

implications of muting and the pharmacological agents that modulate it.  Although much 

remains to be learned about the mechanisms responsible for muting, and the contexts 

under which they are recruited, this work has laid a strong foundation for future work in 

the field of synaptic development and plasticity. 
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Abstract 

Glutamate release is a root cause of acute and delayed neuronal damage in 

response to hypoxic/ischemic insults. Nevertheless, therapeutics that target the 

postsynaptic compartment have been disappointing clinically. Here we explored whether 

presynaptic silencing (muting) of glutamatergic terminals is sufficient to reduce 

excitotoxic damage resulting from hypoxia and oxygen/glucose deprivation. Our 

evidence suggests that strong depolarization, previously shown to mute glutamate 

synapses, protects neurons by a presynaptic mechanism that is sensitive to inhibition of 

the proteasome. Postsynaptic Ca2+ rises in response to glutamate application and toxicity 

in response to exogenous glutamate treatment were unaffected by depolarization 

preconditioning. These features strongly suggest that reduced glutamate release explains 

preconditioning protection. We addressed whether hypoxic depolarization itself induces 

presynaptic silencing, thereby participating in the damage threshold for hypoxic insult. 

Indeed, we found that the hypoxic insult increased the percentage of mute glutamate 

synapses in a proteasome-dependent manner. Furthermore, proteasome inhibition 

exacerbated neuronal loss to mild hypoxia and prevented hypoxia-induced muting. In 

total our results suggest that presynaptic silencing is an endogenous neuroprotective 

mechanism that could be exploited to reduce damage from insults involving excess 

synaptic glutamate release. 
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Introduction 

For decades we have known that glutamate excitotoxicity (Olney et al., 1971) 

results in damage to neurons following a wide variety of insults including hypoxia, 

ischemia, seizures (Gidday, 2006; Goldberg and Choi, 1993; and Rothman, 1984), and 

neuropsychiatric disorders (Olney, 2003; and Zorumski and Olney, 1993). Therapeutic 

approaches have centered on blocking glutamate receptors and other downstream, 

postsynaptic targets involved in the excitotoxic cascade. Unfortunately, these approaches 

have proven disappointing in human studies because of poor efficacy or unacceptable 

side effects (Gidday, 2006; and Moskowitz et al., 2010). Thus fresh approaches and new 

basic insights are needed. One alternative might be to study and exploit endogenous 

homeostatic synaptic mechanisms as strategies. By augmenting endogenous pathways of 

adaptive synaptic plasticity, such strategies might circumvent some of the problems that 

have arisen with previous interventions. 

We have been studying a form of persistent presynaptic plasticity involving 

depression of glutamate vesicle availability in hippocampal neurons. This depression is 

characterized by presynaptic silencing, or muting, that outlives the inducing stimulus. 

Muting is induced at glutamate, but not γ-aminobutyric acid (GABA), synapses by strong 

depolarization (Moulder et al., 2004). It reverses over several hours (Moulder et al., 

2008) and is characterized by involvement of inhibitory G-protein signaling (Crawford et 

al., 2011) and the ubiquitin/proteasome system (UPS) (Jiang et al., 2010). 

Two issues relevant to excitotoxic pathophysiology emerge from our previous 

observations. First, because the source of glutamate during excitotoxic insults may not be 

purely synaptic (Rossi et al., 2000), it is unclear whether presynaptic interventions, such 
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as induction of presynaptic muting, are effective neuroprotectants. Second, because 

presynaptic silencing has been induced only under controlled experimental conditions, it 

is unclear whether depolarizing insults such as hypoxia can induce muting rapidly and 

strongly enough to provide endogenous neuroprotection. If so, muting may normally help 

set the threshold for damage during insults. Support for these two ideas would help 

establish the plausibility of augmentation of presynaptic muting as a neuroprotective 

intervention and would offer new basic insights into the roles of synaptic plasticity in 

nervous system function and dysfunction. 

Our results demonstrate that presynaptic silencing induced by strong 

depolarization protects neurons in in vitro hypoxia and oxygen-glucose deprivation 

(OGD) models, consistent with the idea that synaptic glutamate is important for the 

damage. Although depolarizing preconditioning paradigms have been shown to be 

neuroprotective in other models through postsynaptic mechanisms (Grabb and Choi, 

1999; Grabb et al., 2002; and Meller et al., 2008), we show that presynaptic mechanisms, 

most likely involving presynaptic muting, are most important in our paradigm. Further, 

our results suggest that a hypoxic insult induces muting to limit damage. Proteasome 

inhibition, among other likely effects, prevents hypoxia-induced silencing and 

exacerbates damage through a presynaptic mechanism, suggesting that muting helps set 

the threshold for hypoxic damage. These results yield insights and suggest new 

approaches that might be exploited for benefit in disorders involving dysfunction of 

glutamate synapses. 
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Materials and methods 

 

Cell culture: 

Hippocampal cultures were prepared as described previously (Mennerick et al., 

1995). In brief, dissected postnatal (postnatal days 0–3) male and female rat hippocampi 

were incubated with papain, mechanically dissociated, and plated at 650 cells/mm2 on 

collagen substrate. Plating media consisted of Eagle's medium (Invitrogen) supplemented 

with heat-inactivated horse serum (5%), fetal bovine serum (5%), 17 mM glucose, 400 

μM glutamine, 50 U/mL penicillin, and 50 g/mL streptomycin. Cultures were maintained 

at 37 °C in a humidified incubator with 5% CO2/95% air. Cytosine arabinoside at 6.7 μM 

was added at 3–4 days after plating to inhibit cell division. At 1 day a media exchange 

was performed with Neurobasal medium (Invitrogen) plus B27 supplement. Cells were 

used for experiments at 13–15 days in vitro. Neurons exhibited increased sensitivity to all 

forms of glutamate toxicity with maturation. 

 

Preconditioning: 

Fresh filtered Neurobasal (Invitrogen) medium without L-glutamine was used as a 

base for preconditioning media and media exchanges. The original conditioned media 

was removed and replaced with the preconditioning media. The cultures were returned to 

their original media just before hypoxic exposure. For depolarizing preconditioning, the 

preconditioning media contained Neurobasal plus 30 mM KCl. Control preconditioning 

media included 30 mM NaCl in place of KCl as an equimolar non-depolarizing control. 

