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ABSTRACT OF THE DISSERTATION 

Characterization of the Role of RGS7-family Proteins in Mammalian Retina and Vision 

by 

Matthew David Cain 

Doctor of Philosophy in Biology and Biomedical Sciences 

Molecular Cell Biology 

Washington University in St. Louis, 2014 

Professor Kendall J. Blumer, Chairperson 

 

 GPCR/G protein signaling is a critical component of neuronal signal transduction and 

function. G protein signaling is regulated by a family of regulator of G protein signaling (RGS) 

proteins that act as GTPase activating proteins (GAPs) for Gα subunits.  In the retina, the R7-

RGS family of RGS proteins which specifically act as GAPs toward Gi/o, are critical regulators 

of phototransduction and ON bipolar cell light responses in the outer retina.   While R7-RGS 

proteins are expressed throughout the inner retina, their function there is unknown.  The goal of 

this dissertation project is to characterize R7-RGS regulation on retina function and vision. 

 This dissertation is divided into four parts: i) analysis of inner retinal function in mature 

and developing R7BP-/- retinas, ii) characterization of composition and localization of R7-

RGS/R7BP complexes in the dorsal lateral geniculate nucleus (dLGN), iii) characterization of 

blockade of RGS regulation of Gi2 and Go subunits on outer retina function, and iv) preliminary 

analysis of the effect of RGS6 ablation on vision.   In part i), we found that R7BP is expressed in 

starburst amacrine cells (SAC) and retinal ganglion cells (RGC). R7BP regulates mesopic RGC 

light responses and glutamatergic wave burst duration in mature and developing retina, 
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respectively.  In part ii), we found that R7PB is expressed in the dLGN.  R7BP interacts with 

RGS6 and RGS7 in lateral geniculate nucleus lysates, but is not necessary for their membrane 

localization.  In part iii), outer retinal phenotypes of RGS-insensitive Gi2 and Go mutant mice 

were characterized.  RGS regulation of Gi2 is necessary for normal rod light responses.  

Heterozygous expression of RGS-insensitive Go subunits was not sufficient to perturb ON 

bipolar cell light responses or dendritic morphology.  In part iv), we found that RGS6 is 

expressed in starburst amacrine cells.  RGS6 localization to SAC plexi is independent of R7BP.  

We demonstrated that, although dispensable for normal phototransduction or ON bipolar light 

responses, RGS6 is necessary for normal spatial vision.  Based on these findings, we suggest that 

RGS regulation of Gi/o signaling is necessary for normal retinal function and that R7-RGS 

proteins regulate inner retinal function.  Additionally, we identified several new candidate 

circuits to further explore R7-RGS function in the visual system.  
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Chapter 1: 

 

Introduction 
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Introduction 

GPCRs and G protein Signaling 

 G-protein coupled receptors (GPCRs) are a superfamily of seven-transmembrane domain 

proteins which function to interact with signals from the extracellular environment and propagate 

these signals into the intracellular space to promote cellular responses. The diversity in 

expression, recognized ligands, and regulated cellular responses make them essential 

components for many physiological processes. Similarly, this diversity has made GPCRs the 

most abundant pharmaceutical targets, making up approximately 30% of all marketed drugs 

(Garland, 2013).  

 GPCRs are activated by an incredibly diverse set of ligands, including peptides, 

hormones, neurotransmitters, odorants, and photons.  Upon activation, GPCRs undergo 

conformational change that allow them to act as guanine exchange factors (GEFs) for 

heterotrimeric G-proteins (Figure 1).  Heterotrimeric G proteins consist of three subunits, G, 

G, and Gγ. G is the nucleotide binding GTPase subunit. G and Gγ form constitutive dimers 

(Gγ) that associate with G depending on the guanine nucleotide (GDP or GTP) bound state of 

G.  Prior to guanine nucleotide exchange, G binds GDP and Gγ.  As GEFs, activated GPCRs 

promote exchange of GDP for GTP and dissociation of the Gγ heterotrimer.  Both GTP-bound 

Gα and Gβγ act on effectors to propagate intracellular signals.  

 There are a diversity of G subunits, grouped into four classes Gs, Gi/o, Gq, and G12/13.  

Each class of Gα has specific downstream effectors that modulate cell signaling.  Gs activates 

adenylyl cyclase to generate the secondary messenger cAMP.  Gi/o inhibits adenylyl cyclase. Gq 

activates phospholipase C and promote intracellular Ca2+ release. G12/13 promotes cytoskeletal 
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changes through Rho and RhoGEFs.  There is similar diversity in Gγ subunits and they also 

couple to downstream effectors, such as GIRK channels. 

 This study exclusively focuses on GPCR signaling cascades that couple to Gi/o subunits.  

 

RGS Proteins 

RGS (regulator of G protein signaling) protein are critical to the switch-like behavior of 

G protein signaling via their function as GTPase activating proteins (GAPs) toward G subunits.  

GAPs accelerate the inherently slow intrinsic GTPase activity of G subunits, promoting the 

hydrolysis of GTP to GDP by stabilizing the switch regions of Gα in a configuration that 

resembles the transition state (Ross and Wilkie, 2000; Srinivasa et al., 1998; Tesmer et al., 

1997).  GDP-bound G proteins have decreased affinity for effectors and re-associate with Gγ.  

Therefore, in general RGS proteins act as inhibitors of G protein signaling and can act to 

attenuate the magnitude or control the kinetics of cellular responses (Ross and Wilkie, 2000). 

 

Originally identified in yeast (Chan and Otte, 1982), RGS proteins now comprise a large 

superfamily of proteins characterized by the presence of a RGS domain (Figure 2).  RGS 

proteins are subdivided into families based on both their structure and affinity for specific G 

subunits.  Many families have accessory domains that facilitate interactions with non-G 

proteins or act as effector domains for secondary signaling cascades.  Since their discovery, RGS 

proteins have been revealed as critical regulators of G protein signaling in human biology and 

diseases, including hypertension (Heximer et al., 2003), cardiac arrhythmia (Cifelli et al., 2008; 

Wydeven et al., 2014), opioid action (Garzón et al., 2003; Psifogeorgou et al., 2007; Terzi et al., 

2011; Zachariou et al., 2003; Zhou et al., 2012a), depression (Stewart et al., 2014), learning and 
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memory (Lee et al., 2010; Ostrovskaya et al., 2014a), and Parkinson's disease (Gold et al., 2007; 

Kovoor et al., 2005).  As such, they are being recognized as potential pharmaceutical targets for 

the treatment of human disease (Sjögren, 2011).  

 

R7-RGS Heterotrimeric Complexes 

This study will primarily focus on the biology of the regulator of G protein signaling 7 

(R7-RGS) family.  The R7-RGS family consists of four members (RGS6, 7, 9, and 11) which act 

as GAPs for Gi/o and are expressed throughout the central nervous system (Gold et al., 1997; 

Hooks et al., 2003; Song et al., 2007).  R7-RGS family members have a conserved structure 

consisting of a C-terminal RGS domain, which is necessary and sufficient for GAP activity, and 

N-terminal DEP (disheveled, Egl-10, and pleckstrin), DHEX/R7H (DEP helical extension, or 

RGS7 homology) and GGL (G protein gamma-like) domains (Figure 3A). The GGL domain is 

structurally similar to the heterotrimeric Gγ subunit and facilitates the interaction with a 

divergent G subunit G5 (Cheever et al., 2008; Snow et al., 1998) (Figure 3B). This interaction 

is necessary for the folding of G5 and mutual protection of G5 and R7-RGS proteins from 

proteolytic degradation (Chen et al., 2003; Shim et al., 2012). Additionally, this interaction of 

R7-RGS proteins with G5 provides additional interfaces by which R7-RGS complexes interact 

with traditional Gβγ effectors, including GIRK channels (Xie et al., 2010; Zhou et al., 2012a). 

The DEP domain facilitates interaction with two membrane associated proteins, RGS9 anchor 

protein (R9AP) and R7-family binding protein (R7BP) (Drenan et al., 2005; Hu and Wensel, 

2002; Martemyanov et al., 2003, 2005).   The DEP domain also facilitates binding to various 

GPCRs, including GPR158, GPR179 and M3 muscarinic receptor (Orlandi et al., 2012; 

Sandiford and Slepak, 2009). 
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R9AP and R7BP were originally identified as membrane targeting proteins for R7-RGS 

proteins (Drenan et al., 2005; Hu and Wensel, 2002).  However, in recent years R9AP and R7BP 

have been shown to have more complex mechanisms of regulating R7-RGS/Gβ5 dimers.  Both 

R9AP and R7BP are SNARE like proteins, distantly related to syntaxins (Drenan et al., 2005; 

Keresztes et al., 2003; Martemyanov et al., 2003, 2005) (Figure 3C). Both proteins localize to 

membranes by distinct mechanisms. R9AP is membrane-targeted by a C-terminal 

transmembrane domain (Hu and Wensel, 2002) while R7BP associates with membranes by two 

C-terminal palmitate moieties (Drenan et al., 2005). Both proteins protect RGS9 from 

degradation in vivo (Anderson et al., 2007a; Keresztes et al., 2004).  R7BP is reciprocally 

protected from proteolytic degradation by its interaction with R7-RGS DEP domains (Anderson 

et al., 2007a; Grabowska et al., 2008) (Figure 3D).  However, there is evidence that R7BP and 

R9AP have more divergent effects on R7-RGS function in vivo. R9AP is necessary for 

trafficking RGS9 to outer segments of rod photoreceptors, a function that cannot be rescued by 

R7BP (Cao et al., 2010; Martemyanov et al., 2003).  It is unclear what role, if any, R7BP plays in 

trafficking of R7-RGS proteins in vivo. In transfected cells, R7BP targets the R7-RGS complex 

to the plasma membrane, augmenting their GAP activity and subsequently attenuating Gi/o 

signaling (Drenan et al., 2005). Additionally, there is strong evidence that R7BP also functions 

as an allosteric modulator of R7-RGS function, modulating R7-RGS GAP activity toward Gi/o 

and interaction with M3 receptors and GIRK channels (Masuho et al., 2013; Sandiford and 

Slepak, 2009; Zhou et al., 2012a).  While the R7-RGS family is expressed throughout the central 

nervous system (Gold et al., 1997; Song et al., 2007) , this study focuses on exploring their 

function in the mammalian retina. 
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Retina Structure 

 The retina is the primary light sensing organ of the mammalian nervous system.  It is 

comprised primarily of neuronal tissue that is structured into a series of layers. Photoreceptors 

are positioned in the outermost portion of the retina (Figure 4).  Photoreceptors are highly 

specialized neurons that are responsible for phototransduction, or the conversion of photons into 

electrical signals in photoreceptors.  Photoreceptors can be divided into two primary species, 

rods and cones which differ in their light sensitivity. Rods are highly sensitive and mediate low 

intensity or scotopic vision.  Cones require higher light intensities and facilitate photopic vision.  

Cones can be further divide based on their wavelength absorption spectra and are responsible for 

mediating color vision. Structurally, phototransduction occurs in the outer segments of 

photoreceptors.  Photoreceptors synapse onto bipolar cells in the outer plexiform layer (OPL). 

Bipolar cells can be divided into two primary groups, ON and OFF, based on whether they 

depolarize or hyperpolarize to light, respectively.  Horizontal neurons also synapse in the outer 

plexiform layer, where they integrate and regulate photoreceptor input into bipolar cells. In this 

study, this section of the retina will be referred to as the outer retina.  ON and OFF bipolar cells 

project to the inner and outer sublaminae of the inner plexiform layer (IPL), respectively. In the 

IPL, cone bipolar cells form glutamatergic synapses onto both retinal ganglion cells (RGCs) and 

amacrine cells.  Rod bipolar cells synapse onto AII amacrine cells which allows them to couple 

to cone bipolar cells.  In this study, the circuits formed between bipolar, amacrine, and retinal 

ganglion cells in the IPL are referred to as the inner retina.  Amacrine cells are interneurons that 

primarily release inhibitory neurotransmitters GABA or glycine.  However, some amacrine cell 

types release additional neurotransmitters, including dopamine and acetylcholine. Amacrine cell 
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neurotransmitter release modulates the input of bipolar cells into RGCs.  RGCs are the final 

point of integration of retinal circuits and are responsible for transmitting visual information to 

vision centers of the brain. 

 

G Protein Signaling in the Retina 

 G protein signaling is an essential component of phototransduction and transmission to 

retinal ganglions cells.  Phototransduction occurs on optic discs of the photoreceptors when 

photons are captured by the GPCR rhodopsin. In periods of darkness, cGMP concentrations are 

high and bind to cGMP gated (CNG) channels. This opens CNG channels allowing for a steady 

inward current of Ca2+ and Na2+, depolarization of the photoreceptor, and glutamate release.  

Photon absorption by the chromophore, retinal, in rhodopsin triggers isomerization of 11-cis-

retinal to all-trans-retinal, activating rhodopsin. Activated of rhodopsin triggers GTP exchange in 

the transducin Gα subunit and subsequent activation of cGMP phosphodiesterase 6, accelerating 

the hydrolysis of cGMP to GMP.  This reduction in cGMP results in closure of CNG channels, 

hyperpolarization of the photoreceptor, and a decrease in glutamate release from photoreceptor 

termini.   

 

 ON bipolar cells reverse the signal of photoreceptors through a metabotropic mechanism. 

In periods of darkness, the GPCR mGluR6 is bound by glutamate released from photoreceptors 

and maintains an active pool of Go1 Gα subunits (Dhingra et al., 2000a, 2002; Masu et al., 

1995).  Go1 inhibits constitutively-active TRPM1 channels, hyperpolarizing ON bipolar cells 

(Koike et al., 2010; Morgans et al., 2010). However, the mechanism of this inhibition is not well 
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understood.   Upon exposure to light, the decrease in synaptic glutamate allows for inactivation 

of Go1, relief of TRPM1 inhibition, and ON bipolar cell depolarization. 

 

In addition, there are a number of classic neurotransmitters (dopamine, glutamate, 

GABA, and acetylcholine) that activate GPCRs that act as modulators of inner retinal activity.  

Dopamine regulates the electrical coupling of amacrine cells (Gleason, 2012) and excitability of 

retinal ganglion cells (Chen and Yang, 2007; Hayashida et al., 2009; Ogata et al., 2012).  With 

the exception of mGluR3 and mGluR6, all metabotropic glutamate receptors exhibit both pre- 

and post-synaptic expression in amacrine cells and post-synaptic expression in retinal ganglion 

cells (Dhingra and Vardi, 2012).   In amacrine cells, mGluRs primarily regulate neurotransmitter 

release (Dhingra and Vardi, 2012).  In retinal ganglion cells, mGluRs regulate voltage-gated 

calcium channels and excitability (Robbins et al., 2003; Yu et al., 2009)  Muscarinic 

acetylcholine receptors are expressed throughout the inner retina (Strang et al., 2010), although 

our understanding of their regulation of inner retinal activity is limited (Baldridge, 1996; Neal 

and Cunningham, 1995).  The extent RGS proteins regulate the endogenous signaling of these 

GPCRs is not known.  

 

R7-RGS Complexes in Retina 

R7-RGS family complexes are necessary for proper phototransduction and 

neurotransmission in the retina.  RGS9-1 is the only R7-RGS family member expressed in the 

photoreceptors, where it has an obligate interaction with R9AP and accelerates the deactivation 

of transducin (Cowan et al., 1998; He et al., 1998; Keresztes et al., 2004; Makino et al., 1999).  

Because R9AP expression is necessary for RGS9 expression, RGS9-/- and R9AP-/- mice have 
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similar phenotypes (Keresztes et al., 2004).  Patients with mutations in either RGS9 or R9AP 

have difficulty seeing moving, low-contrast objects and adapt slowly to abrupt changes in light 

intensity (Hartong et al., 2007; Nishiguchi et al., 2004).   

