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ABSTRACT OF THE DISSERTATION 

Serotonergic Signaling Pathways that Suppress Amyloid Beta in Mouse Models of AD 

By 

Jonathan Robert Fisher 

Doctor of Philosophy in Biology and Biomedical Sciences 

 Molecular Cell Biology 

Washington University in St. Louis, 2014 

Professor John Robert Cirrito, Chair 

 

 A diagnosis of Alzheimer’s disease is one of the most devastating things one can hear. 

This terrible disease robs people of their ability to remember cherished events as their brains 

become riddled with beta amyloid plaques. Alzheimer’s is especially terrifying because there 

currently are no effective treatments for slowing or stopping the disease. However, recent 

research has shown that plaque formation is correlated to concentrations of amyloid beta. This 

discovery suggests that limiting amyloid beta production could potentially halt the disease. One 

promising avenue for slowing amyloid beta production is serotonergic signaling.  

 This dissertation presents evidence for a direct sequence of signaling events from 

serotonin receptors to reduction of amyloid beta by alpha-secretase. Two serotonin receptors, 5-

HT4R and 5-HT7R, reduce amyloid beta levels in the brains of transgenic mice that model 

Alzheimer’s disease. These receptors are linked to activation of PKA, and blocking PKA activity 

increases amyloid levels in mice. PKA leads to activation of ERK, a kinase which acts in both 

the nucleus and the cytoplasm. We show SSRI antidepressant treatment fails to produce changes 

in gene expression which suggests ERK acts within the cytoplasm to reduce amyloid beta. 
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Finally, we show that selective inhibition of ADAM10, the primary alpha-secretase, is unable to 

block the beneficial effects of SSRI antidepressants in transgenic mice. These discoveries 

explain the mechanisms regulating amyloid beta reduction by serotonin activity and also offer a 

more selective therapy for Alzheimer’s disease.    
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Chapter 1: Introduction and Significance 
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Alzheimer’s Disease (AD) is one of the most insidious and damaging conditions 

menacing mankind today. AD dementia starts relatively benign with minor forgetfulness of 

every day experiences or mundane appointments. However, it progresses to destroy memories of 

key experiences, eliminates recognition of close family members, and ultimately annihilates a 

person’s ability to care for oneself as an adult. Even if one ignores the severe mental trauma of 

family and friends as someone progresses through AD, the economic damage is substantial 

enough to give anyone pause. More than 5 million Americans are currently estimated to have 

AD, and the number is expected to triple in the coming decades (Hebert et al., 2013). The cost of 

care for dementia in the United States was between $157 and $215 billion dollars in 2010 (Hurd 

et al., 2013). Extrapolation of the costs in coming decades leads one to realize how large a threat 

AD is to global health and economic stability. Understanding the mechanisms of the disease and 

developing treatments to combat it are the only way to stop the imminent threat. 

AD Pathology and Progression 

 Although AD was identified over 100 years ago, the mechanisms driving its pathology 

have only been characterized in the last few decades. Current hypotheses suggest AD is driven 

by accumulation of two distinct proteins in the brain: amyloid beta (Aβ) and tau. Tau is a 

microtubule associated protein, but dysregulation of its phosphorylation state leads it to abandon 

microtubules and accumulate as intracellular neurofibrillary tau tangles (NFTs) (Holtzman et al., 

2011). Aβ is produced by sequential cleavage of the membrane-bound amyloid precursor protein 

(APP) by beta (β) and gamma (γ) secretase enzymes (Seubert et al., 1993; Edbauer et al., 2003). 

This cleavage results in the release of a 37-42 amino acid peptide into the extracellular space, the 

interstitial fluid (ISF), and eventually the cerebrospinal fluid (CSF). Various mechanisms in the 

body help remove Aβ from brain tissue. Several enzymes, such as neprilysin and matrix-
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metalloproteinase-9 (MMP9), are produced by glial cells to degrade Aβ (Yan et al., 2006; Yin et 

al., 2006; Hickman et al., 2008). These enzymes break down Aβ within the brain. Bulk flow of 

CSF into the blood stream removes large amounts of solutes such as Aβ (Ji et al., 2001; Iliff et 

al., 2012). However, these Aβ clearance mechanisms eventually become ineffective. Shibata et 

al showed that Aβ clearance from the brain drops as mice age, and higher concentrations of Aβ 

in the CSF hindered its clearance (Shibata et al., 2000). When concentrations of Aβ reach a 

critical threshold, the peptide begins aggregating and precipitates out of solution to form 

extracellular amyloid plaques (Lomakin et al., 1997; Bero et al., 2011). Although the Aβ40 

peptide is more prevalent in the brain, the Aβ42 peptide is more prone to aggregation (Jarrett et 

al., 1993; McGowan et al., 2005; Chen and Glabe, 2006). There are two classes of Aβ plaques 

present in the brain: diffuse and fibrillar. Diffuse plaques contain Aβ in non-beta sheet 

conformations; these plaques have ill defined borders and are not associated with neurite damage 

(Iwatsubo et al., 1994; Morris and Price, 2001; Holtzman et al., 2011). Fibrilar plaques contain a 

dense core of Aβ that is arranged in a beta-sheet conformation, and they are surrounded by 

dystrophic neurites and activated glial cells (Iwatsubo et al., 1994; Morris and Price, 2001; 

Holtzman et al., 2011). The increased gliosis and neuropathy around fibrilar Aβ plaques suggests 

they are more toxic than diffuse plaques. Accumulation of plaques and NFTs leads to loss of 

function, degeneration, and death of neurons. The neuronal dysfunction and death likely lead to 

the dementia symptoms characteristic of the disease.     

 Several studies support the role of Aβ initiating AD. People expressing mutations in APP 

near β or γ-secretase cleavage sites show early onset of the disease, and the mutations can be 

passed to progeny in a dominant fashion (Goate et al., 1991; Murrell et al., 1991). Mutations in 
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γ-secretase subunits can also induce early AD onset and can be passed along to children 

(Borchelt et al., 1997). These familial AD patients are valuable resources for scientific study.  

The progression of Down syndrome also supports the idea that Aβ causes AD. People suffering 

from Down syndrome have three copies of chromosome 21, the chromosome that encodes APP, 

and these patients always develop AD pathology while young (Holtzman et al., 2011). 

Postmortem analysis of humans with familial AD mutations showed the presence of NFTs 

increased with the number of Aβ plaques (Price and Morris, 1999). Interestingly, the same study 

showed some congnitively normal controls also possessed Aβ plaques suggesting they may have 

been in the pre-clinical phase of the disease (Price and Morris, 1999). While NFTs are part of 

AD pathology, they are not considered the initial trigger for the disease. People with mutations in 

tau develop a separate disease known as frontotemporal dementia where plaques are absent 

(Ballatore et al., 2007). Also, recent work has shown that changes in CSF Aβ levels preceed 

changes in tau in humans carrying familial AD mutations which suggests Aβ disregulation is the 

initial trigger for AD (Bateman et al., 2012). Most importantly, these changes in Aβ levels began 

decades before signs of AD dementia manifested (Perrin et al., 2009; Holtzman et al., 2011; 

Bateman et al., 2012). If the pathology begins decades prior to AD symptoms, then there is a 

large window for potential therapy. Once possible treatment could be targeting the processing of 

APP into Aβ. 

Aβ Processing: APP, secretases, and endocytosis 

 Production of Aβ requires complex coordination of multiple proteins. As stated 

previously, APP is an integral membrane protein of unknown function. Knocking out the gene in 

mice has no deleterious effects (Matrone et al., 2011). The protein is widely expressed 
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throughout the body. However, APP levels are highest in the brain and can be found across 

multiple regions (Tanzi et al., 1987). At a sub-cellular level, APP can be found on the plasma 

membrane, golgi, pre-synaptic vesicles, and endosomes of neurons (Marquez-Sterling et al., 

1997; Chyung and Selkoe, 2003). Interestingly, expression of cell surface APP is most prevalent 

on axons, but it shows diffuse intracellular staining across the entire cell (Marquez-Sterling et al., 

1997). This diffuse staining is APP in neuronal vesicles or endosomes. APP expression appears 

restricted to neurons under normal circumstances. However, activated astrocytes begin 

expressing APP following brain injury (Siman et al., 1989). Similar results were shown with 

microglia. APP expression was absent until microglia were activated by spinal cord injury 

(Banati et al., 1993). Glial activation is observed in AD, but does not occur until plaques achieve 

fibrilar status. Therefore, the initial deposition of Aβ is most likely due to neurons. Also, there is 

evidence the potential for Aβ production is lower in glia than neurons. Zhao et al showed that 

transgenic mice overexpressing mutant APP specifically in astrocytes produced less Aβ than 

mice that overexpressing mutant APP in neurons (Zhao et al., 1996). 

Aβ production begins with β-secretase activity. The putative β-secretase enzyme is 

known as memampsin2 or BACE1, and it cleaves APP just outside its transmembrane domain at 

methionine 596 (Seubert et al., 1993; Vassar et al., 1999; Lin et al., 2000). BACE1 can be found 

in multiple organs, but its highest expression is in the brain and pancreas (Vassar et al., 1999; Lin 

et al., 2000). BACE1 is a transmembrane protein found in the golgi, vesicles, and endosomes 

(Vassar et al., 1999). shRNA against BACE1 significantly reduces Aβ levels, and crossing 

BACE1 knockout mice with mice expressing mutant APP completely blocks plaque formation 

(Vassar et al., 1999; Luo et al., 2003). Conversely, overexpression of BACE1 increases Aβ 

production in vitro (Vassar et al., 1999). 
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The final step of Aβ production requires γ-secretase. γ-secretase is a complex of 

presenilin-1 (PS1), nicastrin (NCT), anterior pharynx-defective 1 (APH1), and presenilin 

enhancer 2 (PEN2) (Edbauer et al., 2003). Following β-secretase activity, γ-secretase cleaves the 

remaining APP fragment within the transmembrane domain in a stepwise manner to release the 

Aβ40 or Aβ42 peptide (Takami et al., 2009). Mutations in PS1 can lead to increased production of 

the aggregation-prone Aβ42 peptide (Borchelt et al., 1997). γ-secretase can be found in the 

plasma membrane, golgi, and endosomal comparments (Lah and Levey, 2000). However, the 

enzyme complex is not fully mature until leaving the golgi, and this fact suggests it is active at 

the plasma membrane or within endosomes (Haass et al., 2012). Knocking out components of γ-

secretase stops Aβ production in vitro, but KO animals are embryonic lethal due to defects in 

Notch signaling (Li et al., 2003). 

 There is a great deal of evidence supporting the idea that most Aβ processing occurs 

within endosomes. Mutating the YXNP endocytosis motif or the cytoplasmic domain of APP 

results in a significant reduction in Aβ (Koo and Squazzo, 1994; Perez et al., 1999; Cam et al., 

2005). Blocking endocytosis by lowering potassium or by expressing dominant negative 

dynamin also results in lower Aβ production (Koo and Squazzo, 1994; Chyung and Selkoe, 

2003; Cam et al., 2005; Cirrito et al., 2008; Zhu et al., 2012). BACE1 requires a low pH, such as 

those in endosomes, to function optimally (Vassar et al., 1999). Interestingly, neuronal BACE1 

and APP do not enter the same subcellular compartment until the neurons are stimulated (Das et 

al., 2013). This colocalization is blocked when endocytosis is inhibited with dynasore (Das et al., 

2013). Neuronal activity has been tied to Aβ production in other studies as well. Stimulating 

activity in mouse hippocampal slices increased Aβ in media, and reducing activity had the 
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opposite effect (Kamenetz et al., 2003). Aβ plaques in humans and mice appear earliest in the 

default mode network, a group of brain regions which are active even when the subject is not 

mentally engaged in a task (Buckner et al., 2005; Bero et al., 2011). Lowered neural activity 

during sleep also plays a role. Aβ levels are higher when mice are awake and lower as they sleep 

(Kang et al., 2009). Pharmacological manipulation of neural activity confirms its role in Aβ 

production. Stimulating seizures in mice increases Aβ levels, and increasing neuronal activity 

with lactrotoxin or picrotoxin has the same effect (Cirrito et al., 2005, 2008). Inhibiting mouse 

action potentials with tetrodotoxin causes a reduction in Aβ (Kamenetz et al., 2003; Cirrito et al., 

2005). This increase in Aβ by neuronal activity is caused by neurons using endocytosis to 

recycle membrane components after neurotransmitter release (Cirrito et al., 2008). 