In our typical protocol, this resulted in control and experimental preconditioning 
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solutions that were ~ 60 mOsm hyperosmotic. To ensure that hypertonicity did not 

interact with the effects of depolarization, we performed a subset of preconditioning 

experiments in media that were isotonic (142 mM total monovalent cation concentration, 

KCl substitution for NaCl, n = 5 experiments). These experiments produced similar 

preconditioning protection as our standard protocol (27.7 ± 9.66% cell survival with 

hypoxia, 62.8 ± 3.58% survival with hypoxia plus KCl preconditioning, compare with 

Fig. 1). We did not routinely perform experiments in the isotonic media because of the 

high expense of custom media preparation. Unless otherwise noted, all control and 

depolarizing preconditioning solutions also included 0.5 μM 2,3-dihydroxy-6-nitro-7-

sulfonyl-benzo[f]quinoxyline (NBQX), and 25 μM D-2-amino-5-phosphonovalerate (D-

APV) to prevent induction of glutamate-receptor dependent forms of preconditioning 

protection or plasticity during preconditioning. In some experiments we omitted 

extracellular Ca2+ (0.1 mM EGTA added to chelate residual Ca2+) or included 

carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG-132; Sigma, 3 μM) in preconditioning 

solutions. Unless otherwise noted, the media was exchanged immediately before hypoxic 

exposure to remove glutamate receptor antagonists and the preconditioning stimulus. 

 

Hypoxia exposure: 

A commercially available chamber (Billups-Rothenberg Company) was used for 

hypoxia induction and maintenance. Cells were incubated in a humidified environment 

saturated with 95% nitrogen and 5% CO2 at 37 °C for the specified amount of time (2–

2.5 h depending on the experiment). The gas exchange was performed according to the 

specifications of the chamber manufacturer (flow of 20 L per minute for 4 min to achieve 
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100% gas exchange). After the insult, we removed cells from the chamber and incubated 

them under standard conditions until the cell death assay (24 h). When used during the 

insult to demonstrate neuroprotection, the glutamate receptor antagonists were 1 μM 

NBQX and 100 μM D-APV, but antagonists were not routinely present during hypoxia or 

OGD insults. For OGD experiments the method of oxygen deprivation was the same, and 

just prior to oxygen deprivation culture media was switched to Neurobasal without L-

glutamine and without glucose. Control cultures received the same media with glucose 

(25 mM). Procedures for sham insults indicated in figures included all media changes and 

incubation times relevant to the insult conditions. For experiments in which exogenous 

glutamate exposure was used in place of hypoxia, media was exchanged with fresh 

Neurobasal without L-glutamine and with the indicated concentration of glutamate. The 

cultures were then returned to their original media for 24 h until the cell death assay was 

performed. 

 

Cell death assay: 

To assess cell death, trypan blue dye (Sigma) was used. 24 h after the insult, 

culture media was removed and replaced with 1 mL of 0.4% trypan blue dissolved in 

phosphate buffered saline. Cells were incubated in dye at 37 °C for 5 min and washed 

with phosphate buffered saline. Cultures were then fixed with 4% paraformaldehyde and 

0.2% glutaraldehyde at room temperature. Cells were visualized with a 20× objective 

using both phase-contrast and brightfield microscopy to confirm healthy neuronal profiles 

(phase-contrast) and verify trypan blue uptake (brightfield). In one experiment the 

designation of healthy neurons was verified 24 h after hypoxia treatment by calcein AM 
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(acetoxymethyl) uptake (2 μM calcein-AM incubation for 30 min). Cells deemed healthy 

by morphology under phase-contrast optics were always calcein positive (n = 5 fields, 

20–40 cells per field). The total numbers of dead and intact neurons were counted and 

expressed as a percentage of trypan blue positive dead cells to total cells. The average of 

ten microscope fields for each condition was treated as a single data point for purposes of 

statistics. 

 

Calcium indicators and imaging: 

Fluo4-AM (high affinity indicator; Invitrogen) and Fluo3-FF-AM (low affinity 

indicator; Teflabs) fluorescent calcium indicators were used. We incubated neurons in 

preconditioning solutions as noted above. After the 4 h preconditioning period cells were 

incubated for 30 min at 37 °C in normal media containing 2 μM of the AM indicator. 5–7 

fields per condition were imaged. Fluorescence images were obtained with a CoolSnap 

ES2 camera (Photometrics) every 600 ms, using a fluorescein filter set and metal halide 

light source. We selected 3 cells randomly from each field from a phase contrast image, 

without reference to fluorescence images, for a total of 15–21 cells per condition as 

indicated. Regions of interest were analyzed in the soma cytoplasm adjacent to the 

nucleus. Background fluorescence was subtracted from each image using a cell-free 

region of the field. Image acquisition and analysis were performed using Metamorph 

(MDS). 

 

FM1-43fx labeling, immunochemistry, and imaging: 

Details have been previously published (Crawford et al., 2011). Briefly, cells 
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were removed from preconditioning (Fig. 2) or the hypoxia chamber (Fig. 7), and after a 

saline wash (~ 30 s) FM1-43fx (10 μM; Invitrogen) was loaded into active presynaptic 

terminals during a brief (2 min) 45 mM KCl depolarization. vGluT-1 primary antibody 

(1:2000) was applied after aldehyde fixation, permeabilization, and block. Alexa Fluor 

647 goat anti-guinea pig secondary antibody (Invitrogen) was used at 1:500. 

Fluorescence images were acquired using a Nikon C1 confocal microscope and analyzed 

using Metamorph software. Parameters for image acquisition and analysis were constant 

for each independent experiment. 

To identify active glutamatergic synapses, an observer naïve to the experimental 

conditions identified 10 vGluT-1-positive puncta as regions of interest from 5 fields for 

each experimental condition. Next, FM1-43fx images were thresholded, after which 

vGluT-1 regions were loaded into the FM1-43fx image. Active synapses were defined as 

puncta that reached or exceeded 10 thresholded pixels in the FM1-43fx image (Crawford 

et al., 2011). 

