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ABSTRACT OF THE DISSERTATION 

Capacity Fade Analysis and Model Based Optimization of Lithium-ion Batteries 
by 

Venkatasailanathan Ramadesigan 

Doctor of Philosophy in Energy, Environmental and Chemical Engineering 

Washington University in St. Louis, 2013 

Professor Venkat Subramanian, Chair 

Electrochemical power sources have had significant improvements in design, economy, 

and operating range and are expected to play a vital role in the future in a wide range of 

applications. The lithium-ion battery is an ideal candidate for a wide variety of applications due 

to its high energy/power density and operating voltage. Some limitations of existing lithium-ion 

battery technology include underutilization, stress-induced material damage, capacity fade, and 

the potential for thermal runaway. This dissertation contributes to the efforts in the modeling, 

simulation and optimization of lithium-ion batteries and their use in the design of better batteries 

for the future. While physics-based models have been widely developed and studied for these 

systems, the rigorous models have not been employed for parameter estimation or dynamic 

optimization of operating conditions. The first chapter discusses a systems engineering based 

approach to illustrate different critical issues possible ways to overcome them using modeling, 

simulation and optimization of lithium-ion batteries. The chapters 2-5, explain some of these 

ways to facilitate (i) capacity fade analysis of Li-ion batteries using different approaches for 

modeling capacity fade in lithium-ion batteries, (ii) model based optimal design in Li-ion 

batteries and (iii) optimum operating conditions (current profile) for lithium-ion batteries based 

on dynamic optimization techniques. The major outcomes of this thesis will be, (i) comparison of 

different types of modeling efforts that will help predict and understand capacity fade in lithium-
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ion batteries that will help design better batteries for the future, (ii) a methodology for the 

optimal design of next-generation porous electrodes for lithium-ion batteries, with spatially 

graded porosity distributions with improved energy efficiency and battery lifetime and (iii) 

optimized operating conditions of batteries for high energy and utilization efficiency, safer 

operation without thermal runaway and longer life. 
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Chapter 1 :  Introduction to modeling lithium-ion batteries from a 

systems engineering perspective 

This chapter is reproduced with permission from J. Electrochem. Soc., 159 (3), R31 (2012). 

Copyright 2012, The Electrochemical Society. The author is grateful to the co-authors for their 

significant contributions under sections 1.2.3, 1.2.4, 1.3.2, 1.3.4, 1.4.2 and 1.4.4. 

1.1. Introduction 

Lithium-ion batteries are becoming increasingly popular for energy storage in portable 

electronic devices. Compared to alternative battery technologies, Li-ion batteries provide one of 

the best energy-to-weight ratios, exhibit no memory effect, and have low self-discharge when not 

in use. These beneficial properties, as well as decreasing costs, have established Li-ion battery as 

a leading candidate for the next generation of automotive and aerospace applications.1,2 Li-ion 

battery are also a good candidate for green technology. Electrochemical power sources have had 

significant improvements in design, economy, and operating range and are expected to play a 

vital role in the future in automobiles, power storage, military, mobile-station, and space 

applications. Lithium-ion chemistry has been identified as a good candidate for high-power/high-

energy secondary batteries and commercial batteries of up to 75 Ah have been manufactured. 

Applications for batteries range from implantable cardiovascular defibrillators operating at 10 

µA, to hybrid vehicles requiring pulses of up to 100 A. Today the design of these systems have 

been primarily based on (1) matching the capacity of anode and cathode materials, (2) trial-and-

error investigation of thicknesses, porosities, active material, and additive loading, (3) 

manufacturing convenience and cost, (4) ideal expected thermal behavior at the system level to 

handle high currents, etc., and (5) detailed microscopic models to understand, optimize, and 
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design these systems by changing one or few parameters at a time. The term ‘lithium-ion battery’ 

is now used to represent a wide variety of chemistries and cell designs. As a result, there is a lot 

of misinformation about the failure modes for this device as cells of different chemistries follow 

different paths of degradation. Also, cells of the same chemistry designed by various 

manufacturers often do not provide comparable performance, and quite often the performance 

observed at the component or cell level does not translate to that observed at the system level. 

Problems that persist with existing lithium-ion battery technology include underutilization, 

stress-induced material damage, capacity fade, and the potential for thermal runaway.3 Current 

issues with lithium-ion batteries can be broadly classified at three different levels as shown 

schematically in Figure 1-1: market level, system level, and single cell sandwich level (a 

sandwich refers to the smallest entity consisting of two electrodes and a separator). At the market 

level, where the end-users or the consumers are the major target, the basic issues include cost, 

safety, and life. When a battery is examined at the system level, researchers and industries face 

issues such as underutilization, capacity fade, thermal runaways, and low energy density. These 

issues can be understood further at the sandwich level, at the electrodes, electrolyte, separator, 

and their interfaces. Battery researchers attribute these shortcomings to major issues associated 

with Solid-Electrolyte Interface (SEI)-layer growth, unwanted side reactions, mechanical 

degradation, loss of active materials, and the increase of various internal resistances such as 

ohmic and mass transfer resistance. This dissertation analyses and contributes to the application 

of modeling, simulation, and systems engineering to address the issues at the sandwich level for 

improved performance at the system level resulting in improved commercial marketability.  

Systems engineering can be defined as a robust approach to the design, development, and 

operation of systems. The approach consists of the identification and quantification of system 



3 
 

goals, creation of alternative system design concepts, analysis of design tradeoffs, selection and 

implementation of the best design, verification that the design is properly manufactured and 

integrated, and post-implementation assessment of how well the system meets (or met) the 

goals.4 Process systems engineering has been successfully employed for designing, operating, 

and controlling various engineering processes and many efforts are currently being attempted for 

Li-ion batteries. The development of new materials (including choice of molecular constituents 

and material nano- and macro-scale structure), electrolytes, binders, and electrode architecture 

are likely to contribute towards improving the performance of batteries. For a given chemistry, 

the systems engineering approach can be used to optimize the electrode architecture, operational 

strategies, cycle life, and device performance by maximizing the efficiency and minimizing the 

potential problems mentioned above. 

The schematic in Figure 1-2 shows four systems engineering tasks and the interactions 

between these tasks. Ideally, the eventual goal of the systems engineering approach applied to 

Li-ion batteries would develop a detailed multiscale and multiphysics model formulated so that 

its equations can be simulated in the most efficient manner and platform, which would be 

employed in robust optimal design. The first-principles model would be developed iteratively 

with the model predictions compared with experimental data at each iteration, which would be 

used to refine the detailed model until its predictions became highly accurate when validated 

against experimental data not used in the generation of the model. This dissertation make an 

effort to present a brief contribution in each of the four systems engineering tasks listed above to 

enable better understanding and use of lithium-ion batteries in the future.  

Systems engineering approaches have been used in the battery literature in the past, but not 

necessarily with all of the tasks and their interactions in Figure 1-2 implemented to the highest 
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level of fidelity. Such a systems engineering approach can address a wide range of issues in 

batteries, such as 

1. Identification of base transport and kinetic parameters 

2. Capacity fade modeling (continuous or discontinuous) 

3. Identification of unknown mechanisms 

4. Improved life by changing operating conditions 

5. Improved life by changing material properties 

6. Improved energy density by manipulating design parameters 

7. Improved energy density by changing operating protocols 

8. Electrolyte design for improved performance 

9. State estimation in packs 

10. Model predictive control that incorporates real-time estimation of State-of-Charge (SOC) and 

State-of-Health (SOH). 

The next section reviews the status of the literature in terms of modeling, simulation, and 

optimization of lithium-ion batteries, which is followed by a discussion of the critical issues in 

the field (Section 1.3), and methods for addressing these issues and expected future directions 

(Section 1.4). 

1.2. Background 

In Figure 1-2, model development forms the core of the systems engineering approach for the 

optimal design of lithium-ion batteries. Generally, the cost of developing a detailed multiscale 

and multiphysics model with high predictive ability is very expensive, so model development 

efforts start with a simple model and then add complexity until the model predictions are 
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sufficiently accurate. That is, the simplest fundamentally strong model is developed that 

produces accurate enough predictions to address the objectives. The best possible physics-based 

model can depend on the type of issue being addressed, the systems engineering objective, and 

on the available computational resources. This section describes various types of models 

available in the literature, the modeling efforts being undertaken so far, and the difficulties in 

using the most comprehensive models in all scenarios. 

An important task is to experimentally validate the chosen model to ensure that the model 

predicts the experimental data to the required precision with a reasonable confidence. This task is 

typically performed in part for experiments designed to evaluate the descriptions of 

physicochemical phenomena in the model whose validity is less well established. However, in a 

materials system such as a lithium-ion battery, most variables in the system are not directly 

measurable during charge-discharge cycles, and hence are not available for comparison to the 

corresponding variables in the model, to fully verify the accuracy of all of the physicochemical 

assumptions made in the derivation of the model. Also, model parameters that cannot be directly 

measured experimentally typically have to be obtained by comparing the experimental data with 

the model predictions.  

A trial-and-error determination of battery design parameters and operating conditions is 

inefficient, which has motivated the use of battery models to numerically optimize battery 

designs. This numerical optimization can be made more efficient by use of reformulated or 

reduced order models.5,6 Simulation time plays a role in determining the use of these models in 

various applications, and high simulation times have limited the application of battery 

optimization based on physics-based models. Efficient ways of simulating battery models is an 

active area of research and many researchers have published various mathematical techniques 
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and methods to simulate physics-based battery models faster.5-8 This has enabled greater use of 

optimization and systems engineering based on physics-based models.9-11 

Once an efficient method of simulating the battery models is devised, the next step is to 

formulate optimization problems to address the real-world challenges described in the previous 

section. The objective function can be chosen based on the required performance objectives at 

the system level. Optimization of operating conditions, control variables, and material design 

(architecture) can be performed based on specific performance objectives described in more 

detail in Section 1.2.4. After obtaining either an optimal operating protocol or electrode 

architecture for a specific performance objective, the results should be verified using 

experiments. 

Mathematical models for lithium-ion batteries vary widely in terms of complexity, 

computational requirements, and reliability of their predictions (see Figure 1-3). Including more 

detailed physicochemical phenomena in a battery model can improve its predictions but at a cost 

of increased computational requirements, so simplified battery models continue to be applied in 

the literature, when appropriate for the particular needs of the application. This section 

summarizes the literature on model development for lithium-ion batteries, and the application of 

these models in systems engineering. Models for the prediction of battery performance can be 

roughly grouped into four categories: empirical models, electrochemical engineering models, 

multiphysics models, and molecular/atomistic models. 

1.2.1. Empirical Models 

Empirical models employ past experimental data to predict the future behavior of lithium-ion 

batteries without consideration of physicochemical principles. Polynomial, exponential, power 

law, logarithmic, and trigonometric functions are commonly used as empirical models. The 
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computational simplicity of empirical models enables very fast computations, but since these 

models are based on fitting experimental data for a specific set of operating conditions, 

predictions can be very poor for other battery operating conditions. Such battery models are also 

useless for the design of new battery chemistries or materials. 

1.2.2. Electrochemical Engineering Models 

The electrochemical engineering field has long employed continuum models that incorporate 

chemical/ electrochemical kinetics and transport phenomena to produce more accurate 

predictions than empirical models. Electrochemical engineering models of lithium-ion batteries 

have appeared in the literature for more than twenty years.12 Below is a summary of 

electrochemical engineering models, presented in order of increasing complexity. 

1.2.2.a. Single-Particle Model 

The single-particle model (SPM) incorporates the effects of transport phenomena in a simple 

manner. Zhang et al.13 developed a model of diffusion and intercalation within a single electrode 

particle, which was expanded to a sandwich by considering the anode and cathode each as a 

single particle with the same surface area as the electrode.14 In this model, diffusion and 

intercalation are considered within the particle, but the concentration and potential effects in the 

solution phase between the particles are neglected.14,15 The following typical reactions are 

considered in each of the particle in the SPM (MO refers to metal oxide): 

Cathode: Discharge

Chargey yMO Li e LiMO+ −+ + 



; Anode: Discharge

Charge6 6LiC Li e C+ −+ +



 

Due to these simplifications, this model can be quickly simulated, but is only valid for 

limited conditions, such as low rates and thin electrodes.15 Greater efficiency can be obtained by 

including a parabolic profile approximation for the lithium concentration within the particle.14,16 

1.2.2.b. Ohmic Porous-Electrode Models 
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The next level of complexity is a porous-electrode model that accounts for the solid- and 

electrolyte-phase potentials and current while neglecting the spatial variation in the 

concentrations. The model assumes either linear, Tafel, or exponential kinetics for the 

electrochemical reactions and incorporates some additional phenomena, such as the dependency 

of conductivities as a function of porosity. Optimization studies have been performed using this 

model to design the separator and electrode thicknesses17-19 and ideal spatial variations of 

porosity within electrodes.11 

1.2.2.c. Pseudo-Two-Dimensional Models  

The pseudo-two-dimensional (P2D) model expands on the ohmic porous-electrode model by 

including diffusion in the electrolyte and solid phases, as well as Butler-Volmer kinetics (see 

Figure 1-4). Doyle et al.12 developed a P2D model based on concentrated solution theory to 

describe the internal behavior of a lithium-ion sandwich consisting of positive and negative 

porous electrodes, a separator, and a current collector. This model was generic enough to 

incorporate further advancements in battery systems understanding, leading to the development 

of a number of similar models.14,20-30 This physics-based model is by far the most used by battery 

researchers, and solves for the electrolyte concentration, electrolyte potential, solid-state 

potential, and solid-state concentration within the porous electrodes and the electrolyte 

concentration and electrolyte potential within the separator. This model based on the principles 

of transport phenomena, electrochemistry, and thermodynamics is represented by coupled 

nonlinear partial differential equations (PDEs) in x, r, and t that can take seconds to minutes to 

simulate. The inclusion of many internal variables allow for improved predictive capability, 

although at a greater computational cost than the aforementioned models.  

1.2.3. Multiphysics Models 
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Multiscale, multidimensional, and multiphysics electrochemical-thermal coupled models are 

necessary to accurately describe all of the important phenomena that occur during the operation 

of lithium-ion batteries for high power/energy applications such as in electric/hybrid vehicles. 

1.2.3.a. Thermal Models 

Including temperature effects into the P2D model adds to the complexity, but also to the 

validity, of the model, especially in high power/energy applications. Due to the added 

computational load required to perform thermal calculations, many researchers have decoupled 

the thermal equations from the electrochemical equations by using a global energy balance, 

which makes it impossible to capture the effects on the performance of the cells due to 

temperature changes.31-35 Other researchers have similarly decoupled the thermal simulation of 

the battery stack from the thermal/electrochemical simulation of a single cell sandwich.36,37 

Other thermal models have been reported that are coupled with first-principles electrochemical 

models both for single cells and cell stacks.38-40 The global energy balance is only valid when the 

reaction distribution is uniform all over the cell; for accurate estimation of heat generation in a 

cell, the local variations in the reaction current and SOC must be incorporated.41 Recently, Guo 

et al.15 published a simplified thermal model applied to a single particle. Some papers have 

presented 2D thermal-electrochemical coupled models for lithium-ion cells that take into account 

the effects of local heat generation.42,43 Similar studies predict battery discharging performance 

at different operating temperatures.44 Additionally, the coupling of a 1D electrochemical model 

with a lumped thermal model by means of an Arrhenius form of temperature dependence for the 

physicochemical properties has been reported.45-47 Recently, researchers have begun considering 

3D thermal models to better understand the dynamic operation and control of lithium-ion 

batteries for large-scale applications. Since such models are quite computationally expensive, 
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several approximations are made, resulting in various shortcomings. Some models cannot 

monitor the thermal effect of electrochemical parameters,33,48 while other models require 

empirical input from experiments or other simulations,49,50 (or use volume-averaged equations 

for the solid-phase intercalation). Another approach assumes a linear current-potential 

relationship and neglects spatial concentration variations and is therefore only valid for low 

power operations.51 A Multi-Scale Multi-Dimensional (MSMD) model52 and a model derived 

from a grid of 1D electrochemical/thermal models53 have also been implemented for 3D thermal 

simulation of batteries. 

1.2.3.b. Stress-Strain and Particle Size/Shape Distributions 

Intercalation of lithium causes an expansion of the active material, such as graphite or 

manganese oxide, while lithium extraction leads to contraction. The diffusion of lithium in 

graphite is not well understood, but some work has been done to model the diffusion and 

intercalation of lithium into the electrode material.25,54,55 Since lithium diffuses within the 

particle, the expansion and contraction of the material will not happen uniformly across the 

particle (i.e., the outer regions of the particle will expand first due to lithium intercalating there 

first). This spatial nonuniformity causes stress to be induced in the particle and may lead to 

fracture and loss of active material,56,57 which is one of the mechanisms for capacity fade. 

Various models have been developed to examine the volume change and stress induced by 

lithium-ion intercalation for single particles.58-60 A two-dimensional microstructure model was 

developed61 to extend the stress-strain analysis from single particles and was eventually 

incorporated into the full P2D model.62 These models show that high rates of charging result in 

increased stress and increased chance of fracture, which can be somewhat mitigated by using 

smaller particles, or ellipsoidal particles. Additionally during battery cycling, some particles are 
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lost or agglomerate to form larger sized particles, which results in performance degradation. In 

addition, porous materials rarely have uniform particle size and shape. Some continuum models 

have accounted for the distribution of particle sizes and its effect on the battery performance,63,64 

for example, through the equation63 

 ( )22
1 2

0

4 ( ) ( )i N r Y r r dr
x

π
∞ ∂

= Φ −Φ 
∂  

∫


      [1.1] 

where 2i  is the fraction of total current flowing in solution, N (r) is the number of particles 

per unit volume of composite electrode with a radius between size r and r + dr in the porous 

electrode, Y(r) is a function that relates the outward normal current density per unit surface area 

of a particle to the potential difference, and 1 2Φ −Φ   is the potential difference between the solid 

particle and the adjacent solution. A promising future direction would be to extend such models 

to include variations in particle size and shape distribution by (1) writing f in terms of the 

multiple independent particle coordinates that define the particle shape (typically 3), and (2) 

replacing the single integral with a more complicated volume integral.  

The time-dependent change in the particle size distribution due to breakage and 

agglomeration can be modeled by a spatially-varying multi-coordinate population balance 

equation: 

 ( )( , , ) ( , , , )i

i i

G ff l x t h l x t f
t l

∂∂
+ =

∂ ∂∑      [1.2] 

where f (l,x,t) is the particle size and shape distribution function, x is the spatial coordinate, li 

is the ith independent size coordinate, l is the vector with elements li (typically of dimension 

three), Gi (l,t) = dli/dt is the growth rate along the ith independent size coordinate (which is 
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negative for shrinkage), h(l,x,t,f ) is the generation/disappearance rate of particle formation (e.g., 

due to breakage and agglomeration), and t is time.65-68 The expression for h(l,x,t,f ) for breakage 

and agglomeration contains integrals over the f (l,x,t), and the h and Gi have dependencies on 

additional states such as local lithium-ion concentrations. This model to capture the effects of 

morphology within a material, called a mesoscale model,69,70 would enable the material 

degradation due to spatially-varying and time-varying changes in the particle size and shape 

distribution to be explicitly addressed. 

