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ABSTRACT OF THE DISSERTATION 

 

Dissolution, Formation, and Transformation of the Lead Corrosion Product PbO2: 

Rates and Mechanisms of Reactions that Control Lead Release  

in Drinking Water Distribution Systems 

by 

Yanjiao Xie 

Doctor of Philosophy in Energy, Environmental & Chemical Engineering 

Washington University in St. Louis, 2010 

Research Advisor: Professor Daniel Giammar, Chair 

 

As one of the major lead corrosion products in lead service lines, lead(IV) oxide 

(PbO2) can react with water through reductive dissolution, resulting in elevated lead 

concentrations in tap water.  Limited data are available on the rates and mechanisms of 

PbO2 dissolution.  Information regarding the impact of water chemistry on the rates and 

mechanisms of PbO2 dissolution can provide potential strategies to control the release of 

lead from corrosion products to drinking water.  The present study investigated effects of 

water chemistry on the rates and mechanisms of PbO2 dissolution, the equilibrium 

solubility of PbO2, and the rates of lead release from lead pipes with corrosion scales. 

 

The dissolution rate of pure plattnerite (β-PbO2) was investigated as a function of 

pH and the concentrations of carbonate, orthophosphate, free chlorine, and 

monochloramine in continuously stirred tank reactors (CSTR).  Complementary batch 
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experiments were conducted to compare the effects of water chemistry on the PbO2 

dissolution rate for different solid-water contact times.  The equilibrium solubility of 

plattnerite in the presence of free chlorine was then investigated.  Lead release from pipe 

scales was determined under different water chemistry conditions at flow or no-flow 

conditions to optimize the water chemistry for mitigating lead release.  For these 

experiments new lead pipes were conditioned in the presence of free chlorine and 

carbonate to form corrosion scales. 

 

Dissolution experiments provided direct evidence that the PbO2 dissolution rate 

increases when the disinfectant is switched from free chlorine to monochloramine, which 

is consistent with the high lead concentrations observed in Washington D.C. from 2001 

to 2004 following such a switch.  Lower pH and the presence of carbonate accelerated 

PbO2 dissolution.  Addition of orthophosphate as a potential corrosion inhibitor had 

multiple effects on PbO2 dissolution rates.  A detailed mechanism and rate model were 

proposed for PbO2 reductive dissolution.  Batch experiments showed that the residence 

time also played an important role in controlling dissolved lead concentrations.  Pipe 

scales developed under drinking water conditions contained PbO2 and hydrocerussite 

(Pb3(CO3)2(OH)2).  In experiments with these pipe scales, when compared with stagnant 

conditions water flow significantly accelerated the release of both dissolved and total lead 

from pipe scales.  Among various water chemistry conditions, the dissolved lead was 

lowest from corrosion scales in contact with solutions containing orthophosphate.  Two 

models were proposed to predict lead release from pipe scales. 
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Chapter 1.  Introduction and overview 

1.1.  Introduction 

1.1.1  Lead Corrosion and Regulation in Water Distribution Systems 

Lead pipes have been used to deliver water since the ancient Roman Empire.  The 

toxic effects of lead have been known as early as the second century B.C [1].  Concerns 

about the health effects of lead exposure have increased in the past several decades.  Lead 

can accumulate in the human body over a lifetime and can be released very slowly [2].  

People can be exposed to lead through ingestion of airborne dust, water, food and 

soil [3].  The U.S. Environmental Protection Agency (EPA) estimated that 14–20% of 

total childhood lead exposure in the United States is from drinking water [4].  The Lead 

and Copper Rule (LCR) set the lead action level to 0.015 mg/L in 1991.  For this 

regulation if 10% of tested homes have lead concentrations above the action level, then 

the system must undertake efforts to control corrosion and inform the public.  In a recent 

incident extremely high lead concentrations in Washington D.C. tap water were 

correlated with increased blood lead levels [5].  The problems encountered in 

Washington, DC demonstrate the need for research on reactions controlling lead 

concentrations in drinking water.   

Lead in drinking water comes from the corrosion of lead-containing pipes, solder, 

fittings, fixtures, and faucets.  Lead pipes were widely used at the beginning of the 20th 

century because of their durability and malleability.  Brass fittings and faucets used in 

distribution systems can also have significant amounts of lead.  Since 1986 new 

construction cannot use lead pipe. However, many older buildings retain their original 



2 

 

lead service lines. The corrosion of old lead pipes and fittings with time results in the 

development of lead corrosion products in pipe scales that can leach lead to drinking 

water [6-8].  

 

1.1.2 Lead Corrosion Products 

The formation of lead corrosion products depends on the specific water chemistry 

of a distribution system. The most common lead phases formed on the inside of pipes are 

lead(II) carbonates, lead(II) oxides, lead(II) phosphates, and lead(IV) oxides [7, 9].  The 

lead(II) solids are produced as the elemental lead of the original pipe is oxidized upon 

contact with oxic or chlorinated water.  Figure 1.1 illustrates the formation, 

transformation, and dissolution of lead corrosion products in pipe scales.  

Both scrutinyite (α-PbO2) and plattnerite (β-PbO2), formed by oxidation of Pb(II) 

to Pb(IV), are found in water distribution systems in which free chlorine is used as a 

secondary disinfectant [10].  Both free chlorine and chloramines are used as residual 

disinfectants in distribution systems to prevent biological growth throughout the 

distribution systems.  Free chlorine disinfectants, such as sodium hypochlorite (NaOCl) 

Figure 1.1.  A conceptual schematic diagram of the formation of lead corrosion products 
in distribution systems.  (Adopted from Noel and Giammar, 2007) 

CO3
2-, PO4

3-

OCl-
Cl-

Pb 2+

Pb(IV)O2,  Pb3(CO3)2OH2,  PbCO3,  Pb5(PO4)3OH
Lead Pipe Pb(0)

CO3
2-, PO4

3-, Cl-

Particulate

Pb(II) Pb(IV)

Pb2+
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and chlorine gas (Cl2), form HOCl and OCl- upon addition to water, which can oxidize 

elemental lead and lead(II) species to lead(IV) oxides (Figure 1.1).  Chloramines, which 

are among the species known as combined chlorine, are formed by reacting ammonia 

with free chlorine and cannot oxidize elemental lead and lead(II) species to lead(IV) 

oxides [11].  Lead(IV) oxides are only present in water distribution systems with the high 

oxidation-reduction potential (ORP) maintained by free chlorine disinfectants and are not 

stable with chloramines.  Even in some systems with free chlorine, lead(IV) oxides still 

do not form, which indicates that the formation of lead(IV) oxides may depend on the 

free chlorine concentration and can be very slow.  In water distribution systems with low 

ORP, lead(II) solids are the dominant corrosion products rather than lead(IV) oxides.  

Lead(IV) oxides are much less soluble than lead(II) solids, and the low solubility of 

lead(IV) oxides can maintain very low lead concentrations in drinking water.  

 

1.1.3 Electrochemistry of the Pb(0)/Pb(II)/Pb(IV) System 

The oxidation of metallic Pb(0) to Pb(IV) oxides with free chlorine (i.e. HOCl 

and OCl-) proceeds through two steps.  The relevant reactions are listed in the Table 1.1.  

The first step is the oxidation of Pb(0) to Pb(II) via half reactions 1.1 and 1.2, and the 

overall reaction of the first step is  

Pb + HOCl + H+  Pb2+ + Cl- + H2O 

The second step is the oxidation of Pb(II) to Pb(IV) through half reactions 1.2 and 1.3, 

which can be described by the following overall reaction. 

HOCl + Pb2+ + H2O  PbO2 (s) + Cl- + 3H+ 
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 Table 1.1. Relevant half reactions for the oxidation of lead to lead(IV) oxide by free 
chlorine. 

 
Pb(IV) oxides are only stable at the high ORP (Figure 1.2) provided by free 

chlorine.  In actual distribution systems with free chlorine, the EH range is from 1.2 to 1.3 

                                                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

________________________________________________________________ 

1 Reaction constants shown in this chapter were taken from MINEQL+ software. 

# Reaction EH
0 (V) Log K1 

1.1 Pb2+ + 2e-  Pb0  4.26 0.13 

1.2 HOCl + 2e- + H+  Cl- + H2O 1.48 50.20 

1.3 PbO2 (s)+ 4H+ +2e-  Pb2+ +2H2O 1.47 49.60 
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Figure 1.2.  Predominance area diagrams showing the dominant lead solid phase or 
dissolved  species as a function pH and oxidation-reduction potential for (a) 30 mg C/L 
dissolved inorganic carbon (DIC) (2.5 × 10-3 M) and (b) 3 mg C/L DIC (2.5 × 10-4 M) plus 3 
mg/L dissolved orthophosphate (9.7 × 10-5 M).  The diagrams are constructed for a total lead 
concentration of 15 µg/L.  The dashed lines represent the stability limits of water (PO2 = 
0.001 atm and PH2 = 1 atm).   
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V. However, when chloramine is used as the disinfectant in distribution systems, the EH 

is from 0.6 to 0.9 V, which is about 0.5 V lower than with free chlorine [12].  Previous 

research showed that the ORP from chloramine is not high enough to maintain Pb(IV) 

oxides [11].  

NH2Cl + H2O + 2e-  Cl- + OH- + NH3                           EH
0 = 0.69 V     (1.4) 

In the absence of free chlorine, Pb(IV) oxides will transform to Pb(II) solids or 

dissolved Pb(II) species.  Through energetically favorable reactions, natural organic 

matter and pure water may reduce Pb(IV) oxides to Pb(II) species (Reaction 1.5) [13-16].  

An intermediate species from monochloramine decay can reduce Pb(IV) oxides [17], and   

iodide, bromide, manganous, and ferrous ions have also been shown to enhance the 

reductive dissolution of Pb(IV) oxides [18-20]. 

PbO2(s) + H2O = Pb2+ + 0.5O2 + 2OH-                   (1.5)      

The incident of high lead levels in drinking water of the Washington D.C. area 

was caused by the breakdown of lead(IV) oxide.  In November 2000, the Water and 

Sewer Authority (WASA) of Washington D.C. switched its disinfectant from free 

chlorine to chloramines.  The change was initiated to comply with the 1998 Disinfection 

Byproducts Rule (DBR), which restricts the concentrations of disinfection byproducts in 

water.  Chloramine generates less of the regulated disinfection byproducts, such as 

trihalomethanes and haloacetic acids [10].  After changing the disinfectant, lead 

concentrations exceeding 0.015 mg/L were measured in drinking water from 2001 to 

2004.  The lead concentration in tap water of hundreds of homes even exceeded 0.3 mg/L 

[6].  The switch from chlorine to chloramine is believed to have lowered the ORP and 

caused the reduction of insoluble Pb(IV) oxides to more soluble Pb(II) species [6, 11, 

17].  
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1.1.4 Equilibrium Solubility of Lead Corrosion Products 

 The equilibrium solubility of lead corrosion products determines the lead 

concentration in tap water when water reaches equilibrium with lead corrosion products.  

The lead concentration at equilibrium depends on the individual lead corrosion products 

present in pipe scales and the water chemistry.  The least soluble lead corrosion product 

will control the equilibrium dissolved lead concentration.  The equilibrium lead 

concentration with respect to each lead corrosion product can be calculated based on the 

solubility product of the solid and equilibrium constants for the formation of soluble lead 

complexes.  The total dissolved lead is the sum of the concentrations of the free metal ion 

Pb2+ or Pb4+ as well as their complexes with hydroxide, carbonate and other anions.   

When lead(IV) is the dominant oxidation state, as controlled by free chlorine, the 

dissolved lead concentrations controlled by Pb(IV) oxides can be very low (Figure 1.3). 

Based on equilibrium calculations using Equation 1.6a and 1.6b, the concentration of 

dissolved free metal ion (Pb4+) from the lead(IV) oxide solid is very low.  The total 

dissolved lead(IV) is the sum of the concentrations of the free metal ion Pb4+ and the 

hydrolysis complexes PbO3
2- and PbO4

4-.  The concentrations of the hydrolysis 

complexes increase with increasing pH and are the dominant lead species above pH 6.  

Overall, the total dissolved lead(IV) is under the action level (15 ug/L) for an 

environmentally relevant pH range (Figure 1.3).  Despite the widespread observation of 

lead(IV) oxides in pipe scales, the equilibrium solubility of lead(IV) oxides has not been 

measured at chemical conditions relevant to drinking water distribution.  

PbO2(s) + 4H+ = Pb4+ + 2H2O                      (1.6a) 

26.8
4

4

, 10
][

][ −
+

+

==
H
PbK escrutinyitsp                                                  (1.6b) 



7 

 

Pb4+ + 3H2O = PbO3
2- + 6H+                 log(Keq) = -23.04         (1.7) 

Pb4+ + 4H2O = PbO4
4- + 8H+

                     log(Keq) = -63.8                   (1.8) 

When Pb(II) is the dominant oxidation state, Pb(II) carbonate, oxide, or phosphate 

solids can control the dissolved lead concentrations.  The following reactions and 

equations can be used to calculate the dissolved Pb2+ concentration in equilibrium with 

hydrocerussite (1.9) and hydroxylpyromorphite solids (1.10).  The equilibrium lead 

concentration responds to the dissolved carbonate and phosphate concentrations.  

 
77.18

2

22
3

32

, 10
][

][][ −
+

−+

==
H

COPbK sitehydrocerussp
   (1.9a)  

 Pb3(CO3)2(OH)2(s) + 2H+ = 3Pb2+ + 2CO3
2- + 2H2O  (1.9b) 

Khydroxylpyromorphite=
      ሾPb2+ሿ5ሾPO4

3-ሿ3

ሾH+ሿ
=10-62.79                    (1.10a) 

Pb5(PO4)3OH(s) + H+ = 5Pb2+ + 3PO4
3- + H2O               (1.10b) 
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As shown in Figure 1.3, the dissolved lead concentrations in equilibrium with a 

lead(II) carbonate or phosphate are significantly higher than those in equilibrium with 

lead(IV) oxides. 

In actual distribution systems, the water may not be in equilibrium with the 

corrosion products present since the hydraulic residence time in distribution systems can 

be insufficient for the water to equilibrate with the solids.  The hydraulic residence time 

is normally minutes to hours.  However, it takes days to reach equilibrium for PbO2 in 

actual distribution systems.  Therefore, equilibrium-based models tend to overpredict 

dissolved lead concentrations in real distribution systems.  Such models are limited by the 

accuracy of available equilibrium constants, transitions between scale types, byproduct 

Figure 1.3.  Dissolved lead concentration in equilibrium with (a) lead(IV) oxide at 
sufficiently oxidizing conditions that all lead is present as lead(IV) and (b) the lead(II) 
carbonate hydrocerussite with 30 mg/L DIC and the lead(II) phosphate 
hydroxylpyromorphite with 30 mg/L DIC and 3 mg/L orthophosphate.  The long dashed 
line shows the lead action level of 15 µg/L.  Note the difference in the y-axis ranges.   
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release, and reaction kinetics [21, 22].  For systems that are not at equilibrium, 

measurements of dissolution rates can improve quantitative estimates of soluble lead 

concentrations in distribution systems.   

 

1.1.5 Dissolution Rates of Lead Corrosion Products 

Consideration of the dissolution and transformation rates of lead(IV) oxides can 

provide more accurate estimates of dissolved lead concentrations in distribution systems 

than estimates based on equilibrium solubility.  The dissolution rates of hydrocerussite 

and hydroxylpyromorphite have already been determined at various pH and carbonate 

conditions [23-25], but the dissolution rates of PbO2 are not known.  Previous research 

investigated the effects of natural organic matter (NOM), chlorine species, manganous, 

and ferrous, and halide ions on dissolution of PbO2 in batch systems, but these studies did 

not quantitatively measure PbO2 dissolution rates [14, 16-20].  Previous studies all used 

batch experiments, but the calculation of a dissolution rate from batch studies can be 

affected by the dissolution of labile surface phases and accumulation of reaction 

products.  Flow-through experiments, which are advantageous for quantifying rates, have 

not yet been employed to determine the dissolution rates of PbO2.   

 

1.1.6 Lead Release from Pipe Scales 

Previous studies qualitatively showed the effects of stagnation time, flow velocity 

and water chemistry on lead release from lead pipes.  The stagnation time was found to 

have a substantial effect on lead release from pipes, with most of the release occurring 



10 

 

within the first 24 hours [26].  Flow velocity can influence erosion mechanisms of 

corrosion and can affect the development of pipe scales [27].  With respect to water 

chemistry, orthophosphate was demonstrated to inhibit lead release [28, 29].  The effects 

of pH and carbonate depend on the exact condition and corrosion products that make up 

the pipe scales [27].   

Previous models for lead release from lead pipes accounted for diffusion of lead 

from the pipe wall and the effects of flow.  Lytle and Schock developed a diffusion 

model to describe the dissolved lead profile with time at stagnant conditions [26].  

Cardew extended the diffusion model to laminar flow conditions [30].  These models 

assumed that equilibrium was always reached at the pipe wall.  However, equilibrium is 

not always reached at short residence times in distribution systems.  None of the previous 

diffusion models used a dissolution rate to predict lead concentrations.  A dissolution rate 

model can provide a way to quantitatively predict the lead release rates from pipe scales, 

especially when equilibrium is not reached and the dissolution reaction rather than 

diffusion is the rate-limiting step.  

 

1.1.7 Mitigating Lead Release 

Full replacement of any service lines and fittings that are suspected to have lead-

containing materials with lead-free alloys is a potential solution to the lead problems in 

tap water [31].  However, complete replacement is often cost-prohibitive [32].  

Considering cost, partial replacement was proposed and tested.  However, the partial 

replacement strategy has been proved to be insufficient for mitigating lead release.  After 

partial replacement, other lead-containing components and the deposition of released 
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particulate lead to other non-lead segments in the premise plumbing can still release high 

concentrations of lead [33].  Even water distribution systems that have no lead pipe lines 

could have lead-containing corrosion scales, because brass fittings can legally have up to 

8% by mass lead [34].   

Control of the water composition can also be used to limit lead concentrations in 

tap water.  Water distribution systems that have historically used free chlorine as a 

disinfectant for bacteria and have maintained high free chlorine residuals could have 

accumulated substantial amounts of Pb(IV) oxides.  One way to control lead 

concentrations in these systems is to provide water chemistry that maintains the stability 

of the low solubility lead(IV) oxide.  Another option to limit lead release is to optimize 

the DIC and pH in water distribution systems.  An optimal DIC and pH can minimize the 

dissolution rate of the solids in the lead corrosion scales.  Changing DIC and pH levels 

may also lower the lead concentration in distribution systems by precipitation of lead-

containing solids.  Addition of orthophosphate (PO4
3-) to water distribution systems can 

also control lead release.  Lead phosphate solids are less soluble than lead carbonate 

solids at most environmentally-relevant conditions.  The lead released from Pb(IV) oxide 

and lead(II) carbonates can precipitate out as lead phosphates in the presence of 

orthophosphate.  Orthophosphate has been used as a corrosion inhibitor in water utilities 

to control lead release [28].  After the 2001-2004 elevated lead incident, Washington 

D.C. has used orthophosphate to comply with the Lead and Copper Rule [35].   

Combinations of the approaches mentioned above can be used in the future to 

ensure that water systems meet both the LCR and the Disinfection Byproducts Rule, 
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while the optimal solution will depend on the water chemistry and the composition of 

lead corrosion scales of the system.  

 

1.2 Research Objectives 

The overall project objective was to measure, evaluate, and predict lead release 

from pipe scales that contain lead(IV) oxide.  The following specific objectives were 

pursued. 

Objective 1: Develop dissolution rate equations for lead(IV) oxide as a function of 

water chemistry. 

Objective 2: Determine the equilibrium solubility of lead(IV) oxide. 

Objective 3: Evaluate lead release rates from lead pipes with pipe scales 

containing lead(IV) oxide and assess whether lead release can be predicted by the 

dissolution rate equations for lead(IV) oxide. 

 

1.3 Overview of Dissertation 

To achieve these objectives, the research approach was organized into three 

related tasks.   Figure 1.4 illustrates how the three tasks are organized.  The dissolution 

rates determined from flow experiments in Task 1 and the equilibrium solubility of PbO2 

measured from batch experiments in Task 2 can be used to interpret the results of lead 

release from pipe scales in Task 3 and to assess whether dissolution rates of PbO2 can be 

used in predicting lead release from pipe scales. 
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Figure 1.4. Overview of research tasks and their connections. 

Task 1: Investigate the effects of water chemistry on the dissolution rates of 

lead(IV) oxide 

Chapters 2, 3, and 4 focus on Task 1.  The dissolution rates of lead(IV) oxide 

were determined as a function of pH, concentrations of DIC, phosphate, free chlorine, 

and chloramine using continuous flow stirred tank reactors (CSTR).  Possible solid 

transformation was probed by scanning electron microscopy (SEM) and X-ray diffraction 

(XRD).  Complementary batch studies showed the effects of chloramines at long 

residence times.  Dissolution rate equations were proposed to quantify the relationship 

between the dissolution rate and water chemistry parameters, such as pH, carbonate, and 

oxidation reduction potential.   

Task 2: Measure the equilibrium solubility of lead(IV) oxide in the presence of 
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Task 2 is addressed in sections of Chapter 3.  Lead(IV) is predicted to be the 

dominant oxidation state in the presence of free chlorine.  The dissolved lead 

concentrations in equilibrium with lead(IV) oxide in the presence of free chlorine were 

measured at different pH values to obtain the Pb(IV) solubility.   The equilibrium 

solubility of lead(IV) oxide in the presence of free chlorine provided more information 

for control of lead release. 

Task 3: Examine lead release from pipe scales containing lead(IV) oxides and 

develop models to predict lead release from pipe scales 

Chapters 5 is related to Task 3.  Chapter 5 covers the experimental study of lead 

release from pipe scales containing lead(IV) oxides, and the Appendix of Chapter 5 

presents the modeling of lead release from pipe scales.  Corrosion scales were developed 

on new lead pipes in the presence of free chlorine at environmentally-relevant pH and 

DIC before the pipes were used for lead release studies.  Characterization of the pipe 

scales using XRD, SEM, and X-ray absorption near edge spectroscopy (XANES) showed 

lead(IV) oxides and hydrocerussite as the main components of the scales.  Lead release 

from pipe scales was examined at different water chemistry conditions, flow rates, and 

stagnation times.  Different models were developed and compared with the experimental 

results.  The ability of the dissolution rate model for lead(IV) oxide to predict the lead 

release from pipes was examined. 

Chapter 6 summarizes the results from the present study and recommends future 

work to be done. 
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Chapter 2. Effects of pH and carbonate concentration on 

dissolution rates of the lead corrosion product PbO2 

Results of this Chapter have been published in Environmental Science & Technology, 

2010, 44, 1093–1099. 

 

Abstract 

Lead(IV) oxide is a corrosion product that can develop on lead pipes and affect 

lead concentrations in drinking water.   Continuously-stirred flow-though reactors were 

used to quantify the dissolution rates of plattnerite (β-PbO2) at different pH values and 

dissolved inorganic carbon (DIC) concentrations.  Organic pH buffers were not used, 

because several were found to be reductants for PbO2 that accelerated its dissolution.  

Most plattnerite dissolution rates were on the order of 10-10 mol/min-m2.  The rate of 

dissolution increased with decreasing pH and with increasing DIC.  The effect of DIC is 

consistent with a reductive dissolution mechanism that involves the reduction of Pb(IV) 

to Pb(II) at the plattnerite surface followed by the formation of soluble Pb(II)-carbonate 

complexes that accelerate Pb(II) release from the surface.  Under the experimental 

conditions, dissolved lead concentrations were controlled by the dissolution rate of 

plattnerite and not by its equilibrium solubility.  A dissolution rate model was developed 

and can be used to predict dissolution rates of plattnerite as a function of pH and DIC. 
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2.1. Introduction 

Concerns about the adverse health effects of lead exposure motivated the 

development of the 1991 Lead and Copper Rule, which set the action level for lead in 

drinking water to 0.015 mg/L (1).  Lead concentrations in drinking water are controlled 

by the dissolution of lead corrosion products developed on lead-containing pipes, solders, 

and fittings used in service lines and premise plumbing.  These corrosion products 

include Pb(II) carbonates and oxides and Pb(IV) oxides (2).  The stability and dissolution 

of lead corrosion products are strongly affected by water chemistry. 

The observations of high lead levels in Washington D.C. tap water from 2001 to 

2004 demonstrate the need for information on reactions controlling lead concentrations in 

drinking water (3, 4).  These high concentrations are believed to have been caused by the 

reductive dissolution of PbO2 due to a switch of the residual disinfectant from free 

chlorine to chloramines, a switch that was made to reduce the formation of chlorinated 

disinfection by-products (DBPs).  The change lowered the oxidation reduction potential 

(ORP) of the water and caused the reduction of low solubility PbO2 to more soluble 

Pb(II) species (5-7).   

Both scrutinyite (α-PbO2) and plattnerite (β-PbO2), which are formed by oxidation 

of Pb(II) to Pb(IV), are found in water distribution systems that have maintained a high 

concentration of free chlorine as a residual disinfectant (8, 9).  The dissolution rate of 

PbO2 is particularly relevant to assessing the rates of lead release when the concentration 

or type of the residual disinfectant is changed (8).  When PbO2 is stable at the high 

oxidation-reduction potential provided by free chlorine, dissolved lead concentrations can 
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be maintained at low levels.  When the free chlorine is not present, the dissolution rate of 

PbO2 is anticipated to be controlled by the water chemistry in the distribution system (5).   

Lead release from PbO2 is affected by pH, carbonate, chloramines, and chemical 

reductants that include natural organic matter (NOM) and Fe(II) and Mn(II) species (10-

14).  A typical range of dissolved inorganic carbon (DIC) in drinking water is 0-50 mg 

C/L (15).  The reaction of PbO2 with the reductants produces soluble Pb(II) species and 

increases dissolved lead concentrations.  These previous studies demonstrated chemical 

reduction of PbO2, but they did not quantify the dissolution rates.  Dissolution rates are 

needed to predict lead concentrations in premise plumbing when equilibrium is not 

reached.   

