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During gastrulation, epiblast cells undergo an epithelial-to-mesenchymal 

transition (EMT) as they ingress through the primitive streak and form mesoderm.  To 

better understand the molecular pathways of EMT during this developmental transition, 

we developed a model system utilizing mouse embryonic stem (ES) cells.  We show that 

EMT occurs during ES cell differentiation and is dependent on the Wnt signaling 

pathway.  We further show that the Wnt-dependent transcription factor Snail homolog 1 

(Snail) is expressed and capable of inducing EMT in differentiating ES cells.  In addition 

to EMT, Snail accelerates differentiation, promotes mesoderm commitment, and restricts 

markers of primitive ectoderm and epiblast. 

Snail's impact on differentiation can be partly explained through its repression of 

ES cell-associated microRNAs, including the miR-200 family.  The miR-200 family is 

down-regulated in a Wnt-dependent manner during ES cell differentiation.  We find that 

maintenance of miR-200 expression prevents EMT and stalls differentiating ES cells at 

ii



an epiblast-like stem cell (EpiSC) stage.  Consistent with a role for Activin in EpiSC 

maintenance, we show that miR-200 requires Activin to efficiently maintain cells at the 

epiblast stage. Together, these findings demonstrate that Snail and miR-200 act in 

opposition to regulate EMT and exit from the EpiSC stage towards induction of germ 

layer fates.  By modulating expression levels of Snail, Activin, and miR-200, we are able 

to control the timing of EMT and transition out of the EpiSC state. 

Beyond a role in gastrulation, Snail has also been demonstrated to be important in 

vasculogenesis.  Snail-deficient mice display early vascular defects while Snail-

overexpressing tumors are associated with increased angiogenesis.  We utilized our ES 

cell model as a means to better understand Snail's relationship with vasculogenesis.  We 

find that unlike other types of mesoderm, Snail's induction of Flk1+ endothelial cells is 

cell-intrinsic and independent of Wnt, BMP, and Activin signaling pathways.  Based on 

the transcriptional profile of Flk+ sorted cells, we hypothesize that Snail selectively 

induces endothelium in a subset of ES cells that resemble primitive endoderm. We further 

demonstrate that Snail's induction of endothelium requires the down-regulation of the 

miR-200 family, which directly target the 3'UTRs of Flk1 and Ets1. 
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CHAPTER 1 

Introduction 

 

Epithelial Mesenchymal Transition 

Epithelial to mesenchymal transition (EMT) is a morphogenetic process in which 

polarized epithelial cells convert to motile, mesenchymal cells.  Epithelial cells are 

characterized by their polarity and intercellular junction proteins, while mesenchymal 

cells are characterized by their limited intercellular associations, enhanced migratory 

capacity, and secretion of extracellular matrix components (Figure 1).  These two distinct 

cellular phenotypes were initially described more than one hundred years ago, and the 

ability of cells to interconvert between these states was described by Frank Lillie in 

1908(Lillie, 1908) during his studies of chick embryogenesis.  Despite these early 

findings, EMT was not extensively studied as a process until the early 1980s, when in 

vitro work allowed for the characterization and manipulation of EMT in epithelia and 

MDCK cells(Greenburg and Hay, 1982; Stoker and Perryman, 1985). 

Since its initial description in the developing chick, EMT has been documented to 

occur in primarily three types of biological processes:  embryogenesis and development, 

wound healing, and metastasis.  While clearly different, these processes nevertheless 

share similarities in regulation, transcriptional networks, and functional morphology.  

Despite EMT's prevalence in numerous biological settings and models, many aspects of 

its molecular circuitry remain unclear. 

 

Gastrulation and Germ Layer Fate Commitment 
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 The first EMT to take place during embryogenesis is gastrulation, when cells 

acquire the ability to migrate concomitant with the specification of the three primary 

germ layers (ectoderm, endoderm, and mesoderm).  Ectoderm-derived tissues eventually 

go on to make up the nervous system and the epidermis of the skin.  While endoderm 

gives rise to the endocrine, gastrointestinal, and respiratory systems, mesoderm 

derivatives include the musculoskeletal and cardiovascular systems.  

 Prior to mouse gastrulation, the day 4 implanting blastocyst consists of a vesicular 

structure containing the inner cell mass (ICM) surrounded by trophectoderm (Figure 2).  

The trophectoderm generates the ectoplacental cone and extraembryonic ectoderm which 

later form the placenta(Tam and Loebel, 2007)).  In a process regulated by FGF 

signaling, the ICM then gives rise to primitive endoderm (Gata6+ cells) and the epiblast 

(Nanog+ cells)(Chazaud et al., 2006; Yamanaka et al., 2010).  The primitive endoderm 

delineates into parietal endoderm, visceral endoderm, and extraembryonic mesoderm.  

The latter two are important in later patterning of the embryo and generation of the yolk 

sac, respectively.  The epiblast gives rise to the embryo proper, including the three 

primary germ layers. 

During gastrulation, cells of the epiblast undergo an EMT and migrate through the 

primitive streak to form mesoderm and definitive endoderm.  The cells located in the 

most posterior aspect of the primitive streak are the first to migrate and go on to become 

extraembryonic mesoderm.  Subsequently, cells continue to migrate through the primitive 

streak in a temporal wave from posterior (going the earliest) to anterior (going the latest), 

generating lateral plate mesoderm, paraxial mesoderm, and axial mesoderm (the 

notochord).  The remaining cells of the epiblast that do not migrate form the ectoderm. 
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While a number of transcription factors have been associated with controlling 

EMT, including Snail (Snai1) (Cano et al., 2000; Ikenouchi et al., 2003), Zeb1 (Eger et 

al., 2005), Zeb2 (Comijn et al., 2001), Twist(Yang et al., 2004), and Slug (Snai2) (Bolos 

et al., 2003), Snail has been associated with the EMT of mouse gastrulation.  Expression 

of Snail in the epiblast acts to repress E-cadherin (Cdh1), claudins, and occludin (Ocln) 

directly, which promote disassociation of epithelial cells to allow subsequent migration 

through the primitive streak.  Embryos lacking Snail fail to undergo gastrulation and form 

minimal amounts of mesoderm(Carver et al., 2001).  Snail also acts subsequently to 

gastrulation, since conditional deletion of Snail under control of a Meox2-Cre leads to 

gastrulation followed by abnormal development of mesoderm and defects in left-right 

asymmetry (Murray and Gridley, 2006).   In Drosophila, Snail has also been suggested to 

act in fate determination, repressing neuroectoderm (Nambu et al., 1990), although it is 

unclear whether Snail similarly influences fate choices in vertebrates.   

During gastrulation, the simultaneous coordination of tissue morphogenesis, germ 

layer specification, and axis development clearly involves a complex system of signaling 

pathways and transcriptional programs.  While knockout mice and embryo studies have 

helped elucidate some of the key players in this process, in vitro systems are useful for 

performing a deeper analysis of the molecular network. 

 

The Embryonic Stem Cell Model System 

 The derivation of pluripotent cell lines from the inner cell mass (ICM) of the 

murine blastocyst was first described thirty years ago(Evans and Kaufman, 1981; Martin, 

1981).  These embryonic stem (ES) cells are defined by their ability to contribute to all 
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somatic and germ cell lineages upon injection into morula or blastocyst stage embryos.  

By culturing these cells in the presence of serum and LIF or BMP and LIF, ES cells can 

be passaged indefinitely while still maintaining their pluripotency(Evans and Kaufman, 

1981; Smith et al., 1988; Ying et al., 2003).  LIF maintains ES cell pluripotency primarily 

through the JAK-Stat3 signaling pathway but also through a parallel PI(3)K/Akt pathway 

(Niwa et al., 2009).  Each of these pathways downstream of LIF lead to the induction of 

the quintessential ES cell transcription factors Klf4, Sox2, Nanog, and Oct4. 

 When LIF is removed, ES cells undergo spontaneous differentiation as embryoid 

bodies (EBs).  Depending on the in vitro culture conditions, ES cells can generate a wide 

range of cell types derived from all three primary germ layers.  Included in this list are 

cardiomyocytes(Doetschman et al., 1985), neurons(Tropepe et al., 2001), insulin-

secreting cells(Lumelsky et al., 2001), chondrocytes (Kramer et al., 2000), and others. 

Differentiating embryonic stem (ES) cells, which have been shown to model the 

gastrulating embryo(Kramer et al., 2000), spontaneously undergo an EMT.  While this 

has been documented by us and others (Eastham et al., 2007; Lindsley et al., 2006), little 

is known regarding the regulation or functional significance of EMT in differentiating ES 

cells.  Because of their developmental relevance, their inherent propensity to undergo this 

process, and the relative ease of in vitro culture systems, ES cells serve as an ideal model 

system to study and better understand the genetic regulatory networks surrounding 

developmental EMT. 

In addition to gastrulation, ES cell differentiation has been shown to parallel 

earlier stages of embryo development.  Recent studies have found that upon 

differentiation, murine ES cells transition from an inner cell mass-like cell (ICM-like) to 
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an ES cell-derived epiblast-like stem cell (ESD-EpiSC) around day 2 of differentiation 

(Zhang et al., 2010).  Cells at the latter stage maintained their pluripotency after passage 

in culture with Activin and FGF.  ESD-EpiSCs had similar transcriptional profiles as 

traditional EpiSCs, which are derived from the epithelialized mouse egg cylinder (a later 

stage than the blastocyst inner cell mass)(Brons et al., 2007; Tesar et al., 2007).  EpiSCs 

are characterized by a loss of full pluripotency markers such as Rex1, Dppa3, and 

Pecam1, the maintenance of select pluripotency markers like SSEA1 and Nanog, and the 

expression of epiblast markers such as Sox17, Cerberus, and Nodal.  EpiSCs have been 

described to be very similar to human ES cells, which also require FGF/activin for 

pluripotent maintenance, have undergone X-inactivation, and share similar 

morphology(Brons et al., 2007; Tesar et al., 2007).  The mechanisms surrounding 

maintenance and differentiation of the ESD-EpiSC state are currently unclear. 

 

Signaling Pathways in Gastrulation and ES Cell Differentation 

 During gastrulation, three highly conserved pathways have emerged as key 

players in lineage specification and patterning of the primitive streak.  These include the 

Wnt, BMP, and Activin signaling pathways.  Experiments in both the embryo as well as 

embryonic stem cells have been important in clarifying each of their roles. 

 Canonical Wnt signaling is essential for generation of the primitive streak.   Mice 

deficient in Wnt3, β-catenin, or LRP5/6 all fail to develop a primitive streak and 

mesoderm(Huelsken et al., 2000; Kelly et al., 2004; Liu et al., 1999).  Studies in our lab 

examining the role of Wnt signaling during ES cell differentiation show that addition of 

DKK1, a soluble inhibitor of canonical Wnt signaling, inhibits all mesoderm and 
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endoderm formation(Lindsley et al., 2006).  Interestingly, while Wnt signaling appears to 

be required for primitive streak formation, activated β-catenin is not sufficient on its own 

to induce formation of mesoderm or endoderm.  Rather, Wnt activity appears to require 

other factors, such as BMPs, to induce primitive streak-associated gene programs. 

 Similar to the Wnt pathway, BMP signaling is also required for normal primitive 

streak formation.  BMP activity is highest in the posterior streak and is necessary for 

posterior patterning and lineage specification during gastrulation.  BMP4-/- embryos are 

deficient in posterior derivatives of the primitive streak, including extraembryonic and 

hematopoietic mesoderm (Winnier et al., 1995).    Inhibition of BMP signaling through 

the addition of Noggin showed a skewing of differentiating human ES cells away from 

mesoderm and towards anterior primitive streak markers and endoderm(Sumi et al., 

2008).  Our studies in embryonic stem cells also show that BMP and Wnt function 

cooperatively to induce expression of the early mesoderm marker brachyury(Lindsley et 

al., 2006).   

 In contrast to the BMP pathway, Nodal/activin activity is greatest in the anterior 

streak/node region of the gastrulating embryo.  While mice deficient in Nodal fail to form 

a primitive streak or mesoderm/endoderm, it has a preferential role in the development of 

the anterior primitive streak(Brennan et al., 2001; Camus et al., 2006; Mesnard et al., 

2006).  Studies in embryos and ES cells have demonstrated a dose-dependent relationship 

between activin and fate specficiation(Gadue et al., 2005).  High levels of activin support 

the formation of endoderm and axial mesoderm (anterior streak) while low levels of 

activin are associated with posterior streak fates. 
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 While Wnt, BMP, and activin pathways have been demonstrated to be important 

in affecting lineage determination and embryonic patterning, they also have roles in the 

maintenance of pluripotency.  As aforementioned, BMP can act in combination with LIF 

to maintain ES cells in an undifferentiated state.  Furthermore, activated SMAD2/3 

downstream of activin/TGFβ signaling in human ES cells has been shown to directly 

activate the promoter of the pluripotency transcription factor Nanog(Xu et al., 2008).  

The role of Wnt signaling in maintenance of ES cell pluripotency has been more 

controversial, but studies using GSK3β inhibitors suggest that Wnt may also be 

important(Sato et al., 2004).  The different roles of these three pathways in both ESC 

maintenance and promotion of differentiation suggest that their activity is highly 

dependent on the temporal window and context in which they are acting. 

 

Snail and its Regulation 

While Snail's role in gastrulation and early development has been characterized 

through knockout studies, much of what is known about Snail comes from studies in 

tumor and epithelial cell lines.  Because Snail has been strongly correlated with 

promotion of EMT and metastasis in many types of cancer (Olmeda et al., 2007; Olmeda 

et al., 2008), this is a model system frequently used for studying Snail regulation and 

function. 

Through many in vitro and some in vivo studies, the following pathways have 

been demonstrated to induce Snail expression:  FGF, Wnt, TGFβ, BMP, EGF, Notch, and 

SCF among others (Figure 3, reviewed in (Barrallo-Gimeno and Nieto, 2005)).  In 

contrast, the ES cell transcription factors Sox2 and Oct4 have been shown to repress 
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Snail transcription(Li et al., 2010).  Interestingly, Snail has been found to bind and 

repress its own promoter, thereby limiting its own expression(Peiro et al., 2006).  It has 

been hypothesized that Snail's expression may often be transient, where its role is to 

initiate EMT and repression of E-cadherin, while other EMT transcription factors such as 

Zeb1, Zeb2, and Slug may function to maintain E-cadherin repression and the 

mesenchymal phenotype(Peinado et al., 2007). 

In addition to transcriptional regulation, Snail activity is also controlled through 

its stability and subcellular localization.  GSK3β phosphorylates Snail to promote its 

nuclear export, ubiquitination, and subsequent degradation.  Because Wnt signaling 

inhibits the activity of GSK3β, Wnt signaling has been shown to promote the stability 

and function of Snail(Yook et al., 2005).  In addition to GSK3β, a number of other 

factors have been identified which regulate subcellular localization (LIV1, PAK1) and 

stability (LOXL2)(Peinado et al., 2005; Yamashita et al., 2004; Yang et al., 2005). 

