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ABSTRACT OF THE DISSERTATION 

Axonal Damage in Repetitive Concussive Traumatic Brain Injury:  

Characterization and Contributing Factors 

by 

Rachel Elise Bennett 

Doctor of Philosophy in Biology and Biomedical Sciences 

Neurosciences 

Washington University in St. Louis, 2014 

Professor David Brody, Chair 

 

 There are an estimated 1.6-3.8 million concussions in the United States annually.  

Individuals who experience a single concussion are at low risk for long-term consequences.  

However, there is mounting evidence that experiencing multiple concussions can lead to 

persistent symptoms, cognitive impairment, and increased risk for neurodegenerative disease.    

The underlying pathophysiology of concussions is not well understood.   

To study the mechanisms that lead to these long-term consequences, a mouse model of 

repetitive concussive traumatic brain injury (rcTBI) was developed.  Initial studies sought to 

characterize the histological and functional changes that occur after two closed-skull impacts in 

mouse.  Similar to human traumatic brain injury, rcTBI produced axonal injury evident by 

amyloid precursor protein, neurofilament, and silver staining abnormalities in the absence of 

gross structural changes or cell loss.  Microglia and astrocytes both became activated and were 

prominent in injured white matter by 7 days.  Behaviorally, injury resulted in acute Morris Water 

Maze deficits that were not completely recovered by 7 weeks post-injury.  Functionally, the 

velocity of axonal compound action potentials was slowed in both myelinated and unmyelinated 

axons.  These alterations were accompanied by changes in white matter that were detectable 

by in vivo diffusion tensor magnetic resonance imaging (MRI). At 7 days post-injury, mean 
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diffusivity and the diffusion of water parallel to axons in the corpus callosum and external 

capsule was reduced.  However, these parameters did not correlate with increases in silver 

staining or microglial activation and indicate a need to develop better histological methods for 

assessing axonal injury after mild trauma.  Future experiments will be conducted to quantify 

axonal injury by array tomography, a method outlined here briefly.   

The second goal of this work was to determine what factors might contribute to axonal 

injury in concussion.  Specifically, the hypothesis that microglia may increase axonal injury 

acutely following rcTBI was tested.  The CD11b-TK mouse line, a valganciclovir-inducible model 

of microglial depletion, was used to reduce microglia within the corpus callosum and external 

capsule by 35%.  Quantification of silver staining determined that this had no effect on axonal 

injury at 7 or 21 days after rcTBI.  Further reduction by 56% also did not alter axonal injury 

detectable by silver staining, APP or neurofilament labeling, or by electron microscopy.  We 

additionally tested several pharmacological compounds to determine whether they could reduce 

the microglial response.  None of the compounds tested—including minocycline, (RS)-2-Chloro-

5-hydroxyphenylglycine (CHPG), brilliant blue g (BBG), and microRNA-124 (miRNA-124)—were 

able to reduce the number of iba-1-positive microglia present in the corpus callosum after injury, 

which were quantified by stereology.  Silver staining was unaffected.  Use of the targeted toxin, 

Mac-1-Saporin, was found to dramatically reduce microglial number but also result in non-

specific neuronal loss days 7 after rcTBI.   Collectively, these experiments indicate that 

microglia appear to play a neutral role in regards to axonal injury acutely after repeat 

concussion.  To test the role of microglia in the long-term, additional tools to manipulate the 

microglial response will need to be developed. 

Last, the contribution of Apolipoprotein E to axonal injury after moderate-severe 

traumatic brain injury was assessed in a transgenic mouse model carrying three human familial 

AD mutations (PS1M146V, tauP301L, and APPSWE).  The Apolipoprotein E4 (APOE4) genotype is a 

risk factor for poor outcome following traumatic brain injury, especially in young patients.  By 
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analogy to APOE4’s effects on the risk of Alzheimer’s disease, one hypothesis is that APOE 

genotype influences amyloid-beta (Aβ) and tau deposition following injury.  Surprisingly, the 

amount of amyloid-beta and tau as measured by stereology was similar between mice 

possessing the APOE2, 3, or 4 allele.  However, APOE4 mice had significantly greater numbers 

of APP-positive axons.  These results suggest that the APOE4 genotype may have a primary 

effect on the severity of axonal injury in the setting of acute traumatic brain injury. 

Altogether, this work presents the characterization of a mouse model of repetitive 

concussive traumatic brain injury that can be utilized to determine what factors contribute to 

pathophysiological changes and to aid in the design of future therapeutics. 

 



  

1 
 

CHAPTER  1  

Introduction 

 

1.1 TRAUMATIC BRAIN INJURY 

 Annually, there are more than 2.4 million traumatic brain injuries (TBI) in the US alone, 

producing an estimated lifetime total cost of $60 billion to the economy (Coronado, et al. 2011; 

Coronado, et al. 2012).  Of these, 75% of all TBIs may be mild TBIs, or concussions, costing 

nearly $17 billion (Centers for Disease Control and Prevention 2003).  Leading causes of 

traumatic brain injuries are falls, motor vehicle accidents, and direct head impact during work, 

sports, or recreational activities (Coronado et al. 2011).  Children and young adults 10-19 years 

old are particularly prone to mild TBI and concussion, and account for 71% of all sports and 

recreational TBI emergency department (ED) visits and hospitalizations (Gilchrist, et al. 2011).  

Of these, 70% are males.  Overall, it is difficult to estimate the total number of mild TBIs 

including concussions that occur each year in the United States given that not all are severe 

enough to result in ED visits or hospitalizations, though estimates range from 1.6-3.8 million 

annually (Thurman, et al. 1998; Langlois, et al. 2006).  Thus, the burden of TBI and concussion 

is considerable, and identification of new therapeutic strategies is imperative. 

 TBIs can be classified along a spectrum of mild to moderate to severe brain injury, 

though exact clinical definitions are the subject of debate.  Traditionally, clinicians use the 

Glasgow Coma Score (GCS) to assess level of coma and consciousness (Teasdale, et al. 

1974).  Scores of 3-8 indicate a severe traumatic brain injury and are often the result of motor 

vehicle accidents or penetrating skull injuries that are characterized by contusions to the brain, 

hemorrhage, vasogenic and cytotoxic edema, and can be accompanied by skull fracture.  

Moderate brain injuries may have some or all of the characteristics of severe injury and GCS 
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scores ranging between 9-12 (Rimel, et al. 1982).  In both severe and moderate brain injury, 

abnormalities are typically evident by computed tomography (CT) scan or magnetic resonance 

imaging (MRI).  Finally, mild brain injuries and concussion, a form of mild TBI, are characterized 

by alterations to mental status as a result of acceleration/deceleration forces or a direct impact 

to the head or body (McCrory, et al. 2009).  Injury may be present with or without small 

contusions, hemorrhages, and a <30-minute loss of consciousness.  GCS scores range from 

13-15 and CT or conventional MRI abnormalities are most often absent (Rimel et al. 1982; 

Newton, et al. 1992; Mittl, et al. 1994; Iverson, et al. 2000; Bazarian, et al. 2006).   

 

1.2 CONSEQUENCES OF TRAUMATIC BRAIN INJURY  

Long-term changes associated with traumatic brain injury have a broad range and likely 

depend on the specific injuries sustained by each individual.  In some, TBI appears to 

accelerate age-related cognitive decline (Moretti, et al. 2012).  In others, TBI may contribute to 

the development of Alzheimer’s disease, which is supported by both retrospective and 

prospective studies that point to moderate-severe TBI as a leading environmental risk factor for 

AD (Mortimer, et al. 1991; Plassman, et al. 2000; Fleminger, et al. 2003).  A recent study using 

uniform data sets from the National Alzheimer’s Coordinating Centers (NACC) determined that 

individuals who suffer from traumatic brain injury (TBI) with persistent symptoms are more 3 

times more likely than individuals with no history of TBI to develop dementia of the Alzheimer’s 

type (Sayed, et al. 2013).  Additionally, a number of psychiatric disorders are associated with 

moderate-severe traumatic brain injury including schizophrenia and depression, particularly 

among young individuals injured at 11-15 years of age (Orlovska, et al. 2013).   These long-term 

effects appear to be distinct from changes associated with mild TBI.  

Immediately after a concussion, headache, inability to focus, dizziness, and sleep 

disturbances are frequent complaints (McCrory et al. 2009).  Generally, 91% of individuals will 

be asymptomatic after 1 week (McCrea, et al. 2003).  However, in some, symptoms persist for 
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months or years and as many as 20% or more of these may not return to work within a year of 

injury (van der Naalt, et al. 1999; Iverson 2005; Nolin, et al. 2006; Daneshvar, et al. 2011).  In 

particular, concussed athletes who return to play within a week and experience a second 

concussion are at greater risk for persistent symptoms and worse outcome (Guskiewicz, et al. 

2003).   Increased risk of second impact syndrome is also a concern, a rare condition which 

involves severe, usually fatal, brain injury despite a minor impact (Saunders, et al. 1984; Cantu 

1998).  Further, individuals who have experienced multiple concussions in their lifetime are at 

risk for developing Chronic Traumatic Encephalopathy (CTE), a disorder characterized by 

accumulation of the protein tau particularly around blood vessels and at the depths of sulci, and 

by alterations in behavior often resulting in violent or aggressive mood swings and increased 

risk-taking (McKee, et al. 2013b).  CTE is best characterized in boxers (i.e. dementia 

pugilistica), but there is increasing awareness of incidence in football players, wrestlers, and 

hockey players as well as military servicemen (Corsellis, et al. 1973; Roberts, et al. 1990; 

Omalu, et al. 2005; Omalu, et al. 2006; McKee, et al. 2009; Goldstein, et al. 2012; McKee et al. 

2013b).  What specific pathological features give rise to persistent symptoms and, potentially, to 

CTE following concussions are unknown. 

 

1.3  AXONAL PATHOPHYSIOLOGY IN TRAUMATIC BRAIN INJU RY 

While severe injuries deform brain tissue leading to gross structural alterations, cell loss, 

and compromise blood brain barrier integrity, mild injuries appear to be disruptive to axons.  To 

understand the biomechanical forces acting on the brain, some of the earliest studies of TBI 

were conducted using gelatin models of brain tissue subjected to angular acceleration 

(Holbourn 1943).  Later, experiments conducted in both gelatin models and in primates 

determined that rapid rotational acceleration of the head results in sheer strain forces that are 

sufficient to produce axonal injury in the absence of other pathologic abnormalities (Gennarelli, 

et al. 1982; Margulies, et al. 1990).  Optic nerve stretch experiments provide further evidence 
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that these forces lead primarily to cytoskeletal changes with loss of axonal microtubules and 

neurofilaments immediately after injury (Maxwell, et al. 1997).  Cell culture models have also 

supported this idea, demonstrating that stretching results in microtubule breakage and leads to 

axonal degeneration (Smith, et al. 1999; Tang-Schomer, et al. 2010; Tang-Schomer, et al. 

2012).  In these studies, severing of even a single microtubule bundle can result in the 

accumulation of proteins and organelles normally transported down the length of the axon 

(Tang-Schomer et al. 2012).   

  Other events also take place immediately following axonal injury that can compromise 

axon integrity and ultimately lead to neurodegeneration.  Mechanical injury disrupts ionic 

homeostasis, leading to high extracellular potassium (K+), excitatory glutamate release, and 

intracellular calcium (Ca2+) influx (Giza, et al. 2001).  This reduces local ATP concentrations as 

cells attempt to restore ionic homeostasis.  These changes in turn activate caspases, calpains, 

phosphatases, and kinases that can cleave sodium channel proteins, alter neurofilament 

spacing, and induce mitochondrial swelling in the minutes to hours following injury (Maxwell, et 

al. 1995; Okonkwo, et al. 1998; Iwata, et al. 2004; Saatman, et al. 2010).   

Histologically, damaged axons are typically visualized by labeling with amyloid precursor 

protein (APP) which is normally carried by fast axonal transport along the length of the axon but 

can be found in stereotypical axonal swellings after both severe or mild traumatic brain injury 

(Gentleman, et al. 1993; Blumbergs, et al. 1994; Graham, et al. 1995).  These swellings usually 

have a beads-on-the-string or tadpole-shaped morphology and can be seen in the brain within 

hours of injury and up to months or even years after the initial insult (Sherriff, et al. 1994; Chen, 

et al. 2009; Johnson, et al. 2013a).  At these later time points, it is unclear whether axonal 

swellings belong to axons that were injured during the initial insult and have not resolved or 

whether they are newly injured axons arising from some secondary process of degeneration.  In 

addition to APP, axonal disruption has also been visualized by silver staining and using 
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antibodies to neurofilament heavy and light chain proteins (Oppenheimer 1968; Strich 1970; 

Gennarelli et al. 1982; Yaghmai, et al. 1992; Grady, et al. 1993).   

 Specific to concussion, few histological studies exist due to the non-fatal nature of the 

injury.  However, a classic study revealed silver staining abnormalities and microglial activation 

in the brains of concussed individuals (Oppenheimer 1968).  Another study found APP-positive 

axonal injury in the white matter tracts of five concussed individuals who died 2-99 days post-

injury of other causes (Blumbergs et al. 1994).  More recently, McKee and colleagues have 

observed several cases of CTE where axonal injury was evident by SMI-32, an antibody to 

neurofilament, indicating a persistent injury to axons that may be a cause or an effect of CTE 

(McKee et al. 2009; Goldstein et al. 2012).   Additional evidence for axonal injury in concussion 

comes from diffusion tensor MRI studies that have confirmed white matter injury in small cohorts 

of athletes (Lipton, et al. 2008; Niogi, et al. 2008; Wilde, et al. 2008).  Interestingly, in these 

studies, changes evident by MRI correlated with post-concussive symptoms.  Last, animal 

studies have also been key to our understanding of concussion.  Studies in mice, rats, and pigs 

have confirmed that axonal injury arises as a result of concussive impacts (Laurer, et al. 2001; 

DeFord, et al. 2002; Creeley, et al. 2004; Raghupathi, et al. 2004; Friess, et al. 2007).  Neuronal 

loss is minimal in these injury models and gliosis appears to be a second common pathological 

event.   

 

1.4 SUMMARY 

Altogether, there is growing realization of the costs of traumatic brain injuries—and of 

concussion in particular—to society.  Better understanding of the pathological events that take 

place after concussion is key to developing therapeutics that will minimize long-term disabilities.  

As axonal disruption is evident across the spectrum of TBI at both acute and chronic timepoints, 

axon injury may provide the substrate for persistent symptoms and pathological change in TBI 
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patients.  My thesis work sought to better understand concussion by focusing on axonal injury.  

Overall, the goals of this research were to 1) Evaluate an experimental model of concussion in 

mouse 2) Determine how axons are affected by repetitive concussive injury and 3) Evaluate 

factors that may contribute to axonal injury including the microglial response and expression of 

the Apolipoprotein E4 allele.  
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CHAPTER  2  

Modeling Repetitive Concussion in Mouse 

 

2.1 INTRODUCTION 

Mild repetitive brain injuries are a growing health concern, particularly among children 

and adolescents participating in sports.  Males participating in high school football for example, 

experience concussive injuries at a rate of 0.47 per 1000 athlete exposures and nearly 20% will 

experience recurrent concussions (Gessel, et al. 2007).  Prospective studies in high school and 

collegiate athletes have determined that experiencing multiple concussive impacts can lead to 

cognitive deficits in these individuals (Collins, et al. 2002; Guskiewicz et al. 2003; Iverson, et al. 

2004) .  The cognitive effects of concussions are best described in boxers, where as many as 

17% may develop persistent symptoms that may be associated with Chronic Traumatic 

Encephalopathy, a devastating neurodegenerative disease (Roberts et al. 1990; McKee et al. 

2009).  However, despite the increased incidence of concussion and the growing number of 

individuals suffering from multiple concussions, little is known about the effects of these injuries 

on the brain.    

To better understand the underlying mechanisms of adverse effects, several groups 

have developed mouse and rat models of concussive injury.  Most models use one of three 

methods of injury 1) weight drop 2) fluid percussion injury or 3) pneumatic/electromagnetic 

impact.  In weight drop injury models in both rats and mice, the head is typically fixed in a 

stereotaxic frame and a 15-150g weight is dropped from the height of 30-60 cm onto the fixed or 

unfixed head of the anesthetized animal (Marmarou, et al. 1994; Tang, et al. 1997a, b; Han, et 

al. 2000; DeFord et al. 2002; Zohar, et al. 2003; Milman, et al. 2005; Tashlykov, et al. 2007; 

Israelsson, et al. 2009; Meehan, et al. 2012; Mannix, et al. 2013).  This injury model was 
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originally developed by Marmarou and colleagues to induce moderate-severe brain injury in rats 

but has since been adapted to produce mild  injuries in mice (1994).  However, skull fracture is 

common and the exact number of impacts is variable as the weight can “bounce” several times 

on the animal’s head before coming to a rest.   

In fluid percussion injury, a craniotomy is performed and a skull cap attached to a fluid 

reservoir is glued in place.  Dixon et al. originally adapted this technique to produce traumatic 

brain injury in rats (1987).  To produce injury water is rapidly injected, and the physical force of 

the fluid striking the brain causes injury.  Several groups have utilized this technique to study 

“mild” and repetitive brain injuries but fundamentally, this invasive technique is not likely to truly 

represent uncomplicated concussive injury (Spain, et al. 2010; Cao, et al. 2012; Shultz, et al. 

2012; Selwyn, et al. 2013) .   

Other groups have used pneumatic or electromagnetic devices in recent years to impact 

the skull (Laurer et al. 2001; Uryu, et al. 2002; Longhi, et al. 2005; Creed, et al. 2011; Hylin, et 

al. 2013).  These devices produce single, rapid impacts to the skull and injury severity can be 

altered by adjusting the depth of impact or the number of impacts delivered to a single animal.  

Though the head is fixed, these injuries likely represent the most analogous injuries to human 

concussion available in rodents.  However, certain aspects of human concussion are unlikely to 

be represented in these lissencephalic animals.  

Injuries in large animals such as pigs use a separate device that rapidly rotates the head 

to produce injury (Raghupathi et al. 2004; Friess et al. 2007).  Similarly, the classic studies of 

Gennarelli and colleagues where macaques were subjected to rapid head acceleration also 

model concussive forces (Gennarelli et al. 1982).  For face validity, experimental models in pigs 

and primates resemble human mild TBI the closest, recapitulating the biomechanical forces that 

act upon the brain to produce injury.  However, ethical and practical concerns limit the use of 

these animals in widespread concussion research.    



9 
 

Literature regarding experimental concussion models in rat and mouse to date has been 

summarized in Table A1 of the Appendix.  Altogether, in rat and mouse models of concussion, 

one clear limitation of previous studies is the high rate of contusions and skull fractures that are 

produced.  Thus, many studies of “concussive” or mild TBI are performed in models of 

complicated mild TBI, which represents a small overall fraction of human clinical TBI cases.  Of 

the injury models that do resemble uncomplicated concussion in that there are no fractures or 

gross lesions to the brain, single injuries are reported to result in subtle, transient changes in 

behavior and APP immunohistochemistry while 2 or more repetitive injuries resulted in more 

persistent injury and impaired performance on behavioral tasks (Laurer et al. 2001; DeFord et 

al. 2002; Creeley et al. 2004; Longhi et al. 2005).  Indeed, studies have reported striking 

behavioral alterations after injury despite relatively little pathology as seen by 

immunohistochemistry (Laurer et al. 2001; DeFord et al. 2002; Creeley et al. 2004).   However, 

few studies have investigated axonal pathology despite its prevalence in human TBI including 

concussion (Oppenheimer 1968; Blumbergs et al. 1994; Johnson, et al. 2013b).  Thus, it is 

possible that the disparity between histological abnormalities and behavioral performance may 

be due either to a lack of sensitive assays for axonal injury or it may be that concussive injury 

results in electrophysiological changes and not structural alterations.  This work sought to test 

these hypotheses in a mouse model of repetitive closed-skull injury—a model that does not 

produce gross brain lesions and uses young 6-8 week old wild-type mice.  Several histological 

methods were employed to visualize injury induced changes and compound action potentials 

were measured in the corpus callosum to characterize axonal injury. 
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2.2 METHODS 

Animals 

Male C57Bl/6j wild-type mice (Jackson, cat# 000664) 6 to 8 weeks of age were used for 

all experiments.  Mice were fed food and water ad libitum and housed under a 12-hour light dark 

cycle.  All experiments were approved by the Washington University Animal Studies Committee. 

 

Electromagnetic Repetitive Closed-Skull TBI 

Mice were randomly assigned to either rcTBI or sham injuries so that each cage of 5 

mice contained both groups.  Anesthesia was induced using 5% isoflurane and the mouse was 

placed in a stereotaxic frame with rounded Kopf head holders (David Kopf Instruments).  

Isofluorane was then maintained at 2% for the duration of the experiment using a nose cone.  

Body temperature was controlled at 37°C using a fee dback temperature controller (Cell 

Microcontrols).  Heads were shaved, swabbed with betadine, and a midline skin incision was 

made to expose the skull. 

Impacts were performed using an electromagnetic impactor fitted with a custom tip 

(Figure 2.1).  To construct the impactor tip, rubber spheres were purchased from Precision 

Associates, Inc. (molded ball 0.375 diameter, 50 Duro salmon silicon) and cut in half.  The cut 

side was glued to the base of a 9mm steel impactor tip.  The impactor was lowered at a 20° 

angle so that the tip was just touching the skull at -1.8 mm bregma, -3.0 mm to midline.  A hand 

lens was used to verify the position and an impact was performed at a depth of -3.3 mm (5.0 

m/s, 100 ms dwell time).  Immediately after injury, mice were removed from head bars and 

anesthesia until normal breathing was restored.   Skin was then sutured closed, antibiotic 

ointment was applied, and mice were allowed to recover on a warming pad before being 

returned to their cages.  24 hours following the initial impact, a second, identical injury was 

performed.  Skull fractures were not common using this rubber tip (<3%), but all mice with skull 
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fractures were excluded from experiments.  Sham-injured mice underwent the same surgical 

procedures but did not receive impacts 

 
 
Behavioral Testing using the Morris Water Maze 

All experiments were performed blinded to injury group identity and all mice had 

indistinguishable sutures on their heads.  The water maze used was 109 cm in diameter and the 

platform was 11 cm in diameter.  Hidden platform testing began 48 hours after the second injury 

and was performed on 4 days with 4 1 minute trials per day.  A probe trial was conducted on 

day 4 after the final hidden platform test.  For the probe, the platform was removed and the 

location of the mouse was tracked for 30 seconds.  Following the probe, a visible platform test 

was also conducted by placing the platform in a new location so that is slightly above the water 

and marked with a pole.  Mice were given 1 minute to find the visible platform.   

 

Histopathology 

Mice were killed by isofluorane overdose followed by cardiac perfusion with ice-cold 

phosphate-buffered saline containing 0.3% heparin. Brains were removed and fixed in 4% 

paraformaldehyde for 24 hours and equilibrated in 30% sucrose for at least 24 hours.  A 

freezing microtome was used to cut 50 µm coronal slices beginning at the anterior portion of the 

corpus callosum ending at the posterior portion of the hippocampus.  For all histological 

analysis, sections were sampled every 400 µm. 

Cresyl violet staining was performed to assess tissue for contusion and cell loss.  For 

amyloid-precursor protein and NF200, immunohistochemistry was performed as previously 

described (Mac Donald, et al. 2007a; Mac Donald, et al. 2007b).  In brief sections were rinsed in 

Tris-buffered saline (TBS) twice, incubated in 0.03% H202 in TBS for 10 minutes, rinsed twice in 

TBS, and then blocked for 1 hour in normal goat serum in TBS containing 0.25% Triton-X (TBS-

X).  Following blocking, sections went into rabbit anti-APP (1:1000, Invitrogen), rabbit anti-
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NF200 (1:20,000, Sigma Aldrich), mouse anti-SMI-32 (1:1000, abcam), rabbit anti-iba-1 

(1:1000, Wako), chicken anti-gfap (1:1000, Millipore), or rabbit anti-cleaved capase 3 (1:1000, 

Cell Signaling) and sections were incubated overnight at 4°C with gentle shaking.  For SMI-32, 

after blocking, sections were incubated in 1:10 goat anti-mouse Fab IgG (Jackson 

Immunoresearch) in TBS for 30 minutes.  Sections were then rinsed twice in TBS and incubated 

overnight in SMI-32.  After the overnight incubation, sections are rinsed with TBS twice, 

incubated for 1 hour in goat anti-rabbit (APP, NF200, cleaved caspase 3, iba-1; Vector 

Laboratories), anti-chicken (gfap) or anti-mouse (SMI-32).  After incubation with secondary 

antibodies, sections were rinsed again, then incubated in streptavidin-horseradish peroxidase 

(1:400, Vector Labs) for 1 hour.  Labeling was visualized with 3-3‘diaminobenzidine 

tetrahydrochloride (DAB; Sigma Aldrich), sections were mounted on slides, and coverslipped 

with Cytoseal XYL (Thermo Scientific).  For mouse anti-RM014, sections were blocked in 1:10 

mouse serum in TBS-X.  RM014 antibody was prepared by incubating it with biotinylated goat 

anti-mouse Fab IgG (Jackson ImmunoResearch) at room temperature for 20 minutes.  The 

antibody-biotin IgG complex was then diluted in blocking solution at a working concentration of 

1:1000 and applied to sections overnight.  Immunohistochemistry was then performed as 

described above with the omission of the secondary antibody. 

Silver staining was performed using the FD NeuroSilver Kit II (FD NeuroTechnologies) 

according to the manufacturer's instructions with the following modifications.  Sections were 

post-fixed again for 5 days in 4% PFA before staining and were only incubated in solution C 

once for 2-minutes.  Brain sections were stained in batches so that all batches contained 

animals from both injury groups to avoid bias due to variability in staining intensity between 

batches.  
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Quantitative Analyses of Histopathology 

All histopathological analysis was performed blinded to injury status.  For silver staining 

measurements, section images were captured using the Nanozoomer Whole Slide Imaging 

System (Olympus).  3-4 sections from each mouse beginning with the anterior-most section 

containing both blades of the dentate gyrus were included in densitometric analysis.  These 

sections spanned approximately bregma -1.1 to -2.3 mm (24).  The ipsilateral corpus callosum 

and external capsule were defined as the area from midline extending laterally to a horizontal 

line dividing the hippocampus and thalamus.  ImageJ (NIH, Bethesda, MD) was used for 

quantitation of the staining and was expressed in arbitrary units, ranging from 0 (minimum) to 

255 (maximum).  

Stereological quantification was performed using StereoInvestigator version 8.2 software 

(MBF Bioscience).  The optical fractionator method was employed for quantification of total 

numbers of Iba1-positive cells with activated microglial morphology per mm3 of tissue. Details 

on these stereological methods have been described (22). Briefly, 4 sections per mouse (each 

separated by 400 µm) were used for ipsilateral cortex and thalamus and sections per mouse 

were used for estimations in corpus callosum.  A grid of 180 µm × 180 µm and a counting frame 

of 80 µm × 80 µm were used.  Gunderson coefficients of error were less than 0.1. 

 

Electrophysiology 

Separate mice were injured or underwent sham procedures for electrophysiology 

experiments. Artificial cerebrospinal fluid (aCSF) was prepared fresh daily (120 mM NaCl, 3.5 

mM KCl, 26 mM NaHCO3, 1.25 NaH2PO4, 10 mM Glucose).  Slicing solution was prepared by 

adding 0.5 mM CaCl2 and 7 mM MgCl2 to aCSF.  Holding solution was prepared by adding 2.5 

mM CaCl2 and 1.3 mM MgCl2 to aCSF.  All solutions were sterile filtered and bubbled with 

carbogen (95% oxygen, 5% CO2) for 1 hour prior to use.   
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To prepare 300 µm slices for electrophysiology, mice were deeply anesthetized with 

isofluorane and sacrificed by decapitation.  Heads were immediately immersed in ice cold 

slicing solution.  Brains were carefully dissected and rinsed in slicing solution before razor 

blades were used to trim away the anterior and posterior regions of the brain leaving a coronally 

sectioned block of tissue corresponding approximately to 0 to -3.5 mm bregma.  Cyanoacrylate 

glue was used to secure the posterior trimmed face of the tissue block to the pedestal of the 

Leica VT1200 vibratome, which was immersed in slicing solution with gentle bubbling.  Sections 

were cut with a blade oscillation amplitude of 1.1 mm and forward speed of 0.06 mm/s.  3-4 

sections were cut per animal and transferred by pipette to an incubation chamber containing 

holding solution at 32-34°C with constant bubbling.   Slices were allowed to equilibrate for 1-4 

hours before recording. 

During recording, slices were continuously perfused with room temperature oxygenated 

holding solution.  An upright Nikon Eclipse E600FN microscope and digital camera controlled by 

Metamorph software was used to image slices and determine electrode positioning.  A 

stimulating electrode with a tip diameter of 100 µm was made from 1.5 mm outer diameter 

borosilicate theta glass.  Recording electrodes with tip resistances of ~2 MΩ were made from 

1.2 mm outer diameter borosilicate glass.  All recordings were acquired using a MultiClamp 

700B amplifier (Molecular Devices) and MultiClamp 700B Commander software.  Data was 

collected at 3000 samples/sweep/signal (15 ms), with a 2 kHz sampling interval and were 

digitized using a Digidata 1322A 16-bit A/D converter (Molecular Devices).  Stimulating currents 

100 µs in duration were produced using a WPI A365 stimulus isolator (World Precision 

Instruments).   