 

RGS6, RGS7, and RGS9 are expressed differentially within the non-photoreactive layers 

of the retina (Liapis et al., 2012; Morgans et al., 2007; Song et al., 2007).  RGS7 and RGS11 are 

localized to the dendritic tips of ON bipolar cells in the OPL through interaction with the orphan 

GPCR GPR179 (Orlandi et al., 2012).  In the OPL, loss of both RGS7 and RGS11 results in a 

no-b-wave electroretinogram (ERG)  phenotype indicating a failure of ON bipolar cells to 

depolarize in response to light (Cao et al., 2012; Rao et al., 2007; Shim et al., 2012).  This loss of 

the b-wave can be attributed to both the misregulation of mGluR6-Go signaling and 

morphological defects in the OPL synapses between photoreceptors and bipolar cells.  RGS7 and 

RGS11 function redundantly in synapses, as single knockouts only exhibit delayed ON bipolar 

cell responses (Cao et al., 2012; Chen et al., 2003; Mojumder et al., 2009; Shim et al., 2012).   

 

RGS6 and RGS7 are also expressed in the inner retina (Liapis et al., 2012; Song et al., 

2007; Witherow et al., 2000).  However, it is unknown which Gi/o signaling cascades are 

regulated by these R7-RGS proteins.  Similarly, whether R7-RGS proteins are necessary for 

visual function outside of the outer retina has not been explored. 

 

Hypothesis 

 R7-RGS proteins are expressed in the inner retina, but we have been unable to determine 

their contribution to inner retinal G protein signaling and vision.  This represents a significant 
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gap in our understanding of retinal R7-RGS function.  It is apparent that R7-RGS proteins are 

critical regulators of G protein signaling in the CNS and outer retina.  Both the expression of R7-

RGS proteins and the presence of multiple Gi/o signaling cascades in the inner retina make it a 

reasonable hypothesis that R7-RGS proteins regulate Gi/o signaling in the inner retina.  

Additionally, the function of the R7-family binding protein (R7BP) in vivo is poorly understood.  

This dissertation is motivated by the hypothesis that R7-RGS proteins regulate Gi/o signaling in 

the inner retina, and that this regulation is necessary for normal inner retina function and vision. 
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Figure 1. G Protein Cycle 

GPCRs promote the exchange of GDP-bound G to GTP-bound G. GTP-bound G dissociates 

from Gγ, enabling coupling to biochemical effectors.  RGS proteins act as GTPase activating 

proteins (GAPs) promoting GTP hydrolysis.  
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Figure 2. RGS Superfamily 

All RGS proteins contain a RGS domain. RGS proteins are divided into families based on their 

G preference and accessory domain structure.  Modified from (Siderovski and Willard, 2005).  

  



19 
 

Figure 3. R7-RGS complexes act as GAPs 

for Gi/o. 

A. Domain organization of R7-RGS proteins.  

R7-RGS family members have a conserved 

structure consisting C-terminal RGS domain, 

which is necessary and sufficient for GAP 

activity, and N-terminal DEP, DHEX/R7H, 

and GGL domains.   

B. Crystal structure of RGS9-G5 dimer.  

DEP+DHEX domain (purple), GGL domain 

(green), RGS domain (gray), and G5 (cyan) 

Modified from (Cheever et al., 2008)  

C. Syntaxin-like domain organization of 

R9AP and R7BP with conserved trihelical 

region (red), heptad/SNARE motif (orange), 

and C-terminal membrane targeting domain. 

R9AP C-terminal domain (yellow) is a 

transmembrane segment. R7BP C-terminus 

contains a palmitoylation signal.      

         D. R7BP interacts with R7-RGS DEP                        

         domain. R7-RGS complexes act as GAPs      

         for Gi/o.  Modified from (Jayaraman et al.,     

         2009).              .
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Figure 4. Diagram of mammalian retina 

Laminated structure of the mammalian retina.  The vertical pathway of the retina is 

glutamatergic.  This pathway is composed of photoreceptors, rod (R) and cones (C), rod (RB) 

and cone (CB) bipolar cells and retinal ganglion cells (G).  Horizontal (H) and amacrine (A) cells 

are interneurons that primarily release inhibitory neurotransmitters, GABA and glycine. 

Modified from (Webvision, 1995) 
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Chapter 2: 

 

An allosteric regulator of R7-RGS proteins influences light-

evoked activity and glutamatergic waves in the inner retina 
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Abstract 

 In the outer retina, G protein-coupled receptor (GPCR) signaling mediates 

phototransduction and synaptic transmission between photoreceptors and ON bipolar cells.  In 

contrast, the functions of modulatory GPCR signaling networks in the inner retina are less well 

understood.  We addressed this question by determining the consequences of augmenting 

modulatory Gi/o signaling driven by endogenous transmitters.  This was done by analyzing the 

effects of genetically ablating the R7 RGS-binding protein (R7BP), a membrane-targeting 

protein and positive allosteric modulator of R7-RGS (regulator of the G protein signaling 7) 

family that deactivates Gi/oα subunits.  We found that R7BP is expressed highly in starburst 

amacrine cells and retinal ganglion cells (RGCs).  As indicated by electroretinography and 

multielectrode array recordings of adult retina, ablation of R7BP preserved outer retina function, 

but altered the firing rate and latency of ON RGCs driven by rods and cones but not rods alone.  

In developing retina, R7BP ablation increased the burst duration of glutamatergic waves whereas 

cholinergic waves were unaffected.  This effect on glutamatergic waves did not result in 

impaired segregation of RGC projections to eye-specific domains of the dorsal lateral geniculate 

nucleus. R7BP knockout mice exhibited normal spatial contrast sensitivity and visual acuity as 

assessed by optomotor reflexes.  Taken together these findings indicate that R7BP-dependent 

regulation of R7-RGS proteins shapes specific aspects of light-evoked and spontaneous activity 

of RGCs in mature and developing retina. 
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Introduction 

 Signal transduction by G protein-coupled receptors (GPCRs) in the outer retina converts 

visual stimulation ultimately to patterns of activity of retinal ganglion cells (RGCs).  Visual 

opsins trigger light-evoked activation of transducin, and Go-coupled type 6 metabotropic 

glutamate receptors (mGluR6) regulate transmitter release by ON bipolar cells (Dhingra et al., 

2000b; Masu et al., 1995).  Gi/o-coupled receptors potentially modulate synaptic transmission in 

mature (Clark et al., 2009; Gleason, 2012; Huang et al., 2013; Jensen and Daw, 1986; Kothmann 

et al., 2009) and developing (Catsicas and Mobbs, 2001; Stellwagen et al., 1999; Syed et al., 

2004) retina.  However, the diversity of these modulatory GPCRs has impeded progress toward 

understanding their functions in the inner retina.  

 

Functions of specific G protein signaling networks in the retina recently have been 

probed by studying the consequences of augmenting signaling evoked by light or endogenous 

neurotransmitters.  This approach has utilized mice lacking one or more members of the R7-RGS 

(regulators of G protein signaling) family (RGS6, 7, 9, 11), which accelerate G protein 

deactivation by functioning as GTPase-activating proteins (GAPs) specific for Gi/oα subunits 

(Hooks et al., 2003).  Each R7-RGS isoform forms an obligate heterodimer with Gβ5 (Snow et 

al., 1998; Witherow et al., 2000) to regulate Gi/o signaling (Garzón et al., 2005; Hooks et al., 

2003; Xie et al., 2010, 2012; Zhou et al., 2012b) and has a distinct retinal expression pattern 

(Liapis et al., 2012; Morgans et al., 2007; Song et al., 2007).  RGS9 is expressed in 

photoreceptor disk membranes where it deactivates transducin (Cowan et al., 1998; He et al., 

1998).  RGS7 and 11 are expressed in ON bipolar cells and deactivate Goα, thereby facilitating 

light-evoked depolarization (Cao et al., 2012; Chen et al., 2010; Mojumder et al., 2009; Rao et 

al., 2007; Shim et al., 2012; Zhang et al., 2010).  RGS6 and 7 are expressed in the inner retina 
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(Liapis et al., 2012; Song et al., 2007; Witherow et al., 2000), suggesting that further studies of 

the R7-RGS family may reveal new functions for Gi/o signaling in retina.   

 

Because the absence of RGS7 and RGS11 or the entire R7-RGS family disorganizes 

dendritic arborization of ON bipolar cells (Rao et al., 2007; Shim et al., 2012), these mutants are 

ill-suited to assess whether light-evoked responses in the inner retina are affected by augmenting 

Gi/o signaling.  As an alternative, we hypothesized that R7-RGS function in the retina would be 

impaired rather than lost completely by disrupting R7 RGS-binding protein (R7BP), a 

palmitoylated SNARE-like protein that functions as a positive allosteric regulator of R7-

RGS/G5 heterodimers (Anderson et al., 2007b; Drenan et al., 2005, 2006; Jia et al., 2011; 

Martemyanov et al., 2005; Narayanan et al., 2007; Song et al., 2006; Zhou et al., 2012b).  R7BP 

is highly expressed in the inner retina (Cao et al., 2008).  It augments R7-RGS GAP activity 

(Drenan et al., 2006; Masuho et al., 2013), enables RGS7 regulation of Giα (Masuho et al., 

2013), and facilitates recruitment of R7-RGS/Gβ5 complexes to GIRK channels (Zhou et al., 

2012b).  However, R7BP ablation does not perturb outer retina organization, rod-driven activity, 

membrane association of RGS7, or protein expression of RGS6, RGS7, or RGS11 in the retina 

(Cao et al., 2008).  Therefore, ablation of R7BP may impair rather than eliminate activity of the 

R7-RGS protein family and modestly augment Gi/o signaling evoked by endogenous GPCR 

agonists in the inner retina. 

 

Here we identify cell types in the inner retina that express R7BP and analyze the 

consequences of R7BP ablation.  Our results provide evidence indicating that regulation of R7-
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RGS proteins by R7BP shapes specific aspects of light-evoked and spontaneous wave activity in 

the inner retina.  
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Results 

R7BP is expressed highly in starburst amacrine cells and retinal ganglion cells. 

To investigate roles of Gi/o signaling regulated by R7-RGS/Gβ5 complexes under the 

control of R7BP, we first identified retinal cell types that express R7BP by probing vertical 

retinal slices of adult mice with affinity-purified polyclonal R7BP antibodies (Grabowska et al., 

2008).  Specific R7BP staining was expressed weakly in the outer plexiform layer (OPL) with 

stronger expression throughout the inner plexiform layer (IPL), especially in the S2 (OFF) and 

S4 (ON) sublaminae of the IPL, and in somata of the inner nuclear and ganglion cell layers (INL 

and GCL) (Figure 2A).  No specific staining above background was observed in R7BP-/- retinas, 

demonstrating antibody specificity (Figure 2B).  Several results indicated that nearly all starburst 

amacrine cells (SACs) express R7BP.  First, co-staining of R7BP and choline acetyltransferase 

(ChAT, a marker of SACs) was evident in S2 and S4, indicating the presence of R7BP in SAC 

processes.  Second, R7BP also was expressed strongly on the somatic plasma membrane of most 

ChAT-positive cells in the INL (92% ± 2%, n=3 retinas; Figure 2C, indicated by arrowheads) 

and a majority of displaced SACs (52% ± 1%) in the GCL.  R7BP in the GCL also was detected 

on the somatic plasma membrane of some ChAT-negative cells (asterisks, Figure 2C).  This 

suggests that R7BP is expressed in other cell types in the inner retina and is consistent with 

expression in other sublaminae of the IPL.  Many of these ChAT-negative neurons were retinal 

ganglion cells (RGCs; 49% ± 3%; n=3 retinas) as indicated by co-staining with Brn3a (an RGC 

marker; arrowheads in Figure 2D) (Nadal-Nicolás et al., 2009).  Thus, the overall pattern of 

R7BP expression in retina is similar to the aggregate expression of RGS6, 7, and 11 (Cao et al., 

2008; Liapis et al., 2012; Song et al., 2007), supporting the notion that R7BP regulates the 

function of one or more of these R7-RGS proteins in the inner retina.   
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 Next, we determined the expression pattern of R7BP during postnatal retinal 

development.  This was examined because in brain the expression of R7BP/R7-RGS/Gβ5 

complexes is induced postnatally during synaptic refinement (Anderson et al., 2007c; Grabowska 

et al., 2008) and because R7-RGS/Gβ5 heterodimers are required for normal development and 

dendritic organization in cerebellum, hippocampus, and retina (Rao et al., 2007; Shim et al., 

2012; Zhang et al., 2011).  At P8, we detected specific R7BP staining in the IPL but not in the 

INL or GCL (Figure 3).  At P12, R7BP staining in the IPL and S2/S4 was more intense, and 

became detectable in the OPL, INL and GCL.  An adult pattern of R7BP expression was evident 

at P30.  Thus, R7BP is expressed before photoreceptors mature and is refined as retinal 

development is completed. 

 

R7BP ablation does not disrupt outer retina function.  

Previous investigations have shown that R7BP-/- mice exhibit normal retinal morphology 

and rod-driven light responses of ON bipolar cells (Cao et al., 2008).  To determine whether 

R7BP ablation affects rod- or cone-driven responses over a full range of stimulus intensities, we 

performed electroretinography of dark-adapted (Figure 4A) and light-adapted mice (Figure 4F).  

In dark-adapted WT and R7BP-/- mice (n=5), we observed no difference in a-wave amplitude or 

latency corresponding to light-evoked hyperpolarization of rods (low light intensities) or rods 

and cones (higher intensities) (Figure 4B/C).  The ERG b-wave, which primarily reports 

depolarization of ON-bipolar cells, exhibited a trend in R7BP-/- mice toward increased amplitude 

upon rod-specific stimulation but failed to reach the threshold for significance (Figure 4D).  B-

wave latency (time to b-wave peak after flash) was unaffected by the absence of R7BP (Figure 



30 
 

4E).  Photopic (cone-specific) responses revealed by constant background illumination and high 

intensity flashes revealed no change in b-wave amplitude or latency (Figure 4G/H).  Therefore, 

R7BP ablation had no significant effect on light-evoked responses in outer retina.   

 

R7BP ablation affects the firing rate and latency of ON RGCs driven by rods and cones but 

not by rods alone. 

 Having shown that outer retina function is essentially preserved in R7BP-/- mice, we then 

analyzed inner retina function by performing multielectrode array (MEA) recordings of RGC 

activity.  In dark-adapted retina (P20) we measured mean spike rates and latencies (time between 

flash and peak RGC firing rate) of transient ON RGCs under full field illumination at scotopic 

and mesopic intensities (5 and 200 Rh*/rod/sec, respectively).  Under scotopic illumination, the 

absence of R7BP did not affect transient ON RGC mean spike rate (WT: 53±2 Hz, R7BP-/-: 54±2 

Hz; mean±SEM, WT: n=94, R7BP-/-: n=150, Figure 5A) or latency (WT: 0.21±0.01 msec,  

R7BP-/-: 0.21±0.01 msec, Figure 5B).  In contrast, mesopic illumination of rods and cones 

indicated that transient ON RGCs in R7BP-/- retinas exhibited slower firing rates (WT: 59±3 Hz, 

R7BP-/-: 50±2 Hz, p<0.04; Figure 5C) and longer latency (WT: 0.14±0.01 msec, R7BP-/-: 

0.19±0.02 msec, p<0.03, Figure 5D).  R7BP ablation therefore affected light response of ON 

RGCs driven by mesopic but not scotopic illumination. 

 

 To characterize RGC light responses further we presented checkerboard Gaussian white 

noise illumination and calculated spike-triggered average (STA) stimuli through correlation of 

RGC spike trains to the patterns of light squares that evoked the spikes (see Methods for further 

description).  Representative ON biphasic STAs are shown in Figure 5E (WT: n=58, R7BP-/-: 
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n=63). The average size of WT and R7BP-/- RGCs receptive fields were calculated as a two-

dimensional Gaussian fit of the spatial profile (Figure 5E, insets) at the STA temporal maximum 

(peak contrast, asterisks).  This analysis indicated that time to peak (difference between STA 

temporal maximum and spike; WT: 120±3 msec, R7BP-/-: 110±1 msec; mean±SEM; Figure 5F) 

and the average receptive field radius (WT: 110±3 µm; R7BP-/-: 110±2 µm; Figure 5G) of WT 

and R7BP-/- ON RGCs were similar.  Thus, whereas R7BP ablation did not affect the average 

size of ON RGC receptive fields, it did affect the light-evoked firing rate and latency of ON 

RGCs in response to full-field flashes. 

 

R7BP ablation alters the burst duration of glutamatergic waves in developing retina. 

