
Washington University in St. Louis
Washington University Open Scholarship

All Theses and Dissertations (ETDs)

January 2010

Statistical Design And Imaging Of Position-
Encoded 3D Microarrays
Pinaki Sarder
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/etd

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All
Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact
digital@wumail.wustl.edu.

Recommended Citation
Sarder, Pinaki, "Statistical Design And Imaging Of Position-Encoded 3D Microarrays" (2010). All Theses and Dissertations (ETDs).
310.
https://openscholarship.wustl.edu/etd/310

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233205338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Fetd%2F310&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F310&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F310&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/310?utm_source=openscholarship.wustl.edu%2Fetd%2F310&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science

Department of Electrical & Systems Engineering

Dissertation Examination Committee:
Prof. Arye Nehorai, Chair

Prof. Hiro Mukai
Prof. Jr-Shin Li

Prof. Dibyen Majumdar
Prof. R. Martin Arthur
Prof. Samuel Achilefu

STATISTICAL DESIGN AND IMAGING OF POSITION-ENCODED 3D

MICROARRAYS

by

Pinaki Sarder

A dissertation presented to the Graduate School of Arts and Sciences
of Washington University in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2010
Saint Louis, Missouri



ABSTRACT OF THE DISSERTATION

Statistical Design and Imaging of Position-Encoded 3D Microarrays

by

Pinaki Sarder

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, May 2010

Research Advisor: Professor Arye Nehorai

We propose a three-dimensional microarray device with microspheres having con-

trollable positions for error-free target identification. Here targets (such as mRNAs,

proteins, antibodies, and cells) are captured by the microspheres on one side, and are

tagged by nanospheres embedded with quantum-dots (QDs) on the other. We use

the lights emitted by these QDs to quantify the target concentrations. The imaging

is performed using a fluorescence microscope and a sensor.

We conduct a statistical design analysis to select the optimal distance between the

microspheres as well as the optimal temperature. Our design simplifies the imaging

and ensures a desired statistical performance for a given sensor cost. Specifically, we

compute the posterior Cramér-Rao bound on the errors in estimating the unknown

target concentrations. We use this performance bound to compute the optimal design

variables. We discuss both uniform and sparse concentration levels of targets. The

uniform distributions correspond to cases where the target concentration is high or the

time period of the sensing is sufficiently long. The sparse distributions correspond to
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low target concentrations or short sensing durations. We illustrate our design concept

using numerical examples.

We replace the photon-conversion factor of the image sensor and its background

noise variance with their maximum likelihood (ML) estimates. We estimate these

parameters using images of multiple target-free microspheres embedded with QDs

and placed randomly on a substrate. We obtain the photon-conversion factor using

a method-of-moments estimation, where we replace the QD light-intensity levels and

locations of the imaged microspheres with their ML estimates.

The proposed microarray has high sensitivity, efficient packing, and guaranteed imag-

ing performance. It simplifies the imaging analysis significantly by identifying targets

based on the known positions of the microspheres.

Potential applications include molecular recognition, specificity of targeting molecules,

protein-protein dimerization, high throughput screening assays for enzyme inhibitors,

drug discovery, and gene sequencing.

iii



Acknowledgments

First and foremost, I sincerely thank my research advisor, Dr. Arye Nehorai, an ex-

cellent researcher who fosters a friendly and collaborative atmosphere in our lab. I

thank him for his valuable guidance on my doctoral research, for his encouragement

to develop wide knowledge, for his careful attention to improve my writing and pre-

sentation, and for his caring counseling on life in general. He gave me the freedom

to explore some avenues that I found truly interesting and also to collaborate with

top-notch researchers both on our campus and elsewhere. I express my gratitude for

his strong support on my job search. It is an honor for me to receive the doctoral

degree under his excellent supervision.

I would like to thank my dissertation committee members, including Dr. Hiro Mukai,

Dr. Jr-Shin Li, Dr. Dibyen Majumdar, Dr. R. Martin Arthur, and Dr. Samuel Achilefu,

for their very worthy and constructive suggestions as well as the valuable time they

dedicated.

I would like to convey my thanks to some wonderful scientists who collaborated with

us during my doctoral research. Particularly, I thank our collaborator Dr. Zhenyu

Li. His knowledge and experience has helped us implement our proposed position-

encoded 3D microarrays. It has been a pleasure to conduct research in collaboration

with him. I also thank our collaborators Dr. Paul Davis and Dr. Samuel Stanley for

guiding me on our 2D microarray image analysis research. Dr. J. Perren Cobb, Dr.

Weixiong Zhang, and Mr. William Schierding guided me on our gene network analysis

work. I thank my collaborators for providing us real data and critical feedback on

our research.

My sincere gratitude goes to Dr. Dibyen Majumdar at the University of Illinois at

Chicago (UIC) for providing me with a broad foundation in statistics and develop

a strong interest on this subject. He is an excellent instructor, and the knowledge

he delivered during classes will be valuable for me lifelong. I also thank my other

UIC instructors, including Dr. Rashid Ansari, Dr. Derong Liu, Dr. Milos Zefron, Dr.

Daniel Graupe, Dr. T. E. S. Raghavan, Dr. Klaus Miescke, and Dr. Charles Tier. I

appreciate their dedication and wonderful teaching skill.

iv



I convey my heartiest thanks and warm regards to my past and present labmates as

well as the visiting scholars in our lab throughout my Ph.D. studies. Here I have had

the opportunity to work in a multi-cultural environment for the last six years. This

experience has been truly rewarding and enjoyable for me. In particular, I thank Dr.

D. Gutiérrez for her help and time during my early years in the United States. I will

miss the illuminating discussions with Mr. Patricio S. La Rosa when I leave this lab. I

also thank my other (current and past) lab members, including Dr. Josef Francos, Dr.

I. Samil Yetik, Dr. Raoul Grasman, Dr. Amir Leshem, Dr. Daniela Donno, Dr. Gang

Shi, Dr. Tong Zhao, Dr. Mathias Ortner, Dr. Jian Wang, Dr. Carlos Muravchik,

Dr. Zhi Liu, Dr. Martin Hurtado, Dr. Nannan Cao, Dr. Jinjun Xiao, Dr. Nicolas

von Ellenrieder, Dr. Alexandre Renaux, Dr. Marija Nikolic, Mr. Alessio Balleri, Mr.

Heeralal Choudhary, Mr. Simone Ferrera, Mr. Murat Akcakaya, Mr. Satyabrata Sen,

Ms. Venessa Tidwell, Mr. Gongguo Tang, Mr. Tao Li, Mr. Kofi Adu-Labi, Mr. Sandeep

Gogineni, and Mr. Phani Chavali, for their scientific discussion with me, fun, and help

both inside and outside the lab.

I would like to thank all the staff members of the Electrical & Systems Engineering

Department (Ms. Rita Drochelman, Ms. Sandra Devereaux, Ms. Elaine Murray, Ms.

Shauna Dollison, Mr. Ed Richter, and Mr. David Goodbary) for their time and help.

I especially thank Prof. Jim Ballard for editorial suggestions on all our documents.

I would like to thank my friends Vivek, Shubrangshu, Vishal, Debashish, Soubir,

Subhadip, Biplab, Hare, Arup, Somendra, Rohan, Saurish, Poulomi, Mrinmoy, Gargi,

Debomita, Tanika, and Manojit, who gave me support and confidence, and shared

my joys and sorrows during my doctoral studies. I am thankful to them for making

my Ph.D. life enjoyable.

I offer my deepest gratitude to my parents and family in India for their support

and everlasting encouragement. Particularly, it is the hard work and sacrifice of my

parents which guided me this far. They have always encouraged me to the utmost at

every step of my career. This dissertation is dedicated to my parents.

Pinaki Sarder

Washington University in Saint Louis

May 2010

v



Dedicated to my parents.

vi



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Statistical Design of Position-Encoded 3D Microarrays . . . . . . . 4
2.1 Position-Encoded Microarray Device . . . . . . . . . . . . . . . . . . 5

2.1.1 Sensing Device Configuration . . . . . . . . . . . . . . . . . . 5
2.1.2 Preparing and Collecting Data . . . . . . . . . . . . . . . . . . 7
2.1.3 Image Analysis Comparison with Existing 3D Microarrays . . 8

2.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Measurement Model . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Posterior Cramér-Rao Bound . . . . . . . . . . . . . . . . . . 15

2.3 Statistical Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Performance Measure . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Minimal Distance Selection . . . . . . . . . . . . . . . . . . . 22
2.3.3 Optimal Operating Temperature Selection . . . . . . . . . . . 25

2.4 Estimating β and B Using an Existing 3D Microarray . . . . . . . . . 26
2.4.1 Measurement Model . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.1 Estimating β and B . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.2 Example 1: Statistical Design for the Full-Shell Case . . . . . 34
2.5.3 Example 2: Statistical Design for the Sparse-Shell Case . . . . 37

3 Estimating Intensity Levels and Locations of Quantum-Dot Embed-
ded Microspheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Imaging Nomenclature . . . . . . . . . . . . . . . . . . . . . . 42
3.1.2 Imaging Microspheres . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Statistical Measurement Model . . . . . . . . . . . . . . . . . . . . . 44
3.2.1 Single-Sphere Object Model (Microsphere QD Intensity Profile) 45

vii



3.2.2 Three-Dimensional Gaussian Point-Spread Function
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.3 Verification of Single-Sphere Object and Gaussian Point-Spread
Function Models . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 Examples: Data Generation . . . . . . . . . . . . . . . . . . . 55
3.4.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . 58
3.4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Estimation Results Using Real Data . . . . . . . . . . . . . . . . . . . 62
3.5.1 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5.2 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . 63
3.5.3 Microsphere Localization and Quantification . . . . . . . . . . 63
3.5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 64

4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 67
4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Appendix A Monte-Carlo Integration Estimation . . . . . . . . . . . 71

Appendix B Proof of Equation (2.36) . . . . . . . . . . . . . . . . . . 72

Appendix C Blind Deconvolution . . . . . . . . . . . . . . . . . . . . . 73

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

viii



List of Tables

3.1 Comparison of estimation performances using our algorithm and the
blind-deconvolution algorithm. c©[2008] IEEE. . . . . . . . . . . . . . 66

ix



List of Figures

2.1 (a) Schematic of a position-encoded three-dimensional microarray, where
the microspheres are separated by an optimal distance. (b) A target
molecule captured on a microsphere. . . . . . . . . . . . . . . . . . . 6

2.2 Left: Schematic of cross-section depicting target molecules captured
(a) fully or (b) partially by a microsphere, and sandwiched by nanospheres,
see the (a) full-shell and (b) sparse-shell models for ssh(·). Right: Ideal
cross-section ring intensity image of the resulting (a) full shell or (b)
sparse shell, associated with the nanosphere quantum-dot lights. We
schematize the left- and right-column figures of (a) and (b) without
consistent scaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 (a) Schematic diagram of p(d). (b) Graph example of the proposed
parametric model p′(d) that represents p(d) shape. Similar to p(d),
this graph first decreases as d increases, and it then starts to flatten
from d0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 (a) Focal-plane quantum-dot intensity image of all the microspheres.
(b) Histograms of the estimated β from the individual microsphere
images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Design results for the full-shell models, see Section 2.5.2. (a) Minimal
distance is 17µm. (b) Design at 00C for varying θMAX. (c) Design at
d = 13µm. (d) Performance as a function of temperature and distance. 35

2.6 Design results for the sparse-shell models, see Section 2.5.3. (a) Min-
imal distance is 11µm. (b) Design at −100C with τ = 1 (red) and
τ = 5 (blue). (c) Design at d = 7.5µm. (d) Performance as a function
of temperature and distance. . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 A schematic view of the focal plane, optical direction, radial direc-
tion, and meridional plane in the Cartesian coordinate system. The
microsphere to be imaged is at the center of the coordinate axes. . . . 42

3.2 Left: Schematic of cross-section depicting a quantum-dot–embedded
microsphere. Right: Ideal cross-section disc intensity image of the re-
sulting sphere associated with the microsphere quantum-dot lights. We
schematize the left- and right-column figures here without consistent
scaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Focal-plane quantum-dot intensity of imaged microspheres. c©[2008]
IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

x



3.4 Meridional sections of (a) a microsphere intensity profile and (b) the re-
sulting blind-deconvolution–estimated object intensity profile. Merid-
ional sections of (c) the blind-deconvolution–estimated point-spread
function intensity profile from the microsphere intensity profile shown
in Figure 3.4(a) and (d) its least-squares fitted version using the model
(3.6). c©[2008] IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Mean-square errors of the estimated microsphere center parameter xc

as a function of varying σ2
0. c©[2008] IEEE. . . . . . . . . . . . . . . . 61

3.6 Mean-square-errors and Cramér-Rao bound of the estimated micro-
sphere center parameter xc as a function of signal-to-noise ratio. c©[2008]
IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7 Microsphere intensity profile on the focal plane of reference at 0µm of a
section of seven microsphere images, (b) their image after a threshold-
ing operation, (c) their binary image, where the red color signifies the
nonzero intensities, and (d) their segmented versions, where different
colors show separated single-sphere objects. c©[2008] IEEE. . . . . . . 65

xi



Chapter 1

Introduction

Microarray devices are used to measure concentrations of targets such as mRNAs,

proteins, antibodies, and cells [1]. Conventional microarrays are two-dimensional

(2D) [2]; they employ circular spots positioned in predefined locations and conju-

gated in surface with molecular probes to capture targets. Thus, they have position

encoding which avoids target identification errors.