For measurement of compound action potentials electrodes were placed 1 mm apart in 

corpus callosum on opposite sides of midline with the stimulating electrode ipsilateral to injury.  

Electrode depth was adjusted to achieve maximum signal per slice.   Input-output curves of 

CAP amplitude were acquired by making 8 sweeps and the stimulus intensity was adjusted from 



15 
 

0 mA to 4 mA in 0.5 mA steps.  The maximum amplitude was calculated by averaging CAP 

amplitude values at 3-4 mA.  Amplitude measures were made by drawing a line from connecting 

the peaks of the CAP response and measuring perpendicularly from this line to the trough of the 

CAP to determine the height in mV.  Following amplitude measurements, refractoriness was 

determined by varying the interpulse interval from 8 ms down to 1.5 ms in 0.5 ms steps.  Half 

maximum stimulus intensities were used for all refractoriness measures.  Refractoriness was 

determined by subtracting a control response (single stimulus) from the paired-pulse response 

and dividing this by the control response.  This value was multiplied by 100%.  To measure 

axonal velocity, half maximum CAP recordings were made moving the recording electrode 1.5 

mm, 1 mm, or 0.5 mm away from the stimulating electrode.  The latency from the stimulus 

artifact to the peak of the action potential was measured and plotted versus the distance 

between electrodes.  The slope of the line was used to determine the velocity in ms-1. 

     

Statistical Methods 

All analyses were performed using Statistica 6.0 (StatSoft, Tulsa, OK).  Shapiro-Wilks 

normality tests were performed to determine if data fit Gaussian distributions.  In cases where 

data were found to be non-normally distributed, nonparametrics statistical analyses were used.  

Repeated measures ANOVA was used to compare hidden platform Morris water maze 

performance between groups.  Student’s t tests and Mann-Whitney U-tests were used to 

compare all other variables.  P values less than 0.05 were considered significant. Error bars 

represent SEM. 

 

 

 

 



2.3  RESULTS 

2.3.1 Repetitive Closed Skull Injury Impairs Morris Water Maze Performance

 Similar to Laurer et al. 2001,

consistent, concussive insults directly to the skull of the mouse (

resulted in <5 % mortality rate and <3 % skull fractures.  Mice with skull fractures were not 

included in the study.   All mice experienced a brief peri

seconds immediately following impact and exhibited tonic clonic convulsions for up to

seconds following injury. 

Figure 2.1  Electromagnetic repetitive closed
placed in a stereotaxic frame.  (B) Head bars are used to hold the head in place while an 
electromagnetic device fitted with a rubber tip impacts the skull over the left somatosensory 
cortex. 
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 Mice subjected to two concussive impacts demonstrated impaired performanc

Water Maze (MWM) during the week following injury (rcTBI n=10, sham n=11; 

Mice were tested in the MWM on days 3

these conditions, repeated measures ANOVA of hidden platf

significant effect of day (p<0.0000), injury (p<0.0000), and a day x injury interaction (p=0.0101).  

Overall, injured mice spent more time than shams searching for the hidden platform (42.92 

3.49 s versus 18.70 ± 2.68 s; p<0.0001, student’s t test) and traveled farther to find the platform 

(p<0.0001, student’s t test).  However, they also had reduced velocity compared to shams 

(p=0.0002, student’s t test), which may be indicative of slight motor deficits.  Both shams a

injured mice were able to find the visible platform, confirming impaired eyesight was not a factor 

contributing to worse performance.  Sham mice also completed the probe trial successfully, a 

test of spatial memory, but injured mice did not perform bett

Figure 2.2  Morris Water Maze performance is impair ed acutely (7 days) in rcTBI mice.  
Mice received 2 closed skull impacts (rcTBI) or no impacts (sham) and were tested 3 days after 
the first injury.  (A) Sham injured mice but not rcTBI mi
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injured mice were able to find the visible platform, confirming impaired eyesight was not a factor 
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significant effect of day (p<0.0000), injury (p<0.0000), and a day x injury interaction (p=0.0101).  

Overall, injured mice spent more time than shams searching for the hidden platform (42.92 ± 

s; p<0.0001, student’s t test) and traveled farther to find the platform 

(p<0.0001, student’s t test).  However, they also had reduced velocity compared to shams 

(p=0.0002, student’s t test), which may be indicative of slight motor deficits.  Both shams and 

injured mice were able to find the visible platform, confirming impaired eyesight was not a factor 

contributing to worse performance.  Sham mice also completed the probe trial successfully, a 

Figure 2.2  Morris Water Maze performance is impair ed acutely (7 days) in rcTBI mice.  
Mice received 2 closed skull impacts (rcTBI) or no impacts (sham) and were tested 3 days after 

ce learned over the 4 day testing period 
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to find the hidden platform.  Mean (B) time (C) distance and (D) velocity to the hidden platform 
were also impaired in rcTBI mice compared to sham controls.  (E) Sham mice performed better 
than chance on the probe trial, but rcTBI mice did not.  Mean (F) time (g) distance and (h) 
velocity to the visible platform.  (** p<0.005, ***p<0.0005). 
  

A second cohort of mice was then randomized to either rcTBI (n=9) or sham (n=9) 

groups.  Morris Water Maze testing beginning 44 days after first injury did not reveal any day x 

injury interaction (Repeated measures ANOVA p=0.1705, Figure 2.3 A ).  However, analysis of 

the mean time for injured mice to find the hidden platform revealed a significant difference from 

shams (student’s t test p=0.0051, Figure 2.3 B ).  No differences in distance traveled (p=0.0845, 

Figure 2.3 C ) or velocity (p=0.1663, Figure 2.3 D ) was observed.  All mice found the visible 

platform and too the same amount of time (p=0.4266, Figure 2.3 F ), traveled the same distance 

(p=0.4329, Figure 2.3 G ), and swam at the same speed (p=0.6107, Figure 2.3 H ) to find it.  

However, neither group performed better than chance on the probe trial, which may indicate a 

problem with the MWM experimental setup (Figure 2.3 E ).   Overall, these results indicate that 

while mice appear to be relatively normal, they may still exhibit signs of cognitive impairment at 

7 weeks post-injury.  Further testing will be required to definitively characterize behavioral 

changes at this time point.  
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Figure 2.3 Morris Water Maze impairments are mostly  recovered by 7 weeks post-injury.   
Mice that received rcTBI or sham treatment were tested in water maze beginning 44 days after 
the first injury.  (A) Sham injured mice and rcTBI mice learned to find the hidden platform over a 
4 day testing period.   Mean time (B) to the hidden platform but not distance traveled (C) or 
velocity (D) was impaired in injured mice compared to shams.  Mice did not perform better than 
chance on a probe trial (E).  All mice found the visible platform quickly (F) and injury did not 
affect distance (G) or velocity (H) measurements.  
 
  

2.3.2 No Evidence of Histological Abnormalities or Cell Loss 

 Sections from sham mice and rcTBI mice were assessed for histological abnormalities 

by cresyl violet staining 7 days post-injury (Figure 2.4 A-H ).  No areas of ischemic injury, 

hemorrhage, or contusion were present in any region in any of the samples.   The hippocampal 

CA3 and polymorphic layer of the dentate gyrus are susceptible regions to brain injury but did 

not show any cell loss at 7 days post-injury (Figure 2.4 E, F ).  A stereological comparison of the 

number of cells in this area confirms this observation; these data can be found elsewhere 

(Shitaka, et al. 2011).  Subtle increases in the cellularity of the corpus callosum were observed 
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in rcTBI mice compared to shams (Figure 2.4  H).  Adjacent sections were also stained for 

cleaved caspase 3, an indicator of cellular apoptosis (Figure 2.5 A, B ).  No labeling was 

observed in rcTBI mice at 7 days post-injury.  Tissue from a mouse subject to middle cerebral 

artery occlusion (MCAo), a model of cerebral ischemia, confirm the sensitivity of this antibody to 

apoptotic cells (Figure 2.5 C ).   

 

2.3.3 Gliosis after Repetitive Closed Skull Injury 

 At 7 days post rcTBI or sham injury, sections from mice that performed water maze 

(n=10 and n=11, respectively) were labeled for iba-1, a marker of microglia and macrophage 

(Figure 2.6 A, B, E ).  The number of iba-1-positive cells present in the corpus callosum and 

external capsule was quantified by stereology.  A significant difference between shams versus 

rcTBI mice was observed at 7 days post-injury (one-tailed student’s t test p<0.0001; Figure 2.6 

E).  For a detailed timecourse of iba-1 in the corpus callosum and other regions, see Shitaka et 

al (2011).  In a separate cohort of mice, GFAP-positive astrocytes were quantified by optical 

density in shams (n=6) and rcTBI (n=6) mice 7 days after injury (Figure 2.6 B, D, F ).  In these 

mice, the amount of GFAP labeling was significantly increased after injury (p=0.0077, Figure 

2.6 F). 
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Figure 2.4 Cresyl violet staining in sham and injur ed mice does not reveal any gross 
histological abnormalities.  Sections from sham mice (A, C, E, G, I) and rcTBI mice (B, D, F, 
H, J) were stained with cresyl violet 7 days post injury.  No cell loss was seen in sections (A), 
cortex (B), hippocampal dentate gyrus/CA3 (E, F), corpus callosum (G, H), or thalamus (I, J).   
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Figure 2.5 Apoptosis is not evident by cleaved casp ase 3 labeling in injured mice.  
Sections from rcTBI mice were stained for cleaved caspase 3, a key protein involved in 
apoptosis.  No labeling was seen in any sections from mice at 7 days (A, B).  Inset in (B) is 
higher magnification view of box in (A), a region of injured external capsule.  By contrast, 
labeling was prominent in a mouse sacrificed 24 hours after MCAo, a model of cerebral 
ischemia (C).   
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Figure 2.6  Microglia and astrocytes increase 7 days post-injur y.  Sections from sham (A, C) 
or rcTBI (C, D) mice were labeled for iba-1 (A, B) or gfap (C, D).   Insets are from region boxed 
in (A).  Iba-1 was quantified by stereology (E) to determine the total number of iba-1 positive 
cells in the corpus callosum and external capsule ipsilateral to injury.  Gfap was quantified by 
optical density (F) which measures the total area fraction containing gfap-positive astrocyte 
processes.  (***p<0.0001, **p<0.01)  
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2.3.4 Axonal Injury after Repetitive Closed Skull Injury 

 Silver staining was also performed on mice used in behavioral experiments and 

sacrificed 7 days post-injury (Figure 2.7 A, B, C ).  Silver staining was increased in shams 

versus controls at this timepoint (two-tailed student’s t test p<0.0001, Figure 2.7 C ).  Silver 

staining is thought to label protein aggregates and has been shown to reflect ultrastructural 

abnormalities visible by electron microscopy (Shitaka et al. 2011).  An additional timecourse of 

silver staining changes can be found in Shitaka et al. (2011).

 

Figure 2.7 Silver staining reveals increased axonal  injury in rcTBI mice 7 days post-
injury.  Silver staining was performed on sham (A) and rcTBI (B) mice.  Insets are from region 
of corpus callosum boxed in (A).  Optical density of silver staining (black precipitate) was 
preformed after subtracting background (gold granules) from each image (C).  (***p<0.0001)  
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Mice were sacrificed at 2 days (n=5) or 7 days (n=10, from behavioral experiments) after 

the first injury and a qualitative survey was carried out for axonal injury markers including 

amyloid precursor protein (APP), NF200, RM014, and SMI-32 (Figure 2.8 A-P ).  APP is 

normally transported along the axon and accumulates in swellings after axonal injury.  NF200, 

RM014 and SMI-32 are antibodies to neurofilament.  NF200 labels 200 kDa heavy-chain 

neurofilaments.  RM014 has been used to detect areas of neurofilament compaction in 

traumatic brain injury (Stone, et al. 2001).  SMI-32 detects non-phosphorylated neurofilament 

heavy chain, which has been reported to indicate areas of axonal injury (Budde, et al. 2008; 

McKee et al. 2009).  All antibodies labeled prominent axonal varicosities in pericontusional 

corpus callosum in a controlled cortical impact (CCI) mouse model of moderate-severe brain 

injury (Figure 2.8 A, E, I, M ).  No axonal swellings were detectable in sham injured mice 

sacrificed at 7 days (Figure 2.8 B, F, J, N ), though diffuse background labeling was evident in 

SMI-32 labeled sections (Figure 2.8 N ).  Additionally, in all mice including shams, NF200 

labeled fibers of the cingulum bundle, which displayed normal axonal morphology distinct from 

injury (not shown).  Clearly abnormal axons were evident in external capsule at 2 days after 

rcTBI using antibodies to APP, NF200, and SMI-32 (Figure 2.8 C, G, O ).  However by 7 days 

post-injury, only sparse axonal swellings could be found using these same markers (Figure 2.8 

D, H, P).  No RM014 labeling was found at 2 days or 7 days in these sections (Figure 2.8 K, L ).  

At both injury timepoints, changes to axons were only apparent in external capsule overlying the 

lateral ventricle ipsilateral to impact (shown) which may represent a particularly vulnerable 

region in this injury model.   



Figure 2.8 Additional markers of axonal injury.  
1 day CCI (A, E, I, M), 7 day sham (B, F, J, N), 2 day rcTBI (C, G, K, O) or 7 day rcTBI
P) mice.  Sections were labeled for amyloid precursor protein (A, B, C, D) or with antibodies to 
neurofilament NF200 (E, F, G, H), RM014 (I, J, K, L), and SMI
mice were captured from pericontusional corpus callosu
external capsule underlying the site of impact (or sham injury) near the lateral ventricle.
 

2.3.5 Electrophysiological Integrity of Corpus Callosum Axons 7 days after Injury

Axonal conduction was measured by slice elec

potentials (CAPs) were evoked by placing a stimulating electrode in the center of the corpus 
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Figure 2.8 Additional markers of axonal injury.  Representative images of axonal injury from 
1 day CCI (A, E, I, M), 7 day sham (B, F, J, N), 2 day rcTBI (C, G, K, O) or 7 day rcTBI
P) mice.  Sections were labeled for amyloid precursor protein (A, B, C, D) or with antibodies to 
neurofilament NF200 (E, F, G, H), RM014 (I, J, K, L), and SMI-32 (M, N, O, P).  Images in CCI 
mice were captured from pericontusional corpus callosum.  All other images were taken from 
external capsule underlying the site of impact (or sham injury) near the lateral ventricle.

Integrity of Corpus Callosum Axons 7 days after Injury

Axonal conduction was measured by slice electrophysiology.  Compound action 

potentials (CAPs) were evoked by placing a stimulating electrode in the center of the corpus 

 

Representative images of axonal injury from 
1 day CCI (A, E, I, M), 7 day sham (B, F, J, N), 2 day rcTBI (C, G, K, O) or 7 day rcTBI (D, H, L, 
P) mice.  Sections were labeled for amyloid precursor protein (A, B, C, D) or with antibodies to 

32 (M, N, O, P).  Images in CCI 
m.  All other images were taken from 

external capsule underlying the site of impact (or sham injury) near the lateral ventricle. 

Integrity of Corpus Callosum Axons 7 days after Injury 

trophysiology.  Compound action 

potentials (CAPs) were evoked by placing a stimulating electrode in the center of the corpus 
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callosum in the injured hemisphere and were recorded in the corpus callosum opposite of 

midline (Figure 2.9 A ).  Peaks corresponding to both myelinated (N1) and unmyelinated (N2) 

axonal populations were detectable and could be abolished with application of the sodium 

channel blocker tetrodotoxin (TTX; Figure 2.9 B, C ).    

The height of the CAP response was measured for quantitative analysis in sham (n=7) 

and rcTBI (n=8) mice (Figure 2.10 A-E ).  This revealed no significant differences between sham 

and injured mice in both myelinated (one-tailed student’s t test p=0.0508, Figure 2.10 B ) or 

unmyelinated fibers (one-tailed student’s t test p=0.4296, Figure 2.10 C ).  Varying the stimulus 

intensity from 0 to 4 mA generated input-output curves for each population of axons (Figure 

2.10 D, E).   

Velocity was also determined by varying the distance between stimulating and recording 

electrodes and measuring the latency to the peak of each CAP (Figure 2.11 A-E ).  A significant 

difference in the velocity of both myelinated (one-tailed student’s t test p=0.0331, Figure 2.11 

D) and unmyelinated (one-tailed student’s t test p=0.0072; Figure 2.11 E ) axons was observed.   

Refractoriness, the ability of an axon to fire action potentials in quick succession, was 

also measured by varying the interpulse interval from 8 ms to 1.5 ms (Figure 2.12 A-C ).  As the 

interpulse interval became shorter, fewer axons were able to fire action potentials and the 

amplitude of the second CAP became smaller (Figure 2.12 B, C ).  This property did not appear 

to be altered by injury in either axon population. 
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Figure 2.9.  Electrophysiological recording of comp ound action potentials in mouse 
corpus callosum.   (A) A stimulating electrode (asterisk) was placed in the corpus callosum 
underlying the site of injury and a recording electrode was placed 1 mm away in corpus 
callosum opposite midline.  (B) 100 µs stimulation (arrow) resulted in a brief stimulus artifact 
followed by an early peak corresponding to myelinated axons (N1) and a later peak 
corresponding to unmyelinated axons (N2).  (C) Both peaks could be eliminated through 
application of 250 nm TTX to block sodium channels.   
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Figure 2.10 No change in compound action potential amplitude 7 days post-injury.  (A) 
Representative trace (average of 8 sweeps) showing myelinated (N1) and unmyelinated (N2) 
axon response.  Amplitude was measured by drawing a line between peaks (solid red line) and 
measuring from this line to the trough of the CAP (dashed line).  The maximum amplitude of the 
CAP was determined for both myelinated (B) and unmyelinated (C) axons.  A range of stimulus 
currents from 0-4 mA was used to generated input-output curves for myelinated (D) and 
unmyelinated (E) axons (Dotted line is non-linear fit).  (Error bars are standard error of the 
mean) 
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Figure 2.11 Velocity is reduced in both myelinated and unmyelinated axons 7 days post-
injury.    Moving the recording electrode to 0.5 (A), 1 (B), or 1.5 mm (C) from the stimulating 
electrode altered the latency to the peak of the CAPs.  Velocity was determined by measuring 
the time from stimulus to CAP peak in the myelinated (D) and unmyelinated (E) fibers. (Error 
bars are standard error of the mean, *p<0.05, **p<0.01)   
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Figure 2.12 Axonal refractoriness was not altered b y injury.  (A) Altering the interval 
between two stimuli (arrows) at half maximum generated two CAP responses.  The height of the 
second  CAP response is plotted as the percentage of the initial CAP height for both myelinated 
(B) and unmyelinated (B) axons.  (Dotted line represents non-linear fit, error bars are standard 
error of the mean) 
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2.3.6 Electrophysiological Integrity of Corpus Callosum Axons 1 day after Injury 

 Compound action potential measurements were repeated in a second cohort of mice 

that was sacrificed immediately following the second sham (n=3) or rcTBI (n=5) injury (1 day 

after the initial impact).  Input-output curves were generated for each axon population (Figure 

2.13 A, B ) and the maximum CAP amplitude was measured.  The amplitude of myelinated 

axons was unchanged (one-tailed Mann-Whitney test p=0.3929, Figure 2.13 C ) but the 

amplitude of the unmyelinated response appeared to be significantly reduced (one-tailed 

student’s t test p= 0.0283, Figure 2.13 D ).  Velocity measurements were not significantly altered 

in myelinated (one-tailed student’s t test p=0.0883) or unmyelinated (one-tailed student’s t test 

0.3414) axons at this early timepoint (Figure 2.13 E, F ).   
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Figure 2.13 Compound action potential amplitude and  velocity measurements at 1 day 
post-injury.  Input-output curved in sham and injured myelinated (A) and unmyelinated (B) 
axons.  Solid line represents non-linear fit.  Maximum CAP amplitude is not altered in 
myelinated (C) but is altered in unmyelinated (D) axons in injured mice.  No differences were 
observed in velocity measurements (E, F).  (Error bars represent standard error of the mean, 
**p<0.01, n.s. = not significant). 

 

2.4 DISCUSSION 

 Here, we characterize the consequences of repetitive closed-skull injury in mouse and 

the resulting behavioral, histological and physiological white matter abnormalities.  After two 

concussive impacts, mice were observed to have impaired spatial learning and memory 

immediately following injury which was mostly recovered by 7 weeks.  Acutely after injury, 

prominent gliosis was observed by iba-1 and gfap labeling in addition to axonal injury evident by 

silver staining, APP, NF200, and SMI-32.  Further, unmyelinated axons had reduced CAP 

amplitude at 1 day and both myelinated and unmyelinated axons had impaired velocities at 7 

days post-injury compared to shams.  Altogether, this confirms that repetitive closed-skull 

injuries produce subtle but measurable pathologies and suggests this is a useful model for 

investigating concussion. 

This data are scientifically relevant because few studies to date have investigated 

models of concussive-type injuries and the relationship between concussion and axonal injury.  

Strengths of this study include the development of a reliable concussion model that does not 

produce contusions, gross histological abnormalities, or overt cell loss.   This model also 

reproduces axonal injury and gliosis, two key characteristics that have been observed across 

the spectrum of traumatic brain injury severity (Oppenheimer 1968; Blumbergs et al. 1994; 

Oehmichen, et al. 1999; Johnson et al. 2013a; Johnson et al. 2013b).   As demonstrated in 

Morris Water Maze, this is also a useful model to study the evolution of behavioral changes 

long-term.  Altogether, the injury model reported here appears to represent several aspects of 
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uncomplicated concussive traumatic brain injury which accounts for the majority of all traumatic 

brain injuries that occur each year in the United States.   

These results are consistent with those reported by other groups using similar injury 

models.  Other models of concussive brain injury have demonstrated similar behavioral 

impairments in Morris Water Maze, in addition to other tasks not reported here such passive 

avoidance and depression behaviors (DeFord et al. 2002; Zohar et al. 2003; Creeley et al. 2004; 

Longhi et al. 2005; Milman et al. 2005).  Histologically, few studies have examined axonal 

pathology after concussive injury.  However, APP immunohistochemistry has been performed in 

other mouse models, and similar to results here, only small areas of APP-positive axons were 

seen acutely after injury (Laurer et al. 2001; Creed et al. 2011).  Here, we expand upon these 

observations using multiple injury markers.  We observed that the greatest amount of injury was 

evident immediately following impacts (2 days after the first injury).  While areas of dense 

labeling could be found in white matter immediately below the impact site, injury appeared 

relatively focal compared to the widespread changes visible by silver staining.  Thus, in this 

model, silver staining appears to be a particularly sensitive technique for visualizing axonal 

injury after concussion.  Electron microscopy has been performed in this injury model to confirm 

that silver staining does in fact reflect ultrastructural changes in axons and is reported in Shitaka 

et al. as well as in Chapter V (2011).   

Electrophysiological findings presented here contrast with those reported in Creed et al, 

which used a similar impact device fitted with a large metal impact tip to strike the skull at 

midline, between lambda and bregma (2011).  In their report, single concussive injury resulted 

in reduced amplitude of the myelinated CAP at both 1 day and 14 days post-injury and 

increased refractoriness of unmyelinated axons at 14 days.  Velocity measurements were not 

reported.  Here, the main electrophysiological finding in this repetitive concussive model was 

reduced velocity of both populations of axons 7 days post-injury.  That we did not detect a 

reduction in the amplitude of myelinated fibers (though a small, non-significant decrease may be 
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present) likely reflects different injury severity as similar numbers of mice and electrophysiology 

methods were used in both studies.  Indeed in Creed et al., apoptosis in neurons was visible by 

fluorojade b in the cortex and hippocampal dentate gyrus, which may indicate that the single 

concussive impact produced more damage than the repetitive injuries reported here (2011).   

This study does have limitations.   First, and most concerning, is that sham mice failed 

the probe trial in the 7 week experiment.  While differences in mean time to the hidden platform 

were observed between rcTBI and sham groups we cannot rule out that that this result did not 

occur by chance.  However, if both groups failed to learn across the four days of the trial due to 

experimental design, the results would be biased towards not finding any differences between 

groups.   Thus, slight impairments in spatial learning and memory seem to persist out to 7 

weeks post-injury, but this experiment will need to be repeated again in the future to confirm 

these findings.  Second, additional electrophysiology experiments should be performed to 

confirm these findings.  Including groups of mice subject to 3 or more concussive impacts or 

moderate-severe traumatic brain injury would aid in our understanding of the ability of 

electrophysiology to resolve alterations in axonal conductance due to injury.  Also, given the 

small n of the 1 day electrophysiology experiment, it should be repeated to confirm that velocity 

is not impaired at early this early timepoint.   Third, analysis of injury was limited to corpus 

callosum and external capsule.  Over relevant changes may be occurring in grey matter regions 

and at synapses in particular.  However, assaying injury processes taking place in these areas 

was outside the scope of the present study.   

Finally, like other rodent injury models, not all aspects of human concussion are 

modeled.  In mouse repetitive closed-skull injury, compression forces are exerted upon the brain 

rather than rotational acceleration/deceleration forces.  At present it is unknown how aspects of 

axonal injury may be altered by these different types of biomechanical forces.  Recently a 

ballistic model of concussion in rat was reported that results in rapid rotational 

acceleration/deceleration of the head—comparisons between injury modalities may provide 
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future insights (Davidsson, et al. 2011).  Another aspect of human concussion not modeled here 

is the effect of multiple subconcussive impacts of the resulting pathology.  In a study of high 

school football players wearing a Head Injury Telemetry system, an average of 652 impacts 

were recorded per player over a 14-week season (Broglio, et al. 2011).   Though only a small 

subset of impacts resulted in concussion, how a large number of blows to the head may “prime” 

the brain is unknown.   

The finding that microglia are increased dramatically after injury has important 

therapeutic implications.  Activated microglia have been observed in human traumatic brain 

injury several years after the initial insult (Ramlackhansingh, et al. 2011; Johnson et al. 2013a).  

In other injury models and in vitro systems they appear to play an important role in phagocytosis 

of axonal debris acutely following injury and in secretion of neurotrophic factors (Batchelor, et al. 

2002; Hosmane, et al. 2012).  Ultimately, however, it is unknown whether these cells are 

helpful, harmful, or neutral in regards to concussive injury and axonal degeneration process in 

particular.  Determining their role is one clear direction of these studies, as concussion therapies 

may be designed to augment or inhibit microglial activation. 

Another intriguing finding is that axonal velocity was reduced 7 days following repetitive 

concussion.  One possible implication is that such functional alterations after concussive injury 

may contribute to post-concussion symptoms experienced by patients.  In particular, complaints 

related to cognitive function are common, and information processing speed has been reported 

to be reduced in individuals who suffer mild TBI or multiple concussions (Gronwall, et al. 1975; 

O'Jile, et al. 2006; Johansson, et al. 2009; Dean, et al. 2013).  While other factors including 

inflammatory processes and mechanical damage to synapses are likely to contribute to these 

deficits in processing speed, changes in white matter including axonal conductance velocity 

may be important considerations (Fjell, et al. 2011; Mazerolle, et al. 2013).  Given these results, 

future studies should be performed to determine how long alterations in axonal conductance 

velocity persist following injury.  In other injury models, functional deficits appear to resolve by 



38 
 

14 days post-injury (Reeves, et al. 2005).  Determining how physiological changes contribute to 

behavioral alterations in this model is an important future direction of these studies.   

Likewise, silver staining, iba-1, and gfap are dramatically increased after injury and these 

markers may indicate an underlying histological basis for behavioral and functional changes that 

occur after concussive TBI.  A full characterization of the size, location, timecourse, and nature 

of injured axons may provide insight into the susceptibility of specific axonal populations to 

injury.  For example, in other studies it has been reported that antibodies that label APP or 

neurofilament accumulations reveal different subsets of injured axons (Stone et al. 2001; 

DiLeonardi, et al. 2009).  Further analysis will be required to determine if this is a feature of 

repetitive closed-skull injury.  Additionally, mice time sacrificed between 2 and 7 days post-injury 

may also provide more clues to the temporal vulnerability of axons.  For example, single 

concussive impacts in this model do not produce significant silver stain-positive axonal injury 

compared to shams, but two injuries separated by 1 day produce argyrophillic accumulation 

(Shitaka et al. 2011).  Determining the window of vulnerability of axons to a second impact is an 

on-going subject of research in the lab and repeating APP and neurofilament 

immunohistochemistry at finer temporal resolution may aid our understanding of this process.  

Such studies have real clinical implications as currently there is evidence that suffering multiple 

back-to-back concussions can contribute to worse long-term outcome from injury, but the 

vulnerability of the brain to second injury is not well understood  (Guskiewicz et al. 2003). 

In sum, the rcTBI model is a useful tool for investing the pathophysiology of concussion, 

particularly as it relates to axonal injury.  We propose to use this model to screen therapeutic 

compounds that may reduce behavioral and functional alterations and that reduce the 

vulnerability of the brain to second impact (Scheff, et al. 1999; Okonkwo, et al. 2003; Zhang, et 

al. 2012) .  This model may also be useful for radiological-pathological correlation studies to 

determine the significance of changes evident by advanced in vivo imaging methods (Bennett, 

et al. 2012).  Additionally, we will use transgenic mice and pharmacological compounds to 
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determine the interaction between iba-1 positive microglia/macrophage and axonal 

degeneration.  Other studies may uncover unique factors that contribute to axon injury following 

concussion and provide novel therapeutic targets.   
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CHAPTER  3  

In Vivo Diffusion Tensor Imaging Detects Axonal Injury in a  Mouse 

Model of Repetitive Closed-Skull Traumatic Brain In jury 

 

3.1 INTRODUCTION 

Traumatic axonal injury (TAI) is a hallmark of traumatic brain injury (TBI), and may be a 

leading cause of cognitive impairment and disability following head injury (Smith, et al. 2003b).  