The objective of this study was to quantify the dissolution rates of plattnerite as a 

function of pH and DIC concentration.  Based on these measurements, additional 

objectives were to identify likely dissolution mechanisms and to assess equilibrium 

versus kinetic control of dissolved lead concentrations. 

 

2.2. Materials and Methods 

2.2.1 Materials 

The plattnerite (β-PbO2) (Fisher Scientific) consisted of black primary particles 

ranging in size from 50 to 500 nm as determined by scanning electron microscopy (SEM) 

(Figure S1 of the Supporting Information).  The solid was indentified as pure plattnerite 

by X-ray Diffraction (XRD) (Figure S2 of the Supporting Information).  Its specific 

surface area was determined as 3.6 m2/g by N2 adsorption and the BET isotherm.  All 
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chemicals used were reagent grade or better.  Ultrapure water (resistivity > 18.2 MΩ-cm) 

was used to prepare solutions.  

 

2.2.2. Analytical Methods 

XRD was performed on a Rigaku Geigerflex D-MAX/A diffractometer using Cu-

Ka radiation.  Electron microscopy was performed on a JOEL 7001LVF field emission 

SEM.  Dissolved lead concentrations were determined by inductively coupled plasma 

mass spectroscopy (ICP-MS) (Agilent 7500ce).  The pH of solutions was measured with 

a glass pH electrode and pH meter (Accumet). 

 

2.2.3. Measurement of Dissolution Rates  

 

Plattnerite dissolution rates were quantified using small (84 mL) stirred flow-

through reactors that were loaded with 1 g/L plattnerite and sealed with 0.22 µm 

nitrocellulose filter membranes (Figure S3 of the Supporting Information).  The influent 

was supplied to the reactors with a peristaltic pump set at a flow rate to provide a 

hydraulic residence time of 30 minutes.  In separate experiments with plattnerite, 

filtration with 0.025 µm membranes gave similar dissolved lead concentration results as 

filtration with 0.22 µm membranes.  Lin and Valentine also demonstrated that after 

filtration of similarly sized PbO2 with 0.2 µm membranes, the dissolved and total lead 

concentrations were similar (10).   
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The influent compositions were controlled to evaluate the effects of pH and DIC 

concentration on the dissolution rates.  The dissolution rates were determined for pH 

values of 7.5, 8.5 and 10 and DIC concentrations of 0, 10, and 50 mg-C/L (carbonate 

alkalinity from 0 to 5.6 mM).  Effluent samples were collected periodically, preserved by 

acidification to 2% HNO3, and analyzed for dissolved lead.  Volumetric flow rate and pH 

were periodically measured throughout each experiment.  Each experimental condition 

was run in duplicate or triplicate with a procedural blank run under the same conditions 

as the other reactors but without any solid added.  Prior to running dissolution 

experiments, a tracer study was performed, which determined that the solution in the 

reactors was well-mixed.  The solids remaining in the reactors after the dissolution 

experiment were analyzed by XRD and SEM.  

The reactor influents were prepared in 10 L plastic bags (Tedlar) to ensure no 

transfer of CO2 into or out of solution.  To minimize uptake of CO2, the ultrapure water 

in each influent was purged with nitrogen immediately before being pumped into the 

bags.  The influent pH was adjusted by the addition of NaOH or HNO3 solution.  DIC 

concentrations were provided by the addition of volumes of 1.0 M NaHCO3.  An aliquot 

of 1.0 M NaNO3 was then injected into the bag to set the ionic strength at 0.01 M.  

Experiments were conducted at room temperature (22±2°C). 

To provide constant pH for the plattnerite experiments with influent solutions that 

did not have sufficient buffering capacity provided by DIC, solutions of either NaOH or 

HNO3 were added to the influent from a syringe pump to continuously adjust the pH as 

necessary.  For these experiments the effluent pH was continuously measured using a 

small flow-through cell (15 mL) with a pH electrode so that acid or base additions could 
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be adjusted in near real-time. Organic pH buffers were not used because preliminary 

experiments found that they could reduce PbO2 and accelerate PbO2 dissolution (Figure 

S4 of the Supporting Information).   

Dissolution rates were determined by operating the flow-through reactors for 

durations equivalent to 48 or more hydraulic residence times (24 hours).  By continuously 

flushing the products of dissolution from the reactor, the effluent dissolved lead 

concentration approaches a steady-state value (Css) that is controlled by the dissolution 

rate of the solid phase and is below the equilibrium solubility (Ceq).  This process is 

illustrated conceptually in Figure S5 of the Supporting Information.  Equilibrium 

concentrations were calculated using MINEQL+ version 4.5 (16).  This approach is 

different from batch experiments in which the dissolved concentrations increase until 

they reach equilibrium solubility; the accumulation of reaction products and the presence 

of initial labile phases in batch experiments can complicate the quantification of rates 

(17-19).  In a flow-through experiment for rate quantification, the steady-state effluent 

concentration needs to be significantly less than the equilibrium solubility of the 

dissolving solid. 

The experimentally-measured dissolution rate (Rexp in mol/m2-min) is quantified 

by Equation 2.1,   

                                                               (2.1) 

where Cout and Cin are the influent and effluent lead concentration respectively 

(mol/L), tres is the hydraulic residence time (min), [solid] is the solid concentration in the 

reactor (g/L), and A is the specific surface area of the solid (m2/g).  The steady-state 

concentration was determined as the average of at least 5 consecutive samples that varied 

res

inout
exp t]solids[A

)CC(R
⋅⋅

−
=
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by less than 30% and spanned at least 5 residence times.  With Cin below detection limits, 

Equation 2.1 simplifies to Equation 2.2. 

res

ss
exp t]solids[A

CR
⋅⋅

=                                                                         (2.2) 

A model for surface-controlled dissolution rates (20) was used to calculate the 

dissolution rate constant k (mol/m2-min) from the rate by accounting for the distance of 

the solution in the reactor from the predicted equilibrium solubility of the solid, as 

expressed as a function of the Gibbs free energy of reaction (∆G) (Equation 2.3).  

Dissolution is surface-controlled for most minerals under well-mixed laboratory 

conditions; exceptions are for extremely soluble minerals, which plattnerite is not (21).   

                                                                      (2.3) 

For a reversible elementary reaction, 

)1()( RT
G

eGf
∆

−=∆                                                                                  (2.4) 

The value of ∆G can be related to the saturation index (SI) (Equations 2.5-2.6). 
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where R is the ideal gas constant (8.314 J mol-1 K-1), T is absolute temperature 

(K), and IAP and Ksp are the ion activity product and equilibrium solubility product for 

the solid, respectively. A final dissolution rate expression (Equation 2.7) is used with the 

parameter Ω as an empirical coefficient, set to 1 in these calculations, to account for the 

non-elementary nature of the reactions (20).   

expelmod R)G(fkR =∆⋅=
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ΩΩ
∆

−=−= )101()1( SIRT
G

kekRate                        (2.7) 

Additional discussion of this model is in the Supporting Information. 

 

2.2 Results and Discussion 

2.2.1 Plattnerite Dissolution Rates 

The effluent dissolved lead concentrations and pH versus time are shown for all 

experiments in Figure 2.1.  Effluent concentrations were consistently at steady-state over 

the final 7-10 hours of each experiment, and these concentrations were used to determine 

the dissolution rates that are summarized in Table 2.1.   
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Figure 2.1. Effluent lead concentrations (shown as ■ and ●) and pH (shown as □ and ○) 
from flow-through reactors over time for different DIC levels at pH 7.5, 8.5, and 10.  
Duplicate experiments (represented by rectangles and circles) were conducted at the 
hydraulic residence time of 30 minutes.  Samples were not taken during the middle of the 
run (9 to 15 hours). 
 

In several experimental conditions, especially at 50 mg C/L DIC, the effluent lead 

concentrations had a slightly upward trend (<30% increase) in the final 7-10 hours.  
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While this slight increase introduces uncertainty to the dissolution rates reported for these 

conditions, the average concentration were taken as approximating steady-state for 

calculation of rates.  As is often observed for flow-through dissolution experiments, 

concentrations during the initial operation of the reactors were more variable (18); 

potential factors affecting initially greater dissolution are discussed in a later section.  

During the period from 9-15 hours the reactors were not sampled.  The duplicate or 

triplicate experiments were generally in agreement; the largest differences were for the 

experiments with the lowest Pb concentrations, which were near its detection limit.  

Variability was also introduced by the challenges of maintaining a constant pH in the 

absence of buffering from inorganic carbon.  The weighted averages of the pH over the 

period for the steady-state lead effluent concentration were within 0.3 pH units of the 

target value, and the pH measurements varied by less than 0.5 pH units over this period. 
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Table 2.1. Conditions and results of plattnerite dissolution experiments

 

2.2.2. Effect of pH and DIC on Plattnerite Dissolution 

 

Dissolution rates were higher at pH 7.5 than 8.5 when other parameters were held 

constant (Figure 2.2).  Further increasing the pH to 10 resulted in very slight increases in 

the dissolution rate at 0 and 10 mg C/L DIC and to a decrease for 50 mg C/L DIC.    

Dissolution rates increased with increasing DIC for all 3 pH values (Figure 2.2).  

The effect of simultaneously increasing pH and DIC is to increase the dissolution rate at 

Steady-state
Residence effluent Equilibrium Dissolution Rate

Experiment DIC Measured time lead lead rate x 1010 constant x 1010

ID* pH (mg/L as C) pH† (min) (nM) (nM) (mol/min·m2) (mol/min·m2)§
1A 7.5 0.0 7.58 30 2 8318 0.19 0.19
1B 7.5 0.0 7.52 30 12 8318 1.09 1.09

2A 8.5 0.0 8.57 30 6 389 0.53 0.54
2B 8.5 0.0 8.58 30 1 389 0.10 0.10

3A 10.0 0.0 9.94 30 6 41 0.56 0.66
3B 10.0 0.0 9.98 30 3 41 0.32 0.35
3C 10.0 0.0 9.78 30 6 41 0.54 0.63

4A 7.5 10.0 7.78 30 28 21380 2.64 2.64
4B 7.5 10.0 7.78 30 23 21380 2.12 2.12

5A 8.5 10.0 8.27 30 15 1585 1.37 1.39
5B 8.5 10.0 8.26 30 12 1585 1.17 1.18

6A 10.0 10.0 9.95 30 15 85 1.44 1.76
6B 10.0 10.0 9.97 30 22 85 2.05 2.75

7A 7.5 50.0 7.62 30 84 72444 7.87 7.88
7B 7.5 50.0 7.68 30 83 72444 7.77 7.78

8A 8.5 50.0 8.36 30 42 7413 3.90 3.92
8B 8.5 50.0 8.42 30 60 7413 5.63 5.67

9A 10.0 50.0 9.94 30 27 676 2.52 2.63
9B 10.0 50.0 9.99 30 28 676 2.61 2.72

*The letters A-C identify replicate experiments.
†The weighted average of the effluent pH during the steady-state period is indicated. 
§Rate constants were calculated from the measured dissoluton rate and Equation 2.3  

Influent Composition
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the experimental conditions.  These results reveal that DIC has a stronger effect than pH 

on the dissolution rates of plattnerite under the experimental conditions.  The formation 

of soluble Pb(II)-carbonate complexes can explain the accelerated dissolution in the 

presence of DIC.  At equilibrium at pH 7.5, the species PbCO3(aq), Pb(CO3)2
2- and 

PbHCO3
+ comprise 61% of the dissolved lead at 10 mg-C/L DIC and 86% of the 

dissolved lead concentration at 50 mg-C/L DIC.  At pH 10, 17-26% of the dissolved lead 

can be attributed to these soluble Pb-carbonate complexes; the lower percentage of these 

complexes at higher pH is due to a higher percentage of lead hydroxyl complexes, 

resulting in an increase of dissolution rate from pH 8.5 to 10 at low DIC levels (i.e. 

PbOH+ and Pb(OH)2(aq)).   

 

Figure 2.2.  Dissolution rate of plattnerite as a function of pH and DIC (concentrations 
given in mg-C/L) determined using reactors with 1 g/L plattnerite suspension and a 
residence time of 0.5 hour. 
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Although DIC accelerates dissolution, the steady-state lead concentration only 

exceeded the 15 µg/L (72 nM) standard for the highest dissolution rate.  However, the 

dissolved lead concentration is a function of the dissolution rate, the reaction time, and 

reactive surface area of PbO2.  For reaction times longer than the 30 minute residence 

time in the flow-through experiments, dissolved lead concentrations will be higher.  

Previous studies demonstrated that dissolved lead concentrations do increase with contact 

time, solid loading, and DIC concentration.  In the study of Lin and Valentine (10, 11, 

22), the dissolved lead concentration reached 25 µg/L after 28 days with 4 mg/L PbO2 at 

pH 7.0 and 12 mg-C/L DIC, 50 µg/L after 21 days with 10 mg/L PbO2 at pH 7.0 and 12 

mg-C/L DIC, and 52 µg/L after 7 days with 10 mg/L PbO2 at pH 7.0 and 60 mg-C/L 

DIC.  Dryer and co-workers (12) observed dissolved lead concentrations as high as 500 

µg/L after 53 days with 31 mg/L PbO2 at pH 7.0 and 1.2 mg-C/L DIC.   

Dissolution rates of PbO2 determined from the flow-through experiments were 

comparable to those calculated from the results of previous batch experiments. In the 

work of Lin and Valentine (10), the dissolved lead concentration was around 6 µg/L in 

the batch reactor after 1 day at the condition of pH 7.0, 12 mg-C/L DIC and 12 mg/L 

plattnerite with 4.14 g/m2 specific surface area, and it increased linearly versus time.  

Thus, the calculated dissolution rate at this condition is 4.0·10-10 mol/min-m2.  The 

average dissolution rate in the present study at similar conditions of pH 7.5 and 10 mg-

C/L DIC was 2.4·10-10 mol/min-m2.  The slightly higher rate in the study of Lin and 

Valentine could be caused by a lower pH or a higher DIC than in the present study.  From 

Dryer and Korshin’s batch experiment with 100 nm-sized scrutinyite, a dissolution rate of 

4.8·10-9 mol/min-m2 can be calculated based on the dissolved lead concentration after 1 
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day of reaction at pH 7.0 and 1.2 mg-C/L DIC (12).  This rate is one order of magnitude 

higher than the dissolution rate in the present work and the study of Lin and Valentine.  

The higher rate could be caused by two reasons.  First, filtration with 0.45 µm 

membranes may allow more particulate lead to pass into the “dissolved” samples than 

filtration with 0.20-0.22 µm in our experiments and those of Lin and Valentine (10).  

Second, the two polymorphs of PbO2, plattnerite and scrutinyite, could have intrinsically 

different dissolution rates due to differences in their crystalline structures.  

For comparable conditions, the dissolution rates of plattnerite are about two 

orders of magnitude less than those of hydrocerussite (Pb3(CO3)2(OH)2) (23) .  

Plattnerite is much more effective at maintaining steady-state dissolved lead 

concentrations below the action level. 

 

2.2.3 Dissolution During Initial Period of Reactor Operation 

During the earliest period of reactor operation, the effluent lead concentration is 

more variable and the concentrations are often significantly higher than at later times 

(Figure 2.1).  The high lead concentrations could be caused in part by a lower pH during 

the initial reactor operation (Figure 2.1).  The pH values below the target values were 

most pronounced for experiments without DIC to provide buffering capacity, and both 

the period of low pH and high lead concentrations persisted the longest for these DIC-

free conditions.  However initial periods of high lead concentrations were also observed 

for experiments that quickly reached the target pH and remained stable at that value. The 

high initial concentrations may also result from the initial dissolution of a labile surface 

phase.  Dissolution of labile surface phases, which are related to rates of active site 
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production and dissolution, on metal oxides was previously observed and explained by 

Samson et al (18).  In the present study, a dry solid was added to the water at time of zero 

and the initial pH was adjusted in the first several hours from a lower pH to the target pH.  

Such perturbations of the initial surface could cause dissolution of labile surface phases 

and an initially higher dissolution rate.  Additional evidence for dissolution of labile 

surface phases and not simply pH variation as the cause of the high lead concentrations 

was that the high lead concentrations were spread over 5 hours, while the pH fluctuation 

generally lasted less than one hour for experiments that included DIC.  

Possible loss of small lead-containing particles (particle size < 0.22 µm) might 

also contribute to the initial high lead concentrations; however, electron micrographs of 

plattnerite before and after reactions showed that the distribution of primary particle sizes 

was similar and that the particles existed in aggregates larger than 0.22 µm (Figure 2-S1).  

XRD confirmed that the remaining solids after reaction were still plattnerite (Figure 2-

S2).   

 

2.2.4.       Equilibrium Versus Kinetic Control of Dissolved Lead Concentrations   

The steady-state concentrations were well below the equilibrium solubility of any 

possible solids at all three pH values investigated (Figure 2.3).  Solids considered were 

plattnerite as well as the Pb(II) carbonate solids cerussite and hydrocerussite that will 

ultimately govern the dissolved lead concentration as the Pb(IV) in plattnerite is reduced 

and released to solution.  The undersaturation of the solution with respect to all possible 

solids is consistent with X-ray diffraction results that observed only plattnerite in solid 

samples collected at the conclusion of dissolution experiments.  An estimate of the time 
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needed for the concentration to reach 99% of the equilibrium in a batch experiment with 

1 g/L PbO2 at pH 7.5 and 10 mg-C/L DIC is 5.5 days; this estimate is conservative 

because it assumes a constant dissolution rate of 2.4 × 10-10 mol/min-m2, and the actual 

rate would decrease as equilibrium is approached. 

 

Figure 2.3. Steady-state (points) and predicted equilibrium (lines) lead concentrations for 
plattnerite dissolution as a function of pH and DIC.  The solution was assumed to have 
1.26 µM dissolved oxygen, which would be in equilibrium with 0.1% gaseous oxygen.   
 

The dissolved lead concentrations in equilibrium with plattnerite were calculated 

by assuming equilibrium with water acting as a reductant.  The relevant oxidation-

reduction dissolution half reactions are:  

PbO2(s) + 4H+ + 2e- = Pb2+ + 2H2O     log K1 = 49.60    EH
0 = 1.46 V      (2.8) 

2H2O = O2(aq) + 4H+ + 4e-             log K2 = -86.00   EH
0 = -1.27 V              (2.9) 
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Therefore, the overall reaction and equilibrium constant are 

2H+ + PbO2(s) = Pb2+ + ½ O2(aq) + H2O     logK = 6.60                             (2.10) 

60.6
2

2/1
2

2

10
}H{

}O}{Pb{
K == +

+

                                                                     (2.11) 

The equilibrium Pb2+ activity was calculated using Equation 2.11 assuming 0.1% 

partial pressure of gaseous oxygen (1.26 µmol/L dissolved oxygen), and the Pb2+ 

concentration was calculated from its activity.  The activity coefficients were calculated 

from ionic strength using the Davies equation.  The equilibrium dissolved Pb(II) 

concentration was calculated as the sum of all dissolved Pb(II) species.  Concentrations 

of Pb(II) complexes were calculated using the reactions and equilibrium constants in 

Tables 2-S2 and 2-S4 of the Supporting Information.  The solution was purged by 

nitrogen immediately before it was pumped into the Tedlar bags, which should have 

decreased the dissolved oxygen concentration to below 1.26 µmol/L.  Therefore, the 

equilibrium dissolved Pb(II) concentration should be equal to or higher than the values 

calculated for 0.1% 
2OP that are shown in Figure 2.3.  The reduction of PbO2 will produce 

O2 in the reactor, but based on steady-state lead concentrations, the highest O2 

concentration generated would only be 0.042 µmol/L.   

Dissolution in the flow-through reactors occurred at conditions that are far from 

equilibrium.  For such conditions, the Gibbs free energy of reaction (∆G) is very 

negative.  Consequently, f(∆G) in Equation 2.3 is close to 1 and Equation 2.3 can be 

simplified to Equation 2.12.   

kkRate =⋅= 1                                  (2.12) 

In this manner, the dissolution rates and the rate constants are the same.   
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Although the increase in DIC leads to an increase in the predicted equilibrium 

dissolved lead concentration, this change in the equilibrium concentration is not the cause 

of the faster dissolution with DIC.  The reaction was sufficiently far from equilibrium so 

that f(∆G) was approximately 1 both with and without DIC.  Consequently, the presence 

of DIC leads to a greater value for the rate constant (k) and indicates that the effect of 

DIC is to accelerate the rate of the reaction occurring on the surface of the solid.   

 

2.2.5. Mechanism of Plattnerite Dissolution 

Dissolution of plattnerite at conditions without free chlorine to maintain the 

stability of Pb(IV) occurs through steps of reduction and dissolution, but the sequence of 

these two steps is unknown.  Previous research demonstrated that dissolved lead from 

plattnerite dissolution is exclusively Pb(II) by comparing dissolved lead concentrations 

measured by graphite furnace atomic absorption spectroscopy with those determined by 

anodic stripping voltammetry (10).  A conceptual model showing two hypothesized 

reductive dissolution mechanisms is presented in Figure 2.4.  Mechanism A involves the 

reduction of Pb(IV) to Pb(II) at the surface of the solid followed by the release of the 

Pb(II) to solution.  Mechanism B starts with the release of Pb(IV) to solution followed by 

the reduction to dissolved Pb(II).  The acceleration of the dissolution rate by the presence 

of carbonate provides support for the pathway involving reduction at the plattnerite 

surface.  The formation of soluble Pb(II)-carbonate complexes can accelerate dissolution 

by extracting Pb(II) that had formed on the solid surface; there are not soluble Pb(IV)-

carbonate complexes, and were reduction to occur in solution, then the addition of DIC 

would not have changed the dissolved lead concentration.  
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The dissolution of plattnerite is kinetically limited at all, or nearly all, of the 

combinations of pH and DIC studied.  The rate-limiting step appears to be the 

detachment of Pb(II) from the plattnerite surface.  Ligand-enhanced dissolution or 

desorption are possible models for PbO2 reductive dissolution in the presence of CO3
2- 

(24).  Pb(II) can adsorb to PbO2 above pH 7 (13), and complexation with carbonate can 

lead to its desorption.  Carbonate also acted as a dissolution-enhancing ligand in hematite 

dissolution (25).  Similar effects of carbonate on UO2 dissolution were reported in a study 

that found UO2 dissolution to occur in two steps (26).  First, U(IV) is oxidized to U(VI) 

on the surface of UO2, and then U(VI)-CO3 complexes form and dissolve into solution. 

Recent studies showed that Fe(II), Mn(II), NOM, hydroquinone, and 

decomposition intermediates of monochloramine can act as reductants for PbO2 reductive 

dissolution (10-14, 22, 27).  The reductive dissolution rates of PbO2 in the presence of 

these reductants decrease in the following order: hydroquinone > Mn(II) > Fe(II) > NOM 

NOM > monochloramine-intermediates.   

Figure 2.4. Conceptual model of PbO2 dissolution showing two possible 
mechanisms and the potential role of carbonate. 
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In the work of Shi and Stone, dissolution rates were higher with higher reductant 

concentration, so the reduction step was rate-limiting at their conditions (13).  In one of 

their experiments, aqueous Fe(II) was reacted with PbO2 before the addition of 

hydroquinone. The FeIII (hydr)oxide produced by Fe(II) addition apparently blocked the 

PbO2 surface from subsequent reaction with hydroquinone, which provides support for 

Mechanism A with Fe(III) production on the PbO2 surface.  Mechanism B is precluded by 

their observation because FeIII (hydr)oxide formed from bulk aqueous reaction would not 

block the PbO2 surface sites.  Additional measurements, such as XPS and dissolved 

Pb(IV) measurement, could more definitively establish the actual mechanism. 

According to the proposed mechanism, the sequence of dissolution reactions is:  

O++=+ 2
1++

22
2

surf2 HOPb(II)2HPbO                                         (2.13) 

surf3
2
3

2
surf COPb(II)COPb(II) −=+ −+

                                                  (2.14) 

3(aq)surf3 PbCOCOPb(II) =−                                                                 (2.15) 

Steps 2.14 and 2.15 illustrate the role of DIC in the formation of PbCO3(aq), which 

is the dominant but not the only soluble lead carbonate complex.  Based on the 

hypothesized dissolution mechanism, the dissolution rate constant (k) can be described as 

a function of pH and carbonate (Equations 2.16-2.17), 

k = c×[H+]a ×[CO3
2-]b                                             (2.16) 

logk = a×log[H+] + b×log[CO3
2-] + logc                           (2.17) 

Least squares optimization of the experimental data to Equation 2.17 yielded 

values of 0.820, 0.655, and 2.91 × 10-10 mol/min-m2 for coefficients a-c, respectively.  

The optimization of the parameters for the rate model used only data in the presence of 

DIC.  The model fits the experimental dissolution rates well (Figure 2.5) with an R-
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squared value of 0.84.  The point (3.9, 5.6) off the 1:1 line was for one of the duplicates 

at the condition of pH 8.5 and 50 mg-C/L DIC.  Because the effluent lead concentration 

for this experiment still had a slightly increasing trend after 24 hours of reaction, the 

actual rate could be higher than 3.9 × 10-10 mol/min-m2 and may fit the model better. 

 

Figure 2.5.  Empirical model for the plattnerite dissolution rate constant.  The 1:1 line is 
shown for reference.  
 

2.3 Environmental Implications 

The slow dissolution of PbO2 makes dissolution rates as important, if not more 

important, than equilibrium solubility for predicting dissolved lead concentrations in tap 

water when plattnerite is present as a corrosion product.  It can take days for PbO2 
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dissolution reactions to reach equilibrium.  For plattnerite, most steady-state effluent 

concentrations for a 30 minute residence time were below the lead action level.  Water in 

contact with PbO2 for long stagnation times could have higher lead concentrations, but 

during flow of water through a pipe with PbO2, low concentrations of lead would be 

reached due to the slow dissolution rate of PbO2. 