 There is an alternate path for APP that prevents formation of Aβ. Alpha (α) secretase 

cleaves APP between the β and γ-secretase sites and prevents the production of Aβ (Vingtdeux 

and Marambaud, 2012). Production of the α-secretase product sAPPα coincides with a reduction 

in Aβ (Nitsch et al., 1996). A disintegrin and metalloproteinase 10 (ADAM10) has been shown 

to be the putative neuronal α-secretase enzyme (Lammich et al., 1999; Kuhn et al., 2010). 

ADAM10 is highly expressed throughout the mouse and human brain (Yavari et al., 1998). 

Overexpression of ADAM10 in mice expressing mutant APP reduced the concentrations of Aβ 

and number of plaques in the brain (Postina et al., 2004; Suh et al., 2013). Interestingly, mice 

overexpressing a dominant negative ADAM10 had increased plaque load (Postina et al., 2004). 

Active ADAM10 can be found at the plasma membrane or the trans-golgi network  (Lammich et 

al., 1999; Marcello et al., 2013). However, research suggests that ADAM10 can bind adaptin 

proteins and be internalized after neuronal activity (Marcello et al., 2013). A similar protein, 
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ADAM17, can also cleave APP as an α-secretase in vitro (Buxbaum et al., 1998; Vingtdeux and 

Marambaud, 2012). ADAM17 α-secretase activity is upregulated when cells are stimulated with 

phorbol esters in vitro (Buxbaum et al., 1998; Kuhn et al., 2010). Current research suggests 

ADAM10 acts as the constitutive α-secretase under basal conditions, and ADAM17 α-secretase 

activity is increased by extracellular stimulation (Kuhn et al., 2010). Presumably, increasing α-

secretase activity could be a potential therapy for AD. Figure 1.1 shows a model of the different 

processing pathways for APP.   

AD mouse models 

 Multiple transgenic mouse models of AD have been created to investigate the 

mechanisms of the disease. The first mouse model was developed in 1995 by expressing human 

APP with a familial AD mutation (Games et al., 1995). These mice developed Aβ plaques, 

gliosis, and neuropathy in their CNS similar to human AD. Many other mouse models were 

produced in subsequent years with different gene promoters or different human proteins. Most of 

these models over-express human APP or an Aβ processing gene with one or more familial AD 

mutations. Unfortunately, no single mouse model perfectly recreates the entire suite of AD 

pathologies or recreates the normal human progression of the disease. However, the models have 

been integral for examining methods of Aβ production, plaque formation, and brain clearance.   

  The mouse model system we use is known as the APP/PS1 line. These mice overexpress 

human APP with the Swedish mutation (APPswe), an amino acid substitution where Lysine 670 

becomes Asparagine and Methionine 671 becomes Leucine. This familial AD mutation occurs 

adjacent to the β-secretase cleavage site of APP and enhances processing into Aβ. APP/PS1 

mice also express a version of PS1 found in familial AD that lacks its ninth exon (PS1∆E9). 



9 
 

Expression of both mutant proteins accelerates the process of Aβ aggregation, and the mice 

develop plaques at 5 months of age (Borchelt et al., 1997; Jankowsky et al., 2004). The APP/PS1 

line is not a perfect model of human AD because the mice do not develop tau neurofibrillary 

tangles or display neuron death. However, their production of Aβ is helpful for examining its 

metabolism. We use the APP/PS1 mice on a C3H/B6 background and use the APP/PS1 +/- 

offspring for experiments; hemizygous mice produce equal amounts of γ-secretase products as 

homozygous mice (Savonenko et al., 2003; Jankowsky et al., 2004). We use two to three month 

old mice for all experiments; the dynamics of ISF Aβ change as plaques accumulate in the brain 

(Cirrito et al., 2003). Using young mice allows us to examine regulatory mechanisms Aβ 

metabolism under normal physiological conditions.   

In vivo microdialysis 

 We use in vivo microdialysis to monitor cellular processes that modulate brain interstitial 

fluid (ISF) Aβ levels in APP/PS1 mice. Microdialysis is a method which allows us to sample Aβ 

on an hourly basis from awake, freely mobile mice. We use a surgical stereotax to place a guide 

cannula within the left posterior hippocampus of the mouse. The cannula is cemented in place to 

prevent any movement which could damage the probe. A 2 mm probe with a 38 kilodalton (kDa) 

molecular weight cutoff dialysis membrane is inserted through this cannula. Proteins under 38 

kDa, like the 4.4 kDa Aβ peptide, can freely diffuse across this membrane. A microdialysis 

buffer solution of artificial CSF containing 0.15-2% bovine serum albumin is pumped through 

this probe. The artificial CSF mimics the ionic profile of the CSF and ISF; the bovine serum 

albumin protein helps prevent Aβ from sticking to the plastic tubing that links the syringe pump, 

microdialysis probe, and fraction collector.  Diffused protein samples are collected in a cooled 
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fraction collector in hourly increments. In order to prevent tangling of the tubing lines, mice are 

housed in automated RaTurn cages. The cages will rotate in the opposite direction of the 

animal’s movement as directed by a sensor arm attached to a collar on the mouse. These cages 

allow animals to move freely without the need for restraints to protect the microdialysis probe or 

lines. Figure 1.2 demonstrates the principles of microdialysis. We perform a sandwich ELISA to 

measure amounts of Aβx-40 or Aβx-42 in each collected sample. We establish a mean baseline 

concentration of Aβ for each mouse for 6 hours before treating with pharmacological agents. 

Most agents we used are small molecules that can freely cross the microdialysis membrane. We 

can dissolve agents in microdialysis buffer and pump them through the microdialysis probe in a 

process called reverse microdialysis. This process allows us to deliver drugs specifically to the 

hippocampus to examine local neuronal effects. Reverse microdialysis also allows us to 

circumvent the exclusive nature of the blood brain barrier; we can treat mice with compounds 

that normally would not enter the brain.  

Measuring Aβ: CSF vs ISF 

 There can be some discrepancy between researchers as to which pool of Aβ, CSF or ISF, 

is preferrential for analysis. The CSF pool is currently the preferred method for Aβ sampling in 

humans; a spinal tap allows for evaluation of Aβ or other brain metabolites with a minimally 

invasive procedure. However, spinal taps are applied at the lumbar spine, a site several feet from 

the brain. Also, the CSF bathes the entire central nervous system. These facts suggest spinal taps 

may not faithfully represent contents of a specific brain region. Also, the slow six hour turnover 

rate and lack of active pumping means CSF components may be several hours old when drawn 
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from the lumbar spine (Cserr et al., 1992). Therefore, CSF sampling for Aβ is best for analyzing 

global changes in the CNS over longer periods of time.  

The ISF pool produces an accurate and fast readout for Aβ metabolism in a specific brain 

region. Changes in ISF Aβ reflect changes in localized neuronal activity and APP processing 

(Cirrito et al., 2003). The downside of using the ISF is the level of invasion. Sampling ISF Aβ 

requires surgical implantation of a microdialysis probe directly into the brain. This probe allows 

for diffusion of small molecules, such as Aβ, across the membrane. A solution of artificial CSF 

flows through the probe and diffused proteins are collected for analysis by ELISA. These 

microdialysis probes allow for hourly collection and measurement of Aβ from a specified brain 

region (Cirrito et al., 2003). Even though they are more precise, the microdialysis measurements 

of ISF Aβ are most often used only in research animals.             

Current AD Therapies and the Link to Depression 

 One of the reasons AD is so terrifying is its lack of effective treatments. The only two 

treatments currently available are acetylcholinesterase inhibitors or NMDA antagonists. 

However, these drugs only focus on treating the dementia symptoms instead of stopping the 

disease (Finkel, 2004; Shen et al., 2011). Innoculating mice with Aβ to stimulate the immune 

system showed promise in slowing the disease. However, clinical trials innoculating humans 

with aggregated Aβ showed lower efficacy and were stopped due to severe side effects (Hock et 

al., 2003; Orgogozo et al., 2003; Serrano-Pozo et al., 2010). A different route of therapy 

attempted to infuse an Aβ antibody, solenezumab, into AD patients. Solenezumab was well 

tolerated in a Phase II clinical trial, but there was no evidence of improved cognitive ability in 

patients (Farlow et al., 2012). Another avenue for combating the disease would be to reduce γ-
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secretase activity. Unfortunately, this method of therapy was ineffective. A recent clinical trial 

showed that semagacestat, a γ-secretase inhibitor, had no protective effect in AD patients and 

caused severe side effects like skin lesions and cancers (Doody et al., 2013). A alternative 

therapy target is needed that can effectively slow the disease without killing the patient.  

 Facing an AD diagnosis is a sad event, but several studies have shown a link to 

depressive disorders and AD. Meta-analysis of human AD studies show many patients exhibit 

signs of depression one year before AD diagnosis (Green et al., 2003). However, this result is 

confounded by the fact early AD symptoms can manifest as depression (Lopez et al., 2003). If 

the analysis is continued further back, however, there still is a strong correlation of developing 

AD even if the depression occcurred decades before disease onset (Green et al., 2003). Other 

analyses of human studies show that a single episode of depression increases chances of AD later 

in life (Geerlings et al., 2008; Geda, 2010). Studying the link between AD and depression led to 

a fortiutous discovery utilizing a novel Aβ imaging technique. Pittsburg compound B (PIB) was 

developed in 2006, and this radiotracer labeled Aβ plaques so they could be read with PET scans 

in living people (Mintun et al., 2006). Retroactive analysis of elderly depressed patients with PIB 

revealed that those who had been treated with selective serotonin reuptake inhibitor (SSRI) 

compounds in the five years preceeding the study had less Aβ signal than those without SSRI 

therapy (Cirrito et al., 2011). Increasing serotonin levels had an negative effect on Aβ deposition.         

Serotonin in the CNS 

 Serotonin (5-hydroxytryptamine or 5-HT) is one of the most prominent neurotransmitters 

in the brain. Initially discovered in the gut in the 1930s, 5-HT was shown to constrict blood 

vessels, and this discovery defined its name (Hannon and Hoyer, 2008). 5-HT is highly 
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conserved in the animal kingdom. 5-HT receptors (5-HTRs) can be found in lower species such 

as flat worms, C. elegans, and Drosophila as well as higher organisms like man. Serotonergic 

signaling is widespread throughout the brain. Cell bodies of serotonergic neurons reside within 

the median raphe nuclei of the brain stem (Steinbusch, 1981). Projections from these neurons 

travel to the nearly all regions of the CNS. Serotonergic fibers innervate the thalamus, 

hypothalamus, septum, caudate-putamen, and the hippocampus; all regions of the cortex show 

serotonergic input as do the cerebellum and spinal cord (Steinbusch, 1981). 