1.2.3.c. Stack Models  

In order to simulate battery operations more accurately, battery models are improved by 

considering multiple cells arranged in a stack configuration. Simulation of the entire stack is 

important when thermal or other effects cause the individual cells to operate differently from 

each other. Since it is often not practical or possible to measure each cell individually in a stack, 

these differences can lead to potentially dangerous or damaging conditions such as overcharging 

or deep-discharging certain cells within the battery, which can cause thermal runaway or 

explosions. The ability to efficiently simulate battery stacks would facilitate the health 

monitoring of individual cell behavior during charging and discharging operations and thereby 

increasing safety by reducing the chances of temperature buildup causing thermal runaway. The 

significant increase in computational requirements to simulate a stack model has slowed its 

development and most examples of stack modeling perform some approximation or decoupling 

to facilitate efficient simulation.34,37,71 Researchers have also published simplified coupled 

thermal electrochemical models applied to a single particle for stacks in parallel and series 

configurations.72 Fully coupled battery stack simulations have been performed for a limited 

number of cells by using reformulation techniques to simplify simulation.73 
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1.2.4. Molecular/Atomistic Models 

1.2.4.a. Kinetic Monte Carlo Method 

The Kinetic Monte Carlo (KMC) method is a stochastic approach that has been used to 

model the discharge behavior of lithium ions during intercalation. Such models74-77 have been 

used to simulate diffusion of lithium from site to site within an active particle to aid in 

understanding on how different crystal structures affect lithium mobility73 and how the activation 

barrier varies with lithium-ion concentration.76,77 Additionally, Monte Carlo methods have been 

used to predict thermodynamic properties.78 KMC has also been applied to simulate the growth 

of the passive SEI-layer across the surface of the electrode particle, to simulate one of the 

mechanisms for capacity fade.79  

1.2.4.b. Molecular Dynamics 

Molecular dynamics has been used to gain insight into several molecular-scale phenomena 

that arise during the operation of lithium-ion batteries. One of the applications has been to the 

simulation of the initial growth of the passivating SEI film at the interface of the solvent and 

graphite anode. The application of a large negative potential during initial charging decomposes 

ethylene carbonate (EC) in the solvent, to produce the passivating SEI film containing lithium 

ethylene dicarbonate and salt decomposition products. Although molecular dynamics is too 

computationally too expensive for simulation of more than tens of picoseconds of battery 

operation, the method was demonstrated to be fast enough for simulation of the initial stage of 

SEI layer formation.80 The simulations were able to predict the formation of carbon monoxide, 

which has been detected in experiments, and predicted that the initial SEI layer formation occurs 

is initiated at highly oxidized graphite edge regions of the anode. 
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Another application of molecular dynamics to lithium-ion batteries has been the simulation 

of the initial transport of lithium ions through a polycrystalline cathode.81 Between each crystal 

grain is an amorphous intergranular film (IGF), and the motivation for the study was the 

conjecture that lithium ions diffuse much faster through the IGF than through the crystal grains. 

Although the simulations employed a particular lithium silicate glass as a solid electrolyte and 

vanadia with an amorphous V2O5 IGF separating the crystal grains, the results are expected to 

have more general applicability. The simulations were feasible with molecular dynamics because 

the conclusions only required that the lithium ion diffuse far enough into the cathode to quantify 

the differences in diffusion rates through the IGF and crystal grains. The simulation of effective 

diffusivities is one of the most common applications of molecular dynamics.82  

1.2.4.c. Density Functional Theory 

Density functional theory (DFT) calculations can be used to provide predictive insight into 

the structure and function of candidate electrode materials. The ground-state energy is given as a 

unique functional of the electron density, which can be calculated by self-consistently solving for 

the atomic orbitals. Geometry optimizations are used to determine structures, energetics, and 

reaction mechanisms. In the area of sustainable energy storage, DFT calculations have been used 

to predict and rationalize the structural changes that occur upon cycling of electrode materials, 

for example, in the calculation of activation barriers and thermodynamic driving forces for Ni 

ions in layered lithium nickel manganese oxides. Similar calculations have been used to 

determine the lattice properties and electronic structure of graphite and LiC6.83 Additionally, 

DFT calculations can be used to examine the effect of lithium intercalation on the mechanical 

properties of a graphite electrode, including Young’s modulus, expansion of the unit cell, and the 

resulting stress effects,84 as well as to compare the stability of LiPF6 (a common electrolyte) in 
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various solvents.85 DFT calculations have also been used to examine the mechanisms affecting 

the stability and function of the organic electrolytes separating the electrode materials, as in the 

reductive decompositions of organic propylene carbonate and ethylene carbonate to build up a 

solid-electrolyte interface that affects cycle-life, lifetime, power capability, and safety of lithium-

ion batteries. 

1.2.5. Simulation 

Multiple numerical methods are available for the simulation of any particular battery model. 

For empirical models, analytical solutions are usually possible and can be easily solved in 

Microsoft® Excel or Matlab®.86 Analytical solutions can be implemented in a symbolic language 

such as Mathematica®,87 or Maple®,88 or Mathcad®,89 or in a compiled language such as 

FORTRAN or C++. Analytical solutions based on linear model equations often involve 

eigenvalues, which might have to be determined numerically. For nonlinear model equations, 

sometimes analytical series solutions using perturbation methods90 or other symbolic 

techniques91 can be derived. Numerical simulation methods are more flexible, with multiple 

methods available for any particular battery model. The best numerical methods tend to be more 

sophisticated when moving towards the upper right of the battery models shown in Figure 1-3. 

For SPMs for a single electrode, analytical solutions have been derived for constant-current 

operation and cannot be obtained directly for the constant-potential operation, due to the fact that 

the boundary flux is implicitly determined by the nonlinear Butler-Volmer equation particularly 

when the open circuit voltage changes with state of charge. At this scale, especially for AC 

impedance data, analytical solutions are easily obtained and have been heavily used even for 

estimating unknown diffusion coefficients.92 
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When two electrodes are included in an SPM, an analytical solution is available for constant-

current operation but not for constant-potential operation, for reasons as stated above, or when 

film formation for the SEI layer is modeled. Beyond SPM and porous electrode ohmic resistance 

models, analytical solutions are not possible for simulating charge-discharge curves. A SPM with 

two electrodes consists of a single partial differential equation for each electrode. Conversely, a 

finite-difference scheme discretized with 50 node points in the radial direction generates 50×2 + 

50×2 = 200 differential algebraic equations (DAEs). Recall that the SPM is computationally 

efficient but is not accurate, especially for high rates. For P2D models12 typically the finite-

difference approach has been used. A P2D model with polynomial approximation16 for the solid 

phase, when discretized with 50 node points in the spatial direction for each variable, results in a 

system of 250 DAEs for each electrode and 100 DAEs for the separator. Thus, the total number 

of DAEs to be solved for the P2D model across the entire cell is 250 + 250 + 100 = 600 DAEs. 

The addition of temperature effects to this model results in 750 DAEs to be solved 

simultaneously. Stack models are much more computationally expensive, as the number of 

DAEs is equal to the number of cells in the stack (N) times the number of equations coming from 

each sandwich. Using the finite-difference discretization of spatial variables in x, y, and r with 50 

node points along each direction in a pseudo-3D thermal-electrochemical coupled model would 

generate 15,000 + 7500 + 15,000 = 37,500 DAEs to be solved simultaneously for a single 

sandwich. 

The speed and accuracy of a numerical method depends upon the complexity of the model 

equations, including operating and boundary conditions, and the numerical algorithm. The most 

common numerical methods for simulation of lithium-ion batteries are the finite-difference 

method (FDM), finite-volume method (FVM, or sometimes called the control volume 
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formulation), and finite-element method (FEM). The main continuum simulation methods 

reported in the literature for the simulation of batteries can be classified as  

(1) DUALFOIL.24 This software employs Newman’s BAND subroutine,93 which is a finite-

difference method used to simulate electrochemical systems for more than four decades. 

Symbolic software such as Mathematica® 87 and Maple® 88 can be used for determining 

analytical expressions for the Jacobians and for generating the associated FORTRAN code 

for use with the BANDJ subroutine.21  

(2)  FVM with various time-discretization schemes,94 which has been applied to P2D models. 

(3) COMSOL® 95/BATTERY DESIGN STUDIO® 96, which implements the FEM/FDM in a 

user-friendly interface and includes a module that implements the P2D battery model. 

(4) Finite-difference or reformulation schemes in spatial coordinates with adaptive solvers such 

as DASSL in time.21  

Each approach has its advantages and disadvantages. DUALFOIL is a freely available 

FORTRAN code. The FDM has been used extensively in battery simulation21 as it is easy to 

implement and modify. The FVM is closely related to the FDM but more easily handles irregular 

geometries. The FEM handles both irregular geometries and heterogeneous compositions, but is 

much harder to implement by hand, and so is usually only applied to batteries using commercial 

FEM software such as COMSOL. An advantage of commercial software like COMSOL is ease 

of use and that the numerical implementation is invisible to the user and results from COMSOL 

can be directly integrated to MATLAB environment, which is a widely used tool for control and 

optimization. However, a disadvantage is that COMSOL’s numerical implementations cannot be 

modified by the user to (1) increase computational efficiency by exploiting additional 

mathematical structure in the model equations or (2) integrate such efficient simulation results 
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into advanced systems engineering algorithms for optimal design, operation, or control in a 

computationally efficient manner.  

When optimization fails while using COMSOL-like codes, detective work is required to 

determine whether the numerical simulation was robust enough to provide accurate numerical 

Jacobians. Also, as of today, global optimization methods are readily available only for algebraic 

equations. Algebraic optimization schemes can be formulated by discretization of all the 

variables and parameters including the control variables,97,98 but these optimization schemes 

typically have too high complexity to be solvable using existing global optimization software. 

Many groups are working on the development of optimization software that is more 

computationally efficient at computing local optima for dynamic optimizations or on ensuring 

convergence to a global optimum.99,100 

BATTERY DESIGN STUDIO® 96 has a module for the simulation of P2D lithium-ion 

battery models. Adaptive solvers provide advantages in speed compared to fixed time-

discretization schemes. Researchers have used DASSL for solving battery models.21 

DASSL/DASPK use backward differentiation schemes in time, which are numerically stable and 

efficient. For the same set of equations, these adaptive schemes can provide an order of 

magnitude savings in time. Battery models more advanced than the P2D model are usually 

solved offline in the literature (an exception is the P2D thermal model from Gu et al.42,46 and the 

stress-strain model from Renganathan et al.61).  

To understand the importance of capacity fade in a lithium-ion secondary battery system, 

significant efforts have been devoted to the development of mathematical models that describe 

the discharge behavior and formation of the active and passive SEI layers. The majority of these 

models are empirical or semi-empirical.101,102 Other works have attempted to simulate capacity 
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fade by considering the lithium deposition as a side reaction and the resulting increased 

resistance.29,103-107 Others have simulated capacity fade by modeling the active material loss, or 

change of internal parameter with cycling.29,104-109 Other researchers have used KMC methods to 

examine the SEI layer formation at the microscale level.79 Such a model, however, is 

computationally expensive, which makes online simulation difficult. Further work is needed to 

couple such fundamental models to the popular continuum models in use.   

1.2.6. Optimization Applied to Li-ion Batteries 

Several researchers have applied optimization to design more efficient electrochemical power 

sources. Newman and co-workers obtained optimal values of battery design parameters such as 

electrode thickness and porosity.19,22,24,110-113 To simplify the optimization, many of these papers 

employed models with analytical solutions, which are only available in limiting cases. Battery 

design optimization using a full order model has been demonstrated by several 

researchers.22,24,111,112 Newman and co-workers report the use of Ragone plots for studies 

regarding the optimization of design parameters, changing one design parameter at a time, such 

as electrode thickness, while keeping other parameters constant, Ragone plots for different 

configurations can be obtained. Hundreds of simulations are required when applied current is 

varied to generate a single curve in a Ragone plot, which is tedious and computationally 

expensive. An alternative is to simultaneously optimize the battery design parameters and 

operating conditions such as the charging profile.9 Parameters have been simultaneously 

optimized for different models and goodness of fits compared based on statistical analysis.114 

Parameter estimation has also been used in a discrete approach to analyze and predict capacity 

fade using a full-order P2D model.106,107 Golmon et al.115 attempted a multiscale design 

optimization for improving electrochemical and mechanical performance of the battery by 
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manipulating both micro- and macro-scale design variables such as local porosities, particle 

radii, and electrode thickness to minimize internal stresses and maximize capacity of the battery. 

A surrogate-based framework using global sensitivity analysis has been used to optimize 

electrode properties.116 Simulation results from P2D models have been used to generate 

approximate reduced-order models for use in global sensitivity analysis and optimization. 

Rahimian et al.10 used a single-particle model when computing the optimum charging profile for 

maximizing the life of battery during cycling. Below is a description of the systems engineering 

tasks of (1) parameter estimation, (2) model-based optimal design, and (3) state estimation that 

have been applied to lithium-ion batteries. 

Parameter estimation is typically formulated as the minimization of the sum-of-squared 

differences between the model outputs and their experimentally measured values for each cycle i, 

for example,117-119 
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where ( )i jy t is the measured voltage at time tj for cycle i, , ( ; )model i j iy t θ is the voltage computed 

from the battery model at time tj for cycle i for the vector of model parameters iθ (the parameters 

being estimated from the experimental data), and ni is the number of time points in cycle i. 

Solving the optimization [1.3] is known in the literature as least-squares estimation.117-119 Many 

numerical algorithms are available for solving the nonlinear optimization [1.3], such as the 

steepest descent, Gauss-Newton, and Levenberg-Marquardt methods.118 These iterative methods 

reduce the sum-of-squared differences between the model outputs and the experimental data 

points until the error is no longer significantly reduced. More sophisticated Bayesian estimation 
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methods employ the same numerical algorithms but use optimization objectives that take into 

account prior information on the model parameters.120 

Battery design parameters such as cell thickness and electrode porosity and operating profiles 

can be optimized using the same numerical algorithms, for objectives such as maximization of 

performance (e.g., energy density, life) or minimization of capacity fade and mechanical 

degradation. These optimizations are solved subject to the model equations and any physical 

constraints. The optimal estimation of unmeasured states in lithium-ion batteries can also be 

formulated in terms of a constrained model-based optimization. The optimization objectives, 

models, and constraints differ for different systems engineering tasks, but can all be written in 

terms of one general formulation:121  
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where Ψ is the optimization objective,122 z(x) is the vector of differential state variables, y(x) is 

the vector of algebraic variables, u(x) is the vector of control variables, and p is the vector of 

design parameters. Although there are many numerical methods for solving constrained 

optimization problems,123-125 this chapter summarizes only control vector parameterization 

(CVP) as this is the method that is easiest to implement and most commonly used in industrial 

applications. The CVP method parameterizes the optimization variables, by employing basis 

functions or discretization, in terms of a finite number of parameters to produce a nonlinear 
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program that can be solved using standard software. First-principles models for lithium-ion 

batteries tend to be highly stiff, requiring adaptive time-stepping for reasonable computational 

efficiency.100 CVP is well suited for optimizations over such models, as CVP incorporates the 

model equations by calling a user-specified subroutine for simulating the model equations. Any 

speedup obtained by an adaptive time-stepping for the model equations directly translates into a 

speedup on the CVP calculations.  

More specifically, the control variable u(x) in CVP is parameterized by a finite number of 

parameters, typically as a polynomial or piecewise-linear function or by partitioning its values 

over space, and the resulting nonlinear program is solved numerically. Most numerical 

optimization algorithms utilize an analytically or numerically determined gradient of the 

optimization objective and constraints to march towards improved values for the optimization 

variables in the search space. In CVP, as the number of intervals increases, the number of 

equations increases and makes optimization more computationally expensive. Hence the fastest 

and most efficient battery model and code for the desired level of accuracy is recommended 

when applying CVP or any alternative optimization methods. 

A discussion of simulating lithium-ion batteries at the systems-level is incomplete without 

addressing issues pertaining to the estimation of state-of-charge and health of the battery. 

Designing a tool to predict the life or performance of a battery is an interesting optimization 

problem with implications on material modifications during the initial battery formulation for a 

particular application, allowance for making a specific maintenance plan during the course of the 

life of the battery, and, most importantly, on the cost of the battery. Precise estimations of SOC 

and SOH are also essential to ensure the safe operation of batteries, that is, preventing the battery 

from overcharging and thermal runaway. 
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Some commonly used methods in the industry to monitor the SOC of the battery include 

monitoring of the cell impedance,126-129 equivalent circuit analyses,130,131 techniques based on 

fuzzy logic,132,133 or pattern recognition.134 Optical and eddy current methods135,136 are being 

devised to monitor available capacity in battery systems with flat response surfaces. Based on the 

algorithm used for estimation, the models used to estimate SOC and SOH can be classified 

broadly into two categories. Some utilities such as the battery packs used in on-board satellites 

during the lack of solar energy or cells used in watches follow a routine or pre-programmed load. 

In such instances, it is possible to develop a degradation model based on a priori testing, 

knowing the operating conditions and the design parameters of the cell. Such a model does not 

require frequent updates for the parameters, unless there is a significant change in the operating 

conditions. In some other applications, such as battery packs used in vehicles, the battery is 

subjected to a dynamic load that changes as frequently as every few milliseconds. In these cases, 

the degradation mechanism and hence state of charge or the state of health of the power system 

depends on the load conditions imposed in the immediate past and it is necessary to monitor the 

cell on a regular basis. There are some differences between the algorithms used to make life-

estimates for the case with the known operating parameters compared to the dynamic-load case. 

The latter situation is less forgiving in terms of the calculation time, for example. SOC and SOH 

estimators have been an integral part of battery controllers; however, the estimations have been 

primarily based on empirical circuit-based models that can fail under abusive or non-ideal 

operating conditions. Precise estimations of SOC and SOH are very essential for the safe 

operation of the batteries, in order to prevent them from overcharging and thermal runaway. 

Santhanagopalan et al.137 reviewed past efforts on the monitoring and estimation of SOC in the 

literature, and reported an online Kalman filter-based SOC estimation for lithium-ion batteries 
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based on a single-particle model. Klein et al.7 recently published state estimation using a reduced 

order model for a lithium-ion battery. Smith et al.’s8 analysis of a 1D electrochemical model for 

a lithium-ion battery indicated that the electrode surface concentration was more easily estimated 

from the real-time measurements than the electrode bulk concentration. Domenico et al.138 

designed an extended Kalman filter for SOC estimation based on an electrochemical model 

coupling the average solid active material concentration with the average values of the chemical 

potentials, electrolyte concentration, and the current density. 

1.3. Critical Issues in the Field 

This section describes the challenges that arise when building predictive models for lithium-

ion batteries and employing these models for systems engineering.  

1.3.1. Sparsity of Manipulated Variables 

Once the battery is manufactured and closed in a sealed case, the battery is discharged (used) 

according to the requirements of the application. The only variables that can be manipulated 

during battery operation to make best use of the battery is the charging current profile and 

operating temperature, which can affect transport and electrochemical rates resulting in modified 

performance. 

Before the battery is sealed, the design variables such as the electrode dimensions, the type of 

materials, and materials properties such as porosity, active surface area, and microstructure can 

be selected so as to provide the best possible performance. The resulting battery design can be 

verified at small scale (e.g., few milli- or micro-Ah batteries) relatively easily in the laboratory, 

but scaling up to the large-scale batteries required for some industrial applications is challenging. 
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1.3.2. Need for Better Fundamental Models to Understand SEI-layer, Structure 

The physicochemical understanding is incomplete for much of the phenomena that occur 

inside a battery, such as capacity fade, stress-strain effects, mechanical degradation, and 

mechanisms for failure due to shocks, defects, and shorts. Much progress has been made in the 

last twenty years on failure mechanisms, stress-strain models, capacity fade mechanisms 

involving side reactions, SEI-layer formation, and other phenomena, and studies have been 

published with the objective of understanding battery operation at the molecular scale, using 

kinetic Monte Carlo simulations, molecular dynamics, and density functional theory calculations, 

and at the mesoscale using population balance models. The molecular-scale models are 

simulated off-line (that is, not in real-time) and their predictions have been fed to continuum-

scale models. A potential future application of molecular- and mesoscale models would be in the 

real-time prediction of the states of the battery at the small length scales for use in more accurate 

prediction of the whole battery performance in real time. 

1.3.3. Robustness and Computational Cost in Simulation and Optimization 

Battery models result in multiple DAEs to be simulated with unknown initial conditions 

while operating for multiple cycles of charge and discharge. For these models adaptive time 

steppers are usually more than an order of magnitude faster than uniform time-discretization. 

