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ABSTRACT OF THE DISSERTATION 
 
 

Nonuniform power changes and spatial, temporal and spectral diversity in high gamma 

band (>60 Hz) signals in human electrocorticography 

by 

Charles Michael Gaona 

Doctor of Philosophy in Biomedical Engineering 

Washington University in St. Louis, 2011 

Research Advisor:  Professor Eric Claude Leuthardt, M.D. 

 

High-gamma band (>60Hz) power changes in cortical electrophysiology are a reliable 

indicator of focal, event-related cortical activity.  In spite of discoveries of oscillatory 

subthreshold and synchronous suprathreshold activity at the cellular level, there is an 

increasingly popular view that high-gamma band amplitude changes recorded from cellular 

ensembles are the result of asynchronous firing activity that yields wideband and uniform 

power increases.  Others have demonstrated independence of power changes in the low- 

and high-gamma bands, but to date, no studies have shown evidence of any such 

independence above 60Hz.  Based on non-uniformities in time-frequency analyses of 

electrocorticographic (ECoG) signals, we hypothesized that induced high-gamma band (60-

500Hz) power changes are more heterogeneous than currently understood.  We quantified 

this spectral non-uniformity with two different approaches using single-word repetition 

tasks in human subjects.  First, we showed that the functional responsiveness of different 

ECoG high-gamma sub-bands can discriminate cognitive tasks (e.g., hearing, reading, 

speaking) and cortical locations.  Power changes in these sub-bands of the high-gamma 
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range are consistently present within single trials and have statistically different time 

courses within the trial structure. Moreover, when consolidated across all subjects within 

three task-relevant anatomic regions (sensorimotor, Broca‟s area, and superior temporal 

gyrus), these behavior- and location- dependent power changes evidenced nonuniform 

trends across the population of subjects.  Second, we studied the dynamics of multiple 

frequency bands in order to quantify the diversity present in the ECoG signals.  Using a 

matched filter construct and receiver operating characteristic (ROC) analysis we show that 

power modulations correlated with phonemic content in spoken and heard words are 

represented diffusely in space, time and frequency.  Correlating power modulation in 

multiple frequency bands above 60 Hz over broad cortical areas, with time varying 

envelopes significantly improved performed area under the ROC curve scores in phoneme 

prediction experiments.  Finally we show preliminary evidence supporting our hypothesis 

in microarray ECoG data.  Taken together, the nonuniformity of high frequency power 

changes and the information content captured in the spatio-temporal dynamics of those 

frequencies suggests that a new approach to evaluating high-gamma band cortical activity is 

necessary.  These findings show that in addition to time and location, frequency is another 

fundamental dimension of high-gamma dynamics.  
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1 Introduction and Specific Aims 

1.1 Introduction 

Clinical use of electrocorticography (ECoG) has provided a unique opportunity to study 

human cortical electrophysiology with high spatial resolution, temporal resolution and 

signal fidelity for over 70 years.  While primarily used as a clinical tool for functional 

mapping and seizure focus identification, ECoG is also used for studies of surface cortical 

electrophysiology and is considered a robust brain computer interface (BCI) platform with 

prospects for long term viability (Leuthardt, Schalk et al. 2004; Chao, Nagasaka et al. 2010).  

Over the last decade, studies using ECoG and other modalities have identified gamma 

band power modulation as a reliable and specific phenomenon that localizes event-related 

neural activity in anatomy and time (Crone, Miglioretti et al. 1998; Leuthardt, Miller et al. 

2007).  Until now, most ECoG studies have only examined phenomena that occur below 

250 Hz and nearly all treat the high-gamma range (>60 Hz) of ECoG signals as a spectrally 

uniform indicator of cortical activity. However, there is an abundance of evidence from 

microscale1 and macroscale electrophysiological research showing oscillatory activity exists 

above 60 Hz (Sukov and Barth 1998; Jones, MacDonald et al. 2000; Baker, Gabriel et al. 

2003).  There is need to establish whether ECoG is capable of capturing this oscillatory 

activity in the high-gamma range and whether these high frequency oscillations are 

correlated with behavioral. 

                                                 

1 Electrophysiological recordings with spatial scales < 1mm are referred to here as microscale recordings.  
While there are similarities, ensemble recordings from larger scales are distinguished here from microscale 
recordings from penetrating microelectrodes or from the cortical surface. 
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We propose to challenge the paradigm that high-gamma band ECoG signals are a 

spectrally uniform indicator of cortical activity and is limited to frequencies below 250 Hz.  

The overall objective of this research is to examine the extent of behaviorally relevant 

electrophysiological phenomena in the high-gamma range of ECoG signals.  To this end, 

we will study power modulation in several sub-bands of the high-gamma band and their 

subsequent correlations with several hierarchical levels of behavior.  The central hypothesis 

of this work is that the high-gamma band in ECoG contains behaviorally relevant 

information in multiple sub-bands above 60 Hz.  Based on preliminary evidence from 

human language studies by our group, we believe that there is substantial diversity in the 

ECoG signal above 60 Hz.  Using an experimental task that allows us to categorize both 

behavioral stimuli and responses at several hierarchical levels, we will examine the level of 

information coded in sub-bands of the high-gamma range of ECoG.  To help bridge the 

gap between macro and microscale electrophysiology, we will also utilize ECoG 

microarrays to examine the extent of high-gamma diversity at a finer spatial resolution.  

The rationale for this research is that further defining the behavior of the ECoG high-

gamma band may reveal previously untapped electrophysiological information that may 

improve clinical, scientific and BCI applications.   

1.2 Specific Aims 

We will test the central hypothesis via three specific aims:   

Aim 1:  Determine whether high-gamma band ECoG (>60 Hz) is a spectrally uniform 

indicator of cognitive activity.  The hypothesis for this aim is that high-gamma activity is 

spectrally non-uniform and that different cognitive activities can evoke distinct spectral 

responses in separate sub-bands of the high-gamma range.  
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Aim 2:  Determine whether the spatio-temporal dynamics of multiple frequency bands 

above 60 Hz encode information about individual cognitive activities under study.  The 

hypothesis for this aim is that information encoded in the spatio-temporal dynamics of 

multiple frequency bands (> 60 Hz) can improve the ability to categorize the phonemic 

class of particular cognitive activities under study. 

Aim 3:  Examine spectral power change patterns and information coding in microarray 

ECoG.  The working hypotheses for this aim are 1) high-gamma range microarray ECoG 

is spectrally non-uniform and different cognitive activities can evoke distinct spectral 

patterns in separate sub-bands of the high-gamma range, and 2) information encoded in 

the temporal dynamics of microarray high-gamma bands can improve the ability to 

categorize the phonemic class of particular cognitive activities under study. 

The expected outcome of this research is that a new approach will be necessary to evaluate 

high-gamma range electrophysiology. In addition to the time and cortical location of power 

changes, the specific frequency band within the high-gamma range is another fundamental 

dimension of cortical electrophysiology for both traditional and microarray ECoG. The 

discovery of frequency diversity in the high-gamma range will provide the opportunity to 

explore the dynamics of these high-gamma sub-bands and their behavioral and neuronal 

correlates which may better facilitate the continuing synthesis of cellular, ensemble, and 

behavioral neuroscience. 

1.3 Dissertation Overview and Organization 

This thesis is divided into seven chapters.  The second chapter provides the background 

and significance of the research.  A review of relevant literature on electrophysiology 

recording techniques and relationships to functional imaging provides the context for the 
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research.  Then, evidence of high-gamma band spectral, spatial and temporal diversity is 

presented in support of the three hypotheses.  The chapter concludes with a discussion of 

the clinical and scientific significance of this work. 

Chapter 3 describes the methods used in this research.  The chapter is subdivided into four 

major sections.  First common methods to all three aims are explained.  The subsequent 

sections detail the experimental set up and analysis techniques used to test each of the three 

major hypotheses of this work. 

Chapter 4 addresses the first hypothesis: that there is spectral diversity in the gamma band 

above 60 Hz.  The results for individual subjects and then summaries across the subject 

population show that nonuniformities in high-gamma band power changes can dissociate 

cognitive tasks and anatomy.   

Chapter 5 covers the second major hypothesis: that the spatio-temporal dynamics of 

multiple frequency bands above 60 Hz encode behaviorally relevant information.  The 

results show that ECoG signals contain enough information to predict phonemic content 

in the context of a single word repetition experiment.  The amount of information encoded 

in each domain is then quantified using a matched filter correlator.  The results here show 

that phonemic information is encoded diversely in the spatial, temporal and spectral 

domains of ECoG signals.   

Chapter 6 shows the results after testing the third major hypothesis: that microscale surface 

potentials have spectral diversity above 60 Hz and that the dynamics of high frequency 

rhythms encode information.  Preliminary results in one subject demonstrate that there is 

sufficient spectral diversity in microarray ECoG signals to dissociate anatomic locations 

separated by as little as 1 mm.  Further, there is sufficient information to discriminate 
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phonemic content in the spatial, temporal and spectral patterns of power modulations 

within a 9mm2 cortical location.   

Chapter 7 concludes the work with a discussion of these findings in the context of the 

existing body of research, the implications of this work and suggested directions for future 

studies.   

1.4 References 

Baker, S., C. Gabriel and R. Lemon (2003). "Eeg oscillations at 600 hz are macroscopic markers for cortical 
spike bursts." The Journal of Physiology 550(2): 529. 

Chao, Z., Y. Nagasaka and N. Fujii (2010). "Long-term asynchronous decoding of arm motion using 
electrocorticographic signals in monkeys." 

Crone, N., D. Miglioretti, B. Gordon and R. Lesser (1998). "Functional mapping of human sensorimotor 
cortex with electrocorticographic spectral analysis. Ii. Event-related synchronization in the gamma 
band." Brain 121(12): 2301-2315. 

Jones, M. S., K. D. MacDonald, B. Choi, F. E. Dudek and D. S. Barth (2000). "Intracellular correlates of fast 
(>200 hz) electrical oscillations in rat somatosensory cortex." J Neurophysiol 84(3): 1505-1518. 

Leuthardt, E. C., K. Miller, N. R. Anderson, G. Schalk, J. Dowling, J. Miller, D. W. Moran and J. G. Ojemann 
(2007). "Electrocorticographic frequency alteration mapping: A clinical technique for mapping the 
motor cortex." Neurosurgery 60(4): 260-271 

Leuthardt, E. C., G. Schalk, J. R. Wolpaw, J. G. Ojemann and D. W. Moran (2004). "A brain-computer 
interface using electrocorticographic signals in humans." Journal of Neural Engineering 1(2): 63-71. 

Sukov, W. and D. S. Barth (1998). "Three-dimensional analysis of spontaneous and thalamically evoked 
gamma oscillations in auditory cortex." J Neurophysiol 79(6): 2875-2884. 
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2 Background and Significance 

This chapter provides an overview of electrophysiological research techniques at different 

spatial scales and their relationships to each other as well as functional imaging techniques.  

This section will place this dissertation in the context of the existing body of literature.  We 

then cover supporting evidence for each of the three aims of this dissertation as a basis for 

each of the three associated hypotheses.  Finally, this chapter will discuss the clinical and 

scientific significance of this research. 

2.1 Techniques for Recording Cortical Activity 

There are several techniques for studying brain activity by measuring electrical activity 

directly and indirectly.   Here they are categorized by spatial scale.  Each has advantages 

and disadvantages, but all have made significant contributions to the understanding of 

cortical function.  The primary focus of this review is on electrophysiological methods; 

however, since there is such a large body of brain research performed with magnetic 

resonance imaging (MRI), the relationship of the electrophysiological methods to the blood 

oxygenation level dependence (BOLD) signal is also covered. 

2.1.1 Microscale Electrophysiology 

In this dissertation, the term microscale refers to linear spatial scales less than 1 mm.  This 

distinction is made because the diameter of a cortical column is approximately 0.1mm 

(Kandel, Schwartz et al. 2000).   Therefore, when considering measurements using 

electrodes with diameters of 1mm or more, the dynamics of cortical columns become 

aggregated into mesosources, the spiking activity of individual neurons is no longer 
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detectable and the interpretation of electrophysiological signals must be viewed in a 

different way (Nunez and Srinivasan 2006).   

2.1.1.1 Intracellular Recordings 

At the finest spatial scale of electrophysiology, intracellular recordings using glass 

micropipettes or patch clamps measure electric potentials inside the cell membrane.  

Intracellular neuronal recordings started with Hodgkin and Huxley‟s work in characterizing 

the cell membrane characteristics of the giant squid axon (Hodgkin and Huxley 1939).  

Recordings of intracellular potentials can capture both action potential firing and 

oscillatory behavior in a single neuron (Ylinen, Bragin et al. 1995; Jones, MacDonald et al. 

2000).  These recordings also have the highest signal to noise ratios, capturing signals on 

the order of 100 mV (Malmivuo and Plonsey 1995).  Studies using these techniques 

commonly examine the properties and dynamics of neurotransmitters, ion channels and 

cell membranes (Neher, Sakmann et al. 1978; Cahalan and Neher 1992).  They have also 

been used to correlated intracellular electrophysiology with extracellular phenomena (Jones, 

MacDonald et al. 2000).    

2.1.1.2 Extracellular Recordings 

Recordings from microwires that penetrate the cortex to capture electric potentials from 

the intraparenchymal space are commonly referred to as extracellular, single unit activity, 

multiunit activity (MUA) or laminar recordings.  The electrode dimensions range from 1s–

10s m and can capture action potential firing from one or more neurons (Hubel and 

Wiesel 1959) as well as subthreshold fluctuations in the  extracellular field commonly 

referred to as local field potentials (LFP) (Renshaw, Forbes et al. 1940).  The signal levels 

in these recordings vary according to the distance from the cell soma and typically range 
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from 100V to 1mV (Jones, MacDonald et al. 2000).  As technology has advanced, arrays 

of penetrating microelectrodes have made recording from multiple neurons and the 

associated LFPs possible as well (Buzsáki 2004).  Studies of extracellular recordings have 

been used to study correlations of neural activity with sensory stimuli (Hubel and Wiesel 

1959), physical location (O'Keefe and Dostrovsky 1971) and motor movements 

(Georgopoulos, Schwartz et al. 1986).  They have also been shown to correlate with higher 

levels of cognitive function such as object attribute representation (Maunsell and Van 

Essen 1983), motor planning (Lawrence, White et al. 2005), decision thresholds (Gold and 

Shadlen 2001) and attention (Corbetta, Akbudak et al. 1998).  Within the last decade, single 

and multiunit microscale extracellular recordings have been used as successful brain 

computer interface (BCI) platforms in human and nonhuman primates (Taylor, Tillery et 

al. 2002; Hochberg, Serruya et al. 2006; Velliste, Perel et al. 2008). 

2.1.1.3 Microscale Epipial Recordings 

Microscale recordings are also possible from the cortical surface (pia mater).  Using 

nonpenetrating microwire electrodes with diameters ranging from 10-100 m, these 

recordings capture electrophysiological dynamics from populations of cells and have been 

referred using terms such as epipial encephalography (EEG) and cortical potentials.  At the 

cortical surface, potentials have magnitudes on the order of 100 V (Jones, MacDonald et 

al. 2000).  Studies using this modality have examined somatosensory responses in rodent 

whisker barrel cortex (Staba, Ard et al. 2005), mammalian olfactory bulb (Freeman and 

Baird 1987), and monkey visual cortex (Freeman and van Dijk 1987) amongst others.  

Recent research using microscale pial recordings in humans have correlated surface LFPs 

at multiple frequencies with contra- and ipsilateral motor movements (Leuthardt, 
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Freudenberg et al. 2009) and spoken words (Kellis, Miller et al. 2010).  Recordings at this 

scale have also been used as a capable platform for brain computer interfaces in both 

human and non-human primates (Heldman 2007; Leuthardt, Gaona et al. 2011). 

2.1.1.4 Integrative Microscale Research 

The various phenomena captured by these techniques are inter-related at the microscale 

and across spatial scales.  Many have studied how oscillatory synchrony in LFPs affects 

action potential firing (Gray, König et al. 1989; Buzsaki and Draguhn 2004), and the 

resulting implications of that relationship as a means of modulating sensitivity to neuronal 

inputs, temporally coordinating groups of neurons into assemblies, facilitating synaptic 

plasticity and consolidating information into long-term memory (Fries, Nikolic et al. 2007; 

Uhlhaas, Pipa et al. 2009).  Additionally, cross-modality studies have revealed intracellular 

correlates of extracellular and cortical surface phenomena (Jones, MacDonald et al. 2000).  

The relationship of microscale electrophysiology to the functional MRI BOLD signal has 

been elucidated.  Simultaneous recordings of BOLD and multiunit activity in anesthetized 

monkeys correlated both multiunit firing and LFP fluctuations with BOLD responses 

(Logothetis, Pauls et al. 2001).   

2.1.2 Macroscale Electrophysiology 

Macroscale recordings capture activity from multiple columns including 107 or more 

neurons depending on the specific technique.  Because these techniques do not invade the 

parenchymal space, they are less invasive and therefore have clinical as well as scientific 

uses.   
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2.1.2.1 Scalp Recordings 

Both electric and magnetic fields emanating from neural activity can be recorded from the 

scalp.  Because they record from neural populations on the same orders of magnitude, 

scalp EEG and magnetoencephalography (MEG) are discussed together even though they 

most likely record from complimentary neural populations.  Scalp EEG electrodes 

recording electric fields from the brain are mostly likely to record dipole current generators 

that are oriented normal to the scalp surface.  In contrast, MEG is most likely to capture 

magnetic fields emanating from dipoles oriented tangentially to the scalp (Nunez and 

Srinivasan 2006).  Therefore it is most likely that EEG captures cortical activity from the 

crowns of neocortical gyri, while MEG captures activity from within the sulci.  The 

benefits of scalp recordings are the ability to study healthy human subjects, while obtaining 

recordings from broad cortical areas.  However the primary disadvantage of studying scalp 

recordings is a low signal to noise ratio.  It has been reported that approximately 6 cm2 of 

cortex must become synchronized for electric signals to be recordable at the scalp (Nunez 

and Srinivasan 2006).  The actual voltage levels and magnetic field strengths recorded at the 

scalp range between 10-100 V (Nunez and Srinivasan 2006) or 10-100 fT (Dhond, Witzel 

et al. 2005) which makes these signals especially susceptible to environmental, 

electrooculographic and electromyographic contamination.  Clinically, EEG has been used 

as a diagnostic for sleep disorders, epileptic seizure identification and localization (Blum 

and Rutkove 2007) and, though not without controversy,  as a confirmatory test of coma 

and brain death (Roest, van Bets et al. 2009; Wijdicks 2010).  MEG is being studied as a 

potential clinical diagnostic tool for several brain disorders (Georgopoulos, Karageorgiou 

et al. 2007).   



11 

The analysis techniques applied to scalp recordings generally study time-domain waveforms 

or specific frequency bands.  Low pass time domain responses to stimuli are commonly 

referred to as event related potentials (ERP) (Makeig, Westerfield et al. 2002).  Different 

features of these waveforms have been attributed to specific activities during cognitive 

processing (Salmelin 2007) and their spatial organization provides insight into specific 

cortical locations associated with these processes (Dhond, Witzel et al. 2005).  Observation 

of oscillatory power modulations in specific bands (generally below 40 Hz, though as high 

100 Hz) has been termed event related synchronization/ desynchronization (ERS/ERD) 

and has been correlated with motor movements (Pfurtscheller and Lopes da Silva 1999).  

While many scalp recorded studies focus on oscillatory activity below 40 Hz, both MEG 

and EEG have been used to examine gamma band (>40 Hz) activity as well (Kaiser and 

Lutzenberger 2003; Herrmann, Fründ et al. 2010).  Because scalp recordings can 

encompass the entire outer surface of the cerebral cortex, they have also been used to 

study oscillatory synchrony on large scales (Pockett, Bold et al. 2009).  EEG has also been 

used for more than two decades as a BCI platform for humans (Farwell and Donchin 

1988; Wolpaw, McFarland et al. 1991), although because of low signal to noise ratios, they 

typically demand long training periods (Leuthardt, Miller et al. 2006).  Integrative studies 

using EEG have also helped link scalp recorded phenomena with other 

electrophysiological scales.  Simultaneous recordings of EEG and MUA have correlated 

the combination of gamma band power increases and negative delta phase from EEG with 

MUA aggregate firing rate (Whittingstall and Logothetis 2009).   
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2.1.2.2 Macroscale Subdural Recordings 

Macroscale recordings directly from the cortical surface are known as Electrocorticography 

(ECoG), as well as intracranial EEG (iEEG), subdural EEG, and epipial EEG. This 

technique captures neuronal population dynamics from the gyral crowns.  In humans, the 

most common electrodes have 2.4 mm diameters and 10 mm interelectrode spacing, 

though other form factors exist (Ad-Tech 2008; Blakely, Miller et al. 2008).  Typical grids 

span areas as large as 8 cm x 8 cm and therefore cover relatively broad cortical areas.  

Because subdural electrodes are 1.5 mm away from the layer V pyramidal cells which 

putatively generate most of the dipole currents sensed at the surface, typical amplitudes 

reach 100s V (Nunez and Srinivasan 2006).  Penetrating macroscale depth electrodes used 

in clinical care are also categorized at this spatial scale.    These linear arrays of cylindrical 

electrodes typically have 1.1 mm diameters and 2.3 mm heights, with 5-10 mm 

interelectrode spacings (Ad-Tech 2008).  Although these electrodes pass through both gray 

and white matter in the cortex, because of their size, they capture population dynamics on 

the same scales as cortical surface electrodes.  Clinically, ECoG is routinely used to identify 

epileptic seizure foci and for functional mapping prior to neurosurgical resections 

(Goldring and Gregorie 1984).   

Research studies using ECoG use many of the same techniques applied to scalp and 

microscale LFP recordings: ERP analysis, band limited power changes and phase 

synchrony.  The body of ECoG-based research has examined the neural substrates of 

many cognitive activities: contra- and ipsilateral motor systems (Crone 2000; Pfurtscheller, 

Graimann et al. 2003; Leuthardt, Miller et al. 2007; Wisneski, Anderson et al. 2008; Miller, 

Zanos et al. 2009), selective attention (Brovelli, Lachaux et al. 2005; Tallon-Baudry, 
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Bertrand et al. 2005; Ray, Niebur et al. 2008), memory (Fell, Klaver et al. 2001; Sederberg, 

Kahana et al. 2003; Mormann, Fell et al. 2005; Anderson, Rajagovindan et al. 2009), visual 

stimuli (Lachaux, George et al. 2005), auditory stimuli (Crone, Boatman et al. 2001; 

Trautner, Rosburg et al. 2006; Canolty, Soltani et al. 2007; Edwards, Soltani et al. 2009) 

human language (Crone, Hao et al. 2001; Canolty, Soltani et al. 2007; Mainy, Jung et al. 

2008; Towle, Yoon et al. 2008).  ECoG has also been explored as a BCI platform because 

of high signal to noise ratios, prospects for long term viability and a cortical coverage that 

may allow a broad range of behavioral modalities for control signals (Leuthardt, Schalk et 

al. 2009).  A number of human studies using ECoG as a BCI have achieved one-

dimensional (Leuthardt, Schalk et al. 2004; Leuthardt, Miller et al. 2006) and two-

dimensional (Schalk, Miller et al. 2008; Rouse and Moran 2009) control of a cursor on a 

computer screen.    Because of the reliability and fidelity of the control features, the human 

subjects using ECoG-based BCIs were able to achieve control with performance above 

chance after 3-24 minutes of training (Leuthardt, Schalk et al. 2004).  Non-human primate 

studies examining the longevity and stability of ECoG signals in the context of a three-

dimensional reaching task have also reported that the cortical dynamics remained stable for 

up to 5 months (Chao, Nagasaka et al. 2010).   

Integrative studies across modalities using ECoG have also been accomplished.  Slow 

cortical potentials and gamma band correlation structures from ECoG recordings have 

been shown to be similar in structure to BOLD functional connectivity maps (He, Snyder 

et al. 2008).  ECoG gamma band power decreases have been correlated with task-related 

default network BOLD signal decreases as well (Miller, Weaver et al. 2009).  Additional 

studies have also highlighted correlations between neuronal activity indicators in ECoG 

and BOLD (Brovelli, Lachaux et al. 2005).   
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In summary, while the different electrophysiology recordings techniques have their 

strengths and weaknesses, they capture the same physiological phenomena at different 

scales and therefore should be viewed synergistically.  It is also clear that there are 

correlations between electrophysiological recordings from single units up through scalp 

electrodes with the fMRI BOLD signal which has been used as a measurement technique 

for a vast amount of neuroscience research.   

2.2 Research Supporting the Three Aims 

This section of the literature review focuses on specific research relevant to the discussion 

of the three aims of this dissertation.  First, we will examine gamma band literature, the 

associated evidence for oscillatory phenomena in the high range of the gamma band, and 

emerging views on uniform broadband power changes in macroscale electrophysiology.  

Second, we review literature illustrating spatial and temporal diversity in the neural 

correlates of cognitive activity associated with language.  Finally, we address the third aim 

of this dissertation and review the evidence for spatial diversity in microscale 

electrophysiological recordings. 

2.2.1 Nonuniform Power Changes Above 60 Hz in Macroscale 
Recordings 

It is commonly accepted that different low frequency bands in macroscale 

electrophysiological signals are indicators of different physiological phenomena.  Slow 

cortical potentials (<0.5 Hz) have been studied as a correlate of BOLD functional 

connectivity networks and are thought to be an indicator of fundamental cortical structure 

(He, Snyder et al. 2008).  Local frequency potentials (0.5-10 Hz) over motor cortex have 

been correlated with arm reaching and finger movements (Schalk, Kubanek et al. 2007; 
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Acharya, Fifer et al. 2010).  Alpha rhythms (8-12 Hz) have been correlated with relaxation 

(Blum and Rutkove 2007), and the suppression of alpha rhythms is usually associated with 

somatosensory cortical activity (Crone, Miglioretti et al. 1998).  Cortically broad beta 

rhythm (12-30 Hz) suppressions are typically associated with cognitive activity and 

sensorimotor activation (Crone, Miglioretti et al. 1998; Nunez and Srinivasan 2006).  

Gamma rhythms are spatially and temporally focal indicators of cortical processing 

associated with several cognitive tasks (Spydell, Ford et al. 1979; Pfurtscheller, Neuper et al. 

1993; Crone, Miglioretti et al. 1998).  Additionally, gamma rhythms have been 

subparcellated into low-gamma (30-60 Hz) and high-gamma (>60 Hz) bands in the 

macroscale literature because they have been shown to activate independently (Crone, 

Boatman et al. 2001; Edwards, Soltani et al. 2005).  

In spite of the existence of these low frequency rhythms, the notion of band specific 

oscillatory activity has not been widely extended to the high-gamma range (>60 Hz) in the 

macroscale literature.  The primary question for Aim 1 is the existence of nonuniform 

power modulation (presumably caused by oscillatory activity) above 60 Hz.  In support of 

our hypothesis, there are several examples of electrophysiological evidence of neuronal 

activity at various frequencies above 60 Hz.  It is not uncommon for single neurons to fire 

at rates reaching several hundred Hertz.  Intrinsic bursting cells have been reported to fire 

at 200 Hz for brief periods, while fast repetitive bursting cells can reach rates up to 600 Hz 

(Contreras 2004).   Microscale LFP recordings have also revealed evidence of high 

frequency oscillatory activity.  Jones et al. have shown that high frequency oscillations in rat 

barrel cortex somatosensory evoked potentials (SSEP) between 200-600 Hz have both 

intra- and extracellular correlates.  The oscillations between 200-400 Hz appear to result 

from intracortical connections (Staba, Ard et al. 2005), and have been proposed as a 
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mechanism for synchronizing timing on a sub millisecond scale (Barth 2003).   The very 

high frequency oscillations in epipial recordings between 400-600 Hz were shown to 

correlate well with summated action potentials from populations of neurons (Jones, 

MacDonald et al. 2000).  Very high frequency oscillations (600 Hz) have also been reported 

in human scalp SSEPs (Curio 2000) and nonhuman primate epidural SSEPs (Baker, 

Gabriel et al. 2003).  The primate epidural oscillations were phase locked with 

simultaneously recorded single unit action potentials initiated by both electrical and tactile 

stimulation.  Evidence for high frequency LFPs has not been confined to somatosensory 

cortex.  Several studies have examined high frequency oscillations (approx 200 Hz) in the 

hippocampus referred to as sharp wave ripples (Ylinen, Bragin et al. 1995).  Some have 

reported a possible association between sharp wave ripples and memory (Ponomarenko, 

Chepurnova et al. 2002), while others have studied their relationships to the pathology of 

epilepsy (Bragin, Wilson et al. 2002).  Thus, there is microscale evidence of action potential 

firing and LFP oscillations at very high frequencies that appears to cross spatial scales.   

Data from macroscale studies of the gamma band have shown indications of nonuniform 

power modulations above 60 Hz as well.  In many cases, high frequency bands appear to 

activate nonuniformly in exemplar time-frequency analyses, but subsequent analyses in the 

studies only examine the total power in a relatively wide range of frequencies (e.g., 60-200 

Hz) as a uniform entity (Brown, Rothermel et al. 2008; Korzeniewska, Crainiceanu et al. 

2008; Mainy, Jung et al. 2008).  One study of a single patient showed distinctions in time-

frequency analyses and studied power changes within various narrow bands ranging from 

70-200 Hz: however, the differences in these bands were not discussed (Brovelli, Lachaux 

et al. 2005).  Another study highlighted individual patient differences in peak activation 

frequencies in the gamma band between two anatomic locations (Tallon-Baudry, Bertrand 
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et al. 2005).  Although not often discussed, the macroscale literature also contains evidence 

of nonuniform power modulations above 60 Hz. 

