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 Differentiation and cell-specific functions are coupled with metabolic alterations to meet 

the needs of the cell. In this thesis, I have investigated the alterations of cellular metabolism in 

osteoblast-lineage cells in response to two different bone anabolic signals, WNT and PTH. I have 

further elucidated the mechanism underlying the metabolic changes, and have explored the 

functional importance of such changes for bone anabolism. 

Osteoblasts, the principal bone-forming cells, are differentiated from mesenchymal 

progenitor cells through sequential stages. These stages are identifiable by molecular markers, 

cell morphology and location. Transcription factors and developmental signals important for 

osteoblast differentiation have been studied in detail. One such developmental signal is the WNT 

family of proteins. WNTs are a large family of glycoproteins that activate β-catenin-dependent or 

-independent intracellular pathways, both of which are involved in bone formation. However, the 

mechanism through which WNT signaling stimulates osteoblast differentiation is not well 

understood. 

Early studies demonstrated that bone cells consume a large amount of glucose, producing 

lactate as the major end product even in aerobic conditions, a phenomenon known as aerobic 
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glycolysis. However, the significance of increased aerobic glycolysis for bone formation was not 

known. Based on the link between metabolic abnormalities and the genetic mutations in WNT 

pathway components, I hypothesized that WNT regulates cellular metabolism and that such 

regulation contributes to osteoblast differentiation. I tested this hypothesis in vitro by using ST2 

cells, and showed that WNT signaling increased glucose utilization, stimulated aerobic 

glycolysis via induction of glycolytic enzymes, and suppressed glucose entry to TCA cycle. This 

process was mostly regulated by a signaling cascade dependent on Lrp5-Rac1-mTORC2 and 

independent of β-catenin. Increased glycolysis was important for in vitro osteoblast 

differentiation and correlated with increased bone formation in WNT hyperactivation mouse 

models. I tested the functional importance of enhanced aerobic glycolysis in vivo by two 

different models. First, I showed that pharmacological enhancement of pyruvate entering the 

TCA cycle attenuated the high-bone mass phenotype caused by hyperactive WNT signaling in 

the mouse. Second, I showed that genetic deletion of LDHA, the enzyme catalyzing the last step 

of glycolysis, from osteoblast-lineage cells suppressed normal postnatal bone accrual due to 

reduced osteoblast number and function. Thus, WNT signaling reprograms glucose metabolism, 

and WNT-induced metabolic reprogramming contributes to osteoblast differentiation both in 

vitro and in vivo. Moreover, LDHA is required for optimal bone formation in postnatal mice. 

Parathyroid hormone (PTH) has been an effective bone anabolic drug in the clinic by 

targeting osteoblasts and stimulating bone formation. However, it is not well understood how 

PTH signaling stimulates bone formation. In early studies, PTH was shown to alter cellular 

metabolism towards lactate production. In light of the role of metabolic regulation in WNT-

induced bone formation, I examined the potential role of metabolic alterations in mediating the 

anabolic effect of PTH. In MC3T3-E1 cells and neonatal calvarial cells, I showed that PTH 
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enhanced glucose uptake and aerobic glycolysis, activated pentose phosphate pathway but 

reduced contribution of glucose to TCA cycle. PTH-induced glucose utilization required IGF-

PI3K-SGK1 signaling. Importantly, pharmacological enhancement of pyruvate entering the TCA 

cycle attenuated the bone anabolic effect by PTH. Thus, changes in cellular glucose metabolism 

may be an important mechanism mediating the anabolic effect of PTH.   

This thesis confirms the earlier findings that lactate-producing glycolysis is an important 

feature of osteoblasts, and further characterizes the alterations of cellular metabolism during 

osteoblast differentiation in response to both WNT and PTH pathways. More importantly, this 

thesis shows for the first time that metabolic alterations are functionally important for the 

differentiation process. 
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1. General Functions of Bone 

Bones constitute the skeleton, which is the framework of the body that protects and 

supports the internal organs. The mammalian skeleton houses the bone marrow, which functions 

to produce blood cells. Bones are also the reservoir for important minerals such as calcium and 

phosphate, and thus affect the homeostasis of these minerals in the circulation.  

Bone formation, known as ossification, is a process that starts early in embryos and 

continues throughout life. There are two different processes for bone formation in mammals, 

which are endochondral and intramembranous ossification. Endochondral ossification, which 

occurs in long bones like the humerus and femur, starts with condensation of committed 

mesenchymal cells that differentiate into chondrocytes producing cartilage extracellular matrix 

(ECM). Chondrocytes proliferate to drive the cartilage growth and undergo several steps of 

maturation. Finally, these cells exit the cell cycle and undergo hypertrophy (enlargement of cell) 

and form pre-hypertrophic and hypertrophic chondrocytes. Hypertrophic chondrocytes secrete 

type X collagen, and these cells mostly undergo apoptosis. During endochondral bone formation, 

mesenchymal cells on the outer edge of cartilage matrix form perichondrium. These 

perichondrial cells later form the bone collar. Blood vessels together with the cells forming 

perichondrium and hematopoietic origin cells invade the cartilage. Mesenchymal cells start to 

differentiate into osteoblast establishing the primary ossification center, while cartilage 

membrane is replaced by bone matrix and marrow cavity (Long and Ornitz, 2013). Osteoblasts 

deposit extracellular matrix, rich in type I collagen, that later gets mineralized with accumulation 

of calcium phosphate. The 2nd type of ossification is known as intramembranous ossification and 

occurs in flat bones like the skull and parts of scapula. In intramembranous ossification, there is 

no intermediate step of cartilage formation before ossification. Mesenchymal progenitors directly 
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condense into osteoblasts. The origin of cells is different in two ossifications. Mesenchymal cells 

in endochondral bone are mostly derived from lateral and paraxial mesoderm, whereas, 

mesenchymal cells in intramembranous ossifications are mostly derived from neural crest cells 

(Olsen et al., 2000). 

Ossified bone consists of three major cells types; osteoblasts, osteoclasts and osteocytes.  

Osteoblasts are the bone forming cells derived from the mesenchyme whose function is to 

synthesize the ECM and also produce enzymes that function to mineralize the ECM. Osteocytes 

represent approximately 95% of the cells in mature bone. Osteocytes work as the 

mechanotransducer of bone to regulate osteoblastic and osteoclastic activities (Bonewald, 2011; 

Feng et al., 2006; Roberts et al., 2013). In contrast to osteoblasts, the main function of the 

osteoclasts, multinuclear cells of hematopoietic origin, is bone resorption. Osteoblasts control 

osteoclasts through regulation of the pro-osteoclastogenic receptor activator of nuclear factor 

kappa-B ligand (RANKL) and the anti-osteoclastogenic osteoprotegerin. Osteoblasts and 

osteoclasts work in balance to achieve bone homeostasis. Bone undergoes continuous 

remodeling during development and adult life. To maintain bone mass over time, bone formation 

and bone resorption should occur at the same rate.  

An unbalanced increase in bone resorption relative to formation results in bone loss and 

ultimately osteoporosis. Osteoporosis is a disease characterized by reduced bone mass and 

increased risk of fractures. The prevalence increases by age and the presence of other metabolic 

diseases such as diabetes, although the reason is not well understood. Current osteoporosis 

treatment relies primarily on antiresorptive medicine that prevents bone loss via blocking 

osteoclast activity (Sambrook et al., 2012). Anabolic therapy, such as intermittent treatment of 

parathyroid hormone (PTH), is mostly used for patients at a higher risk of fracture with severe 
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osteoporosis. Teriparatide, a bioactive fragment of PTH, stimulates bone formation on the 

surface of cancellous and cortical bone, and improves the microarchitecture. However, prolonged 

usage of teriparatide has diminished effects (Hodsman et al., 2005). The anabolic function of 

teriparatide treatment is suggested to be bi-phasic. In the early phase, PTH stimulates bone 

modeling (bone formation in new space) whereas extended PTH administration stimulates bone 

remodeling with a positive balance (Dobnig et al., 2005; Hodsman and Steer, 1993; Lindsay et 

al., 2006). The exact mechanism of the anabolic action of PTH is not known, but requires IGF 

signaling (Wang et al., 2007). A greater understanding of the anabolic signals on osteoblast 

differentiation and homeostasis can provide new insights for alternative treatments and potential 

preventative measures for osteoporosis. 

 

1.1. Osteoblast Differentiation 

Osteoblasts form from mesenchymal progenitor cells through sequential stages of 

differentiation, referred as the osteoprogenitor, the preosteoblast and the mature osteoblast stage 

(Figure 1). These different-stages are defined by the in vivo morphology and localization as well 

as different gene expression. The osteoprogenitors have a more fibroblast-like morphology and 

are located within periosteal layers. During maturation, these cells obtain a more cuboidal 

morphology and are localized on the bone surface (Owen, 1963). At the molecular level, all 

progenitor cells express the transcription factor, SOX9. Osteoprogenitors start to express the 

runt-domain transcription factor 2 (Runx2) and preosteoblasts express Osterix (Osx), a zinc-

finger transcription factor, along with Runx2. Finally, mature osteoblasts express osteocalcin. 

After differentiation, mature osteoblasts have three different fates; embedding in bone matrix to 

form osteocytes, becoming bone lining cells or undergoing apoptosis (Figure 2). The regulation 
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Figure 1. Different stages of osteoblast differentiation.   

 

 

 of these mature osteoblast fates are not understood. The various regulatory factors (e.g, 

developmental signals and transcription factors) that regulate osteoblast differentiation from 

progenitors will be discussed below.   

 

Figure 2. Fates of mature osteoblasts. 

 

 

 

 

 

 

1.1.1. Transcription Factors 

The SOX (SRY-related HMG-box) transcription factors are key regulators of skeletal 

development. Mutations in Sox9 cause the human disease, campomelic dysplasia, in which 

endochondral bone development is disrupted. However, the role of Sox9 in osteoblast lineage 

cells is not clear due to its crucial role in chondrogenesis. There is no chondrocytes or osteoblasts 
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in Sox9 ablated limb bunds, but it is not clear if the later depends on the first (Akiyama et al., 

2002).  

Runx2 and Osx are the main transcription factors that regulate osteoblast differentiation.  

Osx or Runx2 deficient mice lack mature osteoblasts and hence calcified bones (Ducy et al., 

1997; Komori et al., 1997; Nakashima et al., 2002). Runx2 haploinsufficiency causes a skeletal 

dysplasia (Mundlos et al., 1997), but there is no known human disease associated with Osx 

mutations. Developmentally, Runx2 is expressed as early as E10.5 in osteochondro progenitors, 

which are the cells with the capacity to differentiate into osteoblasts or chondrocytes. 

Chondrocytes lose Runx2 expression during differentiation while osteoblasts maintain Runx2 

throughout differentiation. Osx is expressed at a later stage than Runx2 and functions 

downstream of Runx2 as Runx2 is expressed normally in Osx null mice, whereas, Osx is not 

expressed in the Runx2 null animals. Overall, both Runx2 and Osx are indispensable for 

osteoblast differentiation and are both used to define differentiation stages.   

ATF4 is a CREB family transcription factor that is active in mature osteoblasts. It is 

necessary for bone formation via regulating different processes. First, ATF4 directly regulates 

osteocalcin expression, which is a matrix protein specific for mature osteoblasts. Second, it 

regulates collagen 1 processing and secretion without affecting its expression. Third, ATF4 

affects osteoclasts via regulating RANKL expression. Lastly, it favors amino acid import  by 

regulating genes involved in amino acid import, metabolism and assimilation. Atf4 deficient 

mice have reduced trabecular bone and size due to defect in osteoblast function and size 

respectively (Dobreva et al., 2006; Natarajan et al., 2001; Sambrook et al., 2012; Yang et al., 

2004). Thus, ATF4 affects different aspects of osteoblast biology at a later stage compared to 

Runx2 and Osx.  
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Activator protein 1 (AP1) transcription factors are members of the Jun and Fos family of 

basic leucine zipper proteins. Although they are not osteoblast lineage specific, they play specific 

roles in osteoblast differentiation and function, as demonstrated by several loss- or gain-of-

function studies in mice. In mice, overexpression of either fos-related antigen 1 (Fra1) or a splice 

variant of FosB results in increased osteoblast differentiation and function (Jochum et al., 2000; 

Sabatakos et al., 2000). Conversely, mice lacking Fra1 or JunB in the mouse embryo develop 

osteopenia associated with reduced bone formation (Eferl et al., 2004; Kenner et al., 2004).  

The role of these transcription factors has been shown mostly by genetic studies, however 

how these transcription factors are regulated both transcriptionally and post-transcriptionally and 

how they affect different features of osteoblasts is not fully understood. 

