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Abstract 

The overarching goal of this research is to develop a novel photoacoustic microscopy (PAM) 

technology capable of high-speed, high-resolution 3D imaging in vivo. PAM combines the 

advantages of optical absorption contrast and ultrasonic resolution for deep imaging beyond the 

quasi-ballistic regime. Its high sensitivity to optical absorption enables the imaging of important 

physiological parameters, such as hemoglobin concentration and oxygen saturation, which 

closely correlate with angiogenesis and hypermetabolism—two hallmarks of cancer. 

To translate PAM to the clinic, both high imaging speed and high spatial resolution are 

desired. With high spatial resolution, PAM can detect small structural and functional changes 

early; whereas, high-speed image acquisition helps reduce motion artifacts, patient discomfort, 

cost, and potentially the risks associated with minimally invasive procedures such as endoscopy 

and intravascular imaging. 

To achieve high imaging speed, we have constructed a PAM system using a linear ultrasound 

array and a kHz-repetition-rate tunable laser. The system has achieved a 249-Hz B-scan rate and 

a 0.5-Hz 3D imaging rate (over ~6 mm × 10 mm × 3 mm), over 200 times faster than existing 

mechanical scanning PAM using a single ultrasonic transducer. In addition, high-speed optical-

resolution photoacoustic microscopy (OR-PAM) technology has been developed, in which the 

spatial resolution in one or two dimension(s) is defined by the diffraction-limited optical focus. 

Using section illumination, the elevational resolution of the system has been improved from 

~300 m to ~28 m, resulting in a significant improvement in the 3D image quality. Furthermore, 

multiple optical foci with a microlens array have been used to provide finer than 10-m lateral 

resolution—enabling the system to image capillary-level microvessels in vivo—while offering a 

speed potentially 20 times faster than previously existing single-focus OR-PAM. Finally, potential 
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biomedical applications of the developed technology have been demonstrated through in vivo 

imaging of murine sentinel lymph nodes, microcirculation dynamics, and human pulsatile 

dynamics. In the future, this high-speed PAM technology may be adapted for clinical imaging of 

diabetes-induced vascular complications or tumor angiogenesis, or miniaturized for 

gastrointestinal or intravascular applications. 
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Chapter 1 Introduction 

This project aims to develop a novel photoacoustic microscopy (PAM) technology capable of 

high-speed, high-resolution 3D imaging in vivo. PAM is extremely sensitive to optical absorption 

contrast, which correlates with important physiological parameters such as the concentration 

and oxygen saturation of hemoglobin 1. Such parameters are closely related to angiogenesis and 

hypermetabolism, two hallmarks of cancer 2. As a result, PAM has broad potential applications 

in biomedicine, including the early diagnosis of cancer. 

In PAM, both imaging speed and spatial resolution are important. A high spatial resolution 

(<100 m) enables PAM to resolve fine structural and functional changes (e.g., microcirculation 

dynamics), and thus to detect diseases early. A high imaging speed enables PAM to (1) reduce 

motion artifacts that are due to, for example, breathing of the subjects, (2) reduce cost and 

patient discomfort, (3) image and study physiological dynamics, (4) perform high-throughput 

preclinical imaging (critical in drug development), and (5) potentially reduce risks associated 

with minimally invasive procedures (e.g., endoscopy) in clinical practice. Consequently, this 

research will open up many new possibilities for PAM. In the future, this high-speed, high-

resolution PAM technology may be applied to study tumor angiogenesis and diabetes-induced 

vascular complications; it may also be miniaturized for intracoronary imaging of vulnerable 

plaques and early diagnosis of gastrointestinal cancer. 

1.1 Need for new imaging technologies 

Traditional diagnostic imaging technologies—including ultrasound, X-ray computed tomography 

(CT), and magnetic resonance imaging (MRI)—have dramatically improved patient care in the 
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clinic. Recently, they have also been scaled down to allow high-resolution imaging of small 

animals in vivo, which is important to both gaining a better understanding of diseases and 

developing effective therapeutics 3-6. However, they have either limited sensitivity or spatial 

resolution (or both) in detecting small lesions and early physiological changes induced by cancer 

and many other diseases. 

Optical imaging has recently emerged as both a vital preclinical research tool (e.g., two-

photon microscopy of in vivo brain functions 7) and an effective clinical diagnostic technique 

(e.g., optical coherence tomography for the diagnosis of eye diseases 8, 9 and coronary heart 

disease 10-12). In general, optical imaging technologies complement the traditional imaging 

modalities with several unique and attractive features: 

1. Optical imaging with visible and near infrared (NIR) light is non-ionizing, and thus safer 

than imaging modalities using X-rays—which have photon energies of thousands of eV 

and may cause carcinogenesis; 

2. Optical absorption is related to various intrinsic contrast origins, such as oxy- and deoxy-

hemoglobin, melanin, lipids, and even water, which enables optical imaging to map 

physiological parameters with high sensitivity; 

3. Multi-wavelength measurements allow simultaneous quantification of both the 

concentration and oxygen saturation of hemoglobin, offering functional imaging of 

angiogenesis and hypermetabolism; 

4. A wide range of exogenous optical absorption contrast agents is available for optical 

molecular imaging. 

However, a fundamental challenge in optical imaging has been achieving high spatial 

resolution with deep penetration. Because of the strong optical scattering in biological tissue, 
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existing high-resolution optical imaging technologies relying on the detection of ballistic photons 

cannot penetrate beyond the optical transport mean free path. For example, confocal 

microscopy can achieve ~1-μm resolution but can penetrate only 0.5 mm into scattering 

biological tissue 13, whereas OCT can achieve ~10-μm resolution but can penetrate only ~1 mm 

14. In addition, as none of them sense optical absorption directly, exogenous contrast agents—

which might be toxic—are usually needed for functional imaging. While diffuse optical imaging 

can penetrate a few centimeters and provide functional information such as oxygen saturation 

of hemoglobin, its spatial resolution is rather poor (~a few millimeters) 15. Therefore, new 

technologies are urgently needed to meet this challenge. Among emerging novel technologies, 

photoacoustic microscopy is a strong candidate, due to its capability to image optical absorption 

contrast with high spatial resolution at depths beyond the optical transport mean free path. 

1.2 Fundamentals of photoacoustic imaging 

The photoacoustic effect describes the generation of acoustic waves upon absorption of 

photons. Though Alexander Graham Bell discovered this effect as far back as 1880 16, it was not 

until the early 1990s—after the technological advances of lasers, computers, and computed 

tomography—that its medical applications started to become apparent 17, 18. When a short laser 

pulse is absorbed by structures (such as microvessels) in biological tissue, wideband ultrasonic 

(photoacoustic) waves are produced from a thermal- and stress-confined thermoelastic 

expansion 19. Photoacoustic signals are then detected and reconstructed to form an image. The 

image signal amplitude is related to the optical absorption and the Grueneisen parameter. In 

photoacoustic imaging, both ballistic and diffuse photons are utilized to generate photoacoustic 

signals, and the spatial resolution is determined primarily by ultrasonic rather than optical 

parameters. Since ultrasonic scattering in biological tissue is two to three orders of magnitude 
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weaker than optical scattering, high spatial resolution can be achieved at depths beyond the 

optical transport mean free path. 

In general, if the laser excitation is in both thermal and stress confinements, the initial local 

photoacoustic pressure rise    can be described by 20: 

                            ,              (1.1) 

where   denotes the dimensionless Grueneisen parameter, A the specific optical energy 

deposition (J/cm3),     the percentage of A converted into heat,    the optical absorption 

coefficient (cm-1), and F the optical fluence (J/cm2). It can be seen that    depends on the optical 

energy deposition as well as the thermal and mechanical properties of the tissue. In soft tissue 

imaging,   and     are usually treated as constants, and thus the initial pressure rise reflects 

essentially the optical energy deposition (    ). 

In biological tissue, the primary endogenous chromophores are oxy- and deoxy-hemoglobin 

(HbO2 and HbR) and melanin. The strong intrinsic absorption of HbO2 and HbR in the visible 

spectrum enables blood vessels to be readily photoacoustically imaged noninvasively with high 

contrast and without using ionizing radiation. Using multi-wavelength measurements, changes 

in both the concentration and oxygen saturation of hemoglobin can be quantified. Hence, 

photoacoustic functional imaging of endogenous hemoglobin contrast is available with both 

high sensitivity and high spatial resolution at large depths. 

1.3 Photoacoustic microscopy using an ultrasound array 

Existing high-resolution purely optical imaging technologies—including confocal microscopy 13, 

two-photon microscopy 21, and optical coherence tomography (OCT) 14—have had a profound 

impact on biomedicine. However, since none of them sense optical absorption directly, label-
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free functional imaging is not easily available with these modalities. Furthermore, they rely on 

the detection of ballistic photons, and thus cannot image beyond the optical transport mean 

free path (~1 mm in human skin) 20.  

Photoacoustic microscopy overcomes the limitations of existing high-resolution optical 

imaging technologies and combines excellent optical contrast with high ultrasonic resolution at 

depths beyond the quasi-ballistic regime. In addition, the maximum imaging depth and the 

spatial resolution of PAM can be scaled with its ultrasonic parameters 22. PAM is emerging as a 

viable technology for both clinical and preclinical imaging and has demonstrated potential for 

many biomedical applications, including the imaging of single vessel oxygenation 23, 

quantification of tumor hypoxia 24, and detection of amyloid plaques 25.  

The development of PAM using a high-frequency ultrasound array may lead to important 

advances 26, including: 

1. The potential for high-speed and even real-time imaging, which is valuable to both 

clinical practice and preclinical research. In the clinic, time is critical, and in order to 

make decisions promptly, there is an increasing demand for real-time imaging. In 

preclinical research, such as small animal imaging for drug development, high-

throughput is a major goal, and thus high-speed imaging is very much desired. In 

addition, high-speed imaging is important for studying various physiological dynamics. 

2. The potential for high spatial resolution, which is crucial to image the microvessels 

(usually <100 m in diameter) in microcirculation. Since the spatial resolution in PAM is 

primarily determined by the ultrasonic frequency bandwidth, high-frequency ultrasound 

is required for high-resolution imaging. 
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3. The potential for large depth of field. While single-element PAM has a relatively small 

predefined depth of field with high resolution, ultrasound array PAM with dynamic 

focusing will enable a large depth of field for high-resolution imaging. 

4. The potential to build a handheld imaging device. A PAM system based on an ultrasound 

array has a relatively small physical footprint, and can potentially be built into a 

handheld imaging device.  

5. The potential to leverage commercial diagnostic ultrasound instruments. Most modern 

diagnostic ultrasound instruments are based on array technologies. Therefore, for 

clinical use, it will be valuable if we can leverage existing commercial ultrasound 

platforms to develop novel PAM technology, which could be more easily accepted by 

physicians. 

1.4 Summary 

This dissertation focuses on the development of novel PAM technologies using a high-frequency 

ultrasound array for high-speed, high-resolution 3D imaging in vivo. 

Chapter 2 presents our development of a real-time PAM system.  

Chapter 3 demonstrates the use of the real-time PAM system to image murine 

cardiovascular dynamics in vivo. 

Chapter 4 presents our development of a fast 3D dark-field reflection-mode PAM system. 

Chapter 5 demonstrates the use of the fast 3D PAM system to noninvasively identify and 

image the dynamics of sentinel lymph nodes in vivo in a murine model. 

Chapter 6 demonstrates the use of an improved 3D PAM system to image human pulsatile 

dynamics in vivo. 
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Chapter 7 presents our development of a section-illumination PAM system capable of 

imaging the microcirculation dynamics in vivo. 

Chapter 8 presents our development of a multi-focal optical-resolution PAM system capable 

of imaging hemoglobin concentration and oxygenation in capillary-level microvessels in vivo at 

high speed. 

Chapter 9 summarizes this dissertation. 
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Chapter 2 Real-time Photoacoustic Microscopy In vivo† 

2.1 Introduction 

Modern diagnostic imaging methods offer clinicians the ability to non-invasively visualize 

anatomy and judge pathology based on tissue morphology. While anatomical visualization has 

served the biomedical community well, there has been much recent progress in imaging 

methods providing molecular and functional information 27. The surge of biomedical research 

spawned by the completion of the human genome project is opening new windows of 

opportunity for bio-imaging in medicine to elucidate genotype-phenotype relationships. Since 

mice possess surprising genetic homology with humans, they have emerged as an important 

means of studying disease, and many imaging techniques have evolved specifically for imaging 

small animals. Such small animal imaging modalities are accelerating biomedical research and 

enabling longitudinal studies in the same animal over time, rather than necessitating a 

population of animals sacrificed at various time points, thus avoiding the statistical plague of 

inter-subject variability 28. 

In the clinic, time is critical and there is an increasing demand for real-time imaging 

techniques for immediate operator-feedback. Because modern ultrasound systems offer real-

time imaging capabilities, ultrasound is one of the most widely used clinical imaging modalities. 

A major goal in small animal imaging is high throughput. The recent emergence of a small-

animal high-frequency ultrasound imaging system has seen significant attention and been used 

by researchers in various fields, and has generated a large number of studies. While primarily 

providing real-time anatomical imaging capabilities, color Doppler mode also enables functional 

                                                 

† Reused with permission from R. J. Zemp, L. Song, R. Bitton, K. K. Shung, and L. V. Wang, "Realtime photoacoustic microscopy in vivo 
with a 30-MHz ultrasound array transducer," Optics Express 16, 7915 (2008). 
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visualization of blood flow, and increasingly quantitative estimates of blood velocities. 

Microbubbles 29 and perfluorocarbon nanodroplets 30 are being pursued as molecular imaging 

ultrasound contrast agents, offering potentially very high sensitivity. 

Recently, high-frequency ultrasound has seen a successful union with optical imaging 

techniques in the form of photoacoustic imaging 19. In photoacoustic imaging, nanosecond laser 

pulses incident on tissue generate acoustic signals due to thermal- and stress-confined 

thermoelastic expansion in subcutaneous absorbing structures such as microvessels. 

Photoacoustic signals are detected and reconstructed to form images of optical absorption. 

Since whole blood is over two orders of magnitude more absorbing than surrounding tissue for 

much of the visible spectrum, very high image contrast is attained. Because spatial resolution in 

photoacoustic imaging is determined primarily by ultrasonic rather than optical parameters, 

multiply scattered light is tolerated. This is noteworthy since imaging depth beyond a transport 

mean free path is possible, unlike approaches relying on minimally scattered photons, such as 

traditional optical microscopy methods and optical coherence tomography. 

While diffuse-optical tomographic methods permit and rely on multiply-scattered light, their 

reconstruction methods are ill-posed, transport-regime reconstruction is challenging 31, 32, and 

fine spatial resolution is practically difficult to obtain due to factors such as regularization. 

Analogous to computed tomography, circular-scanning photoacoustic tomography (PAT) has 

been used for non-invasively visualizing small animal brains 33, including application to 

functional brain imaging 34. More recently, Maslov et al 35 and Zhang et al 1 have demonstrated 

exquisite images of subcutaneous microvasculature using dark-field confocal photoacoustic 

microscopy (PAM), a raster-scanning-based reflection geometry imaging system. Unique to 

photoacoustic methods is the ability to image blood oxygen saturation as well as concentration 
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of total hemoglobin 1, 36, 37. Emerging photoacoustic methods are enabling molecular imaging in 

small animals, including imaging of gene expression 38 and cell receptors 24. Unfortunately, long 

scan times are presently required in both scanning PAT and PAM. 

Our goal was to construct a real-time high-frequency photoacoustic imaging system. In 

principle, using an ultrasound array transducer, a photoacoustic image can be formed from each 

laser shot by reconstructing photoacoustic signals received in parallel through array elements. 

The system described in this article approaches this goal but rather uses a small number of laser 

shots at a high-repetition rate to acquire signals in multiplexed mode. Even with the present 

multiplexing scheme, our system offers real-time performance. 