 

Data analysis: 

Data analysis was performed in Excel (Microsoft) and Sigma Plot 10.0 (Systat 

Software). Student's unpaired t-test was used to test for significance. Where indicated, the 

Bonferroni correction for multiple comparisons was used. Except where otherwise 

indicated, values for n in the text and figure legends represent independent experiments 

on separate cultures. 

 

Materials: 
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All reagents were obtained from Sigma Chemical Company unless otherwise 

indicated. Culture media were from Invitrogen, guinea pig vGluT-1 antibody was from 

Chemicon. 
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Results 

 

Hypoxic damage is attenuated by depolarization preconditioning: 

We explored the hypothesis that strong depolarization, a stimulus that induces 

presynaptic muting in hippocampal neurons, protects neurons from subsequent hypoxic 

damage. Unlike other forms of preconditioning, which exhibit a latent period during 

induction of hours or days (Gidday, 2006; and Kitagawa et al., 1991), presynaptic muting 

is induced by strong depolarization, and recovers within a few hours of removal of the 

inducing stimulus (Moulder et al., 2004). Therefore, we designed our paradigm to capture 

the likely protective effect of presynaptic muting immediately after induction, without 

invoking previously described mechanisms of preconditioning protection with longer 

latencies. We incubated synaptically mature cultured hippocampal neurons (13–15 days 

in vitro) with 4 h of high KCl (30 mM), a stimulus that silences 75–80% of glutamate 

presynaptic terminals, or 4 h of NaCl (30 mM) as an osmotic, non-depolarizing control 

(Moulder et al., 2004). Both control preconditioning and depolarizing preconditioning 

were always performed in the presence of D-APV and NBQX to prevent glutamate 

receptor activation. This ensured that other forms of synaptic plasticity dependent on 

glutamate receptors were not activated by preconditioning; presynaptic silencing is not 

glutamate receptor-dependent (Crawford et al., 2011; Moulder et al., 2006; and Moulder 

et al., 2004). After preconditioning, the neurons were then removed from the 

preconditioning stimulus, including receptor antagonists, by media exchange and 

immediately exposed to hypoxia for 2.5 h. In addition to terminating the preconditioning 

stimulus, this media exchange also eliminated glutamate receptor antagonists and any  
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Figure 1. Depolarization preconditioning protects against hypoxia. A. Schematic of 
preconditioning/hypoxic exposure paradigm. B. Photomicrographs from a single 
experiment demonstrating depolarization protection. Upper left: brightfield image from a 
normoxic control stained with trypan blue 24 h post-preconditioning with 4 h of 30 mM 
NaCl (control preconditioning) and 2.5 h sham hypoxia. Upper right: a field from a dish 
preconditioned with 30 mM NaCl and subjected to 2.5 h hypoxia. Trypan blue positive 
pyknotic nuclei are apparent. Lower left: a field from a dish preconditioned with 30 mM 
KCl for 4 h and then subjected to 2.5 h hypoxia. Lower right: a protection control in 
which 1 μM NBQX and 100 μM D-APV, ionotropic glutamate receptor (GluR) 
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antagonists, were included in the hypoxia media. C. Summary of experiments like that 
depicted in panel B, showing protection afforded by KCl depolarization preconditioning. 
Cell survival is expressed as the percentage of trypan blue negative cells averaged over 
ten fields evaluated with a 20× objective (n = 7 independent experiments). Asterisks 
designate p < 0.05 compared with NaCl hypoxia (unpaired, two-tailed t-tests with 
Bonferroni correction for multiple comparisons). Gray bar emphasizes the major 
hypothesized result of KCl preconditioning protection. 
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contributions of substances secreted during preconditioning (see Materials and methods). 

Thus, only persisting cellular changes contributed to neuroprotection during hypoxia. We 

used trypan blue staining, a well-validated probe of membrane integrity, 24 h after the 

insult to assess cell death (Fig. 1A). With sham treatment, we found only mild attritional 

cell death (84 ± 1.3% healthy neurons; Figs. 1B and C), consistent with previous work 

(Shute et al., 2005). In cells rendered hypoxic after control (NaCl) preconditioning, a 2.5 

h hypoxic insult resulted in 30 ± 3.2% survival (Figs. 1B and C). By contrast, 

depolarizing preconditioning strongly and reliably protected neurons from hypoxia (59 ± 

2.6% survival, Figs. 1B and C). Postsynaptic glutamate receptor blockade during the 

insult nearly fully protected neurons (77 ± 1.4% survival, Figs. 1B and C), as previously 

shown (Rothman, 1984), and verifying the pivotal role of glutamate release and 

glutamate receptor activation in hypoxic cell loss. 

 

Depolarization preconditioning works through a presynaptic mechanism: 

These results suggest that a stimulus known to induce presynaptic silencing 

protects neurons from damage by endogenous glutamate. To verify presynaptic muting 

by the preconditioning paradigm, we performed analysis of FM1-43fx labeling of 

glutamatergic presynaptic terminals (defined by vGluT-1 immunoreactivity). As 

previously observed (Crawford et al., 2011; Jiang et al., 2010; and Moulder et al., 2004), 

4 h depolarization preconditioning silenced a majority of glutamate terminals (Figs. 2A 

and B). Because the FM1-43fx loading protocol used 2 min of strong depolarization to 

induce vesicle cycling, loading should overcome changes in vesicle release probability 

that could occur, for instance, by decreases in Ca2+ influx during dye loading. This 
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protocol has been shown to label the entire pool of vesicles capable of exo/endocytosis 

(Mozhayeva et al., 2002). Therefore, terminals appear functionally silenced in response 

to the preconditioning stimulus, a state that would be expected to effectively reduce 

glutamate release during major insults such as hypoxia. In this set of experiments we also 

noted a mild decrease in FM1-43fx uptake at remaining, active synapses (Fig. 2A), which 

could indicate a graded change in the number of releasable vesicles (Murthy et al., 2001). 