Recently, a 3D microarray technology has been developed [1], [3], [4]. The main ad-

vantages of 3D microarrays over 2D are their directional binding capability, higher

sensitivity, and higher surface-to-volume ratio that offers faster reaction. The micro-

spheres in 3D microarrays are conjugated in surface with molecular probes to capture

targets, and contain quantum-dot (QD) barcodes to identify the captured targets.

Optical reporters (e.g., fluorescent dyes, QDs, nanospheres) are employed to quantify

the target concentrations [5], [6]. Their imaging is performed using a fluorescence

microscope and an image sensor.

In existing 3D microarrays, the microspheres are typically randomly placed on a sub-

strate [1], [3], [4]. Such random placement of the microspheres renders their packing

inefficient. It also hampers the quality of the imaging in areas where the microspheres
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are closely clustered, and it makes the automatic imaging analysis difficult. Addi-

tionally, the existing 3D microarrays are prone to errors in identifying targets, due to

noise in the measured QD barcode spectra.

To overcome these drawbacks, we propose a new (compact) 3D microarray layout

with determinate microsphere positions. These microspheres are thus position en-

coded, similar to the spots in the 2D microarrays, thus identifying targets without

errors through position encoding and simplifying significantly the data processing.

We surround the microspheres (captured with targets) with nanospheres embedded

with QDs. We use these QD lights to quantify the target concentrations. We develop

a statistical design approach to select the minimal distance between the microspheres

for a desired performance in imaging the proposed microarray and achieve an efficient

microsphere packing. We also compute the optimal operating temperature of the im-

age sensor fitting this performance, considering that the cost of such sensors varies

proportionally with their cooling requirements. Thus, our proposed design ensures

a desired statistical imaging performance for a given image sensor cost. The feasi-

bility of implementing the proposed 3D microarray layout with the position-encoded

microspheres is being demonstrated in a parallel research effort by our collaborators.

Some of the key advantages of the proposed microarray over existing 3D microarrays

are efficient packing, high sensitivity, simplified imaging, and guaranteed accuracy in

estimating the target concentrations, as we discuss in more detail in Sections 2.1 and

2.3.

We estimate the intensity levels and locations of multiple target-free and QD-embedded

microspheres from their images. We use these estimates to compute the photon-

conversion factor of the image sensor that we replace in the design. We thus image
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multiple QD-embedded microspheres, and develop a method to obtain their intensity

level and location estimates. We exploit here the prior information of the light-

intensity profiles of the microspheres, and thus achieve a better accuracy than the

existing blind-deconvolution algorithms [7], [8]. Our method enables high performance

for any next-stage image analysis with the proposed microarray.

The dissertation is organized as follows. In Chapter 2, we present our work on sta-

tistical design of position-encoded 3D microarrays. In Chapter 3, we discuss our

work on estimating intensity levels of QD-embedded microspheres. We summarize

our contributions in Chapter 4 and also propose future work.
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Chapter 2

Statistical Design of

Position-Encoded 3D Microarrays

In this chapter, we present our statistical design of position-encoded 3D microarrays.

Namely, we first construct a statistical measurement model, assuming the imaging is

space-variant and employing the classical three-dimensional (3D) point-spread func-

tion (PSF) proposed in [9]. We consider that the target distributions on the micro-

spheres are either uniform or sparse. The uniform distributions correspond to cases

where the target concentration is high, or the time period of the sensing is sufficiently

long. The sparse distributions correspond to low target concentrations or short sens-

ing durations. We assume the target concentrations are unknown, with known prior

distributions, and the noise is additive Gaussian. We optimize the design by com-

puting the sum of the posterior Cramér-Rao bounds (PCRBs) [10] on the errors in

estimating the target concentrations. In computing this performance measure, we

substitute the maximum likelihood (ML) estimates for the photon-conversion factor

of the image sensor and its background noise variance. We use the resulting estimated

performance measure to compute the optimal distance and temperature.
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The chapter is organized as follows. In Section 2.1, we describe the configuration

and imaging of the proposed microarray. In Section 2.2, we compute the PCRB on

the errors in estimating the target concentrations in imaging the proposed device. In

Section 2.3, we present our method to compute the optimal distance and temperature.

In Section 2.4, we present our estimation method. In Section 2.5, we show our results

obtained in the numerical examples.

2.1 Position-Encoded Microarray Device

We discuss the configuration of the proposed microarray, its image-acquisition proce-

dure, and its image analysis advantages compared to the existing 3D microarrays.

2.1.1 Sensing Device Configuration

Figure 2.1(a) illustrates a schematic diagram of our proposed position-encoded com-

pact 3D microarray device. We assume that all the microsphere centers are positioned

in a plane parallel to the xy plane. Here we place the microspheres in a uniform 2D

grid in controllable positions. For simplicity, we represent them without their dedi-

cated receptors. The microspheres are made of polystyrene and are around 5µm in

diameter. For each microsphere, we encode specific receptors (antibody molecules)

to detect a target of interest. Thus, we identify each target without errors from each

microsphere location. We term this property as position encoding for 3D microarrays.

By coding different microspheres with corresponding receptors, we are able to identify

multiple targets simultaneously without errors.
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To optimally design the layout of the proposed device, we compute the minimal

distance dopt between the microspheres to estimate the target concentrations with

a desired accuracy. This optimal design maximizes the microsphere packing in the

proposed microarray.

(a) (b)

Figure 2.1: (a) Schematic of a position-encoded three-dimensional microarray, where
the microspheres are separated by an optimal distance. (b) A target molecule

captured on a microsphere.

To detect and quantify the targets, we use nanospheres (∼ 100nm in diameter)

embedded with identical quantum-dots (QDs) and conjugated with receptors. The

nanospheres allow label-free targeting (targets do not contain any optical reporter,

and thus their structures and chemical properties remain unchanged), on-off sig-

naling, and enhance the detection sensitivity [1]. The targets are captured by the

microspheres on one side, and are tagged by the nanospheres on their other side, see

Figure 2.1(b).

Thus, the main differences (mentioned so far) between the configurations of the pro-

posed and existing 3D microarrays are the proposed position encoding and optimal

selection of the minimal distance between the microspheres to estimate the target

6



concentrations with a desired accuracy. Also, the position encoding offers higher sen-

sitivity. Namely, in existing 3D microarrays two or more microspheres often come in

close proximity of each other, and hence the receptors in that close-proximity region

are unable to capture targets. This reduces the sensitivity of the existing 3D microar-

rays. In contrast, the microspheres in our proposed microarray do not come close to

each other as their microsphere positions are controllable, and hence the sensitivity

of our proposed microarrays is higher.

2.1.2 Preparing and Collecting Data

To physically prepare the data, we propose to follow the procedure for the 3D mi-

croarray in [1], except for identifying the targets. Namely, a microfluid stream with

the targets is passed through the sensors, and then a cocktail of nanospheres is re-

leased periodically [1]. The targets bind to the intended microsphere surfaces on one

side and to the nanospheres on the other side (Figure 2.1(b), showing one target and

one nanosphere as an example) [1]. All nanosphere QDs emit light upon excitation

by UV light, and produce a source of light in the form of a spherical shell around

each microsphere. The levels of the shell lights quantify the target concentrations.

We identify the targets using the known positions of the microspheres. This is in

contrast to other approaches [1], where the targets are identified by the colors of QD

barcodes in the microspheres, creating possible errors.

To collect the data, we propose to follow again the procedure in [1]. Namely, to

image the target-captured specimen, a fluorescence microscope is focused at different

depth planes of the ensemble, parallel to the xy plane of the target-free device shown

in Figure 2.1(a); see also Figure 3.1 in Chapter 3. This produces a series of 2D
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cross-section images of lights emitted by the nanosphere QDs, see [11]. Thus, each

cross-section image of the spherical shell light formed around a microsphere forms the

image of a ring.

To capture the images, a CCD or CMOS image sensor with high quantum effi-

ciency [12], i.e., with high sensitivity, is employed. Examples of such sensors are

those produced by Watec Inc. or Micron Inc. [13], [14]. Sensors produced by these

companies have high sensitivity, but require temperature cooling using external elec-

tronics to reduce the background noise. The cost of such sensors proportionally varies

with their cooling requirements. Thus, we propose to select the optimal operating

temperature of the image sensor as a trade-off between minimal cooling vs. maximal

estimation accuracy, using our statistical performance results as a function of the

distance between the microspheres and temperature in their image sensing.

2.1.3 Image Analysis Comparison with Existing 3D Microar-

rays

Analyzing the images of the proposed microarrays should be significantly simpler and

more accurate than in existing 3D microarrays, where the random microsphere place-

ment often causes some imaged microspheres to cluster [4], [15]. Also, the number of

the segments in these imaged microspheres in existing 3D microarrays is not known

a priori. Furthermore, their QD barcode spectra for the target identification are

noisy [4]. Imaging such randomly placed microspheres requires complex segmenta-

tion and estimation of their number. Identification of targets from the noisy QD light

barcodes in the existing 3D microarrays requires computations and is prone to errors.
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In contrast, our proposed microarrays do not require such computations for segmen-

tation or target identification, and has no such errors. This is useful, for example, for

simultaneous imaging of multiple targets.

2.2 Performance Analysis

We present a statistical performance analysis for estimating the target concentra-

tions from our proposed device. We first describe the measurement model for the

fluorescence microscopy imaging of the proposed device with targets captured on mi-

crospheres and with nanosphere QD lights. We then derive the performance bounds

on the errors in estimating the target concentrations, for the statistical design.

2.2.1 Measurement Model

The measurement at the image sensor output, in fluorescence microscopy imaging of

a QD illuminating object, is (see [15])

g(x, y, z;θ) = s̃(x, y, z;θ) + w
P
(x, y, z;θ) + w

b
(x, y, z), (2.1)

where x ∈ {x1, x2, . . . , xK}, y ∈ {y1, y2, . . . , yL}, and z ∈ {z1, z2, . . . , zM}; K, L, and

M denote the numbers of measurement voxels; θ is the unknown random parameter

vector in imaging; s̃(x, y, z;θ) is the microscope output; w
P
(x, y, z;θ) is a zero-mean

Gaussian noise with variance s̃(·)/β, and β is the photon-conversion factor of the

image sensor [16], [17]; w
P
(·) models the interference due to the photon counting

process in the image sensor, and is independent from voxel to voxel; w
b
(x, y, z) models
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the background noise which is a zero-mean Gaussian noise with variance σ2
b [15]; w

b
(·)

is due to the thermal noise1 of the image sensor [18], is independently and identically

distributed (iid) from voxel to voxel, and is statistically independent with w
P
(·).

Thus, g(x, y, z;θ) is Gaussian distributed with mean s̃(·) and variance s̃(·)/β + σ2
b,

independent from voxel to voxel [15]. In this chapter, we assume that the image

sensor output is free of constant offset [18]. We also assume β and σ2
b are known.

Otherwise, we estimate them using images captured from a training experiment, see

Section 2.4.

Assuming a space-variant microscopy, the fluorescence microscope output is given by

(see [9])

s̃(x, y, z;θ) =

∫
z̃

∫
ỹ

∫
x̃

h(x− x̃, y − ỹ, z, z̃)s(x̃, ỹ, z̃;θ)dx̃dỹdz̃, (2.2)

where h(x, y, z, z̃) is the fluorescence microscope PSF for a point source at a depth z̃

in the QD illuminating object s(x̃, ỹ, z̃;θ).

We group the measurements into a vector form:

g = s̃+w
P

+w
b
, (2.3)

where g, s̃,w
P
, andw

b
are (KLM×1)–dimensional vectors whose (KL((z − z1)/∆z)+

K((y − y1)/∆y) + ((x− x1)/∆x) + 1)th components are g(·), s̃(·), w
P
(·), and w

b
(·),

respectively; ∆x = (xk+1 − xk) with k ∈ {1, 2, . . . K − 1} and similarly for ∆y and

∆z.