 The widespread influence of 5-HT throughout the brain means it regulates a variety of 

important brain functions. Projections to the hypothalamus and limbic system regulate food 

intake and body temperature (Rodríguez et al., 2012). Serotonergic signaling regulates pain 

sensation in spinal cord nuclei (Dogrul et al., 2009). 5-HT signaling in the cortex regulates 

impulse control, general cognition, and decision making in response to threats (Cools et al., 

2008). The widespread knowledge of SSRIs clearly displays the impact of 5-HT on emotional 

regulation. Serotonergic input also plays a role in adult neurogenesis. The subgranular layer of 

the hippocampus is one of the few places were adults generate new neurons. Selectively killing 

5-HT neurons innervating this region or blocking their ability to produce 5-HT significantly 

reduced BrdU staining in the hippocampus (Brezun and Daszuta, 1999). Neurogenesis in this 

region is hypothesized to be important to memory formation. There are a myriad of studies 

linking 5-HT to short and long term memory in the hippocampus and other brain regions (Buhot 

et al., 2000). These links between 5-HT and memory make the neurotransmitter increasingly 

interesting with regard to dementia disorders with memory loss like AD.        

Serotonin Receptor Subtypes 
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 The longevity of 5-HT as a signaling molecule in the animal kingdom led to a diverse 

number of 5-HT receptors (5-HTRs). There are at least 14 different 5-HTRs expressed in the 

body each of which produce multiple isoforms (Hannon and Hoyer, 2008). These receptors are 

categorized into 7 classes by their pharmacological activity, downstream signaling pathways, and 

protein structure. The majority of these classes are G-protein coupled receptors (GPCRs), but 5-

HT3Rs are ion channels. I will describe the major classes below. 

 5-HT1Rs and 5-HT5Rs are coupled to Gi/o proteins. Activation of these receptors leads to 

Protein Kinase C (PKC) activation and inhibition of adenylate cyclase (Francken et al., 2000; 

Leone et al., 2000; Adayev et al., 2003). There are five different 5-HT1R subtypes, but they show 

similar expression profiles in the brain. 5-HT1Rs can be found presynaptically as autoreceptors 

on serotonergic neurons as well as post-synaptically in the cortex, caudate, hippocampus, and 

amygdala (Hannon and Hoyer, 2008). There are two subtypes of 5-HT5Rs, but only 5-HT5AR is 

expressed in humans (Francken et al., 2000). 5-HT5AR expression is high in the human cortex, 

hippocampus, and cerebellum (Pasqualetti et al., 1998). Expression of 5-HT1R is high in the 

mouse hippocampus, but 5-HT5R expression is quite low in comparison to other classes (Tanaka 

et al., 2012). 

 5-HT2Rs preferentially bind Gq proteins and activate Calcium-calmodulin activated 

kinase 2 (CaMKII) (Hannon and Hoyer, 2008; Lairez et al., 2013). There are three 5-HT2R 

subtypes with varying expression profiles. 5-HT2AR shows strong signal in the cortex and 

medulla, but weak hippocampal staining (Hannon and Hoyer, 2008). 5-HT2BR can be found 

throughout peripheral tissues, but its expression is low in the brains of humans (Kursar et al., 

1994; Tanaka et al., 2012). 5-HT2CR is found in the hippocampus, amygdala, and thalamus 
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(Hannon and Hoyer, 2008). 5-HT2AR and 5-HT2CR show moderate expression in the mouse 

hippocampus, but are less prevalent than 5-HT1Rs (Tanaka et al., 2012). 

 5-HT3Rs are unique in the fact they form ligand-gated ion channels instead of acting as 

GPCRs. The two subtypes form heteromeric pentamer complexes that trigger Ca2+ and Na+ 

influx to depolarize the cells (Hannon and Hoyer, 2008). Expression of 5-HT3R in the brain is 

relatively low compared to other 5-HT receptors. However, there is higher 5-HT3R signal in the 

hippocampus of most species (Hannon and Hoyer, 2008). Expression of 5-HT3R is slightly lower 

than 5-HT2Rs in the mouse hippocampus (Tanaka et al., 2012) 

 5-HT4R, 5-HT6R, and 5-HT7R preferentially bind Gs proteins, increase cyclic AMP 

(cAMP) levels via adenylate cyclase, and activate Protein Kinase A (PKA) (Robert et al., 2001; 

Norum et al., 2003; Hannon and Hoyer, 2008). Splicing variation produces at least nine different 

5-HT4R isoforms, and their expression is widespread throughout the brain. 5-HT4R can be found 

in the septum, striatum, hippocampus, substantia nigra, and amygdala (Hannon and Hoyer, 

2008). Expression levels of mouse 5-HT4R are second only to 5-HT1R in the hippocampus 

(Tanaka et al., 2012). 5-HT6R is expressed in human striatum, amygdala, hippocampus, and 

cortex (Hannon and Hoyer, 2008). Expression in the rat brain is quite strong in all areas of the 

hippocampus (Ballaz et al., 2007). Alternative splicing of 5-HT7R gives rise to 4 different 

isoforms with similar pharmacological profiles (Hannon and Hoyer, 2008). 5-HT7R expression 

in the rat brain is strong in the hippocampus as well as within the thalamus (Ballaz et al., 2007). 

Serotonin and AD 

 Several studies have linked reduced serotonergic activity with the progression of AD. 

Post mortem analysis of human AD brains showed a reduction in overall 5-HT levels and 
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reduction in 5-HT4R (Reynolds et al., 1995; Nelson et al., 2007; Rodríguez et al., 2012). These 

reductions in 5-HTR were still present even when accounting for neuronal death from the 

disease. Numbers of serotonergic neurons in the dorsal raphe nuclei were shown to decline in 

human AD patients (Hendricksen et al., 2004). Similar effects are seen in AD animal models. 

APPswe/PS1∆E9 mice express mutant forms of APP and PS1 that were found in familial AD 

patients. Studies have shown that serotonergic projections degenerate near Aβ plaques and 

overall projection count declines with age in APPswe/PS1∆E9 mice (Liu et al., 2008). Levels of 

serotonergic somas in the raphe nuclei were reduced by 50% in 18 month old mice while other 

neuronal types were unaffected.  

 The connection between 5-HT and AD became more prominent when 5-HT activity was 

shown to reduce Aβ production. Stimulating 5-HT4R in CHO cells increases α-secretase 

processing of APP to rapidly increase sAPPα (Robert et al., 2001). Activation of 5-HT2R with 

serotonin in fibroblasts led to an increase in sAPPα as well (Nitsch et al., 1996). Similar effects 

have been seen in vivo. Treating guinea pigs with 5-HTR agonist reduced Aβ levels and 

increased sAPPα in the CSF (Arjona et al., 2002). Interestingly, diets high in tryptophan, the 

amino acid base for 5-HT synthesis, were shown to reduce Aβ plaque loads in the hippocampi of 

APP transgenic mice by 17% (Noristani et al., 2012). Further analysis showed that the high 

tryptophan diet increased serotonergic activity in multiple brain regions. Chronic SSRI treatment 

in 3xTgAD mice, a mouse model of AD, reduced memory deficits and reduced Aβ levels in the 

brain (Nelson et al., 2007). SSRI modulates Aβ in acute phases as well. Treatment with several 

SSRIs in the APP/PS1 mouse model showed a 25% reduction in ISF Aβ within a matter of hours 

(Cirrito et al., 2011) (Figure 1.3). Chronic treatment over the course of several months caused a 
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50% decrease in plaque load in these mice. A single treatment with 5-HT or 5-HT4R agonist 

increased sAPPα and reduced Aβ in the CSF of 5XFAD mice (Giannoni et al., 2013). These 

impressive results appear to occur in humans as well. Young adult humans given the SSRI 

citalopram showed a reduction in CSF Aβ in a matter of hours (Sheline et al., 2014).  

 There already is evidence that SSRI antidepressants may be protective against AD. A 

recent population analysis in Denmark charaterized depressed citizens, their depression therapy, 

and their incidence of dementia. Patients taking anti-depressants showed a modest reduction in 

developing AD (Kessing et al., 2011). Many AD patients present depression symptoms, and they 

are treated with anti-depressants in addition to their AD medication. A recent study compared 

AD patients taking SSRI antidepressants and acetylcholinesterase inhibitors to people only 

taking the acetylchoinesterase inhibitors. Patients taking both classes of drugs showed improved 

cognitive scores and were able to perform more daily tasks than those people taking AD therapy 

alone (Mowla et al., 2007). These studies suggest SSRI antidepressants have potential to slow or 

prevent AD. 

Modulating 5-HT is a very promising treatment for AD. SSRIs have been cleared for safe 

use in humans and are already prescribed to millions to fight depression. Although SSRIs can 

produce side effects, they are tolerable enough that 85% of patients will continue therapy despite 

discomfort (Hamon and Blier, 2013). However, SSRIs are not specific for a 5-HT receptor; they 

merely prolong the amount of time 5-HT stays in the synapse. Identifying which of the 14 

different 5-HT receptors are responsible for reducing Aβ would allow for more precise treatment 

of AD and would mitigate unpleasant side effects of broad SSRI therapy. Elucidating the 

downstream signaling cascades and effector proteins could also provide more therapeutic targets. 
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Figure 1.4 diagrams the multiple 5-HTRs, their downstream kinases, and possible mechanisms 

for reducing Aβ.  

Using pharmacology we have shown the 5-HTRs that stimulate Gs proteins can reduce 

ISF Aβ as well as SSRI. Blocking downstream PKA signaling activity of these receptors 

completely abolishes the effects of SSRI. We also provide evidence the reduction in Aβ is not 

mediated by changes in gene expression, but is dependent on changes in α-secretase activity. 

These discoveries narrow the future search for AD treatment to a select group of proteins.  
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Figure 1.1: Model for separate APP processing pathways. APP can be cleaved by β and γ-

secretase to release the Aβ peptide. This peptide accumulates in the brain as the amyloid plaques 

characteristic of AD. The alternative path for APP is cleavage by α-secretase. Cleavage by this 

enzyme precludes the formation of Aβ.  
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Figure 1.2: In vivo microdialysis allows for measurement of ISF proteins in awake mice. A. 

Schematic of the microdialysis: the microdialysis probe is inserted into the mouse hippocampus. 

A syringe pump forces microdialysis buffer into the probe via the input tubing line. Any proteins 

in the brain ISF that are under 38 kDa, such as Aβ, can cross the semi-permeable probe 

membrane. Dialyzed proteins exit via the output line to the cooled fraction collector. B. Mice are 

freely moving during microdialysis. The cannula (white) is cemented directly to the mouse skull. 

Input and output tubing lines are visible. A collar around the mouse’s neck is connected to a 

sensory lever (black) on the round RaTurn cage. As the mouse moves its head, the cage rotates to 

prevent the mouse from tangling the lines. 
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Figure 1.3: Acute SSRI treatment reduces ISF Aβ in APP/PS1 mice. 3 month old APP/PS1 

mice were treated with a single dose of anti-depressant drugs. The SSRI compounds Citalopram, 

Desvenlafaxin, and Fluoxetine reduced ISF Aβ by 25%. However, the non-SSRI agent 

Tianeptine had no effect on Aβ levels (Cirrito et al., 2011). 
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Figure 1.4: 5-HTRs can trigger several intracellular signal cascades. Gi/o linked 5-HTRs 

activate PKC, Gq linked 5-HTRs activate CaMKII, and Gs linked 5-HTRs activate PKA. All 

these signal kinases lead to MEK and ERK activation. The final targets of activated ERK after 

serotonergic activity are unknown. ERK can translocate into the nucleus to change gene 

expression or act on proteins within the cytoplasm.   
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Chapter 2: 5-HT4R and 5-HT7R activate PKA to reduce ISF Aβ 
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ABSTRACT 

 Methods that reduce the production rate of Aβ show promise as a therapy for AD. 