Several adaptive solvers are available for solutions of DAE models.139-142 Recently, many easy-

to-use ODE solvers have been made available (ode15s, ode15i, etc.) from MATLAB®,86 

“NDsolve” from MATHEMATICA®,87 and “dsolve” from MAPLE®88 to solve non-stiff, stiff 

and moderately stiff DAE models of index-1.  

In spite of recent advancements, many of these DAE solvers and initialization routines can 

fail due to numerical convergence problems during Newton iteration to solve nonlinear equations 
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and singular/ill-conditioned Jacobian matrices resulting from small integration steps. The 

complexity in battery model simulation is increased by steep variations of the dependent 

variables (concentrations and potentials) between charging and discharging. 

Battery simulations for extended operations, such as during switching from constant-current 

to constant-potential operations, typically require some form of event detection. The DAEs for 

battery models increase in complexity and also in number as the accuracy and predictability of 

models increase. Simulation times for battery models range from milliseconds for empirical 

circuit-based models to minutes for P2D/P3D models and even days for a multiscale model such 

as a P2D model coupled with KMC simulation, limiting the options for real-time simulations.  

1.3.4. Uncertainties in Physicochemical Mechanisms 

Although much literature exists for capacity fade, SEI-layer formation, and other phenomena, 

no existing model simulates all of the mechanisms for capacity fade or battery failure. More 

detailed information is required to sufficiently specify a hypothesized mechanism for a 

phenomenon before it can implemented in a simulation model, such as  

• Which chemical species are formed and consumed in each phase and at the interface 

between phases? 

• What is the physical configuration of each chemical species at the interface between 

phases (e.g., is a molecule on an electrode surface sticking out into the electrolyte or flat 

against the surface)? 

• How many sites does each molecule on a solid surface cover? 

Substantial experimental design efforts are required to answer such questions so the answers 

can be incorporated into first-principles lithium-ion battery models. Also, most applications 
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using batteries for long-term requirements depend on projections made from model predictions 

coupled with limited test data; however, the relationship between failure modes during the test 

conditions and those during actual operating scenarios have not been clearly established – 

necessitating the tools used in SOC and SOH predictions to be independent of the operating or 

manufacturing conditions. Quite often in such scenarios, the use of look-up tables limits the 

confidence in the predictive capabilities of the models. 

Conventional degradation models based on extensive testing of batteries under various 

operating conditions and loads have in general attributed the degradation of battery performance 

to loss of the active material and loss of lithium that can be cycled. Several detailed models to 

quantify the signature of these parameters on the aging profile of lithium ion batteries have been 

presented.29,143 Other approaches include the use of arbitrary empirical parameters obtained by 

regressing test data. These models usually interpolate the SOC and the health of the battery based 

on pre-stored database of information. Such models are widely employed in the industry when 

sufficient information on the physics of the materials in the batteries is not available – this 

problem is commonplace among module and pack manufacturers, who assemble the units from 

cells manufactured by a third-party. It is standard industrial practice to calibrate such 

models144,145 since monitoring the evolution of all of the physical parameters such as transport 

coefficients and the reaction rates within each cell inside the pack is expensive, if not impossible. 

Network models have also been used to address non-uniform degradation in large format cells.146 
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1.4. Addressing the Critical Issues, Opportunities, and Future Work 

This section describes some approaches for addressing the critical issues raised in the 

previous section, looking towards likely future research directions in the modeling and systems 

engineering of lithium-ion batteries. 

1.4.1. Sparsity of Manipulated Variables 

Currently, batteries are charged at constant current until a cut-off potential is reached or a 

time limit followed by charging at constant potential. However, these charging protocols may 

result in thermal runaway, leading to under-utilization and possibly even explosions. Given the 

limited variables that are available for manipulation, it is especially important to make the best 

utilization of these variables during battery operations. A first-principles battery model can be 

employed in a dynamic optimization framework to compute a time-varying charging profile that 

maximizes life, minimizes capacity fade, and improves battery performance.  

The determination of an optimized charging profile requires a first-principles model that has 

high predictive accuracy for a wide range of operating conditions, since charge transfer, reaction 

kinetics, and diffusion rates may be quite different than in the experiments used in the model 

development. A first-principles model that describes the battery behavior at the meso- and 

microscale models would be able to take these effects into account during the dynamic 

optimization. The application of dynamic optimization to compute an optimal charging profile is 

illustrated here for a P2D model9 for lithium-ion batteries. The dynamic optimization for a cell 

was formulated as: 
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where the optimization objective E is the total energy stored in the cell, V is the voltage obtained 

from the cell as computed from the first-principles model, iapplied is the applied current to the cell, 

the charging time tf was restricted to 1 hr, the maximum allowed voltage was 4.05 V, and the 

value for V as a function of time. The implementation of dynamic optimization is facilitated by 

the use of a reformulated model6 to compute the optimization objective. The time profiles for the 

electrolyte concentration at the cathode/current collector interface in Figure 1-6 are for three 

different charging scenarios: (1) conventional charging at constant-current followed by constant-

potential charging, (2) constant-current charging at an optimized value obtained by solving the 

dynamic optimization for a fixed value, and (3) the time-varying charging profile given by Eq. 5. 

The electrolyte concentration at X = 0 (the cathode/current collector interface) has the highest 

peak value during dynamically optimized charging, due to its higher initial current. For the 

chosen chemistry, mass transfer limitations in the electrolyte occur at higher currents. This 

protocol indicates that, to increase the energy density, store more energy at shorter time albeit 

causing mass transfer limitations in the electrolyte and let the concentration equilibrate at longer 

times to ensure longer operability of the battery. During dynamically optimized charging, the 

electrolyte concentration decreases in the latter part of charging, as lithium-ion transfer slows 

while more lithium ions are packed into the carbon matrix in the negative electrode. In contrast, 

after the first 10 minutes the electrolyte concentration is nearly constant during optimized 

constant-current charging. When a meaningful global objective function was chosen at the 



30 
 

system level and robust optimization tool and meaningful models are used, improvements in 

‘local’ battery behavior are observed. 

The above approach can be considered as a top-down approach, where operating conditions 

or charging protocols are determined at the system level (battery as a whole), and the system-

level behavior is affected by the local mass/charge transfer and reaction effects (Figure 1-1) and 

indirectly manipulates non-measurable internal variables such as the electrolyte concentration or 

potential or also the solid-phase concentrations as shown schematically in Figure 1-6. Physics-

based models are required in the dynamic optimization to correctly relate the local effects to the 

system-level behavior as quantified by the optimization objective. The more detailed and 

accurate the model, the more optimal ‘local’ behavior can be determined using the few 

manipulated variables at the system level. 

Note that the SPM model lacks sufficient information on the behavior in the cell to be of 

much usefulness in the above optimizations. If the first-principles model employed in the 

optimization includes a high fidelity thermal model, then the localized temperatures in the cell 

can be included as a constraint in the optimization. A more detailed multiscale model that 

includes more of the physicochemical phenomena would be needed for optimization of battery 

operations for very quick charging generally involving rates of 2C or higher. 

Another approach that can be used to address the sparsity of manipulated variables is to have 

the limited number of material properties (manipulated variables) vary spatially. If the electrode 

architecture is designed to minimize and address every possible local nonideality at the sandwich 

level, then the system level performance will improve. This can be viewed as the bottom-up 

approach, where the material properties or electrode architecture, etc. are determined at the 

electrode level (micro-scale), to produce improved performance at the system level (Figure 1-1). 
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Physics-based models are required in the optimization framework to correctly relate the local 

effects to the system-level behavior as quantified by the optimization objective. For example, 

consider the minimization of the ohmic resistance at the sandwich level (Figure 1-1). Chapter 4 

considers the design of spatially-varying porosity profiles in next-generation electrodes based on 

simultaneous optimization of a porous electrode model. Model-based optimal design (not 

including the solid-phase intercalation mechanism) is applied to a porous positive electrode made 

of lithium cobalt oxide, which is commonly used in lithium-ion batteries for various applications. 

For a fixed amount of active material, optimal grading of the porosity across the electrode was 

found to decrease the ohmic resistance by 15-33%, which in turn increases the electrode capacity 

to hold and deliver energy. The optimal porosity grading was predicted to have 40% lower 

variation in the ohmic resistance to variations in model parameters due to manufacturing 

imprecision or capacity fade. The results suggest the potential for the simultaneous model-based 

design of electrode material properties that employ more detailed physics-based first-principles 

electrochemical engineering models to determine optimal design values for manufacture and 

experimental evaluation. Optimization of spatially-uniform porosity reduced the ohmic 

resistance by 20%, whereas optimization for a spatially-varying profile results in a reduction of 

33% (Figure 1-7).11 Physics-based models are required in the optimization framework to 

correctly relate the local effects to the system-level behavior as quantified by the optimization 

objective. Note that improved performance for both solid-phase potential and current are 

obtained locally, which leads to reduced ohmic resistance across the sandwich, which then 

relates to improved performance for charge-discharge curves at the system level. 

To address all the issues in Figure 1-1, a more detailed model is required (i.e., moving right 

along the diagonal in Figure 1-3). Possible material properties that can be varied as a function of 
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distance are given in Figure 1-2. Note that for particle radius, optimization with the P2D model 

would yield only the smallest possible radius, but stress-strain models would suggest a different 

size for mechanical stability.115  

The more sophisticated the battery model, more computationally intensive the simulations 

and optimization. While the value of adding more physicochemical phenomena into battery 

models is clear, and discussed in more detail below, there is also a need to improve the 

computationally efficiency in the simulation of these models by reformulation or order reduction.  

1.4.2. Need for Better Fundamental Models to Understand SEI-layer, Structure 

Different simulation methods are effective at different scales (see Figure 1-5), which has 

motivated efforts to combine multiple methods to simulate multiscale systems. Battery models 

that dynamically couple the molecular- through macro-scale phenomena could have a big impact 

in understanding and designing lithium-ion batteries. The above continuum models could be 

coupled with stress-strain models and population balance models to describe the time evolution 

of the size and shape distribution of particles. Probably the first step would be to couple 

molecular models with P2D models, to thoroughly validate the coupled simulation algorithms 

before moving to more computationally expensive 3D continuum models. KMC methods could 

be combined with P2D models to analyze surface phenomena such as growth of the SEI layer in 

a detailed manner, similarly as has been applied to other electrochemical systems.70,147-156 For a 

125×125 mesh, 2D KMC coupled with P2D model with time steps ranging from nanoseconds to 

seconds would require simulation times ranging from minutes to hours and even days for a single 

cycle. Another multiscale coupling that could be useful is to occasionally employ molecular 

dynamics to update transport parameters in a P2D or 3D model. Molecular dynamics can provide 

information that cannot be predicted using a P2D or 3D continuum model, but long times cannot 
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be simulated using molecular dynamics, so the combination of the two approaches has the 

potential to increase fidelity while being computationally feasible.  

The current literature review suggests that typical researchers have expertise and skills in one 

or two of the models/methods reported in Fig 6. If researchers with expertise in different fields 

collaborate, the task of multiscale model development becomes easier and faster progress can be 

expected. While black-box approaches are available for some of the methods in Figure 1-5, it is 

strongly recommended that, at least for case studies, hard-coded direct numerical simulation is 

carried out to enable better understanding of coupling between models at different length and 

time scales. 

1.4.3. Robustness and Computational Cost in Simulation and Optimization  

The complexities of battery systems have made efficient simulation challenging. The most 

popular model, the P2D model, is often used because it is derived from well understood kinetic 

and transport phenomena, but the model results in a large number of highly nonlinear partial 

differential equations that must be solved numerically. For this reason, researchers have worked 

to simplify the model though reformulation or reduced order methods to facilitate effective 

simulation. One method of simplification is to eliminate the radial dependence of the solid phase 

concentration using a polynomial profile approximation,16 by representing it using the particle 

surface concentration and the particle average concentration, both of which are functions of the 

linear spatial coordinate and time only. This type of volume-averaging157,158 combined with the 

polynomial approximation159,160 has been shown to be accurate for low to medium rates of 

discharge.16,161-164 At larger discharge rates, other approaches have been developed to eliminate 

the radial dependence while maintaining accuracy.102,161-164  
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One of the major difficulties in simulating Li-ion battery models is the need for simulating 

solid phase diffusion in a second dimension r. It increases the complexity of the model as well as 

the computational time/cost to a great extent. Traditional approach towards solid phase diffusion 

leads to more difficulties, with the use of emerging cathode materials, which involve phase 

changes and thus moving boundaries. A computationally efficient representation for solid-phase 

diffusion is proposed in this chapter. The operating condition has a significant effect on the 

validity, accuracy and efficiency of various approximations for the solid-phase diffusion. 

Chapter 2 compares approaches available today for solid phase reformulation and provides two 

efficient forms for constant and varying diffusivities in the solid phase. This chapter introduces 

an efficient method of Eigen function based Galerkin Collocation and a mixed order finite 

difference method for approximating/representing solid-phase concentration variations within the 

active materials of porous electrodes for a pseudo-2D model for lithium-ion batteries. 

Recently, discretization in space alone has been used by researchers to reduce the model to a 

system of DAEs with time as the sole independent variable in order to take advantage of the 

speed gained by time-adaptive solvers such as DASSL/DASPK.5,6,140 Such solvers also have the 

advantage of being capable of detecting events, such as a specific potential cutoff, and running 

the simulation only to that point.  

Complications arise when determining consistent initial conditions for the algebraic 

equations. Consequently, many good solvers fail to solve DAE models resulting from simulation 

of battery models.165 As a result, it is necessary to develop initialization techniques to simulate 

battery models. Many such methods can be found in the literature for a large number of 

engineering problems. Recently, a perturbation approach has been used to efficiently solve for 

consistent initial conditions for battery models.166 
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Proper orthogonal decomposition (POD) has been used to reduce the computational cost in 

various sets of model equations, by fitting a reduced set of eigenvalues and nodes to obtain a 

reduced number of equations.5 Alternatively, model reformulation techniques have been used to 

analytically eliminate a number of equations before solving the system.6 Other researchers have 

used orthogonal collocation and finite elements, rather than finite differences, in order to 

streamline simulations.167,168 

For stack and/or thermal modeling of certain battery systems, many attempts have decoupled 

equations within the developed model.31-40 This approach breaks up a single large system into 

multiple, more manageable systems that can be solved independently. This allows the model to 

be solved quickly, but at the expense of accuracy. For this reason, efficient models that maintain 

the dynamic online coupling between the thermal and electrochemical behavior, as well as 

between individual cells in the stack are preferred.  

Numerical algorithms for optimization can get stuck in local optima, which can be nontrivial 

to troubleshoot when the number of optimization parameters is large. This problem can at least 

be partly addressed using a sequential step-by-step approach (see Figure 1-8). For illustration 

purposes, consider the maximization of the energy density with lp, ln, ls, εp, and εn, where l is the 

thickness of each region and ε the porosity (p – positive electrode, s – separator, and n – negative 

electrode).  

(1) Choose a battery model that can predict the optimization objective and is sensitive to the 

manipulated variables (e.g., a P2D model). 
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(2) Reformulate or reduce the order of the model for efficient simulation. This step has to be 

judiciously made to ensure that the reduced order model is valid in the range of 

manipulated variables for optimization. 

(3) Maximize energy density with lp, 

(4) Using the solution from Step 3 as an initial guess, find optimal values for the two 

parameters (lp, εp). 

(5) Add parameters one by one, in the same manner as in Step 4. 

(6) Arrive at optimal performance with multiple parameters.  

(7) If needed before Step 3, find results with a simpler and less accurate model for a good 

initial guess.  

(8) After convergence, feed in more sophisticated models (for example, including stress 

effects) to make sure mechanical stability is not compromised. 

A similar approach can be used for CVP for dynamic optimization with the total time interval 

divided as 2, 4, 8, etc. for subsequent optimizations until convergence. 

The above algorithm will tend to have better convergence if the parameters in Steps 3-5 are 

rank ordered from having the largest to the lowest effect on the optimization objective. While 

advances have been made in the computation of global optima for dynamic optimizations,100,169 it 

will be at least a decade before such methods are computationally efficient enough for 

application to the optimal design of lithium-ion batteries using nontrivial physics-based models. 
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Figure 1-9 shows improved performance at each step of an optimization while successively 

adding manipulated variables. Capacity matching was used a constraint for the thickness of the 

negative electrode. 

1.4.4. Uncertainties in Physicochemical Mechanisms  

Uncertainty quantification methods have been applied to hundreds of different kinds of 

systems to assess the progress of the development of first-principles models and to assess the 

confidence in model predictions.120,170,171 The Monte Carlo method and its many variants for 

uncertainty quantification are computationally expensive and have become less used over time 

compared to power series and polynomial chaos expansions. These expansion-based approaches 

avoid the high computational cost associated with applying the Monte Carlo method or 

parameter gridding by first computing an approximation to the full simulation model, followed 

by application of robustness analysis to the approximate model. These expansion-based methods 

are computationally efficient enough for application to lithium-ion batteries. 

For example, consider the discrete estimation of model parameters as a way to track the 

effects of capacity fade. As of today, capacity fade is attributed to many reasons. This depends 

upon the chemistry, mode of operation, and size. A wide range of reasons can be linked to 

transport and kinetic parameters as published elsewhere.106,107,172 Five effective transport and 

kinetic parameters were estimated by applying least-squares estimation to the 250 mAh button 

cells experimental voltage-discharge data. The estimated parameters were the effective diffusion 

coefficient of lithium ion in the solution phase (D1), effective diffusion coefficient of lithium in 

the solid phase for the negative and positive electrodes (Dsn and Dsp), and electrochemical 

reaction rate constants for the negative and positive electrodes (kn and kp).   
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The effective negative-electrode solid-phase diffusion coefficient and reaction rate constant 

(Dsn and kn) were found to decrease monotonically with cycle #, whereas the other three 

parameters did not follow any particular trend. This suggested that the voltage-discharge curves 

may not contain sufficient information to accurately estimate the effective values of D1, Dsp, and 

kp, and that the change in the voltage-discharge curves with cycle # could be captured by 

estimation of only the effective solid-phase diffusion coefficient Dsn and reaction rate constant kn 

for the negative electrode. A more detailed analysis suggested that the voltage-discharge curves 

were very sensitive to the value of the effective solid-phase diffusion coefficient Dsn but weakly 

sensitive to deviations in the model parameters D1, Dsp, kp, and kn from their nominal values, 

resulting in large uncertainties in their values when fit to experimental voltage-discharge curves. 

That the voltage-discharge curves were much sensitive to a negative-electrode parameter (Dsn) 

suggests that mechanisms for capacity fade in the negative electrode, rather than the electrolyte 

or positive electrode, were the most important for this battery under these operating 

conditions.107  

The overall trend in the variation of model parameters is more reliably assessed by plotting 

nominal estimates over many cycles. A discrete approach was adopted for the prediction of 

capacity fade by tracking the change in effective transport and kinetic parameters with cycle 

number (N). The model parameters Dsn and kn fit to the experimental data for cycles 25, 100, 

200, 300, 400, and 500 were used to predict the remaining battery life based on voltage-

discharge curves measured in past cycles. To characterize the degradation in the model 

parameters, a power law was fit to the estimated parameter values from cycles 25 to 500 as 

shown in Figure 1-10. By implicitly assuming that the changes in the parameter values are the 

result of the same mechanism in later cycles, the parameter values for the subsequent cycles were 
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predicted using the power-law expressions. The voltage-discharge curve predicted by this model 

was in very good agreement with the experimental data at cycle 1000, indicating that the model 

was able to predict capacity fade as shown in Figure 1-10. It is likely that when more detailed 

multiscale models become available, there will not be a need to perform fitting and tracking of 

transport and kinetic parameters with cycles. Chapter 3 describes in detail how this discrete 

approach was used to predict the life of a battery with real experimental data. 