 

1.1.2. Developmental Signals 

All the major developmental signaling pathways, such as Hedgehog (HH), Notch, WNT, 

BMP and FGF affect osteoblast differentiation at different stages. 

 

1.1.2.1. WNT Signaling 

WNTs are a large family of glycoproteins that activate both β-catenin dependent or 

independent intracellular pathways upon binding to their membrane receptor, Frizzled (FZD) and 

a co-receptor usually from the low density lipoprotein receptor-related protein (LRP) family. 

WNTs bind to the FZD family of seven-pass transmembrane receptors on the plasma membrane 

causing the receptors to activate the Dishevelled family proteins. Normally, β-catenin is 

complexed with adenomatous polyposis coli (APC) and Axin in the absence of WNT. This 

complex facilitates phosphorylation of β-catenin by glycogen synthase kinase 3β (GSK3β), 
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which subsequently leads to degradation of β-catenin via the β-TrCP mediated 

ubiquitin/proteasome pathway. In the absence of β-catenin, Groucho proteins suppress 

transcription of WNT target genes by binding to T cell factor (TCF) and lymphoid enhancer 

factor (LEF) proteins that occupy the promoters and enhancers of WNT target genes in the 

nucleus (Komiya and Habas, 2008; MacDonald et al., 2009; Zeng et al., 2005). However, 

interaction of WNT proteins with its receptor FZD and the co-receptors LRP5/6 leads to 

disassembly of the destruction complex. As a consequence, proteosomal degradation of β-catenin 

is disrupted (Bilic et al., 2007; Davidson et al., 2005; Wu et al., 2008). Stabilized β-catenin 

accumulates in the nucleus and activates WNT target genes by displacing transcription inhibitors 

and recruiting histone acetylase CBP/p300 (Figure 3). In addition to preventing β-catenin 

degradation, WNT activates JNK2 (c-Jun N-terminal kinase 2) through a Gαq/11βγ-PI3K-Rac1 

signaling cascade. JNK2 activation leads to phosphorylation of β-catenin at a specific site; this 

phosphorylation is important for the translocation of stabilized β-catenin to the nucleus (Wu et 

al., 2008). Overall, effectors for β-catenin dependent WNT signaling are well characterized.  

β-catenin independent WNT signaling is less characterized and can be classified 

according to the cascades it initiates, such as WNT/PCP signaling and WNT/calcium signaling, 

both of which are downstream of Dishevelled. WNT/PCP signaling regulates cytoskeletal 

rearrangement by JNK and small GTPases such as, Rac and Rho. In WNT/calcium signaling, 

intracellular Ca2+ level is elevated, which in turn activates several kinases, such as protein kinase 

C (PKC), Calcium–calmodulin-dependent protein kinase II (CamK2) (James et al., 2008). 

Another target of β-catenin independent WNT signaling is the mTOR complex 1 (mTORC1) 

pathway, which controls the protein translation machinery. In this model, without WNT ligand, 

GSK3β activates TSC2 that is the inhibitor of mTORC1. Upon ligand binding, GSK3β gets 
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Figure 3. WNT/β-catenin Pathway 

 

Cadigan K M , and Liu Y I J Cell Sci 2006;119:395-402 ©2006 by Tht Company of Biologists Ltd 
 

inactivated; TSC2 activation is reduced, which leads to activation of mTORC1 (Inoki et al., 

2006). Alternatively, WNT can regulate mTORC1 independent of GSK3β, but through PI3K-

AKT signaling (Chen et al., 2014). Overall, β-catenin independent WNT signaling pathway has 

multiple branches, most of which are not well characterized.  

WNT signaling has been studied as an important player in bone formation. The first 

evidence came from the co-receptor Lrp5 loss- and gain-of-function mutations that are linked to 

low and high bone mass diseases, respectively (Babij et al., 2003; Gong et al., 2001). Genetic 

studies in mice supported these Lrp5 phenotypes although there are conflicting reports regarding 

whether Lrp5 acts directly or indirectly on osteoblasts (Cui et al., 2011; Kato et al., 2002). It is 

noteworthy that Lrp5 mutations usually cause a postnatal phenotype, without having a major 
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embryonic phenotype. Removal of negative regulators of WNT signaling, such as Secreted 

frizzled-related protein 1 (sFRP-1), Sclerostin (SOST), Dickkopf-related protein 1 (DKK1), 

(Bodine et al., 2004; Li et al., 2006; Li et al., 2008; Li et al., 2005) or overexpression of WNT 

ligands, WNT10b (Bennett et al., 2005) and WNT7b (Chen et al., 2014), leads to a high bone-

mass phenotype in mice. Conversely, WNT10b null mice have reduced bone mass postnatally 

and are resistant to age-related bone loss. Several groups removed β-catenin at different stages 

during osteoblast differentiation. β-catenin is indispensable for osteoblast differentiation in the 

mouse embryo. Conditional ablation of β-catenin from the progenitor cells disrupted osteoblast 

differentiation prior to the Osx positive stage in the embryo. Deletion of β-catenin in Osx-

positive cells prevents subsequent differentiation to mature osteoblasts (Hu et al., 2005; Rodda 

and McMahon, 2006). β-catenin is also important for chondrocyte-osteoblast fate decision; β-

catenin removal leads to ectopic cartilage formation (Day et al., 2005; Hill et al., 2005). Removal 

of β-catenin at more mature osteoblasts did not show a clear osteoblast defect (Glass et al., 2005). 

By taking advantage of an inducible system, a recent paper showed that deletion of β-catenin 

postnatally from the Osx-lineage cells has a direct effect on osteoblasts. This effect is followed 

by increase in bone resorption and marrow adiposity (Chen and Long, 2013). Overall, genetic 

studies indicate that WNT signaling is essential for bone formation, however, how WNT directs 

cell-fate decision and which downstream effector is more critical at different stages is not 

understood. 

Although less well studied, β-catenin independent WNT signaling also plays a role in 

osteoblast differentiation. WNT induced activation of Protein kinase C delta (PKCδ) in 

mesenchymal progenitors promotes osteoblast differentiation (Tu et al., 2007) and WNT-induced 

activation of mTORC1 is partially involved in the high-bone mass phenotype of WNT7b 
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overexpression mice (Chen et al., 2014). Moreover, another WNT ligand, WNT5A suppresses 

the transcription factor PPARγ and shifts mesenchymal differentiation from adipocytes to 

osteoblasts (Albers et al., 2011). The discrepancy between the osteoblast phenotypes obtained by 

alteration of Lrp5 and β-catenin postnatally suggests that there might be β-catenin-independent 

WNT pathways important for osteoblast differentiation and function (Cui et al., 2011; Glass et 

al., 2005).   

 

1.1.2.2. Other Extracellular Signals 

Indian Hedgehog (IHH) is the only HH expressed in the mammalian endochondral 

skeleton. Embryos lacking IHH display severe defects in chondrocyte development and lack 

mature osteoblasts in the endochondral skeleton (Long et al., 2001; St-Jacques et al., 1999). 

Further studies demonstrate that HH has a direct role in osteoblast specification in the 

perichondrial region (Long et al., 2004). In the absence of HH, osteoblast differentiation is 

arrested at a very early stage even before expression of Runx2 in the lineage (Hu et al., 2005).  

Thus, HH is critical for both chondrocyte and osteoblast formation. 

The BMPs, which belong to the transforming growth factor-β (TGF-β) family of secreted 

growth factors, play a critical role in bone formation. Although it is difficult to study the function 

of BMPs due to their redundant functions, it has been shown that BMP2/4 regulates osteoblast 

differentiation and is specifically important for the progression from the Runx2 to Osx-positive 

stage (Bandyopadhyay et al., 2006). In contrast, BMP3 null mice are characterized by increased 

bone mass (Daluiski et al., 2001). This unexpected result was explained by recent studies 

showing that BMP3 inhibits BMP2 and BMP4 signaling via engaging the BMP type II receptor 

(Kokabu et al., 2012). In addition to their role in osteoblast differentiation, BMPs also regulate 
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the function of mature osteoblasts (Mishina et al., 2004). In brief, BMPs are important for both 

differentiation and function of osteoblasts. 

FGFs, operating through cell surface tyrosine kinase FGF receptors (FGFRs), have 

different functions in bone formation depending on the ligand and/or ligand-receptor 

combinations. While there is some controversy over the role of different FGF receptors/ligands 

in bone development, overall, FGF signaling likely promotes osteoblast differentiation, 

proliferation and mature osteoblast mineralization. (Jacob et al., 2006; Mayahara et al., 1993; 

Ohbayashi et al., 2002).  

Notch signaling, which mediates communication between neighboring cells through 

single-pass transmembrane proteins, restricts osteoblast differentiation from mesenchymal stem 

cell (MSCs). Genetic removal of Notch signaling components in the limb mesenchyme gives rise 

to increased bone mass in adolescent mice. Increased bone mass is accompanied with a loss of 

mesenchymal progenitor population (Hilton et al., 2008). This model is consistent with the gain 

of function mutation in Notch2 that is associated with a syndrome displaying bone loss among 

other characteristics (Isidor et al., 2011).  

The effect of different developmental signals on osteoblast differentiation has been 

documented extensively based on the phenotypic studies. However, how the signals drive the 

cell-fate decision in a very stage dependent manner and how they affect the activity of 

transcription factors is not understood. Moreover, the potential of posttranscriptional regulations 

associated with osteoblast cell specifications has not been explored.  
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1.1.3. Metabolic Signals in Osteoblast Differentiation/Function  

The insulin and insulin-like growth factor (IGF) family of ligands and receptors are two 

well-established metabolic pathways (Nakae et al., 2001). These receptors are tyrosine kinases 

and can form either homodimers or heterodimers on the cell surface. The receptors undergo a 

conformational change and get auto-phosphorylated upon ligand binding (Hubbard, 1997).  

Both of these receptors, insulin receptors (IR) and insulin like growth hormone 1 receptor 

(IGF1R), are expressed highly by osteoblasts (Pun et al., 1989; Thomas et al., 1996a) indicating 

the responsiveness of skeleton to these metabolic signals.  

The direct role of insulin as a bone anabolic agent was first suggested by early in vitro 

studies showing that physiological insulin can enhance bone anabolic markers such as collagen 

and alkaline phosphatase (Kream et al., 1985; Pun et al., 1989; Rosen and Luben, 1983). This 

direct role is further supported by mouse genetics data indicating that osteoblast specific removal 

of IR cause reduced trabecular bone due to decreased bone formation and reduced mature 

osteoblast number (Fulzele et al., 2010). This result was in contrast with the normal bone mass 

phenotype from a different genetic model in which IR was removed from all the tissues but was 

transgenically re-expressed in the pancreas, liver, and brain to avoid ketoacidosis induced 

lethality (Irwin et al., 2006). This discrepancy was explained by the difference in the age of the 

analyzed mice. It is possible that osteoblasts require more insulin during development and might 

become less dependent on insulin signaling by aging. Recent studies revealed that insulin 

signaling in osteoblasts could even regulate whole body glucose metabolism through secretion of 

an osteoblast specific hormone, osteocalcin (Clemens and Karsenty, 2011). Overall, insulin 

directly targets osteoblasts and regulates bone formation by affecting both osteoblast function 
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and number. It remains to be investigated whether aging osteoblasts have a diminished response 

to insulin.  

IGF1 has an anabolic role in bone development. Initial work was done in cultured 

osteoblastic cells where IGF1 stimulated survival (Hill et al., 1997), proliferation, differentiation, 

and matrix production (Hock et al., 1988). In vitro studies were confirmed by animal 

experiments using genetically altered mice. For instance, IGF1R null mice demonstrate delayed 

skeletal calcification along with severe growth retardation. However, these mice die postnatally 

due to organ hypoplasia and other complications. In contrast, IGF1 null mice show a relatively 

normal skeletal calcification but are also smaller than wild-type mice and have increased 

postnatal lethality (Liu et al., 1993). Osteoblast specific manipulations of IGF signaling have 

clarified the role of IGF in osteoblast function. Animals with overexpression of IGF1 in mature 

osteoblasts exhibit higher bone formation rate (BFR), higher bone volume and bone mineral 

density (BMD) without any change in total osteoblast or osteoclast numbers (Zhao et al., 2000). 

On the other hand, osteoblast-specific IGF1R knockout mice have reduced trabecular bone as a 

result of reduced osteoblast number and BFR at 3 weeks of age. At 6 weeks of age, there is no 

significant difference at osteoblast number but there is impairment of mineralization and 

trabecular structure (Zhang et al., 2002). Osteoblast-specific IGF1R knockout mice ablated PTH-

induced bone formation in the mouse (Wang et al., 2007), which indicates that IGF signaling can 

be required for other anabolic signals. In summary, IGF signaling is essential for proper 

osteoblast function and further research is necessary to understand why it is required for the 

anabolic action of PTH. 