While Niederhauser et al 39 used an array system to demonstrate photoacoustic imaging, 

their system lacked real-time imaging capabilities, primarily due to the 10-Hz repetition rate of 

their laser system. Moreover, they used only 16 receive elements to form an image using a 

diagnostic frequency ultrasound array. Others 40-43 have also demonstrated the use of arrays for 

photoacoustic imaging, however for low diagnostic frequencies. Optical detection of ultrasound 

using Fabry-Perot etalons has led to emerging 2D arrays, recently producing 3D microvascular 

images in animals and human subjects 44. While this technique offers considerable promise, the 

signal-to-noise ratio strongly depends on the laser power of a laser probe beam, and presently 

this often means the necessity of scanning the probe beam, necessitating many pulsed laser 

excitations, and sacrificing real-time performance. A high-frequency array system for 

photoacoustic microscopy was previously reported by our group 45, but real-time acquisition and 

display was lacking. To our knowledge, this is the first published report of a real-time high-

frequency photoacoustic imaging system.  We will demonstrate the real-time imaging 

capabilities of our system, quantify its performance, and present in vivo data.  
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2.2 Methods 

Our system consists of a laser diode-stack pumped Nd:YLF Q-switched laser, a tunable dye laser, 

a high-frequency ultrasound array transducer, custom receive and control electronics, an 8-

channel PCI digitizer, a multi-core PC, and an LCD monitor for real-time display. A diagram of the 

main components of the system is shown in Figure 2.1. We will describe each main component 

below.  

 

Figure 2.1. Diagram of the key components of our real-time photoacoustic imaging system, 

including a KHz-repetition rate Q-switched pump laser, a dye laser, a fiber optic cable, an 

ultrasound transducer (US TX), receive electronics, a dual-socket quad-core CPU personal 

computer (PC) with an 8-Ch 125 MS/s data acquisition card, and a monitor for real-time display.  

2.2.1 Optics 

A Nd:YLF diode-pumped Q-switched laser (INNOSLAB, Edgewave GmbH, Germany)  was used to 

produce 7-ns optical pulses of ~12 mJ at a wavelength of 523 nm. Optical pumping by 

continuous-wave laser diode stacks in our Nd:YLF laser provides the flexibility of external 

triggering on demand at rates up to 1 KHz, without pulse energy loss. For our imaging system, 

this feature is a significant advantage over flashlamp-pumped Q-switched lasers that typically 

must be maintained at a fixed pulse repetition rate, and typically support much lower pulse 

rates.  This laser was used to pump a dye laser (Cobra, Sirah Laser –und Plasmatechnik GmbH, 
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Germany) outfitted with a high flow-rate dye circulator to minimize photo-depletion of the dye 

at high-repetition rates. The tunable output of the dye laser (with Pyrromethene 597 laser dye) 

enabled peak output power at 578 nm with a roughly 30-nm tuning range. At the isosbestic 570-

nm wavelength (where oxy- and deoxy-hemoglobin have equal molar extinction coefficients), 

the 1/e attenuation length of light in whole blood is roughly 40 m, hence a photoacoustic 

signal from a blood vessel should possess a bandwidth of roughly 37 MHz, which closely 

matches our 30-MHz ultrasound transducer’s center frequency. The 2-3 mJ of dye laser output 

were coupled into a 600-m optical fiber and light from the other end of the fiber was delivered 

obliquely past the ultrasound transducer array forming an oblong pattern on the skin along the 

array axis. The estimated fluence was 5 – 10 mJ/cm2 per pulse, below the ANSI recommended 

Maximum Permissible Exposure of 20 mJ/cm2. For our imaging experiments we used 578-nm 

and 570-nm wavelengths corresponding to the peak dye laser power and an isosbestic point, 

respectively.  

2.2.2 High-frequency ultrasound array transducer 

While diagnostic medical ultrasound systems typically operate in the 1–15 MHz range, the 

development of array systems with higher operating frequencies is more challenging and still in 

the research phase. Difficulties include fabricating arrays with small kerfs, interconnect issues, 

weak capacitive impedance of small elements, crosstalk, noise, and lack of adequate receive 

electronics. While higher frequencies promise finer imaging resolution, attenuation limits 

penetration.  

To receive photoacoustic signals, we used a unique 30-MHz linear array transducer 

fabricated from a 2-2-piezo-composite by the NIH Transducer Resource Center at the University 

of Southern California 46. The advantage of the piezocomposite material used in our application 
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is that it offers high piezo-electric properties (important for transducing weak photoacoustic 

signals) while the acoustic impedance of the material is greatly improved compared to pure 

piezoceramics 46.  

Our array possessed 48 elements with 100-m pitch, 19.1 dB compensated pulse-echo 

insertion loss, and element cross-talk less than -25 dB. A fixed 8.2-mm elevation focus was 

provided, with elements possessing 2-mm height. While the mean pulse-echo fractional 

bandwidth was 50%, this figure was improved to ~70% for receive only, used for our present 

photoacoustic imaging system.  

2.2.3 Data acquisition and control electronics 

Photoacoustic signals converted to voltage signals by the ultrasound array were amplified and 

conditioned prior to digitization. The 48 receive channels of the system were each amplified by 

pre-amplifiers (MAX4107, Maxim/Dallas Semiconductor), down-multiplexed 3:1 using RF 

multiplexer ICs (AD8184, Analog Devices), bandpass filtered with a 4th-order Butterworth filter, 

then amplified using a 40-dB variable gain amplifier (AD8332, Analog Devices). RF transformers 

(T1 6T, Minicircuits) are used to convert the differential output of the variable gain amplifiers to 

a single line and a final 23-dB fixed gain stage offers a total variable gain between 33 and 73 dB. 

All these steps were implemented on an RF printed circuit board having 48 SMA inputs and 16 

SMA outputs, described by Bitton et al 47. The remaining 16 channels were down-multiplexed to 

8 channels using modified MAX4141 multiplexer evaluation boards (Maxim, Inc). The final 8 

lines were digitized at 125 Mega-sample-per-second using a 14-bit 8-channel PCI data 

acquisition card (Octopus CompuScope 8389, GaGe Applied Systems, USA). SMA-terminated RG-

174 coaxial cables connected the array to the RF receiver board, the receiver board to the 

additional multiplexers, and the multiplexers to the data acquisition card.  The PCI digitizer 
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board was controlled using custom software written in C and C#, modified from the 

manufacturer’s software development kits. The card had 128-MB on-board memory, and the 

PCI bus offered 32-bit transfers at 66-MHz clock rates, providing data transfer to the PC RAM at 

better than 200 MBPS. Benchmark software written in C showed the system capable of 

sustained data acquisition and transfer to PC RAM for 1 KS records at roughly 1 KHz. The card 

was used as the master clock for our entire system, and was programmed to send out trigger 

signals to the multiplexer control and laser. In this way each laser trigger was guaranteed to be 

synchronized with the data acquisition clock, avoiding pulse-to-pulse jitter detrimental to 

multiplexed beamforming. For each B-frame to be acquired, the Gage card was programmed to 

record a sequence of 6 acquisitions, enabling multiplexed access to 48 array elements with 8 

receive channels. Each acquisition was preceded by a trigger out signal with a specified delay 

time before recording. The repetition rate of the 6 acquisitions per B-frame, and accompanying 

trigger signals was set at 1-KHz, determined by the Gage card hardware, with the precision of 

the onboard 125 MS/s clock. The inter-frame delay, however, was software controlled, and 

hence variable due to lack of interrupt control in the Windows operating system. Our hypothesis 

was that since a B-frame was acquired in only 6 ms, beamforming degradation due to motion 

over multiplexed data acquisition should be minimal. This hypothesis is addressed in the Results 

section. 

The multiplexer control circuit consisted of a simple 4-bit counter, counting from binary 0 to 

5. The counter was implemented using CMOS pre-settable counter integrated circuits 

(CD74HCT163E, Texas Instruments).  At the beginning of the data acquisition cycle, parallel-port 

signals were used to toggle counter resets and count enables. Two bits of the counter output 

were used to control the 3 multiplexed states of the RF board, and a third bit was used to 
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control the 2:1 MUX boards, as illustrated in Figure 2.2. Trigger signals from the Gage card acted 

as the clock-input to the counter circuit, advancing the count, and changing the multiplexer 

state. A bit from the parallel-port was used to enable this trigger signal to pass to the laser via a 

D-latch. Since the Gage card’s trigger out duration was too brief to reliably trigger the laser, a 

pulse-delay generator (DG535, Stanford Research Systems) was used to forward the trigger to 

the counter circuit with an expanded pulse width.    

 

Figure 2.2. Architecture of the receive and control electronics of our real-time photoacoustic 

imaging system. The 48 receive channels are boosted by pre-amplifiers, down-multiplexed 

(MUX), bandpass (BP) filtered, and amplified with a variable gain amplifier (VGA) stage. The 

resulting 16 channels are down-multiplexed to 8 channels for digitization. Control electronics 

toggle through multiplexer states, and pass trigger signals to the laser. 

2.2.4 Multi-threaded multi-core processor approach to parallel beamforming  

While ultrasound beamforming traditionally uses hardware such as application-specific 

integrated circuits (ASICs), or programmable hardware such as field programmable gate arrays 

(FPGAs) 48, 49, we instead explore multi-core processors for this task. This approach will allow off-
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the-shelf PCs to perform tasks that previously required dedicated hardware. Following Moore’s 

1965 projection that transistor densities will double every 18 – 24 months 50, and noting the 

recent trend in multi-core processors, we project that the software approach to beamforming 

may prove fruitful. Advantages include short high-level software development time, great 

flexibility for channel-domain processing, and post-beamforming signal and image processing, 

and ease of upgrading to new processor powers.  

Dynamic receive beamforming was implemented in C++ and compiled to a Dynamic Link 

Library in Visual Studio 2005 Professional Edition (Microsoft Corp.). Multi-threaded parallel 

programming was accomplished by using OpenMP programs before ‘for’ loops for each A-scan 

reconstruction, along with the appropriate variable scope declarations. OpenMP is a collection 

of instructions simplifying the shared-memory multi-threading and parallel programming 

process. Our beamforming algorithm leverages the computing power of our multi-core 

processors by parallel computation of A-scans of different scan angles. Delay values for the 

dynamic receive beamforming algorithm were computed once prior to all beamforming 

computations, and stored in memory similar as an effective look-up table. Since our sampling 

rate is close to the Nyquist limit which is sparse for delay and sum beamforming operations, 

channel data was up-sampled 5 times using simple linear interpolation prior to beamforming. 

During beamforming, channel-data was delayed by pre-computed values, using nearest 

neighbor interpolation. Delays were computed as 

2 2sin cos
( , ) ,                  (2.1)

2

n n
n

x x
R t

c Rc

 
    

where xn is the distance to the array element from the center of the array, c is the speed of 

sound, and 
 
is the desired steering angle. All 48 receive channels were used for each A-line in 

the beamformed image. 
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All operations were performed with pointers, abating the need for duplicate copies of data 

in the memory, and accelerating performance. Built-in compiler options were selected to 

optimize for speed. Benchmark tests beamforming 48 channels of 500 samples per channel into 

an image with 128 scan lines 500 samples deep were clocked at better than 83 frames per 

second on a fast PC (Dell Precision 490) with two 2.66 GHz Quad-core Xeon processors (with 8 

MB of L2 cache and 1333 MHz front-side bus). The system possessed 4 GB of DDR2 SDRAM with 

a 667 MHz bus clock. This shared memory 8-core processor system represented one of the 

market’s highest computing-power desktop PCs available at the time of this work (spring 2007). 

While the Xeon processors support 64-bit operations, the Gage card drivers were only available 

for 32-bit Windows and thus the available addressable RAM was limited to ~3 GB rather than 

the available 4 GB. It may be possible to significantly improve the 83 fps benchmark speed by 

further optimizing the beamforming algorithms using processor-specific assembly-language.  

2.2.5 GPU-based scan conversion and display 

Scan conversion refers to the process of mapping a matrix of beamformed data onto an 

appropriate curvilinear geometry. Scan conversion is often done with dedicated hardware, but 

may also be done with software. Since we wanted to reserve computing power for beamforming 

throughput, similar to 48, we decided to implement scan conversion and display using the 

Graphical Processing Unit (GPU) of the graphics card (128 MB PCIe x16 nVidia Quadro NVS 285) 

rather than the multi-core Central Processing Unit (CPU). Besides offloading computational 

burden from the CPU, GPU-based scan conversion allowed us to take advantage of a wide range 

of software tools for rendering graphics.  

We used a novel approach to our scan conversion algorithm. Instead of computing each 

pixel of the curvilinear image by interpolation via a point-by-point coordinate transformation as 
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is typically done, we rather instructed the graphics card to warp our pre-scan-converted image 

matrix onto a 32×32 or 64×64 mesh of triangles defining the curvilinear coordinates, shown in 

Figure 2.3. This mesh was generated and stored in the graphics card memory prior to data 

streaming. The B-scan-images following beamformation were then written to the GPU in RGB-

format and were then stretched onto the triangle mesh and displayed in the correct curvilinear 

format upon rendering. A new texture (pre-scan-converted B-mode image) was written to the 

GPU for each new frame. Zoom and pan capabilities were simply accomplished by keyboard-

control of a virtual camera position above the scan-conversion mesh. Additionally, this approach 

provided vector-based rather than pixel-based rendering, offering smoothed rather than 

pixilated-looking images.  

To implement these procedures, we used Microsoft XNA Game Studio in the Visual Studio 

C# Express Edition (Microsoft Corp.) environment. XNA is a new wrapper around the native 

Managed DirectX. Due to a well developed library, and graphic card-independent programming 

capabilities, this environment allowed rapid development of the rendering methods needed for 

real-time display. There are also some disadvantages. The use of pointers in C# is allowed but 

un-natural due to C#’s managed dynamic memory allocation and ‘garbage’ collector. Thus all 

CPU operations requiring speed were developed using C/C++ and these functions were compiled 

to Dynamic Link Libraries (DLLs), which were then called in the C# environment in the context of 

a so-called ‘unsafe’ scope. 
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Figure 2.3. To offload computational burden from the CPUs to the GPU, we implemented a 

32x32 scan-conversion mesh over which the pre-scan converted beamformed image was 

warped using graphic-card rendering methods primarily developed for the video game industry.   

 

Figure 2.4. Schematic of software communication between the data acquisition card, CPUs, GPU, 

and system RAM. Note that the acquisition, beamforming, and display operations were 

implemented on parallel threads. Since these operations read and write common resources, 

signaling flags were used to avoid access conflicts. 

2.2.6 Parallel threading issues 

Multiple parallel threads are instantiated in our software: one for data acquisition and transfer, 

another for beamforming, another for scan conversion and display, and another for a graphical 

user interface enabling data logging and display options. Daughter threads are also spawned 
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from the beamforming thread via OpenMP to enable parallel reconstruction of A-scan lines as 

described above. If one process encounters an execution bottleneck, the other threads will 

continue to operate using the data available in the current state. Figure 2.4 shows how our 

software is organized to communicate between the PCI card, the CPUs, the GPU and the RAM. 

Note that some processes spawned on parallel threads require access to common data. Access 

to thread-sensitive resources is mediated by event-handling flags which are set and reset after 

each process completes its intended job. In this way potential conflicts between multiple 

threads are avoided. 

2.2.7 Data archival and post-processing 

Pre-beamformed channel data was archived to hard-disk for offline processing. A library of 

utility programs written in C++ and C# were used to perform rapid beamforming on archived 

data, and the post-beamformed RF data was written to file for envelope detection, scan 

conversion, and post-processing in MATLAB (Mathworks Inc). Post-processing operations 

included intensity transformations such as contrast stretching, and median filtering for edge-

preserving noise reduction. 

2.2 Results 

2.2.1 Resolution study 

To evaluate the system resolution, we constructed a phantom consisting of two crossed 6-m-

diameter carbon fibers suspended in water. Using a translation stage to move the probe relative 

to the phantom, we acquired images at progressive scan positions along the array’s elevation 

direction. The maximum intensity C-scan projection image of the phantom is shown in Figure 

2.5(a). A representative B-scan near the dashed line location is shown in Figure 2.5(b), and the 
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maximum cross-range photoacoustic amplitude of this B-scan is shown in Figure 2.5(c). These 

images demonstrate clearly distinguishable points separated at only  ~80 m (40 m lateral 

separation and 70 m vertical separation). At 6.9 mm imaging depth (normal depth from the 

transducer surface), the lateral resolution should be the product of the f# (6.9 mm / 4.8 mm = 

1.44) times the center wavelength (50 m), equal to 72 m. The axial resolution, as measured in 

45, was ~25-30 m. Thus the clear 80 m separation of carbon fibers is reasonable. 