With numerous positive and negative regulators of transcription, stability, and 

localization, Snail function is tightly regulated.  Maintenance of this balance is crucial in 

preventing pathogenesis from inappropriate Snail activity, as seen in various 

fibrotic(Boutet et al., 2006) and metastatic scenarios(Olmeda et al., 2007). 

 

Snail Targets and its Downstream Functions 

 Snail induces EMT, at least in part, through the direct repression of a number of 

epithelial targets including E-cadherin(Cano et al., 2000), Claudins(Ikenouchi et al., 

2003), Occludin(Ikenouchi et al., 2003), and Crumbs homolog 3(Whiteman et al., 2008).  

Snail has been shown to function as a repressor through its N-terminal SNAG domain, 
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which is required for binding to HDAC1/2, Sin3A, Ajuba, and polycomb repressor 

complex 2(Grimes et al., 1996; Herranz et al., 2008; Langer et al., 2008; Peinado et al., 

2004a).  Each of these has been described as a corepressor important for Snail's ability to 

down-regulate E-cadherin in various cell types and models. 

 Beyond direct repression of epithelial targets, Snail also induces several 

mesenchymal genes including members of the matrix metalloproteinase family, 

Zeb1/Zeb2, fibronectin, vimentin, and Rho GTPases (reviewed in(Barrallo-Gimeno and 

Nieto, 2005; Thiery et al., 2009)).  Because Snail has never been demonstrated to be a 

direct activator, it is unclear how it is capable of inducing such a wide range of targets. 

 In addition to EMT, Snail has also been associated with additional biological 

functions.  When expressed in MDCK cells, Snail was capable of decreasing proliferation 

and increasing resistance to apoptosis(Vega et al., 2004).  This was partly explained by 

Snail's repression of the cell cycle protein CyclinD2.  Snail has also been described to 

enhance tumor angiogenesis, which will be discussed further below.  Understanding the 

mechanism by which Snail induces a wide range of targets and functions remains an 

important unanswered question in the field of EMT. 

 

The microRNA-200 Family 

In addition to the aforementioned transcription factors, EMT is also regulated by 

the microRNA-200 (miR-200) family (Figure 4).  Forward genetic screens in tumor 

models and epithelial cell lines found that the five members of the miR-200 family, (mir-

200c, -141, -200b, -200a, and -429), located in two genomic clusters, exert repressive 

actions on EMT by targeting the transcription factors Zeb1 and Zeb2 which themselves 
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repress E-cadherin(Bracken et al., 2008; Burk et al., 2008; Gregory et al., 2008; Korpal et 

al., 2008; Park et al., 2008).  Although no functional role of miR-200 family microRNAs 

has been reported during early mouse development, examination of their effects in in-

vitro model systems have shown that expression of miR-200 family members promote 

maintenance of the epithelial state and is associated with decreased tendency of tumors to 

metastasize (Gibbons et al., 2009; Olson et al., 2009).  In addition, expression of the miR-

200 family has been examined in the chick embryo, and was excluded from mesodermal 

tissues(Darnell et al., 2006), consistent with a proposed role in promoting non-

mesenchymal cell phenotypes.   

While the miR-200 family has been shown to have a clear role in EMT, 

controversy exists regarding its relationship with differentiation.  One study reported that 

miR-200 inhibits the expression of Bmi1, a polycomb repressor that acts to promote 

“stemness” in embryonic stem cells (Wellner et al., 2009).  While this study concluded 

that miR-200 members promoted differentiation, others have proposed that miR-200 

family members attenuate differentiation through the direct inhibition of factors like 

Cadherin11 and Neuropilin1 (Lin et al., 2009).  While each study supported its 

conclusion with specific markers, a global approach is needed to better clarify the effects 

of the miR-200 family on embryonic stem (ES) cell differentiation.  Importantly, no one 

has examined the effects of miR-200 on EMT or fate restriction in the ES cell system. 

 

Snail and the miR-200 Family 

Interactions between Snail and miR-200 family members have recently been 

suggested by studies in the reprogramming of mouse embryonic fibroblasts (MEFs) to 
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inducible pluripotent stem (iPS) cells.  First, the initiation of reprogramming of MEFs 

was associated with the reverse of EMT, in a process of mesenchymal to epithelial 

transition (MET) (Li et al., 2010; Samavarchi-Tehrani et al., 2010).  A signature of MET 

is the induction of E-cadherin and other epithelial markers.  Importantly, ectopic 

expression of Snail in MEFs undergoing reprogramming was associated with decreased 

efficiency of iPS cell generation (Li et al., 2010).  In contrast, forced expression of E-

cadherin or miR-200 family members augmented the efficiency of reprogramming (Chen 

et al., 2010; Samavarchi-Tehrani et al., 2010).  While these studies did not examine the 

potentially direct interactions of Snail and miR-200, these results showed that Snail and 

miR-200 families exert opposite effects during MET. 

 

Snail and Vasculogenesis 

In Meox2-Cre/Snailloxp/loxp mice, where Snail is selectively deleted in the embryo 

proper, gastrulation occurs, but the mice die from extraembryonic vascular defects 

including failure of chorionic-allantoic fusion and a severe reduction in blood vessels in 

the embryo proper as detected by VE-cadherin staining(Lomeli et al., 2009; Murray and 

Gridley, 2006).  These findings suggest that in addition to its general function in 

gastrulation, Snail has a specific role in vasculogenesis in both the embryo proper as well 

as extraembryonic tissues. 

In addition to its expression in the primitive streak, Snail is also expressed in 

extraembryonic tissues such as extraembryonic mesoderm, the allantois (derived from 

extraembryonic mesoderm) and parietal and visceral endoderm (derived from primitive 

endoderm), which is adjacent to the yolk sac (Nieto et al., 1992; Smith et al., 1992; 
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Veltmaat et al., 2000).  Snail's role in these extraembryonic tissues has not been well-

characterized and remains unclear.  However, an ex vivo analysis of allantoic explants 

from Meox2-Cre/Snailloxp/loxp mice showed clusters of PECAM+ cells that were highly 

disorganized relative to control explants(Lomeli et al., 2009).  It was unclear whether or 

not the requirement for Snail was cell-autonomous or non-cell-autonomous manner in 

these cells. 

Beyond the embryo, Snail has also been linked to endothelial formation in the 

setting of tumors.  Non-small cell lung carcinomas overexpressing Snail as well as 

MDCK-Snail xenograft tumors displayed increased concentrations of blood vessels, 

which were thought primarily to be a result of cell-extrinsic effects(Peinado et al., 2004b; 

Yanagawa et al., 2009).  In contrast, expression studies have suggested that Snail may 

have a cell-intrinsic role in endothelial formation.  In addition to being upregulated after 

VEGFA stimulation(Wanami et al., 2008), Snail has been found to be highly expressed in 

endothelial cells of invasive breast cancer vasculature(Parker et al., 2004), spindle cell 

carcinoma(Zidar et al., 2008), and oral squamous cell carcinoma(Schwock et al., 2010).  

The latter study noted the expression of Snail in endothelial cells was greater in blood 

vessels close to the tumor, suggesting that the blood vessels of tumors uniquely express 

Snail as compared to the endothelium of normal tissue.  Recently, a subset of 

glioblastoma tumor-derived stem-like cells were found to differentiate directly into 

endothelial cells(Ricci-Vitiani et al., 2010; Wang et al., 2010).   While the precursors of 

these cells were clearly of tumor origin, a mechanism which links both tumorigenesis and 

the specification of endothelial cells has yet to be characterized. 

 

12



Figure 1:  Diagram of Epithelial to Mesenchymal Transition.
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Figure 2:  Patterning of the mouse embryo through early gastrulation.  (A)  
Stages of embryo development from blastocyst to the early primitive streak stage.  
(B)  Lineage development from morula to germ layer derivatives.
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Figure 3:  Signaling and molecular networks surrounding Snail homolog 1.
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Figure 4:  The microRNA 200 Family.  (A)  Depiction of the genomic locations for 
the miR-200 family.  (B)  Sequence alignment of the miR-200 family.  The seed 
sequences are shown in bold and red.
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CHAPTER 2 

Experimental Procedures 

 

ESC Maintenance and Differentiation 

MC50 (a gift from Dr. Robert Schreiber) and modified A2lox cells (Iacovino et 

al., 2009) were maintained on feeder layers of irradiated mouse embryonic fibroblasts in 

IMDM with 15% FCS, NEAA (0.1 mM each), L-glutamine (2 mM), sodium pyruvate (1 

mM), Pen/Strep (1000 U/ml), 2- mercaptoethanol (55 µM), and LIF (EsGro, Chemicon 

International; 1000 U/ml).  Using gene-specific primers (Table 1), individual cDNAs 

were cloned from embryoid body RNA or genomic DNA and inserted into the p2lox 

targeting vector (Figure 5).  To generate inducible cell lines, A2lox cells were co-

transfected with gene-specific p2lox vectors and Cre recombinase as previously described 

(Lindsley et al., 2006). 

Prior to differentiation, ES cells were passaged once in the absence of feeder 

layers (still in the presence of LIF).  To initiate differentiation, ES cells were plated in 

petri dishes in suspension at 1.5 × 104 cells/ml in IMDM with 10% FCS, NEAA (0.1mM 

each), L-glutamine (2 mM), sodium pyruvate (1 mM), Pen/Strep (1000 U/ml), and 2-

mercaptoethanol (55 µM) and supplemented where indicated with DKK-his as described 

(Lindsley et al., 2006), SB-431542 (10 µM, Sigma), rm-Noggin (500ng/mL, R&D 

Systems), or SU5402 (10uM, Tocris Bioscience).  Gene expression was induced by 

addition of doxycycline (250-1000 ng/ml, unless otherwise indicated). 

 

Generation of recombinant DKK1-his 
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Recombinant DKK1 was either purchased from R&D Systems or prepared by transient 

transfection of 293F/T cells with calcium phosphate precipitation of pcDNA-DKK1-his. 

Supernatant was collected daily for 3 days, adjusted to pH 8.0 by the addition of 1/3 

volume of 1X Ni-NTA binding buffer, and purified over a nickel-NTA binding resin 

(Qiagen).  Purified DKK-his was dialyzed in PBS and detected by Western blot using an 

antibody to penta-His (Qiagen).  Except where indicated, recombinant Dkk1-His was 

added to differentiation cultures at 1×, defined as the concentration required to inhibit 

generation of Flk1-expressing cells in SCM through day 5 (~160-200 ng/ml, depending 

on the batch.) 

 

Flow Cytometry 

Cells were disassociated with trypsin/EDTA for 5 minutes at 37°C and stained 

with antibodies.  Primary antibodies: biotin α-mE-cadherin (R&D Systems, 1.25ug/ml, 

1:200), PE α-Flk1 (eBioscience, Avas12a1, 1:200), biotin α-Flk1 (eBioscience, 

Avas12a1, 1:200), APC α-PDGFRα (eBioscience, APA5, 1:200), α-SSEA1 (DSHB, MC-

480, 1:200), αVE-cadherin, (eBioscience, eBioBV13, 1:200), αTie-2 (eBioscience, 

TEK4, 1:200), biotin α-c-kit (BD Pharmingen, 2B8, 1:200), APC α-CD34 (eBioscience, 

RAM34, 1:200).  Secondary detection reagents: SA-APC (BD Pharmingen, 1:400), SA-

PE-Cy7 (BD Pharmingen, 1:400), and PE α-mouse IgM (BD Pharmingen, R6-60.2, 

1:200).  Data were acquired on a FACS Caliber (Becton Dickinson) or the FACS Canto II 

(Becton Dickinson) and analyzed on FlowJo (Tree Star). 

A2.Snail DKK and DKK+dox samples were sorted as described in the text based 

on Flk1 expression using a MoFlo cytometer (Cytomation). 
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Gene Expression Analysis 

To evaluate expression of individual genes, RNA was isolated with RNeasy kits 

(Qiagen), cDNA was synthesized using Superscript III (Invitrogen), and PCR was 

performed using Taq Polymerase (Promega).  Non-quantitative RT-PCR was performed 

using intron-spanning, gene-specific primers (Table 1) and cycle number varied from 25-

28 cycles.  Quantitative RT-PCR was performed using SYBR Green PCR Master Mix 

(Applied Biosystems) and the StepOne Plus Real-Time PCR System (Applied 

Biosystems).  Large-scale gene expression analysis was done using Affymetrix 

MOE430_2.0 arrays as described (Lindsley et al., 2008).  Data were normalized and 

modeled using DNA-Chip Analyzer/dChip (Li and Wong, 2001a; Li and Wong, 2001b).  

CEL Files and accompanying data were deposited in the NCBI GEO database under 

accession numbers GSE24289 (A2.miR200c data), GSE24291 (A2.snail data, 6/12/24h 

DKK +/- doxycycline chips), and GSE26524 (A2.snail Flk1+ sort). 

 

Immunofluorescent Microscopy 

Cells were differentiated as described and placed at day 2 on Type I Collagen-

coated 4-well chamber slides (BD Bioscience).  On day 4, cells were fixed with 2% 

formaldehyde in PBS, blocked with 1% BSA, 0.5% saponin in PBS, and stained with 

antibody in blocking solution.  Primary antibodies:  biotin α-mE-cadherin (R&D 

Systems, 2.5μg/ml, 1:100), α-fibronectin (2.5 μg/ml, BD Transduction Laboratories), and 

N-cadherin (BD Biosciences, 2.5μg/ml, 1:100).  Secondary antibodies:  Streptavidin-
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Alexa488 (Molecular Probes, 1:500) and Cy3 α-mIgG1 (Jackson Immunoresearch, 

1:300).  Nuclei were stained using Hoechst 33342 (1 μg/ml, Molecular Probes). 

 

microRNA Expression Analysis 

To analyze expression of individual microRNAs, total RNA was isolated using 

mirVana miRNA Isolation kit (Ambion), and TaqMan microRNA assays (Applied 

Biosystems) were performed according to manufacture's instructions.  Real-time PCR 

was performed on a StepOnePlus Real Time PCR system (Applied Biosystems).  All 

individual microRNA data are expressed relative to a U6 snRNA TaqMan PCR 

performed on the same sample.  Large scale microRNA expression data was analyzed 

using a microRNA Detection Microarray (LC Sciences). 

 

Expression of microRNA Family Members 

microRNA families were cloned from mouse genomic DNA using primers 

flanking the outermost family members (Table 1).  This DNA was then cloned into the 

p2lox targeting vector such that the microRNA family members would be expressed from 

the doxycycline-inducible promoter or CAG promoter in the A2lox cells (Figures 18, 20, 

49). 

 

MicroRNA Knockdown Studies 

 FITC-labeled miRCURY LNA microRNA Power Inhibitors (Exiqon) were 

obtained to inhibit miR-141, miR-200c, or nothing (negative control with no known 

mouse sequence homology).  A2lox ES cells were plated at a density of 200,000 
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cells/well of a 12-well plate and 50nM of the indicated LNA Power Inhibitor were 

transfected using Lipofectamine (LF2000, Invitrogen) and OptiMEM I reduced serum 

medium (GIBCO).  Media was replaced 1 day later with normal ES cell media, and 

transfection was verified by microscopy and flow cytometry.  The following day cells 

were harvested and set up for embryoid body differentiation as described above. 