Promoting the formation of PbO2 can be an effective method for achieving low 

lead concentrations, but this requires a free chlorine residual to provide the high 

oxidation-reduction potential needed.  Many utilities have switched from free chlorine to 

monochloramine as the residual disinfectant to limit production of DBPs and meet the 

associated drinking water regulations.  In balancing control of lead concentrations and 

DBPs, some treatment systems may find an optimal solution by maintaining free chlorine 

and taking other steps to limit DBP formation. 

Increasing carbonate alkalinity has been a strategy to limit lead corrosion, but for 

plattnerite such increases in alkalinity may actually increase dissolved lead 

concentrations.  Higher alkalinity can be beneficial when hydrocerrusite or cerussite is 

dominant; however, if PbO2 is dominant, then increasing DIC can promote its dissolution 

and increase lead concentrations in drinking water.  Thus, information about the identity 

of corrosion products present on lead-containing pipes and fittings is critical to 

identifying optimal lead corrosion control treatment. 
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Chapter 2. Supporting Information 

Contents:      Five tables (S1-S4) 

Six figures (S1-S5) 

Dissolution Rate Model 

The dissolution rate can be quantified by performing a lead mass balance on the 

CFSTR (Equation 1),   

            (1) 

where  R = net dissolution rate normalized by surface area (mol/m2-min) 

V = reactor volume (L)  

Q = flow rate (L/min)  

Cout, Cin = effluent and influent concentrations (M) 

             A = specific surface area (m2/g solid)  

[solid] = solid concentration (g/L)  

From Equation 1, experimental dissolution rates can be derived as a function of 

residence time, reactor volume, and lead concentrations in the effluent and influent (Cin = 

0) in the following equation when the reactor behavior reaches steady-state (i.e. dC/dt = 

0)  

res
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                 (2) 

where   tres 
= residence time of flow-through experiments (h) (tres = V/Q) 

Based on the dissolution rate model developed by Lasaga, the dissolution rate in 

flow-through reactors can be predicted by Equation 3 based on a reaction rate law (1). 

)(mod GfkR el ∆⋅=                                     (3) 
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Where Rmodel = model net dissolution rate normalized by surface area (mol/m2-

min)  

k = intrinsic rate constant (mol/m2·h)  

G∆  = molar Gibbs free energy of reaction (J/mol) 

 

For reversible elementary reactions,  

RT
G

eGf
∆

−=∆ 1)(                                               (4) 

where  R = gas constant (8.314 J/K·mol)  

T = temperature (K)  

since 

)ln(
eqK

IAPRTG =∆                                           (5) 

where  IAP =  ion activity product  

  Keq = equilibrium constant  

In the case of lead(IV) oxide, based on the reductive dissolution reaction, 

     PbO2(s) + 2H+ = Pb2+ + 0.5O2 + H2O                    (6)           

the ion activity product is expressed as Equation 6 assuming concentrations are 

equal to activities.  

     22/1
2

2 ][]][[ −++= HOPbIAP                (7)  

Thus, Equation 4 can be written as   
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By setting the influent concentration to be zero, Equations 2 and 3 can be 

combined to derive the dissolution rate constant k. 

)1()(
][modexp
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          (9) 

At steady-state, 
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Solve Equation 10,  
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The effluent lead concentration versus time can then be calculated by solving 

Equation 1 with Equation 9 used for the dissolution rate: 

t
C
solidsAk

ssssout
sseCCCC

][

0 )(
⋅⋅

−

⋅−+=                                  (12) 

where  Css 
= steady-state effluent concentration from the flow-through reactor 

(mol/L) 

C0 
= initial effluent concentration at t = 0, which is 0 for the present experiments. 

Equation 12 also helps illustrate the initial curvature of the effluent concentrations 

during the early phase of the experiment (Figure S4).   

 

Effect of Organic pH Buffers on Plattnerite Dissolution 
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Initial plans were to use organic buffers for pH stabilization.  Before using 

organic buffers, their effects on PbO2 dissolution were investigated.  Solutions of the 

buffers N-cyclohexyl-3-aminopropanesulfonic acid (CAPS), 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES), and 2-(N-morpholino)ethanesulfonic acid 

(MES) (Acros Organics) at 1 mM concentration were contacted with 0.24 g/L plattnerite 

in stirred polypropylene bottles with no headspace.  These buffers, which are all sulfonic 

acids with amine groups, were chosen because they do not form strong complexes with 

metals.  Their structures and the final pH values in experiments with them are shown in 

Table S1 of the Supporting Information.  The pH and dissolved lead concentrations were 

measured over 48 hours; samples for dissolved lead were filtered (0.45 µm PTFE 

membranes) and acidified (2% HNO3) prior to analysis.  Because two of the buffers 

(HEPES and MES) accelerated plattnerite dissolution (results shown in next section), no 

organic buffers were used in the experiments.   

Organic pH buffers were not used in the plattnerite experiments because of their 

ability to accelerate plattnerite dissolution.  The organic buffers (HEPES and MES) 

increased the dissolution of plattnerite dramatically compared to a buffer-free control 

experiment (Figure S5).  The dissolved lead concentration in contact with CAPS buffer 

was not significantly different from that in the control experiment.  The accelerated 

dissolution was probably due to the reduction of PbO2 by the organic buffers to produce 

more soluble Pb(II) species (2), which is similar to the effect of NOM on PbO2 

dissolution (3, 4).  
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Table 2-S1. Molecular structure and pKa values of pH buffers and final pH in batch 
experiments reacting the buffers with plattnerite.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Name pH pKa Structure 

Control 4.80   

CAPS 4.93 10.4

 

HEPES 6.20 7.5 

 

MES 5.12 6.1 
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Table 2-S2. Equilibrium constants for aqueous species 

# Reaction Log K Source 

1 H2O  H+ + OH-  -13.998 MINEQL+

2 CO2(g) + H2O  H2CO3
* -1.459 MINEQL+

3 H2CO3
*  2H+ + CO3

2- -16.68 MINEQL+

4 HCO3
-  H+ + CO3

2-  -10.33 MINEQL+

5 Pb2+ + H2O  PbOH+ + H+ 
 -7.597 MINEQL+

6 Pb2+ + 2H2O  Pb(OH)2
0 + 2H+ 

 -17.12 Benjamin 

7 Pb2+ + 3H2O  Pb(OH)3
- + 3H+ 

 -28.06 Benjamin 

8 Pb2+ + 4H2O  Pb(OH)4
2- + 4H+ 

 -39.70 Benjamin 

9 Pb2+ + CO3
2-  PbCO3

0  6.478 MINEQL+

10 Pb2+ + 2CO3
2-  Pb(CO3)2

2-  9.38 MINEQL+

11 Pb2+ + CO3
- + H+  PbHCO3

+  13.20 MINEQL+

12 2Pb2+ + 3H2O  Pb2(OH)3+ + H+ -6.397 MINEQL+

13 3Pb2+ + 4H2O  Pb3(OH)4
2+ + 4H+ -23.888 MINEQL+

14 4Pb2+ + 4H2O  Pb4(OH)4
4+ + 4H+ -19.988 MINEQL+

15 HOCl + 2e- + H+   Cl- + H2O 50.20 Benjamin 

16 Pb4+ + 2e-  Pb2+ 28.64 Benjamin 

17 O2(aq) + 4H+ +4e-  2H2O 86.00 Benjamin 

18 2H+ +2e-  H2(aq) 3.10 Benjamin 

19 Pb4+ + 3H2O   PbO3
2- + 6H+ -23.04 Calculated 

20 Pb4+ + 4H2O   PbO4
4- + 8H+ -63.80 Calculated 

Benjamin = (5)  MINEQL+ = (6) 

The equilibrium constant for Reactions 19 and 20 were calculated by first 

determining the Gibbs free energy of the reaction by the summation of the molar Gibbs 
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free energies of formation ( 0
,ifG ) for each component ( i ).  The Gibbs free energies of 

formation are listed in Table S3.   

 

Table 2-S3. Chemical potentials for various aqueous species. 

Species G0
f,i   (J/mol) Source 

Pb3O4(s) -601,200 Benjamin 
Pb2O3(s) -411,769 Pourbaix 
PbO2(s) -218,987 Pourbaix 

Pb2+ -24,309 Pourbaix 
HPbO2

- -338,898 Pourbaix 
Pb4+ 302,498 Pourbaix 

PbO3
2- -277,562 Pourbaix 

PbO4
4- -282,084 Pourbaix 

H+ 0.00 Benjamin 
OH- -157,300 Benjamin 
H2O -237,180 Benjamin 

Benjamin = (5)  Pourbaix = (7) 

 

For example the Gibbs free energy for Reaction 19 can be calculated as, 

   ∑
=

=∆
k

i
iifr NGG

1

0
,                            (1) 

where rG∆  =  Gibbs free energy of reaction (J/mol) 

 0
,ifG  =  Gibbs free energy of formation of species (i), joules per mole 

(J/mol) 

 iN  =  stoichiometric coefficient 

J481,13136 0
,

0
,

0
,

0
,19, 2

42
3

=∗−−∗+=∆ ++− OHfPbfHfPbOfr GGGGG
       (2) 

The equilibrium constant can then be calculated by Equation 3: 
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RT

GLogK r
eq 303.2

∆
−=                       (3) 

Where R  is the equilibrium gas constant (J/mol•K), and T  is temperature (K). 

      04.23
303.2

481,131)( −=−−=
RT

KLog eq                      (4) 

Table 2-S4.  Solubility products of selected lead solids   

# Solid Reaction Log K Source 

21 Massicot PbO(s) + 2H+  Pb2+ + H2O 12.91 MINEQL+ 

22 Litharge PbO(s) + 2H+  Pb2+ + H2O 12.72 MINEQL+ 

23 Pb(OH)2(s) Pb(OH)2(s) + 2H+  Pb2+ + 2H2O 12.40 Stumm & 
Morgan 

24 Cerussite PbCO3(s)  Pb2+ + CO3
2-  -13.13 Benjamin 

25 Hydrocerussite Pb3(CO3)2(OH)2(s) + 2H+  3Pb2+ + 
2CO3

2- + 2H2O  -18.77 MINEQL+ 

26 Pb3(PO4)2(s) Pb3(PO4)2(s)  3Pb2+ + 2PO4
3- -44.50 Benjamin 

27 PbHPO4(s) PbHPO4(s) Pb2+ + PO4
3- + H+  -37.80 MINEQL+ 

28 Hydroxyl-
pyromorphite 

Pb5(PO4)3OH(s) + H+  5Pb2+ + 
3PO4

3- + H2O  -62.79 MINEQL+ 

29 Plattnerite PbO2 (s)+ 4H+ +2e-  Pb2+ +2H2O 49.60 MINEQL+ 

30 Plattnerite Pb(IV)O2(s) + 4H+  Pb4+ + 2H2O -8.91 Calculated 
Benjamin = (5) MINEQL+ = (6)  Stumm & Morgan = (8) 
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Figure 2-S1.  Scanning electron micrograph of plattnerite before reaction (a) and after one 
day of reaction at pH 7.5 DIC 0 (b).   

Figure 2-S2.  X-ray diffraction (XRD) patterns of plattnerite before and after reaction at 
denoted conditions.  The reference patterns for plattnerite (PDF# 00-025-0447) and 
scrutinyite (PDF# 04-011-0549) are included for comparison.  
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Figure 2-S3. Experimental system for dissolution rate measurements.  The Tedlar bag 
initially contains 5 L of solution, and the reactor volume is 84 mL.  
 

 

Figure 2-S4. Lead release from PbO2 upon reaction with organic pH buffers. PbO2 = 1 
mM, organic buffer = 1 mM. 
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Figure 2-S5.  Illustration of the dissolved lead effluent from a flow-through reactor.  The 
illustration is for a hydraulic residence time of 0.5 hour at pH 8.5, DIC 10 mg C/L and 1 
g/L plattnerite.  The equilibrium solubility (Ceq) and steady-state concentration (Css) are 
identified. 
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Chapter 3. Impact of Chlorine Disinfectants on Dissolution of 

the Lead Corrosion Product PbO2 

 

Results of this Chapter have been accepted by Environmental Science and Technology in 

August 2010 
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Abstract 

Plattnerite (β-PbO2) is a corrosion product that develops on lead pipes that have been in 

contact with free chlorine present as a residual disinfectant.  The reductive dissolution of 

PbO2 can cause elevated lead concentrations in tap water when the residual disinfectant is 

switched from free chlorine to monochloramine.  The objectives of this study are to 

determine PbO2 dissolution rates in the presence of chlorine disinfectants and PbO2 

equilibrium solubility in the presence of free chlorine, which are valuable for 

quantitatively predicting lead release from PbO2.  The effects of free chlorine and 

monochloramine on the dissolution rates of plattnerite were quantified in completely-

mixed continuous-flow reactors at relevant pH and dissolved inorganic carbon 

conditions.  PbO2 dissolution rates decreased in the following order: no disinfectant > 

monochloramine > chlorine, which was consistent with the trend in the redox potential 

caused by monochloramine and chlorine.  The results indicate that lead release from 

PbO2 corrosion products on lead pipe will increase following a switch from free chlorine 

to monochloramine.  Compared with experiments without disinfectant, monochloramine 

inhibited plattnerite dissolution in continuous-flow experiments.  Although free chlorine 

maintained steady-state lead concentrations below the action level of 15 µg/L in flow-

through experiments, in batch experiments lead concentrations exceeded the action level 

for longer residence times and approached an equilibrium value that was several orders of 

magnitude higher than that predicted from available thermodynamic data.  
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3.1 Introduction 

 The Lead and Copper Rule (LCR) set an action level of 15 µg/L (7.2×10-8
 M) for 

lead in drinking water (1).  Release of lead from corrosion products that develop on 

plumbing materials can cause elevated lead concentrations in tap water.  Lead corrosion 

products include lead(II) carbonates and oxides and lead(IV) oxides (PbO2) (2-4).  PbO2 

rarely exists in natural environments, but it can develop in distribution systems that use 

free chlorine (i.e., HOCl and OCl-) as the residual disinfectant (4).  According to the 

available thermodynamic data, PbO2 is less soluble than the lead(II) solids (5, 6) and very 

low lead concentrations are expected for systems with PbO2 and  free chlorine present to 

maintain a high redox potential.  However, the equilibrium solubility of PbO2 has not 

been experimentally measured at conditions relevant to drinking water distribution.  

 PbO2 stability is strongly influenced by the disinfectant, free chlorine or 

chloramines (e.g, monochloramine, NH2Cl).  The Disinfection-By-Product Rule requires 

low disinfection-by-product concentrations, which is often achieved by switching the 

residual disinfectant from free chlorine to chloramines (7).  Following such a water 

treatment change, high lead concentrations were observed in Washington D.C. tap water 

(8, 9).  However, in other distribution systems high lead concentrations were not 

observed (7).  Lin and Valentine showed that an intermediate species in monochloramine 

decay can accelerate lead release from PbO2 (10).  Switzer and co-workers reported that 

free chlorine can oxidize elemental lead to PbO2 while monochloramine cannot (11).   

Lead concentrations in tap water can be affected by the contact time of water with lead 

corrosion products.  Water is only in contact with the corrosion products for a short time 

(seconds to minutes) at flowing conditions, while contact times of days can occur when 
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water is stagnant in lead-containing pipes or fittings.  Most investigations of PbO2 

dissolution have been batch studies (12, 13) that provide important information on 

dissolved lead accumulation for long contact times.  Compared with batch studies, flow-

through experiments can be used to quantify the dissolution rates without the influence of 

reaction products on the dissolution rate (14-16).  Knowledge of PbO2 dissolution rates 

will be useful for predicting lead concentrations in pipes when equilibrium has not been 

reached. 

The objectives of this study were to (1) quantify the effects of free chlorine and 

monochloramine on the dissolution rate of plattnerite under flowing-water conditions; (2) 

elucidate PbO2 dissolution mechanisms; and (3) determine PbO2 solubility in the 

presence of free chlorine at environmentally relevant pH values.  In this study, PbO2 

dissolution rates in the presence of chlorine disinfectants were determined, and the 

mechanism of the effects of chlorine disinfectants on rates and a quantitative rate model 

based on redox potential were proposed.  The equilibrium solubility of PbO2 in the 

presence of free chlorine was studied and compared with the prediction using 

thermodynamic constants.   

 

3.2 Experimental Section 

3.2.1 Materials 

 PbO2 (Acros Organics) was identified as pure plattnerite (β-PbO2) by X-ray 

diffraction (XRD).  Primary particles (50 nm to 2 µm) formed aggregates larger than 1 

µm.  A specific surface area of 3.6 m2/g was determined from the BET N2-adsorption 
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isotherm.  A solution of NaOCl (Fisher Chemical, 6% w/w) was used as the source of 

free chlorine.  Monochloramine solutions were prepared by mixing volumes of 6% w/w 

NaOCl and 0.15 M NH4Cl (Aqua Solutions) solutions in ultrapure water to achieve a 0.79 

Cl2:N molar ratio (4:1 Cl2:N mass ratio), which is in the range used in drinking water 

distribution (17).  Under these conditions the dominant form of chloramines is 

monochloramine (NH2Cl).  All solutions were prepared from reagent grade chemicals 

and ultrapure water (>18.2 MΩ-cm resistivity, Milli-Q, Millipore Corp., Milford, MA).   

 

3.2.2 Analysis Methods 

XRD was performed on a Rigaku Geigerflex D-MAX/A diffractometer using Cu-

Ka radiation.  The instrument has a vertical goniometer and a scintillation counter.  A 

JEOL 7001LVF field emission scanning electron microscope (SEM) was used to 

characterize the morphology of the solids.  Dissolved lead concentrations were 

determined by inductively coupled plasma mass spectrometry (ICP-MS) (Agilent 

7500ce).  Solution pH was measured with a glass pH electrode and pH meter (Accumet).  

Free chlorine and monochloramine concentrations were measured using the standard 

DPD colorimetric method (4500-Cl Chlorine G) with a spectrophotometer (Perkin-Elmer 

Lambda 2S) (18). 

 

3.2.3. Flow-through Experiments 

Plattnerite dissolution rates were quantified using 84 mL continuous-flow stirred 

tank reactors (CSTR) with a hydraulic residence time of 30 minutes.  The reactors were 
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loaded with 1 g/L plattnerite and sealed with 0.22 µm nitrocellulose filter membranes.  

Selected effluent samples were further filtered with 0.02 polyethersulfone membranes.  

All effluent samples were preserved by acidification to 2% HNO3 and analyzed for 

dissolved lead by ICP-MS.  In the flow-through experiments lead concentrations after 

0.02 and 0.22 µm filtration were similar. 

Influent compositions were controlled to evaluate the effects of chlorine and 

chloramines on plattnerite dissolution rates at environmentally relevant conditions.   Six 

conditions were studied (2 pH values with no disinfectant, 2 mg/L as Cl2 

monochloramine, and 2 mg/L as Cl2 free chlorine) in duplicate experiments (Table 1), 

and solid-free experiments were conducted as procedural blanks.  Additional two 

conditions of 1 and 0.1 mg/L free chlorine at pH 7.5 were investigated in duplicate to 

study the effect of free chlorine concentrations on plattnerite dissolution rates.  These 

reactors were previously used to determine plattnerite dissolution rates as a function of 

pH and DIC in the absence of any chlorine species (19).  Flow rate, pH, and 

chlorine/monochloramine concentrations were periodically measured throughout each 

experiment.  Experiments were conducted at room temperature (21 ± 1 ºC). 

The reactor influents were prepared in 10 L plastic (Tedlar) bags to avoid transfer 

of CO2 into or out of solution.  Ultrapure water was purged with nitrogen before being 

pumped into the bags.  Dissolved inorganic carbon (DIC) was provided by the addition of 

NaHCO3.  Monochloramine solutions were prepared immediately before each experiment 

and were shielded from light by aluminum foil to minimize the chloramines 

decomposition.  An aliquot of 1.0 M NaNO3 solution was injected to set the ionic 

strength at 0.01 M.  The influent pH was adjusted last by the addition of NaOH or HNO3.   
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Dissolution rates were determined by operating the flow-through reactors for 48 

or more hydraulic residence times (24 hours).  By continuously flushing the products of 

dissolution from the reactors, the effluent dissolved lead concentrations approach steady-

state concentrations that are controlled by the rates of dissolution of the solid phase.  This 

approach is different from batch experiments in which the dissolved concentrations 

increase until they reach equilibrium solubility; the accumulation of reaction products 

and the presence of initial labile phases in batch experiments can complicate the 

quantification of rates (14-16).  In a flow-through experiment, the steady-state effluent 

concentration will be less than the equilibrium solubility of the dissolving solid.  A tracer 

study confirmed that the reactor solutions were well-mixed.   

After the 24-hour period of flow, each reactor remained sealed and stirred with no 

flow for another 24 hours.  At the conclusion of this batch mode, the pH and 

concentrations of lead, free chlorine, and monochloramine were measured.  The solids 

remaining at the end of each experiment were characterized by XRD.  The batch mode of 

the experiments provides complementary information regarding the effects of chlorine 

disinfectants on PbO2 dissolution at longer residence times than during the period with 

flow. 

For a flow-through reactor at steady-state the dissolution rate can be quantified by 

Equation 3.1,   

Rate=
Q·t·Css

t·A·[solids]·V
=

Css

tres·A·[solids]
                                              (3.1) 

where Rate is the dissolution rate (mol m-2 min-1); Css is the steady-state effluent lead 

concentration (mol/L); Q is flow rate (m3 min-1); t is the elapsed reaction time, V is the 

volume of the reactor (m3); tres is the hydraulic residence time (min); [solid] is the solid 
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concentration in the reactor (g/L); and A is the specific surface area of the solid (m2/g).  

No lead was added to the influent, and samples of the influent had lead concentrations 

below the detection limit (30 ng/L).  The steady-state effluent concentration was 

determined as the average concentration of at least 5 samples that did not vary by more 

than 30% and spanned at least 5 residence times.   

 

3.2.4. PbO2 Equilibrium Solubility Batch Experiments 

Batch experiments were conducted in duplicate in carbonate-free solutions at 

three pH values (6, 7.5, and 8.5) to evaluate equilibrium PbO2 solubility in the presence 

of free chlorine.  To avoid the influence of carbonate on PbO2 dissolution, experiments 

were performed in a glove box filled with argon that was in contact with a concentrated 

solution of NaOH to absorb traces of CO2.  The pH of the suspensions was adjusted to the 

desired value each day for one month by adding 0.5 M NaOH or HNO3 solution; the pH 

variations were within ± 0.2 pH units.  No buffer was used.  The free chlorine 

concentrations were monitored and, if necessary, readjusted to the target value.  Aqueous 

samples were collected every day, filtered with 0.02 µm polyethersulfone membranes, 

and acidified in preparation for ICP-MS analysis of dissolved lead.   After 1 month the 

remaining solids were collected for X-ray diffraction analysis. 

In the presence of free chlorine, Pb(IV) is predicted to be dominant.  The 

equilibrium dissolved lead concentration was calculated as the sum of all dissolved 

species.  The equilibrium concentrations of Pb4+ and Pb(IV) complexes were calculated 

using the reactions and equilibrium constants in Tables S1 and S2 of the Supporting 

Information.   
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3.3 Results and Discussion  

3.3.1 Effects of Monochloramine and Chlorine on Dissolution Rates in Flow-

through Experiments 

Both monochloramine and free chlorine slowed PbO2 dissolution.  Lead 

concentrations reached steady-state within 19 hours (Figure 3.1), and these 

concentrations were used in Equation 3.1 to calculate dissolution rates (Table 3.1).    

Figure 3.1. Effluent lead concentrations (shown as ▲ and ●) and pH (shown as ∆ and ○) 
from flow-through reactors in the absence and presence of monochloramine or free 
chlorine.  Duplicate experiments (represented by triangles and circles) were conducted at 
the hydraulic residence time of 30 minutes.  Samples were not taken during the middle of 
the experiments (9 to 15 hours).  Note: monochloramine concentration is 2 mg/L as Cl2. 
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Table 3.1. Conditions and results of plattnerite dissolution experiments

 

Dissolution rates decreased in the following order: no disinfectant > 

monochloramine > free chlorine (Figure 3.2a).  Free chlorine inhibited dissolution most 

significantly and maintained effluent lead concentrations well below the action level.  

Dissolution rates decreased with increasing free chlorine concentration, and the rates in 

the presence of all concentrations of free chlorine were lower than the rates in the 

presence of monochloramine (Figure 3.2b).  Monochloramine also kept the lead 

concentration below the action level, although effluent concentrations were close to 15 

µg/L at pH 7.5 and DIC 50 mg/L.  As determined by X-ray diffraction, the remaining 

solids after two days of reaction were still plattnerite. 