A rapid update of the parameters usually involves some form of a moving horizon algorithm 

that estimates the parameters used in the model using an initial set of data points (for example 

between from the start of the experiment to some interval of time t). These values for the 

parameters (θt) are then used to predict the cell performance for the next few data points (e.g., 

between times t and t + Δt). The error between the model predictions and the actual data points 

collected between t and t + Δt is then used to calculate the updated set of parameters θt+Δt. This 

process is repeated at periodic intervals of time or the load. Filtering techniques are commonly 

employed for on-line estimation;137,173,174 in most of these algorithms, the measured change in the 

response is divided between the actual battery response and system noise, based on pre-

determined weights assigned to the functions calculating the noise and the battery models. The 

predicted response for the voltage is compared at the next time step and a correction term is 

introduced to the weights. More elaborate moving horizon estimates include the influence from 

several sets of parameters from the past on the current estimates. One example is the use of 

exponential forgetting functions.175,176 In this example, the effect of the parameter values θt, θt+Δt, 

θt+2Δt, etc. on the current estimate θt+kΔt is assumed to decay exponentially. The steps are 

summarized below: 
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Step 1: Choose a subset of data points N0 that end when the parameters need to be updated. 

Calculate the initial value for the SOC. 

Step 2: Calculate the value of the exponential forgetting function at the end of N0. 

Step 3: Use the next set of data points N0+1 to N1, to calculate the updated values for the 

parameters in the model equations. 

Step 4: Update the SOC for the next set of data points using the parameter values from the 

previous step. 

Step 5: Update the exponential forgetting function, based on the data points N0+1 to N1, new 

values for the parameters, and the current value of the SOC. 

Step 6: Repeat Steps 1 to 5 until the end of the data set. This procedure produces a set of 

values for the SOC updated whenever the error between the model and the experimental data is 

significant. 

The use of such online-tracking algorithms, together with reliable models requiring modest 

computational effort, greatly reduces the uncertainty associated with assessing the failure mode 

of the batteries, and can be implemented for a variety of operating conditions. The states of 

interest are tracked as and when the system operates; the advantages offered by this approach are 

two-fold: (1) any mitigation scheme can be implemented fairly quickly since the operator does 

not wait until performing the scheduled capacity checks on the batteries and (2) the proposed 

methodology does not rely solely on a characterization chart made under lab-scale testing 

environment, and captures the wear-and-tear imposed by the system on the batteries. 
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1.6. Figures 

 
 

 

 

Figure 1-1: Current issues with Li-ion batteries at the market level and the related 
performance failures observed at the system level, which are affected by multiple physical and 
chemical phenomena at the sandwich level. 
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Figure 1-2: Schematic of systems engineering tasks and the interplay between them: In the 
figure, u, y, and p are vectors of algebraic variables, differential variables, and design 
parameters, respectively. 
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Figure 1-3: Wide range of physical phenomena dictates different computational demands 
(images taken from various sources on the internet and literature). 
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Figure 1-4: P2D model with schematic of the sandwich with the cathode, anode, and 
separator also showing the spherical particles in the pseudo-second dimension. 

 
 
 
 

  

x 



51 
 

 

 

Figure 1-5: Approximate ranking of methods appropriate for the simulation of different time 
and length scales. 
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Figure 1-6: Dynamic analysis of electrolyte concentration at the positive electrode for the 
three charging protocols. The solid line at C = 1 represents the equilibrium concentration. 
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Figure 1-7: Model-based optimal battery design based on a porous electrode model. Solid 
lines are for porosity, and dashed lines represent solid-phase current density (A/m2)/ Electrolyte 
potential (V). 
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Figure 1-8: Sequential approach for robust optimization of battery models with multiple 
design parameters 
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Figure 1-9: Optimization of the energy density for a lithium-ion battery, showing the effect of 
electrode thickness and porosities 
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Figure 1-10: Parameter estimation, uncertainty analysis, and capacity fade prediction for a 
lithium-ion battery 
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Chapter 2 : Efficient Reformulation of Solid-Phase Diffusion in 

Physics-Based Lithium-ion Battery Models 

This chapter is reproduced with permission from J. Electrochem. Soc., 157 (7), A854 (2010). 

Copyright 2010, The Electrochemical Society. The author is grateful to the co-authors for their 

significant contributions under sections 2.3 and 2.5. 

2.1. Introduction 

Electrochemical power sources are expected to play a vital role in the future in automobiles, 

power storage, military, mobile, and space applications. Lithium-ion chemistry has been 

identified as a good candidate for high-power/high-energy secondary batteries.  Significant 

progress has been made towards modeling and understanding of Lithium-ion batteries using 

physics based first principles models. First-principles based battery models typically solve 

electrolyte concentration, electrolyte potential, solid-state potential and solid-state concentration 

in the porous electrodes 1, 2 and electrolyte concentration and electrolyte potential in the separator. 

These models are based on transport phenomena, electrochemistry and thermodynamics. These 

models are represented by coupled nonlinear PDEs in 1-2 dimensions and are typically solved 

numerically and require few minutes to hours to simulate.  

Even when one-dimensional transport in the macro-scale (x) is considered,  the continuum 

models that are used to describe the electrochemical behavior of lithium-ion batteries, involve 

three coupled non-linear PDEs (in x, t) in the porous electrode and two coupled non-linear partial 

differential equations (PDEs) (in x, t) in the separator.  For predicting the thermal behavior, one 

has to add an additional equation for temperature. In addition, solid-state diffusion should be 

solved in the pseudo-second-dimension (r) in the electrode.  Li-ions diffuse (intercalate) in to 
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and out of the solid particles of porous electrodes in the pseudo-second-dimension.  Hence, in 

addition to the equations in the x-direction, solid-state diffusion should be solved in the pseudo-

dimension (r) in the porous electrodes.  This diffusion in the micro-scale is typically modeled 

using Fick’s law of diffusion.  One of the major difficulties in the electrochemical engineering 

models is the inclusion of solid phase diffusion in a second dimension r which increases the 

complexity of the model as well as the computational time/cost to a great extent. Traditional 

simulation approaches toward solid phase diffusion leads to more difficulties, with the use of 

emerging cathode materials, which involve phase changes and thus moving boundaries. 

Concentration variations in the solid-phase is governed by Fick’s law of diffusion and the same 

in spherical coordinates is given as 
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where 0 ( )sD D f c= . Equation[2.1] can be converted to dimensionless form using the 

following dimensionless variables and parameters: 
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with the boundary conditions 
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  [2.8] 
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Cf Cτ δ τ∂

=
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This chapter presents two computationally efficient representations for the solid-phase 

diffusion. An efficient Eigen function based Galerkin Collocation method is introduced and 

discussed in this chapter. Further, a mixed order finite difference method with optimal node 

spacing is introduced that can be used to reduce the computational cost/time significantly even 

with varying diffusivities in the solid phase. The operating condition has a significant effect on 

the validity, accuracy and efficiency of various approximations for the solid-phase diffusion. It 

has been found that the discretization and solver scheme used in time is also a significant factor 

in deciding the best possible approximation for the solid-phase. This chapter also compares 

various methods1-6 for approximating/representing solid-phase concentration variations within 

the active materials of porous electrodes for a full-order pseudo-2D model for lithium-ion 

batteries. A comparison among these available methods along with a brief mention about their 

merits and usability is made to identify the best possible method and incorporate in a full-order 

pseudo-2D model.1 

2.2. Existing Approximations and the Need for Efficient Reformulation 

 Porous electrode models of Li-ion batteries often use approximations to eliminate the 

time consuming calculation in the second dimension r for the solid phase diffusion. These 

methods include the Duhamel’s superposition method,1 diffusion length method,3 the polynomial 

approximation method,4 the pseudo steady state (PSS) approach by Liu5 and the penetration 

depth analysis and mixed order finite element approach.6   



60 
 

 Each of the above listed methods has its own advantages and disadvantages when used in 

Li-ion battery models. The following section gives a brief summary about each of the methods 

and discusses their merits and usability.  

2.2.1. Duhamel’s Superposition method 

The Duhamel’s superposition method1 is a robust method available for representing the 

solid phase diffusion for constant diffusivities. This method relates the solution of a boundary 

value problem with time dependent boundary conditions to the solution of a similar problem with 

time-independent boundary conditions by means of a simple relation. More information about 

the method and equations are presented elsewhere.1, 2 

Duhamel’s superposition method is a robust method and is valid for any kind of operating 

condition, like high rates of discharge, pulse power, etc. One of the major drawbacks of this 

method is that, it cannot be used in DASSL like solvers which do not accept equations 

discretized in time and might as well be time consuming for very stiff problems depending on the 

time steps taken. In addition, it cannot be used for nonlinear diffusivities. 

2.2.2. Diffusion Length Method 

The diffusion length method’s approach3 is based on a parabolic profile approximation 

for the solid phase. The diffusion length method predicts that the surface concentration and 

volume averaged concentration inside a particle are linearly dependent on each other, which 

should be valid only after the diffusion layer builds up to its steady state. Therefore, the method 

is inadequate at short times or under dynamic operations, such as pulse or current interrupt 

operations. The prediction based on the diffusion length method is inadequate at short times and 

very efficient at long times and low rates.  
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2.2.3. Polynomial Approximation 

The polynomial approximation method by Subramanian et al.4 is based on parabolic 

profile approximation and volume averaging of the solid phase diffusion equation. This high 

order polynomial method uses a different approach from the diffusion length method to improve 

the solution accuracy at short times. The diffusion length method uses the empirical exponential 

term in the equation and determines the multiplier value by matching surface concentration 

profiles to the exact solutions. The high order polynomial method uses a higher order polynomial 

for the concentration profile in the derivation, and one could derive new sets of equations with an 

even higher order polynomial model, if needed, following the same procedures discussed in the 

papers.4, 7  

This method is very efficient at long time ranges, and for low/ medium rates, and is ideal 

for adaptive solvers for pseudo-2D models. However, it is inaccurate at short times and for high 

rates/pulses and hence would not be a suitable method for implementing in models for HEVs and 

other high rate applications. 

2.2.4. Pseudo Steady State Method 

 The Pseudo Steady State (PSS) approach by Liu5 is very robust and by having enough 

number of equations, this approach can cover the entire spectrum of high/low rates, pulses, etc.  

This is a form of a finite integral transform technique to eliminate the independent spatial 

variable r from the solid phase diffusion equation. For diffusion problems with a time dependent 

pore wall flux jn appears in the boundary condition and in the calculation of coefficients. 

However, this method involves terms/coefficients which blow up when the number of terms 

increases adding numerical difficulties for simulation. More details are given in the Results and 
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Discussion section when this method is compared with our proposed approach implemented in 

this work. 

2.2.5. Penetration Depth Method 

The penetration depth analysis approach was used earlier with empirically fits to numerical 

solution for penetration depth near the surface of the particle. The advantage of this method is 

that it is very accurate at short times/pulses and more accurate and efficient Penetration depth 

solutions can be directly obtained from the partial differential equation as discussed elsewhere.6 

The drawback with this approach being the need to be reinitialized every time, and does not 

give a good match for varyingδ . Though this method is very accurate and efficient at short times, 

it is not ideal for adaptive solvers in a pseudo-2D model (increases stiffness). 

2.2.6. Finite Element Method 

While the governing equation1 describes solid phase concentration along the radius of each 

spherical particle of active material, the macroscopic model requires only the concentration at the 

surface, cs (x, t), as a function of the time history of local reaction current density, j(t). The PDE, 

is transformed from spherical to planar coordinates using and discretized in the r-direction with 

N suitably chosen linear elements. (They used five elements with node points placed at {0.7, 0.91, 

0.97, 0.99, 1.0} × Rs.) Transformed back to spherical coordinates, the discretized system is 

represented as ODEs in state space form and then solved.6  

The finite element node sizes were probably obtained using trial and error and perhaps may 

not be optimal at long times or different operating conditions. The following section describes 

two new methods that can be used for solid phase diffusion approximation and explains the 

derivation of the same. 
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2.3. Galerkin Reformulation of Solid Phase Diffusion 

The reformulation discussed here is based on Eigen function based Galerkin collocation 

for constant diffusivity. In case of constant diffusivity f(C) in equations [2.6]and [2.9] will be 1. 

The following section describes the derivation for the eigenfunction based Galerkin collocation 

and the equations for approximation are given at the end. Expanding equation [2.6] can be 

written as  

( )
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2
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A general solution for the variable c(x, τ) can be written as a polynomial approximation given 

as 
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τ λ
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where λn, n=1…m are the eigenvalues of the given problem (equation [2.22]). To get the value of 

c(x, τ) we need to evaluate the time dependent coefficients in the solution a(τ), b(τ) and dn(τ). 

This trial function is assumed to be the solution for c(x, τ) as the functions ( )sin n x
x
λ

are the eigen 

functions satisfying the given problem as given elsewhere.5 In general, a polynomial form is 

assumed.7 However, having the solution for constant boundary conditions as the trial function 

helps in simplifying the integrals. The choice is up to the researchers; however eigen functions 

for problems with constant boundary conditions and linear models are a good basis for nonlinear 

and time-varying boundary conditions. This idea follows from the Duhamel’s superposition 

method1 wherein models with time-varying boundary conditions are obtained from constant 

boundary condition models using the convolution theorem. 
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The coefficients are obtained by solving the final equation using the boundary conditions 

given above and solving for cave(τ). We introduce the average concentration as 

 ( ) ( )
1 2

0
3 ,avec c x x dxτ τ= ∫     [2.12] 

The coefficients a(τ) and b(τ) are obtained in terms of cave(τ) and simplifying the expressions  

substituting we have 
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Substitution in c(x, τ) yields  
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Substitution of c(x, τ) in our original equation [2.6] yields  
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Calculating cave(τ) from the above equation multiplying with differential volume 3x2, also 

multiplying by ( )sin n x
x
λ

and integrating to find cave(τ), after simplification we have 
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To solve the above equation efficiently, we introduce a variable Qn such that  

 ( ) ( )n n
dd Q
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τ τ=     [2.17] 

Substituting the above relation, and integrating the above equation we have  
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where kn is a constant for integration. 

Grouping like terms we may write equation [2.18] as 
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Simplifying and substituting tan( )n nλ λ= , the above equation can be written as 
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 The above equation can be written as 
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Substituting ' '
n n nQ Q k= − doesn’t alter the value of d(τ) as ndQ

dτ
remains unchanged. Hence, 

the final set of equations is not affected by the value of integration constant '
nk .  
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The final set of equations can be written as: 
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An important advantage of this approach is, this reformulation is very robust and by having 

enough number of Q’s, in other words, enough number of equations[2.24], this approach can 

cover the entire spectrum of high/low rates, pulses, etc. like the PSS method by Liu. However, in 

Liu’s PSS approach the q’s vary as q1<q2<q3<q4 and the order of q4 is as high as 1040 causing 

stiffness and numerical instability in the pseudo-2D models using this approach. The q’s 

mentioned here are the q’s in final set of equations obtained from the PSS method5 as mentioned 

in equations 9(a) to 9(c) elsewhere.2 The present reformulation overcomes this problem. In this 

method the Q’s vary as Q1>Q2>Q3>Q4, in other words we have a converging series in Qn which 

makes this approach equivalent to PSS model in accuracy, but highly efficient in pseudo-2D 

environment for computation avoiding stiffness and computational difficulties. 

2.4. Finite Difference Approach with Unequal Node Spacing 

Finite difference method is one of the most widely used numerical techniques to solve 

ordinary or partial differential equations. Use of finite difference method has been first choice for 

solving first principles based lithium-ion battery models. However, for a pseudo-2D model, 

when dealing with a second dimension r for discretization, the number of equations increases by 
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many folds and thereby making the simulation of system slower and complex. About 20 node 

points in the r direction will increase the number of equations by a great deal and hence, based 

on mixed order finite element approach discussed earlier, where the size of linear elements were 

unequal instead of fixed equal elements, we used a mixed order finite difference approach, 

wherein we use less number of node points with unequal node spacing. The derivation of finite 

difference notations for different approximation for the derivatives is given in the following 

section.  

Taylor series expansion at x = x+hi+1 and x – hi are written as 
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where hi is the unequal node spacing between at the ith node in the domain. 

Truncating the series expansion with the required amount of accuracy and solving for the 

first and second order derivatives, we can obtain formula for the central finite difference for the 

first and second order derivatives. We use an order of h2 accuracy for all our approximations. 
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Similarly forward and backward finite differences relations for the derivatives can be 

obtained, and used in for boundary conditions. 
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Figure 2-1 presents a general methodology for obtaining efficient 

reformulation/representation for the solid-phase equation for nonlinear diffusivities. First, a 

mixed-finite difference representation is written, say with N = 5 node points. For the 

optimization, hi=1/ (N+1) is the initial guess with 0.001<hi<0.999 as the constraint, the error 

between expected full-order numerical solution and the mixed-finite difference method is 

minimized to a set tolerance. Typically, Jacobian based methods are sufficient for convergence.8 

For difficult nonlinearities, global optimization including genetic algorithms might be needed for 

convergence and robustness9, 10 though they are likely to be very slow compared to Jacobian 

methods. 

For the solid phase diffusivity (Ds) varying as a function of concentration, the Galerkin 

approach cannot be used. We used finite difference (FD) with unequal node spacing in the r 

direction and discretized the diffusion equation[2.6]. The mixed finite difference form of this 

equation with constant Ds using the above derived finite difference stencil is given as 
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where N is the number of interior node points. A similar expression for varying Ds can be derived. 

One of the advantages of this method is that, for our case the concentration gradient is 

more near the surface compared to the center and hence, strategically placing more node points 

near the surface and less node points at the center would give results with the same accuracy 

with lesser total number of node points compared to a large number of equally spaced node 
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points. Lesser number of node points in r leads to lesser number of equations and hence faster 

simulation for the whole battery model. The placement of these node points are important and to 

find the exact position of these node points we ran an optimization algorithm to find the best h1, 

h2, h3, etc. and minimize N and the CPU time. This method is very accurate for short times/high 

rates/pulses; and is recommended for varying diffusion coefficients. Varying diffusivities are 

important and is likely to get more attention because of its requirement for addressing stress 

effects in the Li-ion batteries.11 Note that though this approach is robust as an optimization 

algorithm proposed in this work will automatically detect instead of having to guess and arrive at 

the node spacing by trial and error. 

2.5. Coupling Solid Phase Diffusion with Full-order Pseudo-2D Battery 
Models 

In the traditional formulation of solid phase diffusion, equations [2.1]-[2.4] are coupled to 

the equations of a full-order pseudo-2D model for lithium-ion batteries, which is described 

elsewhere.12, 13 For comparison, two efficient methods, the eigen function based Galerkin method 

and the mixed finite-difference (FD) method (with 5 internal nodes) are also coupled to the full-

order pseudo-2D model.  

 Three pseudo-2D codes were written in FORTRAN and solved with the DASKR 

differential-algebraic equation solver, which is a root-finding version of DASPK.14 They 

consisted of the traditional finite difference in r and x (with 50 node points in x direction and 35 

in r direction) model, the Galerkin model, and the mixed finite difference model for intra-particle 

diffusion. For all cases in Figure 2-6, Ds is a constant. 
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2.6. Results and Discussion 

Figure 2-2 shows the comparison of the Galerkin method, with traditional finite 

difference (full-order) numerical solution for varying ( )δ τ , and a constant Ds along with the PSS 

method. From this figure it is clear that results obtained with the full-order numerical solution 

(50 node points in r) can be efficiently obtained at reduced computational time with no 

compromise in accuracy. Though this figure compares the results for a single PDE (solid state 

diffusion alone) the results obtained help in simulating a pseudo-2D model with efficient 

approximation/representation for the solid-phase.  

Figure 2-3a shows the values of Qi’s obtained when solving the above equation for the 

given sin function as input for the current. As described above, it can be seen that the values of 

Qi decrease with increasing i as well as with time as opposed to the PSS method thus giving a 

converging solution and also making it easier for stiff equation solvers to converge faster and 

more efficiently. The qi’s from Ref. [2] are plotted in Figure 2-3b and it is clearly observed that 

they are a diverging series at low precision computations and reach very high values which may 

cause the solvers to become unstable. Thus the Galerkin method provides a more efficient way of 

including the solid phase diffusion without compromising on accuracy for all possible operating 

conditions with constant diffusion coefficients. 