 

Figure 2.5. (a) C-scan maximum amplitude projection image of crossed 6-m carbon fibers, 

constructed from 50 parallel B-scans. (b) Sample B-scan at the dotted-line position in (a). The 

carbon fibers are separated here by only ~80 m, yet are clearly distinguishable. (c) Cross-range 

maximum amplitude projection of (b) onto the x-axis.  

2.2.2 Frame rate 

Our software enabled the following three modes of operation: (1) high-speed acquisition but 

with no real-time display (2) real-time acquisition and display, and (3) real-time acquisition and 

display with continuous hard-disk data logging. In high-speed acquisition mode (1), the frame 

rate could be as high as 167 frames per second (1000 Hz divided by 6 laser shots per image). In 

this mode, the number of frames that could be acquired was limited by the memory depth of 
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the data acquisition card. This mode may be valuable for studying small animals or embryos 

with very high heart rates. At 1000-Hz sustained repetition rate laser safety may be a concern as 

will be discussed. In mode (2), real-time acquisition and display, average frame rate was ~50 

frames per second (fps). In mode (3) with continuous hard-disk data logging, frame-rate reduced 

to ~21 fps for ASCII file archival, but remained ~50 fps for binary formats. These results were 

obtained using an 80 GB SATA hard drive with an 8 MB cache and up to 3 GB/s transfer speed at 

7200 rotations per minute. To verify the frame rate and to assess the inter-frame delays, an 

image frame trigger was recorded on an external oscilloscope (TDS5034, Tektronix). The frame 

trigger was obtained by taking the laser trigger signal and using a pulse-delay generator (DG535, 

Stanford Research Systems, Sunnyvale, CA) to produce a 7-ms-duration TTL pulse. Since each 

frame acquisition required a burst of 6 TTL laser triggers at 1-kHz repetition rate, with 7-ms 

hold-off time, the pulse-delay generator produced one image trigger per laser-trigger burst.  

2.2.3 Evaluation of handheld performance 

Because our data acquisition is multiplexed, we must realize that motion may not be tolerated if 

it is very fast. In particular, if we want the delay-and-sum beamforming computations to 

maintain coherence, inter-acquisition motion should be minimal, otherwise artifacts may be 

produced. By requiring that motion over our 6-ms acquisition time is less than ~λ/4, we restrict 

ourselves to motions with velocities of less than ~2 mm/s. While this velocity is small, we can 

also realize that our field of view with appreciable signal-to-noise is only ~4 mm by 4 mm. Hence 

this velocity represents translation across half the field of view in 1 second.  

To test the performance of the system against motion for handheld operation, we imaged a 

100-m human hair while translating the array. We performed this translation using hand 

motion but restricting motion to vertical and horizontal translations by means of an optical post-
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based translation guide. Movies of acquired photoacoustic images of the hair phantom 

demonstrating ~3 mm/s horizontal and vertical motions are shown in Figure 2.6 and Figure 2.7, 

respectively.  No apparent distortion of the hair point-spread function was apparent. Note that 

images of the hairs appear to have a top and bottom lobe. This can be explained by noting that 

the top and bottom of the hair can be resolved with this system since the axial spatial resolution 

is ~25 m. 

 

Figure 2.6. Movie (2.5 MB) of photoacoustic B-scans of a human hair in water. The probe was 

moved up and down in an oscillating fashion using manual adjustment of a micrometer on a 

translation stage. This video sequence demonstrates the real-time capability of the system, 

specifically it’s robustness to vertical motions. 

 

Figure 2.7. Movie (3 MB) of photoacoustic B-scans of a human hair in water. The probe was 

moved laterally by hand along a guide rail.  This video sequence demonstrates the robustness of 

the multiplexed acquisition scheme against horizontal motions. 
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2.2.4 In vivo depth performance 

To test in vivo performance, we imaged the upper thoracic region of young athymic nude mice 

(~10 g, Charles River). In doing so we fixed the transducer using a custom holder, and placed it in 

a de-ionized water bath, beneath which we placed a nude mouse. Consumer-grade plastic wrap 

coated the container holding the water, and a window at the bottom allowed the water-filled 

membrane to contact the surface of the animal. Acoustic coupling gel or simply a thin layer of 

water was used to improve the acoustic coupling between the animal and the water-filled 

membrane. During imaging the nude mouse was anesthetized using a gas anesthesia machine 

(EZ-5000, Euthanex Corp., Palmer, PA) with 1 – 2% vaporized isofluorane at an air flow-rate of 1 

– 1.5 L/min. Absorbing structures were detected above the noise floor to depths of 2.5 – 3 mm 

in vivo, as shown in Figure 2.8.  

 

Figure 2.8. Photoacoustic image of microvasculature in a nude mouse. This figure demonstrates 

appreciable signal to depths of ~2.5 mm.  

2.2.5 In vivo static and dynamic imaging 

The multimedia file of Fig shows a movie of microvascular structures, where the subject and 

transducer are fixed relative to each other. Electronic noise generates a visible flicker in the 
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images, but because the system is real-time, the eye tends to provide a good temporal filter to 

distinguish static structures from random noise. The movie linked to Fig shows a 2-way fly-

through of microvessels, where the array is translated over 10 – 15 mm along the array’s 

elevation direction forwards then backwards. Notice the prominent oblique vessel structure 

which seems to be moving across the bottom of the field of view.  

 

Figure 2.9. (3.2 MB) Photoacoustic movie sequence of subcutaneous microvasculature as the 

subject and probe are held in a fixed position. S is the skin surface and bright regions below the 

skin surface are microvessels including venules and arterioles. Two sample vessels are labeled 

with the letter V in the figure.  

 

Figure 2.10. (4MB) Photoacoustic movie sequence of a 2-way fly-through across 10-15 mm over 

the skin surface S. Notice the prominent oblique vessel V move from the middle right to the 

center of the image and back as the array is translated along its elevation direction.  



26 

 

2.3 Discussion 

The system presented here represents the first real-time high-frequency photoacoustic imaging 

system to our knowledge, and we have seen a glimpse of its capabilities. There is considerable 

room for forward progress and we now offer a discussion of such avenues.  

Thus far, we have performed only single wavelength imaging. Future work may incorporate 

multiple-wavelength illumination for spectral estimation of blood oxygen saturation and other 

physiological parameters of interest. A fast-tuning laser source would be highly desirable for this 

application. 

Presently the light delivery approach is not amenable to direct probe-skin contact and the 

transducer must be held above the skin surface. Future improvements should integrate a 

standoff mechanism to better control light delivery and facilitate contact measurements as this 

adds to handheld stability.  

For exposure times longer than 10 s, the ANSI recommended limit for skin illumination is 

200 mW/cm2, a number designed to limit cumulative laser-induced heating. For <10 s dwell 

times, the maximum permissible exposure is limited by 1100te
1/4 in mJ /cm2, where te denotes 

the exposure duration in seconds. For our case, since we send a rapid train of 6 pulses followed 

by an inter-frame delay which is long enough for heat to adequately dissipate (as note above for 

50 fps rates), we take the exposure duration as 6 ms.  This corresponds to a total of 54.4 mJ/cm2 

delivered over the 6 pulses, translating into ~9 mJ/cm2 per pulse, which is roughly our present 

fluence, even though our average power delivery is ~3 W/cm2, above the CW ANSI limit. Higher 

imaging frame rates may induce undesirable laser-heating.  

Heating can be minimized in future systems incorporating more digitization channels since 

the requirement for multiplexing is reduced. More acquisition channels will also reduce possible 
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motion artifacts for very fast motions, and allow for increased energy fluence per laser pulse, 

which will improve the signal-to-noise ratio and penetration depth. For significant penetration 

depths, a broader surface illumination may be advantageous as this will enable more multiply-

scattered photons to be delivered to a given depth.  

A broader illumination pattern will also increase our field of view. Presently our field of view 

with any appreciable signal-to-noise ratio is limited to ~3 – 4 mm axially and laterally. This is 

largely due to light delivery and penetration. Note however, that since our array transducer 

possesses 2λ pitch, grating lobes may be problematic for large steering angles. Thus, to increase 

the field of view we should also use a transducer with smaller pitch (although such transducers 

are presently difficult to fabricate), and more elements.  

Future system designs should also take great care to design the RF electronics to reduce 

noise as much as possible—to approach the theoretical best-case Johnson (thermal) noise floor.  

Finally, it is presently difficult to interpret our B-scan images without some reference image 

of the anatomical context. For this reason it would be greatly advantageous to integrate high-

frequency pulse-echo ultrasound imaging capabilities in the system. 

2.4 Conclusions 

We have presented a first-of-its kind real-time high-frequency photoacoustic imaging system, 

have outlined our design including the hardware and software architecture, and have shown 

phantom and in vivo data. The B-scan acquisition rate is 50 frames/s, faster than the 30-Hz video 

rate. Also noteworthy is that this is the first article to our knowledge documenting real-time 

beamforming on a multi-core CPU desktop PC with high-level software, although others have 

certainly moved towards programmable hardware at a lower-level 51. Because of the recent 

trend to multi-core processors, and leveraging Moore’s Law, we may expect that our multi-
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threaded software approach may have considerable potential for photoacoustic systems, 

ultrasound systems, and other multi-channel systems requiring beamforming as the number of 

processor cores expands. Having provided some discussion on the capabilities and limitations of 

our real-time photoacoustic imaging system, one question that remains to be seen is what 

biomedical applications can best make use of this emerging technology. With recent progress, 

real-time photoacoustic imaging is sure to find a niche in several biomedical applications. Now 

equipped with real-time imaging capabilities, photoacoustic imaging is ready to make seminal 

contributions in biological and clinical imaging. 
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Chapter 3 Real-time Photoacoustic Microscopy of Murine 

Cardiovascular Dynamics† 

3.1 Introduction 

Due to the rapid heart rates of mice, cardiovascular research utilizing murine models of disease 

requires high frame-rate imaging modalities. Presently, widely used small animal imaging 

techniques such as micro-PET and micro-CT do not permit imaging frame rates sufficient for 

murine cardiovascular visualization. High-frequency ultrasound has emerged as a valuable tool 

for cardiovascular research, offering both high resolution and high frame rates 52. Beyond tissue 

structure and morphology, imaging systems offering functional imaging capabilities are highly 

desirable for cardiovascular research. Of particular interest is measurement of blood flow, which 

high-frequency ultrasound can provide, and estimation of local blood or tissue oxygenation, 

which ultrasound alone cannot. However, an emerging bio-imaging technology, photoacoustic 

imaging, has the potential for noninvasive oxygenation mapping 1. This letter describes a unique 

real-time photoacoustic imaging system and its application in imaging the beating hearts of 

young athymic nude mice in vivo. 

Photoacoustic imaging uses laser-induced ultrasound to form images of optical 

pigmentation in subcutaneous tissue. Photoacoustic signal strength is proportional to the local 

optical absorption coefficient of tissue, and scales in magnitude with the optical fluence 

delivered. Dominant subcutaneous absorbing pigments include oxy-hemoglobin and deoxy-

hemoglobin, hence high contrast images of blood vessels and microvessels are possible 44. With 

multiple optical wavelengths sequentially used to interrogate tissue, algorithms akin to those 

                                                 

† Reused with permission from [R. J. Zemp, L. Song]*, R. Bitton, K. K. Shung, and L. V. Wang, “Realtime photoacoustic microscopy of 
murine cardiovascular dynamics,” Optics Express 16, 18551 (2008) (*equal contribution). 
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used in pulse-oximeters may be used to estimate blood oxygen saturation 36. Additionally, 

photoacoustic technologies have been shown to be promising for molecular imaging, including 

gene expression imaging 53.  

Recently, our group demonstrated a novel real-time photoacoustic imaging system based on 

a high-repetition-rate laser and a high-frequency ultrasound array transducer 26, 54. In this letter, 

we report on the refinement of this system and its use for imaging in real-time the beating 

hearts of mice. To our knowledge, along with our recent conference paper, this is the first 

published report of real-time photoacoustic imaging of physiological dynamics. 

 

 

Figure 3.1. Diagram of our photoacoustic imaging system. A tunable pulsed laser system delivers 

light via an optical fiber to the animal subject. A high frequency ultrasound array transducer (US 

Tx) receives the photoacoustic signals, which are amplified and de-multiplexed using custom 

receive electronics, then digitized using an 8-channel PCI data acquisition card. A computer with 

8 processor cores performs real-time beamforming and display. A pulse oximeter (Pulse Ox) was 

used to monitor animal health and measure animal heart rates. 
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Figure 3.2. (1.8 MB) Video of the real-time photoacoustic imaging system and real-time display 

while imaging the beating heart of an athymic nude mouse. 

3.2 Methods 

Our system design is described in detail in [54], however we report the most salient features 

here, highlighting our current experimental protocol. An Nd:YLF Q-switched laser delivering 523-

nm light pulses of 6 – 8-ns duration at up to 12-mJ pulse energy, and up to 1-KHz repetition 

rates was used to pump a tunable dye laser circulating Rhodamine 6G laser dye. The tunable 

laser output was fiber-coupled into a 600-m high-numerical aperture optical fiber, and the light 

at the other end of the fiber was directed obliquely onto the imaging subject, forming an 

elliptical illumination pattern with ~10 mJ/cm2 incident laser fluence. A custom high-frequency 

ultrasound array transducer (fabricated in the NIH Transducer Resource Group 46), was used to 

receive high-frequency photoacoustic signals. The array possessed 48 elements with 30-MHz 

center frequency, 2-λ pitch, and 8.2-mm elevational focus. Custom receive and control 

electronics were used to amplify and multiplex received acquisitions, and an 8-channel PCI 

digitizer with 125 MS/s parallel digitization rate was used to acquire, digitize, and stream 

received photoacoustic signal data to the RAM of a dual-socket quad-core PC (possessing 8 

processor cores).  Real-time delay-and-sum beamforming was implemented using parallel 

programming on these processor cores, while scan conversion was offloaded to the Graphical 
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Processing Unit of the video card. The PCI digitizer served as master clock, and generated 6 

trigger-out signals at 1 KHz repetition rate to the laser to acquire 48-channels of data using 6 

multiplexed acquisitions. One multiplexed acquisition of the 48-channels was then used to form 

a single B-scan image frame, and inter-frame triggering was software generated, averaging ~50 

frames per second. The system resolution was quantified as ~100 m laterally, and 25 m axially.  

In this paper the laser trigger-signal from the PCI digitizer was also routed through a pulse-

delay generator to an oscilloscope. Simultaneously another channel of the oscilloscope was used 

to record pulse-oximeter signals. The pulse-delay generator output a TTL pulse 7 ms in duration 

for the first trigger pulse it encountered, so that the train of 6 trigger pulses was effectively 

converted to a single TTL pulse for each image frame. The oscilloscope was hence used to record 

the occurrence of image frames relative to the cardiac cycle to validate that we were indeed 

imaging the heart in real-time, and not temporally under-sampling.  

Young athymic nude mice (10 g) were purchased from Charles River Laboratories. Nude 

mice were anesthetized using a gas anesthesia machine according to approved protocols, and 

maintained under anesthesia using this machine throughout the imaging procedure. A pulse-

oximeter probe was clamped to a hind-paw, and the animal was positioned so that its chest wall 

was facing the ultrasound transducer. The mouse was laid on a lab-jack with a soft plastic 

insulating bed. Fore- and hind-paws were secured to the lab-jack with adhesive tape. A thin 

layer of acoustic coupling gel was applied to the mouse, then the lab-jack and animal were 

raised up to an optically-and acoustically transparent water-filled membrane (Saran Premium 

Wrap™, SC Johnson Inc.) sagging from an aperture in a water tank. The purpose of this water 

tank was to serve as an acoustic coupling mechanism for photoacoustic signals, and as an 

optically transparent medium for light delivery. The photoacoustic probe, consisting of the 
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optical fiber and ultrasound array transducer were lowered into the water tank, and positioned 

with the aid of a 3-axis translation stage. Real-time display from our imaging system was also 

invaluable for probe positioning. Following animal positioning, computer-console control of the 

imaging system was used to initiate data recording. In deep anesthesia, animal heart rates 

recorded by the pulse-oximeter and oscilloscope averaged 180 – 240 beats per minute or 3 – 4 

beats per second. The real-time imaging speed with real-time data archival to the hard-drive 

could be performed at rates as high as 50 frames per second, adequate for capturing several 

image frames per cardiac cycle. 