Steady-state
Residence effluent Dissolution

Experiment DIC Chloramine Free Chlorine Time Lead Rate x 1010

ID pH (mg/L as C) (mg/L as Cl2) (mg/L as Cl2) (min) (nM) (mol/min·m2)
1A 7.5 50.0 0.0 0.0 30 83.8 7.87
1B 7.5 50.0 0.0 0.0 30 82.7 7.77

2A 8.5 50.0 0.0 0.0 30 41.5 3.90
2B 8.5 50.0 0.0 0.0 30 59.9 5.63

3A 7.5 50.0 2.0 0.0 30 77.5 7.28
3B 7.5 50.0 2.0 0.0 30 57.2 5.37

4A 8.5 50.0 2.0 0.0 30 14.0 1.32
4B 8.5 50.0 2.0 0.0 30 17.6 1.65

5A 7.5 50.0 0.0 2.0 30 2.12 0.20
5B 7.5 50.0 0.0 2.0 30 0.97 0.09

6A 8.5 50.0 0.0 2.0 30 4.67 0.44
6B 8.5 50.0 0.0 2.0 30 1.60 0.15

7A 7.5 50.0 0.0 1.0 30 3.26 0.31
7B 7.5 50.0 0.0 1.0 30 6.04 0.57

8A 7.5 50.0 0.0 0.1 30 5.59 0.52
8B 7.5 50.0 0.0 0.1 30 12.46 1.17

Influent Composition
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Figure 3.2.  a) Dissolution rates of plattnerite determined from flow-through experiments 
using no disinfectant, 2 mg/L monochloramine as Cl2, and 2 mg/L free chlorine.  b) 
Dissolution rates of plattnerite determined from flow-through experiments using different 
concentrations of free chlorine (0.1, 1, and 2 mg/L).  DIC denotes the dissolved inorganic 
carbon concentration in mg C/L.  The error bars represent one sample standard deviation.  
The pH indicated is the target pH of the influents.  
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In the presence of monochloramine, the PbO2 dissolution was faster at lower pH, 

which is consistent with previous observations in the absence of chlorine species (19).  In 

the presence of free chlorine, dissolution rates at pH 7.5 and 8.5 were not significantly 

different.  The different effects of pH observed with and without free chlorine could 

result from different dissolution mechanisms.  In the absence of free chlorine, PbO2 

reductive dissolution occurs in two sequential steps: first, PbO2 is reduced to Pb(II) on 

the surface; second, surface Pb(II) is released into solution (19).   In the presence of free 

chlorine, PbO2 is expected to dissolve by directly releasing Pb(IV) to solution; however, 

as will be discussed in the section on batch dissolution experiments, the effects may be 

more complicated.   

The pH values were stable and steady-state effluent concentrations were usually 

established.  Prior to reaching steady-state, the effluent pH and dissolved lead 

concentrations varied during the early period after initiation of flow.  The starting 

solution was pure water with a lower pH than the influent, and the effluent pH gradually 

increased and stabilized at the influent pH within one hour.  The lower initial pH and 

dissolution of the smallest particles or initial labile surface phases probably caused the 

lead concentrations in the first few hours that were higher than the later steady-state 

values.  In one of the replicates with pH 8.5 and 50 mg/L DIC, a gradual decrease in pH 

caused a slight increase in the effluent lead concentrations.  For this experiment, the 

average of the last five samples was used to represent the steady-state concentration in 

the rate calculation; however, because steady-state was not achieved, this rate may 

represent only a lower bound.  In one of the replicates with 2 mg/L monochloramine, pH 



66 

 

7.5, and 50 mg/L DIC, the small shift in lead concentration right before the steady-state 

period was caused by a pH fluctuation.   

 

3.3.2 Control of PbO2 Dissolution Rate by Redox Potential  

Dissolution of PbO2 in the well-mixed reactors is limited by surface reaction (19), 

and it can involve chemical reduction.  The relationship between redox potential and the 

PbO2 dissolution rate can be related as follows, 

RT
G

eARate

≠
−

⋅=

∆

                                                                                             (3.2) 

where 
≠

G∆  is the Gibbs free energy of activation, A is a positive constant, R is the ideal 

gas constant (8.314 J mol-1 K-1), and T is temperature (K).  When electron transfer is the 

rate limiting step, the transition state is energetically closer to the products than the 

precursors.  The Gibbs free energy of activation is then proportional to the Gibbs free 

energy change of the reaction (∆ rG ) (20). 

 ∆G≠=a∆Gr+constant                                                                                        (3.3) 

where a is a positive constant.  Since ∆ rG  is proportional to the difference in the redox 

potentials of the PbO2/Pb2+ couple (
H PbO Pb

E
, / 2+

2
) and the dominant aqueous redox couple 

( ,H aqE ), which is O2/H2O, NH2Cl/Cl- or HOCl/Cl-, the dissolution rate is then 

proportional to the difference in redox potentials. 

   )EE(nFEnFG aq,HPb/PbO,Hr −−=−= +2
2

∆∆                                                   (3.4) 

             • 2+ H,aqH,PbO / Pb2

anF
(E nE )

RTRate = A e +constant'                                                  (3.5) 
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where F is the Faraday constant (96500 C mol-1 ) and n is the number of electrons 

transferred during the overall reaction.  The difference between the redox potential of the 

PbO2/Pb2+ couple and the dominant aqueous redox couple controls the driving force for 

PbO2 dissolution. 

In Equation 3.5 the dissolution rate decreases with increasing EH of the dominant 

aqueous redox couple.  In the absence of chlorine and monochloramine, the O2/H2O 

couple dominates the redox potential of the solution.  The relevant half reactions are:  

PbO2(s) + 4H+ + 2e- = Pb2+ + 2H2O    log K1 = 49.60     EH
0 = 1.46 V             (3.6) 

O2(aq) + 4H+  + 4e-  = 2H2O                          log K2 = 86.00    EH
0 = 1.27 V             (3.7) 

When monochloramine is present it controls the redox potential of the system, and the EH 

of the solution can be calculated from Reaction 3.8. 

NH2Cl + 2e- + 2H+ = Cl- + NH4
+

       log K5 = 47.46    EH
0 = 1.40 V             (3.8) 

Similarly, free chlorine can control the redox potential of the system, and the EH of the 

solution can be calculated from Reaction 3.9. 

HOCl + 2e- + H+ = Cl- + H2O         log K5 = 50.20   EH
0 = 1.48 V             (3.9) 
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Figure 3.3. EH-pH diagram for the Pb(IV)-Pb(II)-Pb(0) system with a total lead 
concentration of 15 µg/L and 30 mg/L of dissolved inorganic carbon.  The short-dashed 
lines denote the the EH provided by 1.26 µM dissolved oxygen (in equilibrium with 0.001 
atm O2). The long-dashed line indicates the EH provided by monochloramine at a 
concentration of 2 mg/L as Cl2 with a Cl2:N ratio of 0.79.  The free chlorine line represent 
the EH provided by free chlorine at a concentration of 2 mg/L as Cl2. 
 

The EH increases in the following order: no disinfectant < monochloramine < free 

chlorine (Figure 3.3), and increases with increasing free chlorine concentration.  Thus, it 

is not surprising that PbO2 dissolution rates decreased in the order of solutions that 

provided higher EH.  Least squares optimization of the experimental data to Equation 5 

yielded parameters that allow the equation (Eq 3.10) to fit the rates well with an R-

squared value of 0.95 (Figure 3.4). 
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Figure 3.4. Least square fitting of experimental data to Equation 3.5.  Only experimental 
data in the presence of free chlorine or monochloramine are used in the fitting.   
 

In the presence of free chlorine, the steady-state concentrations in the flow-

through experiments were much lower than the lead concentrations reached in the PbO2 

batch experiments discussed in a subsequent section (Table 3.1 and Figure 3.5).  These 

differences in the lead concentrations indicate that the flow-through experiments with 

free chlorine were far from equilibrium.  The effect of free chlorine on the PbO2 

dissolution rate is consequently confirmed to be through control of dissolution kinetics 

and not equilibrium.  Because the PbO2 dissolution rates responded to the redox potential 

of the solution set by the NH2Cl/Cl- or the HOCl/Cl- couple, the reduction step was rate-

limiting in the presence of free chlorine or monochloramine.   
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Figure 3.5. a-c) Experimental and predicted dissolved lead concentrations with time in 
PbO2 batch dissolution experiments.  Experiments were performed at 2 mg/L free 
chlorine, 50 mg/L plattnerite, and pH values of 6.0, 7.5 and 8.5.  Replicate experimental 
lead concentrations are shown as ∆ and □.  The solid lines represent the predicted lead 
concentrations assuming dissolution at the rates determined from the flow-through 
experiments.  Panel d presents the predicted (solid line) and measured (triangular points) 
equilibrium solubility of PbO2 versus pH.  In all panels dashed lines represent the lead 
action level of 15 µg/L. 
 

Previous studies measured an increase in redox potential upon addition of 

monochloramine (21, 22).  However, a measured ORP from monochloramine was lower 

than that from the thermodynamic prediction (21-23), and there is still uncertainty in the 

equilibrium constants for Reactions 3.6 and 3.8 (6, 11, 23).  Consequently, while 

monochloramine and free chlorine can qualitatively be demonstrated to lower the 

plattnerite dissolution rate, definitive quantification of the effects of chlorine species on 
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the dissolution rate need more accurate equilibrium constants for PbO2 and 

monochloramine and redox potential measurements.    

 

3.3.3. Effects of Monochloramine and Free chlorine on PbO2 Dissolution in Batch 

vs. Flow-through Experiments 

Relative to conditions with no disinfectant, monochloramine was able to decrease 

the PbO2 dissolution rate in flow-through experiments, but during the 1-day batch period 

immediately following the flow-through period, monochloramine decayed and 

accelerated PbO2 dissolution (Figure 3.6).  The contrasting observations between batch 

and flow conditions may be explained by differences in the nature of the reaction times 

(much shorter at flow conditions) and can be attributed to two separate effects of 

monochloramine.  The first effect is increasing the redox potential, which inhibits the 

reduction step.  The second effect is the reduction of PbO2 to Pb(II) by an intermediate 

species involved in monochloramine decomposition.  Lin and Valentine found that such 

an intermediate species could accelerate the reduction of PbO2 (10).  The second effect is 

more significant in a batch system because the reactive intermediate species can 

accumulate over time in a way that does not occur in a flow-through system.  The extent 

of monochloramine decay during a residence time of 30 min in the flow-through mode 

was negligible (< 0.02 mg/L), while the decline of monochloramine during 24 hours in 

the batch mode was about 50%.  In fact, for the batch mode, the decay of 

monochloramine correlated well with the dissolved lead concentration (Figure 3.6).  The 

slope of this correlation was 0.04, which was similar to that of 0.05 - 0.21 observed by 

Lin and Valentine.  The differences in slopes could be caused by different water 
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chemistry conditions and PbO2 specific surface areas (10, 24) or uncertainty in the slope 

obtained in the presented study due to limited data points.  The positive x-axis intercept 

in Figure 3.6, which indicates partial PbO2 reduction without an increase in dissolved 

lead, could result from production of Pb(II) that remained adsorbed to the PbO2 surface.  

Pb(II) can appreciably adsorb to PbO2 at pH 7.5 and 8.5 (25).  This adsorption would be 

stronger in the present study because of a higher PbO2 loading (1 g/L) than in Lin and 

Valentine’s work (10 mg/L).    

 

Figure 3.6. Dissolved lead concentration versus ∆NH2Cl after 24 hours of reaction in the 
batch mode following the flow-through experiments.  The linear regression y = 0.042x - 
0.52 fits the experimental data well with an R-squared value of 0.99. 

During the 1-day batch period immediately following the flow-through period, 

free chlorine slightly decayed (within 10%) and dissolved lead concentration increased.  

However, the decay of free chlorine did not correlate linearly with the dissolved lead 

concentrations in the 1-day batch experiments following the flow-through period. 
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3.3.4 Equilibrium Solubility of Plattnerite 

In batch experiments designed to measure equilibrium PbO2 solubility in the 

presence of free chlorine, for most conditions the dissolved lead concentrations increased 

with time until they reached plateaus after 17 days (Figure 3.5a-c).  The lead 

concentrations exceeded the action level (15 µg/L) after 4 days for pH 8.5 and after 10 

days for pH 7.5.  The plateau lead concentrations probably represent equilibrium between 

PbO2 and the solution.  Pb(IV) is calculated to dominate in the presence of free chlorine.  

However, available thermodynamic data for calculating equilibrium solubility of PbO2 

were not determined from solubility studies at environmentally-relevant conditions.  

Pourbaix calculated the Gibbs free energies for PbO2(s) and Pb(IV) aqueous species 

(Table 3-S3 of the Supporting Information) and the solubility product of PbO2 based on 

electric potential measurements made by Glasstone at very acidic and very basic 

conditions (5, 26).  The equilibrium solubility of PbO2 calculated using these 

thermodynamic data increases with increasing pH (Figure 3.5d), and experimentally 

measured solubility is indeed higher at higher pH.  However, the measured lead 

concentrations were orders of magnitude higher than the predicted values (log[Pb]diss      

< -13).  This observation raises questions about the applicability of the thermodynamic 

constants for PbO2 and Pb(IV) aqueous species to conditions relevant to environmental 

systems.  The thermodynamic constants could be one reason for the discrepancy between 

the experimental and predicted PbO2 equilibrium solubility.   

 

Another reason for the higher experimental than predicted PbO2 solubility could 

be the presence of dissolved Pb(II).  In previous work Lin and Valentine used a Pb(II)-
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specific analysis method to detect 5-10 µg/L dissolved Pb(II) from PbO2 dissolution in 

the presence of free chlorine (24).  If the rate of PbO2 reduction by water is faster than the 

oxidation of Pb(II) species by free chlorine, then Pb(II) concentrations could be 

maintained even in the presence of free chlorine.  Oxidation reactions are generally faster 

with HOCl than with OCl- (27), and HOCl is more abundant at lower pH values.  

Therefore, the oxidation of Pb(II) species by free chlorine could cause lower lead 

concentrations at lower pH values.  Further work is needed to experimentally determine 

the equilibrium solubility of PbO2 and aqueous lead speciation in the presence of free 

chlorine at environmentally-relevant conditions.   

 

3.3.5 Comparison of PbO2 Dissolution Rates from Batch and Flow-through 

Experiments  

In batch experiments the initial dissolution was faster than at longer reaction times 

(Figure 3.5a-c), which is consistent with the observation in flow-through experiments.  

The high initial lead release rate in batch experiments could have been caused by the fast 

dissolution of initial labile surface phases and very small PbO2 particles.  Owing to the 

initial high lead release rates, the measured lead concentrations in batch experiments 

were higher than the concentrations predicted by applying the steady-state dissolution 

rates from the flow-through experiments to the batch experiments (shown by the solid 

lines in Figure 3.5a-c).   
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3.4 Environmental Implications 

 The study provided direct evidence that the PbO2 dissolution rate is enhanced 

when the residual disinfectant is switched from free chlorine to monochloramine, which 

is consistent with observations of higher lead concentrations in Washington D.C. tap 

water following such a switch.  At flowing conditions, the increase in the rate was due to 

the decreased redox potential.  Free chlorine can effectively control the lead 

concentration from PbO2 dissolution at flowing conditions, but the results of batch 

experiments suggest that free chlorine may not be able to control the lead concentration 

under the action level for very long stagnation times.  However, PbO2 dissolution is still 

very slow with free chlorine present; 4-10 days were required for lead concentrations to 

exceed 15 µg/L for relatively high PbO2 loadings of 1 g/L.  The available thermodynamic 

data for PbO2 and Pb(IV) species failed to predict the measured PbO2 equilibrium 

solubility in the presence of free chlorine, and calculations of lead concentrations based 

on these data will underestimate actual concentrations.   

Chloramines can affect lead release from plattnerite in two opposing ways: (a) 

through PbO2 reduction by an intermediate species from decomposition of 

monochloramine and (b) through increasing the redox potential to decrease the 

thermodynamic driving force for reduction.  The contact time of monochloramine with 

PbO2 and the Cl2:N ratio in monochloramine formation will determine which mechanism 

is more important.  Residence time plays an important role in controlling the lead 

concentrations in tap water disinfected with monochloramine or free chlorine.  The actual 

concentrations of chlorine species will vary with location in a distribution system.  The 

rate equation developed in this study may ultimately allow PbO2 dissolution rates to be 
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estimated based on the specific concentrations of monochloramine or free chlorine for a 

given system and location.   
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Chapter 3. Supporting Information 

Table 3-S1. Equilibrium constants for aqueous species 
# Reaction Log K Source 

1 H2O  H+ + OH-  -13.998 MINEQL+

2 CO2(g) + H2O  H2CO3
* -1.459 MINEQL+

3 H2CO3
*  2H+ + CO3

2- -16.68 MINEQL+

4 HCO3
-  H+ + CO3

2-  -10.33 MINEQL+

5 Pb2+ + H2O  PbOH+ + H+ 
 -7.597 MINEQL+

6 Pb2+ + 2H2O  Pb(OH)2
0 + 2H+ 

 -17.12 Benjamin 

7 Pb2+ + 3H2O  Pb(OH)3
- + 3H+ 

 -28.06 Benjamin 

8 Pb2+ + 4H2O  Pb(OH)4
2- + 4H+ 

 -39.70 Benjamin 

9 Pb2+ + CO3
2-  PbCO3

0  6.478 MINEQL+

10 Pb2+ + 2CO3
2-  Pb(CO3)2

2-  9.38 MINEQL+

11 Pb2+ + CO3
- + H+  PbHCO3

+  13.20 MINEQL+

12 2Pb2+ + 3H2O  Pb2(OH)3+ + H+ -6.397 MINEQL+

13 3Pb2+ + 4H2O  Pb3(OH)4
2+ + 4H+ -23.888 MINEQL+

14 4Pb2+ + 4H2O  Pb4(OH)4
4+ + 4H+ -19.988 MINEQL+

15 Pb4+ + 3H2O  PbO3
2- + 6H+ -23.06 Pourbaix 

16 Pb4+ + 4H2O  PbO4
4- + 8H+ -63.94 Pourbaix 

17 HOCl  OCl- + H+ -7.60 Benjamin 

18 HOCl + 2e- + H+  Cl- + H2O 50.20 Benjamin 

19 Pb2+  Pb4+ + 2e- -28.64 Benjamin 

20 O2(aq) + 4H+ +4e-  2H2O 86.00 Benjamin 

21 2H+ +2e-  H2(aq) 3.10 Benjamin 

22 NH2Cl + 2e- + 2H+  Cl- + NH4
+ 47.46 Switzer 

23 NH2Cl + H2O + 2e-  Cl- + OH- + NH3 23.39 Switzer 
Benjamin = (1) 
MINEQL+ = (2) 
Switzer = (3) 
Pourbaix = (4) 
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Table 3-S2.  Solubility products of selected lead solids   

# Solid Reaction Log K Source 

24 Massicot PbO(s) + 2H+  Pb2+ + H2O 12.91 MINEQL+ 

25 Litharge PbO(s) + 2H+  Pb2+ + H2O 12.72 MINEQL+ 

26 Pb(OH)2(s) Pb(OH)2(s) + 2H+  Pb2+ + 2H2O 12.40 Stumm & 
Morgan 

27 Cerussite PbCO3(s)  Pb2+ + CO3
2-  -13.13 Benjamin 

28 Hydrocerussite Pb3(CO3)2(OH)2(s) + 2H+  3Pb2+ + 
2CO3

2- + 2H2O  -18.77 MINEQL+ 

29 Pb3(PO4)2(s) Pb3(PO4)2(s)  3Pb2+ + 2PO4
3- -44.50 Benjamin 

30 PbHPO4(s) PbHPO4(s) Pb2+ + PO4
3- + H+  -37.80 MINEQL+ 

31 Hydroxyl-
pyromorphite 

Pb5(PO4)3OH(s) + H+  5Pb2+ + 
3PO4

3- + H2O  -62.79 MINEQL+ 

32 Plattnerite PbO2 (s)+ 4H+ +2e-  Pb2+ +2H2O 49.60 MINEQL+ 

33 PbO2 Pb(IV)O2(s) + 4H+   Pb4+ + 2H2O -8.26 Pourbaix 
Benjamin = (1); MINEQL+ = (2); Stumm & Morgan = (5); Pourbaix = (4) 

 

Table 3-S3. Chemical potentials of various solids and aqueous species. 

Species G0
f,i   (J/mol) Source 

Pb3O4(s) -601,200 Benjamin 
Pb2O3(s) -411,769 Pourbaix 
PbO2(s) -218,987 Pourbaix 

Pb2+ -24,309 Pourbaix 
HPbO2

- -338,898 Pourbaix 
Pb4+ 302,498 Pourbaix 

PbO3
2- -277,562 Pourbaix 

PbO4
4- -282,084 Pourbaix 

H+ 0.00 Benjamin 
OH- -157,300 Benjamin 
H2O -237,180 Benjamin 

Benjamin = (1) 
Pourbaix = (4)  
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Figure 3-S1.  X-ray diffraction (XRD) pattern of plattnerite before and after reactions for 
selected experiments. (The reference pattern PDF# 00-025-047).  Cl denotes experiments 
in the presence of free chlorine, while CA represents experiments with monochloramine. 
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Figure 3-S2.  Scanning electron micrograph of plattnerite used in experiments.   
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Chapter 4.    Effects of orthophosphate on PbO2 dissolution 

rates  

 

Results of this Chapter will be submitted to Water Research 

 

Abstract 

 

Plattnerite is a corrosion product that develops on lead pipes that have been in 

contact with free chlorine present as a residual disinfectant.  The dissolution of plattnerite 

may control the dissolved lead concentration in tap water.  Orthophosphate has been used 

as a lead corrosion inhibitor in many U.S. utilities.  In this study the effects of phosphate 

on the dissolution rates of plattnerite were quantified in completely-mixed continuous-

flow reactors at relevant pH, chloramines, and dissolved inorganic carbon conditions.  

Phosphate decreased the release of lead from the dissolution of plattnerite by the 

formation of hydroxylpyromorphite (Pb5(PO4)3OH).  At selected conditions, the rate of 

plattnerite dissolution was also inhibited by phosphate adsorption to PbO2.   

 

Keywords: orthophosphate corrosion inhibitor, PbO2 dissolution, lead corrosion, 

distribution system 
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4.1. Introduction 

Motivated by concerns about the adverse health effects of lead, the Lead and 

Copper Rule (LCR) was passed in 1991 and set an action level of 15 µg/L for lead in 

drinking water (U.S.EPA 1991).  If 10% of the tested homes have lead concentrations 

above the action level, then the system must undertake efforts to control corrosion and 

inform the public.   

Release of lead from corrosion products that develop on plumbing materials can 

cause elevated lead concentrations in tap water.  Lead corrosion products include lead(II) 

carbonates, lead(II) oxides, and lead(IV) oxides (PbO2).  Both plattnerite (β-PbO2) and 

scrutinyite (α-PbO2) have been observed in distribution systems that used free chlorine as 

disinfectants (Schock and Giani 2004).  The switch of residual disinfectant from free 

chlorine to chloramines in November 2000 enhanced reductive dissolution of PbO2 and 

caused tap water lead concentrations as high as 48000 µg/L in Washington, DC from 

2001 to 2004 (Edwards and Dudi 2004; Schock and Giani 2004).  Elevated blood levels 

in young children were correlated with the elevated tap water lead concentrations during 

the Washington, DC lead incident (Edwards et al. 2009). 

Orthophosphate addition is an established corrosion control strategy that has been 

effective in mitigating lead concentrations in Washington, DC. (Schock 1999; U.S.EPA 

2007). The effect of orthorphosphate is attributed to the precipitation of low solubility 

lead phosphate solids such as hydroxylpyromorphite (Pb5(PO4)3OH) (Edwards and 

McNeill 2002; Nadagouda et al. 2009).  Hydroxylpyromorphite has been found as a 

corrosion product in actual distribution systems and in laboratory experiments with lead 
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compounds in the presence of phosphate (Lytle et al. 2009; Noel and Giammar 2008; 

Schock et al. 2006). 

Recent investigations of PbO2 dissolution have all been batch studies (Lin and 

Valentine 2008a; b; 2010; Shi and Stone 2009a; b).  While batch studies are useful for 

determining effects of water chemistry on PbO2 dissolution, they are not ideal for 

quantifying dissolution rates because they are sensitive to the initial environment and are 

affected by accumulation of reaction products.  Dissolution rates are valuable for 

predicting lead concentrations when equilibrium is not reached, as can occur in plumbing 

with intermittent periods of flow.  Since more than 5 days can be required for the 

reductive dissolution of PbO2 to reach equilibrium (Xie et al. 2010), tap water lead 

concentrations are unlikely to be at equilibrium with PbO2.  The objectives of this study 

were to quantify the effect of phosphate on the dissolution rate of plattnerite and to 

identify potential mechanisms for any observed effects.   

4.2. Materials and Methods 

4.2.1.  Materials 

PbO2 (Fisher Scientific) with primary particle sizes of 50 to 500 nm was 

identified as pure plattnerite (β-PbO2) by X-Ray diffraction (XRD) (Xie et al. 2010).  Its 

specific surface area was 3.6 m2/g based on the BET N2-adsorption isotherm.  A 

phosphate stock solution was prepared from NaH2PO4.  DIC was provided by the 

addition of NaHCO3.  Chloramine solutions were prepared by mixing volumes of 6% 

(w/w) NaOCl and 0.15 M NH4Cl solutions in ultrapure water to achieve a 0.79 Cl2:N 

molar ratio (4:1 Cl2:N mass ratio), which is in the range used in drinking water 
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distribution (Jafvert and Valentine 1992).  Under these conditions the dominant form of 

chloramine is monochloramine (NH2Cl).  All solutions were prepared from reagent grade 

chemicals and ultrapure water (Milli-Q water, >18.2 MΩ-cm resistivity, Millipore Corp., 

Milford, MA).   

 

4.2.2. Analysis Methods 

XRD was performed on a Rigaku Geigerflex D-MAX/A diffractometer using Cu-

Kα radiation.  The instrument has a vertical goniometer and a scintillation counter.  A 

JEOL 7001LVF field emission scanning electron microscope (SEM) was used to 

characterize the morphology and composition of the solids before and after reaction.  

Dissolved lead concentrations were determined by inductively coupled plasma mass 

spectroscopy (ICP-MS) (Agilent 7500ce).  Solution pH was measured with a glass pH 

electrode and pH meter (Accumet).  Free chlorine and chloramine concentrations were 

measured using the standard DPD colorimetric method (4500-Cl Chlorine G) with a 

spectrophotometer (Perkin-Elmer Lambda 2S) (American Public Health Association 

1999). 