Figure 2-4 shows the comparison of mixed finite difference method with 5 internal nodes 

for a constant value of ( )δ τ , and constant Ds compared with the full-order numerical solution. It 

can be observed that the reformulation agrees accurately with the full-order numerical solution. 

Again, it is observed that both at short times and long times, the mixed finite difference 

representation matches with the full-order solution. The values of optimized node spacing 
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obtained in this case for different values of hi’s are [0.2183372643, 0.1779355824, 

0.1228253438, 0.1698047152, 0.1499086011, 0 .1611884932]. 

Proton diffusion in to nickel hydroxide electrodes used in the Ni-MH batteries are strong 

function of solid-phase concentration and decreases approximately three orders of magnitude. 

This varying transport property was captured by using the complex faradaic impedance of the 

nickel hydroxide active material and reported as Eq. [5] elsewhere.15 This work has been used 

for accounting variable diffusion coefficient16 to determine a diffusion coefficient that is a 

function of the dimensionless flux rate of the material diffusing into the particle. Verbrugge et 

al.17 expressed the intercalate diffusion coefficient as an indirect function of solid-phase 

concentration consisting of fraction occupancy of intercalating host material and activity 

coefficient. The significance of taking an account of this variation in intercalating electrodes was 

demonstrated by Botte and White.18 Here, mathematical models are developed to simulate the 

potentiostatic charge/discharge of a partially graphitic carbon fiber and the galvanostatic 

discharge of a lithium foil cell under solid diffusion limitations. Evidence that shows the 

importance of accounting for nonlinear diffusion was shown by Karthikeyan et. al.19 for the 

recently popular LiNi0.8Co0.15Al0.05O2 positive active material in lithium-ion batteries where the 

thermodynamic expressions along with the activity correction are incorporated into a single 

particle diffusion model for a Li-ion cell. Hence the use nonlinear diffusion, wherein the 

diffusion coefficient is a function of concentration, is becoming more and more popular in the 

battery modeling domain and the mixed order finite difference method is capable of giving 

accurate results with nonlinear diffusivities as well. To illustrate this fact, Figure 2-5 is presented 

with the comparison of mixed order finite difference method with 5 internal nodes for constant 

( )δ τ , and Ds varying as a simple function of C with the full-order numerical solution. For 
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varying Ds, f(C) = 1 + 0.1 C, mixed FD approach was found to be efficient and accurate at short 

times. 

Comparisons between the solid-phase diffusion models for the full-order pseudo-2D 

model and approximations developed show excellent agreement. The time history of cell voltage 

was monitored for several discharge rates. For very high discharge rates of 5C and 10 C, Figure 

2-6 shows the comparison of the full-order, Galerkin (with 5 q’s), and Mixed finite differrence 

(with 5 internal nodes) methods for constant Ds.  The computations were terminated when the 

potential dropped to 2.5 V.  Agreement is very good between the traditional Finite Difference 

and the mixed finite difference methods, indicating that this efficient method could substitute for 

the traditional method for any discharge rate (low or high).  The mixed Finite Difference method 

is in remarkable agreement with the-full-order finite difference method and can also be used for 

nonlinear diffusivities and hence can increase the computational efficiency of the whole battery 

model. The Eigen function based Galerkin collocation approach included in a full pseudo-2D Li-

ion battery model also shows excellent agreement at high rates of discharge indicating that this is 

a good alternative for cases with constant diffusivities. 

Table 2-1shows the cpu time taken for performing the above mentioned simulations and 

it can clearly be seen that the two new proposed methods take lesser simulation time compared to 

the simulation time for a full order pseudo-2D model. We can also observe that the Eigen 

function based Galerkin method takes more time compared to mixed finite difference method. 

The solid phase reformulations are necessary for faster simulation of Li-ion battery models 

which help in faster estimation of parameters from these models from the experimental data.20 
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2.7. Conclusion 

The different approximation schemes available for solid phase approximation for Li-ion 

batteries were reviewed and certain disadvantages pertaining to some of those methods were 

discussed. To overcome these small disadvantages an Eigen function based Galerkin-weighted 

residual approximation was presented that provides efficient reformulation for the solid-phase 

equation for constant diffusivities. The result from this method compares very well with the 

Pseudo steady state method and also facilitates easily converging solutions for the Q values. 

Mixed order finite difference based on finite volume equations can be derived for varying values 

of diffusion coefficient as a function of concentration (non-linear case), and are very efficient for 

short times and so far seem to be the only option for reformulating nonlinear diffusivities 

efficiently. The two methods presented here seem to be better compared to the existing solid 

phase approximations with absolutely no shortcomings as they are valid for any kind of 

operating conditions. For the case of linear diffusivity (Ds is constant) the eigen function based 

Galerkin collocation is the most efficient method, that does not compromise on accuracy, 

however providing excellent computational efficiency. For nonlinear diffusivities, the mixed 

order finite difference method can be used to obtain accurate solutions by using lesser number 

optimally spaced node points thereby reducing the total number of equations being solved for the 

full pseudo-2D Li-ion battery model. Future work involves efficient reformulation for moving 

boundary models for phase change materials and coupling the solid phase models with 

reformulated models at very high rates. 

2.8. List of Symbols 

C dimensionless concentration of lithium ions in the intercalation particle of electrode 

c0 reference concentration, mol/m3 
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cs concentration of lithium ions in the intercalation particle of electrode, mol/m3 

c  average concentration of lithium ions in the intercalation particle of electrode, mol/m3 

Ci dimensionless concentration at ith node point 

C  dimensionless average concentration of lithium ions  

Ds Li-ion diffusion coefficient in the intercalation particle of electrode, m2/s 

D0 diffusion coefficient at reference concentration c0, m2/s 

hi node spacing at ith  node point 

j(t) pore wall flux of Li ion the intercalation particle of electrode, mol/m2s 

q volume averaged concentration flux, mol cm-4 

Rs radius of the intercalation particle of electrode, m 

nλ  positive eigen values 
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2.10. Tables 

Table 2-1: Comparison of CPU times taken for full order pseudo-2D, Galerkin based and 
mixed FD methods for obtaining discharge curves in Figure 2-6 at 5C and 10C rates. 

Method 
CPU time for 5C rate 

(s) 
CPU time for 10C rate 

(s) 
Full order Pseudo-2D 19.2 20 
Galerkin based 4.5 4.84 
Mixed Finite Difference 1.438 1.297 
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2.11. Figures 

 

 

Figure 2-1: Schematic of steps involved in mixed FD method for optimized spacing and 
hence reformulation of solid phase diffusion. 

 

 

Figure 2-2: Comparison of Eigen function based Galerkin reformulation with full-order 
numerical solution and PSS by Liu for δ (τ) = 1 + sin (100) and n = 5. 
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Figure 2-3: (a) Plot of Qi’s obtained during the simulation of Figure 2-2 showing the 
converging behavior for increasing i and with time. (b) Plot of qi’s from the PSS method 
obtained during the simulation of Figure 2-2 showing the diverging behavior for increasing i 
and with time 

 
(a) 
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Figure 2-4: Comparison of mixed FD method with 5 interior nodes with full-order numerical 

solution for constant Ds and δ (τ) = 1, etc. 

 

 
Figure 2-5: Comparison of mixed FD method with 5 interior nodes with full-order numerical 

solution for f(C) = 1 + 0.1C and δ (τ) = 1 
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Figure 2-6: Discharge curves at 5C and 10C rate for a Pseudo-2D model for Li-ion battery: 
Comparison of full order pseudo-2D, Galerkin based, and mixed finite difference methods for 
solid phase diffusion. 
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Chapter 3 : Parameter Estimation and Capacity Fade Analysis of 

Lithium-ion Batteries Using Reformulated Models 

This chapter is reproduced with permission from J. Electrochem. Soc., 158 (9), A1048 

(2011). Copyright 2011, The Electrochemical Society. The author is grateful to the co-authors 

for their significant contributions under sections 3.3.3, 3.4 and 3.5. 

3.1. Introduction 

Electrochemical power sources appear in applications in automobiles, power storage, military, 

mobile applications, and space. Lithium-ion chemistry has been identified as a preferred 

candidate for high-power/high-energy secondary batteries. Significant progress has been made in 

developing lithium-ion battery models that incorporate transport phenomena, electrochemical 

kinetics, and thermodynamics.1-8 While these models have been used to produce reliable 

predictions for a small number of cycles, their ability to predict the reduction in capacity during 

cycling is limited. Different mechanisms causing capacity fade include (i) capacity fade during 

formation cycles, (ii) overcharging, which results in a decrease in capacity in both positive and 

negative electrodes and the electrolyte, (iii) decomposition of the electrolyte during the reduction 

process, (iv) self-discharge depending on the purity of materials used in manufacturing, and (v) 

formation of a passive film on the electrode that grows in thickness as the cycle number 

increases.5,7 Figure 3-1 shows the region in which each phenomenon occurs within a battery. 

Table 3-1 lists some of the mechanisms causing capacity fade and the possible parameters that 

could be affected in a pseudo-2D porous-electrode-based model of a lithium-ion battery. 

In some recent work, Safari et al.9,10 assessed the possibility of using a mechanical-fatigue 

life-prognostic method for the life prediction of lithium-ion batteries. This method was 
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successfully demonstrated for predicting the capacity loss but is limited by the choice between 

the time frame of the aging experiments and the life-prediction accuracy. In addition, the method 

is an empirical tool, which has its own limitations. Yoshida11 fabricated a lithium-ion cell with 5-

Ah capacity, fitted experimental data on the thickness of the SEI layer growth, and demonstrated 

that their empirical fit predicted the life under certain conditions. Other recent efforts have 

developed more efficient simulation techniques for phenomenological models of capacity 

fade.4,12 A complete phenomenological model for capacity fade has not been forthcoming due to 

(i) incomplete understanding of all of the capacity fade mechanisms, (ii) lack of knowledge for 

the values of the model parameters in these mechanisms, (iii) difficulties in obtaining these 

parameter values due to cumulative non-separable effects of individual mechanisms occurring 

simultaneously, and (iv) numerical inability and lack of efficient numerical solvers to be able to 

solve the complex models efficiently with proper state detections. Oftentimes in the quest for 

adding detailed mechanisms, researchers have neglected important electrochemical/transport 

phenomena typically in porous electrode-based battery models. For example, researchers have 

employed simpler single-particle models or empirical fits that neglect important 

electrochemical/transport phenomena to accommodate the increased complexity of capacity fade 

mechanisms. Today very few phenomenological models include mechanisms for capacity fade in 

Li-ion batteries8,12 and no models include all of the postulated mechanisms. 

This chapter proposes an alternative approach to the estimation of the life of a battery, which 

uses voltage-discharge curves measured during initial cycles to predict voltage-discharge curves 

during later cycles. A model reformulation4 is employed to efficiently extract the effective 

kinetic and transport parameters from experimental data, with uncertainties in parameters and 

model predictions quantified using established analysis techniques. The next sections describe 
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the lithium-ion battery model used in this study, the numerical algorithms used to implement the 

discrete approach to capacity fade prediction, the results and discussion, and the conclusions. 

3.2. Lithium-ion Battery Model and Simulation 

Phenomenological battery models typically solve electrolyte concentration, electrolyte 

potential, solid-state potential, and solid-state concentration in the porous electrodes and 

electrolyte concentration and electrolyte potential in the separator regions.1,2 These models are 

represented by coupled nonlinear partial differential equations in one, two, or three dimensions, 

are typically solved numerically, and require a few seconds to minutes to simulate. Simulation of 

lithium-ion battery models requires simultaneous evaluation of concentration and potential fields, 

both in the solid and electrolyte phases. The porous nature of the battery electrodes leads to 

highly nonlinear and heterogeneous electrochemical reaction kinetics. A pseudo-two-

dimensional (P2D) model developed by Doyle et al.6 is considered in this work. The governing 

equations in the full physics-based P2D model for the five variables Φ1, Φ2, c, ave
sc , and jp that 

vary with x are given in Table 3-2. Usually lithium-ion battery models are numerically simulated 

by finite-difference discretization of all the variables in the spatial coordinates. The discretization 

of the cathode, separator, and anode into 50 equally spaced node points would result in 600 

Differential Algebraic Equations (DAEs) to be solved in the finite difference model, which is 

impractical for real-time simulation. Parameter estimation and optimization of lithium-ion 

battery, where the life and health of the battery is vital to the operation of the device, requires 

quick-solving models that can give an accurate account of the battery variables. A model 

reformulation4 of the P2D model6 was developed by exploiting the mathematical structure of the 

DAEs while conserving mass, charge, and current in each electrode and having much lower 
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memory requirements and computational costs compared to standard finite-difference methods. 

The details on the reformulation of the P2D model are provided elsewhere.4 

The accuracy and simplicity of the reformulated model enables an easy computation of 

parameter sensitivities and even numerical jacobians are likely to be more accurate and stable 

compared to the direct finite-difference method applied to the original P2D model. These 

features of the model reformulation were utilized during the parameter estimation described in 

Section 3.3.2 to extract effective kinetic and transport parameters from experimentally measured 

voltage-discharge curves. The reformulated model also enabled the application of the Markov 

Chain Monte Carlo (MCMC) method, as described in Section 3.3.3, to quantify the magnitude of 

uncertainties in the model parameters. 

3.3. Numerical Algorithms 

This section describes the discrete approach to capacity fade prediction and the parameter 

estimation and uncertainty quantification methods used in the implementation of the discrete 

approach. 

3.3.1. Discrete Approach to Capacity Fade Prediction 

This chapter reports a discrete parameterized approach to predict capacity fade in Li-ion 

batteries. The variations in effective transport and kinetic parameters are tracked with discharge 

curves at different cycles as described in Section 3.3.2. The estimated parameters were the 

effective diffusion coefficient of lithium ion in the solution phase (D1), effective diffusion 

coefficient of lithium in the solid phase for the negative and positive electrodes (Dsn and Dsp), 

and electrochemical reaction rate constants for the negative and positive electrodes (kn and kp).  

Note that the effective diffusion coefficient through porous media is a function of a species’ 

molecular diffusion coefficient and the porosity, tortuosity, and constrictivity of the media,13 
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which change as a battery ages, so that the effective diffusion coefficient changes with cycle #. 

The electrochemical rate constants are also effective, in that they are a function of the true 

electrochemical rate constant and the surface area available for electrochemical reaction, which 

will decrease as alloys are formed on the electrode surface that block or hinder electrochemical 

reaction. In an application to a Quallion battery, Section 3.4 demonstrates that power-law 

extrapolation of the change in the effective transport and kinetic parameters predicted the future 

voltage-discharge curves and the life of the battery. 

Uncertainty quantification methods are applied to avoid over-fitting of the model parameters 

to the experimental data. Uncertainties in the effective model parameters are quantified as 

described in Section 3.3.3, and used to reduce the set of estimated model parameters to include 

only those parameters that can be estimated with sufficient accuracy from the experimental data. 

Uncertainties in the model predictions are also quantified, with the 95% predictive intervals for 

future cycles compared with the experimental data in Section 3.4. 

3.3.2. Parameter Estimation 

The model parameter estimates were obtained by the solution of a nonlinear optimization that 

minimizes the sum-of-squared differences between the model outputs and their experimentally 

measured values for each cycle i:14-16 

 
2

, 
1

min ( ) ( ; )
in

i j model i j i
ji

y t y t θ
θ =

 − ∑   [3.1] 

where ( )i jy t is the measured voltage at time tj for cycle i, , ( ; )model i j iy t θ is the voltage 

computed from the reformulated model at time tj for cycle i for the vector of model parameters 

iθ (the 5 parameters being the effective solid-phase diffusion coefficient and reaction rate 

constant in each electrode and solution-phase diffusion coefficient of the electrolyte), and ni is 
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the number of time points in cycle i. Solving the optimization [3.1] is known in the literature as 

least-squares estimation.14-16 Many numerical algorithms are available for solving the nonlinear 

optimization [3.1], such as the steepest descent, Gauss-Newton, and Marquardt methods.14 In this 

work, the Gauss-Newton method14 was applied to estimate parameters using the reformulated 

model. For the least-squares estimation, this Jacobian-based method is an iterative process that 

reduces the sum-of-squared differences between the model outputs and the experimental data 

points until the error is no longer significantly reduced.  

3.3.3. Uncertainty Quantification 

Uncertainties in the model parameter estimates were quantified by three methods: (i) 

estimation of hyper-ellipsoidal 95% confidence regions by applying Chi-squared statistics to a 

Taylor series expansion between the model parameters and the model outputs,15,16 (ii) estimation 

of 95% confidence regions by applying F-statistics to the parameter estimation objective function 

[3.1],15,16 and (iii) estimation of probability distributions using the Markov Chain Monte Carlo 

(MCMC) method.17,18 The first two methods, which are the most commonly applied in the 

literature, gave highly inaccurate confidence regions for this application, whereas the MCMC 

method is a very accurate method for uncertainty quantification for any application. The MCMC 

method employs a Monte Carlo sampling method to numerically construct the probability 

distribution for each model parameter and cycle i from the posterior distribution for the 

parameter estimates obtained using Bayes’ rule:17,18  

 
Pr ( | ) Pr ( )Pr ( | )

Pr ( )
i i i

i i
i

YY
Y

θ θθ =   [3.2] 

where iY was the vector obtained by stacking the voltage measurements ( )i jy t , Pr ( )iθ is the 

prior distribution of iθ which was specified as a uniform distribution with a width of 20% 
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centered at the parameters estimated using the least-squares method [3.1], Pr ( | )i iY θ  is the 

likelihood of obtaining the data iY  given parameters iθ , and Pr ( )iY
 
is a normalization constant 

so that the posterior distribution Pr ( | )i iYθ
 
integrates to unity. The term Pr ( | )i iY θ , which is 

known as the likelihood function, for this application is 
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εε

θ
σπσ=

 −
 
 

∏   [3.3] 

where 0.01εσ = V was the standard deviation of the voltage measurement noise. The 

probability distribution for each model parameter is equal to integrals of the posterior 

distribution [3.2] over the other model parameters. Unlike the conventional Monte Carlo method 

for computing integrals,19 the samples in the MCMC method are correlated; generating what is 

known as a Markov chain, whose probability distribution approaches the probability distribution 

for each parameter. More detailed descriptions are provided in the references.17,18 

Other advantages of the MCMC method are its explicit consideration of constraints and 

arbitrary non-Gaussian distributions for prior knowledge on the parameters, and that it exactly 

handles the full nonlinearity in the model equations. For an accurate quantification of the 

uncertainties, the MCMC method requires many simulation runs, which was facilitated by use of 

the reformulated model.  

The effect of the parameter uncertainties on the accuracy of the predictions of the lithium-ion 

battery model was also quantified. Although the reformulated model was computationally 

efficient enough for the standard Monte Carlo method to be applied to quantify the accuracy of 

the model predictions, the computational cost was further reduced by replacing the reformulated 

model with a polynomial series expansion20,21 during the computation of the prediction intervals. 



88 
 

The application of this approach to electrochemical and materials systems is described in great 

detail in the literature.22-25 

3.4. Results and Discussion 

The experimental data for the analysis were obtained for Quallion BTE cells and 

chemistry.26,27 Five effective transport and kinetic parameters were estimated by applying least-

squares estimation to the Quallion BTE cells experimental voltage-discharge data. The standard 

finite-difference model and the reformulated model gave the same voltage-discharge curves at 

cycle 0 (see Figure 3-2). Using the model parameters at cycle 0 as an initial guess, Figure 3-2 

compares the experimental voltage-discharge curve at cycle 25 with the reformulated model 

output obtained using five model parameters fit by least-squares estimation to that experimental 

data set. Similar parameter estimations and fits were obtained for later cycle numbers (50 and 

100n where n = 1,...,10).  