In spite of this evidence, there is growing interest in uniform and broadband (5-200 Hz) 

power increases, putatively caused by increases in asynchronous neuronal firing activity 

(Manning, Jacobs et al. 2009; Miller, Zanos et al. 2009; Miller 2010).  The purpose of Aim 1 

is to test the hypothesis that nonuniform power modulations in sub-bands of the high-

gamma range (60-500 Hz) can dissociate cognitive phases of a task or anatomic locations.  

This concept is illustrated in Figure 2.1.  If ECoG can only capture uniform broadband 

power changes, then the induced spectra should look like those presented in Figure 2.1C.  

However, if ECoG can capture nonuniform power changes, presumably caused by 

synchronous oscillatory or suprathreshold activity, the induced spectral power change may 

occur in distinct frequency bands (yellow and blue bars in Figure 2.1D) and may dissociate 

cognitive behavior or anatomy. 
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Figure 2.1 Schematic representations of power change paradigms 
A) A typical set of power spectral densities. PTask(f) represents the task under observation and PITI(f) represents 
the corresponding intertrial interval that is the basis for comparison.  B) The normalized power spectrum 
defined in equation form and illustrated schematically.  This method of normalization shows the direction 
and magnitude of power change with reference to a resting state over a range of frequencies.  C) Schematic 
normalized spectra illustrating the hypothesis that high-gamma power change is uniform in nature.  Low 
frequencies (μ, β, <30 Hz) tend to show power decreases for cognitive task while high frequencies have 
power increases.  D) Schematic normalized spectra illustrating the hypothesis that high-frequency power 
change is nonuniform.  Both spectra have power changes in specific bands that distinguish one cognitive task 
from another. 
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2.3 Diversity in the Neural Motif 

One of the goals of behavioral neuroscience is to identify the neural correlates of behavior 

in hopes of revealing how the cortex processes and represents information.  The neural 

correlates of interest depend on the experimental methodology, but generally tend toward 

indentifying specific cortical locations and patterns of neural activity.  For 

electrophysiological studies, the indicators of neural activity have been temporal 

waveforms, band limited power and phase, or their inter-relationships.  Several lines of 

research have shown that the neocortex represents information in a broadly distributed 

manner.  Specifically, we mean that behaviors have neural correlates at several spatial 

locations, time frames and frequency bands.  In this dissertation, we refer to the collection 

of neural correlates of behavior as the neural motif, and the broad distribution of those 

neural correlates in the dimensions of space, time and frequency as diversity.  The 

hypothesis of Aim 2 is essentially that diversity in the neural motif above 60 Hz contains 

meaningful neural correlates of behavior.  Here we examine the evidence in support of that 

hypothesis.  Since we have previously discussed the findings that support the existence of 

diversity in the spectral dimension, we focus on the evidence for spatial and temporal 

diversity.  These findings come from a variety of scales in electrophysiological research, 

functional imaging literature, lesion studies and modeling studies.   

Lesion studies were the earliest harbingers of spatial diversity in human language systems.  

Broca and Wernicke were the first to identify separate cortical areas for speech perception 

and generation, which were soon followed by Lichtheim‟s theory of a fronto-temporal 

network (Demonet, Thierry et al. 2005).  Later, functional mapping literature, which 

generally relies upon virtual lesions caused by electrical cortical stimulation, confirmed the 
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idea of a cortically diffuse language network with significant subject variability(Burchiel, 

Clarke et al. 1989; Ojemann, Ojemann et al. 1989).  

Microscale recordings have shown that very specific spatial locations encode detailed and 

complex information about behavior, yet the evidence supports distribution of these neural 

correlates across time and cortical locations.  Because this dissertation studies language 

tasks, we focus on representations of information related to speech.  Several single and 

multiunit activity studies have shown that specific neurons fire in response to complex 

auditory stimuli associated with human speech sounds (Barbour and Wang 2003; 

Steinschneider, Volkov et al. 2005; Mesgarani, David et al. 2008) (Ojemann, Schoenfield-

McNeill et al. 2008) as well as birdsongs (Mauk and Buonomano 2004).  This evidence 

appears to show a temporal consolidation of information in the neural code.  However, 

human language is composed of temporal sequences of these complex sounds that are 

combined hierarchically and eventually give rise to meaning (Doupe and Kuhl 1999).  

Therefore, in the context of human language, it is the temporal combination of these 

simplified neural correlates that also give rise to meaning and therefore encode speech 

information.  Spatially, it has been shown that speech generation and perception also have 

spatially diffuse neural substrates.  Birdsongs are generated by rapidly changing assemblies 

of cells in different nuclei in the avian forebrain (Yu and Margoliash 1996; Leonardo and 

Fee 2005).  Additionally, single unit recordings from awake human subjects have shown 

that several neurons outside of „essential‟ language areas respond to auditory speech stimuli 

indicating that language networks are spatially diffuse (Engel, Moll et al. 2005).   

Collectively, the microscale evidence supports the hypothesis of spatially and temporally 

diverse information encoding in two ways.  First, given that human speech consists of 

temporally sequenced sounds, and that there are single neurons that fire preferentially for 
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given combinations of complex auditory stimuli and during productive speech, we would 

expect the neural code to be temporally rich in information.  Second, the microscale 

findings that multiple nuclei are involved in producing speech and that multiple locations 

outside of core speech areas have single units that respond to human language, both 

support the hypothesis of spatial diversity in the neural motif.   

Macroscale electrophysiological recordings which capture broader cortical areas also 

support the hypothesis that the neural correlates of language are spatially and temporally 

diverse.  Jacobs et al. have shown that visually presented single letters evoke distinct 

gamma band power modulations at specific points in time at spatially diffuse yet specific 

electrodes (Jacobs and Kahana 2009).  A study of a single human subject also reported that 

the representation of spoken consonant-vowel pairs had separable spatial topographies 

within a 21mm x 21mm array (Blakely, Miller et al. 2008).  Temporally, it has been shown 

that AEPs in human depth electrode recordings from primary auditory cortex correlate 

with specific voice onset time in parameters that help discriminate phonemes 

(Steinschneider, Volkov et al. 2005).  In scalp recordings, low frequency spectro-temporal 

representations from multiple electrodes have been used to discriminate imagined 

articulations of consonant vowel pairs (D‟Zmura, Deng et al. 2009) and words (Suppes, Lu 

et al. 1997).  In congruence with the microscale studies, the macroscale electrophysiological 

evidence also points to diverse representation of language in space, time and frequency.   

Using fMRI, which provides the greatest combination of spatial coverage and resolution, 

researchers have shown language processing and conceptual knowledge representation are 

spatial diverse as well.  BOLD studies of single word repetition paradigms implicate large 

cortical areas (Petersen and Fiez 1993; Binder, Frost et al. 1997).  Although word repetition 
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tasks incorporate several cognitive functions (auditory perception, short term working 

memory, speech production) which may recruit larger cortical regions, even auditory 

processing has been shown to be spatially distributed across the temporal lobe (Binder, 

Frost et al. 2000).  It has also been shown that semantic categories of objects are 

represented diffusely in overlapping cortical areas (Haxby, Gobbini et al. 2001), yet the 

spatial patterns of BOLD signal modulation were capable of dissociating semantic 

categories of visual stimuli (Mitchell, Shinkareva et al. 2008).  The functional imaging 

evidence also supports the spatially diverse element of our hypothesis. 

Finally, the speech modeling literature supports the hypothesis that cortical systems are 

broadly represented as well.  Models of human speech production suggest a spatially 

diverse organization with roles distributed around the Sylvian fissure (Guenther, Ghosh et 

al. 2006).  While competing models of speech processing differ in their organization, all 

support a broadly distributed system for receptive speech processing.  A dual stream model 

of speech perception has been suggested by Hickok et al. which suggests broadly 

distributed ventral comprehension and dorsal articulation networks (Hickok and Poeppel 

2007).  Another model advocates a linkage between speech and motor systems, which 

further expands the speech network into semantically related motor areas (Pulvermuller 

2005). 

Based on the research summarized above, we see that there is sufficient evidence that 

language systems exist across a broad cortical area and that the electrophysiological 

correlates of language related information have distinct temporal representations over 

broad windows.  This evidence combined with the support for oscillatory activity above 60 

Hz is the basis for the second aim of this dissertation.  The second aim is to test the 
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hypothesis that the spatio-temporal dynamics of multiple frequency bands above 60 Hz are 

part of the neural correlates of phonemic content in speech tasks.  We hypothesize that 

part of the neural code in pial recordings associated with phonemes either spoken or heard 

can be captured in the spatial, temporal and spectral dynamics of power modulation.  

Based on this research, we plan to quantitatively analyze the amount of spatial, temporal 

and spectral diversity in the neural motif that corresponds to phonemic content in ECoG 

from humans. 

2.3.1 Diversity in microarray ECoG 

In the review of the literature for the first two aims, a substantial body of evidence was 

cited from all scales of electrophysiology and functional imaging.  The fact that the 

microscale literature contains evidence of spatial, temporal and spectral diversity has 

already been addressed.  The primary focus of this section is on providing additional 

evidence for spatial diversity in microscale electrophysiology in areas outside of human 

language.  Several avenues of animal research have shown behaviorally significant spatial 

patterns of power modulation in microscale pial recordings.  These studies have reported 

somatotopic diversity in rodent whisker barrel cortex (Staba, Bergmann et al. 2004), odor-

specific spatial patterns in rabbit olfactory bulb (Freeman and Baird 1987), and visual 

stimulus related patterns in monkey visual cortex (Freeman and van Dijk 1987).  Freeman 

et al. also studied the spatial diversity in human cortex using the gamma and beta bands 

and found that the optimal electrode spacing to capture the spatial patterns was 1.25 mm 

(Freeman, Rogers et al. 2000).  Subsequent human studies using microscale pial recordings 

have shown spatial differences within 1 mm during wrist movements (Leuthardt, 

Freudenberg et al. 2009) and spoken words (Kellis, Miller et al. 2010).  Thus, with regard to 
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the third aim of this dissertation, we expect that microscale recordings will exhibit both 

diversity in the frequency bands above 60 Hz that dissociate cognitive task and anatomy, 

and diversity in the spatio-temporal dynamics of those bands that is correlated with 

phonemic content. 

2.4 Significance 

Finally, we ask the question: why is this research relevant?  The contributions of this 

research have the potential to cause a major revision in the view of macroscale high 

frequency surface cortical potentials.  This revised perspective may cause researchers to 

consider frequencies in the high gamma range as independent entities and open new 

electrophysiological territory with which to improve clinical practice, BCI applications and 

scientific research. 

2.4.1 Clinical Applications 

Epilepsy can be a debilitating disease.  It effects an estimated 2.1M people in the United 

States alone (Kobau, Control et al. 2008) with annual costs of medical treatments and lost 

income reaching approximately $15.5B (CDC 2010).  In its most debilitating form, when 

seizures cannot be controlled by medication, patients are unable to work or drive.  This 

form of epilepsy affects 31% of patients (Kobau, Control et al. 2008).  In epilepsy patients 

that cannot control seizures through medication, ECoG is used clinically for seizure 

localization and functional mapping (Goldring and Gregorie 1984).   

Functional brain mapping is critical to reducing speech and motor loss of function 

morbidities after neurosurgical resections for epilepsy and other maladies (Berger, Kincaid 

et al. 1989; Burchiel, Clarke et al. 1989; Keles, Lundin et al. 2004) because the functional 
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anatomy of language areas can be quite variable (Ojemann, Ojemann et al. 1989).  The 

clinically accepted method for functional mapping, electrical cortical stimulation (ECS), is 

prone to after discharges which can reduce mapping accuracies (Blume, Jones et al. 2004), 

so passive ECoG-based mapping techniques have been studied and show promise as an 

alternative to ECS (Crone, Miglioretti et al. 1998; Leuthardt, Miller et al. 2007; Sinai, Crone 

et al. 2009; Wu, Wisneski et al. 2010).  Many of these passive mapping techniques rely upon 

the gamma band (primarily 75-100 Hz, one up to 250 Hz) to identify functional cortex, and 

while they show promise, the sensitivity and specificity of these techniques are not 

sufficient to reliably replace ECS mapping.  Another promising clinical application of 

ECoG is seizure forecasting and prediction (Worrell, Parish et al. 2004; Adeli, Ghosh-

Dastidar et al. 2007; Mormann, Andrzejak et al. 2007).  Although there have been several 

studies that have attempted prediction and some have used the gamma band (30-60 Hz), 

again these studies have not yet reached the point of clinical viability.  Both mapping and 

seizure prediction efforts may benefit from exploration of neural signatures in multiple 

frequency bands above 60 Hz.   

2.4.2 Brain Computer Interface Research (BCI) 

Brain computer interfaces are a potential application of neural electrophysiology that 

promise restoring quality of life for those who are cognitively healthy, but physically 

disabled due to stroke, spinal cord injury, amputation or neuromuscular disorders.  

Paralysis affects approximately 5.5M people in the United States and over 50% experience 

“a lot of difficulty” or are completely unable to move (Cahill 2009).   The U.S. population 

is aging and while 13% of the population is now over age 65, this proportion is expected to 

grow to 19% of the total population by 2030 (Vincent and Velkoff 2010).  As the 
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proportion grows, the incidence of stroke is expected to grow as well (Lloyd-Jones, Adams 

et al. 2010) as will the 25% of stroke victims over 65 years of age that have difficulty 

reaching grasping (CDC/NCHS 2008).  A more rare type of paralysis is the locked-in state 

in which patients are unable to move or respond with the exception of eye blinks.  The 

ability to replace motor or speech function using a BCI-based prosthetics could 

significantly improve the quality of life and autonomy of these patients.   

While there are several platforms for providing BCIs, many electrophysiological 

instantiations use the amplitudes of different cortical rhythms as their signals (Leuthardt, 

Schalk et al. 2009; Brumberg and Guenther 2010).  Many published ECoG-based BCI 

applications have utilized power modulations as the cortical control signal and several have 

used gamma band frequencies.  While most gamma band control studies have used 

frequency bands below 150 Hz, subjects have achieved control by modulating frequencies 

as high as 520 Hz (Leuthardt, Gaona et al. 2011).  In addition to modulating bandlimited 

power levels, there are also scalp methods which use spatial patterns (Guger, Ramoser et al. 

2000); however, we are not aware of any attempts to harness neural motif diversity in the in 

all three dimensions (space, time and frequency), nor any other attempts to use multiple 

frequency bands in the high gamma range.  The finding of neural correlates in the spectro-

temporal dynamics of multiple frequency bands above 60 Hz would greatly expand the 

information available to BCIs and may make multi-modal BCI systems more realizable. 

2.4.3 Scientific Research 

The proposed research would also challenge the implicit view of gamma portrayed in the 

much of the macroscale electrophysiological literature.  Many studies using ECoG and 

other modalities have identified gamma band power changes as a reliable and specific 
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phenomenon that localizes event-related neural activity in anatomy and time.  At the 

macroscale level, localized gamma band power increases have been associated with several 

cognitive processes [for summaries see (Jerbi, Ossandón et al. 2009) for ECoG, 

(Herrmann, Fründ et al. 2010) for EEG, and (Kaiser and Lutzenberger 2003; Tallon-

Baudry 2009) for MEG].  If successful, this research will show evidence that ECoG is 

capable of capturing oscillatory behavior well above the 60 Hz mark and show that the 

dynamics of these high frequency indicators neuronal activity have physiological 

significance.  Given the wide range of current and emerging ECoG research that has relied 

on gamma band phenomenology, the significance of the proposed research becomes clear.  

Altering the paradigm that ECoG high-gamma is a uniform phenomena that extends only 

up to 250 Hz will provide new territory to explore traditional power modulation as well as 

other techniques such as phase synchrony (Le Van Quyen, Foucher et al. 2001) and cross 

frequency coupling (Canolty, Edwards et al. 2006) that may reveal cortical networks.  In 

summary, the discovery of frequency diversity in the high-gamma range will provide the 

opportunity to explore the dynamics of these high-gamma sub-bands and their behavioral 

and neuronal correlates which may better facilitate the continuing synthesis of cellular, 

ensemble, and behavioral neuroscience. 
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3 Methods 

The methods chapter is organized into four major sections.  The first describes the general 

practices applied for all subjects, including the data recording techniques and experimental 

paradigms.  The second section describes the data processing and analysis techniques used 

to test the hypothesis of Aim 1, that nonuniform power modulation above 60 Hz can 

dissociate cognitive tasks and anatomic locations.  The third section describes processing 

and analyses used to test Aim 2‟s hypothesis, that information represented diversely in the 

spatio-temporal dynamics of the high gamma band improve the ability to identify specific 

phonemes.  The final section briefly describes modifications to the processing and analysis 

techniques from Aims 1 and 2, that were applied to the microarray ECoG data in pursuit 

of the third aim. 

3.1 General Methods 

The following methods apply to all three aims of this dissertation.  Subsequent sections 

describe in detail the specific analyses techniques and any deviations from the general 

methods described here. 

3.1.1 Subjects 

The subjects in this study underwent temporary placement of intracranial electrode arrays 

to identify epileptic seizure foci.  13 subjects (10 female) provided informed consent for 

the study, which had been reviewed and approved by the Washington University School of 

Medicine Institutional Review Board.  Subjects 1-6 were selected for the dissociation band 
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analysis because they were right-handed, had no indications of bilateral speech 

representation and received left hemisphere grid implants.  Table 3.1 summarizes the 

subject data. 

Table 3.1 Subjects 
Hand Abbreviations:  R=Right, L=Left, Am=Ambidextrous, BL Sp=Bilateral Speech.  Cognitive capacity 
abbreviations: FSIQ=Full Scale IQ, VIQ=Verbal IQ, PIQ=Performance IQ.  Grid Location Notes:  All 
grids were left-sided.  Grid Location Abbreviations: F=Frontal, P=Parietal, T=Temporal, ST=Sub-Temporal. 
Task Abbreviations: H-S=Hearing-Speaking (Auditory Repetition), R-S=Reading-Speaking (Visual 
Repetition), HR-NW=Hear and Repeat Non-words, Verb=Verb Generation, Concept=Concept Generation 

Subject Age/ 
Sex 

Hand Cognitive 
Capacity 

Grid 
Location 

Epileptic Focus Number of 
Trials Per Task 

1-FOTE55 15/F R Normal Left-F/P Left Temporal 72 H-S 
72 R-S 

2 – 
NTES60 

44/M R Avg to High 
Avg 

Left-F Left Orbito-Frontal 72 H-S 
72 R-S 

3 – 
SZNE71 

27/M R Low Average 
(FSIQ 89, 
VIQ=86, 
PIQ=96) 

Left-F/P Right Mesial Parietal 180 H-S 
180 R-S 

4 – 
TOFE76 

58/F R High Avg 
(FSIQ 116) 

Left-F/P Superior Frontal Gyrus 216 H-S 
216 R-S 

5 – 
TTSE78 

49/F R Avg (FSIQ 
100) 

Left-F/T Anterior Temporal 216 H-S 
216 R-S 

6 – 
OOTN79 

42/F R Low Avg 
(FSIQ 81) 

Left-
F/T/P 

Anterior 
Temporal/Amygdala/ 

Hippocampus 

109 H-S 
109 R-S 

7 – 
TZSE75 

48/F R  
BL Sp 

Low Avg 
(FSIQ 86) 

Left – F/P Left Frontal Temporal 72 H-S 
72 R-S 

8 – 
TZTN81 

36/M L  
BL Sp 

Below Avg 
(FSIQ 71) 

L-F/T/P Anterior Temporal 72 H-S 
72 R-S 

9 – 
TTTE77 

46/F Am  
BL Sp 

Low Avg 
(FSIQ 81) 

R-F/T/P Inferior Temporal 72 H-S 
72 R-S 

10 – 
TOSE65 

44/F L  
BL Sp 

VIQ 94 / PIQ 
96 

L-F/T Mesial Temporal 72 H-S 
72 R-S 

11 –
FOST99 

36/F R FSIQ 116  
(PIQ:125, VIQ  

:106) 

L-F + 
microgrid 

Anterior Superior 
Frontal 

108 H-S 

12 – Pt101 34 F R High Avg 
Verbal (VCI = 

118) 
 

L-T/F/ST 
+ 

microgrid 

Anterior Temporal 264 H-S 
111 Verb 

89 Concept 

13 – Pt110 45/F R FSIQ = 89 
(23rd pctl), 
VIQ=88, 

PIQ=94 (21/34 
pctl) 

L-F/T + 
microgrid 

Left Temporal Tip 240 H-S 
260 HR-NW 
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3.1.2 Data Acquisition 

Macroscale ECoG electrodes, manufactured by either the Ad-Tech Medical Instrument 

Corporation (Racine, WI) or PMT Corporation (Chanhassen, MN), were implanted below 

the dura in 8 x 8 or 6 x 8 grid configurations as shown in Figure 3.1.  Individual electrodes 

were 4mm diameter (2.3mm exposed) platinum iridium discs spaced 1 cm apart (center to 

center) and encapsulated in silastic sheets (Ad-Tech 2008).  Separate four-electrode strips 

were implanted epidurally and facing the skull (away from the cortical surface) for biosignal 

amplifier ground and reference.   

 
Figure 3.1 Implanted electrode and geometries 
A) A photograph of a typical implant configuration.  This example shows both the clinical macro electrodes 
and the microgrid placement with the Leuthardt Grid as placed on the pia mater of a human subject.  The 
arrow shows the location of the microgrid.  B)  The geometries shown in schematic form and pictorially 
illustrate the difference in spatial scale between the macro and micro ECoG electrodes.  The gray electrodes 
in the corners of the microarrays face away from the cortex (toward the skull) and provide impedance 
matched amplifier ground and reference. 

ECoG microarrays manufactured by PMT Corporation (Chanhassen, MN) have twelve 

(12), 75um electrodes spaced 1mm apart in a 4 x 4 grid as shown in Figure 3.1B.  The four 

corner electrodes face away from the cortical surface (toward the skull), are 2mm in length 

and are used as impedance matched ground and reference electrodes for the 12 electrodes 

facing the cortex.  Since the microarray electrodes have different impedances, they are 

electrically isolated from the amplifiers recording from the macrogrid electrodes. 
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Additionally, subjects with ECoG microarrays had a cutaneous ground electrode to use the 

epidermis as a quasi-Faraday cage around the electrodes. 

Biosignal amplifiers manufactured by g.tec (Graz, Austria) will record ECoG and 

microphone signals using 24-bit resolution analog-to-digital converters.  Microphone signal 

recordings will use ground and references electrically isolated from the ECoG channels to 

prevent interference.  Signals will be captured using one of two sampling schemes.  Data 

was either sampled at 1.2 kHz and filtered between 0.1 and 500 Hz, or sampled at 9.6 kHz 

with no filtering. 

3.1.3 Electrode Localization and Labeling 

Researchers estimated electrode coordinates in Montreal Neurological Institute (MNI) atlas 

space using radiographs and the 'Get Location on Cortex' technique (Miller, Makeig et al. 

2007).  Brodmann area labels were acquired using the estimated Talairach coordinates from 

an on-line Talairach Atlas (Jack L. Lancaster 2000).  For subjects which had both pre-

operative MRI scans and post-operative computed tomography radiographs, the electrodes 

locations were co-registered to a reconstruction of the  subject‟s gyral anatomy using 

techniques described by Hermes et al. {Hermes, 2010 #601}. 

3.1.4 Experimental Setup 

The BCI2000 software package synchronized the experimental tasks with ECoG and 

microphone signal recordings (Schalk, McFarland et al. 2004).  Stimulus periods of 4s were 

interleaved between 533ms intertrial intervals (ITI) as shown in Figure 3.2B.  Visual stimuli 

appeared for the whole stimulus period on an LCD monitor approximately 60cm from the 

subject.  Auditory stimuli were presented through headphones and had an average duration 
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of 531ms (SD=89ms).  Stimuli for single word repetition tasks came from the same list of 

36 monosyllabic English language words shown in Table 3.2.  Once subject performed a 

nonword repetition experiment.  During single-word repetition experiments, subjects were 

instructed to say each stimulus word aloud into a microphone.  Certain subjects performed 

verb generation experiments and were instead instructed to say a verb that is appropriately 

associated with a stimulus noun.  Voice onset times (VOT) were determined by 

thresholding the rectified and low pass filtered (3rd order Butterworth filter, cutoff 

frequency of 10Hz) microphone signal by the mean. 

 
Figure 3.2 Experimental paradigm timing 
The stimulus and response timing of the single word repetition and verb generation paradigms.  Stimuli are 
presented either visually on a computer screen, or audibly through headphones.  The subject speaks the 
appropriate response into a microphone.  The dissociation band analysis windows for specific cognitive tasks 
are outlined in the colored rectangles. 

Table 3.2 Experimental paradigm  - Word Stimuli  

CVC Word B _ T C _ N H _ D L _ D M _ N P _ P R _ D S _ T T _ N 

EH-/ɛ/ Bet Ken Head Led Men Pep Red Set Ten 

AH-/æ/ Bat Can Had Lad Man Pap Rad Sat Tan 

EE-/i/ Beet Keen Heed Lead Mean Peep Read Seat Teen 

OO-/u/ Boot Coon Hood Lewd Moon Poop Rude Soot Tune 

 

Table 3.3 Experimental paradigm – Nonword Stimuli 

CVC 
Word B _ P CH_M D _V F _ P G _ D 

N _ 
M R _ S S _ B T _ V V_D 

AH-/æ/ Bap Cham Dav Fap Gad Nam Ras Sab Tav Vad 
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EH - /ɛ/ Bep Chem Dev Fep Ged Nem Res Seb Tev Ved 

IH-/I/ Bip Chim Div Fip Gid Nim Ris Sib Eiv Vid 

OO-/u/ Boop Choom Doov Foop Gud Num Roos Soob Toov Vood 

 

3.2 Dissociation Band Analysis 

To test the hypothesis that the high-gamma band exhibits nonuniform power changes we 

evaluated ECoG signals from six subjects (1-6) undergoing treatment for intractable 

epilepsy.  All subjects performed both auditory and visual single-word repetition tasks.  

Power changes between 60-500Hz were studied in a variety of ways to determine whether 

power changes at different frequencies could distinguish phases of each task or anatomic 

locations.  Results were consolidated across the subject population by evaluating 

consistency of power change in three focal anatomic areas.   

3.2.1 Preprocessing 

Researchers screened all signals for excessive noise prior to any analysis.  Channels with 

excessive noise were dropped from the entire analysis.  Trials with excessive environmental 

noise across all channels, or where speech occurred during stimulus or ITI periods, were 

also excluded from analysis.  After dropping noisy channels and trials, all signals were re-

referenced to a common average reference. 

3.2.2 Subjects  

Subjects 1-6 (four female) from Table 3.1 participated in this portion of the study.  All 

subjects were right-handed, had no indications of bilateral speech representation and 

received left hemisphere grid implants.   
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3.2.3 Power Spectral Densities  

Discrete estimates of spectral power for cognitive tasks used autoregressive methods.  The 

estimated power spectral densities (PSD),            , where f is the frequency bin, C is 

the channel, Tr is the trial, and w is the temporal window), were calculated using the Yule-

Walker method and a model order of 50 (Kay and Marple 1981).  The model order was 

selected to subjectively balance PSD smoothness with the ability to precisely detect known 

sinusoidal noise peaks (environmental noise).  Comparison of normalized PSD estimates 

across cognitive tasks between the autoregressive method and the Fast Fourier Transform 

are shown in Figures A.1 and A.2 and demonstrate qualitative and quantitative agreement 

in the spectral estimates.  Individual frequency bin spectral estimates were evaluated at 2Hz 

centers, between 2 and 500Hz by averaging the response of the autoregressive model 

transfer function at 10 samples spaced 0.2Hz apart and centered on each frequency bin.  

Cognitive task and corresponding ITI PSDs in each trial are the mean of five spectral 

estimates using 250ms windows with 75% overlap covering a 500ms block of samples as 

described in Equation (3.1).  Each block of samples was time-cued to the stimulus onset, 

stimulus offset or VOT in each trial.  Blocks of samples for stimuli started 100ms after 

onset.  Preparatory period blocks commence at auditory stimulus offset and productive 

speech blocks begin 100ms prior to the VOT.  The block timing parameters were selected 

empirically after reviewing time-frequency analyses. 

                    
 

 
            

 

   

 
(3.1) 
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Time courses of power in specific frequency bands that span multiple cognitive tasks were 

calculated using the complex Gabor wavelet transform with time-domain standard 

deviations of either 4/fc (f<120Hz) or 16/fc (f> 120Hz), where fc is the center frequency of 

the wavelet (Bruns 2004).  The transform magnitude was down-sampled by computing the 

mean in non-overlapping windows of 8 samples.  The 8-sample window size was selected 

to synchronize the time course of power in the ECoG signal with the stimulus timing from 

the BCI2000 software.  The down-sampled time-course data is referred to using the 

symbol,               where t is the time sample in the down-sampled series, and the 

other variables are as stated previously.   

3.2.4 Dissociation Bands  

Sets of frequency bands that dissociated either cognitive task or anatomy were analyzed in 

several ways.  These bands were first detected using normalized spectra, 

                     described in Figure 4.2B and Equation (3.2).   

