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ABSTRACT OF THE DISSERTATION

Properties of Neutron Star Critical Collapses

by

Mew-Bing Wan

Doctor of Philosophy in Physics

Washington University in St. Louis, 2009

Professor Wai-Mo Suen, Chairperson

Critical phenomena in gravitational collapse opened a new mathematical vista

into the theory of general relativity and may ultimately entail fundamental physical

implication in the astrophysical realm, especially in gravitational collapse scenarios.

However, at present, the dynamics of critical phenomena in realistic astrophysical

gravitational collapse scenarios are still largely unknown. My thesis seeks to under-

stand the properties of the neutron star critical solution, understand the properties of

the threshold in the solution space of the Einstein field equations between the black

hole and a neutron star phases, and clarify the implication these results on realistic

astrophysical scenarios. We develop a new set of neutron star-like initial data to es-

tablish the universality of the neutron star critical solution and analyze the structure

of neutron star and neutron star-like critical collapses via the framework of phase

spaces. We also study the different time scales involved in the neutron star critical

solution and analyze the properties of the critical index via comparisons between neu-

tron star and neutron star-like initial data. Finally, we explore the boundary of the
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attraction basin of the neutron star critical solution and its transition to a known set

of non-critical fixed points.
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Chapter 1

Introduction

1.1 Background and motivation

The field of numerical relativity has been a rich interplay of different disciplines

throughout its relatively young life. Besides the advances in numerical methods ap-

plied to the theory of general relativity, eg. spectral methods [34], finite-element

methods [2],[50] and multigrid methods [61],[42], diverse fields such as theoretical

computational science, eg. adaptive mesh refinement algorithms and algebraic com-

putation; fluid dynamics, eg. magnetohydrodynamical flows; the theory of partial

differential equations; the theory of the global structure of spacetimes, eg. the study

of the structure of singularities and the dynamics of the spacetimes surrouding it;

theoretical astrophysics, eg. binary pulsars and black holes, rotating stars, and su-

pernovae core collapses; cosmology, eg. galactic clusters and collisions; and astron-
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Chapter 1 Introduction

omy, eg. gravitational radiation detection, gamma-ray burst modelling; have con-

tributed to its development [28],[30],[15],[76],[5],[74],[16],[78],[77],[67],[57],[7],[81],[35],

and vice versa. An example is the application of the Godunov method in dealing

with hydrodynamic shocks when solving the Einstein field equations on a numerical

finite-differenced grid. Godunov first suggested this method in 1959 as a means to

solve partial differential equations. In the application of his method in numerical

relativistic hydrodynamics, the relativistic fluid is cast as a Riemann problem, which

consists of a conservation law together with a piecewise constant data having a single

discontinuity. The use of the Godunov method is now widespread and known to be

highly effective in all state-of-the-art numerical general relativistic hydrodynamics

simulations of astrophysical systems and phenomena [31],[32].

In 1993, a phenomenon is found by Choptuik [20] in general relativistic simula-

tions, analogous to phase transitions in condensed matter systems, thereby earning

the name critical phenomenon. Critical phenomena are the first new phenomena dis-

covered via numerical simulation in the theory of general relativity. The phenomena

observed describes the existence of a threshold between distinct possible end states of

a gravitational collapse scenario, and new behavior of the gravitating system on this

threshold reflective of that undergone by condensed matter systems during phase tran-

sitions, eg. liquid-gas transitions and ferromagnetic phase transitions. The dominant

features of this behavior include fine-tuning, universality and scale-invariance, where

a term called order parameter is seen to follow a power-law behavior, and where the

2



Chapter 1 Introduction

phase transitions are categorized according to whether the order parameter changes

discretely or continuously. The scale-invariant feature of these condensed matter sys-

tems, eg. the dimensionless quality of the correlation length which causes the particle

clusters to exhibit a fractal structure, and the renormalization group transformation

performed on the correlation length, is carried over analogously to the gravitational

collapse behavior on the threshold. As such, the discovery of critical phenomena in

gravitational collapse became another prominent example where a separate field of

physics has enriched the field of numerical relativity. In addition, it has sinced opened

a new mathematical vista into the theory. In the first decade after this discovery, re-

search has been focused on analytically establishing the existence and generality of

critical phenomena in general relativity. Due to the complexity of Einstein’s field

equations, such analytic analyses of the phenomena have all assumed spherical sym-

metry, and involved simplified matter or massless systems. Overview of these works

has been covered comprehensively by Gundlach in his review [38]. Later works grad-

ually ventured into more relaxed symmetry, ie. axisymmetry, and considered more

complicated matter models. However, the field of critical gravitational collapse still

dwells very much in the theoretical and mathematical arena, and has been used only

as a tool to understand new and interesting aspects of the theory of general relativity,

eg. the cosmic censorship conjecture and the emergence of fractality.

In 2003, Noble and Choptuik [63] began looking into how critical phenomena could

be triggered in static neutron star models in spherical symmetry. Neutron stars refer

3



Chapter 1 Introduction

to stars with masses on the order of 1.5 M�, radii of about 12 km, and central

densities 5 to 10 times the nuclear equilibrium density of about 0.16 fm3, thereby

making them some of the densest massive objects found in the astrophysical realm

[10],[11],[43]. They were first predicted by Baade and Zwicky in 1933 [8] in a study

on the origins of supernovae, and discovered by Bell and Hewish in 1967 as a source

of regular radio pulses in the Crab Nebula [44]. Neutron stars are now thought to be

formed as an aftermath of the gravitational collapse of the core of a massive star of

more than 8 M� at the end of its life [52]. They are also believed to be created from

the accretion-induced collapse of massive white dwarfs. Their interiors, in particular

their outer cores, consist of neutron superfluids with proton superconductors. These

interiors lose energy at a rapid rate via neutrino emission. A standard neutrino

cooling scenario called the Urca process [71] requires the proton to neutron ratio

to exceed 1/8. Each reaction in this process produces a neutrino and antineutrino

via alternate beta and inverse-beta decays, losing thermal energy in the process. The

period whereby this occurs beginning from the explosion is about 3×105 years old. In

1974, Hulse and Taylor discovered a binary neutron star system [45], a system which

is also termed as a binary pulsar, due to their emission of radio pulses as first observed

by Bell and Zwicky. Two stars starting from large separations slowly inspiral into

each other due to loss of angular momentum and energy. When their orbits shrink

beneath the innermost stable circular orbit, they enter a coalescence phase, where

they begin to plunge and merge. Even though this phase is characterized by very

4



Chapter 1 Introduction

strong and dynamical gravitational and hydrodynamical processes, the plunging can

be approximated quite well to the scenario of the two stars colliding head-on into each

other. Due to the pervasiveness of such systems in galactic clusters as well as the

dynamics of their orbital decrease and energy loss, coalescing binary neutron stars

are also generally considered good candidates as sources of gravitational radiation

detectable by both existing ground-based detectors such as LIGO, VIRGO, GEO600,

and TAMA300 and the proposed space-based detector LISA [26].

In current state-of-the-art numerical simulations of such processes, full general

relativistic hydrodynamic is employed, where the standard Tolman-Oppenheimer-

Volkoff models are solved together with a polytropic equation of state. The study

of the time scales involved in gravitational collapses in colliding neutron stars was

first considered by Miller, Suen and Tobias [58] using fully general relativistic hy-

drodynamics simulations. In this study, the neutron stars are modelled such that

they infall into each other from infinity. As a result, a dividing line is found to exist

between neutron star masses producing collapses that occur within a dynamical time

scale, ie. prompt collapses, and those that occur after neutrino cooling settles in, ie.

delayed collapses. As the problem is studied using a 3-dimensional code, the quest of

determining the dividing line between these two scenarios becomes computationally

expensive. This drove the need to construct a 2-dimensional code capable of high res-

olutions in the finite-differencing scheme employed in the code (refer to Appendix A),

which in turn can be employed to resolve the fine structure behavior at the dividing

5



Chapter 1 Introduction

line. In 2007, such an axisymmetric construction was undertaken by Jin and Suen

[47] in a study that explores this dividing line in fine detail. They report that critical

phenomena is observed along this dividing line, characterizing an oscillatory threshold

between the black hole and neutron star end states. Furthermore, the same phenom-

ena is seen to occur when the equation of state of the neutron star system is made

to vary infinitesimally. Although the same neutron star models are used in both this

study and in the study undertaken by Noble and Choptuik earlier, the former does

not exhibit scale-invariance at the threshold. With all these considerations, this study

poses a significant departure from previous works and approaches the realm of real-

istic astrophysical phenomena. Furthermore, the determination of the gravitational

radiation signature of the unstable modes of such gravitational collapses of neutron

star systems may provide insights to gravitational radiation emission data. However,

at present, the dynamics of critical phenomena in such astrophysical gravitational

collapse scenarios are still largely unknown.

In addition, the study of non-rotating neutron stars is still a deviation from real-

istic systems typically formed in the universe. In particular, coalescences of binary

neutron star inspirals produce hypermassive neutron stars that support themselves

against gravitational collapse via differential rotation. These hypermassive neutron

stars undergo diverse astrophysical mechanisms, eg. angular momentum transport,

magnetic breaking, as well as gravitational radiation emission, before collapsing into

black hole states. Rotating neutron stars are also formed from rotational core collapse

6



Chapter 1 Introduction

of supernovae. With this in mind, Jin and Suen [48] recently incorporated angular

momentum into the head-on colliding neutron star system. The axis of angular mo-

mentum is parallel to the axis of collision. In this recent study, they find similar

critical phenomena in the simultaneously oscillating and rotating merger. Consider-

ing the non-radiative stationary nature of critical solutions, this automatically poses

an intriguing challenge to well-known conceptions of the theory of general relativ-

ity, which necessitates the non-stationarity of a gravitating object that oscillates and

rotates, leading to its losing energy and decreasing of its oscillation amplitude via

gravitational radiation emission.

Given this background, my thesis is motivated by a three-fold objective as follows:

(1) understand the properties of neutron star critical collapses, (2) understand the

properties of the threshold in the solution space of the Einstein field equations between

the black hole and neutron star end states, and (3) clarify the implication of the results

on realistic astrophysical scenarios.

1.2 Overview of thesis

In Chapter 2 of the thesis, the theoretical basis of numerical relativity is presented,

namely detailed derivations of the 3+1 ADM formalism in solving the system of

Einsteins field equations in the theory of general relativity. Chapter 3 presents the

various constructs required in the implementation of the 3+1 formalism in neutron

7



Chapter 1 Introduction

star simulations, where we see the coupling of the spacetime with the hydrodynamical

matter equations adapted to the 3+1 formalism. It further explores in particular how

conformal decomposition and the BSSN formalism is employed in the solution and

evolution of the system of Einsteins field equations in the theory of general relativity

coupled with hydrodynamically-described matter, the basis of the GRAstro-3D code

[31],[32]. We also present the main concepts behind the set-up and mechanism of the

GRAstro-2D code. In Chapter 4, we study the Tolman-Volkoff-Oppeheimer spacetime

and the ingredients of stellar perturbation theory as well as numerical observations in

stellar phase transitions in order to enable us to understand the time scales involved

in neutron star critical collapses. Chapter 5 in turn presents the basic concepts

of critical gravitational collapse as well as some features of its implementation in

numerical simulations of neutron stars. In this chapter, the dynamical systems picture

is brought forward prominently as an important tool in understanding the structure

of critical solutions.

Chapter 6 contains the bulk of the analysis and simulation results in line with the

three-fold objective mentioned above, utilizing all the ingredients presented in former

chapters. In Section 6.1, curve fitting is employed in order to establish the time scales

and oscillation frequencies exhibited by the critical solution and their universality

across several crucial parameters in the critical solution. These results are compared

with the values obtained from analytic perturbative analysis of equilibrium TOV

configurations as presented in Chapter 4 of the thesis. The construction of a neutron

8



Chapter 1 Introduction

star-like initial data is carried out and evolution of various sets of this new initial

data is studied and analyzed in Sections 6.2 and 6.3 in order to provide evidence that

the neutron star critical solution is a semi-attractor. The boundary of its attraction

basin and the transition to a known set of non-critical fixed points is explored. In

Section 6.4, the evolutions of the neutron star initial data sets obtained by Jin and

Suen [47] are studied in detail in the aspects of its spacetime and matter properties.

Convergence tests and various parameter searches for the construction of a phase

diagram are also performed in this section. The power of the radiation emitted at the

brink of critical collapse is examined using the quadrupole approximation in order to

shed light on the structure of the semi-attractor, ie. on whether it is a limit cycle or

a limit point. In Section 6.5, convergence tests are performed for the critical indices

obtained from different sets of the new initial data in order to determine whether the

neutron star critical index has a 1-parameter or 2-parameter dependence. The mass

dependence of the critical index is also studied.

Chapter 7 summarizes the main conclusions drawn from the analyses and sim-

ulation results and propose interpretations of them in the framework of astrophysi-

cal relevance. Finally, the Appendix contains explanations of the finite-differencing

scheme, of the basic geometric constructs of the pushforward and pullback operators

used in the previous chapters, and of the derivation of geometric units used in this

thesis.

9



Chapter 2

3+1 formalism in numerical

relativity

Throughout the past half century, the theory of general relativity has proven to be

extremely successful in the understanding of phenomena of massive objects interact-

ing under strongly dynamical gravitational fields. In particular, numerical advances

within the field have made enormous headway in solving the celebrated two-body

problem in geometrodynamics. As a result, we are now able to understand to a great

extent the various physical phenomena observed in binary neutron star coalescences

and binary black hole coalescences. This includes the understanding of the broader

context of gravitational collapse of compact objects, the various mechanisms that

trigger their occurence and their effects on the spacetime structure surrounding these

systems via the emission of gravitational waves.

10



Chapter 2 3+1 formalism in numerical relativity

Figure 2.1

Numerical advances in the theory are characterized by the success of fully cou-

pled general relativistic simulations of the astrophysical systems as mentioned above.

These simulations employ massive numerical algorithms that solve the Einstein field

equations coupled with matter. Their theoretical basis is the 3+1 formalism which

reduces the Einstein field equations to an initial-value problem [6],[83],[85]. In this

chapter, we present this formalism as it is adapted to the simulations performed for

the study in this thesis, ie. the study of critical phenomena in gravitational collapse

of neutron stars.

11



Chapter 2 3+1 formalism in numerical relativity

2.1 Hypersurfaces and foliations

In the 3+1 formalism, the 4-dimensional spacetime is foliated by 3-dimensional spatial

hypersurfaces of constant coordinate time. We denote the spacetime byM and the hy-

persurface by H. The hypersurface H is obtained by an embedding of a 3-dimensional

manifold in the 4-dimensional spacetime via a 1-to-1 mapping that ensures that the

hypersurface does not intersect itself. The embedding induces a push-forward map-

ping between vectors on H to vectors on M , and a pull-back mapping between linear

forms on H and those on M (refer to Appendix B).

As the hypersurfaces are labeled by constant coordinate time, t, the gradient 1-

form dt is timelike and can be written in component form as (dt)µ = 5µt. We

denote the future-directed timelike unit vector normal to a hypersurface as n. We

also define as Eulerian observers a class of observers whose 4-velocity is collinear with

this vector and thus whose worldlines are orthogonal to the hypersurface. The vector

n is collinear with the timelike normal evolution vector 5t as follows:

n = N−1 5 t, (2.1)

whereas the 1-form, n̄, which is dual to n, is collinear with the gradient 1-form dt,

as follows:

n̄ = −Ndt. (2.2)

N is thus the lapse function that ensures the normalization relation:

n · n = 〈n̄,n〉 = −1. (2.3)

12



Chapter 2 3+1 formalism in numerical relativity

On each hypersurface, we introduce a spatial coordinate system (xi) = (x1, x2, x3)

which constitutes a well-behaved 4-dimensional coordinate system on M , (xα) =

(t, x1, x2, x3) when varied smoothly between neighboring hypersurfaces. The natural

basis for this coordinate system is denoted by (∂α) = (∂t, ∂i) where:

∂t :=
∂

∂t

∂i :=
∂

∂xi
, i ∈ 1, 2, 3. (2.4)

∂t is the time vector tangent to the lines of constant spatial coordinates, whereas

∂i, i ∈ 1, 2, 3 are vectors tangent to the hypersurface. We define as ”coordinate

observers” a class of observers whose 4-velocity is collinear with the time vector.

The difference between the time vector ∂t and the timelike normal evolution vector

5t is the shift vector β, and the relation is as follows:

∂t = 5t+ β = Nn + β. (2.5)

The shift vector thus enables the freedom to choose how the spatial coordinate system

changes from hypersurface to hypersurface. Fig. 2.1 shows the construction of an

adapted coordinate system.

The 4-metric g can be written in terms of components gαβ with respect to the

coordinates (xα) as follows:

gαβ = g(∂α,∂β). (2.6)

Using Eq. (2.5), the 00-component of the 4-metric is thus given by:

g00 = g(∂t,∂t) = ∂t · ∂t = −N2(n · n) + β · β = −N2 + βiβ
i, (2.7)

13
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whilst the 0i-components are given by:

g0i = g(∂t,∂i) = (Nn + β) · ∂i = βi, (2.8)

as the vector ∂i is tangent to the hypersurface. The 3-metric γ is thus induced on

each hypersurface with respect to the adapted coordinate system via this relation:

gij = g(∂i,∂j) = γ(∂i,∂j) = γij. (2.9)

The orthogonal projector that maps the 4-dimensional metric g onto the 3-dimensional

hypersurfaces is given in terms of components with respect to the coordinates (xα)

by:

γα
β = δα

β + nαnβ. (2.10)

The operator acts on the normal timelike unit vector, as follows:

γα
βn

β = δα
βn

β + nαnβn
β = nα − nα = 0, (2.11)

and on any vector tangent to the hypersurfaces, as follows:

γα
β∂α = δα

β∂α + nαnβ∂α = ∂β. (2.12)

2.2 The covariant and Lie derivatives

The 4-dimensional spacetime M with the metric g possesses an associated connec-

tion, 5, denoted as the affine connection or covariant derivative, which enables the

comparison between vectors evaluated at 2 different points along the congruence of

14
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curves generated by a vector field. We define the vector evaluated at a point P ,

with coordinates xα along the congruence, as vα
P and the vector evaluated at a point

Q, with coordinates xα + δxα, as vα
Q. This vector at point Q is given by a Taylor’s

expansion as follows:

vα(x+ δx) = vα(x) + δxβ∂βv
α. (2.13)

We further introduce another vector at point Q which is ’parallel’ to the vector at

point P, and denote it as vα
P + δvα. δvα is collinear with vα

P and δxα and thus can be

written as:

δvα(x) = −Γα
µβv

µ(x)δxβ. (2.14)

The connection or covariant derivative then evaluates the difference between vα
P and

vα
Q as follows:

5αv
β = lim

δxα→0

1

δxα
[vα

Q − vα
P ] = vβ

,α + Γβ
µαv

µ, (2.15)

where Γβ
µα are thus denoted as the connection coefficients, also known as Christoffel

symbols. The covariant derivative can be generalized to apply to the differentiation

of a tensor T of any rank in the 4-dimensional spacetime M , along a congruence

generated by any vector field u. The 3-dimensional covariant derivative, DT, is thus

obtained from the projection of the 4-dimensional covariant derivative, 5T , onto the

3-dimensional hypersurfaces, as follows:

DT = γ 5 T . (2.16)

The connection coefficients components can be given in terms of the 4-metric

15



Chapter 2 3+1 formalism in numerical relativity

components as follows:

Γγ
αβ =

1

2
gγµ[gαµ,β + gβµ,α − gαβ,µ]. (2.17)

This can be written analogously for the 3-dimensional connection coefficients in terms

of the 3-metric components, γij.