 

Epiblast-Stem Cell (EpiSC) Culture Conditions 

 A2.miR200c ES cells were differentiated as embryoid bodies (with and without 

doxycycline) for 5 days.  On day 5, embryoid bodies were trypsinized and subsequently 

cultured and passaged in EpiSC conditions in the absence of MEFs or LIF similar to 

methods previously described (Brons et al., 2007; Chenoweth and Tesar, 2010).  After 

trypsinization of the embryoid bodies, cells were plated at a density of 115,000 cells per 

well of a 6-well plate (pre-coated with fetal calf serum overnight and washed with PBS).  

Cells were cultured in IMDM with 20% Knockout Serum Replacement, NEAA (0.1 mM 

each), L-glutamine (2 mM), sodium pyruvate (1 mM), Pen/Strep (1000 U/ml), 2-

mercaptoethanol (55 µM), 5ng/mL FGFb (GIBCO), and 20ng/mL rh-Activin A 

(GIBCO).  Media was replenished daily.  To passage, colonies were removed with a cell 

scraper, triturated into small clusters with a P200 pipette tip, and passaged every 2-3 days 

with typically a 1:3 split. 

 

Blood/Endothelial Assays 

For the methylcellulose hematopoietic assay, day 3 A2.Snail and A2.Er71 

embryoid bodies were trypsinized, passaged through a 20-gauge needle, and set up in 
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triplicate dishes in methylcellulose plus cytokines (Stem Cell Technologies, 03434) at a 

concentration of 50,000 cells/mL.  BL-CFCs were counted in all samples on day 8.  For 

the hemangioblast assay, the same A2.Snail and A2.Er71 cells were plated at a density of 

50,000 cells/mL in 24 well plates in 1% methylcellulose in differentiation media 

supplemented with D4T and kit-ligand conditioned media (gifts from KC Choi), and 

VEGF (5ng/mL, Peprotech).  Images were recorded 4 days later using a Nikon Eclipse 

TS100 microscope and Optronics camera. 

For the endothelial tube formation assay, 0.2mL of Matrigel (BD Biosciences) 

was added to each well of a 24-well plate and allowed to solidify at 37°C.  Following 

solidification, 0.2mL of a cell suspension containing 5 x 104 A2.Snail cells on day 3 of 

embryoid body culture (after trypsinization and passage through a 20-gauge needle) were 

plated on top of the Matrigel in triplicate in differentiation media plus VEGF.  The 

cultures were incubated at 37°C, 5% CO2 and observed at 24 hours for rearrangement of 

cells into tubular structures and networks.  Images were recorded using a Nikon Eclipse 

TS100 microscope and Optronics camera. 

 

Luciferase Assays 

pMIR-Report Luciferase plasmids (Ambion) containing Luciferase with the 

indicated 3'UTRs, CMV-Renilla, and +/- 5uM miRNAs were cotransfected into 293T 

cells with Lipofectamine 2000 (Invitrogen).  See Table 1 for a list of primers used to 

generate the 3' UTRs and mutations.  Cells were harvested 24 hours later, and luciferase 

activity was measured using an Optocomp II automated luminometer (MGM Instruments, 
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Inc.).  Firefly luciferase activity was normalized to Renilla luciferase activity to account 

for possible differences in cell density and transfection efficiency. 

 

Western Analysis 

A2.Snail.CAG.GFP, A2.Snail.miR200A, and A2.Snail.miR200C ES cell lines were 

plated in 10cm gelatinized dishes in ES cell media.  Doxycyline was added in select 

dishes at 250ng/mL.  Cells were harvested in RIPA buffer along with protease inhibitors 

24 hours later.  As a positive control for Snail expression, 10uM MG132 was added to a 

subset of the doxycycline dishes 4 hours prior to harvesting of the protein lysate.  30ug of 

protein lysate was added to each well of a 12% PAGE gel.  Protein was transferred to a 

nitrocellulose membrane, blocked, and probed using an αSnail antibody (Abcam, 

ab17732 XX, 1:400) with HRP-anti-rabbit secondary (Jackson Immunoresearch, 

1:20,000) or α-β-actin antibody (Santa Cruz Biotechnologies, sc-47778, 1:5000) with 

HRP-anti-mouse secondary (Jackson Immunoresearch, 1:20,000).  ECL Plus Detection 

System (GE Healthcare) was used for detection following the manufacture instructions. 
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Figure 5:  Schematic of p2lox targeting strategy.  Plasmid and cells are from 
Michael Kyba; figure adapted from M. Kyba and R.C. Lindsley.
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Table 1.  Oligonucleotide primers used in this study. 
 

 CLONING PRIMERS 
Name Sequence 
C_mir200a/b/429 F (for 
A2.miR200a) 

GCTGGATCCCTCCTTGGTTCCATGACCTGAGAA 

C_mir200a/b/429 R (for 
A2.miR200a) 

CTAGATATCGACTGGACCTGTTGTCTAGGCTATTCT
G 

C_mir200c/141 F (for 
A2.miR200c) 

GCTGGATCCCCTTTCTTACGAAGACCGAGTCTCCA 

C_mir200c/141 R (for 
A2.miR200c) 

CTAGATATCCCTCAAGAGGAGGTGCCCAGG 

C_mir335 F (for A2.miR335) GAGAGAGTGGTGGGTCCAAGTAGGG 
C_mir335 R (for A2.miR335) GCAAGCTGACAGGACTTCAGGAGC 
C_snail F TAGGTCGCTCTGGCCAACATGC 
C_snail R AAGATGCCAGCGAGGATGGG 
C_Flk1 3'UTR F AATGGAAGTGGTCCTGTCCC 
C_Flk1 3'UTR R AACATAAGCACACAGGCAGAAACC 
C_Ets1 3'UTR F TCATGGACAGACGCGCAGAAG 
C_Ets1 3'UTR R TTATGAATGAATTTCTTTGTTTCTTTAATTTCAC 
C_Gata2 3'UTR F CAGGACTAGTGCAAGCCTCCCACTGGACAGACA 
C_Gata2 3'UTR R CAGGTTCGAACAACAGGCGACAGCATTCACAAAAA

GTATT 
  
 AROUND-THE-WORLD MUTATION PRIMERS 
Name Sequence 
ATW ΔSNAG.Snail F GGCCAACATGAAGCCGTCCGACCCCCGCCGG 
ATW  ΔSNAG.Snail R GGACGGCTTCATGTTGGCCAGAGCGACCTA 
ATW Flk1 3'UTR MUT F CCAAGTCCTATCTGAATTAGCTTTGTGGCTTCCTGA

TGGCAG 
ATW Flk1 3'UTR MUT R GCTAATTCAGATAGGACTTGGGGGCCTGACAGGAG

TGGA 
ATW Ets1 3'UTR MUT F1 GTGCATCTGAATTTTTTTCCTTAAAAAAATATCGTCT

TAAGCTC 
ATW Ets1 3'UTR MUT R1 TAAGGAAAAAAATTCAGATGCACAAAATTTAATAAAA

TAAACTTCAACAT 
ATW Ets1 3'UTR MUT F2 GGTCTATCTGAAGATCTGAAGTGAGTTTGTTGTTAT

TTGCTGGC 
ATW Ets1 3'UTR MUT R2 ACTTCAGATCTTCAGATAGACCACCTTAGAGCTTAA

GACGATAT 
ATW Gata2 3'UTR F GAAGAATCGGATCTGAATTCTGTTTTTATGTTTTGG

GCTTGTTTTA 
ATW Gata2 3'UTR R CAGAATTCAGATCCGATTCTTCTCTTATGCGGGTAC

TAGCAC 
  
 q-RT-PCR PRIMERS 
Name Sequence 
FGF5 F CACGAAGCCAGTGTGTTAAGTATTTTGG 
FGF5 R GCATCATCCAAAGCGAAACTTCAG 
Fibronectin F GGAATGGAAAGGGAGAATTCAAGTG 
Fibronectin R GGGGCAATTTACGTTAGTGTTTGTTC 
Gapdh F TGCCCCCATGTTTGTGATG 
Gapdh R TGTGGTCATGAGCCCTTCC 
Nanog F CTCTCCTCGCCCTTCCTCTGAAG 
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 Nanog R GGTGCTGAGCCCTTCTGAATCAG 
N-cadherin F ACAATCAACAATGAGACTGGGGACA 
N-cadherin R TCATTGACATCTGTCACCGTGATGA 
Ncam1 F TGCTGCGAACTAAGGATCTCATCTG 
Ncam1 R GCATTCTTGAACATGAGCTTCTGGA 
Nodal F GGATCATCTACCCCAAGCAGTACAATG 
Nodal R GCAAGCCAATTTCAGCACTCCC 
Occludin F CCTGGAGGTACTGGTCTCTACGTGG 
Occludin R TCTTTCCGCATAGTCAGATGGGG 
Oct4 F CAATGCCGTGAAGTTGGAGAAGG 
Oct4 R CGAAGCGACAGATGGTGGTCTG 
Snail F CGCTCTGAAGATGCACATCCGA 
Snail R TCACATCCGAGTGGGTTTGGAG 
Sox2 F CTCCATGACCAGCTCGCAG 
Sox2 R CCTTCTCCAGTTCGCAGTC 
Zeb1 F CCTACAGTCACTGCCCAGTTACCC 
Zeb1 R GCATACATTCCATTCTCTGTCTTCCG 
Zeb2 F CTGCCACTTTCATGCCACCAG 
Zeb2 R CGGAGTCTGTCATGTCATCTAGGC 
  
 RT-PCR PRIMERS 
Name Sequence 
E-cadherin F GTCCTGCCAATCCTGATGAAATTG 
E-cadherin R CACTGATATAATTATTCTGCATCTCCCA 
Fibronectin F GGAATGGAAAGGGAGAATTCAAGTG 
Fibronectin R GGGGCAATTTACGTTAGTGTTTGTTC 
Gapdh F TGCCCCCATGTTTGTGATG 
Gapdh R TGTGGTCATGAGCCCTTCC 
Snail F CGCTCTGAAGATGCACATCCGA 
Snail R TCACATCCGAGTGGGTTTGGAG 

26



CHAPTER 3 

Snail promotes EMT and mesoderm differentiation 

 

ES Cells Undergo a Wnt-Dependent EMT during Differentiation 

 In a previous study, we found that inhibition of canonical Wnt activity completely 

blocks expression of primitive streak and mesendoderm-associated genes during ES cell 

differentiation(Lindsley et al., 2006).  This finding recapitulates in vivo findings 

demonstrating that primitive streak formation requires the canonical ligand Wnt3, Wnt 

co-receptors Lrp5/6, and β-catenin, the intracellular effector of canonical Wnt 

signaling(Huelsken et al., 2000; Kelly et al., 2004; Liu et al., 1999).   

Because primitive streak formation in the embryo occurs concomitantly with 

EMT, we decided to study the expression of the epithelial marker E-cadherin during ES 

cell differentiation in the presence and absence of Wnt signaling.  First, we performed a 

FACS analysis of E-cadherin expression on differentiating MC50 ES cells.  E-cadherin is 

normally maintained for at least 3 days following withdrawal of LIF, but is increasingly 

lost on days 4, 5, and 6 in a Wnt-dependent manner (Figure 6A).  When we analyzed 

gene expression patterns in NT and DKK-treated ES cell differentiation cultures from 

days 0 to 4, we found repression of additional epithelial markers (Occludin, Claudin 6, 

and Epithelial V-like antigen 1) as well as induction of mesenchymal markers 

(Fibronectin, N-cadherin, and Snail) (Figure 6B). The expression of Snail in 

differentiating ES cells closely corresponds to the loss of E-cadherin, showing a peak of 

expression on day 3.5 immediately preceding the onset of E-cadherin down-regulation 

(Figure 6C). 
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 To further characterize EMT at the protein level, we examined expression of E-

cadherin and fibronectin during ES cell differentiation.  Undifferentiated ES cells express 

E-cadherin, but not fibronectin (data not shown).  After 5 days of differentiation in 

serum-containing media, cells uniformly express fibronectin, but not E-cadherin, 

indicating that these cells have undergone EMT (Figure 7).  In contrast, cells treated with 

DKK maintain E-cadherin expression and fail to induce fibronectin, reflecting their 

failure to undergo EMT.  Additionally, cells differentiated in serum-containing media 

possess the capacity to adhere and spread on a gelatinized substrate, while DKK-treated 

cells remain in suspension (Figure 7).  Together, these results indicated that Wnt 

signaling is required for the EMT of differentiating ES cells. 

   

Snail promotes EMT in day 2 differentiating ES cells.   

Snail homolog 1 (Snail) is required for the EMT of the gastrulating embryo 

(Carver et al., 2001).  Given the expression pattern and Wnt-dependence of the EMT 

transcription factor Snail homolog 1 (Snail) during ES cell differentiation, we 

hypothesized Snail may play an important role in inducing EMT in ES cells. 

Using an ES cell line with doxycycline-inducible Snail (A2.snail), we next sought 

to characterize how Snail affected E-cadherin levels in differentiating ES cells.  We 

examined cultures treated with and without DKK, and with doxycycline added on day 0 

or just prior to its normal endogenous expression on day 2.  Interestingly, Snail was 

capable of down-regulating E-cadherin when induced on day 2, but not in day 0 cultures 

(Figure 8), suggesting that ES cells may lack factors required for Snail's function.  In 

adherent differentiation cultures, induction of Snail on day 2 led to dramatic changes in 
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morphology, where Snail-induced cells acquired spindle-like morphologies and adhered 

as single cells (Figure 9B). 

To further investigate EMT after Snail induction, we induced Snail on day 2, in 

the presence or absence of DKK (Figure 9A).  RT-PCR showed that expression of E-

cadherin is still evident on day 3 of differentiation in cultures without Snail induction, but 

is repressed by induction of Snail following doxycycline treatment (Figure 9C).  

Correspondingly, the mesenchymal marker fibronectin is induced by Snail in this system.  

Even though mesenchymal differentiation is normally blocked by inhibition of Wnt 

signaling, Snail is capable of powerful up-regulation of fibronectin expression (Figure 

9C).   

In addition, Snail induces a switch from E-cadherin expression to N-cadherin 

expression (Figure 10) in the majority of differentiating ES cells.  The upregulation of N-

cadherin is more robust in the presence of Wnt signaling, but also occurs in DKK 

cultures.  These results show that Snail’s actions in this differentiating ES cell culture 

system promote features of an EMT. 

 

Snail accelerates the down-regulation of ES cell pluripotent markers 

Because a number of pluripotency transcription factors including Sox2 and Oct4 

have been found to repress Snail (Li et al., 2010), we wondered whether Snail may 

reciprocally play a role in limiting ES cell pluripotency.  In order to examine potential 

actions of Snail on differentiation, we first examined the ability of Snail to regulate 

expression of the pluripotency marker SSEA1 (Figure 11).  Normally, SSEA1 expression 

is gradually down-regulated during differentiation of ES cells in vitro.  Interestingly, we 
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find that the loss of SSEA1 by differentiating ES cells is blocked by the addition of the 

Wnt inhibitor DKK.  In contrast, induction of Snail in differentiating ES cells 

significantly accelerates the loss of SSEA1.  Moreover, even in the presence of DKK, 

induction of Snail causes the down-regulation of SSEA1 in the majority of ES cells.  