                           
                   

            
  (3.2) 

  

This normalization technique helps remove the non-stationary changes in the ECoG signal 

and environmental noise that occur on short (~4s) time scales, equalizes the scales for 

power increases and decreases, and provides a basis to compare power changes to the 

schematic illustrations in Figure 2.1.  An artifact in the normalization method is the 

presence of downward pointing spikes in the normalized power spectrum (see Figure 4.1 

and Figure 4.2 for examples).  Since the power of the environmental noise was relatively 

constant and in general greater than the cortical power in the signal, the difference between 
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cognitive task and rest was negligible at the noise frequencies; therefore, a narrow slice of 

the normalized spectra is not significantly different than zero (ITI power level).   

The next step in identifying dissociation bands was to identify specific frequency bands 

with statistically significant differences in normalized power.  The normalized spectra for 

each channel and frequency bin between 60-500 Hz were first screened by cognitive task to 

identify channels and frequency bins with power changes that were significantly different 

than the intertrial interval.  These tests were performed on the normalized spectra from all 

trials using the nonparametric Wilcoxon signed-rank test.  For each subject and channel, 

the p-values for all tests (240 frequency bins x 6 cognitive tasks) were corrected for 

multiple comparisons using the false discovery rate (FDR) technique (Benjamini and 

Hochberg 1995).   This correction reduces the probability that spurious power fluctuations 

are detected as task-induced power changes.  Channels with significant power change (3-33 

channels per subject) were then examined to identify any dissociation bands between pairs 

of cognitive tasks or channels.  For each comparison, all frequency bins between 60-500 

Hz were tested to determine whether the medians of the pair of normalized spectra were 

statistically different.  These tests used the nonparametric Wilcoxon rank-sum test.  The p-

values from these pairwise comparisons were FDR corrected for 240 frequency bin 

comparisons.  To further reject spurious power increases, only bands consisting of at least 

three contiguous 2 Hz frequency bins having statistically distinct medians were further 

examined.  Those comparisons having at least two qualifying frequency bands were further 

tested for the presence of a magnitude reversal between two frequency bands.    It is also 

important to clarify that each single channel or pair of channels was only counted once in 

the consolidation of data across patients.  Specifically, even if a single electrode exhibited 

the dissociation band phenomenon for multiple pairwise cognitive task comparisons, it was 
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only counted once.  The combination of nonparametric statistical tests, FDR correction for 

multiple comparisons and the requirement for two bands with multiple contiguous 

frequency bins to have statistically different medians and magnitude reversals greatly 

reduce the likelihood that the dissociation bands we report reflect statistical sampling error. 

To further ensure that the familywise Type I error rate (false positive rate) remained at an 

acceptable level, we performed a Monte Carlo analysis to determine the actual chance 

occurrence rate of dissociation bands.  We selected the data from Subject 1‟s exemplar 

shown in Supplemental Figure 3 since this subject had the greatest quantity of dissociation 

bands.  Then, the labels for all of the hearing and speaking after visual cue normalized 

spectra were randomly permuted 100,000 times into surrogate groups A and B.  For each 

permutation, the surrogate group medians in each frequency bin were tested at the p=0.05, 

0.01 and 0.001 levels (with FDR correction) using the Wilcoxon rank-sum test.  We 

counted the number of permutations containing both of the following conditions:   

At least three contiguous 2 Hz bins where surrogate group A‟s median was significantly 

greater than surrogate group B,  

At least three contiguous 2 Hz bins where surrogate group B‟s median was significantly 

greater than surrogate group A.   

These conditions are identical to those used to detect dissociation bands.  We computed 

the familywise Type I error rate by multiplying the proportion of positive permutations in 

the Monte Carlo simulation by the number of comparisons performed in the study.  Only 

the results for which the familywise error remains below 0.05 are shown in the results. 

After identifying the dissociation bands, single-trial and time course data were also 

evaluated to further confirm the consistency of the power changes.  To show the 
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consistency of the power changes across the course of the experiments, the normalized 

spectra,                    , from 30-500Hz for every individual trial were plotted.  The 

boundaries of the dissociation bands are indicated to show the spectral regions that 

dissociated the cognitive tasks (or locations) of interest.  In order to visualize the temporal 

dynamics of power change in the dissociation bands, the time courses of normalized power 

change for each cognitive task are shown.  In a manner similar to that described for the 

normalized spectra, time courses were normalized by dividing each time sample by the 

mean power in the preceding ITI and taking the logarithm as shown in Equations (3.3) and 

(3.4).  One second windows of the normalized, down-sampled power in each frequency 

band                 were aligned to either stimulus onset (hearing or reading), stimulus 

offset (preparation) or voice onset (speaking).  Time course plots show the mean across all 

trials of the normalized, down-sampled power with 95% confidence intervals to illustrate 

the statistical significance of the difference in power over time.  

                  
 

    
                  

      

   

 (3.3) 

                                 
                       

                
  

(3.4) 

3.2.5 Cortical Activation Plots  

Summaries of power change across the population of six subjects show consistency of 

power change over a wide range of frequencies.  These figures show the proportion of 

channels within three focal anatomic areas (Broca‟s area, sensorimotor cortex and STG), 

that had statistically significant power changes in each specified cognitive task by 
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frequency.  These plots show trends in consistency of power change by frequency bin 

across subjects without allowing the actual magnitude of the power change to influence the 

shape of the plots.  Consistency of power change was evaluated using the coefficient of 

determination (R2) which quantifies the percentage of variance in each frequency bin 

attributed to the difference between a cognitive task and rest.  The statistical significance of 

each R2 was determined using the p-value of a one-way, balanced analysis of variance.  To 

correct for multiple comparisons in each plot a False Discovery Rate (FDR) correction was 

applied as follows (Benjamini and Hochberg 1995).  In each bar plot, the p-values for all 

frequency bins between 60-500Hz from the electrodes in the anatomic area of interest and 

the cognitive task under study are collectively corrected for multiple comparisons using a 

FDR level of 0.001.  After correction, significant p-values were counted by frequency bin 

for each electrode in the anatomic area of interest and cognitive task.  These counts were 

converted to a percentage by dividing by the total number of electrodes within the 

corresponding anatomic area, and then shown as bar plots.  Cortical activation bar plots 

show the percentage of electrodes with statistically significant power changes in each 

frequency bin for each combination of anatomic area and cognitive task.   

The shape of the bar plots helped evaluate the difference in the proportion of frequency 

bins with significant power changes between anatomic locations and cognitive tasks.  These 

differences were quantified using two-sample Kolmogorov-Smirnov (K-S) tests.  For each 

plot, the counts of electrodes with significant p-values (after FDR correction) at each 

frequency bin were converted to actual data samples.  For example, if three electrodes 

within a region were significant at 72Hz, three 72‟s were added to the set of data samples.  

The sets of samples from two cortical activation bar plots were then tested to determine if 
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they came from the same distribution (p<0.05).  The difference in shape provides a means 

to evaluate the differences in power change in focal anatomic locations across the 

population of subjects. 

3.3 Diversity Analysis 

3.3.1 Subjects 

Subjects 1, 2, 4-11 from Table 3.1 were selected to participate in this portion of the study.  

Subjects with significant perisylvian grid coverage were selected for this portion of the 

research.  Although four of these subjects had either right hemisphere grids or evidence of 

bilateral speech organization (7-10), these subjects were only excluded from portions of 

this analysis which study anatomic organization of information.  

3.3.2 Preprocessing 

Researchers screened all signals for excessive noise prior to any analysis.  Channels with 

excessive noise were dropped from the entire analysis.  Trials with excessive environmental 

noise across all channels, or where speech occurred during stimulus or ITI periods, were 

also excluded from analysis.  No common average referencing was performed on this data 

because of the data normalization technique described below.  For data sampled at 9600 

Hz, all signals were low pass filtered at 545 Hz (9th order Butterworth filter), then 

downsampled by a factor of 8, so the effective sampling rate of all ECoG and microphone 

signals was 1200 Hz. 



47 

3.3.3 Power Spectral Density Estimation 

Because this portion of the research was focused on the temporal dynamics of power 

modulation, PSD estimates used the complex Gabor wavelet transform with time-domain 

standard deviations of either 4/fc (f<120Hz) or 16/fc (f> 120Hz), where fc is the center 

frequency of the wavelet (Bruns 2004).  For each subject, ECoG power estimates were first 

calculated for the entire duration of the experiment.  These PSD estimates are referred to 

as           , where  is the absolute sample time in the context of the entire 

experiment, fc is the center frequency of the wavelet, and C is the channel of interest. The 

center frequency parameters for the Gabor wavelets were selected between 5 Hz and 560 

Hz with associated time-domain standard deviations to balance the time and frequency 

resolutions and avoid environmental noise frequencies.  The bandwidth of each wavelet is 

inversely proportional to time-domain standard deviations.  The specific center frequencies 

and time-domain standard deviations used in this analysis are listed in Table 3.4. 

Table 3.4 Gabor wavelet center frequencies and associated time-domain standard deviations 

fc (Hz) t (s) 

5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 33 36 40 
45 50 70 80 90 100 

4/fc 

110 130 140 150 160 170 190 200 210 230 250 260 
270 290 310 340 380 400 440 500 520 540 560 

16/fc 

 

3.3.4 Downsampling 

To reduce the amount of data, the Gabor PSD estimates (PG) were down-sampled by 

computing the mean in non-overlapping windows of 32 samples.  The 32-sample window 

size was selected because 1) it synchronized the PSD estimates with the stimulus timing 

from the BCI2000 software and 2) the majority of the power in the individual traces of 
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           existed below approximately 15 Hz.  The down-sampled PSD estimates are 

referred to as             where t is the time sample in the downsampled series, fc is the 

center frequency of the wavelet, C is the channel.  

3.3.5 Data Normalization  

For this analysis, it was desirable to allow features in all frequencies to have equal 

weightings regardless of their absolute power levels.  Since power in cortical signals 

decreases geometrically with frequency, a normalization was necessary (Nunez and 

Srinivasan 2006).  After downsampling, by the central limit theorem, the PSD estimate 

distributions become more normally distributed.  Therefore, the downsampled power 

spectral densities were z-scored as shown in Equation (3.7).   In the data driven analysis, to 

ensure that the machine learning computations were carried out agnostically on the testing 

data sets, the mean and standard deviation from the training data set were used to z-score 

the testing data.  In all Receiver Operating Characteristic (ROC) analyses, the 

downsampled PSDs were z-scored prior to division into training and testing datasets.   

              
                    

       
  

(3.5) 
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3.3.6 Data Driven Evaluation of Information Content 

To determine whether the ECoG signals contained sufficient information to identify 

phonemic content, we applied machine learning techniques to classify phonemes within 

cognitive tasks.  The data driven approach consists of six steps: partitioning, normalization, 

task and category selection, dimensionality reduction, whitening, parameter selection and 

classification.   

The downsampled PSD estimates PDS are first partitioned by trials into training and testing 

data.  To ensure that there are approximately equal numbers of stimuli or utterances for 

each phoneme, the training and testing data were segregated by runs.  A run consists of 36 

trials in which all of the stimuli were presented once.  Each subjected completed N = 2-6 

runs of the experiment, therefore N-way crossfold validation was performed on the data. 

In each crossfold, one run was set aside for testing, while the other N-1 runs were used for 

training and validation.  Of the N-1 training runs, 20% of the trials were set aside for 

validating classification parameters.     

Once partitioned, the downsampled data was normalized.  The training data was z-scored 

using the mean and standard deviation as shown in Equation (3.7).  The testing data was z-

scored using the mean and standard deviation from the training data.  The z-scored 

training set is referred to as        , while the testing set is referred to as        . 

The next step was to select the data during a single cognitive task and label the signals 

using the specific category (vowels or consonants).  Within each partition, for a given 

cognitive task (hearing or speaking), windows of samples surrounding the appropriate 

behavioral cue were captured.  Hearing windows corresponded to samples from 100 ms 
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before stimulus onset through 700 ms afterward.  Speaking windows captured samples 400 

ms prior through 600 ms after voice onset.  For each trial, the windowed samples of 

        and         for all channels and frequency bands were reshaped into a single 

vector representing that trial‟s data.  The matrices of the training and testing data for the 

data driven approach, XTr and XTx respectively, were labeled with the specific phoneme 

within the category being classified (e.g., one of EE, OO, EH, or AH for the vowel 

category).  

The vectors representing each trial contained many tens of thousands of features.  The 

downsampled, z-scored PSDs were composed of 43 frequency bands and 48-80 channels.  

The task windows were 31 – 39 time samples long.  Therefore, the total number of features 

per trial (64k-134k) far exceeded the total number of trials for any subject as shown in 

Table 3.1 and would result in overfitting problems during classification.  Therefore, the 

dimensionality of the trial data was reduced.  As an initial step, the features were 

constrained to an optimal set of channels.  The procedure for selecting the optimal set of 

channels is described in Section 3.3.12.1. Once the optimal set of electrodes was identified, 

the non-optimal electrodes were removed from the data and the dimensionality was further 

reduced using principal component analysis (PCA).  First, the mean for each feature (a 

single channel, frequency and time sample) across the training trials was removed from 

both training and test data.  The zero-mean training data matrix,     , has dimensions NT 

x Nf where      , the PCA resulted in the eigenvector matrix WTr, and a set of 

eigenvalues λTr.  The eigenvectors were NT column vectors (   ) with length Nf.  The NT 

eigenvalues indicated the percentage of variance accounted for by the principal 

components associated with each eigenvector.  The number of principal components used 
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after the dimensionality reduction, b, was treated as a parameter and calculated based on 

the total percentage of variance in the training data accounted for by the b eigenvectors.  

To transform the zero-mean training and test data (     and     ) into the principal 

component space, the matrices were multiplied by the first b eigenvectors as shown by 

Equation (3.6).  The transformed training data, YTr, had reduced dimensionality NT x b, 

where     .  The zero-mean testing data was also transformed into the reduced 

dimensionality PCA space using the same eigenvectors as shown by Equation (3.7).   

            
     

(3.6) 

  
 

            
     

(3.7) 

  
 

Prior to training the classifiers, each of the b features in the dimensionally reduced data 

were whitened.  Each feature was scaled and shifted to have a zero mean and range on the 

interval       .  Whitening the data accomplished two goals.  First, it ensured that all 

features met the expectation of support vector machine (SVM) classifiers that features are 

scaled between (-1, 1).  Second, it ensured that each feature had equal weighting in the 

classifier regardless of the amount of variance accounted for.  This is important because 

the differences between the cognitive behaviors (specific phonemes) classified were 

relatively subtle and may not have accounted for a large amount of variance in the data.   

Several classification algorithms were tested on the data including: linear discriminant 

analysis, a Naïve Bayes classifier, two variants of the large margin nearest neighbor 

algorithm, multi-class SVMs and random forests.  The optimal parameter set for each 

classification algorithm was selected in each crossfold using the validation data (20% of the 
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training data).  The parameters with the best classification accuracy on the validation data 

were applied to retrain the classifier on both training and validation samples prior to 

classifying the test data.  Table 3.5 enumerates the specific parameters and associated 

ranges swept for each classification algorithm. The number of features used by each 

classifier was also treated as a parameter and varied according to the percentage of variance 

accounted for by the principle components used in the dimensionality reduction step.  The 

variance accounted included 50, 60, 70, 80, 90 and 99 percent.   

Table 3.5 Classifier parameters swept 

Classifier Parameters Examined 

Linear Discriminant PCA Percentage of Variance (POV) 
(Number of Features) 

Naïve Bayes PCA POV, Number of Features 

Large Margin Nearest Neighbor PCA POV, Number of Features  
Number of Nearest Neighbors (1-10) 

Random Forest PCA POV, Number of Features 
Number of features per tree  
(1/4, 1/3, 1/2 of all features) 

Support Vector Machines PCA POV, Number of Features 
Kernel (linear, radial, sigmoidal) 
Regularization log10(C) = -6 - 6 

Gamma(kernel parameter) log2() = -6 - 6 

 

During testing, the classifier that was optimized on the training and validation data was 

applied to the test data.  It is important to restate that the test data was preprocessed using 

the parameters calculated from the training data.  First, the test data was z-scored using the 

means and standard deviations from the training set data.  After partitioning, the training 

feature means were removed from the test partition.  Next, the zero-mean test data was 

transformed into the PCA feature space using the eigenvectors from the training data. 

Finally, the reduced dimensionality test data features were whitened using the means and 

ranges from the training data.     
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Classification accuracy for each algorithm was summarized over all crossfolds in two ways.  

First, the overall percentage accuracy was computed along with an associated p-value based 

on the total number of trials, the number of trials classified correctly and the chance 

probability.  The p-value was calculated by determining the probability that random draws 

of the labels would produce the classifier accuracy or better as shown in Equation (3.8).   

            
  

 
 

  

          

            
(3.8) 

 Where 
 

  
  

 
   

   

         
 

 

 

And, NT is the total number of trials, 

n is the number of trials classified correctly,  

and p is the probability of randomly drawing the labels 

from the phonemic category (i.e., 1/4th for vowels,  

1/9th for consonants) 

 

  
 

Since it is possible to have classification accuracies that exceed the random probability p 

that are not statistically significant, the results were thresholded for statistical significance at 

p<0.05.  

3.3.7 Matched Filter Overview 

The matched filter receiver was introduced in the communications world nearly 50 years 

ago as an optimal receiver for pulse modulated carrier signals in the presence of white 

noise (North 1963) and has since been applied to many different digital modulation 
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schemes (Scholtz 1982).  If the transmitted amplitude modulated waveform is known by 

the receiver a priori, and the only interfering factor in the communications channel is 

additive white Gaussian noise, it can be shown that the matched filter has the optimal 

receiver performance when the output is sampled at intervals of the waveform period.  

Figure 3.3 and Equation (3.9) show the block diagram and analytical equation for the 

output of a simple matched filter.   

 
Figure 3.3 Matched filter correlator block diagram 
This block diagram illustrates the signal flow through a noisy channel and recovery using the matched filter 

correlator.  If the reference waveform, h(t), is known a priori, the correlator illustrated above recovers the 
maximum likelihood estimate of the symbol using the optimal threshold. 

                  
 

 

  (3.9) 

 
Where, s(t) is the received signal and h(t) is the reference waveform 

and T is the duration of the symbol 
 

   

When the reference waveform is received at the receiver input, (i.e.,          ), 

Equation (3.9) is simply the autocorrelation of the reference waveform and      is an 

estimate of the energy in the reference waveform.  When      represents another 

waveform, Equation (3.9) is the cross-correlation between the two waveforms.  Assuming 

that the two waveforms have equal total energies, then      will be an estimate of the 

similarity between      and     .  For example, if the two waveforms are orthogonal (e.g., 

sine and cosine), then      will be zero.  If the two waveforms are opposites, (i.e.       

      ), then      will be the negative of the autocorrelation.    

The continuous output of the integrator in Figure 3.3 is a sliding correlation between the 

reference waveform and the received signal and is defined analytically in Equation (3.10). 
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The output score,     , at any point in time provides an estimate of the similarity of the 

previous T seconds of the received signal compared to the reference waveform.   

                  
 

   

  (3.10) 

   

An example illustrating graphically how the matched filter correlator provides a similarity 

score between different received waveforms and the reference is shown in Figure 3.4 

below.   

 
Figure 3.4 Matched filter score comparison 
Illustrative example representing the difference in matched filter score for different signals.  The reference 

waveform is a single period of a sine wave(                ).  The received waveform,     , when 

correlated with the reference waveform yields the score      which is sampled at the end of each reference 
waveform period. For each signal waveform (a. through e.), note the change in the both the raw score and 

the score matched filter sample points indicated by the red circles.  The equations for each waveform in      

are: a)     ; b) -    ; c)           ; d)      ; e) sawtooth wave with same frequency as     .   

3.3.8 Multi-Dimensional Matched Filters for Neural Motifs 

Since neural signals exhibit amplitude modulations in specific bands, the patterns of power 

modulation in several channels and frequency bands could be considered multi-carrier, 

multi-site waveforms.  These properties lend themselves to the application of a matched 

filter.  The multi-dimensional matched filter also captures a diverse snapshot of the neural 
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motif associated with a specific cognitive behavior.  Since the ECoG signals are 

nonstationary and the noise characteristics may not be white (indeed in many situations it is 

not clear which waveforms should be considered “signal” and which should be considered 

“noise”), performance may be imperfect.  However, the matched filter does offer a 

mechanism through which the structure of the neural motif correlated with specific 

behaviors may be evaluated.  In the following paragraphs, we describe how the matched 

filter concept is applied to ECoG data.  First, we define the discrete multi-dimensional 

matched filter.  Next, we define how the multi-dimensional matched filter reference 

waveforms are calculated.  Finally, we examine how the matched filter will be modified to 

modulate the information content in various dimensions.   

3.3.8.1 Discrete Multi-Dimensional Matched Filter 

Since all of the ECoG signals have been digitally sampled, the remainder of the equations 

will use discrete summations instead of integrals.  After the ECoG PSDs were 

preprocessed, downsampled and z-scored (    ), they had dimensions of time samples, 

channels and frequencies.  The matched filter correlator score equation (3.10) was 

therefore modified to consolidate all three dimensions as shown in Equation (3.11).  

                              

       

 

   

  (3.11) 

 

Where,  

N is the number of time samples in the reference waveform h 

 
 
 is the set of Gabor wavelet center frequencies 

and C is the set of channels that were recorded 

 

   

This version of the matched filter correlator combines all of the dimensions into a single 

score at each time sample, yet it maintains the properties of the original matched filter 
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receiver.  If the input signal and reference waveform are similar,      will be high, if they 

are dissimilar,      will be low. 

3.3.8.2 Matched Filter Reference Waveforms 

Matched filter waveforms were computed for combinations of single cognitive tasks 

(hearing or speaking) and single phonemes (one of 13 shown in Table 3.2).  To compute 

the multi-dimensional reference waveforms, the downsampled and z-scored power 

estimates,     , are first organized into trials, then subdivided into training and testing 

trials.  A fourth index (Tr) is now included with                 to reference a specific 

trial.  The time-sample index (t) is now understood to be within the context of a single trial.  

After trial parcellation, training trials with the appropriate phoneme label were identified.  

Windows of time samples during the cognitive task of interest (either hearing or speaking) 

were saved for the reference waveform computation.  The reference waveform for that 

specific task and phoneme combination was the average for each time sample, channel and 

frequency tuple over the training trials.  The process is described graphically in Figure 3.5 

and in Equation (3.12). 

 
Figure 3.5 Trial structure, timing and matched filter reference waveform construction 
The basic structure of the auditory single word repetition experiment shows that each trial consists of ITI, 
stimulus and response.  The horizontal bars below Trial 1 show the relationships of the reference waveform 
time windows for hearing and speaking to the stimulus or voice onset.  To determine the reference waveform 
for a particular cognitive task and phoneme (speaking the phoneme EE in this example), the downsampled 
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and z-scored PSDs (PDSZ) from each trial with the relevant phoneme, during the temporal window 
corresponding to the specific task are first collected (blue boxed time-frequency plots).  The reference 

waveform hSayEE (red boxed time-frequency plot) is the average across trials. 

                 
 

   

                 

   

    

  (3.12) 

 

Where,  

NTr is the number of training trials with the phoneme m,  

t is the set of all time samples in the temporal window of interest for 

the specific Task,    is the set of Gabor wavelet center frequencies 

and C is the set of channels that were recorded 

 

   

A set of reference waveforms hTask,m were generated for each cognitive task and phoneme 

combination.  Reference waveforms for general cognitive tasks (e.g., speaking all 

phonemes) were generated by averaging PDSZ for a specific cognitive task over all 

phonemes.  Likewise, by applying each reference waveform in the matched filter sliding 

correlator, a family of matched filter scores ZTask,m[t] was generated for all cognitive tasks 

and phonemes, and general cognitive tasks. 

3.3.8.3 Matched Filter Reference Waveform Dot Product Matrices 

To compare the distinctiveness of the reference waveforms for different phonemes within 

the same cognitive task, we computed the dot products between reference waveforms and 

summated the results across subjects.  Comparisons were divided by cognitive task (hearing 

or speaking) and phonemic category (vowels or consonants).  For each subject, task and 

category, dot products between reference waveforms for different phonemes were 

computed, and then normalized by dividing each dot product by the largest single dot 

product for that subject, task and category.  Finally, data for each task and category was 

combined by taking the average of the normalized dot products across subjects.  The data 

were visualized by plotting the mean dot product scores in a format similar to a confusion 

matrix. 
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3.3.8.4 Modulating Information Content 

The matched filter concept also provided a structure with which to modify the amount of 

information in the three dimensions of the reference waveform.  Two approaches to 

modulating information content in the matched filter were used:  truncation and 

smoothing.  Truncation removed information from the matched filter.  By limiting the 

range of the summations in Equation (3.11), a range of time samples, frequencies or 

channels were removed from the reference waveform.  In addition to removing 

information, this approach reduced the total energy in the reference waveform and 

therefore reduced the signal to noise ratio.  The second approach to modifying the 

matched filter was smoothing.  This method modified the reference waveform by adding 

additional summations.  Prior to averaging the response over the training trials, one or 

more dimensions were averaged as shown in Equations (3.13) and (3.14).  

                         
 

   

  
 

  

                 
  

    

   

    

  (3.13) 

 

Where, NTr is the training trials that had phoneme m,  

Nw is the number of time samples in the temporal window for the 

specific Task; t is the set of all time samples in the temporal window 

for the Task,    is the set of Gabor wavelet center frequencies and C 
is the set of channels that were recorded 

 

                         
 

   

  
 

  

                
    

       

   

    

  (3.14) 

 
Where, Nf is the number of center frequencies being averaged 

between fc,l and fc,h, the lower and upper bounds of a band of center 
frequencies being averaged.  All other symbols are as stated above. 

 

   

The smoothing approach was applied to the time and/or frequency domains and reduced 

the amount of information without necessarily decreasing the total energy in the reference 

waveform.  Examples illustrating the smoothing concept in the time and frequency 

domains are shown in Figure 3.6. 
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Figure 3.6 Example matched filter and smoothing techniques 
The three matched filters excerpts demonstrate the effects of smoothing in the time and frequency domains.  
The full matched filter (left) reveals several distinct temporal and spectral power modulation patterns before 
smoothing.  The temporal average (center) replaces the temporal dynamics at each center frequency with the 
average power level across the time window at that frequency.  Note that the spectral diversity is retained.  
The spectral average smoothing technique (right) replaces the spectral dynamics in frequency bands above 60 
Hz with the average power across all bands from 70-560 Hz for each time sample in each trial.  In this case, 
temporal diversity is retained. 

The truncation and smoothing reference waveform variants which modulated the 

information contribution from each dimension of space, time and frequency each 

produced matched filter scores that were compared quantitatively using the Receiver 

Operating Characteristic (ROC) curve.   

3.3.9 Receiver Operating Characteristic Analysis 

The ROC curve characterized the sensitivity and specificity of a matched filter reference 

waveform quantitatively (Peterson, Birdsall et al. 1954).  The ROC curve was developed by 

sweeping a threshold over the range of the matched filter score for a specific reference 

waveform to determine whether the task and phoneme represented was detected.  Scores 

above the threshold indicated a detection of the task and phoneme at that threshold level.  

The detections were then compared to the labels.  The number of true positives and false 

positives were counted and plotted as a single point on the ROC curve.  As the threshold 

was raised from the lowest to the highest matched filter score, the ROC curve trace moved 

from the lower right corner (0% false positives, 0% true positives) to the upper right 
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corner (100% false positives, 100% true positives).  The area under the ROC curve (AUC) 

was an indicator of the reference waveform‟s ability to distinguish the specific cognitive 

task and phoneme pair from all other tasks and phonemes and was therefore the 

quantitative metric used to evaluate the reference waveform.  This process is illustrated 

graphically in Figure 3.7. 

 
Figure 3.7 ROC Curve development from matched filter score 
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Exemplar data illustrates how the matched filter reference waveform (hSay,EE) is correlated with the 

downsampled and z-scored PSD estimates (PDSZ) to compute the matched filter score (ZSayEE).  The task and 

phoneme labels are shown on the same time scale as PDSZ and ZSay,EE.  The two yellow stars highlight specific 
times when the phoneme „EE‟ was spoken.  Thresolding the matched filter score at different levels produces 
different detection outputs. By counting the percentage of true and false positive detections compared to the 
label, the ROC curve is developed.  The area under the ROC curve in gray yields the score which quantifies 
the information content in the reference waveform.   

As in the data driven analysis, we used a multiple crossfold validation approach in which 

the reference waveforms were calculated on the training trials and then evaluated on a 

separate set of testing trials.  Crossfolds are separated by runs of 36 trials (each stimulus 

{Kruskal, 1952 #603}presented once) as described in Section 3.3.6.  To evaluate the 

performance of the reference waveforms, ROC curves were generated for the entire time 

course of the training data (classification) and the testing data (prediction).  To quantify the 

contribution of high-gamma band dynamics we systematically varied the contributions of 

spatial (channels), temporal and spectral diversity using different matched filter variants.    

3.3.10 Area Under the Curve Analysis of Variance 

The AUC metric for several reference waveform variants formed the basis of a full-

factorial, N-way Analysis of Variance (ANOVA) experiment with replications.  Table 3.6 

contains the different factors involved in the ANOVA.  The results of the ANOVA were 

the amount of variance accounted for by each individual factor in the experiment and the 

significance of each factor in predicting AUC in the model.  Pairwise interactions between 

factors were also considered.  The ANOVA technique assumes that errors are distributed 

normally.  Examination of the errors revealed a non-Gaussian distribution, therefore, tests 

for significance between AUC scores generated by different reference waveform variants 

used the nonparametric Kruskal-Wallis test {Kruskal, 1952 #603}.   