Few methods exist for detecting TAI, with a positive diagnosis usually taking place post-mortem 

following histological analysis for accumulated amyloid precursor protein (APP), an integral 

membrane protein that is normally transported along the length of the axon (Blumbergs et al. 

1994; Sherriff et al. 1994; Geddes, et al. 2000).   

Increasingly, diffusion tensor imaging (DTI) has been used as a non-invasive method for 

detecting TAI in vivo (Niogi, et al. 2010).  DTI measures the directional diffusion of water.  In 

white matter, this diffusion is restricted by the orientation of axon bundles.  In regions such as 

the corpus callosum, water preferentially diffuses along a single axis and has high anisotropy 

(Le Bihan 2007).  When white matter is injured, as in traumatic brain injury, the characteristic 

diffusion of water is altered.  

We have previously validated DTI signal changes after TBI with histology for APP-

positive injured axons.  In these studies, which used a mouse model of moderate-severe TBI, 

areas with reduced relative anisotropy and axial diffusivity were shown to contain greater 

numbers of APP-positive swellings (Mac Donald et al. 2007a; Mac Donald et al. 2007b).  

However, from these studies and others, it is not clear whether DTI is sensitive to mild injuries 

without contusion where the mechanisms of axonal injury may be different.  
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Recently, our group developed a model of mild repetitive closed-skull TBI (rcTBI) in 

mouse to study the pathological changes underlying concussion.  In this model, young male 

mice are subject to two concussive impacts within a 24-hour period.  Interestingly, only sparse 

APP-positive axons were visible following injury, though axonal degeneration was evident by 

both silver staining and electron microscopy and coincided with a prominent microglial response 

and clear deficits in spatial learning and memory (Shitaka et al. 2011).   

As DTI is a quantitative method for assessing the integrity of white matter regions, we 

sought to apply this technique to this mild repetitive closed-skull TBI model to determine if APP-

negative axonal injury results in detectable DTI changes 24 hours and 7 days after impact.  

Results from these experiments have important implications for the use and interpretation of DTI 

following mild TBI. 

   

3.2 METHODS 

Animals 

Six- to eight-week C57BL/6j mice were purchased from Jackson Laboratories and 

housed in standard cages under a 12-hour light/dark cycle with approval from the Animal 

Studies Committee at Washington University in Saint Louis. Mice were divided into 3 groups: 7 

day sham injury with sacrifice 7 days later, rcTBI with sacrifice 24 hours later, and rcTBI with 

sacrifice 7 days later  Each group initially consisted of six mice.  The final n for the rcTBI  24 

hour group was 4; a scan of one mouse in this group failed for technical reasons and a second 

was excluded due to a small hemorrhage within white matter.  Repetitive closed-skull injury was 

performed as described previously (Shitaka et al. 2011).  Briefly, mice were anesthetized with 

inhaled isofluorane and placed in a stereotaxic frame.  A midline incision was made to expose 

the skull and the 9 mm rubber impactor tip was aligned with Bregma.   The tip was then moved 

to the location of the impact (A/P: -1.8 mm, M/L: -3.0 mm) and an electromagnetic impactor (My 

NeuroLabs) was used to drive an impact to a depth of 3.3 mm.  Body temperature was closely 



42 
 

monitored and maintained throughout the procedure.  Following the impact, the incision was 

sutured closed, antibiotic ointment was applied, and mice were allowed to recover on a heat pad 

before returning to their cage.  Sham-operated mice received the same treatment but an impact 

was not delivered.  This procedure was repeated at 24 hours for a total of two impacts per 

mouse.  Mice in the 24 hour scan group were immediately taken for DTI after the second 

impact.   

 

Diffusion Tensor Magnetic Resonance Imaging 

All scans were performed using a previously published method (Mac Donald et al. 

2007b).  Mice were anesthetized with isofluorane maintained at 1% throughout the duration of 

the scan while circulating warm water preserved a constant body temperature.  Images were 

acquired with a 4.7T scanner (Oxford Instruments 330) and actively shielded gradient coil (180 

mT/m, 400 ms rise time) interfaced with a Varian Unity-INOVA console controlled by Sun 

Microsystems Ultra-60 Sparc workstation.  The following acquisition parameters were used: 

TR= 3s, TE= 40ms, and FOV/Resolution 20 x 20 mm / 192 x 192.  Voxel size during acquisition 

was 104 µm X 104 µm X 0.5 mm (zero padded to 256 x 256).  A multislice spin-echo sequence 

was modified to include a Stejskal-Tanner gradient-sensitizing pair in order to acquire coronal 

diffusion weighted images.  Diffusion gradients were applied in six directions.  B-values used 

were 0 and 764.  Each scan required approximately 3 hours.  Software written in Matlab 

(Mathworks, Natick, MA) was used to calculate the six elements of the diffusion tensor and to 

determine relative anisotropy (RA; overall measure of the asymmetry of diffusion), axial 

diffusivity (AD, λ1; diffusion along a primary direction), radial diffusivity (RD, λ┴; diffusion 

perpendicular to the primary direction), and mean diffusivity (MD). 
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Diffusion Tensor Imaging Analysis 

Imaging analysis was performed using Image J.   The sync windows plugin was used to 

trace the regions of interest (ROI) on RA, AD, RD, and MD images simultaneously.  The ROIs 

were carefully defined by anatomical boundaries with the anterior-most boundary being the first 

section containing hippocampus and the posterior boundary being the last section where the 

corpus callosum crosses at midline.  This resulted in a total of 3 slices per mouse.  Corpus 

callosum and external capsule ipsilateral to midline were included in the white matter ROI with 

the ventral boundary being drawn at the interface between the hippocampus and thalamus 

(Figure 3.1 A  red outline).  Dorsal cortex ipsilateral to midline was selected as a second ROI 

using the same boundaries (Figure 3.1 A , yellow outline) Signal intensity within each ROI was 

measured across slices and weighted by the number of voxels in each sketched region to obtain 

RA, AD, RD, and MD measures.  

 

Histology 

Immediately following each scan, mice were sacrificed by isofluorane overdose, 

perfused with 0.3% heparin phosphate-buffered saline (PBS), and brains were removed and 

placed in 4% paraformaldehyde (PFA) for 24 hours.  After fixation, brains were equilibrated in 

30% sucrose PBS and cut into 50 µm-thick sections using a freezing microtome.   Sections 

were then either rinsed in PBS and stored in 4% PFA for 5 days for silver staining or underwent 

processing for Iba-1 immunohistochemistry.  Evaluation was conducted on sections taken at 

400 µm intervals along the anterior-posterior axis of the brain.  For silver staining, a Neurosilver 

Kit (FD Neurotech) was used according to the manufacturer’s instructions with the exception of 

a single two-minute incubation with solution C as previously described (Shitaka et al. 2011).  For 

APP and Iba-1 staining, endogenous peroxidases were quenched with 0.03% H2O2, blocked in 

3% normal goat serum in 0.25% Triton-X tris-buffered saline (TBS-X), and incubated overnight 

in 1:1000 rabbit anti-Iba-1 (Wako) or 1:1000 rabbit anti-APP (Invitrogen) in 3% normal goat 
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serum (NGS) TBS-X.  Antibody binding was visualized using 1:1000 goat anti-rabbit (Vector 

Laboratories) in TBS-X, followed by 1:400 AB complex (Vector Laboratories), and DAB 

substrate enhanced with nickel chloride (Sigma).  All sections were mounted onto slides and 

digitally scanned using an Olympus Nanozoomer Whole-Slide Imaging System to generate 

photomicrographs.   

Iba-1 stereology and silver stain quantification in corpus callosum was performed as 

published in Shitaka et al (2011).  In short, ROI parameters were the same as used for DTI 

analysis.   Image J was used to measure silver staining by densitometry.  The optical 

fractionator probe in StereoInvestigator (Microbrightfield) was employed to count the number of 

Iba-1-positive cells.   A grid size of 180 x 180 µm and counting frame of 80 x 80 µm ensured 

that the Gunderson’s coefficient of error was <0.1 for all counts.   

 

Statistical Methods  

Prism 5.0 (GraphPad) was used for statistical analysis.  All DTI data were analyzed by 

one-way ANOVA followed by Bonferroni’s multiple comparisons test.    For histology, a one-

tailed t test was performed as it was expected that silver staining and Iba-1 positive cells would 

increase following injury as previously published (Shitaka et al. 2011).  Linear regression and 

Pearson’s product moment correlation was performed to determine the relationship between 

DTI and histological measures.  In all cases, only p-values less than 0.05 were considered 

significant.   
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3.3 RESULTS 

3.3.1 DTI of white matter  

Separate cohorts of mice were scanned using DTI 7 days after sham treatment or 24 

hours or 7 days after the first closed-skull traumatic brain injury (Figure 3.1 A-F ).  Analysis of 

corpus callosum and external capsule 24 hours after injury revealed no significant changes in 

DTI measurements compared to shams (Figure 3.1 C-F ).  At 7 days, relative anisotropy and 

radial diffusivity remained unchanged (Figure 3.1 C. D ), but a statistically significant decrease in 

axial diffusivity was apparent compared to shams (p<0.01) and injured mice at 24 hours 

(p<0.01; Figure 3.1 E ).  Decreased mean diffusivity was also evident compared to sham 

(p<0.05) and injured mice at 24 hours (p<0.01; Figure 3.1 F ).    

 



Figure 3. 1 Diffusion tensor imaging in rcTBI mice.
were defined by anatomical boundaries (blue) and were used for quantitative analysis of 
diffusion tensor images.  (B) Representative images of ipsilateral rela
axial diffusivity (AD) in both a sham and an rcTBI mouse at 7 days.  White indicates higher 
signal intensity and greater RA or AD.  (C, G) Relative anisotropy   (D, H) Axial diffusivity.  (E, I) 
Radial diffusivity. (F, J) Mean diff
***p<0.001, one-way ANOVA with Bonferroni post
symbol in 7 day group indicates a mouse with histologically mild injury, a possible outlier.)  
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1 Diffusion tensor imaging in rcTBI mice.   (A) The regions of interest (red, yellow) 
were defined by anatomical boundaries (blue) and were used for quantitative analysis of 
diffusion tensor images.  (B) Representative images of ipsilateral relative anisotropy (RA) and 
axial diffusivity (AD) in both a sham and an rcTBI mouse at 7 days.  White indicates higher 
signal intensity and greater RA or AD.  (C, G) Relative anisotropy   (D, H) Axial diffusivity.  (E, I) 
Radial diffusivity. (F, J) Mean diffusivity.  (C-F) White matter.  (G-J) Cortex (*p<0.05, **p<0.01, 

way ANOVA with Bonferroni post-test, error bars represent ±SEM.  Square 
symbol in 7 day group indicates a mouse with histologically mild injury, a possible outlier.)  

 

(A) The regions of interest (red, yellow) 
were defined by anatomical boundaries (blue) and were used for quantitative analysis of 

tive anisotropy (RA) and 
axial diffusivity (AD) in both a sham and an rcTBI mouse at 7 days.  White indicates higher 
signal intensity and greater RA or AD.  (C, G) Relative anisotropy   (D, H) Axial diffusivity.  (E, I) 

J) Cortex (*p<0.05, **p<0.01, 
test, error bars represent ±SEM.  Square 

symbol in 7 day group indicates a mouse with histologically mild injury, a possible outlier.)   
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3.3.2 DTI of cortex 

Considering injury results in significant histological abnormalities in cortex in addition to 

the white matter, analysis of DTI signal within cortex ipsilateral to injury was also performed.   

As cortex is an isotropic structure, little RA was observed within cortex in any injury group 

(Figure 3.1 G ).  No change between sham and injured mice at 7 days was apparent in AD, RD, 

or MD (Figure 3.1 H-J ).  However, AD, RD, and MD were significantly increased in injured mice 

at 24 hours compared to both shams (p<0.05) and injured mice at 7 days (p<0.01; Figure 3.1 

H-J).   

Given the changes in white matter AD and cortical MD, it was possible to separate the 

three injury groups based on these parameters (Figure 3.2 ).  One potential outlier in the 7 day 

injury group overlapped with sham mice and has been marked with a unique symbol in all 

figures as this mouse appeared to have minimal injury when analyzed by both DTI and 

histology.  

 

 

 

 

 

 

 

 



Figure 3.2 Mean diffusiv ity in cortex versus axial diffusivity in white mat ter separates 
mice into distinct injury groups.
histologically mild injury, a possible outlier.)   
 

 

3.3.3 Histological findings 

Immediately following DTI scans, mice in the sham and injured cohorts were sacrificed 

and tissue was processed for APP, Iba

al. 2011), only occasional APP-positive swellings were detectable in injured mice and were 

virtually indistinguishable from shams with this marker (

and silver staining within corpus callosum and external capsule revealed levels similar to those 

observed in Shitaka et al (Shitaka et al. 2011

A-D).  This indicates that the additional 3 hou

appear to substantially affect these histological markers.   Mice sacrificed at the 24 hour 

timepoint did not have Iba-1 or silver stain abnormalities, as previously reported 

2011), and were not included in the stereological analysis.  

 Interestingly, the density 

correlated strongly with RA (r=-0.

statistically significantly correlate with AD

MD (r=-0.0402, p=0.9397).  Iba-1
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ity in cortex versus axial diffusivity in white mat ter separates 
mice into distinct injury groups.  (Open Square symbol in 7 day group indicates a mouse with 
histologically mild injury, a possible outlier.)    

Immediately following DTI scans, mice in the sham and injured cohorts were sacrificed 

and tissue was processed for APP, Iba-1, and silver staining.  As previously reported 

positive swellings were detectable in injured mice and were 

shams with this marker (Figure 3.3 A-D ).  Quantification of Iba

and silver staining within corpus callosum and external capsule revealed levels similar to those 

Shitaka et al. 2011) in both sham and 7 day injured mice (

).  This indicates that the additional 3 hours of anesthesia during the MRI scan does not 

appear to substantially affect these histological markers.   Mice sacrificed at the 24 hour 

1 or silver stain abnormalities, as previously reported 

, and were not included in the stereological analysis.   

Interestingly, the density of silver staining in the corpus callosum and external capsule 

0.8639, p=0.0265; Figure 3.4 E ).  Silver staining did not 

correlate with AD (r=-0.6293, p=0.1806), RD (r= 0.5920, p=0.2157

1 immunoreactive microglial cell counts were also not 

ity in cortex versus axial diffusivity in white mat ter separates 
(Open Square symbol in 7 day group indicates a mouse with 

Immediately following DTI scans, mice in the sham and injured cohorts were sacrificed 

1, and silver staining.  As previously reported (Shitaka et 

positive swellings were detectable in injured mice and were 

).  Quantification of Iba-1 

and silver staining within corpus callosum and external capsule revealed levels similar to those 

in both sham and 7 day injured mice (Figure 3.4 

rs of anesthesia during the MRI scan does not 

appear to substantially affect these histological markers.   Mice sacrificed at the 24 hour 

1 or silver stain abnormalities, as previously reported (Shitaka et al. 

in the corpus callosum and external capsule 

ining did not 

0.5920, p=0.2157), or 

also not 



significantly correlated with any o

0.3865, p=0.4491), RD (r=0.6238, p=0.1856), 

 

 

Figure 3.3 APP immunohistochemistry.
the corpus callosum of mice analyzed at 24 hours or (C) 7 days following impacts and were 
similar to (D) sham mice.  (E) A mouse subject to moderate controlled cortical impact (CCI) 
brain injury and sacrificed at 24 hours served as a positive control for APP staining (red box 
indicates location of B-E, scale bar in A=500
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significantly correlated with any of the DTI measures:  RA (r=-0.7506, p=0.0856

6238, p=0.1856),  MD (r=0.1574, p=0.7658).   

 

APP immunohistochemistry.   (A, B) Injury did not result in APP positive axons in 
the corpus callosum of mice analyzed at 24 hours or (C) 7 days following impacts and were 
similar to (D) sham mice.  (E) A mouse subject to moderate controlled cortical impact (CCI) 

acrificed at 24 hours served as a positive control for APP staining (red box 
E, scale bar in A=500 µm, scale bar in B=50 µm). 

7506, p=0.0856), AD (r=-

(A, B) Injury did not result in APP positive axons in 
the corpus callosum of mice analyzed at 24 hours or (C) 7 days following impacts and were 
similar to (D) sham mice.  (E) A mouse subject to moderate controlled cortical impact (CCI) 

acrificed at 24 hours served as a positive control for APP staining (red box 



Figure 3. 4 Axonal injury and microglial activation in 7 day rcTBI.
had little silver stain (black precipitate, left panel) and few Iba
corpus callosum (scale bar=500 µm). (B) Silver staining (left panel) and increased numbers of 
Iba-1-positive cells (right panel) were evident in the corpus callosum of mice 7 days post
Quantification of silver by densitometry (C, arbitrary units A.U.) and of Iba
confirmed observed changes (*p<0.05, **p<0.01, Student’s one
strongly correlated with changes in relative anisotropy at 7 days post
correlation, two-tailed, solid line represents linear regression, dotted lines represent 95% 
confidence interval.  Square symbol in 7 day group indicates a mou
injury, a possible outlier).   
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4 Axonal injury and microglial activation in 7 day rcTBI.  (A) Sham operated mice 
had little silver stain (black precipitate, left panel) and few Iba-1-positive cells (right panel) in the 
corpus callosum (scale bar=500 µm). (B) Silver staining (left panel) and increased numbers of 

l) were evident in the corpus callosum of mice 7 days post
Quantification of silver by densitometry (C, arbitrary units A.U.) and of Iba-1 by stereology (D) 
confirmed observed changes (*p<0.05, **p<0.01, Student’s one-tailed t test).  (E) Silver s
strongly correlated with changes in relative anisotropy at 7 days post-injury (Pearson’s 

tailed, solid line represents linear regression, dotted lines represent 95% 
confidence interval.  Square symbol in 7 day group indicates a mouse with a histologically mild 

 

(A) Sham operated mice 
positive cells (right panel) in the 

corpus callosum (scale bar=500 µm). (B) Silver staining (left panel) and increased numbers of 
l) were evident in the corpus callosum of mice 7 days post-injury.  

1 by stereology (D) 
tailed t test).  (E) Silver staining 

injury (Pearson’s 
tailed, solid line represents linear regression, dotted lines represent 95% 

se with a histologically mild 
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3.4 DISCUSSION 

Here we present findings that mild repetitive closed-skull injuries in mice result in 

detectable changes by DTI.  Importantly, these DTI abnormalities are present despite of a lack 

of APP-positive histology, which has been considered a “gold standard” for identifying traumatic 

axonal injury.  Previous studies from our group have shown that the numbers of APP-positive 

axonal varicosities correlate strongly with RA in a model of moderate-severe traumatic brain 

injury (Mac Donald et al. 2007b).  In this work, we show RA correlates just as strongly with the 

degree of silver staining in the corpus callosum of mildly injured mice.   

Both axial diffusivity and mean diffusivity have been widely used to assess axonal 

degeneration in the central nervous system (Pierpaoli, et al. 2001).  In our model, both of these 

parameters were reduced within white matter in the injured 7 day group compared to shams.  

Notably, neither silver stain, a marker of protein aggregates, nor Iba-1-positive microglial cells 

correlated well with AD and MD changes.  While both protein aggregation and microglial 

pathology may have contributed to some of the reduced diffusivity, weak correlations between 

these measures indicate other histological markers are needed that better reflect AD and MD 

changes.  In addition, because Iba-1 did not correlate with any DTI parameter, it is important to 

note that this method may not be suitable to resolving microgliosis.  Other imaging modalities 

may therefore be required to detect this prominent microglial response in vivo 

(Ramlackhansingh et al. 2011; Wang, et al. 2011).  

Given the coincident decrease in axial diffusivity and mean diffusivity, it is interesting that 

no significant changes in relative anisotropy were seen.  This is different from TBI with 

contusion, where AD is reduced, overall diffusivity is unchanged or increased, and 

subsequently, RA is reduced (Mac Donald et al. 2007b).  In this model, it is possible that a 

larger sample size may resolve the non-significant reduction in RA.   Alternately this could 

indicate that in mild injuries, analysis of single components of the diffusion tensor may be more 

sensitive than RA. 
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Increased radial diffusivity is another common feature of DTI in TBI and in other models 

with prominent demyelination or edema (Song, et al. 2003; Mac Donald et al. 2007a; Klawiter, et 

al. 2011).  We observed no significant change in this parameter in our model, which is in line 

with previous observations by electron microscopy that revealed myelin degradation is not 

characteristic of this mild injury (Shitaka et al. 2011). 

Unlike white matter, imaging of cortex revealed an acute, transient increase in AD, RD, 

and MD, likely reflecting edema.  While these changes were significant at 24 hours, they were 

resolved by 7 days post-injury.  This is potentially useful for determining time since injury.  Here, 

increased mean diffusivity in cortex and unaltered AD in white matter characterized mice 

imaged 24 hours following initial injury, whereas normalized MD in cortex and decreased AD in 

white matter characterized mice imaged 7 days post-injury.      

These results highlight the evolving nature of traumatic brain injuries, as the DTI 

changes within white matter were not immediately apparent at 24 hours but were distinct 7 days 

following injury.  Similarly, earlier characterization of this model has shown that Iba-1 and silver 

stain abnormalities also develop 3-7 days after injury (Shitaka et al. 2011).  Thus, it is likely that 

DTI measurements are reflective of a progressive degenerative process taking place within the 

corpus callosum and external capsule of these injured mice.  Clinically, this may also mean that 

DTI days or weeks after mild head injury may be more informative for detecting and diagnosing 

axonal injury.  However, given our observed alterations in AD and MD were approximately 10%, 

it is unclear whether these changes would be significant within a human population where 

normal white matter diffusion may vary greatly between subjects.  This may be one explanation 

why DTI in human mild TBI patients has resulted in conflicting reports of the observed changes 

in DTI signal (Zhang, et al. 2010; Cubon, et al. 2011; Henry, et al. 2011).      

There are several limitations of this work.  First, sample sizes are small and to fully 

validate this model, larger groups will be required.  However, given the small sample and the 

relatively mild injuries studied, it is encouraging that these DTI changes are evident and 
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correlate with histological abnormalities.  Second, this research is limited by the histological 

markers chosen for analysis.  To fully characterize this model, markers for neurofilament, 

myelin, and activated astrocytes might further inform the nature of these DTI alterations.  

Quantitative electron microscopy may be the ultimate “gold standard” but is beyond the scope of 

the current work.  Third, mice that received a single injury were not assessed here, and so we 

did not determine whether single injury alone results in DTI signal change.  We have previously 

demonstrated that mice subject to single injuries do not have significantly more silver staining or 

microglial activation compared to shams at 7 days post-injury thus it is unlikely that a single 

impact would be detectable by DTI (Shitaka et al. 2011).  Fourth, the interval between injuries 

was kept fixed at 24 hours; further studies will be required to determine the effect of different 

intervals between injuries.  As a final note, the imaging protocol used was not optimized for 

measuring MD changes. 

Despite these limitations, this study shows that DTI is capable of detecting populations 

of degenerating axons in the absence of APP pathology.  Future studies will be required to 

determine the distinct DTI signatures of axonal degeneration following repeated mild injuries in 

order to differentiate injury phenotypes that may or may not include disrupted APP transport.  

Full validation of detection methods and interpretation of DTI signal changes will be important to 

providing meaningful evaluation and targeted therapeutics for patients with multiple concussive 

injuries. 
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CHAPTER  4  

Array Tomography for the Detection of Axonal Injury  

 

4.1 INTRODUCTION 

 A barrier to analysis of axonal injury in repetitive concussive traumatic brain injury 

(rcTBI) is the ability to resolve small injured axons by light microscopy.  This is due in large part, 

to the low signal to noise of very small structures that are at or below the resolution of light 

microscopy.  In humans and macaques, axon diameters within the corpus callosum range 

between 0.2 to >6 µm (Lamantia, et al. 1990; Aboitiz, et al. 1992).  In rodents, axonal diameter 

is smaller, typically in the 0.1 to 1 µm range (Kim, et al. 1996; Olivares, et al. 2001).  Following 

traumatic brain injury in mice, swollen axons in corpus callosum can become very large (5 µm or 

more), and are clearly visible with standard immunohistochemistry using antibodies to amyloid 

precursor protein (APP) and neurofilaments.  However, several observations have led us to 

hypothesize that immunohistochemistry and light microscopy may not reflect the true amount of 

axonal injury present after TBI in mouse, particularly after mild concussive injuries.   

 First, standard immunohistochemistry techniques for APP and neurofilaments reveal 

only small areas of axonal injury at 2 days after the first injury that appear to resolve by 7 days 

(Chapter 2, Figure 2.8 ).  However, axonal injury is evident by silver staining and has been 

confirmed by electron microscopy timepoints later than 2 days (Shitaka et al. 2011).  Electron 

microscopic analysis of repetitive concussive TBI (rcTBI) has confirmed that injured axons are 

present throughout the ipsilateral corpus callosum and external capsule at 7 days post-injury 

(Shitaka et al. 2011, Chapter 5 Figure 5.8 ).  These axons display compaction of cytoskeletal 

elements, organelle accumulation, and axolemma collapse.  A key observation is that few of 

these injured axons appear to have diameters greater than 1 micron, and most are less than 



55 
 

500 nanometers—at or below the resolution of standard light microscopy techniques.  Indeed 

other investigators have documented cases of axonal injury without axonal swelling, and it may 

be possible for axon degeneration to proceed without the classic “beads-on-a-string” 

morphology (Stone et al. 2001).  Additionally, in this mild injury model, white matter 

abnormalities are apparent by diffusion tensor imaging, where mean (MD) and axial diffusivity 

(AD) are both significantly reduced at 7 days post-injury.  Neither MD nor AD correlate with the 

amount of silver staining or iba-1 labeling for microglia (Bennett et al. 2012).  The inability to 

explain DTI measures by standard histological techniques further supports the idea that we are 

underestimating the amount of axonal injury in rcTBI by these methods.   

 To test this hypothesis, we adapted array tomography for measuring axonal injury.  

Array tomography was developed in the lab of Stephen Smith to quantitatively measure 

synapses in the cortex (Micheva, et al. 2007).  In array tomography, improved spatial resolution 

is achieved along the z-axis through physical sectioning on an ultramicrotome, which greatly 

improves the signal to noise ratio and allows identification of individual synapses (Micheva et al. 

2007; Kay, et al. 2013).  While this technique has not been rigorously validated by quantitative 

EM, the use of several antibodies to label pre- and post-synaptic densities and the careful co-

registration of fluorescent labels with scanning electron micrographs has confirmed the spatial 

correlation of immunofluorescence with ultrastructural details (Micheva et al. 2007).  Further, the 

advantages of this technique over traditional electron microscopy are the ability to assay large 

volumes of tissue in a relatively high-throughput fashion, to label multiple proteins of interest, 

and to perform these experiments with a standard epifluorescent microscope.   

 Here, we outline a method for using array tomography to examine axon injury.  We show 

preliminary data using this technique to resolve injured and uninjured axons at a level of 

resolution not previously possible except with electron microscopy.  Altogether, this is a 

promising new method for quantitative analysis of axons that could be applied to many fields 

beyond traumatic brain injury.   
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4.2 METHODS 

Animals 

Male C57Bl/6j mice were purchased from Jackson Laboratory between 6-8 weeks of age 

(stock#000664).  Two male APP knockout mice were obtained from Jackson Laboratory at 2 

months of age (stock# 004133).  Two 12-month-old male TauP301S mice and two 3-month-old 

tau knockout mice were also used for these experiments and were bred in house.  All animals 

were housed in accordance with the Animal Studies Committee at Washington University in 

Saint Louis.  Mice were provided with food and water ad libitum and were maintained under a 

12 hour light/dark cycle. 

 

Surgical procedures 

Mice were subject to closed-skull sham injury or rcTBI injury as previously described 

(n=5 per group, Chapter 2).  A second group of mice underwent controlled cortical impact 

injuries at a depth of 1.0 mm (n=2) or 1.5 mm (n=4), which has been described elsewhere 

(Brody, et al. 2007).  Briefly, mice are anesthetized, placed in a stereotaxic frame, and a midline 

incision is made.  A 5 mm craniotomy is performed over the left parietal cortex.  An 

electromagnetic impactor fitted with a 3 mm metal tip is positioned M/L -1.2 mm relative to 

midline and +1.5 mm lambda.  Impacts are delivered at 5 m/s with a dwell time or 100ms.  After 

irrigation with phosphate buffered saline (PBS) a plastic skull cap is glued in place, the midline 

incision is sutured closed, and the mice are allowed to recover on a heat pad before being 

returned to their cage. 