The 4-dimensional Lie derivative forM measures the distortion of the 4-dimensional

coordinate system. As it is based solely on coordinate bases, the 4-dimensional Lie

derivative is considered a more fundamental construct compared to the affine connec-

tion. The Lie derivative is given by the difference between the vector evaluated at

point Q, vα
Q, and the vector evaluated at point P that is ’dragged along’ to point Q,

given by:

vα
P (x+ δx) = v′α(x+ δx)

= v′α(x+ δsuα)

=
∂x′α

∂xβ
vβ

= (δα
β + δs∂βu

α)vβ(x)

= vα(x) + δs(∂βu
αvβ(x), (2.18)

where s is the affine parameter along the congruence of curves generated by the vector
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field u. Therefore, the derivative is given by:

Luv
α = lim

δs→0

1

δs
[vα(x+ δx)− v′α(x+ δx)]

= lim
δs→0

1

δs
[vα(x) + δsuµ∂µv

α − vα(x)− δs∂µu
αvµ(x)]

= uµ∂µv
α − ∂µu

αvµ. (2.19)

The 3-dimensional Lie derivative acts on vectors tangent to the hypersurfaces in the

same way.

2.3 The intrinsic and extrinsic curvatures

The intrinsic curvature of the 4-dimensional spacetime M is described by the non-

vanishing of the commutator of any vector, v in M , (5α 5β −5β 5α)vµ as follows:

(5α 5β −5β 5α)vµ = 5[α 5β] v
µ = Rα

γαβv
γ. (2.20)

Again, this can be generalized to a tensor of any rank in M . The contraction of the

intrinsic curvature, also known as the Riemann tensor Rα
γαβ, gives the Ricci tensor

Rγβ. The contraction of the Ricci tensor in turn gives the Ricci scalar R = gγβRγβ.

This 4-dimensional Ricci scalar is independent of the ambient coordinate system ofM .

The expressions for the 3-dimensional Riemann tensor, Ricci tensor and Ricci scalar

take on analogous forms. We shall denote them as (3)Rl
ijk,

(3)Rij and (3)R respectively.

Similarly, the 3-dimensional Ricci scalar is independent of how the hypersurfaces are

embedded in M .
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Conversely, the extrinsic curvature describes how the hypersurfaces are embedded

in M , or more specifically, it measures the curvature of the hypersurfaces in the

embedding. It is given by the orthogonal projection of the covariant derivative of the

timelike normal unit vector n along any vector u tangent to the hypersurfaces, as

follows:

K = −γ 5u n. (2.21)

By invoking the vanishing of the covariant derivative of the 4-metric as a direct result

of Eq. (2.17), the covariant expression of the projection operator in Eq. (2.10), and

the nσ 5ν nσ = 0 identity, the extrinsic curvature can also be expressed as the Lie

18
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derivative of the 3-metric along n as follows:

Kαβ = (5µnα)γµ
β

= 5µ(N 5α t)γ
µ
β

= ((5µN)5α t+N 5µ 5αt)γ
µ
β

= DβN 5α t+N 5α (−N−1nµ)γµ
β

= −N−1nαDβN −5α(N−1(Nnµγ
µ
β )−5αnµγ

µ
β

= −nαDβ lnN − (5αnµ)δµ
β − (5(αnµ)nµnβ

= −nαDβ lnN −5αnβ

= −nαn
µ 5µ nβ −5αnβ

= −1

2
[nαn

µ 5µ nβ + nβn
µ 5µ nα +5αnβ +5βnα]

= −1

2
[nαn

µ 5µ nβ + nβn
µ 5µ nα − nαn

µ 5β nµ − nβn
µ 5α nµ +5α(gβµn

µ) +

5β(gαµn
µ)]

= −1

2
[nµ 5µ (nαnβ)− nαn

µ 5β nµ − nβn
µ 5α nµ + gβµ 5α n

µ + gαµ 5β n
µ]

= −1

2
[nµ 5µ (gαβ + nαnβ) + (gβµ + nβnµ)5α n

µ + (gαµ + nαnµ)5β n
µ]

= −1

2
[nµ 5µ γαβ + γβµ 5α n

µ + γαµ 5β n
µ]

= −1

2
Lnγ. (2.22)
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2.4 The Gauss-Codazzi relations

The various contractions of the 4-dimensional Riemann tensor (4)R along the 3-

dimensional hypersurfaces and the timelike unit normal vector n are essential for

the 3+1 formulation of the Einstein field equations. Solutions to the field equations

can be obtained when the equations are cast in an initial value problem involving

constraint equations on the initial hypersurface and evolution equations on subse-

quent hypersurfaces. Due to the fact that these contractions of (4)R do not involve

any timelike derivatives of the metric tensor g, they will be used to construct the

constraint equations. In this section, we present how these contractions are obtained.

Covariant derivatives of vectors and tensors will hereby be denoted by the subscripted

semicolon, and the vectors and tensors along the hypersurface will use indices denoted

with the alphabet instead of Greek letters.

We begin by considering the full projection of (4)R onto a hypersurface. Using

Eq. (2.10) and Eq. (2.21), we first calculate the commutator of the double covariant
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derivative of the projection tensor γ as follows:

γα
a;βγγ

β
b γ

γ
c − γα

a;γβγ
γ
c γ

β
b = −Γd

bcΓ
e
adγ

α
e + Γd

cbΓ
e
adγ

α
e + Γd

bcKadn
α − Γd

cbKadn
α +

Kbcγ
α
a;βn

β −Kcbγ
α
a;βn

β + Γd
ab,cγ

α
d − Γd

ac,bγ
α
d +

Γd
ab(Γ

e
dcγ

α
e )− Γd

ac(Γ
e
dbγ

α
e )− Γd

abKdcn
α + Γd

acKdbn
α −

Kab,cn
α +Kac,bn

α −Kabn
α
;γγ

γ
c +Kacn

α
;βγ

β
b

= (Γe
ab,c − Γe

ac,b + Γd
abΓ

e
dc − Γd

acΓ
e
db)γ

α
e −

(Kab,c − Γd
acKdb)n

α + (Kac,b − Γd
acKdc)n

α −

Kabn
α
;γγ

γ
c +Kacn

α
;βγ

β
b

= −Rm
abcγ

µ
m − (Kab|c −Kac|b)n

µ −

Kabn
µ
;γγ

γ
c +Kacn

µ
;βγ

β
b . (2.23)

Denoting analogously to (4)Rµ
αβγ, the 3-dimensional intrinsic curvature (3)Ri

ljk, in

terms of vectors vi tangent to the hypersurface as follows:

−(3)Ri
ljkv

l = vi
;jk − vi

;kj, (2.24)

the previous equation can be written as:

(4)Rµ
αβγγ

α
a γ

β
b γ

γ
c =(3) Rm

abcγ
µ
m + (Kab;c −Kac;b)n

µ +Kabn
µ
;γγ

γ
c −Kacn

µ
;βγ

β
b . (2.25)

A further projection of this equation along the hypersurface yields the Gauss relation

as follows:

(4)Rµ
αβγγ

α
a γ

β
b γ

γ
c γ

d
µ =(3) Rd

abc + (Kd
bKac −Kd

cKab). (2.26)
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The Gauss relation can be contracted in the µ and β indices using again Eq. (2.10)

to yield the following:

γα
a γ

γ
c

(4)Rαγ + γcµn
αγβ

an
γ(4)Rµ

αβγ =(3) Rac +KKac −Kb
cKab. (2.27)

Further contraction in the a and c indices will yield the contracted Gauss relation as

follows:

(4)R + 2(4)Rµαn
µnα =(3) R +K2 −KabK

ab, (2.28)

which will be used in the 3+1 formulation of the Einstein field equations.

We now consider the projection of Eq. (2.26) along the timelike normal unit vector

n which results in the Codazzi relation:

(4)Rµ
αβγnµγ

α
a γ

β
b γ

γ
c = Kab;c −Kac;b. (2.29)

The Codazzi relation can be similarly contracted in the a and b indices to yield the

contracted Codazzi relation:

(4)Rµ
γnµγ

γ
c = K;c −Kb

c;b. (2.30)

2.5 The Ricci relation

The projection of (4)R twice along the hypersurface and twice along the timelike unit

normal vector n yields the Ricci relation which will be used to construct the evolution

equations in the 3+1 formulation of the Einstein field equations. We obtain this by
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considering the projection of the commutator of the double covariant derivative of the

timelike unit normal vector itself, and using the expression for Kαβ in Eq. (2.22) and

the component form of Eq. (2.21), as well as the projection onto the hypersurface of

the Lie derivative of Kαβ with respect to the timelike normal evolution vector m, as

follows:

γαµn
σγν

β
(4)Rµ

ρνσn
ρ = γαµn

σγν
β(nµ

;νσ − nµ
;σν)

= γαµn
σγν

β [−(Kµ
σ +DµlnNnσ);ν + (Kµ

ν +DµlnNnν);σ]

= γαµn
σγν

β [−Kµ
σ;ν − nσ;νD

µlnN − nσ(DµlnN);ν −Kµ
ν;σ −

nν;σD
µlnN − nν(D

µlnN);σ]

= γαµγ
ν
β [−nσKµ

σ;ν + (DµlnN);ν + nσKµ
ν;σ + nσnν;σD

µlnN ]

= γαµγ
ν
β [Kµ

σn
σ
;ν + (DµlnN);ν + nσKµ

ν;σ +DνlnND
µlnN ]

= −KασK
σ
β +DβDαlnN + γµ

αγ
ν
βn

σKµν;σ +DαlnNDβlnN ]

= −KασK
σ
β +

1

N
DβDαN + γµ

αγ
ν
βn

σKµν;σ

= −KασK
σ
β +

1

N
DβDαN +

1

N
(LmKαβ + 2KαµK

µ
β )

=
1

N
DβDαN +

1

N
LmKαβ +KαµK

µ
β . (2.31)

2.6 Projections of the stress-energy tensor

The various projections of the stress-energy tensor onto the 3-dimensional hypersur-

face and along the timelike unit normal vector n are needed to construct the matter

23



Chapter 2 3+1 formalism in numerical relativity

sources for the 3+1 formulation of the Einstein field equations.

We first present the full projection of this tensor along n. We recall from Section

2.1 that the 4-velocity of the Eulerian observers is definitionally the timelike normal

unit vector n. Therefore, the projection of the stress-energy tensor along n is the

matter energy density, which is a scalar measured by these Eulerian observers. We

denote this matter energy density as E.

The mixed projection of the stress-energy tensor is called the matter momentum

density, p, which is a linear form tangent to the hypersurface. Its component form is

given by:

pα = −Tµνn
µnν . (2.32)

The full projection of the stress-energy tensor along the hypersurface is called the

matter stress tensor, S, which is a bilinear form tangent to the hypersurface. Its

componenet form is given by:

Sαβ = Tµνγ
µ
αγ

ν
β . (2.33)

Using Eq. (2.10) in this component form of the matter stress tensor and taking

the trace, we obtain the following relation:

T = S − E. (2.34)
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2.7 3+1 decomposition of the Einstein field equa-

tions

Armed with the various projections of the intrinsic curvature tensor (4)R and the

stress-energy tensor S, we are now ready to present the full 3+1 decomposition of the

Einstein field equations. In the decomposition, we will utilize two forms of the field

equations, namely:

(4)R− 1

2

(4)

Rg = 8πT, (2.35)

and its equivalent:

(4)R = 8π(T− 1

2
Tg), (2.36)

where T := gµνTµν is the trace of the stress-energy tensor T.

To construct the Hamiltonian constraint components of the Einstein field equa-

tions, we apply the twice-contracted Gauss relation obtained in Section 2.4, into the

twice-contracted Eq. (2.35) along the timelike normal unit vector n, as follows:

Rµνn
µnν − 1

2

(4)

Rgµνn
µnν = 8πTµνn

µnν

2Rµνn
µnν +(4) R = 16πE

(3)R +K2 −KabK
ab = 16πE. (2.37)

The momentum constraint components of the field equations however will make

use of the contracted Codazzi relation as obtained in Section 2.4, in the mixed pro-
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jection of Eq. (2.35) once along n and once along the hypersurface, as follows:

Rµνn
νγµ

α −
1

2

(4)

Rgµνn
νγµ

α = 8πTµνn
νγµ

α

K;c −Kb
c;b = 8πpc. (2.38)

To construct the evolution components of the field equations, we first combine the

Ricci relation (Section 2.5) with the once-contracted Gauss relation (Section 2.4):

γµ
αγ

ν
β

(4)Rµν =(3) Rαβ +KKαβ −
1

N
DβDαN − 1

N
LmKαβ − 2KαµK

µ
β . (2.39)

We then substitute this into the equivalent form of the field equations Eq. (2.36) in

this construction:

γµ
αγ

ν
β

(4)Rµν = 8π(γµ
αγ

ν
βTµν −

1

2
Tγµ

αγ
ν
βgµν)

(3)Rαβ +KKαβ −
1

N
DβDαN −

1

N
LmKαβ − 2KαµK

µ
β = 8π[Sαβ −

1

2
(S − E)γαβ]

LmKαβ = −DβDαN +N{(3)Rαβ +KKαβ −

2KαµK
µ
β + 4π[(S − E)γαβ − 2Sαβ]}.(2.40)
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Application of the 3+1 formalism

in neutron star simulations

3.1 3+1 decomposition of general relativistic hy-

drodynamics

The conservation of the stress-energy tensor T ensures that, as long as they are

satisfied on the initial hypersurface, the Einstein field equations are satisfied for all

time. The conservation is given as:

T µν
;µ = 0. (3.1)

In neutron star simulations, the neutron star matter is characterized by a perfect

fluid, where there is no presence of heat conduction and other stresses besides pressure.
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The stress-energy tensor for a perfect fluid is purely defined by the matter energy

density and the pressure. In component form, the stress-energy tensor is given by:

Tµν = ρhuµu
ν + pgµν . (3.2)

To incorporate these equations into the 3+1 formalism, we decompose them into

the 3+1 form by first writing them in a 1st order flux conservative form:

∂t
~U + ∂i

~F i = ~S, (3.3)

where ~U , ~F i and ~S are the evolved state vector, the flux vector and source vector

respectively. The evolved state vector ~U is written in terms of the primitive variables,

ie. the matter density ρ, fluid velocity vector vi, and specific internal energy density

ε as follows:

~U =


D

Sj

τ

 =


√
γWρ

√
γρhW 2vj

√
γ(ρhW 2 − P −Wρ)

 , (3.4)

where the fluid velocity vector is a 3-velocity related to the 4-velocity ui as:

{uµ} =
W

N
{1, Nvi − βi}, (3.5)

with W representing the Lorentz factor W = 1/
√

1− γijvivj, and h is the specific

enthalpy which can be written in terms of the specific internal energy density as

follows:

h = 1 + ε+ P/ρ. (3.6)
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The flux vector ~F i is defined as:

~F i =


N(vi − βi/N)D

N((vi − βi/N)Sj +
√
γPδi

j)

N((vi − βi/N)τ +
√
γviP )

 , (3.7)

whilst the source vector ~S is defined as:

~S =


0

N
√
γT µνgνσΓσ

µj

N
√
γ(T µt∂µN −NT µνΓt

µν)

 . (3.8)

3.2 Conformal decomposition

Conformal decomposition was introduced by Lichnerowicz in 1944 [33] to facilitate a

more efficient resolution of the constraint equations in obtaining valid initial data for

the initial value problem. In the decomposition, the 3-metric γ is written in terms of

a conformal factor Ψ, which is a positive scalar field, and a conformal 3-metric γ̃ as

follows:

γ = Ψ4γ̃, (3.9)

where det γ̃ = det f = 1 when Cartesian coordinates are used. The extrinsic curvature

K of the 3-dimensional hypersurface is decomposed into its trace K := Ki
i = γijKij

and a traceless form A as follows:

A := K− 1

3
Kγ, (3.10)
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where γijAij = 0. We recall that the expression of the extrinsic curvature can be

written in terms of the Lie-derivative of the 3-metric, as shown in Eq. (2.22).

We substitute the new form of K as written in Eq. (3.10) and γ into this to obtain

the following:

Lm(Ψ4γ̃ij) = −2NAij −
2

3
NKγij. (3.11)

Taking the trace of this equation with respect to γ̃ and applying the general law of

variation of the determinant of an invertible matrix twice, we obtain the evolution

equation for the conformal factor Ψ as follows:

(
∂

∂t
− Lβ) ln Ψ =

1

6
(D̃iβ

i −NK). (3.12)

Using the general law of variation of any invertible matrix, Eq. (3.11) also yields

the evolution equation for the conformal metric γ̃ as follows:

(
∂

∂t
− Lβ)γ̃ij = −2NΨ−4Aij −

2

3
D̃kβ

kγ̃ij. (3.13)

In order to obtain the conformally-decomposed evolution equation for the extrin-

sic curvature tensor K, we recall the evolution component of the Einstein field equa-

tions in the 3+1 formalism as obtained in Chapter 2, ie. Eq. (2.40), and substitute

Eq. (3.10) into it. Also using Eq. (2.22), we obtain:

LmKij = LmAij +
1

3
LmKγij −

2

3
NKKij. (3.14)
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From the identity:

LmK = γijLmKij +KijLmγ
ij

= γijLmKij + 2NKijK
ij, (3.15)

we thus obtain:

LmK = −DiD
iN +N [R +K2 + 4π(S − 3E)]

= −DiD
iN +N [4π(E + S) +Kij

ij ]. (3.16)

We now substitute this and Eq. (2.40) back into Eq. (3.14), employing again Eq. (3.10),

to obtain:

LmAij = −DiDjN +N [Rij +
1

3
KAij − 2AikA

k
j − 8π(Sij −

1

3
Sγij)] +

1

3
(DkD

kN −NR)γij. (3.17)

Eq.s (3.16) and (3.17) represent the trace part and the traceless part of the evolution

equation for K. We now conformally decompose the trace part, ie. Eq. (3.16) by

subtituting Eq. (3.10) and Ãij = Ψ4Aij into it to obtain the following:

LmK = −Ψ4(D̃iD̃
iN + 2D̃i ln ΨD̃iN) +N [4π(E + S) + ÃijÃ

ij +
K2

3
]. (3.18)

Similarly, employing Eq. (3.12), the conformal connection Ck
ij = Γk

ij − 1
2
γ̃kl(

∂γ̃lj

∂xi +

∂γ̃il

∂xj − ∂γ̃ij

∂xl ) and the resulting conformal Ricci tensor and conformal Ricci scalar, we
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conformally decompose the traceless part into:

LmÃij = −2

3
D̃kβ

kÃij +N [KÃij − 2γ̃klÃikÃjl − 8π(Ψ−4Sij −
1

3
Sγ̃ij)] +

Ψ−4{−D̃iD̃jN + 2D̃i ln ΨD̃jN + 2D̃j ln ΨD̃iN +

1

3
(D̃kD̃

kN − 4D̃k ln ΨD̃kN)γ̃ij +

N [R̃ij −
1

3
R̃γ̃ij − 2D̃iD̃j ln Ψ + 4D̃i ln ΨD̃j ln Ψ +

2

3
(D̃kD̃

k ln Ψ− 2D̃k ln ΨD̃k ln Ψ)γ̃ij]}. (3.19)

We now present the conformal decomposition of the constraint part of the Ein-

stein field equations in the 3+1 formalism as obtained in Chapter 2, ie. Eq.s (2.37)

and (2.38). We substitute Eq. (3.10) and the conformal Ricci scalar, R = Ψ−4R̃ −

8Ψ−5D̃iD̃
iΨ, into the 3+1 Hamiltonian constraint equation, ie. Eq. (2.37), to yield:

D̃iD̃
iΨ− 1

8
R̃Ψ + (

1

8
ÃijÃ

ij − 1

12
K2 + 2πE)Ψ5 = 0. (3.20)

Similarly, the conformal decomposition of the momentum constraint equation, ie.