Several considerations prompted us to investigate whether R7BP ablation affects 

spontaneous activity exhibited as propagating waves of correlated, high intensity firing of 

neighboring RGCs in developing retina (reviewed in (Torborg and Feller, 2005)).  In P0-P10 

murine retina, cholinergic waves driven by acetylcholine release from SACs activate nicotinic 

acetylcholine receptors (nAChRs) on RGCs (Bansal et al., 2000).  From P11 to ~P16, cholinergic 

waves are replaced by glutamatergic waves in which ionotropic glutamate receptors on RGCs are 

stimulated by glutamate release from bipolar cells.  Whether Gi/o-coupled receptor signaling 

regulated by R7-RGS proteins affects cholinergic or glutamatergic waves has not been 

investigated.   

 

To address this question we used MEA recordings to analyze spontaneous waves in 

developing WT and R7BP-/- retinas.  Because R7BP is not expressed detectably in the retina until 

~P8, we analyzed spontaneous RGC activity in dark-adapted P8-9 and P12-13 retinas to examine 
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cholinergic and glutamatergic waves, respectively.  Several properties of spontaneous waves 

were measured, including firing rate, burst duration, interwave interval, and correlation indices.  

At P8-9, both WT and R7BP-/- retinas exhibited correlated periodic bursting similar to previous 

descriptions of cholinergic waves (Demas et al., 2003).  Characteristic of glutamatergic waves, 

bursting at P12-13 in both WT and R7BP-/- occurred more frequently and with shorter duration 

than at P8-9 (Figure 6A/C, Table 1).  Thus, R7BP ablation apparently did not preclude transition 

between these two stages of waves.  Furthermore, R7BP ablation did not affect cholinergic wave 

characteristics (Figure 6B, Table 1).  Similarly, the correlation indices, spike rate, and interwave 

interval within glutamatergic waves were unaffected (Figure 6D, Table 1).  However, burst 

duration of glutamatergic waves was longer in R7BP-/- retina (WT: 0.41±0.01 sec, R7BP-/-:  

0.55±0.02 sec, p<0.03, Figure 6E).  Thus, R7BP-dependent regulation of R7-RGS proteins 

modulates distinct aspects of glutamatergic but not cholinergic waves in developing retina. 

 

R7BP ablation does not impair segregation of retinogeniculate projections. 

 Retinal waves play important roles in organizing axonal projections of RGCs that 

innervate eye-specific domains of the dorsal lateral geniculate nucleus (dLGN) of the thalamus 

(reviewed in (Huberman et al., 2008; Torborg and Feller, 2005)).  While it seemed unlikely that 

the modest change in glutamatergic wave burst duration observed in R7BP-/- retina would be 

sufficient to impair retinogeniculate segregation, we wanted to confirm segregation was intact. 

 

To determine whether R7BP deficiency affects segregation of RGC projections into eye-

specific domains in the dLGN, we injected Alexa 555 or Alexa 647 dye-conjugated cholera toxin 

B (CTB) as anterograde tracers into opposite eyes of WT and R7BP-/- mice.  Representative 
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images of retinogeniculate labeling of the dLGN in WT and R7BP-/- are shown in Figure 7A/B.  

Images quantified by analyzing variance of R-values (log10 ratio of ipsilateral and contralateral 

fluorescence signals on a pixel by pixel basis) revealed no detectable difference in 

retinogeniculate segregation in R7BP-/- and WT littermates (Figure 7D).  Similarly, areas 

occupied by contralateral, ipsilateral, or both projections were indistinguishable between WT and 

R7BP-/- animals (Figure 7D).  Thus, R7BP ablation was insufficient to disrupt retinogeniculate 

segregation. 

 

R7BP -/- mice exhibit normal spatial contrast sensitivity and visual acuity. 

 To assess whether R7BP ablation affects overall visual perception, we evaluated 

optomotor responses as a means of determining visual acuity and contrast sensitivity under 

scotopic (-4.5 log cd/m2) and photopic (1.8 log cd/m2) conditions (Figure 8) (Prusky et al., 2004).  

Results indicated that visual acuity in WT and R7BP-/- mice (n=5) was similar under both 

scotopic (WT: 0.34±0.03 cyc/deg, R7BP-/-: 0.35±0.03 cyc/deg; mean±SEM) and photopic 

illumination (WT: 0.54±0.02 cyc/deg, R7BP-/-: 0.50±0.04 cyc/deg).  Similarly, no difference in 

contrast sensitivity was observed under scotopic (WT: 9.2±1.2, R7BP-/-: 11±2.8) or photopic 

illumination (WT: 48±6, R7BP-/-: 46±7).  Thus, although R7BP deficiency affects light response 

of RGCs, it did not affect aspects of spatial vision required for normal optomotor reflexes. 
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Discussion 

 Our analysis of R7BP-/- mice indicates that Gi/o signaling evoked by endogenous 

transmitters and regulated by R7-RGS proteins modulates RGC activity in mature and 

developing inner retina.  In mature retina, R7BP ablation had a modest but significant effect on 

mesopic transient ON RGC light responses, slowing the firing rate and increasing the latency, 

whereas ON RGC activity under scotopic illumination was unaffected.  As R7BP is expressed 

most highly in inner retina and R7BP-/- mice exhibit relatively normal outer retina structure (Cao 

et al., 2008) and function, these phenotypes apparently are consequences of inner retina 

dysfunction.  Whether R7BP is functioning postsynaptically in RGCs or presynaptically in 

amacrine cells is unclear, as both cell types express R7BP.  However, the effects of R7BP on 

light responses are consistent with evidence that RGC hyperpolarization can be regulated by 

activation of Gi/o-coupled receptors in either cell type.  Indeed, activation of Gi/o-coupled A1 

adenosine receptors can reduce RGC spiking by activating G-protein-coupled inwardly rectifying 

K+ (GIRK) and small conductance Ca2+-activated K+ (SK) channels (Clark et al., 2009).  

Alternatively, activation of Gi/o-coupled group III mGluRs increases GABA release from 

amacrine cells and inhibitory drive experienced by RGCs (Guimarães-Souza and Calaza, 2012).  

 

 In developing retina, ablation of R7BP increased the burst duration of RGCs driven by 

glutamatergic waves.  This effect was specific for glutamatergic waves because loss of R7BP 

had no significant effect on cholinergic waves, consistent with low level expression of R7BP in 

the IPL and SACs at this stage of development (P8-9).  The effect of R7BP ablation on 

glutamatergic wave burst duration in RGCs provides the first indication that regulation of Gi/o 

signaling by R7-RGS proteins modulates glutamatergic wave dynamics.  Previous studies have 
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identified corresponding roles for R7-RGS complexes in the developing nervous system, 

including ON BPC synapse formation (Rao et al., 2007; Shim et al., 2012) and cerebral and 

hippocampal development (Zhang et al., 2011). 

 

Ultimately, these effects of R7BP ablation on ON RGC light response and glutamatergic 

waves were modest and insufficient to affect downstream processes including spatial vision and 

retinogeniculate segregation.  Because R7BP deficiency apparently results in modest impairment 

of R7-RGS-mediated regulation of Gi/o signaling in inner retina, it may be necessary to 

eliminate R7-RGS proteins in inner retinal cell types to elicit pronounced phenotypes.  This 

approach may reveal how augmented Gi/o signaling affects inner retina development and 

function.  Studies of R7-RGS isoforms in SACs may be of particular interest because Gi/o-

coupled receptors modulate SAC neurotransmitter release to control direction-selective (DS) 

circuits (Jensen, 2006; Taylor and Smith, 2012).  
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Material and Methods 

Animals 

 All animal procedures used protocols approved by the Washington University Animal 

Studies Committee (Protocol #20110184 and #20140036).  R7BP-/- mice produced by targeted 

deletion of exon 2 have been described previously (Zhou et al., 2012b).  Targeting strategy of the 

R7BP locus, characterization of nonconditional (R7BP-) and conditional (R7BPfl) knockout 

alleles are depicted in Figure 1. R7BP+/- mice were crossed six generations into the C57BL/6 

background (Charles River Laboratories) and then interbred to produce WT and R7BP-/- 

littermates of either sex for analysis. 

 

Tissue preparation and immunostaining 

 Mice were euthanized by CO2 asphyxiation followed by cervical dislocation.  Enucleated 

eyes were fixed with paraformaldehyde (4%) in PBS (pH 7.4).  Retinas were isolated in PBS and 

embedded in 4% low-melting point agarose.  For fixation of brain, euthanized mice were 

perfused intracardially with PBS followed by paraformaldehyde (4%) in PBS.  Brains were 

removed and post-fixed overnight at 4 ºC.  Vertical retina and coronal brain slices were cut 

(60 μm and 100 μm, respectively) with a vibratome.  Slices were blocked with 10% normal horse 

serum (NHS) in PBS and incubated with primary antibodies overnight in 5% NHS and 0.05% 

Triton X-100 (Sigma-Aldrich).  The following antibodies were used: affinity purified rabbit anti-

R7BP (Grabowska et al., 2008), goat anti-ChAT (#AB143 Millipore; 1:100), goat anti-Brn3a 

(C20 Santa Cruz; 1:500), Alexa Fluor 568-conjugated anti-rabbit and Alexa Fluor 488-

conjugated anti-goat (Invitrogen; 1:1000) antibodies.  Slices were mounted using VectaShield 

(Vector Labs) and imaged with Olympus FluoView FV500 (Bakewell NeuroImaging 
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Laboratory, WUSM).  Retinal immunofluorographs were median filtered (1 pixel surround) 

using NIH Fiji (Schindelin et al., 2012). 

 

Electroretinography 

 Flash ERG measurements were performed with a UTAS-E3000 visual Electrodiagnostic 

System running EM for Windows (LKC Technologies).  Mice (~3 months old) were dark-

adapted overnight.  Under dim red illumination, mice were anesthetized with a cocktail of 80 

mg/kg ketamine and 15 mg/kg xylazine.  The body temperature of the mice was maintained at 

37 oC with a heating pad controlled by a rectal temperature probe.  After positioning mice in the 

Ganzfeld dome, the recording electrodes (2.0 mm diameter platinum loops) were positioned on 

the corneal surface of each eye in a drop of 0.5% atropine sulfate (Bausch & Lomb) and 1.25% 

hydroxypropol methylcellulose (GONAK; Akorn Inc.).  Reference and ground electrodes were 

placed at the vertex of the skull and back, respectively.  For dark-adapted analysis, we recorded 

the responses to white light flashes of increasing intensity (-4.6 to 1.9 log cd s/m2) in total 

darkness.  Mice were then light-adapted to a constant white background illumination of 2.3 log 

cd s/m2 for 10 min.  Light-adapted responses to a series of light flashes (-0.01 to 2.67 log cd 

s/m2) were obtained in the presence of constant background illumination.  At each intensity, 

responses to multiple trials were averaged.  The a- and b-wave amplitude and latency were 

measured and quantified for comparison.   

 

Multielectrode array recordings of RGC activity 

 Mice were dark-adapted for at least 1 h prior to CO2 asphyxiation.  For light-evoked 

recordings, eyes were enucleated and retinas were isolated under IR illumination.  For 
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spontaneous activity recordings, this step was performed under dim red illumination.  During 

dissection, isolated retinas were maintained in cooled murine artificial cerebral spinal fluid  

(mACSF) (125 mM NaCl, 2.5 mM KCl, 1 mM MgCl2, 1.25 mM NaH2PO4-H2O, 20 mM 

glucose, 26 mM NaHCO3, 2 mM CaCl2) oxygenated with 95% O2, 5% CO2.  Isolated retinas 

were placed ganglion cell layer down on a multi-electrode array (MEA), consisting of 252 

electrodes at 100 μm spacing (MultiChannel Systems).  To prevent movement of the retina, a 

transparent cell culture membrane (Corning) was placed over the retina and secured under a 

platinum ring.  Retinas were allowed to equilibrate for 45-60 min before recording.  While 

recording, retinas were superfused with oxygenated mACSF (30 ºC) at a rate of 1-1.5 mL/min. 

 

Visual stimulation 

 Stimuli were generated using an organic light emitting display (OLED) mounted in place 

of the condenser of an inverted light microscope (10x objective).  Stimulation protocols were 

programmed using Matlab (Mathworks).  Full field illumination (4 sec) was attenuated to 5 or 

200 Rh*/rod/sec by neutral density filters placed between the display and objective.  For 

checkerboard Gaussian white noise stimulation, the field was divided into squares (66 µm sides) 

and the intensity of the squares was chosen at random from Gaussian distribution with a constant 

mean and standard deviation at 40 msec intervals. 

 

Analysis of RGC light responses  

 Because MEA electrodes can record spikes from multiple RGCs, we used principal 

component analysis of waveforms (Offline Sorter, Plexon) to assign spike trains to individual 

RGCs.  Individual RGCs were selected as those exhibiting spike trains in which less than 0.2% 
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of interspike intervals were less than 2 msec.  This analysis was restricted to transient ON RGCs. 

Firing rate was calculated by quantifying the number of spikes during illumination (5 sec bin).  

Latency was calculated as the time to reach maximum firing rate.  To study RGC space-time 

receptive fields, we generated and analyzed spike-trigger averages (STA), as described in detail 

previously (Chichilnisky, 2001).  For STA analysis, retinas were stimulated with a Gaussian 

white noise checkerbox sequence.  STA stimuli were the averages of the stimulus sequences 

(500 msec) preceding each spike for a given RGC.  Because the quality of STAs depends on the 

number of spikes used to generated them, only RGCs with a robust total number of spikes were 

included for analysis (average number of spikes: WT: 4700±650, R7BP-/-: 4700±630).  The 

temporal structure of the receptive field response was calculated from the average of the stimulus 

squares that have a standard deviation (SD) three-fold greater than the SD of background 

squares.  Receptive fields were estimated as the radius of a 1-SD ellipse from a two-dimension 

Gaussian fit of the spatial profile at the STA temporal maximum.  The radius of the receptive 

field was calculated as: r=√rmajrmin, where rmaj and rmin are the major and minor axes.  Time to 

peak was calculated as the time between maximum STA contrast and the spike.  

 

Analysis of RGC spontaneous wave activity 

 For recording of spontaneous waves, retinas were maintained in complete darkness for a 

recording period of 45 min.  Individual RGCs were sorted as described above.  Firing rate of 

RGCs was calculated as number of spikes at 5 sec bins.  Burst duration was estimated by the 

width at half-maximum of a RGC's spike train autocorrelogram.  Interwave interval was 

calculated as the average time between peaks in the population firing rate.  To identify peaks, the 

firing rates of all RGCs from a retina were averaged and smoothed using an exponential filter:  
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y(t) = α x y(t-1) + (1-α) x x(t), where α is the degree of smoothing (0.9), x(t) is the mean firing 

rate, y(t) is the smoothed version.  The running average of the firing rate, calculated using a 

Loess filter (f = 0.67) multiplied by 1.5, was used as a threshold.  Peaks were defined as the 

maximum point between two successive crossings of this threshold.  Correlation indices were 

calculated as describe previously (Wong et al., 1993): CIXY = [NXY(-Δt, +Δt) x T] / [NX(O,T) x 

NY(O,T) x 2Δt] where NXY is the number of spikes cell Y fired within ± Δt (0.1 sec) from spikes in 

cell X.  T is the duration of the recording.  NX(O,T) and NY(O,T) are the total number spikes from 

cells X and Y, respectively.  

 

Anterograde labeling and analysis of retinogeniculate projections 

 Alexa Fluor-647 or Alexa Fluor-555 dye-conjugated cholera toxin B subunit (CTB) (1-

2 μL, 2 mg/mL, Invitrogen) was injected intravitreally into opposite eyes of anesthetized P19 

mice with a Picospritzer III (Parker).  After 2 days, mice were euthanized and perfused, and 

brain slices were prepared as described above.  Coronal brain slices (80 μm) were mounted and 

imaged at 10x magnification.  Retinogeniculate segregation was quantified as described 

previously (Torborg and Feller, 2004).  Briefly, images were background subtracted using rolling 

ball subtraction (200 pixels) and the area surrounding the dLGN was masked.  R-values for each 

pixel were calculated in Matlab Software (MathWorks) as R = Log10(Fi/Fc), where Fi and Fc are 

the fluorescence of ipsilateral and contralateral channels, respectively.  As a measure of 

segregation, the variance of R-values for the center four slices of each dLGN were averaged.  To 

determine the area of contralateral and ipsilateral projections, background subtracted and masked 

images were thresholded (10%) and binarized.  The total area of dLGN was set as the area of the 

dLGN mask and quantified using NIH Fiji, and the number of thresholded pixels for 
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contralateral and ipsilateral projections were quantified and expressed as percentage of the total 

dLGN area.  For area of overlap, thresholded images were merged.  Merged pixels were isolated 

using NIH Fiji (RG2B Colocalization) and quantified as described above. 