1Note that the background noise considered in this chapter is an approximation, as there exist
other types of background noise, e.g., electronic noise, readout noise, and quantization noise [18]. In
principle, these latter types of background noise could be avoided using external control. However,
in any case the thermal noise is the dominant component, it depends on the sensor material and
increases with the sensor operating temperature [19].
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Object Model (Nanosphere QD Intensity Profile of Two Neighboring Mi-

crospheres)

For the statistical design, we compute the error in estimating the target concentrations

of two neighboring microspheres as a function of their distance and the temperature

in their image sensing. Recall from Section 2.1.2 that the target concentrations on

the microspheres are proportional to the intensity levels of the spherical-shell lights

surrounding them. Consider two such shells ssh(x, y, z;θ1) and ssh(x−d, y, z;θ2) with

unknown parameters θ1 and θ2, respectively, corresponding to the concentrations of

the targets surrounding two neighboring microspheres with a distance d apart. We

model the object as

s(x, y, z;θ) = ssh(x, y, z;θ1) + ssh(x− d, y, z;θ2) (2.4)

with unknown parameters θ = [θT1 ,θ
T
2 ]T . Below we consider two different models

to define ssh(·), where the microspheres are either fully or partially covered with the

targets. The full shell corresponds to cases where the target concentration is high,

and/or the time period of the sensing is sufficiently long. The sparse shell corresponds

to low target concentrations and/or short sensing durations.

• Full-shell model for ssh(·): For a microsphere fully covered with the captured target

molecules, the emitted nanosphere QD lights completely surround the microsphere,

and result in a spherical shell source with known radii r1 and r2 as follows:

ssh(x, y, z; θi) =

 θi if r1 ≤
√
x2 + y2 + z2 ≤ r2,

0 otherwise,
(2.5)
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where θi is the unknown intensity level which is constant in the shell and i ∈ {1, 2}

indexes two neighboring microspheres; see Figure 2.2(a) (right) where the color level

signifies the target concentration [5].

We define the prior distribution of the unknown parameter θi for the ith shell (∀

i ∈ {1, 2}) using a uniform distribution:

θi ∼ U(0, θMAX), (2.6)

where U(0, θMAX) is a uniform random variable, distributed from zero to a known

maximum value θMAX [20]. We assume that the prior distributions of θi for i ∈ {1, 2}

are statistically independent of each other. We adopt a uniform distribution prior

for θi, since no additional information other than the maximum value of the target-

concentration level is available in general.

• Sparse-shell model for ssh(·): Here we consider a sparse model to describe the

nanosphere QD light-intensity profile for cases where the microspheres are surrounded

only partially with targets. In such cases, the target molecules are likely to be attached

to each microsphere without fully covering it, and hence the resulting QD intensity

profile ssh(·) is sparse:

ssh(x, y, z;θi) =

 θi(x, y, z) if r1 ≤
√
x2 + y2 + z2 ≤ r2,

0 otherwise,
(2.7)

where θi(x, y, z) is the unknown intensity level which is sparse in each measured voxel

of the shell, and i ∈ {1, 2} indexes two neighboring microspheres; see Figure 2.2(b)

(right) where the color level in the figure signifies the target concentration [5]. For

the ith shell (∀ i ∈ {1, 2}), we assume that the total number of voxels, where the

12



measurements are captured, is ni. We denote the values of θi(·) at these voxels are

θi1, θi2, . . . , θini
, which we stack in an ni dimensional vector θi = [θi1, θi2, . . . , θini

]T .

We define the prior distribution of the unknown parameter θij for the ith shell (∀

i ∈ {1, 2}) at its jth measured voxel (∀ j ∈ {1, 2, . . . , ni}) using an exponential

distribution:

θij ∼ Exp(τ), (2.8)

where Exp(τ) is an exponential random variable, with a scale parameter τ [20]. We

assume that the prior distributions of θij for i ∈ {1, 2} and j ∈ {1, 2, . . . , ni} are

statistically independent of each other. Here the exponential distribution prior im-

poses a sparsity in θij, and the parameter τ of this distribution inversely controls the

sparsity level of θij. Namely, a very small value of τ in (2.8) restricts the value of

θij to be very close to zero, and thus constrains θij to be sparse. Note that a good

knowledge of τ is important for solving the corresponding sparse parameter estima-

tion problem using the prior model (2.8). If not known, one can attempt to estimate

this parameter from the measurements in some way, and thus the resulting sparse

parameter estimation method becomes completely free of user parameters [21], [22].

Note also that a Laplace distribution prior is widely used in the literature to define

the prior distribution of sparse parameters, for solving maximum a posteriori (MAP)

estimation problems [23]. However in our work, since θij is positive, we define the

prior distribution of this parameter using an exponential distribution prior instead of

a Laplace distribution prior. Intuitively, the probability density function (pdf) along

the positive axis of a Laplace distribution with zero location parameter value and the

pdf of an exponential distribution are similar.
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(a)

(b)

Figure 2.2: Left: Schematic of cross-section depicting target molecules captured (a)
fully or (b) partially by a microsphere, and sandwiched by nanospheres, see the (a)

full-shell and (b) sparse-shell models for ssh(·). Right: Ideal cross-section ring
intensity image of the resulting (a) full shell or (b) sparse shell, associated with the
nanosphere quantum-dot lights. We schematize the left- and right-column figures of

(a) and (b) without consistent scaling.
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PSF Model

The fluorescence microscope typically distorts the 3D object image [11], [24]-[26]. We

describe this distortion using the classical model in [9], which allows us compute the

known PSF using the microscope imaging parameters following the manufacturer’s

specification. This model is

h(x, y, z, z̃) =

∣∣∣∣∣
∫ 1

0

J0(2πNaα
√
x2 + y2/M ′λ) exp(j2πψ(z, z̃, Na, α, no, ns)/λ)αdα

∣∣∣∣∣
2

,

(2.9)

where J0 is the Bessel function of the first kind, Na the microscope numerical aperture,

α the normalized radius in the back focal plane, M ′ the lens magnification, λ the QD

emission wavelength. Further

ψ(·) = noz

[
1− (Naα/no)

2

]1/2

+nsz̃

{[
1−(Naα/no)

2

]1/2

−(no/ns)
2

[
1− (Naα/no)

2

]1/2
}

(2.10)

is the optical path difference function. Moreover, no and ns are the refractive indexes

of the immersion oil and the specimen, respectively, and z̃ is the depth at which the

point source is located in the object.

2.2.2 Posterior Cramér-Rao Bound

We compute the PCRB on the error in estimating the unknown parameters of (2.1) to

optimize the design. We employ PCRB instead of CRB, as PCRB permits us to use

realistic prior knowledge of the target-concentration levels for the proposed design.

Namely, PCRB allows us to exploit the positivity information of the light-intensity

level for the full-shell model (2.5) or the sparse-shell model (2.7), to constrain the
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target-concentration level from zero to a known maximum value for the full-shell

model (2.5), and to exploit the sparsity information of the target-concentration level

for the sparse-shell model (2.7). Below, we first briefly discuss the concept of the

PCRB. We then introduce the joint likelihood of the measurement and unknown

parameters. After that we present the expressions of the elements of the (Fisher)

information matrix, which we use to compute the PCRB.

PCRB

Let g represents a vector of the measured data, θ = [θ1, θ2, . . . , θn]T be an n dimen-

sional unknown random parameter to be estimated, p
G,Θ

(g,θ) be the joint probability

density of the pair (g,θ), and q(g) is an estimate of θ, which is a function of g. The

PCRB on the estimation error has the form

Q = E
[
[q(g)− θ][q(g)− θ]T

]
≥ J−1, (2.11)

where E(·) denotes the statistical expectation with respect to the joint pdf p
G,Θ

(g,θ)

and J is the n× n (Fisher) information matrix with the elements

Ji′j′ = E

[
−
∂2 log p

G,Θ
(g,θ)

∂θi′∂θj′

]
, i′, j′ = 1, . . . , n, (2.12)

provided that the derivatives
(

∂2(·)
∂θi′∂θj′

)
and E(·) in (2.11) and (2.12) exist. The

inequality in (2.11) means that the difference Q − J−1 is a positive semidefinite

matrix. We compute the PCRBs on the errors in estimating the unknown random

parameters in θ corresponding to the diagonal elements of J−1 [10], [27].
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Joint Likelihood Function

The joint likelihood function of the measurement g and the unknown random param-

eter θ using (2.1) is

p
G,Θ

(g,θ) = p
G|Θ(g|θ)p

Θ
(θ), (2.13)

where p
G|Θ(g|θ) is the conditional pdf of g given θ and p

Θ
(θ) is the marginal pdf of

θ.

• Expression of p
G|Θ(g|θ) :

p
G|Θ(g|θ) =

1√
(2π)KLM |Σg|

exp

[
− 1

2
(g − s̃)TΣ−1

g (g − s̃)

]
, (2.14)

where Σg is the covariance matrix of g. The expression of Σg is given by

Σg =
diag(s̃)

β
+ σ2

bI, (2.15)

where diag(s̃) denotes a diagonal matrix formed by the elements of s̃ and I is an

identity matrix of dimension KLM.

• Expression of p
Θ

(θ) for the full-shell model (2.5):

p
Θ

(θ) =
2∏
i=1

p
Θi

(θi), (2.16)

where p
Θi

(θi) is the prior pdf of the unknown parameter θi for the ith shell (i ∈ {1, 2}).

Recall from Section 2.2.1 that θi follows a uniform distribution prior with a range

from 0 to θMAX, see (2.6). Also note θ = [θ1, θ2]
T with n = 2 is the unknown random

parameter to be estimated for the full-shell case.
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• Expression of p
Θ

(θ) for the sparse-shell model (2.7):

p
Θ

(θ) =
2∏
i=1

ni∏
j=1

p
Θij

(θij), (2.17)

where p
Θij

(θij) is the prior pdf of the unknown parameter θij for the ith shell (i ∈

{1, 2}) at its jth measured voxel (∀ j ∈ {1, 2, . . . , ni}). Recall from Section 2.2.1 that

θij follows an exponential distribution prior with a scale parameter τ, see (2.8). Also

note θ = [θ1, θ2, . . . , θn1, |θn1+1, . . . , θn]T = [θ11, θ12, . . . , θ1n1 , |θ21, θ22, . . . , θ2n2 ]T with

n = n1 + n2 is the unknown random parameter to be estimated for the sparse-shell

case.

Information Matrix

We derive the elements of the (Fisher) information matrix J using (2.12) for com-

puting the PCRBs on the error in estimating the unknown random parameters in θ.

Below we present the expressions of these elements for both the object models.

• (Fisher) information matrix for the full-shell model: Here we consider that the

object model s(·) in (2.4) is formed using the full-shell model in (2.5). Recall that

the unknown random parameter for the statistical design using the full-shell model is

θ = [θ1, θ2]
T , see Sections 2.2.1 and (2.16).

We define

s1(x, y, z) =
∂s(·)
∂θ1

=

 1 if r1 ≤
√
x2 + y2 + z2 ≤ r2,

0 otherwise,
(2.18)
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and

s2(x, y, z) =
∂s(·)
∂θ2

=

 1 if r1 ≤
√

(x− d)2 + y2 + z2 ≤ r2,

0 otherwise.
(2.19)

Using (2.18) and (2.19), we further define

s̃i′(x, y, z) =

∫
z̃

∫
ỹ

∫
x̃

h(x− x̃, y − ỹ, z, z̃)si′(x̃, ỹ, z̃)dx̃dỹdz̃, i′ ∈ {1, 2}. (2.20)

The expressions of the elements of the 2× 2 symmetric matrix J using (2.20) are

Ji′j′ = Eθ

[∑
z

∑
y

∑
x

(
s̃i′(·)s̃j′(·)(

(s̃(·)/β) + σ2
b

) +
(s̃i′(·)/β)(s̃j′(·)/β)

2
(
(s̃(·)/β) + σ2

b

)2
)]

, i′, j′ = 1, 2,

(2.21)

where we compute Eθ[·] with respect to the pdf p
Θ

(θ) in (2.16) using the Monte-Carlo

integration estimation technique [28], see Appendix A.

• (Fisher) information matrix for the sparse-shell model: Here we consider that the

object model s(·) in (2.4) is formed using the sparse-shell model in (2.7). Recall that

the unknown random parameter for the statistical design using the sparse-shell model

is θ = [θ1, θ2, . . . , θn]T , see Sections 2.2.1 and (2.17).

We assume that the measured voxel of s(·), that corresponds to the i′th element

(i′ ∈ {1, 2, . . . , n}) of θ, is {x = xk, y = y
l
, z = zm}, where k ∈ {1, 2, . . . , K},

l ∈ {1, 2, . . . , L}, and m ∈ {1, 2, . . . ,M}. Using this assumption, we define

si′(x, y, z) =
∂s(·)
∂θi′

=

 1 if x = xk, y = y
l
, z = zm,

0 otherwise.
(2.22)
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We follow similar assumption and definition corresponding to the each element of θ.

We then redefine s̃i′(x, y, z) for the sparse-shell case for i′ ∈ {1, 2, . . . , n} by inserting

si′(x, y, z) from (2.22) in (2.20).