Through a titration of doxycycline, we can confirm that this effect of Snail can be 

achieved at levels similar to endogenous and in a dose-dependent manner (Figure 12).  In 

addition to SSEA1 down-regulation, we also show that Snail down-regulates expression 

of Sox2 and Oct4 transcripts, but not Nanog, by day 4 of differentiation (Figure 13).  

Thus, Snail promotes the loss of a pluripotency marker of ES cells, suggesting a potential 

role for Snail in promoting differentiation in addition to EMT.   

 

Snail promotes mesoderm, but not ectoderm, differentiation 

To refine this analysis and determine whether Snail-induced loss of pluripotency 

promoted fate determination, we examined two markers of mesodermal fate, Pdgfrα and 

Flk1 (Figure 14).  Normal differentiating ES cells undergo EMT and begin to express 

these markers of mesodermal fates beginning on day 3 and continuing through day 5 

(Figure 14, top row).  Induction of Snail in differentiating ES cells accelerated the 

progression of Pdgfrα expression and Flk1 expression (Figure 14, 2nd row).  Importantly, 

even when mesoderm differentiation was blocked through the addition of the Wnt 

signaling inhibitor DKK, the induction of Snail was still able to induce expression of 

these markers of mesoderm (Figure 14, bottom row).   

To obtain a global view of the effects of Snail on ES cell differentiation we 

utilized microarrays of differentiating A2.snail ES cells under conditions of Wnt 
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signaling inhibition to prevent endogenous-promoted EMT and mesoderm differentiation 

(Figure 15).  In the absence of Snail induction, these conditions lead to a pattern of 

differentiation that is strongly skewed towards an epithelial phenotype and ectodermal 

fates (Figure 15 and (Lindsley et al., 2006)).  However, upon induction of Snail, 

expression of epithelial and ectodermal markers are inhibited (e.g. Otx2, Zic5, and 

Cldn6), while genes associated with mesenchymal and mesodermal fates are strongly 

induced (e.g. Mmp2, Ncam1, Isl1, and Gata2).  These results establish a precedent for the 

ability of Snail to alter patterns of cell type differentiation and indicate that Snail 

expression favors mesodermal rather than ectodermal fate choices during ES cell 

differentiation. 

 

(Acknowledgements:  R.C. Lindsley generated the A2.snail line, performed the gene chip 

if Figure 6B, and performed the RT-PCR in Figure 9C) 
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Figure 6:  ES cells undergo a Wnt-dependent EMT during differentiation.  (A)  
E-cadherin protein expression during MC50 ES cell differentiation was analyzed by 
flow cytometry in serum-containing differentiation conditions without (black line) or 
with (gray line) addition of the Wnt inhibitor DKK at day 0.  A secondary antibody 
control is shown as a shaded plot in the ESC panel.  (B)  Gene expression analysis 
was performed by gene chip on days 0-4 of MC50 differentiation in the presence or 
absence of DKK from day 0-4.  (C)  RT-PCR of Snail and GAPDH during MC50 
differentiation.
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No Treatment

DKK

Figure 7:  ES cells undergo a Wnt-dependent EMT during differentiation.  Cells 
were differentiated in SCM alone (no treatment) or treated with Dkk1 for 4 days.  On 
day 4, cells were washed and transferred to gelatinized plates in SRM without inhibi-
tor and analyzed by fluorescence microscopy for expression of E-cadherin (green) or 
fibronectin (red) as described in the Materials and methods. Images of representative 
colonies, acquired using 10× objective magnification, are shown for unmanipulated 
(no treatment) and Dkk1-treated conditions.

Development 133(19):3787-96, 2006.
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Figure 8:  Induction of Snail on day 2 leads to the down-regulation of 
E-cadherin.  FACS histogram of E-cadherin expression on day 3 of ES cell differen-
tiation.  A2.Snail ES cells were differentiated with or without DKK from day 0 and 
with or without addition of doxycycline at day 0 or day 2.
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Figure 9:  Snail induces an EMT in differentiating ES cells.  (A)  Outline of ES 
cell differentiation conditions.  DKK is added at day 0, while doxycycline is added 
on day 2.  (B)  Light microscopy of A2.Snail cells on day 3.5 of differentiation in 
adherent cultures.  Doxycycline was added on day 2.  (C)  A2.Snail cells were differ-
entiated as described in (A).  RNA was collected on days 3, 4, and 5, and RT-PCR 
was performed for the indicated genes.
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Figure 10:  Immunofluorescence microscopy of Snail-induced EMT.  A2.Snail ES 
cells were differentiated with or without DKK and doxycycline as outlined in Fig. 
9A.  Cells were placed on Type I Collagen-coated 4-well chamber slides on day 2 
and fixed and stained on day 4.  E-cadherin is shown in green and N-cadherin is 
shown in red.
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Figure 11:  Snail induces the down-regulation of SSEA1.  FACS analysis of 
SSEA-1 protein expression on day 4 of A2.Snail differentiation in the presence or 
absence of doxycycline added at day 2 and DKK added at day 0.
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Figure 12:  Snail down-regulates SSEA1/E-cadherin in a dose-dependent 
manner, even when Snail is induced at levels comparable to endogenous.   (A)  
FACS plots of SSEA1 and E-cadherin in A2.Snail cells on day 4 of differentiation as 
described in Fig. 9A.  Doxycycline concentration is indicated in ng/mL.  (B)  qRT-
PCR of Snail expression levels on day 3 samples from (A).  All samples were 
normalized to GAPDH and sample expression is listed relative to NT, which was set 
to 1.
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Figure 13:  Snail down-regulates expression of Oct4 and Sox2, but not Nanog by 
day 4.  qRT-PCR of Sox2, Oct4, and Nanog in A2.Snail cells on day 3 and day 4 of 
differentiation as described in Supp. Fig. 1A.  All samples were normalized to 
GAPDH and sample expression is listed relative to NT, which was set to 1.
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Figure 14:  Snail accelerates the development of mesoderm.  FACS analysis of 
Flk1 and PDGFRα protein expression on days 3, 4, and 5 of ES cell differentiation.  
A2.Snail cells were differentiated as outlined in Fig. 9A.
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Figure 15:  Snail promotes EMT and mesoderm commitment, while inhibiting 
ectoderm differentiation.  Relative gene expression in A2.Snail ES cells differenti-
ated with DKK in the absence or presence of doxyxycline.  RNA was collected at 6, 
12, and 24 hours after doxycycline addition (corresponding to day 2.25, 2.5, and 3 of 
differentiation).  Red and blue indicate increased and decreased expression, respec-
tively.  Raw data can be found in the NCBI GEO database under accession number 
GSE24291.
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CHAPTER 4 

The miR-200 family prevents EMT and maintains differentiating ES cells as EpiSCs 

 

Snail regulates multiple microRNAs, including the miR-200 Family 

Snail reportedly acts as a transcriptional repressor, and yet some of its actions 

involve strong induction of target genes.  We therefore wondered whether Snail might 

regulate the expression of miRNAs which could serve to repress indirectly induced 

targets of Snail.  To address this, we carried out a global screen for miRNA expression 

under conditions of variable Snail expression (DKK and DKK+dox) (Figure 16A).  

Among the miRNAs that were significantly repressed by induction of Snail in ES cells 

were members of the miR-200 family (Figure 16B and Table 2).  In addition, several 

miRNAs that have been associated with maintenance of pluripotency in ES cells were 

also inhibited by the induction of Snail.  Notably, the miR-302 family, associated with 

differentiated mesoderm, was induced by Snail (Figure 16B).   

 

Expression of the miR-200 family prevents EMT, differentiation, and mesoderm 

commitment 

Since the miR-200 family has been associated with EMT through its targeted 

repression of Zeb1 and Zeb2, we wanted to more closely examine the expression pattern 

and relationship with Snail induction during ES cell differentiation (Figure 17).  During 

normal ES cell differentiation (without inhibition of Wnt signaling), miR-200 family 

members are maintained until approximately day 3 of differentiation, and decreased by 

approximately 50% on day 4.  Upon induction of Snail at day 2 of differentiation, miR-
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200 family members are reduced by 50% after 24 hours and further reduced by day 4, 

indicating that Snail inhibits expression of each of the miR-200 family members 

examined.  Furthermore, we observe that the expression of the miR-200 family members 

is strongly augmented under conditions that promote neuroectodermal fate and prevent 

EMT.  In particular, the addition of the Wnt inhibitor DKK blocks mesoderm 

differentiation (Lindsley et al., 2006), and causes the gradual accumulation of higher 

levels of miR-200c, miR-200b, and miR-141 (Figure 17B).  Importantly, even under 

these conditions in which high levels of miR-200 are normally expressed, the induction 

of Snail strongly represses the expression of endogenous miR-200 family miRNAs.  

These results indicate that Snail acts to repress the expression of the miR-200 family.   

Given its expression pattern in ES cell differentiation and in response to Snail, we 

wanted to determine whether the miR-200 family could prevent EMT in ES cell 

differentiation as it has been shown to do in tumor models.  We therefore generated ES 

cell lines harboring inducible expression of the miR-200c and miR-141 genomic cluster 

(A2.miR200c).  In this cell line, miR-200c/141 are expressed downstream of a 

doxycycline-inducible transcriptional element (Figure 18A, B).  Without induction of 

miR-200c/141, ES cells normally begin to lose expression of E-cadherin by day 4 of 

differentiation, with a majority of ES cells having lost E-cadherin on day 5 (Figure 19A).  

However, when miR-200c/141 is induced, differentiating ES cells maintain expression of 

E-cadherin at day 4 and day 5 opposite to the effects of Snail on E-cadherin expression 

(compare with Figure 8). 

In addition to examining effects on EMT, we wanted to further understand how 

prevention of EMT by the miR-200 family might affect ES cell differentiation.  We first 
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examined the effects of miR-200c/141 on the expression of mesodermal markers and 

pluripotency markers in differentiating ES cells (Figure 19B).  Normal differentiating ES 

cells have induced the mesoderm markers Pdgfrα and Flk1 in a substantial number of 

cells by day 5 after differentiation (Figure 19B, first column, upper panel).  However by 

maintaining expression of miR-200c/141 during ES cell differentiation, these 

mesodermal markers failed to be induced (Figure 19B 2nd and 3rd column, upper panel).  

Here, the level of expression of Flk1 and Pdgfrα in the presence of miR-200c expression 

is nearly as low as when mesoderm differentiation is blocked through the addition of the 

Wnt inhibitor DKK.   

We also we examined the effect of miR-200c on the pluripotency marker SSEA1.  

Normally, by day 5 of ES cell differentiation, approximately 85% of ES cells have lost 

SSEA1 expression (i.e., 62%+16%) and have significantly down regulated E-cadherin 

expression.  However, when miR-200c expression is maintained, SSEA1 expression is 

retained on the majority of ES cells with only 35% becoming SSEA1 negative.  In 

addition, many fewer ES cells lose expression of E-cadherin when miR-200c expression 

is maintained.  These results indicated that maintenance of miR-200c/141 expression 

during ES cell differentiation acts to prevent E-cadherin loss, inhibit induction of 

mesodermal markers, and prevent the down regulation of SSEA1.  We found similar 

results when we generated an ES cell line with an inducible miR-200b/200a/429 cluster 

(Figure 20, 21). Furthermore, robust induction of a different microRNA (miR-335) failed 

to have the same effects as the miR-200 family, suggesting specificity (Figure 22).  The 

effects of the miR-200 family are opposite to those of Snail shown above. 
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To determine whether loss of miR-200c/141 is sufficient for E-cadherin and 

SSEA1 down-regulation, we utilized LNA microRNA inhibitors (Exiqon) for loss-of-

function studies.    ES cells transfected with anti-miR-141 or anti-miR-200c, showed a 

slightly increased percentage of cells with down-regulated E-cadherin and SSEA1 on 

days 4 and 5 of differentiation as compared with a negative control inhibitor (Figure 23A, 

B).  Because of the existing redundancy and target overlap in the miR-200 family, we 

hypothesize that the remaining uninhibited family members (miR-200a, miR-200b, and 

miR-429) may still be functioning to limit EMT and differentiation.  Inhibition of miR-

200c/141 alone was not sufficient to promote mesoderm induction (Figure 23C). 

 

Expression of miR-200 family microRNAs promotes maintenance of the ESD-EpiSC 

state. 

Because we observed that maintenance of miR-200c/141 inhibited expression of 

mesodermal markers while maintaining expression of SSEA1, we wondered whether the 

miR-200 family acted simply by preventing all differentiation of ES cells.  To address 

this question, we carried out global gene expression analysis of ES cells at day 3, 4, and 5 

of differentiation either in the presence or absence of miR-200c/141 expression from day 

2.  First, the induction of miR-200c and miR-141 did not simply prevent all changes 

associated with ES cell differentiation.  Differentiating ES cells rapidly down-regulate the 

ES cell markers Rex1, Dppa2, and Dppa4, and the loss of these markers was not altered 

upon induction of miR-200c/141 (Figure 24A).  The pluripotency markers Oct4, Nanog, 

and Sox2 are also down-regulated during normal ES cell differentiation, but induction of 

miR-200c and miR-141 led to only a partial loss of these genes (Figure 24B).   
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Consistent with our findings that miR-200c/141 inhibited Pdgfrα and Flk1 

expression (Figure 19B), we found that mesoderm-associated genes were strongly 

blocked by miR-200c and miR-141.  For example, Er71, a gene associated with blood 

and endothelium, and Tal1 a gene associated with hemogenic endothelium, are normally 

strongly induced in differentiating ES cells, but their expression was virtually 

extinguished by miR-200c/141 (Figure 24C).  In contrast, genes associated with primitive 

ectoderm (e.g. Otx2, Fgf5, and Zic5) were maintained by expression of miR-200c/141 

(Figure 24D).  Interestingly, when we looked for other genes strongly altered upon 

induction of miR-200c and miR-141, we identified a number of genes that have recently 

been associated with expression in EpiSCs and ESD-EpiSCs (Figure 24E).  For example, 

Nodal, Claudin6 (Cldn6), and Cerberus 1 (Cer1) are genes associated with the EpiSC, 

and are substantially elevated upon expression of miR-200c/141.  As EpiSCs have also 

been shown to maintain primitive ectoderm markers, these findings are consistent with 

the notion that maintenance of miR-200c/141 expression causes a failure of cells to 

progress past the EpiSC stage of ES cell differentiation.   