Eq. (2.38), yields:

D̃jÃ
ijD̃j ln Ψ− 2

3
D̃iK = 8πΨ4pi. (3.21)

These six equations, ie. Eq.s (3.12), (3.13), (3.16), (3.19), (3.20) and (3.21), con-

stitute the conformal 3+1 Einstein field equations. This set of equations is solved

for the conformal 3-metric γ̃ij, the conformal traceless part of the extrinsic curvature

Ãij, the conformal factor Ψ and the trace of the extrinsic curvature K. We recover
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the physical 3-metric γ and the physical extrinsic curvature K via the following:

γij = Ψ4γ̃ij

Kij = Ψ4(Ãij +
1

3
Kγ̃ij). (3.22)

However, in our neutron star simulations, we employ a modified form of the

above conformal 3+1 Einstein field equations. This modified formulation is called

the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation. In this formulation,

a vector is introduced by Shibata and Nakamura as well as Baumgarte and Shapiro

to restore the Laplacian nature of the conformal Ricci tensor that is written in terms

of the conformal metric.

In order to do this, the expression of the conformal Ricci tensor in terms of the

conformal metric, γ̃, is considered as follows:

R̃ij =
∂

∂xk
Γ̃k

ij −
∂

∂xj
Γ̃k

ik + Γ̃k
ijΓ̃

l
kl − Γ̃k

ilΓ̃
l
kj. (3.23)

We introduce a new tensor field ∆ as follows:

∆k
ij := Γ̃k

ij − Γ̄k
ij, (3.24)

where Γ̄k
ij are the connection coefficients for the flat metric with respect to the coor-

dinates (xi). The components of this tensor field can also be written as:

∆k
ij =

1

2
γ̃kl(Diγ̃lj +Dj γ̃il −Dlγ̃ij), (3.25)

where Di represents the covariant derivative associated with the flat metric.
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Using the expression (3.24) together with the fact that the Ricci tensor vanishes

for a flat metric and the identity ∆k
ik = 0, we obtain:

R̃ij =
∂

∂xk
∆k

ij −
∂

∂xi
∆k

ik + ∆k
ij∆

l
kl + Γ̄l

kl∆
k
ij + Γ̄k

ij∆
l
kl −∆k

il∆
l
kj −

Γ̄l
kj∆

k
il − Γ̄k

il∆
l
kj

=
∂

∂xk
∆k

ij + Γ̄l
kl∆

k
ij − Γ̄l

kj∆
k
il − Γ̄k

il∆
l
kj −∆k

il∆
l
kj

=
∂

∂xk
∆k

ij + Γ̄k
kl∆

l
ij − Γ̄l

ki∆
k
lj − Γ̄l

kj∆
k
il −∆k

il∆
l
kj

= Dk∆
k
ij −∆k

il∆
l
kj. (3.26)

Using expression (3.25) on the previous result yields:

R̃ij =
1

2
Dk[γ̃

kl(Diγ̃lj +Dj γ̃il −Dlγ̃ij)]−∆k
il∆

l
kj

=
1

2
{Dk[Di(γ̃

klγ̃lj)− γ̃ljDiγ̃
kl +Dj(γ̃

klγ̃il)− γ̃ilDj γ̃
kl]−

Dkγ̃
klDlγ̃ij − γ̃klDkDlγ̃ij} −∆k

il∆
l
kj

=
1

2
(−Dkγ̃ljDiγ̃

kl − γ̃ljDkDiγ̃
kl −Dkγ̃ilDj γ̃

kl − γ̃ilDkDj γ̃
kl −

Dkγ̃
klDlγ̃ij − γ̃klDkDlγ̃

ij)−∆k
il∆

l
kj

= −1

2
(γ̃klDkDlγ̃ij + γ̃ikDjDlγ̃

kl + γ̃jkDiDlγ̃
kl) +Oij(γ̃,Dγ̃), (3.27)

where Oij(γ̃,Dγ̃) := −1
2
(Dkγ̃ljDiγ̃

kl +Dkγ̃ilDj γ̃
kl +Dkγ̃

klDlγ̃ij)−∆k
il∆

l
kj.

The Ricci tensor as rendered in the previous expression can be viewed as a Laplace

operator acting on the conformal metric γ̃ yielding second-derivatives on the right

hand side. However, the second and third terms on the previous expression spoils

the elliptic character of the Ricci tensor operator. It is here that Baumgarte and
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Shapiro introduce the vector Γ̃i = −Dj γ̃
ij, which turns the previous expression into

the following:

R̃ij =
1

2
(−γ̃klDkDlγ̃ij + γ̃ikDjΓ̃

k + γ̃jkDiΓ̃
k) +Oij(γ̃,Dγ̃). (3.28)

Taking the trace of this expression of the conformal Ricci tensor, as well as recalling

the identity γ̃ijDlγ̃ij = 2∆k
lk = 0, the conformal Ricci scalar is thus:

R̃ = DkΓ̃
k +O(γ̃,Dγ̃), (3.29)

where O(γ̃,Dγ̃) := 1
2
γ̃ijDkγ̃

ijDlγ̃ij + γ̃ijOij(γ̃,Dγ̃), which is a term that does not

contain any second derivatives of γ̃ and is quadratic in the first derivatives.

Earlier, Shibata and Nakamura introduced the covector Fi = Dj γ̃ij instead of the

vector Γ̃i, which is related to the latter as follows:

Fi = γ̃ijΓ̃
j − (γ̃jk − f jk)Dkγ̃ij. (3.30)

However, the vector Γ̃i has an edge over the covector Fi because it covers all the

second derivatives of the conformal metric that do not contribute to the Laplacian

operator.

3.3 Gauge choices

Looking at the set of conformally decomposed Einstein field equations obtained in

the previous section, we note that there are no derivatives of either the lapse function
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N or shift vector β. This indicates that in the solution of the field equations, the

lapse function and the shift vector can be freely chosen while yielding the same phys-

ical solution. We recall from Chapter 2 that the lapse function determines how the

spacetime is sliced and the shift vector determines the choice of coordinates on these

spacetime slices. The choice of the lapse and the shift thus changes the form of the

Einstein field equations to be solved, making it either more hyperbolic or more elliptic

in nature. As the success of numerical simulations in modeling neutron star systems

depends crucially on the well-behavedness or non-singularity of the coordinate func-

tions, the freedom of the lapse and shift choice gives us the privilege to adjust the

hyperbolicity of the field equations based on the nature of the physical system to

be studied. We will discuss in this section the common choices made particularly in

neutron star simulations.

The simplest lapse choice is called the geodesic slicing, which sets N = 1. Since

the acceleration co-vector can be given by:

aα = Dα lnN, (3.31)

setting N = 1 renders zero acceleration for the Eulerian observers, ie. they travel

along geodesics of the spacetime, hence the name of this lapse choice. This choice

permits only limited evolution of the spacetime due to its focusing property that

results in coordinate singularities.

A more popular choice is the maximal slicing which sets the extrinsic curvature
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scalar K = 0. This lapse choice maximizes the volume of the hypersurface. The

volume enclosed within a closed 2-dimensional surface lying on a hypersurface is

given by:

V =

∫
V

√
γd3x, (3.32)

with γ is the determinant of the metric γ with respect to the coordinates (xi) on the

hypersurface. The change of hypervolume can thus be written:

dV

dt
=

∫
Vt

∂
√
γ

∂t
d3x, (3.33)

where Vt is the domain at time t. Using the identity 1√
γ

∂
√

γ

∂t
= −NK +Diβ

i that is

derived from the evolution equation of the 3-metric, the variation of the hypervolume

in the previous equation can be written as:

dV

dt
=

∫
Vt

[−NK +Diβ
i]
√
γd3x

= −
∫
Vt

NK
√
γd3x+

∮
S
βisi

√
qd2y

= −
∫
Vt

NK
√
γd3x, (3.34)

where s is the unit normal to S lying in the hypersurface, q is the induced metric

on S with q = qab and (ya) are the coordinates on S. Therefore, setting K = 0 on

the hypersurface renders the hypervolume extremal with respect to the variations in

the domain bounded by S. With a metric of a Lorentzian signature, this extremum

is a maximum, hence the name of this lapse choice. Combining the maximal slicing

condition with the evolution equation for the extrinsic curvature scalar K, Eq. (3.16),
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as derived in the Section 3.2, we obtain:

DiD
iN = N [4π(E + S) +KijK

ij], (3.35)

an elliptic equation which imposes the condition on all subsequent hypersurfaces in

the spacetime. Maximal slicing avoids the formation of coordinate singularities in the

evolution of a physical system. As we recall from Chapter 2, the extrinsic curvature

scalar is defined as the divergence of the unit normal vector n, alternatively called the

4-velocity field of the Eulerian observers. FixingK = 0 thus results in 5·n = 0, which

prevents the Eulerian observers from converging towards any coordinate singularity

that forms due to the focusing effect of gravity. This happens when the lapse function

and thus the proper time between two adjacent hypersurfaces tends to zero as the

coordinate time tends to infinity.

The next important category of lapse choice is called the 1 + log slicing, which

is a generalization of the harmonic slicing introduced by Bona, Massó, Seidel and

Stela [14]. Harmonic slicing was introduced by Choquet-Bruhat and Ruggeri [21]

in an attempt to write the 3+1 Einstein field equations in a hyperbolic form, and

sets �gt = 0, a harmonic condition for the time coordinate. Using the relation

√
−g = N

√
γ, the expression for the 4-metric gαβ delineated in Chapter 2 and again

the identity 1√
γ

∂
√

γ

∂t
= −NK +Diβ

i, this d’Alembertian becomes:

(
∂

∂t
− Lβ)N = −KN2, (3.36)

which is an evolution equation for the lapse function. The 1 + log slicing thus gener-
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alizes this equation as follows:

(
∂

∂t
− Lβ)N = −KN2f(N), (3.37)

where f is an arbitrary function with f(N) = 1 corresponding to the harmonic slicing

and f(N) = 0 corresponding to the geodesic slicing. Using the identity 1√
γ

∂
√

γ

∂t
=

−NK+Diβ
i and employing normal coordinates where β = 0, this equation becomes:

∂N

∂t
=

∂

∂t
ln γ, (3.38)

which yields N = 1 + ln γ as one of its solutions, hence the name of 1 + log slicing.

The 1 + log slicing produces foliations very similar the to maximal slicing and thus

have strong singularity avoidance, its biggest advantage, making it another popular

choice for neutron star simulations.

We now move on to the gauge choices commonly made in the shift vector for neu-

tron star simulations. Again, the simplest of these choices are the normal coordinates,

which set β = 0, where the 4-velocity field n or the unit normal vector field lines are

parallel to the constant spatial coordinate field lines, hence the name normal coordi-

nates. An advantage of this choice is its incapability in introducing any pathologies

of its own. However, in rotating star spacetimes, the employment of this shift choice

can result in coordinate shears due to the fact that the unit normal vector field lines

are not parallel to the stationary Killing vector field ξ lines.

The minimal distortion shift was introduced by Smarr and York in 1978 [75] in an

attempt to minimize the time derivative of the conformal 3-metric, ˙̃γ := L∂tγ̃. The
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components of this time derivative are:

˙̃γij =
∂γ̃ij

∂t
, (3.39)

which are related to the distortion tensor components Qij as follows:

Qij = Ψ4∂γ̃ij

∂t
, (3.40)

which has 5 degrees of freedom, ie. 6 freely chosen components minus 1 constraint

requiring det ˙̃γij = 0. The distortion tensor Q is a measure of the change of the shape

of spatial domain V within a fixed coordinate boundary from one hypersurface to

the next. The minimal distortion shift hence seeks to minimize the change in the

shape of the spatial domain V . This can be done by choosing coordinates (xi) that

set the distortion tensor Q identically equal to zero. Taking into account that the 3

degrees of freedom for the coordinate choice are insufficient to constrain the 5 degrees

of freedom for the distortion tensor Q, we decompose the distortion tensor Q into a

longitudinal part and a transverse-traceless part as follows:

Qij = (LX)ij +QTT
ij , (3.41)

where LX is the conformal Killing operator associated with the physical metric γ

acting on some vector field X. Taking the divergence of this relation, we obtain:

DjQij = Dj(LX)ij, (3.42)

which possesses 3 degrees of freedom that can be constrained by the coordinate choice.

40



Chapter 3 Application of the 3+1 formalism in neutron star simulations

Hence, the minimum distortion shift conditon becomes:

DjQij = 0. (3.43)

Using the evolution equation for the 3-metric γ, namely, Lmγij = −2NKij, the

identity 1√
γ

∂
√

γ

∂t
= −NK + Diβ

i, and the expression for the traceless part of the

extrinsic curvature tensor A, Eq. (3.10), this condition yields:

−2NDjA
ij − 2AijDjN +Diβj +Dj(Djβi − 2Dkβ

kγij) = 0. (3.44)

Furthermore, we can employ the 3+1 momentum constraint equation, Eq. (2.38), to

obtain the following elliptic equation of shift evolution resulting from the minimal

distortion condition:

DjD
jβi +

1

3
DiDjβ

j +Ri
jβ

j = 16πNpi +
4

3
NDiK + 2AijDjN. (3.45)

A more computationally-feasible shift choice based on the minimal distortion shift

is the Γ-freezing shift, introduced by Alcubierre and Brügmann [3]. This shift choice

sets Dj
˙̃γij = ∂

∂t
(Dj γ̃

ij) = 0. The covariant derivative Dj can be written in terms of

the connection coefficients for the flat metric Γ̄i
jk with respect to the coordinates (xi)

as follows:

Dj γ̃
ij = γ̃jk(Γ̄i

jk − Γ̃i
jk) = −Γ̃i. (3.46)

Hence, the Γ-freezing shift condition sets ∂Γ̃i

∂t
= 0. To apply this condition on the

shift evolution, we write the Lie derivative of the conformal 3-metric γ̃ij in terms of
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the covariant derivative as follows:

˙̃γij = 2NÃij + βkDkγ̃
ij − γ̃kjDkβ

k − γ̃ikDkβ
j +

2

3
Dkβ

kγ̃ij, (3.47)

the divergence of which, via the expression Dj γ̃
ij = −Γ̃i, the conformal 3+1 mo-

mentum constraint equation, and the relationship between the conformal and flat

covariant derivatives, becomes:

∂Γ̃i

∂t
= −2NDjÃ

ij − 2ÃijDjN + βkDkΓ̃
i − Γ̃kDkβ

i +
2

3
Γ̃iDkβ

k +

γ̃jkDjDkβ
i +

1

3
γ̃ijDjDkβ

k,

γ̃jkDjDkβ
i +

1

3
γ̃ijDjDkβ

k +
2

3
Γ̃iDkβ

k − Γ̃kDkβ
i + βkDkΓ̃

i

= 2N [8πΨ4pi − Ãjk(Γ̃i
jk − Γ̄i

jk)− 6ÃijDj ln Ψ +
2

3
γ̃ijDjK] +

2ÃijDjN. (3.48)

The Γ-freezing shift condition thus yields an elliptic equation for the shift. Alcubierre

and Brügmann [3] turned it into a parabolic equation using the relation ∂βi

∂t
= k ∂Γ̃i

∂t

with k being a positive constant. A modification of this is used in the neutron star

simulations presented in this thesis, namely:

∂βi

∂t
= C1Γ̃

i − C2β
i, (3.49)

where we set C1 = C2 = 0.
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3.4 The initial value problem

In Chapter 2, we see that the Einstein field equations are separated into the constraint

part and the evolution part, such that their resolution amounts to solving an initial

value problem using the constraint part to obtain initial data that will be propagated

forward in time using the evolution part of the field equations. As the initial data is

constrained, it is a non-trivial astrophysical problem common particularly in neutron

star simulations, to ascertain that the solution to the constraint part of the field

equations yields the physical system to be studied.

In this section, we discuss the conformal transverse traceless method proposed

by York [83],[84],[85], a method that has been employed in our general relativistic

hydrodynamics simulations of neutron star and neutron star-like systems. We recall

that in Section 3.2, we have obtained the conformally decomposed constraint part of

the Einstein field equations. In 1973 and 1979, York solved this system of equations

by further decomposing the trace part of the conformal extrinsic curvature Âij into

a longitudinal part and a transverse part, as follows:

Âij = (L̃X)ij + Âij
TT , (3.50)

where Âij
TT is both traceless and transverse with respect to the conformal metric, ie.

γ̃ijÂ
ij
TT = 0 and DjÂ

ij
TT = 0 respectively, and (L̃X)ij is the conformal Killing operator

associated with the conformal metric γ̃ that acts on the vector field X as follows:

(L̃X)ij := D̃iXj + D̃jX i − 2

3
D̃kX

kγ̃ij, (3.51)
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and is also traceless, ie. γ̃ij(L̃X)ij = 0.

We incorporate this longitudinal/transverse decomposition and the identity ∆̃LX
i =

D̃jÂ
ij into the conformally decomposed constraint part of the Einstein field equations,

Eq.s (3.20) and (3.21) and obtain the following:

D̃iD̃
iΨ− 1

8
R̃Ψ+

1

8
[(L̃X)ij+Â

TT
ij ][(L̃X)ij+Âij

TT ]Ψ−7+2πẼΨ−3− 1

12
K2Ψ5 = 0, (3.52)

∆̃LX
i − 2

3
Ψ6D̃iK = 8πp̃i, (3.53)

where (L̃X)ij := γ̃ikγ̃jl(L̃X)kl and ÂTT
ij = γ̃ikγ̃jlÂ

kl
TT .

Eq.s (3.52) and (3.53) above show that in solving this system of equations, the

conformal metric γ̃, the symmetric traceless and transverse tensor Âij
TT , the extrinsic

curvature scalar K, and the conformal matter variables (Ẽ, p̃i), can be freely chosen,

whilst the conformal factor Ψ and the vector X will be determined as results of the

initial value solve. We then construct the physical metric as γij = Ψ4γ̃ij, the physical

extrinsic curvature tensor as Kij = Ψ−10((L̃X)ij + Âij
TT ) + 1

3
Ψ−4Kγ̃ij, the physical

matter energy density as E = Ψ−8Ẽ and the physical matter momentum density

vector as pi = Ψ−10p̃i, which form a set of initial data (γ,K, E,p) that satisfies the

constraint part of the Einstein field equations, Eq.s (2.37) and (2.38).
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3.5 GRAstro-2D as an axisymmetric general rela-

tivistic hydrodynamics code

The GRAstro-2D code is based on the Cactus Computational Toolkit [17] and the

GRAstro-3D code [31],[32]. Thus, similar to the GRAstro-3D code, it solves the full

3+1 Einstein field equations as presented in Chapter 2, using the BSSN scheme as

presented earlier in Section 3.2. The evolution of the code is similarly unconstrained,

ie. the constraint equations are only solved at the initial time and not throughout the

evolution. As such, violation of the constraint equations are monitored throughout

the evolution to determine convergence of the code. The code also employs the same

initial value problem solver and finite-differencing scheme as used in GRAstro-3D. In

this section, we present the basic concepts behind the modifications made by [47] on

the GRAstro-3D code for the purpose of adapting the former to perform numerical

simulations of axisymmetric systems. In both GRAstro-3D and GRAstro-2D, we use

geometric units where we set G = c = 1 (refer to Appendix C).