We have previously shown that changes in FM1-43fx uptake quantitatively match 

depression of EPSCs, suggesting that postsynaptic changes do not contribute significantly 

to the effects of depolarization conditioning (Moulder et al., 2004). Furthermore, 

depolarization preconditioning does not induce detectable postsynaptic changes measured 

by mEPSC analysis, response to exogenous glutamate agonists, or AMPA receptor 

immunoreactivity (Moulder et al., 2006; and Moulder et al., 2004). These past 

experiments do not exclude the possibility that depolarization conditioning alters 

postsynaptic Ca2+ influx or handling downstream of receptor activation. To test whether 

depolarization preconditioning influences the postsynaptic Ca2+ signals presumably 

important for hypoxic damage (Choi, 1985; and Choi, 1987), we loaded cells with Fluo3-

FF and then challenged depolarization-preconditioned cells and control cells with brief 

applications of 10 μM glutamate (Figs. 2C and D). Because cells were stimulated by 

exogenous glutamate applied to somatodendritic postsynaptic receptors, Ca2+ signals 

measured near the soma should reflect any changes in receptor-mediated Ca2+ influx or 

intracellular handling that might participate in neuroprotection. Preconditioned neurons 

did not differ in amplitude or half decay time (t1/2) of somatic Ca2+ signals evoked by a 5 

s application of 10 μM glutamate, indicating that preconditioning did not affect Ca2+  
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Figure 2. Preconditioning induces presynaptic muting but no detectable 
postsynaptic changes. A. Images of vGluT-1 positive puncta from representative fields 
from cultures preconditioned by 4 h KCl (30 mM) depolarization or by 30 mM NaCl 
control preconditioning. Middle panels show uptake of FM1-43fx during brief 
depolarization in the same field. The merged images reveal more inactive (FM1-43fx 
negative) vGluT-1 positive puncta after depolarizing preconditioning. Green = FM1-
43fx. Red = vGluT-1. Red puncta with no green overlap are mute synapses, while yellow 
indicates overlap and active synapses. White arrowheads indicate examples of co-labeled, 
active glutamatergic synapses. B. The percentage of FM1-43fx positive (FM (+)) 
terminals is summarized from 5 experiments like that depicted in A. C. Representative 
fluorescence images from somatic Ca2+ signals measured in control (n = 18 cells in 6 
fields) and depolarization-conditioned (n = 15 cells in 5 fields) cells. Cells were loaded 
with a 30 min bath application of 2 μM Fluo3-FF AM. Representative regions of interest 
(labeled with ‘1’) show typical locations of measurement in the soma, chosen based on a 
phase contrast image (not shown). Dendrites and axons are below the plane of focus. 
Images of baseline (prior to glutamate perfusion), peak fluorescence (5 s following 10 
μM glutamate onset), and return to baseline (30 s wash) fluorescence are shown. Region 
2 indicates a region devoid of cells and typical of regions from which background 
fluorescence was measured. D. Summary of glutamate-evoked somatic intracellular Ca2+ 
signals measured over the entire experiment (67 images over 40 s) with control-
conditioned and depolarization-conditioned cells overlaid. 
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handling or buffering in the postsynaptic compartment (peak ΔF/F = 1.8 ± 0.4, and t1/2 = 

3.3 ± 0.6 s for NaCl control; peak ΔF/F = 2.0 ± 0.3, and t1/2 = 3.2 ± 0.3 s for KCl 

preconditioning, p > 0.05, n = 18 cells for control, n = 15 cells for KCl preconditioning; 

Figs. 2C and D). We used the low-affinity dye Fluo3-FF to prevent dye saturation, but to 

ensure that the indicator was not saturated by our glutamate challenge, we applied 100 

μM glutamate to 15 additional cells and found that peak ΔF/F from these cells was 4.5 ± 

0.6, much larger than the 2.0 ± 0.3 ΔF/F average peak 10 μM glutamate signal, 

confirming the lack of dye saturation. 

It is possible that the low-affinity indicator may not reveal differences in the 

decay phase of glutamate-induced Ca2+ rises, where the Ca2+ concentration falls below 

detection limits of the dye. Therefore, we examined decay t1/2 values using the high-

affinity indicator Fluo4-AM. As expected, the decays using the high-affinity dye were 

slower than those observed with the low-affinity dye, reflecting the sensitivity to low 

Ca2+ concentrations. However, there was still no difference between depolarization-

preconditioned neurons and control-preconditioned neurons (t1/2 = 17.4 ± 3.2 s for control 

cells, t1/2 = 15.1 ± 2.2 s for depolarization preconditioned cells, p > 0.05, n = 18 and 21 

cells per respective condition). 

In a final test of whether preconditioning recruited postsynaptic adaptations, we 

evaluated the effect of depolarization preconditioning on toxicity induced by exogenous 

glutamate. This experiment exploited the pivotal role of glutamate receptor 

overstimulation in hypoxic cell death (Choi and Rothman, 1990). Direct overstimulation 

of postsynaptic receptors by-passes endogenous glutamate release contributing to 

hypoxic damage. Thus, if depolarization preconditioning acts through presynaptic 



232 
 

mechanisms, it should be ineffective against exogenous glutamate toxicity. If, however, 

preconditioning works through postsynaptic mechanisms, it should retain effectiveness 

and protect against direct glutamate excitotoxicity. We found that depolarization 

preconditioning was not effective in protecting neurons against exogenously applied 

glutamate (Fig. 3). In control cultures preconditioned with 30 mM NaCl, application of 

10 μM glutamate for 5 min killed over 60% of neurons, evaluated 24 h post-insult 

(Fig. 3). This was indistinguishable from cell loss in cultures preconditioned with 

depolarizing KCl (Fig. 3). Glutamate-induced cell loss following control preconditioning 

was similar to or slightly milder than that achieved in our hypoxia model. This result 

strongly suggests that the neuroprotection from hypoxia by strong depolarization 

preconditioning is of presynaptic origin, consistent with a potential role for presynaptic 

muting. 

