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ABSTRACT OF THE DISSERTATION 

 

Essays on Online Browsing and Purchase 

 

 

by 

 

 

Ciju T. R. Nair 

 

Doctor of Philosophy in Business Administration 

 

Washington University in St. Louis, 2010 

 

Professor Tat Chan, Chairperson 
 

 

Essay One: Modeling Online Browsing and Purchase of Airline Tickets 

Online purchases are increasingly becoming a significant portion of total 

purchases in most product categories. While prior research in marketing has looked at 

information search and purchase decisions separately, we use a joint framework to study 

consumers' online browsing and purchase of airline tickets in a unique dataset of 

household-level dynamic click stream panel data. We use a three-stage model to study (i) 

the choice of the first website visited, (ii) the duration of  browsing on travel websites 

before making a purchase (iii) the choice of the website where consumers will make the 

purchase, and how a later stage choice is affected by decisions in previous stages. We 

simultaneously estimate these three models which constitute a non-linear discrete-

continuous equation system using a simulation-based econometric technique. We find 

significant effects of expected level of expenditure, prior browsing experience, prior 
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purchase experience in determining consumer browsing and purchase behavior. We are 

able to quantify the differences in attractiveness of a website in getting consumers to first 

visit them and compare it with the conversion effectiveness of a website in terms of 

getting consumers who visit to make purchases. A significant impact of choice of the first 

site visited and browsing duration on choice of the purchase site indicates the importance 

of modeling these decisions simultaneously. Our results can help managers identify the 

major determinants of consumer browsing and online purchase behavior, some of which 

cannot be observed in a brick-and-mortar environment.  

 

Essay Two: Modeling Online Multi-category Purchase in Travel  

In this paper we investigate online purchase behavior at the basket level and 

model the multi-category purchases in the travel product category. While prior research 

in marketing has looked at browsing or individual category purchase decisions, we study 

consumers' online purchase of airline, car rental and hotel purchases together using a 

unique dataset of household-level dynamic click stream panel data. We use a two-stage 

model to study (i) the propensity of consumers to purchase a combination of products as 

a basket and (ii) the choice of the website where consumers will make those purchases. 

We then estimate the propensity of consumers to purchase a particular combination of 

products in their basket from different websites. This behavior constitutes a high 

dimensional system of multinomial equations which are then solved using a simulation-

based econometric technique. We find significant effects of site preference, loyalty, prior 

browsing and demographic variables in determining consumer multi-category purchase 
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behavior. Our results can help managers identify the major determinants of multi-

category purchase as well as provide insights into cross promoting as well as upselling 

other products to consumers who visit their website. 

Key Words: airline, car rental, hotel, travel, multinomial choice, purchase, behavior, multi 

stage models, online, browsing 
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INTRODUCTION 

 
Consumers‟ pre-purchase activation and path to conversion has intrigued 

academicians and marketers over the years. Of late the availability of clickstream data 

and new data sources that capture granular advertising data from traditional media (TV, 

Radio, Print, OOH etc.) and digital media assets (display, paid and natural search, text 

links and content networks) helps us explore the impact of marketing investments and 

quantify its impact on business performance and consumer decision making in more 

detail. The marketing funnel (see Figure A) is a key conceptual framework that is 

routinely used by practitioners to deconstruct the marketing activation and identify key 

issues. 

Figure A: Marketing Funnel 

 

Capturing all these effects along the marketing funnel and explaining the impact 

of interactions across these various stages is an area that requires seminal work and in 
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this dissertation the author takes a few first steps using clickstream data to explore the 

consumer browsing and purchase behavior in airline ticket purchases using a joint 

framework. The author also extends this work into a multi-category framework to explain 

purchases in the travel category (air, hotel and car rental). In the first essay we use a three 

stage model to study (i) the choice of the first website visited (ii) the duration of browsing 

on travel websites before making a purchase and (iii) the choice of the website where 

consumers will make the purchase, and how a later stage choice is affected by decisions 

in previous stages. In the second essay of the dissertation we investigate online purchase 

behavior at the basket level and model the multi-category purchases in the travel product 

category. Any analysis using single-category data provides only a partial view of 

consumer behavior that ignores possible dependencies between consumer purchase 

outcomes across multiple products in the basket. This leads to a biased understanding of 

consumer purchase decisions as it pertains to basket purchases and transactions.  We use 

a two-stage model to study (i) the propensity of consumers to purchase a combination of 

travel products as a basket and (ii) the choice of the website where consumers will make 

those purchases. 

Significant insights are obtained that help us understand the consumer search 

process as well as the impact of service provider brands compared to travel portals when 

it comes to making purchases in the travel category.  The scope of this dissertation and 

the modeling efforts in this empirical research are limited by any limitations contained in 

the ComScore clickstream dataset from Wharton Research Data Services 
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Amongst the 27 categories that the ComScore data set is comprised of Travel with 

128.28 transactions (see Figure B) constitutes the highest median number of daily 

transactions during the study period in any category.  

Figure B: Median number of daily transactions 

 

Travel also constitutes nearly 50% of total online spend for households who 

bought travel in our dataset. ComScore (2007) also estimates non-travel spending market 

in the US to be about $102bil in 2006 (online travel is a $70bn market in the US). 

Households also spend twice the time on travel websites where they can make a purchase 

compared to information only websites. For these reasons we investigate the travel 

category in more depth in this dissertation. 

An analysis of the travel browsing and purchase data provides a few useful 

insights that are relevant to understanding this dataset. We notice 68% of households 

(Figure C) make one or two travel purchases during the six month period we study (Jul-

Dec 2002). A closer look at the basket of travel products reveals single product purchases 
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constitute 82% of all purchases with Air travel purchases being the most dominant at 

constituting almost half of all transactions (Figure D). 

Figure C: Travel purchase transactions made by households 

 

 

Figure D: Purchase shares by type of basket purchase 
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Though combination or basket purchases constitute only 18% of all travel 

transactions the average basket value is many times more compared to single product 

purchases for combination purchases (see Figure E).   

Figure E: Average Basket value by type of travel purchase 

 

We also find a majority of combination purchases occur on travel portals (see 

Figure F) compared to airline or hotel or car rental websites.  

Figure F: Purchase shares by major websites 
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We also find the market is more consolidated among the leading four travel 

portals and the market is very thinly spread across the other travel portals when compared 

to the big four players. However a large number of transactions occur on other air, hotel 

and car rental sites indicating that the market is not consolidated amongst the leading 

players. This could possibly be due to the market being fragmented across a large number 

of specialist affiliate travel sites that focus on single product sales.  

Figure G: Activity no. of days prior to purchase 

 

An analysis of consumer browsing behavior in terms of time spent and pages 

viewed indicates that consumer browsing is lowest two weeks prior to search and 

exponentially increases as it gets closer to purchase (see Figure G). This information is 
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A majority of the households visited only one website in the two weeks prior to 

the transaction (see Figure H). However nearly one-fourth of the households visited two 

or more websites where they could make a purchase indicating very few websites 

constituted the household consideration set (max was 9 websites). 

Figure H: Size of consideration sets 

 

This concludes the synopsis of the data and the rest of this dissertation is 
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1. Introduction 

 Consumers‟ pre-purchase information search has a significant effect on purchase 

decisions and has received significant attention from marketing researchers (for a review 

of offline information search see Beatty and Smith 1987; Moorthy, Ratchford and 

Talukdar 1997; Punj and Staelin 1983). The internet is the most recent information source 

and purchase channel available to consumers. The average US consumer browses for 

more than two hours each day, increasingly spending more time on the internet and less 

on other traditional media such as TV and radio (Bouvard and Kurtzmann 2002). The 

share of the internet in purchases is also increasing. For instance, nearly a third of the 

$200 billion travel market purchases were made online by consumers in the US in 2005 

(Economist 2005). Travel as a category has also grown significantly and e-ticketing is 

now standard practice amongst airline companies. Hence it is important for both 

academicians and marketers to understand online search and shopping behavior.  

 The present research studies the phenomenon of pre-purchase browsing on 

the internet in this large and growing domain of online purchases of airline tickets. We do 

so by focusing on three stages of consumers‟ decisions: the choice of the first site to visit, 

the duration of browsing on sites visited prior to purchase, and the choice of the site 

where purchase finally occurs. Past research in marketing has investigated online 

browsing and purchases independently (Park and Fader 2004, Johnson et al. 2004, 

Montgomery et al. 2004, Bucklin and Sismeiro 2003, Sismeiro and Bucklin 2004) or 

within a specific website (Moe and Fader 2004). Another stream of literature has focused 

on the effect of search on consideration set formation (Wu and Rangaswamy 2003) which 
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relates to which website consumers start their search for information. However, to our 

knowledge no study has attempted to jointly study consumers‟ information search 

processes and purchase decisions, across multiple websites, explicitly estimating how the 

former impacts the latter.  

Weitzman (1979) proposes a framework comprised of a selection and stopping 

rule when it comes to explaining optimal search behavior. The Selection Rule implies “If 

an option is to be pursued, it should be that unexplored option with highest reservation 

price” and the Stopping Rule states “Terminate search whenever the maximum sampled 

reward exceeds the reservation price of every unexplored option”.  Kim, Albuquerque 

and Bronnenberg (2009) extend this work by combining Weitzmans‟s rules with a choice 

rule that the consumer relies on to choose the maximum utility alternative. Our work 

differs from that of Kim, Albuquerque and Bronnenberg (2009) in that we do not impose 

a theoretical framework to model the search process but are more interested in explicitly 

incorporating the so called behavioral search/browsing metrics observed in data to predict 

purchase. Also though our work predicts browsing and purchase behavior across websites 

(travel portals and service provider websites) for a product the non-availability of travel 

destination information is a challenge when it comes to using prices to infer reservation 

price or price expectations of consumers when it comes to making choice decisions. 

 In this study we extend prior work by simultaneously studying both browsing and 

purchase behavior after controlling for demographic characteristics. We also extend the 

applicability of existing discrete choice models that have traditionally been used to study 

scanner panel data and propose a unified dynamic framework to explore browsing and 
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purchase behavior across multiple websites. We also focus on investigating the sub-

processes affecting each of these three stages, more specifically, effects of expected level 

of expenditure, prior browsing experience, prior purchase experience and brand strength 

in addition to exploring the effect each stage has on the subsequent stage. In summary, 

we try to understand (a) the factors that affect the choice of the first website that 

consumers visit prior to making a purchase, (b) the factors affecting browsing duration on 

websites selling airline tickets, (c) the factors affecting the choice of the purchase site, 

and (d) the dynamic impact of past browsing experience and purchase decisions on 

current purchase, and that of the choice of first website and browsing duration on the 

subsequent purchase site choice. We use these results to inform us of differences in 

consumer behavior across different travel portals and also between travel portal and 

airline websites. 

The rest of the paper is organized as follows, in section 2 we review prior research 

and provide a theoretical background for the present research. In section 3 we describe 

the data and in section 4 outline the model used to study browsing and buying behavior. 

Section 5 summarizes and discusses the results. Section 6 concludes, with a discussion of 

some of the limitations of the present research, and outlines opportunities for future 

research. 

2. Conceptual Development 

From a cost-benefit perspective, consumer search increases as the benefits of 

search increase and decreases as the costs of search increase (Newman 1977; Punj and 

Staelin 1983). The online search behavior of consumers is different in many aspects 
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compared to that in store, primarily because it costs less in terms of time and effort for a 

customer to visit an online versus offline store. As consumers incur higher costs in the 

form of time and effort spent to visit an offline store, contingent on visiting the store they 

will be more likely to buy. In contrast, online shoppers are less likely to buy after visiting 

an online store. The low cost of visiting a website makes the shopper more likely to delay 

a purchasing decision and search broadly on various other websites. Consistent with this 

expectation, we observe lower conversion rates (number of visitors who buy) online than 

offline (Moe and Fader 2004a). However, this difference in cost of search does not 

necessarily imply that consumers will have perfect price or product information on the 

internet because searching online also requires time and effort. Furthermore, due to 

limited cognitive resources or browsing knowledge consumers may not be able to search 

online exhaustively (e.g., they may not know which websites to search on and compare 

across). It is therefore important to understand consumer browsing behavior in the online 

context, which is different from the offline context, and its impact on purchase. We next 

discuss prior research that identifies some of the factors that affect the extent of search 

and browsing behavior. 

2.1 Factors Affecting Browsing 

A significant amount of research has focused on individual and product 

characteristics that affect pre-purchase search. These research streams are discussed here 

to identify the variables that will be relevant for the present research. 
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2.1.1 Consideration Sets 

There is a large body of evidence to suggest that in the offline context consumers 

do not choose products from a universal set of alternatives, but frequently choose from 

consideration sets that consist of a subset of options (for a review, see Shocker et al.. 

1991; Roberts and Lattin 1997). Thus, factors that affect consideration set formation exert 

a strong influence on the final product choice. The effect of prior experience with brand 

and product category has spawned an entire stream of literature on state dependence and 

variety seeking behaviors exhibited by consumers (see Khan 1995; Seetharaman, Ainslie 

and Chintagunta 1999). This literature suggests that state dependence exists across 

households irrespective of demographics and diminishes over time. Consumers differ 

significantly in their consideration set formation even after controlling for the observable 

differences in demographic and experience characteristics. Consistent with this 

expectation, prior research has demonstrated that models accounting for differences in 

consideration set formation do better than models that do not (Chiang et al. 1999).  

 In the online context consumers also may have a limited consideration set that 

consists of a subset of websites that they will visit in their browsing process. For 

example, in the travel category it is almost impossible for consumers to remember 

hundreds of travel portals and airline websites that sell air tickets. Consistent with 

research on state dependence one may expect that past experience and browsing or 

purchase experience will dictate the formation of such consideration set. One of the most 

important indicators of the consideration set is where consumers start from, i.e., the first 

website that they visit. In America, 54% of consumers start with a travel portal, such as 
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Expedia, Travelocity or Orbitz, according to a study by Nielsen/NetRatings 2005. The 

websites of travel suppliers, such as airlines and hotels, are visited first by 37% of 

shoppers and the other 9% start planning their trips on travel search firms such as Kayak 

and Sidestep (Economist 2005). Indeed, prior research has identified that not accounting 

for the first site visited is one of the limitations of any search model (Moe and Fader 

2004).  

 Limitations in consideration set formation imply that the consumer may not 

search extensively online despite the low cost of visiting a website (as discussed above). 

Therefore we expect the first site visited to exert a strong influence on consumer‟s choice 

of purchase site. The first site visited may indicate that consumers have a stronger 

preference for it than for other sites they can buy from (Fazio et al. 2000). This first site 

may thus reveal consumers‟ preference before they encounter present information. 