Table 3.6 N-Way ANOVA Factors and Levels 

Factor Levels Degrees of Freedom 

Subjects 10 9 
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Cognitive Tasks 2 (Hearing, Speaking) 1 

Phonemes 13 12 

Spatial Variants 3 (Single Best Electrode, Optimal Set of 
Electrodes, Whole Grid) 

2 

Temporal Variants 3 (Single Best Time Sample, Time 
Average, Time Varying) 

2 

Low Frequency (<60 Hz) 
Spectral Variants 

3 (Not Included, Spectral Average, 
Discrete Bands) 

2 

High Frequency (<60 Hz) 
Spectral Variants 

3 (Not Included, Spectral Average, 
Discrete Bands) 

2 

 

This experiment requires (10 x 2 x 13 x 3 x 3 x 3 x 3) 21,060 experimental configurations 

with 2-6 replications per configuration based on the number of crossfolds performed by 

each particular subject.  Additionally, the experiments were repeated with the matched 

filters for general cognitive tasks (hearing or speaking all phonemes).  To complete these 

experiments in a reasonable amount of time, computations were performed using the 

facilities of the Washington University Center for High Performance Computing, which 

were partially provided through grant NCRR 1S10RR022984-01A1.   

Although the ANOVA factors for subjects, cognitive tasks and phonemes were not of 

primary concern in this analysis, they were a significant source of variance and were 

therefore included in the model.  The variants exploring the spatial, temporal and spectral 

diversity bear further discussion.  The temporal and spectral dimensions each had three 

levels which correspond to matched filter variants which: 1) truncated the information in 

that dimension,  2) smooth the information 3) include the full amount of information from 

that dimension.  Consider the temporal variants of the matched filter as an example.  The 

truncated version used only the best single time sample from the reference waveform (the 

methodology for choosing the best sample will be described in the following sections).  

The smoothed variant used all time samples, but averages the power for each channel and 

frequency tuple over the entire matched filter window as described in Section 3.3.8.4.  The 
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full-diversity variant used all time samples in the reference waveform as originally 

computed.  The three levels of spatial variants were the best single channel, optimal 

number of channels and all channels.  Two sets of spectral variants were used to allow 

analysis of the high gamma bands (>60 Hz) and lower frequencies separately.  Each set of 

spectral variants (<60 Hz and >60 Hz) also had three variants.  The truncated spectral 

variant removed all of the relevant frequency bands.  The smoothed spectral variant 

averaged the power across the relevant bands, and the full diversity spectral variant used 

the reference waveform as originally computed.  In order to complete the full factorial 

experimental design, each of these reference waveform variants were also combined.   

The results of the ANOVA determined the significance of individual factors and multi-

factor interactions in accounting for variance in the model.  Additionally, each of the 

dimensional variants (space, time and frequency) will be examined to determine if the 

populations for each level are significantly different.  This analysis helped test the 

hypothesis that information is diversely encoded in the neural motif, and helped quantify 

the extent of diversity in each dimension.   

3.3.11  Monte Carlo Analysis 

Because of the regular temporal structure of the experimental paradigm, which had a 

deterministic ITI, there was a significant rhythmic component in the ECoG signal 

correlated with the time scale of specific cognitive tasks.  In order to determine the true 

random level of performance on this data set, a Monte Carlo analysis was performed.  The 

downsampled, z-scored PSD estimates were kept intact while, on a trial-wise basis, the 

stimulus labels, ITI duration and voice onset timing were randomly jittered 1000 times.  

For each random iteration, trial boundaries were reestablished, trials were partitioned into 
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training and testing sets, a reference waveform was generated on the training data set, then 

the matched filter scores were computed for the training and testing data.  Different 

percentile AUC scores from the testing data during the Monte Carlo simulation were used 

as the threshold for statistical significance.  For example, if results with a p-value of less 

than were desired, the 95th percentile AUC score from the Monte Carlo simulation was 

selected as the significance threshold. 

3.3.12 Dimensional Contribution to Diversity Analysis 

Beyond the ANOVA, additional studies quantified the information contribution of each 

dimension (space, time and frequency) of the neural motif.   

3.3.12.1 Spatial Diversity Analysis 

To determine the extent of cortical areas that provide significant information within the 

matched filter reference waveform, two additional analyses were performed.  As a 

preliminary step, matched filter scores using reference waveforms from all channels 

individually were calculated.  The single channel matched filter score was then correlated 

with the label of interest.  Channels were rank ordered by decreasing correlation r2 with the 

labels for each pair of tasks and phonemes.  Then AUC scores were calculated by adding 

single channels in order of decreasing r2.  The result was a trace that showed matched filter 

score versus the number of channels included in the reference waveform.   

The second spatial analysis again used reference waveforms from single electrodes.  The 

goal of this analysis was to determine how many single channel reference waveforms 

produced matched filter scores above chance for each cognitive task.  This analysis was 

completed for hearing and speaking individual phonemes, then for general cognitive tasks.  
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Chance level AUC scores for the single channel analysis were established by randomly 

shuffling the time and frequency and channel indices of the matched filter 10 times for 

each phoneme, task and crossfold (520-1560 simulations per subject). On a per subject 

basis, the average AUC score over crossfolds for each pair of cognitive tasks and 

phonemes was compared to the 95th percentile chance AUC score to determine the 

statistical significance of the score.  The number of phonemes with above chance AUC 

scores for each single channel and cognitive task were plotted on the MNI atlas brain as a 

heat map.  To consolidate the results across patients with grids in different yet overlapping 

locations, the total number of phonemes with above chance scores in each single location 

was normalized by the total number of electrodes across patients at that location.   

3.3.12.2 Temporal Diversity Analysis 

Two additional analysis of temporal diversity in the neural motif were performed as well.  

First, for each cognitive task and phoneme, the matched filter scores from reference 

waveforms using a single time sample were computed.  Using the correlation scores 

between the matched filter scores and the labels, the time steps were rank ordered by 

decreasing r2.  After ranking, AUC scores were computed by adding single time samples to 

the reference waveform in decreasing r2 order.  A plot of AUC score versus the number of 

time samples included in the reference waveform was then plotted by cognitive task for 

each class of phonemes (consonants/vowels) as well as the general cognitive tasks.   

Secondly, to determine if there were trends across the subject population in the relative 

importance of the different time samples in the hearing and speaking windows, the median 

rank of each time sample across subjects, phonemes and crossfolds was compared to those 

for the generic cognitive tasks.  To visualize the trends, the rank (1 is best, higher is worse) 
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was converted to a quality score by subtracting the rank from the total number of time 

samples in the behavioral time window (31 time samples for hearing, 39 time samples for 

speaking).  The conversion from rank to quality makes the plots more intuitive since higher 

ranks are qualitatively better. 

3.3.12.3 Spectral Diversity Analysis 

The spectral diversity analysis was very similar to that of the temporal diversity analysis.  

The only difference was the substitution of individual frequency bands for time samples.  

Instead of rank ordering correlations from single time samples, the r2 values from reference 

waveforms using single frequency bands were used.  The AUC scores from matched filters 

adding single frequency bands in order of decreasing r2 were computed.  Then the ranks of 

each frequency band were computed and converted to quality scores as described in the 

previous section as well. 

3.3.13  Exemplar Feature Comparisons 

Exemplar data illustrating differences between features of reference waveforms for various 

phonemes and cognitive tasks were analyzed using nonparametric methods.  Although the 

PSDs were z-scored, quantitative analysis of different features revealed that the 

distributions were non-Gaussian.  To determine when a feature was statistically significant 

across trials, we used the Wilcoxon signed-rank test (Wilcoxon 1945).  This nonparametric 

test quantifies the probability that the median of a specific sample set is different than zero.  

To determine when a feature was statistically distinct between two sets of trials, we used 

the Wilcoxon rank-sum test (Wilcoxon 1945).  This non-parametric test quantifies the 

probability that the median of the differences between the populations is nonzero. 
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3.4 Microarray Methods 

As discussed in Chapter 1, the third aim of this dissertation is to examine microarray 

ECoG signals and determine if the spectral diversity discovered in Aim 1 and the spatio-

temporal dynamics examined in Aim 2 exist at a spatial scale one order of magnitude 

smaller.  The data from these experiments comes from three subjects (11-13) that received 

ECoG microarray implants simultaneously with the clinical macrogrids.  In general, the 

analysis techniques for this aim were identical to those described above, with the exception 

that for the third aim, they were applied only to microarray ECoG signals.  Minor 

differences in preprocessing and experimental tasks are described below. 

3.4.1 Microarray Data Preprocessing 

Because the microarray electrode impedances were one order of magnitude higher than the 

macrogrid electrodes, additional preprocessing steps were required.  All microarray data 

was captured at 9600 Hz with no filtering.  To remove excessive environmental noise, the 

raw signals were filtered using a comb filter with notches at harmonics of 60 Hz (zero-

phase, infinite impulse response comb, Q=35) prior to the rest of the preprocessing 

described in Section 3.3.2. 

3.4.2 Experimental Setup 

Two of the subjects for this study performed different experiments.  Subject 12 was 

congenitally blind and therefore did not perform the visual single word repetition 

paradigm.  Instead, for the dissociation band analysis, ECoG data from the auditory single 

word repetition task and verb generation tasks were used.  Because of faulty microphone 

connections, none of the speaking data from Subject 12 was usable.  An additional auditory 
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task used for the dissociation band analysis was an auditory motion detection paradigm.  

The subject listened to stereo auditory stimuli that either moved from left to right, right to 

left, or remained stationary.  The subject was required to click a mouse button if the sound 

moved.  Subject 13 used a different set of stimuli for the auditory single word repetition 

experiment studied for the dissociation band analysis.  These stimuli were not phonemically 

matched, therefore a second experiment was used for the diversity analysis.  For the 

diversity study, Subject 13 heard and repeated the phonemically matched nonwords shown 

in Table 3.3.  
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4 High Frequency Nonuniformities 

We tested the first hypothesis of this dissertation, that different cognitive tasks can evoke 

distinct patterns of spectral power modulation in bands above 60 Hz, using two analyses.  

First we examine the nonuniformity of power modulation across cognitive tasks.  Second, 

we quantify the nonuniformity by counting dissociation bands.  Finally, we present a 

consolidated view across subjects. 

4.1 Behavioral Data  

Each of the six subjects performed both the auditory and visual versions of the single-word 

verbal repetition paradigm.  The mean voice onset time (VOT) across subjects for the 

auditory task was 998 ms (SD=453 ms), and for the visual task was 825 ms (SD=463 ms).  

These statistics are on the same order of magnitude as those from studies using similar 

tasks (Church, Coalson et al. 2008) and indicate that the subjects did not have difficulty 

performing the experimental tasks.   

4.2 High-Gamma Band Power Changes are 
Nonuniform and Extend up to 500 Hz  

 

Each of the six subjects in this study had electrodes with behaviorally-induced power 

changes that were nonuniform, but were instead concentrated in specific frequency bands.  

These nonuniform power changes are most visible in the normalized log magnitude spectra 

as shown for an exemplar subject and single electrode in Figure 4.1.   In this example, there 

are marked differences between the spectra for the six different cognitive tasks especially in 

the frequency bands between 60-120, 122-400 and 480-500Hz.  This electrode responded 
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strongly to the auditory stimulus between 60-160Hz, however, the visual stimulus response 

had a much smaller magnitude and was statistically different than rest primarily between 

140-160Hz & 200-230Hz.  The two speaking tasks had similar responses across a wide 

range of frequencies between 90-400Hz with notable differences in the 80-130Hz and 480-

500Hz bands.  The two preparatory periods appear to be a blend between the spectral 

patterns of the stimuli and vocal response.  All subjects had electrodes that exhibited 

nonuniform power changes in the normalized spectra across various cognitive tasks.  In 

many cases, the nonuniformities in the high-gamma band were specific enough to 

dissociate different cognitive tasks and anatomic locations. 

 
Figure 4.1 Single subject normalized spectra for all cognitive tasks 
Exemplar normalized spectra illustrate that high-gamma band power changes are nonuniform and distinct 
between tasks. The blue center line is the mean normalized spectra across 71 trials.  The shaded area 
encapsulates the 95% confidence intervals.  Vertical dashed lines at 60, 100 and 250Hz outline typical gamma 
band analysis boundaries.  Frequencies with normalized spectra greater than zero indicate behavior-induced 
power increases, while values less than zero reflect power decreases.  Note that for all six cognitive tasks, the 
patterns of spectral power change are unique across a wide range of frequencies.  Each cognitive tasks has 
different bandwidths of frequencies that are statistically different than rest, and in some bands the direction 
(sign) of power change between cognitive task reverses (e.g., 60-120Hz Hearing vs. Speaking after Visual 
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Cue). The sharp downward spikes are the result of environmental noise components that do not change in 
magnitude between cognitive task and ITI. 

4.3 High-Gamma Dissociation Bands Quantify 
Nonuniformity in Spectral Power Change  

We quantified the nonuniformity of power change in high-gamma frequencies by 

identifying dissociation bands.  When the independence of power change in two different 

high-gamma frequency bands can dissociate cognitive tasks or anatomic locations, they are 

identified as “dissociation bands” as illustrated in Figure 4.2B and C and as follows.  It is 

important to clarify here that a dissociation band is broader than the individually 

highlighted zones in the figures.  We define a single band as the conjunction of several 

contiguous frequencies that have statistically significant power modulation in the same 

direction.  The definition of dissociation bands requires power modulations in opposite 

directions in contrasting cognitive tasks or separable anatomic locations. Thus, for example 

in Figure 4.2B, the frequency bands between 54-92 Hz and 284-324 Hz show preferential 

power modulation correlated with either hearing words or saying a word that has been 

heard.  The band between 54-92 Hz is interrupted by artifact and similarly the band 

between 284-324 Hz.  For clarity, the single frequency bin in each frequency band is used 

to illustrate the reversal in power magnitude.  In the lower frequency band (54-92 Hz) the 

80Hz bin illustrates the confidence intervals on normalized power change are 

nonoverlapping and Speaking after Auditory Cue has a greater normalized power than 

Hearing.  In the second highlighted frequency band (284-324 Hz) the 288 Hz bin illustrates 

again the confidence intervals are nonoverlapping, but Hearing induces a greater power 

change than Speaking after Auditory Cue.  Additionally, because the independence of low-

gamma (30-60 Hz) and high-gamma (>60 Hz) has been previously reported, we also 
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constrained our search for dissociation bands to the frequency range between 60-500 Hz 

(Crone, Boatman et al. 2001; Edwards, Soltani et al. 2005).  The single-trial normalized 

spectra in Figure 4.2D illustrate the consistency of the dissociation band phenomena.  

Over 216 trials, the normalized spectra show that for Hearing, the 284-324 Hz band has a 

consistently higher magnitude of power change (warmer colors) than Speaking after the 

Auditory Cue.  Likewise, in the 54-92 Hz band, the Speaking after Auditory Cue 

normalized spectra have consistently larger magnitudes of power change (warmer colors) 

than Hearing.   The reversal in normalized power is also evident in the time-course of 

power in the two dissociation bands. Figure 4.2E shows the mean and 95% confidence 

intervals of the normalized, down-sampled spectra for the frequency bands centered at 

80Hz and 288Hz.  Over the course of the three cognitive tasks in the auditory repetition 

paradigm, the power levels reverse toward the end of the preparatory task and just prior to 

voice onset.  From these three views of the spectral power, it is evident the power levels at 

this electrode are independent enough to dissociate the different tasks in these two high-

gamma sub-bands.   

 
Figure 4.2 Dissociation Band Dynamics 
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The dynamics of power in dissociation bands.  A) Exemplar mean raw PSDs for rest and two cognitive tasks 
(H=Hearing, SA=Speaking after Auditory Cue) for N=216 trials.  Yellow bands around 80Hz and 288Hz 
highlight high-gamma frequency bands that dissociate the two tasks. B) Mean normalized spectra (solid lines) 
with 99.9% confidence intervals (shaded areas) show differences in the spectral power change patterns as 
averaged over all trials.  Nonoverlapping confidence intervals and a reversal in the relationship between 
power levels in the two highlighted frequency bands illustrate a pair of dissociation bands.  Note also that 
behaviorally induced power change is significantly different than rest as high as 500Hz.  C) Bar plot with 
99.9% confidence intervals illustrates the statistical significance of the difference in normalized power 
between the two cognitive tasks for the dissociation bands in B.  This format is used for other subjects in 
Figure 4.3.  D) Single-trial normalized spectra for the single electrode and two cognitive tasks in A, B and C 
illustrate the consistency of power change in the dissociation bands across trials. These plots show that 
normalized spectra in the dissociation bands are not dominated by outliers in any single trial.  The color 
intensity outside of the dissociation bands is subdued to highlight activity in the bands under study.  E) Time 
courses of power in the dissociation bands from A, B and C.  The mean down-sampled and normalized 
power level for each frequency with 95% confidence intervals shows that during over the course of the 
experiment, power levels in the two dissociation bands reverse. 

It is important at this point to address the affect of the system noise floor on this analysis.  

It is generally accepted that electrophysiological spectra demonstrate power law behavior, 

dropping off geometrically (      
  ) {Nunez, 2006 #15}.  In the raw spectra shown 

in Figure 4.2A, the effect of the noise floor causes the power spectral density to stop 

decaying geometrically once the noise power overwhelms the physiological signal.  All of 

the quantified analyses use the normalized spectra described by equation (3.2) which 

account for the system noise floor.   The system noise floor does not change on the time 

scale of a single trial (4.533s in this research).  Therefore the normalized spectral magnitude 

in bands obscured by the noise floor should not be statistically different than zero.  

However it is possible for behavior-induced power changes to rise above the system noise 

floor, while falling below the level of noise during the intertrial interval.  In this situation, 

the activity spectra will be normalized by the noise floor thereby reducing the detected 

magnitude of the change compared to the actual physiologic modulation.  With this effect 

in mind, it is clear that the system noise floor artifact has no ability to create spurious 

dissociation bands at high frequencies, it can only obscure them.   
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Figure 4.3 Dissociation Band Exemplars 
Exemplar dissociation bands for all six subjects. See Error! Reference source not found. for the derivation 
f individual bar plots.   The electrode(s) of interest, confidence intervals, associated Brodmann Area (BA) 
labels, and cortical location on the MNI model brain are shown above each bar plot for reference.  Subject 2 
did not have single electrodes with dissociation bands and therefore the exemplar shows power change 
reversals between two electrodes during the same cognitive task.  Cognitive Task Key:  H=Hearing, 
R=Reading, PA=Preparation after Auditory Cue, PV=Preparation after Visual Cue, SA=Speaking after 
Auditory Cue, SV=Speaking after Visual Cue. 

We identified several pairs of dissociation bands for each subject.  The single electrode 

dissociation bands represent single anatomic locations where different high-gamma bands 

distinguish cognitive tasks.  We also tested for pairs of electrodes that had different high-

gamma bands that dissociated anatomic locations during the same cognitive task.  Figure 

4.3 contains exemplar single or multi-electrode dissociation bands for all six subjects.  Five 

of the six subjects had single-electrode dissociation bands that distinguished strictly 

cognitive task.  The second subject‟s exemplar comes from a pair of electrodes that 

dissociated solely anatomic locations.  Figure A.3 contains the normalized spectra 

associated with each subject‟s exemplar dissociation bands.  While many of the 

dissociations were caused by differences in the magnitude of normalized power increases, 

there were dissociation bands that were caused by significant power decreases.  Figure A.4 

summarizes the percentages of single electrode dissociation bands in which at least one of 

the dissociating frequency bands had a significant power decrease.   
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Figure 4.4 contains a quantitative summary of the electrodes and electrode pairs with 

dissociation bands by individual subject and statistical strength.  To ensure that the 

familywise Type I error rate (false positive rate) in this figure remained at an acceptable 

level, we performed a Monte Carlo analysis to determine the actual chance occurrence rate 

of dissociation bands.  We selected the data from Subject 1‟s exemplar shown in Figure A.3 

since this subject had the greatest quantity of dissociation bands.  Then, the labels for all of 

the hearing and speaking after visual cue normalized spectra were randomly permuted 

100,000 times into surrogate groups A and B.  For each permutation, the surrogate group 

medians in each frequency bin were tested at the p=0.05, 0.01 and 0.001 levels (with FDR 

correction) using the Wilcoxon rank-sum test.  We counted the number of permutations 

containing both of the following conditions:   

At least three contiguous 2 Hz bins where surrogate group A‟s median was significantly 

greater than surrogate group B,  

At least three contiguous 2 Hz bins where surrogate group B‟s median was significantly 

greater than surrogate group A.   

These conditions are identical to those used to detect dissociation bands.  We computed 

the familywise Type I error rate by multiplying the proportion of positive permutations in 

the Monte Carlo simulation by the number of comparisons performed in the study.  The 

table below records the factors contributing to the total number of comparisons as well as 

overall familywise Type I error rate.   

Table 4.1 Familywise Type I Error Rate Computations 

Dissociation 
Band Test p-

value 0.05 0.01 0.001 
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Permutations  
with dissociation 

bands 58 4 0* 

Single Channel 
Activity 

Comparisons 15 15 15 

Channels with 
Significant Power 

33 + 4 + 3 + 16 + 9 
+ 28  = 93 19 + 11 + 3 + 20 = 53 8 + 9 + 2 + 9 = 28 

Single Channel  
Type I Error Rate 

15 x 93 x 58/100,000   
= 0.8091 

15 x 53 x4/100,000 = 
0.0318 

15 x 28 x 1/100,000 
= 0.0042 

Channel Pair 
Activity 

Comparisons 6 6 6 

Channel Pairs 
with Significant 

Power 

33 x 32 + 1 x 3 + 3 x 
2 + 16 x 15 + 9 x 8 + 

28 x 27 = 2,133 

19 x 18 + 11 x 10 + 3 x 
2 +  

20 x 19 = 838 

8 x 7 + 9 x 8 + 2 x 
1 +  

9 x 8 = 202 

Channel Pair 
Type I Error Rate 

6 x 2,133 x58/100000 
= 7.4228 

6 x 838 x 4/100,000 = 
0.1526 

6 x 202 x 1/100,000 
= 0.0121 

* There were no random occurrences after 100,000 permutations, therefore we used 

a 1/100,000 rate for the rest of the calculations. 

The tests highlighted in yellow all maintained familywise Type I error rates below 0.05, and 

therefore prove that our results are significant, even after the most conservative correction 

for multiple comparisons.  These corrections may be so stringent, that they increase the 

number of Type II errors (false negatives) in our analysis; however, to show that the data 

support our hypothesis under the most stringent of corrections, only these results are 

shown below. The results in Figure 4.4 strongly support our hypothesis that nonuniform 

power modulations between 60-500 Hz can be specific to cognitive task and location.  The 

majority of subjects continue to exhibit both single channels and channel pairs that 

dissociate either cognitive tasks or anatomic locations even after correction for multiple 

comparisons.   
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Figure 4.4 Quantitative Summary of dissociation bands across the subject population 
Each bar shows the number of single electrodes (A) or electrode pairs (B) with dissociation bands for each 
subject by p-value. A) This chart quantifies the number of single electrodes with significant power changes in 
different high-gamma frequencies that dissociated two or more cognitive tasks.  B)  This chart quantifies the 
number of electrode pairs in which different high-gamma frequencies dissociated anatomic locations during 
the same cognitive task. 

The numbers of single electrodes with high-gamma bands dissociating cognitive task are 

plotted in Error! Reference source not found.A, while Figure 4.4B summarizes the 

umber of electrode pairs that dissociate anatomic location.  All of the statistics shown have 

a familywise error rate below 0.05.  The statistics across this group of subjects show that 

the independence of power change in sub-bands across the range of high-gamma 

frequencies is not an anomaly.  The pervasive occurrence of dissociation bands especially 

within data from single electrodes across this population of subjects indicates that ECoG 

signals can capture population dynamics that produce nonuniform power changes across 

the high-gamma band up to 500Hz.   

4.4 Cross-Subject Analysis by Anatomy and 
Cognitive Task  
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Evaluating spectral power modulation across subjects shows that power changes occur 

nonuniformly even within small anatomic regions.  Three cortical regions: left 

sensorimotor cortex (Brodmann Areas (BA) 1-4), Broca‟s area (BA 44-45), and left 

superior temporal gyrus (STG, BA 22, 42), have all been implicated in functional imaging 

studies using similar language tasks and were therefore selected for more detailed analysis 

(Church, Coalson et al. 2008).  In Figure 4.5, for each combination of cortical region and 

cognitive task, bar plots show the percentage of electrodes within that region from all six 

subjects that had statistically significant R2 values (FDR correction level of 0.001) at each 

frequency.  These plots provide a means to evaluate the significance and consistency of 

spectral power change across the subject population and have the appearance of a pseudo-

spectrum, but allow an evaluation across the subject population without permitting 

individual differences in the magnitude of power change to affect the shape of the plot.  By 

confining the scope to three anatomical areas and four cognitive tasks, we can visualize 

trends in high-gamma band power change across the entire population of subjects.  In 

these plots, high numbers at a given frequency indicate that a high percentage of electrodes 

within a specific cortical region had consistent power changes across subjects during a 

specific cognitive task.  Because of variation in individual channel power levels caused by 

differences in electrode impedances and cortical population characteristics, power changes 

will be masked at different high frequencies as they are obscured by the system noise floor.  

If uniform and broadband high frequency power increases as in Figure 2.1 were the only 

motif present, the histograms in Figure 4.5 would decrease monotonically.  Any channel 

with significant induced power increases for a given task should remain significant from 60 

Hz until the power levels fall below the system noise floor. The only exception would be 

environmental noise frequencies where there is no significant power change.  On the other 
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hand, if power changes are confined to specific bands then the shape of the activation plots 

should have variation due to band specific power changes from different electrodes within 

the anatomic area or from individual differences between subjects that result in non-

monotonically decreasing trends.  The results show that power changes occur 

nonuniformly even within small cortical regions.     

 
Figure 4.5 Consolidated cortical activation plot for the population of 6 subjects 
Positive numbers indicate percentage of electrodes with statistically significant (p<0.001, FDR corrected for 
multiple comparisons) power increases.  Negative numbers correspond to power decreases.  Rows of 
activation plots correspond to cortical regions, columns to cognitive tasks.  Markers at 60Hz, 100Hz and 
250Hz are typical gamma or high-gamma analysis boundaries.  All subject electrodes for each cortical region 
of interest are plotted on the MNI model brain for reference.  Multiple peaks per plot, shifts in percentage of 
cortex with significant power changes across frequency bands, and changes in bandwidths with significant 
power changes within cortical populations are all evidence of nonuniform power modulation in high-gamma 
bands (60-500Hz). 

 

The histograms in Figure 4.5 contain trends that are not monotonically decreasing.  As an 

example, consider the histogram for speaking after auditory cue in Broca‟s area.  

Approximately 22% of the channels have significant power changes between 60-100 Hz, 

while 30% of the channels have significant power changes between 144-154 Hz.  Both of 
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these bands are between 60 Hz noise harmonics.  This illustrates that some channels did 

not have significant power increases between 60-100 Hz, but did have significant power 

increases in the higher band between 144-154 Hz.  This example is in clear contrast to the 

uniform power change hypothesis which predicts monotonic decreases in the histograms 

as frequency increases.   

Additionally, there are three trends in the consolidated cortical activation plots in Figure 

4.5 that support the hypothesis that high-gamma power change occurs nonuniformly 

across a wide range of frequencies.  First, many single activation plots exhibit multiple 

peaks (e.g., sensorimotor cortex while Speaking after Auditory Cue, Broca‟s area while 

Speaking after Visual Cue, STG while Speaking after Auditory Cue).  These peaks indicate 

the presence of statistically significant power changes in different frequency bands during 

the same cognitive task and within the same cortical region across the population of 

subjects.  Second, within cortical regions (single rows in Figure 4.5), cognitive tasks have 

either distinct active bandwidths or shifts in frequency band representations within similar 

active bandwidths.  As an example, within Broca‟s area, Reading is distinguished from the 

other three tasks by active frequency range (60-300Hz vs. 60-500Hz).  In contrast, Hearing 

and Speaking after Visual Cue have similar active bandwidths (60-500Hz), but are separable 

by the different proportions of cortex engaged across the range of active frequencies.  For 

example, during Speaking after the Auditory Cue, there are peaks in the histograms around 

112, 150, 200, 286, 380 and 450Hz, while during Speaking after the Visual Cue, the peaks 

in the histograms appear at 70, 110, 170, 290 and 338Hz.  This second trend explicitly 

shows that the cortical region activates at different frequencies in a behavior-dependent 

manner.  If power change occurred uniformly, and the only variable within these plots was 

the number of electrodes within the population that were active, all histograms would be 
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flat with differing heights according to the percentage of electrodes with significant power 

change.  The third trend is that for any given cognitive task, there is variation in the active 

bandwidths between the three cortical regions.  In other words, there does not appear to 

be a unified activation bandwidth across cortical regions for a specific cognitive task.  As a 

quantitative measure of the differences identified by the second and third trends, we 

evaluated the statistical significance of the differences in bar plot shape using two-sample 

Kolmogorov-Smirnoff tests (see Table A.1 for detailed results).  Overall, these tests 

indicate that 83% of cortical activation plot comparisons (55/66 comparisons) are 

statistically distinct (p<0.05).   These three trends were also present in individual subjects.  

Figure A.5 shows cortical activation plots for a single subject exemplar that illustrates these 

same three trends. 