3.3 Results 

Figure 3.2 shows a video of the imaging system and real-time display, demonstrating 

visualization of the beating heart. Figure 3.3 shows a movie of the beating heart of the same 

mouse, while rendered offline. Figure 3.4 shows an M-mode image, consisting of A-scan lines 

from the midpoint of Figure 3.3 as a sequence of time. The motion of an absorbing structure is 

apparent as a periodic motion. Two gaps in the cardiac cycle are evident and attributed to 

respiratory-induced motion. Structures are visualized to depths of ~3 – 4 mm, roughly 1/3 of the 

estimated body thickness during the imaging procedure. The B-scan photoacoustic images 

shown here offer visualization of optically absorbing structures, and their motion with cardiac 

and respiratory cycles is evident. The images shown here were acquired with a single optical 

wavelength of 578-nm, an isosbestic point (i.e. a point where deoxy- and oxy-hemoglobin molar 

extinction coefficient are equal). With this wavelength, oxygenated blood is visualized with the 

same contrast as deoxygenated blood.  
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Figure 3.3. (3 MB) Photoacoustic B-scan movie of the beating heart of an athymic nude mouse. 

This movie sequence was reconstructed and rendered offline using data archived in real-time. 

 

 

Figure 3.4. M-mode image along the X = 0 mm line in Figure 3.3. The oscillating structures 

around the 9-mm depth below the transducer surface show the cardiac motion as a function of 

time. The animal’s heart estimated here as ~3 beats per second corresponded well to the 180 

beats per minute as measured by the pulse oximeter.   
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3.4 Discussion 

Presently, delineation of cardiac structures is difficult; however, complementary co-registered 

high-frequency ultrasound may serve this role in future work. Nevertheless, our system offers 

optical absorption contrast rather than ultrasound backscatter contrast, and these preliminary 

image sequences are the first of their kind. Image quality is expected to improve with future 

system improvements.  

Active adult mice may have heart-rates from 400 to as high as 800 beats per minute (bpm) 

which may challenge our present 50 fps system. However, it is known that very young mice such 

as those used in our study, have lower heart-rates (286 +/- 56 bpm for newborns 55). 

Additionally, anesthetized mice may have lower heart rates (anesthetic-dependent rates as low 

as 200 beats per minute for adult mice are reported in 56). Hence the observed heart-rates are 

roughly consistent with the literature. In other data not shown we are able to image 300 bpm 

heart-rates. Deep breaths apparent in the movie and the M-mode data may suggest that 

improvements in animal positioning techniques are warranted.  

Of considerable interest is the noticeable change in visibility of vessels during respiration, 

and may be due to venule expansion during respiratory-induced intra-thoracic pressure changes. 

This effect is worthy of further future study, and may prove important for studying venous 

return and diastolic function. These observations also motivate photoacoustic technology as a 

candidate for functional imaging studies, where a stimulus induces local vasoconstriction or 

vasodilation. Future work should also use multiple wavelengths for blood oxygenation 

estimation. This capability will prove important for studying ischemia in cardiovascular disease. 

Distinct from perfusion, oxygen saturation of tissues will provide important information linking 

tissue behavior to oxidative stress. Oxygen saturation may also be important for studying 
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developmental causes, consequences, and solutions to septal defects where oxygenated and 

deoxygenated blood mix during cardiac cycles. With future improvements, photoacoustic 

imaging technology may also help us understand hemodynamics in small animals with 

information which ultrasound alone cannot provide. Beyond small animal cardiovascular 

research, real-time photoacoustic imaging may serve an important future role in clinical settings, 

and we anticipate a bright future for this emerging technology.  
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Chapter 4 Fast 3D Dark-field Photoacoustic Microscopy In vivo† 

4.1 Introduction 

Photoacoustic imaging is a hybrid imaging modality with excellent optical absorption contrast 

and high resolution beyond the optical ballistic and quasiballistic regimes (~1 mm in scattering 

biological tissues) 20. It has become a rapidly growing field in biomedical research because of its 

great potential in breast cancer diagnosis 57, skin melanoma detection 58, and functional brain 

imaging 34. High imaging speed is essential for biomedical research involving dynamics and is 

highly desirable for decision-making in clinics. However, photoacoustic imaging systems using a 

single element ultrasound transducer are limited in speed by mechanical scanning. To improve 

imaging speed, several groups have employed ultrasound arrays for photoacoustic imaging 39, 59. 

For example, using a 7.5 MHz ultrasound array, Niederhauser et al. 39 obtained an imaging speed 

of 7.5 B-scan-frames/s with 0.3 – 0.4 mm resolution. While ultrasound arrays of clinical 

diagnostic ultrasound frequencies (several MHz) are commercially available, arrays of high 

frequencies (>12 MHz) are still at the research stage. We developed a photoacoustic microscopy 

system with a high frequency (30 MHz) ultrasound array 26, which provided ~25 m axial and 

<100 m lateral resolutions. Real-time B-scan imaging capability was demonstrated 54. 

Besides high imaging speed, 3D imaging is also highly desirable. One advantage of 3D 

imaging is to provide maximum amplitude projection (MAP) images in various orientations. 

Another advantage is the ability to view images interactively. The flexibility to rotate, scale, and 

view the region of interest from various perspectives can facilitate visualization. 

                                                 

† Reused with permission from L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 3-D dark-field reflection-mode 
photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” Journal of Biomedical Optics 13, 054028 (2008). 
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We present a fast 3D dark-field reflection-mode photoacoustic microscopy system with a 

30-MHz ultrasound linear array. This system performs real-time cross-sectional (B-scan) imaging 

at 50 Hz (faster than the 30-Hz video rate) with real-time beamforming and 3D imaging of 166 B-

scan frames at 1 Hz with post-beamforming. To enable dark-field reflection-mode photoacoustic 

imaging, we designed a novel light delivery system consisting of both fiber and free-space optic 

components. The dark-field laser pulse illumination configuration was known to have 

advantages in suppressing undesirable photoacoustic signals from the superficial layers of the 

skin. Three-dimensional photoacoustic images of the subcutaneous vasculature in rats were 

demonstrated in vivo, which matched well with their ex vivo transmission optical microscopy 

counterparts. Our photoacoustic microscopy system is also presented as a compact prototype 

for handheld operation and is anticipated to accelerate preclinical and clinical applications of 

photoacoustic imaging. 

4.2 Methods 

A schematic of the system is shown in Figure 4.1. Our system consists of a diode-pumped Q-

switched Nd:YLF laser, a tunable dye laser, a 30-MHz ultrasound linear array, custom receive 

and control electronics, an 8-channel PCI data acquisition (DAQ) card, a multi-core PC, a custom 

designed light delivery system, and a motorized linear motion actuator.  

4.2.1 Optics and light delivery 

As the irradiation source, the tunable dye laser (Cobra, Sirah Laser-und Plasmatechnik GmbH, 

Germany) was pumped by the Nd:YLF laser (INNOSLAB, Edgewave GmbH, Germany). The Nd:YLF 

pump laser had a pulse duration of 7 ns and a pulse energy of 12 mJ at 523 nm. The continuous 

optical pumping from the diode stacks in this Q-switched Nd:YLF laser provided the flexibility of 
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external triggering on demand at rates up to 1 kHz without compromising the pulse energy. This 

feature offered a significant advantage over flashlamp-pumped Q-switched lasers, which are  

 

 

Figure 4.1. Schematic of the 3D dark-field reflection-mode photoacoustic imaging system. 

 

typically maintained at a fixed low pulse repetition rate (e.g., 10 Hz). Rhodamine 6G laser dye 

was used to enable a peak output of 2 mJ per pulse with a pulse width of 7 ns at the 570-nm 

wavelength from the dye laser, with a 40-nm tuning range. For our imaging experiments, we 

used the peak 570-nm wavelength. This wavelength also corresponds to an isosbestic point 

where oxy- and deoxy-hemoglobin have equal molar extinction coefficients. 

Proper delivery of laser light into biological tissues for photoacoustic excitation is crucial to 

achieving a high signal-to-noise ratio (SNR) in photoacoustic imaging. The light delivery system 

was designed to provide a compact photoacoustic imaging device with sufficient SNR and robust 

performance. The dye laser output was coupled into a 0.6-mm-core-diameter multimode optical 

fiber, and was collimated by a fiber collimator at the output end of the fiber. A free space optic 
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setup, integrated with the ultrasound array, was used to guide light further (Figure 4.1). The 

collimated light beam, of ~6 mm diameter and ~1.2 mJ energy, was split into two beams by a 

50:50 non-polarizing beamsplitter. The two beams were reflected by mirrors towards two 

cylindrical lenses and were coupled into a plastic slab. The 6-mm thick plastic slab, with a hollow 

cylindrical core for the ultrasound probe, was polished for light transmission. During 

experiments, the cylindrical space was filled with water and sealed by a piece of thin low-density 

polyethylene (LDPE) film fixed by an o-ring. In total, ~80% of the light energy reached the 

surface of the film. Due to finite fiber aperture the final optical illumination patterns on the skin 

surface were thick-line shaped, as shown in Figure 4.1. The length and width of each 

illumination area were 6 and 3 mm, respectively. 

Dark-field laser pulse illumination was achieved through fine tuning the mirrors and 

cylindrical lenses, reducing the photoacoustic signals from the superficial paraxial area. However, 

a large dark-field area may reduce the optical fluence reaching the targeted area. The optimal 

illumination radius was estimated to be 7 mm using the concept of effective attenuation 

coefficient 60, the exponential decay rate of fluence far from the source, with typical tissue 

parameters. Consequently, leaving a ~1 mm width right below the array elements as the dark 

field gives approximately the best performance. In practice, the mirrors and cylindrical lenses 

were finely tuned to optimize the SNR. 

The optical fluence on the skin surface was estimated to be ~2 mJ/cm2 per pulse, well below 

the ANSI recommended Maximum Permissible Exposure (MPE) of 20 mJ/cm2 for a single pulse. 

We acquired data in 1 s—50 frames for real-time B-scan imaging or 166 frames for 3D imaging; 

the time average light intensity during this 1 s was ~600 mW/cm2 (the total illuminated surface 

area for one 3D image was 1.2 cm2 due to the mechanical scanning), also below the ANSI 
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recommended MPE calculated as 1.1t0.25 W/cm2 (t in sec.) 61. For prolonged illumination, the 

ANSI recommended MPE for average light intensity would be lower. However, for prolonged 

illumination during B-scan imaging, we can either pause a few seconds between acquisitions or 

slow down the frame rate. We also expect to reduce the delivered energy with improved SNR by 

system optimization. The ANSI safety limit for this pulse width region is dominantly based on the 

thermal mechanism; thus our compliance to the ANSI standards guarantees no thermal damage 

to the tissue. 

4.2.2 Ultrasound array and beamforming 

We used a unique 30-MHz ultrasound linear array fabricated from a 2-2-piezo-composite by the 

NIH Resource Center for Medical Ultrasonic Transducer Technology at the University of 

Southern California 46. The array had 48 elements (of dimensions 82 m × 2 mm) with 100-m 

spacing. The dimension of the element in the elevation direction was 2 mm, and the elements 

were focused in this direction with a fixed focal length of 8.2 mm, which provides a resolution of 

~300 m in the elevation direction within the ~3.5 mm focal zone. The pulse-echo insertion loss 

and element cross-talk were 19.1 and -25 dB, respectively. The mean fractional bandwidth was 

50% for pulse-echo operation, which translates to ~70% for receiving-only operation, as used in 

our present photoacoustic imaging system. 

While ultrasound beamforming traditionally has used dedicated hardware 62, we instead 

used multi-core processors (Dell Precision 490 with two 2.66 GHz Quad core Xeon processors), 

which allows off-the-shelf personal computers to perform the task and offers programming 

flexibility. Microsoft Visual Studio 2005 Professional Edition and Microsoft XNA Game Studio in 

the Visual Studio C# 2005 Express Edition environment were used to develop the software for 

dynamic receive beamforming and display. Details on implementation of multi-threaded parallel 
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programming and GPU-based scan conversion and display in this software beamforming can be 

found elsewhere 54. 

4.2.3 Data acquisition and volume imaging 

Photoacoustic signals picked up by the ultrasound array were amplified by a custom-built RF 

board with a 33–73 dB variable gain and were down-multiplexed to eight channels, which were 

digitized at 125 mega-samples per second (MSPS) using a 14-bit 8-channel PCI DAQ card 

(Octopus CompuScope 8389, GaGe Applied Systems, USA). The card was used as the master 

clock for the entire system and was programmed to send trigger signals to the multiplexer 

control and laser. The repetition rate was set at 1 kHz, which was the highest rate that the laser 

could work without degradation of pulse energy.  

We used linear scanning to achieve 3D imaging. During the scanning, the array translated 

linearly over the skin surface, so that the B-scan imaging planes were all parallel to each other. 

This was accomplished by mounting the light delivery system and the ultrasound array in a 

linear motion actuator (KR20, THK CO. LTD., Japan). A bipolar stepper motor (4118S, Lin 

Engineering, USA) controlled by a microstep stepper motor controller (BC2D15, Peter Norberg 

Consulting, Inc., USA) was used to drive the linear motion actuator. The scanning system 

provided sufficient precision (20 m) for our use. Six laser shots were needed to obtain one B-

scan image because of the 6:1 down-multiplexing in our data acquisition. To produce one 3D 

image, 166 B-scan frames were acquired in 996 ms, corresponding to 996 laser shots at a 1-kHz 

repetition rate. During the data acquisition, the array scanned continuously at a constant speed 

(10 mm/s). The speed was set so that the distance the array travelled during each B-scan time 

period was 60 m, less than the ultrasonic focus in the elevational direction (~300 m). 

Although the linear motion actuator was fixed on an optical table for scanning, handheld 
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operation was also possible. More user-friendly handheld operation for daily clinical use can be 

achieved by shrinking the size of the light delivery and scanning systems through custom 

manufacturing. 

While real-time B-scan imaging was demonstrated at 50 frames per second (FPS), post-

beamforming after data acquisition reached 83 FPS. This higher speed was due to less hardware 

communication. In post-beamforming, a B-scan movie was first played, and an MAP of the 

acquired 3D image was then displayed for preview immediately. In total, ~3 s was needed for a 

user to view an MAP image, representing the fastest speed among reported photoacoustic 

imaging systems. The user might choose to either replay the B-scan movie or display a contrast-

enhanced MAP image processed by a Dynamic-link Library (DLL) written in MATLAB (Math 

Works, Inc., USA). All these operations could be done online by simply clicking corresponding 

buttons on a graphic user interface (GUI) generated by the C# program. 

4.3 Results 

The spatial resolution of our system was characterized by imaging 6-m-diameter carbon fibers 

in water. The axial, lateral, and elevational resolutions (at ~7 mm normal depth from the 

transducer surface) were estimated to be 25, 70, and ~300 m, respectively. The imaging depth 

was demonstrated to be greater than 3 mm in scattering biological tissues. 

To demonstrate the system’s capability to image blood vessels in vivo, we imaged the upper 

dorsal region of a Sprague Dawley rat (Harlan Sprague Dawley, Inc., USA), ~95 g in weight. The 

rat was anesthetized by intramuscular injection of a mixture of Ketamine (85 mg/kg) and 

Xylazine (15 mg/kg). The hair in the imaged region was removed with commercial hair-removal 

lotion before imaging. Acoustic coupling gel was applied to improve acoustic coupling between 

the animal and the LDPE film. After the experiment, the rat recovered normally, without 
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noticeable health problems. All experimental animal procedures were carried out in compliance 

with approved protocols.  