Furthermore, information on the first site may have a disproportionately larger impact on 

consumer preferences than later sites visited, akin to a primacy effect that has previously 

been documented in attitude formation (Anderson 1965) and in legal decisions (Lind, 

Kray, and Thompson 2001). In this paradigm, limited cognitive resources and memory 

force the consumer to pay greater attention to information that is encountered earlier 

rather than later in the decision process. In click-stream data we observe the first site 

visited before making a purchase and hence we can say that this site is not only part of 

the consideration set but ranks at the top in terms of consumer preference. We believe 

modeling the choice of first site visited is a crucial step in modeling search and, 

consistent with prior research we expect it to significantly influence purchase behavior.  
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2.1.2 Site-specific and Category Experience 

Consumers with greater amount of site-specific experience will be more likely to 

have prior preferences in terms of which website they prefer to browse and purchase 

from. Thus, the first site visited by consumers may reveal a preference that is stronger for 

these consumers than for consumers who have low experience. Moreover, prior site-

specific experience will decrease the effort required by the consumer to learn the site 

layout and, if necessary, the effort of setting up a user account. Thus, consumers who 

have prior experience surfing on a site would be more likely to visit that site first the next 

time they make a purchase.  

Prior category experience is also expected to have a significant effect on the 

amount of browsing that the consumer does prior to purchase. Prior research has offered 

different predictions on the effect of this variable on search. On the one hand, consumers 

with prior category experience know a lot about the category already and may thus search 

comparatively less as the benefit may not be worth additional effort. On the other hand, 

greater prior knowledge implies that consumers may have a larger consideration set by 

knowing where to search for information and hence increase browsing duration. It is also 

possible that prior knowledge increases the ability to absorb more information and hence 

increases search efficiency. That is, greater category experience results in consumers 

seeking more information as they are aware of the right attributes to process. Knowledge 

might thus decrease cognitive cost of processing while increasing the benefit of seeking 

more information leading to increase in search. Hence, we expect experienced consumers 
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would first visit a travel portal as they are information aggregators and provide more 

information for the experienced consumer to process. 

Prior empirical results have also been mixed, with one set of studies finding that 

search increases with category experience, another set finding that search decreases with 

category experience, and yet another finding that there is no relationship at all (see 

Brucks 1985 for a discussion of these studies). Empirical studies using automobile 

purchases have shown pre-purchase search to be minimal (Beatty and Smith 1987). This 

result is puzzling especially in high involvement categories and has been attributed 

primarily to measurement issues related to self report biases. Srinivasan and Ratchford 

(1991) show that there is a negative relationship between prior experience and search as 

long as other variables are controlled for; however, subjective knowledge tends to 

increase search as knowledgeable consumers tend to structure the problem in complex 

ways resulting in increased search. 

A common result that resolves this contradiction is a non-monotonic relationship 

which is able to account for the mixed results observed in prior studies (Moorthy, 

Ratchford and Talukdar 1997; Bettman and Park 1980; Hempel 1969; Johnson and Russo 

1984). This provides an explanation for different search efforts under different levels of 

category experience. We attempt to investigate how category experience affects browsing 

duration in the online context by allowing for this non-monotonic relationship using both 

a linear and a quadratic term for prior browsing experience. We expect this relationship 

to be non-linear and have an inverted U shape as found in previous research. 
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2.1.3 Prior Purchase 

The websites where past purchases occurred may have an impact on being chosen 

as first site to be visited in the current search. This may be primarily due to switching 

costs associated with learning site layouts and setting up user accounts at each new 

website. In the present research we use the term inertia to indicate the tendency to first 

visit the website that consumers previously purchased from. In addition to effort-related 

switching costs, this inertia could also be caused by marketing activities such as frequent 

flyer programs or promotional offers which were made available to consumers to buy 

from same website. Thus, we expect that the choice probability of being the first site to 

be visited would increase if that site was the one where the previous purchases occurred. 

Prior purchase also directly contributes to consumer category experience. On the 

one hand, consumers may browse less because they have prior category experience or 

because of inertia discussed above. On the other hand, they may know more about the 

category and search may become easier. In the context of prior purchase, however, we 

note that the knowledge is site-specific so the latter effect may be smaller. Overall we 

expect consumers with prior purchase will browse less than consumers who have no prior 

purchase experience. 

2.1.4 Expected Level of Expenditure 

Prior research has demonstrated that consumers are more likely to search for 

information when there is higher risk associated with purchase (Punj and Staelin 1983). 

This risk may be physical (e.g., car safety), social (e.g., style of clothing) or financial 

(e.g., the price of the product). We use the expected level of the expenditure as a proxy 
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for the financial risk associated with the purchase. We categorize the expected level of 

expenditure to be low, medium, or high on the basis of the observed prices. Consistent 

with prior research on perceived risk, we expect consumers to browse more for purchases 

that are expected to have a higher level of expenditure. 

We also explore how the expected level of expenditure affects choice of the first 

website to be visited. We expect that with greater financial risk consumers will be more 

likely to stay with where they are likely to get good deals. That is, we expect the 

likelihood of first visiting a travel portal to be higher as expected level of expenditure 

increases.  

2.1.5 Brand Strength 

Websites with strong brand names are more likely to be visited first. We use 

brand intercepts to capture effects of brand strength on the choice of the first site visited. 

An alternative interpretation is that these intercepts imply different levels of unobserved 

marketing activities undertaken by these firms. Prior literature has not explored this effect 

on choice of first site to be visited as the first site visited is not observed in most 

empirical studies. 

2.1.6 Consumer Demographics 

Prior research has also demonstrated that consumer demographics like age and 

income play an important role in the search process. For example older consumers may 

be more price sensitive (because they are retired and have lower income), but have lower 

opportunity cost of time compared to busy young consumers and hence search longer and 

be less likely to visit the same site they previously purchased from (i.e., exhibit lower 
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inertia) than the latter. On the other hand cognitive capabilities of older consumers may 

be declining and prior research has shown younger consumers process more cues and 

alternatives (Schaninger and Sciglimpaglia 1981) and tend to search more in general. 

Other research also finds that older consumers typically have less patience to search 

(Ward and Lee 2000) hence we expect older consumers to first visit travel portals as they 

have a search friendly format. We also expect high income consumers to be less price 

sensitive compared to low income consumers, thus we believe high income consumers 

would indulge in less search than lower income consumers and will also be more likely to 

first visit an airline website than the latter. High connection speeds would make search 

easier and hence we expect consumers with higher connection speed to visit a greater 

variety of websites and to view more pages (i.e. exhibit a high level of browsing). 

Consistent with this expectation, Yonish, Delhagen & Gordon (2002) find that broadband 

users search 33% more than narrowband users. 

2.2 Factors Affecting Purchase 

Marketing literature has primarily looked at single stage choice models to analyze 

in-store purchases. As the factors affecting in-store choice are also applicable to online 

purchase behavior, we draw on findings in existing literature to understand expected 

effects of these factors on purchase of airline tickets online.  

2.2.1 Site-Specific and Category Experience 

 Increased frequency of visits to a website has been found to strongly influence 

propensity of purchase (Moe and Fader 2004). This has also been found to be true even in 

the offline setting (see Bellinger et al.. 1978, Janiszewski 1998, Jarboe & McDaniel 1987, 
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Roy 1994). This could be because consumers can take informed decisions as product and 

category knowledge increases (Brucks 1985) or could be because the consumer increases 

the likelihood of purchase with the amount of effort sunk into the decision (Staw 1976). 

Hence we expect both site-specific and category experience gained by consumers who 

spend more time surfing in general and on specific websites to positively impact the 

likelihood of purchasing from those websites.   

2.2.2 Prior Purchase 

Evidence for inertia or state dependence among consumers is well documented in 

marketing literature when it comes to in-store brand choice among consumers (e.g., 

Seetharaman, Ainslie and Chintagunta 1999). Consistent with the effect of prior purchase 

on first website visited, we expect the likelihood of purchase to be higher for a particular 

website if the last purchase happened to be on that website. 

2.2.3 Expected Level of Expenditure 

The expected level of expenditure indicates the amount of financial risk that the 

consumer takes when they purchase the ticket, with higher expenditure levels making 

them more hesitant (Punj and Staelin 1983). Expectations of price levels on travel portals 

in general tend to be lower than that of airlines implying a higher likelihood of finding a 

better deal on travel portals. Hence we expect consumers are more likely to buy from 

travel portals when expected level of expenditure increases. 

2.2.4 Brand Strength 

Brynjolfsson and Smith (2001) find strong brand effects in consumers‟ choice of 

websites to visit from a shopbot listing. Also, web site brand equity would create 
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confidence in buyers to buy from a particular website especially when there are fewer 

product attribute information available online (Degeratu, Rangaswamy and Wu 2000). 

We expect to find differences in brand strength across websites, with some having 

stronger brand images than others. Note that the brand effects on purchase decisions may 

be different from those on first site visited. Some websites may be more attractive for 

browsing first (for the purpose of information search) but may be less successful in 

converting these visits to final purchases than other websites. On average we expect the 

airline website brands to have higher brand strength as opposed to travel portals as they 

are service providers and typically invest more on brand building, use of reward 

programs and other marketing initiatives. Also stronger brands are expected to have 

higher conversion effectiveness as opposed to weaker brands. 

2.2.5 Consumer Demographics 

Existing literature does not find much significance in demographic variables to 

segment consumers when it comes to online purchase (Bhatnagar and Ghose 2004).  

However, Degaratu Rangaswamy and Wu 2000 in both online and traditional 

supermarkets find that income dampens price sensitivities; hence we believe consumer 

demographics could play a significant role when it comes to predicting site purchase 

probabilities. Travel portals provide choice of different airlines in addition to usual 

itinerary details thus increasing the available set of alternatives and cognitive load 

required to process this information. Consistent with the detrimental effect of excessive 

choice (e.g. Gourville and Soman 2005) older consumers, who typically have less 

cognitive resources to process information, may have a lower likelihood of purchasing 
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from a travel portal than from airline sites. High income consumers on the other hand are 

known to be less price sensitive and this coupled with the lower information processing 

required on airline websites should decrease their likelihood of buying from a travel 

portal. We expect the effect of broadband to mirror that of high income consumers as 

only the high income consumers were able to afford broadband in our dataset. 

2.2.6 First Site Visited and Browsing Duration 

In this research we explore two additional process effects on the final decision of 

which site to purchase from: (a) the effects of first site visited, and (b) amount of 

browsing. As discussed above, the first site visited choices may indicate inertia from 

prior experience or higher order website preference, and consequently this site may have 

a higher likelihood of being the one the consumer finally purchases from. It is likely that 

consumers who first visit a travel portal would exhibit a different browsing behavior as 

opposed to those who first visit an airline site. Consumers who first visit a travel portal 

can be expected to search less as travel portals being information aggregators provide a 

lot of information and options on the same page. On the contrary due to self selection 

consumers who typically indulge in more search might start by first visiting a travel 

portal. Hence apriori it is difficult to hypothesize as to how the search duration would be 

impacted depending on the first site visited. Also, the primacy effect would suggest that 

the first site visited would have a greater likelihood of persuading the consumer to 

purchase than subsequent web sites. These reasons suggest that if a site is the first site 

visited in the process of browsing for the present purchase, it is likely to be the one the 

final purchase is made from. 
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Prior research suggests that consumers who browse more will be more likely to 

buy than those who browse less (Moe and Fader 2004). Hence we expect browsing 

duration to increase the likelihood of purchase on travel portals. Also, browsing duration 

may be correlated with consumers‟ price sensitivity (more price sensitive consumers will 

browse longer for information) so purchase site choices of those who browse longer may 

be different from those who browse less. Note that in our model the browsing duration is 

also affected by the first web site that consumer visits. Thus, there is a cascading effect of 

the first site visited on browsing duration and choice of website to finally make the 

purchase. 

3. Data 

We use the ComScore clickstream dataset available from the WRDS database for 

our analysis. This dataset comprises of surfing and transaction details of 100,000 

households
1
 that are a representative sample of the US population in 27 product 

categories. In this study we restrict ourselves to the airline category and focus on 

browsing and purchase behavior of airline tickets as it is one of the categories with the 

highest number of online purchases. A total of 1832 households in the travel category fit 

the criteria required for our analysis. To ensure that a household‟s browsing is only 

related to a specific observed purchase we use the following three conditions: (1) we only 

focus on the household‟s browsing seven days prior to a purchase (the browsing period 

which captures 96% of all search that consumers indulge in); (2) we only study the 

household‟s browsing in the travel category (travel portals and airline websites) during 

                                                 
1
 Hereafter we will use “households” and “consumers” interchangeably with the same meaning. 
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that seven day period; and (3) on top of that, we only choose households that have had no 

surfing on travel websites for seven days prior to the browsing period. Table 1 reports 

some summary statistics of the data by household for the 1832 households during the six 

month period from July 2002 to December 2002. In this dataset, households on average 

make approximately two online purchases in the travel category during the six month 

period (the median number of purchases is two). Households have a mean spending of 

nearly $600 on a travel purchase and spend nearly three hours on average searching on 

websites selling travel products to make two purchases on average during the six month 

period.  

 

Table 1: Summary statistics 

1832 households (Jul 02 - Dec 02) Mean Std. Dev. 

Time spent (minutes) 165.65 205.08 

Number of pages viewed 165.28 212.73 

Number of unique airline websites visited 9.66 9.20 

Total number of airline websites visited 13.84 16.56 

Purchases in airline category 1.68 1.29 

Expenditure in airline category (US$) 570.09 661.55 

Purchases in all categories 10.20 17.61 

Expenditure in all categories (US$) 1018.22 2839.47 

 

Travel category forms a significant portion of online purchases made by 

consumers with the mean being two out of ten purchases amongst the 27 product 

categories. As we are interested in studying browsing behavior that is related to a 

purchase we focus only on those travel websites that also provide an option for 

consumers to purchase airline tickets. Specifically we investigate browsing and purchase 
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behavior on travel portals (such as Expedia, Orbitz, and Hotwire) and airline websites 

(such as Southwest, Delta, and American) where consumers have an option to purchase 

the ticket online.
2
  

We used the pages viewed by households in the first three months of data (July 

2002 – September 2002) as the household‟s prior experience on travel websites. We then 

use the online browsing and purchase sessions in the last three months for model 

estimation. To study the impact of expected level of expenditure that consumers incur to 

purchase airline tickets we classify the value of purchase as low, medium and high based 

on the distribution of prices. We use a median split widely used in marketing literature 

and use indicators for low (less than 33
rd

 quantile), medium (33
rd

 to 66
th

 quantile) and 

high expected level of expenditure (higher than the 66
th

 quantile).  

In this study we focus on browsing and purchase behavior for airline tickets 

because of two reasons (i) airlines constitute 52% of  (number of) purchases in the travel 

category and (ii) car rental (12% of purchases) and hotel (25 %) purchases are typically 

made in conjunction with an airline purchase. Investigating browsing and purchase 

behavior at the basket level (i.e., including hotel and car rental purchases) could be an 

interesting future study. 

4. Model Specification and Estimation 

                                                 
2
 We excluded from the analysis those households that were very heavy users (whose purchases exceeded 

the 99.9
th

  quantile both in terms of amount as well as number of transactions) in the airline category. We 

also excluded transactions on websites which were auction sites, search engines and payment gateways 

such as ebay.com, lycos.com, and authorize.net (these constituted less than 5% of the recorded travel 

purchases). Multiple purchases bought by a household were clubbed together if they occurred at the same 

time on a particular website (e.g. spouses buying airline tickets). 
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We propose a three stage model of consumer browsing and purchase behavior and 

jointly estimate the combined model. The three stages we model are (i) choice of first 

website visited (ii) duration of browsing on travel websites and (iii) choice of purchase 

site. This framework is pictorially depicted in Figure 1.  