The expressions of the elements of the n× n symmetric matrix J using (2.20) are

Ji′j′ =

(
1

β
− 1

2β2

)
Eθ

[∑
z

∑
y

∑
x

(
s̃i′(·)s̃j′(·)(

(s̃(·)/β) + σ2
b

)2
)]

, i′, j′ = 1, 2, . . . , n,

(2.23)

where we compute Eθ[·] with respect to the pdf p
Θ

(θ) in (2.17) using the Monte-Carlo

integration estimation technique [28], see Appendix A.

Comment

The expression of Ji′j′ in (2.21) or (2.23) involves computing Eθ

[
− ∂2 log p

Θ
(θ)

∂θ2
i′

]
for

i′ ∈ {1, 2, . . . , n}. Here the second derivative of log p
Θ

(θ) with respect to θi′ does not

exist at the boundary points of the prior pdf p
Θi′

(θi′). However, the integral here with

respect to p
Θ

(θ), in computing the statistical expectation, is zero for almost surely

at the boundary points of p
Θi′

(θi′). This is because the probability measure of the

prior pdfs at each of their boundary point is zero, as the prior pdfs are continuous

in our analysis. Thus, we arbitrarily include or exclude the boundary points of the

prior pdfs in the computation, and assume that the second derivative of log p
Θ

(θ)

with respect to θi′ exists for almost surely with probability one on the set of points

where the prior pdfs are non-zero [29].
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2.3 Statistical Design

We present our statistical design method for selecting the optimal (minimal) distance

between the microspheres as well as the optimal operating temperature in their image

sensing. We first present the performance measure for the design as a function of

distance and temperature. We then present a least-squares (LS) estimation algorithm

for automatically selecting the minimal distance from the performance measure at a

given temperature [30]. We thereafter discuss how we select the optimal operating

temperature.

2.3.1 Performance Measure

We define the performance measure in estimating the target concentrations as the

sum of the PCRBs on the errors in estimating the target concentrations. Namely, we

define the performance measure as

p = tr(PCRB), (2.24)

where “tr” is the matrix trace operation and PCRB = J−1 [31]-[33]. We compute

this measure as a function of the design variables, i.e., the distance d between the

microspheres and the operating temperature T of the image sensor. From our discus-

sion so far, it is evident that p is a function of d, see Section 2.2. Below we discuss

the relationship between this measure with T.
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The performance measure p is a function of the noise level σ2
b, see (2.1), which in turn

is a function of T . Thus, p is a function of T. Specifically,

σ2
b(T ) = B exp(−Eg/2kBT ), (2.25)

where B is a constant, Eg is the known bandgap of the image-sensor material, and

kB is the known Boltzmann constant [19]. Here we assume B is known; otherwise,

we estimate it using images captured from a training experiment, see Section 2.4.

We further assume that Eg is constant for a given image sensor material, although

Eg varies with T in reality. In this chapter, we consider the image sensor material is

Silicon (Si), and the relationship between Eg with T for Si (see, e.g., [34]) is

Eg = 1.15− 7.3021× 10−4T 2

1108 + T
, (2.26)

where the T dependent second term is negligible for the temperature range that we

use in the numerical examples presented in Sections 2.5.2 and 2.5.3 to illustrate the

concept of our proposed design. Hence, we consider Eg is constant and its value to

be 1.15 in this chapter. Note that one should replace Eg in (2.26) and consider its

temperature dependency based on the choice of the image sensor material of interest.

2.3.2 Minimal Distance Selection

We compute the minimal distance by analyzing p as a function of the distance d be-

tween the microspheres at a given temperature, to obtain a desired error in estimating

the target concentrations. We conduct an LS estimation to automatically select the

minimal distance. Below we first discuss our motivation to conduct the estimation
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for the minimal distance selection, and we then discuss the corresponding analysis

details. Here we use p(d) to denote p as a function of d.

Motivation

Intuitively, as we increase the distance between the microspheres, the light signals

from their nanosphere QDs do not interfere with each other. Thus, p(d) flattens, see

Figure 2.3(a), and the error in estimating the target concentrations is essentially due

to the background noise in each microsphere location individually. In other words,

the errors between the microspheres are decoupled, and the PCRB matrix should be

block diagonal. Thus, we could automatically estimate the minimal distance from

p(d) corresponding to the distance at which such a decoupling occurs.

To estimate at what distance p(d) starts to flatten, we first replace in p(d) the ML

estimates of B and β. (See in Section 2.4 a discussion on the ML estimation.) We

denote this estimated p(d) as p̃(d). We then fit with p̃(d) a parametric curve, that

models the shape of p̃(d) as a function of d, using an LS estimation. The LS estimate

of the distance at which p̃(d) starts to flatten should be the minimal distance estimate.

Parametric Shape Model of p̃(d)

We propose a parametric curve to model the shape of p̃(d); see Figure 2.3(a) which

essentially resembles the shape of p̃(d). This model is given by

p′(d) = c exp(ρd)I[0,d0)(d) + p0 , (2.27)
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where c, ρ, d0, and p0 are the unknown parameters, and I[0,d0)(d) is an indicator

function given by,

I[0,d0)(d) =

 1 if 0 ≤ d < d0,

0 otherwise.
(2.28)

Similar to p̃(d), here p′(d) in (2.27) first decreases as d increases, and it then starts

to flatten from d = d0; see Figure 2.3(b) for an illustrative example.

(a) (b)

Figure 2.3: (a) Schematic diagram of p(d). (b) Graph example of the proposed
parametric model p′(d) that represents p(d) shape. Similar to p(d), this graph first

decreases as d increases, and it then starts to flatten from d0.

Minimal Distance Estimation Using Least-Squares

We estimate d0 using an LS estimation method. Namely, we first compute p̃(d) at N

increasing values of d at d1 ≤ d2 ≤ . . . ≤ dN , and we then fit these computed values

with p′(d) computed at d1, d2, . . . , dN . The relationship between p̃(d) and p′(d) in a

matrix-vector form is given by

p̃ = p′ + e, (2.29)
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where p̃ = [p̃(d1), p̃(d2), . . . , p̃(dN)]T , p′ = [p′(d1), p
′(d2), . . . , p

′(dN)]T , and e is the

error vector. We rewrite (2.29) further as

p̃ = A(ζ)x+ e, (2.30)

where A(ζ) is an N × 2 dimensional matrix with k′th row (k′ ∈ {1, 2, . . . , N}) as

[exp(−ρdk′)I[0,d0)(dk′), 1], ζ = [ρ, d0]
T , and x = [c, p0 ]T .

The least-squares estimates of the unknown parameters (see, e.g., [30]) are

ζ̂ = arg max
ζ
{p̃TΠ(ζ)p̃},

x̂ = [AT (ζ̂)A(ζ̂)]−1AT (ζ̂)p̃, (2.31)

where argmax stands for the argument of the maximum, i.e., the value of the given

argument ζ for which the value of the expression p̃TΠ(ζ)p̃ attains its maximum value,

and Π(ζ) is the projection matrix on the column space of A(ζ) [30], given as

Π(ζ) = A(ζ)[AT (ζ)A(ζ)]−1AT (ζ). (2.32)

We select the minimal distance dopt as

dopt = d̂0. (2.33)

2.3.3 Optimal Operating Temperature Selection

We select the optimal operating temperature Topt by analyzing p as a function of the

temperature T in image sensing, to obtain a desired accuracy in estimating the target
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concentrations. Namely, we select the Topt that ensures a desired performance through

p for all possible distances between the microspheres; see more details in Sections

2.5.2 and 2.5.3. The ability to select the optimal operating temperature using the

performance analysis is critical for employing less expensive sensors, while attaining

a desired estimation accuracy, see Sections 2.1.2, 2.5.2, and 2.5.3. Specifically, we

choose the optimal operating temperature as a trade off between less cooling (i.e.,

reducing the device cost) vs. higher estimation accuracy.

2.4 Estimating β and B Using an Existing 3D Mi-

croarray

In this section, we estimate β and B, which we use for the statistical design, using a

training experiment that we conduct with the existing 3D microarray layout. Namely,

we image using the desired image sensor the lights generated by the QDs embedded

in Ñ number of target-free microspheres placed randomly on a substrate [6]. We

estimate β using a method-of-moments (MoM) estimation method [30] from each

microsphere image, and estimate B from the noise-only section of the captured image.

The estimate of β from one microsphere image to the other varies in general, see

Section 2.5.1. Hence, we use a large Ñ number of microsphere images, estimate β

from each of them, and substitute the statistical median of these estimates to replace

β for the statistical design described in Section 2.3. (We discuss in Section 2.5.1

our motivation of using the statistical median of the β estimates instead of their

statistical mean for the design.) Below we first describe the measurement model for

fluorescence microscopy imaging of a target-free microsphere embedded with QDs.

We then present our proposed analysis to estimate β and B.
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2.4.1 Measurement Model

Here we employ the measurement model (2.1), assuming that the object s(x, y, z;γ)

with unknown parameter γ is the QD light-intensity profile of a single microsphere,

and assuming also that β and B are the other unknown parameters. We rewrite the

measurement model as

g(x, y, z;γ, β, B) = s̃(x, y, z;γ) + w
P
(x, y, z;γ, β) + w

b
(x, y, z;B), (2.34)

where x ∈ {x1, x2, . . . , xK}, y ∈ {y1, y2, . . . , yL}, and z ∈ {z1, z2, . . . , zM}; and (xk+1−

xk) = ∆x (∀ k = 1 to (K − 1)). We make similar assumptions for ∆y and ∆z.

• Object Model (Microsphere QD Intensity Profile): We model this intensity profile

using a parametric sphere of constant intensity level θ per voxel [15]. Namely, we

define

s(x, y, z;γ) =

 θ if
√

(x− xc)2 + (y − yc)2 + (z − zc)2 ≤ r,

0 otherwise,
(2.35)

where θ denotes the unknown average intensity level which is constant in the sphere,

xc, yc, and zc are the unknown center location parameters, and r is the known radius

of the microsphere. We denote the unknown parameter vector of the object by γ =

[θ, xc, yc, zc]
T ; see also Section 3.2.1 for a more detailed discussion.

For simplicity, we assume a constant intensity level at every microsphere voxel. Intu-

itively, this assumption is justified because the QDs are typically tightly and uniformly

packed inside each microsphere [6]; they produce light at nm resolution, whereas the
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microscope measurement is done at µm resolution. Note that more complex models

here could be used to obtain more realistic results tailored to specific applications.

2.4.2 Estimation

In this part, we present our proposed procedure for estimating β and B, using the

captured image from a training experiment, see Section 2.5.1. Below, we first propose

an MoM estimation method [30] for estimating β in (2.34) from each microsphere

image. This estimation needs the estimates of B and γ. Therefore, we present next

how we estimate B. We then briefly review our parametric ML estimation method [15]

for estimating the object parameter γ in (2.34) from each microsphere image; see also

Chapter 3.

Estimating β

The reciprocal photon-conversion factor β for fluorescence microscopy is determined

by several physical parameters, such as the integration time and the quantum effi-

ciency of the detector [25], which are unknown in our research. Hence, we estimate β

in (2.34) using an MoM estimation method [30] from each microsphere image. This

estimate is (see Appendix B) given by

β̂ =

∑
z

∑
y

∑
x s̃(x, y, z; γ̂)∑

z

∑
y

∑
x

[(
g(x, y, z)− s̃(x, y, z; γ̂)

)2

− σ̂2
b

] , (2.36)

where γ̂ is the estimate of the object parameter from the corresponding microsphere

image, and σ̂2
b is the estimate of the background noise variance in the captured image,

see (2.37). We denote the estimates of β from the Ñ number of microsphere images
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as β̂1, β̂2, . . . , β̂Ñ . We substitute the statistical median of these estimates to replace β

for the statistical design analysis described in Section 2.3; see also Section 2.5.1 for

more details.

Estimating B

We estimate B from the noise-only section of the captured image. Recall that the

background noise w
b
(x, y, z;B) in the captured-image is a zero-mean Gaussian noise

with variance σ2
b, and is iid from voxel to voxel, see Section 2.2.1. Recall also that σ2

b

is related to B following (2.25). We thus estimate first σ2
b from the noise-only section

of the captured image using the classical ML estimation method discussed in [35, Ch.

6]. We estimate then B as

B̂ =
σ̂2

b

exp(−Eg/2kBT0)
, (2.37)

where σ̂2
b is the estimate of σ2

b and T0 is the temperature at which the image is

captured in the training experiment. Note that it is possible here to use sufficient

number of measurement samples, and to ensure the estimate of B is consistent [30].