Although both insulin and IGF signaling are important for bone formation, their role 

showed significant differences. First, mice lacking IR in osteoblasts have reduced mature 
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osteoblast number, which was only observed transiently in animals lacking IGF1R. Second, 

IGF1 does not regulate osteocalcin; hence IGF1R knockout mice lack a systemic metabolic 

phenotype. Third, insulin was able to partially rescue IGF1R deletion in primary osteoblasts; 

however IGF1 cannot rescue IR deletion. IGF1R knock out primary osteoblasts showed 

enhanced insulin sensitivity, which might potentially compensate for the lack of IGF1R (Fulzele 

et al., 2007). Despite these differences, papers published in the last decade strengthened the 

critical role of both IGF and insulin signaling in osteoblast function, differentiation and 

homeostasis, which is consistent with bone being a metabolically active organ. 

Apart from insulin and IGF, glucose dependent insulinotropic peptide (GIP), an 

intestinally secreted hormone that stimulates insulin secretion from pancreatic beta-cells 

following food ingestion and nutrient, also regulates bone formation by both acting on 

osteoblasts and osteoclasts. Osteoblasts express GIP receptors (GIPR) and GIP increases 

collagen type I synthesis and alkaline phosphatase activity in isolated osteoblasts (Bollag et al., 

2000). GIPR1 null mice show low bone mass phenotype (Tsukiyama et al., 2006; Xie et al., 

2005) due to both reduced osteoblast activity, and increased osteoclast number, without affecting 

osteoblast number. Conversely, transgenic mice with GIP overexpression have a significant 

increase in bone mass resulted by reduced bone resorption and enhanced bone formation (Xie et 

al., 2007). It is important to note that both GIPR null and GIP transgenic mice have normal 

baseline blood glucose level, weight, and food intake as control mice. These studies suggest that 

nutrient ingestion is also linked to bone formation. 

Systemic metabolic pathways directly affect osteoblast function, which might explain the 

correlation of osteoporosis with metabolic diseases. However, how those metabolic signals affect 

transcription factors, how they cross talk with developmental signals and how they affect the 
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cellular energy metabolism remains to be investigated.   

 

2. Cellular Glucose Metabolism 

Glucose is one of the major carbon sources in the cell and is an efficient fuel source for 

ATP production. Moreover, glucose is unique since its metabolism can furnish ATP even in the 

absence of oxygen.  

 

 2.1. Cellular Fates of Glucose 

Glucose has several cellular metabolic fates. It first gets transported into the cells via 

facilitative glucose carriers (glucose transporters (GLUTs). Glucose diffusion does not require 

energy, it is considered as a passive transport (Bell et al., 1993). Once glucose is transported into 

the cell, it gets phosphorylated to glucose-6-phosphate (G6P) by hexokinases and gets trapped 

within the cell. G6P can be stored as glycogen or can be metabolized. If metabolized, the cellular 

fates are as: 1) oxidation to pyruvate which either undergoes further oxidation in 

Tricarboxylic acid cycle (TCA cycle), or gets converted to lactate; 2) oxidation via PPP (Pentose 

Phosphate Pathway); 3) fueling into Hexosamine biosynthetic pathway (HBP) from fructose-6-

phosphate (F6P) during glycolysis (Bouche et al., 2004) (Figure 4). Thus, intracellular glucose 

can be used for both anabolic and catabolic pathways.  

Glycolysis is the predominant route of cellular glucose utilization, in which one molecule 

of glucose breaks down into two molecules of pyruvate. The last step of glycolysis is catalyzed 

by lactate dehydrogenase enzyme (LDH) that converts pyruvate to lactate and regenerates NAD+ 

that is needed as an electron acceptor to maintain further glycolysis. LDH is a tetrameric enzyme 

consisting of subunits A, B or C expressed from different genes. Different combinations of A 
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Figure 4. Cellular Fates of Glucose 
 

 

and B subunits constitute 5 different enzyme forms LDH1-5, which are expressed ubiquitously, 

while the C subunit is specific to the testis and sperms (Kopperschlager and Kirchberger, 1996). 

Intermediates can exit glycolysis before pyruvate formation to enter biosynthetic pathways, such 

as HBP and PPP. Thus, glycolysis generates intermediates necessary for energy production, 

redox regulation or anabolic reactions. 

Pyruvate is at the crossroad of central metabolic fates. In addition to conversion to lactate, 

alternatively, it can be transaminated into alanine in the cytoplasm, decarboxylated into acetyl-

coA or carboxylated into oxaloacetate (OAA) in the mitochondria. The predominant route for 

mitochondrial pyruvate is the decarboxylation into acetyl-coA via pyruvate dehydrogenase 
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complex (PDC). Elevated levels of ATP and phosphorylation inactivate PDC by pyruvate 

dehydrogenase kinases (PDKs). Oxidative phosphorylation (OXPHO) in TCA cycle starts with 

condensation of acetyl-coA with oxaloacetate to form citrate and follows a sequence of reactions 

to regenerate oxaloacetate and produce CO2 molecules. During oxidation, there is constant 

carbon flux in and out of the cycle. For example, malate can be transported to cytosol where it is 

decarboxylated into pyruvate by malic enzyme producing NAD(P)H and pyruvate. Pyruvate can 

then be transported back to mitochondria. Citrate can also be transported across mitochondrial 

membranes and can get converted into oxaloacetate and acetyl-coA in the cytoplasm (Owen et 

al., 2002) (Figure 5).  

Figure 5. Carbons can exit TCA cycle as malate and citrate. 

 

 

There are 12 transporters identified in the inner membranes of mammalian mitochondria 

(Schoolwerth and LaNoue, 1985), facilitating the flux of metabolites in-and-out of mitochondria. 

Loss of cycle intermediates due to removal of carbons from the TCA cycle other than CO2 

causes the need for replenishing the intermediates. The flux of carbon into the TCA cycle to 

replenish intermediates can be through transamination of aspartate into oxaloacetate, conversion 
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of glutamine into α- ketoglutarate, conversion of valine, isoleucine or methionine into succinly-

coA and carboxylation of pyruvate into oxaloacetate (Lee and Davis, 1979) (Figure 6). In    

Figure 6. Anaplerotic reactions in the TCA cycle. 
 

 

Owen O E et al. J. Biol. Chem. 2002;277:30409-30412 ©2002 by American Society for Biochemistry and Molecular Biology 
 
summary, majority of mitochondrial pyruvate is converted to acetyl-coA to enter the TCA cycle, 

in which there is constant carbon flux to meet the needs of the cell. 

During glycolysis, a small portion of glucose intermediates is diverted into HBP and PPP. 

5 to 30% of glucose, varying in a tissue-dependent manner, is utilized in PPP that is the source of 

NAPDH and ribose-5-phosphate (R5P). PPP consists of oxidative and non-oxidative braches 

with the activity of the former being higher than the activity of the latter. Oxidative PPP starts 

with the rate-limiting irreversible reaction of dehydrogenation of G6P by glucose 6-phosphate 

dehydrogenase (G6PD). This is followed by further oxidation and decarboxylation into ribose-5 

phosphate (R5P), the precursor for nucleotide synthesis. Oxidative PPP produce almost 60 

percent of NADPH in the cell. NADPH provides the reducing equivalents for biosynthetic 
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processes such as fatty acid or cholesterol synthesis and protects against oxidative stress by 

reducing oxidized glutathione (GSSG). In the non-oxidative branch, PPP yields fructose 6-

phosphate and glyceraldehyde 3-phosphate, both of which can enter the glycolytic pathway (Perl 

et al., 2011; Wamelink et al., 2008). Fructose-6-phosphate together with glutamine can be 

catalyzed by GFPT1 (known as GFAT) to form glucosamine-6-phosphate in the very first and 

rate limiting step of HBP in which approximately 2-5% of cellular glucose is used. Glucosamine-

6-phosphate is further used to generate uridine diphospho-N-acetylglucosamine (UDP-GlcNAc), 

which is a precursor for a variety of glycosylation reactions (Teo et al., 2010). Overall, PPP and 

HBP take a small percentage of cellular glucose but are important anabolic pathways. 

 

2.2. Alteration of Cellular Metabolism        

  Biological processes such as differentiation, proliferation, secretion, and division are 

linked to appropriate alterations in cellular metabolism to meet the new bioenergetic, synthetic, 

catabolic requirements of the cell (Rolland et al., 2001). The physiological maintenance of 

metabolite homeostasis is crucial for cell function since metabolic intermediates are the building 

blocks of the body that are required to synthesize nucleic acids, nonessential amino acids, 

glycogen and other biomolecules. Although it is not the focus of this thesis, cancer cells, prostate 

epithelial cells and differentiating embryonic stem cells provide well-characterized models to 

understand how cellular metabolic alterations can affect cell fate and specification. We can 

benefit what we learn from these models to understand potential links between cellular 

metabolism and osteoblast differentiation; therefore, below I describe these processes briefly. 

  

 

http://en.wikipedia.org/wiki/Glutathione
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2.2.1. Metabolic Alterations Associated with Diseases 

Cancer cells manifest a unique metabolic feature by using excessive amounts of glucose 

and producing large amounts of lactate regardless of oxygen availability, referred as “aerobic 

glycolysis” (Vander Heiden et al., 2009). Aerobic glycolysis is less efficient for ATP production 

per glucose, but it can produce ATP at a rapid rate in the presence of excess glucose (Guppy et 

al., 1993) and can produce glycolytic intermediates, which are important for anabolic reactions 

(Gatenby and Gillies, 2004). Moreover, switching the main energy source to oxidative 

phosphorylation via removing LDHA reduces tumor formation in most cancer cells, suggesting 

that the altered metabolism is indeed important for tumor formation (Fantin et al., 2006; Le et al., 

2010).   

In addition to increased aerobic glycolysis, cancer cells go through a series of other 

metabolic alterations. Glucose flux towards PPP is increased to meet the elevated need for 

pentose phosphates for nucleic acid synthesis (Riganti et al., 2012). Glutamine is used as an 

alternative carbon source for energy production by entering the TCA cycle via glutaminolysis 

(DeBerardinis et al., 2007; Portais et al., 1996) in some type of cancers. Glutamine depletion in 

these cells causes growth failure and apoptosis (Wise et al., 2008; Yuneva et al., 2007). In 

addition to the altered carbon metabolism, enhanced zinc import is associated with tumorigenesis 

of pancreatic cancer (Li et al., 2007). Overall, cancer is a good model to describe a sequence of 

metabolic alterations that are associated with the cell identity change. 

 

 2.2.2. Metabolic Alterations Associated with Differentiation and Cell Homeostasis 

Metabolic changes accompany differentiation of stem cells. Embryonic stem cells (ESC) 

have a unique feature of unsaturated metabolites that are more susceptible to oxygenation and 
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hydrogenation reactions. This metabolite pool gets diminished during differentiation. Supplying 

the ESCs with metabolites involved in oxidative metabolism enhances differentiation (Yanes et 

al., 2010). Other studies pointed to the link between differentiation and metabolic changes as well 

(Folmes et al., 2011; Panopoulos et al., 2012; Zhang et al., 2013). These studies indicate that specialized 

cell types have a unique metabolic signature and modulations of metabolic intermediates might be 

important for differentiation. 

Prostate epithelial cells are specialized citrate-secreting cells with a unique metabolic feature.  

These cells have high expression of ZIP1 zinc transporter (Franklin et al., 2003) that leads to 

increased zinc uptake. Zinc then gets transported to mitochondria where it attenuates aconidase activity, 

the enzyme required to isomerize citrate to isocitrate for the continuation of the TCA cycle (Costello et al., 

1997). Due to this blockage, citrate exits mitochondria and gets secreted. To compensate for this loss of 

ATP production due to aborted TCA cycle and to continue to produce pyruvate, the citrate-

producing prostate cells exhibit increased aerobic glycolysis. Furthermore, exit of citrate out of 

mitochondria requires an alternative carbon source for the continuation of the TCA cycle and for 

the production of more citrate. Aspartate fulfills this carbon source by forming oxaloacetate via 

transamination with glutamate by mitochondrial aspartate aminotransferase reaction (mAAT). 

High-affinity L-aspartate transporter (EAAC1) is highly expressed in prostate cells (Franklin et 

al., 2006). Briefly, prostate epithelial cells re-arrange their carbon metabolism to meet the needs 

of a specialized cell function, citrate-secretion. 

Prostate epithelial cells and ESC differentiation serve as good examples of the metabolic 

changes for a specialized process or function. However it is not clear whether these changes are 

the result of different needs for the cell feature or is one of the driving forces for reprogramming 

cell function and fate. Moreover, the mechanistic regulation for the metabolic changes at the 
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molecular level has not been explored. Nonetheless, these metabolic changes can serve as 

models to study differentiation-related metabolic alterations in osteoblasts.  