 

Figure 1: Proposed three-stage model of consumer online browsing and purchase 

behavior 

 

 

In the first part of this section we outline the model used to study the choice of the 

website that is visited first in the purchase process. Initial data analysis revealed a strong 

correlation between the website at which the most recent purchase was made and the 

choice of the first website to be visited for the present purchase process (see Table 2). For 

example, almost 60 percent of households that visit Expedia and Orbitz as the first site in 

the purchase process purchased from these sites the last time they bought an airline ticket. 

Similarly, almost 85 percent of the households who visited airline websites first, had 

purchased their most recent ticket from airline websites. Understanding how households 

choose the first site to browse in a purchase process (in addition to inertia) can help us 

gain insights on the final purchase decision as the first site visited is likely to influence 

the decision more than subsequently visited sites. 

STAGE 1: 

START  

Choice of 

STAGE 2: 

BROWSE 

Browsing 

STAGE 3: 

BUY 

Choice of 
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In the second part of this section we model the browsing duration, in particular, 

we focus on pages viewed by the consumer while browsing prior to a purchase. It is 

evident from the data that the (see Table 3) browsing on travel portals on average is more 

than that on airline websites. However, it appears that there is not much difference 

between travel portals, which we investigate further using our model to see if post 

controlling for the various factors that affect each stage whether the first site visited 

impacts browsing duration. Moreover this indicates that it is important to incorporate 

choice of the first site, the decision variable in the first stage in the second stage of the 

model, to understand how it affects the browsing duration. For simplicity we only model 

the total browsing duration (category browsing and not site-specific browsing) at this 

stage. However modeling the path consumers take is crucial for marketing interventions 

that are related to design of banner ads or promotions (see Montgomery et al. 2004). 

 

Table 2: Relationship between last purchase and first site visited (%) 

Site from which last 

purchase was made 

Site visited first in the present purchase process 

Expedia Orbitz Hotwire 
Other travel 

portals 

All airline 

websites 

Grand 

total 

Expedia 57.9 10.5 1.3 2.6 27.6 3.9 

Orbitz 14.6 56.1 1.2 2.4 25.6 4.2 

Hotwire 6.7 23.3 26.7 3.3 40.0 1.5 

Other travel portals 18.2 4.5 0.0 27.3 50.0 1.1 

All airline websites 6.3 6.0 1.3 2.1 84.3 19.6 

No last purchase 20.1 13.9 5.1 7.1 53.9 69.7 

Grand total 18.4 14.0 4.4 5.9 57.4 100.0 

 

In the third and last part of this section we discuss the models used to determine 

the relationship between first website visited, the browsing duration and the purchase 
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website. Table 4 summarizes the impact of the choice of first site visited on the choice of 

the purchase site. It clearly demonstrates that households are much more likely to buy 

from the first site visited than from sites they subsequently visit.  

 

Table 3: Comparison of browsing on travel portals and airline sites 

First site visited 
Average number of 

pages viewed   

Expedia 69.46 

Orbitz 69.31 

Hotwire 72.51 

Other travel portals 75.96 

All airline websites 40.84 

 

 

Table 4: Effect of first site visited on purchase (%) 

Site from which  

current purchase  

is made 

Site visited first in the current purchase process 

Expedia Orbitz Hotwire 
Other travel 

portals 

All airline 

websites 

No first site 

visited 

Grand 

total 

Expedia 37.2 10.9 5.7 2.3 13.8 30.1 17.9 

Orbitz 10.5 34.6 7.1 3.4 9.0 35.3 13.6 

Hotwire 17.2 17.2 20.7 8.0 14.9 21.8 4.5 

Other travel portals 17.4 15.7 3.3 9.9 13.2 40.5 6.2 

All airline websites 8.7 6.1 2.8 2.7 36.5 43.1 32.9 

Grand total 15.0 11.9 4.8 3.4 26.3 38.6 100.0 

 

In the third and last part of this section we discuss the models used to determine 

the relationship between first website visited, the browsing duration and the purchase 

website. Table 4 summarizes the impact of the choice of first site visited on the choice of 

the purchase site. It clearly demonstrates that households are much more likely to buy 

from the first site visited than from sites they subsequently visit.  
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As the second and third stages involve the earlier stage decisions, we jointly 

estimate the three stages as a non-linear simultaneous equation system. Though we 

estimate a few alternate specifications we outline below the general case where we 

include individual travel portals and treat all airline websites together as an outside 

option.  

4.1 Modeling Choice of First Site Visited  

To study the choice behavior of the first website that consumers visit indicating 

the start of browsing and information search we use a random coefficients approach of 

the traditional multinomial logit model (for example see Gudagni and Little 1983) which 

we explain in detail later. We classify websites that consumers choose to visit first into 

travel portals and airline websites. We pick the top three travel portals and separately 

club all other travel portals and all airline websites together.
3
 A website is defined to be 

the first website visited prior to a purchase if it is the first website that is visited within a 

seven day window prior to a purchase with no surfing history on travel websites for at 

least seven days prior to that first visit. On average we find that airlines tend to have a 

higher conversion rate compared to travel portals (see Table 5).  

Let a discrete variable 1ijtF  indicate that consumer i  visits website j  first at 

time period t , and 0ijtF  otherwise. For 1ijtF , website j  has to exist in consumer i ‟s 

                                                 
3
 We do not observe from data the departure and arrival airports of flights. As airlines do not fly every route 

and browsing and purchase behaviors may be mainly determined by whether or not a specific route is 

served by an airline (e.g., one may not visit Southwest Airline‟s website when flying  to the JFK Airport in 

New York), we choose to group all airline websites together. In comparison, one can buy tickets flying 

every route served by different airlines from most of the travel portals. The behavior captured in our first 

site visited model is whether or not a household will start information search with travel portals or any 

airline websites and, in the first case, which travel website the household is more likely to choose. 
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consideration set (which may not include all possible options) and then j  has to 

dominate other websites in this consideration set in terms of information search under 

cost-benefit evaluation. 

 

Table 5: Website conversion rates 
4
 

Site 
Number of 

visitors 

Number of 

transactions 

Transaction 

share (%) 

Conversion 

(%) 

Expedia 37508 2378 19.0 6.3 

Orbitz 26613 1564 12.5 5.9 

Hotwire 10990 686 5.5 6.2 

Other travel portals 11822 655 5.2 5.5 

All airline websites 54687 5280 42.2 9.7 

 

We assume that these are determined by a list of factors including customer 

demographics (age, income, connection speed) 
itZ , prior category experience 

itH , 

expected level of expenditure 
itP  and the site-specific prior browsing experience ijS . 

Prior category experience 
itH  is measured as the proportion of pages viewed on website 

j  to the total pages viewed in the first three months on all websites selling travel 

products, and site-specific prior browsing experience ijS  is measured as average daily 

pages viewed on website j  in the first three months. We also incorporate the effect of 

expected level of expenditure
itP  by classifying the final purchase price into three 

categories of low ( $108 ), medium ( >$108 and $356 ) and high ( >$356 ) 

                                                 
4
 In our dataset Travelocity has a 100% conversion rate. This is because we do not observe any history or search for 

purchases made on Travelocity. We therefore exclude Travelocity from our analysis. 
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expenditures
5
. Furthermore, 

ijtI  is an indicator variable that denotes whether or not 

consumer i ’s last purchase was at j . This variable may affect the probability of j  being 

in i ’s consideration set and may create inertia such that i  may be more likely visit the 

same website first during the next purchase cycle. Finally, first site visited choice is also 

affected by i ‟s preference for or familiarity of website j  that is independent from the 

above factors as well as j ‟s marketing activities which are unobserved from our data. 

This is termed as “brand strength” which is individual-and-time-specific in our model.  

We assume that there is a latent variable *

ijtF  that generates the first site visited 

decisions. 1ijtF  if and only if * *

ijt iktF F , for all other website k . We specify the function 

of this latent variable as 

* f f f f

j ij

f f
ijt ijt it it i it ijtSF Z H P I                    (1) 

In the above equation the superscript “f” denotes the model of first visited 

website. The variable f
ijt  represents the latent website brand strength. We use a random 

effects approach to model this variable as the follows 

f f f

j ij ijt

f
ijt         (2) 

                                                 
5
 Note that this cannot be interpreted as the price effect. We only observe from our data the final purchase 

price; however, we do not have the price information from other websites where consumers visited but did 

not purchase. Hence we cannot identify how prices offered from different websites affect the browsing and 

final purchase behavior. Instead, consumers usually have a perception of how expensive a ticket will be, 

e.g., flying from New York to Los Angeles will be more expensive than flying from New York to Boston, 

and this will affect how much time and effort they invest in information search as well as purchase site 

decisions. We use the above categorization that is based on the final purchase price as a proxy for such a 

perception. 
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where f

j
 represents the mean brand strength that will be estimated as parameters, f

ij
 

represents the individual-specific but time-invariant random effect for brands, and f

ijt
 is 

the individual-and-time-specific idiosyncratic shock that we assume to be i.i.d. type one 

extreme value distribution.  

We assume that f f f

i i , where f

i
 is a time-invariant and individual-

specific random variable which captures the consumer heterogeneity in response to 

expected expenditure level.
6
 We allow f

ij
 and f

i
 to be correlated among themselves.

7
 

As we will explain later, one distinct aspect of our estimation model is that we also allow 

these random effects to be correlated with the random effects in the other stages of the 

model. Hence the dimensionality of parameters is very large considering all the 

correlation coefficients in our three-stage model.  

To ensure proper identification we normalize the latent variable value for all 

airlines as 
, ,

*
, , 0 f

i AIR ti AIR tF .
8
 In our estimation model we also incorporate the 

interactions of demographic variables 
itZ  with all other covariates 

itH , ijS , itP
 
and ijtI . 

Let Ti be the total number of household i „s purchases observed in data. Correspondingly 

there are Ti first visits. Under the type one extreme value distribution for f

ijt
 and 

                                                 
6
 For simplicity we assume that only brand intercepts and the price coefficients are heterogeneous across 

consumers in all three stage of decision-making. 

 
7
 Such correlations can be identified though the panel structure in our data. 

8
 Because of this normalization the coefficients corresponding to all of the variables in equation (1) have to 

be interpreted as the difference in probabilities that consumers visit travel portals relative to airline 

websites. 
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conditional on the random effects f

ij
 and f

i
, we can write down the probability that a 

household‟s history of first visits in the whole sample period as below. 

* *

1

( )

( )1

1

Pr( 's history of first visits) Pr( , )

1

i

f f f ff f f f
j ij it j it ij i it ijti

f f f ff f f f
it it ik i it iktk ik k

T

ijt ikt

t

Z H S P IT

J
Z H S P It

k

i F F k

e

e

     (3) 

4.2 Modeling Browsing Duration 

We quantify search as the pages viewed by consumers on travel selling websites 

seven days prior to purchase of a product in the travel category. To check model 

robustness we also use time spent on travel websites and find very similar results. 

However, we believe that pages viewed is a more reliable measure since it is less prone to 

contamination or noise compared to time spent where users could typically open a page 

and then leave it while they attend to other chores and are not necessarily in front of the 

computer. We choose seven days prior to purchase to be on the safer side though a 

significant portion of the search occurs only three days prior to purchase (see Table 6). 

We exclude the pages viewed on the day of purchase (day 0) because a large proportion 

of it is related to transaction completion and would only add noise to the actual browsing 

duration. If there were multiple transactions in this seven day window, we exclude all but 

the first which is not preceded by any other purchase, from our analysis.  

We use the log of browsing duration as the endogenous variable in our model and 

assume this is affected by the following factors. First, we include the customer 

demographics (age, income, connection speed) 
itZ  as covariates. Next we also 
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incorporate a prior browsing experience 
itH  which is measured by the average number of 

daily pages viewed in the travel category in the first three months. As we discussed 

above, there may be a non-monotonic relationship between browsing duration and prior 

browsing experience. To capture this nonlinear relationship we incorporate 
itH  and its 

squared term as covariates in our model.
9
 As expected expenditure level will also affect 

the time and effort a consumer invests in search for information, we include the 

indicators 
itP  (“medium” and “high” levels) used in the first site visited model in this 

stage. To distinguish the behavior difference between “light” and “heavy” users we use 

two indicators 
1pI  (indicator takes value of 1 for users with zero or one purchase in the 

first three months) and 
1pI  (indicator takes value of 1 for users with more than one 

purchase in the first three months) to represent light and heavy users, correspondingly. 

Finally, as discussed above, the first site visited choice seems to have an important 

impact on the browsing duration. The vector of discrete choice variables 

1( ,..., ) 'it i t iJtF F F  in the first stage, where 0 or 1ijtF  and 
j

1ijtF , are included as 

covariates in the browsing duration model. 

Let 
itD  be the log of browsing duration of i  in period t, and d

it  be the 

individual-and time-specific intercepts in the model representing consumer heterogeneity 

in browsing behavior. The browsing duration model is specified as the follows: 

2

1 1 1 2 'd d d d d d d d

it it it i it p p it it j ijtD Z P I I H H F                   (4) 

                                                 
9
 Note that this variable is different from 

ijt
H defined in the first visited site model. Here category browsing 

experience is not site specific. 
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This variable d

it
 is specified as  

d d d

i it

d
it         (5) 

where d  represents the mean intercept in the model to be estimated, d

i
 represents the 

individual-specific but time-invariant random effect for browsing duration, and d

it
 is the 

individual-and-time-specific idiosyncratic shock that we assume to be i.i.d. normally 

distributed, i.e., d

it

2~ (0, )N . We assume that d d d

i i
, where d

i
 is a time-

invariant and individual-specific random variable which captures the consumer 

heterogeneity in response to expected expenditure level. Similar to the first site visited 

model, we allow d

i
 and d

i
 to be correlated among themselves. These random effects are 

also allowed to correlate with random effects in other stages. 

 

Table 6: Browsing behavior prior to purchase 

Days prior 

to purchase 

Time spent 

(minutes) 

Average number 

of pages viewed 

-1 8.97 9.65 

-2 5.23 5.69 

-3 4.12 4.48 

-4 3.24 3.57 

-5 3.01 3.31 

-6 3.04 3.29 

-7 2.77 3.10 

-8 2.51 2.70 

-9 1.95 2.23 

-10 1.94 1.99 

-11 1.67 1.93 

-12 1.70 1.89 

-13 1.74 1.99 

-14 1.88 2.15 

-15 1.62 1.76 

 



36 

 

  Let Ti be the total number of household i „s purchases observed in data. 

Correspondingly there are Ti browsing durations. Under the distribution assumption for 

d

it
, i „s history of browsing duration is generated through a normal process conditional 

on d

i
 and d

i
. The likelihood function of observed history of browsing duration is the 

following 

2 2 2

1 1 1 2

1

Pr( 's history of browsing duration)

1
exp[ {( ( ( ) ' )) / 2 }]

2

iT
d d d d d d d d d d

it i it i it p p it it j it

t

i

D Z P I I H H F

            (6) 

4.3 Modeling Choice of Purchase Site  

Let a discrete variable 1ijtU  indicate that consumer i  finally purchases from 

website j  after his or her browsing at time period t , and 0ijtU  otherwise. Again we 

assume that there is a latent variable *

ijtU   that generates the purchase site decisions. 