 

4.2.3. Measurement of Dissolution Rates  

Plattnerite dissolution rates were quantified using 84 mL continuously stirred 

flow-through reactors that were loaded with 1 g/L plattnerite and had 30 min hydraulic 

residence times.  Details of reactor operation have been described previously (Xie et al. 

2010).  The influent compositions were controlled to evaluate the effects of 
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orthophosphate and chloramines on plattnerite dissolution rates at environmentally 

relevant pH and dissolved inorganic carbon (DIC) conditions.  A series of eight 

compositions all containing 50 mg/L DIC were studied. The eight compositions 

examined two pH values (7.5 and 8.5), the presence or absence of 2 mg/L as Cl2 

monochloramine, and the presence or absence of 1 mg/L as P orthophosphate.  Each 

experimental condition was run in duplicate or triplicate reactors with a procedural blank 

that consisted of a solid-free reactor.  Supplementary experiments in the absence of DIC 

were also conducted.  Effluent samples were collected, preserved by acidification to 2% 

HNO3, and analyzed for dissolved lead by ICP-MS.  Flow rate and pH were periodically 

measured throughout each experiment.   

The reactor influents were prepared in 10 L plastic (Tedlar) bags to avoid transfer 

of CO2 into or out of solution.  Ultrapure water was purged with nitrogen immediately 

before being pumped into the bags.  The influent pH was adjusted by the addition of 

NaOH or HNO3.  Chloramine solutions were prepared immediately before each 

dissolution experiment.  Solutions that contained chloramines were shielded from light by 

alumnium foil to minimize the decomposition of chloramines.  An aliquot of 1.0 M 

NaNO3 solution was injected to set the ionic strength at 0.01 M. 

Dissolution rates were determined by operating the flow-through reactors for 

durations equivalent to 48 or more hydraulic residence times (24 hours).  By continuously 

flushing the products of dissolution from the reactor, the effluent dissolved lead 

concentration approaches a steady-state concentration that is controlled by the rate of 

dissolution of the solid phase (Xie et al. 2010).  This approach is different from batch 

experiments in which the dissolved concentrations increase until they reach equilibrium 
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solubility; the accumulation of reaction products and the presence of initial labile phases 

in batch experiments can complicate the quantification of rates.  After the 24-hour period 

of flow, each reactor remained sealed and stirred with no flow for another 24 hours.  At 

the conclusion of this batch mode, the pH  and concentrations of dissolved lead, 

orthophosphate, and monochloramine were measured. The solids remaining at the end of 

each experiment were characterized by XRD and SEM. 

For a flow-through reactor the dissolution rate can be quantified by Equation 4.1,   

Asolidt
C

Rate
res

ss

⋅
=

⋅ ][                    (4.1) 

where Rate is the dissolution rate (mol/m2-min); Css is the steady-state effluent lead 

concentration (mol/L); tres is the  hydraulic residence time (min); [solid] is the solid 

concentration in the reactor (g/L); and A is the specific surface area of the solid (m2/g).  

No lead was added to the influent, and samples of the influent had lead concentrations 

below the detection limit (30 ng/L).  The steady-state effluent concentration was 

determined as the average of the effluent concentrations for at least 5 samples that did not 

vary by more than 30% and spanned at least 5 residence times.   

For comparison with experimentally measured dissolved lead concentrations, the 

equilibrium solubility of plattnerite and hydroxylpyromorphite were calculated.  

Calculations were performed with MINEQL+ (version 4.5) (Schecher and McAvoy 

1998a).  The reactions considered and their equilibrium constants are given in the 

Appendix. 
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4.3. Results and Discussion 

4.3.1 Effect of Phosphate on Plattnerite Dissolution 

At almost all conditions studied, the addition of 1 mg P/L (3.2·10-5 M) phosphate 

inhibited plattnerite dissolution (Figure 4.1).   The effect was most pronounced at pH 8.5 

without chloramine and at pH 7.5 with chloramine.  Dissolution rates for a given 

condition were almost always higher at pH 7.5 than 8.5, which is consistent with previous 

studies (Xie et al. 2010).   When both phosphate and chloramines were present, the rates 

at pH 7.5 and 8.5 were very similar.  Dissolution rates were also consistently lower in the 

presence of chloramine than in the absence of chloramine, although not significantly 

lower when both phosphate and chloramine were present.  The inhibition of dissolution 

Figure 4.1.  Effect of phosphate on dissolution rates of plattnerite.  Conditions are listed on 
the x-axis with CA denoting the monochloramine concentration in mg/L as Cl2 and DIC 
denoting the dissolved inorganic carbon concentration in mg C/L.  Error bars represent one 
standard deviation.  The pH indicated was the target pH of the influents, and the actual 
steady-state effluent pH values were within ± 0.22 pH units of the target value. 
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by monochloramine relative to no disinfectant at short residence time was caused by the 

elevated redox potential, which has been observed in Chapter 3.  At long residence times, 

an intermediate species from monochloramine decay would reduce PbO2 and enhance 

dissolution (Lin and Valentine 2008b). 

The conditions and results of all dissolution experiments are summarized in Table 

4.1.  Replicate experiments conducted at each condition were generally in agreement; the 

largest differences among replicates were for the lowest overall lead concentrations, 

which were near the limit of quantification for lead.  In the presence of DIC, the weighted 

averages of the pH (variation < 0.25 pH units) over the steady-state period used for rate 

calculations were within 0.22 pH units of the target value.  In the absence of DIC, the pH 

varied up to 0.5 pH units over the assigned steady-state period and caused significant 

upward or downward trends of effluent lead concentrations for some conditions.  The 

deviation of the weighted averages of the pH from the target value was also larger in the 

absence of DIC than in the presence of DIC.  Due to the variation in pH, the effluent lead 

concentrations were variable and the reactors may not have reached steady state.  

Consequently, the results from experiments in the absence of DIC were not used to 

examine the impact of phosphate on rates. 
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Table 4.1. Conditions and results of plattnerite dissolution experiments

 

 

Steady-State Net Lead
Effluent Equilibrium Release

Experiment DIC Orthophosphate Chloramine Measured Lead Lead Rate x 1010

ID pH (mg/L as C) (mg/L as P) (mg/L as Cl2) pH† (nM) (nM)‡ (mol/min·m2)
1A 7.5 50.0 0.0 0.0 7.62 83.8 23442 7.87
1B 7.5 50.0 0.0 0.0 7.68 82.7 23442 7.77

2A 8.5 50.0 0.0 0.0 8.36 41.5 2344 3.90
2B 8.5 50.0 0.0 0.0 8.42 59.9 2344 5.63

3A 7.5 50.0 1.0 0.0 7.72 70.9 23442 6.65
3B 7.5 50.0 1.0 0.0 7.70 62.1 23442 5.83

4A 8.5 50.0 1.0 0.0 8.50 24.7 2344 2.32
4B 8.5 50.0 1.0 0.0 8.55 13.1 2344 1.23

5A 7.5 50.0 0.0 2.0 7.30 77.5 NC 7.28
5B 7.5 50.0 0.0 2.0 7.58 57.2 NC 5.37

6A 8.5 50.0 0.0 2.0 8.53 14.0 NC 1.32
6B 8.5 50.0 0.0 2.0 8.52 17.6 NC 1.65

7A 7.5 50.0 1.0 2.0 7.66 16.4 NC 1.54
7B 7.5 50.0 1.0 2.0 7.65 15.4 NC 1.45

8A 8.5 50.0 1.0 2.0 8.52 16.2 NC 1.52
8B 8.5 50.0 1.0 2.0 8.53 18.2 NC 1.71

9A 7.5 0.0 0.0 0.0 7.58 2.0 2630 0.19
9B 7.5 0.0 0.0 0.0 7.52 11.6 2630 1.09

10A 8.5 0.0 0.0 0.0 8.57 5.7 123 0.53
10B 8.5 0.0 0.0 0.0 8.58 1.1 123 0.10

11A 7.5 0.0 1.0 0.0 7.20 17.2 2630 1.62
11B 7.5 0.0 1.0 0.0 7.11 31.2 2630 2.93

12A 8.5 0.0 1.0 0.0 8.68 8.4 123 0.78
12B 8.5 0.0 1.0 0.0 8.34 8.1 123 0.76

12A 7.5 0.0 0.0 2.0 7.30 36.9 NC 3.46
12B 7.5 0.0 0.0 2.0 7.58 8.5 NC 0.79

13A 8.5 0.0 0.0 2.0 8.85 1.4 NC 0.13
13B 8.5 0.0 0.0 2.0 8.69 1.6 NC 0.15

14A 7.5 0.0 1.0 2.0 7.42 15.5 NC 1.45
14B 7.5 0.0 1.0 2.0 7.45 14.6 NC 1.37
14C 7.5 0.0 1.0 2.0 7.64 15.4 NC 1.45

15A 8.5 0.0 1.0 2.0 8.44 8.3 NC 0.78
15B 8.5 0.0 1.0 2.0 8.07 7.8 NC 0.73

†The weighted average of the effluent pH during the steady-state period is indicated. 

‡ Equilibrium lead concentrations were calculated using MINEQL+ software.  NC = Not Calculated.  Equilibrium lead 
concentrations were not calculated for influents containing chloramines because of the uncertainty of the equilibrium 
constants for the associated reactions.

Influent Composition
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4.3.2 Equilibrium versus kinetic control of dissolved lead concentrations   

 The O2/H2O couple controls the oxidation reduction potential (ORP) of the 

PbO2 dissolution reaction in the absence of chloramines.  The relevant half reactions are:  

PbO2(s) + 4H+ + 2e- = Pb2+ + 2H2O     log K1 = 49.60    EH
0 = 1.46 V        (4.2) 

O2(aq) + 4H+  + 4e-  = 2H2O                         log K2 = 86.00    EH
0 = 1.27 V       (4.3) 

Therefore, the overall reaction and equilibrium constant are 

2H+ + PbO2(s) = Pb2+ + ½ O2(aq) + H2O     logK = 6.60                            (4.4) 
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                                                                  (4.5) 

The Pb2+ activity in equilibrium with plattnerite was calculated using Equation 4.5 

assuming 0.001 atm 
2OP (1.26 µmol/L dissolved oxygen).  The solution was purged with 

nitrogen immediately before it was pumped into the plastic bags, which should have 

decreased the dissolved oxygen concentration to below 1.26 µmol/L.  Therefore, the 

equilibrium dissolved Pb(II) concentration calculated for 
2OP  of 0.001 atm represents a 

lower bound.  The reductive dissolution of PbO2 produces O2, but the highest O2 

concentration that could be generated from the dissolution reaction at steady state was 

0.042 µmol/L.  The solution was so dilute that activity coefficients of solutes can be 

approximated as 1 and the values of solute activities are equal to their molar 

concentrations.  Based on the reactions in the Appendix, the dissolved Pb(IV) 

concentration is negligible compared to that of the dissolved Pb(II) species.  The 

equilibrium dissolved Pb(II) concentration is the sum of all dissolved Pb(II) species 

concentrations, which were calculated from the reactions and equilibrium constants in the 

Appendix. 



93 

 

The steady-state effluent lead concentrations were about two orders of magnitude 

lower than the predicted equilibrium lead concentrations for plattnerite solubility (Figure 

4.2).  The equilibrium solubility of hydroxylpyromorphite, which could have formed in 

the presence of phosphate, is lower than that of plattnerite at both pH 7.5 and 8.5.  At 

conditions with 1 mg P/L phosphate and in the absence of DIC, the final effluent 

concentrations during plattnerite dissolution were similar to the calculated equilibrium 

solubility of hydroxylpyromorphite, which suggests that hydroxylpyromorphite had 

precipitated.  Hydroxylpyromorphite would form by taking up lead released during 
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Figure 4.2. Steady-state and predicted equilibrium concentrations for plattnerite dissolution in 
the presence of 1 mg P/L phosphate.  Calculations are made for an assumption of equilibrium 
with 0.001 atm O2.  Lines indicate the predicted equilibrium concentration as controlled by the 
solubility of plattnerite (β-PbO2) or hydroxylpyromorphite (denoted as OHPy).  Points identify 
the steady-state effluent lead concentrations at specific water chemistry conditions.  
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plattnerite dissolution.  SEM showed the growth of small rod-shaped particles on the 

tetragonal plattnerite particles (Figure 4.3a) after 24 hours of reaction in the absence of 

DIC (Figure 4.3c); the sizes and shapes of these particles are consistent with 

hydroxylpyromorphite (Figure 4.3b).  Lytle and co-workers observed similar 

pyromorphite particles (< 50 nm) in the reaction of PbCl2 solution with dissolved 

phosphate (Lytle et al. 2009).  Although X-ray diffraction analysis could not detect 

hydroxylpyromorphite in these samples (Figure 4.4), the dissolution rates of plattnerite 

were too small to generate sufficient lead(II) for the precipitation of 

(a) (b) 

(c) 

100 nm 100 nm

100 nm

(d) 

100 nm

Figure 4.3.  SEM images of (a) plattnerite before reaction, (b) hydroxylpyromorphite, (c) 
solids after reaction at pH 7.5, 0 mg C/L DIC, 1 mg P/L phosphate, and 2 mg-Cl2/L 
monochloramine, and (d) solids after reaction at pH 8.5, 50 mg C/L DIC, 1 mg P/L 
orthophosphate, and 2 mg-Cl2/L monochloramine 
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hydroxylpyromorphite amounts ( < 0.17% of total lead by mass) that would be detectable 

by XRD.  

 

Figure 4.4. XRD of solids before and after reaction in the presence of orthophosphate for 
selected conditions.  Reference patterns for plattnerite (PDF# 01-071-4820) and 
hydroxylpyromorphite (PDF# 00-008-0259) are included. 
 

The equilibrium solubility of plattnerite and hydroxylpyromorphite are both 

higher in the presence of DIC due to the formation of lead carbonate complexes.  At 

conditions with 1 mg P/L phosphate and 50 mg C/L DIC, the steady-state concentrations 

did not reach the equilibrium concentrations of hydroxylpyromorphite (Figure 4.2) but 

phosphate still lowered the dissolution rates.   No secondary phases were observed 

following the reaction of plattnerite with phosphate in the presence of DIC (Figure 4.3d), 

which is consistent with the lead concentrations being undersaturated with respect to 

hydroxylpyromorphite (Figure 4.2).  Phosphate could still inhibit dissolution of 
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plattnerite by adsorbing to the plattnerite surface and blocking access of a reductant or of 

a carbonate ion needed to extract Pb(II) from surface.  Phosphate adsorption has also 

been shown to inhibit the dissolution of other metal oxides.  Adsorption to block a 

reductant may explain the inhibition of plattnerite dissolution by phosphate in the 

presence of hydroquinone (Shi and Stone 2009a).  Adsorbed phosphate present as 

binuclear surface complexes is particularly good at inhibiting both the reductive and 

nonreductive dissolution of iron(III) oxides (Bondietti et al. 1993; Stumm 1997).   

Overall, there are two mechanisms through which phosphate can inhibit the 

reductive dissolution of PbO2 (Figure 4.5).  Dissolution of PbO2 involves the reduction of 

Pb(IV) to Pb(II) at the surface of the solid followed by the release of Pb(II) to solution.  

In the presence of phosphate and in the absence of DIC, the formation of the lead(II) 

phosphate hydroxylpyromorphite limited lead release to solution (Mechanism A).  With 

both phosphate and DIC present, the inhibition of plattnerite dissolution was probably 

caused by the adsorption of phosphate to the plattnerite surface to block sites of reduction 

or dissolution (Mechanism B).  
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Figure 4.5.  Conceptual model of PbO2 dissolution showing different possible 
mechanisms and the potential role of phosphate. 
 

4.4. Conclusions 

 

Phosphate has been an effective lead corrosion inhibitor in water distribution 

systems.  The addition of phosphate significantly decreased the net rate of lead release 

from plattnerite by mechanisms of (a) precipitation of hydroxylpyromorphite and (b) 

adsorption to the plattnerite surface to block dissolution sites.  As little as 1 mg P/L 

phosphate was needed to significantly inhibit plattnerite dissolution.  Minimum effective 

doses may be even lower, and finding the optimal minimum dose can lower costs, reduce 

biofilm growth in distribution systems, and minimize needs for phosphate removal in 

wastewater treatment.  Because it acts at the surface, phosphate addition could be 

beneficial even when PbO2 is still the major component (by mass) of the materials of a 

pipe scale.  When considering phosphate addition, the full water composition should be 

considered.  The pH is still very important in controlling the lead concentration even 
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when phosphate is added.  If the pH decreases along with the addition of phosphate, then 

a higher lead release rate may result. 
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Appendix 

Table A-1. Equilibrium constants for aqueous species 
# Reaction Log K Source 

1 H2O  H+ + OH-  -13.998 MINEQL+

2 CO2(g) + H2O  H2CO3
* -1.459 MINEQL+

3 H2CO3
*  2H+ + CO3

2- -16.68 MINEQL+

4 HCO3
-  H+ + CO3

2-  -10.33 MINEQL+

5 Pb2+ + H2O  PbOH+ + H+ 
 -7.597 MINEQL+

6 Pb2+ + 2H2O  Pb(OH)2
0 + 2H+ 

 -17.12 Benjamin 

7 Pb2+ + 3H2O  Pb(OH)3
- + 3H+ 

 -28.06 Benjamin 
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8 Pb2+ + 4H2O  Pb(OH)4
2- + 4H+ 

 -39.70 Benjamin 

9 Pb2+ + CO3
2-  PbCO3

0  6.478 MINEQL+

10 Pb2+ + 2CO3
2-  Pb(CO3)2

2-  9.38 MINEQL+

11 Pb2+ + CO3
- + H+  PbHCO3

+  13.20 MINEQL+

12 2Pb2+ + 3H2O  Pb2(OH)3+ + H+ -6.397 MINEQL+

13 3Pb2+ + 4H2O  Pb3(OH)4
2+ + 4H+ -23.888 MINEQL+

14 4Pb2+ + 4H2O  Pb4(OH)4
4+ + 4H+ -19.988 MINEQL+

15 Pb4+ + 3H2O  PbO3
2- + 6H+ -23.06 Pourbaix 

16 Pb4+ + 4H2O  PbO4
4- + 8H+ -63.94 Pourbaix 

17 HOCl  OCl- + H+ -7.60 Benjamin 

18 HOCl + 2e- + H+  Cl- + H2O 50.20 Benjamin 

19 Pb2+  Pb4+ + 2e- -28.64 Benjamin 

20 O2(aq) + 4H+ +4e-  2H2O 86.00 Benjamin 

21 2H+ +2e-  H2(aq) 3.10 Benjamin 

22 NH2Cl + 2e- + 2H+  Cl- + NH4
+ 47.46 Switzer 

23 NH2Cl + H2O + 2e-  Cl- + OH- + NH3 23.39 Switzer 
Benjamin = (Benjamin 2002) 
MINEQL+ = (Schecher and McAvoy 1998b) 
Switzer = (Switzer et al. 2006) 
Pourbaix = (Pourbaix 1974) 
 

Table A-2.  Solubility products of selected lead solids   
# Solid Reaction Log K Source 

24 Massicot PbO(s) + 2H+  Pb2+ + H2O 12.91 MINEQL+ 

25 Litharge PbO(s) + 2H+  Pb2+ + H2O 12.72 MINEQL+ 

26 Pb(OH)2(s) Pb(OH)2(s) + 2H+  Pb2+ + 2H2O 12.40 Stumm & 
Morgan 

27 Cerussite PbCO3(s)  Pb2+ + CO3
2-  -13.13 Benjamin 

28 Hydrocerussite Pb3(CO3)2(OH)2(s) + 2H+  3Pb2+ + 
2CO3

2- + 2H2O  -18.77 MINEQL+ 

29 Pb3(PO4)2(s) Pb3(PO4)2(s)  3Pb2+ + 2PO4
3- -44.50 Benjamin 

30 PbHPO4(s) PbHPO4(s) Pb2+ + PO4
3- + H+  -37.80 MINEQL+ 
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31 Hydroxyl-
pyromorphite 

Pb5(PO4)3OH(s) + H+  5Pb2+ + 
3PO4

3- + H2O  -62.79 MINEQL+ 

32 Plattnerite PbO2 (s)+ 4H+ +2e-  Pb2+ +2H2O 49.60 MINEQL+ 

33 PbO2 Pb(IV)O2(s) + 4H+   Pb4+ + 2H2O -8.26 Pourbaix 
Benjamin = (Benjamin 2002); MINEQL+ = (Schecher and McAvoy 1998b); Stumm & 
Morgan = (Stumm and Morgan 1996); Pourbaix = (Pourbaix 1974) 
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Chapter 5. Role of water chemistry, stagnation time, and flow 

in lead release from pipe scales 

 

Results of this Chapter have been submitted to Journal of American Water Works 

Association 

Abstract 

Lead release from pipe scales was investigated under different water chemistries, 

stagnation times, and flow velocities.  Pipe scales were developed on lead pipes by 

conditioning the pipes with water containing free chlorine.  After eight months of 

conditioning, the scales contained lead(IV) oxides and the lead(II) carbonate 

hydrocerussite.  Water chemistry and the composition of the pipe scales are two key 

factors in lead release from pipe scales.   The water in contact with pipe scales rarely 

reached equilibrium with lead corrosion products within one day, which makes solid-

water contact time and dissolution rates of corrosion products the controlling factors of 

lead concentrations.  Among five water chemistries that can affect lead concentrations, 

only a solution with orthophosphate was able to control the lead concentration below the 

action level.  Flow can increase both dissolved and particulate lead release rates by 

accelerating the mass transfer of lead out of the pores in the pipe scales and physically 

destabilizing pipe scales.  Dissolved lead comprised the majority of the lead released at 

stagnant and laminar flow conditions. 
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5.1.  Introduction 

Lead concentrations in tap water are regulated by the Lead and Copper Rule, 

which set an action level of 15 µg/L for lead [1].  A recent study found that 50-75% of 

total lead in tap water can be attributed to lead release from lead service lines, while 25-

30% can be contributed from premise piping [2].  Lead corrosion products that form 

scales on the interior pipe wall are in direct contact with water and control lead leaching 

to water [3].  Because lead release is controlled by reactions with corrosion products and 

not the elemental lead in the pipes, studies that use new lead pipes can not simulate the 

lead release expected in actual systems [4].  Conditioning of new lead pipes to develop 

corrosion products or using lead pipe sections removed from actual distribution systems 

provides more realistic solid phases for assessing lead release from pipe scales [5, 6].   

Lead release from lead pipes is influenced by stagnation time, flow velocity, and 

water chemistry.  The stagnation time was found to substantially affect lead release from 

pipes, with most of the release occurring within the first 24 hours [7].  Schock pointed out 

that lead concentrations rarely reach equilibrium in distribution systems (Schock, 1989).  

The dissolution rates of corrosion products and stagnation time can be more important 

than equilibrium in controlling the lead concentrations in tap water [8]. 

Flow velocity can influence erosion mechanisms of corrosion products and can 

affect the development of pipe scales [9].  At stagnant conditions, immobile water inside 

or adjacent to porous scales contains high concentrations of solutes and is not well mixed 

with bulk water, which may limit lead release rates and the lead concentrations [10].  At 

flow conditions, lead release can be accelerated because of enhanced mass transfer rate of 

lead from the immobile water in the porous pipe scales to the mobile bulk water in the 
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pipes.  Lead-rich particles could also detach from pipe scales during flow and contribute 

significantly to the total lead concentration [11].  

With respect to water chemistry, disinfectants, dissolved inorganic carbon (DIC), 

pH, and phosphate inhibitors are important parameters in controlling lead concentrations 

in tap water.  Free chlorine and chloramines are commonly used residual disinfectants.  

Free chlorine can oxide Pb(II) to PbO2, but chloramines cannot [12].  Therefore, PbO2 

has been found only on lead pipes of distribution systems with a history of free chlorine 

usage [13].  The dissolution of PbO2 would be accelerated if the residual disinfectant is 

switched from free chlorine to chloramines [14].  A switch of disinfectants, as may be 

done to limit disinfection byproduct formation, can influence lead concentrations in tap 

water.   The incident of high lead concentrations in Washington D.C. from 2001-2004 is 

an example of increased lead release following a switch from free chlorine to 

chloramines [15, 16]. 

The effect of carbonate, which is related to pH and alkalinity, on lead release 

depends on the specific lead corrosion products present in the pipe scales.  Lead 

carbonate solids, such as cerussite (PbCO3) and hydrocerussite (Pb3(CO3)2(OH)2), have 

been found in lead pipe scales [17].  Initial increases in  DIC can lower the solubility of 

these lead carbonate solids, although further increases in DIC can actually enhance their 

solubility by forming soluble lead carbonate complexes [18].  If PbO2 or 

hydroxylpyromorphite (Pb5(PO4)3(OH)) is the dominant lead corrosion product, then 

carbonate from DIC can enhance the lead release from pipes scales by forming soluble 

lead carbonate complexes [8, 19].   
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The pH effect on lead release is connected with the effect of DIC and depends on 

the specific corrosion product in pipe scales.  Increasing pH from near neutral generally 

lowers the lead release rates from hydrocerussite and PbO2 at high DIC levels, while 

increasing pH from 8.5 to 10 may slightly enhance the lead release rates from 

hydrocerussite and PbO2 at low DIC levels [8, 20].  In a study of hydroxylpyromorphite 

dissolution, the dissolution rate was lower at pH 8.5 than at pH 7.5 or 10.0, which 

parallels the trends in the equilibrium solubility of hydroxylpyromorphite [19].   

Orthophosphate have been used as a lead corrosion inhibitor to maintain lead 

concentrations below the action level in water utilities.  Orthophosphate has been 

demonstrated to inhibit lead release from new pipes [5].  The effect of orthophosphate is 

believed to result from the precipitation of lead phosphate solids, such as 

hydroxylpyromorphite, and hydroxylpyromorphite has been identified in some pipe 

scales [21].  The precipitation of hydroxylpyromorphite dramatically decreased the net 

lead release rate during hydrocerussite dissolution in solutions with orthophosphate [20].  