 

Tissue embedding and sectioning for array tomography and electron microscopy 

Tissue embedding and sectioning was performed as described by others with minor 

modifications (Kay et al. 2013).  Briefly, animals were sacrificed by deep anesthesia with 
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isofluorane followed by cardiac perfusion with 10 milliliters room temperature 0.3% heparin in 

0.01 M PBS.  This was immediately followed by perfusion with 10 milliliters 4% 

paraformaldehyde (cat# 15710 E.M.S), 0.025% sucrose in 0.01 M PBS.  Brains were removed 

and placed in fixative for 20-30 minutes and then were sectioned into 1 mm thick coronal slabs 

using a razor blade and a brain slicing matrix.  Corpus callosum and external capsule ipsilateral 

to injury was then dissected into 5 x 2 x 1 mm blocks which were further post-fixed for 1-2 

hours.  Following fixation, blocks were dehydrated in an ascending ethanol series (50%, 70%, 

95%, 100%, 100%).  Each dehydration step was performed for 5 minutes with gently shaking 

using chilled solutions.  Blocks were then placed in one wash with equal parts 100% ethanol 

and LR White (cat# 14381 E.M.S) followed by two washes in 100% LR White.  Blocks were 

allowed to equilibrate overnight at 4°C in LR White  and were then placed in gelatin capsules 

(cat#70100, E.M.S.) and cured overnight in a 53°C o ven.  Gelatin could be removed by gentle 

heating in a 60°C water bath.   

 Arrays were produced using a histo Jumbo diamond knife (Diatome).  To collect ribbons, 

the top and bottom edges of each tissue block was painted with a thin layer of Weldwood 

contact cement (DAP products) mixed with equal parts xylene.  Ribbons were collected on 

gelatin subbed coverslips, air-dried, and stored at room temperature prior to immunofluorescent 

labeling. 

For parallel electron microscopy studies, after perfusion, 1 mm thick coronal slabs of the 

contralateral, uninjured hemisphere was placed in 1% PFA, 1% glutaraldehyde in 0.01 M 

phosphate buffer overnight.  Three slabs were prepared per mouse, beginning at the anterior-

most end of the hippocampus.  Sections were then incubated in 1% osmium tetroxide, 

dehydrated in ethanol, and embedded in Polybed 812 (cat# 08792, Polysciences, Inc.) as 

previously described.  Semithin sections were cut with glass knives and stained with toluidine 

blue to identify the region of interest and ultrathin sections 70-90 nm were cut and stained with 

Reynold’s lead citrate and 4% uranyl acetate.   
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Immunofluorescence 

 For immunofluorescent labeling, a PAP pen was used to draw a hydrophobic barrier 

around the tissue ribbon.  Sections were then incubated in 50 mM glycine in Tris buffered saline 

(TBS) for 5 minutes.  TBS-glycine was aspirated off and a blocking solution containing 0.05% 

Tween, 0.1% bovine serum albumin (BSA) in TBS was applied for 20 minutes.  Following 

blocking, primary antibodies were applied and coverslips were placed in a humidified chamber 

at 4°C overnight.  The following day, tissue was wa shed in TBS and incubated in secondary 

antibody in blocking solution for 1 hour at room temperature protected from light.  Tissue was 

then washed again in TBS and 5 µg/ml 4',6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI; 

cat #D1306, Invitrogen) in TBS was applied for 5 minutes followed by a final wash in TBS.  

Coverslips were mounted on glass slides in Vectashield fluorescent mounting medium (cat# H-

1000, Vector Laboratories).  See tables 4.1  and 4.2 for a complete listing of primary and 

secondary antibodies and dilutions that have been tested in array tomography sections and 

optimized for immunofluorescent labeling.  All immunofluorescence was imaged using a Zeiss 

Axiovert 200 laser scanning confocal microscope with a 40x 1.2 NA water immersion lens or a 

Zeiss Axioskop 2 MOT Plus wide-field fluorescence microscope with a 63x 1.4 NA oil immersion 

lens.   

 

Electron microscopy in uninjured sham mice 

All electron micrographs were captured using a Joel 100C electron microscope.  Three 

grids were prepared and analyzed per mouse (n=5 mice).  Images of axonal cross-sections 

were captured at a direct magnification of 6,000x beginning at the base of the cingulum and 

continuing to the lateral edge of the tissue section.  Tissue sections were placed on grids with 

125 µm holes.  To avoid user bias, one field of axons was sampled from each grid square.  The 

axonal field closest to grid bar nearest to midline was chosen.  Areas of sectioning artifacts, 
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folds, and transversely or longitudinally cut axons were avoided.  This resulted in 5-8 images 

per section and 80 images total.     

 

Quantitative measurement of axonal diameters 

Image J (NIH) was used for all image analysis.  In each electron micrograph, a 5 x 5 µm 

area was selected in the center of the image for measuring axon diameters.  A scaled line was 

drawn across the narrowest portion of the axon, excluding the myelin sheath, and this 

measurement was recorded.  All cross-sectional axons with distinct borders were measured 

from each image, excluding those touching the edge of the image.  In total, this analysis 

included an area of 400 µm2 (16 fields each 5 x 5 µm) out of an estimated total area of 0.5 mm2 

(from measurement of toluidine blue stained semithin sections) per mouse.  This includes 

ipsilateral corpus callosum and external capsule immediately below the injury site ±1.5 mm 

anterior-posterior. 

Approximately the same volume of tissue was analyzed by capturing 4 images from a 

single 70-90 nm section per animal (n=5 uninjured sham mice) corresponding to the area of 

corpus callosum beneath the cingulum and extending to the lateral edge of the external capsule.  

Within each image, four 5 x 5 µm areas of cross-sectional axons were randomly selected for.  

This resulted in a total of 16 areas for analysis from each mouse.  Rabbit anti-tubulin 

immunofluorescence was performed using a goat anti-rabbit Alexa 488 secondary antibody.   In 

image J, a line was drawn across the middle of the narrowest portion of each fluorescent point 

and the full width at half max (FWHM) was determined from the intensity profile.  These 

measures were rapidly collected from several axons per field using a publically available Image 

J macro (courtesy John Lim, v.3 available at http://imagej.1557.x6.nabble.com/FWHM-on-line-

selection-td5004777.html). 

 

 



60 
 

Creating projection images of axons 

 Images of immunofluorescent arrays were captured and processed in Image J as 

previously described for synapses in Kay et al. 2013 and the macros that have been developed 

for simplifying this process can be found in the supplementary information of their publication.  

In short, images of serial sections are first compiled in a stack (see Macro 1, supplemental 

material Kay et al. 2013) and then the multistackreg Image J plugin is used to align each section 

(courtesy Brad Busse, available at http://bradbusse.net/downloads.html).  For axons, tubulin-

labeled images were used for all alignments and the transformation file was applied to all 

subsequent channels.  Following alignment, max z-projection images were created from each 

stack, channels were merged and converted to color, and the resulting image was cropped to 

the area of interest.  
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Table 4.1 Primary antibodies for imaging axons by a rray tomography. 

 

 

 

Primary Antibody  Short 
Name 

Company  Cat. No.  Size Dilution  Notes  

Mouse anti -neurofilament H 
phosphorylated 

SMI-31 Calbiochem 
(Millipore) 

NE1022 100 µl 1:100 Labels many axons, not injury specific 

Mouse anti -neurofilament H 
non-phosphorylated 

SMI-32 Calbiochem 
(Millipore) 

NE1023 100 µl 1:20 or 
1:100 

Preferentially labels injured axons 

Mouse a nti -neurofilament 
200 kDa + 160 kDa 

SMI-34 Abcam ab24571 250 µl  1:200 Labels many axons, not injury specific 

Rat monoclonal to myelin 
basic protein 

MBP Abcam ab7349 1 ml 1:100 Good myelin labeling 

Rabbit polyclonal anti -β-APP APP Invitrogen 51-2700 200 µl  1:50 Seems to label injured axons and 
many vesicle structures.  Some 
punctate background labeling was 
apparent in APP-/- tissue 

Rabbit polyclonal to  
α-tubulin 

alpha-
tubulin 

Abcam ab18251 50 µg 1:200 Labels all axons 

Rabbit polyclonal anti -200 
kDa neurofilament 

NF200 Sigma-
Aldrich 

n4142 200 µl  1:200 Labels many axons, not injury specific 

Phospho -tau (pS202)  AT8 Pierce MN-1020 100 µg 1:50 Labels tau aggregates, no labeling in 
Tau-/- 

Phospho -tau (pS202)  CP13 Courtesy 
P.Davies 

 ascites 
fluid, 5 ml 

1:50 Labels tau aggregates, no labeling in 
Tau-/- 

Paired helical filaments  PHF1 Courtesy 
P.Davies 

 ascites 
fluid, 5 ml 

1:50 Labels tau aggregates, no labeling in 
Tau-/- 

Mouse monoclo nal to 
stathmin 3 

STMN3, 
SCLIP 

calbiochem 
(millipore) 

ab76678 ascites 1:50 Punctate labeling in neurites 
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Table 4.2  Secondary antibodies used for array tomo graphy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Secondary Antibody  Company  Cat. No.  Size Dilution  
Donkey anti -rabbit Alexa 488  Invitrogen A21206 0.5 ml 1:200 
Goat anti -rat Alexa 488  Invitrogen A11006 0.5 ml 1:200 
Goat anti -mouse 488  Jackson 

Immunoresearch 
115-546-146 0.75 mg 1:200 

Goat anti -mouse Alexa 594  Invitrogen A11032 0.5 ml 1:200 
Donkey anti -rabbit Cy3  Jackson 

Immunoresearch 
711-165-152 0.5 mg 1:200 
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4.3 RESULTS 

4.3.1 Adapting array tomography for the detection of injured axons 

Overall the workflow is similar to that reported for analysis of synapses (Figure 4.1 ) 

though there are additional considerations to take into account for the preparation of arrays for 

analysis of axons.   Most importantly, orienting tissue blocks in the gelatin capsules for 

embedding needs be done with care so that the maximum amount of white matter can be 

sectioned later.  Second, because axons have clear orientations, it is important to consider this 

in downstream analysis.  For example, axons cut crosswise will appear punctate while axons 

cut longitudinally will appear as short segments that have different X-Y locations in each 

section.  Assaying axons so that isotropic volumes are measured in each array or sampling from 

a sufficient number of randomly selected areas throughout the tissue may be the best approach 

to avoiding orientation-dependent sampling bias. 

 
Figure 4.1 Array tomography workflow.   (1) Sections are embedded in LR white media in 
gelatin capsules (inset) and an ultramicrotome is used to produce 70-90 nm section ribbons 
using a histojumbo diamond knife.  (2) Standard immunofluorescent techniques are used to 
label each ribbon and images from sections are captured using a 63x lens on an epifluorescent 
microscope.  (3) Each image can then be further subdivided into smaller regions for analysis, 
excluding cell bodies and tissue processing artifacts. 
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 Several antibodies were tested and their sensitivity to the detection of axons and axonal 

injury was determined (Tables 4.1  and 4.2).  We found an antibody to tubulin that appears to 

robustly detect axons in the mouse corpus callosum and external capsule.  Using this antibody 

we were able to resolve individual axons by array tomography (Figure 4.2 A-L  and 4.3 B).  By 

comparison, we were not able to resolve single axons by conventional laser scanning confocal 

microscopy of tubulin immunofluorescence in thick sections (Figure 4.3 A ). 

Figure 4.2 Example of a short array containing unin jured mouse external capsule labeled 
with anti-tubulin and Alexa 488.  (A-K) Images of eleven 70 nm thick ultrathin sections labeled 
with anti-tubulin and Alexa 488.  Images have been co-registered so that each represents the 
same 19.5 x 19.5 µm area.  (L) A projection of the 11 image stack shows a reconstruction of 
individual, longitudinally/transversely cut axons within this stack.  
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Figure 4.3 Side by side comparison of tubulin label ing in thick sections and ultrathin 
sections.  (A) A confocal X-Y projection image of a section of uninjured mouse  corpus 
callosum  mouse cut at a 50 µm thickness on a freezing microtome and labeled with anti-tubulin 
and Alexa 488.  (B) A confocal X-Y projection image of an ultrathin section from a similar region 
of corpus callosum cut at 90 nm on ultramicrotome and labeled with anti-tubulin and Alexa 488.  
(C and D) are X-Z images showing the improved spatial resolution along this axis.     

 

4.3.2 Comparison of tubulin-labeled ultrathin sections with electron microscopy 

 To determine how tubulin labeling in ultrathin sections reflects axonal ultrastructure, 

corpus callosum and external capsule in one hemisphere from sham injured mice (n=5) was 

prepared for array tomography and the opposite hemisphere was prepared for electron 

microscopy (Figure 4.4 A-F ).  Axon diameters were measured in both electron micrographs and 

fluorescent images.  A total area of 0.002 mm2 was analyzed in each case.  By electron 

microscopy, we were able to measure the diameters of 2612 axons and in ultrathin sections, 

1178 axons.  A frequency distribution of these measures shows that the 25 % percentile for  
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Figure 4.4 Electron microscopy versus tubulin-label ed ultrathin sections in uninjured 
wild-type mouse corpus callosum and external capsul e. (A-C) Electron micrographs or (D-
F) tubulin-Alexa 488 fluorescence images were obtained of axonal cross-sections and were 
used for axon diameter measurements.  (G) Frequency distribution of axon diameter 
measurements from electron micrographs (EM) and ultrathin sections used in array tomography 
(AT).  An equal tissue area was examined by each technique.  A total of 5 mice were included in 
this analysis, with the right hemisphere being prepared for EM and the left for AT. 
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axon diameters was 0.14 µm, the median was 0.23 µm, and the 75% percentile was 0.39 

(Figure 4.4 F ).  In tubulin-Alexa 488-labeled ultrathin sections, the 25% percentile was 0.26 µm, 

the median was 0.30 µm, the 75% percentile was 0.36 µm.  In all, this indicates that tubulin 

labeling does not identify all axons and, in particular, very small diameter fibers are not imaged.  

Specifically, some smaller diameter axons may appear larger due to spatial low-pass filtering. 

 
 
4.3.3 Axonal Injury Markers in Ultrathin Sections 

 Axonal injury markers were tested in sections containing corpus callosum and external 

capsule from mice subject to a moderate controlled cortical impact (CCI) traumatic brain injury 

and sacrificed at 24 hours (n=2).  Markers to phosphorylated or non-phosphorylated heavy 

chain neurofilaments and amyloid precursor protein (APP) resolved structures resembling 

classic axonal varicosities (Figure 4.5  and 4.6).  However, labeling in APP knockout mice 

subject to controlled cortical impact (n=2) indicates that the antibody used is not specific to APP 

(Figure 4.5 C inset ).   

Further, when tested in an uninjured sham mouse, SMI-31 appeared to label uninjured 

axonal segments (Figure 4.7 A ).  This injury nonspecific labeling was also seen using other 

neurofilament antibodies such as NF200 and SMI-34 (data not shown).  SMI-32 alone appeared 

to not be present in uninjured sham mice (Figure 4.7 B ).  Thus, SMI-32 was used in 

subsequent studies as an axon injury specific marker.  Other investigators have reported similar 

results using SMI-31 and SMI-32 (Budde et al. 2008). 
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Figure 4.5 Axonal injury markers SMI-31 and APP in 24 hour 1.0 mm CCI external 
capsule .  (A) DAPI labeling indicates cell nuclei.  (B) SMI-31 Alexa 488 labeled axons.  (C) APP 
Cy3 labeled axons (inset is from CCI injured APP knockout mouse).  (D) Composite image of 
DAPI, SMI-31, and APP.  
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Figure 4.6 Axonal injury markers SMI-32 and APP in 24 hour 1.0 mm CCI external 
capsule .  (A) DAPI labeling indicates cell nuclei.  (B) SMI-32 Alexa 488 labeled axons.  (C) APP 
Cy3 labeled axons.  (D) Composite image of DAPI, SMI-31, and APP. 

 

 

Figure 4.7 Axonal injury markers SMI-31 and SMI-32 in uninjured sham external capsule. 
(A) SMI-31 labels axons in an uninjured mouse while (B) SMI-32 does not.  Green is SMI-31 or 
SMI-32, red is tubulin Cy3, and blue is DAPI. 
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4.3.4 Preliminary data using SMI-32/Tubulin to measure axonal injury after TBI 

 To measure axonal injury in TBI, tissue blocks containing corpus callosum and external 

capsule from uninjured sham (n=5), repetitive concussive TBI (n=5), and 1.5 mm CCI (n=4) 

mice were prepared 7 days post-injury.  Sections from each were stained for anti-SMI-32 to 

label areas of injury and anti-tubulin to label all axons (Figure 4.8 ).  In sham mice, little to no 

SMI-32 was detected and tubulin-labeled axons did not appear to be swollen or distorted 

(Figure 4.8 A, B ).  Mice subjected to rcTBI had areas of small punctate SMI-32 labeling as well 

as regions of SMI-32/tubulin co-localization (Figure 4.8 C, D ).  In moderate TBI, clear disruption 

of axons was evident with large SMI-32 swellings appearing with or without tubulin co-

localization.  Further, the overall amount of tubulin appeared to be greatly reduced.  This 

indicates that quantitative measurement of total axonal injury may be represented by positive 

SMI32 staining, tubulin staining loss, or  a ratio between SMI-32 and tubulin labeling. 
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Figure 4.8 Projection images of arrays (20-30 secti ons each) from external capsule 
labeled with the axonal injury marker SMI-32 (red) and tubulin (green).  (A, B) Axons from 
uninjured wild-type mice displayed little SMI-32 labeling.  (C,D) Mice subjected to mild repetitive 
concussive traumatic brain injury had punctate areas of SMI-32 labeling and occasional co-
localization of SMI-32 and tubulin in swollen axons at 7 days.  (E,F)  Larger axonal varicosities 
>3 µm in diameter were apparent in a model of 1.5 mm CCI moderate traumatic brain injury at 7 
days.  Tubulin loss was also evident.  
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4.3.5 Other markers for array tomography 

 In addition to assaying classic markers of axonal injury in white matter, we also tested 

antibodies to myelin basic protein (MBP) and to the microtubule associated protein tau.  Anti-

MBP prominently labeled myelinated axons in white matter tracts (Figure 4.9 ).  The tau 

antibodies PHF1, AT8, and CP13 were all tested in tissue from aged mice carrying a familial 

frontotemporal dementia mutation (TauP301S).  These phospho-tau antibodies all detected 

perinuclear aggregates in entorhinal cortex (PHF1 shown, Figure 4.10 ).  No tau labeling was 

seen in the cortex of tau knockout mice (PHF1 shown, Figure 4.10 C  inset ). 

 

Figure 4.9  Myelin basic protein and tubulin labeli ng in the external capsule of an 
uninjured wild-type mouse.   (A) DAPI labeling indicates cell nuclei.  (B) Myelin basic protein-
Alexa 488 labeled axons.  (C) Tubulin-Alexa 594 labeled axons.  (D) Composite image of DAPI, 
myelin basic protein, and tubulin.  Inset shows an enlarged view of the box in (D), where 
individual myelinated axonal cross-sections are clearly visible. 
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Figure 4.10  PHF-1 tau and tubulin labeling in the entorhinal cortex of a 12-month-old Tau 
P301S mouse.   (A) DAPI labeling indicates cell nuclei.  (B) Tubulin Alexa 488 labeled axons.  
(C) PHF1 Cy3 labeled axons.  Inset shows the absence of PHF1 labeling in cortec from a tau 
knockout mouse (D) Composite image of DAPI, tubulin, and PHF1. 

 

 

 

4.4 DISCUSSION 

 Here we apply the powerful technique of array tomography to the detection of injured 

axons.  This promising method appears to distinguish injury in axons with diameters greater 

than ~200 µm in the repetitive concussive and moderate-severe TBI models compared to 

uninjured shams.  Further, a wide range of antibodies were tested that can be used in several 

downstream applications beyond the field of traumatic brain injury.   
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 Previously, array tomography has been used to quantify synaptic density near amyloid 

plaques in mice, to quantifying synapses in human AD patients with or without the APOE4 

allele, to investigate mitochondria distribution in the soma and neurites of mutant tau mice, to 

reconstruct tau-containing axons and synapses in a reversible tauopathy model, and to examine 

morphological changes in mouse blood vessels and aortic aneurysms (Koffie, et al. 2009; 

Kopeikina, et al. 2011; Koffie, et al. 2012; Saatchi, et al. 2012; Kopeikina, et al. 2013; Polydoro, 

et al. 2013; Pooler, et al. 2013).  To date, this is the only investigation of which we are aware 

using this technique to study axonal injury specifically.  The ability to qualitatively and 

quantitatively examine axonal pathology is broadly relevant to several injury and 

neurodegenerative disease studies which currently rely on traditional histological measures and 

in vivo MRI techniques to investigate axonal injury.   However, use of standard techniques only 

reflects axonal injury if it results in large scale changes.  Here, we show by electron microscopy 

that most mouse axons in corpus callosum and external capsule are smaller than 500 

nanometers, which is well below the typical resolution of these techniques.  Using array 

tomography we were able to resolve individual axons with diameters near 200 nm or greater. 

Further, in these small axons we were able to detect axonal injury in mice that were 

subjected to repetitive concussive TBI and were sacrificed at 7 days.  These results are in 

accordance with silver staining abnormalities and electron microscopy data in this injury models 

which indicates widespread axonal damage in spite of the lack of traditional 

immunohistochemistry findings (Shitaka et al. 2011).  Thus, it would appear that array 

tomography may be useful for future studies investigating axonal injury in this model.   This 

technique has the advantage of being more quantitative than silver staining, which is measured 

semi-quantitatively by optical density.  Also, array tomography is less costly than electron 

microscopy as it can be performed with a standard epifluorescent microscopy.  Further, 

compared to electron microscopy, this technique has higher throughput and allows for a greater 
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volume of tissue to be processed at a time.  It also has the advantage that many antibodies are 

available which to aid in the study of specific proteins in axonal injury. 

However, there are several limitations that should be addressed.  First, while arrays can 

provide high spatial resolution data that conventional histology cannot, electron microscopy 

remains the gold standard.  In these studies, we were not able to resolve small axons <200 nm 

in diameter and based on data from parallel electron microscopy studies, this appears to be 

nearly half of the total population of axons in the corpus callosum and external capsule as 

determined in this study and by others (Olivares et al. 2001).  Further, considering that we were 

also not able to resolve all large diameter axons, it may be that the rabbit polyclonal anti-tubulin 

antibody chosen for these studies does not label all axonal populations.  Testing additional 

tubulin antibodies may shed light on this issue.  On the other hand, we were not able to 

determine how the differential preparation and handling of tissue for EM versus AT may have 

contributed, in part, to this discrepancy.  Thus direct quantitative comparison between EM and 

AT may not be entirely appropriate.  Ideally, such a study would be performed in the same 

tissue sections—prior to embedding in LR White, tissue would be incubated in osmium 

tetroxide.  After immunofluorescence, lead citrate and uranyl acetate would be applied to the 

tissue sections and scanning electron would be performed.  This correlative electron microscopy 

approach has been reported by Micheva and colleagues and may be a future direction for 

validation of axonal injury measures in array tomography (2007).   

Additional studies to be performed include further validating this method and developing 

a protocol to apply stereological approach to the quantification of injury.  For future validation, 

not only should injured axons be measured in corpus callosum and external capsule of mice 

subjected to varied levels of injury (Figure 4.10 ), but early and late timepoints should be 

examined.  Qualitatively, injury appears to result in reduced tubulin-positive axons.  If this is truly 

the result of axon injury and not an artifact of tissue preparation, then at an early timepoint <24 

hours post-injury there should be more tubulin labeling than at a later timepoint >1 month post-
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injury.  Moreover, current efforts are aimed at applying stereological principles to the collection 

and analysis of data from array tomography sections.  In the future, 3-4 sections will be 

collected along the anterior-posterior axis of each tissue block.  From each section, 6-8 images 

will be collected and 8-10 20 x 20 µm crop boxes from each image will examined so that a 

minimum of 100-200 areas will be analyzed per mouse.  All areas chosen for analysis will be 

randomly selected using a grid.  This approach will ensure a rigorous and unbiased 

measurement of axonal injury throughout the volume of the injured corpus callosum and 

external capsule.   

Finally, future studies may also use this method to study other aspects of axonal injury in 

both traumatic brain injury and other conditions.  Labeling myelin basic protein, for example 

could be used not only to determine if myelinated axons are preferentially injured in rcTBI, but 

could also be used to investigate demyelinating disorders such as multiple sclerosis.  Given the 

ability to discriminate individual axons in large areas of tissue, it may be possible to detect early 

signs of demyelination, and discern the effects of therapeutic or genetic manipulations on 

disease progression.  Also, given our ability to detect abnormally phosphorylated tau species 

using multiple antibodies, a clear direction of this work is to apply this method to the detection of 

tau alterations after traumatic brain injury.  Previously, our lab has observed abnormal 

accumulations of phosphorylated intra-axonal tau following moderate-severe injury (Tran, et al. 

2011a; Tran, et al. 2011b).  Considering the sensitivity of this technique, it will be interesting to 

use arrays to measure intra-axonal tau in less severe injury models such as rcTBI.  Last, an 

exciting direction is to use this method to detect axon degeneration in tissue from human 

patients where it may be possible to answer key questions about Chronic Traumatic 

Encephalopathy or Alzheimer’s disease through quantitation of axon injury or loss and 

correlative analysis with clinical measures.   

To summarize, we have adapted array tomography to identify injured axons in tissue 

from two different experimental TBI mouse models.  Several markers are available for 
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examining different aspects of axonal integrity including tubulin, neurofilaments, APP, myelin 

basic protein, and phospho-tau species.  Future studies will be aimed at using this method 

quantitatively in both mouse models and in human tissue.    
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CHAPTER  5  

Acute Reduction of Microglia does not Alter Axonal Injury in a Mouse 

Model of Repetitive Concussive Traumatic Brain Inju ry  

 

5.1  INTRODUCTION 

While 91% of athletes will recover from symptoms of concussion within a week, there is 

increasing awareness of the long-term consequences of suffering one or more concussions, 

particularly among retired professional football players and boxers. (Corsellis et al. 1973; 

Mortimer 1985; Roberts et al. 1990; Geddes, et al. 1999; Guo, et al. 2000; Guskiewicz et al. 

2003; McCrea et al. 2003; Guskiewicz, et al. 2005; McKee et al. 2009)  While the origins of 

these long-term effects are unknown, studies in post-mortem samples from human TBI and from 

individuals known to have received multiple concussive injuries have consistently revealed the 

presence of degenerating axons and inflammation months to years after the initial 

insult.(Oppenheimer 1968; Adams, et al. 1982; Blumbergs, et al. 1989; Gultekin, et al. 1994; 

Chen et al. 2009; Goldstein et al. 2012; Johnson et al. 2013a; McKee, et al. 2013a)  These 

processes have also been viewed in vivo using diffusion tensor imaging to visualize white 

matter injury in concussed individuals and using PET ligands to the peripheral benzodiazepine 

receptor to confirm the presence of microglia and macrophage in TBI patients.(Chappell, et al. 

2006; Zhang, et al. 2006; Zhang et al. 2010; Cubon et al. 2011; Henry et al. 2011; 

Ramlackhansingh et al. 2011; Bazarian, et al. 2012)  Our group and others have developed 

mouse models of mild repetitive concussion and have also observed the presence of injured 

axons within white matter and the accumulation of glial cells.(Laurer et al. 2001; Uryu et al. 

2002; Creeley et al. 2004; Creed et al. 2011; Shitaka et al. 2011; Mouzon, et al. 2012)  
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Interestingly, in our repetitive closed-skull injury model we have observed that the accumulation 

and activation of microglia within white matter regions precedes the degeneration of axons as 

visualized by silver staining.(Shitaka et al. 2011)  Altogether, these data have led us to 

hypothesize that microglia and macrophage may contribute to secondary axon injury processes 

following concussion.   

To address this hypothesis we used a CD11b-TK transgenic mouse model to reduce the 

numbers of microglia within the corpus callosum and external capsule.  CD11b-TK mice express 

a mutated form of thymidine kinase (TK) from herpes simplex virus under the CD11b 

promoter.(Gowing, et al. 2006)  When mice are treated with the nucleotide analog ganciclovir or 

its more soluble prologue, valganciclovir, the drug is metabolized by cells expressing thymidine 

kinase into a toxic product that leads to cell death. Valganciclovir will only become toxic to 

CD11b+ cells expressing herpes simplex virus thymidine kinase and is not toxic to genetically 

wild-type mice such as the CD11b-TK -/- littermate controls.   Research from other groups has 

shown that daily intraperitoneal (IP) injection of ganciclovir into these mice effectively depletes 

circulating macrophages and prevents proliferation of microglia in the brain.(Heppner, et al. 

2005; Gowing et al. 2006)  Here we show that intracerebroventricular (ICV) delivery of different 

doses of valganciclovir resulted in a dose-dependent reduction of microglial cells in mice 

subjected to repetitive closed-skull injury.  The effects of reducing the microglial population on 

both acute and sub-acute axon degeneration after injury were assessed by silver staining.  We 

found that reducing the number of microglial/macrophage cells had little effect on the amount of 

axon degeneration at either 7 days or 21 days post-injury.  
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5.2  METHODS 

Animals 

CD11b-TK mice were acquired from Jean-Pierre Julien at Laval University (Quebec, 

CA).  CD11b-TK mice express herpes simplex virus thymidine kinase under the CD11b 

promoter expressed in microglia and macrophage.  Male CD11b-TK +/- founder mice were 

crossed to C57bl/6j female mice (cat# 000664, JAX).  The resulting offspring were genotyped 

using previously published methods.(Gowing et al. 2006)  Mice carrying the CD11b-TK 

transgene were termed CD11b-TK+/- mice, and littermates not carrying the transgene were 

termed CD11b-TK -/- mice and are genetically wildtype. All mice were housed under a 12 hour 

light-dark cycle and given food and water ad libitum in accordance with the protocols of the 

Animal Studies Committee at Washington University in Saint Louis. 