Previous research has shown that single dose treatment with an SSRI or 5-HT can reduce ISF Aβ 

by 20-25%. However, there are at least 14 different 5-HTRs currently identified by science, and 

SSRI drugs potentially act on all 5-HTRs by raising 5-HT levels in the synapse. We tested the 

hypothesis that a subset of 5-HTR subclasses were responsible for this reduction in Aβ. We 

pharmacologically stimulated individual receptor subtypes with selective agonists via reverse 

microdialysis and examined the effects on ISF Aβ in the APP/PS1 mouse model of AD. We 

discovered that Gs linked receptors (5-HT4R, 5-HT6R, and 5-HT7R) could reduce ISF Aβ while 

other classes had no significant effect. We also found that combinatorial inhibition of 5-HT4R 

and 5-HT7R could significantly raise ISF Aβ when blocking a single receptor had no effect. Gs 

linked receptors are known to activate PKA activity via adenlyate cyclase and cAMP. Inhibition 

of PKA activity completely abolished the effects of SSRI and led to an increase in ISF Aβ levels. 

Stimulating PKA activity with a selective D1R agonist led to a 25% reduction in ISF Aβ. These 

results suggest that 5-HT acts through the Gs linked 5-HTRs and PKA to reduce ISF Aβ.    
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INTRODUCTION 

 Many lines of research suggest that accumulation of Aβ in plaques in the brain is the 

trigger for AD. Now that its role in the disease is known, studies are examining methods for 

limiting Aβ production as a potential method of therapy. Research has shown that several 

neurotransmitters have been able to accomplish this feat in vivo. Stimulating muscarinic M1 

receptors reduced Aβ pathology and increased sAPPα levels in 3xTgAD mice (Caccamo et al., 

2006). Blocking activity of this receptor or its downstream signaling kinases showed the opposite 

effects. High doses of NMDA induced a 50% reduction in ISF Aβ in APP/PS1 mice (Verges et 

al., 2011). Our lab recently showed a 25% reduction in ISF Aβ with a single dose of SSRI or 5-

HT in the same animal model (Cirrito et al., 2011). This effect appears to transfer to humans. 

CSF Aβ dropped after a single treatment with the SSRI citalopram in healthy young adults 

(Sheline et al., 2014). Identifying the mechanisms underlying these neurotransmitter-mediated 

reductions in Aβ could produce therapies for AD.  

5-HT is a singularly interesting candidate for AD therapy because SSRI drugs are already 

approved for use in humans for treating disease. Millions across the globe take SSRIs to combat 

major depressive disorders. Now that it is known 5-HT can reduce Aβ in mice and humans, it is 

possible that clinical trials can be arranged to test SSRI therapy in AD patients. However, 

understanding the underlying mechanisms that produce this effect would allow for more targeted 

therapy. SSRIs are generally well-tolerated, but side effects are known to occur. Gastrointestinal 

discomfort is most common, but sexual and cardiovascular effects are also prevalent. Identifying 

the effective 5-HTRs and their downstream signaling components could produce more targeted 

therapy and abrogate some side effects of SSRIs. 
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  The various 5-HTRs segregate into four major groupings based on their downstream 

intracellular signaling pathways (Hannon and Hoyer, 2008). 5-HT3R acts as a cation channel 

allowing for calcium mediated signaling within the neurons. 5-HT1R and 5-HT5R are linked to 

Gi/o proteins and PKC signaling. However, only one isoform of 5-HT5R is expressed in humans. 

5-HT2R is Gq linked and has been shown to activate CamKII. 5-HT4R, 5-HT6R, and 5-HT7R 

activate Gs proteins and PKA signaling cascades. Isolating and identifying the effects of each 

receptor subclass was difficult in the past as 5-HT binds to each receptor with equal affinity. 

Fortunately, the success of SSRI therapy has led to pharmaceutical development of selective 

agonists for individual 5-HTR classes. These agonists are selective for only one 5-HTR subtype. 

By using these selective agonists, we could identify which 5-HTRs lead to reductions in ISF Aβ. 

  



27 
 

METHODS AND MATERIALS 

Animals  

All experiment protocols using animals were performed in accordance to the guidelines 

proposed by the Animal Safety Committee at Washington University. We bred APP/PS1∆E9 

(APP/PS1) hemizygous mice (The Jackson Laboratory) (Savonenko et al., 2003) to wildtype 

C3H/B6 mice and aged the APP/PS1+/- offspring to 2-3.5 months for experiments. Mice were 

screened for APP/PS1 transgenes by PCR from tail DNA.  

Compounds 

All pharmaceutical compounds were ordered from Tocris Biosciences unless otherwise 

noted.  All compounds delivered by reverse microdialysis were diluted in microdialysis buffer 

consisting of artificial cerebrospinal fluid (aCSF) with 0.15-2% BSA (Sigma-Aldritch); see 

Table 2.1 for concentrations used for each experiment. Unfortunately, the absolute concentration 

of drug that enters the brain is unknown due to possible differences in efflux from the probe, the 

diffusion of drug within the brain ISF, and the distinct pharmaco-kinetics of each agent. We used 

a starting concentration ten times stronger than the pharmacological efficacy (IC50 for inhibitors 

and Ka for agonists) of each drug with the assumption that only 10% will cross the microdialysis 

membrane. Citalopram hydrobromide (Toronto Research Chemicals) was diluted in PBS and 

injected intraperitoneally (IP) at 10 mg/kg.  

In vivo microdialysis 

In vivo microdialysis to measure brain ISF Aβ  in the hippocampus of freely moving 

APP/PS1 mice was performed as previously described (Cirrito et al., 2003, 2008, 2011). This 
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method captures soluble molecules the extracellular fluid that are below the 30 kDa molecular 

weight cutoff of the probes. Under volatile isoflurane anesthetic, guide cannula (BR style; 

Bioanalytical systems) were cemented into the left hippocampus (3.1 mm behind Bregma, 2.5 

mm lateral to midline, and 1.2 mm below dura at a 12o angle). Two mm microdialysis probes 

were inserted through the guides so their membranes were completely contained in the 

hippocampus (BR-2, 30 kDa molecular weight cut-off membrane; Bioanalytical systems). 

Microdialysis buffer was aCSF (perfusion buffer in mM: 1.3 CaCl2, 1.2 MgSO4, 3 KCl, 0.4 

KH2PO4, and 122 NaCl, pH 7.35) containing 2% BSA (Sigma) that was filtered through a 0.1 

µM membrane. The flow rate was 1.0 µL/min. Samples were collected every 60 or 90 minutes 

with a refrigerated fraction collector in polypropylene tubes and assessed for Aβx-40 or Aβx-42 by 

ELISA. Basal ISF Aβ levels were defined as the mean concentration of Aβ over the 6 hours 

preceding drug administration. Aβ levels were normalized to the basal Aβ concentration for each 

animal. After establishing baseline ISF Aβ, pharmaceutical agents (5-HTR agonists, 5-HTR 

antagonists, PKA inhibitors) were diluted in microdialysis buffer and infused directly into the 

hippocampus by reverse microdialysis (see Table 2.1 for concentrations).  Citalopram, an SSRI, 

was intraperitoneally injected 8 hours after drug treatment at 10 mg/kg when testing drug 

efficacy against SSRI. Statistical significance was assayed using the student T-test method in the 

GraphPad Prism 6 software. 

Aβ Sandwich ELISA 

ISF Aβ levels were measured using sandwich ELISAs as described (Cirrito et al., 2011). 

A mouse anti- Aβ40 antibody (mHJ2) or mouse anti- Aβ42 antibody (mHJ7.4) was used to 

capture and a biotinylated central domain antibody (mJH5.1) was used to detect followed by 
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streptavidin poly-HRP-40 (Fitzgerald Industries). All ELISAs were developed using Super Slow 

ELISA TMB (Sigma) and absorbance read on a Bio-Tek Epoch plate reader at 650 nm. The 

standard curves for each assay used synthetic human Aβ1-40 or Aβ1-42 peptide (American 

Peptide). 
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RESULTS 

Selective activation of a set of 5-HTRs can reduce ISF Aβ 

We administered selective 5-HTR agonists by reverse microdialysis in young APP/PS1 

mice to test their efficacy in reducing ISF Aβ. Starting concentrations for each compound are 

listed in Table 2.1. Special care was given to ensure the estimated doses that crossed the 

membrane did not exceed concentrations where the compounds lose their selectivity for a given 

5-HTR. Treating mice with selective agonists for 5-HT4R and 5-HT7R reduced ISF Aβ by 23% 

and 25% respectively (Figure 2.1 A and B). Interestingly, the reduction in Aβ mediated by 

activity of a single receptor is equivalent to effects induced by 5-HT itself (Figure 2.1 B).  5-

HT6R agonist treatment was also able to reduce Aβ. However, the 11% reduction was not 

statistically significant (Figure 2.1A and B). However, this ISF Aβ reduction did not occur for all 

tested 5-HTRs. Treatment with agonists selective for 5-HT1R or 5-HT2R did not produce 

significant changes in ISF Aβ (Figure 2.1C and D). We chose not to analyze 5-HT5R because 

there are no selective agonist compounds for this receptor. Avoiding 5-HT5R is no loss as its 

expression is quite low in the mouse hippocampus compared to other receptor subtypes. These 

results suggest that the Gs linked subset of 5-HTRs is responsible for the reduction in ISF Aβ by 

SSRI. 

Simultaneous inhibition of 5-HT4R and 5-HT7R increases ISF Aβ 

 If 5-HT4R and 5-HT7R mediate the reduction in ISF Aβ, then blocking their activity 

should have the opposite effect.  To test this hypothesis, we administered GR113808 and 

SB258719, selective antagonists for 5-HT4R and 5-HT7R respectively, via reverse microdialysis.  
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We treated the mice with a single antagonist, SB258719, for 8 hours before adding the second. 

Control mice were given vehicle for 8 hours before treatment with both antagonists. As shown in 

Figure 2.2A, antagonizing a single receptor did not significantly change Aβ levels at time point 

8.  However, blocking both receptors for 16 hours induced a significant increase of 32% in ISF 

Aβ (Figure 2.2B).  These findings reinforce the idea that 5-HT4R and 5-HT7R are responsible for 

the reduction in ISF Aβ by serotonin. 

PKA Activity Modulates ISF Aβ Levels 

 The strong effects of 5-HT4R and 5-HT7R led us to examine downstream signaling 

pathways. 5-HT4R and 5-HT7R activate Gs proteins and cause PKA activation. To test the effects 

of PKA in 5-HT mediated ISF Aβ reduction, we administered the selective small molecule PKA 

inhibitor KT5720 via reverse microdialysis.  Treatment with KT5720 led to a modest increase in 

ISF Aβ levels (Figure 2.3A). After eight hours of treatment with KT5720, we gave mice a 10 

mg/kg dose of the SSRI citalopram by IP injection. Interestingly, KT5720 treatment completely 

blocked the effect of SSRI and increased ISF Aβ concentrations by 36% (Figure 2.3B). To 

confirm the specificity of the results, we repeated the experiment with a PKA specific peptide 

inhibitor called PKI 12-22 amide (Dalton et al., 2005). PKI was infused by reverse microdialysis 

for eight hours, followed by an IP injection of citalopram.  Once again, PKA inhibition 

significantly increased ISF Aβ by 54% despite the presence of SSRI (Figure 2.3B). These results 

suggest PKA activity is required for ISF Aβ reduction by 5-HT signaling.  