 

Preconditioning protection extends to oxygen/glucose deprivation: 

Fig. 1 shows that depolarization preconditioning protects against a 2.5 h hypoxic 

insult, which normally kills approximately 70% of neurons in our paradigm. Previous 

studies in cortical neurons have shown that deprivation of both oxygen and glucose may 

be a more severe insult than hypoxia alone (Goldberg and Choi, 1993). We wanted to test 

whether this potentially more severe insult is also attenuated by presynaptic muting 

induced by depolarization preconditioning. As in the hypoxia paradigm we exposed cells 

to 4 h of high KCl (30 mM) or 4 h of a non-depolarizing NaCl control. After 

preconditioning, the neurons were removed from the preconditioning stimulus and 

immediately subjected to OGD for 2.5 h. The cells were then returned to their original  
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Figure 3. Exogenous glutamate toxicity is unaffected by depolarization 
preconditioning. A. Brightfield photomicrographs of trypan blue-stained fields from the 
indicated conditions in a single experiment. Exogenous glutamate (Glu; 10 μM for 5 min) 
replaced hypoxia in the preconditioning/insult paradigm. Upper left: control cells 24 h 
post-preconditioning with 30 mM NaCl and sham glutamate exposure that included 
media exchange. Upper right: protection control cells preconditioned with 30 mM NaCl, 
subjected to 10 μM glutamate (5 min) with ionotropic GluR antagonists present (1 μM 
NBQX + 100 μM D-APV). Lower left: cells preconditioned with 30 mM NaCl, subjected 
to 10 μM glutamate for 5 min. Lower right: cells preconditioned with 30 mM KCl, then 
subjected to 5 min of 10 μM glutamate. B. Summary graph of the conditions shown in A 
(n = 5). Glutamate significantly increased trypan blue staining compared with the NaCl 
sham condition in this dataset (p < 0.05, Bonferroni corrected t-test). However, 
depolarization preconditioning did not significantly alter the severity of cell loss. As with 
hypoxia, GluR block (1 μM NBQX, 100 μM D-APV) effectively protected neurons from 
glutamate-induced death, consistent with the pivotal role of excitotoxicity in both insults. 
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media and were allowed to incubate under normal conditions for 24 h, after which we 

performed trypan blue staining. As expected, OGD for 2.5 h killed more cells than 

hypoxia alone (compare Fig. 4 and Fig. 1). Nevertheless, as with the milder insult, 

depolarization preconditioning significantly protected neurons from the more severe 

OGD insult (Fig. 4). 

 

Depolarization preconditioning protection does not involve GABAA receptor activation: 

Previous work has suggested that a primary mechanism by which cortical neurons 

are desensitized to hypoxic damage after a depolarizing preconditioning stimulus is 

through enhancement of GABAA receptor activity during subsequent lethal ischemia 

(Grabb et al., 2002). On the other hand, some studies have suggested a more limited 

contribution of GABAA receptor activation in other forms of preconditioning (Lange-

Asschenfeldt et al., 2005). Studies conducted in our lab have shown that muting is 

induced at glutamate synapses, but not GABA synapses, by strong depolarization 

(Moulder et al., 2004). Therefore, if we are correct that glutamate presynaptic muting is 

responsible for neuroprotection in our preconditioning paradigm, we expect no role for 

GABA in the protection. To test whether neuroprotection in our paradigm is dependent 

on GABAA receptor activity during hypoxia (Grabb et al., 2002), we preconditioned 

neurons, followed by blockade of GABAA activity during the insult. The non-competitive 

GABAA receptor antagonist picrotoxin (100 μM) was used to circumvent the possibility 

that competitive antagonists might be overwhelmed by endogenous GABA release. 

Blockade of GABAA receptors during hypoxia did not affect cell survival in our 

paradigm (Fig. 5A), and picrotoxin did not affect the protection afforded by KCl  
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Figure 4. Depolarization preconditioning protects against oxygen-glucose 
deprivation (OGD). A. Brightfield micrographs of trypan blue staining from each 
condition: (left to right) control dish 24 h post-preconditioning with 30 mM NaCl and 
sham OGD; dish preconditioned with 30 mM NaCl, subjected to OGD for 2.5 h; dish 
preconditioned with 30 mM KCl, then subjected to OGD for 2.5 h. B. Summary graph 
showing protection afforded by KCl depolarization preconditioning (n = 4). Asterisks 
denote p < 0.05 compared with the NaCl OGD condition (Bonferroni corrected t-tests). 
Gray bar emphasizes the major hypothesized result of KCl preconditioning protection. 
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preconditioning (Fig. 5A). These results support the idea that reduction in presynaptic 

glutamate release, rather than altered GABA signaling, is key to the preconditioning 

protection from strong depolarization. 

 

Depolarization preconditioning protection does not involve A1 receptors: 

A1 adenosine receptor activation may contribute to ischemic preconditioning 

tolerance (Nakamura et al., 2002; and Perez-Pinzon et al., 1996) and selectively affect 

glutamate transmission in the hippocampus (Yoon and Rothman, 1991). Blockade of A1 

adenosine receptors, however, does not abolish depolarization-induced presynaptic 

muting of glutamate terminals by high KCl exposure (Crawford et al., 2011). To 

distinguish depolarization-induced muting from adenosine-dependent forms of 

preconditioning, we co-administered the A1 adenosine receptor blocker 8-cyclopentyl-

1,3-dipropylxanthine (DPCPX; 200 nM) during depolarization preconditioning. As 

before, the cells were subsequently challenged with 2.5 h of hypoxia. The 

neuroprotective effects of elevated KCl were not altered by A1 receptor inhibition 

(Fig. 5B). This suggests that in our paradigm, unlike other forms of preconditioning 

(Nakamura et al., 2002; and Perez-Pinzon et al., 1996), the protection from hypoxia by 

presynaptic silencing of glutamate release is unlikely to involve A1 adenosine receptor 

activation during preconditioning. 