 

Spatial vision measured by optomotor reflexes 

 For testing spatial vision, we measured optomotor responses in WT and R7BP-/- mice (~3 

months old) using the OptoMotry virtual optomotor system (Cerebral Mechanics) (Prusky et al., 

2004), which utilizes a reflex in which mice move their heads to track a moving vertical sine 

wave grating.  Mice were placed on a pedestal surrounded by computer monitors that displayed 

the grating and monitored with a video camera under normal or IR illumination.  Stimuli were 

presented for a period of 5 sec before returning to 50% gray illumination.  The protocol 

implemented a two-alternative, forced choice method in which the observer was blind to the 

direction of rotation of the grating and was forced to identify the direction based on the mouse's 

observed head movement (Umino et al., 2006).  A staircase paradigm was used for assessing 

contrast and spatial frequency thresholds, defined as a correct observer response of 70%.  For 

determining contrast sensitivity, testing was performed under optimal tuning conditions in which 

spatial and temporal frequencies were set at 0.128 cyc/deg and 0.75 Hz, respectively (Umino et 

al., 2008).  Contrast sensitivity was defined as the inverse of the contrast at threshold (Prusky et 

al., 2004).  For testing visual acuity, contrast (100%) and speed (5.4 deg/s) were kept constant, 

while spatial frequency was gradually increased.  Visual acuity was defined as the spatial 

frequency at threshold.  During testing, the observer was blind to the genotype of the animal.  

For scotopic (-4.5 log cd/m2) testing, mice were dark-adapted overnight and neutral density film 

filters were placed between mice and the computer monitors.  For photopic (1.8 log cd/m2) 
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testing, mice were light adapted, and the acuity and contrast sensitivity examinations were 

repeated without filters. 

 

Statistics 

Statistical analysis of electroretinograms was performed using repeated measures 

ANOVA, followed by Bonferroni’s (Dunn) post-test.  Significance was determined before 

Bonferroni. Analysis of MEA data implemented a linear/generalized linear mixed model 

framework. This framework allows analysis of data from individual neurons, while still 

accounting for the correlated nature of the activity of neurons recorded from the same retina and 

during correlated wave activity.  Because each type of data obtained from MEA experiments 

exhibited different statistical distributions, we determined which type of statistical distribution 

for the random error in the linear/generalized linear mixed model best fit the data.  RGC 

receptive field radius was analyzed using linear mixed model with normally distributed random 

error.  Light-evoked and wave spike rate and wave burst duration were analyzed similarly after 

log transformation.  Log transformation did not result in a normal distribution of data measuring 

latency, STA time-to-peak, or interwave interval.  In these cases, a generalized linear mixed 

model was performed, the random error had a gamma distribution for latency measurements and 

a negative binomial distribution for STA-time-to-peak and interwave interval measurements.  

Model assumptions were examined by residual plots and other model diagnostics.  Homogeneity 

within retinas from the same genotype was assessed by intra-class correlation coefficient 

analysis.  Student's t-test was used to determine significance of the optomotor response and 

retinogeniculate segregation data.  Statistical significance was defined as p<0.05. 
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Figure 1. Generation and characterization of R7BP- and R7BPfl alleles. 

A.  Targeting strategy for generation of nonconditional (R7BP-) and conditional (R7BPfl) alleles. 

Cre mediated excision between LoxP1 and LoxP3 generates nonconditional allele (R7BP-) Cre 

mediated excision between LoxP2 and LoxP3 generates conditional knockout allele (R7BPfl). 

B. Southern analysis of BamHI digested genomic DNA from targeted embryonic stem cells 

using southern blot probes (SP) demonstrate homologous recombination. C. Southern analysis of 

NdeI digested targeted embryonic stem cells after Cre-mediated excision of exon 2 and the PGK 

Neo cassette (R7BP-) or only the PGK-Neo cassette (R7BPfl) using the TC probe. D. Western 

blot of whole retina or whole brain lysates from WT or R7BP-/- mice  
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Figure 2. R7BP is expressed in starburst amacrine cells and Brn3a-positive RGCs.  

A-B. R7BP is expressed in the OPL, INL, IPL, and GCL in wild-type retina (A) as compared to 

R7BP-/- retina (B). C. Expression of R7BP in starburst amacrine cells (SACs). Co-staining of the 

SAC marker (ChAT; magenta) and R7BP (green) in the S2/S4 sublaminae of the IPL and somata 

of the INL and GCL. Arrowheads mark ChAT-positive somata. Asterisks indicate R7BP-

positive, ChAT-negative somata. D. Somatic expression of R7BP (green) in Brn3a-positive 

retinal ganglion cells (magenta). Arrowheads mark Brn3a-positive nuclei. Abbreviations are as 

follows: outer segment (OS), outer nuclear layer (ONL), outer plexiform layer (OPL), inner 

nuclear layer (INL), inner plexiform layer (IPL), ganglion cell layer (GCL).  
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Figure 3. R7BP is induced during postnatal development.  

At P8, R7BP (green) is expressed in the OPL, INL, IPL, and GCL. SACs (ChAT-positive cells; 

magenta) are indicated. R7BP expression in retina is increased at P12 and P30 relative to P8. 

Asterisks indicate R7BP-positive, ChAT-positive SACs.  
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Figure 4. R7BP-/- mice have essentially normal light-evoked photoreceptor and ON bipolar 

cell activity.  

A. Representative ERG responses from dark-adapted WT and R7BP-/- mice (~3 months) were 

obtained over the indicated range of flash intensities (log cd s/m2). B-C. Quantification of ERG 
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a-wave peak amplitude (B) and latency (C) in adult dark-adapted WT (gray) and R7BP-/- (black) 

mice. D-E. Ablation of R7BP does not alter dark-adapted b-wave peak amplitude (D) or latency 

(E). F. Representative ERG responses of light-adapted WT and R7BP-/- mice over the photopic 

range of flash intensities (log cd s/m2). G-H. Similar ERG b-wave peak amplitude (G) and 

latency (H) in light-adapted WT and R7BP-/- mice were observed.  Error bars represent ±SEM. 

 

  



53 
 

 

 



54 
 

Figure 5. Ablation of R7BP alters mesopic but not scotopic ON RGC light responses.  

A-B. Distribution of mean spike rate (B) and latency (C) of P20-21 WT (gray lines) and R7BP-/- 

(black lines) ON RGCs is similar under scotopic illumination. C-D. Ablation of R7BP decreases 

the mean spike rate (D) and increases the latency (E) of P20-21 ON RGCs under mesopic 

illumination. E. Representative spike trigger average (STA) stimuli of WT (gray) and R7BP-/- 

(black) ON RGCs. Inset: Corresponding receptive field as revealed by images of STAs at peak 

contrast, asterisks. F. Time-to-peak between stimulus (STA peak contrast, asterisks) and 

response (spike) of WT and R7BP-/- ON RGCs. G. Receptive field sizes of ON RGCs in P20-21 

WT and R7BP-/- retina were similar. Error bars represent ±SEM. 
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Figure 6. Ablation of R7BP increases glutamatergic wave burst duration.  

A. Representative raster plots of cholinergic waves from P8-9 WT and R7BP-/- RGCs obtained 

by MEA recordings. B. Correlated firing of cholinergic waves is preserved in R7BP-/- retina. 

Correlation indexes from P8-9 WT (gray) and R7BP-/- (black) RGCs plotted as function of 



56 
 

distance between the recording electrodes. Circles indicate the median. Lower and upper error 

bars indicate the 25th and 75th percentile, respectively. C. Representative raster plots of 

glutamatergic waves in P12-13 WT and R7BP-/- RGCs. D. Correlated firing during glutamatergic 

waves is similar in WT (gray) and R7BP-/- (black) retinas. E. Ablation of R7BP increases the 

burst duration of glutamatergic waves in P12-13 retina. Error bars represent ±SEM. 
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P8-9  P12-13 
  WT R7BP-/-  WT R7BP-/- 
# of Neurons [Retinas]  190 [3]  180 [3]   594 [4]  365 [4]  
Firing Rate (Hz)                
Mean±SEM  0.21±0.01  0.22±0.01   0.44±0.02  0.37±0.02  
25% 0.12 0.13  0.17 0.18 
50% 0.19 0.20  0.32 0.30 
75% 0.28 0.29  0.58 0.47 
p Value  p = 0.75   p = 0.83 
Burst Duration (sec)      
Mean±SEM  0.94±0.04  0.95±0.04   0.41±0.01  0.55±0.02  
25% 0.47 0.59  0.24 0.30 
50% 0.80 0.89  0.30 0.42 
75%  1.2  1.3   0.42 0.60 
p Value  p = 0.79   p = 0.03*  
Interwave Interval (sec)      
Mean±SEM  60±3.5  68±3.1   22±8.1  23±8.1  
25% 30  55   11  10  
50% 54  75   20  21  
75% 83  92   28  32  
p Value  p = 0.67  p = 0.98 
 
Table 1: Spatiotemporal properties of cholinergic and glutamatergic waves of WT and 

R7BP-/- RGCs. 

Quantification of firing rate, burst duration, and interwave interval of cholinergic (P8-9) and 

glutamatergic (P12-13) retinal waves determined by MEA recordings.  
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Figure 7. R7BP is dispensable for segregation of retinogeniculate projections.  

A-B. Representative fluorescent labeling of contralateral (red) and ipsilateral (green) 

retinogeniculate projections of P21 WT (A) or R7BP-/- (B) dLGN using intraocularly injected, 

Alexa-conjugated cholera toxin B subunit (CTB) as anterograde tracers. Binarized images were 

thresholded at 10% to determine the area occupied by either contralateral (red), ipsilateral 

(green), or both (yellow) projections. C. Segregation of eye-specific domains is similar in WT 

(white bar) or R7BP-/- (black bar) dLGN as measured by mean variance of R-value distributions 

from CTB-labeled retinogeniculate projections. D. Ablation of R7BP does not alter the area of 

dLGN innervated by contralateral, ipsilateral, or both projections. Error bars represent ±SEM. 
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Figure 8.  Normal visual acuity and spatial contrast sensitivity in R7BP-/- mice.  

A. Similar visual acuity of WT (white bar) and R7BP-/- (black bar) mice under scotopic and 

photopic conditions as measured by optomotor response. B. Ablation of R7BP does not disrupt 

scotopic and photopic contrast sensitivity. Error bars represent ±SEM.  
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Chapter 3: 

 

R7BP interacts with R7-RGS/Gβ5 complexes in the dLGN 

but does not regulate R7-RGS/G5 membrane association 
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Abstract 

 The visual system extends beyond the retina into multiple structures in the brain. Here we 

show that R7BP is highly expressed throughout the neuropil of the dorsal lateral geniculate 

nucleus (dLGN), a region of the brain that is an important component of the visual system, acting 

as the relay center for the retino-geniculo-cortical pathway that connects the retina to the primary 

visual cortex. The dLGN was also critical to a preliminary phenotype we were characterizing in 

R7BP-/- mice.  Similar to retina, R7BP expression in the dLGN is induced during postnatal 

development.  In adult lateral geniculate nucleus (LGN), R7BP interacts with RGS6 and RGS7 

but is not necessary for membrane association of R7-RGS complexes in LGN lysates.  Although 

these data have been collected within the context of a disproven preliminary phenotype, these 

findings indicate that R7-RGS complexes may function elsewhere in the visual system.  

Furthermore, the data demonstrate that R7BP likely regulates R7-RGS function independently of 

membrane targeting in the dLGN.  
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Introduction 

Preliminary data of anterograde labeling of R7BP-/- retinas suggested a desegregation 

phenotype of retinogeniculate projections beginning at P12 (data not shown).  This preliminary 

phenotype did not correlate with any deficits in retinal waves found in mice with similar 

desegregation phenotypes (Demas et al., 2006) or with observed deficits in R7BP-/- retinal waves 

(Cain et al., 2013).  We began to explore the hypothesis that R7BP functions postsynaptically of 

retinal ganglion cells in the dLGN to regulate retinogeniculate segregation. Therefore, it was 

critical to understand the mechanism by which R7BP regulates R7-RGS proteins and Gi/o 

signaling to maintain segregation of retinogeniculate segregation.   

 

Because we demonstrated that retinogeniculate segregation is normal in R7BP-/- (Cain et 

al., 2013), we shifted our focus to characterize the relationship between R7BP and R7-RGS at 

the third synapse of the visual system in the dLGN.  The data from this study complements 

previous studies that have investigated the role of R7BP in membrane targeting of R7-RGS 

proteins in both retina and brain. 

 

R7BP was originally predicted to function as a membrane-targeting binding partner for 

R7-RGS family members (Drenan et al., 2005).  R7BP is necessary for plasma membrane 

localization of R7-RGS proteins in vitro, where it augments R7-RGS function (Drenan et al., 

2006).  Trafficking of R7BP/R7-RGS complexes is dependent on the presence of two C-terminal 

palmitate moieties (Drenan et al., 2005).  When palmitoylated, R7BP likely cycles between 

plasma membrane and perinuclear endomembranes.  Alternatively, unpalmitoylated R7BP 
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accumulates in the nucleus via a polybasic nuclear localization sequence (Drenan et al., 2005, 

2006; Jia et al., 2011).   

 

The extent to which R7BP is necessary for localization of R7-RGS proteins in vivo 

remains an open question.  R7BP localizes to dendrites and spines in striatum and has been 

reported to recruit RGS7 to postsynaptic densities (Anderson et al., 2009; Grabowska et al., 

2008).  However, loss of R7BP in the retina or hippocampus only minimally deters RGS7 

membrane association (Cao et al., 2008; Ostrovskaya et al., 2014b), suggesting that R7BP may 

not be necessary for R7-RGS membrane localization in vivo. 

 

Together, this study characterizes the in vivo role of R7BP on R7-RGS protein 

localization and function in the dLGN.  Specifically, we demonstrated that R7BP is highly 

expressed in the dLGN and that R7BP interacts with both RGS6 and RGS7.  However, ablation 

of R7BP does not dramatically affect membrane association of R7-RGS/Gβ5 complexes. 
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Results 

R7BP is expressed in the dLGN 

In addition to the retina, we examined the expression of R7BP in other areas of the visual 

system. As the primary relay center between the retina and visual cortex, the dLGN is an 

essential component of the visual system.  Additionally, preliminary data of retinogeniculate 

projections in dLGN indicated that loss of R7BP resulted in a desegregation of retinogeniculate 

projections (data not shown) that did not coincide with strong deficits in retinal waves (Chapter 

2, Figure 6), suggesting that R7BP may function postsynaptically in dLGN.  We probed for 

R7BP expression in coronal brain slices using affinity-purified R7BP antibodies. R7BP is 

strongly expressed in the dLGN (Figure 1A), only weakly expressed in ventral lateral geniculate 

nucleus (vLGN), and absent from the intergeniculate leaflet (IGL) (data not shown).  

 

As R7BP is expressed in a subset of RGCs (Ch. 2, Figure 2), it was important to 

determine if R7BP staining originated from the RGCs innervating the dLGN or from neurons of 

the dLGN.  We utilized a conditional R7BP knockout allele (R7BPfl), in which exon 2 is flanked 

by loxP sites (Ch. 2, Figure 1), crossed to a retinal Cre line, Six3-Cre (Furuta et al., 2000).  The 

Six3-Cre line expresses Cre enzyme throughout the retina and frontal cortex as early as E9.  

Specifically, R7BPfl/fl mice were bred to R7BP+/-, Six3-Cre+ mice to generate R7BPfl/-, Six3-Cre+ 

mice and their Cre-only littermate control (R7BPfl/+, Six3-Cre+).  R7BP was still expressed 

throughout R7BPfl/+, Six3-Cre+ control retina and dLGN (Figure 1B).  R7BP expression was 

absent from a majority of the R7BPfl/-, Six3-Cre+ retina, similar to R7BP-/- retinas.  Weak 

residual R7BP expression was observed in the peripheral retina (data not shown).   However, 

R7BP expression in the dLGN was maintained in R7BPfl/-, Six3-Cre+ mice, indicating that R7BP 
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was expressed in neurons in the dLGN.  High magnification confocal imaging revealed staining 

throughout the neuropil of the dLGN (Figure 1C).  Although the density of staining prevented 

distinguishing somatic R7BP staining from the density of the neuropil, R7BP expression can be 

observed surrounding somata of dLGN neurons.  This suggests that R7BP is expressed in dLGN 

neurons. 