 

Figure 4.2. (a) In vivo noninvasive maximum amplitude projection photoacoustic image of 

subcutaneous blood vessels in the upper dorsal region of a Sprague Dawley rat. X and Y 

represent the mechanical scan and electronic beamforming directions, respectively. The 

grayscale represents relative optical absorption (arbitrary unit). The regions enclosed by major 

blood vessels are labeled using capital letters A–E. (b) Photograph taken from the dermal side of 

the excised skin with transmission illumination. The same regions are identified and labeled A–E. 

The photograph covers most of the photoacoustically imaged region. 
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Figure 4.2 shows an in vivo MAP photoacoustic image and an ex vivo transmission optical 

microscopic image of the subcutaneous vasculature in an imaged area. The photoacoustic image 

is a gray-level plot of the maximum amplitude of the envelope of each time-resolved (A-scan) 

photoacoustic signal within a 2 mm depth from the skin. The signals from the skin surface were 

digitally removed. The transmission optical microscopic photograph (~4 × 5 mm), partially 

overlapping with the photoacoustic image, was acquired ex vivo from the dermal side of the 

excised skin. As shown in Figure 4.2, the vascular distributions matched well between the two 

images. Vessels shown in the photoacoustic image had diameters varying from ~80 to ~700 m. 

The data acquisition of the photoacoustic image was completed within 1 s, and the MAP image 

was displayed within 3 – 4 s. An animation of the 3D image from varying perspectives (Figure 4.3) 

was obtained from post-processing using VolView (Kitware Inc., USA). Interactive features 

(rotation, scaling, etc.) were available in VolView as well. 

 

 

Figure 4.3. Movie of in vivo three-dimensional photoacoustic images of the upper dorsal region 

of a Sprague Dawley rat [Video 1]. 
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To validate the system’s reproducibility, we imaged a sacrificed Sprague Dawley rat 

noninvasively in situ. The experimental procedures were similar to those described above, 

except that the rat was sacrificed to avoid imaging artifacts due to breathing motion. We 

repeated scanning the same area (in the lower dorsal region) four times, with a time interval of 

~2 min. The system demonstrated robust performance, with major vessels shown consistently in 

all four images (Figure 4.4). 

 

Figure 4.4. Four consecutive photoacoustic-image acquisitions of the same lower dorsal area of 

a sacrificed Sprague Dawley rat (images were acquired noninvasively in situ). The grayscale 

represents relative optical absorption (arbitrary unit). The major vessels are shown consistently. 

4.4 Discussion and conclusions 

We have demonstrated fast 3D photoacoustic microscopy with a 30-MHz ultrasound linear array 

capable of real-time B-scan imaging at 50 Hz and 3D imaging at 1 Hz. To our knowledge, this is 

the fastest photoacoustic imaging achieved hitherto. The system integrates a novel light delivery 

system and a motorized linear motion actuator with the ultrasound array, performing scans in 

elevational direction for 3D imaging. The light delivery system enables robust reflection-mode 
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imaging, which is applicable to more anatomical sites than orthogonal- or transmission-mode 

imaging. Optical dark-field illumination is also achieved, reducing the otherwise strong 

interference of the extraneous photoacoustic signals from the superficial paraxial area. The 

imaging performance is validated to be robust and reproducible.  

Previous studies have demonstrated that photoacoustic imaging has great potential in early 

cancer diagnosis, blood oxygenation mapping, and functional brain imaging. Because of the 

unique real-time 2D and fast 3D imaging capability, our system is anticipated to facilitate many 

of these biomedical applications. The compact system design also favors clinical practices. 

Particularly, the promising results shown in this report should motivate future development of 

photoacoustic microscopy with high frequency ultrasound arrays towards clinical applications. 
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Chapter 5 High-speed Dynamic 3D Photoacoustic Imaging of 

Sentinel Lymph Nodes in a Murine Model† 

5.1 Introduction 

The sentinel lymph node (SLN) hypothesis, popularized by Morton et al. 63 and Giuliano et al. 64 

in the early 1990s, states that it is sufficient to assess lymphatic metastasis by examining the 

first tumor-draining (sentinel) lymph node. Sentinel lymph node biopsy, based on this concept, 

has emerged as the standard of care in breast cancer 65. In SLN biopsy, radioactive colloids (e.g., 

Tc-99m sulfur colloids) are injected preoperatively to locate the SLN with a handheld gamma 

probe, followed by a blue dye (e.g., methylene blue) injection to precisely locate it 

intraoperatively for dissection. SLN biopsy has greatly reduced unnecessary lymph node 

dissections and thus the risk of associated complications (e.g., lymphedema). However, it also 

has drawbacks:  

 Up to 60 learning cases may be required to develop technical proficiency 66 (in published 

results without a high number of learning cases per surgeon, up to 16% of SLNs were 

missed 67). 

 The false negative rate is estimated to be ~5 – 10%, even in experienced hands 68, 69.  

 The technique involves radioactive tracer, which requires a separate injection procedure 

and radiation safety protections.  

 Although less invasive than axillary lymph node dissection, it still has associated 

morbidity such as seroma formation, lymphedema, and sensory nerve injury 70.  

These drawbacks suggest that alternative strategies for SLN identification should be explored. 

                                                 

† Reused with permission from L. Song, C. Kim, K. Maslov, K. K. Shung, and L. V. Wang, “High-speed dynamic photoacoustic imaging 
of sentinel lymph node in a murine model using an ultrasound array,” Medical Physics 36, 3724 (2009). 
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Ultrasound-guided fine needle aspiration biopsy (FNAB) has been reported as a less invasive 

alternative to SLN biopsy 71, 72. Unfortunately, although ultrasound can detect hypo-echoic 

lymph nodes, it cannot distinguish the sentinel node because blue dyes have little mechanical 

contrast. Near infrared (NIR) fluorescence imaging has been actively explored for SLN mapping 

73-75. This imaging technique performs real-time imaging capable of capturing the dynamics in 

SLNs 76. However, due to the strong optical scattering in biological tissue, conventional 

fluorescence imaging has difficulty in identifying deep SLNs with high spatial resolution. Another 

challenge for fluorescence imaging is the relatively low quantum yield of clinically approved 

fluorophores (e.g., ICG) 74; while quantum dots have high quantum yield, the issue of potential 

toxicity has to be addressed 77. 

Photoacoustic imaging combines the advantages of excellent optical absorption contrast 

and high ultrasonic resolution at great depths, up to a few centimeters 78. Our group recently 

demonstrated that photoacoustic imaging with methylene blue dye injection can accurately 

identify SLNs at depths up to 31 mm—greater than the mean SLN depth of 12   5 mm in 

humans 79—in scattering biological tissue in a rat model 80, 81. Given the use of only conventional 

blue dye that is already part of the current standard of care, photoacoustic imaging is a 

promising technology for accurate SLN mapping, potentially capable of improving the false 

negative rate in SLN identification. With the demonstrated high spatial resolution, it may also 

have the potential to replace SLN biopsy with fine needle aspiration biopsy, and thus to reduce 

the risk of associated morbidity. 

In photoacoustic imaging with a single-element ultrasonic transducer, the data acquisition 

speed is usually limited by the raster scanning 80, 81. Fortunately, this drawback can be overcome 

by using an ultrasound array. With a high-frequency ultrasound array, we recently developed a 
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photoacoustic imaging system that performs 50 Hz real-time B-scan imaging and high-speed 3D 

imaging—one 3D image acquisition takes 1 s 82-84. We believe that this imaging speed is highly 

desirable in clinics, and it is expected to facilitate the study of photoacoustic SLN mapping. In 

this study, we demonstrated the feasibility of SLN mapping in a murine model with our refined 

high-speed 3D photoacoustic imaging system. Evans blue, a blue dye used in clinical SLN biopsy 

85, 86, was employed to provide the optical absorption contrast (with the peak absorption 

wavelength at ~620 nm, and the two half-maximum wavelengths at ~540 and 650 nm, 

respectively 87) for photoacoustic imaging. In addition, the dye dynamics in SLNs were 

quantitatively monitored with a 3D imaging temporal resolution as high as ~6 s. 

5.2 Materials and methods 

5.2.1 Imaging system 

Figure 5.1 shows a schematic of the high-speed 3D photoacoustic imaging system. While the 

laser and the imaging head were fixed on an optical table, all the electronics were placed on a 

movable rack, creating a system potentially transportable to the clinics. 

For photoacoustic wave excitation, a tunable dye laser (Cobra, Sirah Laser-und 

Plasmatechnik GmbH, Germany), pumped by a Q-switched Nd:YLF laser (INNOSLAB, Edgewave 

GmbH, Germany), was used. The Q-switched laser could be externally triggered up to 1 kHz 

without compromising pulse energy, which, together with the use of an ultrasound array and a 

multi-core computer for parallel beamforming, was critical to achieve the high imaging speed. 

The Q-switched laser had a pulse duration of <10 ns and a pulse energy of 11 mJ/pulse at 523 

nm. The dye laser, with Pyrromethene 597 dye, had a peak output at 582 nm and a tunable 
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range from 561 to 610 nm. The output energies from the dye laser at 584 and 600 nm—the two 

wavelengths used for the experiments—were ~2.5 and ~1.5 mJ/pulse, respectively.  

The dye laser output was split into two beams and coupled into two 0.6-mm-core-diameter 

multimode optic fibers. The light beams from the output end of the optic fibers were 

cylindrically focused and delivered to the object to be imaged. As shown in Figure 5.1 (inset A), 

dark-field laser illumination was used to reduce the photoacoustic signals from the superficial 

paraxial area 88-91. The optical fluence on the skin surface of the object was estimated to be ~0.5 

– 1.0 mJ/cm2 per pulse, well below the ANSI recommended Maximum Permissible Exposure 

(MPE) of 20 mJ/cm2 for a single pulse. The time averaged light intensity during image acquisition 

was ~150 – 300 mW/cm2, also below the ANSI recommended MPE calculated by 1.1t0.25 W/cm2 

(t in seconds) 92. As the ANSI safety limit for this pulse width region is dominantly based on the 

thermal mechanism, our compliance with the ANSI standards guarantees no thermal damage to 

the tissue. 

 

Figure 5.1. Schematic of the high-speed 3D photoacoustic imaging system. Inset A, optical 

illumination pattern on the skin surface. 
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We used a unique 30-MHz ultrasound array fabricated from a 2-2-piezo-composite by the 

NIH Resource Center for Medical Ultrasonic Transducer Technology at the University of 

Southern California. The array had 48 elements (82  m × 2 mm) with 100  m spacing. The 

elements were elevationally focused at 8.2 mm, providing an elevational resolution of 300  m 

within the ~3.5 mm focal zone. The mean fractional bandwidth was 50% for pulse-echo 

operation, translating to ~70% for receiving-only operation, as used in our present 

photoacoustic imaging system. The axial and lateral resolutions of the system at 8 mm normal 

depth from the transducer surface were ~25 and ~70 m, respectively. 

While cross-sectional B-scan images were obtained by electronic beamforming using a 

multi-core PC (Dell Precision 490 with two 2.66 GHz Quad core Xeon processors), 3D 

photoacoustic images were acquired by linearly translating the array—using a linear motion 

actuator—in a water container (Figure 5.1). The water container, with dimensions of 8 cm   5 

cm   3 cm, had a thin low-density polyethylene (LDPE) membrane window transparent to light 

and ultrasound. Acoustic gel was used for ultrasonic coupling between the membrane and the 

object. With this design, there was no direct contact between the moving imaging head and the 

object, minimizing potential perturbations produced by the mechanical scanning.  

A high-speed (125 mega-samples per second) 14-bit 8-channel DAQ card (Octopus 

CompuScope 8389, GaGe Applied Systems, USA) was used for data acquisition. Because of the 

6:1 down-multiplexing in data acquisition, six laser shots were needed to obtain one B-scan 

image. The card was used as the master clock for the entire system and was programmed to 

send trigger signals to the multiplexer control and laser. The repetition rate was set at 1 kHz, 

which was the highest rate that the laser could reach without degradation of pulse energy. 
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To obtain one 3D image, 166 B-scan frames were acquired in 996 ms, corresponding to 996 laser 

shots at a 1-kHz repetition rate. During the data acquisition, the array scanned at a constant 

speed of 10 mm/s. The speed was set so that the distance the array travelled during each B-scan 

was 60  m, less than the 300  m ultrasonic elevational focus. For sequential 3D image 

acquisition, the system has a temporal resolution of ~6 s, currently limited by the time for 

writing data to the hard drive and post-beamforming after each 3D data acquisition.   

5.2.2 Animal model and in vivo imaging 

Hsd:Athymic Nude mice (Harlan Laboratories, Inc., USA) weighing ~18 g and Sprague Dawley 

rats (Harlan Laboratories, Inc., USA) weighing ~120 g were used for the experiments. An intra-

dermal injection of a mixture of ketamine (85 mg/kg) and xylazine (15 mg/kg) was used for 

initial anesthesia. For rats, the hair in the axillary region was removed with commercial hair-

removal lotion before imaging. During all image acquisitions, anesthesia was maintained using 

vaporized isoflurane (Euthanex Co., USA). The animals were euthanized by pentobarbital 

overdose after experiments. All experimental animal procedures were carried out in compliance 

with Washington University approved protocols. 

For each experiment, a control photoacoustic image of the region of interest was acquired 

before dye injection. Then in situ intra-dermal injection of Evans blue dye (Sigma-Aldrich Co., 

USA) was performed on the left forepaw pad. Photoacoustic imaging was started immediately 

after the dye injection. Thereafter, images were acquired every ~8 s for the initial few minutes; 

subsequent image acquisitions were done at longer intervals for a prolonged period, up to 1.5 

hours. Two laser wavelengths were used for the experiments, 584 nm and 600 nm. The former 

is close to the peak-output wavelength of the dye laser, and was used to image the SLNs and 

blood vessels simultaneously—this wavelength also corresponds to an isosbestic point where 
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oxy- and deoxy-hemoglobin have the same optical absorption coefficient. The latter is close to 

the absorption peak of Evans blue, and was used to image primarily the SLNs. The goal was to 

noninvasively identify the SLNs accurately, and meanwhile capture the dye dynamics. 

5.3 Results 

A mouse SLN was imaged noninvasively in vivo using the high-speed photoacoustic imaging 

system. Figure 5.2(A) is a photograph of the mouse taken before photoacoustic imaging, 

showing the axillary region. The black tape in the photograph was used to guide the initial 

positioning of the imaging head. Figure 5.2(B) is a photoacoustic control image acquired at 600 

nm, shown in the form of maximum amplitude projection (MAP), which was created by 

projecting the maximum photoacoustic amplitudes along the depth direction to the skin surface. 

A few blood vessels were imaged, but the images have low contrast because of the low energy 

output from the dye laser and the decreased hemoglobin absorption at this wavelength 93. 