Osmotic pumps 

Alzet osmotic pumps (cat#1002, #2004) with flow rates of 0.25 µl/hour were used for 

these experiments.  A complete description of pump assembly can be found elsewhere.(DeVos, 

et al. 2013)  Briefly, cannula tubing (cat#312VT) and osmotic pump connector cannula 

(cat#3280PM/SP, cut 2.5 mm below pedestal) were purchased from Plastics One.  Pump 

reservoirs were filled with either valganciclovir (cat#SML0191, Sigma) in 0.9% sterile saline 

(NaCl) or with 0.9% NaCl.  Osmotic pump flow tubes were stripped of their plastic caps and the 

flow tubes were connected to one-inch lengths of cannula tubing.  The other end of the cannula 

tubing was attached to the osmotic pump connector cannula.  The entire assembly was primed 

by placing the reservoir in conical tubes containing 0.9% NaCl and tubes were stored at 37°C 

for 36-48 hours prior to implantation.  This longer priming step was deemed necessary because 

cannula tubing was not filled with drug—preliminary experiments with 1.5% Evan’s blue solution 

in saline showed that it takes ~36 hours for solution to travel from the reservoir of 14 day 0.25 

µl/hour pumps to the end of the cannula under these conditions.    



81 
 

Surgical procedures 

Six to eight-week-old CD11b-TK +/- and wild-type littermate controls were used in all 

experiments.  Mice were randomly assigned to either NaCl or valganciclovir treatment groups.  

For implantation of osmotic pumps, mice received inhaled isofluorane anesthesia and the head 

was fixed in a stereotaxic frame.  Temperature was regulated using a heat pad (Sun 

microsystems II).  A midline incision was made to expose the skull and a small (0.9mm) burr 

hole was drilled contralateral to the rcTBI impact site at A/P -0.84 mm relative to bregma, ML 

+1.5 mm relative to midline at bregma.  Pumps were implanted subcutaneously and a drop of 

cyanoacrylate glue was applied to the bottom of the plastic portion of the cannula.  A cannula 

guide was used to drive the metal osmotic pump connector cannula through the burr hole into 

the lateral ventricle (D/V -2.5 mm) and to hold it firmly in place for 1-2 minutes while the glue 

set.  The top of the cannula was trimmed and the incision was sutured closed.  Mice received 

antibacterial ointment and were placed on a heat pad for recovery.  Once animals were 

ambulatory they were housed individually to prevent cagemates from tampering with pumps.   

Seven days after pump implantation, pumps were removed, fitted with new cannulas, 

placed in individual conical tubes containing 0.9% NaCl and 0.01% sodium azide (NaN3) and 

stored at 37°C.  Mice then received two repetitive closed skull injuries 24 hours apart as 

described previously.(Shitaka et al. 2011)  Briefly, a rubber tip was fitted on an electromagnetic 

impact device which was used to impact the skull with the tip centered at A/P -1.8, M/L -1.5 

bregma to a depth of -3.3 mm .  Sham injured mice underwent the same surgical procedures 

but did not receive impacts.  Immediately following the second impact, pumps were rinsed in 

filtered phosphate buffered saline (PBS) and re-implanted as described above to resume drug 

delivery.   
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Histology 

Mice were sacrificed by isofluorane overdose and decapitation either 7 days or 21 days 

after the first repetitive closed-skull injury.  All mice were perfused with 10 milliliters cold 0.03% 

heparin in PBS.  Brains were then removed and placed in 4% paraformaldehyde (PFA) for 24-

48 hours at 4°C and then in 30% sucrose in PBS for 24-48 hours at 4°C.  Once equilibrated in 

sucrose, they were frozen on dry ice and sliced into 50 µm sections on a freezing microtome.  

Serial sections were collected in cryoprotectant (30% ethylene glycol, 15% sucrose, 0.03 M 

phosphate buffer) and stored at 4°C until use.   

For floating immunohistochemistry was performed on sections to visualize rabbit 

polyclonal anti-Iba-1 (cat# 019-19741, Wako), chicken polyclonal anti-GFAP (cat#ab4674, 

Abcam), rabbit polyclonal anti-β-APP (cat# 512700, Invitrogen), or mouse monoclonal RM014 

(cat# 34-1000, Novex).   For this, sections were washed 3 times for 5 minutes in TBS, incubated 

in 0.03% hydrogen peroxide (H2O2) for 10 minutes, washed 3 times for in TBS, then blocked for 

30 minutes in either 3% normal goat serum (NGS, cat#S-1000, Vector Labs) or 3% normal 

donkey serum (NDS, cat#017-000-121, Jackson ImmunoResearch) in 0.25% Triton-X tris 

buffered saline (TBS-X).  Following blocking, primary antibodies were applied at a 1:1000 

dilution in blocking solution and incubated overnight at 4°C with gentle shaking.  The following 

day, sections were again washed, incubated one hour at room temperature in either biotinylated 

goat anti-rabbit IgG (cat#BA-1000, Vector Labs), biotinylated donkey anti-chicken IgG (cat#703-

065-155, Jackson ImmunoResearch) secondary antibodies were diluted 1:1000 in TBS-X, 

washed again, then incubated in 1:400 ABC reagent (cat#PK-6100, Vector Labs) in TBS for 

another hour.  Finally, sections were washed and placed in 3-3’-diaminodebzidine 

tetrahydrochloride (DAB;  cat# D5905) for 5-6 minutes.  After development in DAB the sections 

were washed, placed on slides and allowed to air dry, and coverslipped with cytoseal (cat# 

8312-4, Richard-Allan Scientific).  For RM014 staining specifically, the following modifications to 
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the above protocol were made 1) sections were blocked in 1:10 mouse serum, 2) the primary 

antibody was incubated 1:2 with biotinylated goat anti-mouse Fab IgG (cat#115-007-003, 

Jackson ImmunoResearch) for 20 minutes prior to application to the sections overnight and 3) 

the secondary antibody was unnecessary, sections were immediately incubated in ABC on day 

2. 

Adjacent sets of floating sections were subjected to silver staining (cat#PK301, 

NeuroSilver Kit II, FD Neurotech) following the manufacturer’s instructions with minor 

modifications, as previously reported(Shitaka et al. 2011).   Sections were incubated for 5 days 

in paraformaldehyde prior to silver staining and were only incubated in solution C once for 2 

minutes. 

For cresyl violet staining, sections were rinsed in TBS twice for 5 minutes then mounted 

on glass slides.  Once air-dried, they were placed in cresyl violet solution (cat#PS102-1, FD 

Neurotech) for 5 minutes then rinsed and coverslipped following manufacturer’s protocol.  

 For TUNEL-NeuN double-immunofluorescence (IF) 50 µm free floating sections washed 

with TBS and incubated for 15 minutes with 0.02 mg/ml proteinase K in TBS.  A positive control 

for TUNEL labeling was generated by incubating a tissue section in 1 µg/ml DNAse I for 20 

minutes at room temperature.   Sections were then washed and blocked in 3% NGS in TBS-X 

for 30 minutes and incubated overnight in 1:1000 rabbit polyclonal anti-NeuN (cat# ABN78, 

Millipore) in blocking solution.  The following day, sections were washed and incubated in 

donkey anti-rabbit IgG Cy3 (cat# 711-165-152, Jackson ImmunoResearch) for 1 hour at room 

temperature in the dark.  Sections were then washed, mounted on glass slides, and allowed to 

air dry for 1 hour.  A hydrophobic barrier was drawn with a PAP pen around each section and 

TUNEL staining was performed according to FragEL DNA Fragmentation Detection Kit (cat# 

QIA39, Calbiochem) manufacturer’s instructions.  Double IF images were captured using a 

Zeiss Axiovert 200 laser scanning confocal microscope.   
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Electron Microscopy 

 For electron microscopy, mice were perfused with 10 mls of PBS-Heparin followed 

immediately by 10 mls of 1% PFA, 1% Glutaraldehyde in 0.1 M sodium cacodylate buffer.  

Brains were fixed using the same solution for 1 hour, then sliced into 2-3 1 mm coronal slabs 

per mouse.  Slabs were fixed for 5 days before being incubated in 1% osmium tetroxide in 

sodium cacodylate buffer overnight, followed by dehydration in ascending ethanol series, and 

embedding Polybed 812 (cat# 08792, Polysciences, Inc.).  Embedding media was cured for 24 

hours in a dessicator and then in a 60°C oven for 4 8 hours.  Semithin sections stained with 

toluidine blue were prepared using glass knives to identify the region of corpus callosum and 

external capsule ipsilateral to injury in each coronal slab.   Tissue was then thin sectioned (70-

90 nm) on a Leica Ultracut E Microtome, stained with 4% uranyl acetate and Reynolds lead 

citrate, and viewed on a Jeol 100C Electron Microscope.  Three-five grids were prepared from 

each block of tissue and two blocks (1 mm separation) were prepared from each animal.   At 

least one grid from each block was qualitatively assessed blinded to injury status or genotype 

for evidence of axonal injury.   

  

Stereological quantification and optical density measurements 

For all histological analysis, the region of interest (ROI) was defined to include corpus 

callosum and external capsule underlying the impact site.  For each mouse, the ROI began with 

the most anterior section containing hippocampal dentate gyrus and ended with the most 

posterior section containing corpus callosum fibers that cross midline.  This yielded 3-4 sections 

for analysis per animal.  The midline served as the medial boundary for the ROI, while the 

lateral boundary was formed by drawing a horizontal line between the ventral hippocampus and 

dorsal thalamus in each coronal section.   
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Iba-1 stereological methods have been previously published.(Shitaka et al. 2011)  In 

brief, stereological quantification was performed blinded to genotype or drug treatment status 

using StereoInvestigator’s (MicroBrightfield) optical fractionator technique.  The ROI was traced 

in each section and a 180 x 180 µm grid size and 80 x 80 µm counting frame was applied 

determine the number of Iba-1 positive cells in the corpus callosum and external capsule.  This 

ensured Gunderson’s coefficient of error was <0.1.  

For quantification of silver staining, 20x images were captured of all sections using the 

Olympus Nanozoomer Whole Slide Imaging System as previously reported.(Shitaka et al. 2011)  

From the Nanozoomer file, 1.25x .tiff images of sections containing the dentate gyrus of the 

hippocampus and corpus callosum were exported and opened in Image J (NIH).  Background 

(gold color) was subtracted from each image using the color splitter and image calculator 

functions so that only the grey-black silver deposits were visible.  ROIs were traced as 

described for Iba-1 analysis on 32-bit images and measurements were taken to acquire mean 

grey values corresponding to the intensity of silver staining (0-255) within each ROI.  Three 

serial sections were averaged from each animal to produce a final silver staining value.  Optical 

density measurements were also taken blinded to genotype and drug treatment status.   

For GFAP optical density measurements, 5x images of corpus callosum and external 

capsule were captured using the Nanozoomer.  The .tiff files were converted to 32-bit images in 

Image J and positive signal on each image was selected using Li’s Minimum Cross Entropy 

thresholding method, a function of the Auto Threshold plugin.  ROIs were selected and drawn 

as described for Iba-1 stereology and silver staining.  The summarize function under analyze 

particles was used to acquire the area fraction occupied by positive GFAP signal.  These values 

were averaged from three serial sections and the resulting value is reported.    
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qPCR 

Quantitative polymerase chain reaction (qPCR) was performed to determine gene 

expression levels of interleukin 1β (IL1-β), interleukin 6 (IL6), inducible nitric oxide synthetase 

(iNOS), chemokine (C-C motif) ligand 2 (CCL2),  and tumor necrosis factor α (TNFα).  

Immediately following sacrifice, brains were harvested and a 2 mm coronal slice was collected.  

The anterior-most portion of the slice corresponded to the anterior end of the hippocampus.  

The section was further dissected by making a cut parallel to the interface between 

hippocampus and thalamus, and only the dorsal section (approximately 30 mg) was reserved 

for qPCR.  The sections were frozen on crushed dry ice and stored at -80°C.  Tissue was later 

lysed in Qiazol (Qiagen) and disrupted using a rotor-stator homogenizer following the 

manufacturer’s protocol for homogenization of fatty tissues.  The final RNA pellet was 

resuspended in 100 µl RNAse-free water and further purified using an RNeasy Kit (Qiagen).  

DNAse was applied to the column to remove genomic DNA contamination.  For cDNA 

preparation, 1 µg RNA was used in each RNA-cDNA reaction (High Capacity RNA-to-cDNA Kit, 

Applied Biosystems).  For each qPCR reaction, 1 µl of undiluted cDNA was added to 15 µl 

Syber Green PCR Master Mix (Applied Biosystems), 13 ul ddH20, and 1 µl 10 mM forward and 

reverse primers (Table 1).  Samples were loaded on a MicroAmp Fast Optical 96-Well Reaction 

Plate (Applied Biosystems) and qPCR was carried out on a 7500 fast real-time PCR system 

(Applied Biosystems).  The following conditions were used: 95°C for 10 min followed by 40 

cycles of 95°C for 15 sec and 60°C for 1 min.   

∆∆Ct values were calculated by normalizing the expression of each gene to the 

geometric mean of three reference genes (hprt, pgk1, gapdh).  Subsequently, these target gene 

values were normalized to the arithmetic mean values in untreated naïve mice (n=4).  

Exponential transform was performed to achieve fold change measures of each gene where 1 is 

equal to naïve mice.   
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Table 5.1 Primer sequences used for qPCR.  

 

 

Data analysis and statistics 

All data were analyzed and graphed using GraphPad (Prism).  Shapiro-Wilks normality 

tests were applied to determine if data were normally distributed.  Rank transformations were 

applied to data that failed normality tests.  In experiments with two test groups, student’s t-tests 

were used.  Two-way ANOVAs were used in all other cases except analysis of sham mice with 

or without cannulation, in which case a one-way ANOVA was performed.  Post-hoc 

comparisons between CD11b-TK +/- and -/- mice were pre-specified.  Statistical significance 

was defined as p<0.05 for t-tests and ANOVAs and p<0.0167 for post-hoc tests. 

 

 

 

Encoded 
Protein 

Accession 
Number 

Direction  5’-3’ Amplicon 
Size (bp) 

PGK1 NM_008828.2 
 

Forward 
Reverse 

ctccgctttcatgtagaggaag 
gacatctcctagtttggacagtg 

117 

GAPDH NM_008084 Forward 
Reverse 

catggacttccgtgttccta 
gcggcacgtcagatcca 

55 

HPRT1 NM_013556.2  Forward 
Reverse 

cctaagatgagcgcaagttgaa 
ccacaggactagaacacctgctaa 

86 

IL1-β NM_008361.3 Forward 
Reverse 

acggaccccaaaagatgaag 
ttctccacagccacaatgag 

139 

IL6 NM_031168.1 Forward 
Reverse 

caaagccagagtccttcagag 
gtccttagccactccttctg 

150 

iNOS NM_010927 Forward 
Reverse 

tggtccgcaagagagtgct 
cctcattggccagctgctt 

108 

CCL2 NM_011333 Forward 
Reverse 

aggtgtcccaaagaagctgta 
atgtctggacccattccttct 

85 

TNFα NM_013693 Forward 
Reverse 

cttctgtctactgaacttaggg 
caggcttgtcactcgaattttg 

134 
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5.3  RESULTS 

5.3.1 Acute effects of microglia on axonal injury in mice receiving low-dose valganciclovir (7d) 

Previous reports indicate that daily systemic administration of valganciclovir causes 

hematopoetic toxicity and is fatal to CD11b-TK +/- mice within 10 days (Gowing et al. 2006).  On 

the other hand, delivery of the drug directly into the brain can result in microglial reduction 

without the toxicity seen after IP injection (Simard, et al. 2006).   Continuous administration is 

required as macrophages will rapidly repopulate areas of microglial depletion in the absence of 

the drug (Varvel, et al. 2012).   As our goal was to test the effects of microglial depletion on 

axonal injury at timepoints between one week and one month following injury, we chose to 

administer valganciclovir continuously by intracerebroventricular (ICV) osmotic pump.  However, 

since there is deformation of the brain during the brain injury, we chose to remove the pumps 

during the 24 hours required for the rcTBI procedure to prevent additional injury of the brain 

caused by the cannula (Figure 5.1 ).  For initial experiments a valganciclovir concentration of 1 

mg/ml was chosen as it has been shown by other groups to be effective in reducing microglial 

cells(Simard et al. 2006; Grathwohl, et al. 2009).   

 

Figure 5.1 Experimental design.   CD11b-TK +/- or -/- controls were treated with either 
valganciclovir or saline by intracerebroventricular (ICV) osmotic pump for 7 days prior to injury.  
Pumps were then removed and a closed-skull or sham injury was performed (day 0).  Twenty-
four hours later a second injury was delivered.  Pumps were immediately reimplanted and drug 
or saline treatment was resumed for another 7 days (acute time point) or 21 days (sub-acute 
time point). 
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Within the ipsilateral corpus callosum and external capsule, treated CD11b-TK +/- mice 

(n=13) had a 35% reduction in the number of microglial cells compared to littermate controls 

(n=11) at the 7 day time point after injury (one-tailed student’s t-test, p=0.008; Figure 5.2 A-D , 

G).  To control for the effects of injection of vehicle alone, the experiment was repeated with 

additional groups that received 0.9% NaCl (Figure 5.3 A ; CD11b+/- valganciclovir n=9, NaCl 

n=7; CD11b-TK -/- valganciclovir n=6, NaCl n=8).  An effect of genotype (p=0.0359) and 

treatment (p=0.0226) was seen, but not an effect of genotype x treatment (two-way ANOVA, 

p=0.1039; Figure 5.3 A ).  Planned comparisons revealed a significant difference between 

valganciclovir treated CD11b-TK +/- versus littermate controls (p=0.0110; Figure 5.3 A ), no 

difference between the two genotypes receiving vehicle alone (p=0.7096), and a significant 

difference between CD11b-TK +/- valganciclovir treated and vehicle treated mice (p=0.0057).   
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Figure 5.2 Treatment of CD11b-TK +/- mice with ICV low-dose valganciclovir (1 mg/ml) 
reduces microglia but does not affect silver staini ng 7 days following rcTBI .  Iba-1 staining 
in treated CD11b-TK -/- (A, C) and +/- (B, D) mice.  (C, D) Higher magnification views of Iba-1 
staining in corpus callosum ipsilateral to injury (region boxed in A, outlined with red dashed line).  
Silver staining in valganciclovir treated CD11b-TK -/- (E) and +/- (F) mice.   (G) Stereological 
quantification of Iba-1-positive microglia in CD11b-TK +/- mice shows a ~35% reduction 
compared to controls (one-tailed student’s t-test, **p<0.01. Dashed line indicates sham levels).  
(H) Silver staining in white matter was unchanged (A.U.= arbitrary units).  (Error bars represent 
standard error of the mean).   

 

We then used silver staining to assess injured axons in mice with reduced numbers of 

microglia.  No difference in the intensity or distribution of silver staining was observed in either 

the first (two-tailed student’s t-test, p=0.8292; Figure 5.2 E-F, H ) or the second groups of mice 

(two-way ANOVA, genotype p=0.8478, treatment p= 0.6147, genotype x treatment p = 0.2769; 

Figure 5.3 B ).  We have previously shown that silver staining is a sensitive method to assess 

axonal injury in this repetitive concussive injury model.(Shitaka et al. 2011)  

 

Figure 5.3  Low-dose valganciclovir (1 mg/ml) but n ot saline reduces microglia and has 
no effect on silver staining 7 days after injury in  an independent cohort of mice.   (A) Iba-1 
staining (B) silver staining in corpus callosum and external capsule of CD11b+/- and -/- mice 
receiving either drug or vehicle treatment (A.U.= arbitrary units, *p<0.05, **p<0.01, n.s. = not 
significant).  (Error bars represent standard error of the mean).   
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5.3.2 Dose-response of microglia to valganciclovir treatment in CD11b-TK mice 

 We reasoned that a modest reduction in the number of microglial cells within the white 

matter may not be adequate to produce an effect on the extent of axonal injury.  We therefore 

next tested higher doses of valganciclovir in mice that received rcTBI to increase the amount of 

microglial depletion.  Using the same injection paradigm as before, mice were treated with either 

2 (n=3), 5 (n=3), 10 (n=5), or 50 mg/ml (n=8) of valganciclovir (Figures 5.4 and 5.5 ).  At 5-7 

days post-injury (14 days after initial pump implantation), CD11b-TK +/- mice in the 50 mg/ml 

group became lethargic, had difficulty walking, and a 50% mortality rate.  Wild-type littermate 

controls treated identically with 50 mg/ml valganciclovir (n=6) appeared normal.  Upon 

histological examination, intraparenchymal hemmorhages and extensive tissue loss within the 

hippocampus and thalamus were apparent in the treated CD11b-TK +/- mice (Figure 5.4 A-B ).   

Mice that received intermediate doses of 2, 5, or 10 mg/ml appeared normal physically and 

histologically (Figure 5.5 A-F ).  Therefore, 10 mg/ml was selected for future experiments as this 

dose consistently resulted in microglial depletion in the hemisphere opposite injection near the 

corpus callosum and external capsule (Figure 5.5 E, F ). 

 

Figure 5.4  High-dose (50 mg/ml) valganciclovir tre atment was toxic in CD11b-TK +/- mice 
7 days post-injury.   (A) An Iba-1 stained section near the cannula site (dashed line) shows 
depletion of microglia but also numerous microhemorrhages (arrows).  (B) Cresyl violet staining 
in a section posterior to valganciclovir injection shows extensive tissue loss in the hippocampus 
and thalamus (dashed oval).   
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Figure 5.5  Valganciclovir dose-response in CD11b-T K mice 7 days post-injury.   Iba-1 
stained whole sections (A, C, E) and higher-magnification images (box A) corresponding to the 
region of interest assessed for iba-1 depletion by stereology (outlined with red dashed line, B, D, 
F).  CD11b-TK +/- mice treated with 2 (A, B), 5 (C, D), or 10 (E, F) mg/ml valganciclovir.  
Microglial depletion is most prominent ipsilateral to cannulation and drug delivery (right).  
Arrowheads indicate region of microglial reduction in cortex of hemisphere opposite drug 
infusion. 
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5.3.3 Acute effects of intermediate dose valganciclovir on axonal injury (7d) 

 A separate cohort of mice was treated with 10 mg/ml valganciclovir and examined 7 

days after rcTBI (Figure 5.6 A-F ).  At 7 days post-injury, the number of Iba-1 positive cells 

within the corpus callosum and external capsule ipsilateral to injury was 56% reduced in CD11b-

TK +/- (n=7) compared to littermate controls (n=7; one-tailed student’s t-test, p=0.0004; Figure 

5.6 A, B, E ).  Again, no significant reduction in the amount of silver staining was observed (two-

tailed student’s t-test, p=0.6045; Figure 5.6 C, D, F ). 

To determine if other aspects of axonal injury were affected by microglial depletion, other 

injury markers were assayed in adjacent tissue sections for APP and neurofilament compaction 

(Figure 5.7 A-D ).  APP is a marker of fast axonal transport that accumulates in axonal swellings 

within hours of axonal injury (Gentleman et al. 1993; Sherriff et al. 1994).  The neurofilament 

antibody RM014 has been used to detect neurofilament compaction, an indicator of cytoskeletal 

disruption in degenerating axons (Stone et al. 2001).  Both of these markers were present near 

the site of cannulation in all mice (Figure 5.7 A, B ), but were sparse and detected infrequently 

in more posterior regions ipsilateral to injury (Figure 5.7 C, D ).  Most commonly they occurred in 

white matter tracts overlying the lateral ventricle, which may be a particularly vulnerable region 

in this model.  However, no qualitative difference was observed between genotypes, indicating 

that these markers of axonal injury were not affected by microglial depletion..  
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Figure 5.6  Acute intermediate dose valganciclovir (10 mg/ml) reduces Iba-1 but not silver 
staining in CD11b-TK mice 7 days after rcTBI.   Iba-1 staining in corpus callosum (outlined 
with red dashed line) in treated CD11b-TK -/- (A) and +/- (B) mice.  Silver staining in adjacent 
sections from CD11b-TK -/- (C) and +/- (D) mice.   (E) Iba-1 was reduced by 56% in CD11b-TK 
+/- mice compared to controls (one-tailed student’s t-test, ***p<0.001).  (F) No change in silver 
staining was observed (A.U.= arbitrary units, n.s. = not significant).  (Error bars represent 
standard error of the mean).   
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Figure 5.7 Amyloid precursor protein (APP) and neur ofilament (RM014) labeling in an 
injured CD11b-TK -/- mouse treated with 10 mg/ml va lganciclovir and sacrificed 7 days 
post-injury.   APP and labeling was prominent at the site of cannulation (dashed line) -0.5 mm 
relative to bregma (A, B).  Only sparse axonal swellings were detectable in the contralateral 
hemisphere (injured side) in the corpus callosum and external capsule corresponding to the 
region of interest assessed for axonal injury in these experiments (C, D).  Insets show higher 
magnification of labeling in boxed regions in A and C.  

 

To further confirm that no subtle alterations in axonal injury severity are occurring after 

microglial depletion, qualitative electron microscopy was carried out in a sham littermate control 

treated with 10 mg/ml valganciclovir (n=1; Figure 5.8 A-C ), injured littermate controls treated 

with 10 mg/ml valganciclovir (n=2; Figure 5.9 A-C ), or CD11b-TK +/- mice treated with 10 

mg/ml valganciclovir (n=2; Figure 5.10 A-C ).   The frequency and characteristics of axonal 

injury 7 days post-injury were assessed.  Corpus callosum and external capsule ipsilateral to 

injury directly beneath the impact site were analyzed.  In sham injury with 10 mg/ml 
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valganciclovir treatment, most axons displayed a normal appearance, with intact myelin sheaths 

and regularly spaced microtubules and neurofilaments (Figure 5.8 A, B ).  However, occasional 

swollen axons displayed organelle accumulation consistent with injury and were likely artifacts 

of cannulation (Figure 5.8 C ).In contrast, the effects of repetitive concussive TBI were more 

dramatic. In both CD11b-TK +/- and -/- mice injured and treated with valganciclovir axonal injury 

was a prominent feature within the corpus callosum and external capsule.  Notably, small 

myelinated axons displayed abnormal morphology with organelle accumulation, cytoskeletal 

disorganization, and axolemma collapse (Figures 5.9-10 ).  These features are all consistent 

with Wallerian degeneration.  Overall, injury levels were approximately the same as reported 

previously in this model.(Shitaka et al. 2011)  No overt differences were detected between 

CD11b-TK +/- and -/- mice.   These observations were confirmed by a second, blinded observer 

(Dr. Krikor Dikranian). These observations further confirm that axonal injury was not affected by 

microglial depletion. 
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Figure 5.8  Normal axonal ultrastructure in a cannu lated sham CD11b-TK -/- mouse 
treated with10 mg/ml valganciclovir and sacrificed 7 days post sham injury.  (A, B) Axons 
in the corpus callosum near the cingulum display organized cytoskeletal elements and intact 
myelin sheaths.  (C) In a region containing axons cut parallel to the predominant direction of the 
corpus callosum. an asterisk indicates a swollen unmyelinated axon with abnormal organelle 
accumulation.  Note nearby axons appear relatively intact, however.   
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Figure 5.9  Ultrastructural abnormalities in an inj ured CD11b-TK -/- littermate control 
mouse treated with 10 mg/ml valganciclovir and sacr ificed 7 days post-injury .  (A) 
Arrowheads indicate regions of end stage axonal degeneration in corpus callosum near the 
cingulum where the axolemma has completely collapse.  Asterisks denote examples of 
myelinated and unmyelinated axons with organelle accumulation.  (B) A myelinated axon 
undergoing Wallerian degeneration (asterisk).  (C) A region of relatively healthy appearing 
axons in corpus callosum.       
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Figure 5.10 Ultrastructural abnormalities in an inj ured CD11b-TK +/- mouse treated with 
10 mg/ml valganciclovir and sacrificed 7 days post- injury.   (A) Arrowheads indicate regions 
of end stage axonal degeneration in corpus callosum near the cingulum where the axolemma 
has completely collapsed.  The asterisk denotes a swollen axon undergoing late stage 
degeneration and arrows indicate examples of axons containing densely packed intracellular 
aggregates.  (B) Arrow indicates an axon cut parallel to the predominant direction of the corpus 
callosum with abnormal accumulation of electron-dense intra-axoplasmic material in a region of 
relatively normal axons (asterisk).  (C) Asterisk indicates an axon undergoing axolemma 
collapse.   
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5.3.4 Sub-acute effects of low and intermediate dose valganciclovir on axonal injury (21d) 

 Next we sought to determine if longer-term reduction of microglia alters the evolution of 

axonal injury over time (Figures 5.11 and 5.12 ).  We have previously reported that silver 

staining abnormalities persist out past 49 days (Shitaka et al. 2011).  We chose to analyze mice 

at 21 days post-injury because this would allow us to treat mice with valganciclovir for one 

month (28 days) and would not require that the osmotic pumps be replaced—a procedure 

requiring additional surgery.   In the low dose experiment, mice were treated with 1 mg/ml 

valganciclovir (CD11b+/- n=7, -/- n=6) or 0.9% NaCl (CD11b+/- n=5, -/- n=5; Figure 5.11 ).  