1ijtU  if and only if * *

ijt iktU U , for all other website k . Similar to earlier stages, we 

assume that *

ijtU  is a function of a list of factors including consumer demographics 
itZ , 

expected level of expenditure indicators
itP , prior browsing experience as the average 

daily pages viewed ijS  on different sites in the first three months, 
itH  as a proportion of 

pages viewed on website j  to the total pages viewed on all travel websites that the 

customer visited in the first three months, and whether or not consumer i ’s last purchase 

was at j ,  ijtI . 
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As discussed before, we expect that the choice of the first website 
ijtF  and the 

actual browsing duration 
ijtD  may be important determinants for the final purchase site 

decisions. Hence we also include the decision variables ijtF  and ijtD  in the first site 

visited and browsing duration models as covariates in this latent variable function. 

Therefore we can write down 

* 'p

j ij

p p p p p p
ijt ijt it it it it

p
it i ijtH SU P F DZ I                (7) 

where p
ijt  represents the individual-and-time-specific random effect on the purchase site 

decision. Similar to earlier specifications we model this variable as follows 

p p p

j ij ijt

p
ijt         (8) 

where p

j
 represents the mean brand intercept that will be estimated as parameters. This 

parameter measures the brand strength in converting website visits to purchases, which is 

different from f

j
 in the first stage which measures the strength of a brand in attracting 

first visits. p

ij
 represents the individual-specific but time-invariant random effect for 

brands, and p

ijt
 is the individual-and-time-specific idiosyncratic shock that we assume to 

be i.i.d. type one extreme value distribution. As before, to ensure proper identification we 

set the intercept for all airlines to zero. Hence the parameters corresponding to all 

covariates have to be interpreted as the relative difference with those consumers 

purchasing on airline websites. In the estimation model we also incorporate interactions 

of the demographic variables with all other covariates. 
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We assume that p p p

i i
, where p

i
 is a time-invariant and individual-

specific random variable which captures the consumer heterogeneity in response to 

expected expenditure level. We allow p

ij
 and p

i
 to be correlated among themselves and 

also correlated with other random effects in the earlier stages. 

Let Ti be the total number of household i „s purchases observed in data. Under the 

distribution assumption for p

ijt
 and conditional on random effects p

ij
 and p

i
, we can 

write down the probability of i„s purchase history as the following traditional multinomial 

logit probability function: 

* *

1

( ) '

( ) '1

1

Pr( 's history of purchases) Pr( , )

1

i

p p p pp p p p p p
j ij it j it ij i it ijt it iti

p p p pp p p p p p
it it ik i it ikt it itk ik k
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e

e

    (9) 

4.4 Model Estimation 

Conditional on random effects in the three stages, we have a non-linear 

simultaneous equation system of (3), (6) and (9), where as the latter two equations 

involve endogenous variables Fijt and Dit from the earlier stages. The major difficulty in 

model estimation comes from the fact that the random effects in each equation are likely 

to be correlated with each other within the equation and across equations. For example, a 

household with a higher f

ij  in first visiting website j  may also exhibit a higher p

ij   in 

finally purchasing from j . Similarly, a household with a larger d

i  for expected 

expenditure level in the browsing duration equation may also have a larger p

i  in the 
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purchase site decision. To solve this problem we use simulated maximum likelihood 

method to estimate this simultaneous equation system. 

Let { , , ; ;  , , }f d p f d p

i ij i ij i i ij  be the vector of random effects in the 

simultaneous equation system with the assumed distribution ( ;  )F , where  is the 

variance-covariance matrix to be estimated. Equations (3), (6) and (9) are conditional on 

i
. These can be expressed under an integrated framework and transformed into the 

unconditional likelihood as follows: 

i

equation (3)

i

equation (6)

i

equation (9)

Pr( 's history of first visits| )

Pr( 's history of browsing durations| )

Pr( 's history of purchases| )

i

i

L i

i

( ; )idF    (10) 

We estimate this likelihood using the simulated maximum likelihood method. We draw 

s

i , s=1, …,ns, where ns is the number of simulated draws, following the distribution of 

F (which we will explain later). The corresponding simulated version of (10) can be 

expressed as 

equation (3)

equation (6)

equation (9)

Pr( 's history of first visits| )

1ˆ Pr( 's history of browsing durations| )

Pr( 's history of purchases| )

s

i

s

i i

s

i

i

L i
ns

i

1

ns

s

    (11) 
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We assume that 
i
 is normally distributed as (0; )N , where  is the variance-

covariance matrix. As discussed above each element of the  matrix explicitly accounts 

for the covariance of the random effects within and across different stages for brand 

strength ( ij ‟s) and expected level of expenditure (
i
‟s). We make some simplifying 

assumptions on the  matrix to overcome computational burden and avoid over-

parameterization issues. We assume the random effects for brand strength (
ij

‟s) to be 

independent of the random effects for expected level of expenditure (
i
‟s) both within 

and across stages. However, ij ‟s and 
i
‟s are allowed to be correlated among 

themselves within each stage as well as across stages. Hence a household with a higher 

f

ij
 on the first visited website j  may also have a higher p

ij
 in purchasing from j . For 

simplicity we assume the covariance of these effects 2

fp
 to be the same across all 

websites. We also assume same variance for the random effect p

ij
 at the purchase site 

decision model across all websites that is denoted by 2

p
. The covariance of d

i  for 

expected high level of expenditure in the browsing duration equation and p

i  in the 

purchase site decision is captured by 2

hdp
. For further simplification we assume that the 

covariance between random effects for different levels of expected level of expenditure is 

zero. Similar interpretations could be made for other elements of the covariance matrix 

. Its full structure is as provided below: 
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where  jI  is an identity matrix of dimension J (total number of websites). Subscripts “f”, 

“d” and “p” denote the first site visited, browsing duration and purchasing site decisions, 

correspondingly. Subscripts “h” and “m” denote high and medium level of expected 

expenditure, correspondingly. In model estimation we restrict  to be a positive definite 

matrix. The number of simulated draws used to calculate the simulated likelihood was 

100. The Nelder-Mead simplex algorithm we use is very efficient in estimating these 

complex models though some sensitivity to starting values was observed. 

5. Results and Discussion 

In this section we also share estimates from a model incorporating no-purchase, 

the results of which are very similar to that of a model that is conditional only on 

purchase that we discuss in our paper (see Table 7 for a comparison). Initial investigation 

revealed two main effects – that of first site visited and browsing duration – on choice of 
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final purchase site. In addition to these effects we also observe significant effects of prior 

browsing experience, prior purchase, expected level of expenditure, brand strength, 

demographics and effects of some of the interaction terms. We first discuss the effect of 

first site visited and browsing duration on choice of purchase site (as listed in Table 8) 

and then focus on the significant effects of covariates on the three stages.  

5.1 Model with no-purchase browsing sessions 

The motivation for investigating a model that includes no-purchase was primarily 

based on prior literature that demonstrated the biases that were associated with choice 

models that used scanner panel data without accounting for no-purchase option.  

In our paper we estimate choice conditional on a purchase because unlike grocery 

store purchase behavior the online purchase behavior is cluttered with numerous visits to 

the website that don‟t necessarily translate into transactions. This is explained by the fact 

that consumers do not visit a retail or grocery store to do window shopping or seek 

information in general whereas they would visit an online travel portal or airline site to 

window shop and inform themselves of prices for a long planned vacation or seek 

information on baggage allowance/restrictions or flight information to pick up family and 

friend from the airport.  It is also virtually costless (time, effort and travel cost) for a 

consumer to visit a website as opposed to a brick and mortar store. This behavior is very 

different and at the one end of the continuum; of the fallacies associated with a classic 

demand model; the other end of which is used to explain unplanned purchases resulting 

from browsing behavior especially in shopping malls (see Peter and Potts 2000). 
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Table 7: Comparison of Conditional Model with Model incorporating no-purchase 

Effect 

Inference 

Notes 

Similar Dissimilar 

First Site 

Visited and 

Browsing 

Duration 

 

X  

Browsing duration continues to be highest for users who visit 

Hotwire first. Propensity to purchase from site first visited is 

significant and more pronounced when incorporating no purchase 

transactions. Browsing longer on average increases likelihood of 

purchase for other travel portals (see Table 8). 

Prior Browsing 

Experience 

X  

There is a positive effect of category prior browsing experience on 

the choice of first site to be visited. Its impact on purchase 

continues to be negative for travel portals except for Expedia (see 

Table 8). We also find the inverted-U relationship between 

browsing duration and prior browsing experience in the category. 

However its not significant (see Table 9 second set of results) 

Prior Purchase X  

We find that a prior purchase continues to impact the first site to 

be visited. Though not significant the estimates indicate it also 

impacts the browsing duration among light users. However it 

doesn‟t seem to lower browsing duration among heavy users (see 

Table 9 third set of results). Prior purchase also seems to lower the 

purchase likelihood compared to our finding from the conditional 

model. 

Consumer 

Demographics 

X  

While findings are consistent on Age, Income and broadband user 

effects. The only difference noticed was that purchase likelihood 

was higher for broadband users (see Table 9 last set of results) 
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Brand Strength X  

Brand strength continues to have a strong impact on being the first 

site to be visited as well as positively impact purchase for both 

Expedia and Orbitz compared to Hotwire or other Travel Portals 

(see Table 10) 

Interactions, 

Heterogeneities 

and Model Fit 

 X 

Inferences from the interactions that are significant are consistent 

with our findings from the conditional model however a lot more 

of the interactions are not significant in the no purchase model. 

Higher site heterogeneity estimates (see Table 11) make us believe 

that we could be adding more noise to the data by incorporating 

data from no purchase transactions 

* note we don't include price effects in the model comparison as we only observe final purchase price in our dataset  and the absence 

of price information in no-purchase transactions is another limitation of this dataset. 

Overall we find results to be very similar between a conditional model and one 

that incorporates no purchase and the differences are summarized above (see Table 7).  

5.2 Effect of First Site Visited and Browsing Duration 

We find a significant effect of the first site visited on the browsing duration (see 

the first set of results in Table 9). On average consumers visiting Hotwire first tend to 

search longer (coefficient 0.77), followed by Expedia and Orbitz, compared to consumers 

visiting airlines websites first. This indicates a systematic difference in browsing 

behavior between the two consumer types. We also find that the first site visited has 

significantly large impact on the propensity to finally purchase from the same website 

(see the last column of the first set of results in Table 8, with a significant coefficient of 

5.22). This strong effect is due to two observations from our data: first, a significant 

proportion of consumers only visit one website in the whole browsing process, indicating 
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that they may have very limited consideration set, or that the potential benefit of further 

browsing is perceived as very small. Second, another significant proportion of consumers 

tend to buy from the website they first visited though they search other websites, 

indicating a priming effect from the first site visited. Either way it illustrates the benefits 

to a website if it can attract consumers to first visit it before starting to browse for 

information on other sites. We will further explore some of the implications later.  

 

Table 8: Effect of first site visited, browsing duration & prior site specific experience on 

purchase 
 

Parameters 

Stage 1 Stage 2 Stage 3 

 First site visited Browsing duration Purchase site 

 w/o no 

purchase 

w/ no 

purchase 

w/o no 

purchase 

w/ no 

purchase 

w/o no 

purchase 

w/ no 

purchase 

Stage 1 first  

Visited site 

Expedia 

N/A N/A 

0.686 

(0.001)* 

0.454 

(0.282)* 

 5.223 

(0.113)* 

8.692 

(0.034)* 

Orbitz 
0.577 

(0.001)* 

0.489 

(0.290)* 

Hotwire 
0.771 

(0.001)* 

0.705 

(0.348)* 

Other travel 

portals 

0.374 

(0.001)* 

0.516 

(0.299)* 

Stage 2 

browsing  

duration 

Expedia 

N/A N/A N/A  

 0.281 

(0.005)* 

 0.339 

(0.039)* 

Orbitz 
 0.444 

(0.009)* 

 0.392 

(0.044)* 

Hotwire 
 0.293 

(0.002)* 

 0.927 

(0.045)* 

Other travel 

portals 

 0.559 

(0.007)* 

 0.804 

(0.045)* 

Category 

prior  

experience 

Expedia 
 0.008 

(0.001)* 

 0.005 

(0.002)* 

N/A  

 0.008 

(0.001)* 

 0.003 

(0.001)* 

Orbitz 
 0.007 

(0.001)* 

 0.003 

(0.002)* 

-0.001 

(0.001)* 

-0.001 

(0.001)* 

Hotwire 
 0.007 

(0.001)* 

 0.001 

(0.003) 

 0.008 

(0.001)* 

 0.001 

(0.001)* 

Other travel 

portals 

-0.072 

 (0.002)* 

-0.023 

(0.003)* 

-0.121 

(0.002)* 

-0.005 

(0.001)* 

* indicates p < .001. Standard errors are in parentheses   

Finally, browsing longer on average leads to a higher probability of purchasing 

from travel portals, and this effect is more pronounced for Orbitz and other travel portals 
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(see the second set of results in Table 8). This could be because travel portals are in 

general offering better deals compared with airline websites. This result suggests that by 

browsing longer consumers are more likely to find cheaper tickets from travel portals and 

hence end up buying there. 

5.3 Effect of Prior Browsing Experience 

We measure category prior browsing experience as the (log of) total number of 

pages viewed on the travel websites (including travel portals and airline websites) in the 

first three months of the data. In general there is a positive effect of category prior 

browsing experience on the choice of renowned travel portals as the first site to be 

visited. However, it decreases the propensity to first visit other smaller travel portals as 

well as airline websites (see column three in the last set of results in Table 8). The effect 

of category prior browsing experience on the choice of travel portals for final purchase is 

mixed (see the last column). Though category prior browsing experience leads to a higher 

chance of finally buying from Expedia and Hotwire, the effects on Orbitz and other travel 

portals are negative. We suspect these results are related to the pricing policies of these 

websites during our sample period. Having price data from these travel portals would 

have helped us provide a more informed explanation. 

We also investigate the effects of site specific and category prior browsing 

experience on browsing and purchasing. First, we study how site-specific prior browsing 

experience affects first site visit and purchase decisions. This variable is measured as the 

ratio of pages viewed on a site to the total pages viewed on all travel websites in the first 

three months of our data. This, in effect, is a measure of the share of a specific site in the 
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total browsing done by the household on travel sites. Site specific category experience 

seems to positively affect propensity to first visit a website as well as purchase from a 

website (see columns two and six of Table 9).  