 

3. Metabolism of Bone 

The skeleton is a highly metabolic tissue with constant remodeling driven by breaking 

down bones and making new bones. It is gaining more attention with the recent findings 

suggesting that skeleton can be a player in whole-body energy utilization through its hormonal 

interactions with other tissues (Clemens and Karsenty, 2011). 

 

3.1. Bone and Metabolic Diseases 

Type 1 diabetes mellitus (DM1), a disease of insulin deficiency due to the autoimmune-

mediated destruction of pancreatic beta cells, is associated with bone related problems. These 

problems include decreased bone density, increased risk as well as early onset for osteoporosis 

(Kemink et al., 2000). Moreover, diabetic patients have increased fracture risk (Nicodemus and 

Folsom, 2001) and experience poor healing after fractures (Loder, 1988). Consistently, diabetic 

animal models reveal defects in osteoblast function (Lu et al., 2003; Verhaeghe et al., 1990). 

Functionally, delayed fracture healing in diabetic rats could be ameliorated by insulin delivery at 

the fracture site without affecting the systemic blood glucose (Gandhi et al., 2005). 

While the association between bone and DM1 is well established as discussed above, the 

association between osteoporosis and type two diabetes (DM2) is less clear. There is a 

discrepancy in the literature such that bone mineral densities (BMDs) of DM2 patients were 

diminished (Isaia et al., 1987), enhanced (van Daele et al., 1995), or not changed (Wakasugi et 

al., 1993). This discrepancy might be associated with the bone sites studied, the heterogeneity, 
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severity or duration of the disease and obesity related complications in the patient populations 

studied. Regardless of this discrepancy, the tight link between DM1 and bone related problems, 

most of which are associated with osteoblast physiology, suggest that osteoblasts are the direct 

target cell for systemic metabolic diseases. Further research is needed to understand how these 

systemic diseases affect intracellular metabolism, signaling and transcriptional regulation.  

 

3.2. Cellular Metabolism of Bone 

3.2.1. Citrate Secreting Cells in the Bone 

Bone metabolism is poorly understood due to lack of interest in this field. Early studies 

indicate that bone contains uniquely high citrate levels such that 1.6% of bone consists of citrate, 

and about 80% of the total body citrate resides in the bone (Dixon and Perkins, 1952). Although 

the high citrate concentration of bone has been known for decades, it has recently been 

discovered that citrate is critical for the structure of the apatite nanocrystal providing more 

carboxylate for calcium binding (Hu et al., 2010; Kenny et al., 1959; Taylor, 1960). Citrate is 

crucial for bone properties such as stability, strength, and resistance to fracture. It is not clear 

how bone cells accumulate citrate in the ECM, however, isocitrate dehydrogenase (IDH) activity 

is very low in bone (Dixon and Perkins, 1952) compared to other tissues. IDH catalyzes the 

oxidative decarboxylation of isocitrate producing α-KG; therefore reduced IDH activity could 

result in disruption of the TCA cycle and accumulation of citrate. The identity of citrate-

secreting cells in the bone; the necessary metabolic alterations associated with increased citrate-

secretion and the underlying mechanism is not discovered. 

 

 

http://en.wikipedia.org/wiki/Isocitrate
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3.2.2. Aerobic Glycolysis in the Bone   

In the early 1960's many studies using bone slices or calvarial cells showed that bone 

cells consume a large amount of glucose and produce lactate as the major end product while 

consuming oxygen very slowly even in aerobic conditions (Borle et al., 1960a; Cohn and 

Forscher, 1962; Peck et al., 1964). Besides lactate and CO2, glucose carbons are also detected in 

amino acids; hence glucose might be the carbon source for amino acid synthesis in osteoblasts. 

Providing excess amino acid had no effect on the cellular CO2 or lactate labeling from glucose, 

indicating that glucose is the main energy source (Flanagan and Nichols, 1964). Only in the 

absence of glucose, proline decarboxylation is increased to provide alternative energy source 

(Flanagan and Nichols, 1962). Hence, osteoblasts rely on aerobic glycolysis, similar to cancer 

cells. 

In addition to the basal metabolic characteristics of bone, investigators studied the effect 

of hormones on bone metabolism. Metaphyseal bones prepared from PTH injected mice 

exhibited increased lactate production by 34% even in aerobic condition in the presence of 

glucose as a substrate. In the absence of glucose, lactate production was reduced by 7 fold and 

was not increased in response to PTH, confirming that glucose is the major source of lactate. On 

the other hand, another hormone, estradiol did not enhance lactate production in the same 

experiment. PTH effect on oxygen consumption was under debate (Borle et al., 1960b; Laskin 

and Engel, 1960). Similarly, PTH treatment increased lactate production in calvarial cells 

(Neuman et al., 1978; Rodan et al., 1978). PTH treatment also elevated citrate accumulation 

from pyruvate (Laskin and Engel, 1960). The mechanism of citrate accumulation was not clear 

(Cohn, 1964; Vaes and Nichols, 1961; Wolinsky and Cohn, 1969). In rat osteoblastic cells 

(PyMS), not only PTH but also IGF, another anabolic agent, induced glucose uptake linking the 
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coupling of bone anabolism to increased glucose uptake (Zoidis et al., 2011). Overall, PTH 

favors lactate-producing glycolysis in osteoblasts. 

These studies established that aerobic glycolysis is a unique characteristic of metabolism 

of bone cells. However, the mechanism under the regulation of glycolysis and its importance for 

osteoblast features and for PTH’s action in the bone has not been studied. 

 

3.2.3. The Expression of Glucose Transporters in Bone  

Although it is known that bone cells rely mostly on glucose as an energy and carbon 

source, there is very little evidence about the specific expression of GLUTs in the bone. GLUT1 

and GLUT3 were detected in an osteosarcoma cell line, UMR 106-01(Thomas et al., 1996b; 

Thomas et al., 1996c). Later, in growth plate chondrocytes GLUTs 1-5 were detected (Ohara et 

al., 2001). GLUT4 expression was shown in murine models of endochondral bone formation 

(Maor and Karnieli, 1999). There is also evidence for the expression of Glut1 in rodent 

osteoblastic cells (PyMS) (Rolland et al., 2001). Further investigation is needed to characterize 

the cellular location, function and necessity of specific GLUTs in the bone as well as in vivo 

expression patterns. Regardless, high expression of GLUTs is an indication of increased need for 

glucose in bone cells.  

 

3.2.4. Cellular Metabolism of Osteoblast 

Osteoblasts are expected to increase energy demand upon differentiation to accommodate 

the need for increased protein synthesis, an energetically costly process (Buttgereit and Brand, 

1995). In recent years, the cellular metabolism of osteoblasts has been revisited with the 

advances of isolated purified cell preparations, the availability of cell lines, and availability of 
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metabolic techniques. Human MSC showed increased mitochondrial DNA (mtDNA) copy 

number, respiratory enzymes, oxygen consumption rate, mitochondrial biogenesis-associated 

genes, and intracellular ATP content after two weeks of osteogenic differentiation (Chen et al., 

2008). However, ATP content as well as mtDNA copy number were suppressed significantly in 

the first three days of differentiation and other metabolic parameters were not analyzed other 

than two weeks of differentiation. Therefore, it was not clear how quickly MSC switched to 

oxidative phosphorylation and why the ATP content was suppressed in the early phase of 

differentiation. A recent study showed that differentiating osteoblasts increased both glycolysis 

and oxidative phosphorylation and mature osteoblasts relied mostly on glycolysis (Guntur et al., 

2014). Thus, osteoblasts alter the cellular metabolism during differentiation in a stage-specific 

manner, but the global view of cellular metabolism and the necessity of these alterations are not 

known.   

In addition to mitochondrial and glycolytic changes, the expression of Nampt, the NAD+ 

biosynthetic enzyme, is increased during osteogenic differentiation (Li et al., 2013). NAD+ 

dependent lysine deacetylase Sirt1 accelerates osteoblast differentiation from MSCs in vitro 

(Backesjo et al., 2006), while preventing adipocyte differentiation (Picard et al., 2004). Further 

studies are required to characterize the alterations in the redox-state of osteoblasts during 

differentiation in response to anabolic signals.  

 

3.3. Aging Related Metabolic Dysfunction and Osteoporosis 

Aging is associated with osteoporosis. In a healthy subject, bone mass increases along 

with growth, reaches the peak in adolescence and then starts to decline with aging after staying 

constant for several years. Failure to reach optimal bone mass during growth or unbalanced bone 
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formation and resorption can lead to age-related osteoporosis (Raisz, 2005). Increased apoptosis 

is a proposed mechanism in age-related decrease in bone mass (Zhou et al., 2008), although there 

are some discrepancies between different studies about the causal role. The responsiveness of 

osteoblasts to proliferative signals is reduced with age while senescence markers are increased 

(Kassem and Marie, 2011). In aging rats, there is a reduction in the number of mature osteoblasts 

with a concomitant accumulation of pre-osteoblasts, suggesting an impairment of osteoblast 

differentiation by aging (Roholl et al., 1994). Osteoblasts and adipocytes come from same 

mesenchymal progenitor cells. Interestingly, there is an induction of bone marrow adipocytes by 

aging (Bethel et al., 2013). This inverse relationship between osteoblast and adipocyte numbers 

during aging, led to the hypothesis that enhanced adipocyte differentiation by aging from 

mesenchymal progenitor cells results a reduced pool of available progenitor cells for osteoblast 

differentiation. Although studies in aging mice showed increased capacity of differentiation of 

mesenchymal progenitor cells to adipocytes along with a reduced osteoblastic capacity, a human 

study failed to show a reduced adipocyte-forming capacity of MSC with donor age (Kassem and 

Marie, 2011). Thus, this hypothesis remains to be further explored. In summary, aging leads to a 

variety of defects that could result attenuated osteoblast number and function, but the causative 

reason behind these defects in not understood.  

IGFs are important regulators of skeletal remodeling. Although there is high variation among 

healthy people, serum IGF levels are usually low at birth and increase during adolescence, and 

then decrease progressively with age (Brabant et al., 2003). In addition to serum IGF levels, 

matrix IGF1 also decreases with aging (Seck et al., 1998). This decrease correlates with the 

decrease in bone mineral density. Osteoblasts lose their responsiveness to IGF during aging (Cao 

et al., 2007). Injecting IGF1 together with one of the IGF binding proteins ameliorates aging 
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related bone loss in rats (Xian et al., 2012). Therefore, it is possible that aging related risk of 

osteoporosis could be due to reduced IGFs in bone matrix and circulation.   

Aging is associated with other changes in whole body metabolism and is linked with 

higher prevalence of DM2. Although it is more straightforward for DM1, both type 1 and type 2-

diabetes manifest changes in serum IGF and IGF binding protein levels (Frystyk et al., 1999; 

Maes et al., 1986; Sandhu, 2005). Administration of IGF1 improves insulin sensitivity in DM1 

(Carroll et al., 2000; Quattrin et al., 2001) and DM2, although increasing free IGF levels in the 

circulation cause other complications (Clemmons, 2012). Thus, diabetes is associated with 

altered IGF levels. 

The onset of metabolic diseases and osteoporosis are correlated in elderly. Age related 

changes in systemic metabolism might contribute to osteoblast dysfunction by both affecting the 

differentiation capacity and function of osteoblast, and changing the fate of mesenchymal 

progenitor cells. IGF1 is a good candidate in that it is critical for osteoblast function; its level 

correlates with aging and metabolic diseases. Therefore, alterations of IGF signaling due to aging 

or diabetes can be the causative role of aging or diabetes-induced osteoporosis.  

 

4. Summary 

Understanding the osteoblast biology is the key to treat osteoporosis. Transcriptional changes 

driving osteoblast differentiation as well as developmental and metabolic signals required for the 

differentiation process has been documented in detail. A common mechanism downstream of different 

osteoblastic signals to coordinate transcriptional as well as non-transcriptional changes associated with 

differentiation has been lacking. Certain metabolic features of osteoblasts have been investigated decades 

ago, but it has never been explored how the cells alter their metabolism and whether this alteration could 
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be important for the differentiation process.  