Another feature associated with EpiSCs is in the nature of its morphology during 

culture.  We find that a cell line harboring inducible expression of miR-200c/141 exhibits 

a phenotype that can be switched upon induction of expression by doxycycline.  In the 

absence of induction, differentiating ES cells in adherent cultures grow as a round cluster 

of mostly spindle-shaped cells attached to each other.  In contrast, induction of miR-

200c/141 causes the morphology to switch to a homogenous flattened monolayer of cells 

tightly bound to the culture substrate (Figure 25A).   
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To better determine how similar miR200c/141-induced cultures were to EpiSCs, 

we examined the expression profile of a number of genes characterized as being mouse 

ES cell-specific, mouse EpiSC-specific, and genes shared between the two subsets (Tesar 

et al., 2007).  In comparing day 5 miR200c/141-induced cultures to undifferentiated ES 

cells, we see that like EpiSCs, miR200c/141 induced cultures have down-regulated a 

number of ES cell-specific transcripts while partially maintaining other markers such as 

Nanog and Nodal.  As seen in EpiSCs, Cer1, Foxa2, and other targets of nodal/Activin 

signaling were significantly upregulated (Figure 25B). 

 Because EpiSCs can be maintained through repeated passages in FGF and activin 

(in the absence of LIF), we wanted to determine whether A2.miR200c doxycycline-

treated cells would also share this property with EpiSCs.  To test this, we treated 

A2.miR200c ES cells with or without doxycycline from day 0 until day 5 of 

differentiation (Figure 26).  On day 5, we performed a control FACs analysis (Figure 

27B), trypsinized embryoid bodies, and transferred cells into FGF + Activin EpiSC 

culture conditions.   Relative to untreated cultures, samples derived from day 5 

doxycycline-treated cultures generated over 4-fold more colonies in EpiSC conditions 

(Figure 27B).  In addition to generating more colonies, these colonies were notably larger 

and had a more flattened, EpiSC-like appearance (Figure 26, column under "Day 10").  

Within a few passages, the fewer and smaller colonies derived from day 5 untreated 

embryoid body cultures differentiated and could not be sustainably cultured.  In contrast, 

the colonies originally derived from day 5 doxycycline-treated cultures continued to grow 

and maintain EpiSC-like morphology in FGF and activin (Figure 26, column under "Day 

55").  After 50 days in EpiSC culture (and nearly 20 passages), we isolated RNA from 
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these cells to determine whether they maintained markers of pluripotency and EpiSCs.  

As assessed by qRT-PCR these colonies continued to express pluripotency markers found 

in both ES cells and EpiSCs (Nanog and Oct4) as well as markers more specific to 

EpiSCs (FGF5 and Nodal) (Figure 28).  The cultures that were consistently maintained in 

doxycycline had higher expression levels of both pluripotency and EpiSC markers, 

suggesting that doxycycline-induced miR-200c/141 expression may also assist in 

maintaining these cells as EpiSCs throughout long-term passaging. 

In summary, gene expression and morphology suggest that the maintained 

expression of miR-200 family microRNAs allows the loss of several ES cell markers, but 

promotes maintenance of the EpiSC state, where cells fail to differentiate towards 

subsequent germ layer fates such as mesoderm. 
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Figure 16:  Snail alters the expression of several microRNA families within 24 
hours.  (A)  Plotted are relative expression of 627 microRNAs in DKK and 
DKK+dox conditions on day 3 of A2.Snail ESC differentiation as described in Fig. 
9A.  Red dots represent microRNAs which were considered to be differentially 
expressed in the two samples with a p-value <0.01.  (B)  Table of microRNA families 
significantly altered within 24 hours of Snail expression.  MicroRNAs in bold have 
been validated by an additional microRNA chip (biological replicate) and/or TaqMan 
microRNA q-PCR assays.  
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Figure 17:  Snail represses expression of the miR-200 family.  Real-time PCR of 
selected microRNAs using TaqMan microRNA assays.  RNA samples were collected 
daily from ES cells differentiated as described in Fig. 9A.  Doxycycline treatment is 
indicated by light gray bars (no dox) and dark gray bars (dox).  Samples were 
normalized to U6 snRNA.  Expression for each microRNA is shown relative to the 
condition with the lowest microRNA expression (D4 NT+dox), which was set at 1.
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Figure 18:  Generation of A2.miR200c cell line.  (A)  Diagram of the tetracycline-
inducible locus for the A2.miR200c ES cell line.  (B)  TaqMan microRNA assays 
were performed for the indicated microRNAs in A2.miR200c lines as undifferentiated 
ES cells or after 4 days of differentiation +/- doxycycline addition at day 2.
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Figure 19:  Expression of miR-200c/141 prevents EMT, differentiation, and 
mesoderm commitment in differentiating ES cells.  (A)  FACS analysis of 
E-cadherin on days 4 and 5 of A2.miR200c ES cell differentiation as described in Fig. 
9A.  Shown are conditions with and without the addition of doxycycline.  Shown are 
gated live cells.  (B)  FACS analysis of Flk1, PDGFRα, E-cadherin, and SSEA1 on 
day 5 of A2.miR200c ES cell differentiation.  Doxycycline was added beginning on 
Day 0 and replenished every other day.  Shown are gated live cells.  
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Figure 20:  Generation of A2.miR200a ES cell line.  (A)  Schematic of the 
tetracycline-inducible locus for the A2.miR200a cell line.  (B)  TaqMan microRNA 
assays were performed for the indicated microRNAs in A2.miR200a lines as undiffer-
entiated ES cells or after 4 days of differentiation +/- doxycycline addition at day 2. 
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Figure 21:  Expression of miR-200b/a/429 prevents EMT and mesoderm differ-
entaition in differentiating ES cells.  FACS analysis examining E-cadherin (A), 
Flk1 (B), and Pdgfrα (B) on day 5 of A2.miR200a ES cells differentiated in normal 
conditions +/- doxycycline addition on day 2 (and replenished on day 4).  Shown are 
gated live cells.
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Figure 22:  Expression of a different microRNA, miR-335 does not inhibit EMT 
or mesoderm commitment.  (A)  TaqMan microRNA assays were performed to 
detect levels of miR-200c (A2.miR200c) or miR-335 (A2.miR335) on day 3 of ES cell 
differentiation.  Doxycycline was added at day 2 and RNA was collected on day 3.  
Expression levels were normalized to U6 snRNA levels.  (B)  FACS plots examining 
SSEA1/E-cadherin and Flk1/PDGFRα on day 4 of A2.miR200c and A2.miR335 
differentiation, with or without doxycycline addition on day 2.
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Figure 23:  Inhibition of miR-200c/141 leads to modest induction of MET and 
differentiation, but not mesoderm commitment.  (A)  Representative image of 
A2lox ES cells 24 hours after transfection with 50nM of FITC-labeled miRCURY 
LNA miR-141 Power Inhibitor.  (B)  FACS plots of SSEA1 and E-cadherin on day 4 
and 5 of differentiation of A2lox ES cells transfected with the indicated miRCURY 
LNA Power Inhibitors.  (C)  FACS plots of Flk1 and PDGFRα on day 5 of differen-
tiation of A2lox ES cells described in (B).
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Figure 24:  Gene expression profile of A2.miR200c ES cell differentiation with 
and without doxycycline.  Relative gene expression in A2.miR200c ES cells differ-
entiated in the absence or presence of doxycycline from day 2 and replenished on day 
4.  RNA was collected on day 3, 4, and 5 of ESC differentiation for microarray 
analysis.  Raw data can be found in the NCBI GEO database under accession number 
GSE24289.  (A-E)  Shown are relative gene expression levels of the indicated ES cell 
markers over the timecourse of A2.miR200c differentiation with (dashed line) and 
without (filled line) doxycycline.  Relative gene expression levels of markers of ES 
cells (A), pluripotency (B), mesoderm (C), primitive ectoderm (D), and 
EpiSCs/primitive streak (E).
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Figure 25:  Maintenance of miR-200 expression generates cells with an EpiSC 
transcriptional profile.  (A)  Light microscopy of day 3.5 adherent ES cell differen-
tiation of A2.miR200c cells with and without doxycycline addition on day 2.  (B)  
Microarray data from day 5 A2.miR200c ES cells treated with doxycycline were 
normalized to MC50 ES cell microarray expression data.  Ratios of selected genes 
were plotted on a log scale.  
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Figure 26:  Experimental setup for generation of ESD-EpiSCs.  Diagram of the 
setup of ES-cell derived EpiSC cultures from A2.miR200c cells.  A2.miR200c cells 
were differentiated as embryoid bodies in 10% fetal calf serum in the absence of LIF 
for 5 days in the presence or absence of doxycycline.  On day 5, embryoid bodies 
were trypsinized and plated in EpiSC culture conditions, with or without doxycycline 
(see Methods for details).  Prior to passaging on day 10, colonies were counted in the 
various culture conditions.  A2.miR200c cells that were not treated with doxycyline 
from days 0-5 failed to survive and proliferate more than a few passages.  
A2.miR200c cells that were treated with doxycycline from days 0-5 were passaged 
and maintained for an additional 45 days as ES-derived EpiSCs (for 50 days total), 
when they were harvested for RNA. 
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Figure 27:  Generation of ESD-EpiSCs from A2.miR200c cells treated with and 
without doxycycline.   (A)  FACS for E-cadherin/SSEA1 and Flk1/PDGFRα expres-
sion on day 5 A2.miR200c cells treated with or without doxycycline (prior to plating 
in EpiSC conditions). (B)  Day 5 A2.miR200c ES cells from (A) were trypsinized and 
replated in EpiSC culture conditions (see Methods and Fig. 26 for further details), 
with and without doxycycline maintenance.  On day 10, the number of colonies per 
well were counted and documented.
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Figure 28:  qRT-PCR of ES and EpiSC markers in ESD-EpiSCs passaged for 50 
days.  q-RT-PCR of Nanog, Oct4, FGF5, and Nodal in A2.miR200c ES-derived 
EpiSCs 50 days after passaging in FGF and activin.  RNA from normal, low-passage 
ES cells grown in LIF was used to determine relative amounts of the indicated 
markers.  All expression values were normalized to GAPDH.
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Table 2:  MicroRNA Screen for Snail-Regulated MicroRNAs 
RNA samples were isolated on day 3 of ES cell differentiation, 24 hours 

after Snail induction 
 

  DKK+ 
Snail 

DKK DKK+Snail/ 
DKK 

Reporter Name p-value Mean Mean Fold 
Change 

mmu-miR-21 1.05E-08 61 678 0.09 
mmu-miR-295 4.56E-08 92 480 0.19 
mmu-let-7c 5.72E-07 101 510 0.20 
mmu-miR-494 1.12E-06 1,073 1,687 0.64 
mmu-miR-292-3p 1.23E-06 849 2,409 0.35 
mmu-miR-20b 1.40E-06 1,983 3,768 0.53 
mmu-miR-106a 2.65E-06 1,937 3,563 0.54 
mmu-miR-1187 2.99E-06 10,710 5,103 2.10 
mmu-miR-293 4.22E-06 5,990 10,014 0.60 
mmu-miR-669f 5.60E-06 4,408 1,894 2.33 
mmu-miR-302b 6.54E-06 1,056 175 6.02 
mmu-miR-574-5p 6.64E-06 11,250 5,323 2.11 
mmu-miR-302d 6.98E-06 429 117 3.66 
mmu-miR-690 7.01E-06 4,304 6,887 0.62 
mmu-miR-574-3p 7.89E-06 6,013 2,328 2.58 
mmu-miR-720 7.96E-06 985 1,999 0.49 
mmu-miR-182 1.36E-05 558 1,009 0.55 
mmu-miR-714 2.26E-05 2,750 3,887 0.71 
mmu-miR-483 2.32E-05 682 296 2.30 
mmu-miR-294 3.18E-05 2,809 10,250 0.27 
mmu-miR-25 3.23E-05 827 1,349 0.61 
mmu-miR-466f-3p 4.48E-05 8,627 3,981 2.17 
mmu-miR-466i 4.88E-05 7,485 3,624 2.07 
mmu-miR-672 5.13E-05 890 444 2.01 
mmu-miR-23b 6.30E-05 619 1,022 0.61 
mmu-miR-467f 6.84E-05 8,071 4,282 1.89 
mmu-miR-466g 7.11E-05 4,255 1,685 2.52 
mmu-miR-466f 7.69E-05 1,472 647 2.27 
mmu-miR-466h 8.80E-05 411 163 2.53 
mmu-miR-329 9.27E-05 1,188 1,788 0.66 
mmu-miR-17 9.49E-05 3,669 5,359 0.68 
mmu-miR-467a* 1.10E-04 1,474 516 2.86 
mmu-miR-466j 1.11E-04 824 309 2.66 
mmu-miR-1195 1.16E-04 631 457 1.38 
mmu-miR-106b 1.22E-04 432 522 0.83 
mmu-miR-18a 1.23E-04 311 505 0.62 
mmu-miR-20a 1.25E-04 4,029 5,832 0.69 
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mmu-miR-134 1.26E-04 1,676 1,107 1.51 
mmu-miR-23a 1.34E-04 252 478 0.53 
mmu-miR-183 1.42E-04 1,578 2,251 0.70 
mmu-miR-191 1.51E-04 336 514 0.66 
mmu-let-7a 2.08E-04 148 412 0.36 
mmu-miR-411* 4.15E-04 814 1,270 0.64 
mmu-miR-290-5p 4.22E-04 6,011 7,782 0.77 
mmu-miR-467b* 4.59E-04 2,371 1,069 2.22 
mmu-miR-805 5.73E-04 2,120 1,469 1.44 
mmu-miR-467g 5.82E-04 587 192 3.06 
mmu-miR-292-5p 6.70E-04 2,395 3,623 0.66 
mmu-miR-19b 7.91E-04 436 676 0.64 
mmu-miR-376b 1.23E-03 1,869 1,414 1.32 
mmu-miR-680 1.64E-03 2,635 1,994 1.32 
mmu-miR-671-5p 1.79E-03 874 1,047 0.83 
mmu-miR-379 2.44E-03 3,387 2,905 1.17 
mmu-miR-107 2.47E-03 627 553 1.13 
mmu-miR-689 2.81E-03 993 1,422 0.70 
mmu-miR-92a 3.87E-03 2,916 3,919 0.74 
mmu-miR-16 3.99E-03 1,132 1,502 0.75 
mmu-miR-15b 5.21E-03 1,585 1,952 0.81 
mmu-miR-130b 6.52E-03 642 561 1.15 
 
The following transcripts are statistically significant but have low signals 
(signal < 500) 
 