4.5 Dissociation Band Summary 

This study demonstrates in a population of six subjects, that ECoG surface cortical 

potentials have nonuniform induced power changes in high-gamma sub-bands.  

Dissociation bands showed that sub-band power modulations were independent enough to 

dissociate cognitive tasks and anatomic locations.  Moreover, when power modulations 

were summated across subjects there were persistent behaviorally and anatomically 

dependent trends.  Neither the dissociation bands nor the peaks in the cortical activation 

plots can be caused by uniform power increases.   
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5 Spatio-Temporal Dynamics of  High 
Frequency ECoG 

In the previous chapter, we showed that there is sufficient diversity in frequencies above 

60Hz to discriminate between two different cognitive tasks or anatomic locations.  We next 

set out to determine whether the specific spatio-temporal dynamics of these frequency 

bands contain signals correlated with the phonemic content of either hearing or speaking 

single words.  We begin with a data driven analysis to determine whether band-specific 

power modulations in ECoG signals contain sufficient information to discern phonemes 

within single cognitive tasks.  Then, we study the separability of the matched filter 

representations of phonemes within cognitive tasks.  Afterward the diversity of 

information content in the spatial, temporal and spectral domains is quantified using the 

matched filter construct. 

5.1 Behavioral Data 

Each of the ten subjects performed the auditory single-word repetition paradigm.  The 

mean voice onset time (VOT) across subjects was 1,212 ms (SD=468 ms).  These statistics 

are on the same order of magnitude as those from studies using similar tasks (Church, 

Coalson et al. 2008) and indicate that the subjects did not have difficulty performing the 

experiment.   

5.2 Data Driven Analysis 

To determine whether there was sufficient information content in the ECoG signals to 

distinguish phonemes during a single cognitive task, we first attempted to discriminate 

phonemes using data driven classification techniques.  Various dimensionality reduction 
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techniques and classification algorithms were applied in an attempt to extract the maximum 

amount of information from the ECoG signal.  Phonemes were classified within a single 

cognitive activity (hearing or speaking) and phonemic category (vowels or consonants).  

Specifically, within the category, words were classified into either one of four vowel classes 

or one of nine consonant classes.  The specific classes are identified in Table 3.1 and Table 

3.2.  Since all phonemes were equally probable, chance classification levels were 25% for 

the vowels and 11.1% for consonants.  Four classification algorithms were used including: 

linear discriminant analysis, a Naïve Bayes classifier, Random Forests and Support Vector 

Machines.  Because of variability in each subjects‟ cortical anatomic organization, spectral 

features and temporal rate of articulation, a variety of parameters were sampled within each 

classification approach to find the best possible prediction performance on 20% of the 

training data set aside for validation.   Overall the algorithm that yielded the best results 

consistently across the subject population was the Naïve Bayes classifier.  Figure B.1 shows 

the results for individual subjects by classification algorithm, cognitive task and phonemic 

category.     

The summary data below comes from the Naïve Bayes classifier only.  Only p-values below 

the thresholded for statistical significance (p< 0.05) were consolidated.  Regardless of the 

accuracies, subjects with p-values greater than 0.05 were dropped from the results.  Figure 

5.1 summarizes the data driven classification results by negative log probabilities and 

classification accuracies.  Figure 5.1A shows that the range of significant p-values spans 

several orders of magnitude; however, the p-value confounds both the accuracy and the 

number of trials.  The statistics in Figure 5.1B show the range and median accuracies for 

the subjects with significant p-values.  These results indicate that there is a significant 
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amount of information in the ECoG signal to related to the identity of spoken phonemes 

in 5-6 subjects and heard phonemes in 2 subjects.   

 

Figure 5.1 Summary of phoneme classification 
Bars plotting the median prediction log probabilities and accuracies for those subjects with performance 
above chance.  Error bars illustrate the 95% confidence intervals on the median generated by 100 bootstraps.  
Digits in each bar indicate the number of subjects (out of 10) that were above chance (p<0.05).  Individual 
data points are plotted as a scatter plot with „x‟ marks.  A) Bars indicate the median negative log probabilities 
for subjects with p-values < 0.05 for each cognitive task and phonemic category (consonants / vowels).  The 
dashed line shows the threshold at –log10(0.05). B) Bars show the median accuracy for subjects with p-values 
< 0.05 for each cognitive activity and phonemic category.  Chance accuracies are shown by the dotted lines 
for each phonemic category.  These results show that when using a data driven classification approach, there 
is sufficient information in the power modulation dynamics of ECoG signals to predict phonemic content 
within a specific cognitive task above chance.   

Exemplar confusion matrices from the best subject for each combination of cognitive task 

and phonemic category in Figure 5.2 illustrate the distribution of classification accuracies 

by phoneme. 
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Figure 5.2 Exemplar confusion matrices by cognitive task and phonemic category 
These confusion matrices show the distribution of predicted versus actual phoneme labels.  ECoG from each 
of these subjects contained enough information to predict several phonemes from each category above 
chance levels (11.1% for consonants, 25% for vowels). Each exemplar indicates the accuracy over all 
crossfolds and the associated p-value. 

While these results are not perfect, there are factors that may explain some of the 

misclassifications.  First, the brain is a stochastic system.  Neural responses to the auditory 

stimuli are modulated by changes in attentiveness and alertness (Woldorff, Gallen et al. 

1993; Jäncke, Mirzazade et al. 1999), and adaptation that takes place over time (Ulanovsky, 

Las et al. 2004).  Second there is a significant amount of variability in the stimuli.   Since 

each word belongs to both a vowel and consonant category, there are nine different 

consonant pair variants within each vowel class, and four different vowel variants within 

each consonant class.  It is possible that the overlap and variation within each phoneme 
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class obscures some of differences that would enable higher prediction scores.  Third, there 

is variation in the cortical areas covered by ECoG electrodes for each subject.  Since there 

are specific areas of the cortex associated with receptive and productive speech, coverage 

of these areas (or lack thereof) will impact the amount of information captured by the 

ECoG recordings.  Fourth, the ECoG signals are non-stationary in nature.  Changes in the 

ECoG signal characteristics may occur between runs (several minutes up to 24 hours 

depending on the subject) which form the boundaries for dividing the data into crossfolds.  

These differences are not accounted for by the classifier and will decrease accuracy.  

Finally, there are several behavioral variables that are not controlled in this task and that 

may affect the neural representation.  These include the volume of speech, rate of speech, 

and specific formant frequencies.  In spite of these factors, the results remain above chance 

for several subjects and therefore provide a basis for analyzing the diversity of information 

content in ECoG signals. 

5.3 Matched Filter Receiver Operating 
Characteristic 

Based on the knowledge that the ECoG signals contained evidence of a neural motif 

correlated with phonemic content, we set out to capture as much diversity in power 

modulation as possible in a construct that would allow quantification of the amount of 

information content in each dimension.  We chose the matched filter since it provides a 

straightforward way to modulate the information contributions in each dimension of the 

ECoG signal separately.  As discussed in the methods, the matched filter is a template of 

the average ECoG signal correlated with a specific phoneme and cognitive task.  In order 

for the matched filter to effectively decode phonemes, it is essential that the 
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representations for each phoneme are separable.  We measure this separability by taking 

pairwise dot products between matched filters for individual phonemes as shown in Figure 

5.3.  High dot product scores indicate a high degree of commonality between two matched 

filters, similar in concept to a correlation.  Low dot products indicate that the two matched 

filters are dissimilar.  The mean normalized scores for each pairwise dot product across all 

10 subjects provide a generalized measure of the specificity of the matched filters to 

individual phonemes.  The hot colors that span the diagonal in contrast to the cooler 

surrounding colors indicate that there is a high specificity in the matched filter responses.  

These dot product matrices reveal that on average, over this subject population, the 

matched filter representations are sufficiently different to distinguish individual phonemes 

within each category and cognitive task. 

 



91 

Figure 5.3 Summary matched filter reference waveform dot product matrices 
The dot products between matched filters representing different phonemes within specific cognitive tasks 
and phonemic categories reveal specificity in the neural motifs.  For each subject, task and category, matched 
filters from the training data were created for each phoneme.  Pairwise dot products between matched filters 
for all phonemes were normalized by dividing by the greatest dot product score within a cognitive task and 
phonemic category.  Each panel shows the average normalized dot product score across 10 subjects for each 
cognitive task and phonemic category. 

Having established that individual matched filters within a specific cognitive task and 

phonemic category are sufficiently distinct to separate phonemes, we next illustrate that  

matched filters can predict the exact phoneme and task within the context of the entire 

training and testing data sets which contain all cognitive tasks (rest, hearing and speaking) 

and phonemes within a category.   We evaluated the information content in the individual 

matched filters, using a Receiver Operating Characteristic (ROC) curve analysis which 

determined the sensitivity and specificity of the matched filter.   Figure 5.4 shows exemplar 

data from the ROC curve analysis for a single subject, cognitive task and phoneme.  As 

described in the methods section, each subject‟s data is divided into training and testing 

sets separately for each crossfold.  The matched filter for a specific cognitive task and 

phoneme in the training set is generated for a given crossfold. The sliding correlation of 

the matched filter with the ECoG yields a score for each time sample.  Figure 5.4A shows 

the normalized matched filter score and the label from the training data.  There is a clear 

correlation between the two traces which results in the ROC curve shown in Figure 5.4B.  

The curve is above the dashed line across the diagonal, indicating better than chance 

performance.  The total area under the curve (AUC) is indicated in the legend at 90.3%.  

Figure 5.4 C and D parallel A and B in format, but are computed using the matched filter 

constructed from the training data to score the testing data.    The AUC statistic for the 

testing data is comparable to the training data (89.2%), indicating that the matched filter for 

this task has a reasonable amount of specificity for this particular cognitive task and 
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phoneme on both the training and testing datasets.  These analyses indicate that the 

matched filter construct is a valid way to quantitatively evaluate the extent of diversity 

within the ECoG neural motifs for specific phonemes. 

 

Figure 5.4 Exemplar receiver operating curve analysis 
Exemplar data illustrates that the matched filter for saying the vowel „EE‟ has above chance accuracies both 
the training and testing data.  This subject performed the experiment twice; therefore one run was used for 
training and the other for testing.  A) The time course of training scores (red) and labels (blue) demonstrates 
the matched filter can localize instances of saying EE phonemes in the midst of hearing and saying all 
different phonemes.  B) ROC for saying EE phonemes on the training data set has an AUC of 90.3%, (above 
the chance level of 50%). C) Time course of testing scores (red) and labels (blue) shows that the matched 
filter continues to localize saying EE phonemes well even on the test data. D)   ROC for saying EE words on 
the testing data has an AUC of 89.2%.   

It is clear from the score traces in Figure 5.4 that there is a rhythmic component in the 

signal.  There are two putative sources to this rhythm.  First, there is a regular structure to 

the two cognitive tasks (hearing and speaking) in this experiment.  Therefore, it is possible 



93 

that the matched filters are only discriminating cognitive tasks, but not phonemic content.  

Second, because the ITI during these experiments was constant, we propose that there was 

a temporal expectation in the ECoG therefore the subject associated with preparatory 

attention (Gómez, Marco-Pallarés et al. 2006).   To determine whether the matched filter 

reference waveforms were capable of discriminating specific phonemic content during a 

single cognitive task, we performed a classification experiment similar in structure to the 

data driven analysis.  First, the reference waveforms for all phonemes during a specific 

cognitive task were computed on the training data.  Then the downsampled, z-scored PSD 

estimates from the test data during the temporal window corresponding to the cognitive 

task under studied were scored.  We used a single trial out crossfold validation approach to 

account for inter-run nonstationarities, so the test data came from one trial at a time.  The 

test data was classified using the phoneme reference waveform with the largest matched 

filter score.  While there are differences from the data driven classification results, these 

show that the matched filter construct is capable of discriminating phonemes above chance 

levels in several of the subjects.   

 

Figure 5.5 Single trial matched filter classification summary 
Results from classification using only matched filter scores show that the matched filters can discriminate 
phonemic content.  Bars plot the median prediction log probabilities and accuracies for those subjects with 
performance above chance.  Error bars illustrate the 95% confidence intervals on the median generated by 
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100 bootstraps.  Digits in each bar indicate the number of subjects (out of 10) that were above chance 
(p<0.05).  Individual data points are plotted as a scatter plot with „x‟ marks.  A) Bars indicate the median 
negative log probabilities for subjects with p-values < 0.05 for each cognitive task and phonemic category 
(consonants / vowels).  The dashed line shows the threshold at –log10 (0.05). B) Bars show the median 
accuracy for subjects with p-values < 0.05 for each cognitive activity and phonemic category.  Chance 
accuracies are shown by the dotted lines for each phonemic category.  These results show that the neural 
motif captured by the matched filter can discern phonemic content within a single cognitive task. 

5.4 Analysis of Variance 

The full ANOVA on the matched filter AUC scores provides insight into the specific 

factors of the matched filter analysis that affected the scores most.  Table 5.1 contains the 

results.  All single factors were significant (p<5e-5), with the notable exception of the 

variants affecting diversity in the frequency bands below 60 Hz.  The greatest single factor 

in affecting the matched filter scores was the specific subject; however, the sum of squares 

for error had a magnitude nearly three times greater than that for the subject factor.  The 

large error term indicates that there are significant variations in crossfolds (which represent 

repeated measurements), and other factors not accounted for by the model.  Collectively 

the two single behavioral factors (Task and Phoneme) accounted for a significant portion of 

the variance, as did the interactions between subject and behavioral factors.  This indicates 

that subject had preferential AUC score levels for specific cognitive tasks and phonemes.  

The single diversity factors (Channel, Time, <60 Hz, >60 Hz) with the largest impact on the 

model were time and channel, consistent with previous findings of spatial and temporal 

diversity.  While the single factor representing diversity in the frequency bands above 60 

Hz was significant, it is notable that the paired interactions between high frequency 

diversity and subject, and high frequencies and channel accounted for more variance than 

high frequency diversity as a single factor.  These results seem to indicate that there is both 

subject and anatomic specificity affecting high frequency spectral diversity.  Based on the 

results of the dissociation band analysis in the previous chapter, this is likely because some 
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subjects in this portion of the study did not have significant power modulations in the high 

frequency bands.  Each of the diversity factors was examined more closely on an individual 

basis using additional analyses.   

Table 5.1 Analysis of variance results 
Abbreviations:  <60:  frequency bands below 60 Hz, >60:  frequency bands above 60 Hz 

Source 
Sum 

Squares 

Degrees 
of 

Freedom 

Mean 
Squared 

Error 
F 

Statistic Prob>F 

S
in

g
le

 F
a
c
to

rs
 

  Subject 222.8322 9 24.7591 2988.902
8 

0 

Task 4.2945 1 4.2945 518.4284 2.2895e-114 

  Phoneme 19.4416 12 1.6201 195.581 0 

  Channel 9.3817 2 4.6909 566.2777 8.2945e-245 

  Time 14.642 2 7.321 883.7864 0 

# <60 0.00029677 1 0.00029677 0.035826 0.84988 

# >60 1.9546 1 1.9546 235.9547 3.6176e-053 

In
te

ra
c
ti

o
n

s 

  Subject*<60 30.6676 18 1.7038 205.6758 0 

  Subject*>60 23.6244 18 1.3125 158.4398 0 

  Subject*Task 39.5704 9 4.3967 530.7674 0 

  Subject*Phoneme 54.881 108 0.50816 61.3444 0 

  Subject*Time 9.4528 18 0.52515 63.3962 3.0414e-229 

  Subject*Channel 11.0123 18 0.61179 73.8551 6.1741e-269 

# <60*>60 3.4456 3 1.1485 138.6496 1.3813e-089 

  <60*Task 1.0109 2 0.50547 61.0201 3.3187e-027 

  <60*Phoneme 0.79468 24 0.033112 3.9972 1.4979e-010 

  <60*Time 3.5993 4 0.89982 108.6254 1.818e-092 

  <60*Channel 0.57437 4 0.14359 17.3344 3.1802e-014 

  >60*Task 0.35294 2 0.17647 21.3034 5.6324e-010 

  >60*Phoneme 2.0839 24 0.08683 10.4821 9.6193e-040 

  >60*Time 1.7537 4 0.43843 52.9264 1.3227e-044 

  >60*Channel 16.0329 4 4.0082 483.8694 0 

  Task*Phoneme 2.6454 12 0.22045 26.6121 5.5577e-061 

  Task*Time 6.5477 2 3.2739 395.2174 1.833e-171 

  Task*Channel 0.56444 2 0.28222 34.0696 1.6238e-015 

  Phoneme*Time 0.74777 24 0.031157 3.7613 1.3209e-009 

  Phoneme*Channel 2.8374 24 0.11823 14.2722 5.8482e-058 

  Time*Channel 0.79144 4 0.19786 23.8854 9.0019e-020 

   Error 617.3087 74521 0.0082837   

   Total 1205.5619 74879    
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5.5 Spatial Diversity 

Because of the importance of showing results anatomically, in this section only the set of 

subjects that had left speech lateralization and left hemisphere grids are studied.  Figure 5.6 

contains exemplar time-frequency plots from matched filters showing two different spatial 

locations and two different phonemes.  This exemplar illustrates that several anatomic 

areas with distinct spectral and temporal responses have statistically significant activity for 

single phonemes.  The locations of the two electrodes of interest are indicated by the red 

and green stars overlaid on this subject‟s gyral anatomy.  Each phoneme has several time-

frequency tuples (pair of specific time sample and frequency band) that are statistically 

distinct across the training data set between the two electrodes.   To simplify the figure, 

selected statistically different tuples are highlighted by the contours overlaid on the plots.   



97 

 

Figure 5.6 Exemplar matched filter comparison showing spatial diversity 
Four individual time-frequency plots from two different matched filters in a single subject.  Heat maps 
indicate the z-score of power modulation over the first cross fold (p<0.015 after FDR correction).  There 
were 52 trials of EH words and 53 trials of OO words in the training data.  Electrodes 24 and 31 both show 
significant yet distinct patterns of temporal and spectral power change for these two phonemes.  Contours 
overlaid on the time-frequency plots highlight selected regions of the plots that are statistically distinct, blue 
contours contrast differences between anatomic locations (p<0.0011 after FDR correction).  Black contours 
contrast difference between phonemes at the same anatomic location (p<0.05).  These differences are used to 
classify and predict whether the subject said an EH word or an OO word. 

The first analysis of diversity focuses on the three matched filter variants that contrasted 

differing levels of spatial diversity.  The three reference waveform variants included the 

single best channel, the optimal number of channels based on the training data and the 

whole macrogrid array.  The best and optimal channel variants were selected for each 

cognitive task, phoneme and crossfold in the subset of subjects with left hemisphere grids 

and left lateralized speech.  The results of the ANOVA contrasting these three variants are 

contained in Table 5.2.  While all of the single factors were significant, it was notable that 
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the channel factor (representing the spatial variants) accounted for the least amount of 

variance in the model.  The only nonsignificant paired interaction was between cognitive 

activity and channel.  It was interesting that the paired interactions for subject and channel 

and phoneme and channel also accounted for significant amounts of variance in the model.  

These results require further analyses.   

Table 5.2 ANOVA for spatial variants only 

Source 
Sum 

Squares 

Degrees 
of 

Freedom 

Mean 
Squared 

Error F Statistic Prob>F 

S
in

g
le

 

F
a
c
to

rs
   Subject 21.497 5 4.2994 569.9575 0 

  Task 2.0079 1 2.0079 266.1848 2.3972e-058 

  Phoneme 1.6697 12 0.13915 18.4461 1.0821e-039 

  Channel 0.86615 2 0.43308 57.4116 2.2268e-025 

In
te

ra
c
ti

o
n

s 

  Subject*Task 1.5378 5 0.30756 40.7728 3.0012e-041 

  Subject*Phoneme 6.3754 60 0.10626 14.0861 5.575e-127 

  Subject*Channel 1.8809 10 0.18809 24.9343 1.2398e-046 

  Task*Phoneme 0.4675 12 0.038958 5.1646 1.1245e-008 

  Task*Channel 0.033084 2 0.016542 2.1929 0.1117 

  Phoneme*Channel 0.66619 24 0.027758 3.6798 3.4031e-009 

   Error 37.8224 5014 0.0075434   

   Total 74.3189 5147    

       

Several different analyses were carried out to contrast AUC score performance for matched 

filter variants with different amounts of spatial information.  Figure 5.7 summarizes the 

results of the spatial diversity analysis.  All data for this figure came from the set of subjects 

with left lateralized speech organization and left-hemisphere grids.  Figure 5.7A contains 

the results of the nonparametric Kruskal-Wallis test comparing the AUC scores from this 

set of subjects across all cognitive tasks and phonemes.  The contrasted populations were 

generated from matched filters that either used the single electrode with the highest 

classification score (Best Location), the set of electrodes with the best overall classification 

score (Optimal Area), or all possible electrodes (Whole Grid).  The inset to panel A 

shows that the optimal set of electrodes has a statistically higher (p<0.05) median AUC 

score than the other two variants.  This means that the optimal set of electrodes has more 
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information than either the single best electrode or the whole grid.  This trend is clarified in 

Figure 5.7B.  Here the two plots show the median AUC score across subjects and 

phonemes for each cognitive task, as single electrodes are added to the matched filter in 

order of decreasing correlation with the training label.  It is clear from these two plots that 

there is a point in these curves showing that in these subjects there is a set of electrodes 

that maximizes the AUC score.  It appears that on average, approximately 18-24 cm2 of 

cortex is optimal for predicting phonemes which are heard, while approximately 9-12 cm2 

of cortex is the optimal amount of cortex for predicting spoken phonemes 2 (Bullock, 

McClune et al. 1995).  While it may seem counter-intuitive that adding information to the 

matched filter would decrease performance, it is important to remember that the brain is 

carrying on a variety of functions within the context of these experiments, and it is likely 

that there is activity on some electrodes that is uncorrelated with the phonemic content.  

The uncorrelated activity in these electrodes is likely causing the decrease in AUC score 

beyond the optimal set of electrodes.   

In order to quantify the spatial extent of the information encoding in the ECoG signal, we 

present two additional analyses.  First we contrast the AUC scores in the optimal set of 

electrodes with AUC scores generated by using a subtractive approach.  In the subtraction 

analysis, we contrast AUC scores from two different variants.  First, we show scores 

generated using the optimal set of electrode after removing the best single electrode 

(Optimal Minus 1 Best).  Second, we show scores generated using the whole grid after 

removing the optimal set of electrodes (Whole Minus Optimal).  The results are shown 

                                                 

2 These areas are based on findings from Bullock, et al. that correlation in ECoG signals falls to 0.2 at 2 cm 
and 0 at 3 cm, and therefore assume that individual electrodes capture significant electrophysiological activity 
from a 1 cm radius or less, approximately 3 cm2 of cortex. 
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in Panel C.  These scores are the summation across six subjects.  While there is a drop in 

the interquartile range and median scores for the Optimal Minus 1 Best scores, they are 

still above the chance line. This indicates that there is a statistically significant amount of 

information encoded in the optimal set of electrodes even after excluding the single best 

electrode and that the electrophysiological activity in the surrounding areas is still highly 

correlated with the specific phoneme either spoken or heard.  In contrast, when the whole 

clinical grid is used without the optimal set of electrodes the interquartile range falls below 

the chance level.  These results reveal that phonemic information is diffusely represented 

within the optimal set of electrodes and that no single electrode dominates the phonemic 

representation in the matched filter.  However, phonemic information is specifically 

confined to the areas within this optimal set, as the result of the whole grid minus the 

optimal set represents a quantitatively larger set of electrodes (44-60), which does not have 

predictive AUC scores above chance.   
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Figure 5.7 Spatial diversity summary  
Summary of spatial diversity in neural motifs shown in four different analyses.  A)   The results of 
nonparametric ANOVA tests (Kruskal-Wallis) showing the range of the data (whiskers), interquartile range 
(boxes), median (red line) and 95% confidence intervals on the median (notches around red line) for six 
subjects and all cognitive tasks, phonemes and crossfolds on the test data.  The three different data series 

contrast the AUC scores for the matched filters which used only the Best Location, the Optimal cortical 

area or the Whole clinical ECoG grid.  All three populations were above the p<0.01 line for chance based on 
the Monte Carlo simulations.  The inset shows that the 95% confidence intervals on the medians were 
nonoverlapping between these populations and that the optimal cortical area had a significantly higher 
median AUC score.   B). Analysis of the information content in the matched filter as a function of cortical 

area included.  Curves are plotted for matched filters predicting cognitive tasks in general (Task) as well as 

specific phonemes within a specific cognitive task (Phonemes).  When added in decreasing order of 
correlation (best electrode first), the mean AUC scores for both the hearing and speaking tasks increase up to 
a certain point.  For both sets there is an optimal cortical area for predicting phonemic content using the 
matched filter approach that appears to be approximately 18-24 cm2 for hearing and 9-12 cm2 for speaking 

(see text for discussion).  C) The subtraction analysis contrasts the AUC scores from the Optimal set of 
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electrodes with scores from the Optimal Minus 1 Best electrode removed, and the Whole grid Minus 

Optimal set removed.  These figures show that information is represented in a spatially diffuse manner 

within the Optimal set of electrodes, but that outside the Optimal set, prediction performance is not 
significantly above chance.  D)  The results of the single electrode analyses show the anatomic distribution of 
phonemic information.  The heat map shows the average number of cognitive tasks (out of 2) or phonemes 
(out of 13), that single electrodes could predict above chance, averaged across six subjects.  Areas predicting 
the greatest number of cognitive tasks are located in perisylvian cortex, motor cortex, supplemental motor 
area and prefrontal areas.  Areas predicting up to 7 different phonemes were located in typical speech areas 
yet show distinct representations between hearing and speaking phonemes.   

Figure 5.7D reveals the anatomic extent of information encoding using a single electrode 

analysis.  The data for these plots used matched filters with single electrodes only.  For 

every each location in the grid, single electrode AUC scores for each cognitive task in 

general and then for hearing and saying individual phonemes were generated.  The number 

of cognitive tasks and phonemes with average AUC scores above chance (p<0.05, Monte 

Carlo shuffling simulation) over all crossfolds were counted, and then summed across 

subjects by anatomic location.  Since the anatomic coverage varied by subject, these plots 

are normalized by dividing by the number of electrodes covering each location.  The heat 

maps plotted on the MNI model brain reveal a broad cortical region that can predict 

several cognitive tasks or phonemes.  While most of these are located in perisylvian and 

motor areas, the areas are cortically diffuse.  Areas predicting the greatest number of 

general cognitive tasks (hearing or speaking) are located in perisylvian cortex, motor cortex, 

supplemental motor area and prefrontal cortex.   These subjectively show that even in 

subjects with normal speech organization, phonemic information is encoded in a spatially 

diffuse manner.  Although there is variation between subjects in the cortical organization 

of speech (Ojemann, Ojemann et al. 1989), Figures B.2-B.4 showing the results of this 

analysis on individual subjects reveal the same trends of diffuse representation across the 

set of phonemes. The areas implicated in saying or hearing individual phonemes are typical 

compared with those implicated by functional imaging studies (Petersen, Fox et al. 1989; 

Binder, Frost et al. 1997; Church, Coalson et al. 2008).  
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Collectively, the spatial diversity analyses of the neural motifs in ECoG reveal three notable 

findings.  First, there is an optimal cortical area of approximately 9-24 cm2 that appears to 

encode predictive information regarding phonemic content depending on the specific 

cognitive task.  Second, within this optimal cortical area, there is a diffuse representation of 

that phonemic information.  Finally, the anatomic locations which encode the highest 

amounts of phonemic information are consistent with those from functional imaging 

studies and implicate a relatively large cortical area including perisylvian cortex, middle and 

superior temporal gyrus, motor cortex, supplemental motor area and prefrontal areas. 

5.6 Temporal Diversity 

Time is the second dimension we analyze to study diversity in neural motifs encoding 

phonemic information.  The exemplar in Figure 5.8 identifies the cortical location of a 

single electrode with significant activity across several phonemes. The figure shows the 

time-frequency plot from the matched filter for a single channel and phoneme of interest.  

There is significant activity in several time samples and frequency bands; however, the blue 

rectangle highlights the band of interest at 150 Hz.  Within this single anatomic location 

and frequency of interest, the time courses of power modulation for different phonemes 

exhibit distinct patterns.  This exemplar represents the type of diversity we sought to 

quantify with the following analyses. 
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Figure 5.8 Temporal diversity exemplar  
A) The anatomic location of the ECoG electrodes on the MNI model brain as determined using the Get 
Location on Cortex Method (see Methods).  The red star represents the approximate location of the 
electrode of interest.  B)  The exemplar matched filter for this electrode of interest shows significant 
(Wilcoxon sign-rank test, p<0.010237, after FDR correction) power modulation in several time-frequency 
tuples.  The blue box highlights the frequency of interest, 150 Hz.  C) and D) The individual time course 
plots show two traces.  The blue traces plot the statistically significant (Wilcoxon sign-rank test, p<0.05) 

median power z-scores for this channel and frequency band over the training trials in the first crossfold (N = 

13-18 consonants, N=35-39 vowels).  The blue shaded areas indicate the 95% confidence intervals on the 
median (100 bootstraps with resampling).  The black traces plot the median and 95% confidence intervals of 
the time-average 150 Hz power across trials.  Note that the blue traces within the vowel and consonant 
categories are each distinct, while the black traces are not.  These indicate that information correlated with 
phonemic class is encoded in the temporal pattern of power modulation.   