If inhibition of PKA increases in ISF Aβ, then PKA stimulation could create the opposite 

effect. Serotonin is not the only neurotransmitter that can activate PKA; dopamine 1 receptors 

(D1R) can increase cAMP as well as phosphoinositide hydrolysis (O’Sullivan et al., 2004; 
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Waddington et al., 2005). To test if PKA activation is sufficient to reduce ISF Aβ levels, we 

administered SKF 83822, a selective agonist for D1R that only stimulates cAMP production, by 

reverse microdialysis. Thirty-six hour treatment with SKF 83822 reduced ISF Aβ 24% compared 

to vehicle control (Figure 2.3C and D). This result suggests activation of PKA is key to reducing 

ISF Aβ.  
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DISCUSSION 

Previous research has shown that SSRI treatment can reduce brain ISF Aβ in mice.  

Defining the specific mechanisms responsible for this reduction is quite complex.  The fourteen 

different 5-HTR subtypes separate into multiple signaling cascades, and their downstream 

effectors can interact with each other in neurons. Also, each 5-HTR has its own unique 

expression pattern within the hippocampus. This fact creates more difficulties when trying to 

understand the roles of individual receptors in overall brain physiology. In this report, we use 

pharmacology to identify which 5-HTRs were responsible for lowering ISF Aβ in the mouse 

hippocampus. 

Selective stimulation of 5-HT4R and 5-HT7R could significantly lower ISF Aβ while 

agonists for 5-HT1R, 5-HT2R, and 5-HT6R could not (Figure 2.1). 5-HT5R was not examined 

because there are no selective agonists for this receptor subtype that are commercially available. 

While we did not see any effect with other selective 5-HTR agonists, we did not assay drug 

activity in the brain. However, we are confident in our results because we calculated the dosage 

using IC50 values and concentrations used in previous literature in the field. The 25% Aβ 

reduction by 5-HT4R and 5-HT7R activity was equal to the reduction induced by serotonin. This 

finding suggests that activity of these two receptors could be responsible for the majority, if not 

the entirety, of the reduction in ISF Aβ by 5-HT. The importance of these receptors is illustrated 

by treating mice with their antagonists.  Simultaneously blocking activity of 5-HT4R and 5-HT7R 

significantly increased ISF Aβ (Figure 2.2). These results suggest that basal activity of 5-HT4R 

and 5-HT7R regulates normal Aβ metabolism. Recent literature supports the idea that activity of 

a single 5-HTR could change Aβ metabolism in the brain. Tesseur et al showed one month 
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treatment with a 5-HT4R selective agonist could reduce soluble Aβ40 and plaque load in the 

hippocampus (Tesseur et al., 2013). Also, Gianonni et al showed therapy with a weak 5-HT4R 

agonist could increase concentrations of the α-secretase product and reduce plaque load in 

5XFAD mice (Giannoni et al., 2013). Basal 5-HT activity may keep Aβ production to a 

minimum in healthy individuals, but this process may be perturbed as animals age or become ill. 

There is a clinical connection between 5-HT receptors and human AD. Research has 

shown that 5-HT4R levels are reduced in human AD brains (Reynolds et al., 1995). Numbers of 

serotonergic neurons in the dorsal raphe nuclei were shown to decline in human AD patients 

(Hendricksen et al., 2004). Loss of these neurons would reduce serotonergic activity throughout 

the brain. As we show in this document, loss of serotonergic activity would result in increased 

Aβ production. This process could accelerate plaque deposition and enhance AD progression.   

Stimulating 5-HT4R and 5-HT7R leads to activation of PKA. We showed that blocking 

PKA activity with two selective inhibitors could significantly raise Aβ and abolish the effects of 

SSRI (Figure 2.3). Activation of PKA appears to have the opposite effect.  A selective agonist 

for D1R that specifically activates PKA significantly reduced ISF Aβ (Figure 2.3C). The time 

course for the reduction in ISF Aβ was slightly slower for the D1R agonist than 5-HTR agonists. 

This result is not surprising as different receptors will have different kinetics for binding 

substrates and initiating downstream signaling. Different receptors are also under different 

regulatory mechanisms; perhaps D1R is internalized to stop signaling more quickly than 5-

HTRs. PKA has been tied to AD pathology in the past, but the focus has been neuronal responses 

after exposure to Aβ. PKA inhibition reduced phosphorylation of Tau after exposing neurons to 

Aβ in vitro (Wang et al., 2013). However, overexpression of the beta-secretase enzyme BACE1 
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reduced cAMP and PKA activity in mice (Chen et al., 2012). Our findings are the first to show 

PKA activity can reduce Aβ production in vivo and blocking its activity has the opposite effect. 

Our results implicating PKA are contradictory to a recent report from the DeStrooper 

group. Their research suggests cAMP and PKA are not necessary for 5-HT4R mediated 

regulation of APP processing; they suggest Src and phospholipase C are responsible (Pimenova 

et al., 2014). These differing results are probably due to the different systems used in each paper. 

Pimenova used SH-SY5Y neuroblastoma cells for all their experiments while our projects were 

performed in live mice. SH-SY5Y cells are excellent for quickly examining cellular processes, 

but they cannot fully recreate the physiology of a living brain. Also, the conflicting results could 

be the product of using different agents for stimulating or blocking kinase activity. Each 

pharmacological drug will have different kinetics with regards to half-life and target affinity.  

Surprisingly, 5-HT6R failed to significantly reduce ISF Aβ in our experiments. This 

result is interesting because 5-HT6R is Gs linked and can activate PKA. This discrepancy could 

be due differences in downstream signaling regulation of each receptor subtype. 5-HTRs have 

been shown to be endocytosed to end their signaling activity, and this process is mediated in part 

by β-arrestin proteins (Ahn et al., 2004; Schmid et al., 2008; Barthet et al., 2009). Perhaps 5-

HT6R is more rapidly endocytosed and silenced than the other Gs linked 5-HTRs. Conversely, β-

arrestins have also been linked to initiating signaling cascades independently of G proteins. βeta-

arrestin can act as a scaffolding protein for multiple signal cascades like the ERK, JNK, and 

PI3K pathways (DeWire et al., 2007; DeFea, 2011). Perhaps β-arrestins trigger these signaling 

pathways when internalizing 5-HT4R and 5-HT7R but not when internalizing 5-HT6R. Our lab is 

currently investigating the role of β-arrestin in serotonin mediated reduction of ISF Aβ.    
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In conclusion, we have shown that stimulating 5-HT4R or 5-HT7R can reduce ISF Aβ to a 

similar extent to 5-HT itself, and this reduction is mediated by PKA activity. These results 

suggest that targeting these individual receptors could be a potentially ground-breaking therapy 

for AD. While SSRIs are showing promise as a potential AD treatment, they are prone to 

gastrointestinal side effects (Rosenzweig-Lipson et al., 2007). This fact is not surprising as 5-

HTR expression is quite high throughout the gut (Bard et al., 1993; Kursar et al., 1994; Prins et 

al., 2000). Other organ system side effects are reported with SSRI therapy. Stimulation of 5-

HT2R in vascular tissue can lead to constriction of blood vessels and erectile problems(Watts et 

al., 2001; Rosenzweig-Lipson et al., 2007). Narrowing AD therapy to a single 5-HTR could 

mitigate some of these unpleasant side effects. This targeted therapy could finally provide a way 

to slow or stop the progression of this terrible disease.   
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Compound Target Active 
Concentration Dilution 

Concentration 
Across 

Membrane 

Selectivity 
Limit 

Agonists      
Ipsapirone 5-HT1R 10 nM 1 µM 100 nM Unknown 

WAY161503 
Hydrochloride 5-HT2R 4 nM 400 nM 40 nM 233 nM 

ML10302 
Hydrochloride 5-HT4R 4 nM 400 nM 40 nM 700 nM 

ST1936 
Oxalate 5-HT6R 13 nM 1.3 µM 130 nM 168 nM 

AS19 5-HT7R 0.83 nM 83 nM 8.3 nM 6 nM 
SKF 83822 

Hydrobromide D1-like R 3.2 nM 50 nM 5 nM 66 nM 

      
Antagonists      
GR 113808 5-HT4R 0.02 nM 100 nM 10 nM 10 µM 
SB 258719 

Hydrochloride 5-HT7R 31.6 nM 3.16 µM 316 nM 316 nM 

      
Inhibitor      

GI254023X ADAM10 5.3 nM 530 nM 53 nM 531 nM 
KT5720 PKA 60 nM 6 µM 60 nM 2 µM 

PKI 14-22 
Amide 

Myristoylated 
PKA 36 nM 3.6 µM 360 nM 15 µM 

      
      

 

Table 2.1: Pharmacological agents used for reverse microdialysis. All agents were chosen for 
their selectivity for their targets. We assumed that only 10% of the compounds would cross the 
membrane into the brain parenchema, and this amount would be further diluted in the ISF. The 
concentration for AS19 was over technically over the selectivity limit. However, the 5-HTR that 
it cross activates was not expressed in the hippocampus (Tanaka et al., 2012). 
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Figure 2.1: Selective subset of 5-HT receptors reduce ISF Aβ in vivo. Selective agonists for 
individual 5-HT receptors or vehicle (DMSO) were infused via reverse microdialysis in 2-3 
month old APP/PS1 hemizygous mice. A. As assessed by microdialysis, agonist treatment for 5-
HT4R (ML10302, 400 nM) and 5-HT7R (AS19, 83 nM) cause a significant reduction in ISF Aβ 
while 5-HT6R agonist (ST1936, 1.3 µM) reduction was more moderate. B. After 23 hours of 
continuous treatment, ML10302 reduced ISF Aβx-40 to 78.6% +/- 2.9 (P = 0.0015; n = 5) and 
AS19 reduced ISF Aβx-40 75.1% +/- 6.06 (P = 0.007; n = 7) , but ST1936 only reduced ISF Aβx-