Figure 5.2(C) is a photoacoustic MAP image acquired at 600 nm ~8 s after injection of ~100  g 

(1%, 0.01 ml) Evans blue. The SLN as well as an afferent lymph vessel are clearly seen. As 600 nm 

is close to the Evans blue peak absorption wavelength (620 nm), the SLN shows excellent 

contrast in the image. Figure 5.2(D) is a control photoacoustic image acquired at 584 nm, 

showing the subcutaneous vasculature. The spatial resolutions are 70  m in the lateral (vertical) 

and 300  m in the elevational (horizontal) directions, respectively. After Evans blue injection, 

both the vasculature and SLN were imaged (Figure 5.2(E)). A composite of the two 

photoacoustic MAP images acquired at 600 and 584 nm was obtained (Figure 5.2(F)). In this 

composite image, the blood vessels and dyed lymphatic system—the SLN and lymph vessel—are 

clearly seen, with high contrast and good resolution. The distance between the top surface of 

the SLN and the skin surface was estimated to be 650   50  m from the composite B-scan 
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image (Figure 5.2(G)). A composite 3D image, constructed with VolView (Kitware Inc., USA), is 

shown in Figure 5.2(H). An invasive photograph of the same mouse, with the skin removed, was 

taken after photoacoustic imaging (Figure 5.2(I)). The SLN was embedded in fatty tissue, and 

thus difficult for naked eyes to locate precisely, even with the skin removed. The dynamic 

behavior of Evans blue in the SLN is shown in Figure 5.3(G) (mouse 1), obtained with the 

aforementioned data acquisition strategy. Each data point in Figure 5.3(G) was computed as the 

photoacoustic signal averaged over the entire SLN area in the corresponding MAP image 

(normalized by the temporal maximum value of the same SLN). The data points were 

exponentially fitted to show the change more clearly. In this case, the photoacoustic signal was 

observed to decrease with time from the first recorded point (8 s), and was of ~10% peak value 

after ~1.5 hours. 
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Figure 5.2. Noninvasive in vivo photoacoustic mapping of the sentinel lymph node in a mouse. (A) 

Photograph taken before photoacoustic imaging. BT, black tape, was used to guide the initial 

positioning. (B) Control photoacoustic MAP image acquired at 600 nm laser wavelength before 

Evans blue injection. BV, blood vessel. The colorbar represents optical absorption. (C) 

Photoacoustic MAP image acquired at 600 nm 8 s after Evans blue injection. SLN, sentinel lymph 

node. LV, lymph vessel. (D) Control photoacoustic MAP image acquired at 584 nm. (E) 

Photoacoustic MAP image acquired at 584 nm 8 min after Evans blue injection. (F) Composite 

photoacoustic MAP image. Blood vessels from the 584 nm image are pseudo-colored red and 

the sentinel lymph node and lymph vessel from the 600 nm image light blue. (G) Composite 

photoacoustic B-scan image corresponding to the dotted line in (C), showing the depth of the 

SLN. SK, skin surface. (H) Composite 3D photoacoustic image. (I) Photograph taken with skin 

removed after photoacoustic imaging. 
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Figure 5.3. Evans blue dynamics in the sentinel lymph node (SLN) of a mouse monitored by 

photoacoustic imaging. (A) Control photoacoustic MAP image in a mouse (mouse 2) acquired 

before Evans blue injection. BV, blood vessel. The colorbar represents optical absorption. (B) – 

(E) Photoacoustic MAP images acquired at 14 s, 22 s, 38 s, and 20 min, respectively, after Evans 

blue injection. (F) Composite photoacoustic B-scan image corresponding to the dotted line in (D). 

SK, skin surface. Blood vessels from the 584 nm image are pseudo-colored red and the sentinel 

lymph node from the 600 nm image light blue. (G) Evans blue dynamics in mice SLNs. Data 

points were fitted exponentially. PA, photoacoustic. 
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Figure 5.4. Noninvasive in vivo photoacoustic mapping and dynamic monitoring of the sentinel 

lymph node in a rat. (A) Control photoacoustic MAP image acquired at 600 nm laser wavelength 

before Evans blue injection. (B) Control photoacoustic MAP image acquired at 584 nm, showing 

the subcutaneous vasculature. (C) Photoacoustic MAP image acquired at 600 nm 6 min after 

Evans blue injection. LVv, lymphatic valve; SLN, sentinel lymph node. (D) Photoacoustic MAP 

image acquired at 600 nm 15 min after Evans blue injection. (E) Composite photoacoustic MAP 

image. Blood vessels from the 584 nm image are pseudo-colored red and the sentinel lymph 

node and lymphatic valve from the 600 nm image light blue. (F) Composite photoacoustic B-scan 

image corresponding to the dotted line in (C). SK, skin surface. (G) Evans blue dynamics in the 

rat lymphatic valve and SLN. 
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Another mouse was imaged with the same scheme, but with less Evans blue injection—~32 

 g (0.4%, 0.008 ml). This time, a signal increase was observed within the initial ~40 s (Figure 

5.3(A – D)), followed by a subsequent decrease (Figure 5.3(E)). A composite B-scan image (Figure 

5.3(F)) along the dotted line in Figure 5.3(D) was obtained, showing the depth of the SLN. The 

quantitative dynamics were plotted in Figure 5.3(G) (mouse 2), showing both a rising and a 

falling phase. 

A rat was also imaged. After taking the control images at 600 nm (Figure 5.4(A)) and 584 nm 

(Figure 5.4(B)), ~300  g (1%, 0.03 ml) of Evans blue was injected. In this case, the SLN as well as 

a lymphatic valve were identified (Figure 5.4(C)). A photoacoustic image taken at 600nm 15 min 

after Evans blue injection showed a sharp signal decrease from the lymphatic valve, which 

became barely visible, while the SLN was still clearly imaged (Figure 5.4(D)). A composite image 

was formed to show the dyed lymphatic system and the blood vessels (Figure 5.4(E)). The 

composite B-scan image indicates that the SLN is at a depth of ~1.2   0.1 mm below the skin 

surface (Figure 5.4(F)). The signal from the lymphatic valve decreased with time from the first 

recorded data, while the SLN exhibited both a rising phase and a falling phase, showing the 

dynamics of both dye accumulation and clearance (Figure 5.4(G)).  

5.4 Discussion 

Compared with pure optical imaging modalities, photoacoustic imaging is known to have high 

resolution at a greater imaging depth—beyond the ballistic and quasi-ballistic regime in 

scattering biological tissue—with excellent optical absorption contrast 22, 88. It is also a high-

speed imaging modality by nature, with the speed fundamentally limited by the time of arrival 

of the photoacoustic waves, which, for example, should allow A-line acquisitions at up to 100 

kHz rate at a depth of 1.5 cm. Photoacoustic imaging using a 1-D ultrasound array eliminates 
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mechanical scanning for B-scan imaging, which has led to 50 Hz real-time B-scan imaging;  for 3D 

imaging, linear mechanical scanning is required, which, however, is still much faster than the 

raster scanning required by a system with a single-element ultrasonic transducer.  

Currently, the high-speed photoacoustic imaging system performs real-time B-scan imaging 

at 50 Hz and 3D imaging of 166 B-scan frames at ~0.2 Hz, representing the highest speed in high 

frequency photoacoustic imaging to our knowledge. The temporal resolution, ~6 s, is currently 

limited by the data-saving and beamforming after each 3D image acquisition. It can be improved 

by temporarily storing all 3D data in computer memory during the entire data acquisition 

without beamforming, or by using a 48-channel DAQ card to eliminate the multiplexing—then 

one laser pulse instead of six could produce one B-scan image. We will explore both directions in 

the future. 

In photoacoustic imaging, the spatial resolution and imaging depth are scalable with the 

ultrasonic frequency within the reach of photons 22. With a 3.5 MHz single-element ultrasonic 

transducer and methylene blue dye (at a laser wavelength of 635 nm), photoacoustic imaging 

was demonstrated to be capable of imaging SLNs as deep as 31 mm in scattering biological 

tissue—greater than the mean SLN depth of 12   5 mm in humans 80, 81. However, a relatively 

long time (20 – 40 min) was required to acquire one 3D image with that system. In this study, we 

demonstrated accurate photoacoustic SLN mapping in mice and rats, as well as the capability to 

quantify the dye dynamics in SLNs. As the major goal of this study was to demonstrate the 

feasibility of capturing the dye dynamics in SLNs with photoacoustic imaging, the choice of the 

dye (Evans blue) and wavelength (600 nm), limited by the operating spectral range of our kHz 

repetition rate laser system, were not fully optimized for deep imaging. However, with the 

feasibility demonstrated in this study, we expect that a low-frequency ultrasound array (e.g., 3 – 
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5 MHz) and a high-power laser, operating at a longer wavelength (e.g., ~700 nm), will enable 

photoacoustic imaging to achieve a sufficient imaging depth (~30 mm), while retaining the high 

imaging speed. To translate the technology to the clinic, a high-speed photoacoustic imaging 

system with a commercial low-frequency ultrasound array is desired. Potentially, for 

noninvasive SLN mapping in clinics, such a system can offer advantages in precision, depth, and 

speed, and also provide co-registered complementary ultrasonic images.  

5.5 Conclusions 

SLNs in mice and rats were accurately mapped noninvasively in vivo using a high-speed 3D 

photoacoustic imaging system with a 30-MHz ultrasound array. The system achieved a speed for 

3D photoacoustic imaging approaching 0.2 Hz, highly desirable in clinics. In addition, the 

dynamics of dye accumulation and clearance in the murine SLNs were quantitatively monitored 

with a high temporal resolution, up to 6 s. This capability should facilitate further studies to 

understand the dynamics of different dyes in SLNs, and potentially help identify SLNs with 

higher accuracy. 
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Chapter 6 Ultrasound-array-based Real-time Photoacoustic 

Microscopy of Human Pulsatile Dynamics In vivo† 

6.1 Introduction 

Due to the requirement for both high imaging speed and noninvasiveness, it remains challenging 

to precisely image and quantify human physiological dynamics in vivo in real time. MRI provides 

good functional imaging capability, but it usually cannot perform real-time imaging 94. 

Ultrasound offers real-time imaging capability, but the mechanical contrast does not provide 

much physiological information besides flow 95. Previously available high-resolution optical 

microscopy modalities—including confocal microscopy 96, two-photon microscopy 21, and optical 

coherence tomography 97—are capable of real-time imaging. However, as none of them sense 

optical absorption directly, contrast agents are usually required for physiological imaging. 

Moreover, they rely on the detection of ballistic photons, and thus cannot image beyond one 

optical transport mean free path in highly scattering biological tissue (~1 mm). 

Photoacoustic tomography is a recently developed, noninvasive biomedical imaging 

technology that provides excellent optical absorption contrast—endogenous contrast for many 

physiological phenomena—with high ultrasonic resolution at super-depths—depths beyond the 

optical transport mean free path 19. It has been used to study whisker stimulation 34, single 

vessel oxygenation 1, and tumor hypoxia 24. Photoacoustic tomography is also a high-speed 

imaging modality by nature, with its speed fundamentally limited by the photoacoustic wave 

propagation time. In principle, A-lines (i.e., depth-resolved 1D images) can be acquired at a rate 

of up to 100 kHz at a depth of 1.5 cm. With a 30-MHz ultrasound array and a kHz repetition laser 

                                                 

† Reused with permission from L. Song, K. Maslov, K. K. Shung, and L. V. Wang, “Ultrasound-array-based real-time photoacoustic 
microscopy of human pulsatile dynamics in vivo,” Journal of Biomedical Optics 15, 021303 (2010). 
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system, we have developed a photoacoustic microscopy imaging system that performs real-time 

B-scan imaging at 50 Hz and high-speed 3D imaging, offering the feasibility of imaging 

physiological dynamics 82-84. In addition, this ultrasound-array-based photoacoustic microscopy 

(UA-PAM) system, with axial, lateral, and elevational resolutions of 25, 70, and 300 m, 

respectively, provides ~3 mm imaging depth in scattering biological tissue 82. 

In this study, with system refinement, we report significant improvement in the image 

quality of UA-PAM, which enabled the imaging of microvasculature details in rats and human. In 

addition, the 20 ms B-scan imaging temporal resolution offered the capability to noninvasively 

monitor human pulsatile dynamics—including arterial pulsatile motion and changes in 

hemoglobin concentration—in vivo. To our knowledge, this is the first demonstration of real-

time photoacoustic imaging of human physiological dynamics. 

 

Figure 6.1. Schematic of the refined UA-PAM system. Inset A, optical illumination pattern on the 

skin surface. 

6.2 Methods and materials 

The system configuration is shown in Figure 6.1. The details of the system can be found in our 

previous publications 82-84. In this work, to excite photoacoustic waves, we used light at 570 nm, 
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which corresponds to an isosbestic point where oxy- and deoxy-hemoglobin molecules have the 

same molar optical absorption coefficient. 

To couple the generated photoacoustic waves to the ultrasound-array transducer, we used a 

water container (filled with de-ionized water) with a window of low-density polyethylene (LDPE) 

film, to substitute for the water-filled transparent plastic piece in our previous system 98, 99. As a 

result, the skin surface was not directly contacted by the scanning probe during experiments, 

and disturbance to the imaged object was minimized. As before, acoustic gel was used to 

improve the ultrasonic coupling between the skin surface and the LDPE film. Compared with the 

previous system, the chances for air-bubble generation in the gel during the mechanical 

scanning (for 3D imaging) of the probe were significantly reduced, as both the skin and the film 

were static. Furthermore, the number of optical interfaces was reduced, which increased the 

light delivery efficiency. Fine-tuning of the light delivery was performed to optimize the system’s 

signal-to-noise ratio 98, 99. All animal and human experiments described below were carried out 

in compliance with Washington University approved protocols. 

To validate the refined UA-PAM system, Sprague Dawley rats (Harlan Laboratories, Inc., USA) 

were imaged. Intra-dermal injection of a mixture of ketamine (85 mg/kg) and xylazine (15 mg/kg) 

was used for anesthesia. Before photoacoustic imaging, the hair in the imaged region was 

removed with commercial depilatory lotion. 

The UA-PAM system is also safe for human use. For human imaging, the optical fluence on 

the skin surface was set to ~0.5 mJ/cm2 per pulse, well below the ANSI 98, 99 recommended 

Maximum Permissible Exposure (MPE) of 20 mJ/cm2 for a single pulse in the visible spectral 

range. For 10 s of continuous real-time B-scan imaging (at 50 Hz), 3000 laser pulses were 

delivered to the skin surface, corresponding to a time-averaged light intensity of ~150 mW/cm2, 
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below the ANSI recommended MPE of 196 mW/cm2, calculated by 1.1t0.25 W/cm2. For 3D 

imaging, the laser pulse repetition rate was increased to 996 Hz. However, in this case, the total 

illuminated area was also increased due to the mechanical scanning of the probe, resulting in a 

time-averaged light intensity of ~300 mW/cm2, below the 1.1 W/cm2 ANSI safety standard based 

on the same calculation. 

6.3 Results 

An in vivo photoacoustic maximum amplitude projection (MAP) image—the maximum 

photoacoustic amplitudes projected along the depth direction to the skin surface—of a rat 

(Figure 6.2(A)) weighing ~280 g is shown in Figure 6.2(B). Compared with previous results 82, 

more microvasculature details were imaged with the refined UA-PAM system. Figure 6.2(C) is a 

B-scan image corresponding to the dashed line in Figure 6.2(B), showing subcutaneous blood 

vessels at various depths, up to 1 mm below the rat’s skin surface.  The imaged blood vessels are 

of diameters ~70 – 300 m. To view the vasculature from different perspectives, a 3D animation 

(Video 1), showing blood vessels in different layers, was constructed with VolView (Kitware, 

USA). More features, including rotation, scaling, and zooming, are available with the software. 
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Figure 6.2. Noninvasive in vivo photoacoustic images acquired by the refined UA-PAM system. (A) 

Photograph of a Sprague Dawley rat with hair removed before photoacoustic imaging. x 

represents the beamforming (B-scan) direction, y represents the mechanical scanning direction, 

and z represents the depth direction. The dashed rectangle indicates the imaged area. (B) 

Photoacoustic maximum amplitude projection (MAP) image of the rat. The grayscale represents 

relative optical absorption. (C) Photoacoustic B-scan image corresponding to the dashed 

horizontal line in (B), showing the depths of the blood vessels. SK, skin surface. Numbers 1 – 5 

indicate corresponding blood vessels in (B) and (C). (D) Photograph of a human hand. The 

dashed rectangle indicates the imaged area. (E) Photoacoustic MAP image of the hand. (F) 

Photoacoustic B-scan image corresponding to the dashed horizontal line in (E). Numbers 1 – 4 

indicate corresponding blood vessels in (E) and (F).  

 

To demonstrate the feasibility of human imaging with UA-PAM, we imaged the palm of a 

human hand (Figure 6.2(D)). The subcutaneous microvasculature of the hand was imaged, with 
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a quality comparable to that of the aforementioned rat images. The imaged blood vessels in the 

human hand are bigger though, ranging from ~100 to 400 m (Figure 6.2(E)). The depths of the 

blood vessels were clearly shown in the B-scan image (Figure 6.2(F)). Subcutaneous blood 

vessels up to 1.2 mm deep were imaged in this case. Due to the overlap, some relatively small 

blood vessels are not well shown in the MAP image. However, these vessels, along with the 

layered vascular structures, are clearly seen in the 3D animation (Video 2). 

 

Video 1. Photoacoustic 3D animation of the rat (MOV, 4.05 MB). 