Overall, analysis of microglial activation by two-way ANOVA revealed no effect of genotype 

(p=0.3307) or treatment (p=0.9511), but a significant genotype x treatment interaction 

(p=0.0118).  Additionally, a significant reduction of microglial cells in the corpus callosum and 

external capsule of about 35% in valganciclovir treated CD11b-TK +/- mice compared to 

valganciclovir treated littermate controls was observed (p =0.0099, Figure 5.11 A, B, E ).  No 

difference was seen in NaCl treated mice between genotypes (p=0.2488).  The difference 

between microglial cells in valganciclovir treated vs NaCl treated CD11b-TK +/- mice was not 

quite statistically significant (p=0.0547; Figure 5.11 E ).  Again, as in the acute experiments, no 

difference was seen across groups in the amount of silver staining (Figure 5.11 C, D, F ). 
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Figure 5.11 Treatment with low dose valganciclovir (1 mg/ml) but not saline reduces Iba-1 
but not silver staining in corpus callosum 21 days after rcTBI.   Iba-1 staining in 
valganciclovir treated CD11b-TK -/- (A) and +/- (B) mice.  Silver staining in valganciclovir treated 
CD11b-TK -/- (C) and +/- (D) mice.   (E) Iba-1 was reduced by 35% in CD11b-TK +/- mice 
compared to -/- controls (one-tailed student’s t-test, **p<0.01).  (F) No change in silver staining 
was observed (A.U.= arbitrary units, n.s. = not significant).  (Error bars represent standard error 
of the mean).   
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An additional group of either CD11b-TK +/- mice (n=6) or littermate controls (n=8) 

received the intermediate 10 mg/ml valganciclovir and was sacrificed 21 days post-injury (Figure 

12A-D).  Though the mice did not display an overtly abnormal behavioral phenotype, histological 

examination revealed tissue loss similar to that seen with the 50 mg/ml dose.  Thus, the 

duration of drug administration at intermediate doses can also produce a toxic effect in CD11b-

TK mice.  Due to the clear toxicity of the drug, Iba-1 and silver staining were not quantified in 

these animals. 

 

Figure 5.12 Sub-acute treatment with intermediate d ose valganciclovir is toxic in injured 
CD11b-TK mice.   28 days total treatment resulted in tissue loss as visualized by cresyl violet in 
the hippocampus and thalamus of injured CD11b-TK +/- (A) but not -/- (B) mice.  Iba-1 staining 
shows the extent of microglial depletion in CD11b-TK+/- (C) and not in a CD11b-TK -/- (D) 
littermate control mouse subjected to rcTBI. 

 

 



104 
 

5.3.5 TUNEL-labeling in mice treated with intermediate dose valganciclovir 

 Given the apparent toxicity of intermediate dose valganciclovir (10 mg/ml) in CD11b-TK 

mice treated for 21 days post-injury, we performed TUNEL-labeling to determine if this 

intermediate dose induces apoptosis in neurons 7 days post-injury (Figure 5.13 A-B ).  Sections 

from CD11b-TK +/- (n=7) and -/- (n=7) mice treated with valganciclovir were double-labeled for 

TUNEL and NeuN, a neuron-specific marker.  The hippocampal CA3 ipsilateral to cannulation 

and drug infusion was the focus of these investigations as this is a region significantly affected 

by toxicity by 21 days post-injury.  However, no apoptotic neurons were detected here (or in any 

other area) at 7 days post-injury.  This would indicate that neurodegeneration begins later than 

day 7 post-injury.  As a positive control to assess the sensitivity of our TUNEL labeling, we 

treated adjacent sections with DNAase-I to induce DNA nicks. This caused prominent TUNEL 

staining (Figure 5.13C ). Thus, the lack of TUNEL staining in the valganciclovir treated mice is 

likely to accurately indicate a lack of apoptotic injury.  

 

5.3.6 Effect of cannulation on silver staining 

 To determine whether cannulation produces axonal injury that may be masking the 

potentially beneficial effects of microglial depletion, we next determined the level of silver 

staining in CD11b-TK -/- sham mice alone (n=5; Figure 5.14 A, C ), CD11b-TK -/- sham mice 

receiving ICV saline by osmotic pump (n=5; Figure 5.14 B, D ), and CD11b-TK +/- sham mice 

receiving intermediate dose valganciclovir by osmotic pump (n=5; Figure 5.14 E, G  ).  No 

difference was observed between groups (one-way ANOVA, p=0.7006; Figure 5.14 F).  This 

result indicated that contralateral cerebroventricular cannulation did not produce detectible 

axonal injury in the ipsilateral corpus callosum region of interest.  
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Figure 5.13 Double immunofluorescence for TUNEL (gr een) or NeuN (red) in CA3 does 
not indicate neuronal apoptosis in injured mice tre ated with 10 mg/ml valganciclovir and 
sacrificed 7 days post-injury.   TUNEL labeling was not observed in NeuN+ cells in the 
hippocampal CA3 of CD11b -/- (A) or +/- (B) mice.   A positive control for TUNEL labeling was 
generated by incubating adjacent sections in DNAse I to induce double-stranded DNA breaks 
(C).  All images were acquired using the same settings on a laser scanning confocal 
microscope.     
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Figure 5.14 Cannulation does not contribute to silv er staining in the region of interest 
assessed for axonal injury .  Silver staining was performed in sections from CD11b-TK -/- mice 
that underwent the sham procedure alone (A, C) or the sham procedure plus cannulation and 
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treatment with saline (NaCl, B, D).   Silver staining was also performed in sections from CD11b-
TK +/- mice that underwent the sham procedure plus cannulation and treatment with 10 mg/ml 
valganciclovir (E, G).  All mice were sacrificed 7 days post sham injury.  (F) No difference in 
silver staining was observed between groups.  (A.U. arbitrary units).   

 

5.3.7 Astrocyte response in valganciclovir treated mice 

  To confirm that only microglial numbers are being altered in this model, we analyzed the 

numbers of GFAP-positive astrocytes in regions of microglial depletion.  We did not see any 

change in the numbers of GFAP-positive astrocytes in the corpus callosum and external 

capsule of mice treated with 1 mg/ml valganciclovir or 0.9% NaCl for 14 days (two-way ANOVA, 

genotype p= 0.6028, treatment p=0.9339, genotype x treatment p=0.7852; Figure 5.15 A-C ).  

Similarly, there were no apparent changes in astrocytes due to valganciclovir treatment within 

grey matter areas. 

 

5.3.8 Inflammatory response in valganciclovir treated mice 

 To determine how the inflammatory response was affected by microglial depletion in the 

setting of traumatic brain injury, RNA was purified from injured and uninjured mice acutely  

treated (14 days total) with 10 mg/ml valganciclovir and the amount of TNFα, IL-1β, IL6, iNOS, 

and CCL2 mRNA was determined by qPCR (Figure 5.16 A-E ).  Injury alone appeared to result 

in at most modest (<5-fold) increases in expression of these genes (rcTBI vs. sham CD11b -/- 

mice; Figure 5.16 A-E ).  Surprisingly, treatment of CD11b +/- mice with valganciclovir produced 

substantially greater changes in inflammatory gene expression in both injured and uninjured 

mice.   Qualitatively, only TNFα appear to be increased to a greater extent in in CD11b-TK +/- 

injured vs. uninjured mice (Figure 5.16 E ).  Thus, while valganciclovir treatment of CD11b-TK 

mice reduces microglial cells, it may also drastically alter the inflammatory environment in this 

model.  
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Figure 5.15 Astrocytes 7 days after rcTBI in mice t reated with 1 mg/ml valganciclovir or 
NaCl.  GFAP staining in treated CD11b-TK -/- (A) and +/- (B) mice.  (C) No differences in GFAP 
optical density was observed between groups.   
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Figure 5.16 qPCR measurement of inflammatory gene e xpression.   Relative expression of 
(A) Ccl2, (B) Il1β, (C) Il6, (D) iNOS, and (E) Tnfα in each mouse was normalized first to the 
geometric mean of 3 reference genes (Hprt, Pgk1, Gapdh) and then to arithmetic mean of the 
uninjured, naïve mice (n=4; dashed line).     
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5.4  DISCUSSION 

 In summary, we found that a reduction of the microglial population within the corpus 

callosum and external capsule by 35-56% neither increases nor decreases the extent of silver 

staining abnormalities.  The most likely interpretation is that while microglia migrate to and 

proliferate around areas of axonal injury, overall they remain neutral in regards to the early 

processes of axon degeneration.    We also provide further evidence that the CD11b-TK mouse 

line is a powerful tool for manipulating the microglial and macrophage response, but show that 

the dose of valganciclovir must be carefully determined to prevent unintended, non-specific 

toxicity and altered inflammatory gene expression in the central nervous system.   

 These studies are important because to our knowledge, there are no previous reports 

directly addressing the relationship between microglia and axon injury following in vivo mild 

repetitive traumatic brain injury.  The contribution of microglia to other aspects of injury has 

been explored in more severe, brain injury models.  Other researchers have used minocycline 

to reduce microglial activation, where it was reported to reduce brain lesion volume, caspase 1 

activation, and cerebral edema after closed-skull TBI in mouse(Sanchez Mejia, et al. 2001; Bye, 

et al. 2007; Homsi, et al. 2009; Homsi, et al. 2010).  However, only one of these studies 

measured axonal injury (by APP immunohistochemistry), and similar to results reported here, no 

difference was observed between minocycline treated and vehicle treated mice despite a 59% 

reduction in microglial activation(Homsi et al. 2010).  In another study in rats, administration of 

anti-inflammatory drug ibuprofen for four months after TBI worsened performance on Morris 

Water Maze, a test of spatial learning and memory, compared to vehicle-treated rats.(Browne, 

et al. 2006) . The effect of treatment on microglial activation and axonal injury was not 

assessed.   

In the present study, we reduced the number of microglia present in white matter tracts 

and assayed axonal injury using multiple injury markers and electron microscopy.  This study is 

limited, however, in that we cannot rule out the possibility of functional consequences to the 
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depletion of microglia, independent of histological abnormalities.(Reeves et al. 2005)  In 

addition, this study is also limited in that it is possible that the maximum reduction of the 

microglial population by 56% was not enough to produce an effect on white matter integrity.  

The remaining microglia may be able to compensate for the loss by ramping up production of 

secreted factors.  Indeed, qPCR analysis revealed considerably more TNF-α, IL1-β, IL6, iNOS, 

and CCL2 mRNA following valganciclovir treatment.  These factors may directly impair axons or 

modulate the inflammatory response in a complex fashion.(Ashki, et al. 2006; Davies, et al. 

2006; Morganti-Kossmann, et al. 2007)  Given this increase, it is remarkable that more severe 

silver staining abnormalities were not detected.  This could indicate that axons are resilient to 

many aspects of the inflammatory response. An important line of future investigation will involve 

elucidating the full time course of the changes in cytokine expression in response to injury and 

in response to valganciclovir administration.  Whether microglia and macrophages were directly 

responsible for the increases in secreted cytokine mRNA or whether the reduction in microglia 

induced expression by other cell types was not examined.  Another alternative explanation for 

our results is that there could be both beneficial and harmful subtypes of microglia that are 

approximately evenly reduced by the experimental manipulations resulting in a net neutral effect 

on white matter.(Kigerl, et al. 2009)  A final alternative explanation could be that any beneficial 

effects of microglial reduction were offset by the upregulation of inflammatory gene expression 

in response to the valganciclovir treatment. 

 This study was also limited in that it did not assess the specific contribution of the 

resident microglial population versus peripheral macrophages to injury.  In this injury model, 

however, we have not observed IgG accumulation or a large population of CD45+hi, CD11b+ 

cells (unpublished observations) that would be indicative of infiltration of peripheral 

macrophages.  Thus, while peripheral macrophages may be present in rcTBI brains, most Iba-1 

positive cells are likely resident microglia.   
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While these data indicate microglial cells are likely neutral overall in regards to axon 

injury following repetitive concussion in the acute and subacute phase, it remains mysterious 

why microglial cells migrate to the corpus callosum and external capsule and remain activated 

long-term.  Activated microglia and macrophage have been observed in corpus callosum and 

other brain regions in human TBI patients several months or years after injury, indicating this is 

not a mouse-specific phenomenon.(Oppenheimer 1968; Ramlackhansingh et al. 2011; Johnson 

et al. 2013a)  As these are phagocytic cells, it may be that ongoing axon degeneration results in 

debris that stimulates the microglial response.  Microglial clearance of this debris may be neither 

beneficial nor harmful in the relatively short time scale assessed in these experiments, but could 

play an important role in long-term chronic sequelae of injury including axonal sprouting and 

regeneration not assessed here.(Hosmane et al. 2012)  Indeed, microglia are important sources 

of brain derived neurotrophic factor (BDNF) and other neurotrophins that stimulate axonal 

sprouting and may be central to recovery from injury.(Batchelor et al. 2002; Venkatesan, et al. 

2010)  Future work may help to address these questions and provide deeper insight into the 

biological function of microglia after injury.  Other studies may also address the effect of 

microglial reduction in more severe brain injury, where the role of microglial cells may be 

distinct.(Jiang, et al. 2012; Loane, et al. 2014) 

 A technical note regarding the toxicity of valganciclovir in CD11b-TK mice warrants 

discussion.  It was surprising that valganciclovir administration at intermediate and high doses 

produced such widespread tissue loss in CD11b-TK mice.  Work from Grathwohl and 

colleagues has previously reported that administration of 50 mg/ml valganciclovir can produce 

microhemorrhages following one month of treatment.(Grathwohl et al. 2009)  Their group was 

using an independently derived line of CD11b-TK mice.  Mice used in our experiments were 

generated in the lab of Jean-Pierre Julien and the thymidine kinase gene contains a mutation 

resulting in increased sensitivity to drug treatment.  This increased sensitivity could explain why 

10 mg/ml was sufficient to produce toxicity after 28 days and 50 mg/ml increased mortality by 
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50% after 14 days of treatment in our experiments.  The underlying cause of this toxicity is 

unknown; the profoundly upregulated cytokine mRNA levels detected by qPCR may indicate 

either a cause or an effect of the toxicity.  Repeating experiments in other transgenic mouse 

models of microglial depletion/manipulation (Table A2 in the Appendix) may aid in determining 

whether this phenomenon is specific to the CD11b-TK model or is a consequence of microglial 

depletion after rcTBI.  Use of some of these other mouse lines, such as the MAFIA or 

CX3CR1CreER line may also be more amenable to the study of the long-term effects of microglia 

in traumatic brain injury (Burnett, et al. 2004; Parkhurst, et al. 2013). 

Altogether, the finding that microglia appear to be neutral in regards to injury is an 

important consideration for the design of future therapeutics.  This could indicate that drugs 

specifically targeting axonal injury may be more useful following concussive-type injuries than 

those targeting microglial cells.  Alternatively, methods to more completely prevent the 

activation and/or proliferation of microglial cells without toxicity should be sought for further 

studies.  
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CHAPTER  6  

Use of Pharmacological Compounds to Manipulate the Microglial 

Response after Repetitive Concussive Injury 

 
6.1 INTRODUCTION 

 The pathological processes that lead to long-term consequences of multiple concussions 

are unclear.  Primary mechanical damage to axons during concussion is likely to contribute to 

dysfunction.  Secondary damage has been hypothesized to be induced or exacerbated by 

inflammation.  The main inflammatory cells in the brain are microglia, a type of macrophage.  

Between 4 and 7 days after repetitive concussive traumatic brain injury (rcTBI) in mouse, 

microglial cells increase more than three-fold in the corpus callosum and external capsule and 

persist for at least 7 weeks post-injury (Shitaka et al. 2011).  Concomitantly, axonal injury in 

these regions is evident by silver staining and electron microscopy 7 days post-injury and 

similarly persists for at least 7 weeks (Shitaka et al. 2011).  This brings to question what the role 

of microglia is in relation to axonal injury after concussion.  Here, we sought to use a 

pharmacological approach to reduce the microglial response in white matter following injury and 

determine if this cell type contributes to axonal injury.   

Numerous compounds have been used in experimental models to manipulate microglia, 

and many of these have been summarized in Table A3 of the appendix.  Based on previous 

literature, 5 different compounds were chosen to test:  mac-1-saporin, minocycline, (RS)-2-

chloro-5-hydroxyphenylglycine (CHPG), brilliant blue g (BBG), and microRNA-124 (miRNA-

124).  Mac-1-saporin is an antibody to CD11b (Mac-1), a receptor found on all microglia and 

macrophage, bound to the toxin saporin.  Binding of the antibody to CD11b-positive cells is 
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reported to lead to internalization of the toxin and subsequent microglial/macrophage cell death 

(Dommergues, et al. 2003; Garcia-Alloza, et al. 2007; Zhao, et al. 2007).  Minocycline, an 

antibiotic used for acne and other bacterial infections, has been reported to be an inhibitor of 

microglial activation in several disease and injury models including traumatic brain injury.  

Minocycline has also been used in clinical trials for amyotrophic lateral sclerosis (ALS), 

Huntington’s disease, and multiple sclerosis (Kim, et al. 2009).  The mechanism of 

minocycline’s action on microglial cells is not well characterized, though it has been reported 

that it interferes with p38 kinase, interrupting signaling cascades that stimulate microglial 

proliferation and cytokine synthesis, and that it inhibits caspase-1, caspase-3, inducible nitric 

oxide synthetase and matrix metalloproteinases (Greenwald, et al. 1992; Amin, et al. 1996; 

Chen, et al. 2000; Hua, et al. 2005).  CHPG, on the other hand, is an antagonist of metabotropic 

glutamate receptor 5 (mGluR5) which is constitutively expressed on microglia and macrophage.  

Stimulation of mGluR5 with CHPG has been reported to prevent proliferation, nitric oxide and 

TNFα synthesis in microglial cultures activated with bacterial lipopolysaccharide (Byrnes, et al. 

2009a).  These effects were also observed when CHPG was delivered intrathecally following 

spinal cord injury (Byrnes, et al. 2009b).  The fourth compound tested, brilliant blue g, is a 

selective antagonist of the ATP-gated ionotropic purinoreceptor P2X7R.  P2X7R is primarily 

expressed on microglia and macrophage and ATP activation results in proliferation and 

increased synthesis of TNFα, IL1β, and reactive oxygen species via the p38/NFκB pathway 

(North 2002; Monif, et al. 2009).  Like CHPG, BBG was administered intrathecally in rats after 

spinal cord injury and microglial number was reported to reduce the number of OX42-positive 

microglia in spinal cord by nearly 50% at 14 days post-injury.  Finally, miRNA-124 was chosen 

because it has been observed to be dramatically reduced in activated microglia (Ponomarev, et 

al. 2011).  Increasing miRNA-124 expression suppressed inflammation-induced injury in a 

model of multiple sclerosis.   
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In the present studies, each compound or its vehicle was administered to mice that 

received repetitive closed skull injuries (rcTBI) and the number of iba-1-positive cells was 

quantified by stereology at acute timepoints.  Silver staining was used to assess axonal injury.  

Altogether, it was determined that despite experimental evidence suggesting these 

pharmacological approaches effect microglia in other experimental models, none reduced iba-1-

positive cells in white matter tracts after rcTBI.  This may reflect the complex nature of the 

inflammatory response to axonal injury and provide insight into the basic biology of microglia. 

 

6.2 METHODS 

Animals 

In all experiments, 6-8 week old C57/bl6j mice were purchased from Jackson and used for 

experiments.  All mice were housed under a 12-hour light/dark cycle and given food and water 

ad libitum in accordance with the Animal Studies Committee at Washington University in Saint 

Louis.   

 

Surgical procedures 

Repetitive closed-skull injury was performed as previously described using an 

electromagnetic impactor fitted with a rubber tip.  Two impacts were delivered 24 hours apart.  

In mice receiving continuous intracerebroventricular (ICV) drug infusion, osmotic pumps were 

implanted immediately following the second injury.  For this, a 0.9 mm burr hole was drilled at 

A/P -0.84 mm relative to bregma M/L +1.5 mm right of midline at bregma.  A plastic cannula 

was secured with cyanoacrylate glue to the skull at a depth of 2.5 mm.  This cannula was 

attached to an osmotic pump via vinyl tubing.  The 7 day osmotic pumps used in this experiment 

had flow rates of 0.5 µl/hour (Model 1007D, DuRect) and were implanted subcutaneously.  

Bolus injections of mac-1-saporin or vehicle were delivered by bolus injection using a 10 µl 

syringe (701RN, Hamilton) fitted with a 1.5” 33 ga needle (Hamilton).  A nanoinjector pump was 



117 
 

used to deliver drug at a rate of 0.3 µl/min.  After injection, the needle was left in place for 5 

minutes before being slowly retracted.  The burr hole was then sealed with dental wax.  After 

the end of surgical procedures, the incision was sutured closed, antibiotic ointment was applied, 

and mice were allowed to recover from anesthesia on a heat pad before returning to their 

cages.  All mice with osmotic pumps were singly housed.  All drug treatments were 

administered in the lateral ventricle ipsilateral to injury to minimize the contribution of 

cannulation or bolus injection to axonal injury in the region of interest within the opposite 

hemisphere.   

 

Drug preparation and administration 

 Mac-1-saporin (Mac-1-SAP) was purchased from Advanced Targeting Systems (cat# IT-

06).  The stock solution of 1.7 µg/µl in phosphate buffered saline (PBS) was injected ICV 

without dilution so that mice received either 2, 4, or 9 µg of Mac-1-SAP or an equal volume of 

0.01 M PBS.   

 For minocycline experiments, minocycline hydrochloride (cat# M9511, Sigma-Aldrich) 

was dissolved in 0.01 M PBS and heated at 37°C for 30 minutes to dissolve.  To determine the 

dose-response of microglia to minocycline, intraperitoneal (IP) injections of 5, 20, 45 or 90 

mg/kg or PBS were performed immediately following injury and again daily until mice sacrifice.  

In a follow-up experiment, mice were pretreated with 45 mg/kg minocycline 1 hour prior to injury 

and received IP injections every 12 hours until sacrifice. 

 For CHPG experiments, (RS)-2-Chloro-5-hydroxyphenylglycine sodium salt (cat# 3695, 

Tocris Bioscience) was dissolved in 1% dimethylsulfoxide, 0.9% saline and 5, 10, or 20 mM 

CHPG or vehicle was loaded into osmotic pumps.  For BBG (cat# B-0770, Sigma-Aldrich) was 

dissolved in 0.9% saline and osmotic pumps were filled with 1, 10, or 100 µM or saline.  In 

miRNA-124 experiments, hsa-miR-124 was purchased from Ambion (cat# 4464066, mirVana).  

5 nmol of miRNA124 was dissolved in 0.9% saline, encapsulated in 14% Lipofectamine 2000, 
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and loaded into osmotic pumps.  Pumps were primed overnight at 37°C in saline prior to 

implantation after injury.    

Histology 

 All mice were sacrificed 4 or 7 days after the first closed-skull injury by deep isofluorane 

anesthesia followed by cardiac perfusion with ice cold 0.03% heparin in PBS.  Brains were 

removed and immersion fixed for 24 hours in 4% paraformaldehyde, then equilibrated in 30% 

sucrose in PBS for 24 hours prior to sectioning on a freezing microtome.  Eight sets of 50 µm 

thick sections, corresponding to a sampling interval of 400 µm throughout the brain were 

collected as previously described.  Rabbit anti-iba-1 (Wako) was used to label microglia and 

macrophage following immunohistochemical methods described in Chapter 5 and in Shitaka et 

al (2001).  Likewise, silver staining was performed on adjacent sections as described previously. 

 

Quantitative analysis of histology 

 The number of iba-1-positive cells in the corpus callosum were quantified by stereology.  

3-4 sections per mouse were analyzed, beginning with the anterior-most section containing 

corpus callosum overlying the hippocampus.  The optical fractionator method was used, with a 

grid size of 180 x 180 and a counting frame of 80 x 80.  All iba-1-positive cell bodies in corpus 

callosum and external capsule ipsilateral to injury were counted.   

 For optical density quatification of silver staining, digital images of all slides were 

captured using the Nanozoomer whole slide imaging system (Hamamatsu).  Background was 

reduced from each image and the amount of silver deposits in the region of interest (ROI) was 

determined by mean grey value for each of 3-4 sections per mouse.  ROI parameters for silver 

staining were the same as for iba-1 stereology.  Detailed methods can be found in Chapter 5. 
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6.3 RESULTS 

6.3.1 Mac-1-saporin reduces iba-1 and silver staining but displays off-target toxicity 

Administration of 9 µg of Mac-1-SAP was initially tested as this was a similar dose to one 

used by Garcia-Allonza and colleagues to eliminate microglia in an Alzheimer’s disease mouse 

model.  Mice received either Mac-1-SAP (n=7) or vehicle (n=8) and were sacrificed 4 days post-

injury (Figure 6.1 A-F ).  At this timepoint, the number of iba-1-positive cells in the corpus 

callosum and external capsule was reduced by 49% (one-tailed student’s t test p=0.0145, 

Figure 6.1 A, B, E).  Silver staining in this region was reduced by 68% (two-tailed student’s t test 

p=0.0003, Figure 6.1 C, D, F ).  Cresyl violet staining was performed in these mice and in 

additional mice that were treated with Mac-1-SAP and sacrificed 7 days post-injury (n=3, Figure 

6.2 A-C).  This revealed cell loss Mac-1-SAP treated mice in the hippocampal CA3 that was 

apparent at 4 days (Figure 6.2 B) and severe at 7 days (Figure 6.2 C ).  Thus, it appears that 

treatment with Mac-1-SAP results in non-specific neurotoxicity.  Such widespread cell loss likely 

contributes to the reduction in silver staining seen in mice 4 days post-injury. 

In a second experiment, mice were treated with lower doses (2 and 4 µg; n=3 per 

group), sacrificed at 7 days, and iba-1 immunohistochemistry was performed (Figure 6.3 A, B ).  

At both of these lower doses, tissue integrity was evidently compromised.  Additionally, these 

doses did not appear to reduce iba-1-positive cells in the injured hemisphere.   
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Figure 6.1 Mac-1-SAP treatment reduced iba-1 and si lver staining at 4 days post-injury.   
Mice were treated with vehicle (A, C) or 9 µg (B, D).  (E) Quantification of iba-1 by stereology 
revealed a significant decrease in the number of cells present in the corpus callosum and 
external capsule. (F) Silver stainined was also reduced as measured by optical density.  
(*p<0.05, ***p<0.001, a.u. = arbitrary units, error bars represent standard error of the mean)    
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Figure 6.2 Mac-1-Saporin treatment leads to neuron loss in the hippocampal CA3.  Cresyl 
violet stained sections from mice sacrificed 4 days post-injury treated with vehicle (A) appear 
normal while mice treated with 9 µg Mac-1-SAP (B) have reduced cellularity in the CA3.  Cell 
loss in the CA3 (arrowheads denote region of greatest loss) and blood brain barrier compromise 
was marked at 7 days (C). 
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Figure 6.3 Lower doses of Mac-1-SAP were also toxic  at 7 days post-injury.  Iba-1 labeling 
was reduced in the injected hemisphere (right side) of mice treated with both 2 µg (A) and 4 µg 
(B).   Tissue was evidently compromised and diaminobenzidine labeled intraparenchymal 
hemorrhages (arrows).   
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6.3.2 Minocycline treatment does not reduce the number of microglia or the amount of silver 

staining in the corpus callosum and external capsule after injury 

  A separate cohort of mice received 5, 20, 45, or 90 mg/kg minocycline (n=5 per group) 

daily by intraperitoneal injection immediately following the second injury.  Compared to mice 

injected with vehicle alone, treatment with minocycline had no effect on the number of iba-1-

positive cells at any dose 7 days post-injury (one way ANOVA p=0.0540, Figure 6.4 A-F ).  Two 

individuals from each group were randomly selected for silver staining which also indicated no 

difference between groups (Figure 6.5 A-F ).    

 In rodents, the half-life of minocycline has been reported to be as short as 3 hours and 

reaches peak concentrations in the brain at 1 hour post-IP injection.  A second group of mice 

(n=3 per group, Figure 6.6 A-C ) was subject to a more aggressive treatment paradigm and 

received IP injections of 45 mg/kg minocycline 1 hour before the first injury and again every 12 

hours for 7 days.  Quantification of iba-1 in corpus callosum and external capsule did not reveal 

any differences between minocycline and vehicle treated mice (one-tailed student’s t test 

p=0.2902, Figure 6.6 C ).     
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Figure 6.4 Minocycline administration does not alte r iba-1 labeling at any dose.  Mice that 
received vehicle (A), 5 (B), 20 (C), 45 (D), or 90 (E) mg/kg all had similar numbers of iba-1-
positive cells in the corpus callosum and external capsule.  No differences were observed by 
stereological analysis.  (Dashed red line indicates corpus callosum, error bars are ± SEM) 
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Figure 6.5 Silver staining does not reveal any diff erences in mice treated with 
minocycline.  Mice that received vehicle (A), 5 (B), 20 (C), 45 (D), or 90 (E) mg/kg all had 
similar silver staining in the corpus callosum and external capsule.  No differences were 
observed by optical density measurement.  (Dashed red line indicates corpus callosum, error 
bars are ± SEM) 
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Figure 6.6 Treatment with minocycline every 12 hour s beginning 1 hour prior to injury did 
not alter the number of iba-1-positive cells.  Mice treated with vehicle (A) or 45 mg/kg 
minocycline (B) had similar numbers of iba-1-positive cells in the corpus callosum and external 
capsule 7 days post-injury.  No difference was evident by iba-1 sterology (C).  (Dashed red line 
indicates corpus callosum, error bars are ± SEM). 