40  to 89.3% +/-8.2 (P = 0.28; n = 6). C. Agonist treatment for 5-HT1R (Ispapirone , 1 µM) or 5-
HT2R (WAY161503, 0.4 µM) showed no significant reduction of ISF Aβ (n = 6-8 animals). D. 
After 23 hours of continuous treatment, Ipsapirone reduced ISF Aβx-40 to 84.9% +/- 10.3 (P = 
0.39; n = 6) and WAY161503 increased ISF Aβx-40 111.2% +/- 6.3 (P = 0.11; n = 8). Data 
represented as mean +/- SEM. (* marks P value < 0.05). 
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Figure 2.2: Inhibiting 5-HT4R and 5-HT7R simultaneously increases ISF Aβ. Selective 5-
HT4R antagonist GR113808 (100 nM) or DMSO vehicle were infused via reverse microdialysis 
in 2-3 month old APP/PS1 hemizygous mice for eight hours. A mixture of GR113808 and 
selective 5-HT7R antagonist SB258719 hydrochloride (3.16 mM) were then administered for the 
next sixteen hours. A. As assayed by microdialysis, treatment with a single antagonist has no 
obvious effect on ISF Aβx-40. Treatment with both antagonists increases ISF Aβx-40. B. After 
eight hours of single antagonist treatment, there was no significant change in ISF Aβx-40. Sixteen 
hours of treatment with both antagonists increased ISF Aβx-40to 128.7% +/-11.7 (P= 0.05, n=5) 
and 132% +/- 11.2 (P= 0.04, n=7) for DMSO/Antagonists and Antagonists respectively. Data 
represented as mean +/- SEM. * marks P value < 0.05.     
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Figure 2.3: PKA activity modulates production of ISF Aβ. Selective small molecule inhibitor 
KT5720 (6 µM), peptide inhibitor PKI 14-22 amide, myristolyated (3.6 µM), or vehicle (DMSO 
and acetonitrile, respectively) were infused via reverse microdialysis in 2-3 month old APP/PS1 
hemizygous mice. Eight hours later, the SSRI citalopram was administered by IP injection at 10 
mg/kg. A. As assessed by microdialysis, inhibiting PKA with two separate compounds increases 
ISF Aβx-40 levels and negates the effect of SSRI. B. After 23 hours of continuous treatment, 
KT5720 significantly increases ISF Aβx-40 to 136.2% +/-9.1 (P= 0.0091, n=6), PKI 14-22 
increases ISF Aβx-40 to 154.5% +/-16.6 (P= 0.019, n=6). Treating vehicle controls with SSRI 
significantly decreases ISF Aβx-40 to 82.2% +/-4.7 (P= 0.024, n=11). To test if PKA activation is 
sufficient to reduce Aβ, selective D1R agonist SKF 83822 (50 nM) or Vehicle (DMSO) was 
infused by reverse microdialysis. C. Microdialysis analysis shows significant reduction in ISF 
Aβx-40. D. After 24 hours of continuous treatment, SKF reduced ISF Aβx-40 to 76.13% +/-8.9 (P= 
0.015, n=5). Data represented as mean +/- SEM. * marks P value < 0.05.         
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Chapter 3: ERK mediates 5-HT effects in the cytosol by changing α-secretase 

activity 
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ABSTRACT 

Methods of reducing Aβ production show promise as therapy for AD. 5-HT or SSRI 

drugs can reduce ISF Aβ within a few hours in transgenic mice. A similar effect has been shown 

by selective stimulation of 5-HT4R and 5-HT7R. Serotonergic activity has been shown to activate 

the ERK signaling pathway. ERK can modify cell behavior by changing gene expression in the 

nucleus or by post-translational modification of proteins in the cytoplasm. In this report, we 

show that acute SSRI treatment does not significantly change gene expression of any genes tied 

to Aβ metabolism. We also show that inhibition of ADAM10, the constitutive α-secretase 

enzyme, is unable to block the effects of SSRI. These results suggest that 5-HTR activation of 

ERK changes the activity of another α-secretase enzyme by post-translational modification. 
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INTRODUCTION 

 Discovering a method for slowing or stopping progression of AD is a major motivation 

for multitudes of researchers. As we have shown in Chapter 2, serotonergic signaling can reduce 

ISF Aβ levels in the brains of transgenic mice, and this effect is mediated by PKA activity. 

However, the ultimate effectors of this signaling activity are still unknown. In this report, we 

provide evidence that ERK mediates the effects of 5-HT by acting on α-secretase in the 

cytoplasm. 

 The ERK signaling plays a significant role in numerous cellular functions. ERK has been 

linked to cell cycle progression, differentiation, stress response, and apoptosis (Wortzel and 

Seger, 2011). There are two different ERK proteins found in mammals. ERK1 and ERK2 show 

75% sequence similarity, and both kinases are expressed throughout the body (Pouysségur et al., 

2002). ERKs are proline-targeted serine/threonine kinases; their substrate target site is proline-X-

serine/threonine-proline (Gonzalez et al., 1991). ERK is a highly promiscuous kinase that can act 

within the nucleus or the cytoplasm. There are more than 200 currently known ERK substrates 

ranging from cytoskeletal elements to transcription factors (Wortzel and Seger, 2011). ERK 

becomes activated after double phosphorylation by its upstream kinase MEK. Careful regulation 

of ERK activity by scaffolding proteins and binding partners directs the levels of ERK activation 

and its ultimate cellular targets. β-arrestin acts as a signaling scaffold for Ras, MEK, and ERK. 

Knocking down beta-arrestin with shRNA reduced ERK activation in vitro, but overexpression 

of β-arrestin increased activated ERK (Tohgo et al., 2002; Ahn et al., 2004). 

 There are several links between ERK, AD, and 5-HT. Human brain tissue from AD 

patients showed increased levels of activated ERK (pERK) when compared to age matched 
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controls (Perry et al., 1999). ERK can phosphorylate tau proteins in vitro, and its levels in the 

CSF of AD patients correlates well with levels of tau (Klafki et al., 2009). Activation of 5-HTRs 

has been shown to increase ERK activity. Stimulating 5-HT1R, 5-HT2R, 5-HT4R, or 5-HT7R 

with selective agonists or 5-HT induces an increase in pERK in vitro (Launay et al., 1996; Leone 

et al., 2000; Errico et al., 2001; Watts et al., 2001; Adayev et al., 2003; Johnson-Farley et al., 

2005). Blocking ERK activity has a direct effect on Aβ production in vivo. Treating APP/PS1 

mice with inhibitors for MEK or ERK by reverse microdialysis increased ISF Aβ and completely 

abolished the effects of SSRI antidepressants (Cirrito et al., 2011; Verges et al., 2011). This 

result suggests that ERK mediates the effects of 5-HT on Aβ production, but the actual 

mechanism still needs to be determined. 

 Regulation of secretase enzymes is a promising explanation for the effects of ERK and 5-

HT on Aβ. APP is cleaved by β- and γ-secretase enzymes to produce the Aβ peptide, but α-

secretase cleaves APP in such a way that prevents Aβ production. Increasing α-secretase activity 

or reducing other secretase activity should create a reduction in Aβ. Interestingly, this effect can 

be induced by stimulating neurotransmitter receptors. Activating muscarinic acetylcholine 1 

receptors (M1R) reduced Aβ while increasing sAPPα in HEK cells (Hung et al., 1993). Similar 

effects were seen in vivo; chronic treatment of 3xTgAD mice with M1R agonist reduced Aβ 

levels, reduced plaque load, and increased sAPPα (Caccamo et al., 2006). 5-HT is another 

neurotransmitter that can shift secretase activity in vivo. Acute SSRI treatment of APP/PS1 mice 

increased α-secretase activity, but β-secretase activity was unchanged (Cirrito et al., 2011). This 

increase in α-secretase activity could be the result of ERK activation; we have shown that MEK 

and ERK activity were still increased 8 hours after SSRI treatment in APP/PS1 mice (Cirrito et 
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al., 2011). Previous research has shown that ERK regulates secretase activity. Activation of ERK 

increases phosphorylation of ADAM17, the regulated α-secretase enzyme, and increases its 

activity in vitro (Cissé et al., 2011). Other researchers showed that ERK and ADAM17 can bind 

to each other (Yin and Yu, 2009). Members of the γ-secretase complex also are ERK substrates. 

Kim et al showed nicastrin was phosphorylated by ERK, and this phosphorylation event reduced 

γ-secretase activity (Kim et al., 2006). Similar reductions in γ-secretase activity were seen when 

treating HEK cells with ERK agonists (Tung et al., 2008). 

 These discoveries linking 5-HT, ERK, and secretase led us to examine how ERK 

mediates the reduction in ISF Aβ. We report in this document that activation of ERK by SSRI is 

not changing gene expression to mediate the reduction in ISF Aβ. Finally, we show that 

inhibition of ADAM10 has no effect on the reduction in ISF Aβ by 5-HT; this result suggests 

another α-secretase enzyme is the true effector. 
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METHODS AND MATERIALS 

Quantitative Real Time PCR (qPCR) 

2.5 month old APP/PS1 mice were given 10 mg/kg intraperitoneal injections of 

citalopram in PBS.  Mice were sacrificed 16 hours later, and their hippocampi were removed.  

Total RNA were extracted using the RNeasy Mini kit (Qiagen) and reverse transcribed using the 

High Capacity cDNA Reverse Transcription kit (Invitrogen). Individual primers were designed 

by the Harvard Medical School Primer Bank website 

http://pga.mgh.harvard.edu/primerbank/index.html  (Wang and Seed, 2003; Spandidos et al., 

2008, 2010). Any primers that were not available on Primer Bank were designed by hand. Table 

3.1 lists the primer pairs used for each gene we analyzed. qPCR was performed using the Fast 

SYBR Green Master Mix (Applied Biosystems) in ABI 7900HT (Applied Biosystems) with the 

default thermal cycling program. Dissociation curves were analyzed following qPCR assay to 

confirm primer specificity. Endogenous mouse GAPDH was used as a normalization reference. 

Relative mRNA levels were calculated by comparative Ct method using the ABI 7900HT 

Sequence Detection Systems and GenEx 5 (MultiD analyses). One way ANOVA with multiple 

comparisions was used to analyze significant changes between genes using the GraphPad Prism 

6 software.       

In vivo microdialysis  

In vivo microdialysis to measure brain ISF Aβ in the hippocampus of freely moving 

APP/PS1 mice was performed as previously described (Cirrito et al., 2003, 2008, 2011). This 

method captures soluble molecules the extracellular fluid that are below the 30 kDa molecular 

weight cutoff of the probes. Under volatile isoflurane anesthetic, guide cannula (BR style; 

http://pga.mgh.harvard.edu/primerbank/index.html
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Bioanalytical systems) were cemented into the left hippocampus (3.1 mm behind Bregma, 2.5 

mm lateral to midline, and 1.2 mm below dura at a 12o angle). Two mm microdialysis probes 

were inserted through the guides so their membranes were completely contained in the 

hippocampus (BR-2, 30 kDa molecular weight cut-off membrane; Bioanalytical systems). 

Microdialysis buffer was aCSF (perfusion buffer in mM: 1.3 CaCl2, 1.2 MgSO4, 3 KCl, 0.4 

KH2PO4, and 122 NaCl, pH 7.35) containing 2% BSA (Sigma) that was filtered through a 0.1 

µM membrane. The flow rate was 1.0 µL/min. Samples were collected every 60 or 90 minutes 

with a refrigerated fraction collector in polypropylene tubes and assessed for Aβx-40 or Aβx-42 by 

ELISA. Basal ISF Aβ levels were defined as the mean concentration of Aβ over the 6 hours 

preceding drug administration. Aβ levels were normalized to the basal Aβ concentration for each 

animal. After establishing baseline ISF Aβ, ADAM10 inhibitor GI254023X was diluted to a 

concentration of 530 nM in microdialysis buffer and infused directly into the hippocampus by 

reverse microdialysis.  Citalopram was intraperitoneally injected 8 hours after drug treatment at 

10 mg/kg when testing drug efficacy against SSRI. Results were compared to mice that received 

vehicle instead of GI254023X. Statistical significance was assayed using the student T-test 

method in the GraphPad Prism 6 software. 

Aβ Sandwich ELISA  

ISF Aβ levels were measured using sandwich ELISAs as described (Cirrito et al., 2011). 

A mouse anti- Aβ40 antibody (mHJ2) or mouse anti- Aβ42 antibody (mHJ7.4) was used to 

capture and a biotinylated central domain antibody (mJH5.1) was used to detect followed by 

streptavidin poly-HRP-40 (Fitzgerald Industries). All ELISAs were developed using Super Slow 

ELISA TMB (Sigma) and absorbance read on a Bio-Tek Epoch plate reader at 650 nm. The 
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standard curves for each assay used synthetic human Aβ1-40 or Aβ1-42 peptide (American 

Peptide). 
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RESULTS 

SSRI treatment creates no significant change in expression of Aβ related mRNA 

ERK carries out its signaling function by translocating into the nucleus to change gene 

expression or acting in the cytosol to modify enzyme activity by post-translational modification.  