The basic concepts are based on the Cartoon technique introduced by Alcubierre,

Brandt, Brügmann, Holz, Seidel, Takahashi and Thornbug in 2005 [4]. This technique

is able to avoid the problems normally encountered in other axisymmetric techniques,

eg. techniques that employ a cylindrical (ρ, z, θ) coordinate grids, where physically

non-singular variables may become indeterminate 0/0 forms along the z-axis. Al-

though these indeterminate forms can be regularized by L’Hospital’s rule, their eval-
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Figure 3.1: Figure taken from [4].

uation becomes inaccurate in finite differencing schemes where the grid spacing is

finite when its limit is required to go to zero to be consistent with its analytic coun-

terpart. In addition to this problem, some of the variables in the 3+1 Einstein field

equations are obtained in finite differencing schemes using a summation of terms

that may include these indeterminate forms. Regularization of such variables require

detailed analysis of the entire system of the 3+1 Einstein field equations in the ax-

isymmetric coordinate system near the axis of symmetry, a difficult although not

impossible undertaking.

However, Cartesian coordinate grids do not introduce any such pathology, as the

coordinate system is completely regular even at the grid origin. The Cartoon tech-

nique employs a 3-dimensional Cartesian (x, y, z) coordinate grid that is restricted to

the y = 0 plane by only one finite-diffence-length. It uses continuous rotational sym-

metry to provide the boundary conditions for this thin 3-dimensional slab. Fig. 3.1
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shows the construction of this slab, where the z axis is taken as the axis of symmetry.

The solid dots represent grid points where variables take on the values calculated

on the original 3-dimensional coordinate grid. The white dots represent grid points

where the variables are calculated via the Cartoon boundary conditions. The white

squares represent grid points where the variables are calculated by imposing a physical

boundary. The Cartoon boundary condition is described by a rotational coordinate

transformation R. If we consider arbitrary tensor fields T on the 3-dimensional co-

ordinate grid, a rotation of such a tensor field by an angle −θ0 about the axis of

symmetry is equivalent to the rotation of the coordinate system by an angle θ0. The

coordinate transformation R can thus be written as:

(R(θ0)
i
j) = (

∂x′i

∂xj
) =


cos θ0 − sin θ0 0

sin θ0 cos θ0 0

0 0 0

 , (3.54)

with cos θ0 = x/ρ, sin θ0 = y/ρ, and ρ =
√
x2 + y2. It operates on the tensor field T

as follows:

T i1,i2,...
j1,j2,...(x, y, z) = Ri1

k1
Ri2

k2
...(R−1)l1

j1
(R−1)l2

j2
...T k1,k2,...

l1,l2,... (ρ, 0, z). (3.55)

This tranformation law applies to partial derivatives of tensors in the same way. A

1-dimensional interpolation will be needed to calculate fields at the points (ρ, 0, z)

that are not part of the original 3-dimensional coordinate grid. This interpolation

may require points in the x < 0 range, where the values are calculated via the same

coordinate transformation Eq. (3.53) as shown by the dashed lines in Fig. 3.1.
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Stellar perturbations and phase

transitions

4.1 The TOV spacetime

The TOV (Tolman-Oppenheimer-Volkoff) spacetime is an exact solution in general

relativity modelling fluid balls such as isolated stars. It is the only known general

relativistic static equilibrium configuration for spherical objects with matter. The

line element of this spacetime is:

ds2 = −eνdt2 + eλdr2 + r2(dθ2 + sin2 θdφ2), (4.1)

which contains no non-diagonal components. r in this line element represents the

coordinate radius of the fluid ball in question, which we will henceforth call the

Schwarzschild radius, whereas ν and λ are purely functions of r, indicating the time-
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independence of this spacetime. This line element is used to model neutron stars in

this thesis. The connection coefficients, Ricci tensor and scalar that result from this

line element are as follows:

G0
0 = R0

0 −
1

2
g0
0R = − 1

r2
+ e−λ(

1

r2
− λ′

r
)

G1
1 = R1

1 −
1

2
g1
1R = − 1

r2
+ e−λ(

1

r2
+
ν ′

r
)

G2
2 = G3

3 = R2
2 −

1

2
g2
2R =

1

4
e−λ((ν ′)2 − ν ′λ′ + 2ν ′′ + 2(

ν ′

r
− λ′

r
)), (4.2)

with all other components of the Einstein tensor Gi
j being zero.

Within the interior of the neutron star, the momentum-energy tensor T i
j is given

by:

T i
j = (ρe + p)uiuj + pδi

j = diag(−ρe, p, p, p), (4.3)

where ρe here is the matter-energy density. Using GRTensorII on Mathematica, the

Einstein field equations are computed to be as follows:

G0
0:

1

r2
− e−λ(

1

r2
− λ′

r
) = 8πρe

λ′ =
1− eλ

r
+ 8πreλρe (4.4)

G1
1:

1

r2
− e−λ(

1

r2
+
ν ′

r
) = −8πp

ν ′ = −λ′ + 8πreλ(ρe + p) (4.5)
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G2
2 = G3

3:

−(ν ′ − λ′)e−λ(
1

2r
+
ν ′

4
)− 1

2
e−λν ′′ = −8πp. (4.6)

Eq. (4.4) can be solved for the function λ when it is written as an integral as follows:

(re−λ)′ = 1− 8πρer
2

e−λ = 1− 2m(r)

r
, (4.7)

where

m(r) ≡ 4π

∫ r

0

ρe(r
′)r′2dr′. (4.8)

Employing Eq.s (4.4) and (4.7) in Eq. (4.5) gives us:

ν ′ =
2m+ 8πr3p

r(r − 2m)
. (4.9)

We then use the former two equations together with the derivative of Eq. (4.5) to

write Eq. (4.6) entirely in terms of ν ′ and p′ as follows:

(−2ν ′ + 8πreλ(ρe + p))e−λ(
1

2r
+
ν ′

4
)−

e−λ

2r
[(rν ′ + 1)λ′ + (16πrp+ 8πr2p′)eλ − ν ′] = −8πp

p′ = −1

2
(ρe + p)ν ′. (4.10)

Eq.s (4.8), (4.9) and (4.10) form a set of ordinary differential equations that can be

solved to yield our theoretical stellar models. In our simulations, we choose a value

for ρe(r = 0) with m(r = 0) = 0, employ an equation of state giving p as a function

of ρe, and integrate the former equations from r = 0 to a radius where the pressure
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p vanishes. This radius defines the surface of the neutron star, which we will denote

henceforth as R. We employ an equation of state popularly used in neutron star

simulations called the polytropic equation of state coupled with a Γ law which sets

p = κρΓ = ρeε(Γ− 1) for the initial data with κ and Γ as arbitrary constants. These

solutions give us models of the interior of the neutron stars.

For the exterior region of the neutron star, p = 0 and m = M where M is the

gravitational mass of the star as evaluated at spatial infinity, which we will denote

henceforth as the ADM (Arnowitt-Deser-Misner) mass. Therefore, Eq. (4.7) becomes:

e−λ = 1− 2M

r
, (4.11)

and Eq. (4.9) yields:

ν ′ =
2M

r(r − 2M)
. (4.12)

The line element for the exterior region thus becomes:

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2(dθ2 + sin2 θdφ2), (4.13)

which is the standard Schwarzschild line element.

Since we perform these calculations within a 3-dimensional Cartesian grid frame-

work, we use an alternative form of the Schwarzschild line element as follows:

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2(dθ2 + sin2 θdφ2)

= −Adt2 +B(driso
2 + riso

2(dθ2 + sin2 θdφ2)

= −Adt2 +B(dx2 + dy2 + dz2), (4.14)
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where it can be computed that:

A = (
2riso −M

2riso +M
)2

B = (1 +
M

2riso

)4, (4.15)

and:

r = riso(1 +
M

2riso

)2

=
riso(2riso +M)2

(2riso)2

dr =

√
r(r − 2M)

riso

driso. (4.16)

Due to Eq. (4.11), the differential for the Schwarzschild radius in Eq. (4.16) for the

stellar interior can be written analogously as:

dr =

√
r(r − 2m)

riso

driso. (4.17)

The set of ordinary differential equations for the stellar interior thus becomes:

dm

driso

=
4πρer

2
√
r(r − 2m)

riso

dν

driso

=
2(m+ 4πpr3)√
r(r − 2m)riso

dp

driso

= −(ρe + p)
(m+ 4πpr3)√
r(r − 2m)riso

. (4.18)

The solution in the stellar interior is matched to the solution in the exterior to obtain

a global solution. These solutions were first considered by Tolman, Oppenheimer and

Volkoff in 1939 [80],[66] to model isolated stars, henceforth the name TOV spacetime.
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4.2 Perturbations on the TOV spacetime

In this section, we present small amplitude perturbations to the TOV spacetime as

first introduced by Thorne and Campolattaro in 1967 [79]. These perturbations are

viewed as vector displacements of the fluid elements with respect to the coordinate

system of the spacetime. In terms of the line element, the perturbation is introduced

as follows:

ds′
2

= ds2 + hµνdx
µdxν , (4.19)

where ds′2 is the perturbed line element, ds2 is the original line element of the TOV

spacetime as described in Eq.s (4.1) and (4.13) and hµν are the components of the

perturbation metric. The components of the perturbation metric and the fluid ele-

ment displacement vector can be categorized into quantities that transform as scalar

fields, vectors or tensors under a rotational group. The quantities that transform as

scalar fields are constants under a rotation group. They can be expanded in terms

of scalar spherical harmonics Y l
m(θ, φ) and possess even parity. Those that transform

as vectors, eg. Aµ = ∂xµ

∂xνA
ν , are expanded in terms of vector spherical harmon-

ics Ψl
mj = ∂jY

l
m(θ, φ) in the even parity and Φl

mj = εkj∂kY
l
m(θ, φ) in the odd parity

where ε32 = − 1
sin θ

, ε23 = sin θ and ε22 = ε33 = 0, whereas those that transform as ten-

sors, eg. Aµν = ∂xµ

∂xm
∂xν

∂xnA
mn, are expanded in terms of tensor spherical harmonics

Ψl
mjk = Y l

m;jk, a covariant derivative with respect to the 3-metric γij for the TOV

spacetime, Φl
mjk = γjkY

l
m in the even parity and ξl

mjk = 1
2
(εnj Ψl

mnk + εnkΨl
mnj) in
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the odd parity. ξr, h00, h0r and hrr are quantities that transform as scalars; whereas

(ξθ, ξφ), (h0θ, h0φ), (hrθ, hrφ) transform as vectors, and hjk with (j, k = θ, φ) transform

as tensors. Therefore, we can write the overall odd-parity harmonics as follows:

ξr = 0, ξθ = U(r, t)Φl
m2, ξφ = U(r, t)Φl

m3

h00 = h0r = hrr = 0

h0j = h0(r, t)Φ
l
mj, h1j = h1(r, t)Φ

l
mj, hjk = h2(r, t)χ

l
mjk. (4.20)

The overall even-parity harmonics can be written as follows:

ξr = X(r, t)Y l
m, ξθ = V (r, t)Ψl

m2, ξφ = V (r, t)Ψl
m3

h00 = eνH0(r, t)Y
l
m, h0r = H1(r, t)Y

l
m, hrr = eνH2(r, t)Y

l
m

h0j = h0(r, t)Ψ
l
mj, h1j = h1(r, t)Ψ

l
mj, hjk = r2K(r, t)Ψl

mjk + r2G(r, t)Φl
mjk. (4.21)

Eq.s (4.20) and (4.21) can be simplified via small coordinate tranformations xµ′ =

xµ + ην(x) on the perturbation metric components as follows:

h′µν = hµν + ηµ;ν + ην;µ, (4.22)

where η0 = ηr = 0 and ηj = Λ(r, t)Φl
mj for the odd-parity harmonics, and η0 =

M0(r, t)Y
l
m, η1 = M(r, t)Y l

m and ηj = M2(r, t)Ψ
l
mj for the even-parity harmonics. For

the odd-parity harmonics, the simplification is performed by setting Λ so as to annul

the function h2, whereas for the even-parity harmonics, M0, M1 and M2 are chosen
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so as to annul h0, h1 and G. With these gauge simplications, the perturbation metric

for the odd-parity harmonic with m = 0 becomes:

hµν =



0 0 0 h0 sin θY l
0,2

0 0 0 h1 sin θY l
0,2

0 0 0 0

h0 sin θY l
0,2 h1 sin θY l

0,2 0 0


, (4.23)

with the corresponding fluid element displacement vector as follows:

ξα =


0

0

U sin θY l
0,2

 , α = (1, 2, 3). (4.24)

The perturbation metric for the even-parity harmonics for m = 0 becomes:

hµν =



H0e
ν H1 0 0

H1 H2e
λ 0 0

0 0 r2K 0

0 0 0 r2 sin2 θK


Y l

0 , (4.25)

with the corresponding fluid element displacement vector as follows:

ξα =


XY l

0

VΨl
02

0

 . (4.26)

These general forms indicate that the odd-parity harmonics are described by differen-

tial rotations that do not change the profile of the star’s density, pressure and shape,
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whereas the even-parity harmonics are described by oscillations of the star’s density

and pressure.

Armed with the previous general forms, we now consider the most basic pertur-

bation mode, ie. the l = 0 mode. The odd-parity harmonics for this mode are:

Φ0
0j = 0;χ0

0jk = 0, (4.27)

and the even-parity harmonics are:

ξr = XY 0
0 ; Ψ0

0j = 0; Ψ0
0jk = 0

Φ0
0jk = γjkY

0
0 . (4.28)

Eq. (4.27) indicates that the l = 0 mode contains no odd-parity harmonics, and

thus does not possess any differential rotations. However, the perturbation metric for

even-parity harmonics for the l = 0 mode becomes:

hµν =



H0e
ν H1 0 0

H1 H2e
λ 0 0

0 0 0 0

0 0 0 0


Y 0

0 , (4.29)

and the fluid element displacement vector becomes:

ξα =


−r2e−α/2XY 0

0

0

0

 . (4.30)
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We can thus write the perturbed line element for the l = 0,m = 0 mode as follows:

ds2 = eν(H0Y
0
0 − 1)dt2 +2H1Y

0
0 dtdr+ eλ(H2Y

0
0 +1)dr2 + r2(dθ2 +sin2 θdφ2). (4.31)

The 4-velocity of the fluid elements corresponding to the aforementioned displacement

vector is:

uβ =



e−ν/2(1 +
H0Y 0

0

2
)

−r−2e−(ν+λ)/2X,0Y
0
0

0

0


, β = (0, 1, 2, 3). (4.32)

From the displacement vector, we also compute the Lagrangian change in the number

density of baryons contained in a certain stellar volume, as follows:

∆n

n
= −(ξk

;k +
1

2

δ[(3)g]
(3)g

= r−2e−λ/2X,1Y
0
0 −

H2Y
0
0

2
, (4.33)

where the subscripted colon indicates a covariant derivative with respect to the per-

turbed metric to first order in the perturbation functions. The corresponding Eulerian

changes in the density and pressure of mass-energy of the star hence become:

δρe = (ρe + p)
∆n

n
+ ρe,1r

−2e−λ/2XY 0
0

δp = γp
∆n

n
+ p,1r

−2e−λ/2XY 0
0 , (4.34)

where γ = ρe+p
p

p,1

ρe,1
. We note that Eq.s (4.31) to (4.34) constitute spacetime and

fluid perturbations that do not violate the spherical symmetry of the equilibrium
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TOV background. Substituting these expressions into Einstein’s field equations and

simplifying by neglecting higher orders of the perturbation functions, we now write

the equations of motion for the l = 0 mode perturbation as follows:

δG1
1 = 8πδT 1

1 :

2r−1e−(λ+ν)H,0 − r−1e−λH0,1 − r−2e−λ(1 + rν ′)H2 −

8πγp(r−2e−λ/2X,1 −H2/2)− 8πr−2e−λ/2p,1X = 0 (4.35)

δG0
0 = 8πδT 0

0 :

−r−1e−λH2,1 + r−2e−λ(−1 + rλ,1)H2 +

8π(ρe + p)(r−2e−λ/2X,1 −H2/2) + 8πr−2e−λ/2ρe,1X = 0 (4.36)

δG2
2 = 8πδT 2

2 , δG3
3 = 8πδT 3

3 ::

−e−νH2,00/2 + e−(λ+ν)H1,01 + r−1e−λ+ν)(2− rλ,1)H1,0/2−

e−λH0,11/2− r−4e−λ(2− rλ,1 + 2rν,1)H0,1/4− r−1e−λ(2 + rν,1)H2,1/4 +

4r−1e−λ((λ,1 − ν,1)(2− rν,1)− 2rν,11)H2 −

8πγp(r−2e−λ/2X,1 −H2/2)− 8πr−2e−λ/2p,1X = 0 (4.37)

δG1
0 = 8πδT 1

0 :

r−1e−λH2,0 − 8π(ρe + p)r−2e−λ/2X,0 = 0 (4.38)

δG0
1 = 8πδT 0

1 :

r−1e−(λ+ν)(λ,1 + ν,1)H1 − r−1e−νH2,0 + 8π(ρe + p)r−2e−ν+λ/2X,0 = 0 (4.39)
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The Euler equation for this perturbation mode, which is the projection of δT µ
1;ν = 0

along the direction orthogonal to the 4-velocity of the fluid u, is as follows:

(ρe + p)ξ,00e
λ+ν − (ρe + p)

2
H0,1Y

0
0 + (δρe + δp)

ν,1

2
= −δp,1. (4.40)

Eq.s (4.35) to (4.40) can be solved to yield a first order ordinary differential equation

for the perturbation function X. To do this, we write the perturbation function in

terms of a radial dependence and a harmonic time dependence, X(r, t) = X(r)eiωt.

We then substitute Eq.s (4.34), (4.35) and (4.38) into (4.40) to obtain the following:

(
p,1

ρe,1

)(r−2e−λ/2X,11 + ((
p,1

ρe,1

),1 − Z + 4πrγpeλ − ν,1

2
)X,1 +

(
(ν,1)

2

2
+

2m

r3
eλ − Z,1 − 4π(ρe + p)Zreλ + ω2eλ−ν)X = 0. (4.41)

We now consider the l = 1 mode perturbations. The odd-parity harmonics for

this mode are:

Φ1
02 = 0; Φ1

±12 = i(
3

8π

1/2

)e±iφ

Φ1
03 = −(

3

4π
)1/2 sin2 θ; Φ1

±13 = ∓(
3

8π
)1/2e±iφ sin θ cos θ

χ1
mjk = 0, j, k = 2, 3, (4.42)

whereas the even-parity harmonics are:

Y 1
0 = (

3

4π
)1/2 cos θ;Y 1

±1 = ∓(
3

8π

1/2

)e±φ sin θ

Ψ1
02 = −(

3

4π
)1/2 sin θ; Ψ1

±12 = ∓(
3

8π
)1/2e±iφ cos θ

Ψ1
03 = 0; Ψ1

±13 = −i( 3

8π
)1/2e±iφ sin θ
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Φ1
m22 = −Ψ1

m22 = Y 1
m; Φ1

m33 = −Ψ1
m33 = sin2 θY 1

m; Φm
1
23 = −Ψ1

23 = 0. (4.43)

In the spirit of Eq. (4.20) and performing a simplification via small coordinate trans-

formations previously done for the l = 0 mode, which sets G −K ≡ 0, we can then

write the metric for the odd-parity l = 1 perturbation mode as follows:

hµν =



H0e
ν iωH1 0 0

iωH1 H2e
λ 0 0

0 0 0 0

0 0 0 0


Y 1

m, (4.44)

where we include a harmonic term in the 10− and 01− components in order to

simplify the resulting system of ordinary differential equations shown further on.