 

Video 2. Photoacoustic 3D animation of the human hand (MOV, 4.50 MB). 
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Figure 6.3. Dynamic noninvasive in vivo photoacoustic imaging by the refined UA-PAM system. 

(A) In vivo 3D photoacoustic image of a human hand. The dashed line indicates the cross-section 

monitored by real-time B-scan imaging. (B) One B-scan image corresponding to the dashed 

horizontal line in (A). SK, skin surface. (C) M-mode image corresponding to the dotted vertical 

line a in (B), showing the arterial pulsatile motion as a function of time. (D) M-mode image of a 

vein corresponding to the dotted vertical line b in (B). 
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To study the pulsatile dynamics, we scanned a region of the palm near the wrist, where an 

apparent artery, ~1 mm in diameter and over 1 mm deep, was imaged (Figure 6.3(A)). After 

acquiring the initial 3D image, we fixed the scanning probe to perform 10-s real-time B-scan 

imaging across the artery (Figure 6.3(B) and Video 3). Due to the strong optical absorption of 

hemoglobin at 570 nm (absorption coefficient a  200 cm-1), the bottom part of the artery was 

not well-imaged. But the motion dynamics of the arterial pulsation was clearly captured. An M-

mode image across the center of the artery, showing the details of the pulsatile motion, is 

shown in Figure 6.3(C). The pulsatile rate, estimated from the image, was 66 per minute, 

consistent with the 65  2 per-minute rate measured from a pulse oximeter. For comparison, an 

M-Mode image of a vein was plotted in Figure 6.3(D), from which weak motion of the vein was 

revealed. Presumably, the motion was due to artery-pulsation-induced skin movement 

(observable in Video 3). As seen from Figure 6.3(D), the vein’s motion was indeed weakly 

correlated with the artery pulsation. However, compared with the artery (Figure 6.3(C)), the 

vein’s motion was much weaker. 

To supplement tissue structural information, and to validate the observed artery motion, we 

acquired ultrasound images of similar regions using a commercial ultrasound machine (iU22 

with a L15-7io Compact Linear Array, Philips). The ultrasound transducer, covering frequencies 

~7 – 15 MHz, provides sufficient resolution to resolve the artery that was photoacoustically 

imaged. In the ultrasound images, it was interesting to see that the artery only expanded 

apparently in the direction normal to the skin surface (Video 4). In the direction parallel to the 

skin surface, the expansion was almost negligible. This type of motion was likely due to the 

anisotropy of the surrounding tissue structure, namely, the surrounding tissue can be more 

easily stretched perpendicularly to the skin surface than parallelly to the skin surface. The 
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observed motion in the ultrasound images was consistent with the result seen in real-time 

photoacoustic imaging, where apparent motion was observed only in the skin’s normal direction. 

In addition, the M-mode images acquired with our UA-PAM system agreed well with those 

acquired by the commercial ultrasound machine, which, however, didn’t show as much fine 

details as the UA-PAM system did. 

 

Video 3. Real-time photoacoustic B-scan imaging of the arterial pulsation (MOV, 690 KB). 

 

 

Video 4. Ultrasound images of the arterial pulsation. The up-panel shows B-mode images, while 

the bottom one shows M-mode images corresponding to the vertical line in the up-panel (MOV, 

2.84 MB). 
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6.4 Discussion and conclusions 

One drawback of ultrasound imaging is that little physiological information besides flow can be 

provided. By contrast, photoacoustic imaging has the potential to offer both hemoglobin 

concentration and oxygen saturation information. Ideally, to better characterize the pulsatile 

hemodynamics, oxygen saturation should be measured within each cardiac cycle. However, 

accurate computation of the blood oxygenation in real-time requires photoacoustic imaging 

with laser-wavelength tunability in real time (because oxygenation quantification requires multi-

wavelength measurements), which is currently not available in our laser system. Fortunately, 

the change in hemoglobin concentration can be monitored already with UA-PAM. Although the 

arterial pulsatile motions were apparent (Figure 6.3(C) and Video 3), we found that the 

hemoglobin concentration was approximately constant with time—the standard deviation of 

the signal normalized by the temporal maximum value was 0.02. We also studied the 

hemoglobin concentration dynamics of a vein, which showed similar results. This observation 

agreed with the fact that, under normal physiological conditions, the hemoglobin concentration 

does not change significantly. 

A few factors—including hemoglobin concentration, oxygenation, and vessel diameter and 

position—can potentially affect the magnitude (instead of position) of the received 

photoacoustic signal; in general, they may not be decoupled easily. In this study, however, we 

believe that any observable change in the magnitude of the signal, if any, would be due 

primarily to the hemoglobin concentration variation. Conversely, the lack of such change in the 

observable signal suggests that the hemoglobin concentration was approximately constant. Our 

reasoning is as follows: 
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 The 570 nm wavelength that we used corresponds to an isosbestic point; therefore, 

oxygenation does not affect the photoacoustic signal. 

 In principle, without considering the limited acoustic receiving aperture and 

reconstruction imperfection, the signal should be proportional to the square root of the 

vessel diameter 19. With a blood-vessel-mimicking phantom of ~1 mm diameter, we 

found that, a 15% diameter variation would induce only ~2% signal change, smaller than 

the theoretical value. Given the ~2% noise level (without averaging), only greater 

diameter variations can generate observable signal changes. In addition, the vaso-

dilation was apparent only in the depth direction, further reducing the dilation-induced 

signal change, and making it essentially negligible. 

 Experiments with phantoms also showed that, around the acoustic elevational focus, a 

50 m displacement in the depth direction would induce only a ~1.5% signal change. In 

fact, during our experiment, we did not observe any significant change of the artery 

position. Even if we took into account the vaso-dilation induced displacement (~50 m), 

the signal change would still be negligible. 

In summary, our refined UA-PAM system performed high-speed in vivo imaging of 

microvasculature details in both rats and humans with improved quality. With this UA-PAM 

system, hemoglobin concentration dynamics and arterial pulsatile motion were captured in real 

time, for the first time, to our knowledge. With the promising results shown in this study, we 

believe that UA-PAM will open up many new possibilities for studying functional and 

physiological dynamics in both preclinical and clinical imaging settings. 
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Chapter 7 Section-illumination Photoacoustic Microscopy for 

Dynamic 3D Imaging of Microcirculation In vivo† 

7.1 Introduction 

The microcirculation of blood plays a crucial role in the regulation of hemodynamics and 

metabolism; its physiological state can indicate many diseases, including diabetes, hypertension, 

and coronary heart disease. Hence, the study of microcirculation is vital to both clinical 

practice—e.g., the evaluation of tissue perfusion in the presence of vascular diseases—and 

preclinical studies—e.g., the assessment of therapeutic efficacy in drug development 100-102. 

Many complementary imaging techniques—including nailfold capillaroscopy, polarization 

spectral imaging, high-frequency ultrasound imaging, and magnetic resonance imaging—have 

been used to study microcirculation 102-105. Yet none of them simultaneously offer desired 

sensitivity, resolution, and imaging depth in a single modality.  

Recently, optical-resolution photoacoustic microscopy (OR-PAM) has emerged as a viable 

tool for in vivo microvascular imaging 106. OR-PAM provides high optical absorption contrast—

from either intrinsic or exogenous absorbers—and axial ultrasonic resolution at depths up to the 

optical transport mean free path (~1 mm in the skin) 2. If a single-element ultrasonic transducer 

is used, the imaging speed is limited by the 2-D mechanical scanning for 3D imaging. One 

solution to improving the speed is to use an ultrasound array. Previously, an ultrasound array 

was used to accelerate the imaging rate of acoustic-resolution photoacoustic microscopy (AR-

PAM) by ~100-fold from the single-element implementation—reaching a B-scan imaging rate of 

166 Hz, a 3D imaging rate of ~0.1 Hz, and a single 3D imaging time of only 1–2 s 54, 99. However, 

                                                 

† Reused with permission from L. Song, K. Maslov, and L. V. Wang, “Section-illumination photoacoustic microscopy for dynamic 3-D 
imaging of microcirculation in vivo,” Optics Letters 35, 1482 (2010). 
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the poor acoustic elevational focus (>200 m)—common to all linear ultrasound arrays—

became a bottleneck for spatial resolution 98, 107, which limited its application in microcirculation 

studies (most microvessels have diameters less than 100 m). 

In this work, we developed section-illumination photoacoustic microscopy (SI-PAM) to 

improve the elevational resolution. Moreover, by optimizing data acquisition and transfer, we 

improved the imaging speed to 249 Hz for B-scans and 0.5 Hz for continuous 3D scans. SI-PAM 

was used to image in vivo microcirculation dynamics in mouse ears noninvasively. To our 

knowledge, this is the first report of dynamic 3D in vivo photoacoustic imaging with both high 

temporal and spatial resolutions. 

7.2 Methods 

The principles of SI-PAM are shown in Figure 7.1. In order to achieve section illumination, the 

laser beam was first expanded, and then cylindrically focused into the sample. The numerical 

aperture of the focus was 0.015, which in theory would result in an elevational resolution of 24 

m—10-fold better than the one defined acoustically; the depth of focus in air was ~2.7 mm, 

greater than the targeted 1-mm imaging depth. To detect the photoacoustic waves from the 

sample, a custom-built ultrasound array of 30-MHz center frequency was used, positioned 

opposite the laser illumination. Photoacoustically exciting the entire B-scan imaging region with 

each laser pulse, the section illumination was able to take full advantage of the ultrasound array 

for high-speed imaging. While 2-D B-scan imaging required no mechanical scanning, 3D imaging 

necessitated linearly translating the sample in the elevational (y) direction. By storing 

photoacoustic signals in the data acquisition (DAQ) card, we achieved 3D image acquisition at 

0.5 Hz, corresponding to a 2-D (B-scan) image acquisition rate of 249 Hz. Currently, in order to 

stream data from the 48-channel ultrasound array to the 8-channel DAQ card, 6 laser pulses 
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were needed for one B-scan. Thus the laser repetition rate corresponding to the 249-Hz B-scan 

rate was ~1.5 kHz, approximately the highest rate at which our laser could operate. Further 

details about image acquisition and reconstruction were presented in our previous publications 

54, 99. 

 

Figure 7.1. (Color online) Schematic of the section-illumination photoacoustic microscopy (SI-

PAM) system. The widths of the slit and the aperture along the y axis are 50 m and 5 mm, 

respectively. Coordinates x, y, and z represent the lateral, elevational, and axial (depth) 

directions of the ultrasound array, respectively. 

7.3 Results 

Figures 7.2(a)–(c) show that the elevational resolution (y) was improved ~10 fold—from 200–

400 m to 28 m—by the section illumination, while the in-plane lateral (x) resolution (~70 m) 

was unaffected. Figure 7.2(d) shows that SI-PAM can penetrate ~1.6 mm through biological 

tissue. Figure 7.2(e) is an in vivo photoacoustic image of a mouse ear microvasculature acquired 

by SI-PAM at 584 nm, sensing the intrinsic absorption contrast of hemoglobin. The image is 

shown in the form of maximum amplitude projection (MAP)—the maximum photoacoustic 

amplitudes projected along a direction to its orthogonal plane—along the z axis with depth 

encoded by color. Unless otherwise mentioned, all MAPs are along the z axis. Microvessels in 

diameters down to 30 microns were clearly imaged, and a predominantly two-layered structure 
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of blood vessels was observed, consistent with the previous results from OR-PAM 108. Figure 

7.2(f) is a snapshot of a 3D animation (Video 1) showing the mouse ear microvasculature from 

various perspectives. All animal experiments were carried out complying with Washington 

University approved protocols. 

 

Figure 7.2. (Color online) (a,b) MAP images of two crossed 6-m diameter carbon fibers (CFs) 

acquired by PAM at 584 nm without and with section illumination, respectively. (c) Distribution 

of photoacoustic (PA) amplitude from the vertical carbon fiber along the dashed line in (b). (d) 

MAP (along the x axis) image of a 250-m diameter black needle inserted in a fresh pork 

specimen acquired by SI-PAM at 584 nm. (e) MAP image of a mouse ear microvasculature 

acquired by SI-PAM noninvasively in vivo (at 584 nm). Depth (z)—300 m in total—is encoded 

by color. (f) Snapshot of a 3D animation (Video 1) showing the microvasculature in (e). 
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Figure 7.3. (Color online) Wash-in dynamics of EB in a mouse ear microvasculature imaged by SI-

PAM at 600 nm (Video 2). (a)–(h) MAP images at representative time points after EB injection. 

 

The dynamic 3D in vivo imaging capability of SI-PAM was demonstrated by real-time 

monitoring of the wash-in dynamics of Evans Blue (EB) dye in mouse ear microcirculation. Swiss 

Webster mice (Harlan, Inc., USA) weighing ~25 g were used. Upon injection of ~0.05 ml of 3% EB 

through the tail vein, the mouse ear was continuously imaged by SI-PAM at 600 nm for up to 2 

min at 5-s intervals. At this wavelength, EB has much stronger absorption (which peaks at 620 

nm) than hemoglobin, and thus its signal dominates the contrast. Video 2 shows the entire EB 

wash-in process recorded by SI-PAM—with representative frames shown in Figure 7.3. It is 

clearly seen that the dye progressively reaches different levels of vessel branches—from the 

root to the edge of the ear—at different time points. Yet the overall wash-in process is as short 

as 15–20 s. After 1–2 min, the photoacoustic signal decreases (Figures 7.3(g) and (h)), indicating 
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the beginning of the wash-out of EB. However, the entire wash-out process, which was not 

monitored in this study, could take up to a few days. 

Although the spatial resolution of the SI-PAM was insufficient to resolve closely located 

arteriole-venule pairs even if the oxygen saturation of hemoglobin were measured spectrally, 

we found that the dynamics enabled us to distinguish arterioles from venules in the 

microcirculation. In fact, four distinct stages of the wash-in process can be observed in Video 2 

(or Figure 7.3): 

1. EB dye flowed to the major arterioles at the root of the ear; 

2. EB dye reached the arteriole branches and the capillary bed at the edge of the ear; 

3. EB dye returned to the venule branches from the capillary bed; 

4. EB dye returned to the major venules at the root of the ear. 

In the end, the entire microcirculation of the mouse ear was perfused with EB dye. Figure 7.4 is 

a pseudo-colored composite image showing the separated arterioles (red) and venules (green). 

Furthermore, Video 3 shows the wash-in dynamics of EB in both grayscale and pseudo-color. 

 

 

Figure 7.4. (Color online) Pseudo-colored composite image showing arterioles and venules 

separated according to the wash-in dynamics of EB (Video 3). 
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Figure 7.5. (Color online) Real-time B-scan imaging of the EB wash-in dynamics in a mouse ear 

microvasculature. (a) Control MAP image at 584 nm. (b) Control B-scan image at 584 nm 

corresponding to the dotted line in (a). (c) Snapshot of a B-scan movie of the EB wash-in 

dynamics acquired at 600 nm (Video 4). (d) Plot of the EB wash-in dynamics in vessel 1. 

 

With 50 Hz B-scan imaging rate, the entire EB uptake process was quantitatively imaged by 

SI-PAM. An MAP image and a representative B-scan image of the mouse ear microvasculature 

are shown in Figures 7.5(a) and (b), respectively. Video 4 is a real-time B-scan movie showing 
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the EB uptake in a single vessel (vessel 1). The photoacoustic amplitude representing the dye 

concentration was quantified as a function of time (Figure 7.5 (d)). The EB injection started at t = 

0 s and took ~2 s to complete. At ~14 s, the photoacoustic signal stabilized, suggesting that the 

dye concentration had reached a steady state in the blood circulation. This stabilization time 

agreed well with the circulation time needed to fully mix the dye in blood, which was ~15 s as 

estimated by using a stroke volume of 20 l, a heart-beat rate of 400 beats/min (mice under 

anesthesia), and a total blood volume of 2 ml. 

7.4 Conclusions 

In summary, we developed section-illumination photoacoustic microscopy (SI-PAM) that 

overcomes the poor elevational resolution bottleneck of ultrasound array photoacoustic 

microscopy: the system offers 28-m elevational, 25-m axial, and 70-m lateral resolutions. In 

addition, SI-PAM is capable of B-scan and 3D image acquisition at 249 and 0.5 Hz, respectively. 