 

Table 9: Effect of prior browsing experience (site specific and category), prior purchase 

and demographics 

Parameters 

Stage 1 Stage 2 Stage 3 

First site visited Browsing duration Purchase site 

w/o no 

purchase 

w/ no 

purchase 

w/o no 

purchase 

w/ no 

purchase 

w/o no 

purchase 

w/ no 

purchase 

Site specific prior browsing 

experience 

1.134 

(0.021)* 

0.001 

(0.001)* 
N/A N/A 

1.957 

(0.024)* 

-0.013 

(0.004)* 

Category prior browsing 

experience 
N/A N/A 

0.426 

(0.002)* 

0.030 

(0.072)* 
N/A N/A 

Squared category prior 

browsing experience 

-0.095 

(0.001)* 

-0.018 

(0.057)* 

Prior purchase (one) 
1.824 

(0.045)* 

0.992 

(0.019)* 

0.017 

(0.001)* 

0.194 

(0.186) 

0.154 

(0.002)* 

-0.352 

(0.045)* 

Prior purchase (more than 

one) 
  

-0.244 

(0.003)* 

0.286 

(0.224) 
  

Age 
-0.005 

(0.001)* 

-0.038 

(0.009)* 

0.067 

(0.001)* 

0.179 

(0.175) 

-0.058 

(0.002)* 

-0.233 

(0.012)* 

Income 
-0.032 

(0.012)* 

-0.074 

(0.001)* 

-0.054 

(0.001)* 

0.097 

(0.130) 

0.351 

(0.010)* 

-0.403 

(0.015)* 

Broadband users 
0.116 

(0.002)* 

-0.246 

(0.019)* 

-0.017 

(0.001)* 

-0.038 

(0.083) 

-0.788 

(0.014)* 

0.086 

(0.027)* 

Medium level of expenditure 
0.708 

(0.014)* 
N/A 

0.465 

(0.002)* 
N/A 

2.345 

(0.043)* 
N/A 

High level of expenditure 
0.689 

(0.016)* 
N/A 

0.794 

(0.001)* 
N/A 

0.457 

(0.008)* 
N/A 

* indicates p < .001. Standard errors are in parentheses  

 

Second, we study how category experience (as defined above) affects how long 

consumers will browse before making a purchase decision. This is different from the 

effects on which site to be visited first and purchase as discussed above which are site-

specific effects. Prior research has suggested that there may be a non-monotonic 

relationship between category prior browsing experience and browsing duration. We 
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therefore include a squared term of prior browsing experience in the duration model (see 

column three in Table 9). 

 

Figure 2: Inverted-U relationship between category experience and browsing duration 

 

 

 

 

The coefficient for the linear term is significantly positive but that for the squared 

term is negative. This finding is similar to that exhibited in offline search behavior where 

the relationship between consumers‟ prior knowledge and amount of information search 

has an inverted U shape, as illustrated in Figure 2, with moderate knowledge being 

associated with most search (Bettman and Park 1980, Hempel 1969, Johnson and Russo 

1984). While online search effects have not previously been investigated in this detail 

there is evidence in prior research that online search though minimal in general, is more 

pronounced with heavy users searching less (Johnson et. al. 2004) than light users. One 

possible explanation for this is that product class knowledge increases search efficiency 
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(Brucks 1985, Srinivasan and Ratchford 1991), and is consistent with the non-monotonic 

relationship observed in our data. 

5.4 Effect of Prior Purchase 

We create an indicator which takes the value 1 if a website is where the last 

purchase had occurred. This variable has a significantly positive effect on first site visited 

decision (see column two in Table 9), indicating there is a very high probability that the 

website where last purchase occurred is invariably the first website to be visited before 

making a purchase. This “inertia” effect is also significantly positive on final purchase 

site decisions (see column six in Table 9), indicating that the likelihood of current 

purchase increases for a website if the last purchase occurred on it. 

Similar to the non-monotonic relationship between category prior browsing 

experience and browsing, again we create two indicators for light and heavy users (as 

relative to those consumers without any purchase history in the first three months) in the 

browsing duration model. We find that the coefficient corresponding to light users is 

significantly positive but that for heavy users is significantly negative (see column three 

in Table 9), again indicating an inverted U relationship between prior purchase 

experience and browsing duration.  

5.5 Effect of Expected Level of Expenditure 

A higher level of expected expenditure (compared to low level) leads to a higher 

probability of first visiting travel portals (see column two in Table 9), perhaps indicating 

that consumers who purchase expensive tickets expect a larger benefit of getting a deal 

from travel portals and hence start browsing there. Similarly, higher expected expenditure 
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also leads to a longer browsing duration (see column three in Table 9). These results are 

consistent with the cost-benefit evaluation story and indicate consumers behave 

rationally. Interestingly, while higher expected expenditure (compared to low level) leads 

to a higher probability of purchasing from travel portals (see column four in Table 9), it is 

consumers with medium level of expected expenditure who are most likely to purchase 

from travel portals. This may be due to the difference in pricing policies of airlines and 

travel websites (e.g., travel portals may offer better discount rate for medium priced 

tickets). Without data on price during the sample period we are not able to bolster this 

supposition with empirical evidence. 

5.6 Effect of Consumer Demographics 

Using demographics has been the traditional way of segmenting online 

consumers. We find that demographics like age, income, and connection speed do help to 

explain the browsing and purchase behavior of consumers in our model (see Table 9). For 

example, we find older consumers have a lower likelihood of first visiting or purchasing 

on a travel portal but tend to search more. In addition, high income consumers typically 

have lower likelihood of visiting a travel portal first, but have a higher likelihood of 

making a purchase on a travel portal as opposed to an airline website. Also those with 

higher income are less likely to search for longer duration perhaps due to higher 

opportunity cost for time. We find that broadband users search less and have lower 

purchase probabilities on a travel portal (compared to airline sites). This is contrary to 

some existing evidence: for instance, Yonish, Delhagen and Gordon (2002) find that 

broadband users search 33% more compared to narrowband users due to the faster 
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surfing speeds. A possible explanation is that broadband users are also high income 

consumers (broadband was relatively more expensive during our study period) and hence 

less price sensitive than narrowband users.  

 

Table 10: Effect of brand strength on first site visited, browsing duration and purchase 

website 
 

Parameters 

Stage 1 Stage 2 Stage 3 

 
First site visited 

Browsing 

duration 
Purchase site 

 w/o no 

purchase 

w/ no 

purchase 

w/o no 

purchase 

w/ no 

purchase 

w/o no 

purchase 

w/ no 

purchase 

Brand 

Strength 

Expedia 
-1.437 

(0.020)* 

0.089 

(0.034)* 

2.776 

(0.002)* 

2.701 

(0.686)* 

-3.806 

(0.019)* 

-1.870 

(0.079)* 

Orbitz 
-1.624 

(0.030)* 

-0.345 

(0.034)* 

-4.239 

(0.167)* 

-1.827 

(0.091)* 

Hotwire 
-2.673 

(0.021)* 

-0.796 

(0.034)* 

-4.168 

(0.056)* 

-4.372 

(0.093)* 

Other travel portals 
-2.033 

(0.006)* 

-0.558 

(0.034)* 

-4.283 

(0.064)* 

-4.663 

(0.089)* 
* indicates p < .05. Compares estimates from our full conditional model with estimates from model with no purchase within 
parentheses   

 

5.7 Effect of Brand Strength 

Under our model set-up brand strengths in the first site visited model may be 

different from that in the purchase decision model, implying that a website attracting a lot 

of visits (e.g., through heavy advertising online or offline) may not be capable of 

converting these visits to final purchases (e.g., consumers may not find the deals 

attractive compared with other online options). To understand this difference in brand 

strength in terms of attracting first visit vs. converting them to purchases is more 

important in the online environment than offline, as the cost of visiting retail stores is 

much higher than visiting other websites. Table 10 reports the estimation results. We find 

that Expedia and Orbitz are significantly more attractive than Hotwire and other travel 
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portals in attracting first visits (see column two). However, when it comes to final 

purchase decisions (see column four), Hotwire has larger (though not significant) brand 

strength than Orbitz, and that Expedia is still the strongest brand. These results show that 

different major travel portals have different attractiveness for first visits and final 

purchase decisions.  

To understand better the implications of these estimates we compute the 

elasticities of first site visited and purchase probabilities as brand strengths change. The 

results are reported in Table 11. We find that by improving attractiveness of first visited 

by 1 percent induces a response which varies from about 1 percent more visits to Expedia 

to 2.5 percent more visits to Hotwire. However these increases in first site visits only 

imply a 0.3 percent increase in final purchase probability for Expedia and 0.1 percent for 

Hotwire. Increasing brand strength for the purchase decision stage (conversion 

effectiveness) by 1 percent will lead to about 2.4 percent increase in purchase probability 

for Expedia and about 3.2 percent for Hotwire.  

 

Table 11: Elasticities of first site visited, browsing duration and choice of purchase site 
Elasticities of first site visited and 

purchase site 

Brand strength 

(attractiveness) 

Brand strength 

(conversion effectiveness) 

First site visited shares 

Expedia 1.03 

 Orbitz 1.25 

Hotwire 2.49 

Purchase shares 

Expedia 0.28 2.39 

Orbitz 0.30 2.81 

Hotwire 0.09 3.17 

 

Since we do not have data on marketing variables we cannot say much on how to 

improve attractiveness (first site visited) and conversion effectiveness (purchase), 
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however, these results may still be useful for managers. For example, Hotwire may use 

its estimates as a base and re-estimate the model again after new policies are introduced. 

Comparisons of the estimates before and after help to evaluate how effective the new 

policies are in improving attractiveness for consumers‟ first visit vs. final purchases. 

Comparing elasticities is also useful in providing managerial insights. For example, it 

seems more important for Hotwire to invest in converting visitors to final purchases (e.g., 

through offering better deals or providing better online services) than in attracting 

website visits (e.g., through heavy advertising online or on TV). 

5.8 Interactions, Heterogeneities, and Model Fit 

We also estimate the interactions of demographics on covariates in all three 

stages. We discuss here those of managerial relevance.
10

 We find the interaction between 

the prior browsing experience and the age of the consumer to be significantly positive 

indicating the effect of prior browsing experience is stronger for older consumers as 

compared to young consumers. This is consistent with the expectation that older 

consumers are more reluctant to process new information as compared to younger 

consumers. The interaction between prior browsing experience and the income of the 

consumer is significantly negative in the first site visited model implying that 

experienced high income customers tend to seek newer options rather than first visiting 

sites where they have most experience with. This is intuitive because as the income levels 

increase consumers do wish to explore more and take more risks.  

 

                                                 
10

 We do not to report the full set of results in order to conserve space. The comprehensive set of results is 

available from the authors on request. 
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Table 12: Site and price heterogeneity covariance parameters 

Site heterogeneity   Price heterogeneity 

Parameter Estimate  Parameter Estimate 

 
w/o no 

purchase 

w/ no 

purchase 

    

σf 
0.002 

(0.001)*** 

0.016 

(0.006) 

 

σmf 
0.321 

(0.004)*** 

σfd1 
0.001 

(0.001)** 

0.004 

(0.024) 
σhf 

0.017 

(0.001)*** 

σfd2 
0.001 

(0.001)* 

0.007 

(0.027) 
σmfd 

0.198 

(0.001)*** 

σfd3 
0.001 

(0.001)*** 

0.007 

(0.028) 
σhfd 

0.002 

(0.001)*** 

σfd4 
-0.001 

(0.001)*** 

0.005 

(0.028) 
σmd 

0.250 

(0.001)*** 

σd 
0.001     

(0.001)*** 

0.009     

(0.031) 
σhd 

0.001 

(0.001)*** 

σfp 
0.001     

(0.001)*** 

0.171     

(0.005) 
σmfp 

0.001 

(0.001) 

σpd1 
-0.001     

(0.001)*** 

0.043     

(0.080) 
σhfp 

0.047 

(0.002)*** 

σpd2 
0.001     

(0.001)*** 

0.076     

(0.090) 
σmdp 

-0.001 

(0.001) 

σpd3 
0.008     

(0.001)*** 

0.079     

(0.093) 
σhdp 

0.007 

(0.001)*** 

σpd4 
0.001     

(0.001)*** 

0.053     

(0.091) 
σmp 

0.630 

(0.011)*** 

σp 
0.763     

(0.001)*** 

1.847     

(0.064) 
σhp 

0.272 

(0.005)*** 

*** indicates p < .001, ** indicates p < .005, * indicates p < .01. Standard errors are in parentheses 

 

There is also a significant interaction between connection speed and site specific 

prior browsing experience in the first site visited model (Stage 1) indicating broadband 

users tend to visit first the site they most often visited in the past. There is a significant 

interaction between connection speed and prior purchase in the browsing duration model 

(Stage 2) indicating heavy users with higher connection speeds tend to browse more 

while light users browse less. Finally, the interaction between connection speed and prior 

purchase being on the same website is significant and positive in the purchase model 
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(Stage 3) indicating broadband users tend to have a higher probability of purchasing from 

the website where they made their last purchase.  

 

Table 13: Actual and predicted shares and browsing duration 

Stage Site Actual Predicted 

1. First site  

visited shares 

Expedia 0.1837 0.1843 

Orbitz 0.1402 0.1455 

Hotwire 0.0435 0.0466 

Other travel portals 0.0589 0.0597 

All airline websites 0.5737 0.5640 

    

2. Browsing  

duration 

N/A (Ln. number  

of pages viewed) 
3.5330 3.5560 

    

3. Purchase  

site shares 

Expedia 0.1791 0.1797 

Orbitz 0.1372 0.1387 

Hotwire 0.0445 0.0462 

Other travel portals 0.0619 0.0612 

All airline websites 0.5773 0.5742 

 

We do find significant heterogeneity in the behavior of consumers (the 

heterogeneity parameter estimates are summarized in Table 12). To conserve space we 

restrict our discussion to two interesting insights. Overall there seems to be significant 

price heterogeneity and very little site heterogeneity among consumers. The 

heterogeneity on the choice of purchase site ( p ) is large, implying that websites are 

viewed differently among different consumers. Also there is greater consumer price 

heterogeneity in the mid market as opposed to the high end of the market. The remaining 

covariance‟s are small in magnitude and can be interpreted based on our discussion in 

section 4.4. 
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Finally, we evaluate how good the model fits with data. We compute the expected 

share of first site visited and purchases on different websites as well as browsing duration 

based on the estimation results, and compare them to the actual shares and duration in 

data. Table 13 summarizes the results. Our three stage model clearly performs better in 

terms of predictive power and explaining the data. The hit rate of first site visited and 

purchase site is at 96.4%. As a comparison we estimate another model which does not 

account for the dynamic impact of first site visited or browsing duration separately and 

find that the hit rate of this model is only 56.4%. This demonstrates how our model 

explains the data better and can be used to improve prediction efficiency. 

5.9 A Simulation Experiment 

To better understand implications on how a website manager could employ this 

model to predict consumer browsing and purchase decisions and hence decide on suitable 

marketing policies we conduct a simulation experiment with hypothetical consumers to 

investigate the effect of last purchase on first site visited, browsing duration and choice of 

purchase site. We use 100 simulations to generate the random effects for 100 hypothetical 

users with mean values for all covariates except that for last purchase as we change 

which website they bought in the previous transaction to see its impact. Column 2 in 

Table 14 reports the expected first visit and purchase probabilities of various websites 

when there are no prior purchases. Columns 3 to 5 are the changes in the expected 

probabilities when prior purchase happened at Expedia, Orbitz and Hotwire, respectively. 

Since prior purchase experiences not only directly affect current purchase probability but 

also indirectly through the impact on first site visit probability, we first simulate the first 
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site choice for each user and then plug in the choice of first site visited into the purchase 

decision model. Results show that when there is no prior purchase experience the model 

predicts that 65% of consumers would visit airline websites first and 67% end up buying 

from an airline website (see column 3 from Table 14). However when we change the last 

purchase experience on a particular website we find that consumers have a higher 

probability of first visiting and then buying from a website where last purchase occurred  

(see columns 2 to 6 from Table 14). For example, the probability of buying from Hotwire 

increases from 4 to 18 percent if our hypothetical consumers bought from the same 

website last time. This clearly indicates a significant dynamic future impact on revenues 

for a current transaction. Managers with relevant information can predict purchase 

probabilities better and take appropriate decisions in real time. For example, it may be 

more effective for a website to target new and current customers differently, given that 

the probabilities of first visit and final purchasing are different between these two groups 

of consumers.  