Estimating γ

We estimate the object parameter γ from each microsphere image. Here we assume a

large β, since we employ an image sensor with high sensitivity, see Section 2.1.2. We

also assume the contribution of wP(x, y, z;γ, β) is negligible in (2.34), since the QD

light imaging is a high signal-to-noise ratio (SNR) imaging [5]. Thus, estimating γ is

essentially equivalent to fitting s̃(x, y, z;γ) to the available measurement g(x, y, z;γ)
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of a single microsphere at each voxel of the measurement. Therefore, we approximate

(2.34) as follows:

g(x, y, z;γ) = s̃(x, y, z;γ) + w
b
(x, y, z). (2.38)

Considering, η = [xc, yc, zc]
T and defining s̃′(x, y, z;η) = s̃(·)/θ, we rewrite (2.38) as

g(x, y, z;γ) = θs̃′(x, y, z;η) + w
b
(x, y, z). (2.39)

With these assumptions and notations, we group the measurements into a vector

form:

g = θs̃′(η) +w
b
, (2.40)

where g, s̃′(η), andw
b

are (KLM×1)–dimensional vectors whose (KL((z − z1)/∆z)+

K((y − y1)/∆y) + ((x− x1)/∆x) + 1)th components are g(·), s̃′(·), and w
b
(·) respec-

tively. The log-likelihood function for estimating γ using (2.40) is given by

C(γ) ≈ −||g − θs̃′(η)||2, (2.41)

where || · ||2 denotes the Euclidean vector-norm operation2.

The ML estimate of the parameters (see, e.g., [36]) is

η̂ = arg max
η
{gTP s̃′(η)g},

θ̂ = [s̃′
T

(η̂)s̃′(η̂)]−1s̃′
T

(η̂)g, (2.42)

2For a vector x = [x1, x2, . . . , xn′ ]T , the Euclidean norm is ||x|| =
√

x2
1 + x2

2 . . . + x2
n′ [37].
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where P s̃′(η) is the projection matrix on the column space of s̃′(η) [30], given as

P s̃′(η) = s̃′(η)[s̃′
T

(η)s̃′(η)]−1s̃′
T

(η). (2.43)

We then denote the estimate of γ as γ̂ = [θ̂, η̂T ]T , which we use for estimating β in

(2.36). See also Chapter 3 for a more general description of estimating the object

parameter γ from fluorescence microscopy images of a single microsphere, embedded

with QDs and placed randomly on a substrate.

2.5 Results

We present our results for statistically designing the proposed position-encoded 3D

microarray. Recall that our statistical design analysis uses the values of the imaging

parameters β and B. We estimate them from fluorescence microscopy images of Ñ

number of target-free microspheres placed randomly on the substrate of the existing

3D microarray layout, see Sections 2.3 and 2.4. Thus, we first present our results in

estimating β and B from these microsphere images. We then present two numerical

examples to illustrate the concept of our proposed statistical design using the full-

and sparse-shell models.

For the purpose of the illustration only, we consider in this chapter a Zeiss Axioscope 2

Mot+ fluorescence microscope [38] with an Axiocam MRm monochrome camera [39],

to image the microsphere QD lights. However, our proposed statistical design anal-

ysis is general, and can be applicable in imaging the proposed microarray using any

fluorescence microscope and any CCD or CMOS image sensor. In particular, one can
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employ inexpensive image sensors produced by Watec Inc. [13] or Micron Inc. [14],

which require temperature cooling in imaging, see Section 2.3.3.

2.5.1 Estimating β and B

In this part, we present our results in estimating β andB from fluorescence microscopy

images of Ñ number of target-free microspheres placed randomly on a substrate. We

first present the imaging experiment, and we then present our estimation results.

Imaging Experiment

We randomly placed target-free microspheres on a polydimethylsiloxane substrate.

These microspheres are made of polystyrene, and have a refractive index of 1.334.

They are QD-embedded, and are 5µm in diameter. They contain cadmium selenium

sulphide QDs measuring 6nm in diameter [6]. The QDs were excited at wavelengths

lower than 500nm using blue/UV lights [6].

To image the microsphere QD lights, we employed a 10X objective with the numerical

aperture Na of the microscope as 1.3, and used water as an immersion medium for

the objective. We imaged the QD emission in 535nm wavelength at T0 = 100C. We

captured the 3D image with a resolution of ∆z = 1µm along the z-direction, and

∆x = ∆y = 0.654µm/pixel along the lateral direction.

We show the focal-plane intensity image of all the microspheres in Figure 2.4(a). This

image in Figure 2.4(a) illustrates optical cross-talk (as mentioned in Chapter 1) in the

locations where the microsphere images bind in clusters. Naturally, the microsphere

images are optically indistinguishable in these locations.
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Results

(a) (b)

Figure 2.4: (a) Focal-plane quantum-dot intensity image of all the microspheres. (b)
Histograms of the estimated β from the individual microsphere images.

In Figure 2.4(b), we present a histogram of the β estimates that we obtain from the

image shown in Figure 2.4(a). We find 65 microsphere images appear as individual

objects in Figure 2.4(a). We manually segment these images, and estimate β from each

of them. We observe that the β estimates vary in Figure 2.4(b), and also note a few

outliers in the histogram of their estimates. The presence of these outliers motivates

us to use the statistical median of the β estimates for the statistical design, which

we compute as 305.21. We also compute the statistical median of the θ estimates

as 0.0053. (Recall that θ is the average QD intensity level of a microsphere, see

(2.35).) We further compute σ̂2
b = 4.23 × 10−4 from the noise-only section of the

image in Figure 2.4(a), and we then compute B̂ = 7.29× 106 using (2.37) and using

Eg = 1.15eV, see Section 2.3.1. We substitute the values of the estimated B and the

median of the estimated β to replace B and β in our proposed statistical design in

the next two subsections. Moreover, we use the median of the estimated θ to decide
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the value of θMAX in the numerical example below for the statistical design using the

full-shell models; see Section 2.5.2 for more details.

2.5.2 Example 1: Statistical Design for the Full-Shell Case

In this example, we illustrate the concept of our proposed statistical design of the

position-encoded 3D microarrays for the full-shell models. Here we use the shell radii

r1 = 2.774µm and r2 = 2.874µm in (2.5) for protein targets of diameter 250nm.

We compute these radii by considering the respective sizes of the microspheres,

nanospheres, and bio-receptors (e.g., IgG antibody), which are 5µm, 100-200nm, and

10-12nm in diameter, respectively. We also use the order of θMAX in (2.6) is similar

as the median of the θ estimates in Section 2.5.1. Note that the choice of θMAX is not

so critical here, as we show below that the statistical design is robust with respect to

θMAX.

Effect of Microspheres’ Distance on Performance

In Figure 2.5(a), we present the effect of the microspheres’ distance on the statistical

imaging performance. Here we use θMAX = 0.0053 and T = 00C. We observe that

the estimated performance measure p̃(d) first decreases as d increases, and it then

flattens. This result is similar with what we intuitively predict in Section 2.3.2 on

the shape of p̃(d) as a function of d. We estimate using the proposed LS estimation

method (see Section 2.3.2) the distance at which p̃(d) starts to flatten. Recall that we

define this distance as the minimal distance between the microspheres in our proposed

statistical design analysis, see Section 2.3.2. In this example, we estimate the minimal

distance to be 17µm.
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(a) (b)

(c) (d)

Figure 2.5: Design results for the full-shell models, see Section 2.5.2. (a) Minimal
distance is 17µm. (b) Design at 00C for varying θMAX. (c) Design at d = 13µm. (d)

Performance as a function of temperature and distance.
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Effect of Maximum Light Level on Design

In Figure 2.5(b), we present the effect of the maximum microsphere light level θMAX

on the statistical design performance. Here we use θMAX = 0.0053, 0.00525, and

0.0052, and T = 00C. We qualitatively observe that the minimal distance does not

change with varying θMAX. This result suggests that the minimal distance is robust

with respect to the maximum possible target-concentration level.

Effect of Temperature on Performance

In Figure 2.5(c), we present the effect of the imaging temperature on the statistical

design performance. Here we use θMAX = 0.0053, and consider that the microspheres

are very close to each other with a distance of 13µm. We observe that the performance

degrades with higher temperature at a fixed distance. This result is useful to select

the optimal operating temperature of the image sensor for the desired performance

in imaging; see also Section 2.3.3.

Distance and Temperature Effects on Performance

In Figure 2.5(d), we present the effects of the microspheres’ distance and the imaging

temperature on the statistical design performance. Here we use θMAX = 0.0053. We

qualitatively observe that the statistical design performance is more sensitive on the

temperature in imaging than the distance between the microspheres, for the full-shell

models.
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2.5.3 Example 2: Statistical Design for the Sparse-Shell Case

We illustrate the concept of our proposed statistical design of the position-encoded 3D

microarrays for the sparse-shell models. Here we use similar values for the shell radii

r1 and r2 in (2.7) as we use in Example 1, and consider protein targets of diameter

250nm. We also use τ = 1 and τ = 5 in (2.8) for more sparsity and for less sparsity,

respectively. Note that the choice of τ is not so critical here, as we show below that

the statistical design is robust with respect to τ.

Effect of Microspheres’ Distance on Performance

In Figure 2.6(a), we present the effect of the microspheres’ distance on the statistical

imaging performance. Here we use τ = 1 and T = 100C. We observe that the

estimated performance measure p̃(d) first decreases as d increases, and it then flattens.

This result is similar with what we obtain for the full-shell models in Example 1. We

then compute the minimal distance to be 11µm following the same procedure that

we employ in Example 1.

Effect of Sparsity on Design

In Figure 2.6(b), we present the effect of the sparsity on the statistical design per-

formance. Here we use τ = 1 and 5, and T = −100C. We qualitatively observe that

the minimal distance does not change with varying τ. This result suggests that the

minimal distance is robust with respect to the sparsity level.
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(a) (b)

(c) (d)

Figure 2.6: Design results for the sparse-shell models, see Section 2.5.3. (a) Minimal
distance is 11µm. (b) Design at −100C with τ = 1 (red) and τ = 5 (blue). (c)

Design at d = 7.5µm. (d) Performance as a function of temperature and distance.
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Effect of Temperature on Performance

In Figure 2.6(c), we present the effect of the imaging temperature on the statistical

design performance. Here we use τ = 1, and consider similar to Example 1 that

the microspheres are very close to each other with a distance of 7.5µm. In this set-

up, we obtain a similar result that we obtain for the full-shell models in Example

1. Namely, we observe that the performance degrades with higher temperature at a

fixed distance. Thus, similar to Example 1, we find the result here is useful to select

the optimal operating temperature of the image sensor for the desired performance

in imaging; see also Section 2.3.3.

Distance and Temperature Effects on Performance

In Figure 2.6(d), we present the effects of the microspheres’ distance and the imaging

temperature on the statistical design performance. Here we use τ = 1. We qualita-

tively observe that the statistical design performance degrades with higher tempera-

ture and/or with closer distance between the microspheres.
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Chapter 3

Estimating Intensity Levels and

Locations of Quantum-Dot

Embedded Microspheres3

In this chapter, we develop a parametric maximum likelihood (ML) method to esti-

mate the intensity levels and locations of microspheres from their images. The micro-

spheres are embedded with quantum-dots (QDs) and placed randomly on a substrate.

The imaging is performed using a fluorescence microscope and an image sensor. We

first describe our problem of interest and the pertinent measurement model, consider-

ing additive Gaussian noise. We assume here that the three-dimensional (3D) point-

spread function (PSF) representing the microscope blurring is unknown, and model

this PSF using a 3D Gaussian function for computational efficiency. Here, parametric

spheres represent the microsphere light-intensity profiles. We then develop the esti-

mation algorithm for single-sphere object images. The algorithm is tested numerically

and compared with the analytical Cramér-Rao bound (CRB). To apply our analysis

3Based on “Estimating locations of quantum-dot–encoded microparticles from ultra-high density
3D microarrays,” by P. Sarder and A. Nehorai, in IEEE Trans. on NanoBioscience, vol. 7, pp.
284-297, Dec. 2008. c©[2008] IEEE.
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to real data, we first segment a section of the 3D image of multiple microspheres using

a k-means clustering algorithm, obtaining images of single-sphere objects. Then each

of these images is processed using our proposed estimation method.

Using numerical examples, we compare the performance of our proposed algorithm

with the conventional blind-deconvolution (BD) algorithm embedded in MATLAB [7]

and the parametric blind-deconvolution (PBD) algorithm [8]. Our algorithm outper-

forms these algorithms in high signal-to-noise ratio (SNR) images. It achieves the

CRB at high SNR, as should be expected for the ML estimation methods; the other

two do not. Our algorithm performs better, as it contains prior information of the

object shape (spherical), whereas the other algorithms (BD and PBD) do not have

that flexibility.

Comparing the performance of our proposed algorithm with the BD algorithm using

real data, we observe that both algorithms perform similarly for microspheres that

are well separated, whereas their performances differ for microspheres that are very

close to each other.

This chapter is organized as follows. Section 3.1 briefly introduces the research prob-

lem. Section 3.2 presents the statistical measurement model. Section 3.3 discusses

the proposed estimation method. Section 3.4 provides numerical examples. Finally,

Section 3.5 shows results obtained from the real data.