 

6.3.3 CHPG does not suppress microglial numbers or silver stain abnormalities in white matter. 

Another cohort of mice was then treated with 5 (n=3), 10 (n=4), or 20 (n=3) mM CHPG 

by ICV osmotic pump implanted immediately following the second injury.  Mice were sacrificed 7 

days after injury and the number of iba-1 positive cells in the corpus callosum and external 

capsule were quantified by stereology (Figure 6.7 A-E ).  Though a slight trend was observed, 

compared to controls treated it did not reach significance (one way ANOVA p=0.3546, Figure 

6.7 E).  Similarly, silver staining was not altered by treatment (one way ANOVA p=0.5389, 
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Figure 6.8 A-E ).  Another cohort of mice (n=3 per group, data not shown) was treated with 50 

mM CHPG or vehicle and did not have reduced iba-1 (one-tailed student’s t test, p=0.4351) or 

silver staining (two-tailed student’s t test p=0.9563) 7 days post-injury. 
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Figure 6.7 The number of iba-1-positive microglia i s unchanged by CHPG in injured mice.  
Mice treated with vehicle (A) or 5 (B), 10 (C), or 20 (D) mM CHPG had similar numbers of iba-1-
positive cells in the corpus callosum and external capsule 7 days post-injury.  No difference was 
evident by iba-1 sterology (E).  (Dashed red line indicates corpus callosum, error bars are ± 
SEM). 
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Figure 6.8 Silver staining was not altered by CHPG at any dose.  Mice treated with vehicle 
(A) or 5 (B), 10 (C), or 20 (D) mM CHPG had similar levels of silver staining in the corpus 
callosum and external capsule 7 days post-injury.  No difference was evident by optical density 
measurement (E).  (Dashed red line indicates corpus callosum, error bars are ± SEM). 
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6.3.4 Brilliant Blue G does not reduce microglia or alter silver staining after injury. 

 In the fourth set of experiments, vehicle (n=4), 1 (n=4), 10 (n=4), or 100 (n=5) µM 

brilliant blue g (BBG) was administered continuously by osmotic pump immediately following 

injury.  The number of microglial cells in the corpus callosum and external capsule did not 

appear to be altered 7 days after injury (Figure 6.9 A-D ).   One-way ANOVA of iba-1 stereology 

did not reveal any change (p=0.7493 Figure 6.9 E ).  Silver staining was similarly unaffected by 

BBG treatment (p=0.2960, Figure 6.10 A-E ). 
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Figure 6.9  Brilliant Blue G does not reduce iba-1- positive cells in injured mice.  Mice 
treated with vehicle (A) or 1 (B), 10 (C), or 100 (D) µM CHPG had similar numbers of iba-1-
positive cells in the corpus callosum and external capsule 7 days post-injury.  No difference was 
evident by iba-1 sterology (E).  (Dashed red line indicates corpus callosum, error bars are ± 
SEM).     
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Figure 6.10 Silver staining was not altered by Bril liant Blue G.  Mice treated with vehicle (A) 
or 1 (B), 10 (C), or 100 (D) µM CHPG had similar silver staining in the corpus callosum and 
external capsule 7 days post-injury.  No difference was evident by optical density measurement 
(E).  (Dashed red line indicates corpus callosum, error bars are ± SEM).     
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6.3.5 Exogenous miRNA-124 does not suppress microglia numbers in white matter. 

 miRNA-124 liposomes were prepared and injected ICV by osmotic pump immediately 

following injury.  Each mouse received a total of 11 µg miRNA or vehicle and was sacrificed 7 

days post-injury (Figure 6.11 A-C ).  Though there was a trend towards reduced microglia in the 

corpus callosum and external capsule, it did not reach significance at 7 days post-injury (one-

tailed student’s t test p=0.1035).  Silver staining was not assessed.  To determine whether 

lipofectamine containing vehicle alone effects the number of iba-1-positive cells, the experiment 

was repeated in injured mice treated with vehicle containing lipofectamine (n=5) or saline only 

(n=4, Figure 6.11 D ).  This revealed no significant difference in the number of iba-1-positive 

cells between groups (two-tailed student’s t test, p=0.1045).
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Figure 6.11 miR-124 does not reduce iba-1-positive cells in injured mice.  Mice treated with 
vehicle (A) or miR-124 (B had similar numbers of iba-1-positive cells in the corpus callosum and 
external capsule 7 days post-injury (C).  No change in the number of iba-1 cells was seen due 
to lipofectamine containing vehicle alone (D).  (Dashed red line indicates corpus callosum, error 
bars are ± SEM).     

 

6.4 DISCUSSION 

 Here, we tested several different compounds in the repetitive closed-skull injury (rcTBI) 

model to determine their ability to reduce the microglial response in the corpus callosum and 

external capsule.  Treatment with a range of doses of minocycline, CHPG, or BBG failed to 

reduce the number of iba-1-positive cells at 7 days post-injury. Further, silver staining was not 

altered by these drugs, indicating that unmeasured changes to the inflammatory response 

outside of microglial number alone do not significantly alter silver stain-positive axonal injury.  

Similarly miR-124 treatment did not produce a significant alteration to microglial number.  Mac-

1-SAP, on the other hand, did reduce the number of microglia, but also exhibited non-specific 

neurotoxicity which has not been previously reported.     

 There are both strengths and limitations in these studies that should be addressed.  One 

strength is the use of stereological approach to quantify microglia and macrophage in white 

matter.  Previous reports using these compounds rely on optical density or non-stereological 

counts of microglia and macrophage per area of tissue.  Stereology has several advantages 

over these methods including 1) removing user bias in selection of counting fields 2) allowing 

specific identification and quantification cell bodies and 3) avoiding confounds due to variability 

in staining intensity from sample to sample.  A second strength is the use of a range of 

compounds that should affect inflammation through a variety of mechanisms.  Thus, the failure 

to alter iba-1-positive cells in white matter is unlikely to be due to the targeting of a single 

pathway.  Likewise different routes of drug administration—intracerebral bolus injection, 

continuous infusion, or intraperitoneal injection—and different experimental timelines were tried 

to increase the likelihood of altering the microglial response.   
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 However, there are also several limitations.  First, the sample sizes in these experiments 

were small.  As such, we cannot rule out the possibility that small effects on the number of 

microglial cells were missed.  However, as the overall goal of the experiment was to find a 

compound that would reduce the microglial response by 50% or more, it is reasonable to 

conclude that none of the compounds produced a large effect.  Similarly, because iba-1 

stereology was the only method used to measure the microglial response, the overall effect of 

these drugs on other aspects of inflammation, including cytokine production, phagocytosis, and 

expression of other markers was not determined.  Consequentially, compounds may have 

modified other more subtle characteristics of the microglial response.  If these changes did 

occur, however, they appear to be neutral in regards to axonal injury in this model as assessed 

by silver staining.  Of note, no morphological changes were observed in microglia in mice 

treated with minocycline, CHPG, BBG, or miR-124.   

Last, only the effect of these drugs on microglia within the white matter was measured.  

Assessing changes in microglial cells within grey matter is outside the current scope of this 

study, but may be an important consideration in the future.  In particular, if drugs did reduce 

microglial number in grey matter regions, it would be interesting to determine why white matter 

was not affected.  Differences in the diffusion of different compounds into white matter versus 

grey matter have been observed (Lieberman, et al. 1995; Prabhu, et al. 1998).  Here, the ability 

of these drugs to penetrate throughout brain regions was not determined and may be one 

possible explanation of the results.  In experiments where drug was delivered by ICV injection, 

preliminary experiments from our lab using fluorescent dextrans and Evan’s blue (data not 

shown), and from others indicate that compounds can diffuse from ventricles into the 

neighboring parenchyma and white matter tracts (Konsman, et al. 2000).  Additionally, 

differences between gene and protein expression differences in microglia in white matter versus 

grey matter have not been characterized though the morphology of cells in different regions is 

distinct.  It is possible that white matter residing cells have inherently different sensitivity to drug 
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treatment.  Pursuing these topics may increase our understanding of the basic biology of 

microglial cells. 

Overall, the inability to reproduce previously published results and alter the microglial 

response in this model has several implications.  Foremost, it points to the need for more 

rigorous statistical methods and experimental testing, including the use of multiple cohorts of 

mice to verify that the effects of drug treatment have not arisen by chance.  Unbiased 

quantification methods, such as stereology, should be used in all cases.  Second, others have 

reported that microglial phenotype is heavily determined by the sequence of signaling received 

by microglia (Perry, et al. 2014).  In these studies, treatments that occurred following injury 

(CHPG, BBG, miR-124) may have failed because microglial cell activation was already 

“primed”.  Thus, it may be necessary to pretreat microglia to prevent their activation post-injury.  

This warrants further investigation as it has clear implications for clinical therapeutic design.  

Finally, how biomechanical forces alone may alter the microglial phenotype is unknown, though 

in one in vitro study it was determined that mechanical stretch induces chloride channel currents 

that can alter microglial morphology (Eder, et al. 1998).  Future studies may address this effect 

in the context of traumatic brain injury. 

Altogether, the development of new compounds that can minimize microglial activation 

in a variety of disease and injury settings is needed.  Better understanding of microglial biology 

will be required and importantly, understanding how concussive injury activates the 

inflammatory response will be central to these future investigations.    
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CHAPTER  7  

Human Apolipoprotein E4 Worsens Acute Axonal Pathol ogy but not 

Amyloid-beta Immunoreactivity following Traumatic B rain Injury in 

3xTG-AD Mice  

 

7.1 INTRODUCTION 

Clinical studies have revealed an increased risk of poor outcome following TBI in 

patients with one or more APOE4 alleles (Mayeux, et al. 1995; Jordan, et al. 1997; Teasdale, et 

al. 1997; Friedman, et al. 1999; Kutner, et al. 2000; Teasdale, et al. 2005). The largest of these 

studies demonstrated that the effect of APOE genotype was significant only in younger patients 

(Teasdale et al. 2005).  ApoE is a major lipid carrier in the brain (Mahley 1988), and there have 

been multiple mechanisms proposed to account for the effect in TBI and other brain injuries 

(Verghese, et al. 2011).  One hypothesis is that APOE genotype affects secondary 

neurodegenerative processes following TBI. This hypothesis is based on the ideas that 1) 

APOE4 is a major genetic risk factor for Alzheimer’s disease (Corder, et al. 1993; Strittmatter, et 

al. 1993), 2) TBI is a major environmental risk factor for dementia of the Alzheimer’s type 

(Plassman et al. 2000; Jellinger 2004), and 3) ApoE has been shown to interact with two key 

Alzheimer’s disease proteins, Aβ and tau (Bu 2009).  Supporting this hypothesis, human mutant 

APP transgenic mice with the APOE4 allele show greater accumulation of Aβ chronically 

following TBI (Hartman, et al. 2002).  However, APOE genotype can affect acute outcomes 

following TBI (Nicoll, et al. 1995; Friedman et al. 1999; Liaquat, et al. 2002; Smith, et al. 2006) 

and Aβ and tau pathologies can accumulate rapidly following TBI (Roberts, et al. 1991; Roberts, 

et al. 1994; Smith, et al. 2003a; Ikonomovic, et al. 2004; Uryu, et al. 2007).  While ApoE isoform 
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specific differences have been studied in mouse models of TBI, few studies have addressed 

interactions between ApoE genotype on acute Aβ deposition following injury (Sabo, et al. 2000; 

Laskowitz, et al. 2010; Mannix, et al. 2011).  Furthermore, the interaction between APOE 

genotype and tau pathology has not been investigated to our knowledge.      

Recently, we showed that 3xTG-AD mice carrying three human familial AD mutations 

(PS1M146V, tauP301L, and APPSWE) develop both acute amyloid beta and tau pathology following 

injury (Tran et al. 2011a; Tran et al. 2011b).  We hypothesized that in the presence of the 

APOE4 allele, both acute Aβ and tau pathology after injury would be exacerbated.  To test this, 

we crossed 3xTG-AD transgenic mice to mice that have the human APOE2, -E3, and -E4 

alleles knocked-in (Sullivan, et al. 1997a; Oddo, et al. 2003).  The results of stereological 

analysis suggest that APOE genotype may not affect acute Aβ or tau pathology after injury.  

Instead, APOE genotype appears to result in increased numbers of injured axons as evident by 

APP-positive white matter varicosities.  Considering this surprising finding, we confirmed that 

the APOE4 genotype worsens post-traumatic axonal injury in non-3xTG-AD mice expressing 

human APOE alleles.  Altogether, this indicates a primary role for ApoE in acute post-traumatic 

axonal injury that appears to be unrelated to its interactions with Aβ or tau. 

 

7.2 METHODS 

Animals 

Female 3xTG-AD mice were initially acquired from Frank LaFerla and were bred to male 

ApoE targeted replacement mice (ApoE-TR) of all 3 isoforms (Fig. 1).  Heterozygotes from two 

separate crosses were mated to avoid sibling matings. The resulting litters were screened for 

quadruple homozygotes by PCR using previously published methods (Sullivan et al. 1997a; 

Oddo et al. 2003).  Since the tau and APP alleles co-segregate in the 3xTG-AD line whereas 

the PS1 and ApoE alleles segregate independently, 1 out of 64 mice born were expected to be 
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homozygous for all four transgenes (Figure 7.1 ).  We produced at least 4 of these quadruple 

homozygotes for each genotype to establish the 3xTG-ApoE2, -ApoE3, and –ApoE4 lines.  

Non-sibling quadruple homozygotes were then mated to yield the experimental mice used for 

the current study.  All mice were housed on a 12 hour light-dark cycle with food and water ad 

libitum in accordance with the Animal Studies Committee at Washington University in St. Louis. 

 

Figure 7.1 Generation of 3xTG-ApoE mice.   For each of the three human ApoE alleles, two 
independent lines of 3xTg-ApoE heterozygotes were initially produced from 3xTg-AD and ApoE 
targeted replacement homozygotes (ApoE-TR: ApoEX+/+ represents either ApoE2, ApoE3, or 
ApoE4 homozygote mice).  Non-sibling heterozygotes were mated, and 1 out of 64 mice was 
expected to be homozygous at all 4 alleles.  Quadruple homozygotes were selected by PCR 
and used as the initial founders of each 3xTG-ApoE line. 

 

Controlled Cortical Impact (CCI) 

Two to three-month-old male and female ApoE-TR mice (Sullivan, et al. 1997b)  and six 

to eight-month-old male and female 3xTG-ApoE mice were used in the following experiments.  

17 3xTG-ApoE2, 13 3xTG-ApoE3, and 11 3xTG-ApoE4 mice were randomly assigned to either 

injury or sham groups and a 2 mm controlled cortical impact was performed as described 

previously (Brody et al. 2007).  Additional injury groups included 5 ApoE2, 5 ApoE3, and 5 

ApoE4 mice.   Briefly, mice were anesthetized with isofluorane and placed in a stereotaxic 
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frame.  A rectal probe and heat pad was used to maintain constant body temperature.  A midline 

incision was made to expose the skull and a 5 mm circular burr was used to perform a 

craniotomy over the left somatosensory cortex.  A 3 mm steel impactor tip was then aligned to 

+1.5 mm (A/P), relative to lambda and -1.2 mm (M/L) relative to midline.  An electromagnetic 

device delivered an impact to the brain to a depth of 2 mm (5 m/s, 100 ms dwell time).  The 

contusion was irrigated with saline and plastic skull cap was affixed with suture glue to cover the 

craniotomy.  Sham mice underwent the same surgical procedure but did not receive an impact.  

Mice were allowed to recover on a heat pad before being returned to their cage.       

  

Immunohistochemistry. 

24 hours following CCI, mice were deeply anesthetized with isofluorane and perfused 

with 0.3% heparin in phosphate buffered saline (PBS).  Brains were dissected and fixed in 4% 

paraformaldehyde (PFA) for 24 hours and then equilibrated in 30% sucrose PBS.  All sections 

were sliced 50 µm thick on a freezing microtome.  Every 6th section (300 microns), was then 

stained for APP (Zymed, 0.25 µg/ml), Aβ40 (Invitrogen, 0.5 µg/ml), Aβ42 (Invitrogen, 0.5 µg/ml), 

total human tau (Thermo Scientific, 1 µg/ml), or pS199 tau (Invitrogen, 1:1000).  Three minutes 

of 70% formic acid retrieval was used to unmask epitopes for Aβ40 and Aβ42 and ten minutes 

of formic acid for pS199 tau.  All other staining methods were followed as published (Tran et al. 

2011a).   

 

Stereology 

Stereology was performed blinded to genotype using a Nikon Eclipse 80i microscope 

with a motorized stage.  Both the optical fractionator and space balls probes in 

StereoInvestigator version 8.2 were used for analysis.  Regions of interest were drawn under a 

4x objective as previously described for fimbria, pericontusional corpus callosum and external 

capsule, and hippocampal CA1 beginning with most anterior section containing both blades of 
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the dentate gyrus and including the following 3-4 sections per mouse (Mac Donald et al. 2007b; 

Tran et al. 2011a).  All counts were performed using a 60x lens.  For APP and tau, a grid size of 

200 x 200 and counting frame of 40 x 40 were used.  For Aβ40 and Aβ42, a 200 x 200 grid and 

80 x 80 counting frame were used.  For pS199 tau, a 200 x 200 grid and 50 x 50 counting frame 

were used.  For the space balls hemispherical probe, a radius of 17 µm was used.  In all cases, 

a guard depth of 5 µm and a probe height of 17 µm was used.  These parameters ensured that 

the Gunderson’s coefficient of error was below 0.15 in all cases.   

 

Statistics 

Scatter plots were constructed and Shapiro-Wilk tests were performed to assess for 

evidence of non-normally distributed data.   All data was normally distributed except for APP 

stereology in ApoE4 mice (p-value <0.05).  In this case, a Kruskal-Wallis one-way ANOVA was 

performed followed by Mann-Whitney U tests.  All other data was analyzed by two-way 

ANOVAs (injury and genotype) with Bonferroni’s corrections for multiple comparisons.  

Significance was determined as p<0.05 for two-way ANOVAs and p<0.01 for all post-hoc 

comparisons.  Planned comparisons included injured versus sham mice for each genotype and 

comparisons of injured 3xTG-ApoE4 mice to injured 3xTG-ApoE2 and -ApoE3 mice.  This 

resulted in a total of 5 planned comparisons for each analysis.   

 

7.3 RESULTS 

7.3.1 APOE genotype alters the extent of axonal injury 

Amyloid precursor protein (APP) is a marker of fast axonal transport failure that 

accumulates in injured axons at the location of disrupted microtubules (Koo, et al. 1990; 

Gentleman et al. 1993; Tang-Schomer et al. 2012).  For these experiments, APP was used to 

assay axonal injury (Figure 7.2, A, D, E, J, K, P, Q, V, Fig. 3, A-C ).  3xTG-ApoE sham 

operated mice did not have axons containing APP, in contrast with CCI injured mice at 24 
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hours.  At 24 hours post-injury, APP positive axons were visible in corpus callosum, external 

capsule, and ipsilateral fimbria (Fig. 2 A).  Stereological quantification of APP+ axons in fimbria 

revealed main effects of genotype (p=0.001), injury (p<0.000001), and a genotype x injury 

interaction (Figure 7.2 V; p=0.0006).  Planned post-hoc comparisons indicated that injured 

3xTG-ApoE4 mice have significantly greater numbers of  APP-positive axonal varicosities in 

ipsilateral fimbria compared to injured 3xTG-ApoE2 (p=0.00016), and injured 3xTG-ApoE3 mice 

(p=0.00002).   

Considering this unexpected result, this experiment was repeated using ApoE-TR mice.  

Stereological quantification of APP+ axons (Figure 7.3 A-C ) in pericontusional corpus callosum 

and external capsule revealed an effect of genotype (p =0.005) where ApoE4 mice have more 

APP-positive axons that ApoE3  (p=0.008) mice but not ApoE2 mice (p=0.056).  Thus, we 

confirmed the finding that ApoE4 expressing mice have greater APP-positive axonal injury in 

two separate mouse models. 

 

7.3.2 Injury results in increased intra-axonal amyloid-β in all genotypes 

Since APP is cleaved by secretases to produce amyloid beta in injured axons (Smith et 

al. 2003a; Tran et al. 2011a), adjacent sets of serial sections were stained for Aβ40 (Figure 7.2, 

B, F, G, L, M, R, S, W ) and Aβ42 (Figure 7.2, C, H, I, N, O, T, U, X ).  Similar to APP, Aβ40 and 

Aβ42 were seen in injured mice but not in shams.  Analysis of Aβ40 revealed a main effect of 

injury (Figure 7.2 , W; p<0.000001), but no effect of genotype (p=0.26) or genotype x injury 

interaction (p=.094).  There appeared to be a trend towards increased Aβ40 in 3xTg-ApoE4 

mice, but this did not reach statistical significance.  Similarly, analysis of Aβ42 also revealed a 

main effect of injury (Figure 7.2, X ; p=0.000001), but no effect of genotype (p=0.4192) or 

genotype x injury interaction (p=0.5639). 
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Figure 7.2  APP and A β immunohistochemistry in 3xTG-ApoE mice.   Representative 
coronal slice images of APP (A), Aβ40 (B), and Aβ42(C) staining from an injured 3xTG-ApoE2 
mouse.  Higher magnification images of fimbria (box) from injured (D, F, H) and sham (E, G, I) 
3xTG-ApoE2 stained for APP (D, E), Aβ40 (F, G), and Aβ42 (H, I).  3xTG-ApoE3 injured (J, L, 
N) and sham (K, M, O) stained for APP (J,K), Aβ40 (L, M), and Aβ42 (N,O).   3xTG-ApoE4 
injured (P, R, T) and sham (Q, S, U) stained for APP (P, Q), Aβ40 (R, S), and Aβ42 (T, U).  
Stereological quantification of axonal varicosities containing APP (V), Aβ40 (W), or Aβ42 (X). 
Error bars represent standard error. (**p<0.01, ***p<0.001). 
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Figure 7.3  APP immunohistochemistry in ApoE-TR mic e.  Representative images from 
pericontusional corpus callosum (C.C) and external capsule (E.C.) of ApoE3 (A) and ApoE4 (B) 
mice stained for APP.   Stereological quantification of axonal varicosities containing APP (C).  
Error bars represent standard error.  (**p<0.01). 

 

7.3.3 APOE genotype alters somatodendritic and intra-axonal tau in 3xTG-AD mice 

The microtubule stabilizing protein tau also accumulates in the hippocampal CA1 and in 

the fimbria following injury in 3xTG-AD mice (Tran et al. 2011a).  To image accumulation of tau 

in 3xTG-ApoE mice, an antibody that recognizes total human tau was used to label a 4th set of 

serial sections (Figure 7.4, A-B, D-G, J-M, P-S ).   Similar to 3xTg-AD mice, tau was observed 

in the somatodendritic compartment of hippocampal CA1 neurons.  Length of these tau-positive 

neurites was measured using stereological methods. This revealed a main effect of genotype 

(Figure 7.4, V ; p=0.006), but no effect of injury (p=0.52) or genotype x injury (p=0.96).  3xTG-

ApoE4 sham and injured mice had significantly more accumulated tau than 3xTG-ApoE3 mice 

(p=0.009), but the difference with 3xTG-ApoE2 mice was not statistically significant after 

correction for multiple comparisons (p=0.013). 
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Total human tau was also assessed in the fimbria (Figure 7.4, B, F, G, L, M, R, S, W ).  

Stereological analysis again revealed a main effect of genotype (Fig. 4, W; p=0.000003), but no 

effect of injury (p=0.94) or genotype x injury (p=0.31).  Notably, both injured and sham 3xTG-

ApoE4 mice had greater tau accumulation in axons than either 3xTG-ApoE2 (p=0.0002) or 

3xTG-ApoE3 mice (p=0.000005).  

To test whether APOE genotype effects phosphorylation of tau, a 5th set of adjacent 

sections was also stained for phospho-serine199 (pS199) tau (Figure 7.4, C, H, I, N, O, T, U ).  

Similar to total human tau, pS199 tau was observed in the hippocampal CA1 and fimbria at 24 

hours post injury (Figure 7.4, C ).  Main effects of genotype (Figure 7.4, X ; p=0.0069) and injury 

(p=0.0092) were observed, but no there was no genotype x injury interaction effect (p=0.3097).  

Only the difference between injured and sham levels of pS199 tau in 3xTG-ApoE3 mice 

reached statistical significance, however.  No difference was seen between injured and sham 

3xTG-ApoE2 and 3xTG-ApoE4 mice or between injured 3xTG-ApoE4 mice and the other 

genotypes. 
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Figure 7.4 Tau immunohistochemistry.  Representative coronal slice images of total human 
tau (A, B) and pS199 tau (C) staining from a 3xTG-ApoE2 mouse.  Higher magnification images 
of boxed region from injured (D, F, H) and sham (E, G, I) 3xTG-ApoE2 stained for total tau in 
CA1 (D, E), or total tau in fimbria (F, G), and pS199 tau (H, I) in fimbria.  3xTG-ApoE3 injured (J, 
L, N) and sham (K, M, O) stained for total tau in CA1 (J, K), or in fimbria (L, M), and pS199 tau 
in fimbria (N,O).   3xTG-ApoE4 injured (P, R, T) and sham (Q, S, U) stained for total tau in CA1 
(P, Q), or in fimbria (R, S), and pS199 tau in fimbria (T, U).  Stereological quantification of the 
length of neurites containing tau in the CA1 (V), and axonal varicosities in fimbria containing 
either tau (W) or pS199 tau (X). Error bars represent standard error. (n.s.= not significant, 
**p<0.01, ***p<0.001).  
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7.4 DISCUSSION 

To summarize, 24 hours following moderate controlled cortical impact, 3xTG-AD mice 

with the APOE4 allele have greater APP accumulation within axons than mice with the APOE2 

or APOE3 alleles.  ApoE4 targeted replacement mice without other human transgenes were 

also found to have greater APP accumulation compared to ApoE3 targeted replacement mice. 

This suggests that modulation of the severity of axonal injury may be a primary contributor to 

the APOE genotype effect on outcomes following TBI.  However, contrary to our hypothesis 

regarding neurodegenerative pathology following TBI, APOE genotype had no effect on the 

intra-axonal accumulation of Aβ40 or Aβ42; there was a similar increase in Aβ in all 3 

genotypes.  Also surprisingly, there was no interaction between injury and APOE genotype on 

tau pathology; indeed, more total human tau was found in the somatodendritic and axonal 

compartments of 3xTG-ApoE4 mice regardless of injury status.   

Altogether, the 3xTG-ApoE mouse TBI model has similarities with and differences from 

the 3xTG-AD TBI model reported previously (Tran et al. 2011a; Tran et al. 2011b).  Both 

recapitulate key aspects of acute human TBI pathology, displaying axonal varicosities 

containing APP,  Aβ, and tau  (Uryu et al. 2007).  Mice expressing only ApoE or PDAPP-ApoE 

mice have also been studied in the setting of traumatic brain injury (Hartman et al. 2002; 

Crawford, et al. 2009b; Mannix et al. 2011).  However, neither of these models produced these 

three types of pathology.  Notably, in the 3xTG-AD mice both Aβ and tau pathologies increased 

acutely following TBI, but in 3xTg-ApoE mice, only amyloid beta but not tau was affected by 

acute TBI.  The absence of a TBI-related exacerbation of tau pathology may be due to a 

protective effect of all 3 human ApoE isoforms compared with endogenous mouse ApoE, as has 

been reported for Abeta pathology in another AD mouse model (Holtzman, et al. 1999). 

  One possible explanation for these results is that the axons of 3xTG-ApoE4 mice are 

more susceptible to injury.  This may represent a loss of function of ApoE4 in the setting of 

traumatic brain injury, similar to that seen in ApoE deficient mice (Chen, et al. 1997; Lynch, et 



148 
 

al. 2002; Namjoshi, et al. 2013).  Alternately, it may represent a toxic gain of function of ApoE4.  

Others have proposed that ApoE4 may undergo a cleavage step to produce a toxic fragment 

that induces mitochondrial dysfunction and neuronal death (Chang, et al. 2005).  Studies 

comparing axonal injury in hemizygous ApoE4+/- mice may help differentiate between a loss or 

gain of function.  Interestingly, our group recently showed that wild-type mice treated with 

COG1410, an ApoE-mimetic, following controlled cortical impact have fewer APP-positive axons 

in pericontusional white matter 3-7 days after injury compared to saline treated mice (Jiang et al. 

2012).  As COG1410 is a modified peptide sequence from human ApoE3, this could indicate 

that ApoE4 lacks an axon-protective effect found in the other two isoforms.   

Another possible interpretation of these results is that ApoE affects the production, 

processing, or trafficking of APP specifically.  For example, ApoE4 has been shown to be more 

efficient at recycling APP from the cell surface back into the endocytic pathway (Ye, et al. 2005).  

Additional markers of axonal injury and complementary injury models will be required to 

determine whether there is a specific APP effect or a general effect on axonal injury.  Thus, 

interpretation of the main finding from this study, that ApoE4 mice displayed more APP 

accumulations following injury than the other genotypes, is limited by our current understanding 

of the role of ApoE in axon biology. 

It is also notable that both sham and injured 3xTG-ApoE4 mice have more total human 

tau staining but not pS199 tau than mice expressing either ApoE2 or ApoE3.  Further 

characterization of phospho-tau epitopes may contribute to a clearer picture of tau pathology in 

this model.  Increased total human tau in 3xTG-ApoE4 is not unexpected given several previous 

lines of research.  First, ApoE4 fragments have been shown to induce tau accumulation (Huang, 

et al. 2001; Brecht, et al. 2004).  Impaired ApoE4 binding to ApoE receptors in mice may cause 

dysregulation of tau kinases such as GSK3β and greater accumulation of the protein at baseline 

(Ohkubo, et al. 2003).  Other researchers have reported that ApoE is produced in neurons 

following injury and neuronal production of apoE4 contributes to tau hyperphosphorylation and 



149 
 

microtubule instability (Horsburgh, et al. 1996; Tesseur, et al. 2000a; Tesseur, et al. 2000b).  