  DKK+ 

Snail 
DKK DKK+Snail/ 

DKK 
Reporter Name p-value Mean Mean Fold 

Change 
mmu-miR-27b 1.58E-08 89 253 0.35 
mmu-miR-200c 3.19E-06 91 301 0.30 
mmu-miR-674 4.22E-06 214 101 2.11 
mmu-miR-874 6.92E-06 46 176 0.26 
mmu-let-7b 9.45E-06 78 357 0.22 
mmu-miR-200b 9.62E-06 35 108 0.33 
mmu-miR-24 1.04E-05 104 249 0.42 
mmu-miR-466d-3p 1.09E-05 133 43 3.12 
mmu-miR-489 1.86E-05 63 137 0.46 
mmu-let-7i 2.32E-05 41 131 0.31 
mmu-let-7f 2.47E-05 83 215 0.39 
mmu-miR-199a-3p 3.47E-05 53 95 0.56 
mmu-miR-669c 3.99E-05 137 43 3.17 
mmu-miR-712 4.49E-05 68 159 0.42 
mmu-miR-294* 5.78E-05 60 104 0.57 
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mmu-miR-291a-5p 5.93E-05 106 218 0.49 
mmu-miR-27a 7.37E-05 18 58 0.31 
mmu-miR-206 7.65E-05 77 31 2.50 
mmu-miR-877* 8.97E-05 129 67 1.91 
mmu-miR-691 9.04E-05 136 72 1.91 
mmu-miR-297a 1.03E-04 115 48 2.39 
mmu-miR-207 1.09E-04 138 71 1.93 
mmu-miR-669e 1.30E-04 160 63 2.53 
mmu-miR-155 1.33E-04 36 76 0.48 
mmu-miR-466f-5p 1.39E-04 164 67 2.45 
mmu-miR-669h-3p 1.46E-04 265 71 3.74 
mmu-miR-188-5p 2.38E-04 120 35 3.38 
mmu-miR-322* 2.80E-04 48 17 2.88 
mmu-miR-15a* 2.86E-04 143 66 2.16 
mmu-miR-696 2.91E-04 150 77 1.95 
mmu-miR-214 3.33E-04 218 154 1.42 
mmu-miR-466a-3p 3.37E-04 74 23 3.16 
mmu-miR-363 4.04E-04 109 225 0.48 
mmu-miR-291a-3p 4.16E-04 21 78 0.27 
mmu-miR-125b-5p 4.33E-04 133 194 0.69 
mmu-miR-351 4.40E-04 124 38 3.24 
mmu-miR-468 5.38E-04 170 59 2.85 
mmu-miR-652 5.65E-04 61 35 1.76 
mmu-miR-7a 5.92E-04 136 283 0.48 
mmu-miR-327 5.98E-04 100 62 1.62 
mmu-miR-29a 6.46E-04 45 139 0.32 
mmu-miR-346 7.19E-04 419 234 1.79 
mmu-miR-143 8.35E-04 25 46 0.53 
mmu-miR-195 9.28E-04 172 118 1.46 
mmu-miR-411 9.85E-04 121 168 0.72 
mmu-let-7d 1.18E-03 74 155 0.48 
mmu-miR-467e* 1.22E-03 178 56 3.20 
mmu-miR-299* 1.26E-03 131 174 0.75 
mmu-miR-669d 1.26E-03 102 39 2.61 
mmu-miR-374 1.27E-03 119 226 0.52 
mmu-miR-708 1.32E-03 57 79 0.72 
mmu-miR-712* 1.41E-03 54 106 0.51 
mmu-miR-466b-3-3p 1.55E-03 68 27 2.52 
mmu-miR-31 2.30E-03 40 55 0.74 
mmu-miR-183* 2.41E-03 53 77 0.69 
mmu-miR-301a 2.45E-03 43 61 0.71 
mmu-miR-485 2.46E-03 114 84 1.35 
mmu-miR-429 2.52E-03 16 34 0.46 
mmu-miR-221 2.58E-03 55 75 0.73 
mmu-miR-150* 2.75E-03 84 46 1.82 
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mmu-miR-34c* 2.78E-03 96 59 1.63 
mmu-miR-342-5p 3.27E-03 87 48 1.82 
mmu-miR-713 3.67E-03 62 32 1.93 
mmu-miR-501-3p 4.38E-03 39 23 1.65 
mmu-miR-18b 4.43E-03 33 66 0.50 
mmu-miR-295* 4.79E-03 53 78 0.68 
mmu-miR-674* 5.06E-03 43 30 1.44 
mmu-miR-328 5.29E-03 64 44 1.45 
mmu-let-7g 6.75E-03 27 48 0.55 
mmu-miR-19a 6.76E-03 14 24 0.58 
mmu-let-7e 7.17E-03 324 225 1.44 
mmu-miR-770-3p 8.17E-03 109 79 1.37 
mmu-miR-467h 8.93E-03 61 24 2.55 
mmu-miR-125a-5p 9.72E-03 345 236 1.46 
 

65



CHAPTER 5 

Snail, miR-200, and activin cooperate to regulate exit from the EpiSC stage 

 

Inhibition of Activin promotes EMT and down-regulation of the miR-200 family 

concomitant with neuroectoderm differentiation 

EpiSCs and ESD-EpiSCs are maintained through the actions of Activin (Brons et 

al., 2007; Tesar et al., 2007; Zhang et al., 2010), a TGFβ family member expressed 

throughout the anterior primitive streak in the developing embryo.  It has previously been 

shown that removal of Activin from ES cell cultures promotes the differentiation of cells 

toward neuroectodermal lineages (Chambers et al., 2009).  However, the role of 

microRNAs and EMT in this process has not been examined. 

We hypothesized that inhibition of Activin with SB-431542, a small molecule 

inhibitor of ALK-4, -5, and -7, would prevent maintenance of the ESD-EpiSC in 

differentiating ES cell cultures and therefore lead to EMT and down-regulation of the 

miR-200 family.  When we treated differentiating ES cell cultures with SB-431542 on 

day 2, we saw down-regulation of E-cadherin as well as SSEA1 in both the presence and 

absence of DKK (Figure 29, 30).  Consistent with SB-431542 promoting neuroectoderm, 

we see a loss of the early mesoderm markers Flk1 and Pdgfrα (Figure 31).   

Along with EMT, inhibition of Activin also led to the down-regulation of miR-

200b and miR-141 (Figure 32), consistent with the role of these miRNAs in maintaining 

cells in an epithelial, EpiSC-like state.  Therefore, both Snail and Activin inhibition are 

capable of inducing EMT and promoting exit from the epiblast as assessed by SSEA1 
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down-regulation.  However, the germ layer induction differs in these two scenarios as 

Snail promotes mesoderm fates while SB-431542 biases towards neuroectoderm. 

 

Snail and the miR-200 family cooperate with Activin to regulate exit from the ESD-

EpiSC state 

Because Activin appeared to be important in preventing EMT and differentiation 

in both NT and DKK-treated cultures, we wanted to know whether the miR-200 family 

required Activin for maintenance of cells in an SSEA1+/E-cadherin+ ESD-EpiSC state.  

We therefore examined differentiation of ES cells harboring inducible miR-200c/141 in 

the presence or absence of SB-431542 from day 2.  In the absence of SB-431542, miR-

200/141 was capable of retaining cells as E-cadherin+/SSEA1+ (Figure 33, bottom two 

plots).  Importantly, when Activin signaling is inhibited by SB-431542, miR-200 is no 

longer capable of preventing cells from differentiating or undergoing EMT (Figure 33, 4th 

and 6th plots).  This appears to be in part due to its inability to maintain sufficiently low 

levels of the transcription factors Zeb1 and Zeb2 (Figure 34).  Furthermore, when Activin 

is inhibited in cultures expressing Snail, more cells undergo EMT and differentiation than 

in either condition alone (Figure 33, top three plots).  Considering the expression pattern 

of these factors in the gastrulating embryo, a temporal order of migration and 

differentiation of cells from the epiblast through the primitive streak is apparent.  Snail is 

expressed at highest levels in the posterior primitive streak, while nodal/Activin signaling 

is highest in the anterior streak.  Our finding that miR-200 is excluded from mesoderm in 

differentiating ES cells corresponds with expression data in the chick (Darnell et al., 

2006), indicating that miR-200 has an inverse expression pattern to Snail and is 
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correlated with Activin expression in the gastrulating embryo.  By modulating expression 

levels of Snail, Activin, and miR-200, we are able to control the order in which cells 

undergo EMT and transition out of the ESD-EpiSC state.  These findings correlate with 

the mouse embryo where cells of the posterior streak are the first to migrate, followed by 

a subsequent cascade of migration by cells positioned more anteriorly. 

Taken together, we find that Snail, Activin, and the miR-200 family cooperate to 

regulate epiblast differentiation and progression through EMT and germ layer fate 

commitment (Figure 35). 
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Figure 29:  Inhibition of activin signaling promotes EMT in differentiating ES 
cells.  A2.Snail ES cells were differentiated as described in Fig. 9A in the presence of 
DKK with or without the addition of 10μM SB-431542 on day 2.  Live cells were 
gated and a histogram of E-cadherin expression on day 3, 4, and 5 of differentiation 
was plotted.  
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Figure 30:  Inhibition of activin signalnig promotes down-regulation of SSEA1.  
FACS plots illustrating E-cadherin and SSEA1 expression on day 5 of ES cell differ-
entiation as described in Fig. 29. 
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Figure 31:  Activin signaling is required for the formation of mesoderm.  FACS 
plots of Flk1-PE and PDGFRα-APC in day 5 ES cells treated with or without 10μM 
SB-431542 from day 2.
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Figure 32:  Activin signaling maintains expression of the miR-200 family.  Real-
time PCR of miR-200b and miR-141 microRNAs using TaqMan microRNA assays.  
RNA samples were collected daily from ES cells differentiated with DKK from day 
0, with or without the addition of SB-431542.  Samples were normalized to U6 
snRNA.
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Figure 33:  Snail, miR-200, and activin cooperate to regulate exit from the 
ESD-EpiSC state.  A2.miR200c and A2.Snail cells were differentiated as described 
in Fig. 9A, with or without the addition of 10μM SB-431542, and with or without 
doxycycline on day 2 (replenished on day 4 for A2.miR200c).  Shown is the FACS 
analysis for SSEA1 and E-cadherin on day 5 of differentiation.  Unless indicated by 
Snail expression, all cell lines shown were A2.miR200c.
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Figure 34:  qRT-PCR of EMT and ES cell factors affected by miR-200 and 
activin activity.  A2.miR200c ES cells were differentiated as described in Figure 33.  
RNA was isolated on day 5, and qRT-PCR was performed for the genes indicated.  
All samples were normalized to GAPDH and expression levels are given relative to 
day 5 NT condition, set to 1.
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Figure 35:  Working model for the role of Snail, miR-200, and activin in ES cell 
differentiation.
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CHAPTER 6 

Snail promotes the cell-autonomous generation of Flk1+ endothelial cells through 

the repression of the miR-200 family 

 

Snail induces a Flk1+PDGFRα- population of endothelial cells independent of 

primitive streak signaling pathways 

Using an ES cell line that inducibly expresses Snail upon addition of doxycycline 

(A2.Snail)(Lindsley et al., 2008), we previously found that Snail could induce EMT and 

accelerate mesoderm commitment in differentiating ES cells as assessed by the 

mesoderm markers Flk1 and PDGFRα (Figure 14).  To evaluate how Snail induces Flk1+ 

and PDGFRα+ cell populations, we analyzed the differentiation of A2.Snail ES cells 

while inhibiting Wnt, Activin, and BMP pathways, which are known to regulate primitive 

streak formation and patterning.  Doxycycline-induction of Snail on day 1 generated 

populations expressing PDGFRα and Flk1, corresponding to early paraxial and lateral 

mesoderm respectively, by day 3 (Figure 36).  Interestingly, when BMP, Activin or Wnt 

pathways were inhibited (by DKK, Noggin, or SB431542 respectively), the PDGFRα-

Flk1+ population was selectively maintained (Figure 36).  These results suggested that 

Snail induces the Flk1+ single-positive population independently of cell-extrinsic cues 

important for primitive streak formation. 

Since hemangioblasts express Flk1 and arise early in ES cell differentiation(Choi 

et al., 1998), we wondered whether Snail-induced Flk1+ cells might be progenitors of 

blood and endothelial lineages.  We therefore assessed the Flk1+PDGFRα- cells induced 

by Snail for expression of other markers associated with endothelial and blood 
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progenitors.  VE-cadherin, Tie-2, c-kit, and CD34 were expressed uniformly in the Flk1+ 

population, similar to the normal population of Flk1+ cells generated by Snail in the 

absence of DKK (Figure 37). 

 We next asked whether Snail-induced Flk1+ cells had the potential to generate 

blood and endothelial lineages.  To assess blood-forming potential, differentiating 

A2.Snail cells from untreated and doxycycline-treated cultures were plated in 

methylcellulose on day 3.  A2.Er71 cells, harboring a doxycycline-inducible transcription 

factor Er71 that robustly induces hemangioblast differentiation(Lee et al., 2008), was 

used as a positive control.  Er71 strongly induced blast colonies as expected, but Snail 

was at least 100-fold less efficient in inducing blast colonies under all conditions (Figure 

38A).  Similar results were seen in additional hemangioblast assays (Figure 38B, bottom 

panel, and data not shown).  No improvement in Snail’s ability to induce either primitive 

or definitive colonies was found by plating cells from day 6 (data not shown). In 

summary, Snail induces a Flk1+ population that lacks significant potential to form blood 

lineages.   

 To examine the endothelial potential of A2.Snail cells, differentiating A2.Snail 

and A2.Er71 cells were treated with or without doxycycline on day 1 and on day 3 were 

trypsinized and replated on Matrigel in the presence of VEGF.  After 24 hours, 

doxycycline-treated A2.Snail cells formed networks of cells with a tubular, sprouting 

morphology characteristic of endothelial cell cultures (Figure 39), whereas untreated 

A2.Snail cells lacked these features, appearing instead as typical embryoid bodies.  

A2.Snail cells treated with DKK and A2.Er71 cells showed similar morphological 

findings depending on the presence or absence of doxycycline (Figure 39).   
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Snail's induction of Flk1+ cells is cell-autonomous 

 Because Snail induced this endothelial-like Flk1+ population independently of 

BMP, Activin, and Wnt signaling, we asked whether it occurred by a cell-intrinsic or 

cell-extrinsic mechanism.  We carried out a series of mixing experiments using various 

ratios of A2.Snail ES cells and A2.CAG.GFP, an ES cell line that constitutively expresses 

the GFP protein (Figure 40A).  Without doxycycline treatment, neither cell line expressed 

significant Flk1 on day 4 at any ratio of cell mixing (Figure 40B, left panels).  However, 

doxycycline treatment caused expression of Flk1 only in A2.Snail cells under all mixing 

ratios, while A2.GFP cells remained negative for Flk1 expression (Figure 40B, right 

panels).  These results indicate that Snail promotes Flk1 expression through a cell-

intrinsic mechanism. 

 

Snail Flk1+ endothelial progenitors transcriptionally resemble primitive endoderm 

 Like cells of the embryo’s inner cell mass, ES cells are heterogeneous with 

respect to their commitment to primitive endoderm or the epiblast, a process regulated by 

the transcription factors GATA6 and Nanog, respectively (Chazaud et al., 2006; Singh et 

al., 2007) .  Conceivably, the mixed Flk1/PDGFRα expression pattern in Snail-expressing 

ES cells might be based upon differential actions of Snail in either GATA6-expressing or 

Nanog-expressing ES cells.    