Based on both human genetics and mouse genetic models, the indispensable role of WNT 

signaling for bone formation is well established. However, these studies were mostly based on genetic 

removal of different pathway components and a global view of cellular changes in response to WNT 

signaling has not been the focus. Moreover, the contribution from β-catenin independent pathway is not 

clear. The first part of this thesis focuses on the changes in cellular glucose metabolism in response to 

WNT signaling. It describes the signaling cascades activated downstream of WNT that are required for 

enhanced glycolysis and emphasizes a potential role of these metabolic changes in osteoblast 

differentiation. Next, the requirement of glycolysis for in vivo osteoblast differentiation and function has 

been studied by removing LDHA, an enzyme upregulated by WNT, in osteoblast progenitor cells. Finally, 

I focus on how PTH stimulates glycolysis, how PTH regulates different glucose fates and the effect of 

enhanced glycolysis for PTH stimulated bone formation in vivo. Understanding the cellular metabolic 

alteration associated with osteoblast differentiation and function can help us to explore the association 

between aging, metabolic diseases and osteoblast biology. 
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1. Abstract 

WNT signaling controls many biological processes including cell differentiation in 

metazoans. However, how WNT reprograms cell identity is not well understood. We have 

investigated the potential role of cellular metabolism in WNT-induced osteoblast differentiation. 

WNT3A induces aerobic glycolysis known as Warburg effect by increasing the level of key 

glycolytic enzymes. The metabolic regulation requires LRP5 but not β-catenin and is mediated 

by mTORC2-AKT signaling downstream of RAC1. Suppressing WNT3A-induced metabolic 

enzymes impairs osteoblast differentiation in vitro. Deletion of Lrp5 in the mouse, which 

decreases postnatal bone mass, reduces mTORC2 activity and glycolytic enzymes in bone cells 

and lowers serum lactate levels. Conversely, mice expressing a mutant Lrp5 that causes high 

bone mass exhibit increased glycolysis in bone. Thus, WNT-LRP5 signaling promotes bone 

formation in part through direct reprogramming of glucose metabolism. Moreover, regulation of 

cellular metabolism may represent a general mechanism contributing to the wide-ranging 

functions of WNT proteins. 
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2. Introduction 

WNT signaling controls cell proliferation, fate decision, polarity, and migration 

throughout the evolution of metazoans (Croce and McClay, 2008). WNT proteins, by engaging 

various receptors and coreceptors at the cell membrane, activate an intracellular signaling 

network highly dependent on the cellular context, to induce diverse biological responses (van 

Amerongen and Nusse, 2009). WNT signaling through β-catenin has been most extensively 

studied. In this mechanism, binding of WNT to a Frizzled (Fz) receptor and a LRP5/6 coreceptor 

leads to stabilization of β-catenin, which subsequently translocates to the nucleus, where it 

interacts with members of the TCF/LEF transcription factors to activate transcription of 

downstream target genes (Clevers, 2006). In addition, WNT proteins can activate the Rho family 

of small GTPases (Habas et al., 2001, 2003; Wu et al., 2008), the Ca2+ pathway (Kühl et al., 

2000), and PKCδ (Kinoshita et al., 2003; Tu et al., 2007). WNT has also been shown to activate 

mTORC1 (mammalian target of rapamycin complex 1), one of the two complexes formed by 

mTOR (Inoki et al., 2006). Whereas mTORC1 uniquely contains raptor and is the main target of 

rapamycin, mTORC2 contains rictor and is relatively insensitive to the drug (Laplante and 

Sabatini, 2012; Wullschleger et al., 2006). Among many other functions, mTORC1 is best 

known to control protein synthesis through phosphorylation of the translational regulators 4E-

BP1 and S6K1, the latter of which in turn phosphorylates the ribosomal protein S6 and other 

substrates (Ma and Blenis, 2009). mTORC2 is known to activate Akt through phosphorylation at 

Ser473, which is necessary for its activity toward some but not all substrates (Guertin et al., 

2006; Hresko and Mueckler, 2005; Jacinto et al., 2006; Sarbassov et al., 2005). Other targets of 

mTORC2 include PKCα, FOXO3, and SGK1 (García-Martínez and Alessi, 2008; Guertin et al., 

2006). Earlier studies with siRNA have implicated mTORC2 signaling in regulating the actin 
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cytoskeleton (Jacinto et al., 2004; Sarbassov et al., 2004), but this function was not confirmed in 

embryonic fibroblasts derived from knockout mice (Guertin et al., 2006). On the other hand, 

mTORC2 has been shown to regulate whole-body glucose and lipid metabolism through its 

action in the liver and the adipose tissue (Cybulski et al., 2009; Hagiwara et al., 2012; Kumar 

et al., 2010; Lamming et al., 2012). Recent studies have shown that the small GTPase RAC1 

localizes mTOR to specific membranes and mediates the activation of both mTORC1 and 

mTORC2 in response to growth factors (Saci et al., 2011). In addition, ribosomes activate 

mTORC2 through physical association (Zinzalla et al., 2011). Whether or not WNT signaling 

activates mTORC2 has not been explored. 

WNT signaling has emerged as an important mechanism regulating bone formation in 

mammals (Long, 2012). In the mouse embryo, deletion of β-catenin, or both LRP5 and LRP6, in 

the skeletogenic progenitors abolishes osteoblast differentiation, indicating that WNT signaling 

through β-catenin is critical for embryonic osteoblastogenesis (Day et al., 2005; Hill et al., 2005; 

Hu et al., 2005; Joeng et al., 2011; Rodda and McMahon, 2006). Postnatally, loss- and gain-of-

function mutations in LRP5 cause low and high bone mass syndromes, respectively, in humans 

(Boyden et al., 2002; Gong et al., 2001; Little et al., 2002). Moreover, deficiency in SOST, a 

secreted inhibitor that prevents the binding of WNT to LRP5 or LRP6, results in high bone mass 

in human patients (Balemans et al., 2001, 2002). In the mouse, deletion of LRP5 causes 

osteopenia (Cui et al., 2011; Kato et al., 2002), whereas loss of SOST increases bone mass (Li 

et al., 2008). The mechanism through which WNT signaling stimulates osteoblast differentiation, 

however, remains to be elucidated. 

Emerging evidence has implicated WNT signaling in the regulation of cellular 

metabolism. A missense mutation in LRP6 has been linked with abnormal whole-body 
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metabolism in humans (Mani et al., 2007). Genomic polymorphism of TCF7L2, a transcriptional 

effector of WNT/β-catenin signaling, is associated with type II diabetes (Grant et al., 2006). In 

cell culture models, prolonged WNT treatment induced mitochondria biogenesis in a β-catenin-

dependent manner (Yoon et al., 2010). In the mouse, hepatic manipulation of β-catenin was 

shown to regulate glucose and glutamine metabolism (Cadoret et al., 2002; Chafey et al., 2009; 

Liu et al., 2011). However, whether WNT regulates cellular metabolism via β-catenin-

independent mechanisms has not been examined. Moreover, it is not known whether metabolic 

regulation by WNT contributes to cell differentiation. 

Here we investigate the potential regulation of glucose metabolism by WNT during 

osteoblast differentiation. We report that multiple WNT proteins acutely stimulate aerobic 

glycolysis to control osteoblast differentiation. Distinct from the previous findings, the metabolic 

regulation described here is independent of β-catenin signaling but requires mTORC2 activation. 

Importantly, mouse genetic models demonstrate that WNT-LRP5 signaling concurrently 

increases glycolysis and bone formation in vivo. Thus, WNT signaling reprograms glucose 

metabolism through a direct mechanism, and WNT-induced metabolic reprogramming 

contributes to osteoblast differentiation. 

 

3. Results 

3.1. WNT Induces Aerobic Glycolysis Independent of β-Catenin 

To investigate a potential link between WNT signaling, cellular metabolism, and 

osteoblast differentiation, we examined the effect of WNT proteins on glucose metabolism in 

ST2 cells, a mouse bone marrow stromal cell line known to undergo osteoblast differentiation in 

response to WNT (Tu et al., 2007). Because we were interested in direct regulation by WNT 
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instead of adaptive effects secondary to the differentiated state, we focused on the response 

within the first 24 hr of treatment. Purified WNT3A progressively increased glucose 

consumption over the control, reaching statistical significance at 6 hr and exhibiting a marked 

increase at 12 and 24 hr (Figure 1A). Importantly, during this time period, WNT3A did not 

increase the number of cells or alter the cell-cycle distribution (see Figures S1A and S1B). 

Compared to WNT3A, insulin at high concentrations (1 or 2 μg/ml) was less effective in 

stimulating glucose consumption in ST2 cells (Figure S1C). Moreover, WNT3A stimulated 

glucose consumption in the absence of serum even though overall glucose consumption was 

lower at both basal and stimulated conditions (Figure S1D). Consistent with the increased 

glucose consumption, glucose uptake, as assayed by fluorescently labeled 2-deoxyglucose, was 

enhanced following 1, 12, or 24 hr of WNT3A treatment (Figure 1B). Thus, WNT3A acutely 

induces glucose consumption in ST2 cells. 

We then examined whether the regulation was limited to WNT3A and undifferentiated 

ST2 cells. WNT10B has been shown to induce osteoblast differentiation in ST2 cells (Kang et al., 

2007). We found that virally expressed WNT10B increased glucose consumption to an extent 

comparable to that of purified WNT3A (Figure 1C). In contrast, recombinant WNT5A did not 

have a similar effect (Figure S1E). BMP2, a known inducer of osteoblast differentiation in ST2 

cells, did not stimulate glucose consumption after 24 hr of treatment (Figure S1F). To determine 

the effect of WNT3A on differentiating ST2 cells, we stimulated them with an established 

osteogenic media containing dexamethasone, β-glycerophosphate, and ascorbate for up to 

15 days and then assessed their response to WNT3A for 24 hr at each differentiation stage. 

WNT3A stimulated glucose consumption in ST2 cells at all stages (Figures S1G and S1H). We 

then tested the effect of WNT3A on other cell lines as well as primary cell cultures. We found 
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that WNT3A stimulated glucose consumption in C2C12 (myoblast), M2-10B4 (bone marrow 

stromal cell), MC3T3 (preosteoblast), MLO-Y4 cells (osteocyte), and 3T3-L1 cells 

(preadipocytes), as well as primary cultures of mouse embryonic fibroblasts (MEFs) and 

osteoblast-lineage cells from the mouse calvaria (Figures 1D–1G). Thus, multiple osteogenic 

WNT ligands increase glucose consumption, but all osteogenic signals do not exhibit the same 

regulation. Furthermore, WNT3A stimulates glucose consumption in a variety of cell types. 

We next examined potential metabolic changes in ST2 cells. WNT3A markedly increased 

the concentration of lactate in the culture media at both 6 and 24 hr of treatment (Figure 2A). 

Similarly, WNT10B increased lactate levels at 24 hr (Figure 2B). WNT5A, on the other hand, 

did not affect lactate levels (Figure S1I), even though it induced phosphorylation of MARC.KS 

in ST2 cells (Figure S1J). We next measured extracellular acidification rate (ECAR) as an 

indicator for lactate production rate, and the oxygen consumption rate (OCR) with the 

Extracellular Flux Analyzer after 6 hr of WNT stimulation. WNT3A notably increased ECAR 

both at the basal state and during mitochondria stress tests with oligomycin or FCCP, but had no 

effect on the OCR under all conditions (Figures 2C and 2D). Similarly, after 24 hr, WNT3A 

increased ECAR but not OCR (Figure 2E). Moreover, WNT3A did not alter the intracellular 

ATP levels after 24 hr of treatment (Figure 2F). Thus, WNT signaling stimulated lactate 

production but not oxidative phosphorylation. 

To demonstrate that WNT3A stimulates lactate production directly from glucose, we 

tracked the fate of glucose through isotopomer distribution analyses of stable isotopically labeled 

substrates through GC/MS. Briefly, cells were first stimulated with WNT3A for 6, 12, or 24 hr 

and then incubated with 13C-labeled glucose ([U-13C6]-glucose, m+6 isotopomer tracer) for 1 hr, 

and its contribution to lactate through glycolysis was determined by measuring the abundance of 
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the labeled [U-13C3]-lactate (m+3 isotopomer) relative to the unlabeled (m+0) pool. After 6, 12, 

or 24 hr of stimulation, WNT3A markedly increased the relative abundance of m+3 lactate in the 

cell lysate, indicating a greater portion of lactate derived through glycolysis (Figures 2G–2I). 

Moreover, at all time points, the WNT3A-induced enrichment of labeled lactate was greater than 

that of the intracellular labeled glucose (m+6/m+0), indicating that a greater portion of the 

intracellular glucose underwent glycolysis in response to WNT3A (Figures 2G–2I). Thus, WNT 

signaling stimulates glycolysis despite the abundance of oxygen, a phenomenon known as the 

Warburg effect. 