The expected monotonic reduction in capacity with cycle # is shown in the voltage-discharge 

curves obtained by fitting the five model parameters to experimental data (see Figure 3-3a). The 

mechanisms of capacity fade and its overall reduction in battery performance (see Figure 3-1) 

suggest that all five effective model parameters should decrease monotonically with cycle #. The 

effective negative-electrode solid-phase diffusion coefficient and reaction rate constant (Dsn and 

kn) decrease monotonically with cycle #, whereas the other three parameters did not follow any 

particular trend (see Figure 3-3a). This suggested that the voltage-discharge curves may not 

contain sufficient information to accurately estimate the effective values of D1, Dsp, and kp, and 

that the change in the voltage-discharge curves with cycle # could be captured by estimation of 

only the effective solid-phase diffusion coefficient Dsn and reaction rate constant kn for the 

negative electrode. The voltage-discharge curves could be fit using just the two model 
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parameters Dsn and kn, which had to significantly change their values to be able to fit the voltage-

discharge curves at higher cycle number (see Figure 3-3b).  

An initially surprising observation was that, when only 2 model parameters were fit, the 

effective reaction rate constant kn was not monotonically decreasing with cycle # between cycle 

0 and cycle 25 (see Figure 3-3b). This observation motivated a more detailed analysis by 

application of sensitivity analysis and the MCMC method. The voltage-discharge curves were 

very sensitive to the value of the effective solid-phase diffusion coefficient Dsn but weakly 

sensitive to deviations in the model parameters D1, Dsp, kp, and kn from their nominal values, 

resulting in large uncertainties in their values when fit to experimental voltage-discharge curves 

(see Table 3-3). The nominal estimate of the effective solid-phase diffusion coefficient Dsn 

monotonically decreases with increased cycle number (see Figure 3-3b), with the nominal 

estimates being highly accurate according to the probability density function (pdf) computed by 

the MCMC method (see Figure 3-4). The pdfs for Dsn at different cycle numbers have minimal 

overlap, providing very high confidence that the monotonic reduction of the effective solid-phase 

diffusion coefficient with increase cycle number is statistically significant. That the voltage-

discharge curves were much sensitive to a negative-electrode parameter (Dsn) suggests that 

mechanisms for capacity fade in the negative electrode, rather than the electrolyte or positive 

electrode, were the most important for this battery under these operating conditions. The pdfs of 

the other model parameters are sufficiently broad (see Table 3-3) that an observed increase in a 

model parameter from one cycle to the next, as seen in Figure 3-3b, may not be statistically 

significant.  

The overall trend in the variation of model parameters is more reliably assessed by plotting 

nominal estimates over many cycles. A discrete approach was adopted for the prediction of 
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capacity fade by tracking the change in effective transport and kinetic parameters with cycle 

number (N). Figure 3-5 shows the variation with cycle number of the effective diffusion 

coefficient Dsn and electrochemical reaction rate constant kn for the negative electrode. Power 

laws are commonly used to fit the decay of a property,28 which motivated the estimation of the 

model parameters and computation of the voltage-discharge curve at cycle 600 by extrapolation 

of power-law fits for the variations in each model parameter as a function of cycle number for 25, 

50, 100, and 200. The mathematical model produces accurate predictions of the voltage-

discharge curve at cycles 500 and 600 (see Figure 3-5 and Figure 3-6). 

The model parameters Dsn and kn fit to the experimental data for cycles 50, 100, 200, 300, 

400, and 500 were used to predict the remaining battery life based on voltage-discharge curves 

measured in past cycles. To characterize the degradation in the model parameters, a power law 

was fit to the estimated parameter values from cycles 25 to 500 similar to what was done for 

least-squares estimation. Implicitly assuming that the changes in the parameter values are the 

result of the same mechanism in later cycles, the parameter values for the subsequent cycles were 

predicted using the power-law expressions. The voltage-discharge curve predicted by this model 

was in very good agreement with the experimental data at cycle 1000 (see Figure 3-7), indicating 

that the model was able to predict capacity fade.  

3.5. Conclusions 

The effective solid-phase diffusion coefficients and electrochemical reaction rate constants in 

positive and negative electrodes and the effective electrolyte diffusion coefficient were estimated 

and tracked as a function of cycle #. The mathematical analysis indicated that (i) nearly all of the 

variation in voltage-discharge curves could be explained by changes in only the two model 

parameters associated with transport and electrochemical kinetics in the negative electrode 
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(Figure 3-3b), and (ii) the monotonic reduction in the estimated effective solid-phase diffusion 

coefficient in the negative electrode due to capacity fade was due to actual changes in the model 

parameter rather than uncertainties in the parameter estimation resulting from limited parameter 

identifiability and limited data (Figure 3-4). After characterizing uncertainties in the parameters 

(Table 3-3), the effects of the parameter uncertainties on the voltage-discharge curve were 

quantified (Figure 3-6). Small prediction intervals, as well as comparisons of model predictions 

with experimental data (Figure 3-5 to Figure 3-7), provided confidence in the ability of the 

model to predict capacity fade. Tracking cycle-dependent variations in the effective values for 

transport and electrochemical kinetics is valid only for a particular protocol of galvanostatic 

charge and discharge, and is not appropriate for use in the design of lithium-ion batteries with 

reduced capacity fade.  

The proposed approach is appropriate for estimating the lifetime of a lithium-ion battery 

from past measured voltage-discharge curves. This study considers a battery operating for a 

consistent set of conditions; it would be useful to assess whether the approach is useful for time-

varying discharge conditions (within an allowable window of operations). The proposed 

approach is computationally efficient enough that it could be integrated into an inexpensive 

microprocessor for estimating the remaining battery lifetime, based on minimum requirements 

on the voltage-discharge curve for the battery to be useful in its application. The proposed 

approach can also provide guidance as to which battery components are likely the primary causes 

for capacity fade for a battery operating within a specified window of operating conditions. For 

example, in this study the voltage-discharge curves were sensitive to the negative-electrode 

parameters which suggested that the capacity fade mechanisms in the negative electrode have a 

more pronounced effect on the voltage-discharge curves. A designer working to improve the 
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battery designed for this operating condition would focus on modification of the negative-

electrode parameters (e.g., geometries, porosity) to reduce the capacity fade. 



93 
 

3.6. List of Symbols 

ai specific surface area of electrode i (i = p, n), m2/m3 

bruggi Bruggman coefficient of region i (i = p, s, n) 

c electrolyte concentration, mol/m3 

c0 initial electrolyte concentration, mol/m3 

cs,i concentration of lithium ions in the intercalation particle of electrode i (i=p, n), mol/m3 

cs,i ,0 initial concentration of lithium ions in the intercalation particle of electrode i (i = p, n), 

mol/m3 

cs,max,i maximum concentration of lithium ions in the intercalation particle of electrode i (i = p, 

n), mol/m3 

D1 electrolyte diffusion coefficient, m2/s 

Ds,i lithium ion diffusion coefficient in the intercalation particle of electrode i (i = p, n), m2/s 

F Faraday’s constant, C/mol 

I applied current density, A/cm2 

i1 solid-phase current density, A/m2 

i2 solution-phase current density, A/m2 

i0,s exchange current density for the solvent reduction reaction, A/m2 

js solvent reduction current density, mol/m2s 

ji wall flux of Li+ on the intercalation particle of electrode i (i = n, p), mol/m2s 

ki intercalation/deintercalation reaction rate constant of electrode i (i = p, n), 

mol/(mol/m3)1.5 

li thickness of region i (i = p, s, n), m 

Ms molecular weight of the solvent reaction product, g/mol 

n negative electrode 
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N cycle number (dimensionless) 

p positive electrode 

r radial coordinate, m 

R universal gas constant, J/(mol·K) 

Rfilm  Initial SEI layer resistance at the negative electrode, Ω·m2 

Ri radius of the intercalation particle of electrode i (i = p, n), m  

s separator 

t+ Li+ transference number in the electrolyte 

T absolute temperature, K 

Ui open-circuit potential of electrode i (i = p, n), V 

Us standard potential of the solvent reduction reaction, V 

x spatial coordinate, m 

xi0 initial state of charge at the electrode 

δ thickness of the solvent reduction product film, m 

δ0 initial thickness of the solvent reduction product film, m 

εi porosity of region i (i = p, s, n) 

εf,i volume fraction of fillers of electrode i (i = p, n) 

iη  overpotential driving a reaction, V 

sη  overpotential driving the side reaction, V 

κ ionic conductivity of the electrolyte, S/m 

κeff,i effective ionic conductivity of the electrolyte in region i (i = p, s, n), S/m 

Ф1 solid-phase potential, V 

Ф2 electrolyte-phase potential, V 

ρs density of the solvent reduction product film, g/m3 
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σi electronic conductivity of the solid phase of electrode i (i = p, n), S/m 

σeff,i effective electronic conductivity of the solid phase of electrode i (i = p, n), S/m 

θi dimensionless concentration of lithium ions in the intercalation particle of electrode i (θi 

= cs,i/cs,max,i) 
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3.8. Tables 

Table 3-1: List of capacity fade mechanisms and possibly affected parameters in a pseudo-
2D model 

Mechanism of Capacity Fade Possible Affected Parameters 

Capacity fade during formation cycles  xp0, xn0, εp, εn, Dsp, Dsn, kp, kn 

Overcharging that results in decrease in 

capacity in both positive and negative 

electrodes 

Dsp, Dsn, kp, kn 

Decomposition of the electrolyte during the 

reduction process  
D1, kp, kn 

Self-discharge depending on the purity of 

materials used in manufacturing 
Dsp, Dsn, kp, kn 

Formation of a passive film on the electrode 

that grows in thickness as the cycle number 

increases 

ks, Rfilm 

Loss of active material during cycling xp0, xn0, εp, εn,, εf,p, εf,n 



 
 

Table 3-2: Governing equations for a lithium-ion battery (published as Table 1 of Ref [4]) 
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Table 3-3: Estimated uncertainty ranges for the four least-sensitive battery model 
parameters 

Cycle # Dsp kn D1 kp 
1 [-60%,+20%] [-60%,+20%] [-60%,+20%] [-10%,+10%] 

100 [-60%,+20%] [-60%,+20%] [-20%,+60%] [-10%,+10%] 
200 [-60%,+30%] [-60%,+20%] [-20%,+40%] [-10%,+10%] 
300 [-30%,+60%] [-20%,+60%] [-30%,+60%] [-10%,+10%] 
500 [-60%,+60%] [-20%,+20%] [-60%,+60%] [-10%,+10%] 
600 [-60%,+30%] [-20%,+20%] [-60%,+10%] [-10%,+10%] 
1000 [-20%,+60%] [-10%,+60%] [-20%,+60%] [-5%,+5%] 
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3.9. Figures 

 

Figure 3-1: A schematic of some capacity fade mechanisms postulated in a Li-ion battery 

 

 

Figure 3-2: Comparison of voltage-discharge curves from the battery models with the 
experimental data, with five model parameters obtained from least-squares estimation applied to 
the experimental data for cycle 25. The voltage-discharge curve for cycle 0, which was the same 
for the finite-difference model and reformulated model, was used as the initial guess 
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Figure 3-3: Voltage-discharge curves for the Quallion BTE cells with model parameters 
obtained from least-squares estimation applied to the experimental data for (a) five 
parameters, (b) two parameters. The voltage-discharge curves for the models fall on top of the 
experimental data so only one set of curves are plotted. The curves shift towards the left 
monotonically as the cycle # increases 
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Figure 3-4: Probability density function (pdf) for the effective solid-phase diffusion 
coefficient Dsn at the negative electrode as a function of cycle number determined by the MCMC 
method 
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Figure 3-5: Variations in the effective solid-phase diffusion coefficient Dsn and 
electrochemical reaction rate constant kn at the negative electrode. The inset plot compares the 
experimental data at cycle 600 with model prediction in which model parameters were 
extrapolated from power-law fits to model parameters estimated only up to cycle 200 
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Figure 3-6: Comparison of the experimental voltage-discharge curve with the model 
prediction with estimated parameters for cycle 500. Each red dot is a data point, the blue line is 
the model prediction, and the 95% predictive intervals were computed based on the parametric 
uncertainties quantified by pdfs of the model parameters 

  

 

 

Figure 3-7: Comparison of the experimental voltage-discharge curve at cycle 1000 with the 
model prediction using parameter values calculated from the power law fits to model parameters 
fit to voltage-discharge curves for cycles 50 and 100n for n = 1,…,5. Each red dot is a data point, 
the blue line is the model prediction, and the 95% predictive intervals were computed based on 
the parametric uncertainties quantified by pdfs of the model parameters. Similar quality fits and 
prediction intervals occurred for the other cycles 
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Chapter 4 : Optimal Porosity Distribution for Minimized Ohmic 

Drop Across a Porous Electrode 

This chapter is reproduced with permission from J. Electrochem. Soc., 157 (12), A1328 

(2010). Copyright 2010, The Electrochemical Society. The author is grateful to the co-authors 

for their significant contributions under sections 4.4, 4.5.1 and 4.6 

4.1. Introduction 

Electrochemical power sources have had significant improvements in design and operating 

range and are expected to play a vital role in the future in automobiles, power storage, military, 

and space applications. Lithium-ion chemistry has been identified as a preferred candidate for 

high-power/high-energy secondary batteries. Applications for batteries range from implantable 

cardiovascular defibrillators (ICDs) operating at 10 µA current to hybrid vehicles requiring 

pulses of up to 100 A. Today, the design of these systems have been primarily based on (i) 

matching the capacity of anode and cathode materials, (ii) trial-and-error investigation of 

thickness, porosity, active material, and additive loading, (iii) manufacturing convenience and 

cost, (iv) ideal expected thermal behavior at the system level to handle high currents, and (v) 

detailed microscopic models to understand, optimize, and design these systems by changing one 

or few parameters at a time.  

Traditionally, macroscopic models have been used to optimize the electrode thickness or 

spatially uniform porosity in lithium-ion battery design. Many applications of mathematical 

modeling to design Li-ion batteries are available in the literature.1-10 An approach to identify the 

optimal values of system parameters such as electrode thickness has been reported by Newman 

and coworkers.2, 5-10 Simplified models based on porous-electrode theory can provide analytical 
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expressions to describe the discharge of rechargeable lithium-ion batteries in terms of the 

relevant system parameters. Newman and coworkers2, 5-8 have utilized continuum 

electrochemical engineering models for design and optimization as a tool for the identification of 

system limitations from the experimental data. Equations were developed that describe the time 

dependence of potential as a function of electrode porosity and thickness, the electrolyte and 

solid-phase conductivities, specific ampere-hour capacity, separator conductivity and thickness, 

and current density. Analysis of these equations yields the values of electrode porosity and 

electrode thickness so as to maximize the capacity for discharge to a given cutoff potential.2 

Simplified models based on porous-electrode theory were used to describe the discharge of 

rechargeable lithium batteries and derive analytic expressions for the cell potential, specific 

energy, and average power in terms of the relevant system parameters. The resulting theoretical 

expressions were used for design and optimization purposes and for the identification of system 

limitations from experimental data.5 Studies were performed by comparing the Ragone plots for 

a range of design parameters. A single curve in a Ragone plot involves hundreds of simulations 

wherein the applied current is varied over a wide range of magnitude. Ragone plots for different 

configurations are obtained by changing the design parameters (e.g., thickness) one at a time, and 

by keeping the other parameters at constant values. This process of generating a Ragone plot is 

quite tedious, and typically Ragone curves reported in the literature are not smooth due to 

computational constraints. Batteries are typically designed only to optimize the performance at 

the very first cycle of operation of the battery, whereas in practice most of the battery’s operation 

occurs under significantly degraded conditions. Further, multivariable optimization is not 

computationally efficient using most first-principles models described in the literature. A 

reformulated model11, 12 is sufficiently computationally efficient to enable the simultaneous 
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optimal design of multiple parameters over any number of cycles by including the mechanisms 

for capacity fade. Further, this model can be used to quantify the effects of model uncertainties 

and variations in the design parameters on the battery performance. Recently, such an application 

was reported in which the utilization averaged over 1000 cycles was maximized for a battery 

design obtained by simultaneous optimization of the applied current density (I) and thickness of 

the separator and the two electrodes (ls, ln, lp) for cycle 1, and the effects of variations in these 

four design parameters due to imprecise manufacturing was investigated.13 The battery design 

optimized for cycle 1 did not maximize the cycle-averaged utilization. 

This chapter describes the method to design spatially-varying porosity profiles in porous 

electrodes based on simultaneous optimization applied to a porous electrode model. The next 

section describes the simple electrochemical porous-electrode model used in this study. Then 

different methods for the simultaneous optimization of model parameters are discussed. The 

optimization procedure used in this study is then described, followed by the results and 

discussion and conclusions. 

4.2. Electrochemical Porous Electrode Model 

Garcia et al.14 provided a framework for modeling microstructural effects in electrochemical 

devices. That model can be extended to treat more complex microstructures and physical 

phenomena such as particle distributions, multiple electrode phase mixtures, phase transitions, 

complex particle shapes, and anisotropic solid-state diffusivities. As mentioned earlier, there are 

several treatments for dealing with the microstructure of the porous electrodes in Li-ion batteries. 

However, there is no mention in the literature of using these models in optimization algorithms 

to extract optimal values of design parameters and hence perform model-based design for porous 

electrodes. As an initial investigation into the potential of such an approach, we employ a simple 



108 
 

model for a porous electrode with parameters matched to that of a cathode of a Li-ion battery to 

verify the feasibility of simultaneous optimization of design parameters and to investigate 

whether employing more detailed models for optimization is worthwhile. 

This chapter considers the optimization of a single porous positive electrode, where the 

electrode has the current collector at one end (x = 0) and electrolyte separator at the other end (x 

= lp). The expressions for current in the solid phase (i1) and electrolyte phase (i2) are given by1  

 1
1 ( ) di x

dx
σ Φ

= −   [4.1] 

 2
2 ( ) di x

dx
κ Φ

= −   [4.2] 

whereσ is the electrical conductivity,κ is the ionic conductivity, and Ф1 and Ф2 are the solid-

phase and electrolyte-phase potentials, respectively. The total applied current density across the 

cross-section of the electrode is equal to the sum of the solid-phase and liquid-phase current 

densities:  

 1 2appi i i= +   [4.3] 

The electrochemical reaction occurs at the solid-liquid interface with the solid-phase current 

(i1), which is assumed to be related to the distance across the electrode (x) by linear kinetics: 

 1
0 1 2( ) ( )di Fa x i

dx RT
= Φ −Φ   [4.4] 

with the active surface area given by 
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a x

R
ε−
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Rp is the particle radius of active materials in the porous electrode, and ε(x) is the spatially-

varying porosity in the electrode. The electrical and ionic conductivities are related to the 

spatially-varying porosity by  

 ( )0( ) 1 ( ) bruggx xσ σ ε= −   [4.6] 

 0( ) ( )bruggx xκ κ ε=   [4.7] 

where brugg is the Bruggeman coefficient to account for the tortuous path in the porous 

electrode. The boundary conditions for solution of these equations are  
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The ohmic resistance of this electrode is obtained by  

 
1 20 px x l

appi
ψ = =

Φ −Φ
=   [4.9] 

 1

0
( )app

x

di x
dx

σ
=

Φ
= −   [4.10] 

The above equations apply for any continuous or discontinuous functional form for ε(x) and 

can be extended to more detailed micro-scale models for the conductivities and transport 

parameters as a function of porosity. Garcia et al.14 considered detailed microstructure while 

modeling and identifying porosity or particle size variations in the electrodes to maximize 

performance. Previous efforts have considered atomistic simulations of batteries,15 

microstructural simulations,16 and modeling the relationships between the properties and 

microstructure of the materials within packed multiphase electrodes. In this manuscript the 

robustness of its optimal design results to the use of a simple model in the optimization of the 
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porous electrode is taken into account by analyzing the effects of variations in the model 

parameters. 

The electrochemical modeling equations are usually solved by setting the applied current and 

computing the voltage, or vice versa. Many practical devices operate at constant current or 

constant power mode. It is important to realize that the capacity of each device is limited by the 

state variables and theoretical capacity of the material. To solve the mathematical model for a 

practical electrochemical device, it is necessary to obtain the physically realizable current value 

to be applied to or drawn from the electrode.  