3.1 Problem Description

In this section, after briefly discussing imaging nomenclature, we describe microsphere

imaging and our goal.
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3.1.1 Imaging Nomenclature

Figure 3.1: A schematic view of the focal plane, optical direction, radial direction,
and meridional plane in the Cartesian coordinate system. The microsphere to be

imaged is at the center of the coordinate axes.

In this chapter, we assume that the center of the microsphere to be imaged is the

center of the Cartesian coordinate system shown in Figure 3.1. The z axis is the

optical direction, and we capture the microsphere 3D image along this direction from

a series of 2D focal-plane images. Any direction parallel to the focal plane is a radial

direction. The plane along the optical direction, perpendicular to the focal plane and

passing through the origin, is the meridional plane.

3.1.2 Imaging Microspheres

We image multiple microspheres, embedded with QDs and placed randomly on a sub-

strate. Upon excitation by UV light, all the microsphere QDs emit light, and together

resemble the form of a luminous sphere. The intensity levels of the microspheres pro-

portionally varies with their QD concentrations; see Figure 3.2 (right) where the
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color level signifies such a level [5]. To capture the image, a fluorescence microscope

is focused at different depth planes of the microspheres, parallel to the xy plane in

Figure 3.1. This produces a series of 2D cross-section images of lights emitted by

the microsphere QDs [11]. Thus, each cross-section image of the sphere light formed

in a microsphere forms the image of a disc whose diameter varies with the depth of

the cross section. A cooled CCD with high sensitivity captures the 2D cross-section

images, introducing almost negligible thermal noise in the captured images [40].

Figure 3.2: Left: Schematic of cross-section depicting a quantum-dot–embedded
microsphere. Right: Ideal cross-section disc intensity image of the resulting sphere
associated with the microsphere quantum-dot lights. We schematize the left- and

right-column figures here without consistent scaling.

Figure 3.3: Focal-plane quantum-dot intensity of imaged microspheres. c©[2008]
IEEE.
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Figure 3.3 shows a focal-plane intensity image of multiple microspheres. Here, we seek

to estimate the locations and intensity levels of these imaged microspheres, which are

useful for the statistical design presented in Chapter 2.

3.2 Statistical Measurement Model

The measurement at the CCD output, in fluorescence microscopy imaging of a single

QD-embedded microsphere is given by [15]:

g(x, y, z;ϕ, β, σ2
b) = s̃(x, y, z;ϕ) + w

P
(x, y, z;ϕ, β) + w

b
(x, y, z;σ2

b), (3.1)

where x ∈ {x1, x2, . . . , xK}, y ∈ {y1, y2, . . . , yL}, and z ∈ {z1, z2, . . . , zM}; K, L, and

M denote the numbers of measurement voxels; ϕ is the unknown parameter vector

in imaging; s̃(x, y, z;ϕ) is the microscope output; w
P
(x, y, z;ϕ, β) is a zero-mean

Gaussian noise with variance s̃(·)/β, and β is the reciprocal of the photon-conversion

factor [16], [17], which is unknown; w
P
(·) models the interference due to the photon

counting process in the CCD, and is independent from voxel to voxel; w
b
(x, y, z;σ2

b)

models the background noise, which is a zero-mean Gaussian noise with unknown

variance σ2
b; w

b
(·) is due to the thermal noise of the CCD [18], is independently and

identically distributed (iid) from voxel to voxel, and is statistically independent with

w
P
(·). Thus, g(x, y, z;ϕ, β, σ2

b) is Gaussian distributed with mean s̃(·) and variance

s̃(·)/β + σ2
b, independent from voxel to voxel [15]. In this chapter, we assume that

the CCD output is free of constant offset [18].
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Assuming a space-invariant microscopy, the microscope output is given by [11]

s̃(x, y, z;ϕ) = s(x, y, z;γ)⊗ h(x, y, z; τ ), (3.2)

where ϕ = [γT , τ T ]T , γ is the unknown parameter vector of the QD illuminating

microsphere s(x, y, z;γ), τ is the unknown parameter vector of the microscope PSF

h(x, y, z; τ ), and ⊗ denotes the convolution operation [41].

We group the measurements into a vector form:

g = s̃+w
P

+w
b
, (3.3)

where g, s̃,w
P
, andw

b
are (KLM×1)–dimensional vectors whose (KL((z − z1)/∆z)+

K((y − y1)/∆y) + ((x− x1)/∆x) + 1)th components are g(·), s̃(·), w
P
(·), and w

b
(·),

respectively; ∆x = (xk+1 − xk) (∀ k = 1 to (K − 1)), and similarly for ∆y and ∆z.

3.2.1 Single-Sphere Object Model (Microsphere QD Inten-

sity Profile)

We model the QD light-intensity profile of a microsphere using a parametric sphere

as follows:

s(x, y, z;γ) =

 θ if
√

(x− xc)2 + (y − yc)2 + (z − zc)2 ≤ r,

0 otherwise,
(3.4)

where θ denotes the unknown average intensity level, which is constant in the mi-

crosphere and is proportional to the number of QDs present inside the microsphere;
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xc, yc, and zc are the unknown center location parameters; and r is the known ra-

dius of the microsphere. We denote the unknown parameter vector of the object by

γ = [θ, xc, yc, zc]
T .

We assume here for simplicity a homogeneous intensity profile to model the object.

This reduces the number of unknowns, and thus increases the computational efficiency

of the parameter estimation algorithm discussed in Section 3.3. Also, employing an

inhomogeneous intensity profile in (3.4) would result in an overly ill-posed estima-

tion analysis, requiring additional prior information on the object intensity profile to

achieve a desired performance. Intuitively, our assumption is justified, as the QDs

are typically tightly and uniformly packed inside each microsphere [6]; they produce

light at nm resolution, whereas the microscope measurement is done at µm resolution.

Note that more complex models could be used here to obtain more realistic results

tailored to specific applications.

3.2.2 Three-Dimensional Gaussian Point-Spread Function

Model

The PSF is the 3D impulse response4 of a fluorescence microscope used to charac-

terize the out-of-focus light. Note that, in a fluorescence microscope, the 3D im-

pulse response is not an exact 3D impulse [24]. Namely, the finite lens aperture of

the microscope introduces diffraction ring patterns in its focal planes. In addition,

its measurement set-up usually differs from the manufacturer’s design specifications.

4A three-dimensional impulse response is the output intensity profile of a microscope when the
input is a point light source in space; a 3D impulse. A 3D impulse represents the limiting case of
a light pulse in space made very short in volume, while maintaining a finite volume integral, thus
giving an infinitely high intensity peak [41].
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Therefore, the microscope PSF becomes phase aberrated with symmetric features in

the focal planes and with asymmetric features along the optical direction [11].

In general, a 3D PSF can be obtained by three different techniques: experimental,

analytical, and computational [11]. In experimental methods, images of one or more

point-like objects are collected and used to obtain the PSF. These methods have the

advantage that the PSF closely matches the experimental set-up. However, images

obtained with such point-like objects have a very poor SNR unless the system is spe-

cially optimized. In the analytical methods, the PSF is calculated using the classical

model proposed in [9], see (3.5). In the computational methods, it is preferable to

estimate the PSF and object simultaneously using BD algorithms [11]; see also Ap-

pendix C. Such is the case when all the PSF parameters are not known, or a PSF

measurement is difficult to obtain.

The classical 3D PSF model for a fluorescence microscope (see, e.g., [9] and [42]) is

h(x, y, z;φ) =

∣∣∣∣∣
∫ 1

0

J0(2πNaα
√
x2 + y2/M ′λ) exp(j2πψ(z;φ)/λ)αdα

∣∣∣∣∣
2

, (3.5)

where J0 is the Bessel function of the first kind, Na the microscope numerical aperture,

α the normalized radius in the back focal plane, M ′ the lens magnification, λ the QD

emission wavelength. Further, ψ(·) is the optical path difference function between

the corresponding systems in design and non-design conditions. Moreover, the vector

φ contains the true and ideal measurement set-up parameters: the refractive indices

of the immersion oil (no), specimen (ns), and cover-slip (ng); the thickness of the

immersion oil (to) and coverslip (tg); the distance between the back-focal and detector

planes (z
d
); and the depth (z̃) at which the point source is located in the specimen [9].
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The PSF model (3.5) is computationally expensive, as the integration in the for-

mula requires intensive numerical evaluation. We thus perform the estimation in this

chapter using a 3D Gaussian PSF model proposed in [43]. This model is given by

h(x, y, z; τ ) = A exp

(
− x2 + y2

2σ2
1

− z2

2σ2
2

)
, (3.6)

where the unknown parameter vector is τ = [σ2
1, σ

2
2]T . The model (3.6) for repre-

senting the fluorescence microscope PSF assumes that the Gaussian functions are

centered at the origin of the PSF and they are separable, where the origin in (3.5)

and (3.6) is {x = 0, y = 0, z = 0}. The advantage of using this centered separable 3D

Gaussian PSF model is that it preserves the symmetry and asymmetry of the classical

PSF model in (3.5) along the focal planes and the optical direction, respectively. We

further assume in our proposed estimation in Section 3.3 that the PSF model in (3.6)

is normalized according to the L∞ norm5, and thus A = 1.

3.2.3 Verification of Single-Sphere Object and Gaussian Point-

Spread Function Models

We verify here our proposed single-sphere object and the Gaussian PSF models.

Namely, we use real data and present a simple illustration for this verification. We

assume here that a blurred microsphere image shown in Figure 3.3 is analytically

represented by the unknown object convolved by the unknown PSF with additive

5For a vector x = [x1, x2, . . . , xn′ ]T , the L∞ norm is max(|x1|, |x2|, . . . , |xn′ |) [37].
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Gaussian noise [41]. Following this assumption, we apply the BD algorithm6 embed-

ded in MATLAB to a randomly chosen and manually segmented microsphere image,

shown in Figure 3.4(a).

Figure 3.4(b) shows a meridional section of the resulting estimated intensity profile

of the object. This profile resembles a sphere, and thus justifies our proposed single-

sphere object model. Note that the BD-estimated intensity profile of the object does

not give a precise estimate of the microsphere center. We thus use an analytical esti-

mation method to fit our proposed single-sphere object model (3.4) to the statistical

measurement model (3.1) for estimating the microsphere center.

Figure 3.4(c) shows a meridional section of the resulting BD-estimated PSF that

we obtain by applying the BD algorithm to the microsphere image shown in Figure

3.4(a). This profile resembles a Gaussian shape, and justifies the Gaussian PSF model

(3.6). Furthermore, to visualize the similarity between the BD-estimated PSF and

the PSF from the Gaussian PSF model (3.6), we use a least-squares fit [30], and

show the meridional section of the resultant estimate in Figure 3.4(d). We compute

here the least-squares error as 4.42%, and thus confirm that we do not lose much in

estimation accuracy using the PSF model (3.6).

3.3 Estimation

We develop an ML method to estimate the unknown parameters ϕ from the captured

3D image segment of a microsphere. In this section, we first describe our proposed

6We use the deconvblind command of MATLAB, with an initial PSF represented by ones in all
the voxels, to run the BD algorithm in this chapter. As described in Appendix C, this algorithm
follows the conventional blind-deconvolution method [18], [44].
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(a) (b)

(c) (d)

Figure 3.4: Meridional sections of (a) a microsphere intensity profile and (b) the
resulting blind-deconvolution–estimated object intensity profile. Meridional sections
of (c) the blind-deconvolution–estimated point-spread function intensity profile from

the microsphere intensity profile shown in Figure 3.4(a) and (d) its least-squares
fitted version using the model (3.6). c©[2008] IEEE.
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estimation method considering an unknown 3D Gaussian PSF. We then compute the

CRB, which is the lowest bound on the variance of the error of any unbiased estimator

of the parameters in ϕ under certain regularity conditions [30].

The likelihood of g(·) in (3.1) for a measured voxel (see Section 3.2) is

C ′(ϕ, β, σ2
b) =

1√
2π(s̃(·;ϕ)/β + σ2

b)
exp

[
− (g(·;ϕ, β, σ2

b)− s̃(·;ϕ))2

2(s̃(·;ϕ)/β + σ2
b)

]
. (3.7)

We assume β and σ2
b are known, and estimate ϕ as follows,

ϕ̂ = arg min
ϕ

ln(s̃(·;ϕ)/β + σ2
b) +

(g(·;ϕ, β, σ2
b)− s̃(·;ϕ))2

(s̃(·;ϕ)/β + σ2
b)

(3.8)

= arg min
ϕ
C̃ ′(ϕ, β, σ2

b),

where argmin stands for the argument of the minimum, i.e., the value of the given

argument ϕ for which the value of the expression C̃ ′(ϕ, β, σ2
b) attains its minimum

value.