We next examined the molecular basis for the increased glycolysis. GLUT1, a main 

glucose transporter, and hexokinase II (HK2) that catalyzes the first rate-limiting step of glucose 

catabolism were both induced by WNT3A at 1 hr and remained high at 6, 12, and 24 hr of 

treatment (Figure 3A and data not shown). Phosphofructokinase 1 (PFK1), a key regulatory 

enzyme for the “committed step” of glycolysis, and 6-phosphofructo-2-kinase/fructose-2, 6-

bisphosphatase 3 (PFKFB3), which controls the concentration of fructose 2,6-bisphosphate, a 

potent allosteric activator of PFK1, were both induced by WNT3A, although PFKFB3 returned 

to control levels by 24 hr of treatment (Figure 3A). Finally, lactate dehydrogenase A (LDHA), 

which catalyzes the conversion of pyruvate to lactate, and pyruvate dehydrogenase kinase 1 

(PDK1) that inactivates the pyruvate dehydrogenase complex to suppress pyruvate from entering 

the TCA cycle were both induced by 6 hr of WNT3A stimulation and remained high at the later 

time points (Figure 3A). Quantification of western blots from multiple independent experiments 

confirmed that the glycolytic regulators were consistently induced by WNT3A after 1, 6, and 

24 hr of treatment (Figures S2A–S2C). Interestingly, when ST2 cells were first starved for serum, 

WNT3A induced not only HK2 but also LDHA and PDK1 after 1 hr of stimulation (Figure 3B). 
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Further experiments revealed that these enzymes were in fact upregulated by WNT3A within 

5 min of stimulation in the serum-starved cells (Figure S2D). The quick induction of the 

enzymes is not likely to be due to transcriptional regulation, as their mRNA levels stayed 

relatively unchanged even after 6 hr of WNT3A treatment (Figure S2E). After 24 hr, only Ldha 

and Pdk1 mRNA but not the others were increased over the control (Figure S2F). Knockdown of 

either LDHA or PDK1 partially suppressed WNT3A-induced glucose consumption (Figures 3C 

and 3D). Thus, WNT3A acutely increases the protein levels of a number of key glycolytic 

regulators to stimulate glycolysis. 

We next investigated the signal transduction mechanism through which WNT3A induces 

glycolysis. Because WNT3A inhibits GSK3β activity, we first investigated the potential 

importance of GSK3β inhibition. Inhibition of GSK3β activity by either genetic knockdown or 

LiCl did not increase glucose consumption by itself, nor did it affect WNT3A-induced glucose 

consumption (Figure 3E and data not shown), even though it increased β-catenin levels as 

expected (Figure 3F, and data not shown). Similarly, knockdown of β-catenin did not alter 

WNT3A-induced glucose consumption, although it suppressed the induction of IRS1, known to 

be induced transcriptionally by β-catenin (Yoon et al., 2010) (Figures 3G and 3H). Knockdown 

of β-catenin with a second shRNA also did not suppress WNT3A-induced glucose consumption 

(Figure S3A). Finally, stabilization of AXIN1/2 with the tankyrase inhibitor XAV939 inhibited 

β-catenin stabilization by WNT3A but did not impair the induction of glucose consumption 

(Huang et al., 2009) (Figures 3I and 3J). Thus, regulation of AXIN, GSK3, or β-catenin is not the 

principle mechanism for WNT3A to induce glycolysis. 
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3.2. WNT-LRP5 Signaling Activates mTORC2 via RAC1 to Induce Glycolysis 

We next investigated the potential role of mTOR signaling in WNT-induced glycolysis. 

WNT3A acutely activated mTORC1, as indicated by increased phosphorylation of the ribosomal 

protein S6, which was evident at 1 hr of stimulation and maintained after 24 hr (Figure 4A). In 

addition, WNT3A activated mTORC2, as Ser473-phosphorylation of AKT was elevated at these 

time points (Figure 4A). Quantification of western blots from multiple independent experiments 

confirmed these findings (Figures S2A–S2C). We further explored the temporal regulation of 

mTOR signaling under serum-starved conditions. We found that WNT3A activated both mTOR 

complexes in serum-starved ST2 cells within 5 min of stimulation and throughout 24 hr of 

treatment (Figures 4B and 4C). In contrast, WNT5A, which did not induce glycolysis, did not 

stimulate mTORC2 (Figure S1J). Confirming the activation of mTORC2 signaling by WNT3A, 

phosphorylation of PKCα at S657, FOXO3A at T32, and NDRG1 at T346, all previously shown 

to require mTORC2 activity (García-Martínez and Alessi, 2008; Guertin et al., 2006), were also 

induced (Figures 4B and 4D). Furthermore, as in ST2 cells, WNT3A activated mTORC2 and 

induced the glycolytic enzymes in MEFs and primary osteoblast-lineage cells from the mouse 

calvaria (Figure 4E). Knockdown of RICTOR, an mTORC2-specific component, greatly reduced 

both basal and induced mTORC2 signaling, but not mTORC1 (Figure 5A and Figure S4A). 

RICTOR knockdown also abolished the upregulation of HK2 and LDHA by WNT3A, as well as 

WNT3A-induced glucose consumption, lactate production, and media acidification (Figures 5B–

5D and Figure S4B). The effects of RICTOR knockdown on WNT3A-induced mTOR signaling, 

glycolytic enzymes, and glucose consumption were all confirmed with a second shRNA (Figures 

S4C–S4E). Similarly, PP242 and Torin 1, inhibitors of both mTORC1 and mTORC2, greatly 

suppressed WNT3A-induced glucose consumption (Figures S4F and S4G). MK-2206, an 
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allosteric AKT inhibitor preventing S473 phosphorylation, completely abolished WNT3A-

induced glucose consumption as well as LDHA and PDK1 upregulation (Figures 5E and 5F). 

Use of a lower concentration (0.1 μM) of MK2206 suppressed WNT3A-induced glucose 

consumption to a lesser degree, but an even lower concentration (0.01 μM) did not have an effect 

(Figure S4H). MK-2206 at the effective dosages did not affect cell numbers (Figure S4I). In 

contrast to RICTOR, knockdown of RAPTOR, an mTORC1-specific component, suppressed 

mTORC1, but not mTORC2 activation or the induction of PDK1, LDHA, and HK2 by WNT3A 

(Figures 5G and 5H and Figure S4J). Interestingly, RAPTOR knockdown activated basal 

mTORC2 and increased the basal levels of the glycolytic enzymes without WNT stimulation 

(Figures 5G and 5H), which was likely responsible for the increased basal glucose consumption 

(Figure 5I). Nonetheless, RAPTOR knockdown did not prevent further stimulation of glucose 

consumption or lactate production by WNT3A (Figures 5I and 5J). Conversely, activation of 

mTORC1 by knockdown of TSC2 did not increase glucose consumption by itself, nor did it 

affect WNT3A-induced glucose consumption (Figure 5K, data not shown). Thus, WNT3A 

stimulates glycolysis predominantly through mTORC2 activation. 

How does WNT signaling activate mTORC2? DKK1, which prevents WNT from binding 

to LRP5 or LRP6, abolished LRP6 phosphorylation, mTORC2, but not mTORC1 activation by 

WNT3A at 1 hr (Figure 6A). Moreover, DKK1 abrogated the induction of β-catenin, HK2, 

LDHA, GLUT1, and PDK1 after 24 hr of WNT3A treatment (Figure 6B). Importantly, DKK1 

abolished the increase in glucose consumption in response to WNT3A (Figure 6C). To 

distinguish the relative contribution of LRP5 versus LRP6 in this regulation, we performed 

knockdown experiments. Remarkably, knockdown of LRP5 alone essentially recapitulated the 

effect of either DKK1, or double knockdown of LRP5 and LRP6, in abolishing WNT3A-induced 
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glucose consumption, whereas knockdown of LRP6 had a relatively minor effect (Figures 6D 

and 6E). The differential effect of LRP5 versus LRP6 knockdown was confirmed with a second 

shRNA for each molecule (Figures S3A and S3B). We further examined potential compensation 

between LRP5 and LRP6 when either molecule was knocked down. Interestingly, LRP6 

knockdown doubled Lrp5 mRNA but did not increase its protein level, whereas LRP5 

knockdown did not affect either mRNA or protein of LRP6 (data not shown). Confirming the 

importance of mTORC2, knockdown of LRP5 but not LRP6 suppressed mTORC2 activation, 

even though either knockdown similarly suppressed the accumulation of the stabilized form of β-

catenin in response to WNT3A ( Figure 6F). Moreover, knockdown of LRP5 but not LRP6 

eliminated the induction of HK2 by WNT3A (Figure 6F). Thus, LRP5 appears to be the principle 

mediator for WNT3A to stimulate glycolysis. 

We next investigated how WNT-LRP5 signaling activates mTORC2. Because we have 

previously shown that WNT-LRP5/6 signaling activates the Rho family small GTPase RAC1 

(Wu et al., 2008), and others have reported that RAC1 mediates both mTORC1 and mTORC2 

activation (Saci et al., 2011), we examined the relevance of RAC1 in WNT3A-induced mTORC2 

signaling. Knockdown of RAC1 suppressed the induction of P-AKT, P-FOXO3A, and LDHA by 

WNT3A (Figure 6G and Figure S5A), as well as WNT3A-induced glucose consumption 

(Figure 6H). A second shRNA against RAC1 confirmed its role in mTORC2 activation and 

glycolysis stimulation by WNT3A (Figures S5B–S5D). Because the previous study 

demonstrated that RAC1 membrane translocation, but not its GFP-bound form, mediates mTOR 

activation (Saci et al., 2011), we examined the effect of WNT on RAC1 subcellular localization 

by confocal microscopy. Indeed, WNT3A induced accumulation of RAC1 at the plasma 

membrane (Figure 6I). Specifically, out of 85 cells counted, 23 in the control but 61 in the 
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WNT3A-treated sample showed membrane localization of RAC1. Similarly, virally expressed 

WNT10B also induced RAC1 accumulation at the plasma membrane (Figure S5E). Thus, WNT 

activates mTORC2 through LRP5 and RAC1 to stimulate glycolysis. 

 

3.3. Metabolic Regulation Contributes to WNT-Induced Osteoblast Differentiation 

We then tested whether the metabolic regulation plays a role in WNT-induced osteoblast 

differentiation in ST2 cells. Because WNT induced glucose consumption, we hypothesized that 

glucose concentrations may impact osteoblast differentiation. Indeed, reducing glucose 

concentration from the normal 5 mM to 1 mM greatly impaired osteoblast differentiation in 

response to WNT3A, as indicated by the decreased expression of Alpl and Ibsp (Figure 7A), 

even though β-catenin was similarly stabilized by WNT3A under both conditions (Figure 7B). 

The lower glucose concentration did not affect cell numbers but markedly reduced the extent of 

induction in glucose consumption by WNT3A (Figure 7C and Figure S6A). The cells also 

produced much less lactate with or without WNT3A (Figure S6B). The inhibitory effect of low 

glucose was specific to WNT3A, as BMP2 induced osteoblast differentiation similarly with 

either 5 mM or 1 mM glucose (Figure S6C). Next, we tested the role of mTORC2 in WNT3A-

induced osteoblast differentiation. RICTOR knockdown suppressed osteoblast differentiation 

(Figure 7D). Similarly, Torin 1, which inhibits both mTORC1 and mTORC2, greatly diminished 

the expression of Alpl and Ibsp in response to WNT3A (Figure S6D). Finally, we examined the 

roles of glycolytic enzymes. Knockdown of either LDHA or PDK1, both normally induced by 

WNT3A, greatly reduced the induction of osteoblast marker genes Col1a1 and Ibsp by WNT3A 

(Figure 7E). In addition, either knockdown suppressed the level of Alpl expression in response to 

WNT3A, whereas PDK1 knockdown also reduced the basal level (Figure S6E). In contrast, 
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neither knockdown impaired osteoblast differentiation in response to BMP2 (Figure S6F and 

data not shown). Thus, reprogramming of glucose metabolism specifically contributes to WNT-

induced osteoblast differentiation. 

 

3.4. WNT-LRP5 Signaling Increases Glycolysis in vivo 

Lastly, we tested whether WNT-LRP5 signaling reprograms glucose metabolism in vivo. 

We first examined the Lrp5−/− mice that are known to be defective in bone formation (Holmen 

et al., 2004; Kato et al., 2002). These mutants at 6 weeks of age contained a much lower level of 

HK2, LDHA, and PDK1 in their bones when compared to the littermate controls (Figure 7F). 

Moreover, the serum lactate levels in 1-month-old Lrp5−/− mice were significantly lower than 

those in their littermate controls (Figure 7G). To rule out the possibility that the metabolic 

changes in bone were secondary to the effects on other tissues, we generated Osx-Cre;Lrp5f/f 

mice (CKO) containing bone-specific deletion of Lrp5. We found a notable decrease in the levels 

of HK2, PDK1, and LDHA in the bones of CKO mice at 10 weeks of age, coupled with reduced 

mTORC2 activity (Figure 7H). Analyses with μCT techniques revealed obvious osteopenia in 

the CKO mice when compared to the littermate control (Figure 7I and Figures S7A and S7B). 