 

Table 14: Effect of last purchase using hypothetical users 

Policy experiment 

(effect of last purchase) 

No prior purchase 

information 

Change in Predicted Values 

Last purchase on 

Expedia 

Last purchase on 

Orbitz 

Last purchase on 

Hotwire 

First site 

visited 

shares 

Expedia 0.16 0.33 -0.05 -0.02 

Orbitz 0.13 -0.05 0.29 -0.02 

Hotwire 0.04 -0.02 -0.01 0.14 

Other travel portals 0.01 -0.01 0.00 0.00 

All airlines 0.65 -0.26 -0.22 -0.09 

Purchase 

shares 

Expedia 0.15 0.36 -0.06 -0.03 

Orbitz 0.12 -0.06 0.34 -0.03 

Hotwire 0.04 -0.02 -0.02 0.18 

Other travel portals 0.01 0.00 -0.01 0.00 

All airlines 0.67 -0.28 -0.25 -0.11 

 



58 

 

6. Conclusions 

In this paper we develop a three-stage model to study the consumer online 

browsing and purchasing behaviors in the travel category. We model (i) the choice of the 

first website visited, (ii) the browsing duration of consumers on travel websites before 

making a purchase, (iii) the choice of the website where consumers will make the 

purchase, and how a later stage choice is affected by decisions in the previous stages. We 

find significant effects of expected level of expenditure, prior browsing experience and 

prior purchase and brand strength in determining consumer browsing and purchase 

behavior. We also find that the choice of the first site visited and browsing duration has a 

significant impact on choice of the purchase site indicating the importance of modeling 

simultaneously.  

Managers can use these results to identify the major determinants of consumer 

browsing and online purchase behavior. The findings from the browsing duration models 

(Stage 2) suggest that consumers are not penny wise and pound foolish i.e. consumers 

spend more time searching for prices when they expect a higher level of expenditure. 

These consumers are also more likely to start their browsing by first visiting and finally 

purchasing from travel portal websites. We also find an inverted-U relationship between 

prior browsing experience and browsing duration.  

We find strong state dependence in the browsing and purchasing behaviors such 

that prior purchase from a website increases the probability that the consumer will first 

visit that website (inertia) and will finally purchase from the same website. This is 

consistent with the learning or switching cost explanation, which suggests that consumers 
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do not easily switch to competitors once they have transacted with a specific site. 

Moreover, we also find that first site visited choice strongly affects the probability that a 

consumer will finally purchase from the same site. The above results suggest a significant 

long term benefit for a website once it can attract consumers to visit the website first and 

especially if it can convert the visit to final purchase through various types of marketing 

and promotional activities. Our results are also useful for current major travel portals to 

understand their brand equity in terms of attracting consumers to first visit versus 

converting them to finally purchase.  

With the above important findings, we also acknowledge some limitations in the 

current research. The major data limitation is that we do not observe what information 

consumers obtained while browsing. Specifically, we only observe from data the final 

transaction price but not prices from other competing websites. Hence we are neither able 

to say much about the price effect on final purchase decisions nor how consumers search 

for price information online. Moreover, we do not have detailed transaction information 

such as the date and places of the flight. As a result, we cannot study some potentially 

interesting phenomena such as the difference in browsing and purchasing decisions 

between “last minute” and “planned” purchases.  

Another limitation of our model is that it discriminates between buyers and 

surfers without taking into account the information that they were exposed to due to 

limitations of the data set, as some consumers will browse on various websites but leave 

without making a purchase. An interesting avenue of future research will be to collect 

data not only on consumers‟ browsing path but also the information they obtained during 
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the search. Also, in the current data set, combination (or basket) of purchases air, hotel, 

and car rental need to be explored further in order to understand how consumers approach 

buying multiple products at the same time from multiple or same website. It is important 

to understand how by providing a basket of complementary products which involve air 

tickets purchase, car rental and/or hotel bookings travel portals such as Expedia and 

Orbitz can better satisfy consumer needs and hence successfully compete with airline or 

hotel websites which sell products separately. There also exists an opportunity to 

incorporate dynamic visit behavior in modeling the browsing duration stage by exploring 

the sequence of sites visited and the impact it has on purchase. Another important 

extension would be to develop multistage models that help distinguish buyers from 

browsers in a more detailed and dynamic manner. 
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Essay Two: 

 

Modeling Online Multi-category Purchase in Travel 
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1. Introduction 

Brand choice and store choice models have been extensively explored in depth by 

marketing researchers in the retail packaged goods context (for a brief review of an 

extended framework see Ben-Akiva et al 1999). This stream of literature has also 

spawned interest in multi-category or basket purchases (Harlem and Lodish 1995, for a 

review see Seetharaman et al 2005), retail chain level demand (Baltas 2005), store choice 

models (Keng & Ehrenberg 1984, Rust & Donthu 1995, Bell and Latin 1998), category 

characteristics and promotional elasticities (Narasimhan, Neslin and Sen 1996) and 

understanding purchase incidence at the grocery store in more detail (Manchanda, Ansari 

and Gupta 1999). Scant attention has been paid to category demand in prior literature, 

despite its importance for retailers. Only a small body of research has considered the 

effects of individual brands on category sales and there has been so far little work at the 

category level in understanding demand or consumer behavior especially in the online 

environment. 

A recent extension of the online stream of literature into retail space has been 

furthering our understanding of shopping paths at the grocery store (Bradlow, Hui and 

Fader 2008). We believe this was to a large extent influenced by path analysis literature 

using clickstream data that became prevalent with the increasing dominance of the 

internet (Montgomery et al. 2004). In this paper we pursue this in the reverse direction 

and extend the work in multi-category and basket purchases in the retail space to online 

purchases thus contributing to the stream of literature on online basket purchases whilst 
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drawing motivation from the past literature that exists in the retail packaged goods 

context.  

In our work on basket purchases we steer clear of the concept of bundling (Chung 

and Rao 2003) as those constitute a class of travel products typically sold as vacation 

packages. We look at basket of travel purchases wherein the consumer makes multiple 

purchase transactions to constitute a single or combination of travel products. 

2. Conceptual Development 

We consider the consumer process of making a purchase comprising a basket of 

travel products in two stages. In the first stage the consumer decides on what combination 

of travel products to purchase and in the second stage embarks on making the purchase(s) 

from a particular travel portal or website. The first stage is assumed to be influenced by 

prior browsing and purchase experience undertaken for travel trips while the second stage 

is assumed to be influenced by the first stage as well as browsing experience prior to 

making a purchase. In addition to prior shopping behavior we also take into account 

consumer demographic factors as they have also been shown to contribute in affecting 

consumer choices (Ainsle and Rossi 1998). It is also a common practice in research to 

assume various stages in the consumer decision making and purchase process (Olshavsky 

and Granbois 1979). It‟s also possible that consumers have a budget or internal reference 

point (Bell and Bucklin 1999) for the various products in the category as part of their 

purchase decision.  
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2.1 Factors Affecting Basket Choice and Browsing 

We expect consumer preferences to exhibit differences between choice of various 

basket combinations based on a few factors summarized below.  

2.1.1 Basket preference 

Consumers undertake travel for various reasons and depending on the travel needs 

that exist within the population its possible that there exists a base level of preference for 

various baskets or travel product combinations. We are especially interested in 

determining the base level preference for various combinations of travel products as no 

prior work has shed light on this. We believe that single product basket purchase would 

dominate the multiple product basket purchases as most travel is primarily driven by 

business or leisure trips from point A to point B or related to hotel stays in a particular 

geography being visited. We also hope to learn more about consumer preferences for 

road travel compared to air travel based on consumer preferences for car rental and air 

products and their combinations with hotel products. 

2.1.2 Consumer Demographics  

We also investigate the impact of consumer demographics on basket purchases 

for travel products. We expect larger households to make basket purchases in order to 

avoid inconvenience when traveling. Its possible older consumers would have less 

disposable income and could possibly be less likely to make basket purchases. Also those 

who have broadband connections are less price sensitive and hence could be more prone 

to making basket purchases online.  
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2.1.3 Category Experience  

We also investigate the impact of prior browsing history for various product 

combinations. Its possible consumers exhibit some state dependence in their browsing 

habits and we hope to learn if consumers who browse more for a basket of products are 

likely to end up making a basket purchase or any purchase in general.  

2.1.4 Prior Purchase 

It is also possible that just like prior browsing experience that prior purchase of a 

basket of products could positively impact similar basket purchase or any purchase in 

general due to some state dependence or inertia effects. 

2.1.5 Interaction Effects 

Using interaction terms we are also interested in investigating the combined 

impact of demographic impact and prior browsing behavior on purchases. These 

interaction or combined effects could be very useful for managers to come up with a 

target profile of consumers who are more likely to make a purchase and tailor their media 

plans to effectively activate these target consumers. We also investigate the variance 

amongst consumer preference for various basket combinations but do not assume any 

expected relationship apriori. 

2.2 Factors Affecting Site Choice and Purchase 

The factors affecting basket purchase also have an impact on site choice and we 

investigate the impact of these factors further.  
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2.2.1 Site Preference  

It is a known fact that consumers tend to frequent some stores as opposed to 

others and some of the factors impacting store choice have been documented in prior 

store choice literature. (Keng & Ehrenberg 1984, Rust & Donthu 1995, Bell and Latin 

1998). We expect similar behavior in the online space and investigate the base level 

preference for various sites and their combinations when it comes to a basket purchase. 

We intend to tease out this effect from the intercepts associated with each site choice 

combination and delineate the differences of making a basket purchase on one site or a 

combination of multiple sites. We are also interested in seeing if there is a preference to 

make a basket purchase on travel portals compared to other sites. 

2.2.2 Consumer Demographics 

We also investigate the impact of demographic factors on basket purchases, 

especially their role in predicting website choice while pursuing a basket transaction. 

Prior studies have indicated price sensitiveness to be lower amongst broadband 

consumers and higher amongst larger households (Nair, Chan, Cheema 2009 working 

paper).  

2.2.3 Category Experience  

We believe consumers who have a lot of prior browsing history on a particular 

site could exhibit state dependence and favor such sites more compared to others when 

making a basket purchase. It is also possible for this prior experience to have a different 

influence depending on whether it‟s a travel portal or not. Overall we expect the impact 
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of prior browsing history in travel to significantly and positively influence the likelihood 

of making a basket purchase from all site choice combinations. 

2.2.4 Prior Purchase 

 We also believe prior purchase could result in purchase loyalty in subsequent 

purchases wherein consumers are more likely to make basket purchases from the same 

site. 

2.2.5 Interaction Effects 

 The interaction effects of demographics with prior travel browsing history and 

prior purchase on same site combinations are also very interesting and worth 

investigating because it has targeting implications that manager‟s can act on to maximize 

likelihood of basket purchases. In addition to accommodating various interaction effects 

we also account for site heterogeneity exhibited by consumers to better understand 

differences between sites when it comes to basket purchases 

3. Data 

We use the ComScore clickstream dataset available from the WRDS database for 

our analysis. This dataset comprises of surfing and transaction details of 100,000 

households
11

 that are a representative sample of the US population in 27 product 

categories. In this study we extend our earlier work by modeling purchases in three 

categories airlines, car rental and hotel, however, we restrict ourselves to modeling the 

purchase behavior of consumers and do not explicitly model the browsing behavior. A 

total of 8937 households in the travel category fit the criteria required for our analysis. To 

                                                 
11

 Hereafter we will use “households” and “consumers” interchangeably with the same meaning. 
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ensure that a household‟s browsing is only related to a specific observed purchase we use 

the following three conditions: (1) we only focus on the household‟s browsing seven days 

prior to a purchase (the browsing period which captures 96% of all search that consumers 

indulge in); (2) we only study the household‟s purchase in the travel category (travel 

portals, airline, car rental and hotel websites) during that seven day period; and (3) on top 

of that, we only choose households that have had no surfing on travel websites for seven 

days prior to the browsing period.  

Travel category forms a significant portion of online purchases made by 

consumers with the mean being two out of ten purchases amongst the 27 product 

categories. As we are interested in studying purchase behavior that is related to a 

purchase across multiple categories we focus only on those travel websites that also 

provide an option for consumers to make such a purchase (airline, car rental or hotel). 

Specifically we investigate purchase behavior on travel portals (such as Expedia, Orbitz, 

and Hotwire) and category specific websites (like Southwest, Delta, and American 

airlines; Hertz, Avis, Budget, Alamo and Enterprise for car rentals and Hilton, 

Hotels.com, Choicehotels.com, Sixcontinentshotels.com and Mariott for hotels) where 

consumers have an option to purchase the travel product online.
12

  

We used the browsing and purchase behavior of households in the first three 

months of data (July 2002 – September 2002) as the household‟s prior experience on 

                                                 
12

 We excluded from the analysis those households that were very heavy users (whose purchases exceeded 

the 99.9
th

  quantile both in terms of amount as well as number of transactions). We also excluded 

transactions on websites which were auction sites, search engines and payment gateways such as ebay.com, 

lycos.com, netbooker.com and authorize.net (these constituted less than 5% of the recorded travel 

purchases). Multiple purchases bought by a household were clubbed together if they occurred at the same 

time on a particular website (e.g. spouses buying airline tickets). 
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travel websites. We then use the transaction sessions for airline, car rental and hotel 

purchases in the last three months for model estimation.  

In this study we focus on purchase behavior for (i) airline tickets (ii) car rental 

and (iii) hotel purchases that are either bought alone or in conjunction with another 

product.  

4. Model Specification and Estimation 

We propose a two stage model of purchase behavior for travel products. In our 

model consumers choose the products at the basket level first followed by the choice of 

the website where they can buy the basket of products. Hence the two stages we model 

are (i) choice of products at the basket level and (ii) choice of purchase site. This 

framework is pictorially depicted in Figure 1.  

 

Figure 1: Proposed two-stage model of basket level purchase behavior 

 

 

In the first part of this section we outline the model used to study the factors that 

predict basket composition. Initial data analysis revealed it is important to model choice 

of what products comprise the consumers‟ basket as that would considerably reduce the 

number of options that are available to the consumer in subsequent stages when it comes 

to choice of the purchase site. Understanding what factors affect the composition of 
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products at the basket level would help us to also gain insights on the influence the basket 

composition has on which site consumers would finally end up making their purchase on. 

The different product combinations that comprise the basket level decision of the 

consumer are as summarized in Table 1.  

 

Table 1: Basket level choices 

Travel Category Purchases 
Unique 

Households 

Transactions 

(6 Mos.) 

Transactions 

(Last 3 Mos.) 