The first analysis of diversity focuses on the three matched filter variants that contrasted 

differing levels of temporal diversity.  The three reference waveform variants included the 

truncated version with the best single time sample, the smoothed version which used the 

temporal average and the time varying version with full temporal diversity.  The best time 

sample was selected for each cognitive task, phoneme and crossfold for all 10 subjects.  

The results of the ANOVA contrasting these three variants are contained in Table 5.3.  

Again all of the single factors were significant.  In this analysis, the time factor accounted 
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for more variance in the model than either cognitive task or phoneme.  Additionally, the 

paired interactions that include time were accounted for less variance than time as a single 

factor.  These results seem to indicate that temporal diversity is more universal in the 

neural motif.  The following analyses help illustrate the sources and distribution of the 

temporal diversity in the neural motif.   

Table 5.3 ANOVA for temporal variants 

Source 
Sum 

Squares 

Degrees 
of 

Freedom 

Mean 
Squared 

Error F Statistic Prob>F 

S
in

g
le

 

F
a
c
to

rs
   Subject 10.389 9 1.1543 177.3086 8.8441e-269 

  Task 0.3448 1 0.3448 52.9614 4.3505e-013 

  Phoneme 1.6563 12 0.13803 21.2015 2.0501e-045 

  Time 1.6766 2 0.83829 128.7623 2.5565e-054 

In
te

ra
c
ti

o
n

s 

  Subject*Task 1.5272 9 0.16969 26.0649 1.1939e-043 

  Subject*Phoneme 3.8769 108 0.035897 5.5139 1.0691e-060 

  Subject*Time 0.81857 18 0.045476 6.9852 9.3834e-018 

  Task*Phoneme 0.2274 12 0.01895 2.9108 0.00050725 

  Task*Time 0.34668 2 0.17334 26.6254 3.4739e-012 

  Phoneme*Time 0.12713 24 0.0052969 0.81362 0.72288 

   Error 19.0232 2922 0.0065103   

   Total 39.9259 3119    

       

Figure 5.9 reports the results of the temporal diversity summary analyses.  The box and 

whisker plots in Figure 5.9A reveal a statistically significant difference between the three 

matched filter variants which contrasted different amounts of temporal information.  

Across 10 subjects, two cognitive tasks and 13 phonemes, there were statistically significant 

differences between the three variant populations indicating that the Time Varying 

matched filters had the best scores.  While the 95% confidence intervals on the median for 

each variant were all above the chance threshold, only the interquartile range for the time 

varying population was completely above the chance line.  The difference between the Best 

1-Sample population and the two other populations may be explained by an increase in the 

signal to noise ratio.  This does not explain the difference between the Temporal Mean 
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and Time Varying populations since both used the full complement of time-samples 

from the matched filter.  The difference between these two populations can only be 

explained by the significance of the time-varying pattern in the neural motifs.  

To determine whether there was an optimal number of time samples to include in the 

matched filter, Figure 5.9B plots the cumulative AUC score as time samples are added to 

the matched filter in decreasing order of correlation starting with the single best time 

sample.  In contrast to the results in the spatial summary, any plateau in these curves 

occurs toward the right side of the plots indicating that the highest matched filter scores 

occur when nearly all the time samples are included.  Only 20% or less of the time samples 

which have the lowest correlations result in AUC score decreases.  This indicates that the 

majority of the time windows are well scoped to capture ECoG signals relevant to 

decoding phonemes and general cognitive tasks.   

To gain insight on the specific time samples in the matched filter that provide the greatest 

information content, Figure 5.9C plots the median rank (best r2 highest) for each specific 

time sample across the subject population, all phonemes and crossfolds for each cognitive 

task. This plot reveals two interesting trends.  First, the highest ranking time samples are in 

line with what we intuitively expect from the auditory single word repetition paradigm.  

The rank of the hearing time samples increases with time.  This is due to the steadily 

increasing post-stimulus neural activity associated with: receptive speech processes, 

auditory working memory and pre-articulatory processing that occur prior to voice onset 

(Salmelin 2007).  The analysis in Figure 5.9B indicated that 20% of time samples with the 

lowest ranks did not improve the AUC score.  In the hearing traces in panel C, the rank 

rises above the 20th percentile at approximately 53 ms.  While this is earlier than the onset 
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of gamma responses to auditory stimuli reported in the literature (Crone, Boatman et al. 

2001; Canolty, Soltani et al. 2007), it does correlate with ERP responses to auditory stimuli 

(Edwards, Soltani et al. 2009).  Additionally, because the temporal structure of the 

experiment was deterministic, it is also likely there are correlates of expectation appearing 

at early stages after stimulus onset (Gómez, Marco-Pallarés et al. 2006).  The time samples 

with the highest rankings during speaking are centered on the voice onset time, with 

approximately equal amounts of information before and after voice onset until the end of 

the speaking window.  The results in panel B show that only 13% of the time samples with 

the lowest ranks failed to improve the AUC score.  In panel C, the ranks fall below the 13th 

percentile only beyond 560 ms after voice onset indicating that the majority of the matched 

filter window for speaking captures signal correlated with phonemic content.   

The second notable trend is that there are only slight significant differences between the 

rankings for the general cognitive tasks and those for specific phonemes.  The differences 

occur in the brief window immediately surrounding voice onset and the end of the 

speaking period.  At voice onset, the rank of the task time samples exceeds those for 

phonemes even though they both have their peaks immediately preceding voice onset.  

This indicates that the time samples surrounding voice onset have consistently higher ranks 

when detecting general cognitive tasks, while the matched filters encoding different 

phonemes have a slightly more dispersed temporal distribution.  Likewise, at the end of the 

speaking window, time samples for phoneme-specific matched filters have consistently 

higher rankings, indicating that these time samples are more important for deciphering 

phonemic class than for determining task identity.  However, most of the time samples at 

the end of the speaking window are below the percentile level which improves AUC 

scores.  The broader temporal representation for phonemes makes intuitive sense, as each 
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phoneme consists of sounds and motor articulatory movements that occur either in the 

center of the vocal response (vowels), or at both the beginning and the end of the response 

(consonants).  Category specific rankings for consonants and vowels were compared, but 

there were no significant differences between rankings.  

Overall, these analyses show that phonemic information is encoded both specifically and 

diversely in the time domain.  The statistically significant difference between the matched 

filter variants definitively shows that temporal dynamics are a significant factor in 

representing the neural motifs correlated with specific phonemes.  The window size and 

distribution analysis, however, indicate that the information is diffusely spread across 

temporal windows 650 - 1150 ms wide.  Specifically the optimal hearing window seems to 

span the time from 50 – 700 ms post-stimulus and the optimal speaking window is 400 ms 

before through 560 ms after voice onset. 
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Figure 5.9 Temporal diversity summary 
Results of analyses defining the temporal diversity in ECoG signals.  A) The results of nonparametric 
ANOVA tests (Kruskal-Wallis) showing the range of the data (whiskers), interquartile range (boxes), median 
(red line) and 95% confidence intervals on the median (notches around red line) for 10 subjects and all 
cognitive tasks, phonemes and crossfolds on the test data.  The three different data series contrast the AUC 

scores for the matched filters which used only the Best Time Sample, the Temporal Mean of all time 

samples, or the Time Varying information from all time samples.  The confidence intervals on the medians 
for all three populations were above the p<0.01 line for chance based on the Monte Carlo simulations, 

however only the Time Varying population had an interquartile range above the chance line.  The inset 
shows that the 95% confidence intervals on the medians between these populations were nonoverlapping and 

that the Time Varying population had the highest median AUC score.   B). Analysis of the information 
content in the matched filter as a function of the percentage of time samples used to predict phonemic 
content.  When added in decreasing order of correlation (best time sample first), the mean AUC scores for all 
subjects and phonemes increases through the majority of the time window for each task.  This indicates that 
80% or more of the time samples for each cognitive task encapsulate ECoG signals with information relevant 
to decoding phonemes.  C) Ranking plots reveal the relative amount of information content in specific time 
samples within the matched filter windows for each cognitive task.  Each line plots the median rank across 
subjects and phonemes for each cognitive task.  Shaded areas show the extent of the 95% confidence 
intervals on the median (100 bootstraps with resampling).  For hearing, the ranks peak toward the end of the 
window due to the increasing amount of cortical processing involved as the subjects prepare to repeat the 
stimulus word.  The highest ranks for speaking surround the voice onset.     

5.7 Spectral Diversity 

The final dimension of the neural motif we study is frequency.  Because it is generally 

accepted that there are physiological rhythms in several distinct frequency bands below 

60Hz, here we examined the subparcellation of the frequencies above 60 Hz.  Figure 5.10 

contains exemplar matched filter plots and time traces for specific frequencies from a 

single subject and electrode while hearing three different phonemes.  These plots reveal 

that there is spectral diversity above 60 Hz in the neural motifs correlated with each 

phoneme.  The colored lines overlaid on the matched filter time-frequency plots for the 

phonemes M_N, K_N and T_N highlight the four frequencies of interest.  The full time-

frequency plots on the right subjectively illustrate diversity by showing all frequency bands 

analyzed independently.  In contrast, the three spectral average time-frequency plots show 

the matched filters when power in all frequencies above 60 Hz is averaged.  The time 

courses show each of the four frequencies independently as well the spectral average above 

60 Hz for each of the three phonemes.  The time courses illustrate the independence and 
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diversity of these four bands.  First, there is no evidence of purely broadband, 1/f power 

increases.  In every phoneme, there are instances when higher frequencies have statistically 

significant power modulations while lower frequencies do not.  Second, certain frequencies 

have power modulations specific to phonemes.  As examples, consider the 290 Hz band 

which has similar time course characteristics for M_N and T_N, but no statistically 

significant activity for the phoneme K_N. The 190 Hz band has little significant activity for 

M_N, but has 250 ms duration power increases for both T_N and K_N, which happen at 

different times during the respective phonemes.  Also consider the differences between the 

four frequency bands of interest and the spectral average trace.  There are subtleties for 

each individual spectral example trace that are not captured in the average spectral trace.  

Next we seek to quantify this diversity. 
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Figure 5.10 Spectral diversity exemplar 
Matched filter variants and time courses of power in four frequency bands of interest illustrate spectral 
diversity.  Full matched filters on the right from a single electrode and three different consonant classes 
(M_N: N=22, T_N: N=23, K_N: N=22).  These plots have been thresholded so that all colored areas are 
statistically significant (Wilcoxon sign-rank, p<0.05).  The colors show median z-score across all trials on the 
scale shown by the color bar at the right.  The four colored lines (green, cyan, red, blue) highlight the 
frequency bands of interest.  Spectral Average matched filters were constructed by averaging the power in all 
frequency bands above 60 Hz.  Frequency bands below 60Hz were still considered independently.  The 
sections of the plot with color are significant (Wilcoxon sign-rank, p<0.05) and use the same scale as the full 
matched filters.  Time courses of power z-scores for each of the frequencies of interest and spectrally 
averaged power illustrate the diversity in the frequency bands above 60 Hz.  Solid lines are the median power 
levels for significant (Wilcoxon sign-rank, p<0.05) power changes across trials.  Shaded regions indicate the 
95% confidence intervals on the median (100 bootstraps with resampling).  All time courses for the four 
frequencies of interest have a common ordinate scale (-1.0 to 2.3).  The spectral average traces (black) are also 
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plotted on a common ordinate scale (-0.2 to 0.6) that is different from the exemplar frequencies.  These plots 
reveal that power modulation in bands above 60 Hz occurs independently within and across phonemes. 

The first analysis of high frequency spectral diversity was the ANOVA which used the 

three matched filter variants contrasting differing levels of spectral diversity.  The three 

reference waveform variants included the truncated version which omitted the high 

frequencies and only used the bands below 60 Hz, the smoothed version which used the 

spectral average for frequencies above 60 Hz, and the discrete bands version with full 

spectral diversity.  The results of Chapter 4 demonstrated that there were only certain 

subjects that exhibited the dissociation band phenomena in frequencies above 60 Hz.  

Similarly, only a subset of subjects exhibited high frequency spectral diversity in the neural 

motif analysis.  Therefore, this analysis was only performed data from seven of the 10 

subjects (Subjects 1, 4, 5, 7, 8, 9, 10).  The results of the ANOVA contrasting these three 

high frequency spectral variants on this subset of subjects are contained in Table 5.4.  All 

of the single factors were significant and again, the high frequency factor accounted for 

more variance in the model than either cognitive task or phoneme.  The paired interactions 

that included frequency accounted for less variance than frequency as a single factor.  

These results indicate that in this group of subjects, spectral diversity in bands above 60 Hz 

is more prevalent in the neural motif and depends less on the cognitive task or phonemic 

content.  The following analyses help illustrate the sources and distribution of the temporal 

diversity in the neural motif.   

Table 5.4 ANOVA for spectral variants of frequencies above 60 Hz on seven subjects with high 
frequency diversity 

Source 
Sum 

Squares 

Degrees 
of 

Freedom 

Mean 
Squared 

Error F Statistic Prob>F 

S
in

g
le

 

F
a
c
to

rs
   Subject 22.8066 9 2.5341 331.1225 0 

  Task 0.26839 1 0.26839 35.0705 3.3548e-009 

  Phoneme 2.4707 12 0.20589 26.9036 3.6943e-060 

  >60 4.756 2 2.378 310.7268 3.5573e-129 
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  Subject*Task 3.5704 9 0.39671 51.8373 3.3918e-091 

  Subject*Phoneme 7.9914 108 0.073995 9.6688 6.8379e-139 

  Subject*>60 2.7474 18 0.15263 19.9445 3.3379e-063 

  Task*Phoneme 0.53308 12 0.044423 5.8047 4.301e-010 

  Task*>60 0.051216 2 0.025608 3.3461 0.035285 

  Phoneme*>60 0.12826 24 0.0053442 0.69832 0.85843 

   Error 46.2391 6042 0.0076529   

   Total 91.6433 6239    

       

The summary analyses in Figure 5.11 quantify the difference in the spectral diversity above 

60 Hz and illustrate the differences between generic cognitive tasks and those for specific 

phonemes.  Figure 5.11A contains the results of the non-parametric ANOVA and shows 

the difference between the AUC scores for matched filters in the three variants that 

contrasted signal content above 60 Hz for a selected group of subjects.  The matched 

filters with no frequency content above 60Hz have AUC scores with the lowest median 

and a significant portion of the interquartile range below the chance line.  Because this 

variant contained the least amount of information (only the 16 frequencies below 60 Hz), 

lower scores are expected.  The two remaining variants used all 43 frequency bands.  The 

Spectral Mean variant uses the average power for frequencies above 60 Hz in each time 

sample as the common matched filter pattern for all of those frequencies.  In contrast the 

Discrete Bands variant allows independent temporal variation for each frequency above 

60 Hz.  The inset to Panel A reveals that the Discrete Bands variant is significantly higher 

than the Spectral Mean variant in this population of subjects.  This result shows that there 

is information correlated with specific phonemes encoded in the independent time varying 

dynamics of multiple frequency bands above 60 Hz.  Conversely, treating the frequency 

range above 60Hz as a single entity results in a decrease of information contained in the 

matched filter as shown by the drop in median AUC score.   
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There are two other trends in Panel A that must be addressed.  The fact that the 

interquartile range for the Spectral Mean variant is above the chance line reveals that 

treating the frequencies above 60Hz as a uniform entity contains a significant amount of 

information.  Second, the Discrete Bands variant was only better than the Spectral Mean 

variant in seven of the 10 subjects.  This is consistent with the results of Chapter 4 and our 

previously published results in which activity above 60 Hz dissociated cognitive tasks and 

anatomic locations in most, but not all, subjects (Gaona, Sharma et al. 2011).   

Figure 5.11B shows how adding individual frequency bands to the matched filter impacts 

the information content.  When added in order of decreasing r2, nearly all of the frequency 

bands improve the matched filter AUC scores.  For phonemes, 70% or more of the 

frequency bands improve the AUC scores, while for the general cognitive tasks, 56% or 

more of the frequency bands improve the scores.  In contrast to the spatial summary, 

adding frequency bands beyond the optimal point does not significantly decrease AUC 

score.  Figure 5.11C reveals the spectral distribution of information by plotting the median 

rank (best r2 highest) versus frequency.  As  expected from the ECoG functional mapping 

literature, the frequencies with consistently highest ranks occur between 10-30 Hz 

(alpha/beta bands) and 70-100 Hz (traditional high gamma bands) (Crone, Miglioretti et al. 

1998; Leuthardt, Miller et al. 2007; Wu, Wisneski et al. 2010).  Notice that for generic 

cognitive tasks, the median ranks and confidence intervals for the best frequencies are 

between 70-100 Hz and exceed those of the phoneme ranks.  This illustrates that for 

discriminating generic cognitive tasks, the typical frequency bands are consistently more 

important in the matched filters.  Notice also, that the frequencies above 380 Hz have 

consistently higher rankings for the phoneme specific matched filters.  This result may 
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indicate that the dynamics of higher frequencies may inform decisions on specific 

phonemic content.  However, recall from Panel B that only 70-74% of the frequency bands 

improve the AUC scores.  The median rankings fall below the 30th percentile at 

approximately 300 Hz.  This indicates that above the 300 Hz mark, these frequency bands 

do not appear to improve the matched filter AUC scores.   

 

Figure 5.11 Spectral diversity summary 
Quantitative results show that information content is encoded diversely in multiple frequency bands above 60 
Hz in most subjects.  A) The results of nonparametric ANOVA tests (Kruskal-Wallis) showing the range of 
the data (whiskers), interquartile range (boxes), median (red line) and 95% confidence intervals on the median 
(notches around red line) for 7 subjects and all cognitive tasks, phonemes and crossfolds on the test data.  
The three different data series contrast matched filters AUC scores for which frequency bands above 60 Hz 

were Not Included, used the Spectral Mean of all 27 frequency bands above 60Hz, or used all 27 
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frequencies above 60Hz as Discrete Bands.  The confidence intervals on the medians for all three 

populations were above chance; however only the Spectral Mean and Discrete Bands populations had 
interquartile ranges above the chance line.  The inset shows that the 95% confidence intervals on the medians 

between these populations were nonoverlapping and that the Discrete Bands population had the highest 
median AUC score.   B). Analysis of the information content in the matched filter as a function of the 
number of frequency bands used to predict phonemes and general cognitive tasks.  When added in 
decreasing order of correlation (best frequency band first), the mean AUC scores for cognitive tasks and 
phonemes increases as the majority of the spectrum is added to the matched filter.  This indicates that power 
modulation in 70% or more of the available frequency bands encapsulate ECoG signals with information 
relevant to decoding phonemes.  C) Ranking plots reveal the relative amount of information content in 
specific frequency bands within the matched filter spectrum.  Each line plots the median rank across subjects, 
phonemes and crossfolds.  Shaded areas show the extent of the 95% confidence intervals on the median (100 
bootstraps with resampling).  Rank traces for frequencies above and below 60 Hz are plotted separately for 
readability.  For both cognitive tasks, rankings are highest in the 10-30 Hz (alpha/beta) and 70-100 Hz (high 
gamma) ranges, traditionally associated with functional mapping.      

5.8 Conclusion 

We have shown that the neural motifs captured by ECoG contain sufficient information in 

several subjects to discriminate specific phonemic content.  The information exists in at 

least the three dimensions studied here: anatomic location, time and center frequency of 

power modulation.  We used the matched filter to capture and quantify the diversity of 

information content in the neural motif.  Spatially, we have shown that approximately 9-24 

cm2 of cortex provide an optimal representation of phonemic information and that 

information is broadly represented within this area.  We have also clearly shown the 

importance of including temporal dynamics on a time scale of at least as fine as 26.7 ms.  

Temporally, the windows most important for discriminating phonemes during hearing 

occur 50 to 700 ms after stimulus onset, and during speaking they occur  from 400 ms pre- 

to 560 ms post-voice onset.  Spectrally we have shown that, in the majority of subjects, 

allowing diversity in the frequency bands above 60 Hz improves AUC score.  While the 

alpha, beta and high gamma ranges have the highest ranks, including frequencies in discrete 

bands up to approximately 300Hz provides the greatest amount of information for 

decoding specific phonemes. 
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6 High Gamma Diversity in Microarray 
ECoG 

In the previous two chapters we examined the heterogeneity and diversity that exists in the 

high frequency bands of ECoG signals from clinical grids with 2.3mm diameter electrodes 

and 10mm spacing.  We conclude this research by examining spectral nonuniformities and 

information diversity in ECoG microarrays one order of magnitude smaller than the 

clinical grids.  This chapter is divided into two sections.  We start by examining the 

nonuniformity of high frequency signals and determine whether spectral nonuniformities 

in bands above 60 Hz can dissociate cognitive tasks and anatomic locations.  This analysis 

concludes by quantifying the amount of information encoded in the spatial, temporal and 

spectral domains of the microarray ECoG signals.   

Three subjects (11, 12 and 13 from Table 3.1) received ECoG microarray implants and 

therefore participated in this portion of the study. The microarrays were implanted without 

interfering with clinical recordings.  Each subject received the microarray implant in a 

different location putatively associated with speech processing.  Subject 11‟s microarray 

was implanted on the pars triangularis (Broca‟s Area), Subject 12‟s microarray was placed 

on the anterior superior temporal gyrus (STG) and Subject 13‟s microarray was placed on 

the posterior STG.  These three areas have different putative roles in auditory single word 

repetition experiments (Petersen and Fiez 1993; Binder, Frost et al. 1997) and should 

therefore have unique responses to the different cognitive tasks involved within the 

experiment. 
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6.1 Dissociation Bands in Microarray ECoG 

The results of the study of spectral nonuniformities in microarray ECoG were somewhat 

different than those from the clinical ECoG arrays.  While all of the subjects had electrodes 

with significant power modulation correlated to activity, none of the electrodes had power 

changes in specific bands that dissociated cognitive tasks.  One of the subjects did have 

several pairs of electrodes in which specific bands were able to distinguish the specific 

cortical location (1 mm to 4 mm separation).  Figure 6.1 contains exemplar data from 

Subject 13.  The median normalized spectra, single trial normalized spectra and time-course 

of normalized spectral power all demonstrate distinct power modulations that dissociate 

the two electrodes separated by 2.24 mm while hearing words.   
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Figure 6.1 Microarray ECoG dissociation band dynamics 
An exemplar pair of electrodes that dissociated two cortical locations separated by approximately 2.24 mm on 
the posterior STG.  The top panel shows the median normalized spectra with 99% confidence intervals (100 
bootstraps with resampling) over 240 trials.  The dashed lines show typical high gamma analysis boundaries.  
The gold and blue shaded regions highlight selected frequency bands in which the median normalized spectra 
for these two channels were statistically different (Wilcoxon rank-sum, p<0.01 with FDR correction). The 
regions highlighted span 60-90 Hz and 192-240 Hz. The middle panel shows single trial normalized spectra 
from the two exemplar channels.  The dashed lines demark the gold and blue highlighted frequency bands in 
the top panel.  Opaque rectangles were placed over the nonrelevant bands to highlight the trends in the 
dissociation bands.  The single trial spectra for channel 7 had consistently greater magnitudes (warmer colors) 
in the bands marked by the red dashed lines, whereas the single trial spectra for channel 8 had consistently 
greater magnitudes (warmer colors) in the bands marked by the blue dashed lines.  The bottom panels 
illustrate that over the time course of this cognitive task, power modulation reversed between in the two 
bands also reverses (Gabor wavelet transforms centered at 66 Hz and 204 Hz). 
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The normalized spectra in the top panel of Figure 6.1 show that the power modulations in 

channel 7 fell below the noise floor at approximately 250 Hz, however on channel 8 they 

rose above the noise floor and were statistically significant as high as 540 Hz. 

Using the same criteria to identify dissociation bands as described in Chapter 3, we 

quantified the total number of microarray electrode pairs with dissociation bands.  The 

exemplar data from Figure 6.1 was used in a Monte Carlo simulation to determine the 

actual rate of Type I errors (false positives) in randomly labeled data.  Table 6.1 contains 

the quantitative analysis of the total number of comparisons across all three subjects in the 

microscale study.  Based on the Monte Carlo simulation, the single electrode dissociation 

band tests at all three significance levels and the electrode pair tests at 0.01 and 0.001 had 

familywise Type I error rates below 0.05.   

Table 6.1 - Familywise Type I Error Rate computations for microscale data 

Dissociation Band 
Test p-value 0.05 0.01 0.001 

Permutations  with 
dissociation bands 16 0* 0* 

Single Channel 
Activity 

Comparisons 
3 – Subjects 11,13 

10 – Subject 12 

Channels with 
Significant Power 

Subjects: 
(11) (12) (13) 

6 + 0 + 12 = 18 

Subjects: 
(11) (12) (13) 

3 + 0 + 12 = 15 

Subjects: 
(11) (12) (13) 

1 + 0 + 12  = 13 

Single Channel  
Type I Error Rate 

16x ((3 x 6) + (10 x 0) + 
(3 x 12))/100,000 = 

0.0086 

1 x ((3 x 3) + (3 x 
12))/100,000  =  

0.0005 

1 x ((3 x 1) + (3 x 12)) 
/100,000 =  

0.0004 

Channel Pair 
Activity 

Comparisons 
3 – Subjects 11,13 

5 – Subject 12 

Channel Pairs with 
Significant Power 

6 x 5 + 0 + 12 x 11 = 
162 3 x 2  + 12 x 11=138 12 x 11 = 132 

Channel Pair 
Type I Error Rate 

16 x (3x6x5 +3x12x11) 
/100000  = 0.0778 

1 x (3x3x2 +  3x12 x11) 
/100000 = 0.0041 

1 x (3x12x11)/100000 = 
0.004 

* There were no random occurrences after 100,000 permutations, therefore we used a 1/100,000 rate for the 
rest of the calculations. 
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The results in Figure 6.2 show the total number of dissociation bands detected in this 

group of three subjects.  As mentioned earlier, none of the subjects with microarray data 

exhibited single electrode dissociation bands. One of the subjects had dissociation bands 

between pairs of microarray electrodes at the 0.05 and 0.01 significance tests.  Although 

according to Table 6.1 the 0.05 tests had a familywise Type I error rate that was 0.116, the 

results are still shown in Figure 6.2B in gray because the correction factor used from Table 

6.1 may be too stringent and in fact may result in Type II errors (false rejections).   

 
Figure 6.2 Quantitative summary of microarray ECoG dissociation bands 
Graphic similar in format to the results shown in Chapter 4.  The quantitative summary shows by p-value of 
the individual dissociation band tests the quantity of microscale electrodes with dissociation bands.  All data 
shown here has been corrected so the familywise Type I error rate for each colored bar is less than 0.05 as 
shown in Table 6.1.  The bar for the 0.05 test has been grayed out since the familywise Type I error rate for 
this level of test was 0.0778.   

To visualize a summary of the results over different cognitive task and anatomic locations, 

Figure 6.3 and Figure 6.4 show the median normalized spectra and 95% confidence 

intervals for each microelectrode during hearing and speaking respectively.  Figure 6.3 

shows that during hearing, only the posterior STG microarray had significant power 

modulations.  It is notable that the majority of the dissociation bands came from Subject 
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13 during Hearing.  While the general shape of the normalized spectra are similar across 

the microarray, there were enough differences in these spectral patterns to yield 9 different 

electrode pairs with specific frequency bands dissociating the specific location.  It is not 

surprising that the Broca‟s area microarray yielded little if any significant power changes.  

As discussed in Chapter 4, Broca‟s area is not normally implicated in functional imaging or 

scalp electrophysiology studies of hearing alone.  As shown in Figure 4.5, Broca‟s area 

macro electrodes had the least number of significant power changes during hearing as well.   

The anterior STG has been attributed a role in processing words(Binder, Frost et al. 2000), 

however, this subject was congenitally blind and had some reorganization of speech areas.  

Notably, this subject showed no evidence of speech arrest in the areas surrounding the 

microarray during cortical stimulation mapping.  Since these tasks contained no semantic 

analysis, it is not surprising that Subject 12‟s microarray had no significant power 

modulation during hearing.   Subject 12 also performed several other experimental 

paradigms that involved hearing, including a verb generation task, a concept generation 

task and task that required discrimination of motion in environmental sounds.  None of 

these paradigms induced significant power changes during hearing.   

Figure 6.4 contains the median normalized spectra for Subjects 11 and 13 during speaking.  

As mentioned earlier, Subject 12‟s data was corrupted by the microphone signal, therefore 

only the hearing phase was studied.  Both subjects had some significant normalized power 

change across a wide range of frequencies as high as 540 Hz.  However, none of these 

spectra were consistently distinct enough to dissociate pairs of microarray electrodes, nor 

were they significantly different enough from the normalized spectra for hearing to 

dissociate cognitive tasks.    The peak response frequency for Subject 11 appears to be 

approximately 200 Hz, with significant power modulations as high as 450 Hz.  However 
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the confidence intervals reveal a significant amount of variability in the signals.  Subject 

13‟s normalized spectra for speaking appear to be an attenuated version of the hearing 

response which is in keeping with studies finding that posterior STG responds to the 

subjects own voice in an attenuated fashion (Creutzfeldt, Ojemann et al. 1989; Flinker, 

Chang et al. 2010).  However, there is more inhomogeneity in the microarray response 

during speaking than hearing.  Specifically, the microarray has a focal response at channel 5 

to speaking.  In contrast during hearing, while there are certainly differences in the 

normalized spectra, the electrodes in the microarray respond more uniformly.   

The microarray responses to these two cognitive tasks are certainly physiologically 

plausible.  Since Subject 13‟s microarray was located near the posterior STG, this is likely 

due to neural responses to both the auditory stimuli and the subject‟s self-monitoring 

during speaking (Demonet, Thierry et al. 2005; Binder, Desai et al. 2009).  Subject 11‟s 

normalized spectra had the strongest response during speaking, but the wider confidence 

intervals on the normalized spectra indicate that the response was more variable.  