Correspondingly, the fluid element displacement vector is:

ξα =


−r−2e−λ/2WY 1

m

V
r2 Ψ

1
m

2

V
r2 Ψ

1
m

3

 , (4.45)

where we see that W is the perturbation function describing radial fluid oscillations

whereas V describes azimuthal fluid displacements. The perturbed line element for

this perturbation mode is thus:

ds2 = eν(H0Y
1
m−1)dt2+2iωH1Y

1
mdtdr+e

λ(H2Y
1
m+1)dr2+r2(dθ2+sin2 θdφ2). (4.46)

With this line element, the Lagrangian change in the baryonic number density be-

comes:

∆n

n
= (r−2e−λ/2W,1 + 2r−2V − H2

2
)Y 1

m, (4.47)
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which results in the Eulerian changes in the pressure and matter-energy density as

follows:

δρe = (
(ρe + p)

γp
e−ν/2S1Y

1
m + ρe,1r

−2e−λ/2WY 1
m

δp = e−ν/2S1Y
1
m + p,1r

−2e−λ/2WY 1
m, (4.48)

where S1 = γpeν/2(r−2e−λ/2W,1+2r−2V −H2

2
). To first order in the perturbation func-

tions, again using GRTensorII on Mathematica, we obtain the Einstein field equations

as follows:

δG1
1 = 8πδT 1

1 :

(2r−1e−λ−νH1,0 − r−1e−λH0,1 − r−2e−λH2(1 + rν,1) +H0r
−2)Y 1

m −

8πe−ν/2S1 − 8πp,1r
−2e−λ/2WY 1

m = 0 (4.49)

δG2
2 = 8πδT 2

2 :

[−r
−1e−λ−ν

2
(−2 + rλ,1)H1,0 −

e−ν

2
H2,00 +

r−1e−λ

4
(−2 + rλ,1 − 2rν,1)H0,1 −

r−1e−λ

4
(2 + rν,1)H2,1 + e−λ−νH1,01 −

e−λ

2
H0,11 +

r−2H2

4
(e−λr((λ,1 − ν,1)(2 + rν,1)− 2rν,11)− 2) +

r−2H0

2
]Y 1

m −

8πe−ν/2S1 − 8πp,1r
−2e−λ/2WY 1

m = 0 (4.50)

δG0
0 = 8πδT 0

0 :

[−r−1e−λH2,1 +
r−2e−λH2

2
(2(−1 + rλ,1)− 2eλ)]Y 1

m +

8π
(ρe + p)

γp
e−ν/2S1Y

1
m + 8πρe,1r

−2e−λ/2WY 1
m = 0 (4.51)
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δG1
0 = 8πδT 1

0 :

r−1e−λH2,1 + r−2e−λH1 − 8π(ρe + p)r−2e−λ/2W,0 = 0 (4.52)

δGj
0 = 8πδT j

0 :

−r
−2

2
(H2,0 − e−λH1,1 +

e−λ

2
(λ,1 − ν,1)H1 − 8π(ρe + p)r−2V,0 = 0 (4.53)

δGj
1 = 8πδT j

1 :

H1,0 = eνH0,1 − eν(r−1 − ν,1

2
)H0 + eν(r−1 +

ν,1

2
)H2. (4.54)

We write the perturbation functions in terms of a radial dependence and a harmonic

time dependence, ie. H0(r, t) = H0(r)e
iωt, H1(r, t) = H1(r)e

iωt, H2(r, t) = H2(r)e
iωt,

V (r, t) = V (r)eiωt and W (r, t) = W (r)eiωt. We then decouple Eq. (4.51) into two

equations for H1 and H2 as follows:

H2 = −r−1H1 + r−18π(ρe + p)eλ/2W (4.55)

H1,1 = r−1(
r

2
(λ,1 − ν, 1)− eλ)H1 + r−18π(ρe + p)e3λ/2W − 16π(ρe + p)eλV. (4.56)

Eq. (4.54) however can be simplified to yield:

rH0,1 = −(
rν,1

2
− 1)H0 − (

rν,1

2
+ 1)H2 + iωre−νH2. (4.57)

We also consider the perturbation of the energy-momentum conservation as follows:

δ(T ν
j;ν) = 0

−(ρe + p)e−νω2V = −p,1r
−2e−λ/2W − pγr−2e−λ/2W,1 +

γp

2
H2 +

(ρe + p)

2
H0 − 2γpr−2V, (4.58)
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which can be decoupled into two equations for V and W as follows:

16πr2ω2(ρe + p)eλ−νV = −8π(ρe + p)ν,1e
ν/2W + (ν,1 − 2rω2e−ν)H1 +

(16πr2ρee
λ − 3rλ,1)H0 (4.59)

8πpγeλ/2W,1 = −rω2e−νH1 − (
rν,1

2
− 4πpγr2eλ)H2 −

(1− eλ − rν,1

2
)H0 − 8πp,1e

λ/2W − 16πpγeλV. (4.60)

Eq.s (4.55), (4.56), (4.57), (4.59) and (4.60) form a system of third order ordinary

differential equations for the even parity l = 1 perturbation mode and can be solved

to obtain the mode frequency ω. To consider the effect of this perturbation on the

exterior TOV background spacetime, we solve Eq.s (4.51), (4.54) and (4.58) in the

vacuum surrounding the star. Using Eq.s (4.11) to (4.13), we obtain, as in [19]:

H0 =
1

3

ς3β + 8M2β,00

ς(1− ς)2
;H1 = − 2Mς

(1− ς)2
β,0;H2 = ς2(1− ς)2β, (4.61)

where ς ≡ 2M
r

and β =arbitrary function of the coordinate time. Considering in-

finitesimal coordinate transformations, we use Eq. (4.22) to obtain the following for
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the even-parity l = 1 mode:

h0′0′ = [eνH0 − 2M0,0 + ν,1e
ν−λM1]Y

l
m

h0′1′ = [H1 −M0,1 + ν,1M0 −M1,0]Y
l
m

h1′1′ = [eνH2 − 2M1,1 + λ,1M1]Y
l
m

h0′j′ = −[M2,0 +M0]Ψ
l
mj

h1′j′ = −[M2,1 − 2r−1M2 +M1]Ψ
l
mj

hj′k′ = −2[re−λM1 +M2]Ψ
l
mjk. (4.62)

Eq.s (4.62) show that for the even-parity l = 1 mode perturbation metric to preserve

the same form, the following will have to hold true:

h0′j′ = h1′j′ = hj′k′ = 0, (4.63)

which entails:

M2,0 +M0 = 0,M2,1 − 2r−1M2 +M1 = 0, 2re−λM1 − 2M2 = 0. (4.64)

Eq.s (4.64) can be solved to yield the following:

M0 = −a,0f,M1 = ar−1eλf,M2 = af, (4.65)

with f = r exp[
∫∞

r
r−1(1 − eλ)dr] and a =arbitrary function of the coordinate time.
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Substituting Eq. (4.65) back into the first three equations in (4.62), we obtain:

H ′
0 = H0 + (2a,00e

−ν + ar−1ν,1)f

H ′
1 = H1 + a,0[2r

−1(1− eλ)− ν,1]f

H ′
2 = H2 − ar−1[2r−1(1− eλ) + λ,1]f

W ′ = W − areλ/2f

V ′ = V + af

S ′ = S. (4.66)

Therefore, the perturbation functions H0, H1, H2, V and W are only unique up to

the transformations shown in Eq. (4.66). Given Eq.s (4.66), the perturbations in the

exterior background spacetime Eq.s (4.61) can be set to zero which then preserves its

spherical symmetry. When H ′
0 = 0, we obtain a(t) = −2

3
Mβt. Using this gauge not

only guarantees that the exterior background spacetime is spherically symmetric but

as a unique gauge, it also can be used to remove the gauge arbitrariness in the former

perturbation functions.

4.3 Non-radiative pulsations of neutron stars and

their frequency modes

In the previous section, we have delved into non-radiative perturbations on the TOV

spacetime, ie. the l = 0 and even parity l = 1 modes. In this section, we will apply
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the formalism in our neutron star models to obtain their non-radial pulsation modes.

By considering boundary conditions at the center and at the surface of the star, we

employ a shooting method to solve the systems of ordinary differential equations in

both the l = 0 and even parity l = 1 modes obtained in the previous section.

For the l = 0 mode, we follow Misner et al [60] as well as Kokkotas and Ruoff [49]

in re-writing Eq. (4.41) as:

d

dr
(P
dζ

dr
) + (Q+ ω2W )ζ = 0, (4.67)

where:

ζ = r2e−νX, (4.68)

r2W = (ρe + p)e(3λ+ν)/2

r2P = γpe(λ+3ν)/2

r2Q = e(λ+3ν)/2(ρe + p)(
(ν,1)

2

4
+ 2

ν,1

r
− 8πe2λp). (4.69)

Eq. (4.67) can itself be decoupled into a system of two ordinary differential equations

as follows:

dζ

dr
=
η

P

dη

dr
= −(ω2W +Q)ζ. (4.70)

We now consider the boundary conditions for neutron star models. At the center of

the star, the radial displacement of the fluid element vanishes, whilst at the surface
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of the star, the Eulerian change in the pressure of the star vanishes. These conditions

translate respectively as:

ζ(r = 0) = 0, (4.71)

(r−2e−λ/2W ),1 = (γR)−1(4 + (
M

R
)eλW + ω2(

R3

M
)e−ν)(r−2e−λ/2W ), (4.72)

where R denotes the radius and M the ADM mass of the star [9]. [49] found that

via a Taylor expansion, ζ(r) ∼ ζ0r
3 +O(r5), and η(r) ∼ η0 +O(r2), hence we obtain

ζ,1 ∼ 0 and η,1 ∼ 0 as r → 0. We then employ a simple shoot and match method

to solve the boundary value problem Eq.s (4.70) to (4.72) to obtain the normal

modes of pulsation for the neutron star. We input a range of test ω2 values and for

each of these values integrate Eq. (4.70) from r = 0 to r = R using a simple finite-

differencing scheme and observe the difference between the integrated value and the

value imposed by the boundary condition Eq. (4.72) at r = R. The ω values that

give us zero difference are the normal mode frequencies for the neutron star. We note

that using this method, convergence is achieved very rapidly. We denote the lowest

of these frequencies as the fundamental mode.

For the even-parity l = 1 mode, we similarly consider the boundary conditions at

both the center and at the surface of the star for Eq.s (4.56), (4.57) and (4.60). We

note that at the center of the star, the perturbation functions H0, H1 and W must be

finite whilst at the surface of the star, they must match with the values that preserve

the spherical symmetry of the exterior background spacetime. These conditions thus
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translate as follows:

H0 ∼ hr;H1 ∼ −8π(ρec+ pc)wr
2;W ∼ wr2 (4.73)

where h and w are arbitrary constants, and ρec and pc are respectively the matter-

energy density and pressure at the center of the star, and:

H0(R) = 0;H1(R) = 0. (4.74)

This boundary value problem Eq.s (4.56) to (4.60), and Eq.s (4.73) to (4.74) can

then be similarly solved using a shoot and match method where test ω2 values are

chosen and Eq.s (4.56) to (4.60) are integrated from the center to the surface of the

star until a match occurs with the boundary conditions at the surface of the star. In

choosing the test ω2 values, we follow [56] in using a variational principle for the l = 1

mode frequencies as obtained by Detweiler in 1975 [27]:

ω2

∫ R

0

e−ν/2[ρe + p)eλ/2(
W 2

r2
+ 2V 2)− e−λ/2 (H1)

2

8π
]dr =∫ R

0

eν/2{r2eλ/2pγ[
δρe

ρe + p
]2 − 1

16π
(1 + rν,1)e

−λ/2(H2)
2}dr +

ρeRMW 2(R)

R4
. (4.75)

We employ test functions H1 = −8π(ρec + pc)r
2[1− (r/R)2] and W = r2[1− (2r/R)6]

[56] and substitute Eq. (4.47), Eq. (4.55) and (4.56) into Eq. (4.75) to obtain the test

ω2 values for the neutron star. We note that the variational principle approach is able

to give us a good estimate of the mode frequencies even without an exact knowledge

of the perturbation functions.
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For these perturbation modes, when the fundamental ω2 obtained is negative, the

star’s oscillation increases without bound and the star is said to be unstable. When

the fundamental mode is zero, the star is at a critical point between a stable branch

and unstable branch. The star will remain at this point unless perturbed. We shall

delve into this in the following section.

4.4 Equation of state change of neutron stars and

its instability time scale

In the previous sections, we present the formalism and the methods by which we

obtain the time scales associated with non-radiative pulsation modes for non-rotating

neutron stars. In this section, we consider the time scales involved when a non-

rotating neutron star undergoes phase transitions induced by a change in its equation

of state. Since an analytic result has not been established governing how the time

scale of collapse of a neutron star varies with the speed of its phase transition, in this

section, we shall consider numerical results.

We consider isolated static neutron star models with a polytropic equation of

state p = κρΓ as mentioned in Section 4.1, with κ = 80. The rest mass of these

neutron stars are set to be at the maximum allowed for a static equilibrium star

with the adiabatic index Γ = 1.9. According to Harrison et al [41], the adiabatic

index has the upper limit of 2 imposed by the causality condition. It is a well-known
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Newtonian result that the speed of sound has the ultrarelativistic limit βsound =

( dp
dρe

)1/2 = [ε(Γ − 1)]1/2 → (Γ − 1)1/2. Therefore, we set Γ0 = 1.895 in order to allow

a change of equation of state with Γ increasing but not exceeding the upper limit

of 2. Fig. 4.1 shows the variation of the rest mass and ADM mass with respect to

the central matter density of stars modelled with equations of state with different

adiabatic indices. As mentioned in the previous section, there is a maximum for each

of the curves, which indicates a critical point between the stable branch on the left

and the unstable branch on the right. We see that as Γ increases, the curve moves

further to the right with decreasing maximum. As the central matter density is less

than 1 in the geometric units used, the pressure of the star as well as the number of

baryons packed in the star decreases as Γ increases.
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We set the rest mass of the stars to be equal to the maximum rest mass of a star

with Γ = 1.9, ie. at Mb = 2.2135. With this setup, the stars are thus set on the

stable branch of the Γ = 1.895 curve, with their phases allowed to transition with

time to the maximum point of the Γ = 1.9 curve. We utilize the GRAstro-2D code

and use a finite-differencing resolution of dx = 0.025. Convergence of the results with

respect to resolution is verified by performing simulations using other resolutions,

eg. dx = 0.05, 0.075. A slow change is imposed on the equation of state by slowly

increasing Γ at a constant rate dΓ
dt

, simultaneously conserving baryonic mass, which

is checked to be conserved to the level 0.00074%, shown in Fig. 4.2. Two categories

of cases are considered, namely:

(a)Γ = Γ0 +
dΓ

dt
t, t ≤ tf1(b)Γ = Γ0 +

dΓ

dt
t, t ≤ tf2.
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In (a), Γ increases to Γ = 1.9, reaching the critical point of the rest mass-matter

density curve for Γ = 1.9 at t = tf1, thus becoming unstable for t > tf1. In (b),

Γ increases to Γ = 1.905, overshooting the critical point beyond which there is no

equilibrium configuration with the given rest mass, for Γ > 1.9. Within these two

categories, neutron stars undergoing three rates of change of dΓ
dt

, are investigated,

namely:

(i)
dΓ

dt
= 0.00005, (ii)

dΓ

dt
= 0.000075, (iii)

dΓ

dt
= 0.0001.

We determine the time scale of the collapse of these neutron stars as they cross

the critical point by measuring δρ = ρ − ρi, where i is the central matter density of

the star at the critical point of the rest mass-matter density equilibrium curve for

Γ = 1.9, and by measuring the rate of change of δρ and its acceleration.

Fig. 4.3 shows the change of δρ, dδρ/dt and d2δρ/dt2 with time for each of the

transition speeds (i),(ii) and (iii). From this figure, we observe that δρ changes at

a constant speed for each of the transition speeds, but the rates of change of this

speed and its acceleration becomes chaotic at the transition speed of 0.000075. We

note that the order of magnitude of the oscillations at this speed is much higher than

that at the other speeds, where the magnitude of the d2δρ/dt2 is close to zero. This

indicates that collapse of the star is triggered much readily at a range of speeds that

has an upper bound with order of magnitude 10−4 solar masses, and a lower bound

with order of magnitude 10−5 solar masses.

Fig.s 4.4 to 4.6 show the comparison of the δρ, dδρ/dt and d2δρ/dt2 changes with
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time, between scenario (a) and (b). From these figures, we observe that the changes

of δρ and their respective rates of change do not differ much between a neutron star

that undergoes a phase transition up till the threshold point, and a neutron star that

undergoes a phase transition past the threshold point reaching a state which cannot

be described by an equilibrium configuration. Whilst a small difference is seen only

toward the late stage of the collapse, the difference in the d2δρ/dt2 is negligible when

the transition speed reaches the order of magnitude of 10−4.
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Critical gravitational collapse

5.1 Critical phenomena in general relativity

Critical phenomena in general relativity were discovered by Choptuik [20] in 1993 in

numerical simulations of spherical scalar field collapses. The phenomena of universal-

ity, mass scaling and self-similarity observed in these gravitational collapses garnered

the name of critical phenomena, analogous to phase transition phenomena observed

in condensed matter systems.

In particular, a set of general relativistic initial data are made to evolve to the

brink of collapse. Parameters of this initial data are then varied one at a time. As

these 1-parameter variations are imposed, the evolution of this initial data passes

through a threshold between black hole formation and dispersion to infinity. They

evolve toward a spacetime which can be stationary or scale-free [38]. We shall call this
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spacetime the critical set henceforth. These evolutions leave the threshold via the

one unstable mode of the critical set, and the time scale of this departure is denoted

as the critical index. Universality is observed when the critical index is independent

of the initial data parameter that is varied.

Mass scaling occurs when the black holes that form at this brink of collapse begin

with infinitesimal masses that scale with respect to the distance of the initial data

from the threshold, as follows:

M ∝ (p− p∗)γ, (5.1)

where M denotes the mass of the black hole, p denotes the parameter of the initial

data that is varied, p∗ the value of this parameter when the initial data evolution

stays on the threshold as time goes to infinity, and γ the critical index. According

to [38], an initial data set in general relativity can be denoted as a function of the

spatial coordinates, eg. S(x) where we express it in a 1-dimensional spatial coordinate

system, and its evolution in the coordinate time can be denoted as S(x, t). S(x) can be

the density distribution of the matter configuration or the 3-metric of the spacetime,

as mentioned in Section 3.4. Denoting the critical set itself as S(x∗), a solution of the

initial data S(x) that produces an evolution very near the critical set can be linearized

in a small neighborhood of the critical set as follows:

S(x, t) ≈ S(x∗) +
∞∑

k=0

Ck(p)e
λktSk(x), (5.2)

where the λk’s are eigenvalues of the critical set which can be purely real, complex
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or purely imaginary. As the critical set by definition possesses one unstable mode, as

t → ∞, all perturbations about the critical set vanish leaving one with positive real

λk, for which we denote the amplitude of the constant as C0(p∗). We can then further

linearize in a small neighborhood about the critical set via a Taylor’s expansion as

follows:

lim
t→∞

S(x, t) ≈ S(x∗) +
dC0

dp
(p− p∗)eλ0tS0(x). (5.3)

We can choose a t = t∗ where Eq. (5.3) still holds and denote:

S(x, t∗) ≈ S∗(x) + εS0(x), (5.4)

where:

ε ≡ dC0

dp
(p− p∗)eλ0t. (5.5)

A black hole that forms in the solution S(x, t∗) starts with a mass that grows

proportionately to e−t∗, which, in line with Eq. (5.5), is in turn proportional to

(p− p∗)1/λ0 = (p− p∗)γ. From Eq. (5.5) too, we can calculate the critical index as:

γ =
1

λ0

=
|t ∗ −C|

ln |p− p ∗ |
, (5.6)

where we have taken C = ln(ε/dC0

dp
)/λ0. Analogous to critical phase transitions in

materials, ie. first and second phase transitions, with discontinuous and continuous

order parameters, we can categorize critical gravitational collapse scenarios between

those that exhibit mass scaling and those that do not. Scenarios that do exhibit mass

scaling are called Type II scenarios and those that do not are called Type I. Type II
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Figure 5.1

scenarios occur when the system in question does not have a preferred scale, eg. in

scalar field systems, whereas in Type I scenarios, there exists a scale that typifies the

Einstein field equations for the system in question, and which cannot be neglected.