Transaction sets 

Airline Only 6029 8074 3754 3754 

Car Rental Only 1072 1578 734 734 

Hotel Only 2921 4054 1799 1799 

Car and Hotel 145 364 181 76 

Air and Hotel 

856 2620 1233 

210 

Air and Car Rental 158 

Air, Car and Hotel 65 

Total 8937 16690 7619 6796 

 

In the second part of this section we model the website choice, in particular, we 

focus on the choice of purchasing from a particular travel portal. We focus on travel 

portals because most travel portals provide the opportunity of purchasing airline, hotel 

and car products on the same site though this has now also become more prevalent on 

airline websites too. The other compelling reason is that it adds to the parsimony of our 

model which can be easily extended to incorporate other websites too.  

4.1 Modeling Basket Level Choice 

We study the basket level choice behavior of consumers prior to making a 

purchase by using a random coefficients approach of the traditional multinomial logit 

model (for example see Gudagni and Little 1983) which we explain in detail later. We 
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treat each combination of the three major travel products airline, car rental and hotel 

bookings as a choice that the consumer makes to constitute the basket. As we are 

interested in what constitutes the basket and not the actual sequence of purchases we club 

airline purchases followed by a car rental purchase and car rental purchase followed by 

airline purchase together. 

 

Table 2: Website choice 

Website Type 
Product Category 

Airline Car Rental Hotel 

Travel Portals 

Expedia 

Orbitz 

Travelocity 

Hotwire 

Other Travel portals 

Other sites* 

* Sampling of other sites 

(includes other travel 

portals and all other 

airline, car rental and 

hotel websites) 

Southwest Avis Hilton 

Delta  Budget  Sixcontinentshotels.com 

American Hertz Hotels.com 

Jetblue Alamo Choicehotels.com 

US Airways Enterprise Mariott 

 

Let a discrete variable 1ictB  indicate that consumer i  purchases combination c  

at time period t , and 0ictB  otherwise. For 1ictB , combination c  has to exist in 

consumer i ‟s consideration set (which includes all possible options) and then c  has to 

dominate other combinations in this consideration set in terms of propensity to purchase 

that combination under cost-benefit evaluation. We assume that these are determined by a 

list of factors including customer demographics (age, income, and connection speed) 
itZ , 

prior category experience 
itH , expected level of expenditure 

itP  and prior combination-
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specific browsing experience 
ijS . Prior category experience 

itH  is measured as the 

proportion of combination specific c   pages viewed  to the total pages viewed in the first 

three months on all websites selling travel products, and prior combination-specific 

browsing 
ijS  is measured as average daily pages viewed on combination specific 

websites c  in the first three months. Furthermore, 
ictI  is an indicator variable that 

denotes whether or not consumer i ’s last purchase was a specific combination c . This 

variable may affect the probability of c  being in i ’s consideration set and may create 

inertia such that i  may be more likely to purchase the same combination during the next 

purchase cycle. Finally, basket level choice is also affected by i ‟s preference for a 

particular combination c  that is independent from the above factors as well as accounts 

for any marketing activities for a specific combination c  which is not observed in our 

data. This is termed as “basket preference” which is individual-and-time-specific in our 

model.  

We assume that there is a latent variable *

ictB  that generates the basket choice 

decisions. 1ictB  if and only if * *

ict idtB B , for all other combinations d . We specify the 

function of this latent variable as 

* f f f f

c ic

f
ict ict it it ictB SZ H I      

 (1) 

In the above equation the superscript “f” denotes the first stage of our two stage 

model. The variable f
ict  represents the latent basket preference for a particular 

combination. We use a random effects approach to model this variable as the follows 

f f f

c ic ict

f
ict         (2) 
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where f

c
 represents the mean basket preference for a particular combination that will be 

estimated as parameters, f

ic
 represents the individual-specific but time-invariant random 

effect for a combination, and f

ict
 is the individual-and-time-specific idiosyncratic shock 

that we assume to be i.i.d. type one extreme value distribution.  

As we will explain later, we however do not allow these random effects to be 

correlated with the random effects in the second stage of the model as we believe that the 

basket preferences are more intrinsic and are not that easily changed by marketing 

interventions on a particular website and hence can be modeled independent from the 

choice of the purchase site which we model in the second stage. Since we explicitly 

model all possible combinations for the choice of the websites on which the basket is 

purchased the dimensionality of parameters is very large and accounting for all the 

correlations across each stage adds to further complexity.    

To ensure proper identification we normalize the latent variable value for all hotel 

and car purchases as 
, ,

*
, , 0 f

i HC ti HC tB .
13

 In our estimation model we also incorporate 

the interactions of demographic variables 
itZ  with all other covariates 

itH , 
icS , and ictI . 

Let Ti be the total number of household i „s purchases observed in data. Correspondingly 

there are Ti combination purchases and each combination of purchase is defined as a set. 

Under the type one extreme value distribution for f

ict  and conditional on the random 

                                                 
13

 Because of this normalization the coefficients corresponding to all of the variables in equation (1) have to 

be interpreted as the difference in probabilities that consumers prefer a combination relative to their 

preference for hotel and car combination purchase. 
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effect f

ic
, we can write down the probability that a household‟s basket preference for a 

particular combination in the whole sample period as below. 

* *

1

1

1

Pr( 's history of basket preference) Pr( , )

1

i

ff f f f f
i c ic it c it ic ict

f f ff f f
it it id idtd id d

T

ict idt

t

T Z H S I

C
Z H S It

c

i B B d

e

e

   (3) 

4.2 Modeling Choice of Purchase Site  

In the second stage of the model we model the choice of the purchase site for each 

combination in the basket level choice. We illustrate the methodology for a combination 

purchase of which pertains to buying airline tickets A  and hotel bookings H . Consumer 

i  can purchase both these products in his/her basket from the same website or from 

different websites. The different combinations of making these purchases from the same 

travel portal { j , j } or different travel portals { j , k }  or from a travel portal and one of 

the other sites (other travel portal, airline, car rental and hotel sites) { j , other } or make 

both purchases from one of the other sites { other , other } can be expressed as below.  

{ j , j }   : (6 options) 

{ j , k }    : (15 options) 

The utility for these 21 choice combinations can be summarized as in Table 3. In 

the above expression ,

A

j tV  is the indirect utility from making the airline purchase from 

website j , ,

H

j tV   the indirect utility from making a hotel purchase from website j  and the 

utilities when an airline purchase and hotel purchase are made from one of the other sites 
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they are expressed as 
,

A

o tV   and 
,

H

o tV . The probability of both airline and hotel purchase 

being on a travel portal can now be written as 

 

Table 3: Utility function for a combination of Airline and Hotel purchase 

 Hotel 

Travel Portal Other Site 

Air  

Travel Portal 
, , , ,

A H A H

j t j t t j t j tV V u  
, , , ,

A H A H

j t o t t j t o tV V v  

Other Site 
, , , ,

A H A H

o t j t t o t j tV V v  
, , , ,

A H A H

o t o t t o t o tV V u  

 

The utility for these 21 choice combinations can be summarized as in Table 3. In 

the above expression 
,

A

j tV  is the indirect utility from making the airline purchase from 

website j , 
,

H

j tV   the indirect utility from making a hotel purchase from website j  and the 

utilities when an airline purchase and hotel purchase are made from one of the other sites 

they are expressed as 
,

A

o tV   and 
,

H

o tV . The probability of both airline and hotel purchase 

being on a travel portal can now be written as 

, , , , , , , ,

, , , ,

, , , ,

Prob[ j,j ]=Prob [ max( , , )]

               Prob [ ] .

                   Prob [ 

A H A H A H A H

j t j t j t o t o t j t o t o t

A H A H

j t j t j t o t

A H A H

j t j t o t j t

V V V V V V V V

V V V V

V V V V , , , ,

, , , ,

 ] .

                   Prob [ 

A H A H

j t j t j t o t

A H A H

j t j t o t o t

V V V V

V V V V , , , , , , max( , )]A H A H A H

j t j t j t o t o t j tV V V V V V

  (4) 

Since 
,

A

j t  and 
,

H

j t  are assumed to be independent hence the conditional term in 

the second part of the equation drops out and the above equation reduces to 
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, , , ,

, , , ,

, , , , , , , ,

Prob[ j,j ]=Prob [ ] .

                   Prob [  ].

                   1 [ - ] .

           

H H H H

j t o t t o t j t t

A A A A

j t o t t o t j t t

A H A H A H A H

j t j t o t o t t o t o t j t j t t

V v V u

V v V u

V V u V V u

,         ( A

j tdF , , ,)] . (A A H

j t o t t j tV v dF , , )]H H

j t o t tV v

                  (5) 

Now let us consider the case where airline is bought from website m  and hotel is 

bought on website n . Then the 21 choices that are available to purchase a combination of 

airline tickets and hotel booking are as depicted in Table 4.  

 

Table 4: Possible website combinations for Airline and Hotel purchase 
 Hotel 

n 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

Air 

m 
 Expedia Travelocity Orbitz Hotwire Other TP Other Site 

1 Expedia (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 

2 Travelocity (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 

3 Orbitz (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 

4 Hotwire (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 

5 Other TP (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 

6 Other Site (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) 

 

As before, now the probability of a consumer i  purchasing airline and hotel from 

website m and website n  respectively can be written as 

Prob[ m,n ]=Prob [ ] . Prob [  ] . Prob [ C ]A B  

, , , ,

, , , ,

, , , , , , ,
,

where A is [ max( , ) ]

           B is [ max( , )  ] and

           C is [ max( , , )-

H H H H

n t k t t k t n t t
k

A A A A

m t k t t k t m t t
k

A H A H A H A

m t n t m t n t t o t o t m t
k l

V v k n V u

V v k m V u

V V u k m l n V V , ]H

n t tu

(6) 
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Note that in the above equations 
tu is the component of utility that consumers 

derive from making both the airline and hotel purchase from the same website and is 

explicitly modeled as a function of loyalty and {other independent variables}.  

, 0 1 2

, 1 2

other indep variables

other indep variables

note:

 is an indicator variable that takes value 1 if both purchases are on same website

 is 

mm t m j

mn t j

m

j

u loyalty loyalty

u loyalty

loyalty

loyalty an indicator variable that takes value 1 if both purchases are on a travel portal

      (7) 

The indirect utility functions for purchasing an airline 
,

A

j tV  or hotel 
,

H

j tV  from a 

particular website website j  is also expressed as a function of {independent variables - 

including consumer demographics 
itZ , prior browsing experience as the average daily 

pages viewed ijS  on different sites in the first three months, 
itH  as a proportion of pages 

viewed on website j  to the total pages viewed on all travel websites that the customer 

visited in the first three months, and whether or not consumer i ’s last purchase was at j ,  

ijtI }. This concludes our discussion for just one combination AH out of the possible 7 

combinations as tabulated in Table 1. The above expressions can easily be extended and 

similar equations obtained for each of the different combinations. 

4.3 Model Estimation 

The major difficulty in model estimation comes from dimensionality and to 

simplify the model we assume that the random effects in each stage and the random 

effects for purchases in different categories (e.g. 
,

A

j t  and 
,

H

j t  ) are also independent of 

each other.  We assume the random effects to be normally distributed, as  
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2

,

2

,

2 2

, ,

(0, )

(0, )

+ (0, )

A

m t A

H

n t H

A H

m t n t A H

N

N

N

                                                                              (8) 

To solve the second stage of the model we use the simulated maximum likelihood 

approach for estimation. Let 
, , ,{ , , ; ;  ; }A H C

i j t j t j t t tj u v  be the vector of random effects 

in the equation system with the assumed distribution ( , )F , where  is the set of all 

parameters to be estimated. The unconditional likelihood can now be expressed as 

follows: 

i i i

equation (6) equation (6) equation (6)

Pr( | ) Pr( | ) Pr( | ) ( ; )i iL A B C dF     (9) 

We estimate this likelihood using the simulated maximum likelihood method. We draw 

s

i
, s=1, …,ns, where ns is the number of simulated draws, following the distribution of 

F (which we will explain later).  

The algorithm used to estimate the second stage of the model is as shown below 

Step 1: Take 1000 draws of s

t  (6x6) for each element of Table 4 

Step 2: Evaluate A as 
1000

, , , ,

1

1
Prob( max( , ) )

1000

H H H H

n t k t t k t n t t
k

s

V v k n V u  

Step 3: Similarly evaluate B as  

1000

, , , ,

1

1
Prob( max( , ) )

1000

A A A A

m t k t t k t m t t
k

s

V v k m V u  

Step 4: Evaluate C for each s

t , 



85 

 

 
1000

s

1

1
Prob(m,n)= [ Prob( ).Prob( ){ 1} Prob( ){ 1}]

1000

s s

s

A B C  

The corresponding simulated version of (9) can be expressed as 

1
equation (6) equation (6) equation (6)

1ˆ Pr( | ) Pr( | ) Pr( | )
ns

s s s

i i i i

s

L A B C
ns

                                                (10) 

Note: The superscript s  in the above expressions implies simulated values.  

The Nelder-Mead simplex algorithm we use is very efficient in estimating these complex 

models though some sensitivity to starting values was observed. 

5. Results and Discussion 

In this section we discuss results for the first stage of the model identifying factors 

impacting basket choice followed by results from the second stage of the model which 

sheds more light on the website choice for the various basket combinations. Though our 

modeling and estimation methodology can be easily extended to a basket with more than 

two products we limit our estimation to a basket with two products as our model has 79 

parameters to be estimated and there are very few observations (195) for basket 

transactions with all three travel products in our data  

5.1 Factors Impacting Basket choice  

 We infer the preference of various basket combinations from the intercepts 

associated with each basket combination and find that on average most consumers tend to 

have a preference to purchase a single product (air or hotel) and not a basket of travel 

products. This could be primarily driven by business or leisure airline trips from point A 

to point B (with car rental or hotel transactions conducted offline) or hotel stays in a 
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particular geography being visited (with airline tickets purchase being done via corporate 

ticketing or offline). Amongst the basket of travel products consumers tend to have a 

higher preference on average for a basket of products compared to a car rental only 

product.  

 

Table 5: Base level basket preference and demographic factors  
 Parameters Estimates 

Base level preference for 

various Basket Combinations 

Air and Hotel Combo   -0.157   (0.063)* 

Air and Car rental Combo   -0.232   (0.103) 

Air, Hotel and Car rental Combo   -0.146   (0.073)* 

Airline Only    1.956   (0.052)* 

Hotel Only    1.048   (0.050)* 

Car rental Only   -0.254   (0.053)* 

Demographic factors 

Household Size 0.107   (0.474) 

Age 0.057   (0.396) 

Income 0.045   (0.347) 

Child Present 0.180   (0.510) 

Connection Speed 0.087   (0.075) 

* indicates p < .05. Standard errors are in parentheses   

 

Amongst the basket of products the combination of all three i.e. air, hotel and car rental 

products has a higher base level preference compared to any two way combination of 

travel products with the exception of car and hotel. The higher preference for car and 

hotel basket leads us to believe there is significant preference for road travel amongst 

consumers. Note that since our model is conditional on a purchase being made - the 

outside option is a basket of car rental and hotel product (see Table 5 first set of results). 

Though we find directional evidence that consumers who make basket purchases on 

average are more likely from a larger household, older, have a broadband connection, 
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higher income and more likely to have a child in the family we don‟t find the 

demographic parameters to be significant (see Table 5 second set of results). 

We also investigate the impact of prior browsing history for various product 

combinations and find that on average consumers who browse more for a basket of 

products are likely to end up making a purchase, and this likelihood is more pronounced 

towards purchasing a single product as opposed to a basket of products.  