 

Depolarization preconditioning protection from hypoxia does not require Ca2+ influx: 

A unique aspect of the induction of presynaptic silencing by strong depolarization 

is that it is Ca2+-independent, unlike most other forms of synaptic plasticity (Crawford et 
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al., 2011). Therefore, as an additional test of the involvement of presynaptic muting in 

preconditioning protection, we preconditioned cells with KCl in the absence of 

extracellular Ca2+ (plus 0.1 mM EGTA to chelate residual Ca2+; Fig. 5C). Removing Ca2+ 

did not affect the ability of depolarization preconditioning to protect from hypoxic 

excitotoxicity (compare Fig. 5C with Fig. 1C). These results demonstrate a signature 

feature of presynaptic muting and are additional support for the idea that muting plays a 

strong role in preconditioning protection. Furthermore, the finding excludes Ca2+-

dependent secretion of neurotransmitters and neuromodulators during preconditioning in 

the protection. 

 

Proteasome inhibition prevents depolarization preconditioning protection: 

The UPS is involved in the regulation of synaptic function, including presynaptic 

development and function (Haas and Broadie, 2008; Hegde and DiAntonio, 2002; and 

Willeumier et al., 2006). Recently a postsynaptic UPS-dependent mechanism induced by 

N-Methyl-D-aspartic acid (NMDA) receptor activation was implicated in rapid ischemic 

tolerance, a neuroprotective effect of subtoxic conditioning ischemia (Meller et al., 

2008). Proteasome inhibition also prevents the induction of presynaptic silencing (Jiang 

et al., 2010). If presynaptic muting is involved in depolarization preconditioning-induced 

neuroprotection, proteasome inhibition should reverse the protection from depolarization 

preconditioning. To investigate the role of the UPS in preconditioning neuroprotection, 

we co-applied the proteasome inhibitor MG-132 (3 μM) during the preconditioning 

period of high KCl (30 mM) exposure. Protection from hypoxia after the high KCl 

preconditioning period was completely abolished by proteasome inhibition during  
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Figure 5. Depolarization preconditioning protection from hypoxia does not depend 
upon GABAA receptor modulation, adenosine A1 receptor activation, or 
extracellular Ca2+ influx. A. The non-competitive GABAA antagonist picrotoxin (PTX; 
100 μM), applied during hypoxia (2.5 h), did not prevent depolarization protection. 
Summary of the indicated experimental conditions (n = 6). ‘N.S.’ indicates lack of 
significant difference in comparisons of the effect of PTX with the corresponding 
condition in the absence of PTX. B. The A1 receptor antagonists DPCPX (200 nM) did 
not block depolarization preconditioning protection. Summary of various 4 h 
preconditioning conditions. Hypoxic insult was 2.5 h (n = 5). ‘N.S.’ indicates a lack of 
difference for the indicated comparisons. C. Summary graph showing protection afforded 
by KCl depolarization preconditioning (n = 5) independent of the addition of 1.8 mM 
extracellular Ca2+ to the Ca2+ free conditioning media. For all panels, neuronal survival 
was assessed 24 h after insult with trypan blue exclusion. Asterisks denote p < 0.05 
comparisons (Bonferroni corrected t-tests). 
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preconditioning (Fig. 6A). Taken together with preceding evidence (Fig. 1, Fig. 2 and 

Fig. 3) for a presynaptic locus of KCl neuroprotection, this result is consistent with the 

idea that UPS-dependent presynaptic silencing induced prior to the insult protects 

neurons from hypoxia. Because D-APV and NBQX were present in preconditioning 

solutions, it is unlikely that MG-132 acts through these postsynaptic receptor systems to 

reverse the presynaptic protection afforded by depolarization. Furthermore, when we by-

passed presynaptic terminals and killed neurons by direct exogenous glutamate exposure, 

there was no difference in survival following control preconditioning, KCl 

preconditioning, MG-132 preconditioning, or a combination of KCl and MG-132 

preconditioning (Fig. 6B). Although the effects on the UPS from hypoxia are likely 

complex and operate in both presynaptic and postsynaptic compartments, our results 

suggest that MG-132 reverses protection in our model by a presynaptic mechanism 

induced during preconditioning, upstream of postsynaptic receptor overstimulation. 

Control experiments also verified that neither KCl nor MG-132 affected cell survival in 

the absence of insult. A 4 h application of 30 mM KCl or 3 μM MG-132 alone was not 

toxic to the neurons (Fig. 6C). 

 

Hypoxia induces muting: 

The preceding results establish that, in principle, muting of presynaptic glutamate 

release induced prior to insult is capable of protecting neurons from subsequent 

hypoxic/OGD excitotoxicity, but do neurons employ muting of glutamate synapses 

during the insult itself? Depolarization of neurons is an important early consequence of 

hypoxic/ischemic insult and is reinforced by subsequent glutamate release and receptor  
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Figure 6. Proteasome inhibition prevents depolarization preconditioning protection 
through a presynaptic mechanism. A. Summary of neuronal survival after several 4 h 
preconditioning conditions and 2.5 h hypoxic exposure (n = 5). MG-132 (3 μM, co-
applied for 4 h with 30 mM KCl) prevented the protective effect of depolarization. 
Indicated comparisons represent the major hypothesized effects (asterisk denotes p < 0.05 
with Bonferroni correction). Other comparisons that showed a significant difference from 
insult alone (NaCl hypoxia) were the NaCl sham control and the KCl hypoxia conditions. 
There was no difference between the NaCl hypoxia condition and NaCl hypoxia plus 
MG-132. B. Summary of cell survival after indicated preconditioning conditions 
followed by an insult of exogenously applied glutamate (Glu; 10 μM for 5 min). There 
was no effect of KCl or of MG-132 on cell survival using the glutamate insult (n = 5), 
suggesting a presynaptic mechanism of depolarization preconditioning protection. No 
comparison of the NaCl/glutamate group with any of the other indicated groups yielded a 
significant difference. Glutamate treatment caused significant death relative to control (p 
< 0.05, Bonferroni corrected t-test for multiple comparisons). C. Control experiment 
testing direct effects of KCl and MG-132 on cell survival during various 4 h 
preconditioning paradigms in the absence of hypoxia (n = 5). No comparison with the 
control sham condition exhibited a significant difference (unpaired t-tests vs. control). 
For all experiments depicted in panels A, B, and C neuronal survival was evaluated with 
trypan blue 24 h after the insult. 
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activation (Moskowitz et al., 2010). If depolarization is rapid and strong enough to induce 

muting, presynaptic silencing may be an important endogenous regulator of damage 

threshold. To investigate this, we used FM1-43fx uptake to assess presynaptic function 

immediately after a 2 h hypoxic event, without any preceding preconditioning. As shown 

in Fig. 2, muted glutamate terminals immunolabel with an antibody against the vesicular 

glutamate transporter 1 (vGluT-1) but not with the activity-dependent FM dye (Moulder 

et al., 2004). Hypoxia exposure clearly increased the number of mute synapses (Fig. 7). 