Researchers noted that this subject was not attentive to the task during portions of the 

experiment and was involved in a side conversation at times.  Verbal communication 

uncorrelated with the experimental paradigm could have corrupted the experimental data.  

Additionally, the microarray was placed near Broca‟s area which should be more active 

with speech preparation and production (Petersen and Fiez 1993; Binder, Frost et al. 1997).  

Consistent with the results shown in Chapter 4, Subject 11‟s traces for speaking appear to 

have higher overall levels during speaking than hearing.   
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Figure 6.3 Summary of normalized spectra for Hearing by anatomic location 
Data from Subject 11 is on the top row (blue traces), Subject 12 on the middle row (red traces) and Subject 
13 is on the bottom row (green traces).  At the far right, the colored stars on each brain display the 
approximate location of each microarray on either the subject‟s gyral anatomy (11 and 13), or the MNI model 
brain (12).  The individual traces are arranged in the same spatial pattern as the microarray shown on the 
right.  The 12 signal capture electrodes shown in black correspond to the 12 traces shown in each plot.  The 
median normalized spectra are plotted from 60-550Hz.  Dashed lines at 60, 100 and 250 Hz are plotted for 
reference.  The ordinates for all normalized spectra for a given subject and cognitive activity have identical 
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ranges and are shown for the first electrode for reference.  Each trace shows the median over trials with 95% 
confidence intervals on the median (5000 bootstraps with resampling).  The posterior STG microarray 
exhibited the greatest power modulations for this cognitive task.   

 
Figure 6.4 Summary of normalized spectra for Speaking by anatomic location 
Data from Subject 11 is on the top row (blue traces) while Subject 13 is on the bottom row (green traces).  
At the far right, the colored stars on each brain display the approximate location of each microarray on either 
the subject‟s gyral anatomy after the same format as Figure 6.3.  The median normalized spectra are plotted 
from 60-550Hz with 95% confidence intervals on the median (5000 bootstraps with resampling).  Both 
microarrays show significant power modulations for this cognitive task; however, the posterior STG 
microarray exhibited more consistent power modulations as shown by the tighter confidence intervals.   

 

In summary, the results of the dissociation band analysis on the microscale array data have 

shown that in this data set, there is sufficient nonuniformity to dissociate cortical regions 

separated by as little as 1mm in one subject.  This is in keeping with previous spatial 

analyses of pial recordings in humans that showed there is sufficient spatial diversity in 

surface cortical recordings to require spatial sampling at least every 1.25 mm (Freeman, 
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Rogers et al. 2000).  Independent high frequency power modulations resulting in 

dissociation bands were not present in two of the subjects.  There are at least two reasons 

for this finding including microarray location and corruption of the ECoG recordings. The 

cortical location of the microarrays may have been toward the periphery of primary speech 

areas.  Additionally, there were problems with the data collection for Subject 12 which 

corrupted all of the speaking tasks.  Finally, as discussed earlier, Subject 13 had some 

difficulty attending to the task, and also performed the fewest trials of the experiment.   

These results should at this point be considered preliminary.  They provide motivation to 

collect more data with which to test the hypothesis; however, conclusions should not be 

made based on this population of subjects. 

6.2 Diversity in Microarray ECoG 

The second half of this chapter examines the level of spatial, temporal and spectral 

diversity in microarray ECoG signals.  This section flows in the same fashion as chapter 5, 

but where necessary, the analyses are modified to account for the smaller spatial scale.   

6.2.1 Data Driven Analysis of Microarray Data 

A preliminary analysis used data driven machine learning techniques to determine whether 

microarray ECoG data contained sufficient information to classify specific phonemic 

content in the context of a specific cognitive task.  Figure 6.5 contains the results of the 

classification analysis.  These show that only the consonants were discriminable.  Given the 

results of the microarray dissociation band study, it is not surprising that only two subjects 

had classification scores above chance.   



128 

 
Figure 6.5  Summary of microarray phoneme classification 
Bars plotting the median prediction log probabilities and accuracies for microarray subjects with performance 
above chance.  Error bars illustrate the 95% confidence intervals on the median generated by 100 bootstraps.  
Digits in each bar indicate the number of subjects (out of 3) that were above chance (p<0.05).  Individual 
data points are plotted as a scatter plot with „x‟ marks.  A) Bars indicate the median negative log probabilities 
for subjects with p-values < 0.05 for each cognitive task and phonemic category (consonants / vowels).  The 
dashed line shows the threshold at –log10(0.05). B) Bars show the median accuracy for subjects with p-values 
< 0.05 for each cognitive activity and phonemic category.  Chance accuracies are shown by the dotted lines 
for each phonemic category.  These results show that when using a data driven classification approach, there 
is sufficient information in the power modulation dynamics of microarray ECoG signals to predict consonant 
content within a specific cognitive task above chance. 

Figure 6.6 shows the exemplar confusion matrices for hearing and speaking consonants. 

Again, these indicate that there is significant information encoded in the 3 mm x 3 mm 

cortical footprint covered by the microarrays.  These results provided a basis for the 

subsequent matched filter analysis of diversity in the high frequency bands of the 

microarray data. 

 
Figure 6.6  Exemplar microarray confusion matrices by cognitive task and phonemic category 
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These confusion matrices show the distribution of predicted versus actual phoneme labels.  Microarray 
ECoG from each of these subjects contained enough information to predict several phonemes from each 
category above chance levels (10% for consonants, 25% for vowels). Each exemplar indicates the accuracy 
over all crossfolds and the associated p-value. 

6.2.2 Receiver Operating Curve Characteristic 

As in the macroscale data diversity analysis, we used the matched filter correlator to 

evaluate and quantify the amount of information in the neural motif; however in this 

chapter, it is applied to the microarray ECoG.  As a first step, we evaluate the separability 

of the microarray reference waveforms for each cognitive task and phoneme.  Figure 6.7 

contains the normalized dot product matrices comparing the relative differences between 

the neural motifs for each phoneme within a specific cognitive task.  Based on the heat 

maps in these matrices, the reference waveforms between different phonemes were less 

distinct.   
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Figure 6.7 Summary of microarray matched filter dot product matrices 
The dot products between matched filters representing different phonemes within specific cognitive tasks 
and phonemic categories reveal specificity in the neural motifs.  Shown in the same format as Figure 5.3. For 
each subject, task and category, matched filters from the training data were created for each phoneme.  
Pairwise dot products between matched filters for all phonemes were normalized by dividing by the greatest 
dot product score within a cognitive task and phonemic category.  Each panel shows the average normalized 
dot product score across 10 subjects for each cognitive task and phonemic category. 

An exemplar set of dot product matrices from Subject 11‟s data shows that the neural 

motifs captured by the matched filter reference waveforms have significant preferences 

toward specific cognitive tasks and phonemes.  Figure 6.8 illustrates that in this subject, the 

reference waveforms were very distinct for hearing, and for saying vowels.  However the 

speaking consonants matrix reveals that there was a large difference in reference waveform 

energy between S_T and the other phonemes.   
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Figure 6.8  Single subject microarray matched filter dot product matrices 
Data from Subject 13 only, in the same format as Figure 6.7.  This figure shows the differences in response 
from the microarray data between cognitive tasks and phonemes.  While the reference waveforms for hearing 
appear to be quite diverse, this cortical location appears to have a preferential responses during speaking to 
vowel sounds and saying the phoneme S_T.  

The reference waveforms were used to generate matched filter scores for both training and 

testing data as before.   Then, ROC curves and AUC scores were generated.  Exemplar 

data in Figure 6.9 displays the level of accuracy in the matched filter for a typical subject‟s 

microarray data.  Even though the test data AUC score is somewhat lower than the training 

data, the area is still greater than that of the diagonal chance line. 
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Figure 6.9 Exemplar microarray receiver operating curve analysis 
Exemplar data from Subject 11 illustrates that the microarray matched filter for saying the vowel „EE‟ has 
above chance accuracies both the training and testing data.  This subject performed three runs of the 
experiment; therefore two runs were used for training and the other for testing.  A) The time course of 
training scores (red) and labels (blue) demonstrates the matched filter can localize instances of saying EE 
phonemes in the midst of hearing and saying all different phonemes.  B) ROC for saying EE phonemes on 
the training data set has an AUC of 95.1%, (above the chance level of 50%). C) Time course of testing scores 
(red) and labels (blue) shows that the matched filter continues to localize saying EE phonemes well even on 
the test data. D)   ROC for saying EE words on the testing data has an AUC of 78.7%.   

As seen in the macroscale data, there is a rhythmic component in the matched filter score.  

To determine whether the matched filter was capable of separating phonemic content, a 

single trial out classification experiment using on the matched filter scores as classifiers as 

described in Chapter 5.  Figure 6.10 contains the results of this experiment, which clearly 

illustrate the efficacy of the matched filter approach to discriminating phonemic content 

from within a single cognitive task.  The classification performance for the matched filter 

approach is significantly better than data driven approach reported above.  There are two 
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factors in the data driven approach that could be adversely impacting classification 

performance.  First, information is lost in the dimensionality reduction step.  It is possible 

that approaches besides principal component decomposition may improve performance.  

Second, the data driven approach was computed using a one run out crossfold validation.  

Nonstationarity in the cortical signals between runs is also likely decreasing performance.  

In spite of the relatively poor data driven classification scores, these results show that the 

matched filter captures a meaningful representation of the neural motif associated with 

phonemic content within a specific cognitive task.  In the following sections we examine 

how the different dimensions of the matched filter representation (space, time and 

frequency) encode phonemic correlates. 

 
Figure 6.10 Summary of matched filter microarray classification scores 
The results of one trial out classification using microarray matched filter scores only.  Bars plot the median 
prediction log probabilities and accuracies for those patients with above chance performance.  Error bars 
illustrate the 95% confidence intervals on the median generated by 100 bootstraps.  Digits in each bar 
indicate the number of subjects (out of 3) that were above chance (p<0.05).  Individual data points are 
plotted as a scatter plot with „x‟ marks.  A) Bars indicate the median negative log probabilities for subjects 
with p-values < 0.05 for each cognitive task and phonemic category (consonants / vowels).  The dashed line 
shows the threshold at –log10(0.05). B) Bars show the median accuracy for subjects with p-values < 0.05 for 
each cognitive activity and phonemic category.  Chance accuracies are shown by the dotted lines for each 
phonemic category.  These results show that the matched filter approach applied to microarray data can 
classify phonemic content within single cognitive tasks without machine learning algorithms.   
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6.2.3 Analysis of Variance 

The full ANOVA on the microarray ECoG matched filter scores provides insight into the 

specific factors of the matched filter analysis that affected the scores most.  Table 6.2 

contains the results.  Although all single factors were significant (p<5e-5), the greatest 

single factor in affecting the matched filter scores was the specific subject.  Because the 

subjects performed the experiments with different stimulus sets and because subject 12 had 

no speaking data, the phoneme and cognitive task factors were omitted from the model.  

This may be the reason the sum of squares for the error term is twice the magnitude of the 

largest single factor.  The single diversity factors with the largest impact on the model were 

time and channel indicating that even within the microarray data, anatomic location was an 

important factor.  Between the two frequency diversity factors, both appeared to be 

significant, however diversity in the frequency bands above 60 Hz had a larger impact on 

the model.    It is also interesting that the sum of squares for the interactions between 

subject and the frequency diversity factors had larger influence than any single factor.  

Based on the results of the dissociation band analysis in the previous section, this is likely 

because some subjects in this portion of the study did not have significant power 

modulations in the high frequency bands.  Each of these factors was examined more 

closely on an individual basis using additional analyses.   

Table 6.2 Microarray ECoG Analysis of Variance Results 
Abbreviations:  <60:  frequency bands below 60 Hz, >60:  frequency bands above 60 Hz 

Source 
Sum 

Squares 
Degrees of 
Freedom 

Mean 
Squared 

Error F Statistic Prob>F 

S
in

g
le

 F
a
c
to

rs
 

Subject 162.6394 2 81.3197 6048.7344 0 

<60 0.22222 1 0.22222 16.529 4.8054e-005 

 >60 0.61544 1 0.61544 45.7776 1.3529e-011 

Time 1.2652 2 0.63262 47.0555 3.9904e-021 

Channel 1.2187 2 0.60936 45.3256 2.237e-020 

In te
r

a
c

ti
o

n
s Subject*<60 2.3541 4 0.58852 43.7756 1.1195e-036 
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Subject*>60 3.1751 4 0.79378 59.0433 1.0462e-049 

Subject*Time 1.118 4 0.27949 20.7891 3.9768e-017 

Subject*Channel 0.099613 4 0.024903 1.8524 0.11581 

<60*>60 0.063152 3 0.021051 1.5658 0.19537 

<60*Time 0.7584 4 0.1896 14.1029 1.6914e-011 

<60*Channel 0.45084 4 0.11271 8.3837 9.3715e-007 

>60*Time 0.64845 4 0.16211 12.0583 8.6146e-010 

>60*Channel 0.10463 4 0.026157 1.9456 0.09992 

Time*Channel 0.04613 4 0.011532 0.85781 0.48842 

 Error 348.7665 25942 0.013444   

 Total 569.2442 25991    

 

6.2.4 Spatial Diversity 

The first analysis of diversity focuses on the three matched filter variants that contrasted 

differing levels of spatial diversity.  The three reference waveform variants included the 

single best channel, the optimal number of channels based on the training data and all 12 

channels on the microarray.  The best and optimal channel variants were selected for each 

cognitive task, phoneme and crossfold.  The results of the ANOVA contrasting these three 

variants with full diversity in the temporal and spectral dimensions are contained in Table 

6.3.  These results indicate that over the entire population, spatial diversity was not a 

significant factor.   

Table 6.3 Microarray ANOVA for spatial variants only 

Source 
Sum 

Squares 

Degrees 
of 

Freedom 

Mean 
Squared 

Error F Statistic Prob>F 

  Subject 12.3711 2 6.1856 511.8304 9.9056e-157 

  Channel 0.04836 2 0.02418 2.0008 0.13573 

  Subject*Channel 0.0098322 4 0.0024581 0.2034 0.93656 

  Error 12.9432 1071 0.012085   

  Total 25.3846 1079    

 

Since only certain subjects had significant power modulations, the ANOVA was repeated 

for individual subjects as well.  In this analysis, only the ANOVA for Subject 13 had a 
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channel as a significant factor.  Therefore a more detailed analysis was carried out on 

Subject 13‟s data.  The summary of the spatial diversity analysis Figure 6.11 illustrates the 

results of the analysis of variance on all three subjects as well as a more focused analysis on 

Subject 13.  Since the ANOVA assumes a linear model of the factors with normally 

distrusted errors, and the actual error histograms were non-Gaussian, we used a 

nonparametric analysis to compare the AUC scores between the three spatial variants.  

Figure 6.11A shows that across the three microarray subject, none of the three variants had 

medians that were significantly above the chance levels (p<0.05 Monte Carlo analysis).  

The right plot in Panel A shows that for Subject 13, all three variants had medians above 

chance; however, none of the three variants were significantly different from each other.  

Since these results contained both cognitive tasks, and the normalized spectra during 

hearing for this subject were stronger and more consistent than the speaking tasks, we 

studied the tasks separately.  Figure 6.11B shows the effect of adding single channels in 

order of decreasing r2 as in Chapter 5.  The results show that there is a slight inflection in 

the hearing curves for both individual phonemes as well as general cognitive tasks for 

either 2 or 3 microarray channels, however the curves are relatively flat.  Researches also 

noted that 4-6 channels (depending on the run) appeared noisy while recording Subject 

13‟s data.  Upon closer inspection of intra-operative photos, it appeared that the 

microarray was situated on top of blood vessels that could have obscured the recordings.  

Therefore it is not appropriate to draw conclusions regarding the optimal regions that 

encode phonemic content in microarray data from this data set.   
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Figure 6.11 Microarray spatial diversity summary 
The summary of the spatial diversity analysis are inconclusive in this group of subjects.  A).  The results of 
nonparametric Kruskal-Wallis tests showing the range of AUC scores for reference waveform variants 
contrasting spatial diversity at three levels show that across all subjects (Left), none of the population 
medians were significantly better than chance.  The same test on Subject 12‟s data reveals that the scores were 
significantly better than chance, however none of the variants were different from each other.  However, 
several of the channels may have been obscured by blood vessels (see text for details).  B)  Analysis of the 
information content as a function of microarray channels included in the matched filter also indicated that 
spatial diversity plays little if any role in this subject.  All hearing tasks were above chance (p<0.05, Monte 
Carlo), however the speaking tasks were either borderline in significance or not significant. 

Although the summated AUC scores across cognitive tasks and phonemes were not 

significant for Subjects 11 and 12, the single subject matched filter dot product matrices 

showed indications of phoneme and task specificity within the microarray (see Appendix 

C).  Therefore, we performed a single channel matched filter analysis.  Here, AUC scores 

from reference waveforms using single microarray channels were compared to the Monte 



138 

Carlo results for random performance (p<0.05).  The numbers of phonemes or general 

cognitive tasks with AUC scores above chance were counted for each individual channel.  

The results in Figure 6.12 show that specific locations in the microarray preferentially 

encoded specific phonemes and cognitive tasks.  For example, in Subject 12, channels 1, 2 

and 4 did not predict any single auditory phonemes better than chance; however, these 

locations were able to predict hearing as a general task above chance. This is consistent 

with single unit studies in human subjects in which neurons on the STG have been 

correlated with a variety of different speech parameters, many of which were general 

auditory responses and not correlated with specific phonemes (Engel, Moll et al. 2005).   

Additionally, Subject 11‟s microarray had certain channels that responded preferentially to 

either hearing or speaking (compare channels 6, 7 and 12).   It is interesting that neither 

Subject 11 nor 12 had very strong normalized power changes during hearing in the 

dissociation band analysis (see Figure 6.3), yet Subject 12 had several channels that could 

predict hearing in general above chance.  There are two possible sources for this apparent 

difference.  First, the dissociation band analysis did not account for temporal diversity, and 

instead averaged the power changes over 500ms.  This analysis technique may have 

obscured brief power changes in high frequencies.  The second and more likely source of 

the difference is the use of the low frequency bands (<60 Hz) in the diversity analysis 

which have been reported in the functional mapping literature as a correlate of cognitive 

task engagement (Crone, Miglioretti et al. 1998; Leuthardt, Miller et al. 2007; Wu, Wisneski 

et al. 2010).   
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Figure 6.12 Microarray single channel spatial analysis 
The results of a single channel matched filter analysis illustrate spatial inhomogeneity in microarray ECoG 
signals.  Rows of microarray plots correspond to cognitive tasks.  Columns correspond to the microarrays for 
specific subjects.  Channel numbers are shown for reference in the Subject 11‟s microarray plot for Hearing.  
Heat maps for each microarray plot shows the number of phonemes or general cognitive tasks that had 
above chance (p<0.05 Monte Carlo) performance.  The maximum for each subject and cognitive task is 
annotated above each microarray plot.  Color bars for phoneme specific tasks and general tasks are separated 
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to since there were only two general cognitive tasks.  Note that microscale anatomy appears to process 
information preferentially for specific task and phonemes. 

In summary, the spatial analysis was for the most part carried out on data from a single 

subject.  In this data set, neither the ANOVA nor the nonparametric score analysis 

demonstrated a significant difference between the three spatial matched filter reference 

waveform variants.  Because of potential vasculature blockage, the rank order analysis was 

inconclusive as well.  In spite of these difficulties, the single channel analysis did show 

indications of spatial inhomogeneity even at this small spatial scale across this group of 

subjects.  These diverse patterns of cortical activity in microarray ECoG are consistent with 

previous reports of spatial patterns in microscale pial recordings correlated with behavior 

by Freeman et al. (Freeman 1979; Freeman and van Dijk 1987).  

6.2.5 Temporal Diversity 

The analysis of temporal diversity in microarray ECoG data also started with an ANOVA.  

Table 6.4 contains the ANOVA on the three matched filter reference waveform variants 

contrasting different levels of temporal diversity.  In this multi-subject analysis, time was a 

significant factor, however it accounted for much less variance than the subject factor or 

residuals.   

Table 6.4 Microarray ANOVA for spatial variants only 

Source 
Sum 

Squares 

Degrees 
of 

Freedom 

Mean 
Squared 

Error F Statistic Prob>F 

  Subject 10.7447 2 5.3724 408.8126 9.7465e-133 

  Time 0.10426 2 0.052131 3.9669 0.01921 

  Subject*Time 0.0986 4 0.02465 1.8757 0.11242 

  Error 14.1138 1074 0.013141   

  Total 25.1817 1082    
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Figure 6.13 Microarray temporal diversity summary 
Three different analyses illustrate the presence of temporal diversity in microarray ECoG.  A) The results of 
nonparametric Kruskal-Wallis tests show that the median AUC scores in the analysis of all subjects failed to 
rise above significance.  The data from Subject 13, however, had medians significantly above chance for all 

three contrasts.  Additionally, the medians between the Time Varying and Best 1-Sample populations had 
nonoverlapping confidence intervals.  B) Analysis of the information content in the matched filter as a 
function of the percentage of time samples used to predict phonemic content.  When added in decreasing 
order of correlation (best time sample first), the mean AUC scores for Subject 13 increased throughout the 
time window for each task.  Note that the speaking task AUC scores only rose slightly above chance levels 
while the speaking phoneme scores did not achieve significance. These results indicate that for this subject, 
the entire temporal window aided in the prediction outcome.  C) Ranking plots reveal the relative amount of 
information content in specific time samples for each cognitive task.  Each line plots the median rank across 
phonemes for each cognitive task.  Color shaded areas show the extent of the 95% confidence intervals on 
the median (100 bootstraps with resampling).  For hearing, the ranks peak toward the end of the window due 
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to the increasing amount of cortical processing involved as the subject prepares to repeat the stimulus.  
Although the highest ranks for speaking are just following voice onset as in the macrogrid analysis, note that 
the ranking plot for speaking is grayed out.  The AUC scores were only slightly better than chance for the 
speaking task, and not better than chance for speaking phonemes.     

The summary results in Figure 6.13 provide some significant evidence for temporal 

diversity.  Panel A shows the nonparametric analysis of the three temporal reference 

waveform variants.  As in the spatial analysis, the subject population AUC scores are not 

significantly better than chance (p<0.05 Monte Carlo), therefore, the remaining analyses are 

performed only on Subject 13‟s data.  The Kruskal-Wallis test on Subject 13‟s data 

illustrates that all three spatial variants had above chance AUC Scores and that there was an 

increasing trend in the scores with increasing amounts of information in the matched filter 

reference waveforms. Panel B shows that the entire window improves Subject 13‟s AUC 

score for both for the hearing task and hearing phonemes.  The AUC scores for the 

speaking task were only slightly above chance and the scores for speaking phonemes did 

not reach significance.  Therefore, it is difficult to draw broad conclusions from this data.  

Panel C shows the relative ranks of the time samples in the matched filter window have 

similar shapes to those reported in Chapter 5.  There is one additional feature in the 

ranking plot for hearing in Panel C that deserves comment.  In the nonword experiment 

performed by Subject 13, the stimuli were all normalized to have 500 ms durations.  It is 

clear from the hearing plot in Panel C that the relative ranks peak between 450-480 ms, 

then gradually drop off as the subject was preparing to say the stimulus words.   The time 

samples at the beginning of the hearing do not reach the rank levels of the time samples at 

the end of the stimulus until 186 ms after stimulus onset.  This seems to indicate that 

cortical representation of auditory phonemic information is strongest between 200 ms after 

stimulus onset to 200 ms after stimulus offset.   This does not mean that there is no 

meaningful phonemic encoding at the beginning of the temporal window.  The evidence in 
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Panel B suggests that even in advance of the stimulus, the cortical signals encode 

information regarding the cognitive task and phoneme.  While this may seem counter 

intuitive, recall that in this analysis, the matched filter is discriminating a specific task and 

phoneme from all other tasks and phonemes.  Since the trial has a regular temporal 

structure, it is likely that preparatory attention aided in predicting the onset of the specific 

cognitive task {Gómez, 2006 #604}.  While the results are not yet generalizable across 

multiple subjects or tasks, they represent strong preliminary evidence of temporal diversity 

in microarray ECoG signals. 

6.2.6 Spectral Diversity 

 Table 6.5 shows the results of the ANOVA contrasting the three spectral variants of the 

matched filter reference waveforms.  The factor accounting for spectral diversity was 

significant, but accounted for a small amount of variance in the model.  The factors for 

specific subjects and error were three orders of magnitude larger.   

Table 6.5 Microarray ANOVA for spectral variants only 
Abbreviations:  >60:  frequency bands above 60Hz 

Source 
Sum 

Squares 
Degrees of 
Freedom 

Mean 
Squared 

Error F Statistic Prob>F 

  Subject 10.8823 2 5.4412 524.4418 1.6299e-159 

  >60 0.076695 2 0.038348 3.6961 0.025137 

  Subject*>60 0.064147 4 0.016037 1.5457 0.18676 

  Error 11.1118 1071 0.010375   

  Total 22.2038 1079    
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Figure 6.14 Microarray spectral diversity summary 
Quantitative results show the extent of microarray diversity in multiple frequency bands above 60 Hz in one 
subject.  A) The results of nonparametric ANOVA tests (Kruskal-Wallis) on all three subjects show that none 
of the variants were significantly greater than chance (p<0.05 Monte Carlo).  The analysis of Subject 13‟s data 
illustrates a clear trend of increasing AUC score with increasing spectral diversity above 60Hz.  The AUC 
scores using only frequencies less than 60Hz are not significantly greater than chance.  The 95% confidence 

intervals on the medians (100 bootstraps with resampling) for the Mean Power and Discrete Bands variants 
were nonoverlapping with <60 Hz variant.  B). Analysis of the information content in the matched filter for 
Subject 13 as a function of the number of frequency bands used to predict phonemes and general cognitive 
tasks.  When added in decreasing order of correlation (best frequency band first), the mean AUC scores for 
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cognitive tasks and phonemes increases until  approximately 23% the available frequency bands are added to 
the matched filter.  Note again that the speaking task AUC scores are slightly above chance, while speaking 
phonemes does not reach significance.  C) Ranking plots reveal the relative amount of information in specific 
frequency bands.  Each line plots the median rank across phonemes and crossfolds for Subject 13.  Shaded 
areas show the extent of the 95% confidence intervals on the median (100 bootstraps with resampling).  The 
shading and traces for speaking phonemes are grayed out because they did not reach significance.  Rank 
traces for frequencies above and below 60 Hz are plotted separately for readability.  For hearing, the top 23% 
of rankings fall between 10-15 Hz (alpha) and 70-160 Hz (high gamma) ranges, traditionally associated with 
functional mapping.      

The quantitative analyses in Figure 6.14 elucidate the findings from the ANOVA.  Panel A 

contrasts the nonparametric Kruskal-Wallis test on the AUC Scores from all subjects with 

those from Subject 13 alone.  Again, the median scores from the summary across subjects 

do not reach significance (p<0.05, Monte Carlo).  The results from Subject 13, however, 

reveal an increasing trend in AUC score with increasing spectral diversity above 60 Hz.  

The 95% confidence intervals on the medians for the Mean Power and Discrete Bands 

do not overlap with the chance line, or the <60 Hz variant.  While the median for the 

Discrete Bands variant is higher than the Mean Power variant, the confidence intervals 

do overlap.  One of the reasons these variants are not more different is that the analysis 

was performed on both the hearing and speaking tasks.  As shown below, the AUC scores 

for speaking phonemes were not above chance.  Using only the scores above chance may 

reveal a more significant difference between these two variants.  Panel B quantifies how 

many frequency bands helped improve AUC score performance by cognitive task.  As the 

frequency bands were added in order of decreasing r2, the hearing scores peaked after 23% 

of the frequencies (10 bands) were included.  As discussed previously, the speaking task 

scores were only slightly higher than the significance threshold while the speaking 

phonemes scores were significantly above chance.  Panel C illustrates specifically which 

frequencies tend to produce the best AUC scores and therefore encode the most 

information in microarray ECoG signals.  The top ten ranked frequency bands were 
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between 10-15 Hz and 70-160 Hz in Subject 13. These results are in concert with those 

from functional mapping studies which highlight the high gamma band as a reliable focal 

indicator of cortical activity (Crone, Miglioretti et al. 1998; Crone 2000; Leuthardt, Miller et 

al. 2007; Wu, Wisneski et al. 2010).  There curves for both the hearing task and hearing 

phonemes are very similar and do not appear to reveal any band specificity for phonemes 

versus tasks.  Although the dissociation band results for the microarray data showed 

consistent high frequency modulations as high as 540 Hz in the dissociation band section 

of this study, those frequencies were not highly ranked in this analysis.  While the ANOVA 

results and quantitative study of Subject 13‟s data provide preliminary evidence that 

spectral diversity in high frequency microarray ECoG signals improves AUC scores, 

additional patients and further analyses are necessary to generalize conclusions.   