 

Table 6: Prior purchase and browsing history (category and basket specific) 
 Parameters Estimates 

Prior browsing history in basket 

Air and Hotel Combo    0.001    (0.000)* 

Air and Car rental Combo    0.000    (0.000) 

Air, Hotel and Car rental Combo    0.001    (0.000)* 

Airline Only  0.001   (0.000)* 

Hotel Only  0.002   (0.000)* 

Car rental Only     0.003   (0.000)* 

Prior  browsing history in travel     0.288   (0.376)  

Prior purchase of same basket/combo    -0.039   (0.074) 

* indicates p < .05. Standard errors are in parentheses   

Though these inferences are directionally insightful we find that these results are 

significant but for Air and Car rental combo (see Table 6 first set of results).  We also 

find a positive impact of browsing within the travel category to positively impact 

purchase (see Table 6 second set of results) and this is consistent with our findings from 

an airline only model (see Nair, Chan and Cheema, 2009 working paper). Though not 

significant we find directional evidence that purchasing a basket of products in the past 

doesn‟t seem to increase the likelihood for repeat purchase of same product combo (see 

Table 6 third set of results). 
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Table 7: Interaction Effects 
 Interactions Estimates 

Prior Browsing history in travel 

Age 0.587   (0.023)* 

Income 0.622   (0.060)* 

Connection Speed   -1.608   (0.117)* 

Prior Purchase of same basket/combo 

Age 0.127   (0.027)* 

Income 0.622   (0.060)* 

Connection Speed   -0.226   (0.106)* 

* indicates p < .05. Standard errors are in parentheses   

 

Based on the various interaction effects we incorporate in our modeling effort we 

find significant evidence that consumers who browse more and are either older or have 

higher incomes have a higher propensity to make a purchase(see Table 7 first set of 

results).  It is also evident that consumers who made a prior purchase and were either 

older or have higher income were significantly predisposed to make a purchase (see 

Table 7 second set of results). The results for interaction of connection speed with prior 

browsing history and purchase were significant and this pattern could be driven by offline 

deals that are sought by these consumers. These are insightful for managers to create a 

target profile of consumers who are more likely to make a purchase. 

We find higher variance amongst consumer preference for Air & Car rental basket 

combination (0.2472), Car rental only (0.1283) and Air, Hotel and Car rental combination 

(0.0132) purchases in that order (see Table 8).  

This could primarily be driven by difference in preferences between leisure and 

business travelers and is something that needs to be investigated in future studies with 

richer data that distinguishes between these user types. We also find the covariance 
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between Hotel only purchase with Air & Hotel combo (-0.0040) and Airline only (-

0.0011) purchase to be negative indicating consumers could be considering these 

transactions as substitutes. 

 

Table 8: Basket choice Variance-Covariance parameter estimates 

Parameter σAH σAC σAHC σA σH σC 

σAH  0.0020*      

σAC  0.0001 0.2472*     

σAHC  0.0009* 0.0023 0.0132*    

σA  0.0010* 0.0040* 0.0026* 0.0009*   

σH -0.0040* 0.0093* 0.0037* -0.0011* 0.0110*  

σC  0.0004 0.1109* 0.0050* 0.0027* 0.0067* 0.1283* 

*** indicates p < .001, ** indicates p < .005, * indicates p < .01. Standard errors are in parentheses 

 

This could be possibly due to the typical behavior exhibited by business travelers 

i.e. do a day trip (airline only), or choose to fly in and stay overnight at a hotel near final 

destination and use a cab to get to the work location or rent a car to drive to and out of the 

work location same day. We also find that the covariance of Hotel Only purchase with 

Air and Car rental only purchase to be higher and positive (0.0093) indicating they could 

be complementing each other and consumers might be using these separate purchases in 

lieu of a combination of Air, Hotel and Car rental combo purchase.  

5.2 Factors Impacting Website choice for various basket purchases 

We infer the base level preference for various site choice combinations when it 

comes to a basket purchase from the intercepts associated with each site choice 

combination and find that on average most consumers tend to have a preference for 
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purchasing a basket of travel products from different sites one of them being what we 

define as other site (mostly airline site).  

 

Table 9: Base level site choice preference for basket purchases  
 Parameters Estimates 

Base level site choice preference 

for basket purchases 

Expedia only  -5.0318   (10.300) 

Expedia & Travelocity -12.214   (0.254)* 

Travelocity only   -7.400   (0.782) 

Expedia & Orbitz   -5.045   (0.054)* 

Travelocity & Orbitz   -5.864   (0.418)* 

Orbitz only     0.357   (0.078)* 

Expedia & Hotwire   -8.077   (0.000)* 

Travelocity & Hotwire   -7.169   (0.000)* 

Orbitz & Hotwire     -7.148   (0.062)* 

Hotwire only     -7.798   (0.000)* 

Expedia & Other portal   -6.508   (0.000)* 

Travelocity & Other portal   -7.194   (1.880) 

Orbitz & Other portal   -7.087   (0.826) 

Hotwire & Other portal   -9.547   (0.000)* 

Other portal only   -5.888   (0.799) 

Expedia & Other site      0.989   (0.000)* 

Travelocity & Other site      1.073   (0.113)* 

Orbitz & Other site      0.819   (0.022)* 

Hotwire & Other site      0.171   (0.000)* 

Other portal & Other site     -0.432   (0.287) 

* indicates p < .05. Standard errors are in parentheses   

This could be primarily driven by air travel being an important part of any travel 

plan as well as the loyalty connected with airline rewards programs. Amongst those 

consumers who choose to complete their basket of travel product purchases on the same 

portal we find the base level preference to be highest for Orbitz followed by Expedia, 

Other travel portal, Travelocity and Hotwire in that order (see Table 9).  The base level 

preference is lowest for site combo of Expedia & Travelocity when it comes to making a 
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basket of travel purchases. Note that since our model is conditional on a purchase being 

made the outside option is a basket purchase made on Other sites only.  

 

Table 10: Demographics and Prior browsing history (site specific) 

 Parameters Estimates 

Demographic factors 

Household Size -0.753   (0.001)* 

Age -0.309   (0.001)* 

Income -0.579   (0.001)* 

Child Present 1.514    (0.024)* 

Connection Speed -0.164   (0.023)* 

Prior browsing history by site choice 

combinations 

Expedia only    -0.621   (0.001)* 

Expedia & Travelocity   -2.102   (0.002)* 

Travelocity only   -1.215   (0.003)* 

Expedia & Orbitz -10.074   (0.001)* 

Travelocity & Orbitz  - 1.598   (0.001)* 

Orbitz only   -4.701   (0.006)* 

Expedia & Hotwire   -5.290   (0.001)* 

Travelocity & Hotwire   -1.173   (0.001)* 

Orbitz & Hotwire   -0.488   (0.001)* 

Hotwire only  -4.970   (0.001)* 

Expedia & Other portal  -1.429   (0.001)* 

Travelocity & Other portal  -2.557   (0.001)* 

Orbitz & Other portal    0.115   (0.036)* 

Hotwire & Other portal  -0.626   (0.001)* 

Other portal only  -0.061   (0.001)* 

Expedia & Other site  -0.817   (0.001)* 

Travelocity & Other site  -6.604   (0.001)* 

Orbitz & Other site 16.437   (0.001)* 

Hotwire & Other site  -0.516   (0.001)* 

Other portal & Other site  -8.883   (0.001)* 

* indicates p < .05. Standard errors are in parentheses   

Though we didn‟t find demographic factors to be significant and only directional 

when it came to basket purchases, we find them to be significant in predicting website 

choice while pursuing a basket transaction. A child‟s presence in the household positively 

influences basket purchases across all site choice combinations while consumers who 



92 

 

have a larger household or are older or have higher income or broad band connections are 

less likely to complete basket purchases across all site choice combinations (see Table 10 

first set of results). Consumers who have a prior browsing history on two specific 

combinations of sites (i) Orbitz and Other sites (mostly airline sites) and (ii) Orbitz and 

Other travel portals exhibit a higher likelihood of making a basket purchase across all site 

choice combinations. Consumers who have prior browsing experience on Expedia and 

Orbitz (-10.074  see Table 10 second set of results) being the least likely to make a basket 

purchase across all site choice combinations. Others who exhibit similar behavior worth 

noting are those with prior browsing experience on Other travel portals and Other 

sites(mostly airline), Travelocity and Other site (mostly airline), Expedia and Hotwire. 

 

Table 11: Prior purchase, browsing history (category specific) and Interaction Effects 
 Interactions Estimates 

Prior  browsing history in travel  3.937   (1.560)* 

Prior purchase from same choice combo      2.237   (0.861) 

Prior Browsing history in travel 

Age -2.071   (0.028)* 

Income -0.501   (0.080)* 

Connection Speed     7.847   (2.231) 

Prior Purchase of same site combo 

Age 10.333   (0.017)* 

Income   7.367   (0.024)* 

Connection Speed    4.638   (2.056) 

* indicates p < .05. Standard errors are in parentheses   

 We also find a significant impact of overall prior browsing history in travel to 

significantly and positively influence the likelihood of making a basket purchase from all 

site choice combinations. Note however that though there is a positive impact of prior 
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purchase on the various site choice combinations on a basket purchase form the same site 

choice combinations this result is not significant (see Table 11 first set of results). 

The interaction effects of demographics with prior travel browsing history and 

prior purchase on same site combinations were also investigated and the impact of 

connection speed though positive was not found to be significant. However older 

consumers or those with higher income had a significant difference in the way they 

influenced basket purchases across all site combinations decreasing the likelihood when 

the prior browsing history was higher – learning impact; and increasing the likelihood 

when prior purchase history was higher – transaction impact (see Table 11 second set of 

results). 

In our models we also incorporate intercepts to measure the base level of 

preference (more like brand equity) to make a basket of purchases separately (i) from the 

same website and (ii) from travel portals to see if they have an impact collectively as a 

group. We also use an indicator variable to separate out the impact of loyalty of making 

the basket of purchases from (i) the same website (more like state dependence or 

stickiness) or (ii) from travel portals  collectively as a group. This is an important nuance 

of our model the interpretation of which helps us understand the impact these factors 

have on influencing basket purchases for various site combinations. We find that 

consumers have a base level preference to make basket purchases from the same website 

and the large significant coefficient on this suggests that the brand equity or rewards 

programs on various sites which could be causing this dominates most other factors 

including loyalty or state dependence effects arising from a basket purchase (see Table 12 
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first set of results). This could also be an outcome of consumers executing on their basket 

purchases based on the choices post a search on all other sites. We also find that 

consumers have a lower base level preference of purchasing their basket from travel 

portals collectively as a group. This could be because (i) travel portals might be 

attempting to extract more consumer surplus through bundling and (ii) consumers are 

successful in finding better deals on basket purchases directly from non-travel portals i.e. 

service providers like airline sites. 

 When it comes to loyalty we find that consumers have a loyalty or stickiness for 

making basket purchases on the same website as well as from a travel portal and both of 

these results are significant and positive however the collective impact of travel portals 

compared to non-travel portals is greater than the loyalty that is related to making basket 

purchases from the same website (see Table 12 second set of results). This could be 

because (i) non-travel portals offer slightly lower number of alternatives or (ii) the ease of 

use when it comes to making basket purchases on a travel portal as they are by design 

geared up to offer many alternatives from which a consumer could make a choice. Note 

during the period of study non-travel portal sites didn‟t have much options in this regard. 

 

Table 12: Base level preference and loyalty effect of purchasing  

entire basket from same site or travel portal 
 Parameter Estimates 

Base Level preference to make 

purchases from 

Same Website 10.511   (0.001)* 

Travel Portal    -0.647   (0.001) 

Loyalty 
Same Website   0.285   (0.001)* 

Travel Portal     0.500   (0.001)* 

* indicates p < .05. Standard errors are in parentheses   
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 Due to the complexity of the model and the limited number of observations that 

were available we do not find the estimates of the variance covariance matrix to be 

significant (see Table 13 for a summary of these results). However we note that these 

estimates can be used directionally to make some inferences that could be worth diving 

deeper into when voluminous transaction data for online basket purchases becomes 

available.  

 

Table 13: Basket choice Variance-Covariance parameter estimates 

Parameter σExpedia σTravelocity σOrbitz σHotwire σOther Portals σAll other sites 

σExpedia 24.791      

σTravelocity 14.467 4.491     

σOrbitz 3.482 1.501 0.748    

σHotwire -13.557 27.685 10.859 18.358   

σOther Portals -3.438 -6.649 -15.838 11.665 1.073  

σAll other sites 4.104 -3.893 0.290 1.391 5.727 5.052 

*** indicates p < .001, ** indicates p < .005, * indicates p < .01. Standard errors are in parentheses 

We find the greatest site choice heterogeneity for basket purchases associated with a 

single site to be on Expedia (24.791) indicating that either Expedia (i) attracts a diverse 

target audience or (ii) price discriminates amongst its audience better and makes the right 

basket offerings to the right consumer. The site choice heterogeneity was least 

pronounced for basket purchases on Orbitz (0.748) indicating profile of consumers 

making basket purchases on Orbitz to be very similar or those that knew exactly what to 

get and where on Orbitz. Other site combinations with large heterogeneity were Expedia 

and Travelocity (14.467) and Hotwire and Travelocity (27.685). Combinations with 

negative site heterogeneity that are worth mentioning are Expedia and Hotwire(-13.557) 

and Orbitz and Other travel portals (-15.838). Also note that the top three portals exhibit 
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positive site heterogeneity amongst themselves while exhibiting negative site 

heterogeneity with other travel portals indicating that the consumers on the top three 

portals and those on other travel portals exhibit completely different behavior and could 

have a different target/segment profile. 

6. Conclusions 

In this paper we develop a two-stage model to study the category purchase 

propensities followed by propensity to purchase from a travel website. We model (i) the 

propensity to purchase a given basket by a consumer and, (ii) the choice of the website 

where consumers will make the purchases that constitute this basket and how these 

choices are inter related. We find significant effects of site preference, loyalty, prior 

browsing and demographic variables in determining consumer purchase behavior. We 

also find that the choice of the first site to where consumer makes a purchase has a 

significant impact on choice of the purchase site for other products in the basket 

indicating multi-category efficiencies.  

Managers can use these results to identify the major determinants of 

consumer online behavior for basket level purchases and make appropriate marketing 

interventions based on this understanding of how consumers approach buying multiple 

products at the same time from multiple or same website. The correlations between the 

various travel products provide unique insights into travel habits of consumers in addition 

to providing bundling opportunities for service providers to better serve consumer needs. 

In this paper we also tease out consumer preferences in making multiple travel product 

purchases on a travel portal as opposed to pursuing this on separate service provider 
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websites. This model also provides unique insights on how travel portals such as Expedia 

and Orbitz can better satisfy consumer needs by providing a basket of complementary 

products which involve air tickets purchase, car rental and/or hotel bookings and also 

explain why many airline sites have moved towards selling car rental and hotel products 

to successfully compete with travel portals. Managers can also use the insights from our 

demographic indicators to create a profile of target consumers who are more likely to 

make a purchase. Availability of more detailed demographics in the ComScore data set 

could aid managers in fine turning their segmentation strategy and develop more detailed 

target profiles.  
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