Therefore, in Type I scenarios, the mass of the black holes formed start with finite

value. However, the critical index in Type I collapse scenarios is similarly defined as

in Eq. (5.6).

The next feature seen in critical gravitational collapses reminiscent of phenomena

seen in condensed matter systems is the feature of self-similarity. Self-similarity de-

scribes the symmetries of the critical set of the collapse scenario, where the system

exhibits scale-free behavior. There are two types of self-similarity observed in collapse

scenarios, namely discrete self-similarity (DSS) and continuous self-similarity (CSS).

Cahill and Taub [18] first computed the equations for CSS of a spherically symmetric
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configuration of perfect fluid, as follows:

Lξgαβ = 2gαβ, (5.7)

where ξ is a homothetic Killing vector producing this self-similarity transformation,

which in terms of the coordinate system xµ = (t, xi), can be denoted as:

ξ = − d

dt
, (5.8)

and gαβ is the 4-metric of the spacetime exhibiting CSS. Eq. (5.7) reduces Einstein’s

field equations to a set of ordinary differential equations. The resulting equations for

the spacetime in such a collapse scenario are:

LξR
α
µβγ = 0;LξRαβ = 0;LξGαβ = 0. (5.9)

This leads to the following equation for the energy-momentum tensor:

LξTαβ = 0, (5.10)

which, coupled with Eq. (5.7), produces, in the case of a perfect fluid, the following

for the matter variables:

Lξp = −2p;Lξuα = −uα;Lξρe = −2ρe. (5.11)

Eq. (5.9) describe geometric self-similarity whereas Eq. (5.11) describe physical self-

similarity, which is equivalent to geometric self-similarity only in the case of perfect

fluids. Eq.s (5.7), (5.12) to (5.11) can be viewed as a similarity transformation
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in general relativity whereby a spatial hypersurface is pushed forward into itself as

depicted in Fig. 5.1 (refer to Appendix B). DSS is a more general form of self-similarity

[25] and the 4-metric gαβ for the spacetime undergoing such a collapse scenario can

be written in the form:

gαβ(t, xi) = e−2tg̃αβ(t, xi). (5.12)

Due to the scale-invariance of Type II critical gravitational collapses, the self-similarity

feature can only be observed in Type II scenarios.

Since the first discovery of critical gravitational collapse by Choptuik in spher-

ical scalar fields, universality, mass scaling and self-similarity have since been ob-

served in a variety of other systems such as perfect fluids [29],[62], 2D sigma models

[40],[53],[54], SU(2) models [22],[12],[13],[23],[59] and primordial density fluctuations

in cosmological models [64],[65],[82],[46],[36]. However, these systems are largely re-

stricted to spherical symmetry and require fine tuning of initial data and are therefore

less prevalent in realistic astrophysical systems. Later on in 2003, Choptuik and his

collaborators ventured into the study of scalar fields in axisymmetry [24]. Abrahams

and Evans studied axisymmetric collapse in vacuum gravity [1] and Lai [51] found

Type I critical phenomena in boson star systems. Noble and Choptuik then reported

Type II critical phenomena in spherically symmetric static neutron stars [63]. In

2007, Jin and Suen [47] produced evidence that Type I critical collapse occurs in

axisymmetric neutron star systems. A crucial finding in the latter that differs from

the previous ones is that when the adiabatic index of the equation of state is varied,
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the same Type I critical collapse is seen to occur in the neutron star system. This

presents evidence that critical phenomena not only occur via fine-tuning of initial

data, but can occur as the equation of state of realistic star systems softens and when

this time scale of equation of state change is an order of magnitude higher than the

time scales involved in the critical collapse.

5.2 Universality and the critical index

In the previous section, we reviewed the basic concepts of critical gravitational collapse

and the gravitational systems in which the phenomena has been observed. In this

section, we focus on several aspects of the concept of universality, which drive the

main analyses work in this thesis.

As mentioned in the previous section, critical collapses are said to be universal

as they produce the same critical index even when different parameters of the initial

data are varied. This is seen to be the case due to Eq. (5.3) where only one growing

mode survives in the critical solution carrying the system away from the critical set

- the main criterion for a solution to be critical. Let us take a certain set of initial

data that is tuned via variation of a certain parameter to form a critical solution. We

then fix this parameter and vary another parameter to tune the initial data until it

produces a critical solution. We note that these two initial data sets that produce

the critical solution lie very close to each other. Therefore, even when the critical
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index extracted from these two sets of 1-parameter variations are the same, we cannot

conclude that we observe universality in the strictest sense.

Another aspect of universality is the characteristic of the critical solution whereby

all details of the initial data, except for the distance of the initial data from the

threshold, and its conserved geometric quantities, are washed away in the dynamical

evolution, thus arriving at a universal configuration. In scale-invariant spacetimes

where self-similarity is observed, universality in this aspect indicates that the sys-

tem has entered a region of intermediate asymptotics which simultaneously ceases to

depend on details of the initial data as well as being far away from equilibrium. In

Type I collapses of neutron star systems where there exists a constant entropy in the

evolution, it is especially unclear how dynamical processes drive the system toward a

universal configuration [38]. In light of this, observing evolutions of initial data sets

that are very close to each other does not enable us to strictly conclude universality.

5.3 The dynamical systems picture

Another approach in understanding critical gravitational collapse which proved to be

very useful, is the dynamical systems picture. The theory of dynamical systems is

generally employed in studying physical systems that evolve in time, where the state

of the system at an instant in time is described by an element x in a phase space X,

which can be finite or infinite-dimensional. The evolution of the system is described
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by an autonomous system of differential equations on X as follows:

dx

dt
= f(x), x ∈ X, (5.13)

and:

f : X → X, (5.14)

where we see that the right hand sides do not have an explicit time dependence. When

X is finite-dimensional, Eq. (5.13) becomes an autonomous system of ordinary differ-

ential equations. When X is infinite-dimensional, Eq. (5.13) becomes an autonomous

system of partial differential equations. Eq. (5.14) is a smooth function which gener-

ates a flow φ(t, x). Given an initial condition x(0) = x0, a solution φ(t, x0) is obtained

and is denoted as the trajectory of Eq. (5.13) based at x0. An important feature of

this equation is the invariance of f up to translations in time, which therefore en-

ables the translation of solutions based at t0 6= 0 to that based at t0 = 0. Among

the solutions to this system of differential equations, there exists an important class

called fixed points, where the f(x) = 0. A fixed point x̄ is said to be stable when

every solution φ(t, x0) with x0 lying in a neighborhood of x̄ approaches and remains

close to x̄ as t→∞. The fixed point is further said to be asymptotically stable when

φ(t, x0) → x̄ as t→∞. Conversely, the fixed point is said to be unstable when every

solution φ(t, x0) leaves x̄ as t → ∞. Linearization of Eq. (5.13) in a small neighbor-

hood of x̄ enables one to cast the system of equations into a characteristic form and
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obtain its eigenvalues and their corresponding eigenvectors, as follows:

dx

dt
≡ ẋ = Ax

xj(t) = eλjtvj, (5.15)

where λj is the eigenvalue associated with the eigenvector vj. Solutions that lie in

the linear subspaces spanned by the eigenvectors form what is called invariant sets.

These invariant sets can be further and correspondingly categorized as stable and

unstable depending on the directions of the trajectories. The eigenvalues are crucial

in determining the nature of the fixed point as well as the trajectories in its neigh-

borhood. If there exists more than one eigenvalue, and if all of them possess negative

real parts, the fixed point is determined as asymptotically stable. If one of the eigen-

values have a positive real part, the fixed point is unstable. If all the eigenvalues

have non-zero real parts, the fixed point is called hyperbolic. Eigenvalues that are all

purely imaginary indicate that the fixed point is stable but not asymptotically stable.

Different combinations of the eigenvalues also produce different trajectorial behaviors

near the fixed point. We present here a 3-dimensional example where the eigenvalues

consist of a conjugate pair of complex numbers, and a real number. Let us take the

system of ordinary differential equations as follows:
ẋ

ẏ

ż

 =


α −β 0

β α 0

0 0 λ




x

y

z

 ;ω = α+ iβ, (5.16)
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Figure 5.2

which has the following solution:
x

y

z

 (t) =


eαt((cos βt)x(0)− (sin βt)y(0))

eαt((sin βt)x(0) + (cos βt)y(0))

eλtz(0)

 . (5.17)

The fixed point for Eq. (5.16) is the point (0, 0, 0). In this case, the trajectories of

solutions in the small neighborhood about this fixed point form a spiral structure. As

the radius
√
x2 + y2 of the trajectory shrinks, the z component of it increases.

Using the dynamical systems approach, general relativistic initial data sets that

evolve and form a critical solution can be seen as points in an infinite-dimensional

phase space. As shown in Section 5.1, linearization can be performed in a small neigh-

borhood of the critical set, and its eigenvalues determine the nature of the trajectories
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Figure 5.3

of these initial data sets in the neighborhood of the critical set. The critical set is a

semi-attractor that serves as a hyperbolic limit set possessing infinite decaying modes

but one growing unstable mode in its neighborhood. Thus, trajectories are attracted

to the critical set via decaying modes that are tangent to the trajectories in the phase

space, but as they reach the critical set, they are repelled from the threshold via the

one growing unstable mode (Fig. 5.2). Since general relativity is nonlinear, the sub-

spaces that are inhabited by these trajectories are manifolds. Manifolds that contain

trajectories leaving the critical set are unstable while those that contain trajectories

attracted to the critical set are stable. These manifolds are tangent to their corre-

sponding linear subspaces which are obtained in the former linearization in the small

neighborhood of the critical set, and are of the same dimension as the latter [37]. The
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nonlinearity of the system is also what allows for the possiblity of the critical set being

a closed or periodic orbit rather than just a point. In the case of a periodic orbit, the

solution takes the form φ(t, x0) = φ(t + T, x0) as t → ∞. As mentioned in Section

5.1, the critical set in gravitational collapse scenarios can thus be either a limit cycle

or a fixed point. In Type II collapses, the critical set is a limit cycle when the the

system exhibits CSS, and a fixed point when it exhibits DSS. The stationarity of the

critical set thus precludes any possibility of its emission of gravitational radiation by

definition.

Recalling Section 5.1, in critical gravitational collapses, 1-parameter variations

of the initial data produce groups of initial data that arrive at different end states.

These end states are separated by a threhold into two basins, ie. that of a black

hole and that of dispersion into infinity or a stable compact object. The closer the

initial data point is to the threshold, the longer its trajectory will stay parallel to

the threshold and the easier it gets attracted to the critical set. As these initial data

points are only very near but not directly on the threshold, their trajectories are

repelled by the one unstable mode of the critical set and leave the threshold in a path

perpendicular to the threshold even before it reaches the critical set (Fig. 5.2). The

manifold that contains only trajectories leaving the critical set is called the unstable

manifold of the critical set. Points that lie directly on the threshold by definition

produce trajectories that never leave the threshold (Fig. 5.3). This is due to the fact

that these trajectories will all lie within the stable manifold of the critical set. We
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thus note that the critical set defines an attraction basin, a region of the phase space

near the threshold inhabited by initial data points that produce trajectories that are

attracted to the critical set. The size of this basin can be described in terms of its

width along the direction perpendicular to the threshold, and its breadth along the

tangential direction. The threshold, on the other hand, is a plane of codimension one

in the phase space separating between the black hole and dispersion/stable compact

object attraction basins. We denote the region in the phase space situated between

the stable and unstable manifolds as a hyperbolic region where trajectories are both

moving toward the critical set and also moving away from the threshold. Strictly

speaking, the trajectories in this region are sequences of points rather than a curve

in the phase space.

The critical set itself however is denoted as the center manifold, as all its eigenval-

ues have zero real parts, in contrast with the unstable manifold in its neighborhood

whose eigenvalues have positive real parts and the stable manifold where the eigen-

values have negative real parts. In dynamical systems theory, the center manifold is

where bifurcation occurs. Bifurcation describes the change in the qualitative structure

of the solutions when parameters in the defining differential equations are varied and

when they enter a range of values, called bifurcation values. The bifurcation point is

the point where the qualitative behavior switches. The center manifold thus contains

the bifurcation point, and is tangent to the center linear subspace. Codimension one

bifurcations depend only on one parameter. We present here an example where a
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particular type of bifurcation occurs, called the Hopf bifurcation. Let us take the

system of ordinary differential equations as follows:

ẋ = y + x(1− x2 − y2)(4− x2 − y2)

ẏ = x+ y(1− x2 − y2)(4− x2 − y2), (5.18)

which can be rewritten as follows:

r2 = x2 + y2

rṙ = xẋ+ yẏ

ṙ = r(1− r2)(4− r2). (5.19)

The trajectories of solutions to Eq. (5.18) will be governed by the signs of ṙ in

Eq. (5.19) for different ranges or r. If the initial condition r0 is such that 0 < r0 < 2,

the solution r(t, r0) approaches the value of 1 as t → ∞. However, when r0 > 2,

the solution goes to infinity as t → ∞. Thus, the limit cycle where ṙ = 0, r = 2

is a repelling set, with the direction of the trajectories changing with respect to the

variation of the parameter r0 in the initial condition. We note however, in numerical

simulations of nonlinear infinite-dimensional systems where no exact solutions exist,

bifurcation is never actually seen, due to the fact that the evolutions cannot in princi-

ple be carried out for t→∞. In effect, what we see is only a jumping back and forth

of initial data points in a small neighborhood about the threshold. This is analogous

to the introduction of a small number |ε| in Eq. (5.18). The trajectories are therefore
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seen to leave the threshold in either direction, never actually dwelling on the critical

solution as t→∞.
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Critical gravitational collapse of

neutron stars

6.1 Time scale comparisons with non-radiative pul-

sation modes of neutron stars

In this section, we shall seek to clarify the different time scales involved in axisymmet-

ric neutron star critical collapse. Considering the results obtained by Jin and Suen

[47], we obtain the time scale of attraction of the system toward the critical solution

and the dominant frequencies of the oscillations of the critical solution. Fig. 6.1 shows

the evolution of the lapse, density and 4-scalar curvature at the center of collision.

Via a Fourier analysis, the dominant frequencies of the oscillations of these three evo-

lution variables are obtained. Fig. 6.2 indicates two dominant frequencies, namely,
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ω1 = 0.15 and ω2 = 0.23, corresponding to the oscillation periods of T1 = 0.21 and

T2 = 0.13 respectively. These values are in units of solar masses and all values hence-

forth in this chapter will be designated in these units. These frequencies are found to

be similar across all three variables. Using the dominant frequencies, we then fit the

critical solution with the following equations:

lapse:

α = α∞ + ae−λ(t−90) + b(cos(ω1(t− 90) + c) + ratioα cos(ω2(t− 90) + d)) (6.1)

density:

ρ = (
1

1
ρ∞

+ ae−λ(t−60)
)− b(cos(ω1(t− 60) + c) + ratioρ cos(ω2(t− 60) + d)) (6.2)
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4-scalar curvature:

R = (
1

1
R∞

+ ae−λ(t−100)
)− b(cos(ω1(t− 100)+ c)+ ratioR cos(ω2(t− 100)+ d)), (6.3)

where a, b, c and d are fit constants, α∞, ρ∞ and R∞ are respectively the averages

of the lapse, density and 4-scalar curvature throughout the oscillation phase of the

critical solution, ratioα = 0.2, ratioρ = ratioR = 0.4 are the ratio of the amplitudes of

ω2 over ω1 obtained from the Fourier transforms of the respective evolution variables.

The fit results are shown in Fig. 6.3. From the fit, we find that λ = 0.09, which

corresponds to the attraction time, t = 0.05ms, of the system toward the critical

solution, is similar across the three evolution variables. We further observe that the

attraction time is similar to the departure time found in [47] which indicates that the

eigenvalues of the decaying mode and the unstable mode have degenerate real parts.

We note that these time scales are of an order of magnitude smaller than the cooling

time scales of neutron stars reported in the astronomy and astrophysics literature

[68],[69],[70]. Therefore, there is a high possibility that real astrophysical systems of

cooling neutron stars pass through the threshold of critical collapse. Further, systems

that undergo slow accretion and angular momentum loss with time scales larger than

that reported here for the neutron star critical solution may also pass through the

threshold and exhibit critical behavior.

In order to understand the time scales of the oscillation phase of this critical so-

lution, we now seek to compare the frequencies to that obtained via a perturbative
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approach. We observe that the rest mass of the object undergoing critical collapse

is higher than the maximum allowed mass for a TOV configuration with the same

equation of state. Therefore, we consider a static non-rotating equilibrium TOV con-

figuration having the same rest mass as the rest mass of the two TOV configurations

producing the critical solution added together, namely at rest mass Mb = 1.5. We

recall from Chapter 5 that the critical set is a stationary or self-similar spacetime.

In the case of axisymmetric neutron star systems considered in [47], black holes form

with a finite mass, and scale-invariance is not seen, therefore the critical collapse is

of Type I, and the critical set is thus a stationary spacetime. In light of this, the

critical set of this solution is non-radiative in principle, and we can then employ the

tools presented in Chapter 4, ie. the l=0 and even parity l=1 mode perturbations, to

determine the non-radiative pulsations of a corresponding non-rotating TOV config-

uration. We obtain the finite-differenced TOV solution, namely the finite-differenced

matter-energy density, the specific heat enthalpy, the pressure and the ADM mass

function of the solution with respect to the isotropic radius of the configuration.

We then manipulate these functions accordingly and insert them into Eq.s (4.70) to

(4.72), and follow the rest of the procedure as mentioned in Section 4.3. Via this

method, the fundamental l = 0 frequency for a static equilibrium non-rotating TOV

configuration is found to be ω1p = 6.858 × 10−3. Similarly, for the even-parity l = 1

mode, we insert the manipulated functions of the TOV solution into Eq. (4.75). The

estimated fundamental frequency for this mode is found to be ω2p = 1.813 × 10−2.
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We note that ω1p and ω2p are both one and two orders of magnitude smaller than

ω1 and ω2 respectively. This is a confirmation that the oscillations of the critical set

of the solution are not caused by non-radiative pulsations of an equilibrium TOV

configuration. There therefore exists the need of performing perturbative analysis on

non-equilibrium rather than equilibrium background spacetimes in order to ascertain

the nature of the oscillations exhibited by the neutron star critical solution.

6.2 The neutron star critical gravitational collapse

solution as a semi-attractor

In [47], the critical index is seen to be similar across variations of different parameters

of the initial data ie. the boost velocity, initial separation and equation of state.

In line with the reasoning presented in Section 5.2, we acknowledge that via this

method, universality cannot be strictly claimed for the neutron star critical solution.

In this section, we present another method to prove universality. In this approach, we

construct a neutron-star like initial data by solving the initial value problem where

the matter field consists of two packets of matter whose densities are characterized by

Gaussian distributions rotated about the axis of axisymmetry and follow a polytropic

equation of state, p = κρΓ
e with κ = 80 and Γ = 2. The Gaussian density distribution

is as follows:

ρ(riso) = A+Ber2
iso/2C , (6.4)
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Figure 6.4: The Gaussian matter density distributions are constructed so as to maintain

the rest mass of the system as a constant. Therefore, when the Gaussian

heights are increased, their widths are correspondingly decreased. Configura-

tions 1 and 2 are less compact distributions whereas that of 3 and 4 are more

compact.
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Configuration Mb ρc d vz

NS 1.6 0.00056595 27.6 0.15

1 1.5 0.00038698 29.6 0.1

2 1.5 0.00039192 29.6 0.1

3 1.6 0.00055501 27.6 0.12

4 1.6 0.00064912 27.6 0.12

Table 6.1: Mb is the rest mass, ρc is the neutron star central matter density/height of

the Gaussian matter density distribution at t = 0, d is the center-to-center

separation between the neutron stars/Gaussian packets, and vz is the boost

velocity of the neutron stars/Gaussian packets along the z-direction of the

grid.

where A, B and C are constants that can be adjusted to yield different spacetimes.