We differentiate C̃ ′(·) with respect to ϕ, equate the resultant expression with zero,

and obtain,

ds̃(·;ϕ)

dϕ

[
1

β(s̃(·;ϕ)/β + σ2
b)
−2(g(·;ϕ, β, σ2

b)− s̃(·;ϕ))

(s̃(·;ϕ)/β + σ2
b)

−(g(·;ϕ, β, σ2
b)− s̃(·;ϕ))2

β(s̃(·;ϕ)/β + σ2
b)2

]
= 0.

(3.9)

Simplifying (3.9), we obtain

βs̃2(·;ϕ)+(1+2σ2
bβ

2)s̃(·;ϕ)+β(σ2
b−g2(·;ϕ, β, σ2

b)−2σ2
bβg(·;ϕ, β, σ2

b)) = 0. (3.10)
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We represent here (3.10) in a quadratic form of

a′s̃2(·;ϕ) + b′s̃(·;ϕ) + c′ = 0, (3.11)

where

a′ = β,

b′ = 1 + 2σ2
bβ

2,

c′ = β(σ2
b − g2(·;ϕ, β, σ2

b)− 2σ2
bβg(·;ϕ, β, σ2

b)). (3.12)

Since, s̃(·) is always positive, a unique solution to (3.10) for estimating ϕ exists when

b′
2 − 4a′c′ > 0,

a′c′ < 0. (3.13)

We compute

b′
2 − 4a′c′ = 1 + 4(σ2

bβ
2 + βg(·))2 > 0, (3.14)

which satisfies b′2 − 4a′c′ > 0. To satisfy a′c′ < 0, we require

σ2
b > max

(
0,
−g2(·)

2βg(·)− 1

)
, (3.15)

which is valid in our research because we capture microsphere images using a CCD

with high sensitivity, i.e., a CCD with a large β, see Section 3.1.2, and we capture

the images at a high SNR, as the QD light imaging is a high SNR imaging [5]. Thus,

we prove that a unique solution to (3.10) exists.
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We solve (3.10), and obtain

̂̃s(·;ϕ) =
−(1 + 2σ2

bβ
2) +

√
1 + 4(σ2

bβ
2 + βg(·;ϕ, β, σ2

b))2

2β
. (3.16)

We approximate 1 + 4(σ2
bβ

2 + βg(·))2 ∼ 4(σ2
bβ

2 + βg(·))2, and thus we have

l̂(·;ϕ) =
(
g(·;ϕ, β, σ2

b)− 1

2β

)
∼ g(·). (3.17)

The approximations in (3.16)-(3.17) here are applicable for high SNR imaging and

for large β, and thus they are valid in our work.

The relationship in (3.17) suggests that the estimation of ϕ is essentially equivalent

to fitting s̃(·;ϕ) to the available measurement g(·) for each measured voxel. We thus

ignore the effect of w
P
(·), and approximate (3.1) as follows:

g(x, y, z;ϕ, σ2
b) = s̃(x, y, z;ϕ) + w

b
(x, y, z, σ2

b). (3.18)

Considering η = [xc, yc, zc, τ
T ]T , and defining s̃′(x, y, z;η) = s̃(·)/θ, we rewrite (3.18)

as

g(x, y, z;ϕ, σ2
b) = θs̃′(x, y, z;η) + w

b
(x, y, z;σ2

b). (3.19)

With these assumptions and notations, we group the measurements into a vector

form:

g = θs̃′(η) +w
b
, (3.20)
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where g, s̃′(η), andw
b

are (KLM×1)–dimensional vectors whose (KL((z − z1)/∆z)+

K((y − y1)/∆y) + ((x− x1)/∆x) + 1)th components are g(·), s̃′(·), and w
b
(·) respec-

tively. The log-likelihood function for estimating ϕ using (3.20) is given by

C(ϕ, σ2
b) = −KLM

2
lnσ2

b −
||g − θs̃′(η)||2

2σ2
b

, (3.21)

where || · ||2 denotes the Euclidean vector-norm operation.

The ML estimate of the parameters (see, e.g., [36]) is

η̂ = arg max
η
{gTP s̃′(η)g},

θ̂ = [s̃′
T

(η̂)s̃′(η̂)]−1s̃′
T

(η̂)g,

σ̂2
b = (KLM)−1gTP⊥

s̃′
(η)g, (3.22)

where P s̃′(η) is the projection matrix on the column space of s̃′(η), and P⊥
s̃′

(η) is

the complementary projection matrix [30], given as

P s̃′(η) = s̃′(η)[s̃′
T

(η)s̃′(η)]−1s̃′
T

(η),

P⊥
s̃′

(η) = I − P s̃′(η), (3.23)

where I is the KLM ×KLM identity matrix.

CRB: We compute the Cramér-Rao bound (CRB) [30] to study the estimation accu-

racy using our approximated forward model (3.18). Here, for estimating the (6× 1)–

dimensional vector ϕ, the (i, j)th entry (∀ i, j ∈ {1, 2, . . . , 6}) of the Fisher information
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matrix (see, e.g., [30]) is given by

J i,j =
1

σ2
b

[
∂

∂ϕi
(θs̃′(x, y, z;η))

]T[
∂

∂ϕj
(θs̃′(x, y, z;η))

]
, (3.24)

where ϕi is the ith element (∀ i ∈ {1, 2, . . . , 6}) of the parameter vector ϕ. We

compute the CRB for the unbiased estimates of the parameters in ϕ from the diagonal

elements of the matrix J−1 [30]. Note that the partial derivatives in (3.24) can easily

be computed using the expression of θs̃′(x, y, z;η), and hence we do not include those

details here.

3.4 Numerical Examples

We present two numerical examples comparing the performance of our proposed pa-

rameter estimation method with the blind-deconvolution (BD) algorithm [7] and the

parametric blind-deconvolution (PBD) algorithm [8]. We also compare the mean-

squares errors (MSE) of the estimated parameters in ϕ with their analytical bounds

on the variance of error.

3.4.1 Examples: Data Generation

Example 1

In this example, we aim to present the robustness of our proposed algorithm by

comparing its performance with the BD and PBD algorithms. We simulate the data

here following the ground-truth image distortion phenomenon. Namely, to simulate
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the data, we do not follow the object model (3.4), the PSF model (3.6), or the forward

model (3.19). We consider the case in which the QDs are randomly placed, and

each of their light intensity profiles follows a 3D Gaussian function in space inside

each microsphere. We also consider a simple and modified version of the classical

PSF model (3.5) proposed in [8], the under-sampling phenomenon encountered while

capturing the data in practice, the photon counting process in the CCD, and the

additive thermal background noise at the CCD detector output.

We generate the image data for a single-sphere object of radius r = 1.8µm on a

551 × 551 × 551 voxel sampling lattice with voxel size ∆x = ∆y = ∆z = 32nm. We

position the QD centers in each voxel location inside the object with a probability of

0.3 [20]. A symmetric 3D Gaussian function with a variance of 64nm produces the

light-intensity profile of each QD. We assume here that such light intensity profile is

deterministic, and assume a large number to define its maximum value.

We generate the synthetic PSF following the parametric model proposed in [8]. In

this model, the exponential phase-term of the classical PSF model (3.5) is replaced

with F (α, z), where

F (α, z) = D(α) exp[jW (α, z)] (3.25)

is the pupil function of the objective lens. The pupil amplitude function D(α) is given

as

D(α) =

 1 + a1α for |α| ≤ α0

0 otherwise,
(3.26)
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where a1 is a known parameter and α0 is the known cut-off frequency of the objective

lens, see [45]. The term W (α, z) is given by

W (α, z) = zW1(α) +W2(α), (3.27)

where W1(α) and W2(α) are given as follows:

W1(α) = no

[
1−

(
Naα

no

)2]1/2
2π

λ
, (3.28)

and

W2(α) ≈
Nb−1∑
n=0

bnα
n, (3.29)

where b0, b1, b2, . . . , bNb−1 are the known parameters of W2(·), see [45]. We use here

λ = 0.63µm, Na = 1, M ′ = 40, and no = 1.515 to generate the synthetic PSF.

We generate the microscope output by convolving the simulated object image with

the PSF generated over the same grid. Image formation is a continuous space process,

whereas the estimation takes place on sampled images. To incorporate this difference

in our simulation, we sample every fifth voxel intensity along every dimension to

obtain a reduced image of 111 × 111 × 111 voxels with ∆x = ∆y = ∆z = 0.16µm.

Using this image, we generate the photon counts in the CCD as

βgc(x, y, z;ϕ) ∼ P(βs̃(x, y, z;ϕ)), (3.30)

where P(·) is a Poisson random variable with mean-rate βs̃(·), and we use β = 10.

We then generate the CCD output by introducing with gc(·) the thermal background
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noise w
b
(·) defined in Section 3.2. We vary the variance of this noise using

σ2
b = Mgσ

2
0, (3.31)

where Mg is the maximum intensity value of gc(·) at the measured voxels, and σ2
0 is

a user-chosen parameter.

Example 2

In this example, we aim to compare the performance in estimating the unknown

parameters with their corresponding CRBs using our proposed algorithm and the BD

and PBD algorithms. The data here are simulated using the forward model (3.19).

The image data for a single-sphere object of radius r = 1.8µm are generated on a

111× 111× 111 sampling lattice with voxel size ∆x = ∆y = ∆z = 0.16µm. We use

here θ = 10, and generate the synthetic PSF using (3.6).

To generate the output of the microscope and the CCD detector, we convolve the sim-

ulated object image with the microscope PSF generated over the same grid following

(3.18).

3.4.2 Parameter Estimation

For both examples, we perform the estimation using the following three methods and

compare their performances.
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1. Our proposed algorithm: We estimate the microsphere center parameters using

(3.22). We assume that the object and PSF parameters are unknown.

2. Parametric blind-deconvolution (PBD) algorithm (see Appendix C) [8]: We es-

timate the object as follows:

ŝ(k+1)(x, y, z) =
ŝ(k)(x, y, z)

H0

×

[
h(−x,−y,−z)⊗ g(x, y, z)

h(x, y, z)⊗ŝ(k)(x, y, z)

]
,

(3.32)

where s(·), h(·), and g(·) denote the object, PSF, and output measurement,

respectively; ŝ(k)(·) is the estimated object at the kth iteration; and

H0 =

∫
z

∫
y

∫
x

h(x, y, z)dxdydz [8]. (3.33)

We assume here that the PSF h(·) is known for estimating the object using

(3.32). We further define

E(k+1) =
∑
z

∑
y

∑
x

[
ŝ(k+1)(x, y, z)− ŝk(x, y, z)

]2
(3.34)

as the error at the (k + 1)th iteration. We continue iterating (3.32) until

∣∣∣∣∣E(k+1) − E(k)

E(k+1)

∣∣∣∣∣ < ε, (3.35)

where ε is a user-chosen small number.

3. Conventional blind-deconvolution (BD) algorithm (see Appendix C) [7]: Here,

we simultaneously estimate the unknown PSF and the object using the decon-

vblind command of MATLAB.
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Microsphere Location Estimation: Our proposed method in Section 3.3 directly esti-

mates the microsphere center parameters. However, the BD and PBD algorithms do

not estimate them quantitatively. Thus, in those cases, we first transform the voxel

intensities of the estimated object to zero below a certain threshold level. We then

estimate the microsphere centers by averaging the voxel coordinates with nonzero

intensity values.

3.4.3 Results and Discussion

We present the estimation performances of the numerical examples in Figures 3.5 and

3.6. Figure 3.5 shows the MSEs of the estimated microsphere center parameter xc as

a function of σ2
0 for the data in Example 1, where

σ2
0[dB] = σ2

b[dB]− 1

2
Mg[dB]. (3.36)

Figure 3.6 shows the MSEs of the estimated microsphere center parameter xc as a

function of the SNR for the data in Example 2. We define the SNR in Example 2 as

SNR =

[
maxx,y,z s̃(·)−minx,y,z s̃(·)

]
σb

. (3.37)

In Example 1 (see Figure 3.5), our algorithm does not perform as well as the BD and

PBD algorithms at very low SNR. In Example 2 (see Figure 3.6), PBD outperforms

our algorithm at the low SNR, but the estimations using both the PBD and BD fail

to achieve the CRB. In the same example, our algorithm performs the best among

the three, starting from 5dB, and also achieves the CRB. In summary, in both the
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Figure 3.5: Mean-square errors of the estimated microsphere center parameter xc as
a function of varying σ2

0. c©[2008] IEEE.

Figure 3.6: Mean-square-errors and Cramér-Rao bound of the estimated
microsphere center parameter xc as a function of signal-to-noise ratio. c©[2008]

IEEE.

61



examples we observe that (i) our algorithm always performs better in the high SNR

regions and (ii) BD performs the worst among the three. The main reason for the

better performance of our algorithm is that it contains prior information of the object

shape (spherical), whereas the other algorithms (BD and PBD) are not based on that

assumption. Note that we assume the PSF is known in evaluating the PBD algorithm,

since an unknown PSF-based PBD algorithm requires an extensive computational

load [8]. Also, the computational speed of BD is the highest among all the three

algorithms.