 

We also examined the onset of R7BP expression in the dLGN.  This was originally done 

to correlate R7BP expression to onset of the preliminary desegregation phenotype which began 

at P12.  R7BP expression was low but detectable above background at P4.  Expression increased 

over the next two weeks to adult levels (Figure 2).  Therefore, R7BP expression undergoes 

similar induction in multiple compartments of the visual system (Cain et al., 2013).  

 

R7BP interacts with RGS6 and RGS7 in dLGN 

   As R7BP primarily regulates cell signaling through its interaction with R7-RGS 

complexes, it was important to understand which R7-RGS proteins R7BP coupled with in dLGN. 

We dissected the lateral geniculate nucleus region of the thalamus.  As R7BP expression was 

predominately in the dLGN and not the IGL or vLGN, the primary contribution of R7BP will be 

from the dLGN. To confirm that our dissections were isolating R7BP-enriched dLGN, we 

determined R7BP expression level in immunoprecipitated R7BP from multiple R7BP-expressing 

brain regions (cortex, hippocampus, and striatum) and the LGN (Figure 3A).  R7BP was highly 

expressed in LGN lysates compared to other brain regions. Additionally, we were successful in 

co-immunoprecipitating Gβ5, demonstrating our ability to collect full R7-RGS/Gβ5 

heterotrimers. Interestingly, only a small fraction of Gβ5 (<10%) co-immunoprecipitated with 
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R7BP, suggesting that R7BP interacts with a subpopulation of R7-RGS/Gβ5 dimers, or that 

interaction is dynamic and labile.  In addition to Gβ5, we also co-immunoprecipitated RGS6 

(Figure 3B) and RGS7 (Figure 3C).  Immunoprecipitation was dependent on R7BP as neither 

RGS6 nor RGS7 co-immunoprecipitated from R7BP-/- lysates.  RGS9 and RGS11 expression 

was not detected in LGN lysates using available antibodies. 

 

R7BP is not necessary for R7-RGS/Gβ5 membrane association or localization to synapses 

 As R7BP is considered a R7-RGS membrane targeting protein, especially in vitro 

(Drenan et al., 2005), we wanted to determine if R7BP was necessary for membrane localization 

of R7-RGS complexes in vivo. We performed crude membrane fractionation of dLGN 

preparations to determine if R7BP ablation perturbed R7-RGS/Gβ5 membrane association, using 

Gβ5 as a surrogate for all R7-RGS/Gβ5 dimers in the LGN.  Gβ5 was highly associated with the 

membrane, with minimal cytosolic localization (Figure 4A). Similar to what was observed in 

retina (Cao et al., 2008), R7BP was dispensable for Gβ5 localization to crude membrane 

fractions.  However, the extent to which R7BP traffics R7-RGS proteins to specific membrane or 

subcellular structures is unclear.   
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Discussion 

 We demonstrated that R7BP is highly expressed throughout the neuropil of the dLGN 

and can be detected surrounding the somata dLGN neurons, suggesting that R7-RGS complexes 

may regulate Gi/o signaling in the dLGN.  There are two dLGN resident neurons that are part of 

the retino-geniculo-cortical system which relay visual information from retina projections to the 

primary visual cortex, thalamocortical relay neurons and inhibitory thalamic interneurons. Both 

neurons receive input from retinal ganglion cells (RGCs), corticothalamic neurons, and thalamic 

reticular nucleus neurons (TRN). Additionally, Gi/o signaling regulates the action of these 

neurons.  Both GABA(B) and mGluR receptor signaling have been demonstrated to regulate 

thalamocortical relay neurons (Bickford et al., 2010a; Govindaiah and Cox, 2006; Perreault et 

al., 2003). Therefore, it is interesting to consider whether R7-RGS/R7BP complexes expressed in 

dLGN neurons regulate transmission of visual information outside of the retina.  

 

 The onset of R7BP expression is similar to that observed in whole brain lysates and 

coincides with periods of synaptic refinement (Grabowska et al., 2008). Similar synaptic 

refinement occurs in the dLGN during this period, including synaptic pruning and organization 

of retinogeniculate projections into eye specific domains (Bickford et al., 2010a; Huberman et 

al., 2008).  Although R7BP was dispensable for normal organization of retinogeniculate 

projections (Cain et al., 2013), it is interesting to consider whether RGS7 and RGS6, which 

interact with R7BP in the dLGN, would have a significant effect on segregation. 

 

 We determined that R7/Gβ5 membrane association is independent of R7BP in LGN 

preparations.  Similar trends have been observed in retina and hippocampus, in which ablation of 
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R7BP results in only minor reduction in membrane association of R7-RGS proteins (Cao et al., 

2008; Ostrovskaya et al., 2014b).  How RGS6 and RGS7 target to membranes in the dLGN is an 

open question. Do R7-RGS complex with GPCRs and other integral membrane proteins as in the 

retina (Orlandi et al., 2012)?  It remains possible that R7BP membrane association may target 

R7-RGS complexes to relevant signaling regions of the plasma membrane that are not 

distinguishable by fractionation.  Alternatively, these data may favor the hypothesis that R7BP 

primarily acts as a positive allosteric regulator for a specific pool of R7-RGS complexes 

(Masuho et al., 2013; Zhou et al., 2012b).   

 

 While originally designed to explore mechanisms underlying an invalidated 

desegregation phenotype, this study reveals a novel tissue in which R7-RGS complexes may 

regulate Gi/o signaling in the visual system.  Additionally, we contribute to the ongoing 

description of R7BP regulation of R7-RGS complex in vivo. 
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Material and Methods 

Animals 

 All animal procedures used protocols approved by the Washington University Animal 

Studies Committee (Protocol #20110184 and #20140036).  R7BP-/- mice produced by targeted 

deletion of exon 2 have been described previously (Zhou et al., 2012b).  R7BP+/- mice were 

crossed six generations into the C57BL/6 background (Charles River Laboratories) and then 

interbred to produce WT and R7BP-/- littermates of either sex for analysis. For generation of 

R7BPfl allele see Chapter 2, Figure 1. Retina-specific R7BP knockouts were generated as such: 

Six3-Cre+ mice were first crossed with R7BP-/- mice.  R7BP+/-, Six3-Cre+ mice then were crossed 

with R7BPfl/fl to generate R7BPfl/-, Six3-Cre+ mice and their littermate control (R7BPfl/+, Six3-

Cre+) of either sex for analysis. 

 

Tissue preparation and immunostaining 

 Mice were euthanized by CO2 asphyxiation followed by cervical dislocation.  Enucleated 

eyes were fixed with paraformaldehyde (4%) in PBS (pH 7.4).  Retinas were isolated in PBS and 

embedded in 4% low-melting point agarose.  For fixation of brain, euthanized mice were 

perfused intracardially with PBS followed by paraformaldehyde (4%) in PBS.  Brains were 

removed and post-fixed overnight at 4 ºC.  Vertical retina and coronal brain slices were cut 

(60 μm and 100 μm, respectively) with a vibratome.  Slices were blocked with 10% normal horse 

serum (NHS) in PBS and incubated with primary antibodies overnight in 5% NHS and 0.05% 

Triton X-100 (Sigma-Aldrich). The following antibodies were used: affinity purified rabbit anti-

R7BP (Grabowska et al., 2008) and Alexa Fluor 488-conjugated anti-rabbit (Invitrogen; 1:1000) 

antibodies.  Slices were mounted using VectaShield (Vector Labs) and imaged with Olympus 
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FluoView FV500 (Bakewell NeuroImaging Laboratory, WUSM).  Retinal immunofluorographs 

were median filtered (1 pixel surround) using NIH Fiji (Schindelin et al., 2012).  For 

quantification of postnatal induction of R7BP expression, mean fluorescence values were 

measured for R7BP-positive dLGN and normalized to R7BP-negative intergeniculate leaflet, as 

background.  

 

LGN isolation 

Mice were euthanized by CO2 asphyxiation followed by cervical dislocation.  Brains were 

removed and dissected in PBS.  Specifically, the cortex and hippocampus were first isolated to 

expose the thalamus. The crude LGN was separated from the thalamus by isolating the tissue 

lateral and dorsal to the innervation of the optic tract in the thalamus.  Following LGN isolation, 

striatum was dissected. 

 

Immunoprecipitation 

Brain regions were homogenized in 1% Triton X-100 in PBS (pH 8.0) using Teflon 

microcentrifuge tube pestle.  Homogenates were further lysed by rotating at 4 C for 30 min. 

Lysates were cleared by centrifugation at 16,000xg (20 min) and 100,000xg (1 hr).  Soluble 

fractions were quantified using BioRad Bradford reagent. 100 µg of protein incubated with 

chicken anti-R7BP (#4827) and washed PrecipHen beads overnight at 4 C.  Protein was eluted 

in SDS Sample Buffer by boiling.  For western blots, samples were electrophoresed through 10% 

SDS-polyacrylamide gels and transferred to PVDF membranes (Millipore).  Membranes were 

blocked with 5% milk in TBST (1 hr) and incubated overnight at 4 C with primary antibody in 

TBST or 5% milk in TBST.  The following antibodies were used: affinity purified rabbit anti-
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R7BP (1:1000), rabbit anti-G5 (ATDG) (1:1000), provided by William Simonds, rabbit anti-

RGS6 (1:1000), provided by Rory Fisher, and rabbit anti-RGS7 (1:1000), provided by Ted 

Wensel. Blots were washed three times in TBST (10 min) prior to incubation with HRP-

conjugated anti-rabbit antibody in TBST.  Secondary antibody was washed three times with 

TBST (10 min) and blots were imaged using ECL reagent (General Electric). 

 

Membrane Fractionation 

Dissected brain tissue was isolated as described above. Tissue was homogenized in hypotonic 

buffer (5 mM Tris pH 7.4, 1mM EDTA pH 8.0,  1mM EGTA  pH 8.0, 10 mM KCl, 2 mM 

MgCl2, 1 mM DTT, 0.25 M Sucrose) using a microcentrifuge tube pestle and incubated rotating 

at 4 C. Cell debris was cleared by centrifugation at 1000xg for 20 min. Lysates were quantified 

as described above. Crude membrane fractions were isolated from cytosolic fractions by 

ultracentrifugation at 100,000xg (30 min), washed with small volume of hypotonic buffer, and 

re-pelleted at 100,000xg (20 min) before being solubilized in MCLB buffer (50 mM Tris pH 

8.0),  5 mM EDTA, 0.5% IGEPAL, 100 mM NaCl, 1 mM sodium orthovanadate). Equivalent 

volumes of cleared lysates (total), cytosolic, and membrane fractions were resolved using SDS-

PAGE and imaged using western blot as described above. 
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Figure 1. R7BP is expressed in the dorsal lateral geniculate nuclei (dLGN). 

A. R7BP is expressed in adult WT dLGN (traced by dashed white line) but absent from R7BP-/- 

dLGN.  B.  R7BP expression in dLGN persists in retina-specific R7BP knockouts. 

Immunostaining of R7BP in retina and dLGN of controls (R7BPfl/+ Six3-Cre+).  R7BP 

expression in dLGN of retina-specific R7BP knockouts (R7BPfl/- Six3-Cre+) is preserved.  Loss 

of R7BP immunostaining in retina and dLGN of R7BP-/- controls.  C. R7BP is expressed 

throughout the neuropil of dLGN. Arrowheads indicate somata surrounded by R7BP staining. 
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Figure 2. R7BP dLGN expression is induced during postnatal development. 

A. Representative immunofluorographs of R7BP in wild-type dLGN (traced by dashed white 

line) at various ages.  At P4, R7BP is barely detectable in dLGN, but increases to adult levels 

over two week of postnatal development.  B. Quantification of mean fluorescence of dLGN 

R7BP immunostaining normalized to background fluorescence in the intergeniculate leaflet 

(IGL).  
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Figure 3. R7BP is highly expressed in crude geniculate lysates and interacts with both 

RGS6 and RGS7. 

A. Co-immunoprecipitation of R7BP and Gβ5 from cortical, hippocampal, striatal and crude 

geniculate lysates using anit-R7BP antibody. R7BP and Gβ5 were resolved by SDS-PAGE and 

western blotting.  B. Co-immunoprecipitation of RGS6 with anti-R7BP antibody from LGN 

lysates. R7BP-/- lysates demonstrate specificity of immunoprecipitation. C. Co-

immunoprecipitation of RGS7 with anti-R7BP antibody from LGN lysates. R7BP-/- LGN lysates 

act as a negative control.  
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Figure 4. Ablation of R7BP does not disrupt RGS7/G5 plasma membrane association. 

Subcellular fractionation of dLGN lysates into soluble cytosolic (S100) and insoluble crude 

membrane (P100) fractions. Membrane association of Gβ5 is indistinguishable between WT and 

R7BP-/- dLGN lysates.  
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Chapter 4: 

 

Effect of expression of RGS-insensitive Gi2 and Go mutants   

on outer retinal function 
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Abstract 

Functional redundancy in GAP activity toward Gi/o may preclude identification of retinal 

signaling sensitive to RGS regulation when using single knockout strategies.  In this study we 

characterize the outer retinal function of two RGS-insensitive knock-in mutant strains for Go and 

Gi2 in order to 1) directly inhibit RGS regulation of specific Gi/o G subunits and 2) investigate 

RGS regulation of Gi/o that may be independent of R7-RGS proteins. We report that 

heterozygous RGS-insensitive Go mutants have normal dark-adapted ERG b wave phenotypes 

and normal rod dendritic morphology.  We also demonstrate a novel finding that RGS regulation 

of Gi2 is necessary for maximal rod light responses. 
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Introduction 

 Genetic ablation of the R7-RGS (regulator of G protein signaling) Gi/o GTPase 

activating proteins (GAPs) RGS7, RGS9, and RGS11 has led to the identified of multiple outer 

retinal GPCR signaling cascades that are dependent on GAP activity (Cao et al., 2012; Chen et 

al., 2010; Cowan et al., 1998; He et al., 1998; Mojumder et al., 2009; Rao et al., 2007; Shim et 

al., 2012; Zhang et al., 2010).  However, two challenges have arisen in attempting to identify 

novel retina GPCR cascades that are regulated by R7-RGS proteins via single R7-RGS 

knockouts.  The first challenge is functional redundancy; RGS7 and RGS11 have both been 

shown to regulate metabotropic glutamate receptor 6 (mGluR6)/Go cascades (Cao et al., 2012; 

Shim et al., 2012).  R7-RGS proteins also have overlapping expression (Song et al., 2007) and 

may be redundant with other GAPs expressed in the retina (Faurobert et al., 1999; Ivanov et al., 

2006; Ji et al., 2011).  The second challenge is that strategies designed to circumvent this 

redundancy, such as ablating all R7-RGS proteins in Gβ5-/- mice, result in disruption of outer 

retinal light responses (Rao et al., 2007).  This disruption prevents analysis of RGS function 

elsewhere in the retina.  Here we used an alternative approach by characterizing knock-in 

mutants of Gi/o subunits that have been rendered insensitive to RGS regulation.  In either Go or 

Gi2, the G184S mutation in Gα subunit prevents both interaction and GAP activity of RGS 

proteins without disrupting Gα interaction with receptors, Gβγ, or effectors (Fu et al., 2004; Lan 

et al., 1998). 

 

The first mutant characterized was Gi2G184S.  Homozygous RGS-insensitive Gi2 

(Gi2GS/GS) mice have been useful for the identification of novel RGS regulation of several 

signaling cascades in hippocampal and cortical 5-HT1A signaling and isoflurane anesthesia 
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(Icaza et al., 2009; Talbot et al., 2010).  Despite the abundance of Gi/o coupled receptors in the 

retina (Catsicas and Mobbs, 2001; Clark et al., 2009; Gleason, 2012; Huang et al.; Jensen, 2006; 

Jensen and Daw, 1986; Kothmann et al., 2009; Masu et al., 1995), Gi has yet to be demonstrated 

as the target of RGS regulation in retina.  Importantly, Gi2 is not modeled to be a component of 

phototransduction or ON bipolar cell light responses (Dhingra et al., 2000b).  Therefore, we 

hypothesized that disrupting RGS regulation and augmenting Gi2 signaling may reveal retinal 

functions that are sensitive to both RGS regulation and Gi2 signaling.  