4.2.1. Constant-Current Method 

For solving this model for constant current, the constant current iapp would be set and the 

modeling equations simulated for the variables like Ф1, Ф2, and i1 as given in equations [4.1] to 

[4.7]. Equation [4.8] gives the boundary conditions for the constant current method. Then the 

resistance (ψ) is computed using the output equation [4.9]. This procedure is easy to implement 

and the model equations are straightforward to simulate. However, the applied fixed current may 

not be commensurate with the capacity of the given battery and there is a chance of obtaining 

physically inconsistent results such as a predicted potential of −100 or +1000 V. To avoid this 

potential error, the constant-potential method has been used as described in next subsection. 

4.2.2. Constant-Potential Method 

To avoid the shortcoming of the constant-current method, the constant-potential method was 

used in this study. In this method, the potential (Ф1, Ф2) is set and the current is treated as the 

output. This is done by solving iapp as the unknown variable in the model equations [4.1] to [4.7]. 

Then the resistance (ψ) is computed using the output equation [4.9]. The new boundary 

conditions are  
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  [4.11] 

This approach incorporates one additional boundary condition for describing the relationship 

of the applied current with the state variables. The advantage of this procedure is that the current 

has been determined using the state variables of the battery instead of being fixed to a preset 

number by the modeler. This computationally robust approach ensures that the voltage and 

current are at physically consistent values.  

4.3. Optimization Procedure 

A general formulation for the model-based optimal design of a system is22  

 
( ), ( ),
min
x x

Ψ
z u p

  [4.12] 

 such that ( ( ), ( ), ( ), ),   ( (0)) 0, ( (1)) 0,d x x x
dx

= = =z f z y u p f z g z   [4.13] 

 ( ( ), ( ), ( ), ) 0,x x x =g z y u p   [4.14] 
 ( ) ,  ( ) ,   ( ) ,L U L U L Ux x x≤ ≤ ≤ ≤ ≤ ≤u u u y y y z z z   [4.15] 

where Ψ is the battery design objective to be minimized,17 z(x) is the vector of differential 

state variables, y(x) is the vector of algebraic variables, u(x) is the vector of control variables, 

and p is the vector of design parameters. Different methods are available for solving constrained 

optimization problems, which include (i) variational calculus, (ii) Pontryagin’s maximum 

principle, (iii) control vector iteration (CVI), (iv) control vector parameterization (CVP), and (v) 

simultaneous nonlinear programming.18 

4.3.1. Complexities of Optimization for Battery Models 



112 
 

For a pseudo-2D battery model with 12 PDEs, assume that the cathode, separator, and anode 

are discretized into 50 equally-spaced node points in x and 20 nodes in r for each x. For the three 

regions (cathode, separator, and anode) the model will have 2400 DAEs, which includes 50×20 = 

1000 equations each for the cathode and anode for the solid phase, 50 differential equations for 

the electrolyte concentration, 50 algebraic equations for the electrolyte potential (potential in the 

electrolyte phase), and 50 algebraic equations for the solid-phase potential each for the cathode 

and anode. For the same number of node points in x, the separator has 50 differential equations 

for the electrolyte concentration and 50 algebraic equations for the electrolyte potential. In total, 

the number of DAEs to solve becomes 2×1000 + 2×150 + 100 = 2400. Simultaneous 

optimization of many design valuables for a highly stiff system with 2400 DAEs is 

computationally expensive.  

Indirect dynamic optimization methods such as variational calculus and Pontryagin’s 

maximum principle method result in boundary value problems that are very difficult to solve for 

large systems of highly stiff nonlinear DAEs.19 Direct methods for the solution of dynamic 

optimizations have gained prominence in the past few decades, in which the optimal solution is 

achieved by converting the optimization problem into nonlinear program using such methods as 

CVI, CVP, and simultaneous nonlinear programming.20 Control vector parameterization is one of 

the commonly used methods and is the easiest method to implement. In the context of this 

particular application, the control variable u(x) is parameterized by a finite number of parameters, 

typically as a polynomial or piecewise-linear function or by partitioning its values over space, 

and the resulting nonlinear program is solved numerically. Most numerical optimization 

algorithms utilize an analytically or numerically determined gradient of the optimization 

objective and constraints to march towards improved values for the optimization variables in the 
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search space. While advances in simultaneous discretization have been made in the field of 

global dynamic optimization,21 today’s algorithms are still too computationally expensive to be 

used in electrochemical processes, which are usually highly stiff with highly nonlinear kinetics 

and requires adaptive time-stepping, stiff solvers, etc. The simultaneous simulation-optimization 

approach,18 which fixes the time or independent variable discretization a priori, is not 

computationally efficient for highly stiff DAEs such as arise in electrochemical processes. For 

example, for battery models with 2400 DAEs, the simultaneous simulation-optimization 

approach may result in millions of equations in the resulting nonlinear program. Based on our 

experience, battery models may not converge easily with direct discretization schemes in time. 

In CVP, as the number of intervals increases, the number of equations increases 

tremendously and makes optimization computationally very expensive. Hence the fastest and 

most efficient model and code is recommended for CVP or any of the optimization methods. In 

this chapter, as a first step, a simple model used that represents the essential dynamics of a 

porous electrode used in a lithium-ion battery. This model along with CVP makes the 

optimization computationally efficient and enables the implement of additional runs to evaluate 

the global optimality of the computed design variables. 

4.4. Optimization using CVP 

In this chapter, CVP is used to simultaneously optimize multiple parameters describing a 

spatial profile of porosity of an electrode in a lithium-ion battery. The numerical optimization 

was carried out using Marquardt’s method,22 in which new parameter values for the next 

iteration are related to the gradient multiplied by the old values of the design parameters. The 

numerical algorithm was repeated until a pre-specified tolerance on the change in the design 

parameters was met. 
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In this formulation, the control variable (i.e., porosity) is partitioned across the electrode 

length. In each partition, the modeling equations [4.1] to [4.11] are solved as a function of 

porosity. The boundary conditions at each partition are matched using the flux balance of the 

species. The number of equations is directly proportional to the number of partitions. The 

number of boundary conditions will also increase with the number of equations and partitions. 

The optimization objective was to minimize the ohmic resistance (ψ) across the electrode 

thickness in Eq. (1) for the control variable u(x) = ε(x) subject to the constraints 

a) 0 < ε(x) < 1 

b) Average {εi} < 0.4, where i = 1, …, N (when a specific amount of active material is 

desired) 

c) Eqs. (1) to (11), where y(i) = [Ф(1,i), Ф(2,i), i(1,i)] and 0 ≤ x ≤ lp 
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where i indicates the ith partition and x = 0 and x = lp/N  indicate the starting and ending 

spatial boundaries of the ith partition. The non-negativity constraint is imposed on the porosity 

and the average-value constraint is imposed when a specific amount of active material is desired 

in the electrode. The ohmic resistance is calculated as a function of the porosity from the 

modeling equations. The model equations along with fixed boundary conditions and boundary 

conditions arising from CVP were solved using a Boundary Value Problem (BVP) solver. Table 

1 shows the base set of parameters used for the simulation of the model equations [4.1] to [4.11] 

at various conditions. All simulations are performed using Maple® 13’s BVP solver using a 

personal computer with a 3 GHz Intel® Core 2 Duo processor and 3.25 GB of RAM.  

4.5. Results and Discussion 

4.5.1. Optimization Results for Uniform Porosity 

Figure 4-1 shows the variation in the total resistance across the porous electrode as a function 

of spatially-uniform porosity obtained by brute-force gridding of the porosity, which shows a 

clearly identifiable optimal porosity of ~0.2. The same results for the N = 1 stage can be obtained 

using an analytical solution commonly used for porous electrodes and as discussed in the 

appendix. Operating with the porous electrode at this optimum porosity should provide the best 

performance for a system described by the model [4.1] - [4.11]. Figure 4-2a shows the 

convergence of the numerical optimization to the globally optimal value of the spatially-uniform 

electrode porosity. This plot was constructed by optimizing the electrochemical model described 

in Section 4.2 starting at three different initial guesses (the third guess being the optimal value 

obtained in Figure 4-1) for the electrode porosity. The final converged value for the electrode 

porosity was the same for many different initial guesses (two of which are shown in Figure 4-2a). 

Figure 4-2b shows the convergence of the ohmic resistance across the electrode to the same 
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single optimal value. A very low resistance was achieved by using the globally optimal value for 

the porosity of the electrode. Significant improvements in terms of performance were achieved 

by numerical optimization; the optimal design is about 15% more efficient in comparison with an 

average value of 0.4 used in practice for the electrode porosity for this chemistry. 

4.5.2. Optimization Results for Graded Porosity 

Numerical optimization was performed for a porous electrode with a graded porosity, that is, 

porosity that varies as a function of distance across the electrode. A recent patent (US patent 

7553584) proposed the use of graded porosity described by a functional form for betterment of 

the performance of the porous electrode. Functional forms of porosity may be implemented for 

theoretical studies but to practically fabricate porous electrodes with smoothly varying porosity 

as a function of distance is difficult. A more practical way of representing graded porosity was 

applied here. The porosity profile was divided into N optimization zones, with constant porosity 

within each zone (see Figure 4-3). For N = 5, the resistance across the electrode is minimized 

when the porosity is higher towards the electrode-separator interface (see Figure 4-4), to have 

more electrolyte solution in the porous matrix. The optimal profile shows a significant decrease 

in pore volume at the other end, at the electrode-current collector interface. This optimization 

procedure shows improvement in electrode performance of 17.2% compared to the base-case 

spatially-uniform porosity of 0.4. The spatially-varying optimized electrode porosity has 4% 

better performance than the optimal spatially-uniform porosity (ε ~ 0.2, see Figure 4-1) for the 

same chemistry. Porous electrodes with more complicated chemistry models or different 

chemistry models, and optimization with additional physical constraints on the design, can have 

different performance improvements when using spatially-varying porosity. Increasing the value 

of the number of zones N above 5, while being more difficult to fabricate, does not show much 
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improvement in the performance. For instance, an improvement of 0.1% was obtained for N = 12 

compared to N = 5. The choice of N = 5 provides a good tradeoff between optimality and 

manufacturability.  

Now consider the same optimal design problem but with the additional constraint of having a 

specified amount of active material in the electrode, which is equivalent to having a fixed value 

for the porosity averaged across the electrode. For a fixed average porosity ε = 0.3, the 

performance improvement is 15% compared to the base case, while having an optimal porosity 

profile that is qualitatively similar to that without the average porosity constraint (compare 

Figure 4-4a and Figure 4-5a). A qualitatively similar optimal porosity profile is obtained for a 

fixed average porosity ε  = 0.5, while providing a performance improvement of 33% over the 

base case. 

Figure 4-6 shows the applied current profile across the electrode for the optimized and base-

case design. The optimized current at the electrode-current collector interface is higher in 

magnitude due to lower resistance. The spatial variation in the electrolyte-phase potentials follow 

a similar qualitative trend but are very different quantitatively (see Figure 4-7). The solid-phase 

potential in both cases does not show much variation across the electrode (see Figure 4-8). The 

net potential drop (Φ1−Φ2) at the electrode-current collector interface is greater in the base case 

compared to the optimized case, indicative of the lower resistance inside the cell with optimized 

porosity profile. 

Due to limited manufacturing precision and capacity fade, model parameters will vary 

somewhat from one electrode to the next. The importance of quantifying the effects of such 

uncertainties on the performance of nano- and micro-structured materials is well established23 it 

has been shown for many materials systems that most to all of the benefits of optimization can be 
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lost when uncertainties are ignored.24,25 The uncertainties in the model parameters were 

described by Gaussian distributions with standard deviations that are 10% of the nominal 

parameter values. The probability distribution functions (pdfs) for the ohmic resistance for 

spatially-uniform electrode porosities indicate that the optimized design is more robust to 

uncertainties in comparison to a non-optimized porosity, with a reduction in variance for the 

optimal design of ~40% (see Figure 4-9). The design with the optimized spatially-varying 

porosity is slightly more robust, with a reduction of variance of ~43% compared to a non-

optimized porosity (see Figure 4-10). The robustness could be further enhanced by explicitly 

including uncertainty quantification into the optimization formulation.26 

4.6. Conclusions 

Model-based optimization was applied to the design of a spatially-varying porosity profile in 

a next-generation porous electrode to minimize its ohmic resistance. The implementation of 

control vector parameterization is demonstrated for a simple porous electrode model. The 

parameters used for the electrode were based on the cobalt oxide chemistry, generally used in 

commercial lithium-ion batteries. The solid-phase intercalation phenomenon is not included in 

this work at this stage and is typically an important limiting factor for cobalt oxide and other 

intercalation electrodes. The optimal design of graded porosity was found to reduce the ohmic 

resistance by 15%-33% without increasing the amount of active material. The optimal porosity 

grading was predicted to have 40% lower variation in the ohmic resistance to variations in model 

parameters due to manufacturing imprecision or capacity fade. The results suggest the potential 

for the simultaneous model-based design of electrode material properties that employ more 

detailed physics-based first-principles electrochemical engineering models to determine optimal 

design values to manufacture and evaluate experimentally.  Further investigations into a whole-
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cell battery model may lead to engineering design alternatives that better satisfy energy and 

power requirements for emerging applications for batteries in vehicles, satellites, and in the 

military. 

4.7. Appendix 

For a porous electrode with linear kinetics, Eqs. [4.1]-[4.11] can be integrated analytically as 
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There are only 3 constants of integration (a, b, c). The coefficients a1, b1, a2, b2 depend on 

these three constants and other model parameters. With the boundary conditions, the resistance 

can be obtained as 
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This analytical solution has been previously used in the literature.2 Similar equations for 1Φ ,

2Φ , and 2i  can be obtained for any number of stages, but the constants are too messy to be 

reported here in closed form. The constants are found by matching the dependent variables at the 

interfaces. The numerical solution of the original BVPs is used for the results reported in the 

chapter, as the constants for the analytical solutions cannot be conveniently used for optimization 
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purposes. In addition, the results obtained for the numerical solution can be conveniently used 

for nonlinear kinetics as a starting point or initial guess. 
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4.9. Tables 

Table 4-1: List of parameters used for the simulation (LiCoO2 chemistry). 

Parameter Symbol Parameter values 
Electrical conductivity σ0 100 S/m 
Bruggeman Coefficient brugg 1.5 
Ionic conductivity κ0 20 S/m 

Particle radius of the active materials Rp 5.0×10-6 m 
Length of the electrode lp 8×10-5 m 
Faraday constant F 96,487 C/mol 
Ideal gas constant R 8.314 J/(mol·K) 
Temperature T 298.15 K 
Exchange current density i0 1×10-3 A/m2 
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4.10. Figures 

 
 

 

Figure 4-1: Resistance versus porosity, ε. The plot was constructed by computing the 
resistance from the model equations [4.5]-[4.11] for each value of spatially-uniform porosity 
between 0 and 1. Note that the unit of resistance reported is Ohm-m2 and can be converted to 
Ohm-m (typically reported in the literature), by dividing with the thickness of the electrode. The 
choice of the unit does not affect the optimization results 
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Figure 4-2: (a) Convergence to the optimal spatially-uniform porosity ε starting from 
different initial guesses for the porosity; (b) corresponding convergence of the ohmic resistance 
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Figure 4-3: Schematic of an electrode of a lithium-ion battery divided into N optimization 
zones 

 

Figure 4-4: Optimal porosity profile for N = 5 optimization zones 
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Figure 4-5: Optimum porosity profile for N = 6 optimization zones for a fixed average 
porosity of (a) 0.3 and (b) 0.5 
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Figure 4-6: Solid phase current profile across the electrode in base-case and optimized 
designs 

 

Figure 4-7: Electrolyte-phase potential profile in base-case and optimized designs 
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Figure 4-8: Solid-phase potential profile in base-case and optimized designs 

 

Figure 4-9: Probability distribution function for the ohmic resistance for electrodes with 
spatially-uniform porosities of ε = 0.4 (base) and obtained by optimization (ε = 0.21388) 
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Figure 4-10: Probability distribution function for the ohmic resistance for an electrode with 
optimal spatially-varying porosity 
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Chapter 5 : Optimal Charging Profile for Lithium-ion Batteries  

to Maximize Energy Storage in Limited Time 

5.1. Introduction 

Electrochemical power sources such as lithium-ion batteries have had significant 

improvements in design, modeling, and operating range and are expected to play a vital role in 

the future in automotive, power storage, military, and space applications. Lithium-ion chemistry 

has been identified as a preferred candidate for high-power/high-energy secondary batteries. 

Applications for batteries range from implantable cardiovascular defibrillators (ICDs) operating 

at 10 µA current to hybrid vehicles requiring pulses of up to 100 A. Problems that persist with 

lithium-ion batteries include underutilization, capacity fade, and thermal runaway caused by 

operation outside the safe window.1 The capability of a battery to store energy reduces with 

number of cycles due to formation of undesirable side reaction products during the discharging 

and charging process. To optimally use resources, an important problem is to maximize the 

stored energy in the battery. 

In many applications, the ability to recharge quickly and efficiently is a critical requirement 

for a storage battery. In a Li-ion battery, during charging, the lithium ions first diffuse out of the 

lithium-metal oxide in the positive electrode, migrate through the electrolyte, and then diffuse 

into the carbon matrix in the negative electrode. Various processes occur simultaneously, which 

reduces the efficiency of the charging process and results in reducing the capacity to store energy 

in these secondary batteries. 

The processes inside the battery are highly nonlinear and interactive in nature, and depend on 

various processes such as kinetics of the reactions, temperature of the reactions, rate of the 

diffusion of lithium ions, etc. A valuable objective is to characterize these nonlinearities and to 
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regulate the various micro-scale processes in an optimal way to enhance the energy-storing 

capacity of the battery. Achieving this objective is challenging due to the meager knowledge on 

these processes at the microscale level. On the positive side, significant amounts of details on 

these processes at the continuum level are available.1-7 The capability to accurately predict the 

values of internal state variables such as state of charge would also be useful. Predicting and 

understanding the behavior accurately will expect to help in extending the life of the battery and 

improve the capability to store more energy. In lithium ion battery charging three most popular 

charging modes are given as constant current charging, constant potential charging, slower rate 

constant current followed by constant potential charging, which are discussed next.  

5.2. Modes of Charging 

Batteries are discharged according to the energy and power needs of a particular application. 

The batteries are typically charged at low rates to enable full storage of energy. However, often 

times there are a need to charge the batteries quickly, resulting in an inefficient storage of 

energy. Inefficient storing of energy results in underutilization of battery and decreases the 

efficiency. Batteries are typically charged using the following ways.  

5.2.1. Constant Current Charging 

In this charging protocol, batteries are charged at a constant current rate. If there are no time 

limits, a very low charging rate is generally employed to store more amount of energy.  In fact, 

many researchers use the capacity obtained at very low rates of charge (c/50) as the maximum 

possible capacity. However, automobile applications require charging of battery within a 

specified time limit. Charging process of a battery is a exothermic process and while charging 

the battery its temperature increases.  In addition, if the battery is charged at very fast rate, cut 

off potential will reach very fast (4.1V) and energy stored will not be maximum energy. On the 
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other hand   charging at slower rate, leads to maximum energy stored with large amount of time 

required for charging.  

5.2.2. Constant Potential Charging 

In this charging protocol, batteries are charged with constant potential rate. This method is 

not typically used because, constant potential charging leads to very high currents at short times 

leading to thermal runaway and material degradation. If charged at very low potential difference, 

very minimal energy will stored. On the other hand if charged at very high potential difference, 

high currents and side reactions evolve. 

5.2.3. Typical Experimental Method 

In this charging protocol, the battery gets charged with slower rate constant current charging 

followed by constant potential charging. Slower rate of charging enables battery to store more 

energy and minimize the possibility of thermal runaway. However, slower rate current charging 

followed by constant potential charging will take large time for charging and may not be a 

feasible option for charging the lithium ion battery in automobile applications. 