Consistent with reduced bone formation, the serum P1NP (procollagen type I N-terminal 

propeptide) level was lower in the CKO mice than in the control (Figure 7J). To further establish 

the link between LRP5 and metabolic regulation in bone, we studied the high-bone-mass (HBM) 

mice harboring the point mutation of A214V in LRP5 (Cui et al., 2011). We confirmed by μCT 

analyses that mice either heterozygous or homozygous for the mutant allele exhibited markedly 

higher bone mass at 2 months of age (data not shown). Importantly, bones from the HBM mice 

expressed higher levels of HK2, PDK1, and LDHA (Figure 7K). The bone marrow stromal cells 
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isolated from the HBM mice consumed more glucose than their control counterparts when 

cultured in vitro, and the increase in glucose consumption was suppressed by the mTOR 

inhibitor Torin 1 (Figures 7L and 7M). Thus, LRP5 signaling modulates glucose metabolism in 

bone cells in the mouse. 

 

4. Discussion 

We have provided evidence that WNT signaling directly regulates glucose metabolism 

independent of β-catenin signaling. Specifically, WNT3A signals through LRP5 and RAC1 to 

activate mTORC2 and AKT, resulting in upregulation of key glycolytic enzymes. Functionally, 

the metabolic regulation contributes to WNT-induced osteoblast differentiation in vitro and 

correlates with the bone-forming activity of LRP5 signaling in vivo. This study not only 

uncovers a mechanism through which WNT signaling regulates cellular metabolism but also 

demonstrates that metabolic regulation contributes to WNT-induced cell differentiation. 

The present study further expands the repertoire of signaling cascades activated by 

WNT3A. In addition to β-catenin stabilization, we have previously shown that WNT3A signals 

through heterotrimeric G proteins to activate both PLCβ-PKCδ and PI3K-RAC1 signaling in 

ST2 cells (Tu et al., 2007; Wu et al., 2008). Here we show that WNT3A activates mTORC2 

downstream of RAC1. Activation of the different pathways by WNT3A may require distinct 

cell-surface receptor complexes, as β-catenin stabilization and RAC1 activation are inhibited by 

DKK1, but PKCδ activation is not. Taken together, these studies support the notion that WNT 

proteins activate multiple intracellular signaling cascades highly dependent on the cellular 

context, and do not possess intrinsic “canonical” or “noncanonical” signaling properties (van 

Amerongen et al., 2008). 
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The mechanism through which mTORC2 induces glycolytic enzymes remains to be 

further elucidated. The fact that the induction occurs abruptly following WNT3A treatment with 

no change in mRNA levels indicates a transcription-independent mechanism at work. We show 

that AKT, a direct target of mTORC2, is critical for the induction of glycolytic enzymes and 

glycolysis in response to WNT3A. Future studies are necessary to determine whether and how 

mTORC2-AKT signaling affects protein stability or translation of the glycolytic enzymes. 

Our data identify LRP5 as a major coreceptor for WNT3A to induce glycolysis. Although 

RNA-seq experiments revealed that ST2 cells expressed three times as much Lrp6 mRNA as 

Lrp5 (data not shown), knockdown of LRP6 did not have a major effect on WNT3A-induced 

glucose consumption. In light of the finding that LRP6 has a more potent function in mediating 

β-catenin signaling (MacDonald et al., 2011), the two homologous coreceptors may have 

evolved to preferentially execute different WNT signaling cascades. However, because we have 

analyzed glucose metabolism only within the first 24 hr of WNT3A treatment, LRP6 may 

regulate cell metabolism at later time points through β-catenin signaling. Indeed, we found that 

both Ldha and Pdk1 mRNA were induced by WNT3A at 24 hr (Figure S2F), and that 

knockdown of β-catenin partially suppressed the induction of LDHA and PDK1 proteins at this 

time point (data not shown). Furthermore, induction of IRS1 by β-catenin signaling may 

contribute to glucose metabolism in response to insulin (Yoon et al., 2010) (this study). Thus, 

WNT signaling may control glucose metabolism both through the fast-acting, β-catenin-

independent mechanism described here and other slow-acting, β-catenin-dependent mechanisms, 

which may be preferentially mediated by LRP5 and LRP6, respectively. This conclusion is in 

agreement with the previous reports that implicated LRP5, LRP6, and β-catenin in the regulation 

of whole-body metabolism (Fujino et al., 2003; Liu et al., 2011; Mani et al., 2007). 
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The finding that LRP5 mediates WNT-induced metabolic reprogramming may have 

important implications for understanding the pathogenesis of bone disorders caused by LRP5 

mutations. Although the role of LRP5 in regulating both osteoblast number and function in 

postnatal mice is well established, the mechanism underlying LRP5 function has been a matter of 

debate (Cui et al., 2011; Yadav et al., 2008). We have recently reported that β-catenin is 

necessary for normal osteoblast life span and activity in postnatal mice, lending support to the 

notion that β-catenin may mediate some aspects of LRP5 signaling in postnatal bones (Chen and 

Long, 2012). The current study provides an additional mechanism through which LRP5 may 

regulate osteoblast differentiation and function independent of β-catenin. Future studies are 

necessary to determine the relative contributions of the different mechanisms to LRP5 function 

in vivo. 

Beyond cells of the osteoblast lineage, WNT signaling may be a general paracrine 

mechanism that modulates cellular metabolism in the body. Besides cell differentiation, changes 

in cellular metabolism are likely to influence other aspects of cell physiology, as well as whole-

body metabolism. Furthermore, because insulin is an endocrine signal that controls glucose 

metabolism, we expect that WNT may intersect with insulin signaling to coordinate cellular 

metabolism. Indeed, a recent report has shown physical interaction between LRP5 and insulin 

receptor and interdependence between WNT and insulin signaling (Palsgaard et al., 2012). We 

observed greater potency for WNT3A than insulin in inducing glucose consumption in ST2 cells, 

and that WNT3A exerted a similar effect in the absence of serum (hence no insulin). Thus, WNT 

can operate independent of insulin signaling in our setting. Future studies are necessary to 

elucidate the interaction between WNT and insulin signaling in regulating glucose metabolism. 

“Warburg effect” originally describes the phenomenon whereby cancer cells often utilize 
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glucose through glycolysis over oxidative phosphorylation despite the abundance of oxygen 

(Warburg, 1956). The phenomenon is now known to be common to proliferating cells in culture. 

The reason for Warburg effect continues to be an area of active research, but it has been 

proposed that glycolysis produces the necessary intermediate metabolites for fueling cell 

proliferation (Vander Heiden et al., 2009). In our experiments, WNT induced cell differentiation 

without an obvious effect on proliferation. How increased glycolysis promotes differentiation 

remains to be investigated in the future, but it may alter the levels of key intermediate 

metabolites that regulate gene expression. Overall, our study has identified metabolic regulation 

as a new mechanism for WNT proteins to induce cell differentiation. 

 

5. Experimental Procedures 

5.1. Mouse Strains 

Osx-Cre, Lrp5f/f, Lrp5−/−, Lrp5HBM mice are as previously described ( Cui et al., 2011; 

Holmen et al., 2004; Joeng et al., 2011; Rodda and McMahon, 2006). The Animal Studies 

Committee at Washington University has reviewed and approved all mouse procedures used in 

this study. 

 

5.2. Antibodies 

Antibodies for p-Lrp6 (cat#2568), p-Akt(S473) (cat#9271), Akt (cat#9272), p-

S6 (cat#2215), S6 (cat#2217), Raptor (cat#2280), Rictor (cat#2140), Lrp5 (cat#5731), β-actin 

(cat#4970), FoxO3a (cat#2497S), p-FoxO3a-T32 (cat#9464S), p-NDRG1-Thr346 (cat#3217S), 

and P-S6K (cat#9205) are from Cell Signaling Technologies. Hk2 (sc-6521), Ldha (sc-27230), 

Pfk1 (sc-31712), Lrp6 (sc-25317), α-tubulin (sc-8035), and p-PKCα-Ser 657 (sc-12356) total 
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PKCα (sc-208) antibodies are from Santa Cruz Biotechnology. Pfkfp3 (ab96699) antibody is 

from Abcam. Antibody for unphosphorylated β-catenin (05-665) is from Millipore. Pdk1 (KAP-

pk112) antibody is from Assay Designs. RAC1 antibody (610650) is from BD Biosciences. 

Glut1 polyclonal antibody F350 is as previously described and was kindly provided by Dr. 

Michael Mueckler (Washington University School of Medicine) (Haney et al., 1991). HRP-

conjugated anti-rabbit secondary antibody is from GE Healthcare (NA934V), and HRP-

conjugated anti-mouse (sc-2005) and anti-goat (sc-2352) secondary antibodies are from Santa 

Cruz Biotechnology. 

 

5.3. Western Blot 

Protein extracts from cells or bone were prepared in RIPA buffer containing phosphatase 

and proteinase inhibitors. Membranes were imaged with Molecular Imager ChemiDoc XRS+ 

System (Bio-Rad). Quantification of western blots was performed with ImageLab software or 

Photoshop CS3. Detailed procedure is provided in the Supplemental Experimental Procedures. 

 

5.4. Quantitative PCR 

RNA was isolated from whole cells with QIAGEN RNeasy kit (#74104) and was 

transcribed into cDNA using iScript cDNA synthesis kit (Bio-Rad). Fast-start SYBR Green (Bio-

rad) and 0.05 μM primers were used in each reaction. 18S RNA was used for normalization. The 

primer sequences and additional information are provided in the Supplemental Experimental 

Procedures. 
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5.5. Cell Culture 

For routine cultures, ST2 cells were grown in α-MEM (GIBCO, cat#12561), MC3T3 

subclone 4 cells were grown in α-MEM (GIBCO catalog number A1049001), HEK293T and 

3T3-L1 cells were grown in DMEM (GIBCO catalog number 11965), and M2-10B4 cells 

(ATCC CRL-1972) were grown in RPMI (GIBCO, catalog number 11875), all supplemented 

with 10% heat-inactivated FBS (GIBCO) and Pen Strep (GIBCO, catalog number 14140). MLO-

Y4 cells were grown on pre-collagen-coated plates in α-MEM containing nucleosides (GIBCO, 

catalog number 12571-063) supplemented with heat-inactivated FBS (2.5%), calf serum (2.5%), 

and Pen Strep. 

For all experiments, unless indicated otherwise, cells were cultured in glucose- and 

glutamine-free α-MEM (GIBCO, custom made from catalog number 12561) containing 10% 

FBS and Pen Strep, and freshly supplemented with 5.5 mM glucose plus 2 mM glutamine. 

Recombinant mouse Wnt3a (R&D Systems) was used at 50 ng/ml unless indicated otherwise. As 

a vehicle control for Wnt3a, PBS with 0.5% CHAPS and 0.1 mM EDTA was used. Recombinant 

human BMP2 (R&D Systems) was used at 300 ng/ml. Recombinant mouse Dkk1 (R&D 

Systems) was used at 500 ng/ml, and cells were pretreated with Dkk1 for 30 min before the 

addition of Wnt3a. Torin1 (Tocris Biosciences), PP242 (Sigma), and rapamycin (Sigma), all 

dissolved in DMSO, were used at 20, 10, and 100 nM, respectively. Insulin (Sigma) was used at 

1 or 2 μg/ml. 

Bone marrow stromal cells (BMSCs), calvarial cells, and MEFs were isolated from 

mouse adult long bones, newborn calvaria, and E13.5 embryos, respectively, according to 

established protocols.  
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5.6. Glucose Consumption and Uptake Assays, Lactate and ATP Measurements 

For glucose consumption measurements, aliquots of the media and glucose standards 

were assayed with Glucose (HK) Assay Kit (Sigma catalog number GAHK20) and read at 340 

OD using a plate reader (BioTek model SAMLFTA, Gen5 software). For glucose uptake assays, 

cells were incubated with 100 μM 2-NBDG for 30 min and then prepared for fluorescence 

reading following the manufacturer’s instructions (Glucose Uptake Cell-Based Assay Kit, 

Cayman Chemical). Fluorescence intensity measured at 485/535 nm (excitation/emission) using 

a plate reader (BioTek model SAMLFTA, Gen5 software) was normalized to the protein content 

in each well. For lactate measurements, L-lactate assay kit from Eton biosciences (catalog 

number 1200011002) was used. To measure lactate levels in the serum, mice were fasted for 8 hr 

before blood was collected from the periorbital venous sinus under anesthesia. Intracellular ATP 

was measured based on a method previously described (Chi et al., 2002).  