6.3 Conclusion 

We have examined microarray ECoG signals in the context of auditory single word 

repetition paradigms in three cortical areas associated with speech with the goals of 

determining:  1) whether spectral diversity could dissociate cognitive tasks and anatomic 

locations, and 2) whether the spatio-temporal dynamics of spectral diversity in frequency 

bands above 60 Hz contain signals correlated with phonemic content.  Although these 

results must be considered preliminary, in one subject the results clearly support both of 

our original hypotheses.  In Subject 13, we reported several anatomic locations within a 3 

mm x 3 mm microarray, some separated by only 1 mm, which were dissociated by 

nonuniform power modulations in different frequency bands above 60 Hz.  The anatomic 

dissociations were present at the strongest statistical test (p<0.001, FDR corrected) and in 

bands as high as 550 Hz.   
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In that same subject, using the matched filter correlator as a foundation for the diversity 

analysis, we reported evidence that supports spatial, temporal and spectral diversity above 

60 Hz.  Most notably, we found the matched filter reference waveforms to be a consistent 

and predictive indicator of the neural motif associated with phonemic content.  Spatially, 

while we were unable to quantify the optimal microarray region associated with phonemic 

content, we have reported several inhomogeneities between cognitive task and phoneme 

representation in ECoG microarrays.  Temporally, we showed in that subject, all samples 

were beneficial in identifying auditory phonemic information.  The best samples were in 

the window from 200 ms post stimulus onset to 200 ms post stimulus offset, peaking at 

approximately 480 ms.  Spectrally, the preliminary evidence from one subject indicates that 

treating the frequencies above 60 Hz as discrete bands yields a slight, though not 

statistically significant, improvement in AUC Scores.  The optimal frequency bands during 

hearing for this subject appear to be in the alpha (10-15 Hz) and high gamma ranges (70-

160 Hz).   In summary, as preliminary results, these findings are encouraging and justify 

gathering additional microarray data to study the spectral diversity in microarray ECoG. 
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7 Summary and Conclusions 

The central hypothesis advanced at the start of this work was that the high gamma band in 

ECoG signals contained behaviorally relevant information in multiple sub-bands above 60 

Hz.  To that end, we have shown evidence that proves that hypothesis in macroscale 

subdural recordings through the first two aims.  First, we showed that nonuniform power 

changes in multiple frequency bands above 60 Hz could dissociate either cognitive tasks 

from the same cortical location or anatomic locations during the same cognitive task.  

Second, by using the matched filter construct, we showed that adding information in the 

spatial, temporal and spectral domains of ECoG signals above 60Hz improved the 

classification of specific phonemes and cognitive tasks.  Additionally, we demonstrated that 

the neural motif captured using the matched filter classified specific phonemes within the 

context of a single cognitive task at levels better than chance.  Finally, in microarray ECoG 

recordings, we have provided preliminary evidence supporting that our central hypothesis 

hold in microscale recordings as well.  In the following sections we address related findings 

from the scientific literature and present directions for future studies. 

7.1 Discussion 

7.1.1 Spatial Diversity  

The evidence of spatial diversity in the ECoG signals is not only consistent with studies of 

human language organization and microscale electrophysiology studies, but may also be an 

explanatory factor in the presence of dissociation bands. 
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7.1.1.1 Support from Human Language Studies 

Overall, cortical functions reported in human language studies using other modalities 

support the findings reported here.  Studies of human language using a variety of different 

modalities have shown robust and widespread responses to both receptive and productive 

speech tasks.  Here we examine the consistency of the results we reported with those 

published from other studies. 

The patterns of cortical activity reported in Figure 4.5, Figure 6.3 and Figure 6.4 are 

consistent with previous studies examining sensorimotor cortex, Broca‟s area and STG.  

Sensorimotor cortex had strong activations in all four cognitive tasks.  While its role during 

receptive speech is the subject of much debate (Scott, McGettigan et al. 2009), our findings 

are in line with likely roles of phonetic encoding, formulation of motor articulatory plans, 

and other motor control activities (Petersen and Fiez 1993; Salmelin 2007; Towle, Yoon et 

al. 2008) as well as multisensory integration (Ghazanfar and Schroeder 2006).  Broca‟s area 

had robust cortical activations during speaking tasks, moderate activations during reading, 

and minimal activations during hearing.  These activations are likely attributable to the 

grapho-phoneme conversion process during reading (Jobard, Crivello et al. 2003; Salmelin 

2007) and late pre-articulatory responses in preparation for speech (Indefrey and Levelt 

2004; Towle, Yoon et al. 2008), which may occur late in the hearing phase.  The activations 

in left STG were strongest during hearing and speaking but were minimal during reading.  

Primary auditory perception, phonological processing (Binder, Desai et al. 2009) and self-

monitoring (Demonet, Thierry et al. 2005) are likely the functions causing activations 

during hearing and speaking.  While electrophysiological studies have reported high-

frequency power increases during reading associated with lexical and semantic processing 

(Salmelin 2007; Mainy, Jung et al. 2008), the weaker response during reading in Figure 4.5  
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is most likely because the read and repeat paradigm used here required little lexical or 

semantic processing. 

The diversity analyses in Chapters 5 and 6 relied on the ability of the matched filter 

reference waveforms to discern specific phonemes and cognitive tasks in the context of the 

trial structure from both macro- and microscale electrophysiology.  Previous studies have 

also reported electrophysiological correlates of phonemic activity.  Single unit studies in 

human temporal lobe have identified neurons that fired preferentially for specific 

phonemic combinations during both perceptive and productive speech (Creutzfeldt, 

Ojemann et al. 1989; Creutzfeldt, Ojemann et al. 1989; Engel, Moll et al. 2005). Several 

studies using macroscale subdural recordings have also reported electrophysiological 

correlates of phonemic processing and production in the temporal lobe (Liégeois-Chauvel, 

de Graaf et al. 1999; Flinker, Chang et al. 2010) and inferior frontal cortex (Blakely, Miller 

et al. 2009).  Studies using MEG have also phonemotopic organization in the human 

temporal lobe (Shestakova, Brattico et al. 2004).  It is interesting that this research 

implicated a relative large cortical area (as much as 18-24 cm2) that included posterior 

STG, middle temporal gyrus, angular gyrus, sensorimotor and premotor cortex during 

hearing phonemes.  While these results could be used to support the motor representation 

of speech theory (Scott, McGettigan et al. 2009), it is important to remember that the 

matched filter analysis was used in the context of an auditory word repetition task.  It is not 

clear when pre-articulation coding and motor planning begin in this experimental 

paradigm.  In order to more clearly test the motor representation of speech hypothesis, the 

analysis should be repeated using a passive hearing paradigm or auditory discrimination 

task requiring a non-verbal response.   
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7.1.1.2 Support from Microscale Pial Recordings 

Ours is not the first report of spatial diversity correlated with specific behaviors.  Several 

microscale electrophysiological studies in animals have reported that spatial patterns of 

power modulation have been correlated with olfactory (Freeman 1979; Freeman and Baird 

1987), visual (Freeman and van Dijk 1987), and barrel cortex  sensory processing (Simons 

1985).  Additionally, a study of a single human subject with an ECoG microarray reported 

the single electrodes spaced 1mm apart responded distinctly during spoken words (Kellis, 

Miller et al. 2010).  While the results of the spatial analysis in Chapter 6 were not 

quantitatively conclusive, there was preliminary evidence of spatially diverse cognitive task 

and phonemic representation in three subjects.  Additionally, we reported the presence of 

multi-electrode dissociation bands in microarray ECoG signals.  This phenomena indicated 

that different microscale cortical areas, separated by as little as 1 mm, had evoked power 

changes in different frequency bands independent enough to dissociate the two locations 

during the same cognitive task.  This could be indicative of a columnar tuning 

phenomenon in which specific cortical locations have preferred or resonant frequencies.  If 

this is the case, it may account for the single electrode dissociation bands reported in 

macroscale recordings in Chapter 4.  Since the results of Chapter 6 are still considered 

preliminary, this hypothesis will need to be tested with additional data. 

7.1.2 Temporal Diversity 

In the matched filter analysis of the macro- and microscale ECoG there was strong 

evidence for temporal diversity.  In addition to the neural correlates of specific phonemes 

reported above, there is other evidence of temporal coding of language.  Single unit and 

macroscale recordings from temporal cortex have been correlated with voice onset time, 
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which is a subtle temporal parameter that differentiates phonemes (Liégeois-Chauvel, de 

Graaf et al. 1999; Mukamel, Gelbard et al. 2005).  Single unit studies of auditory working 

memory in human temporal lobe have also reported a spatially and temporally distributed 

cycle of encoding (Ojemann, Schoenfield-McNeill et al. 2008).  Given that speech is 

constructed from temporally sequenced blocks of phonemes and syllables (Doupe and 

Kuhl 1999), and the prevalence of neural correlates of these speech parameters, it is not 

surprising that time varying information in a broad window yielded the greatest AUC 

scores.   

The presence of temporally diverse power modulations correlated with phonemic content 

may also explain the apparent differences in the microarray study between the dissociation 

band and matched filter studies.  While it was reported that the normalized spectra for 

Subjects 11 and 12 were not significant during hearing (see Figure 6.3), the single channel 

matched filter analysis in Figure 6.12 revealed that there were several electrodes capable of 

discerning specific phonemes and cognitive tasks at above chance levels.  While these 

appear to be in conflict, temporal diversity and phonemic correlation could explain the 

difference.  If power modulations are only correlated with specific phonemes and not to 

speech in general (Creutzfeldt, Ojemann et al. 1989), and they only occur in a brief 

temporal window corresponding to the presence of that phoneme (Mesgarani, David et al. 

2008), then averaging the spectral power change over all phonemes and a broad temporal 

window, as done in the dissociation band analysis, may not necessarily be significant.   

7.1.3 Spectral Diversity 

This dissertation presents evidence of spectral diversity in ECoG using both the 

dissociation band and matched filter analyses.  The presence of dissociation bands showed 
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that sub-band power modulations were independent enough to dissociate cognitive tasks 

and anatomic locations.  In the diversity analysis, the matched filter reference waveforms 

that used discrete bands above 60 Hz significantly improved AUC scores compared to 

variants that used the average power in all bands above 60 Hz.  This evidence supports the 

hypothesis that there are nonuniform power modulations in the high gamma band in 

contrast to the hypothesis that high gamma band power modulation is strictly uniform.  

These findings are consistent with previously published results from many modalities and 

significantly alter the perspective on the extent and nature of high-gamma band power 

changes in macro-scale electrophysiology. 

7.1.3.1 Evidence in Previously Published Literature  

Previous studies have demonstrated that physiologically relevant cortical power changes 

can occur at various high frequencies. Single-unit local field potential recordings in rodents 

have reported gamma oscillations up to 150Hz (Sirota, Montgomery et al. 2008).   

Macroscale recordings from ECoG, EEG and MEG have also reported the independence 

of cortical power changes between low-gamma (roughly 30-60Hz) and high-gamma 

(>60Hz) bands (Herculano-Houzel, Munk et al. 1999; Crone, Boatman et al. 2001; 

Edwards, Soltani et al. 2005; Wyart and Tallon-Baudry 2008).   Our results (Figure 4.4 and 

Figure 4.5) further extend this subparcellation to the high-gamma band above 60Hz.  

While many studies have identified unitary power changes in the high-gamma band 

associated with cognitive behavior, the results presented here show that there is behavioral 

information encoded in sub-bands above the 60Hz marker. 

Gamma band activity has been attributed to a variety of cellular mechanisms, both normal 

and pathologic.  Low-gamma (30-60Hz) oscillations are purportedly caused by alternating 
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excitatory and inhibitory post synaptic potentials (Sukov and Barth 1998). The 

physiological underpinnings of oscillations between 60-200Hz are less clear. Single-unit 

studies in non-human primate somatosensory cortex have correlated local field potentials 

between 60-200Hz and average firing rates (Ray, Crone et al. 2008). EEG studies in 

primate primary visual cortex have shown gamma power (30-100Hz) coupled to delta 

phase (2-4Hz) can predict multiunit firing rates (Whittingstall and Logothetis 2009).  

Higher frequency oscillations (up to 600Hz) caused by peripheral nerve stimulation have 

been reported in non-human primate epidural and single-unit recordings (Baker, Gabriel et 

al. 2003) and human scalp EEG/MEG (Curio 2000).  Higher oscillatory frequencies (200-

600Hz) appear to be correlated with summated action potential spiking (Jones, MacDonald 

et al. 2000; Baker, Gabriel et al. 2003).  It may be that the 60-200Hz range of the high-

gamma band power increases are associated with asynchronous increases in multiunit firing 

rates, while gamma band power above 200Hz indicates synchronous firing activity.   In 

addition to natural physiological processes, evidence of high-frequency “fast ripples” (250-

500Hz) have been reported in human epileptic hippocampus (Bragin, Wilson et al. 2002).  

Since all subjects in this study underwent treatment for epilepsy, it is possible that some 

power change patterns in our data are pathologies of the disease.  However, the strength of 

the statistical tests used to correlate power changes with specific cognitive tasks as well as 

the single-trial and time-course data indicate that these high-frequency power changes are 

not random occurrences.  Taken together, these studies show that there are physiological 

bases for power changes between 60-500Hz.   
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7.1.3.2 Absence in Previously Published Literature  

There are several legitimate reasons that previous ECoG studies have not identified 

distinct, non-uniform high-gamma power change patterns that dissociate cognitive tasks or 

locations.  Choice of behavioral task, data collection method, or analysis technique could 

obscure these differences.  Many ECoG studies of language utilize experimental paradigms 

designed to illuminate cortical changes caused by subtle differences in cognitive behaviors 

(e.g., phonological processing, semantic processing, lexical processing, etc.).  The 

paradigms often focus on cortical responses to input stimuli with relatively simple 

behavioral responses (e.g., button press) (Mainy, Jung et al. 2008) or passive stimulation 

alone (Edwards, Soltani et al. 2005).  While differences in high-gamma activity may have 

been present, they may have been subtle or considered irrelevant.  Additionally, studies of 

relatively simple motor tasks (e.g., hand clasping, finger movements) that have reported 

uniform power increases correlated with movement (Miller, Zanos et al. 2009) may involve 

different physiologies.  Functional imaging studies of finger movements implicate much 

smaller regions of BOLD signal change (Cunnington, Windischberger et al. 2002) than 

those for the language tasks studied here (Church, Coalson et al. 2008).  The difference 

between a more focal versus a more networked cortical process may result in genuinely 

different electrophysiological responses.  Thus, broadband responses to motor tasks may 

also be behavior- and location-specific, but may not necessarily generalize to other tasks or 

cortical areas.  

Signal-to-noise ratios and frequency analysis techniques may also explain why other 

research has not reported the high-frequency behavior shown here.  The raw power 

spectral density of electrical cortical activity drops off geometrically in proportion to the 

observation frequency (Nunez and Srinivasan 2006); therefore, when analyzing high 
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frequencies, practices that improve signal-to-noise ratio are critical.  Recordings for this 

work used intracranial and non-cortical (skull-facing) reference electrodes, which are less 

susceptible to noise than scalp or cortical electrodes.  Biosignal amplifiers used in this study 

have 24-bit analog to digital converters.  Equipment with lower precision (using fewer bits) 

will have higher quantization noise levels, which may obscure low power fluctuations at 

high frequencies.   Linear time-frequency analysis techniques (wavelet and Fourier 

transforms) inherently trade time resolution for frequency resolution (Hlawatsch and 

Boudreaux-Bartels 1992).  Selecting analysis parameters that favor fine time resolution can 

obscure narrowband changes because of coarse frequency resolutions at higher ranges.     

7.1.3.3 Alternative Explanations  

While there is agreement between our results and corresponding findings in microscale 

high-gamma studies and language studies from multiple modalities, we acknowledge there 

are possible alternative explanations.  The normalization technique used here removes 

noise characteristics that may change over time; however, as a result the ITI spectra are 

explicitly included in the comparisons between tasks.  Therefore it is possible that some of 

the dissociation band phenomenon reported here could also have been caused by 

differences in the ITI spectra either between experimental tasks (single electrodes) or 

between pairs of electrodes during the same cognitive task.  There is a finite precision in 

the electrode registration method used here (approximately 1cm) that directly affects 

Brodmann area assignment (Miller, Makeig et al. 2007).  Additionally, it is well known that 

there are significant individual differences in the organization of cortical language areas 

(Ojemann, Ojemann et al. 1989).  Regardless of possible inaccuracies in Brodmann area 

categorization or subject-specific differences in functional anatomy, the vast agreement 
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between the existing language literature and our results supports the credibility of the 

results presented here and amplify the dissociation band findings. 

7.1.4 Neural Motifs Captured by Matched Filters  

One of the most striking findings of this research was the predictive value of the matched 

filter.  We used the matched filter correlator in two different contexts to classify specific 

behaviors.  We first showed that matched filter reference waveforms discriminated 

phonemic content within a specific cognitive task.  The matched filter scores in the ROC 

analysis also demonstrated significant sensitivities and specificities to combinations of 

cognitive tasks and phonemes.  The AUC scores revealed that these combinations could be 

reliably detected over the course of the testing data using the matched filter construct.  

Given the evidence of spatial, temporal and spectral diversity reported in this dissertation, 

these findings indicate that the matched filter reference waveforms are a reliable 

representation of the multi-dimensional neural motifs associated with specific phonemes 

and tasks.  We have shown that the matched filter is capable of identifying fine grained 

cognitive processing (saying or hearing a specific phoneme) on a fine time scale. 

Other studies have identified neural correlates of relatively detailed cognitive processing 

using other modalities as well.  Studies of object representation have revealed neural 

correlates of object representation in specific inferior and ventral temporal lobe locations 

using functional imaging (Haxby, Gobbini et al. 2001), and electrophysiology (Hung, 

Kreiman et al. 2005).  Studies of semantic representation have shown spatially diffuse 

BOLD correlations with different categories as well (Mitchell, Shinkareva et al. 2008).  A 

recent EEG study has even applied the matched filter construct to classify imagined 

consonant-vowel combinations using multiple electrodes and temporal envelopes of the 
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theta, alpha and beta frequency bands (D‟Zmura, Deng et al. 2009).  The results reported 

here are novel in two respects.  First it is the first study the author is aware of, that has 

shown the ability to classify specific phonemic content from whole words.  Additionally, it 

is the first time that specific combinations of tasks and phonemes were detected from data 

including multiple tasks (hearing, speaking, resting) and phonemes embedded in words. 

7.2 Future Research 

While we believe these findings to be significant, they also inspire further questions that 

remain to be answered.  There is still research to be done to explore spectral power 

modulations, the diversity in neural motifs, and microarray ECoG. 

While we have shown that there are indeed nonuniform power changes in frequencies 

above 60 Hz, the phenomena still has many avenues to examine.  There is a need to 

identify the specific cortical areas in which dissociation bands occur.  It may be that they 

occur in associative areas, and that spectral nonuniformities are a sign of information 

integration.  The search for dissociation bands should also be expanded to other types of 

cognitive tasks (motor, attention, semantic, spatial navigation, mental computation).  This 

study may also help shed light on the specific cortical areas that exhibit dissociations.  On a 

finer scale, research could be done to identify the bandwidths of the dissociation bands and 

any correlations with cortical areas or tasks. Finally, further research should seek to identify 

reasons for subject specificity in high frequency diversity.     

Using the matched filter construct, we identified a portion of the neural motif correlated 

with specific cognitive tasks and phonemes; however, there are several open directions for 

research in this area as well.  The matched filter construct implemented for this research 

used only the amplitude of power modulations.  However, it has been shown that there are 
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various phase-related phenomena associated with auditory stimuli (Edwards, Soltani et al. 

2005; Canolty, Soltani et al. 2007).    An adaptation of the matched filter to account for 

phase synchrony should be explored as well.  Application of the matched filter to other 

cognitive tasks is another opportunity.  Previous work in non-human primates used a 

similar construct and illustrated robust and stable features correlated with motor kinematics 

(Chao, Nagasaka et al. 2010).  This work could be expanded in humans, as well as 

adaptation to semantic and object representation.  Given the classification performance 

and the sensitivity and specificity of the matched filter, it also seems appropriate to use the 

matched filter in the context of an online BCI control algorithm.  The study by Chao et al, 

showed that continuous kinematic information was well correlated with the matched filter 

(Chao, Nagasaka et al. 2010), and here we show that discrete information is also well 

detected by the matched filter.  The combination of discrete and continuous signals in a 

BCI could multiply the degrees of freedom and information bit rates achievable.  

Additionally, since the matched filter is a simple dot product between the reference 

waveforms and incoming signals, the classification scheme should computationally 

efficient.   

The microarray results we reported in Chapter 6 offer support for the hypotheses we 

proposed regarding microscale spectral diversity.  However, this analysis remains 

incomplete.  In addition, research to improve the recording techniques would aid this 

study.  The addition of a head stage amplifier in close proximity to the microarray would 

likely improve the signal to noise ratio, and may reveal even more spectral diversity than 

reported here.   
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7.3 Conclusion 

In conclusion, these findings indicate a new approach is necessary to evaluate high-gamma 

range macroscale electrophysiology.   In addition to time and location of power changes, 

the specific frequency band within the high-gamma range is another fundamental 

dimension of cortical electrophysiology.  Though the cellular underpinnings of these 

phenomena require further study, we posit that these distinct, frequency-specific changes 

represent a mixture of asynchronous increases in multiunit activity as well as synchronous 

oscillatory activity and action potential firing.  Regardless of the source of these spectral 

nonuniformities, the discovery of frequency diversity in the high-gamma range provides 

the opportunity to explore the dynamics of these narrow frequency bands and their 

behavioral and neuronal correlates which may better facilitate the continuing synthesis of 

cellular, ensemble, and behavioral neuroscience. 
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A. Appendix:  Supplemental 

Dissociation Band Figures 
 

 
Figure A.1 Single subject autoregressive spectra 
Normalized autoregressive spectra for single channel across all six cognitive activities.  This data is shown 
using the same subject, electrode and format as Figure 3.1 in the primary work.  The two frequency bands 
centered at 102Hz and 274Hz illustrate a dissociation band between Hearing and Speaking after the Visual 
Cue.  These six normalized spectra illustrate that power in the two frequency bands of interest is modulated 
independently and do not reverse as an artifact of signal processing.  Consider two examples.  While Speaking 
after the Auditory Cue, both bands have significant power increases.  During Reading, neither band is 
statistically different than rest, but a band centered at 150 Hz has a significant power increase.   
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Figure A.2 Single subject FFT Spectra 
Normalized Fast Fourier Transform (FFT) spectra for single channel across all six cognitive tasks.  The data 
comes from the same subject, electrode and format as Figure 3.1 from the primary work and Error! 
eference source not found.Figure 1 above.  To show that dissociation bands were not signal processing 
artifacts, normalized spectra are computed with the FFT instead of the autoregressive method.  Task PSD 
estimates used the same sample blocks, window sizes, overlaps, and statistical methods cited in the Materials 
and Methods section.  Individual PSDs were computed using 512-point FFTs with hamming windows.  
Direct comparison to Figure 1 shows the normalized spectra for each cognitive task are very similar and that 
the autoregressive spectral estimation method did not introduce the nonuniform high-gamma power changes 
discussed in this paper as a signal processing artifact. 
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Figure A.3  Exemplar dissociation band normalized spectra 
Exemplar individual subject normalized spectra illustrating dissociation bands for all subjects.  Subject 2 did 
not have single electrode dissociation bands, so the exemplar comes from two different electrodes during the 
same cognitive task.  Each plot shows the mean normalized spectra with varying confidence intervals and are 
in the same general format as Figure 3.2B in the primary work.  Markers at 60, 100 and 250Hz outline typical 
gamma analysis bands.  Yellow and blue bands highlight areas where confidence intervals do not overlap.  
Cognitive Task Key:  H=Hearing, R=Reading, PA=Preparation after Auditory cue, PV=Preparation after 
Visual Cue, SA=Speaking after Auditory Cue, SV=Speaking after Visual Cue. 
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Figure A.4  Dissociation bands with negative power changes 
A) The percentage of single electrode dissociation bands from Figure 1.4 of the main work that had 
statistically significant (confidence interval did not include zero) power decreases compared to the ITI. 
Subject 2 had no single electrode dissociation bands.  B)  Exemplar spectra from individual subjects 
illustrating dissociation bands with significant power decreases.  Cognitive Task Key:  H=Hearing, 
R=Reading, PA=Preparation after Auditory cue, PV=Preparation after Visual Cue, SA=Speaking after 
Auditory Cue, SV=Speaking after Visual Cue. 
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Table A.1  Kolmogorov-Smirnov test results for cortical activation plots 
p-Values for Kolmogorov-Smirnov tests on the consolidated cortical activation plots from Figure 4.5 from the primary work.  These values are the results of 
statistical tests of the null hypothesis that the shapes of the individual cortical activation plots came from the same distribution.  Green blocks indicate that the null 
hypothesis can be rejected at the p<0.05 level.  Bold lines outline the intra-region comparisons.  Note that within STG none of the tests were rejected, in Broca‟s 
only one was rejected, and in Sensorimotor only two tests were rejected.  This indicates that the spectral patterns of modulated power within each cortical region 
were generally distinct between cognitive tasks at the p<0.05 levels.  Additionally, for each cognitive task, at least two cortical regions had activation plots that 
were statistically different (p<0.05). 
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Figure A.5  Single subject cortical activation plot 
Individual cortical activation plots for Subject 6 in the same format of Figure 3.5 of the main work.  Each 
plot shows the percentage of electrodes in the region of interest that had statistically significant (p<0.001, 
FDR corrected for multiple comparisons) power changes at each frequency.  Rows of activation plots 
correspond to anatomic locations, columns correspond to cognitive tasks.  Markers at 100 and 250Hz 
outline typical gamma analysis bands.  Electrode locations for each cortical region of interest are plotted 
on the MNI model brain for reference.  Multiple peaks per plot, shifts in percentage of cortex active by 
cognitive task, and changes in active bandwidth within cortical populations are all evidence of 
nonuniform power changes in these high-gamma bands (60-500Hz). 
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Figure A.6  Summary of dissocation band comparisons 
A) & B) contain the numbers of electrodes and electrode pairs respectively between 30-500Hz by subject 
and p-value as shown in Figure 3.4 of the main work.  These results verify the previously reported 
independence of low-gamma and high-gamma power modulations by showing that the number of 
dissociation bands increases when the low-gamma range is included. C) & D) report the number of 
electrode pairs in which dissociation bands confound the combination of cognitive task and anatomic 
location between 60-500Hz and 30-500Hz respectively.  These results show that there are several pairs of 
electrodes that exhibit the dissociation band phenomena, which do not solely distinguish either cognitive 
task alone or anatomic location alone. 
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B. Appendix:  Supplemental 

Information, Spatio-Temporal 

Dynamics of High Frequency ECoG 
 

 
Figure B.1  Classification accuracy by subject 
Bars plot the classification accuracy by cognitive task and phonemic category for each subject with above 
chance accuracy.   
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Figure B.2  Classification p-values by subject 
Bars plot the associated negative log p-values for classification accuracies in Error! Reference source 
ot found. by cognitive task and phonemic category for each subject with above chance accuracy.   

 

 



 

173 

 
Figure B.3  Single electrode analysis results for hearing phonemes on single subjects 
In a format similar to Figure 5.7, the results of the single electrode analysis show the spatial distribution 
of predicting auditory phonemes.   
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Figure B.4  Single electrode analysis results for speaking phonemes on single subjects 
In a format similar to Figure 5.7, the results of the single electrode analysis show the spatial distribution 
of predicting spoken phonemes.   
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Figure B.5  Single electrode analysis results for general cognitive tasks on single subjects 
In a format similar to Figure 5.7, the results of the single electrode analysis show the spatial distribution 
of both hearing and speaking in general. 
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Figure B.6  Matched filters exemplars for all 13 phonemes highlighting temporal diversity 
For the same subject and electrode as in Figure 5.8, these plots display matched filter excerpts for all 13 
different phonemes.  These plots show the spectral and temporal diversity between phonemes in a single 
cortical location.  Statistics were computed as described in the caption for Figure 5.8. 
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C. Appendix:  Supplemental 

Information, Microarray Diversity 
 

Table C.1  Macroelectrode versus microelectrode impedance comparison 
Using a saline bath and sample macro- and microarray ECoG grids, the impedance was calculated using 
g.USBamps manufactured by g.tec.  Impedances were calculated by driving a 10mV sine wave at 10Hz. 
Channel 4 on the microarray was omitted from the calculations due to a broken connection. 

Macroarray Electrode 

Impedances 

Impedance 

(k) 

Microarray Electrode 

Impedances 

Impedance 

(k) 

ch 17 (UA-2007.10.30/01):  65.2 ch 01 (UA-2006.09.10/01): 520.3 

ch 18 (UA-2007.10.30/02):  50.8 ch 02 (UA-2006.09.10/02):  385.8 

ch 19 (UA-2007.10.30/03):  32.7 ch 03 (UA-2006.09.10/03):  683.9 

ch 20 (UA-2007.10.30/04):  36.7 ch 04 (UA-2006.09.10/04):  **4783.1 

ch 21 (UA-2007.10.30/05):  20.7 ch 05 (UA-2006.09.10/05):  316.7 

ch 22 (UA-2007.10.30/06):  18.5 ch 06 (UA-2006.09.10/06): 947.6 

ch 23 (UA-2007.10.30/07):  16.7 ch 07 (UA-2006.09.10/07):  551.7 

ch 24 (UA-2007.10.30/08):  15.8   

Mean: 32.1375 Mean: 567.6666667 

SD: 18.0656689 SD: 226.4587439 
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Figure C.1  Matched filter dot product matrices for Subject 12 
Using the same format as Figure 6.7, these matrices illustrate the diversity and selectivity of the matched 
filter reference waveforms in microarray ECoG. 
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Figure C.2  Matched filter dot product matrices for Subject 13 
Using the same format as Figure 6.7, these matrices illustrate the diversity and selectivity of the matched 
filter reference waveforms in microarray ECoG. 
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