 
The second mutant was a heterozygous RGS-insensitive Go (Go+/GS) mouse. 

Homozygous GoGS/GS mice are not viable (Goldenstein et al., 2009).  However, Go+/GS mice have 

been used to identify novel RGS regulation of alpha2A adrenergic receptor signaling in CA3 

hippocampal epileptiform activity and opioid supraspinal antinociception (Goldenstein et al., 

2009; Lamberts et al., 2013).  Unlike Gi2GS/GS, Go+/GS has predicted deficits in rod bipolar cell 

light responses.  Indeed, loss of RGS regulation of Go resulted in a no-b-wave ERG phenotype 

(Rao et al., 2007).  Consequently, we hypothesize that presence of a RGS-insensitive GoG184S 

would have a dominant effect on ERG b-waves; this effect is similar to either the increased b-

wave latency in RGS7-/- or RGS11-/- mice or the no-b-wave phenotype observed upon loss of 

both RGS7 and RGS11 (Cao et al., 2012; Chen et al., 2010; Mojumder et al., 2009; Rao et al., 

2007; Shim et al., 2012; Zhang et al., 2010).  However, coincident to these no-b-wave 

phenotypes were morphological abnormalities in rod bipolar cell dendritic arborization (Rao et 

al., 2007; Shim et al., 2012).  These morphological abnormalities were not observed in Go-/- or 

mGlur6-/- mice (Dhingra et al., 2000b; Tagawa et al., 1999), suggesting that they were not caused 

by the no-b-wave phenotype.  Instead they are caused by either augmented Go signaling or loss 

of RGS regulation of another Gi/o subunit or signaling cascade.  Therefore, we characterized 



85 
 

both ERG and rod bipolar cell morphology of Go+/GS mice to potentially delineate the 

relationship between these two phenotypes.  

 

Our results provide novel evidence that Gi2 is necessary for rod function.  We also 

demonstrate that GoG184S does not function dominantly in ON bipolar cell light responses. 

Implications of this observation on existing models of mGluR6/Go/TRPM1 signaling are 

discussed.  
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Results  

Blockade of RGS regulation of Gi2 diminishes rod light responses.  

While R7-RGS proteins have been demonstrated to regulate transducin and Go signaling 

in retina (Cao et al., 2012; Chen et al., 2010; Cowan et al., 1998; He et al., 1998; Mojumder et 

al., 2009; Rao et al., 2007; Shim et al., 2012; Zhang et al., 2010), RGS regulation of Gi in retina 

has not been demonstrated. Moreover, very little is known about which retinal functions are 

regulated by specific Gi isoforms.  Therefore, we performed electroretinography of dark-adapted 

(Figure 1A) and light-adapted (Figure 1F) WT and homozygous RGS-insensitive Gi2 (Gi2GS/GS) 

knock-in mutant mice.  Such a mutation would be expected to augment Gi2 signaling and reveal 

circuits sensitive to both Gi2 signaling and RGS regulation of Gi2.  In dark-adapted WT and 

Gi2GS/GS mice (n≥8), we observed significant decrease in a-wave amplitude, especially at higher 

intensities, but no change in a-wave latency (Figure 1B/C).  Similarly, the dark-adapted ERG b-

wave amplitude in Gi2GS/GS mice was also diminished compared to WT (Figure 1D).  This 

decrease was proportional to the decrease in a-wave amplitude (data not shown) which suggested 

that this result was a defect primarily in photoreceptors.  B-wave latency (time to b-wave peak 

after flash) was unaffected by the expression of Gi2G184S (Figure 1E).  Gi2GS/GS light-adapted 

photopic b-wave amplitude and latency were indistinguishable from WT mice. This result 

suggests the previous dark-adapted phenotype is due to diminished rod light responses at higher 

light intensities but not impaired cone function (Figure 1G/H).  Therefore, RGS regulation of Gi2 

is necessary for maximal rod light responses. 
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Heterozygous RGS-insensitive Go mutants have normal outer retinal function.  

Inactivation of Go by RGS7 and RGS11 is modeled to be a necessary step in TRPM1 

gating and ON bipolar cell depolarization (Cao et al., 2012; Shim et al., 2012); therefore, we 

predicted that the presence of a RGS-insensitive GoG184S mutant would have a dominant negative 

effect on ERG b-waves.  The effect may be similar to either the increase in b-wave latency 

observed in RGS7-/- or RGS11-/-  mice or to the no-b-wave phenotype observed upon loss of both 

RGS7 and RGS11(Cao et al., 2012; Chen et al., 2010; Mojumder et al., 2009; Rao et al., 2007; 

Shim et al., 2012).  To determine whether heterozygous RGS-insensitive Go mutants (Go+/GS) 

affect rod- and cone-driven responses over a full range of stimulus intensities, we performed 

electroretinography of dark-adapted (Figure 2A) and light-adapted (Figure 2F) mice.  In dark-

adapted WT and Go+/GS mice (n≥7), we observed no difference in a-wave amplitude or latency 

corresponding to light-evoked hyperpolarization of rods (low light intensities) or rods and cones 

(higher intensities) (Figure 2B/C).  Interestingly the dark-adapted ERG b-wave amplitude in 

Go+/GS mice was indistinguishable from WT at all intensities (Figure 2D).  Similarly, B-wave 

latency (time to b-wave peak after flash) was unaffected by the expression of GoG184S (Figure 

2E).  Photopic (cone-specific) responses revealed by constant background illumination and high 

intensity flashes displayed no change in b-wave latency but a significantly decreased Go+/GS b-

wave amplitude at 2.4 log cd s/m2  (Figure 2G/H).  This ERG data is neither consistent with the 

prediction that GoG184S would act dominantly nor is it consistent with accepted models of RGS 

regulation of the mGluR6/Go/TRPM1 cascade regulating ON bipolar cell light responses. 
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Go+/GS mice display normal Go retinal expression and rod bipolar cell morphology. 
 

It is unclear why GoG184S did not perturb ON bipolar cell light responses.  One possibility 

is that GoG184S does not correctly traffic to rod bipolar cell dendritic tips.  Unfortunately, no 

antibodies are available to distinguish between GoWT and GoG184S subunits; therefore, 

determining if GoG184S subunits correctly traffic to ON bipolar cell dendritic tips is not possible 

in this heterozygous background. We did immunostaining of WT and Go+/GS in vertical slices, 

but we observed no abnormal Go localization that could be attributable to GoG184S in Go+/GS 

slices (Figure 3A).  

 

Due to the predicted dominant effect of GoG184S, we were also interested in assessing rod 

bipolar cell dendritic morphology in Go+/GS retina.  Loss of RGS7 and RGS11 complexes in the 

outer plexiform layer (OPL) results in disorganized OPL and shorter ON bipolar cell dendrites 

(Rao et al., 2007; Shim et al., 2012).  Using R7-RGS models, it is unclear if these morphological 

abnormalities were caused by augmented mGluR6/Go signaling or loss of RGS regulation of 

another Gi/o subunit and/or signaling cascade.  However, the GoG184S mutant allowed us to 

assess rod bipolar cell morphology in the absence of RGS regulation of Go specifically.  Using 

immunostaining of Go as a marker for rod bipolar cell dendrites, we observed no discernible 

difference in dendritic morphology in WT and Go+/GS vertical slices (Figure 3B).  These results 

indicate that the expression of GoG184S under endogenous promoter is insufficient to perturb rod 

dendritic morphology. 

 

  



89 
 

Discussion 

Our characterization of the ERGs of Gi2GS/GS mutants reveals that RGS regulation of Gi2 

is necessary for proper rod function.  Gi2GS/GS mutants also exhibit decreased b-wave amplitude 

that we interpret as being secondary to photoreceptor dysfunction. Interestingly, Gi2-/- mice have 

similarly reduced b-wave amplitude (Young et al., 2011).  Whether or not the b-wave phenotype 

of Gi2-/- mice also coincides with a diminished a-wave was not reported in the previous study.  

Regardless, these data suggest that RGS regulation of Gi2 is necessary for proper rod 

photoreceptor function and that augmented Gi2 signaling can disrupt rod function. The 

mechanism by which Gi2 regulates rod function is an open question. Interestingly, ablation of 

RGS9 or Gβ5 does not alter the amplitude of rod light responses, suggesting that a non-R7-RGS 

GAP regulates Gi2 in this system.  

 

In periods of darkness, sustained glutamate release from photoreceptors occupies 

mGluR6 to maintain a pool of active Go in dendritic tips of ON bipolar cells (Dhingra et al., 

2000b; Masu et al., 1995).  Active Go is modeled to directly or indirectly inhibit the 

constitutively-active transient receptor potential melastatin 1 (TRPM1) channel and cause 

hyperpolarization of ON bipolar cells (Koike et al., 2010; Morgans et al., 2010).  R7-RGS 

proteins (RGS7 and RGS11) are modeled as Go GAPs (Cao et al., 2012; Shim et al., 2012) 

which allow for timely inactivation of Go in response to light stimuli, TRPM1 opening, and ON 

bipolar cell depolarization.   Despite predictions that GoG184S would have a dominant function to 

suppress ON bipolar cell light responses, Go+/GS mice exhibit normal dark-adapted ERGs.  We 

observed no significant delay in b-wave latency or amplitude.  How does a GoG184S subunit that 

does not act dominantly fit into our current model of mGluR6/Go/TRPM1 cascade?  We discuss 
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potential models that could explain the observed Go+/GS phenotypes below.  Further testing of 

these models may elucidate the importance of R7-RGS proteins in ON bipolar cell synapses.  

Additionally, such studies may also reveal insights into Go regulation of TRPM1. 

 

 1) GoGS does not couple to mGluR6 in ON bipolar cells.  GoG184S mutation is not 

predicted to disrupt Go interaction with GPCRs (Fu et al., 2004).  Therefore, this result may be 

due to loss of GoGS expression or failure to traffic to dendritic tips.  While we cannot directly 

assay GoGS expression or localization for GoGS, we observed normal distribution of Go in Go+/GS 

rod bipolar cells. 

2) GoGS no longer inhibits TRPM1.  This result may be due to the G184S mutation 

preventing the direct or indirect inhibition of TRPM1.  The mechanism of Go-TRPM1 regulation 

is unknown.  However, G184S mutation does not disrupt classic effector binding (Fu et al., 

2004), but it is possible that this mutation may reflect a novel interface for TRPM1 regulation.  

Alternatively, Go may no longer interact with TRPM1 due to dissociation from the 

macromolecular signaling complexes with which TRPM1 interacts (Cao et al., 2011; Ray et al., 

2014).  Go may require interaction with R7-RGS proteins or continuous cycling between active 

and inactive states by R7-RGS GAPs to sustain interaction with TRPM1. 

3) GoGS cannot be dominant to GoWT in ON bipolar cells.  One mechanism that fits this 

model is inactive Go sequesters the hypothetical factor that inhibits TRPM1.  The presence of 

GoWT subunits in Go+/GS ON bipolar cells may be sufficient to sequester such a factor and allow 

for proper gating of TRPM1 despite a population of GoGS subunits.  Such a model has been 

proposed in which free Gβγ inhibits TRPM1, and inactivation of Go sequesters Gβγ in G protein 
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heterotrimers (Shen et al., 2012). Therefore, Go+/GS may have a sufficient pool of GoWT to 

adequately sequester Gβγ during light responses. 

 

. 
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Material and Methods 

Animals 

 All animal procedures used protocols approved by the Washington University Animal 

Studies Committee (Protocol #20110184 and #20140036).  Generation of GoG184S mutants and 

Gi2GS mutants have been described previously (Fu et al., 2004; Huang et al., 2006). Go+/GS mice 

were interbred with Go+/+ mice to produced WT and Go+/GS mice of either sex for analysis.  

Gi2+/GS mice were interbred to produce WT and Gi2GS/GS mice of either sex for analysis.   

 

Electroretinography 

 Flash ERG measurements were performed with a UTAS-E3000 visual Electrodiagnostic 

System running EM for Windows (LKC Technologies).  Mice (~3 months old) were dark-

adapted overnight.  Under dim red illumination, mice were anesthetized with a cocktail of 80 

mg/kg ketamine and 15 mg/kg xylazine.  The body temperature of the mice was maintained at 

37 oC with a heating pad controlled by a rectal temperature probe.  After positioning mice in the 

Ganzfeld dome, the recording electrodes (2.0 mm diameter platinum loops) were positioned on 

the corneal surface of each eye in a drop of 0.5% atropine sulfate (Bausch & Lomb) and 1.25% 

hydroxypropol methylcellulose (GONAK; Akorn Inc.).  Reference and ground electrodes were 

placed at the vertex of the skull and back, respectively.  For dark-adapted analysis, we recorded 

the responses to white light flashes of increasing intensity (-4.6 to 1.9 log cd s/m2) in total 

darkness.  Mice were then light-adapted to a constant white background illumination of 2.3 log 

cd s/m2 for 10 min.  Light-adapted responses to a series of light flashes (-0.01 to 2.67 log cd 

s/m2) were obtained in the presence of constant background illumination.  Responses to multiple 
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trials were averaged for each intensity.  The a-wave amplitude and latency were measured and 

quantified for comparison.  B-wave amplitude and latency were measured by using a custom 

MatLab script. Briefly, ERG curves were filtered using a lowpass zero-phase Butterworth digital 

filter (15 Hz) to remove high frequency oscillations.  B-wave peak was defined as the maximum 

post-flash amplitude from lowpass filtered curves. 

 

Tissue preparation and immunostaining 

 Mice were euthanized by CO2 asphyxiation followed by cervical dislocation.  Enucleated 

eyes were fixed with paraformaldehyde (4%) in PBS (pH 7.4).  Retinas were isolated in PBS and 

embedded in 4% low-melting point agarose.  Vertical retina slices were cut (60 μm) with a 

vibratome.  Slices were blocked with 10% normal horse serum (NHS) in PBS and incubated with 

primary antibodies overnight in 5% NHS and 0.05% Triton X-100 (Sigma-Aldrich).  The 

following antibodies were used: affinity purified mouse anti-Go (MAB-3073, Millipore; 1:500) 

and Alexa Fluor 488-conjugated anti-mouse (Invitrogen; 1:1000) antibodies.  Slices were also 

stained with NeuroTrace Red Nissl stain (Invitrogen).  Slices were mounted using VectaShield 

(Vector Labs) and imaged with Olympus FluoView FV500 (Bakewell NeuroImaging 

Laboratory, WUSM).  Retinal immunofluorographs were median filtered (1 pixel surround) 

using NIH Fiji (Schindelin et al., 2012). 

 

Statistics 

Statistical analysis of electroretinograms was performed using repeated measures ANOVA, 

followed by Holm-Sidak post-test.  Significance was determined before post-test. Statistical 

significance was defined as p<0.05.  
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Figure 1. Gi2GS/GS mice have diminished ERG a-wave and b-wave amplitude. 

A. Representative ERG responses from dark-adapted WT and Gi2GS/GS mice (~3 months) were 

obtained over the indicated range of flash intensities (log cd s/m2). B-C. Disruption of RGS 

regulation of Gi2 diminishes a-wave amplitude (B) but does not affect a-wave latency (C). 

D-E. Gi2GS/GS mice exhibit diminished dark-adapted b-wave peak amplitude (D) with no change 

in latency (E). F. Representative ERG responses of light-adapted WT and Gi2GS/GS mice over the 

photopic range of flash intensities (log cd s/m2). G-H. Similar ERG b-wave peak amplitude (G) 

and latency (H) in light-adapted WT and Gi2GS/GS mice were observed.  Error bars represent 

±SEM. Asterisks denote p value, p<0.05. 
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Figure 2. Go+/GS have normal dark-adapted photoreceptor and ON bipolar cell activity. 

A. Representative ERG responses from dark-adapted WT and Go+/GS mice (~3 months) were 

obtained over the indicated range of flash intensities (log cd s/m2). B-C. Quantification of ERG 

a-wave peak amplitude (B) and latency (C) in adult dark-adapted WT (gray) and Go+/GS (black) 

mice. D-E. Go+/GS mice exhibit normal dark-adapted b-wave peak amplitude (D) or latency (E). 