The muting induced by hypoxia was completely prevented by the inclusion of MG-132 (3 

μM) during the hypoxic challenge (Fig. 7B), suggesting that hypoxia and depolarization 

activate the same proteasome-dependent signaling cascade. As previously observed 

(Crawford et al., 2011; and Jiang et al., 2010), MG-132 had no effect on the basal 

percentage of silent terminals (Fig. 7B). Further, we failed to find a significant effect of 

MG-132 on overall glutamate synapse density (97.8 ± 6.5 vGluT-1 positive synapses per 

field in control, 117.0 ± 17.2 puncta mm2 after MG-132 treatment, n = 5 experiments, p > 

0.3). Finally, in two previously published papers by our group, we failed to detect any 

effect of MG-132 alone on excitatory postsynaptic currents (Crawford et al., 2011; and 

Jiang et al., 2010). These results offer direct evidence that proteasome-dependent 

presynaptic silencing occurs during hypoxia and suggest that presynaptic muting is an 

endogenous cellular defense mechanism that may reduce damage even without prior 

preconditioning designed to invoke synaptic muting. 

 

Proteasome inhibition exacerbates neuronal death during a hypoxic insult: 

To test directly whether proteasome-dependent presynaptic muting observed in  



244 
 

 
 
Figure 7. Hypoxia induces proteasome-dependent presynaptic silencing. A. FM1-
43fx/vGluT-1 correspondence assay. Green = FM1-43fx. Red = vGluT-1. Red puncta 
with no green overlap are mute synapses, while yellow indicates overlap and active 
synapses. A 2 h preconditioning period with or without MG-132 (3 μM) was followed by 
a 2 h hypoxic insult (or sham), then immediately by the FM1-43fx assay. B. Summary of 
experiments depicted in panel A showing the percentage of active synapses after hypoxic 
insult with and without MG-132 co-incubation (n = 25 fields from 5 independent 
experiments). Asterisk denotes p < 0.05 compared with hypoxia alone (Bonferroni 
corrected t-tests). Comparisons of control versus MG-132, control versus hypoxia plus 
MG-132, and MG-132 versus hypoxia plus MG-132 showed no differences. 
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Fig. 7 reduces the damage wrought by a moderate hypoxic insult, we tested the effect of 

proteasome inhibition on neuronal loss induced by hypoxia. We co-applied MG-132 

during a 2 h hypoxic event (Fig. 8A). We chose an insult that would provide 

approximately 50% neuronal death in order to ensure detection of either protection or 

exacerbation of cell death. MG-132 during hypoxia significantly increased neuronal 

death (Fig. 8B). Again, MG-132 did not affect neuronal death when applied to neurons 

for a total of 4 h without hypoxia (Figs. 6C and 8B). Further, we found that MG-132 

preincubation, followed by co-incubation with 10 μM glutamate to bypass presynaptic 

effects, did not alter direct, glutamate induced death (Fig. 8C). These results are 

consistent with a presynaptic action of MG-132. Taken together, the results of Fig. 7 and 

Fig. 8 suggest that presynaptic silencing raises the threshold for neurotoxicity during a 

depolarizing insult. 
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Figure 8. Proteasome inhibition during hypoxia exacerbates neuronal damage. A. 
Brightfield trypan blue-stained fields from a representative experiment. Neurons were 
incubated with or without MG-132 for 2 h to allow drug penetration, then subsequently 
co-incubated with MG-132 for additional 2 h with or without hypoxia. Culture media was 
then exchanged, and cells were incubated normally for 24 h after which trypan blue 
staining was performed. Upper left: control with no MG-132 or hypoxia. Upper right: 4 h 
total MG-132 exposure (no hypoxia). Lower left: 2 h hypoxia alone. Lower right: 2 h 
MG-132 followed by hypoxia/MG-132 co-incubation for 2 h (4 h total exposure to MG-
132). B. Summary of A showing that MG-132 exacerbates hypoxia-induced death (n = 
7). Asterisk denotes p < 0.05 (Bonferroni corrected t-test). C. Summary of control for 
postsynaptic effects of MG-132 (n = 5 experiments). 10 μM glutamate (Glu) treatment 
was used as a surrogate for hypoxic insult. There was no significant exacerbation of 
glutamate-induced damage by MG-132. As with hypoxia experiments in B, cells were 
pre-incubated in MG-132 for 2 h prior to insult. 
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Discussion 

We have shown that a form of synaptic plasticity working through a presynaptic 

UPS-dependent mechanism significantly protects neurons from in vitro hypoxic/ischemic 

insults. Importantly, muting is endogenously invoked by hypoxia with no prior 

conditioning to limit the damage severity inflicted during a moderate insult. Protection is 

achieved by invoking an endogenous mechanism that mutes vesicular glutamate release 

at presynaptic terminals. Among a growing body of research into preconditioning and 

tolerance (Gidday, 2006; and Sapolsky, 2001), presynaptic muting is a previously 

unknown UPS-dependent mechanism of tolerance. Because muting is part of a native 

cellular defense mechanism in response to stressful depolarization, it might be a good 

target for future therapeutics. Our insights into this UPS-dependent mechanism 

demonstrate presynaptic regulation of neuronal homeostasis and suggest new approaches 

that may benefit disorders involving glutamatergic synaptic dysfunction. 