The combined high spatial and temporal resolutions enable dynamic 3D imaging of 

microcirculation in vivo. Using SI-PAM, the wash-in dynamics of EB in mouse ear 

microcirculation were noninvasively imaged and quantified. Major arterioles and venules were 

differentiated using the EB wash-in dynamics. In the future, to enable the imaging of more 

anatomical sites in vivo, reflection-mode SI-PAM will be constructed. With this successful 

demonstration of dynamic 3D in vivo imaging of microcirculation, we believe that SI-PAM will 

open up many new possibilities for the study of angiogenesis, diabetes-induced vascular 

complications, and pharmacokinetics. 
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Chapter 8 Multi-focal Optical-resolution Photoacoustic Microscopy 

8.1 Introduction 

Due to the vital role of the microcirculation in the regulation of hemodynamics and metabolism, 

imaging of the microvasculature is crucial to both clinical practice and preclinical research 101. 

Many high-resolution optical imaging modalities—including confocal microscopy, two-photon 

microscopy, and optical coherence tomography—have been adopted for microvascular imaging 

109-112. However, they either require exogenous fluorescent agents or have insufficient sensitivity 

to image a single capillary. In addition, none of them have direct access to the total 

concentration and oxygen saturation (sO2) of hemoglobin—two important functional 

parameters in disease diagnosis 113.  

In contrast, optical-resolution photoacoustic microscopy (OR-PAM) provides extremely high 

sensitivity to optical absorption (for example, the intrinsic optical absorption of oxy- and deoxy-

hemoglobin), with optical diffraction limited lateral resolution 106. It is capable of imaging both 

the total concentration and sO2 of hemoglobin in microvessels—including capillaries—in vivo, 

making it a viable tool for microvascular imaging 108, 114. However, the imaging speed of OR-PAM 

with single-element ultrasonic detection is usually limited by its mechanical scanning. 

Previously, to improve the imaging speed of OR-PAM, a Galvo mirror was used to rapidly scan 

the illumination laser beam confined within the field of view of an unfocused ultrasonic 

transducer 115. A hybrid optical-mechanical scanning OR-PAM was also developed, using a Galvo 

mirror and a cylindrically focused ultrasonic transducer 116. However, since the ultrasonic 

transducer was either unfocused or focused in only one axis, the signal-to-noise (SNR) ratio of 

the system was inherently limited. In addition, because only a single laser beam and a single 

ultrasonic transducer were used, these systems demand a laser pulse repetition rate as high as 5 
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– 10 kHz to significantly improve the imaging speed. Presently, lasers with such high pulse 

repetition rates (and sufficient pulse energy for OR-PAM) usually lack the wavelength tunability 

needed for measuring the sO2 of hemoglobin. 

In this work, we developed an alternative method—using multi-focal optical illumination in 

conjunction with ultrasonic array detection—to improve the imaging speed of OR-PAM. For 

photoacoustic excitation, a microlens array was used, providing 20 focused optical illumination 

spots; for ultrasonic detection, a linear ultrasound array was used, detecting photoacoustic 

emissions from all illumination beams simultaneously. The signals from different sites were 

separated using photoacoustic reconstruction algorithms 99, 107, 117. With a tunable dye laser 

operating at a ~1.3-kHz pulse repetition rate, our multi-focal optical-resolution photoacoustic 

microscopy (MFOR-PAM) system was capable of imaging both the concentration and sO2 of 

hemoglobin in microvessels in vivo, at an imaging speed significantly faster than that of a 

mechanical scanning single-focal OR-PAM system. Of note, the use of the ultrasound array with 

photoacoustic reconstruction allows the spacing between adjacent optical illumination beams to 

be as small as the lateral resolution of the ultrasound array. Fundamentally different from 

simply combining multiple assemblies of a single optical focusing element and a single ultrasonic 

transducer, this approach enables us to position optical foci much closer to each other and 

potentially to scan optically at high speed. 

8.2 Methods 

Figure 8.1 illustrates the basic principles of MFOR-PAM. To provide multi-focal optical 

illumination for photoacoustic excitation, the laser beam from a pulsed laser system (a tunable 

dye laser pumped by an Nd:YLF laser) was first expanded, and then cylindrically focused onto a 

microlens array. The full width at half maximum (FWHM) of the cylindrically focused incident 
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laser beam approximately matched the 250-m width (along y) of the microlens array, resulting 

in 20 focused optical illumination spots along x. The distance between two nearby spots, 

determined by the pitch of the microlens array, was 250 m, greater than the ~80-m acoustic 

lateral resolution of our ultrasound array. The ultrasound array, with a center frequency of 30 

MHz, has a 2-mm elevational aperture (along y) and consists of 48 elements along x, with a 

spacing of 100 m. To acquire a volumetric image, the sample was scanned first along y, and 

then x, in the x-y plane. Due to the simultaneous photoacoustic excitation from the 20 

illumination beams, the number of scanning steps along x was reduced 20-fold compared with 

that in conventional single-focus OR-PAM. In theory, this reduction could result in a 20-fold 

increase in imaging speed.  

In our system, as a proof of concept, data from the 48-channel ultrasound array are 

multiplexed to an 8-channel data acquisition card, reducing the possible speed increase by 6 

times. However, even with the multiplexing, our MFOR-PAM system can acquire a data set of 

1000 × 500 × 200 voxels within 4 min, three to four times faster than existing mechanical 

scanning single-focus OR-PAM. 

 

Figure 8.1. (Color online) Schematic of the multi-focal optical-resolution photoacoustic 

microscopy system. The widths of the slit and the aperture along y are 50 m and 5 mm, 

respectively.  
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8.3 Results 

As measured previously, the axial resolution of our system, determined by the receiving 

ultrasonic bandwidth, is ~25 m 99. To quantify the lateral resolution, which is determined by 

the optical focus of the microlens array, we imaged two 6-m diameter crossed carbon fibers, 

using a scanning step of 2.5 m. Figure 8.2(a) shows a maximum amplitude projection (MAP) 

image of the two carbon fibers. In this report, all MAP images were formed by projecting the 

maximum photoacoustic amplitudes along the z axis to the x-y plane. Figure 8.2(b) shows the 

FWHM of the vertical fiber, demonstrating that the lateral resolution of our system is at least as 

fine as 10 m. The contrast-to-noise ratio (CNR), measured from Figure 8.2(a), is as high as 38 

dB.  

 

Figure 8.2. (Color online) Lateral resolution of the multi-focal optical-resolution photoacoustic 

microscopy system. (a) Photoacoustic (PA) maximum amplitude projection (MAP) image of two 

crossed 6-m diameter carbon fibers. (b) Distribution of the PA amplitude (dots) along the 

dashed line in (a); the solid line is a Gaussian fitted curve. 
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To demonstrate the in vivo imaging capability of our system, we imaged the 

microvasculature in the right ear of a nude mouse (Hsd, Athymic Nude-Foxn1NU, Harlan Co.) 

weighing ~20 g. In order to couple the photoacoustic waves to the ultrasound array, a thin layer 

of ultrasonic gel was applied to the mouse ear. The image was acquired completely 

noninvasively, without using any optical clearing agent. After imaging, the animal naturally 

recovered without observable laser damage. All experimental animal procedures were carried 

out in compliance with protocols approved by the Animal Studies Committee of Washington 

University. 

Figure 8.3(a) shows an in vivo MAP image of the mouse ear microvasculature acquired by 

our MFOR-PAM system at 570 nm, sensing the intrinsic optical absorption contrast of 

hemoglobin. Microvessels in diameters down to 10 m are clearly imaged. Figure 8.3(b) is a 

snapshot of a 3D animation (Video 1) showing the mouse ear microvasculature from various 

perspectives. In addition to 570 nm, laser light at 565 nm was also used to image the mouse ear, 

enabling sO2 measurement, as demonstrated previously with OR-PAM 108, 114. While Figure 8.3(c) 

shows the microvasculature of a selected area, Figure 8.3(d) shows the corresponding vessel-by-

vessel sO2 mapping, where the arteries and veins are differentiated based on the measured sO2. 

On average, the sO2 values in arteries and veins were estimated to be 0.96 ± 0.4 and 0.75 ± 0.5, 

respectively, consistent with previous results from OR-PAM. In the experiment, the incident 

laser pulse energy on each microlens was limited to ~100 nJ, resulting in a maximum fluence of 

~8 mJ/cm2 on the skin surface (assuming the optical focus was 200 m below the skin), which is 

less than the 20-mJ/cm2 ANSI laser safety standard 61. 
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Figure 8.3. (Color online) In vivo photoacoustic image of a mouse ear microvasculature. (a) MAP 

image acquired at 570 nm. (b) Snapshot of a 3D animation (Video 1) showing the 

microvasculature in (a). (c) Close-up of the vasculature in the dashed box in (a). (d) Oxygen 

saturation (sO2) mapping for vessels in (c). 

8.4 Discussion and conclusions 

In summary, using a microlens array and a high-frequency linear ultrasound array, we developed 

multi-focal optical-resolution photoacoustic microscopy. The system provided volumetric 

imaging of optical absorption contrast in scattering biological tissue in vivo, at depths up to the 

optical transport mean free path (~1 mm in the skin), and with optical diffraction limited lateral 
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resolution at least as fine as 10 m. The axial resolution, determined by the receiving ultrasonic 

bandwidth, was ~25 m. With this high spatial resolution and multiple wavelengths, our system 

was capable of imaging both the concentration and oxygen saturation of hemoglobin in 

capillary-level microvessels in vivo. Moreover, in MFOR-PAM, the combination of multi-focal 

optical illumination and ultrasonic array detection enabled a significant improvement in imaging 

speed over existing mechanical scanning single-focal OR-PAM. In the future, by eliminating the 

6:1 multiplexing in data acquisition, the imaging speed can be increased 6-fold. In addition, a 

more densely packed microlens array (e.g., with a spacing of 100 m), together with optical 

scanning within the lens array pitch, can be used to further increase the imaging speed. In 

clinical practice, high imaging speed is critical to reduce motion artifacts, cost, and patient 

discomfort. This proof-of-principle study has demonstrated that MFOR-PAM represents a 

promising direction for translating photoacoustic microscopy technology to the clinic. 
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Chapter 9 Summary 

This dissertation presents our development of a novel high-speed, high-resolution 

photoacoustic microscopy technology and the experimental demonstrations of its potential 

biomedical applications.  To translate PAM to the clinic, both high imaging speed and high 

spatial resolution are desired. With high spatial resolution, PAM can detect small structural or 

functional changes early; whereas, high-speed image acquisition helps reduce motion artifacts, 

patient discomfort, cost, and potentially the risks associated with minimally invasive procedures 

such as endoscopy and intravascular imaging.  

In Chapter 1, we briefly introduce photoacoustic imaging technology, its unique advantages 

over existing imaging technologies, and its potential biomedical applications. 

In Chapter 2, we present a novel high-frequency photoacoustic microscopy system capable 

of imaging the microvasculature of living subjects in real time to depths of a few millimeters. 

The system consists of a high-repetition-rate Q-switched pump laser, a tunable dye laser, a 30-

MHz linear ultrasound array transducer, a multichannel high-frequency data acquisition system, 

and a shared-RAM multi-core-processor computer. Data acquisition, beamforming, scan 

conversion, and display are implemented in real-time at 50 frames per second. Clearly 

resolvable images of 6-m-diameter carbon fibers are experimentally demonstrated at 80-m 

separation distances. Real-time imaging performance is demonstrated on phantoms and in vivo 

with absorbing structures identified to depths of 2.5 – 3 mm. To our knowledge, this work 

represents the first high-frequency real-time photoacoustic imaging system. 

Non-invasive visualization of cardiovascular dynamics in small animals is challenging due to 

their rapid heart rates. In Chapter 3, we demonstrate the ability of our real-time PAM system to 
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image optically-absorbing structures of the beating hearts of young athymic nude mice at rates 

of ~50 frames per second with 100 m × 25 m spatial resolution. To our knowledge, this is the 

first report of real-time photoacoustic imaging of physiological dynamics. 

In Chapter 4, we present an in vivo dark-field reflection-mode photoacoustic microscopy 

system that performs cross-sectional (B-scan) imaging at 50 Hz with real-time beamforming and 

3D imaging, consisting of 166 B-scan frames at 1 Hz, with post-beamforming. A custom-designed 

light delivery system is integrated with a 30-MHz ultrasound linear array to realize dark-field 

reflection-mode imaging. Linear mechanical scanning of the array produces 3D images. The 

system has axial, lateral, and elevational resolutions of 25, 70, and 200 m, respectively, and 

can image 3-mm deep in scattering biological tissue. Volumetric images of subcutaneous 

vasculature in rats are demonstrated in vivo. Fast 3D photoacoustic microscopy is anticipated to 

facilitate applications of photoacoustic imaging in biomedical studies that involve dynamics and 

clinical procedures that demand immediate diagnosis. 

Noninvasive photoacoustic sentinel lymph node (SLN) mapping with high spatial resolution 

has the potential to improve the false negative rate and eliminate the use of radioactive tracers 

in SLN identification. In addition, high spatial resolution may enable physicians to replace SLN 

biopsy with fine needle aspiration biopsy, and thus reduce the risk of associated morbidity. In 

Chapter 5, we demonstrate the feasibility of high-speed 3D photoacoustic imaging of the uptake 

and clearance dynamics of Evans blue dye in SLNs. Upon injection of Evans blue, which is 

currently used in clinical SLN biopsy, SLNs in mice and rats are accurately and noninvasively 

mapped in vivo using our PAM system. In our experiments, the SLNs are found to be located at 

~0.65 mm below the skin surface in mice and ~1.2 mm in rats. In some cases, lymph vessels and 

lymphatic valves are also imaged. The dye dynamics—accumulation and clearance—in SLNs are 
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quantitatively monitored by sequential 3D imaging with temporal resolution as high as ~6 s. The 

demonstrated capability suggests that high-speed 3D photoacoustic imaging should facilitate 

the understanding of the dynamics of various dyes in SLNs, and potentially help identify SLNs 

with high accuracy. 

In Chapter 6, with a refined ultrasound-array-based real-time photoacoustic microscopy 

(UA-PAM) system, we demonstrate the feasibility of noninvasive in vivo imaging of human 

pulsatile dynamics. The system, capable of real-time B-scan imaging at 50 Hz and high-speed 3D 

imaging, is validated by imaging the subcutaneous microvasculature in rats and humans. After 

the validation, a human artery around the palm–wrist area is imaged, and its pulsatile dynamics, 

including the arterial pulsatile motion and changes in hemoglobin concentration, are monitored, 

with 20-ms B-scan imaging temporal resolution. To our knowledge, this is the first 

demonstration of real-time photoacoustic imaging of human physiological dynamics. Given the 

results achieved in this study, we believe that UA-PAM potentially offers many new possibilities 

for studying functional and physiological dynamics in both preclinical and clinical imaging 

settings. 

In Chapter 7, we present a section-illumination photoacoustic microscopy system capable of 

dynamic in vivo imaging of microvessels as small as 30 micrometers in diameter. The section 

illumination improves the elevational resolution, while an ultrasound array provides the in-plane 

axial and lateral resolutions. Using the imaging system, we have monitored the wash-in 

dynamics of Evans Blue in the microcirculation of mouse ears at 249-Hz 2-D and 0.5-Hz 3-D 

image acquisition rates. Such observations allow us to differentiate the arterioles from the 

venules. In the future, the technology may be used to study angiogenesis, diabetes-induced 

vascular complications, and pharmacokinetics. 
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In Chapter 8, we present a multi-focal optical-resolution photoacoustic microscopy system 

capable of high-resolution imaging of both hemoglobin concentration and oxygenation in 

individual microvessels in vivo at high speed. A microlens array focuses laser light into multiple 

illumination beams for photoacoustic excitation; an ultrasound array detects the photoacoustic 

signals from the illumination beams, which are separated by lateral distances as small as the 

lateral resolution of the ultrasound array. Compared with a single focus, multiple foci reduce the 

scanning load and increase the imaging speed significantly. The current multi-focal system can 

acquire 1000 × 500 × 200 voxels at ~10-m lateral resolution within only 4 min. 
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