F. Representative ERG responses of light-adapted WT and Go+/GS mice over the photopic range 

of flash intensities (log cd s/m2). G-H. Decreased ERG b-wave peak amplitude (G) but normal  

latency (H) in light-adapted Go+/GS mice were observed.  Error bars represent ±SEM. Asterisks 

denote p value, p<0.05. 
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Figure 3. Normal Go expression and rod bipolar cell dendritic morphology in Go+/GS retina. 

A. Normal distribution of Go in WT and heterozygous RGS-insensitive Go+/GS knock-in mutants 

in retina vertical slices. B. Rod bipolar cell morphology, marked by Go immunostaining, is not 

impaired by expression of Go+/GS. 
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Chapter 5: 

 

Preliminary characterization of RGS6-/- visual function 
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Abstract 

 R7-RGS family members are critical regulators of GPCR signaling in outer retinal 

function. It is unknown if R7-RGS proteins regulate Gi/o signaling in the inner retina.  In this 

preliminary study, we address this question by analyzing the effects of genetically ablating 

RGS6, an uncharacterized R7-RGS family member that is highly expressed in the inner retina.  

We found that RGS6 is predominately expressed in starburst amacrine cells.  We demonstrate 

that RGS6 and R7BP are not interdependent for expression and localization in SACs. Using 

electroretinography, we demonstrate that photoreceptor and ON bipolar cell light responses are 

normal in RGS6-/- mice.  We also found that ablation of RGS6 impaired scotopic spatial vision as 

measured by optomotor response.  Taken together these findings provide preliminary evidence 

that RGS6 is a novel regulator of the visual system downstream of the outer retina.  
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Introduction 

In the retina and CNS, the R7-RGS (regulators of G protein signaling) family (RGS6, 7, 

9, 11) accelerate G protein deactivation by functioning as GTPase-activating proteins (GAPs) 

specifically for Gi/o subunits (Hooks et al., 2003).  RGS7, RGS9, and RGS11 have been 

demonstrated to be important regulators of outer retinal function.  RGS9 regulates 

phototransduction by deactivating transducin (Cowan et al., 1998; He et al., 1998). RGS7 and 

RGS11 cooperatively regulate the mGluR6/Go cascade in ON bipolar cells to facilitate light-

evoked depolarization (Cao et al., 2012; Chen et al., 2010; Mojumder et al., 2009; Rao et al., 

2007; Shim et al., 2012; Zhang et al., 2010).  However, additional Gi/o coupled receptors 

modulate synaptic transmission in the inner retina (Clark et al., 2009; Gleason, 2012; Guimarães-

Souza and Calaza, 2012; Huang et al.; Jensen, 2006; Jensen and Daw, 1986; Kothmann et al., 

2009).  The GAPs that regulate these Gi/o signaling cascades are not known.  

 

RGS6, like other members of the R7-RGS family, functions as a GAP specific for Gi/o 

subunits.  Recent evidence has demonstrated that it plays unique roles in murine CNS.  For 

example, RGS6 regulates GABA(B) signaling in cerebellum to promote motor coordination and 

regulates serotonin and 5-HT1AR signaling in the hippocampus to promote depression and 

anxiety (Maity et al., 2012; Stewart et al., 2014). 

 

In the retina, RGS6 is expressed primarily in the inner plexiform layer. This location 

suggests that it may modulate Gi/o signaling and inner retinal function (Song et al., 2007).  

Furthermore, RGS6 likely does not regulate outer retinal function as it is unable to compensate 

for loss of RGS7, 9, or 11 in outer retina (He et al., 1998; Makino et al., 1999; Shim et al., 2012).  
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Based on these findings, we hypothesize that ablation of RGS6 will augment Gi/o signaling 

evoked by endogenous GPCR agonists specifically in the inner retina, and this process could 

potentially impair retinal function. 

 

Here we performed a preliminary characterization of RGS6 function in the visual system.  

We investigated its cellular expression and coupling to the allosteric regulator R7 RGS-binding 

protein (R7BP).   Functional characterization of RGS6-/- mice revealed no deficit in outer retinal 

function, but it suggests RGS6 may be necessary for normal spatial vision. 
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Results 

RGS6 is expressed highly in starburst amacrine cells but is not necessary for lamination. 

 RGS6 is the last R7-RGS family member to be characterized in mammalian retina. To 

investigate RGS6 function in the retina, we first identified RGS6 expression by probing vertical 

retinal slices of adult mice with anti-RGS6 antibodies. Specific RGS6 staining was primarily 

detected in S2/S4 of the IPL with additional expression in somata of the inner nuclear and 

ganglion cell layers (Figure 1A, 1B).  This staining was absent from RGS6-/- vertical slices 

(Figure 1A).  Due to background staining in the IPL, we were unable to distinguish RGS6 

expression in other sublaminae of the IPL.  Several results indicated that starburst amacrine cells 

(SACs) express RGS6.  First, co-staining of RGS6 and choline acetyltransferase (ChAT, a 

marker of SACs) was evident in S2 and S4 which indicates the presence of RGS6 in SAC 

processes (Figure 1B).  Second, RGS6 also was expressed strongly on the somatic plasma 

membrane of ChAT-positive SACs in the INL and displaced SACs in the GCL (Figure 1B, 

indicated by arrowheads).  Previous research has shown RGS6 can colocalize with VACHT, a 

marker for SAC plexi (Song et al., 2007), but our data is the first to demonstrate RGS6 

expression in SACs from colamination in the IPL.  Despite expression in SACs, ablation of 

RGS6 had no effect on lamination of SACs or general retinal morphology (Figure 1C).  

  

RGS6 and R7BP are not interdependent for expression or localization in SACs. 

Previous studies have demonstrated that RGS6 and R7BP co-immunoprecipitated in 

retina (Song et al., 2007). Therefore, R7BP may function through the regulation of RGS6.  As 

we had previously characterized subtle inner retina phenotypes in R7BP-/- mice, we wanted to 

determine if it was reasonable to expect that the phenotype of RGS6-/- mice would be distinct 
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from phenotypes described in R7BP-/- mice (Cain et al., 2013).  R7BP is predicted to be a critical 

regulator of R7-RGS plasma membrane localization (Drenan et al., 2005). Therefore, we 

determined RGS6 localization in R7BP-/- vertical retina slices.  RGS6 correctly colocalized with 

ChAT and SAC plexi in S2/S4 sublaminae of the IPL (Figure 2A) which suggests that R7BP is 

not necessary for RGS6 trafficking in SACs.  While R7BP may not affect RGS6 trafficking to 

these plexi, it may affect localization to specific membrane compartments in SAC plexi or act as 

an allosteric regulator.  R7BP stability is dependent on its interaction with R7-RGS DEP 

domains (Grabowska et al., 2008; Martemyanov et al., 2005). To ascertain the extent to which 

R7BP is coupled to RGS6, we measured R7BP expression both in RGS6-/- retinal lysates (Figure 

2B) and by immunostaining for R7BP in retinal vertical slices (Figure 2C).  R7BP expression 

was minimally decreased in RGS6-/- retinas which suggests that a majority of R7BP is not 

dependent on RGS6-/- for stability.  Similarly, R7BP expression in starburst amacrine cells 

appeared diminished but relatively normal. However, RGS7 levels have been reported to 

increase with loss of expression of other R7-RGS family members (Chen et al., 2010).  To 

determine if R7BP was being stabilized by compensatory expression of RGS7, we also measured 

RGS7 expression in RGS6-/- retinal lysates using western blotting. As shown in Figure 2C, we 

observed no change in RGS7 retinal expression.  Together these data indicate that a majority of 

RGS6 and R7BP reside in distinct functional pools and that RGS6-/- mice may be phenotypically 

different from R7BP-/- mice. 

 

RGS6-/- have normal light-evoked photoreceptor and ON bipolar cell activity. 

RGS6 is absent from photoreceptors and is unable to compensate for loss of RGS7 and 

RGS11 in ON bipolar cells. This finding suggests that RGS6 does not regulate R7-RGS targets 
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in the outer retina (Cao et al., 2012; Shim et al., 2012; Song et al., 2007).  To determine whether 

RGS6 ablation alters photoreceptor or ON bipolar cell light responses, we performed 

electroretinography of dark-adapted (Figure 3A) and light-adapted mice (Figure 3F).  In dark-

adapted WT and RGS6-/- mice (n=7), we observed no difference in a-wave amplitude or latency 

corresponding to light-evoked hyperpolarization of rods (low light intensities) or rods and cones 

(higher intensities) (Figure 3B/C).  The ERG b-wave, which primarily is caused by ON bipolar 

cell depolarization, was not different in amplitude or latency in dark-adapted RGS6-/- mice 

(Figure 3D/E).  Similarly, photopic (cone-specific) responses revealed by constant background 

illumination and high intensity flashes revealed no change in b-wave amplitude (Figure 3G).  

RGS6-/- photopic b-wave latency was significantly decreased at 2.4 log cd s/m2 (p=0.004); 

however, all other intensities or latencies were indistinguishable from wild-type (Figure 3H).  

These data indicate that RGS6 ablation has no significant effect on light-evoked responses in 

outer retina.  

 

RGS6-/- mice have normal oscillatory potentials. 

Additionally, we extracted ERG oscillatory potentials (OPs) from ERG curves. 

Oscillatory potentials arise from activity in the inner retina and are seen as higher frequency 

oscillations on the b wave. In dark-adapted RGS6-/- ERGs, OP1-4 amplitudes and latencies were 

indistinguishable from WT values.  At higher intensities of light-adapted ERGs, OP3 and OP4 

were diminished in RGS6-/- mice but did not reach levels of statistical significance (p=0.08 and 

p=0.07).  In both dark- and light-adapted mice, the latency of OP1-4 was not affected by RGS 

ablation.  Analysis of OPs suggest there are no dramatic changes to inner retinal function in 

RGS6-/- retina. 
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Abnormal spatial vision in RGS6-/- mice.  

As a preliminary analysis of vision in RGS6-/-, we evaluated the optomotor responses of 

RGS6-/- mice as means of determining visual acuity and contrast sensitivity under scotopic (-4.5 

log cd/m2) and photopic (1.8 log cd/m2) conditions.  We show that outer retinal function is normal 

in RGS6-/- mice; any spatial vision defects would suggest that RGS6 functions in a downstream 

of the outer retina, potentially the inner retina. Interestingly, scotopic contrast sensitivity was 

significantly decreased in RGS6-/- mice (p=0.04). However, scotopic visual acuity was not 

significantly affected.  Similarly, photopic contrast sensitivity and visual acuity were not 

significantly different in this preliminary data set. 

 

 

 

  



110 
 

Discussion 

We provide preliminary evidence that RGS6 is necessary for proper spatial vision.  While 

we demonstrate that RGS6 is expressed in the retina, we cannot yet conclude how RGS6 is 

functioning to maintain normal spatial vision.  Principally, it is unclear if RGS6 specifically 

regulates circuits governing the optomotor response or has broader impact on the visual system.  

While outer retina dysfunction can impair optomotor responses, RGS6 likely functions 

downstream of the outer retina because photoreceptor and ON bipolar cell light responses are 

normal in the absence of RGS6. 

 

The idea that RGS6 functions in SACs to regulate optomotor responses is intriguing. 

SACs and the direction-selective RGCs that they regulate are critical in encoding directional 

movement that elicits the optomotor response (Sugita et al., 2013; Yoshida et al., 2001).  Indeed, 

immunotoxin-mediated ablation of SACs eliminates optokinetic eye movement, an analogous  

reflex that is driven by similar subcortical pathways as the optomotor head tracking (Yoshida et 

al., 2001).  Assessing if there is any loss of directional preference in DS-RGCs would help 

determine if RGS6 is acting in retina to regulate optomotor responses.  

 

It is also possible that RGS6 is regulating optomotor responses downstream of the retina 

in the accessory optic system in the brain. We previously demonstrated that R7-RGS complexes 

are expressed in other visual centers of the brain like the dLGN. Therefore, a survey of RGS6 

expression in the relevant accessory optic system will be needed.  Alternatively, the deficits in 

spatial vision in RGS6-/- may represent a broader retinal dysfunction.  Assessing if RGS6 
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ablation affects RGC activity to full field stimuli would aid in determining the extent that RGS6 

is necessary for inner retinal function. 
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Material  and Methods 

Animals 

 All animal procedures used protocols approved by the Washington University Animal 

Studies Committee (Protocols #20110184 and #20140036).  RGS6+/- mice were generated by 

Texas A&M Institute for Genomic Medicine (TIGM).  RGS6-/- mice were interbred to produce 

RGS6-/- mice of either sex and compared to C57BL/6 wild-type mice (Charles River 

Laboratories).  

 

Tissue preparation and immunostaining 

 Mice were euthanized by CO2 asphyxiation followed by cervical dislocation.  Enucleated 

eyes were fixed with paraformaldehyde (4%) in PBS (pH 7.4).  Retinas were isolated in PBS and 

embedded in 4% low-melting point agarose.  Vertical retina slices were cut (60 μm) with a 

vibratome.  Slices were blocked with 10% normal horse serum (NHS) in PBS and incubated with 

primary antibodies overnight in 5% NHS and 0.05% Triton X-100 (Sigma-Aldrich).  The 

following antibodies were used: affinity purified rabbit anti-R7BP (Grabowska et al., 2008), 

rabbit anti-RGS6 (1:500), provided by Rory Fisher, goat anti-ChAT (#AB143 Millipore; 1:100), 

Alexa Fluor 568-conjugated anti-rabbit and Alexa Fluor 488-conjugated anti-goat (Invitrogen; 

1:1000) antibodies.  Slices were mounted using VectaShield (Vector Labs) and imaged with 

Olympus FluoView FV500 (Bakewell NeuroImaging Laboratory, WUSM).  Retinal 

immunofluorographs were median filtered (1 pixel surround) using NIH Fiji (Schindelin et al., 

2012). 
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Western Blot 

Mice were euthanized by CO2 asphyxiation followed by cervical dislocation.  Enucleated eyes 

were isolated in PBS. Isolated retinas were homogenized in 1% Triton x-100 in PBS (pH 8.0) 

using teflon microcentrifuge tube pestle.  Homogenates were further lysed by rotating at 4C for 

30 min.  Lysates were cleared by centrifugation at 16,000xg (20 min). Soluble fractions were 

quantified using Bradford reagent (BioRad). For western blots, samples were electrophoresed 

through 10% SDS-polyacrylamide gels and transferred to PVDF membranes (Millipore). 

Membranes were blocked with 5% milk in TBST (1 hr) and incubated overnight at 4C with 

primary antibody in TBST or 5% milk in TBST.  The following antibodies were used: affinity 

purified rabbit anti-R7BP (1:1000), rabbit- RGS6 (1:1000), provided by Rory Fisher, and rabbit 

anti-RGS7 (1:1000), provided by Ted Wensel. Blots were washed three times in TBST (10 min) 

prior to incubation with HRP-conjugated anti-rabbit antibody in TBST.  Secondary antibody was 

washed three times with TBST (10 min) and blots were imaged using ECL reagent (General 

Electric) and ChemiDoc XRS+ system (BioRad) 

 

Electroretinography 

 Flash ERG measurements were performed with a UTAS Visual Electrodiagnostic System 

with BigShot Ganzfeld running EM for Windows (LKC Technologies).  Mice (~3 months old) 

were dark-adapted overnight.  Under dim red illumination, mice were anesthetized with a 

cocktail of 80 mg/kg ketamine and 15 mg/kg xylazine.  The body temperature of the mice was 

maintained at 37 oC with a heating pad controlled by a rectal temperature probe.  After 

positioning mice in the Ganzfeld dome, the recording Bruian-Allen contact lens electrodes were 

positioned on the corneal surface of each eye in a drop of 0.5% atropine sulfate (Bausch & 

Lomb) and 1.25% hydroxypropol methylcellulose (GONAK; Akorn Inc.).  Reference and ground 
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electrodes were placed at the vertex of the skull and back, respectively.  For dark-adapted 

analysis, we recorded the responses to white light flashes of increasing intensity (-4.6 to 1.9 log 

cd s/m2) in total darkness.  Mice were then light-adapted to a constant white background 

illumination of 2.3 log cd s/m2 for 10 min.  Light-adapted responses to a series of light flashes (-

0.01 to 2.9 log cd s/m2) were obtained in the presence of constant background illumination.  