In order to test if ERK was acting in the nucleus, we measured expression of genes involved in 

Aβ metabolism following treatment with citalopram. 2-3 month old APP/PS1 mice were treated 

with 10 mg/kg of citalopram or PBS by IP injection. Animals were sacrificed 16 hours later. We 

chose 16 hours because that time point showed a significant reduction in ISF Aβ from a single 

dose of SSRI (Cirrito et al., 2011). We removed the hippocampi, extracted RNA, and performed 

qPCR on 34 genes involved in Aβ metabolism.  The immediate early gene cFOS showed 

reduced mRNA levels within 24 hours of citalopram treatment (Gąska et al., 2012). This fact 

made cFOS an excellent positive control for this experiment.  

Figure 3.1 shows results from our qPCR analysis. Expression of α-secretases ADAM10 

and ADAM17 were not significantly affected by SSRI (Figure 3.1A). APP expression did not 

change after SSRI treatment (Figure 3.1A). There was a trend in reduction of genes that clear Aβ 

from the brain. However, the reductions in mRNA for LRP1, MMP2, MMP9, and neprilysin 

were not statistically significant (Figure 3.1A). There was no significant change in expression in 

BACE1 or components of γ-secretase (Figure 3.1A). The absence of significant changes in 

expression of Aβ processing genes forced us to extend our search. We expanded expression 

analysis to include members of major intracellular signaling cascades. There was no significant 

change in major upstream signaling genes such as PKA, PKC, or CaMKII (Figure 3.1B). 

Expression of downstream kinases like Raf, MEK, or ERK was not significantly changed. There 
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was a reduction in JNK3 kinase expression, but it was not significant (Figure 3.1B). β-arrestin 

acts as a scaffold for numerous signaling cascades, but there was no change in its expression 

after citalopram treatment (Figure 3.1B). We also measured expression of 5-HTRs after SSRI 

treatment. Expression of serotonin receptors was not significantly changed following SSRI 

(Figure 3.1C).  The widespread absence of significant expression changes of genes involved in 

Aβ metabolism suggests that ERK is not acting in the nucleus to reduce Aβ levels in the mouse 

brain.  This finding suggests ERK is acting on proteins in the cytosol.   

ADAM10 does not mediate the effects of SSRI of ISF Aβ 

We previously showed that α-secretase activity was increased during SSRI treatment 

(Cirrito et al., 2011). ADAM10 is the putative α-secretase protein in the brain (Lammich et al., 

1999; Kuhn et al., 2010; Vingtdeux and Marambaud, 2012). These facts led us to test if 

ADAM10 is the target of ERK that mediates the reduction in ISF Aβ by SSRI.  We administered 

GI254023X, a selective ADAM10 inhibitor, by reverse microdialysis at a concentration of 530 

nM. After 8 hours, we injected the mice with 10 mg/kg of citalopram.  As shown in Figure 3.2A, 

treatment with GI254023X induces a slight rise in ISF Aβ levels but cannot block the effects of 

SSRI.  ISF Aβ increased 6% over baseline with GI254023X at T8, but levels were comparable to 

controls at T24 (Figure 3.2B). These results suggest ADAM10 is not mediating the effects of 

SSRI on ISF Aβ; another α-secretase must be responsible. 

  



53 
 

DISCUSSION     

Previous work has shown that ERK inhibition raises Aβ and abolishes the effects of SSRI 

in APP/PS1 transgenic mice (Cirrito et al., 2011). ERK can translocate into the nucleus to 

modify gene expression or act within the cytoplasm to change protein activity. In this report, we 

provide evidence that ERK activity is restricted to the cytosol and acts on a different α-secretase 

than ADAM10 to mediate reductions in ISF Aβ. If ERK was acting within the nucleus, then one 

would expect to see changes in gene expression. However, we observed no significant changes in 

expression in any genes related to Aβ metabolism, serotonin receptors, or signaling pathways by 

qPCR of brain tissue following acute SSRI treatment (Figure 3.1). Previous studies have shown 

reductions in secretase genes after SSRI therapy (Cirrito et al., 2011; Tesseur et al., 2013). 

However, those reductions were seen after chronic treatment lasting for months whereas these 

data were obtained after only a few hours. Perhaps chronic down-regulation of Aβ production 

leads to reduced gene expression over time; only future experiments with several treatment time 

protocols can determine if this hypothesis is correct. The rapid reduction in ISF Aβ we observed 

suggests a post-translational response over the slower acting changes in gene expression. These 

results suggest ERK is acting outside to nucleus to regulate Aβ. 

α-secretase was the most likely target of ERK after serotonergic activity. Previous work 

by our group showed that α-secretase activity was increased after SSRI treatment, but β-

secretase activity was unchanged (Cirrito et al., 2011). ADAM10 is the primary α-secretase 

protein, so we tested the effects of inhibiting this enzyme in the hippocampus.  Our results 

showed that inhibiting ADAM10 could slightly increase ISF Aβ levels, but citalopram treatment 

still reduced Aβ in the presence of the inhibitor (Figure 3.2). Even though we did not assay drug 
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activity in the brain after treatment, we are confident in our findings. We calculated the dosage 

using established IC50 values and concentrations used in previous literature in the field. This 

result was fairly surprising as ADAM10 is accepted as the primary neuronal α-secretase. 

However, ADAM17 has also been shown to cleave APP as α-secretase and is strongly expressed 

in the hippocampus (Vingtdeux and Marambaud, 2012). Perhaps ADAM17 can compensate for 

ADAM10 when its activity was blocked. Another possibility is the idea of a division of labor 

between the two secretases. ADAM10 has been shown to constitutively produce sAPPα under 

basal conditions, but ADAM17 produces sAPPα when cells are stimulated. Treating cells with 

the M1R agonist carbachol increases sAPPα production in vitro, but this effect is absent in 

fibroblasts that lack ADAM17 (Buxbaum et al., 1998). Knocking out ADAM10 with siRNA 

reduced basal sAPPα production by 90% in cultured cells; ADAM17 knockdown had 

significantly less effect on basal sAPPα secretion (Kuhn et al., 2010). However, the opposite 

pattern emerged when cells were stimulated. ADAM17 siRNA completely abolished increased 

sAPPα after stimulation with phorbol-12-myristate-13-acetate while ADAM10 siRNA had no 

effect (Kuhn et al., 2010). A similar situation could be occurring in our experiments with 

citalopram; stimulation of 5-HTRs could increase α-secretase activity through ADAM17 instead 

of ADAM10. Unfortunately, there are no commercially available inhibitors that are selective for 

ADAM17. As a result, we are unable to selectively inhibit ADAM17 in vivo. However, recent 

research in Italy suggests a selective compound may be available shortly (Nuti et al., 2013). 

Future work will examine if blocking ADAM17 can block the effects of SSRI. 

 The mechanism for increasing α-secretase activity after SSRI is most likely direct 

phosphorylation by ERK. ERK activation has been shown to increase activity of ADAM17 in 
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vitro. ADAM17 cleavage of the prion precursor protein was increased by ERK activation, but 

mutants lacking the ERK target site did not show increased activity (Cisse et al., 2011). This 

form of post-translational regulation could occur with ADAM10 as well; the mammalian 

ADAM10 polypeptide possesses the proline-X-serine-proline sequence that forms the ERK 

phosphorylation site (Yavari et al., 1998). Future work will determine if ERK directly 

phosphorylates ADAM10 or ADAM17.  

Direct phosphorylation of α-secretase is not the only way ERK may modify activity. 

ERK could phosphorylate a shuttling protein to change its cellular location and increase cleavage 

of APP. β-arrestin is a scaffolding protein that has been shown to bind 5-HTRs and lead to their 

endocytosis from the plasma membrane (Gelber et al., 1999). β-arrestin also can directly bind to 

ERK, and this interaction is increased after stimulation of GPCRs (Tohgo et al., 2002, 2003). β-

arrestin can move into different subcellular areas after GPCR activity. Stimulating angiotensin 

receptors induced a shift of β-arrestin into endosomes, and this movement increased co-

localization with pERK signal (Ahn et al., 2004). Similar endosomal patterns for β-arrestin 

appear after stimulating 5-HTRs in HEK cells (Schmid et al., 2008). Perhaps serotonergic 

activity brings β-arrestin, ERK, APP, and α-secretase together in endosomes, and this interaction 

is responsible for the reduction of ISF Aβ. The idea of a scaffolding protein interacting with 

secretase enzymes is not far-fetched. Recent work has shown β-arrestin 2 can bind components 

of the γ-secretase complex (Thathiah et al., 2013). Future experiments will elucidate the 

interactions, if any, between these proteins. 

This report has provided evidence that reduction in Aβ caused by serotonergic activity is 

mediated by ERK acting on α-secretase in the cytoplasm. Now that evidence suggests ERK is 
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not acting within the nucleus, we can devote more attention to its roles in the cytoplasm with 

regards to Aβ metabolism. Unfortunately, ERK has too many cellular roles to be a direct target 

for AD therapy. However, manipulating secretase activity via 5-HT signaling demonstrates great 

therapeutic potential for AD. Future work will determine how ERK is changing α-secretase 

activity.  
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Figure 3.1: ERK activation following SSRI treatment has no significant effect on gene 
expression for Aβ processing genes.  2-3 month old APP/PS1 hemizygous mice were treated 
with 10mg/kg citalopram by IP injection. Sixteen hours later brains were removed for qPCR 
analysis. A. qPCR analysis for genes involved in Aβ processing or clearance showed no 
significant changes in expression. Positive control cFOS was significantly reduced to 57.5% +/-
0.04 (P=0.02). B. qPCR analysis for genes encoding signaling proteins downstream of 5-HTR 
showed no significant changes in expression. C. qPCR analysis for 5-HTR genes showed no 
significant changes in expression.  Data are presented as mean +/-SEM. Values are normalized to 
mean level in PBS injected controls. (n=6). Asterisks mark P values <0.05.      
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Figure 3.2: Inhibition of ADAM10 cannot block effects of citalopram. Selective ADAM10 
inhibitor GI254023X (530 nM) or DMSO vehicle were administered for 8 hours by reverse 
microdialysis. After 8 hours, mice were injected with 10 mg/kg citalopram by IP injection. A. As 
assessed by microdialysis, GI254023X caused a slight increase in ISF Aβx-40 levels alone, but 
was unable to block the effects of citalopram. B. After 8 hours of ADAM10 inhibition, there was 
no significant change in ISF Aβx-40. 16 hours after citalopram treatment, GI254023X ISF Aβx-40 

levels were reduced to 82.9% +/- 4.9 (P=0.0069, N=6). DMSO ISF Aβx-40 levels were also 
significantly reduced to 81.5% +/-1.8 (P=0.0017, N=4). Data are presented as mean +/-SEM. 
Asterisks mark P values <0.05.      
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Table 3.1: Primer pairs for qPCR analysis. The majority of primers were collected from the 
Harvard Primer bank. Primer sets with N/A were designed by hand. 