We have not addressed the question of neuronal apoE production following traumatic brain 

injury.  Last, apoE2 and apoE3 have been shown in vitro to bind tau and prevent 

hyperphosphorylation, while apoE4 lacks this ability (Strittmatter, et al. 1994).  As the current 

study did not address the production of apoE in neurons following injury, it is unknown whether 

neuronal apoE production is the mechanism of tau accumulation occurring in this model.  

However, it is unlikely to be a major contributor since no significant difference was detected 

between sham and injured 3xTG-ApoE4 tau or pS199 tau levels; sham mice are not expected to 

have neuronal apoE expression. 

This study was limited in that APP immunohistochemistry was the only method 

employed to assess axonal injury.  Additional markers of axonal injury including neurofilament 

immunohistochemistry, silver staining, electron microscopy, electrophysiology, and diffusion 

tensor imaging will be of interest to determine whether there is a global effect of APOE 

genotype on axonal injury or whether the effects are limited to the processing underlying 

abnormal APP accumulation (i.e. failed fast axonal transport).  Functional tests such as Morris 

Water Maze will also be useful to understand the implications of increased APP accumulation 

within the fimbria.  Further, biochemical studies will be necessary to determine the effects of 

APOE genotype on specific assembly forms of amyloid beta and tau following TBI.  Last, a full 

characterization of the time course for both amyloid beta and tau pathology will be helpful for 

interpreting these results and assessing the utility of these mouse lines.  Such analysis may 

also uncover chronic effects of APOE genotype on amyloid beta and tau deposition that were 

not apparent in this initial acute injury analysis.  Clearly, this will be the first of many studies 

required to address all of the issues in the field, and a complete characterization is beyond the 

scope of this paper.   

Another potential limitation is the choice of the 3xTG-AD line of mice.  While these mice 

have been informative in studying amyloid beta and tau dynamics following moderate TBI, 
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overexpression of these transgenes may mask some of the effects of ApoE genotype in injury.  

Mice expressing both human amyloid precursor protein and tau under endogenous promoters 

may be an alternative to the 3xTG-AD model for future studies (Andorfer, et al. 2003; Guo, et al. 

2012).   

Altogether, these results demonstrate that it is feasible to produce mouse models for 

studying interactions between APOE genotype and important aspects of human acute 

neurodegenerative pathology following traumatic brain injury.  Considering the finding that 

APOE4 genotype contributes to increased axonal injury, this research has important 

implications for targeted therapeutics to benefit susceptible APOE4 carrying populations 

following TBI.  Future research will seek to use this model for pharmacogenetic studies and to 

further understand how APOE genotype modifies axonal injury in both moderate TBI and less 

severe repetitive closed skull injury models (Shitaka et al. 2011). 
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CHAPTER  8 

Conclusions and Future Directions 

 
8.1 SUMMARY 

 To characterize the repetitive closed-skull traumatic brain injury (rcTBI) mouse model, 

histological, electrophysiological, and advanced magnetic resonance imaging (MRI) methods 

were used.  Two key observations were made 1) rcTBI results increased activation and 

proliferation of microglia and 2) there is histological evidence of axonal injury from APP, NF200, 

SMI-32, and silver staining in the absence of overt cell loss or damage.  Interestingly, silver 

staining appears to have the greatest sensitivity to axonal injury at 7 days, while other 

immunohistochemical markers labeled the greatest amount of injury at 2 days.  Further, 

electrophysiological compromise of axons was evident at 7 days, where compound action 

potential amplitude in both myelinated and unmyelinated axons was reduced.  Diffusion tensor 

imaging in this mouse model revealed acute abnormalities in injured white matter.  Decreases in 

mean diffusivity and axial diffusivity at 7 days suggest that analysis of individual components of 

the diffusion tensor may be the most sensitive to mild traumatic axonal injury.   Altogether, these 

features are in line with what is known about characteristics of human traumatic brain injury and 

both in vivo and ex vivo human concussion studies (Oppenheimer 1968; Blumbergs et al. 1994; 

Niogi et al. 2010; Ramlackhansingh et al. 2011; Johnson et al. 2013a; Johnson et al. 2013b).   

 Factors that might influence the extent of axonal injury after concussion were also 

explored.  To determine how the robust upregulation of microglial activity may contribute to on-

going processes of axonal injury, rcTBI was performed in the valganciclovir-inducible CD11b-TK 

mouse model of microglial depletion.  At 7 day and 21 days, a 35% reduction in microglia had 

no effect on the amount of silver staining in white matter tracts.  A 56% reduction also failed to 

alter silver staining or axonal injury evident by electron microscopy 7 days post-injury.  
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Unexpectedly, this model resulted in intraparenchymal hemorrhages with long-term or high-

dose valganciclovir treatment.  Altogether, based on these data, it does not appear that 

microglia contribute to acute and sub-acute axonal injury.  

 In a separate set of experiments, I attempted to manipulate the microglial response 

using Mac-1-SAP, minocycline, CHPG, BBG, or miR-124.  With the exception of Mac-1-SAP, 

the number of microglia was unaffected by drug treatment after injury.  In the case of Mac-1-

SAP, a CD11b targeted toxin, cell loss and intraparenchymal hemorrhages were pronounced at 

7 days.  Whether or not this toxicity is due to a similar mechanism seen in CD11b-TK mice or 

related to the metabolization of Mac-1-SAP is unknown.  Overall, this indicates a need for better 

microglial-targeting compounds. 

 Last, data was presented from a more severe controlled cortical impact (CCI) injury 

model where presence of the human apolipoprotein E4 allele worsened axonal injury acutely 

after impact.  Surprisingly, APOE4 expression did not affect acute accumulation of Aβ or tau in 

axons.  This suggests that APOE may be one contributing factor to axonal injury and poor 

outcome following traumatic brain injury.   

 

8.2 FUTURE DIRECTIONS 

 One clear direction of this research is to explore the connection between functional 

axonal injury and behavioral outcomes.  In this work, I show that injured mice have Morris Water 

Maze deficits and reduced compound action potential velocities.  Other work in the lab has 

found that mice also have impairments in tasks such as the tail suspension and social 

recognition tests (Klemenhagen, et al. 2013).  An intriguing possibility is that axonal injury may 

be the substrate for behavioral deficits and it would be informative to directly test this 

hypothesis.  This could be done by making use of the inherent variability in the injury model.  

Individuals would be prescreened into “high” injury and “low” injury groups using behavioral 

tests performed within the first 2-3 days post-injury.  Pairs of sham and injured mice could be 
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tested in a single day of hidden platform Morris Water Maze, tail suspension, social recognition, 

and/or rotarod testing.  Low injury mice would be defined as having behavior test scores within 1 

standard deviation of a group of sham control mice.  High injury mice would have test scores of 

more than 1 standard deviation.  I would expect that the high injury mice would have reduced 

compound action potential velocities at 7 days post-injury and that low injury mice would be 

similar to shams.  Further, following electrophysiology, slices could be embedded in gelatin and 

re-sectioned on a freezing microtome (see protocol in appendix) so that correlations between 

behavioral, electrophysiological, and histological parameters like silver staining could be 

examined.   

If mice with the greatest behavioral deficits also have functional and histological 

changes, then follow up experiments could examine manipulating axonal injury severity and the 

effect this has on behavioral tests.   For example, in Chapter 7, I observed that mice with the 

ApoE4 allele have increased axonal injury after moderate-severe TBI compared to mice with 

ApoE2 or 3.  I would expect that after repetitive concussive injury, ApoE4 mice would have 

increased silver staining compared to E2 and E3 mice and that ApoE4 they would also have the 

greatest behavioral deficits.  Administration of an ApoE mimetic drug, such as COG1410, may 

alleviate these deficits in ApoE4 mice (Laskowitz, et al. 2007; Jiang et al. 2012).  In addition, 

such a study would shed light on whether or not ApoE4 affects axons through a toxic gain of 

function or a loss of function mechanism.  If COG1410 can prevent increased axonal injury in 

ApoE4 mice, then it would appear that ApoE4 is a loss of function mutation.  If COG1410 has no 

effect, then it is likely ApoE4 works through a toxic gain of function, such as the release of a 

toxic cleavage product (Chang et al. 2005).  

Alternately, if electrophysiology and histology do not correlate with any behavioral 

measures, it would suggest that future experiments and therapeutic design should target 

aspects of repetitive concussion other than axons.  Other areas of investigation should include 

looking at changes to synapses.  To date, no comprehensive study has examined the effects of 
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concussive brain injury on synaptic structure, due in large part to the availability of high-

throughput quantitative methods for investigation.  More recently, however, array tomography 

has been used to address these questions (Micheva et al. 2007; Kay et al. 2013).  In this 

method, tissue is embedded in plastic resin similar to preparation for electron microscopy.  

Serial 70-100 nm sections are cut in ribbons, “arrays”, on an ultramicrotome using a large 

diamond knife.  These arrays can then be immunofluorescently labeled with antibodies to 

synaptic proteins and individual structures can be counted.  Unlike using traditional 10 micron 

thick or larger tissue sections, physically sectioning allows considerably improved z-axis 

resolution.  The tools and methods are currently in place in the lab to perform these studies.  

Specifically it would be informative to investigate how activated microglia may alter 

synaptic structure and behavior.  Microglia are important mediators of synaptic pruning during 

development, and it is becoming increasingly apparent that they play an active role at the 

synapse in the adult brain (Paolicelli, et al. 2011; Schafer, et al. 2012; Parkhurst et al. 2013; 

Zhan, et al. 2014).  Recently, it was reported that release of microglial BDNF at the synapse is 

an important event in the learning response, as it helps regulate synapse formation and 

elimination (Parkhurst et al. 2013).  How might this process be affected by concussions—or 

multiple concussions?  Synaptic alterations though to be the underlying basis for schizophrenia 

and autism and it is intriguing to consider that trauma-induced synaptic changes might 

contribute to behavioral alterations or cognitive impairments after concussion.  Interestingly, in 

the larger TBI population, individuals with a history of TBI are at increased risk for developing 

psychiatric disorders (Orlovska et al. 2013).  How milder injuries might contribute to synaptic 

alterations and subtle behavioral change (or the more striking behavioral and personality 

changes seen in Chronic Traumatic Encephalopathy) is an exciting direction for future 

investigations.  

 In sum, these experiments will all test the underlying assumption (of this research and of 

the TBI field in general) that axonal injury is the central pathological process taking place in mild 
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or concussive TBI.  While axonal injury may prove to be a key aspect of these mild injuries, this 

assumption may be an artifact of our ability to detect pathology.  Designing experiments to 

directly test this assumption will be important for therapeutic development to reduce the long-

term consequences of these injuries.   

 

8.3 CONCLUDING REMARKS 

With the increasing public awareness of the risks associated with concussion, more 

talented scientists will be attracted to this area of research and it is my hope that this work be 

used as a starting point for future investigations into the nature of repetitive concussive 

traumatic brain injury.  Here, I found that microgIia do not play a role early on in the process of 

axon degeneration, but it remains to be answered why microglial cells remain present in white 

matter tracts for several weeks (or in humans, years) post-injury or how they might modulate 

long-term outcomes, contribute to synaptic alterations, and initiate behavioral changes.  I have 

also reported that apolipoprotein E genotype influences the severity of axonal injury immediately 

following TBI, and it will be necessary to repeat these studies in the repetitive closed-skull injury 

model and to determine by what mechanism APOE exerts its effects on axonal injury.  

Altogether, have detailed how this rcTBI mouse model can be used in future investigations to 

explore the effects of genetic or environmental factors on concussive injury and I have 

presented an experimental approach for assessing injury including immunohistochemistry, 

electrophysiology, behavior, and diffusion tensor MRI.   
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APPENDIX 

TABLE A1:  REVIEW OF EXPERIMENTAL MODELS OF MILD TR AUMATIC BRAIN INJURY AND CONCUSSION IN RAT 
AND MOUSE 

Reference  Organism  Injury Description  Endpoints  Main findings  
Nilsson et 
al. 1990 

rat Single mild 1.5 or 2.5 
mm controlled cortical 
impact (piston) 

240 
minutes 

Performed microdialysis and measured energy metabolites 
after injury, GABA, taurine, glutamate and aspartate were all 
altered over 240 minute timecourse. 

Kanayama 
et al. 1996 

rat 7x daily 1.0 atm fluid 
percussion injuries 

1 week, 1 
month 

Abnormal MAP2, tau, and neurofilament (IHC) in perikarya 
and impaired behavior (novel environment) 

Tang et al. 
1997 

mouse Single weight drop 
injury 

12 hours—
3 weeks 

46% mortality, 23% skull fracture, edema, impaired MWM 
performance, cell loss (Cresyl violet) 

Han et al. 
2000 

mouse Single weight drop 
(Tang et al.) 

 Widespread neurodegeneration in CA2/3 and increased 
GFAP in APOE-/- mice 

Laurer et 
al. 2001 

mouse 2x daily pneumatic 
impacts with rubber tip 

3, 7, 14, 
21, 28, 56 
days 

Impaired rotarod, no change in MWM.  Reduced neuroscore 
that recovered by 14 days. APP in thalamus at 28 days, no 
cell loss or MAP2 loss 

DeFord et 
al. 2002 

mouse 1-4x weight drop 
injuries (50 g, 100 g, 
150 g masses) 

3 hours, 2 
and 12 
days 

Determined weight drop parameters that resulted in 100% 
survival, no skull fractures, no cell loss (cresyl violet), 
repetitive injury produced MWM impairments  

Uryu et al. 
2002 

mouse 2x daily pneumatic 
impacts with rubber tip 
(Laurer et al.) 

2 days, 9 
or 16 
weeks 

Repetitive injury increased amyloid deposition in Tg2576 
mice.  Slight MWM deficits 16 weeks after repetitive injury 
but not single injury. No cell loss, sparse GFAP. 

Zohar et al. 
2003 

mouse 20, 25, or 30 g single 
weight drop injury 

7, 30, 60, 
or 90 days 

Injury impaired MWM performance in all groups that last to 
90 days.  No histological abnormalities (MRI) 

Creeley et 
al. 2004 

mouse 3x 21 g daily weight 
drop injuries 

 Contra-coup argyrophilic injury.  Small group differences in 
MWM (increased path length to platform) 

 Conte et 
al. 2004 

mouse 2x daily pneumatic 
impacts with rubber tip 
(Laurer et al.) 

8 weeks Vitamin E supplementation for 8 weeks post injury reduced 
MWM deficits and amyloid deposition in Tg2576 mice. 

Longhi et 
al. 2005 

mouse 1x or 2x pneumatic 
impacts with rubber 
tip, 3, 5, or 7 day 
interval (Laurer et al.) 

72 hours 
and 1 week 

Mice have MWM deficits with up to a 5 day injury interval 
between 2 hits, not in the single hit group.  Fluorojade B in 
ipsilateral cortex, increased APP in white matter 
(semiquantitative analysis), reduced MAP2 
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Reference  Organism  Injury Description  Endpoints  Main findings  
Milman et 
al. 2005 

mouse 30 g single weight 
drop injury (Zohar et 
al.) 

7, 30, 60, 
90 days 

Deficits in swimming T maze, forced swim tests, and 
passive avoidance at sporadic intervals post-injury  

Tashlykov 
et al. 2007 

mouse 15,20,25,30 g weight 
drop (Zohar et al.) 

72 hours Apoptosis after injury 

Abdel Baki 
et al. 2009 

rat Single controlled 
cortical impact (1.0 
mm, 3 m/s or 2.5 mm, 
4 m/s) 

7 days or 3 
weeks 

No difference in open field and passive avoidance.  
Increasingly difficult avoidance tests were used to 
discriminate sham, mild, and moderate TBI groups. 

Hamberger 
et al.  2009 

rat 1x or 3x ballistic 
weight impactor, 
unfixed, helmeted 
head (Viano et al.) 

10 days Multiple injuries produced NF200 accumulation, increased 
gfap, hemorrhages and edema. 

Israelson et 
al. 2009 

mouse Single 30 g weight 
drop (Zohar et al.) 

4, 22 
hours, 3 
and 7 days 

Increased transcription of genes involved in inflammation 
(qPCR)  

Viano et al.  
2009 

rat 1x or 3x (every 6 
hours) ballistic weight 
impacts, unfixed, 
helmeted head 

1, 4 or 10 
days 

11-33% of rats had focal brain injury or hemorrhage and 
increased bleeding after 3 hits.  Head acceleration reached 
450g to 1750g without skull fracture. 

Spain et al. 
2010 

mouse Single mild (0.9 atm) 
fluid percussion injury 

4, 24, 72 
hours, 4 
and 6 
weeks 

No difference in MWM performance, few injured neurons 
(H&E), increased APP in external capsule at 24 hours and 
in thalamus at 4 and 6 weeks.  No clear changes in myelin 

Creed et al. 
2011 

mouse  Single pneumatic 
impact with 5mm 
metal tip, midline 
between lambda and 
bregma  

24 hours, 
3, 7, 14 
days 

MWM deficits on days 1-3 post-injury but not 4-6.  Increased 
APP in corpus callosum and external capsule at 24 hours 
and 3 days, increased SMI-32 at 24 hours.  Increased 
axonal Fluorojade B at 7 and 14 days.  Reduced myelinated 
axon CAP amplitude at 24 hours and 14 days.  Increased 
unmyelinated axon refractoriness at 14 days. 

Davidsson 
et al. 2011 

rat Single rotational 
acceleration (0.3-2.1 
Mrad/s 

2 hours-7 
days 

1.0 Mrad/s2 or above produced axonal injury (APP, silver), 
upregulated Cox2, elevated serum S100β 
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Reference  Organism Injury Description Endpoints Main findings 
Goldstein 
et al. 2012 

mouse Single blast injury, 
unfixed head 

2 weeks Increased GFAP, SMI-31, tau labeling in cortex and 
hippocampus 

Kane et al. 
2012 

mouse 5x or 10x daily weight 
drop in unrestrained 
mouse 

4 hours, 5 
and 30 
days 

Increased GFAP, increased tau phosphorylation at 30 days 
(Western Blot), mixed results in rotarod testing 

Meehan et 
al. 2012 

mouse 1x, 3x, 5x, or 10x 54 g 
weight drop, unfixed 
head 

24 hours, 1 
month, 1 
year 

Mice that received weekly impacts performed worse on 
MWM but mice that received monthly impacts did not.  
Deficits were apparent when testing began at 24 hours or 1 
month post-injury.  Small n per group. 

Mouzon et 
al. 2012 

mouse 1x or 5x 
electromagnetic 
impact with 5mm 
metal tip every 48 hrs 

24 hours, 
10 days 

1x and 5x injuries had impaired rotarod and Barnes maze 
performance, increased APP, GFAP, microglia in corpus 
callosum and brainstem. 

Shultz et al. 
2012 

rat 1x, 3x, or 5x (1-1.5 
atm) fluid percussion 
injury every 5 days 

24 hours or 
8 weeks 

5x group had impaired elevated plus maze and forced swim 
test, 3x and 5x had impaired MWM.  No changes in beam 
walk, open-field or social behavior tasks.  3x and 5x had 
more microglia in injured cortex.  Large areas of cortical 
damage in 3x and 5x groups. 

Hylin et al. 
2013 

rat Single mild (1-1.5 atm) 
fluid percussion injury 

5 days 1.0 atm injury did not cause motor or MWM deficits. 1.5 atm 
had mild motor deficits, impaired MWM, altered cerebral 
perfusion, reduced FA in cingulum, increased silver staining, 
APP, iba-1, and GFAP in corpus callosum. 

Mannix et 
al. 2013 

mouse 1x, 5x, 7x 54 g weight 
drop unfixed head, 
daily, weekly, 
biweekly, or monthly 

2 days, 2 
months, 6 
months or 
1 year 

Daily and weekly impacts resulted in impaired MWM 
performance but biweekly or monthly did not.  No T2-
weighted MRI abnormalities.  No effect of ApoE4 allele in 
MWM performance 

Ojo et al. 
2013 

mouse 1x or 5x EM impact 
with 5mm metal tip 
every 48 hrs (Mouzon 
et al.) 

3 weeks 5x but not 1x injury appeared to increase tau pathology in 
human tau knock-in mouse line (immunohistochemistry, 
CP13, RZ3, PHF1).  Increased GFAP and CD45.  Neuronal 
injury in CA3 (cresyl violet). 

Selwyn et 
al. 2013 

rat Single mild (1.2 atm) 
fluid percussion injury  

3, 24 or 72 
hours, 5, 7, 
9, 14, 16 or 
21 days 

Injury resulted in transient reduction in glucose uptake 
between 24 hours and 5 days (PET).  Motor impairments in 
beam walk and peg walk.  No change in Barnes maze.  
Possible axonal loss or white matter damage 10 days post-
injury.  Reduces MAPs in cortex at 10 and 21 days. 
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Reference  Organism Injury Description Endpoints Main findings 
Mouzon et 
al. 2014 

mouse  1x or 5x 
electromagnetic 
impact with 5mm 
metal tip every 48 hrs 

6, 12, or 18 
months 

5x injury mice performed poorly on Barnes maze at all 
timepoints.  No difference in rotarod or elevated plus maze.  
Iba-1, gfap, and occasional APP was present in corpus 
callosum at 12 months post-injury. No Aβ or tau changes. 
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TABLE A2:  TRANSGENIC MOUSE LINES FOR MICROGLIAL DE PLETION 

Mouse line  Refs Experimental 
Model 

Result  Mechanism  Specificity  

CD11b-TK 
(Zurich, 
Switzerland) 

(Heppner et al. 
2005; Grathwohl 
et al. 2009; Varvel 
et al. 2012) 

Mouse EAE, 
Alzheimer’s mice 
(APPswe/PS1 & 
APP23) 

Reduced EAE symptoms, 
reduced number of 
microglia by up to 90%, did 
not alter Aβ 

Herpes simplex virus 
thymidine kinase induces 
toxicity in CD11b cells after 
valganciclovir administration 

Yes, will 
selectively 
deplete 
monocytes 

CD11b-TK 
(Quebec, 
Canada) 

(Gowing et al. 
2006; Simard et 
al. 2006; 
Lalancette-
Hebert, et al. 
2007) 

Nerve axotomy, 
cortical stab, 
ischemia, 
Alzheimer’s mice 
(APPswe/PS1) 

Reduced EAE symptoms, 
reduced number of 
microglia by up to >75%, 
bone marrow microglia 
reduced Aβ plaques 

Herpes simplex virus 
thymidine kinase induces 
toxicity in CD11b cells after 
ganciclovir administration 

Yes, will 
selectively 
deplete 
monocytes 

IL34 -/- (Wang, et al. 
2012) 

 Mice have ~80% fewer 
microglia 

IL34 is required for normal 
microglial development 

Langerhans cells 
are also affected 

CSF1R -/- (Ginhoux, et al. 
2010) 

 Mice fail to develop 
microglia  

CSF1R is required for 
microglial development 

Osteoclasts are 
all affected 

MAFIA (Burnett et al. 
2004) 

 70% loss of macrophage in 
blood, spleen, lung and 
thymus, >90% loss in bone 
marrow and peritoneum 

FKBP-fas induces apoptosis 
in Csf1r expressing cells after 
administration of AP20187 

Will deplete 
macrophage and 
dendritic cells. 

P2Y12 -/-  (Haynes, et al. 
2006) 

Microglial culture, 
in vivo cortical 
laser ablation 
injury 

Microglia failed to extend 
processes towards 
nucleotides or injured areas 

P2Y12 signaling is required 
for microglial chemotaxis in 
response to nucleotides  

No, also found 
on platelets but 
not found on 
peripheral 
macrophage 

p38α -/- (Bachstetter, et al. 
2013) 

Mouse controlled 
cortical impact 

Microglia do not have 
altered morphology after 
brain injury but do have 
upregulated cytokine 
production.   

Lack of phospho-p38α inhibits 
microglia activation  

No, p38α is 
ubiquitously 
expressed 

CX3CR1CreER (Parkhurst et al. 
2013) 

 99% reduction of microglia 
(by flow cytometry and iba-1 
immunohistochemistry) by 
day 1 after diphtheria toxin 

Tamoxifen-inducible cre 
recombinase drives 
expression of diphtheria toxin 
receptor.  Administration of 
diphtheria toxin depletes 
microglia 

Yes 
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TABLE A3:  PHARMACOLOGICAL COMPOUNDS USED TO MANIPU LATE MICROGLIA 

Compound  Refs Experimental 
Model 

Result  Mechanism  Specificity  

Mac-1-
Saporin 

(Dommergues et 
al. 2003; Garcia-
Alloza et al. 
2007; Zhao et al. 
2007) 

Rat spinal cord 
injury, cortical stab, 
PSAPP mice 

Application of Mac-1-Sap 
reduced microglial number 

Binds to CD11b and toxin is 
internalized 

Yes, will only 
bind to 
monocytes 

Minocycline  (Bye et al. 2007; 

Kim et al. 2009) 
TBI, ischemia, ALS, 
etc.  

Reduced microglial 
activation by histology and 
ELISA 

No clear mechanism, thought 
to act through P38 but could 
be indirect 

No, may work 
through 
neurons 

CHPG (Movsesyan, et 
al. 2004; Byrnes 
et al. 2009a; 
Byrnes et al. 
2009b) 

Rat spinal cord 
injury 

Treatment reduced TNFα, 
NO, ROS 

Agonist of mGluR5, blocks 
expression of NADPH 
oxidase in microglia 

No, mGluR5 
present on 
other cell types 

Brilliant Blue 
G 

(North 2002; 
Monif et al. 
2009) 

Primary microglial 
cultures, spinal 
cord injury 

Reduced microglial 
markers, TNFα, iNOS, 
NADPH oxidase 

Selective P2X7 receptor 
antagonist 

Primarily 
expressed in 
macrophage 

miR-124 (Ponomarev et 
al. 2011) 

Mouse EAE Peripheral miR-124 
suppressed EAE 

Inhibition of C/EBP-α and 
PU.1 (transcription factors) 

No, miR-124 
regulates many 
pathways 

CX3CL1 (Mizuno, et al. 
2003) 

LPS activated 
microglial cell 
cultures 

Fractalkine suppressed 
TNFα, NO, IL-6 

Not clear, may be NF-κB Yes 

D-JNKI1 (Benakis, et al. 
2010) 

MCAo No effect on microglial 
activation, contrary to in 
vitro results 

No clear mechanism, could 
be indirect 

No 

COG1410 (Laskowitz et al. 
2007) 

Mouse TBI Reduced microglial 
activation 

No clear mechanism, could 
be indirect 

No 

Ibuprofen  (Yan, et al. 
2003) 

Tg2576 mice Reduced CD45, CD11b  Multiple targets No 

CEP-1347 (Lund, et al. 
2005) 

LPS stimulated cell 
cultures and mice 

Reduced TNFα after LPS in 
vitro and in vivo 

MLK inhibitor seems to work 
through P38/JNK 

No 

Fluorocitrate  (Hassel, et al. 
1992; Watkins, 
et al. 1997) 

Formalin 
hyperalgesia 

Injected into spinal cord, 
blocked hyperalgesia 

Inhibits glial Krebs cycle 
enzyme 

NA 

Chlodronate 
Liposomes 

(Polfliet, et al. 
2001; Hawkes, 
et al. 2009) 

Wild-type rats, 
TgCRND8 mice 

Injected into lateral 
ventricle, reduced 
perivascular macrophage 

Ingested by phagocytic cells 
to induce toxicity 

Yes, but limited 
penetration in 
brain 
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PROTOCOL: RE-SECTIONING BRAIN SLICES FOR HISTOLOGY 

Adapted from (Crawford, et al. 2009a) 

Gelatin Recipe (for 100 mls) 

7.5g gelatin 

15g sucrose 

     to 100ml with ddH2O 

1) Heat to 50°C to dissolve gelatin and sugar.  Ali quot in plastic conicals and store at 4°C. 

2) To use gelatin, reheat to 35-40°C. 

3) Place drop of warm gelatin in a cryomold (cat#62534-25, E.M.S.) and immediately place 

the slice on top of the gelatin.  Use a paintbrush to smooth the surface of the section so 

that it is flat—it helps to do this over ice so that the gelatin will start to firm up and adhere 

to the slice.   

4)  Cover with a second layer of gelatin—do not allow the first layer to completely set 

before doing this as the layers will separate later.    

5) Allow gelatin blocks to cool for 1 hour at 4°C.  Then remove the cryomolds and trim 

some of the excess gelatin from around the slice with a razor blade. 

6) Once blocks have chilled, remove from cryomolds and place in 4% PFA overnight 

7) Transfer to 30% sucrose PBS overnight. 

8) Section on a freezing microtome you normally would, taking care to line up the face of 

the section as best as you can with the blade—this should yield 3-4 good 50 micron 

sections per 300-400 micron slice. 

 

  


	Washington University in St. Louis
	Washington University Open Scholarship
	Spring 4-15-2014

	Axonal Damage in Repetitive Concussive Traumatic Brain Injury: Characterization and Contributing Factors
	Rachel Bennett
	Recommended Citation


	Microsoft Word - 274322_supp_A5D15E8A-C982-11E3-9558-23612E1BA5B1.docx