Responses to multiple trials were averaged at each light intensity level.  The a-wave amplitude 

and latency were measured and quantified for comparison.  B-wave amplitude and latency were 

measured using a custom MatLab script. Briefly, ERG curves were filtered using a lowpass zero-

phase Butterworth digital filter (15 Hz) to remove high frequency oscillations.  B wave peak was 

defined as the maximum post-flash amplitude from lowpass filtered curves.  Oscillatory 

potentials (OPs) were isolated by bandpass Butterworth filter (45-300 Hz). The amplitude of OPs 

was calculated from the OP peak to preceding trough. Latency was defined as the time of the OP 

peak. OPs were identified by MatLab script with the highest amplitude OP being defined as OP2 

and all other OPs being identified relatively. 

 
 

Spatial vision measured by optomotor reflexes 

 For testing spatial vision, we measured optomotor responses in WT and R7BP-/- mice (~3 

months old) using the OptoMotry virtual optomotor system (Cerebral Mechanics) (Prusky et al., 

2004).  This system utilizes a reflex in which mice move their heads to track a moving vertical 

sine wave grating.  Mice were placed on a pedestal surrounded by computer monitors that 

displayed the grating and monitored with a video camera under normal or IR illumination.  

Stimuli were presented for a period of 5 sec before returning to 50% gray illumination.  The 

protocol implemented a two-alternative, forced choice method in which the observer was blind to 
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the direction of rotation of the grating and was forced to identify the direction based on the 

mouse's observed head movement (Umino et al., 2006).  A staircase paradigm was used for 

assessing contrast and spatial frequency thresholds, defined as a correct observer response of 

70%.  For determining contrast sensitivity, testing was performed under optimal tuning 

conditions in which spatial frequency were set at 0.128 cyc/deg and temporal frequencies were 

set at 0.75 or 1.5 Hz for scotopic and photopic conditions, respectively (Umino et al., 2008).  

Contrast sensitivity was defined as the inverse of the contrast at threshold (Prusky et al., 2004).  

For testing visual acuity, contrast (100%) and speed (Scotopic: 5.4 deg/s, Photopic: 12.0 deg/s) 

were kept constant while spatial frequency was gradually increased.  Visual acuity was defined 

as the spatial frequency at threshold.  For scotopic (-4.5 log cd/m2) testing, mice were dark-

adapted overnight, and neutral density film filters were placed between mice and the computer 

monitors.  For photopic (1.8 log cd/m2) testing, mice were light adapted, and the acuity and 

contrast sensitivity examinations were repeated without filters. 

 

Statistics 

Statistical analysis of electroretinograms was performed using repeated measures ANOVA 

followed by Holm-Sidak post-test.  Significance was determined before post-test. Student's t-test 

was used to determine significance of optomotor response data.  Statistical significance was 

defined as p<0.05.  
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Figure 1. RGS6 is expressed in starburst amacrine cells but is not necessary for proper 

SAC lamination. 

A. Immunostaining of RGS6 in the IPL in wild-type retina (A) as compared to RGS6-/- retina. 

B. Expression of RGS6 in starburst amacrine cells (SACs). Co-staining of the SAC marker 

(ChAT; green) and RGS6 (magenta) in the S2/S4 sublaminae of the IPL and somata of the INL 

and GCL. Arrowheads mark ChAT-positive somata. C. RGS6 ablation does not disrupt gross 

retinal morphology or lamination of starburst amacrine cells. 
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Figure 2. RGS6/R7BP expression and localization are not interdependent. 

A. R7BP is not necessary for RGS6 localization in SAC plexi.  Co-staining of the SAC marker 

(ChAT; green) and RGS6 (magenta) in the S2/S4 sublaminae of the IPL of adult R7BP-/- retinas. 

B. Ablation of RGS6 does not drastically alter RGS7 and R7BP retinal expression.  RGS6, 

RGS7, and R7BP in wild-type and RGS-/- total retinal lysates were detected by western blotting.  

C. Immunostaining of R7BP in adult wild-type and RGS6-/- vertical retinal slices reveal RGS6 is 

not necessary for R7BP expression in IPL 
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Figure 3. RGS6-/- mice have normal light-evoked photoreceptor and ON bipolar cell 

activity. 

A. Representative ERG responses from dark-adapted WT and RGS6-/- mice (~3 months) were 

obtained over the indicated range of flash intensities (log cd s/m2). B-C. Quantification of ERG 

a-wave peak amplitude (B) and latency (C) in adult dark-adapted WT (gray) and RGS6-/- (black) 

mice. D-E. Ablation of RGS6 does not alter dark-adapted b-wave peak amplitude (D) or latency 

(E). F. Representative ERG responses of light-adapted WT and RGS6-/- mice over the photopic 

range of flash intensities (log cd s/m2). G-H. Similar ERG b-wave peak amplitude (G) and 

latency (H) in light-adapted WT and RGS6-/- mice were observed.  Error bars represent ±SEM.  

Asterisks denote p value, p<0.05. 
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Figure 4. RGS6-/- mice have essentially normal ERG oscillatory potentials. 

A. Representative oscillatory potentials (OPs) from dark-adapted WT and RGS6-/- mice at 

maximum intensity (1.9 log cd s/m2). OP1-4 are designated.  B-C. Ablation of RGS6 does not 

significantly alter dark-adapted OP1-4 amplitude (B) or latency (C). D. Representative 

oscillatory potentials (OPs) from light-adapted WT and RGS6-/- mice at 2.4 log cd s/m2. OP1-4 

are designated.  E-F. Ablation of RGS6 does not significantly alter light-adapted OP1-4 

amplitude (E) or latency (F).  Error bars represent ±SEM. 
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Figure 5. Abnormal spatial vision in RGS6-/- mice.  
 
A. Significantly reduced contrast sensitivity of RGS6-/- mice under scotopic but not photopic 

conditions, as measured by optomotor response. B. Ablation of R7BP does not significantly 

disrupt scotopic and photopic visual acuity. Error bars represent ±SEM. Asterisks denote p value, 

p<0.05. 
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Chapter 6: 

 

Discussion and Future Directions 
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Findings of the Dissertation 

At the initiation of this project in 2009, the function of R7-RGS complexes in the CNS 

had begun to be investigated.  Although R7-RGS biochemical function was well understood, less 

was known about R7-RGS function in vivo.  Studies had demonstrated the necessity of R7-RGS 

function in the outer retina. RGS9-1 and its membrane targeting protein R9AP had been 

identified as important regulators of transducin and phototransduction in photoreceptors (He et 

al., 1998; Nishiguchi et al., 2004). Similarly, R7-RGS/Gβ5 complexes were identified as 

necessary components of mGluR6 cascades regulating ON bipolar cell light responses (Cao et 

al., 2012; Rao et al., 2007; Shim et al., 2012).  However, the expression of R7-RGS complex 

proteins in the inner retina led us to hypothesize: 1) R7-RGS proteins regulate inner retinal 

function, and 2) perturbation of R7-RGS function will reveal visual circuits sensitive to RGS and 

G protein regulation.  The results presented in this dissertation provide evidence supporting these 

hypotheses, and it extends our knowledge of R7-RGS protein function and G protein signaling in 

the retina. 

 

To test these hypotheses, we analyzed the retinal function and vision of multiple mouse 

strains that disrupted RGS regulation of Gi/o signaling.  First characterized was R7BP, a positive 

allosteric regulator of R7-RGS complexes.  R7BP was found to be expressed in both starburst 

amacrine cells and retinal ganglion cells (RGCs) in the inner retina. We demonstrated that R7BP 

is not necessary for normal light-evoked photoreceptor and ON bipolar cell activity, as assessed 

by ERG.  In parallel to our studies, Martemyanov and colleagues reported similar findings of the 

dispensability of R7BP in rod light responses using an independently generated R7BP-/- mouse 

line (Cao et al., 2008). Using multielectrode array recording of RGCs, we demonstrated R7BP 
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increased the firing rate and accelerated the latency of ON RGCs to mesopic intensity light.  

Looking at R7BP function in the developing retina, we found that R7BP regulated the burst 

duration of glutamatergic waves but had no effect on cholinergic waves.  Despite these 

perturbations in light-evoked and spontaneous RGC activity, we found that ablation of R7BP had 

no effect on spatial vision or segregation of retinogeniculate projections.  We also identified that 

R7BP formed complexes with RGS6, RGS7, and Gβ5 in the dorsal lateral geniculate nucleus 

(dLGN), the major relay center for retinal projection to the visual cortex. However, R7BP was 

not necessary for membrane targeting of R7-RGS complexes in lateral geniculate nucleus.    

 

  In a separate study, we analyzed the effect of disruption of RGS regulation of two 

specific Gi/o subunits, Gi2 and Go, using two RGS-insensitive (G184S) mutant knock-in lines.  

We demonstrated RGS regulation of Gi2 was necessary for maximal rod light responses.  

Unexpectedly, expression of a RGS-insensitive Go mutant was insufficient to perturb dark-

adapted photoreceptor and ON bipolar cell light responses.  This finding was not consistent with 

previous studies that demonstrated necessity of RGS7/RGS11/Gβ5 complexes for ON bipolar 

cell light responses (Cao et al., 2012; Rao et al., 2007; Shim et al., 2012).   

 

In our final study, we report preliminary characterization of RGS6-/- vision.  We 

demonstrated that RGS6 was expressed in starburst amacrine cells (SACs) but was not necessary 

for their proper lamination in the inner plexiform layer (IPL).  We further demonstrated that 

RGS6 localization to SAC plexi in the IPL was independent of R7BP and that R7BP expression 

was not dependent on RGS6 expression.  In assessing RGS6-/- retinal function, we showed that 

RGS6 was not necessary for light-evoked photoreceptor and ON bipolar cell activity. However, 
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we demonstrated that RGS6 was necessary for normal spatial vision as measured by optomotor 

responses. 
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Discussion of Results and Future Directions 

Measurement of optomotor responses of RGS6-/- suggest that RGS6 is necessary for 

normal spatial vision.  Further study is required to determine if RGS6 functions in the retina or in 

the subcortical visual system.  For retinal studies, investigation of RGS6 ablation on direction 

selective (DS) RGCs directional preference should be a high priority.  Stimulation of Gi/o 

coupled Group II mGluR receptors in starburst amacrine cells (SAC) reduces neurotransmitter 

release and impairs directionally selective responses in DS RGCs (Jensen, 2006).  Does ablation 

of RGS6 augment Gi/o signaling in SACs? As SACs and DS RGCs are essential for the 

optomotor response (Sugita et al., 2013; Yoshida et al., 2001), this remains a strong candidate 

pathway to explain the optomotor phenotype observed in RGS6-/- mice.   

 

 We identified that R7-RGS/R7BP complexes are expressed in dLGN.  This is the first 

indication that R7-RGS complexes are expressed in extraretinal components of the visual 

system.  There are several open questions in regards to how R7-RGS complexes may be 

functioning in dLGN.  The fact that thalamocortical relay neurons activity is affected by Gi/o 

coupled receptors, such as GABA(B) and Group II mGluRs, makes exploration of R7-RGS 

regulation in relay neurons a pertinent goal (Bickford et al., 2010b; Crunelli et al., 1988; 

Govindaiah and Cox, 2006; Lam and Sherman, 2013; Perreault et al., 2003; Ziburkus et al., 

2003).  RGS6-/- or RGS7-/- mouse lines can be used immediately in dLGN slice preps, as optic 

track stimulation is unaffected by any retinal phenotypes associated with the R7-RGS knockouts.   

 

Our study and prior analysis of Gi2-/- mice indicate that Gi2 is critical to outer retinal 

function. Our data indicates that augmented Gi2 activity promotes rod dysfunction.  However, 
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the identities of outer retina neurons affected by loss of Gi2 remain unknown.  Further 

exploration of Gi2 function in outer retina is therefore warranted.   As transducin and Go are 

necessary for phototransduction and ON bipolar cell light responses, it is likely that Gi2 

functions peripherally to these primary cascades (Dhingra et al., 2000b, 2002).  Similarly, 

developmental and morphological changes would be of both concern and interest because 

Gi2GS/GS mice exhibit a complex developmental phenotype and partially penetrant embryonic 

lethality (Huang et al., 2006). 

 

Our data suggest that R7BP interacts with other R7-RGS family members in addition to 

RGS6 in SACs.  As further investigation of R7-RGS function in SACs is of interest, the other 

R7-RGS proteins expressed in SACs should identified.  RGS7 is the best candidate for this 

additional R7-RGS.  Like RGS6, RGS7 is expressed in inner retina (Liapis et al., 2012; Song et 

al., 2007).  Although, its expression in SACs has not been as clear.  Ablation of RGS7 

substantially decreases R7BP expression suggesting that they do interact; however, it is unclear 

if this reflects loss of R7BP in the inner or outer retina (Cao et al., 2012).   

 

A majority of this study centered on identifying the function of R7BP in vivo.  We 

demonstrated that R7BP regulates light-evoked and spontaneous activity in the inner retina.   

However, from a more mechanistic perspective, our data challenge the hypothesis that R7BP is a 

critical regulator of R7-RGS membrane association in vivo.  R7BP does not affect RGS6 

localization in SACs nor is it necessary for R7-RGS/Gβ5 membrane association in the lateral 

geniculate nucleus.  Other studies have demonstrated that R7BP is dispensable for a majority of 

R7-RGS membrane association in retina (Cao et al., 2008).  Instead, it seems that R7-RGS 
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associate with other integral membrane proteins in the retina.  In rods, RGS9 interacts with 

R9AP (Keresztes et al., 2004).  In ON bipolar cells, RGS7 and RGS11 require GPR179 to 

facilitate targeting to dendritic tips (Orlandi et al., 2012).  Taken together R7BP does not appear 

to be necessary for trafficking or membrane association of R7-RGS proteins in retina or dLGN.  

It is possible that the visual system is tuned to require R7-RGS to associate preferentially with 

these integral membrane proteins for rapid response.  However, with the exception of R9AP, 

there are many DEP-binding integral membrane proteins that are expressed throughout the CNS 

including: GPR158, GPR179, and muscarinic M3 and dopamine D3 receptors (Orlandi et al., 

2012; Sandiford and Slepak, 2009; Zheng et al., 2011). 

  

 If transmembrane proteins facilitate the majority of R7-RGS membrane association, then 

what is the advantage conferred by the palmitate moieties of R7BP?  The most interesting 

characteristic to consider is the reversibility of the palmitate modification.  This reversibility 

allows R7BP to be responsive to cellular signaling.  Indeed, we have reported previously that 

Gi/o signaling inhibits R7BP depalmitoylation, suggesting that R7BP could shuttle to regions of 

high Gi/o signaling (Jia et al., 2011). While the palmitoyltransferase DHHC2 has been identified 

to facilitate de novo palmitoylation and palmitoylation turnover, the serine hydrolase that 

mediates R7BP depalmitoylation is unknown (Jia et al., 2014).  Identification of the hydrolase 

that regulates R7BP will be valuable in determining the extent to which R7BP is regulated by 

cellular conditions and signaling. 

 

In additional to membrane targeting, R7BP may be better regarded as an allosteric 

regulator of R7-RGS proteins.  It is capable of modulating the interaction of R7-RGS with 
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various DEP-binding proteins in vitro (Sandiford and Slepak, 2009; Zheng et al., 2011). 

However, to which extent this represents an in vivo function is unclear.  The most relevant 

evidence of this allosteric function is that R7BP causes conformational change in R7-RGS 

exposing interfaces that facilitate its interaction with GIRK channels (Zhou et al., 2012a).  This 

interaction is dependent on residues on G5 that are conserved with interfaces in Gγ signaling 

but are less exposed in the absence of R7BP (Ford et al., 1998; Masuho et al., 2011; Narayanan 

et al., 2007; Zhou et al., 2012b).  It is intriguing to consider if R7BP facilitates interaction of R7-

RGS with other classic Gγ effectors.  Therefore, comparison of R7-RGS/G5/R7BP 

heterotrimer structure to existing R7-RGS/ G5 dimer (Cheever et al., 2008) will further inform 

future studies of R7BP function as an allosteric modulator. 
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