Zinc orthophosphate has the same effects as sodium orthophosphate or phosphorus acid 

[22].  Orthophosphate concentrations higher than 0.4 mg/L have been observed to be 

effective in controlling lead concentrations [23].  

In this study, lead corrosion products that developed as scales on lead pipe in the 

presence of free chlorine were identified and characterized.  The roles of water chemistry, 

solid-water contact time, and flow on lead release from the pipe scales were then 

evaluated.  Mechanisms of dissolved and particulate lead release were proposed for 

different water chemistries.   
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5.2.  Experimental Section 

5.2.1. Development of pipe scales.   

Corrosion products were developed on the interiors of new lead pipes.  Three 24-

inch long new lead pipe were reacted with solutions designed to promote the formation of 

lead(IV) oxides.  The lead pipes were fixed at an inclined angle of 20° in a holding rack.  

The pipes were filled with an aqueous solution at pH 10 with 10 mg C/L DIC and 3.5 

mg/L free chlorine, kept stagnant for a day, and then emptied.  The filling and emptying 

procedure was repeated daily (five days per week) for eight months of conditioning.  

Effluent samples were collected for analysis once every week with the exception of the 

first month, during which samples were collected daily (five days per week). For these 

samples the pH and concentrations of residual chlorine and dissolved lead were 

measured.   

At the conclusion of the conditioning period, one pipe was used for 

characterization of the pipe scale.  The pipe cross-section and interior wall were prepared 

for imaging.  A 2 inch section of the pipe was filled with epoxy to retain the pipe scale 

before a cross-section was cut and polished.  The pipe cross-section was imaged using 

scanning electron microscopy (SEM) to see the layers and thickness of the pipe scale.  A 

12 inch section of the pipe was cut lengthwise to visually observe the scale that 

developed on the insides of the pipes.  The scale materials were then gently scraped off 

with a metal spatula.  The crystalline phases in the pipe scales were identified with X-ray 

diffraction (XRD), and the size and morphology of the scale particles were determined 

with SEM.   



108 

 

5.2.2. Lead release experiments from pipe scales.   

Duplicate lead release experiments were conducted using the two pipe sections 

that were not used for characterization.  Experiments examined the effects of water 

chemistry, stagnation time, and flow on lead release from the pipes (Table 5.1).  These 

experiments examined the release of lead from pipe scales in response to a change in the 

water chemistry relative to the condition with which the scales had acclimated during 

conditioning.   

Before conducting lead-release experiments, the pipes were reconditioned for 2 

weeks because they had been stored between the initial 8-month conditioning period and 

the time of the release experiments.  The tests with different experimental conditions 

were sequenced to avoid altering the pipe scales.  Experiments with flow were conducted 

after stagnation time experiments to avoid potential problems of physically disturbing the 

scales.  To recondition the pipes between experiments and provide a uniform starting 

point, they were filled and contacted for 1 day with an aqueous solution with the same 

composition as the original conditioning solution. 

 

 

 

 

 

 

 

  



109 

 

Table 5.1. Factors evaluated in experiments with pipe reactors 
Factor Conditions Evaluated Application to Investigation 

water 
chemistry 

pH 

DIC 

(mg 
C 

/L) 

Cl2 
(mg/L) 

NH2Cl 

(mg/L 
as Cl2) 

PO4
3- 

(mg/L 
as P) 

Represent five water 
chemistries that may affect lead 

release from corrosion 
products. 

10 10 0 0 0 

10 10 2 0 0 

10 10 0 2 0 

8.5 50 0 0 0 

7.5 10 0 0 1 

stagnation 
time 0, 1, 2, 4, 8, 24 hours 

Stagnation time can control the 
dissolved lead concentration in 

household plumbing. 

flow 
velocity 0, 0.1 m/s 

Flow may mechanically 
degrade pipe scales and 

accelerate the mass transfer of 
dissolved lead out of porous 

pipe scales. 

 

For evaluation of the effect of stagnation time, the water in the pipe section was 

sampled after the prescribed periods through valves at the bottom of the pipes.  The pH of 

the solution was measured, and the water collected was split into filtered (0.02 µm 

polyethersulfone membrane) and unfiltered samples.  Filtered samples were analyzed for 

dissolved lead, orthophosphate, and free chlorine or monochloramine concentrations.  

Unfiltered samples were analyzed for total lead and orthophosphate concentrations.  

Before analysis of dissolved and total lead and phosphorus, samples were acidified to 2% 

nitric acid.   
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For evaluation of the effect of flow, fresh solution of the desired chemistry was 

recirculated through the pipe sections at a flow velocity of 0.1 m/s, which gave a 

Reynolds number of 953 and was in the laminar flow regime.  In actual distribution 

systems, both laminar and turbulent flow regimes are possible.  The pipe reactor system 

consisted of a 1.15 L reservoir that had the target water chemistry, a lead pipe with a 

volume of 250 mL, and a peristaltic pump that provided flow through the system.  

Effluent samples were collected after one and two hours of recirculation for analysis of 

pH and concentrations of dissolved and total lead, free chlorine, monochloramine, and 

orthophosphate.  Only for the high orthophosphate condition, the recirculation time was 

extended to 24 hours with sampling at 4 and 24 hours.  The recirculation experiments 

were conducted to assess the impact of flow on lead release rates; however, the 

configuration of water recirculation through a pipe section is not representative of the 

flow path through an actual lead service line.  Two hours of recirculation allow much 

more extensive lead release than could occur during the much shorter contact time of 

water flowing through a pipe section without recirculation.  The only exception to more 

extensive lease release during recirculation would occur if the dissolution rate was 

sufficiently fast to closely approach equilibrium at both the short contact time during 

once-through flow and the longer contact times of recirculation.  

 

5.2.3. Analytical methods.   

Dissolved concentrations of lead and phosphorus were determined by inductively 

coupled plasma mass spectrometry (ICP-MS). The ICP-MS has an instrument detection 

limit of 9 ppt (ng/L) and a method detection limit of 50 ppt (ng/L) for lead.  The pH of 
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solutions was measured with a glass pH electrode and pH meter.  Free chlorine and 

monochloramine concentrations were measured using the standard DPD colorimetric 

method [24].  A scanning ultraviolet/visible spectrophotometer was used for analysis.  

XRD was performed on an instrument that uses Cu-Kα radiation and has a vertical 

goniometer and a scintillation counter.  A field emission scanning electron microscope 

was used to view the size and morphology of the solids.   
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5.3. Results and Discussion 

5.3.1. Water chemistry during development of pipe scales 

During the first 10 days of the conditioning period, the total lead concentration of 

the water in the pipes after one day of stagnation initially increased to more than 500 

µg/L (Figure 5.1a-c).  The lead concentration dropped significantly after this initial 

period, and for the remaining 230 days it was stable around 50 µg/L.  The pH increased 

from the initial value of 10 to 11 and then dropped back to 10 during the first two weeks.  

The residual chlorine concentration after one day of contact was always in the range of 0 

to 1 mg/L as Cl2, which indicates consumption of free chlorine from reaction with the 

lead pipe.  The residual chlorine concentration was close to 0 during the first 10 days.  

After 10 days, it increased from 0 to 0.5 mg/L as Cl2 and then fluctuated around 0.5 mg/L 

as Cl2. 
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Figure 5.1. Evolution of (a) lead concentration, (b) residual free chlorine concentration, 
and (c) pH in three lead pipes during eight months of conditioning.  The initial pH and 
free chlorine concentration of the filling solution are indicated by the dashed lines. 
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5.3.2. Characterization of lead pipe scales   

The interior wall of an eight-month conditioned pipe had red islands in a white 

and red background (Figure 5.2).  The reddish color in the ends and the islands of the 

pipe is characteristic of lead(IV) oxides [25]. 

XRD analysis of the scale materials (Figure 5.3) showed that the red islands and 

end sections contained the lead(IV) oxides scrutinyite and plattnerite, but the major 

component of the scale was hydrocerussite.  Very little lead(IV) oxide was identified in 

other areas.  In the presence of 3.5 mg/L as Cl2 free chlorine, equilibrium calculations 

predict that lead(IV) oxide should be the only lead phase.  However, the metallic lead of 

the pipe is oxidized first to lead(II) before reaching the lead(IV) state.  Since 

hydrocerussite is the predicted Pb(II) phase at pH 10 and 10 mg/L DIC, hydrocerussite 

formed before any lead(IV) oxide was produced.  The production of lead(IV) oxides on 

the pipes may be limited by the rate of reaction with free chlorine and by the once daily 

resupply of free chlorine.  Previous research has observed the coexistence of lead(II) and 

lead(IV) phases in pipe scales, and layers of different corrosion products can develop in 

Figure 5.2. Inside of 12 inch section of pipe that had been conditioned for eight months 
with a solution of pH 10, 10 mg/L DIC, and 3.5 mg/L free chlorine. 

Hydrocerussite PbO2 PbO2 
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pipe scales [26].  Elemental lead peaks were found in most patterns because portions of 

unaltered pipe were scraped off while collecting materials of the pipe scale. 

 

Figure 5.3. X-ray diffraction patterns of pipe scale formed after conditioning for eight 
months.  The reference patterns of scrutinyite (S), hydrocerussite (H), plattnerite (P), and 
elemental lead (L) are included for comparison.  The peaks of the sample patterns 
corresponding to different phases are noted. 
 

Electron micrographs of the pipe scale particles and the cross section of the pipe 

scale are shown (Figure 5.4).  The pipe scale contains large platy particles and aggregates 

of smaller tiny particles.  The large particles are hydrocerussite, which usually forms with 

a platy shape [27].  The smaller particles are probably plattnerite and scrutinyite.  The 

larger particles are more abundant than the aggregated smaller particles, which is 

consistent with the predominance of hydrocerussite in the XRD patterns.  The pipe scale 
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was about 24 µm thick and had gaps and pores that would allow water infiltration.  

Materials of different shapes in different regions were indicative of layers.   

 

 

 

 

 

 

Figure 5.4. Electron micrographs of a) particles in the pipe scale and b) cross section of 
pipe surface with development of corrosion products.  In the cross section, unaltered lead 
pipe is visible on the left and the epoxy used to fill the pipe prior to cutting and polishing 
is on the right.   
 

5.3.3. Effects of water chemistry on dissolved lead concentrations in pipes 

 When the conditioned pipes were contacted with five different solutions in 

stagnation experiments, the solution with orthophosphate yielded the lowest dissolved 

lead concentration (Figure 5.5a).  Orthophosphate effectively controlled the dissolved 

lead concentration below the 15 µg/L action level for the first 8 hours of the stagnation 

experiments, but the dissolved lead concentration after 24 hours exceeded the action 

level.  The experiment with the high DIC solution had the highest dissolved lead 

concentration.  Dissolved lead concentrations in solutions with high pH, 

monochloramine, or free chlorine were in between.  The impact of the residual 

disinfectant can be assessed by comparing lead release in these three solutions, which are 

all at pH 10 with 10 mg/L DIC.   The dissolved lead concentrations decreased from 

b) a) 

1 µm 
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monochloramine to no disinfectant to free chlorine.  Similar trends were observed for 

flow experiments (Figure 5.5b). 

 

Figure 5.5. Effects of reaction time and water chemistry on the dissolved lead released 
from pipe scales in (a) stagnation and (b) flow experiments.  Error bars represent one 
standard deviation of duplicate experiments.  Although the points in panel b are slightly 
staggered to avoid overlap in the plot, the reaction times shown for all five water 
conditions are for 1.0 hour and 2.0 hours. 
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 The dissolved lead concentrations kept increasing with time in stagnation and 

flow experiments, except in the first 8 hours when orthophosphate was present, which 

indicates that the water in the pipes had not reached equilibrium with the pipe scales 

(Figure 5.5).  Therefore, the dissolved lead concentrations in both stagnation and flow 

experiments without orthophosphate were controlled by the dissolution rates and not by 

the equilibrium solubility of the corrosion products. 

The effects of water chemistry on lead release from pipe scales were consistent 

with the effects of water chemistry on dissolution of individual lead corrosion products.  

Orthophosphate can decrease the net lead release from lead(II) carbonates by forming 

lead phosphate precipitates [20], and in the present experiments the solutions containing 

orthophosphate had the lowest dissolved lead concentrations.  Increasing DIC from 10 to 

50 mg/L can enhance dissolution of hydrocerussite and PbO2 by forming soluble Pb(II) 

carbonate complexes, and decreasing the pH from 10 to 8.5 could also enhance 

dissolution of hydrocerussite and PbO2 [8, 18].  Switching from 10 mg/L DIC at pH 10 to 

50 mg/L DIC at pH 8.5 increased the dissolution rates of hydrocerussite and PbO2 and 

resulted in the highest lead release observed in this study.  Free chlorine can raise the 

redox potential and inhibit PbO2 dissolution, and it can oxidize Pb(II) released from 

hydrocerussite to PbO2.  Monochloramine increased lead concentrations relative to the 

solution without disinfectant; the effect of monochloramine was probably caused by the 

reduction of PbO2 by an intermediate species produced during monochloramine decay 

[14].  

The pH was stable and did not vary more than 0.5 pH units except after 24 hours 

of stagnation in the experiments with orthophosphate solution (Figure 5.6).  Therefore, 
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the observed effects of water chemistry on the lead release cannot be attributed to the 

changes in pH during experiments.  After 24 hours of reaction in the orthophosphate 

solution, the dissolution of lead corrosion products and precipitation of lead phosphate 

solids had increased the pH from 7.5 to 8.7.   

 Figure 5.6. The pH profile during stagnation and flow experiments in Pipe 2 and Pipe 3.   

 

5.3.4. Effects of water chemistry on particulate lead concentrations in pipes   
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charged at pH > 7 [28], and phosphate adsorption to lead corrosion products in the pipe 

scales can change the surface charge of the particles.  The increased negative surface 

charge from phosphate adsorption can cause stronger electrostatic repulsion between 

particles, which consequently could have destabilized the aggregates and mobilized small 

particles.  The precipitation of lead phosphate solids may also contribute to the particulate 

lead in the presence of orthophosphate, and this possibility is discussed more in a later 

section.   



121 

 

  

Figure 5.7. Effects of reaction time and water chemistry on the particulate lead 
concentrations released from pipe scales in (a) stagnation and (b) flow experiments. Error 
bars represent one standard deviation of the duplicates.  Although the points in panel b 
are slightly staggered to avoid overlap in the plot, the reaction times shown for all five 
water conditions are for 1.0 hour and 2.0 hours. 
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5.3.5. Effects of flow on lead release rates from pipe scales   

The average lead release rate (mol s-1 or µg h-1) over a prescribed period can be 

determined using Equation 5.1, in which Cs is the dissolved or particulate lead 

concentration, V is the volume of the pipe system, and trxn is the time for reaction 

between the water and pipe scale.  For stagnation experiments, V is the volume of water 

in the pipe; while for experiments with recirculating flow, V is the total volume of the 

pipe and the reservoir.  

 

•
= s

measured
rxn

C V
R

t                  (5.1) 

 

Dissolved lead.  The dissolved lead release rates in flow experiments were one order of 

magnitude higher than in stagnation experiments (Figure 5.8a).  Flow probably enhanced 

dissolved lead release rates by accelerating mass transfer of dissolved lead out of porous 

scales .  A recent experimental study has shown that immobile water inside porous pipe 

scales is not well mixed with bulk water.  The immobile water contains high solute 

concentrations released from scales, and it mixes much better with the bulk water at flow 

conditions [29].  In Appendix 5A, better mixing at flow conditions than stagnant 

conditions has been proven to cause higher lead release rates in terms of accelerating the 

mass transfer of lead in the immobile water to bulk water . 

Although the flow condition yielded higher lead release rates than the stagnant 

condition, the recirculation configuration has a much longer reaction time than the once-

through configuration of an actual distribution system.  If the flow were in a once-

through configuration, the calculated dissolved lead concentrations from a 24-inch pipe 

section based on the lead release rates determined in the present study and the reaction 
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time range from 0.08 to 0.3 µg/L, which is far less than the dissolved lead concentration 

after stagnation for 1 hour (8-25 µg/L).  So although lead release rates are higher with 

flow, the dissolved lead concentrations reached in pipe sections will still be higher during 

stagnation. 

 

Particulate lead.  The particulate lead release rates at flow conditions were also about 

one order of magnitude higher than at stagnation conditions (Figure 5.8b).  Flow could 

mechanically or chemically destabilize the pipe scales and mobilize particles in the scales 

at the first few hours.  There was more fluctuation in particulate lead concentrations than 

in dissolved lead concentrations. 
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Figure 5.8. Effects of flow on (a) dissolved and (b) particulate lead release rates from 
scales over the first 2 hours of experiments.  Error bars represent one standard deviation 
of the duplicates. 
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5.3.6. Effects of stagnation time on dissolved lead release rates from pipe scales  

For all five solutions, the dissolved lead release rates were highest during the first 

2 hours (Figure 5.9).  The dissolved lead release rates decreased from 2 hours on.  The 

decreasing lead release rates could be caused by (a) accumulation of dissolved lead and 

approaching equilibrium or (b) fast initial dissolution of very small particles or labile 

surface phases.  Faster initial dissolution than later steady-state dissolution of pure PbO2 

has been observed previously in flow-through experiments [8]. 

 

Figure 5.9. Effects of stagnation time on dissolved lead release rates from pipe scales in 
stagnation experiments.  Error bars represent one standard deviation of the duplicates. 
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10% of the total lead in solutions without phosphate.  For solutions with phosphate, 

particulate lead accounted for 49% of the total lead. 

In flow experiments, the majority of the released lead was also dissolved except in 

the experiment with orthophosphate (Figure 5.10b).  Particulate lead made up less than 

5% of the total lead in high DIC, free chlorine, and monochloramine solutions.  For 

solutions with phosphate, particulate lead was 46% of the total lead.  In the high pH 

solution without disinfectant, 13% of the total lead was present as particulate. 

 

 

Figure 5.10. Lead profile of 2-hour samples in (a) stagnation and (b) flow experiments. 
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5.3.8. Orthophosphate case   

The solution with orthophosphate controlled dissolved lead concentrations below 

the action level for the first few hours, and the trends of orthophosphate and dissolved 

lead provide insights into the mechanism of the orthophosphate effect.  In both stagnation 

and flow experiments, the decreasing trend of phosphate correlated with an increasing 

trend of dissolved lead (Figure 5.11a-b).  Before the phosphate concentration dropped 

below 100 µg/L, the dissolved lead concentration did not reach 20 µg/L, which is close to 

the solubility of hydroxylpyromorphite in the presence of 0.3 mg/L orthophosphate as P 

at the pH and DIC of the experiment.  The precipitation of hydroxylpyromorphite 

probably controlled the dissolved lead concentration until the orthophosphate was 

depleted below a critical level.    

The precipitation of hydroxylpyromorphite probably contributed to the particulate 

lead release, which made the total lead release in the presence of orthophosphate as high 

as and higher than in other solutions (Figure 5.10).  The particulate lead release in the 

presence of orthophosphate could cause potential water safety issues, although lead 

solids, especially lead phosphates, are less bioavailable than dissolved lead [30, 31].  
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Figure 5.11. Dissolved lead and orthophosphate concentrations in high orthophosphate 
solution during (a) stagnation and (b) flow experiments.  Data are shown for duplicate 
experiments. 
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chlorine concentrations higher than 1 mg/L as Cl2 were able to maintain low lead levels.  

The stagnation time affects the disinfectant levels in distribution systems and 

consequently the lead concentrations.  Free chlorine levels will also vary with water age 

in a distribution system, and the most distant connections may be most vulnerable to lead 

release because of lowered residual free chlorine concentrations. 

 

 

Figure 5.12. Dissolved lead and free chlorine concentrations in solution with free chlorine 
during stagnation experiments.  Results are shown for both duplicate experiments. 
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PbO2.  Orthophosphate concentrations higher than 0.3 mg P/L were necessary to maintain 

the dissolved lead concentration below the action level, although orthophosphate did 

increase particulate lead.   For pipe scales consisting of hydrocerussite (major) and PbO2 

(minor), solutions with and without disinfectant at pH 10 and DIC 10 mg/L and a solution 

at pH 8.5 with DIC 50 mg/L were not effective in controlling the dissolved lead 

concentrations below the action level.  A switch of disinfectant from free chlorine to 

monochloramine increased the lead release in stagnation experiments. 

Laminar flow accelerated both dissolved and particulate lead release rates from 

pipe scales.  Stagnation time and dissolution rate control the dissolved lead 

concentrations within 1 day in the absence of orthophosphate, since equilibrium is not 

reached.  Stagnation time also influenced the dissolved lead concentration by affecting 

the concentrations of residual disinfectant or orthophosphate.  The total lead 

concentration was primarily dissolved lead under both no-flow and laminar flow 

conditions.   
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Appendix 5A.  Models of lead release from pipe scales 

1. Introduction 

 

Previous studies provided qualitative analysis of water chemistry effects on the 

dissolved lead concentrations released from pipes [1-6].  Quantitative prediction of 

dissolved lead concentrations in pipes has been developed using an equilibrium model 

based on the lead corrosion products present in pipe scales.  However, dissolved lead 

concentrations are often not in equilibrium with the lead corrosion products at normal 

solid-water contact times of seconds to hours [7].  Therefore, for non-equilibrium 

conditions equilibrium concentrations cannot accurately predict dissolved lead 

concentrations in pipes.   

 

Methods for predicting lead release rates from pipes have been pursued and are 

still being developed.  In 1983, Kuch and Wagner proposed two mass transfer models to 

fit lead concentrations in drinking water at turbulent and stagnant conditions [8].  In 

Lytle and Schock examined the effectiveness of the diffusion model developed by Kuch 

and Wagner in predicting lead and copper release at various stagnation times [9].  In 

Van Der Leer et al developed an exponential model and proposed the idea of combining 

the exponential model or the diffusion model with flow models, such as no-flow, 

laminar-flow, and turbulent-flow conditions [10].  Cardew extended the diffusion model 

with a convection term and applied it to laminar flow conditions [11].  Previous models, 

except the exponential model, assumed that equilibrium lead concentrations were reached 

at the pipe walls as a boundary condition.  When the dissolution reaction is rate limiting, 
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dissolution rates rather than equilibrium need to be used set the boundary condition.   

Although the exponential model used a mass transfer rate, which has a similar impact as 

using a dissolution rate, the mechanistic rationale for using such a mass transfer rate was 

not explained [10]. In Kuch and Wagner’s diffusion model for stagnant conditions, an 

additional mass transfer coefficient was used to fit the data based on the assumption that 

there could be a secondary layer of iron or manganese oxides on top of the lead corrosion 

product layer [8].  However, the assumption can only be valid when there is experimental 

evidence of a secondary top layer.  The mass transfer models are all based on lead acting 

as a single species from a uniform source, whereas lead actually dissolves from different 

lead corrosion products in pipe scales.   

 

In this chapter, mass transfer models incorporating dissolution rates as well as 

diffusion are developed and compared to predict lead release rates from pipe scales for 

stagnant and flow conditions.  Lead release from pipe scales is predicted using the 

dissolution rates of individual lead corrosion products in pipe scales at different water 

chemistry conditions.  The type, concentration, and surface area of two pipe scale 

components, PbO2 and hydrocerussite, were considered in the proposed model to predict 

the lead release rates.  The model also accounts for the impact of water chemistry for the 

calculation of dissolution rates.    
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2. Models of dissolved lead release from pipe scales 

 

 

Figure 5A-1. Conceptual diagram of lead release from pipe scales.  The parameters 

shown in the diagram are listed in Table S1 of the Supporting Information. 

 

Figure 5A-1 illustrates the dissolution and precipitation reactions and mass 

transfer involving lead in a lead pipe.  Dissolved lead release from pipe scales can be 

viewed as dissolution of lead corrosion products in pipe scales.  Inside the lead pipe, lead 

is first dissolved from corrosion products (PbO2 and hydrocerussite) in the pipe scales, 

and then it diffuses to the bulk water.  The dissolved lead can also precipitate and be 

removed from solution.   

 

A reversible dissolution-precipitation reaction ܤܣሺ௦ሻ ฻ ܣ ൅  includes a forward ܤ

reaction (dissolution) and a backward reaction (precipitation).  The dissolution and 

precipitation reactions can be written as: 

Dissolution:                                          ܤܣሺ௦ሻ
௞బ՜ ܣ  ൅  ܤ

r

Pb(IV)O2,  Pb3(CO3)2OH2
Lead Pipe (Pb0)

Pb2+

d

L

R

u

Rpptn
C = Ceq @ r = R

1. Reaction-limited

Rdiss

C = Ceq

r
r = R

C
2. Diffusion-limited
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Precipitation:                                        ܣ ൅ ܤ
௞భ՜  ሺ௦ሻܤܣ

Where ݇଴ and ݇ଵ are the dissolution and precipitation rate constants, respectively.  The 

dissolution rate (RATEd) can be derived from the rate constant 

ௗܧܶܣܴ  ൌ ݇଴ · ܣܵܵ · ሾݏ݈݀݅݋ݏሿ                                                                               ሺ1ሻ 

Where SSA is the specific surface area of the dissolving solid, and [solids] is the solid 

content in the solution ( ௠ೞ೚೗೔೏ೞ
௏ೞ೚೗ೠ೟೔೚೙

ሻ. The precipitation rate can be written as  

௣ܧܶܣܴ  ൌ ݇ଵ · ሼܣሽ · ሼܤሽ                                                                             ሺ2ሻ   

At equilibrium, the forward dissolution rate should be equal to the backward precipitation 

rate.  Therefore, 

݇଴ · ܣܵܵ · ሾݏ݈݀݅݋ݏሿ ൌ ݇ଵ · ሼܣሽ௘௤ · ሼܤሽ௘௤                                                       (3) 

݇ଵ

݇଴ · ܣܵܵ · ሾݏ݈݀݅݋ݏሿ ൌ
1

ሼܣሽ௘௤ · ሼܤሽ௘௤
                                                                        ሺ4ሻ 

Therefore, the net rate of release from the solid (ܴܧܶܣ௧௢௧) is:  

௧௢௧ܧܶܣܴ ൌ ௗܧܶܣܴ െ ௣ܧܶܣܴ ൌ ݇଴ · ܣܵܵ · ሾݏ݈݀݅݋ݏሿ െ ݇ଵ · ሼܣሽ · ሼܤሽ

ൌ ݇଴ · ܣܵܵ · ሾݏ݈݀݅݋ݏሿ · ቆ1 െ
݇ଵ · ሼܣሽ · ሼܤሽ

݇଴ · ܣܵܵ · ሾݏ݈݀݅݋ݏሿቇ

ൌ ݇଴ · ܣܵܵ · ሾݏ݈݀݅݋ݏሿ · ቆ1 െ
ሼܣሽ · ሼܤሽ

ሼܣሽ௘௤ · ሼܤሽ௘௤
ቇ                                ሺ5ሻ 

For undersaturated conditions, ܴܧܶܣ௧௢௧ is greater than zero because the precipitation rate 

is smaller than the dissolution rate.  