Gene 
 

Sequence 
  

Primerbank 
ID 

ADAM10 F GTGCCAAACGAGCAGTCTCA 
 

150378457c2 

 
R ATTCGTAGGTTGAACTGTCTTCC 

  
       ADAM17 F AGGACGTAATTGAGCGATTTTGG 

 
34328548a1 

 
R TGTTATCTGCCAGAAACTTCCC 

  
       APP F TGCAGAATTCCGACATGACT 

 
N/A 

 
R GCCTTTGTTTGAACCCACAT 

  
       Aph-1 F CCGCGCTCGCTCTTTATGT 

 
146198522c1 

 
R TGTACTGGTCCATCTCTGTTGT 

  
       BACE1 F CAGTGGGACCACCAACCTTC 

 
31981412a1 

 
R GCTGCCTTGATGGACTTGAC 

  
       Basigin F GTGGCGTTGACATCGTTGG  

 
2808468a1 

 
R CTATGTACTTCGTATGCAGGTCG 

  
       B-Raf F AATTTGGTGGAGAGCATAACCC  

 
7271247a1 

 
R ACGGTGTCCATTGATGCAGAG 

  
       β-arrestin 2 F GGCAAGCGCGACTTTGTAG  

 
21703856a1 

 
R GTGAGGGTCACGAACACTTTC 

  
       CaMKII F TGGAGACTTTGAGTCCTACACG  

 
161086916c1 

 
R CCGGGACCACAGGTTTTCA 

  
       cFOS F CGGGTTTCAACGCCGACTA  

 
6753894a1 

 
R TTGGCACTAGAGACGGACAGA 

  
       ERK1 F ACCACATTCTAGGTATCTTGGGT  

 
93102422c3 

 
R AGTTTCGGGCCTTCATGTTAAT 

  
       ERK2 F GGTTGTTCCCAAATGCTGACT  

 
33090821a1 

 
R CAACTTCAATCCTCTTGTGAGGG 

  
       GAPDH F AGGTCGGTGTGAACGGATTTG 

 
6679937a1 

 
R TGTAGACCATGTAGTTGAGGTCA 
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JNK1 F AGCAGAAGCAAACGTGACAAC  
 

7710060a1 

 
R GCTGCACACACTATTCCTTGAG 

  
       JNK2 F TCAGTGGGTTGCATCATGGG  

 
26327765a1 

 
R GGATGGTGTTCCTAGCTGTTCA 

  
       JNK3 F CCATGTCTGTGTTCTTTCTCACG  

 
28892799a1 

 
R TTGGTTCCAACTGTGAAGAGTC 

  
       LRP1 F ACTATGGATGCCCCTAAAACTTG 

 
6678720a1 

 
R GCAATCTCTTTCACCGTCACA 

  
       MEK1 F AAGGTGGGGGAACTGAAGGAT  

 
6678794a1 

 
R CGGATTGCGGGTTTGATCTC 

  
       MEK2 F GTTACCGGCACTCACTATCAAC  

 
31560267a1 

 
R CCTCCAGCCGCTTCCTTTG 

  
       MMP2 F CCTGGACCCTGAAACCGTG  

 
47271505c2 

 
R TCCCCATCATGGATTCGAGAA 

  
       MMP9 F GGACCCGAAGCGGACATTG 

 
N/A 

 
R GAAGGGATACCCGTCTCCGT 

  
       Neprilysin F CTCTCTGTGCTTGTCTTGCTC 

 
31543255a1 

 
R GACGTTGCGTTTCAACCAGC 

  
       Nicastrin F TCCGTGGTACTGGCAGGATT 

 
31981205a1 

 
R CCCCTGTATCCCCACTAATTGA 

  
       PKA Cα F AGATCGTCCTGACCTTTGAGT  

 
7110693a1 

 
R GGCAAAACCGAAGTCTGTCAC 

  
       PKA Cβ F AGGGCAGGACATGGACATTG  

 
255958317c3 

 
R CGCCTTATTGTAACCCTTGCTG 

  
       PKC α F GTTTACCCGGCCAACGACT  

 
6755078a1 

 
R GGGCGATGAATTTGTGGTCTT 

  
       Presenilin1 F GGTGGCTGTTTTATGTCCCAA 

 
6679493a1 

 
R CAACCACACCATTGTTGAGGA 

  
       Presenilin2 F TGCCTGTCACGCTGTGTATG 

 
N/A 

 
R GTTAAGCACGGAGTTGAGGAG 
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PS 
enhancer2 F ATCTTGGTGGATTTGCGTTCC 

 
N/A 

 
R GCGCCAAACATAGCCTTTGATTT 

  
       5-HT1aR F CATCGCGCTAGACAGGTACTG  

 
162135953c3 

 
R CAATGAGCCAAGTGAGCGAGA 

  
       5-HT2aR F TAATGCAATTAGGTGACGACTCG  27753985a1 

 
R GCAGGAGAGGTTGGTTCTGTTT 

  
       5-HT3aR F TGTGTACGTGCATCATCGAGG  

 
153791844c2 

 
R GCACATCAAAGGGGAAGTTGTAG 

 
       5-HT4R F AGTTCCAACGAGGGTTTCAGG  

 
6680325a1 

 
R CAGCAGGTTGCCCAAGATG 

  
       5-HT5bR F TTGCTGATCGCTGCCACTTT  

 
6754260a1 

 
R GTCGAGGCCACCAAGTTATGT 

  
       5-HT6R F GCATAGCTCAGGCCGTATGTG  

 
118130478c3 

 
R CGCATGAAGAGGGGATAGATGA 

  
       5-HT7R F CCTTACCTCCTCTCTTCGGATG   

 
113865997c3 

 
R TGGAGTAGATCGTGTAGCCAAA 
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Chapter 4: Summary and Future Directions 
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SUMMARY 

Serotonin-mediated therapy for Alzheimer’s disease has immense potential to 

revolutionize treatment, but an understanding of its underlying mechanisms is essential if we are 

to maximize its effectiveness. The aim of this dissertation was to map the key components of the 

downstream signaling pathways that mediate serotonin induced reduction in Aβ. We have shown 

a small set of 5-HTRs can reduce ISF Aβ, traced their signaling through PKA, and shown that 

ADAM10 is not the ultimate effector protein. This work suggests a serotonin targeted therapy 

could be beneficial for AD and opens avenues for further research. 

The shotgun approach of using SSRI agents may prove effective in treating AD, but our 

work suggests similar efficacy could be produced simply by activating one or two of the 14 

different 5-HT receptors. We have shown in this report that selective agonists for 5-HT4R and 5-

HT7R could reduce ISF Aβ by 25%. This remarkable ability was not shared by the other classes 

of 5-HTRs that we tested. Current evidence suggests that the driving factor for Aβ aggregation is 

the steady-state concentration in the ISF. Even a modest reduction of 25% could prevent 

formation and growth of Aβ plaques mice (Cirrito et al., 2011). A targeted 5-HT4R or 5-HT7R 

therapy may reduce some of the unpleasant side effects that are common with SSRIs. A 

therapeutic plan with fewer side effects is more likely to be followed and more effective overall. 

These selective 5-HTR agonists should be entered in clinical trials for human safety 

immediately.  

Our research suggests that a basal level of serotonergic activity helps keep Aβ production 

in check. Simultaneously blocking activity of 5-HT4R and 5-HT7R produced significant 

increases in ISF Aβ. However, inhibition of a single receptor had no effect. This result is not 
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surprising because 5-HT4R and 5-HT7R were equally effective at reducing Aβ; one receptor can 

still maintain Aβ at normal levels if the other is inactive. This maintenance of Aβ levels by basal 

serotonergic activity could help explain the progressive nature of AD. AD patients show 

degeneration of serotonergic projections across the brain, and these projections appear especially 

susceptible to damage by Aβ plaques. Neuropathy of these fibers would probably inhibit 5-HT 

activity around plaques. Loss of 5-HT activity would increase Aβ production and increase 

growth of plaques. Larger plaques would damage more serotonergic fibers and initiate a 

progressive cycle of neuropathy. We could test this hypothesis by examining if 5-HTR agonist 

treatment can preserve serotonergic projections in brains of transgenic mice. Alternatively, 

serotonergic projections to a specific brain region could be destroyed, and plaque load in that 

region could be compared to uninjured controls.          

PKA activation appears to be the first signaling step involved in the reduction of Aβ by 

5-HT. We showed that blocking activity of PKA by two different methods could completely 

abolish the effects of SSRI in transgenic mice. We also showed that stimulating PKA activity 

with a selective dopamine 1 receptor agonist could reduce Aβ to a significant degree. While this 

is compelling evidence for the role of PKA, there is still more work to be done. The connection 

between PKA and ERK still needs to be determined. B-raf looks like a promising target, and 

there are selective inhibitor compounds available from pharmaceutical companies. We could 

administer these B-Raf inhibitors via reverse microdialysis and monitor ISF Aβ levels. Other 

experiments could examine other signaling pathways related to cAMP such as Epac or Src. 

 We were able to provide evidence that activated ERK works within the cytoplasm to 

reduce Aβ after SSRI treatment. We found no significant change in expression in over 30 
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different genes that could be linked to Aβ; secretase genes, signaling genes, clearance genes, and 

receptor genes were unaffected 16 hours after SSRI treatment. The rapid reduction of ISF Aβ by 

SSRI was a clue that ERK was not changing gene expression in our system. Gene expression 

changes require more time than post-translational modification of cytosolic proteins. 

Transcription of mRNA, translation of proteins, and trafficking of proteins to their destinations 

all require a great deal of time. This fact is compounded by the arborized shapes of neurons; 

dendritic projections of CNS neurons can be quite long when compared to the soma. A 

considerable amount of time would be necessary for pERK to travel from a post-synaptic density 

to the neuronal soma to change gene expression. Our work does not completely eliminate the 

possibility of pERK acting in the nucleus. Several labs, including our own, have shown changes 

in secretase genes after chronic treatment with agents that modify 5-HT signaling. Our work 

merely suggests the rapid reduction in ISF Aβ after 5-HT stimulation is mediated by acute post-

translational modification in the cytosol. Future time course experiments could determine when 

these changes in secretase expression actually occur with chronic 5-HT treatment. Other 

experiments could determine if pERK stays near synapses or is transported along neurites 

towards the soma.  

 We were able to complete the sequence of events that reduce Aβ after serotonergic 

activity by examining ADAM10. Stopping ADAM10 activity with a selective inhibitor was 

unable to block the effects of SSRI in transgenic APP/PS1 mice. This result suggests that 

ADAM10 is not the α-secretase enzyme that is active after SSRI treatment. This finding suggests 

that ADAM17 is mediating the reduction of ISF Aβ. ADAM17 has been shown to be required 

for stimulated α-secretase activity in vitro (Kuhn et al., 2010). We have requested a compound 

that selectively inhibits ADAM17 from the lab that discovered it last year (Nuti et al., 2013). 
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Using this compound, we will test if selectively inhibiting ADAM17 can block the effects of 

SSRI. Alternatively, we can administer both the ADAM10 and ADAM17 inhibitors to test if the 

enzymes are functionally redundant after SSRI. Our results suggest the model presented in 

Figure 4.1. Serotonin binds to 5-HT4R and 5-HT7R to activate PKA.  PKA signaling activates 

MEK and ERK. Activated ERK increases α-secretase activity to reduce ISF Aβ. Future work 

will determine if ERK directly phosphorylates ADAM10/ADAM17 or changes its cellular 

localization via interactions with proteins like β-arrestin.   

 Immunization with aggregated Aβ and treatment with γ-secretase inhibitors have been 

proven to be generally toxic for human patients even at low to moderate doses. Since AD 

pathology begins to accumulate decades before symptoms appear, a successful AD therapy must 

be safe for patients to use for many years. Perhaps a selective 5-HTR agonist can provide this 

safer long-term strategy for reducing Aβ levels and plaques.      
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Figure 4.1: Model of Aβ reduction by serotonergic signaling. Serotonin binding to 5-HT4R 

and 5-HT7R leads to the activation of PKA. PKA subsequently activates MEK and ERK. 

Activated ERK remains in the cytoplasm and phosphorylates α-secretase to increase its activity 

and reduce Aβ production. 
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