3.5 Estimation Results Using Real Data

This section presents a quantitative estimation analysis of a real-data set using our

method and compares the performance with the BD algorithm. The PBD algorithm

is not used, as the PSF is unknown for the real data. The PBD algorithm requires a

time-intensive computation in estimating the unknown parameters for the case of an

unknown PSF. In contrast, the BD algorithm is faster and does not perform in the

numerical examples much worse than the PBD algorithm at high SNR (see Figures

3.5 and 3.6). Recall from Section 3.3 that we analyze here microsphere QD light

images captured at a high SNR [5], and thus the BD algorithm is sufficient for the

performance comparison presented in this section.

3.5.1 Experiment Details

We apply our algorithm and the BD algorithm to a section of microsphere images

captured on a 1036× 1360× 51 voxel sampling lattice. We extract a section of seven
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microsphere images on a 241 × 340 × 51 voxel sampling lattice from this data to

test the estimation performance. The radius of the spheres is known as r = 1.8µm

by experimental convention [1], [40]. The imaging is performed using a standard

fluorescence microscope with λ = 0.63µm, Na = 1, M ′ = 40, no = 1.515, ns = 1.3,

and ng = 1.5, and the images are captured using a cooled CCD.

3.5.2 Image Segmentation

We segment single-sphere images of the seven microspheres using the k-means clus-

tering algorithm7. We evaluate the k-means algorithm using the kmeans command of

MATLAB [7]. This evaluation requires prior knowledge of the cluster number, which

in our case is equivalent to the number of microspheres in the image. Note that other

clustering algorithms can be employed here, such as the mixture of Gaussians [46].

3.5.3 Microsphere Localization and Quantification

From the block of seven microsphere images, we localize and quantify each segmented

single-sphere object using our algorithm and the BD algorithm. The BD algorithm

does not estimate the unknown parameters xc, yc, zc, and θ quantitatively. Hence,

to estimate a microsphere location using BD, we adopt a method similar to that

described in Section 3.4.2. To quantify a microsphere intensity using BD, we first

average the intensities of the estimated object above a certain threshold level. Then

this average intensity is multiplied with the corresponding maximum intensity of the

estimated PSF, and the resulting value is used as the estimate of θ.

7The k-means algorithm is a clustering algorithm to cluster n′ objects based on attributes into
k′ partitions, where k′ < n′.
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3.5.4 Results and Discussion

Figure 3.7 presents our analysis for the real data. The origin is at the center of the

seven-microsphere block. Figure 3.7(a) shows the microsphere intensity profile on the

focal plane of reference at 0µm. The voxel intensities of the imaged microspheres are

set to zero below a certain threshold, and the resultant focal-plane image is shown in

Figure 3.7(b). The binary version of this image is shown in Figure 3.7(c), where the

nonzero intensities are in red. Figure 3.7(d) presents the segmented version, where

different colors specify separated single-sphere objects.

Table 3.1 presents the estimation results of our algorithm and the BD algorithm.

This table includes the Euclidean distances between the center location estimates

and the intensity level estimates obtained using the two methods. Both algorithms

yield similar results for Spheres 1 and 2. This is expected, as we analyze here high-

SNR images, and our and BD algorithms perform similarly in the numerical examples

for measurements captured at high SNR.

However, we note that the estimation results are slightly different using the two meth-

ods for Spheres 3, 5, 6, and 7. These spheres merge into groups of two, and hence

their intensities contribute to each other during the convolution operation. There-

fore, fitting the single-sphere object model separately to each segmented single-sphere

image from a merged image of two spheres does not perform well computationally.

Apart from this, Sphere 4 does not produce a consistent result using either method.

In this case, it is not possible to know if the image is produced by the QD light of

any microsphere. It might be the case that QDs from a damaged microsphere are

illuminated there, because the estimated signal is much weaker.
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(a) (b)

(c) (d)

Figure 3.7: Microsphere intensity profile on the focal plane of reference at 0µm of a
section of seven microsphere images, (b) their image after a thresholding operation,
(c) their binary image, where the red color signifies the nonzero intensities, and (d)

their segmented versions, where different colors show separated single-sphere
objects. c©[2008] IEEE.
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Chapter 4

Conclusion and Future Work

In this chapter, we first summarize the key contributions of our work in Section 4.1

and then provide future work in Section 4.2.

4.1 Conclusion

In this dissertation, we proposed a three-dimensional microarray with position-encoded

microspheres, and discussed its potential advantages. The microarray imaging is per-

formed using a fluorescence microscope and an image sensor.

We developed an optimal statistical design for positioning the microspheres in the

microarray. We derived posterior Cramér-Rao bounds on the errors in estimating the

target concentrations, for uniform or sparse target profiles. We showed quantitatively

the effects of the microsphere distance and operating temperature on the imaging

performance. We computed the optimal (minimal) distance between the microspheres

at a given temperature using the statistical performance analysis results. The minimal

microsphere distance guarantees a desired level of statistical accuracy in imaging the

proposed microarray, with efficient microsphere packing. We computed the optimal
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operating temperature of the image sensor as a trade off between its cost and the

desired statistical performance.

The main advantages of the proposed microarray over existing three-dimensional

microarrays are efficient packing, high sensitivity, simplified imaging, and guaranteed

accuracy in estimating the target concentrations.

Potential applications include molecular recognition, specificity of targeting molecules,

protein-protein dimerization, high throughput screening assays for enzyme inhibitors,

drug discovery, gene sequencing, etc.

To compute the optimal design variables, we substituted the maximum likelihood

estimates for the true values of the photon-conversion factor of the image sensor

and its background noise variance. We estimated these parameters using images of

multiple target-free microspheres embedded with quantum-dots and placed randomly

on a substrate. We obtained the photon-conversion factor using a method-of-moments

estimation, where we replaced the quantum-dot intensity levels and locations of the

imaged microspheres with their maximum likelihood estimates.

We finally developed a maximum likelihood method to estimate the intensity levels

and locations of quantum-dot embedded microspheres from their image. The pro-

posed estimation is motivated by the fact that in fluorescence microscopy imaging

when the object shape is simple, it can be easily modeled using simple parametric

forms with the unknown information of interest as parameters. Then, a problem-

specific estimation algorithm can be developed using a maximum likelihood method.

This avoids the need of using a commercial deconvolution software, which is often
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costly and time intensive to run. We demonstrated that our algorithm achieves ro-

bust performance in estimation and outperforms the existing blind-deconvolution al-

gorithms at practical high signal-to-noise ratio scenarios for quantum-dot light imag-

ing. We also found that our and existing blind-deconvolution algorithms perform

similarly for real-data images of well-separated microspheres.

Our collaborators are currently implementing the position-encoded three-dimensional

microarray device using the minimal separation distance between the microspheres.

4.2 Future Work

In our future work, we will derive tighter bounds to analyze the statistical performance

of imaging our proposed microarrays at a low signal-to-noise ratio, fitting the sparse-

shell models. We will also model the effect of the actual device on the nanosphere

lights, and modify our object models in (2.5) and (2.7) accordingly.

In our implementation, we will maximize the exposed surface area of the microspheres

for capturing targets. This is because the device might restrict the microsphere surface

area that can interact with targets. We will also maximize the microsphere packing

in the proposed device. Our optimization analysis will consider the estimation errors

associated with the specific device structure. We will further compute the number of

nanospheres required to detect a single target using our device.

We will develop algorithms to estimate the target concentrations in the device, for

sparse target profiles. For uniform target profiles, the concentration estimation algo-

rithm will essentially be similar to what we developed in Chapter 3. Here the only
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difference will be that we will need to use the full-shell model (2.5) as the unknown

object model.

We will also conduct experiments to simultaneously screen complementary DNA,

RNA, and protein receptors to exemplify the potential advantages of the device.

Assuming that the bindings are specific, we will demonstrate the ability, through

efficient processing, to identify targets on a single platform without errors. The

position encoding and use of an identical detection strategy for different target types

should simplify screening and avoid errors in target quantification and identification.

One of the potential experiments will be investigating tumor proliferation in screening

different patients.

In long term research, we aim to analyze the performance of our device through

computing its specificity and sensitivity, incorporating experimental measurements of

non-specific bindings.
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Appendix A

Monte-Carlo Integration

Estimation

We present the Monte-Carlo integration estimation technique [28] for single parameter

cases, which can be easily extended for multi-parameter cases. Suppose we wish to

compute integrals of the form

V =

∫
v(ω)p

Ω
(ω)dω, (A.1)

where v(ω) is a function of the variable ω and p
Ω
(ω) is a pdf. We generate a large

N ′ number of samples ϑn′ of ω from p
Ω
(ω) and compute the Monte-Carlo estimate of

the integral (A.1):

V̂ =
1

N ′

N ′∑
n′=1

v(ϑn′). (A.2)

The accuracy of V̂ depends on N ′, but is independent of dim(ω) (i.e., the dimension-

ality of the integral (A.1)). By the law of large numbers,

Lim
N ′→∞

V̂ = V. (A.3)
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Appendix B

Proof of Equation (2.36)

For each microsphere image segment, we have from (2.34),

s̃(x, y, z;γ)

β
+ σ2

b = E[(g(x, y, z;γ)− s̃(x, y, z;γ))2] (B.1)

≈ (g(x, y, z;γ)− s̃(x, y, z;γ))2.

In (B.1), replacing γ by its corresponding estimate γ̂ and averaging both sides over

all the voxels of the microsphere image segment of interest, we obtain (2.36).
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Appendix C

Blind Deconvolution8

In this appendix, we review the Richardson-Lucy (RL) algorithm [11]. We then dis-

cuss the blind-deconvolution (BD) algorithm embedded in MATLAB and the para-

metric blind-deconvolution (PBD) algorithm.

The RL algorithm was originally developed from Bayes’s theorem. This theorem is

given by

P (u|v) =
P (v|u)P (u)∫
P (v|u)P (u)du

, (C.1)

where P (v|u) is the conditional probability of the event v given u, P (u) is the prob-

ability of the event u, and P (u|v) is the inverse conditional probability, i.e., the

probability of event u given event v. The probability P (u) can be identified as the

object distribution s(u); the conditional probability P (v|u) can be identified as the

point-spread function (PSF) centered at u, i.e., h(v, u); and the probability P (v)

can be identified as the degraded image g(v). The inverse relation of the iterative

8Based on “Estimating locations of quantum-dot–encoded microparticles from ultra-high density
3D microarrays,” by P. Sarder and A. Nehorai, in IEEE Trans. on NanoBioscience, vol. 7, pp.
284-297, Dec. 2008. c©[2008] IEEE.
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algorithm is given by

si+1(u) =

∫
h(v, u)g(v)dv∫
h(v, w)si(w)dw

si(u), (C.2)

where i is the iteration number. Under an isoplanatic condition, we write (C.2) as

si+1(x) =

{[
g(x)

si(x)⊗ h(x)

]
⊗ h(−x)

}
si(x), (C.3)

where ⊗ denotes the convolution operation [41].

For a known PSF h(x), we estimate s(x) by iterating (C.3) until convergence. To

start the algorithm, we require here an initial guess s0(x). If s0(x) ≥ 0, this algorithm

assures a positive s(x). It also conserves the energy in the iterations.

The blind form of the RL algorithm is given by

h
(k)
i+1(x) =

{[
g(x)

h
(k)
i (x)⊗ s(k−1)(x)

]
⊗ s(k−1)(−x)

}
h

(k)
i (x), (C.4)

s
(k)
i+1(x) =

{[
g(x)

s
(k)
i (x)⊗ h(k)(x)

]
⊗ h(k)(−x)

}
s
(k)
i (x). (C.5)

We compute (C.4) and (C.5) at the kth blind iteration of this algorithm using the

estimated object from the (k−1)th blind step. The loop is repeated until convergence.

Start the algorithm requires initial guesses s0
0(x) and h0

0(x). If s0
0(x) ≥ 0 and h0

0(x) ≥ 0,

this algorithm assures positive s(x) and h(x).

The BD algorithm embedded in MATLAB uses an accelerated and damped version

of the RL algorithm specified by (C.4) and (C.5) [7].

74



The PBD algorithm was derived in [8] assuming that the measurement g(x) is (s(x)⊗

h(x)) corrupted by a Poisson noise [20]. The authors in [8] also proposed a parametric

PSF model that we review in Section 3.4.1. They then used an expectation maxi-

mization formulation [30] to maximize the likelihood. In the resulting algorithm, the

object is updated using a similar iterative form as (C.3); see also (3.32). The param-

eters of the PSF are updated using a numerical method at each PBD step; see [8] for

more details. In our numerical example in Section 3.4.1, we assume that the PSF is

known in (3.32) for simplicity.
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