In above mentioned protocols, there exist slower rates of charging as well as faster rates of 

charging. These two charging rates, enables minimum to maximum energy storing in a lithium 

ion battery and hence there exist an optimum rate of charging, in which maximum energy storing 

in a lithium ion battery is possible. Figure 5-1 and Figure 5-2 show the energy stored in the given 

lithium ion battery with applied current as well as applied Voltage respectively. It is observed 

that there exists a maximum value of energy stored with respect to applied current as well as 

voltage. 

In this work, a dynamic optimization framework for storing maximum energy in the lithium-

ion battery is presented. Particularly, the estimation of the optimum profile of charging using 
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current as well as voltage has been carried out. Irrespective of the current or potential mode, the 

results obtained justify the need for dynamically varying control of input variables.  

During optimized charging, various processes such as charge transfer, kinetics of the 

reactions, and rates of diffusion differ compared to un-optimized charging. This chapter explores 

the changing dynamics of the system by using an optimal current profile for charging. Dynamic 

behaviors are compared for various non-measurable internal variables including solid-phase and 

electrolyte concentrations and potentials under different scenarios of battery charging. Different 

types of charging processes are investigated:  

• Conventional constant current charging with 1C rate: defined as constant current charging 

of the battery with current equivalent to 1C rate until the cut-off potential or the time limit,  

• Constant current charging with optimized C rate: defined as constant current charging of 

the battery with an optimized C rate (value of current) until the cut-off potential or the 

time limit, 

• (Dynamically) optimized charging profile: defined as charging with an optimal profile of 

current and voltage estimated using the dynamic optimization technique. 

5.3. Dynamic Optimization Framework 

An optimal control problem formulation is considered: 
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In this formulation, z(t) is the vector of differential state variables, y(t) is the vector of 

algebraic variables, u(t) is the vector of control variables, and p is the vector of parameters. The 

objective function Ф is formulated as maximum energy stored in the lithium-ion battery using 

reformulated model.8 Numerous methods are available for solving constrained optimization 

problems. Typical methods for dynamic optimization include (1) the application of variational 

calculus, (2) Pontryagin’s maximum principle, (3) control vector iteration, (4) control vector 

parameterization, and (5) simultaneous nonlinear programming.9-11 Control vector 

parameterization (CVP) is the most commonly use in industrial applications and is used in this 

chapter. 

The objective function of the energy stored in single cell is to store a maximum energy inside 

the cell with constraints on the operation time of the battery. In this work, the one hour charging 

of the battery was considered and the critical voltage limit is fixed at 4.1 V. as the constraints for 

the optimization and dynamic optimization. The objective function in charging of the battery is 

given as 

 

max
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whereas E is the total energy stored in the cell, V is the voltage obtained from the cell, and iapplied 

is applied current to the cell. 
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In dynamic optimization, the span for charging operation is divided into n local intervals. 

Applied current is optimized in each local interval by maximizing the energy stored at the end of 

operation. Each interval is subjected to same constraints as in the simple optimization. In 

general, number of intervals in control vector parameterization is optimally estimated using the 

optimization technique. However, in this work, we first divided total interval into two equal 

intervals, and the optimized value of decision variable(s) is given as initial guess for both 

intervals. Then total interval is divided into four intervals, the optimized value of decision 

variables from the previous two intervals optimization is given as the guesses for the four 

intervals optimization. Proceeding in this manner, until no further significant improvements 

achieved in the objective function will circumvent the estimation of number of optimal intervals 

in the control vector parameterization methodologies.  

The dynamic optimization can take large number of simulation iterations for estimating the 

optimum value of an objective function, so a computationally expensive model would result in 

very long time to obtain optimization results. The computation of the objective function Ф for a 

single charging profile using a first-principles porous electrode-based electrochemical 

engineering model could take up to minutes depending on the solver, operating system, and 

computer. Due to the expensive computations, dynamic optimization of batteries using first-

principles-based models has not been attempted or reported in the literature to our knowledge. 

This situation is not ideal for emerging applications like hybrid power systems or for on-line 

control, optimization, and monitoring of batteries and other electrochemical power sources. Our 

implementation of dynamic optimization was facilitated by the use of a reformulated model8 to 

compute the objective function Ф. 
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 Reformulated model used in this work is derived from the first-principles porous electrode-

based electrochemical engineering model. We have worked extensively in model reformulation 

and have published the details on the reformulation of the lithium-ion battery model.8 Dynamic 

optimization solves the system several times and then estimates the optimum for the given 

objective function. A Fortran implementation of the reformulated model takes only 15-50 ms to 

predict a discharge curve whereas the original model can take up to a few seconds to minutes 

depending on the solver, environment, and the computer. In addition, the memory requirement is 

far less as compared to finite-difference models. The dynamic optimization requires many 

individual simulation runs, so a computationally expensive model would result in very long time 

to obtain optimization results.  

5.4. Simulation Results and Discussion 

 The reformulated model was solved using our own robust DAE solver, which is somewhat 

less efficient than some existing DAE solvers (e.g., DASSL/DASPK/Jacobian).12-13 The 

optimization was carried out using Matlab’s optimization toolbox on a 3 GHz Intel Core 2 Duo 

CPU with 3.25 GB of RAM. The reformulated model is solved for one hour of operation with 

4.05 V cut off voltage as the constraint on the model solution. It is assumed in the battery 

literature14 that, the battery will be safe if operated below 4.05 V. The system was solved for 

three different operating scenarios of charging viz.: (1) Constant current 1C rate charging; (2) 

constant current charging with optimized C rate and (3) (dynamically) optimized charging profile 

estimated using dynamic optimization procedure.  

Figure 5-3 illustrates the current time profile used under three different types of charging. 

The charging at 1C rate corresponds to a current of 30 A/m2 and the optimized C rate gives a 

current of 17.207 A/m2 to the battery. When charging with the dynamically optimized current 
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profile, the optimum current profile decreases with time similar to that of a first-order process 

with negative gain. The optimal profile initially supplies more current and then decreases the 

current slowly over the time of charging. The stored energy is higher in dynamically optimized 

charging as compared with other two types of charging at a constant rate.  

Figure 5-4 shows the voltage time profile for the lithium-ion battery during three different 

scenarios of charging. All three types of charging have initial rapid increases in the voltage and 

end operations at the same voltage, with widely different profiles at intermediate times. The 

dynamically optimized charging results in much faster charging rate than the other two types of 

charging. The rate of conventional charging using the 1C rate is higher than the constant current 

charging with optimized C rate charging and hence, cut off potential is quickly reached. The rate 

of the dynamically optimum charging is nearly linear after the dimensionless time is equal to 25. 

Figure 5-5 shows the amount of the energy stored in the lithium-ion battery during the three 

different charging scenarios. Unlike the constant current charging scenario, in dynamically 

optimized current charging, energy increases nonlinearly with time after certain initial charging 

time. The final energy stored using the dynamically optimized current charging is more as 

compared with constant current charging. Although the rate of energy storage for conventional 

constant charging is higher than the constant current charging with optimized C rate, the amount 

of energy stored in the latter case is much more than the conventional charging at 1C rate. This 

happens due to the cut-off potential being encountered early in the conventional charging as 

compared to the conventional charging with optimized C rate (Figure 5-4). The dynamically 

optimized charging protocol yields (29.38%) better storage compared to constant charging at the 

optimized C rate. 
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Figure 5-6 shows the time profile for the electrolyte concentration at the cathode/current 

collector interface for the three different charging scenarios. This electrolyte concentration has a 

higher peak value during dynamically optimized charging followed by the conventional charging 

at 1C rate and then conventional charging with optimized C rate. This is due to the higher initial 

supply of current during dynamically optimized charging as compared to the other two types of 

charging (Figure 5-2). For the chosen chemistry, mass transfer limitations in the electrolyte occur 

at higher currents. This protocol indicates that, to increase the energy density, store more energy 

at shorter time albeit causing mass transfer limitations in the electrolyte and let the concentration 

equilibrate at longer times to ensure longer operability of the battery (70 dimensionless times). In 

the latter part of charging, the electrolyte concentration at the positive electrode decreases during 

dynamically optimized charging, whereas it almost remains constant during conventional 

charging with optimized C rate. During dynamically optimized charging, the electrolyte 

concentration decreases over time and the lithium-ion transfer process slows down while more 

lithium ions are packed into the carbon matrix in the negative electrode. 

The solid-phase surface concentration at the current collector interfaces for the positive and 

negative electrodes at each time is different by as much as 50% for the three charging scenarios 

(see Figure 5-7). Each time profile for a solid-phase surface concentration varies monotonically, 

regardless of the electrode or the charging scenario. The spatially averaged concentration in the 

anode and cathode ,s avec dx∫  also vary monotonically with time (see Figure 5-8). We see that % 

change is more in the anode than the cathode as this battery was inherently limited by diffusion 

in the anode and the optimum profile helps in overcoming this limitation. However, still the 

value obtained is far off from the theoretical maximum suggesting that one hour (70 

dimensionless times) operation will always mean compromise for charging; however, it can be 
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significantly improved. The theoretical maximum is estimated by charging the Li-ion battery at a 

very low rate (approx. C/100) without time limitation to the same cut off potential. 

Figure 5-9 and Figure 5-10 show the dynamic optimization results for two cells in series in a 

battery pack with different initial SOC (cell 1 at 0% SOC and cell 2 at 50% SOC) and a 

performance improvement of 23.64 % was observed compared to optimum constant current 

charging. Figure 5-9 shows convergence of energy stored with the number of intervals of the 

independent variable (time). It has been observed that energy stored is converged with 4 numbers 

of intervals of the independent variable. Figure 5-10 shows the current profile over the 

dimensionless time equivalent to 1 hour of charging operation. The optimization method can be 

used to improve the performance of battery packs that use combinations of cells in series and 

parallel to obtain longer life and higher efficiency. 

Figure 5-11 and Figure 5-12 show time profiles for the current and voltage for optimized as 

well as dynamically optimized voltage charging. In optimized charging mode of voltage the 

amount of energy stored is equal to 3792.9 J were as in dynamically optimized charging it is 

5977.3 J. The optimized voltages is estimated to be 3.818 V throughout the charging time, were 

as dynamically optimized voltage maintained at 3.815 V for first 4.1 dimensionless time and then 

increases to the upper bound (4.1 V). Figure 5-11 shows corresponding current profiles, in which 

for dynamically optimized voltage charging, a peak behavior is observed, when voltage increases 

from the low initial value to the upper bound.     

5.5. Implications, current and future work 

This work is an attempt to show the usefulness of systems engineering approach to improve 

the operating conditions for lithium-ion batteries using optimization. The benefit obtained is 

significant and relies on the validity, utility and limitation of the model used. If the model has 
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capability to predict capacity fade, thermal behavior then optimization can be used for 

minimization of capacity fade as well as thermal runaway.  In general, an optimization frame 

work that can be used for lithium-ion batteries as of today is given in Figure 5-13. This approach 

can enable safer, cheaper and long-lasting batteries for the next generation. 

5.6. Conclusion 

The method in which a lithium-ion battery is charged can significantly alter the efficiency, 

safety, and lifetime of the battery. Various phenomena take place at the electrode/electrolyte 

level during charging. A continuum reformulated model for the lithium-ion battery is used in this 

work to perform dynamic optimization to store the maximum energy in the given battery during 

charging. The analysis shows a 100% improvement for dynamically optimized charging over the 

conventional charging at 1C rate and 29.38% improvement with constant current charging at 

optimized C rate. Time profiles for internal variables were used to explain some of the physics 

associated with charging for maximum energy storage. Dynamic analysis of all possible intrinsic 

variables along with optimization for storing the maximum energy in a lithium-ion battery pack 

is currently being investigated. In addition, optimal profiles for different specific objectives 

(reduced capacity fade, reduced SEI layer growth, enhanced life, uniform current distribution, 

ideal temperature behavior with temperature constraints) are being studied. This work will be 

further undertaken to perform optimal control so as to include this technique inside a battery 

management system to enable better control, safer operation and longer life of batteries for the 

future. 
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5.8. Figures 

 

Figure 5-1: Energy stored in given lithium ion battery with applied current with maximum 
energy storage 

 

Figure 5-2: Energy stored in given lithium ion battery with applied voltage maximum\ 
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Figure 5-3: Comparison of current used for charging of lithium ion battery for three different 
types of charging protocol 

 

 

Figure 5-4: Comparison of voltage of lithium ion battery for three different types of charging 
protocol 
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Figure 5-5: Comparison of energy stored in lithium ion battery for three different types of 
charging protocol 

 

 

Figure 5-6: Dynamic analysis of electrolyte concentration at the positive electrode for the 
three different types of charging protocol 
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Figure 5-7: Solid-phase surface concentration at the current collector interfaces for the 
positive and negative electrodes for the three different types of charging protocol 

 

Figure 5-8: Spatially averaged concentration in the anode and cathode. (The theoretical 
maximum is estimated by charging the Li-ion battery at a very low rate (approx. C/100) without 
time limitation) for the three different types of charging protocol 
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Figure 5-9: Convergence of energy stored with number of iteration in dynamic optimization 
of the battery using applied current as the manipulated variable 

 

Figure 5-10: Convergence of energy stored with number of iteration in dynamic optimization 
of the battery using applied current as the manipulated variable 
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Figure 5-11: Time profile of voltage in optimum voltage charging and dynamically optimized 
voltage charging 

 

 

Figure 5-12: Time profile of current in optimum voltage charging and dynamically optimized 
voltage charging 
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Figure 5-13: General optimization frame work for lithium-ion battery 
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Chapter 6 : Conclusions and Future Directives 

6.1. Conclusions from Solid Phase Reformulation 

Model reformulation allows an efficient battery model simulation for use in control and 

optimization routines, as well as for parameter estimation. Efficient simulation is essential for 

optimization and parameter estimation because of the large number of simulations that must be 

run to converge to an appropriate solution. As a first step, in order to simplify the model, the 

radial dependence of the solid phase concentration can be eliminated by using various 

approximations as mentioned in Chapter 2.  

This work provides two robust methods to approximate the solid phase diffusion, so as to 

eliminate the radial dependence or decrease the number of node points. The mixed finite 

difference approach uses 6 optimally spaced node points (with 6 corresponding governing 

equations) to describe the behavior of the lithium ion concentration in the radial direction within 

the solid phase particles. This is in contrast to the other approximations, which relies on 2 

governing equations to describe the solid phase concentration. This allows the mixed finite 

difference approach to better capture the dynamics within the electrode at high rates, though at 

the cost of additional computation time. As this work reformulated the radial dependence, it 

enabled the future work on model reformulation using orthogonal collocation and other 

techniques in the spatial co-ordinates.1 

6.2. Conclusions from Capacity Fade Analysis 

One of the prime objectives of this thesis was to understand and perform capacity fade 

analysis with the help of modeling. This fundamental objective is achieved as illustrated in the 

previous chapters that explain the underlying concepts that were utilized for better understanding 
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of capacity fade of Li-ion batteries and also will enable us to predict the capacity fade in Li-ion 

batteries better. The efficient reformulated models were used for this purpose to enable efficient 

simulation. 

It is likely that when more detailed multiscale models become available and simulated 

efficiently, there will not be a need to perform fitting and tracking of transport and kinetic 

parameters with cycles. Instead a continuous approach may be adopted where a suitable model 

that includes capacity fade mechanisms can be cycled continuously for charge and discharge 

based on the specific operating protocol and can be used to predict the capacity fade and hence 

the life of the battery. Researchers have modeled different capacity fade mechanisms at different 

scales ranging from molecular dynamics models, Kinetic Monte Carlo simulations predicting 

surface heterogeneity of the SEI layer formation, to the models at the continuum level. 

Researchers are trying to understand multiple phenomena that could cause the capacity fade 

including advances in stress/strain models, including population balance models for modeling 

shape and size changes. Other commonly used hypotheses for failure include (1) capacity fade 

caused by change in porosity alone, (2) capacity fade caused by growth of a resistive film, (3) 

capacity fade caused by side reactions, and (4) a combination of multiple mechanisms. 

As many researchers have reported, this kind of modeling efforts using a single mechanism 

was tried with the experimental data, however, since the capacity fade can be due a combination 

of multiple mechanisms, including just one of many mechanisms did not fit the experimental 

data well. For the current set of data used in this work, we believe, the discrete approach methods 

is the best way of analyzing capacity fade and predicting the life of Li-ion batteries used for 

applications with similar protocols.  
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6.3. Conclusions from Model Based Optimal Design 

Model-based optimization was applied to the design of a spatially-varying porosity profile in 

a porous electrode to minimize its ohmic resistance. The results suggest the potential for the 

simultaneous model-based design of electrode material properties that employ more detailed 

physics-based first-principles electrochemical engineering models to determine optimal design 

values to manufacture and evaluate experimentally.  The advantage of using a physics based 

model is that, it is possible to study the effect of material properties with the variation of intrinsic 

variables, such as electrolyte concentration, that are non-measurable and come up with a 

physically meaningful design that would enhance the performance of the batteries. A model 

based optimal design framework was developed with a porous electrode as a proof of concept. 

This enabled simultaneous optimization of multiple design parameters for better design the 

results of which are published elsewhere.2  

6.4. Conclusions from Dynamic Optimization 

The major objective of this work to perform dynamic optimization or optimal control was to 

demonstrate the applicability of a reformulated model1 for deriving control action in real time. In 

chapter 5, the objective of improved charging performance in a limited time in a lithium-ion 

battery was addressed while providing insight into the dynamics of the battery with competing 

transport and reaction phenomena at various locations inside the battery. A better understanding 

of the internal variables and insight into the battery variables during non-optimal and optimal 

charging process was studied and presented.  This creates a very huge potential for this model to 

be used for various control oriented purposes some of which are discussed in the following 

section under future directives. 
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6.5. Future Directives 

It is worth noting that the one of the intents of this contribution is to use the pseudo-2D 

model to obtain profiles that can be fed as inputs to detailed microscale, multiscale models that 

include stress relationships, molecular models, etc. to obtain meaningful material design 

characteristics. Some of the future directives include: development and implementation of 

models for varying porosity and for porosity varying with an unknown distribution function, 

limiting cases of porosity variation models (ohmically-limited batteries, solid-phase diffusion-

limited batteries, solution-phase diffusion batteries, etc). The validation and implementation of 

robust model-based design into user-friendly and commercial software for lithium-ion battery 

simulation and analysis would revolutionize a rapidly growing and science and technology-

intensive segment of the U.S. economy. The ability to robustly optimize chemistries, geometries, 

and materials to achieve specific performance objectives would increase battery safety, 

reliability, energy-efficiency, and profitability. The creation of efficient multiscale multiphysics 

battery simulations would have a transformative effect on the way that academic and industrial 

researchers interact with models and material design, and would tighten the coupling between 

product performance at the system level and advances in science at the small length scales. 

The advantages offered by the reformulated model are significant since it restricts the 

number of internal states to a manageable level without compromising on the accuracy while 

being solvable in real-time (on the order of tens of milliseconds for an entire discharge curve). 

These qualities make the reformulated model a suitable candidate for embedded applications and 

in Battery Management Systems (BMS). The reformulated model can be used for real-time 

implementation in receding-horizon approaches for control and estimation (aka model predictive 

control and moving-horizon estimation). For control evaluation, the reformulated model can be 
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used to compute optimal protocols for battery operations, which would be the computation 

carried out at each time instance in a model predictive control implementation. As a first step 

towards model predictive control using physics-based reformulated models for lithium-ion 

batteries, open-loop optimal control has been performed with a computation time of less than a 

minute. Further, state estimation using a moving horizon technique and performing MPC and 

closed-loop control using this model is feasible.3  

A new battery management system that will be based on very fast models capable of 

predicting the state inside battery cells accurately and quickly enough for the model results to be 

used in making control decisions.  These models will be able to predict temperature, remaining 

energy capacity, and progress of unwanted reactions that reduce the battery lifetime.  By 

providing this extra, difficult to measure or predict, information to the battery management 

software, we can demonstrate improvements in safety, charging rate and useful capacity, and 

battery lifetime.  
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