 

In the lead release experiments, lead dissolves from PbO2 and hydrocerussite in 

pipe scales, and the dissolution/precipitation reactions follow the same relationship 

assuming that the precipitation reaction is first order to lead and dissolution is first order 
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with respect to surface area.  If the anions that are precipitating with lead are abundant 

with respect to dissolved lead, then Equation 5 can be simplified as: 

௧௢௧ܧܶܣܴ ൌ ݇଴ · ܣܵܵ · ሾݏ݈݀݅݋ݏሿ · ቆ1 െ
ሼܾܲሽ

ሼܾܲሽ௘௤
ቇ                                               ሺ6ሻ 

The fact that the lead concentrations are on the order of 10-7 mol/L and other anions, such 

as carbonate, are on the order of 10-3 mol/L validates the assumption of abundant anions.  

Equation 6 is a classic rate model for dissolution and precipitation that has been 

employed in many dissolution/precipitation studies, including investigations of PbO2 

dissolution (Chapter 2) [12, 13]. 

 

In a pipe, dissolution is assumed to occur at the pipe wall where most lead solids 

are.  Precipitation could occur anywhere in the pipe system.  By assuming precipitation as 

a first order reaction, the precipitation rate is generally higher at positions close to pipe 

wall than at the center of the pipe since lead concentration is higher when closer to pipe 

wall.  Therefore, the precipitation term accounted for the heterogeneity of the 

precipitation reaction in the solution. 

 

Inside the pipe, the general mass balance equation for lead can be written as: 

pptn
C ( C V*) ( J*) R
t

∂
= − ∇ ⋅ − ∇ ⋅ −

∂
                                      (7) 

Where C (mol/L) is the dissolved lead concentration, t (s) is the time, V* is the 

vector of velocity, and J* is the vector of flux of lead from pipe scales, and pptnR is the 

rate of precipitation of any lead-containing solid.  In this equation, C
t

∂
∂

 is the net rate of 
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accumulation of dissolved lead in moles per unit volume, ( C V*)− ∇ ⋅  is the rate of 

addition by convection, ( J*)− ∇ ⋅  is the rate of addition by diffusion. 

 

Before proceeding to the specific models, the characteristic times for convection, 

diffusion, and reaction are compared.  Such a comparison can help to distinguish which 

process is rate-limiting and whether any terms can be neglected.  For experiments at flow 

conditions, the hydraulic residence time of the pipe section can be derived from the 

length of the pipe (L) and the velocity of the flowing water (u).  In actual pipes of 

distribution systems, the velocity of the flowing water can range from 0 to higher than 1 

m/s, which may result in laminar flow or turbulent flow. 

߬௙ ൌ
ܮ
ݑ ൌ

24 ݄݅݊ܿ ൈ 0.0254 ݉
݄݅݊ܿ

360 ݉/݄ ൌ 1.7 ൈ 10ିଷ ݄                                                      ሺ8ሻ 

 

The diffusion coefficient of lead in water is 1 × 10-9 m2/s.  Since the thickness of 

the scale (2.4*10-5 m) is much smaller than the radius of the pipe (~10-2 m), the time for 

diffusion of lead through the scale is negligible compared to the time for diffusion of lead 

from the pipe wall to the center of the pipe.  The characteristic time of diffusion can then 

be calculated as 

߬ௗ ൌ
ܴଶ

ܦ ൌ
ሺ3
8  ݄݅݊ܿ ൈ 2.54 ൈ 10ିଶ ݉

݄݅݊ܿሻଶ

1 ൈ  10ିଽ mଶ/s ൌ 9.07 ൈ  10ସ ݏ ൌ 25.2 ݄                 ሺ9ሻ 

The characteristic reaction time can be calculated as 

߬௥ ൌ
௘௤ܥ

ܴ௦௖௔௟௘
                                                                                                     ሺ10ሻ 
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Where Ceq is the equilibrium concentration of lead, Rscale is the total dissolution 

rate of lead from the corrosion products in pipe scales.  Ceq is assumed to be equal to the 

lead concentration after 24 hours, which is a common assumption in previous studies.  

For the estimation of characteristic reaction time, 5.29*10-4 mol/m3 lead (the 24-hour lead 

concentration in high DIC solution) is used.  Rscale is calculated in a later section as the 

sum of dissolution rates of individual corrosion products, and it ranges from 1.6*10-6 to 

7.0*10-7 mol/m3–h at different water chemistry assuming 30% scale porosity.  Depending 

on water chemistry, the characteristic reaction time ranges from 5.2 to 11.8 hours. 

 

The characteristic reaction time is similar as the characteristic diffusion time.  

Both characteristic reaction time and characteristic diffusion time are much larger than 

the hydraulic residence time.  Therefore, both the dissolution rate and diffusion can play 

important roles in mass transfer, and either one of them may control the rates of lead 

release.  Therefore, dissolution rates need to be used in predicting lead concentrations 

released from pipe scales. 

 

In this chapter, multiple models were developed and compared to predict the 

dissolved lead concentration released from pipe scales at stagnant and flowing conditions.  

At stagnant conditions, there is no convection term, so a diffusion-limited model and a 

reaction-limited model were built and compared.  At flow conditions, dissolution rates of 

lead corrosion products in pipe scales are shown to control the dissolved lead 

concentrations and a mass transfer model incorporating dissolution rates and flow is 

proposed to predict lead release.   
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2.1 Modeling of lead release from pipe scales at stagnant conditions 

 

At stagnant conditions, there is no convection term.  The mass transfer equation 

of lead at stagnant conditions can be simplified as       

pptn
C ( J*) R
t

∂
= − ∇ ⋅ +

∂
                                                            (11) 

Where C (mol/L) is the dissolved lead concentration, t (s) is the time, J* (mol/m2-hr) is 

the vector of flux by diffusion, and pptnR  (mol/m3-hr) is the rate of precipitation.  In the 

tubular pipe, no concentration gradients in the axial or angular direction were assumed at 

stagnation conditions.  The only concentration gradient is in the radial direction. 

Therefore, there is no net flux by diffusion in the axial or angular direction.  

כܬ   ൌ െܦ ·  (12)                                                                                    ܥ׏

D is the diffusion coefficient of lead through water (3.6×10-6 m2/hr) [9, 11]. 

 

Assuming precipitation is a first order reaction with respect to lead, the 

precipitation rate can then be written as 

           ܴ௣௣௧௡ ൌ െ݇ଵ ·  (13)                                                                                 ܥ

Substituting Equations 12 and 13 into Equation 11 in cylindrical coordinate gives 

ܥ߲
ݐ߲ ൌ ܦ · ܥଶ׏ െ ݇ଵ · ܥ ൌ ܦ ቈ

߲ଶܥ
ଶݎ߲ ൅

1
ݎ

ܥ߲
቉ݎ߲ െ ݇ଵ ·  ሺ14ሻ                                                 ܥ

Equation 14 is the governing equation for both the reaction-limited model and the 

diffusion-limited model presented in sections 2.1.1 and 2.1.2, respectively.  The only 

difference between these two models is the difference in the boundary conditions. 
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2.1.1  Reaction-limited model at stagnant conditions 

 

For reaction-limited conditions, the dissolution of corrosion products in pipe 

scales provides a constant flux of lead to the bulk water.  The net flux by diffusion of lead 

through water must equal the macroscopic dissolution rate per surface area of the pipe 

wall ܴௗ௜௦௦ (mol/m2-h).  The macroscopic dissolution rate can be related to the dissolution 

rates of individual corrosion products (PbO2 and hydrocerussite) by Equation 15. 

             ܴௗ௜௦௦ · ܵ ൌ ௦௖௔௟௘ܧܶܣܴ · ௣ܸ ൌ ሺܴܧܶܣ௉௕ைమ ൅ ு஼ሻܧܶܣܴ · ௣ܸ                 (15) 

Where S (m2) is the surface area of the interior pipe wall, Vp is the volume of the pipe 

(m3) and RATEscale (mol/m3-h) is the dissolution rate not normalized to surface area.  HC 

denotes hydrocerussite. 

 

The net flux of lead being the dissolution rate per surface area of pipe wall can be 

one of the boundary conditions, which is written as െܦ డ஼
డ௥

ൌ െܴௗ௜௦௦ @ ݎ ൌ ܴ.  Since the 

pipe system is symmetric, the other boundary condition is  డ஼
డ௥

ൌ ݎ @ 0 ൌ 0.  The initial 

condition is C = 0 @ t = 0.  Equation 14 can be solved numerically to get the dissolved 

lead concentration ܥሺݎ,  ሻ as a function of t and r.  The profile of lead concentrationݐ

,ݎሺܥ  .ሻ over t and r in high DIC solution is illustrated in Figure 5A-2ݐ
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Figure 5A-2. Illustration of lead concentration profile with time and radial distance from 
the center of the pipe in high DIC solution using the reaction-limited model at stagnant 
conditions. 
 

The sampled lead concentration is the average lead concentration over a cross 

section.  The change of average lead concentration with time can be derived from the 

concentration profile by Equation 16. 

ሻݐҧሺܥ ൌ
׬ ,ݎሺܥݎߨ2 ோݎሻ݀ݐ

଴
ଶܴߨ                                                                                              ሺ16ሻ 
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The evolution of ܥҧሺݐሻ with time can be solved numerically using MATLAB 

programming.  There are two fitting parameters in this model, ܴௗ௜௦௦ and k1.  k1 can be 

related to ܴௗ௜௦௦ by macroscopic mass balance at equilibrium.  At equilibrium, the addition 

of lead by dissolution should be equal to the subtraction of lead by precipitation. 

0 ൌ ܴௗ௜௦௦ · ܵ െ ݇ଵ · ௘௤ܥ ௣ܸ                                                                                                 ሺ17ሻ 

Where ௣ܸ is the volume of the pipe.  Therefore, the ratio of k1 to ܴௗ௜௦௦ is fixed. 

ܴௗ௜௦௦

 ݇ଵ
ൌ

௘௤ܥ ௣ܸ

ܵ                                                                                                                        ሺ18ሻ 

The values of k1 and ܴௗ௜௦௦ with constant ratio of ܴௗ௜௦௦to k1 were varied to fit the 

experiment data with this model. 

 

2.1.2 Diffusion-limited model at stagnation conditions 

 

If diffusion is rate limiting, then equilibrium would be reached at the pipe wall 

after a short time.  Consequently, the boundary condition for equilibrium at the pipe wall 

can be written as ܥ଴ ൌ ݎ ௘௤ atܥ ൌ ܴ. Where ܥ௘௤ is the equilibrium dissolved lead 

concentration, and R is the radius of the pipe.  Another boundary condition is  డ஼
డ௥

ൌ 0  at  

r = 0.  The initial condition is ܥ ൌ 0 at t = 0. 

 

The governing equation (Equation 14) is solved using MATLAB based on the 

boundary conditions.  The numerical solution gives a lead concentration profile with time 

and radial distance (Figure 5A-3).  Then, Equation 16 is used to get the average lead 

concentration over time.   
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Figure 5A-3. Illustration of lead concentration profile with time and radial distance from 
the center of the pipe in high DIC solution using the diffusion-limited model at stagnant 
conditions. 
 

2.1.3  Previous diffusion-limited model 

 

Previous studies developed a diffusion-limited model with the assumption that 

equilibrium is reached at the pipe wall.    
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1
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The boundary conditions are the same as the diffusion-limiting model in section 

2.1.2.  The solution of Equation 19 has been developed by Crank to describe the 

dependence of radial distance on concentration.  The change of the volumetric average 

lead concentration over time (Equation 16) is more relevant, and has been studied by 

Kuch and Wagner [8].  

ሻݐҧሺܥ െ ௧ୀ଴ܥ ൌ ൫ܥ௘௤ െ ௧ୀ଴൯ܥ ൈ ൝1 െ ෍
4

௦ߙ
ଶܴ

ஶ

௦ୀଵ

expሺെߙܦ௦
ଶݐሻൡ                                      ሺ20ሻ 

Where ߙଵ , ଶߙ , ڮ , ௦ߙ  are positive roots of the equation J0(Rα) = 0, where J0 is the 

Bessel function of the first kind of zero order.  Based on Equation 17, the average lead 

concentration profile only depends on the equilibrium lead concentration and time for a 

known pipe inner diameter and diffusion coefficient.  Since equilibrium lead 

concentration can be determined and is often calibrated to measured lead concentrations 

after 24 hours, the lead concentration profile is hard to match the experimental 

observation with no fitting parameters [8, 9].  An addition parameter ߚ௔, which accounts 

for additional resistance from a secondary layer of deposits (e.g. iron or manganese 

oxides) on top of the pipe scales, was introduced to fit the experimental data better.  In 

previous studies, a simplified equation incorporating a coefficient of additional resistance 

 ௔ has been developed to simplify Equation 20 and is used in fitting experimental dataߚ

[8].   

ሻݐҧሺܥ െ ௧ୀ଴ܥ

௘௤ܥ െ ௧ୀ଴ܥ
ൌ 1 െ ݌ݔ݁

െ4ܨ௢Ԣ
1

Ԣ݅ܤ ൅ 1

ටሺ5.78ሻଶ ൅ 1
ߨ

1
௢Ԣܨ

                                                            ሺ21ሻ  
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Where Bi’ is the Biot number (Equation 22), and Fo’ is the Fourier number (Equation 

23). 

ᇱ݅ܤ ൌ
௔2ܴߚ

ܦ                                                                                                                             ሺ22ሻ 

Where ߚ௔ is the coefficient of additional resistance caused by a second layer of corrosion 

deposits on the inner surface of the pipe.  The Biot number gives the ratio of the mass-

transfer rate at the interface to the mass-transfer rate in the interior of the second layer of 

corrosion deposits. 

௢ܨ
ᇱ ൌ

ݐܦ
4ܴଶ                                                                                                                                 ሺ23ሻ 

The Fourier number represents the ratio of the rate of diffusion transport to the rate of 

accumulation. 

 

2.2 Modeling of lead release from pipe scales at flow conditions 

 

At flowing conditions, a recirculation system including a tubular pipe and a 

reservoir is used in the present study.  To simplify the system (Figure 5A-4), the pipe can 

be considered as a plug flow reactor (PFR), while the reservoir acts as a continuously-

stirred tank reactor (CSTR).   
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Figure 5A-4. Schematic of the recirculation system at flow conditions. 

 

2.2.1 Reaction-limited model at flow conditions 

 

For the reservoir (CSTR),  

݀ሺܥ௜ · ௥ܸሻ
dt ൌ QC଴ െ QC୧ ൅ ܴ௣௣௧௡ · ௥ܸ                                                                           ሺ24ሻ 

௜ܥ݀

dt ൌ
Q
V୰

ሺC଴ െ C୧ሻ െ ݇ଵ ·  ௜                                                                                           ሺ25ሻܥ

Where ୕
୚౨

 is the hydraulic residence time ߬௖ for the reservoir. 

 

For the pipe (PFR), lead concentration at a finite cross section (dz) is assumed to 

reach pseudo-steady-state with respect to the hydraulic residence time of the pipe ߬௣, 

since ߬௣ (6 seconds) is much smaller than the characteristic diffusion time (hours) and the 

characteristic reaction time (hours).  Therefore, the change of lead concentration in each 

dz

Q(C+dC) QC

C0 Ci

Vr

Vp R

L
Q Q

z=L z=0
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finite pipe cross section over hydraulic residence time of the pipe ߬௣ can be neglected.  

Lead concentration does change over the length of the pipe since lead is dissolving, 

which is accounted in Equation 27.    

ଶܴߨ · ܮ · ܥ݀
ݐ݀ ൌ 0 ൌ ܳ · ܥ െ ܳ · ሺܥ ൅ ሻܥ݀ ൅ ܴߨ2 · ݖ݀ · ܴௗ௜௦௦ െ ଶܴߨ · ݖ݀ · ݇ଵ ·  ሺ26ሻ    ܥ

Simplifying Equation 26 yields 

ܳ · ܥ݀ ൌ ሺ2ܴߨ · ܴௗ௜௦௦ െ ଶܴߨ · ݇ଵ · ሻܥ ·  ሺ27ሻ                                                                           ݖ݀

The boundary conditions are C = Ci @ z = 0 and C = C0 at z = L. 

Solving the equation yields 

଴ܥ ൌ
2ܴௗ௜௦௦

ܴ݇ଵ
ቈ1 െ exp ቆെ

ଵ݇ܮଶܴߨ

ܳ ቇ቉ ൅ ௜ܥ · exp ቆെ
ଵ݇ܮଶܴߨ

ܳ ቇ                                           ሺ28ሻ 

Where గோమ௅
ொ

 is the hydraulic residence time ߬௣ of the pipe section.  Equation 28 indicates 

that the dissolution and precipitation reactions result in a concentration difference 

between inlet and outlet of the pipe.  Plugging Equation 28 into Equation 25 gives 

௜ܥ݀

dt ൌ
1
߬௖

൜
2ܴௗ௜௦௦

ܴ݇ଵ
· ൣ1 െ exp൫െ݇ଵ߬௣൯൧ ൅ ௜ܥ · exp൫െ݇ଵ߬௣൯ െ ௜ൠܥ െ ݇ଵ ·  ௜               ሺ29ሻܥ

Although the change of lead concentration in each finite pipe cross section over hydraulic 

residence time of the pipe (߬௣) can be neglected, Equation 29 shows that lead 

concentration does accumulate over a longer period of time.   

 

The initial condition is Ci = 0 @ t = 0.  Equation 29 can be solved analytically, 

and the solution is given below. 

௜ܥ ൌ
భ

ഓ೎
·మೃ೏೔ೞೞ

ೃೖభ
·ൣଵିୣ୶୮൫ି௞భఛ೛൯൧

ି௞భି భ
ഓ೎

·ൣଵିୣ୶୮൫ି௞భఛ೛൯൧
· ቄexp ቄۃെ݇ଵ െ ଵ

ఛ೎
· ൣ1 െ exp൫െ݇ଵ߬௣൯൧ۄ · ቅݐ െ 1ቅ           ሺ30ሻ  
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Since the precipitation rate constant k1 can be determined from fitting the reaction-limited 

model at stagnant conditions with experimental data, the only fitting parameter is the 

dissolution rate ܴௗ௜௦௦. 

 

 

3. Results and Discussion 

 

In diffusion-limited models, lead concentrations were assumed to reach 

equilibrium after 24 hours of stagnation, which is a common assumption in previous 

models [9-11].  To compare the reaction-limited model with diffusion-limited models at 

stagnation condition, equilibrium lead concentrations were assumed to be equal to the 

lead concentrations after 24 hours at stagnation condition. 

 

In the model fitting, only experimental data for the high DIC and high pH 

solutions were used in most of the cases, since the dissolution rates of both PbO2 and 

hydrocerussite at only these two conditions were available.  In the previous diffusion-

limited model, extra data for the high monochloramine solution was used together with 

the data for the high DIC and high pH solutions since dissolution rate is not needed. 

 

3.1 Prediction of lead release from stagnation experiments  

The fitting results by one reaction-limited model and two diffusion-limited 

models were compared. 
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3.1.1 Predicted lead release by the reaction-limited model at stagnant conditions 

 

Figure 5A-5 shows the predicted lead release profile based on the reaction-limited 

model together with the experimental data.  The predicted lead release profiles are quite 

close to the experimental data.   Because the reaction-limited model uses the mass 

transfer equation (Eqn. 14), it accounts for diffusion.  The main difference between the 

reaction-limited model and the diffusion-limited model is different boundary conditions. 

 

Figure 5A-5.  Comparison of the predicted lead release profiles by the reaction-limited 
model and the experimental lead release profiles at stagnant conditions.  The points are 
experimental dissolved lead concentrations, and the lines are predicted lead release 
profiles.  High pH and High DIC in the graph refer to the high pH solution and high DIC 
solution, respectively.    
 

The best fit values of k1 and ܴௗ௜௦௦ are included in Table 5A-1.  Only ܴௗ௜௦௦ value 

was varied to optimize the fit and the k1 value was constrained by the ܴௗ௜௦௦ value.  

Comparison of ܴௗ௜௦௦ values among different water chemistries shows that the lead release 
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rate is highest for high DIC solution and lowest at high pH solution, which is consistent 

with the relationship between determined dissolution rates of PbO2 and hydrocerussite 

and pH or DIC in the CFSTR studies (Chapter 2).   

 

Table 5A-1. Fitted values of dissolution rate ܴௗ௜௦௦ and precipitation rate constant k1. 

ܴௗ௜௦௦ (mol/m2-hr) k1 (/hr) Ceq (mol/m3) Vp/S (m) 

High pH 1.50E-07 8.75E-02 3.60E-04 4.76E-03 

High DIC 3.40E-07 1.35E-01 5.29E-04 4.76E-03 

 

3.1.2  Predicted lead release by the diffusion-limited model at stagnant conditions 

  

Figure 5A-6.  Comparison of the predicted lead release profiles by the diffusion-limited 
model and the experimental lead release profiles at stagnant conditions.  The points are 
experimental dissolved lead concentrations, and the lines are predicted lead release 
profiles.  High pH and High DIC in the graph refer to the high pH solution and high DIC 
solution, respectively. 
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The diffusion-limited model overpredicted the lead release for all solutions, 

especially at the beginning several hours (Figure 5A-6).  The overprediction by the 

diffusion-limited model indicates that diffusion from a wall with concentrations at 

equilibrium solubility allows higher lead release than the experimental lead release.  

Therefore, diffusion was not rate-limiting in the experiments of lead release from pipe 

scales.   

 

3.1.3  Fitting of lead release data by the diffusion-limited model developed by Kuch and 

Wagner 

 

The use of this model is limited to conditions without significant precipitation, 

since this model does not consider precipitation as a sink.  Therefore, it would not predict 

the lead release well for the high phosphate and high free chlorine solution because 

precipitation may be significant in these two solutions.  In this model fitting, only lead 

release data in high pH, high DIC, and high chloramines solutions were used since 

precipitation in these three solutions could be negligible.   

 

Figure 5A-7 shows the diffusion model fitting results by least squares 

optimization of the ߚ௔ term.  The model result generally describes the experimental data 

for all three concentrations.  The best fit ߚ௔ values range from 1 × 10-7 to 3 × 10-7 m/s, 

which is not uniform among all solutions and indicates that the model cannot explain the 

experimental results well by a uniform ߚ௔ value.  The fitted  ߚ௔ values are consistent with 

the fitted ߚ௔ values (4.4 × 10-8 to 5.8 × 10-6) in Lytle and Schock’s study, and the fitted 
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 ௔ values in Lytle and Schock’s work varied over a broader range.  Lytle and Schockߚ

reached the same conclusion as the present study that this diffusion-limited model by 

Kuch and Wagner is not a good predictive tool for estimating stagnation behavior, 

although the fitting of ߚ௔ allows the diffusion model to describe the lead release from 

pipe scales.  This conclusion here can be further explained by experimental evidence.  

The physical meaning of ߚ௔ is additional resistance by a secondary layer (such as iron or 

manganese oxides), which indicates the models are best suited to pipe scales with a 

secondary layer of iron or manganese oxides.  For the lead pipe scales used in the present 

study, no secondary layer was found, which hinders the ability to explain the 

experimental data with this model. 

 

  

Figure 5A-7.  Comparison of the predicted lead release profiles by the diffusion-limited 
model and the experimental lead release profiles.  The points are experimental dissolved 
lead concentrations, and the lines are predicted lead release profiles.  High pH, High DIC, 
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and High CA in the graph refer to the high pH solution, high DIC solution, and high 
monochloramine solution, respectively. 
 

The comparison of these three models showed that the reaction-limited model fits 

the experimental data best with reasonable explanation.  Therefore, the stagnant 

experiments were probably reaction-limited.   

 

3.2. Prediction of lead release in flow experiments 

 

The model fitting of the stagnant experiments showed that the lead release rates 

from pipe scales were limited by dissolution reaction rather than by diffusion.  The pipe 

system with flowing water has better transport properties than the pipe system with 

stagnant water.  Therefore, the reaction should also be the rate-limiting step in flow 

experiments. 

 

3.2.1 Fitting of experimental data with the reaction-limited model at flow conditions 

 

The predicted lead release profile matches very well with the experimental lead 

release in the first 2 hours (Figure 5A-8a).  The fitting and simplification of the analytical 

solution showed that the lead release in the first two hours depends mostly on the 

dissolution rates ܴௗ௜௦௦, which explained why the lead release profile in the first two hours 

was close to linear with time.  The precipitation term is negligible because the 

concentrations in the first two hours were far below equilibrium solubility.  Although the 

fitted curves match well with the experimental data, there are uncertainties in the fitted 
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ܴௗ௜௦௦ values since limited experimental data were obtained for the purpose of the present 

study.  Recirculation experiments lasting for a longer time are recommended to further 

verify the prediction of the reaction-limited model at flow conditions (Figure 5A-8b). 