The normal coordinate condition β = 0 and the geodesic slicing condition N = 1 are

chosen for the initial data. The 3-metric γ for the spacetime of this initial data is ap-

proximately asymptotically flat. We shall comment further on how an approximately

asymptotically flat spacetime differs from one that is exactly asymptotically flat in

our analysis in Section 6.5. The tuning of the height and width of the Gaussian den-

sity distributions produce a new 1-parameter family of initial data. The evolution of

these initial data sets are carried out using the same numerical setup as used in [47],

namely, using the Γ-freezing shift and 1 + log slicing condition. The BSSN scheme is
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also used in all our simulations as in [47].

We first set up this initial data set on the same numerical finite-differenced grid

as that used in [47], namely, on a thin slab of 323 points in the x and z-directions and

5 points along the y direction. The Gaussian packets are then boosted to a head-on

collision. The boost is performed via a coordinate transformation of the spacetime

as follows:

t′

x′

y′

z′


=



w vxw vyw vzw

vxw (1 + (w−1)v2
x

v2 ) ( (w−1)vxvy

v2 ) ( (w−1)vxvz

v2 )

vyw ( (w−1)vxvy

v2 ) (1 +
(w−1)v2

y

v2 ) ( (w−1)vyvz

v2 )

vzw ( (w−1)vxvz

v2 ) ( (w−1)vyvz

v2 ) (1 + (w−1)v2
z

v2 )





t

x

y

z


, (6.5)

where v = (vx, vy, vz) is the boost velocity vector, v2 = v2
x + v2

y + v2
z and w =

(1 − v2)−1/2. Therefore, the values of the boost velocity vector components do not

possess intrinsic physical meaning. However, the variation of the boost velocity is

non-degenerate and well-behaved, ie. we can say that the increase or the decrease

of the value of the boost velocity does indicate the isomorphic increase or decrease

in the physical boost velocity of the objects in the system. The behavior of the

axisymmetric object formed is observed. We note that this initial data is in a non-

equilibrium state at the initial time. However, the instability time scale described

by the oscillation time scale of a single Gaussian packet about an equilibrium TOV

configuration is found to be much larger than the time scale of the merging and

collapse of two packets. Therefore, we henceforth neglect the effect of the instability
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on our study. Furthermore, when such a system is seen to be attracted to the same

critical set of the neutron star solution, the non-equilibrium nature of our system

enables us to make a more robust claim of universality for the neutron star critical

solution. Table 6.2 and Fig. 6.4 show the configurations that are constructed and

their density distributions along the direction of collision respectively. These initial

data sets are qualitatively distinct from the neutron star configuration in terms of

their spacetime and matter properties, as they are clearly not obtained by varying

different parameters of the neutron star configuration, nor are bound by the TOV

spacetime and matter configuration. They are also qualitatively different from each

other in terms of their matter configurations. We examine the evolutions of these

initial data sets to see whether they are attracted to the same oscillatory critical set

of the neutron star solution.

In order to clearly present this behavior of the evolution of these initial data

sets, we choose several variables, namely the trace of the extrinsic curvature K at

the coordinate (2.1, 0.06, 0.06), the z-component of the momentum density at the

matter density contour of 7.5×10−3, and the maximum matter density of the system.

In Fig. 6.5, we draw the trajectories of these configurations using these variables.

From this figure, we see that these variables correlate with each other such that they

form bounded periodic orbits. In particular, we note that the correlation between

the momentum density of a fluid element away from the center of collision and the

matter density at the center of collision is analogous to that between the position
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Figure 6.5: The trajectories of all the configurations start on the left and are attracted

to the critical set on the right. The arrows point to the differing starting

points of the trajectories. K denotes the trace of the extrinsic curvature

at the coordinate (2.1,0.06,0.06) and Sz denotes the z-component of the 3-

momentum, Si, of the fluid element on 7.5×10−3 density contour, respectively.

The natural logarithm is taken of the density at the center of the grid, namely

lnρc, so as to greater distinguish the differing starting points of the trajectories

in the phase space.
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and momentum of a simple pendulum. The oscillations of K before reaching the

critical set is caused by the fact that the geodesic slicing is used at initial time. As

the slicing switches from geodesic to 1 + log after the first time step, the value of the

lapse at the grid boundary jumps discontinously from one value to another causing

the instability in the hypervolume near the boundary in the evolution. However, we

still observe that these configurations are all attracted to the same critical set of the

neutron star solution. This provides evidence that the neutron star critical solution

is a semi-attractor.

6.3 Phase space analysis on the neutron star crit-

ical gravitational collapse threshold

In this section, we probe the structure of the critical solution in the framework of phase

spaces. We note that Gaussian initial data sets possess additional degrees of freedom

in the matter and in the spacetime as compared to the neutron star initial data.

Using the additional degree of freedom in the matter configuration, we vary the boost

velocity of the Gaussian packets together with the Gaussian heights and widths while

maintaining the rest mass of the system at Mb = 1.6389. In Fig. 6.6, we plot boost

velocity with respect to Gaussian height. In this phase space, we use the maximal

slicing for the Gaussian packet initial data. However, we observe negligible deviation

of the evolutions of these initial data sets with those of the Gaussian packet initial
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data sets in the previous section that were set with geodesic slicing. A main feature of

the phase space depicted in Fig. 6.6 is that there is a turning point at approximately

(ρc, v) = (0.0009, 0.12). This is an indication that for a certain compactness, the

Gaussian packet system crosses two phase thresholds as the boost velocity is increased,

ie. from a neutron star-like phase to a black hole phase and back to a neutron star-like

phase. The cross from the neutron star-like phase to the black hole phase is expected

as the boost velocity increases entails the increase of gravitational energy. However,

we note that the cross from the black hole phase back to the neutron star-like phase

when the boost velocity is increased further, is a surprising physical behavior.

Given the limitation imposed by the grid size, we are unable to extend the curve

further to the left of the phase space. An initial data configuration to the left of the

critical surface collapses to a black hole and one to the right results in a neutron star-

like object. The extent of this critical surface is indicative of the size of the attraction

basin of the neutron star critical set with rest mass 1.6389. Beyond the right edge

of the critical surface at this rest mass, no critical collapse behavior is observed, ie.

configurations with Gaussian packets with compactness ρc & 0.0009 are not attracted

to the critical surface at all. To further explore the extent of the attraction basin, we

construct another phase space using the boost velocity and the separation distance

between the Gaussian packets. Fig. 6.9 shows two critical surfaces of which the left is

where the system at a fixed separation distance passes the threshold from the neutron

star-like phase into the black hole phase and passes back into the neutron star-like
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phase through the right critical surface. Both the critical surfaces end at d/2 ∼ 14

at the top of the phase space. The bottom extent of the right critical surface is

limited when the separation distance between the two Gaussian packets decreases

to the point that the packets merge to become one single packet. As the total rest

mass of this single packet, ie. 1.6389, is more than the maximum rest mass of an

equilibrium neutron star configuration, ie. 1.6087 for configurations with Γ = 2.0,

the system collapses into a black hole even when there is no implosion velocity. We

thus set the rest mass of the system to be 1.6, which is below the maximum rest mass.

As the maximum point of the rest mass-central density relation for equilibrium star

configurations (Fig. 4.1) is not attracted to the critical set, we study the transition of

the neutron star critical set attraction basin by increasing the central density of the

Gaussian packets so that it approaches the maximum point, ie. ρc ∼ 4.0× 10−3. We

find that the oscillations of the critical set decrease in amplitude. The average of the

oscillations in the central lapse function N shifts up whilst that of the central density

shifts down. At ρc ∼ 2.33× 10−3, the threshold between the black hole and neutron

star-like phases disappear. At central densities beyond this value, the system oscillates

at the normal mode frequencies of its corresponding equilibrium star configuration

not only when there is no implosion velocity but at all other values of the implosion

velocity. However, we observe that the transition point across ρc ∼ 2.33×10−3 itself is

characterized by a critical set between the black hole phase and the neutron star-like

phase, namely, when the central density is more than this threshold value, the single
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Gaussian packet settles into an oscillating state about a corresponding equilibrium

star configuration, while it collapses into a black hole when the central density is less.

We also construct a phase space of the boost velocity and the rest mass to compare

with the critical surface found with that for the neutron star initial data (Fig. 6.7).

We note that there is also a turning point behavior in both critical surfaces, similar

to that found in the boost velocity-Gaussian height phase space above. However,

another striking feature of Fig. 6.7 is that the Gaussian packet critical surface is

shifted to the bottom of the neutron star critical surface due to the fact that the

spacetime for the Gaussian packet initial data is only approximately asymptotically

flat, ie. the asymptotic value of the 3-metric is slightly less than 1. This difference

in the spacetime causes the rest mass summed up over each hypervolume element of

the Gaussian packet initial data, given by:

Mb =

∫
√
γρWd3x, (6.6)

to be less by a scale with respect to that for the neutron star initial data. However,

based on the similarity of their evolution trajectories, we emphasize that the critical

solution represented by the Gaussian packet initial data point with Mb = 1.5505 is

the same as that represented by the neutron star initial data point with Mb = 1.6379,

Gaussian Mb = 1.5600 the same as neutron star Mb = 1.6382, and so on. This

represents a scaling effect in the critical surface of the rest mass-boost velocity phase

space caused by the difference in spacetime as mentioned earlier in this paragraph.
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We also vary the spacetime by changing the height and width of the metric function

in the region occupied by the Gaussian packets. The black boxes in Fig. 6.7 represent

critical solutions found when the metric function is varied in such a manner.

To test universality, we set the spacetime of the Gaussian packet initial data

back to asymptotic flatness. The Gaussian critical surface in this phase space shifts

back up approaching that of the neutron star as the asymptotic behavior of the

Gaussian packet initial data spacetime approaches that of the neutron star initial

data (Fig. 6.8). We see a common rest mass range but not a common boost velocity

range. The discrepancy in the boost velocity ranges is due to the fact that the

Gaussian packet initial data possess different coordinate systems than the neutron

star initial data. We observe that a critical surface with a common boost velocity

range can also be obtained, indicating that the coordinate system of the initial data

can be freely adjusted using the additional degrees of freedom in the Gaussian packet

configuration. In fact, we are able to obtain a family of critical surfaces in the rest

mass-boost velocity phase space with a common rest mass range and within the boost

velocity range indicated in Fig. 6.6 for the rest mass of 1.6389, ie. between 0.06 and

0.21. As rest mass is conserved, the overlap in the rest mass range of both critical

surfaces confirms that neutron star-like systems evolve toward the same critical sets

as the neutron star system.

Using the ADM mass in replacement of the boost velocity, we find similar critical

surfaces with turning points (Fig. 6.10 and Fig. 6.11). The ADM mass is calculated
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in our numerical simulations using a volume integral as follows:

MADM =

∫
Ψ5[ρe +

1

16π
(ÃijÃ

ij − 2

3
K2 − R̃Ψ−4)]

√
γ̃d3x, (6.7)

using the conformal variables that have been defined in Section 3.2 and the matter-

energy density as mentioned in Section 4.1. In line with the definition that is also

given in Section 4.1, this mass is the total gravitational energy of a system that

is isolated at spatial infinity, and requires a quasi-isotropic gauge choice in which

γ̃ij,j ∼ O(r−3) as r → ∞ [85], a condition that is instantaneously realized by the

initial data before it gravitationally radiates, even though in non-equlibrium states.

In Fig. 6.10, we also compare the rest mass-ADM mass critical surface between

that of the Gaussian system and that of the neutron star system. The left and right

sides of the critical surface in the rest mass-ADM mass phase space represent two

different phase thresholds. In Section 6.5, we comment on the indices of these critical

solutions and their comparisons between the Gaussian system and the neutron star

system.

Results of this section thus indicate that the neutron star critical solution is uni-

versal with respect to spacetime and matter configuration and reinforces the claim

in the previous section that the neutron star critical solution is a semi-attractor. We

will further support this evidence by analyzing the properties of their critical indices

in Section 6.5.
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6.4 Spacetime and matter properties of the critical

solution

In this section, we explore the various spacetime and matter properties of the neu-

tron star critical solution. For this purpose, we first ensure that our critical collapse

simulations are converging with respect to the finite-differencing resolution up till

the duration of the critical solution (refer to Appendix A). Fig. 6.12 shows the first-

order convergence in the Hamiltonian constraint violation of our simulations using

the GRAstro-2D code at t = 243M�, which is well into the fourth oscillation of the

matter density and 4-scalar curvature of the critical solution at the center of colli-

sion. The anomaly at z = 0 is an expected effect caused by the truncation in the
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Figure 6.13: Right legend shows contour densities at which measures are performed. Polar

and equatorial proper radii shown on the right are measured at the 5.0×10−4

density contour. The polar direction is taken to be the x-axis on the xz-plane

of the grid and the equatorial direction is taken to be the z-axis on the same

plane. The equatorial direction is thus along the direction of collision of the

neutron stars.
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finite-differencing at the center of symmetry which has been shifted (to z = 0.03 for

dx = 0.06, z = 0.06 for dx = 0.12, and so on) by a staggered grid. We then measure

the baryonic mass enclosed within different density contours throughout the merged

object, the proper polar circumferences of these density contours, and their equatorial

and proper radii, and observe their evolution throughout the critical set oscillation

phase. The measure of the baryonic mass enclosed between different density contours

throughout the merged object has the advantage of being a fully-geometric measure.

In Fig. 6.13, we observe that this measure exhibits oscillations that are correlated be-

tween different regions of the merged object, whereas the corresponding proper polar

circumferences do not exhibit such well-defined oscillations throughout the critical

set dynamics, ie. on the time scale of t ∼ 40. The well-defined oscillations in the

baryonic masses summed up between the density contours thus indicate the existence

of matter fluxes or a slushing back and forth of the matter through the different den-

sity contours inside the object and are not due to any correlated changes in contour

circumferences. The proper radii however exhibit prolonged oscillations only within

the region bounded by this specific density contour. Fig. 6.14 shows the oscillations

of these radii outside this region exhibiting damping into a stationary state. These

oscillations are correlated between the polar and equatorial directions ie. the polar

proper radius is in phase with the oscillation of the central density while the equatorial

radius is out of phase. However, we note that the proper radii oscillations presented

here have not eliminated the effect of the lapse at the outer limit of the proper radii
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integration. A good method to isolate this effect is to set a diagnostic spacetime

with the normal coordinate choice and where the 11-component of the 3-metric is

set to 1. With such a spacetime, the hypersurface will always be perpendicular to

the timelike normal unit vector n and the proper radius oscillation will reflect the

real oscillation of the density contour of the neutron star [39]. In order to gauge the

stationarity of the merged object, we also measure the power of gravitational radi-

ation emission throughout the dynamical process leading to and that of the critical

set itself. Fig. 6.15 shows the power that is calculated using the quadrupole formula

([72],[55]), namely:

dE

dt
=

1

5
Q

(3)
ij Q

(3)
ij , (6.8)

where Qij =
∫
ρ(xixj − 1

3
δijr2)d3x. From this figure we see that the energy radiated

gradually decreases as the system approaches the critical set at t ∼ 110, which is the

approximate time of merge of the two neutron stars. The power remains at values

very close to zero until t ∼ 165 when it jumps up to positive values that increase

with time. We note that these sharp jumps may be due to noise created by finite-

differencing the time derivatives of Qij [55]. The average of the power throughout the

critical set dynamics remains very close to zero. This suggests that the oscillations

of the critical set may not damp out with time thus pointing to the possibility that

the critical set is a limit cycle rather than a limit point.
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6.5 Properties of the critical index

As mentioned in Section 6.3, this section will contain further elaboration of the prop-

erties of the critical indices of the different Gaussian packet initial data configurations

as compared to that of the neutron star.

Analogous to Eq. (5.6), the critical index is calculated using two departure thresh-

olds 5%, 20%, where the departure threshold is taken as the time when the percent

difference between the evolution variable of a solution leaving the critical set and that

of the critical solution reaches a certain value [47]. In this case, we take the evolution

of the lapse at the center of collision. We denote the departure thresholds as T0.05, T0.2

and so on according to the percent difference used. For each critical point, we find

that Tp is linearly proportionate to ln |p− p ∗ |, where p is any initial data parameter
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that we choose to vary while fixing all others. In the case of Fig. 6.16, the initial

data parameter varied is the boost velocity of the Gaussian packets. Straight best fit

lines are therefore obtained and the standard deviations of their slopes are plotted

as errorbars in this figure. We note that this errorbar only represents one type of

error, ie. the error affecting how the evolution trajectories follow the power-law be-

havior characteristic of critical and near-critical solutions. Other errors that affect the

numerical results include the error caused by the finite differencing scheme and the

error affecting how the evolution trajectories leave the critical set in an exponential

manner.

We check the convergence of the critical index with respect to the finite-differencing

resolution dx. Fig. 6.17 shows the critical indices for different departure thresholds at

three different resolutions for a sample Gaussian system. At the departure threshold

of 0.2, Fig. 6.18 shows an approximate first order convergence with respect to the

resolution. The grid boundary used for the simulations with resolution dx = 0.16,

namely, 41.0, is slightly larger than that with dx = 0.12 and dx = 0.24, namely

38.5, due to the restrictions on the number of grid points imposed by the multigrid

initial value problem solver, which accounts for the slightly larger than first order

convergence demonstrated by the dx = 0.16 point in this figure.

Fig. 6.19 shows the rest mass dependence of the Gaussian packet critical index

compared with that of the neutron star, where we observe that the critical index for

both the Gaussian packet and neutron star initial data increases with rest mass of
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the system. This indicates that the time scale of departure of a near-critical solution

from the critical set decreases as the rest mass of the system increases, pointing to

the intuition that a more massive system possesses stronger gravitational dynamics

bringing it away from the critical set in a quicker manner. The overlapping of the

critical indices of both the Gaussian and the neutron star systems shows that the

neutron star critical set is universal with respect to different initial data, where for

the same rest mass and within a small interval of ADM masses, the Gaussian initial

data produces critical indices that are within the errorbars of those produced by the

neutron star initial data. The universality of the neutron star critical index with

respect to these different initial data configurations is a crucial point in establishing

the quality of the neutron star critical set as a semi-attractor.

To answer the question of the parameter dependence of the critical index, we

consider the critical solutions represented by each point in the ADM mass-Gaussian

height phase space and study how the critical indices change along this critical surface.

Fig. 6.20 shows the variation of critical index along this critical surface with respect

to the ADM mass fixing the rest mass at 1.6389. The solid line is a fit of the average

of the indices obtained at departure thresholds 0.05 and 0.2. We note that the first

order convergence of these critical indices with respect to resolution holds for different

departure threshold regimes for configurations with different ADM masses. This is

due to the fact that for configurations with higher compactness, and hence lower

ADM mass, the grid boundary is further away from the physical system than for
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configurations with lower compactness, or higher ADM mass. Convergence is better

achieved when the grid boundary is further away from the physical system as there

is less interference in the spacetime due to gravitational radiation.

In Fig. 6.10, we take the rest mass of 1.65 and extract the critical index for the

critical points on both the left and right sides of the critical surface. In accordance

with Fig. 6.20, we also find a discrepancy between these critical indices that goes

beyond their errorbars, indicating that the left and the right sides of the critical

surface represent two different phase thresholds. On the left part of the critical surface

with this rest mass, the critical index obtained is 10.9 ± 0.1 at departure threshold

0.05 and 10.84± 0.08 at departure threshold 0.2, whilst on the right part, the critical

index is found to be 10.26 ± 0.06 at departure threshold 0.05 and 10.24 ± 0.07 at

departure threshold 0.2.