To reveal potential heterogeneity, we used flow cytometry to purify Flk1+ high 

and Flk1- ES cells 24 hrs after induction of Snail in the presence or absence of DKK 

(Figure 41) and compared their transcriptional profiles using gene expression 
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microarrays.  Consistent with our findings above, Snail-induced Flk1+ cells expressed 

numerous factors associated with endothelial progenitors (Figure 41).  In addition, known 

targets of Snail, such as Occludin, Claudin 3, and Crumbs homolog 3 were markedly 

inhibited by induction of Snail in both Flk1+ and Flk1- population compared to cells in 

which Snail was not induced, indicating Snail was functional in both populations (Figure 

42A).  In contrast, other genes showed differential expression within these two subsets.   

In particular, the epiblast-specific genes Nanog and Oct4 were selectively in Flk1- cells 

(Figure 42B).  In contrast, primitive endoderm-related genes such as GATA6, Sox7, and 

BMP2 were selectively expressed in the Flk1+ subset (Figure 42C).  Interestingly, in 

addition to markers of primitive endoderm, Flk1+ cells also shared a number of markers 

found to be upregulated in cancer stem cells, including CD105, CD34, CD44, Bmi1, and 

c-myc (Figure 42D, E).  This could suggest that promotion of Flk1+ cells by Snail may be 

mediated by actions selectively within the GATA6+ subset of an initially heterogeneous 

ES cell population.   

FGF receptor signaling is required for the formation of primitive 

endoderm(Yamanaka et al., 2010) and at least some cancer stem cells(Fillmore et al., 

2010).  To test if FGF signaling was required for Snail-induced Flk1 expression, we used 

the FGF signaling antagonist SU5402(Sun et al., 1999) .  Treatment of ES cells with 

SU5402 from day 1 reduced the number of Flk1-expressing cells by approximately 3-fold 

(Figure 43A), and blocked Snail's ability to down-regulate E-cadherin expression (Figure 

43B).  Consistent with these findings, FGFR1 knockout mice have defective Snail 

function and expression(Ciruna and Rossant, 2001), which suggests that the SU5402 

findings are specific to FGF and not simply due to antagonizing Flk1 signaling itself. 
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Snail's induction of Flk1+ endothelial progenitors is indirect 

Snail is thought to act primarily as a transcriptional repressor through its N-

terminal SNAG domain(Grimes et al., 1996), and yet appeared to be promoting increased 

Flk1 expression.  To test if Flk1 induction required the SNAG domain, we created the 

A2.ΔSNAG.Snail cell line, in which the SNAG repressor domain has been removed from 

the inducible Snail protein.  As a control, we confirmed that deletion of this domain 

blocks Snail's ability to inhibit expression of E-cadherin (Figure 44A, B), a known direct 

transcriptional target of Snail(Cano et al., 2000).  In addition, this deletion also prevented 

the induction of Flk1 expression induced by Snail in differentiating ES cells (Figure 

45A).  A gene chip analysis of this cell line 24 hours after doxycycline addition 

confirmed that ΔSNAG.Snail was unable to repress epithelial or neuroectoderm markers 

(compared to wildtype Snail), nor was it able to induce mesenchymal or vascular 

mesoderm markers (Figure 45B).  This result indicates that Snail’s induction of Flk1 is 

indirect, and may be mediated through Snail repressing a repressor of Flk1 expression. 

 

The miR-200 family directly targets Flk1 and Ets1 3' UTRs 

 We previously found several miRNAs, including the miR-200b/c/429 family, that 

are inhibited by Snail during ES cell differentiation.  We therefore wondered if Snail's 

generation of Flk1+ cells was mediated by repression of miRNAs that may repress Flk1 

or other factors important for endothelial differentiation.  Interestingly, we found that 

Flk1 itself is predicted to be a target of the miR-200b/c/429 family (Figure 46A).  

Consistent with this prediction, the induction of miR-200c in A2.miR200c/141 ES cells 
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reduces Flk1 mRNA and protein expression (Figure 46B, 19B).  This regulation of Flk1 

expression maps to the 3' UTR of the Flk1 transcript, which contains a predicted miR-

200c target at position 959 (Figure 46A).  To test whether miR-200c directly targets Flk1, 

we generated luciferase reporter constructs containing a CMV-driven luciferase transcript 

upstream of the Flk1 3' UTR.  We transfected these constructs into 293T cells with or 

without a miR-200c mimic. We found that miR-200c selectively repressed luciferase 

activity in constructs containing the native Flk1 3' UTR by 50%, but failed to reduce 

activity of a luciferase construct in which the target sequence at position 959-965 was 

scrambled (Figure 46C).  Thus, miR-200c appears to directly down-regulate Flk1 

expression through the targeting of the Flk1 3' UTR.    

 We noted that two other genes Ets1 and Gata2, which are known to be important 

in vasculogenesis(Lugus et al., 2007; Wei et al., 2009), were also induced by Snail 

(Figure 41).  Interestingly, both Ets1 and Gata2 also contained predicted target sequences 

for miR-200c in their 3’ UTR (Figure 47A, 48A).  Similar to Flk1, Ets1 and Gata2 

transcripts were both repressed by doxycycline induction of miR-200c/141in 

A2.miR200c/141 ES cells (Figure 47B, 48B).  To test whether miR-200c directly 

targeted Ets1 and Gata2 3' UTRs, we generated additional CMV-luciferase reporter 

constructs upstream of Ets1 and Gata2 3' UTRs.  Our data (Figure 47C) confirmed that 

the Ets1 3' UTR is responsive to miR-200c, as demonstrated by reduced luciferase 

activity in the presence of miR-200c, as recently reported(Chan et al., 2011).  We further 

identified the location of these responsive sites to be at positions 574, 625, and 633 in the 

Ets1 3' UTR transcript.  In contrast, miR-200c did not appear to directly repress the 

Gata2 3' UTR  (Figure 48C).  In addition to Flk1 and Ets1, Snail strongly induced 
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expression of Flt1 as well as Neuropilin 1 (Figure 41).  Notably, these genes are also 

known to be targets of miR-200(Lin et al., 2009; Roybal et al., 2011).  Together, these 

data support the hypothesis that miR-200 family microRNAs directly repress the level of 

several genes important or required for early vasculogenesis. 

 

Snail requires the down-regulation of the miR-200 family to induce Flk1+ cells 

 To determine if repression of miR-200c/141 is required for Snail’s enhancement 

of Flk1 in differentiating ES cells, we generated A2.Snail.miR200c ES cell lines 

expressing doxycycline-inducible Snail, but constitutive expression of miR-200c/141 

under the control of the chicken β-actin promoter (Figure 49A, B, C).  We carried out a 

dose-response for doxycycline and examined the induction of Flk1 in these cell lines 

using flow cytometry (Figure 50).  Without expression of miR-200c and miR-141, half-

maximal induction of Flk1 occurred at 25ng/ml doxycycline, and maximal Flk1 was 

achieved at 100ng/ml (Figure 50, top row).  In A2.Snail.miR200c cells constitutively 

expressing miR-200c and miR-141, there was a significant inhibition of Flk1 induction 

throughout the dose range of doxycycline (Figure 50, bottom row).  Constitutive 

expression of miR-200a/b/429 family members in an additionally generated 

A2.Snail.miR200a line also reduced Flk1 induction in response to doxycycline, although 

not as strongly as seen with miR-200c and miR-141 (Figure 50, middle row).  Western 

analysis of protein expression verified that induction of Snail was similar across these 

cell lines (Figure 51B).   Notably, Snail's ability to down-regulate E-cadherin was 

compromised in the cell lines constitutively expressing the miR-200 family (Figure 51A).  

Since the miR-200 family directly targets Zeb1 and Zeb2 expression(Park et al., 2008), 
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this may suggest that Snail requires their function for efficient E-cadherin down-

regulation.  Overall, these data show that induction of Flk1 cells by Snail requires the 

down-regulation of the miR-200 family, which directly target the 3' UTRs of Flk1 itself, 

Ets1, and additional factors important in vasculogenesis. 

 

(Acknowledgements:  E.M. Langer performed the Flk1+ sort and gene chip; she also 

generated the pMir-Luciferase constructs for the endogenous Flk1 and Ets1 3' UTRs) 
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Figure 36:  Snail induces a Flk1+PDGFRα- population independent of Wnt, 
BMP, and activin signaling.  A2.Snail cells were differentiated with or without the 
addition of doxycycline and the indicated inhibitors on day 1 of differentiation.  
Shown is a FACS analysis for Flk1 and PDGFRα on day 3 of differentiation, where 
plots are gated on live cells.  
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Figure 37:  Snail-induced Flk1+ cells express hemangioblast markers.  A2.Snail 
cells were differentiated and analyzed by FACS on day 3 of differentiation in the 
presence or absence of DKK +/- doxycycline on day 1.  Histograms for VE-cadherin, 
Tie-2, c-kit, and CD34 are shown for Flk1+ and Flk1- gated populations.
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Figure 38:  Snail does not promote hematopoietic or hemangioblast differentia-
tion.  (A)  A2.Snail and A2.Er71 cells were differentiated in the presence or absence 
of DKK with doxycycline addition on day 1.  On day 3, cells were trypsinized and 
plated in triplicate methylcellulose dishes with defined cytokines.  On day 8, 
BL-CFC colonies were counted for all conditions. Shown is the average # of BL-
CFCs counted per 50,000 cells plated.   (B)  A2.Er71 cells were differentiated with or 
without doxycycline addition on day 1.  On day 3, cells were trypsinized and plated 
in triplicate methylcellulose dishes with defined cytokines for primitive and defini-
tive hematopoiesis (top panel; quantitated in (A)) or hemangioblast formation 
(bottom panel).  Shown are representative images for typical cell clusters of each 
condition.  Snail showed only rare hemangioblast colonies in these assays that were 
of a similar frequency to control (see (A)). 
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Figure 39:  Snail promotes endothelial-like differentiation in a subset of differ-
entiating ES cells.  (A)  Embryoid bodies from day 3 A2.Snail differentiation 
cultures (Fig. 38) were trypsinized and replated in Matrigel-coated 24-well plates 
with VEGF.  On day 4, cultures were examined for the formation of networks and 
tubules.  Red lines help delineate the outline of the vascular network while arrows 
show examples of tubules.  (B)  Embryoid bodies from day 3 A2.Snail and A2.Er71 
differentiation cultures were trypsinized and replated in Matrigel-coated 24-well 
plates with VEGF.  On day 4, cultures were examined for the formation of networks 
and tubules.
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Figure 40:  Snail’s promotion of Flk1+ cells is cell-autonomous.  (A)  Diagram of 
mixing experiment setup.  (B)  A2.CAG.GFP and A2.Snail ES cells were mixed in 
ratios of 2:1, 1:1, and 1:2 at the onset of differentiation.  Doxycycline was added on 
day 2 of differentiation and FACS analysis was performed on day 4.  Shown is a 
FACS plot of live cells, examining GFP expression as well as Flk1.
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Figure 41:  Snail-induced Flk1+ cells express high levels of factors important for 
vasculogenesis.  (A)  A2.Snail cells were differentiated in DKK, with or without the 
addition of doxycycline on day 2.  On day 3, Flk1+ high and Flk1- cells were sorted 
and RNA was isolated from each population.  Total RNA was then submitted for gene 
chip analysis to characterize the separate populations.  (B)   Selected list of highly 
induced vascular genes induced in Flk1+ cells 24 hours after Snail induction.
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Figure 42:  Snail Flk1+ cells appear to be derived from a primitive endoderm 
subset of ES cells and share common markers with cancer stem cells.  Gene chip 
analysis described in Fig. 41.  Relative gene expression of epithelial direct targets 
(A), epiblast markers (B), primitive endoderm (C), pluripotency (D), and cancer stem 
cell markers in the sorted populations.
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Figure 43:  Snail induction of Flk1+ cells and EMT depends on FGF signaling.  
(A)  A2.Snail ES cells were differentiated with and without the addition of doxycy-
cline and the FGF-inhibitor SU-5402 on day 1.  FACS analysis was performed on 
day 3 for Flk1.  Shown are gated live cells.  (B)  A2.Snail ES cells were differentiated 
with and without the addition of doxycycline and the FGF-inhibitor SU-5402 on day 
1.  FACS analysis was performed on day 3 for E-cadherin.  Shown are gated live 
cells.
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Figure 44:  Generation of A2.∆SNAG.Snail cell line.  (A)  A2.Snail and A2.Δ
SNAG.Snail cells were differentiated as described in Fig. 9A.  Doxycycline was 
added on day 2 of differentiation and FACS analysis was performed on day 4.  
Shown is a FACS plot of live cells, examining E-cadherin expression.  (B)  RNA was 
collected from cells differentiated as in (A) on days 3, 4, and 5, and RT-PCR was 
performed for the indicated markers.  See Fig. 9 for A2.Snail comparison.
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Figure 45:  Snail depends on the SNAG repressor domain to induce Flk1+ cells.  
(A)  A2.Snail and A2.ΔSNAG.Snail cells were differentiated as described in Figure 
9A.  Doxycycline was added on day 2 of differentiation and FACS analysis was 
performed on day 4.  Shown is a FACS plot of live cells, examining Flk1 expression.  
(B)  RNA was isolated from day 3 DKK +/- dox cultures for each cell line and 
submitted for gene chip analysis.  Shown is a cluster analysis of various transcripts 
affected by Snail, including those related to vasculogenesis.
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Figure 46:  Snail directly targets the 3’ UTR of Flk1.   (A)  Diagram of predicted 
miR-200c target sites in the 3' UTR of Flk1.  (B)  Relative expression of Flk1 in 
A2.Snail sorted populations from Fig. 41 as well as in day 5 A2.miR200c cells 
induced or not induced to express miR-200c/141 by doxycycline from day 2.  (C)  
Relative luciferase activity of 293T cells transfected with a CMV-luciferase-Flk1 
3'UTR construct, with or without addition of a miR-200c mimic, as well as 293T 
cells transfected with a CMV-luciferase-Flk1 MUTATED 3' UTR construct, with or 
without addition of a miR-200c mimic.  Data was normalized to co-transfected 
CMV-Renilla activity.
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Figure 47:  Snail directly targets the 3’ UTR of Ets1.   (A)  Diagram of predicted 
miR-200c target sites in the 3' UTR of Ets1.  (B)  Relative expression of Ets in 
A2.Snail sorted populations from Fig. 41 as well as in day 5 A2.miR200c cells 
induced or not induced to express miR-200c/141 by doxycycline from day 2.  (C)  
Relative luciferase activity of 293T cells transfected with a CMV-luciferase-Ets1 
3'UTR construct, with or without addition of a miR-200c mimic, as well as 293T 
cells transfected with a CMV-luciferase-Ets1 MUTATED 3' UTR construct, with or 
without addition of a miR-200c mimic.  Data was normalized to co-transfected 
CMV-Renilla activity.
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Figure 48:  Snail does not directly target the 3’ UTR of Gata2.   (A)  Diagram of 
predicted miR-200c target sites in the 3' UTR of Gata2.  (B)  Relative expression of 
Gata2 in A2.Snail sorted populations from Fig. 41 as well as in day 5 A2.miR200c 
cells induced or not induced to express miR-200c/141 by doxycycline from day 2.  
(C)  Relative luciferase activity of 293T cells transfected with a CMV-luciferase-
Gata2 3'UTR construct, with or without addition of a miR-200c mimic, as well as 
293T cells transfected with a CMV-luciferase-Gata2 MUTATED 3' UTR construct, 
with or without addition of a miR-200c mimic.  Data was normalized to 
co-transfected CMV-Renilla activity.
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Figure 49:  Generation of A2.Snail.GFP, A2.Snail.miR200a, and 
A2.Snail.miR200c ES cell lines.  (A)  Diagram of cell lines generated with inducible 
Snail expression with or without constitutive expression of miR-200c/141 or 
miR200b/a/429.  (B)  Validation of miR-200c/141 overexpression in the 
A2.Snail.miR200c line.  RNA was harvested from ES cells as well as day 4 NT and 
NT+dox cultures of A2.Snail.GFP and A2.Snail.CAG.miR200c lines.  Taqman 
miRNA assays were performed to detect miR-200c and miR-141 levels normalized to 
U6 snRNA.  (C)  Validation of miR-200b/a/429 overexpression in the 
A2.Snail.miR200a line.  See (B) for setup.