 

 

 

Figure 5A-8.  Comparison of the predicted lead release profiles for a) 2 hours and b) 24 
hours by the reaction-limited model and the experimental lead release profiles at flow 
conditions.  The points are experimental dissolved lead concentrations, and the lines are 
predicted lead release profiles.  High pH and High DIC in the graph refer to the high pH 
solution and high DIC solution, respectively. 
 

The best fit values of ܴௗ௜௦௦ are included in Table 5A-2.  Comparison of ܴௗ௜௦௦ 

values among different water chemistries shows that the total lead release rate is higher 

for the high DIC solution than for the high pH solution, which is consistent with the 

relationship between determined dissolution rates of PbO2 and hydrocerussite and pH or 

DIC from CFSTR studies.   

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25

D
is

so
lv

ed
 le

ad
 *1

03
(m

ol
/m

3 )

Time (h)

High pH
High DIC
High pH
High DIC

b)

0

0.1

0.2

0.3

0.4

0 1 2 3

D
is

so
lv

ed
 le

ad
 *1

03
(m

ol
/m

3 )

Time (h)

High pH
High DIC
High pH
High DIC

a)



156 

 

Table 5A-2. Fitted ܴௗ௜௦௦ values by the reaction-limited model for flow experiments using 
k1 values obtained from stagnation experiments. 
 

 
ܴௗ௜௦௦ (mol/m2-hr) k1 (/hr) 

High pH 1.84E-06 8.75E-02

High DIC 3.13E-06 1.35E-01

 

3.3. Mechanistic explanation of fitted rates 

3.3.1  Derivation of observed rates from dissolution rates of corrosion products 

 

The macroscopic fitted dissolution rate can be related to the sum of dissolution 

rates of individual corrosion products in pipe scales (Equation 15).  The dissolution rates 

of individual corrosion products in pipe scales can be calculated from the determined 

surface area normalized rates of PbO2 dissolution in CFSTR studies in Chapters 2, 3 and 

4 and the surface area normalized rates of hydrocerussite dissolution.  

 

From X-ray diffraction analysis, the pipe scales consist of hydrocerussite 

(Pb3(CO3)2(OH)2), plattnerite (β-PbO2), and scrutinyite (α-PbO2), and elemental lead.  

Since the Gibbs free energy of scrutinyite is similar to that of plattnerite, the surface area 

normalized dissolution rate constants of scrutinyite and plattnerite are assumed to be the 

same.  The SEM images of the scale material provided evidence that elemental lead is 

isolated from water by a 24 µm thick scale of lead corrosion products.  The elemental 

lead identified in the sample pattern was probably introduced to the sample by cutting 

and scraping during collection of scale materials.  Assuming no elemental lead in pipe 
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scales, the overall dissolution rates from pipe scales can then be derived from the 

dissolution rates of hydrocerussite and PbO2 as follows: 

௦௖௔௟௘ܧܶܣܴ ൌ ௉௕ைమܧܶܣܴ  ൅  ு஼                                                                      ሺ31ሻܧܶܣܴ 

Where ܴܧܶܣ௦௖௔௟௘ (mol/L-min) is the net rate of lead release from pipe scales, ܴܧܶܣ௉௕ைమ 

(mol/L-min) is the dissolution rate of PbO2,  ܴܧܶܣு஼ (mol/L-min) is dissolution rate of 

hydrocerussite. 

  

The volumetric dissolution rates of individual lead corrosion products can be 

determined from the surface area normalized dissolution rates, the solid contents, and the 

effective specific surface areas in the following equation. 

ܧܶܣܴ  ൌ · ݁ݐܽݎ  [solids] · θ · SSA                                                             (32)      

Where rate (mol/m2-min) is the surface area normalized dissolution rate, [solids] (g/L) is 

the solid content ( ௠ೞ೚೗೔೏ೞ
௏ೞ೚೗ೠ೟೔೚೙

ሻ, SSA (m2/g) is the specific surface area, θ is the effective 

solid-water contact ratio of the whole surface area for hydrocerussite or PbO2.  The 

specific surface area of individual corrosion product can be estimated according to the 

geometries of the hydrocerussite and PbO2 particles. 

 

The surface area normalized dissolution rates of plattnerite (β-PbO2) have been 

determined in Chapters 2, 3, and 4.  The surface area normalized dissolution rates of 

hydrocerussite have been determined by Noel and Giammar [14, 15].  The surface area 

normalized rate is specific to water chemistry.  Among the five water chemistries 

examined for lead release from pipe scales, the dissolution rates of both plattnerite and 

hydrocerussite have been determined in two water chemistries (high pH solution and high 
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DIC solution).  Therefore, we are only able to use the dissolution rates of both plattnerite 

and hydrocerussite at these two water chemistries to predict lead release from pipe scales.  

To predict lead release at other conditions, the dissolution rates of PbO2 and 

hydrocerussite at these exact conditions need to be determined. 

 

The total solid content can be calculated as follows.   

 ሾݏ݈݀݅݋ݏሿ௧௢௧ ൌ  ఘೞ೚೗೔೏ೞ·௏ೞ೚೗೔೏ೞ
௏ೞ೚೗ೠ೟೔೚೙

ൌ  ఘೞ೚೗೔೏ೞ·൫ଵ –  ஗ ൯·௏ೞ೎ೌ೗೐
௏ೞ೚೗ೠ೟೔೚೙

 

ൌ
௦௢௟௜ௗ௦ߩ · ሺ1 –  η ሻ · ߨ2 · ݎ · ݀ · ܮ

ߨ · ଶݎ · ܮ ൌ
௦௢௟௜ௗ௦ߩ · ሺ1 –  η ሻ · 2݀

ݎ                               ሺ33ሻ 

Where ߩ௦௢௟௜ௗ௦ (g/m3) is the density of the solids in the scale, ௦ܸ௢௟௜ௗ௦ (m3) is the volume of 

solids in pipe scale, ௦ܸ௢௟௨௧௜௢௡ (m3) is the volume of solution in the pipe section, ௦ܸ௖௔௟௘ 

(m3) is the total volume of pipe scale including pores, η is the porosity of the scales, d 

(m) is the thickness of the scale, r (m) is the inner diameter, and L (m) is the length of the 

pipe.  

௦௢௟௜ௗ௦ߩ           ൌ ఘಹ಴·ఘು್ೀమ
ఈು್ೀమ·ఘಹ಴ାఈಹ಴·ఘು್ೀమ

ൌ  7.09 ൈ 10଺ ሺg/mଷሻ                                 (34) 

Where
2PbOα  is the molar percentage of the PbO2 in the corrosion products of the scales, 

2PbOρ  (9.06×106 g/m3) is the density of pure PbO2, HCα  is the molar percentage of the 

PbO2 in the corrosion products of the scales, and HCρ  (6.8×106 g/m3) is the density of 

pure hydrocerussite. 2PbOα  and HCα  were determined by X-ray absorption near edge 

spectroscopy (XANES).  Figure 5A-9 shows the XANES spectra of the scale material 

and the reference spectra of PbO2, hydrocerussite, and elemental lead. The linear 

combination fitting of the sample XANES spectra gave a molar percentage of 14 % 
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Pb(IV), 67% Pb(II), and 19% Pb(0).  The goodness-of-fit can also be seen from the 

reduced chi-square value of 0.001.  Assuming no actual elemental lead in pipe scales and 

that all of Pb(II) is present as hydrocerussite, the composition of the pipe scales in molar 

percentage is 38.5% PbO2 and 61.5% hydrocerussite. 

 

 

Figure 5A-9. Linear combination fitting of the pipe scale XANES spectrum using 
reference spectra of PbO2, hydrocerussite, and elemental lead.  The percentages shown 
are the molar lead percentage of each end member in the pipe scale. 
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Therefore,  

ሾݏ݈݀݅݋ݏሿ௧௢௧ ൌ  
ሺ1 െ η ሻ ൈ 7.09 ൈ 10଺ ݃

݉ଷ ൈ 2 ൈ 24 ൈ 10ି଺m
3
8 ݄݅݊ܿ ൈ 2.54 ൈ 10ିଶ ݉

݄݅݊ܿ

ൌ  3.58 ൈ 10ସ ൈ ሺ1 െ η ሻ ቀ
݃

݉ଷቁ                                               ሺ35ሻ 

The solid content of each solid, hydrocerussite or PbO2, can then be calculated 

based on their densities and molar percentages.   

ሾݏ݈݀݅݋ݏሿ௉௕ைమ ൌ ௉௕ைమߚ · ሾݏ݈݀݅݋ݏሿ௧௢௧ 

                        ൌ ఈು್ೀమ·ெು್ೀమ
ఈು್ೀమ·ெು್ೀమାఈಹ಴·ெಹ಴

ሾݏ݈݀݅݋ݏሿ௧௢௧ ൌ 16.2%ሾݏ݈݀݅݋ݏሿ௧௢௧                  ሺ36ሻ        

ሾݏ݈݀݅݋ݏሿு஼ ൌ  ሿ௧௢௧ݏ݈݀݅݋ݏு஼ሾߚ

          ൌ
ு஼ߙ · ு஼ܯ

௉௕ைమߙ · ௉௕ைమܯ ൅ ு஼ߙ · ு஼ܯ
ሾݏ݈݀݅݋ݏሿ௧௢௧ ൌ 83.8%ሾݏ݈݀݅݋ݏሿ௧௢௧             ሺ37ሻ  

 

The specific surface area of hydrocerussite and PbO2 can be estimated from the 

geometry of the hydrocerussite and PbO2 particles.  From SEM images, average PbO2 

particles are estimated to be cubic particles with 100 nm sides (a), and hyrocerussite 

particles are approximated by thin hexagonal plates with side length (b) of 1 µm and 

height (h) of 200 nm.  Then, the specific surface of PbO2 can be derived from the volume 

of an individual PbO2 particle divided by its mass. 

௉௕ைమܣܵܵ ൌ
ܵ௉௕ைమ

݉௉௕ைమ

ൌ
6ܽଶ

௉௕ைమߩ · ଷܽߨ ൌ
6

௉௕ைమߩ ·  aߨ

ൌ
6

9.06 ൈ 10଺ g
mଷ ൈ 3.14 ൈ 10ି଻m

ൌ 2.11
݉ଶ

݃                                               ሺ38ሻ 
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Similarly, the specific surface area of hydrocerussite can be derived from the volume of 

an individual hydrocerussite particle divided by its mass. 

ு஼ܣܵܵ ൌ
ܵு஼

݉ு஼
ൌ

3√3bଶ ൅ 6bh

ு஼ߩ · 3√3bଶh
2

ൌ
2√3b ൅ 4h
ு஼ߩ · √3bh

 

ൌ  
2√3 ൈ 1 ൈ 10ି଺m ൅ 4 ൈ 2 ൈ 10ି଻m

6.8 ൈ 10଺ g
mଷ ൈ √3 ൈ 10ି଺m ൈ 2 ൈ 10ି଻m

ൌ 1.81
݉ଶ

݃                            ሺ39ሻ 

Therefore, the estimated volumetric dissolution rates (mol/m3-h) are  

௉௕ைమܧܶܣܴ  ൌ ௉௕ைమ݁ݐܽݎ · ሾݏ݈݀݅݋ݏሿ௉௕ைమ · ௉௕ைమߠ ·  ௉௕ைమܣܵܵ

                              ൌ 16.2% ൈ 3.58 ൈ 10ସ ൈ ሺ1 െ η ሻ ௚
௠య ൈ 2.12 ௠మ

௚
ൈ ௉௕ைమߠ ·  ௉௕ைమݎ

                              ൌ 1.23 ൈ 10ସ݉ିଵ ൈ ሺ1 െ η ሻߠ௉௕ைమ ·  ௉௕ைమ                                (40)ݎ

ு஼ܧܶܣܴ      ൌ ு஼݁ݐܽݎ · ሾݏ݈݀݅݋ݏሿு஼ · ு஼ߠ ·  ு஼ܣܵܵ

                           ൌ 83.8% ൈ 3.58 ൈ 10ସ ൈ ሺ1 െ η ሻ ௚
௠య ൈ 1.81 ௠మ

௚
ൈ ு஼ߠ ·    ு஼ݎ

     ൌ 5.43 ൈ 10ସ݉ିଵ ൈ ሺ1 െ η ሻߠு஼ ·   ு஼                                          (41)ݎ

Where ݁ݐܽݎ௉௕ைమ is the surface area normalized dissolution rate of PbO2 determined in 

CFSTR experiments (Chapters 2), and ݎு஼ is the surface area normalized dissolution rate 

of hydrocerussite determined in CFSTR experiments by Noel et al [14].  The surface area 

normalized dissolution rates are listed in Table 5A-3. 

 

 

 

Table 5A-3.  Surface area normalized dissolution rates of PbO2 and hydrocerussite in 
CFSTR experiments. 
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Solution ݁ݐܽݎ௉௕ைమ (mol/m2-h) ு஼ݎ (mol/m2-hr) 

High DIC 2.86E-08 1.70E-07 

High pH 1.05E-08 7.56E-08 

 

Therefore, the volumetric dissolved lead release rate (mol/m3-h) from pipe scales 

can be estimated by the sum of the dissolution rates of hydrocerussite and PbO2 in the 

absence of orthophosphate. 

௦௖௔௟௘ܧܶܣܴ         ൌ ௉௕ைమܧܶܣܴ  ൅ ܴܧܶܣு஼       

                                    ൌ 1.23 ൈ 10ସ݉ିଵ · ሺ1 െ η ሻߠ௉௕ைమ · ௉௕ைమݎ ൅  

                                        5.43 ൈ 10ସ݉ିଵ · ሺ1 െ η ሻߠு஼ ·  ு஼                                  (42)ݎ

 

3.3.2  Role of contact ratio in lead release rates from pipe scales 

 

Combining macroscopic fitted dissolution rates with microscopic total dissolution 

rates, we can obtain the contact ratio from the following equation.   

      ܴௗ௜௦௦ · ܵ ൌ ௦௖௔௟௘ܧܶܣܴ  · ௣ܸ                                                                                (43) 

Where ܴௗ௜௦௦ (mol/m2-h) is the dissolution rate per unit surface area of the pipe wall, S 

(m2) is the surface area of interior pipe wall,  ܴܧܶܣ௦௖௔௟௘ (mol/m3-h) is the net volumetric 

dissolution rate from pipe scales, and Vp (m3) is the volume of the pipe. 

 

For a known pipe, the porosity of scales η is fixed, and it is estimated to be from 

10% to 70% based on the SEM images of the pipe scales.  Assuming the contact ratios 
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 ு஼ are the same for a fixed water chemistry and flow condition, the contactߠ ௉௕ைమ andߠ

ratio can then be derived from Equation 44. 

ߠ ൌ
ܴௗ௜௦௦ · ܵ

ሺ1.23 ൈ 10ସ݉ିଵ · ௉௕ைమݎ ൅ 5.43 ൈ 10ସ݉ିଵ · ு஼ሻݎ · ௣ܸ
· ሺ1 െ η ሻିଵ                 ሺ44ሻ 

Where the values of rୌେ and rate୔ୠ୓మ are listed in Table 5A-3. 

 

Table 5A-4. The contact ratios for different water chemistries at stagnant and flow 
conditions 

Stagnation Flow 

Conditions Contact Ratio ߠ Fitted ܴௗ௜௦௦ Contact Ratio ߠ Fitted ܴௗ௜௦௦

pH 7.43E-03ሺ1 െ η ሻିଵ 1.50E-07 6.9E-02ሺ1 െ η ሻିଵ 1.84E-06 

DIC 7.48E-03ሺ1 െ η ሻିଵ 3.40E-07 9.1E-02ሺ1 െ η ሻିଵ 3.13E-06 

 

For all water chemistries, the contact ratios increased about one order of 

magnitude at flow conditions compared to those at stagnant conditions (Table 5A-4).  

The reason why flow increased lead release rates by one order of magnitude is probably 

that mixing of water with solids is better at flow conditions than at stagnant conditions, 

which is indicated by the higher contact ratio at flow conditions.  A recent experimental 

study has shown that immobile water inside porous pipe scales is not well mixed with 

bulk water (Figure 5A-10).  The immobile water contains high solute concentrations 

released from scales, and it exchanges solutes more rapidly with the bulk water at flow 

conditions [16].  The fact that contact ratio is much higher at flow conditions than 

stagnant conditions is consistent with better mixing of the steady water at flow 

conditions.   
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Figure 5A-10.  Illustration of the effect of flow on effective water-solid contact ratio and 
lead release from porous pipe scales.  The red area indicates zones with immobile water 
that are not readily exchanged with the bulk water at stagnant condition.  At flow 
conditions, bulk water mixes better with porous scales (larger contact area) and brings out 
the immobile water that has high lead concentrations released from scales. 
 

For different water chemistries at the same flow condition, the contact ratios are 

very similar.  The little variation of the contact ratio at flow condition could be caused by 

the uncertainty introduced by limited data points.  The uniform contact ratio at the same 

flow condition provide further support that the dissolution rates of individual corrosion 

products were proportional to the surface area of solids in contact with water and can be 

used in predicting lead release from pipe scales.  

 

4. Conclusion 

 

Reaction-limited models for stagnation and flow are more accurate than diffusion 

models in predicting the lead release from pipe scales containing PbO2 and 

hydrocerussite.  Hence, the lead release is probably surface reaction limited.  The 

measured surface area normalized dissolution rates can be incorporated into mass transfer 
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C0 Pipe effluent lead concentration mol/m3 
Vp Volume of Pipe m3 
Vr Volume of Resevoir m3 
S Surface area of interior pipe wall m2 
z Distance from the end of the pipe m 
M Molecular weight g/mol 
α Molar percentage 
ρ Density g/m3 
β mass percentage 
a PbO2 particle side length m 
b Hydrocerussite particle side length 
h  Hydrocerussite particle height m 

[solids] Solid concentration/content g/m3 
J* Flux vector by diffusion mol/m2-hr 

RATEscale Volumetric dissolution rate of pipe scales mol/m3-hr 
RATEHC Volumetric dissolution rate of hydrocerussite mol/m3-hr 

RATEPbO2 Volumetric dissolution rate of PbO2 mol/m3-hr 
ratescale Surface area normalized dissolution rate of pipe scales mol/m2-hr 

rateHC 
Surface area normalized dissolution rate of 

hydrocerussite mol/m2-hr 
ratePbO2 Surface area normalized dissolution rate of PbO2 mol/m2-hr 
Vscale Volume of the pipe scales in a pipe section m3 

Vsolution Volume of the solution in a pipe section m3 
  
 

porosity 
θ contact ratio 
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Chapter 6.  Conclusions and recommendations 

6.1 Conclusions 

This study investigated lead release from corrosion products in distribution 

systems in three experimental tasks.  The first task was studying the effects of water 

chemistry on dissolution rates of the lead corrosion product PbO2.  The second task 

measured the equilibrium solubility of PbO2 in the presence of free chlorine and 

compared the experimental results with thermodynamic predictions.  The third task 

investigated lead release rates from pipe scales containing PbO2 and assessed the 

possibility of predicting lead concentrations in pipe sections using dissolution rates 

determined in the first task.  

 

Task 1: Investigate the effects of water chemistry on dissolution rates of PbO2 

In the first task, dissolution rates of the lead corrosion product PbO2 were 

determined as a function of pH and concentrations of carbonate, free chlorine, 

monochloramine, and orthophosphate. The PbO2 dissolution rates were determined using 

continuous-flow stirred tank reactors at a hydraulic residence time of half an hour.  

Complementary batch studies that followed the flow-through experiments were 

conducted to examine the effects of water chemistry at a longer residence time of 24 

hours.  The effects of water chemistry parameters on dissolution rates of PbO2 provided 

insights into the mechanisms and rate-limiting steps of PbO2 dissolution. 
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Higher carbonate concentration or lower pH increased PbO2 dissolution rates.  

Carbonate accelerated PbO2 dissolution by forming Pb(II)-carbonate complexes and 

detaching Pb(II) from the PbO2 surface.  The results indicated that PbO2 dissolution 

occurs in two steps: first, PbO2 is reduced to Pb(II) on the surface, and then Pb(II) 

detaches from the surface to solution.  The detachment of Pb(II) from the surface was 

shown to be the rate-limiting step in the absence of chlorine disinfectants.  An empirical 

dissolution rate model was developed to predict PbO2 dissolution rates at different pH 

values and carbonate concentrations.  

 

In flow-through experiments, both free chlorine and monochloramine inhibited 

PbO2 dissolution by raising the redox potential relative to no disinfectant.  The reduction 

of PbO2 to Pb(II) on the surface was shown to be the rate-limiting step in the presence of 

chlorine disinfectants.  Complementary batch studies have shown that monochloramine 

has two effects on PbO2 dissolution.  At short residence times, monochloramine inhibited 

PbO2 dissolution by raising the redox potential relative to no disinfectant.  At long 

residence times, an intermediate from monochloramine decay reduced PbO2 and 

enhanced PbO2 dissolution.   

 

Orthophosphate significantly decreased net lead release rates to solution during 

PbO2 dissolution by inducing the precipitation of hydroxylpyromorphite and by 

adsorbing to the plattnerite surface to block dissolution or reduction sites.  As little as 1 

mg P/L phosphate was needed to significantly inhibit PbO2 dissolution.  In the absence of 

carbonate, precipitation was the likely mechanism responsible for slowing net lead 
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release to solution from PbO2.  In the presence of carbonate, adsorption was probably the 

mechanism that inhibited PbO2 dissolution.  

 

Task 2: Determine equilibrium solubility of PbO2 in the presence of free chlorine 

Batch studies were conducted at different pH values in the presence of free 

chlorine to determine the equilibrium solubility of PbO2.  Although free chlorine was 

commonly believed to keep the lead concentrations under the action level, the lead 

concentrations released from PbO2 in the presence of free chlorine can still exceed the 

action level at long residence times.  Calculations using the thermodynamic constants of 

PbO2 and Pb(IV) species failed to predict PbO2 equilibrium solubility in the presence of 

free chlorine.  The equilibrium constants of PbO2 and Pb(IV) species were developed at 

extremely acidic or basic conditions, which were far away from environmentally-relevant 

conditions.   

 

Task 3: Evaluate lead release rates from pipe scales containing PbO2 

Lead release from pipe scales with PbO2 and hydrocerussite was examined under 

different water chemistry conditions, stagnation times, and flow velocities.  The 

effectiveness of five water chemistry conditions as potential lead corrosion control 

strategies was investigated.  The effects of stagnation time and flow on lead release from 

pipe scales were also studied. 
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Lead release from pipe scales is related to the dissolution and precipitation of lead 

corrosion products.  Orthophosphate can be used as a lead corrosion inhibitor for pipes 

with hydrocerussite and PbO2 scales.  Orthophosphate concentrations higher than 0.3 mg 

P/L kept the dissolved lead concentration below the action level.   For pipe scales 

consisting of hydrocerussite and PbO2, the solutions that did not contain orthophosphate 

were not effective in controlling the dissolved lead concentrations below the action level.  

A switch of disinfectant from free chlorine to monochloramine increased the lead release 

in stagnation experiments. 

 

Laminar flow accelerated both dissolved and particulate lead release from pipe 

scales.  Turbulent flow would possibly increase the lead release rates even more.  

Dissolved lead contributed to most of the total lead concentration under both no-flow and 

laminar flow conditions.  Stagnation time affected lead release from pipe scales by 

limiting the concentrations of residual disinfectant or corrosion inhibitor and by 

accumulating released lead when equilibrium was not reached. 

 

The lead release rates from pipe scales were then predicted based on the 

dissolution rates of PbO2 and the other lead corrosion product hydrocerussite.  Reaction-

limited and diffusion-limited models were developed and compared to predict the lead 

release from pipe scales.  At stagnation conditions, the reaction-limited model accounting 

for both diffusion of lead and the rate of the dissolution reaction is better than the 

diffusion-limited model in describing the lead concentration change with time.  At flow 

conditions, dissolution rate can be combined with mass transfer equations to predict the 
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lead concentration over time.  The surface area normalized dissolution rates determined 

in flow-through experiments can be used in the reaction-limited models to predict lead 

release from pipe scales and explain the different observed rates at flow and stagnant 

conditions. 

 

6.2 Recommendations for future work 

Further research on the effects of different concentrations of monochloramine and 

phosphate on the dissolution of PbO2 can be helpful to fully quantify the effects of these 

parameters.  Since there is a difference in the Gibbs free energy of the two polymorphs of 

PbO2, studies on the dissolution rate and equilibrium solubility of scrutinyite would 

complement the present study’s focus on plattnerite.  Determining the reaction constants 

of PbO2 and Pb(IV) species and consequently predicting the equilibrium solubility of 

PbO2 can provide valuable information and guidance for lead corrosion control. 

 

Investigation of the effects of various water chemistry conditions on lead release 

from other pipe scales containing cerussite, hydroxylpyromorphite, or litharge, would 

extend the information obtained from the present study to apply to more types of pipe 

scales.  Knowledge of the effects of water chemistry on lead release from pipe scales with 

different corrosion products would assist water utilities in making decisions about water 

chemistry changes based on the composition of their corrosion scales.  Examining the 

effect of turbulent flow on the lead release from pipe scales would extend the results to 

the full range of flow regimes that are possible in a distribution system. 
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For modeling lead release from pipe scales at flow or no-flow conditions, 

considering the flux of lead from the pipe wall to the water when the dissolution reaction 

is rate-limiting rather than setting the lead concentration at the pipe walls to the 

equilibrium lead concentration is recommended for the boundary condition assumption.  

Future research on incorporating dissolution rates into a turbulent mass transfer model for 

predicting lead release at turbulent flow conditions is needed.   
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