As mentioned in Section 6.3, the ADM mass of the initial data is evaluated using

Eq. (6.7). The constancy of the ADM mass guarantees that Einstein’s field equa-

tions for the system are satisfied for all time [33]. Therefore, it is by definition a

conserved quantity. However, when evaluated at a finite boundary for a system that

gravitationally radiates, it is seen to decrease with time as gravitational energy is

carried out of the finite computational grid by gravitational radiation. The mass that

is evaluated using Eq. (6.7) in such a scenario does not have strict physical mean-

ing although it can be used in an approximate conservation equation primarily to

monitor the accuracy of 3 + 1 numerical simulations [73]. The fact that the quantity
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lacks a strict physical meaning is because the hypersurface is not spatially isolated

at a time after gravitational radiation. This is evident in that no matter how far

one pushes the computational boundary spatially outward, one would encounter the

gravitational radiation that is propagating to null infinity. In other words, the ADM

mass measurement does not by construction separate the gravitational energy of the

physical system and that of gravitational radiation. Even for Eq. (6.7) to hold approx-

imately in the computational grid, the boundary of the computational grid has to be

asymptotically flat and thus free from the presence of any gravitational radiation, the

ambient spacetime has to be fully stationary and fulfil the right gauge conditions as

mentioned earlier. Therefore, in order to employ this equation even in an approximate

sense to evaluate the gravitational energy of a physical system after gravitational ra-

diation leaves it into the ambient spacetime, one has to do the measurement at a very

late time of the critical set dynamics when one is sure that gravitational radiation

is no longer present inside the computational grid and is no longer interacting with

the computational grid boundary in any way. This means that one has to assume

that the gravitational radiation becomes weaker in time, which only happens due to

numerical dissipation or dissipation into the artificial atmosphere inserted into the

computational grid, or if the system is physically surrounded by ambient matter, in

which case the radiation loses energy to the ambient matter. In such case, one has

to in addition ensure that the ambient spacetime has settled down fully into the con-

ditions mentioned earlier. However, none of the initial data in numerical simulations
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can be set directly on the critical threshold in principle, implying that they will ei-

ther evolve into a neutron star-like object or collapse into a black hole at one point

in time. Also, due to the accumulation of numerical errors, in practice, we are not

able to accurately simulate the critical set dynamics until very late time. Intrinsically

as well, even though by definition stationary and an initial data that dwells directly

on the threshold will inevitably evolve into it, the critical set itself is not a TOV

equilibrium configuration. A measurement that is based on a strict physical meaning

however is the Bondi mass measurement which evaluates the gravitational mass of the

system isolated at null infinity. This measurement puts any gravitational radiation

to the past of the null surface of the evolving physical system as the radiation itself

propagates to null infinity.

Considering the question of the parameter dependence of the critical index on the

above-mentioned conserved geometric quantities, we are basically asking a question

of how many classes of neutron star semi-attractors exist according to the rest mass

and ADM mass. A natural approach to this question that we have employed is to

vary the rest mass and when the rest mass is fixed, to vary the ADM mass of the

initial data or the intrinsic gravitational energy of the physical system minus the

energy that will be radiated away during its evolution to the critical set. We recall

that the neutron star-like initial data that we have constructed possess additional

degrees of freedom in comparison to the neutron star initial data, that enables us to

fix the rest mass and vary their intrinsic gravitational energies. This intrinsic gravi-
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tational energy consists of the binding energy inherent in the Gaussian packet system

and in principle will not be radiated away unless there is a physical mechanism that

diffuses this energy, eg. neutrino emissions, which is absent in our numerical simu-

lations. Therefore, when we vary the compactness of the Gaussian packets, we are

intrinsically providing different gravitational energies to these systems which will be

conserved in time. This is evidenced in the fact that when we fix the boost velocity

of the initial data sets and vary only the height of the Gaussian matter distribution,

and correspondingly the compactness of the matter packets, by ∆ρc ∼ 2 × 10−4,

we see a change in the ADM mass by 0.01. This change is free from the factor of

the mechanical energy inherent in the boost velocity that can be radiated away by

the gravitational radiation - a physical system does indeed radiate more when it is

moving faster. If they are radiated away by some physical mechanism which we can

choose to impose on our numerical simulations, and if we assume that the gravita-

tional energies of the remnants which in our case is the semi-attractors, are all the

same, our entire investigation of whether there exists a 2-parameter dependence of

the critical index becomes a meaningless endeavor, as the motivation of the question

depends on the premise that we are indeed able to manipulate the additional degrees

of freedom in our initial data sets to vary the compactness and correspondingly the

intrinsic gravitational energies of the physical system. In other words, the premise

of our question in the first place is that the semi-attractors themselves can have dif-

fering gravitational energies for the same rest mass. Also, the critical index itself
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is a geometric quantity and is evaluated during the semi-attractor dynamics. The

observation that they indeed differ even when we adopt the above assumption that

the gravitational energies of the semi-attractors are all the same, would result in the

observation that semi-attractors with the same gravitational energies have differing

critical indices, a confounding observation that not only is unlikely, but throws this

entire question of 2-parameter dependence meaningless. Considering realistic astro-

physical systems where dissipative physical mechanisms which depletes the binding

energies of the packets of matter do indeed occur, it is still very unlikely that a fine-

tuned balance exists for the gravitational dynamics, where the gravitational energies

are all depleted by nonlinear physical mechanisms in just such a way that they all end

up the same for all the remnants. We cannot rule out such a scenario, which would be

an interesting physical property for neutron star semi-attractors, but such a scenario

would still violate the premise of the 2-parameter dependence question as mentioned

above. In addition, we have to recall that the neutron star semi-attractor is not a

TOV equilibrium configuration, which does not allow us to draw strict analogies with

stable equilibrium TOV configurations which has a unique ADM mass for each of its

rest masses.

Fig. 6.21 shows the dependence of the critical indices with respect to the averages

of the gravitational masses, 〈MG〉, measured by Eq. (6.7) on the finite computational

grid over the period of two oscillations in the lapse function at the center of collision

of each configuration along the critical surface in Fig. 6.11. Fig. 6.22 shows the evolu-
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tion of this gravitational mass calculated using Eq. (6.7) on the finite computational

grid, which we denote as just MG, for a sample Gaussian packet system that evolves

toward the critical set and dwells there until t ∼ 240 for two differing resolutions and

differing grid sizes. The observation that the time shift in the curves for the simula-

tion with the boundary at x = z = 41.0 from the one at x = z = 38.5, namely t ∼ 3

measured at the first dips of the curves, which is comparable to the spatial shift using

c = 1, and that the oscillations do not converge away with resolution, shows that the

oscillations in MG is caused by the interaction of gravitational radiation with the com-

putational grid boundary. As mentioned above, this renders the measurement itself

not only numerically inaccurate but without even an approximate physical meaning.

Nonetheless, we still see a dependence of the critical index with respect to 〈MG〉. As

mentioned above, the fact that the critical indices do vary when we vary the com-

pactness of the Gaussian packet systems, will not change whether we plot them with

respect to either the ADM masses or with 〈MG〉, unless all the 〈MG〉 values - assuming

that they are even accurate and possess an approximate physical meaning - end up

being the same up to numerical error, which is both physically unlikely and a viola-

tion of the premise of the question that we sought to answer. Therefore, even though

we do not rule out the possibility that the premise of our question is unfounded, ie.

that indeed, neutron star semi-attractors cannot in principle, even though they are

not in a TOV equilibrium state, intrinsically possess differing gravitational masses

for the same rest mass, we conjecture from our observations (Fig. 6.20 and Fig. 6.21)
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that there is still a high likelihood that there exist classes of semi-attractors that can

be labeled by both the rest mass and the gravitational mass of the neutron star-like

system, due to the fact it would be a very rare although interesting occurence that

there exists a fine-tuned balance in the gravitational dynamics such that gravitational

energies of physical systems with intrinsically different binding energies are dissipated

by nonlinear physical mechanisms in the matter to end up at the same value. In addi-

tion, that there exist such classes of semi-attractors is also in line with our observation

of two distinct phase thresholds for the critical surface in Fig. 6.10 at the same rest

mass, where the distinct phase thresholds represent two differing semi-attractors with

the same rest mass but with differing ADM masses.

Fig. 6.23 shows the convergence of the critical indices for two configurations on
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the ADM mass-Gaussian height phase space, ie. the configurations with MADM =

1.553 and MADM = 1.5868 respectively, whereas Fig. 6.24 shows the convergence

of the rest mass averaged over the period of the first two oscillations of the lapse

function at the center of collision, which we will denote as 〈MB〉, and Fig. 6.25 the

convergence of 〈MG〉. We see that 〈MB〉 and 〈MG〉 converge on a higher order for the

configuration with higher compactness and vice versa, ie. for the configuration with

higher compactness, the 〈MB〉 and 〈MG〉 converge in a fourth order manner and fifth

order manner respectively, but for the less compact configuration, they both converge

in a second order manner. However, the 〈MB〉 for both configurations converge to

1.64 up to the numerical error caused by the finite differencing, whilst their 〈MG〉

values converge to different values on the order of 0.01 respectively, ie. 1.38 for the

more compact configuration and 1.41 for the less compact configuration, outside the

error bars from the finite differencing. The convergence of the 〈MB〉 to the same

value is expected due to the fact that the rest mass of the initial data have been set

to the same up to the eleventh decimal, and the fact that rest mass is a conserved

quantity even when evaluated on a finite computational grid. The variations in the

twelfth and above decimals of the rest masses of the different initial data or in their

〈MB〉 values in the limit of infinite resolution are completely random. As for the

critical indices, similar to 〈MG〉, their values for both configurations are observed

to converge to different values, where the more compact configuration exhibits first

order convergence at a faster rate than the one for the less compact configuration,
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which is to be expected due to the different distances of the computational grid

boundaries from the physical systems as mentioned previously. These observations

imply that in the limit of infinite resolution, where a large portion of numerical

errors is eliminated, even though putting aside the ambiguous physical meaning of

〈MG〉, the critical index depends on both the compactness, with its corresponding

binding energy present in the physical system, as well as the rest mass of the system,

which is in line with the conjecture we make that is mentioned earlier in this section.

Since we have seen that convergence of the critical index is achieved at an even

faster rate when the computational grid boundary is located further away from the

physical system, when the boundary of the computational grid is pushed further out

for each configuration, we expect to obtain similar observations that point to the

above-mentioned conjecture.
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Conclusion

7.1 Conclusions

In this chapter, we review the results obtained in this dissertation in accordance with

the objectives we had in mind. In order to understand the time scales involved in non-

rotating neutron star critical collapses, we first study the time scales of non-radiative

pulsation modes of single static neutron stars. We find that these time scales are an

order of magnitude higher than the time scales involved in the non-rotating neutron

star critical collapses observed in simulations. We thus confirm that the pulsations

exhibited by the quasi-stationary object during the critical collapse dynamics are not

that of non-radiative pulsation modes of single static neutron stars. This points to

the fact that the quasi-stationary object is not in a state of equilibrium.

Via curve fitting and Fourier transform, we determine the time scale of attraction
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of the neutron star system toward the neutron star critical set. This time scale is an

order of magnitude smaller than that reported of neutron star systems undergoing

slow cooling. We thus conjecture that neutron star systems undergoing slow cooling

via formation processes and radiation transport or systems undergoing slow accretion

and a gradual loss of angular momentum have a high possibility of undergoing critical

collapse.

By constructing new neutron star-like initial data not restricted by the TOV

equations and studying the behavior of their evolutions, we confirm that the neutron

star critical set is a semi-attractor. We employ the freedom in the gauge choice and

the matter configuration to construct different such neutron star-like initial data and

by measuring their spacetime and matter ’flows’, we observe that these initial data

evolve towards the neutron star critical set. The critical indices extracted from these

evolutions are the same up to numerical error as that obtained from neutron star

simulations with the same rest mass and ADM mass. We thus reinforce the claim

that the neutron star critical set is universal with respect to initial data, going beyond

the perturbative regime of the critical set.

We further study the properties of the neutron star critical set dynamics itself. We

observe that the oscillations of matter contained within different density thresholds

of the object undergoing critical collapse exhibit phase differences across a certain

density threshold, indicating the existence of matter fluxes across a certain density

threshold within the object. We also find that there exists an outer envelope within
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the object that damps out at a rate higher than the central region. In addition,

the proper circumferences of different density thresholds within object are nearly

constant. To further shed light on whether the semi-attractor is a limit point or a

limit cycle, we measure the power of the gravitational radiation emission throughout

the critical collapse dynamics. It is observed that the average of this power during

the critical collapse process is a positive value very close to zero, suggesting that

the oscillations of the critical collapse object may not damp out with time and thus

that the semi-attractor is a limit cycle. Combined with the high possibility of real-

istic neutron star systems undergoing critical collapse based on the time scale study

mentioned above, this characteristic of the neutron star critical solution, which is

characterized mainly by the existence of a universal unstable mode and its specific

gravitational radiation signature, may cause a queiscent effect on the gravitational

radiation spectrum of realistic neutron star systems.

Using the additional degrees of freedom available to us in the new neutron star-like

initial data we construct, we also investigate the properties of the characteristic time

scale of the neutron star critical set, which is the time scale of its unstable mode,

describing the time scale of departure of a near-critical evolution from the critical

set. We find that this critical index depends almost linearly on the rest mass of the

system. We also observe that there is a likelihood of a 2-parameter dependence of

the critical index, where the parameters can be taken as the rest mass and the ADM

mass of the system, both of which are conserved quantities. This indicates that there
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exist classes of neutron star semi-attractors that can be labeled by both the rest

mass and the gravitational mass of the system. This finding extends the observation

that for a given rest mass, there exist two phase thresholds through one of which the

system passes from the neutron star to the black hole phase at a lower ADM mass

and through the other of which the system passes from the black hole phase back

to the neutron phase at a higher ADM mass. We note that the observation of the

existence of two phase thresholds for a given rest mass is similar to that obtained

from the neutron star initial data.

We then analyse the phase space properties of the neutron star critical set, by

constructing phase spaces using the parameters of the rest mass, ADM mass and

central density of the new system. For both the rest mass-ADM mass and ADM mass-

central density phase spaces, we find turning point features with the aforementioned

two-threshold feature. We note that the new system provides the additional degrees

of freedom to construct the ADM mass-central density phase space. The extent of the

critical surfaces in these phase spaces gives an indication of the size of the attraction

basin of the neutron star critical set. For a certain rest mass, we determined the

range of central densities and ADM masses of configurations that exhibit critical

gravitational collapses, which helps us draw an approximation of the range of realistic

neutron star or neutron star-like configurations that can exhibit critical phenomena.

We further explore the boundaries of the attraction basin of the neutron star

critical set by constructing a phase space using the separation distance and the boost
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velocity (which also corresponds to the ADM mass) of the new system. In decreasing

the separation distance, we move toward an initial configuration that consists of a

single neutron star-like object with a varying implosion velocity. Fixing the rest

mass at a slightly lower value than the maximum rest mass allowable for a single

equilibrium TOV configuration with Γ = 2, we find that there exists a boundary

whereby the threshold disappears when we increase the central density towards the

maximum rest mass point.

7.2 Future work

In order to further clarify the implications of the results of this dissertation on realistic

astrophysical observations, we will extend the analysis on neutron star systems that

possess angular momentum. To do this we intend to construct a similar neutron star-

like initial data but with the additional incorporation of angular momentum, in both

the irrotational and corotational orientations in accordance with the spin orientations

that have so far been observed in realistic neutron star systems. This will also help

us to see if an object that is simultaneously rotating and oscillating can undergo a

dynamical process whereby the critical set is characterized by a limit cycle, which

poses an interesting scenario in the theory of general relativity itself.
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A The finite-differencing scheme

The finite-differencing scheme is a numerical scheme where a grid is introduced as

the domain of functions. Values of functions are evaluated on points on the grid

thereby discretizing the functions according to the resolution of the grid. Using

Taylor’s expansion, an unknown function u(x, y) on a 2-dimensional grid is evaluated

as follows:

u(x0 + ∆x, y0) = u(x0, y0) + ∆x
∂u

∂x
(x, y0) +

(∆x)2

2!

∂2u

∂x2
(x, y0) +

(∆x)3

3!

∂3u

∂x3
(x, y0) +

(∆x)4

4!

∂4u

∂x4
(x, y0) + ... (A-1)

where:

u(x0 + ∆x, y0)− u(x0 −∆x, y0) = 2∆x
∂u

∂x
+

(∆x)3

3

∂3u

∂x3
+O[(∆x)5]. (A-2)

The partial derivative of u(x, y) with respect to x can thus be evaluated using a

second-order central operator as:

∂u

∂x
=
ui+1,j − ui−1,j

2∆x
+O[(∆x)2], (A-3)
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where i, j are the indices of the grid points in the x, y directions respectively. In turn,

the next higher derivative can be written as:

∂2u

∂x2
=
ui+1 − 2ui,j + ui−1,j

(∆x)2
+O[(∆x)2]. (A-4)

Eq.s (A-3) and (A-4) describe a second-order finite-differencing scheme, as the dom-

inant term on the right is second-order with respect to the grid resolution ∆x. In

addition, the order of the dominant term is preserved as we go to higher orders of

the derivative. The scheme is thus said to be nth-order following the order of the

dominant term of partial derivatives with respect to the grid resolution. Convergence

of finite-differencing schemes is reached when ∆x → 0. At this limit, functions be-

come in principle infinitely accurate. Without prior knowledge of a function, we are

still able to check how accurately it is evaluated by checking its convergence with

respect to the grid resolution. In numerical general relativistic hydrodynamics codes

implementing finite-difference schemes based on the 3+1 formalism, convergence is

checked by performing a simulation using different grid resolutions and observing how

the violations of the Hamiltonian Eq. (2.37) and momentum constraint Eq. (2.38)

scale with respect to the grid resolution.

B Push-forward of vectors and pull-back of forms

The push-forward of a vector along another vector field congruence is defined as

an operator that acts on the vector such that it produces a new vector whose Lie
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derivative along the vector field congruence is zero. Consider a vector B being pushed

forward along the vector field congruence A. Let t be the affine parameter along A.

The Lie derivative of B along A is as follows:

LAB = [A,B] = lim
t→0

B− ψ̃tB

t
, (B-5)

where ψ̃tB is the push-forward of B along A. The push-forward operator thus trans-

ports the vector B along the vector congruence A such that the new vector ψ̃tB forms

a coordinate basis with the form dual to A. Given this definition, we see that the

push-forward of a vector acting on a form is the same as the vector acting on the

pull-back of the form. The push-forward of a vector can also be seen as an active

transformation on the vector whereas the pull-back of a form can be seen as a pas-

sive transformation on the form while actively transforming the coordinate system in

which the form is defined.

C Geometric units

The gravitational constant G has the units of [L3T−2M−1], where L denotes the

dimension of length, T denotes the dimension of time and M denotes the dimension

of mass. Using the mass of the sun in metric units as a standard and the value of the

constant as well as the speed of light in the same metric units, the unit for G can be
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set dimensionless as follows:

L3T−2M−1
� = 6.67× 10−11

(L/T )2L = 1.33× 1020

L = 1.33× 1020/(3× 108)2

L = 1.476× 103m, (C-6)

which denotes 1M� of length as equivalent to 1.476 × 103m. From this relation, we

can similarly write all other variables in terms of M�, such as:

1M�oftime ≡ 4.92× 10−6s (C-7)

1M�ofmass ≡ 1.989× 1030kg (C-8)

1M�ofenergy ≡ 1.786× 1067J. (C-9)
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