Presynaptic muting appears particularly well suited as an adaptation against 

strong insults like hypoxia/ischemia. Strong depolarization and associated sustained Ca2+ 

influx during these insults are likely to quickly overwhelm many presynaptic adaptive 

mechanisms, such as G-protein-mediated decreases in presynaptic Ca2+ influx (Brown 

and Sihra, 2008). Because muting effectively eliminates vesicle release competence to 

Ca2+ and other secretagogues (Moulder et al., 2006; and Moulder et al., 2004), muting 

should be especially effective at disrupting the cycle of pathological depolarization 

during the insult. On the other hand, we acknowledge that strategies designed to disrupt 

glutamate signaling have to date proved disappointing in clinical settings (Gidday, 2006; 

Lipton, 2007; and Moskowitz et al., 2010), and presynaptic muting may be ineffective 
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during strong insults that recruit non-synaptic glutamate release (Rossi et al., 2000). 

Proteasome inhibition exacerbated damage and also inhibited presynaptic 

silencing in response to hypoxic insult (Fig. 7 and Fig. 8). Proteasome activity is 

increased during strong depolarization, and proteasome inhibition also prevents 

presynaptic silencing during strong depolarization (Jiang et al., 2010). In the present 

study, proteasome inhibition prevented the neuronal protection from strong 

depolarization followed by hypoxia (Fig. 6A). Similar exacerbation of cell death was 

recently described in an ischemia model, where an NMDA receptor and UPS-dependent 

postsynaptic remodeling mechanism was implicated in a rapid ischemic tolerance (Meller 

et al., 2008). These previous results fit with known UPS roles in the postsynaptic 

compartment (Mabb and Ehlers, 2010; and Tai and Schuman, 2008). On the other hand, 

the UPS is also important for aspects of presynaptic development and function 

(DiAntonio and Hicke, 2004; Jiang et al., 2010; and Willeumier et al., 2006). Our 

observations fit more closely with this latter literature. Postsynaptic NMDA receptor 

activation is not required for our preconditioning protection, as D-APV was present in all 

preconditioning treatments in our experiments to block NMDA receptor-dependent forms 

of plasticity. Furthermore, a postsynaptic mechanism of protection is excluded by our 

experiments examining preconditioning effects on exogenous glutamate damage and 

postsynaptic Ca2+ handling in response to exogenously applied glutamate after 

preconditioning (Fig. 2, Fig. 3 and Fig. 6). 

Our experiments were designed to isolate presynaptic contributions to self-

defense mechanisms and therefore do not negate contributions of previously described 

postsynaptic mechanisms of adaptive neuroprotection under some conditions. These 
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mechanisms may be most important in the most severe insults where non-synaptic 

glutamate release is recruited (Rossi et al., 2000). Further work is needed to elucidate the 

relative importance of presynaptic silencing and other adaptive, self protective 

mechanisms. 

Although UPS-dependent neuroprotection in our model is mainly presynaptic and 

distinct from previously described UPS-dependent and NMDA-dependent forms of 

tolerance (Grabb and Choi, 1999), it is possible that complex changes in UPS function 

accompany insult. Although proteasome inhibition has been reported following brain 

ischemia and is associated with ATP depletion (Asai et al., 2002; and Thompson et al., 

2008), this does not exclude local persistence of or increases in UPS activity in certain 

tissue compartments, specific cell types, or specific subcellular compartments. We expect 

that UPS-dependent presynaptic muting will be particularly relevant to glutamate 

terminals in the penumbra of an insult where a certain degree of neuronal function is 

preserved. 

Our results demonstrating a role of the UPS in presynaptic muting and cell 

survival (Fig. 7 and Fig. 8) also exclude a possible alternative explanation for the muting 

observed in response to hypoxia: cell death. Although cell loss was not evident for 

several hours after the hypoxic insult and there was little evidence of presynaptic damage 

at the time of synaptic imaging (Fig. 7), the presynaptic silencing observed might be a 

trivial result of dying neurons rather than a neuroprotective response of viable neurons. 

The effect of MG-132 clearly argues against this possibility. MG-132 application during 

hypoxia prevented muting (Fig. 7) but exacerbated neuronal damage (Fig. 8). This pattern 

of results excludes damage as a cause of muting and strongly suggests that presynaptic 
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function is an important determinant of subsequent cell loss. 

Additional study of the pathways responsible for presynaptic muting may guide 

strategies for therapeutic exploitation of these pathways. Upstream targets may include 

pertussis toxin-sensitive Gi/o-linked G-protein receptors (Crawford et al., 2011). 

Downstream effectors may include relevant targets of the UPS (Jiang et al., 2010). 

Depolarization-induced muting results in decreased levels of the vesicle priming proteins 

Rim1α and Munc13-1, and overexpression of Rim1α prevents presynaptic silencing 

(Jiang et al., 2010). However, the proteasome also potentially regulates a host of other 

synaptic proteins such as SNAP-25, syntaxin, and synaptophysin (Chin et al., 2002; Ma 

et al., 2005; Wheeler et al., 2002; and Willeumier et al., 2006) among many other 

candidates, befitting the ubiquitous nature of the UPS system. Targeting the specific 

proteins responsible for muting may offer a viable, selective therapeutic strategy. 

With these results we provide new insight into a homeostatic neuronal defense 

mechanism at glutamatergic presynaptic terminals. Pharmacological exploitation of a 

mechanism reducing presynaptic glutamate release could potentially treat excitotoxic 

damage resulting from stroke, neonatal hypoxia, epilepsy, and head trauma at the time of 

injury, where treatment options are quite limited and postsynaptic interventions have 

failed. Presynaptic muting appears to render presynaptic terminals incompetent to 

exocytose even when challenged with sustained Ca2+ rises. The mechanism we report 

here does not require lengthy latent periods for its induction and is immediately available 

as a homeostatic mechanism. Additional study of presynaptic muting will increase our 

basic understanding of hippocampal synaptic function. Further study may also identify 

potential treatment targets related to muting that could benefit various neurological and 
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psychiatric disorders involving glutamate dysfunction. 
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