TRE Snai1 pA CAG GFP pA

A2.Snail.GFP

A2.Snail.mir200c

TRE Snai1 pA CAG GFP pA

miR-
200c

miR-
141

A2.Snail.mir200a

TRE Snai1 pA CAG GFP pA

miR-
200b

miR-
200a

miR-
429

miR200c

A2.S
na

il.G
FP E

SC

A2.S
na

il.G
FP D

4 N
T

A2.S
na

il.G
FP D

4 N
Tdo

x

A2.S
na

il.m
iR

20
0c

 E
SC

A2.S
na

il.m
iR

20
0c

 D
4 N

T

A2.S
na

il.m
iR

20
0c

 D
4 N

Tdo
x

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

miR141

A2.S
na

il.G
FP E

SC

A2.S
na

il.G
FP D

4 N
T

A2.S
na

il.G
FP D

4 N
Tdo

x

A2.S
na

il.m
iR

20
0c

 E
SC

A2.S
na

il.m
iR

20
0c

 D
4 N

T

A2.S
na

il.m
iR

20
0c

 D
4 N

Tdo
x

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

R
el

at
iv

e 
E

xp
re

ss
io

n 
N

or
m

al
iz

ed
 to

 U
6 

sn
R

N
A

Validation of miR-200c/141 Overexpression in A2.Snail.miR200c Line

miR200b

A2.S
na

il.G
FP E

SC

A2.S
na

il.G
FP D

4 N
T

A2.S
na

il.G
FP D

4 N
Tdo

x

A2.S
na

il.m
iR

20
0a

 E
SC

A2.S
na

il.m
iR

20
0a

 D
4 N

T

A2.S
na

il.m
iR

20
0a

 D
4 N

Tdo
x

0

1

2

3

4

5

miR200a

A2.S
na

il.G
FP E

SC

A2.S
na

il.G
FP D

4 N
T

A2.S
na

il.G
FP D

4 N
Tdo

x

A2.S
na

il.m
iR

20
0a

 E
SC

A2.S
na

il.m
iR

20
0a

 D
4 N

T

A2.S
na

il.m
iR

20
0a

 D
4 N

Tdo
x

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

miR429

A2.S
na

il.G
FP E

SC

A2.S
na

il.G
FP D

4 N
T

A2.S
na

il.G
FP D

4 N
Tdo

x

A2.S
na

il.m
iR

20
0a

 E
SC

A2.S
na

il.m
iR

20
0a

 D
4 N

T

A2.S
na

il.m
iR

20
0a

 D
4 N

Tdo
x

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

R
el

at
iv

e 
E

xp
re

ss
io

n 
N

or
m

al
iz

ed
 to

 U
6 

sn
R

N
A

Validation of miR-200b/a/429 Overexpression in A2.Snail.miR200a Line

A

B

C

97



Figure 50:  Snail requires the down-regulation of the miR-200 family to 
efficiently generate Flk1+ cells.  A2.Snail.GFP (top), A2.Snail.miR200a (middle), 
and A2.Snail.miR200c (bottom) ES cells were differentiated with or without various 
concentrations of doxycycline induction on day 2.  FACS analysis was performed for 
Flk1 expression on day 4.  Shown are gated live cells.

 0  10  2 
 10  3 
 10  4 
 10  5 

1.97 9.22 16.76 16.11

 0  10  2  10  3  10  4  10  5 

 0  10  2 
 10  3 
 10  4 
 10  5 

0.80

 0  10  2  10  3  10  4  10  5 

2.89

 0  10  2  10  3  10  4  10  5 

4.54

 0  10  2  10  3  10  4  10  5 

7.69

Fl
k1

FL3-Height

dox: 0 ng/mL 25 ng/mL 100 ng/mL 250 ng/mL

A2.S
nail.G

FP
A2.S

nail.m
ir200c

Day 4

 0  10  2 
 10  3 
 10  4 
 10  5 

1.36 6.66 10.56 15.64

A2.S
nail.m

ir200a

98



Figure 51:  Snail requires the down-regulation of the miR-200 family to 
efficiently down-regulate E-cadherin.  (A)  A2.Snail.GFP, A2.Snail.miR200a, and 
A2.Snail.miR200c ES cells were differentiated with or without various concentrations 
of doxycycline induction on day 2 (See Fig. 50).  FACS analysis was performed for 
E-cadherin expression on day 4.  Shown are gated live cells.  (B)  Western blot 
examining Snail and β-actin expression in the indicated differentiating ES cell lines 
on day 3, 24 hours after doxycycline induction on day 2.
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CHAPTER 7 

Discussion 

 

Snail and the miR-200 Family in Gastrulation 

Snail has been associated with E-cadherin repression during gastrulation, but its 

downstream pathways and association with fate determination have not been well-

characterized.  In this study we have uncovered a role for Snail in promoting EMT and 

mesoderm differentiation within a specific timeframe of ES cell differentiation 

corresponding to the early epiblast.  During this time, Snail alters the expression of a 

number of miRNAs, including the miR-200 family.  Further, we have demonstrated that 

the miR-200 family functions conversely to Snail to inhibit EMT and germ layer fate 

commitment in differentiating ES cells, and acts to maintain cells in an EpiSC-like stage.  

We show that progression past this stage occurs through the down-regulation of the miR-

200 family caused by Snail or by removal of Activin, inducing EMT and skewing cell 

fates toward mesoderm or neuroectoderm, respectively.  Together our data illustrate how 

Snail and the miR-200 family act in opposition to regulate EMT and exit from the 

epiblast state towards germ layer fate commitment. 

Recent studies have reached different conclusions about whether miR-200 

promotes (Wellner et al., 2009) or attenuates differentiation (Lin et al., 2009).  While our 

gene chip analysis supports many of the indicated targets described in both reports, 

including Cadherin 11 (Lin et al., 2009), Neuropilin 1 (Lin et al., 2009), and Bmi1 

(Wellner et al., 2009), we do not see miR-200c/141 down-regulation of Sox2 (Wellner et 

al., 2009) (which is actually induced in our system).  By using stable, inducible 
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expression of the miR-200 family, a global transcriptional analysis, flow cytometry, and 

EpiSC culturing, we support the interpretation that the miR-200 family stalls ES cell 

differentiation at a specific point in differentiation, the EpiSC stage. 

Our demonstration that Snail biases fate determination builds on earlier studies of 

its role in the mouse embryo.  Previously, it was found that Snail-deficient embryos die 

before E8.5 and arrest at the onset of gastrulation (Carver et al., 2001).  In Snail-deficient 

embryos, cells of the primitive streak fail to down-regulate E-cadherin or migrate, and 

mesoderm formation is diminished as demonstrated by low expression of Brachyury.   

Interestingly, the epiblast and neuroectoderm marker Otx2 fails to be restricted to the 

anterior segment in Snail-deficient embryos.  Together with our findings, these data 

suggest that Snail plays a more active role in promoting differentiation and germ layer 

fate induction than previously considered.  Given the expression of miR-200 in the early 

mouse embryo (Landgraf et al., 2007), including its restriction to non-mesoderm fates in 

the chick embryo (Darnell et al., 2006), it is possible Snail may also repress miR-200 in 

the early embryo to allow progression and differentiation of cells from the epiblast to 

early mesoderm. 

In addition to mesoderm defects, the conditional deletion of Snail under control of 

Meox2-Cre demonstrated failures in establishment of left-right asymmetry (Murray and 

Gridley, 2006).  In this conditional Snail deletion, left-right axis formation is disrupted 

and Nodal expression is no longer restricted to the left lateral plate mesoderm, perhaps 

suggesting that redundant mechanisms between Snail's restriction of Nodal in axis 

formation and Snail's restriction of Activin/Nodal in the maintenance of the epiblast.  

Snail and the miR-200 family both interact and influence multiple components of the 
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TGF-beta signaling pathway (Burk et al., 2008; Lin et al., 2009; Vincent et al., 2009).  

Thus, these factors could conceivably interact in a manner to antagonize one another's 

actions by opposing influences in the same signaling pathways, but this aspect of the 

molecular mechanism will require further study.   

The basis for the molecular antagonism between Snail and Activin signaling is not 

yet characterized, but previous studies have shown that another EMT transcription factor, 

Zeb2/SIP1, can antagonize Activin-Nodal signaling through its direct interaction with the 

MH2 domain of activated SMAD proteins (Verschueren et al., 1999).  Furthermore, 

Zeb2/SIP1 can promote neuroectoderm while inhibiting Activin-induced mesendoderm 

induction in human ES cells (Chng et al., 2010).   Although the effect of Zeb2 on EMT in 

differentiating ES cells was not examined, Zeb2 was identified in a screen of 

transcription factors that were induced upon the inhibition of Activin signaling.  Since we 

find that inhibiting Activin signaling in differentiating ES cell induces EMT, we would 

hypothesize that Zeb2 may be responsible for the miR-200 repression mediating the EMT 

observed during later neuroectoderm differentiation, explaining why Zeb2-deficient mice 

display defects in cranial neural crest migration along with specification of 

neuroectoderm.  Our data suggest a model in which Snail acts in concert with Activin to 

promote mesoderm differentiation and migration, whereas Zeb2 functions in the absence 

of Activin to promote neuroectoderm differentiation and delamination of neural crest 

(Fig. 7B).  Both Snail and Zeb2 induction of EMT appear to oppose Activin-induced 

maintenance of miR-200 and thereby promote progression past the epiblast state. 

The relationship between Snail expression and miR-200 family members has 

recently been suggested (Burk et al., 2008; Vetter et al., 2010), but not been examined in 
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depth.  One study indicated that over-expression of Snail in HCT116 cells could repress 

transcription from the regulatory regions of miR-200c and miR-141 (Burk et al., 2008).  

A second study examined microRNAs regulated by Snail in MCF7 breast cancer cells 

and identified a number of microRNAs that were strongly induced by Snail (Vetter et al., 

2010).  This study also noted that miR-200 family members were repressed by Snail, but 

did not further examine the consequences of this repression functionally.  Our study 

illustrates the first functional antagonism between Snail and the miR-200 family and its 

consequential effects on EMT in a system relevant for gastrulation.  

 

Snail and Vasculogenesis 

Studies in several tumor models suggest that Snail and the miR-200 family of 

microRNAs have roles in EMT as well as "stemness"(Mani et al., 2008; Wellner et al., 

2009).  Here, we show that the miR-200 family also has a role in vasculogenesis by 

directly repressing key transcripts such as Flk1 and Ets1.  An important finding in this 

study is the characterization of cells which form endothelium in response to Snail 

expression.  Snail's dependence on FGF signaling to induce formation of such cells, and 

the Gata6+Nanoglo transcriptional profile of the cells in which Snail acts, suggests that the 

Flk1+ endothelial cells arise from a subset of differentiating ES cells biased towards 

primitive endoderm. 

These findings have implications for the phenotypes observed in Snail-deficient 

embryos, particularly in Meox2-Cre/Snailloxp/loxp mice.  Our studies would suggest that 

Snail is important for the cell-autonomous generation of endothelial cells in these 

embryos.  While they did appear to have limited PECAM+ endothelial progenitors, these 
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progenitors appeared to be very sparse and failed to form a normal vascular network.  

The yolk sac was not examined in these mice, which would have been useful for further 

establishing a role for Snail in extraembryonic vascular development.  Because we would 

hypothesize that some of the yolk sac vasculature could arise from primitive endoderm, 

Meox2-Cre may not be sufficient for deletion of Snail in these cells.   

Like primitive endoderm and its derivatives, cancer stem cells seem uniquely 

poised to promote endothelial differentiation due to their shared expression of pro-

vasculogenic factors such as VEGF(Bao et al., 2006; Damert et al., 2002), 

FGFRs(Fillmore et al., 2010; Yamanaka et al., 2010), IGFs(Dallas et al., 2009), and β-

catenin(Malanchi et al., 2008) (Figure 52).  In addition to sharing similar expression 

patterns, the FGF-dependence and appearance of cancer stem cells at the invasive borders 

of tumors are very reminiscent of the specification of primitive endoderm on the border 

of differentiating ES cell embryoid bodies.  Based on our studies, we propose that the 

heterogeneity found in ES cell cultures can serve as a model for the known heterogeneity 

demonstrated within tumors themselves, particularly in the context of cancer stem cells 

and early endothelial progenitors (Figure 53). 

 In conclusion, we propose that Snail and miR-200c link EMT and vasculogenesis 

in a subset of ES cells that resemble primitive endoderm and cancer stem cells.  The 

promotion of endothelial progenitors depends on FGF signaling as well as Snail's down-

regulation of the miR-200 family, which directly target Flk1 and Ets1.  Understanding the 

mechanism behind Snail's dual functions may be important in future studies and 

therapeutics aimed at limiting tumor vasculogenesis. 
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Figure 52:  Similarities between Snail-induced Flk1+ cells and cancer stem cells.  
Table demonstrating similarities and differences between Snail-induced Flk1+ cells 
(likely from primitive endoderm) and cancer stem cells.  

lo

Snail-induced Flk1+ Cell Cancer stem-like cells
Induced by Snail/EMT Yes Yes

FGF-dependence Yes Yes
Bmi1

C-myc
CD44
CD24
CD34
CD133
Epcam
CD105
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Figure 53:  Proposed model of Snail in ES cell and tumor vasculogenesis.  Pro-
posed model:  In differentiating ES cells, Snail promotes Flk1+ endothelial progeni-
tors in a cell-intrinsic manner in a subset of primitive endoderm-like cells.  This 
process requires the down-regulation of the miR-200 family which directly target 
Flk1 and Ets1, as well as Neuropilin 1 and Flt1.  We propose a similar model in 
tumors where Snail may cell-autonomously direct cancer stem cells towards a Flk1+ 
endothelial fate in a manner dependent on miR-200 down-regulation.  Recent find-
ings of endothelial differentiation in glioblastoma cancer stem cells where Snail is 
known to be expressed, support this hypothesis.
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