 

5.7. OCR and ECAR Measurements with Seahorse Cellular Flux Assays 

ST2 cells were plated in XF96 plates at 20,000 cells per well after coating the plates with 

cell-tak (BD Biosciences). The next day, the cells were treated with 100 ng/ml Wnt3a for 6 hr, 

then switched to XF Assay Medium Modified DMEM (Seahorse cat#101022-100) supplemented 

with 5.5 mM glucose, and further incubated in CO2-free incubator for 1 hr. Oligomycin and 

FCCP (Seahorse Stress Kit) were prepared in XF assay medium with final concentration of 

5 μM and 1 μM, respectively, and were injected during the measurements. At the end of the 

assays, protein concentrations were measured for normalization. 
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5.8. shRNA Knockdown and Retroviral Infection 

Lentiviral shRNA targeting vectors were purchased from Genome Center at Washington 

University. Targeted sequences and virus production procedure are provided in the Supplemental 

Experimental Procedures. Retroviruses expressing WNT10B or GFP were generated according 

to a procedure as previously described (Hu et al., 2005). 

 

5.9. Analyses of Postnatal Mouse Bones 

Micro-CT analyses were performed with Scanco μCT 40 (Scanco Medical AG) according 

to ASBMR guidelines (Bouxsein et al., 2010). Quantification of the trabecular bone in the 

proximal tibia was performed with 100 μCT slices (1.6 mm total) immediately below the growth 

plate. To measure P1NP in the serum, serum was collected from mice after 6 hr of fasting and 

analyzed with Rat/Mouse P1NP EIA kit (Immunodiagnostic Systems, Ltd., catalog number DS-

AC33F1). 

Bone protein extracts were prepared from femurs and tibias of postnatal mice with RIPA 

buffer. After removal of both epiphyses of each bone, bone marrow cells were removed by brief 

centrifugation. The remaining bone shafts were rinsed twice in the cold PBS, flash frozen in 

liquid nitrogen, and then manually ground into a fine power with a mortar/pestle. The bone 

power was incubated on ice for 30 min, with 200 μl RIPA buffer containing phosphatase 

inhibitors (Roche, catalog number 04906845001) and proteinase inhibitors (Roche, catalog 

number 11 836 170 001). The protein extracts were then collected after centrifugation for 10 min. 

 

5.10. GC/MS Analyses 

At the end of the Wnt3a treatment, [U-13C6] glucose was added to the medium at a final 
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concentration of 0.55 mM and incubated for 1 hr. At the end of the [U-13C6] incubation, an 

aliquot of medium from each sample was collected for analyses. The cells were then washed 

with cold PBS and extracted three times with −80 C methanol on dry ice. Extracts were dried in 

a centrifugal concentrator (Savant SpeedVac, Thermo Scientific, Millford, MA) and derivatized 

at 70°C for 30 min with either 1:1 acetonitrile:N-methyl-N(tert-

butyldimethylsilyl)trifluoroacetamide (MTBSTFA, to make tert-butyldimethylsilyl derivatives 

[tBDMS] of lactate) or 10% heptafluorobutyric anhydride in ethyl acetate (to make 

heptafluorobutyryl derivative [HFB] of glucose). 

GC-MS/EI analyses were performed with Hewlett-Packard 6890 series gas 

chromatograph interfaced to an Agilent 5973N mass spectrometer. Helium was the carrier gas at 

constant flow rate of 1.0 mL/min. The injector and the transfer line temperatures were set at 

250°C and 280°C, respectively. GC analysis was performed with a DB-5MS column (30 m × 

0.25 mm × 0.25 mm; Agilent). The initial temp of the oven was 90°C held for 0 min and then 

ramped at 20°C per min to 230°C, and next ramped at 70°C per min to 275°C held for 3.5 min 

for a total run of 11 min. Sample (2.0 μl) in heptane was injected with a 7683 autosampler (split 

mode; split ratio of 5:1). The electron energy was set at 70 eV and the ion source temperature 

kept at 230°C. 

Isotopomer distributions were measured by electron impact ionization for tBDMS 

derivative of lactate (m/z 261–264) and for the HFB derivative of glucose (m/z 519–525). All 

isotopomer distributions were corrected for natural abundance and for spectral overlap (Wolfe 

and Chinkes, 2004). 
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5.11. Statistical Analyses 

All quantitative data are presented as mean ± STDEV with a minimum of three 

independent samples. Statistical significance is determined by Student’s t test. 
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6. Figures 

Figure 1. WNT Stimulates Glucose Consumption in Cell Culture 

 

 

(A) Increase in glucose consumption by ST2 cells treated with WNT3A (W) over vehicle (V) for 

indicated times. 

(B) Glucose uptake assay following WNT3A (W) or vehicle (V) treatment for indicated times. 

(C) Induced glucose consumption after 24 hr by purified WNT3A (3A) or virally expressed 

WNT10B (10B). Increases as percent over control cells incubated with vehicle (V) and a GFP-

producing virus (IE). 

(D–G) Induced glucose consumption by WNT3A in indicated cell lines, MEFs, and mouse 

calvarial cells. Increases as percent over vehicle-treated cells. Asterisk denotes significant 

difference over respective controls, n = 3, p < 0.05. Error bars, SD. 
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Figure 2. WNT3A Stimulates Aerobic Glycolysis in ST2 Cells 

 

 

(A) Media lactate levels following vehicle (V) or WNT3A (W) treatments. 

(B) Media lactate levels following viral expression of GFP (IE) or WNT10B for 24 hr. 

(C and D) Extracellular acidification rate (ECAR) (C) and oxygen consumption rate (OCR) (D) 

after 6 hr of WNT3A (W) or vehicle (V) treatment. 

(E) Measurements of ECAR and OCR after 24 hr of treatment. 

(F) Intracellular ATP levels after 24 hr of treatment. 

(G–I) Isotopomer enrichment of [U-13C3]-lactate and [U-13C6]-glucose in cell lysates after 6 

(G), 12 (H), or 24 (I) hr of WNT3A (W) or vehicle (V) treatment. Asterisk, n = 3, p < 0.05. Error 

bars, SD. 
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Figure 3. WNT3A Induces Glycolysis Independent of GSK3b and β-Catenin 
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Figure 3. WNT3A Induces Glycolysis Independent of GSK3b and β-Catenin 

 (A and B) Representative western blots of glycolytic regulators in ST2 cells treated with 

WNT3A or vehicle in the presence (A) or absence of serum (B) for indicated times. Cells in (B) 

starved for serum for 12 hr before treatment. Protein abundance normalized to b-actin. 

(C) Knockdown of LDHA or PDK1. shGfp as negative control. Protein abundance normalized to 

a-tubulin. 

(D) Effect of LDHA or PDK1 knockdown on WNT3A-induced glucose consumption. 

(E) Effect of GSK3b knockdown on WNT3Ainduced glucose consumption. Increase in glucose 

consumption as percent over cells treated with shGfp and vehicle. 

(F) Effect of GSK3b knockdown on b-catenin. 

(G) Knockdown of β-catenin and its effect on IRS1. 

(H) Effect of β-catenin knockdown on WNT3Ainduced glucose consumption. 

(I and J) Effect of XAV-939 on b-catenin (I) and WNT3A-induced glucose consumption (J). All 

glucose consumption measured after 24 hr of WNT3A or vehicle treatment. D, DMSO; W, 

WNT3A; V, vehicle. Asterisk, n = 3, p < 0.05. Error bars, SD. 
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Figure 4. WNT3A Activates mTORC2 
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Figure 4. WNT3A Activates mTORC2 

(A–D) Representative western blots of mTOR targets in ST2 cells treated with WNT3A (W) 

or vehicle (V) with (A) or without serum (B–D) for indicated time. Cells in (B)–(D) were 

serum starved for 24 (B) or 12 (C and D) hr before treatment. ‘‘0 min’’ samples in (B) were 

treated with vehicle for 30 min. 

Phosphoprotein was normalized to respective total protein, except for P-NDRG1 and P-

S6K1 in (C), which were normalized to b-actin. (E) Effect of WNT3A on mouse calvarial 

cells or MEFs. Calvarial cells treated with WNT3A or vehicle for 1 hr after 12 hr serum 

starvation. MEFs treated with WNT3A or vehicle for 6 hr in the presence of serum.  
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Figure 5. WNT3A Induces Glucose Consumption via mTORC2 Activation
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Figure 5. WNT3A Induces Glucose Consumption via mTORC2 Activation 

(A–D) Effect of RICTOR knockdown (shRictor) on mTORC1 versus mTORC2 (A), glycolytic 

enzymes (B), glucose consumption (C), and lactate production 

(D) after 24 hr of WNT3A (W) or vehicle (V) treatment. 

(E and F) Effect of AKT inhibitor MK2206 on glycolytic enzymes (E) and glucose consumption 

(F) after 24 hr of WNT3A (W) or vehicle (V) treatment. 

(G–J) Effect of RAPTOR knockdown (ShRptr) on mTORC1 versus mTORC2 (G), glycolytic 

enzymes (H), glucose consumption (I), and lactate production (J) after 24 hr of WNT3A (W) or 

vehicle (V) treatment. 

(K) Effect of TSC2 knockdown (shTSC2) on mTORC1 and glucose consumption after 24 hr of 

treatment. shGFP or shLacz as negative control. 

Asterisk, n = 3, p < 0.05. Error bars, SD 
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Figure 6. WNT3A Stimulates Glucose Consumption via LRP5 and RAC1 
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Figure 6. WNT3A Stimulates Glucose Consumption via LRP5 and RAC1 

(A and B) Effects of DKK1 on WNT3A-induced phosphorylation and glycolytic enzymes. P-

LRP6, P-AKT, and P-S6 normalized to respective total protein. Other 

proteins normalized to b-actin. 

(C) Effect of DKK1 on WNT3A-induced glucose consumption. 

(D–F) Effect of LRP5 or LRP6 knockdown (D) on WNT3A-induced glucose consumption (E), 

and on signaling events after 1 hr of treatment (F). b-CAT* denotes b-catenin unphosphorylated 

at N terminus. 

(G) Effect of RAC1 knockdown on mTORC2 and LDHA induction by 24 hr WNT3A treatment. 

(H) Effect of RAC1 knockdown on WNT3A-induced glucose consumption. 

(I) Representative confocal images of RAC1 immunofluorescence. ST2 cells were serum starved 

overnight before being treated for 2 hr with vehicle (Ctrl) or 

Wnt3a. Arrows denote RAC1 membrane localization. All glucose consumption was measured 

after 24 hr of WNT3A or vehicle treatment. V, vehicle; W, WNT3A. 

Asterisk, n = 3, p < 0.05. Error bars, SD. 
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Figure 7. Metabolic Reprogramming by WNT-LRP5 Signaling in Osteoblast Lineage 

 

(A) Effect of glucose concentration on WNT3Ainduced osteoblast differentiation in ST2 cells 

after 4 days of stimulation. Expression of osteoblast markers was determined by qPCR. Fold 

changes between WNT3A- and vehicle-treated cells were calculated after normalization to 18S 

RNA. 

(B and C) Effect of glucose concentration on b-catenin stabilization (B) and WNT3A-induced 

glucose consumption (C) after 24 hr of treatment. 

(D and E) Effect of RICTOR (D), LDHA, or PDK1 (E) knockdown on WNT3A-induced 

osteoblast differentiation in ST2 cells after 4 days of treatment. Expression of osteoblast markers 

was determined by qPCR. Fold changes between WNT3A- and vehicle-treated cells were 

calculated after normalization to 18S RNA. 
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Figure 7. Metabolic Reprogramming by WNT-LRP5 Signaling in Osteoblast Lineage 

(F) Western blots of glycolytic enzymes in bone protein extracts from Lrp5-/- versus wild-type 

littermates. > denotes correct band for HK2. 

(G) Serum lactate levels from Lrp5-/-versus wild type littermates. 

(H) Western blots with bone protein extracts from Lrp5CKO versus Osx-Cre littermates (Ctrl). 

(I and J) Bone phenotype analyses of Lrp5CKO versus Osx-Cre littermates (Ctrl) by mCT (I) 

and serum P1NP assays (J). 

(K) Western blots of glycolytic enzymes in bone protein extracts from homozygous LRP5 HBM 

mice versus wild-type littermates. 

(L) Glucose consumption after 48 hr of culture by BMSC from LRP5 HBM (heterozygous or 

homozygous) mice versus wild-type littermates. 

(M) Effect of Torin1 on 48 hr glucose consumption by BMSC from homozygous LRP5 HBM 

mice. D, DMSO. Asterisk, n R 3, p < 0.05. Error bars, SD. 
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7. Supplemental Figures 
 
 

Figure S1. Effects of WNT3A, insulin, BMP2 and WNT5A on ST2 cells.  
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Figure S1. Effects of WNT3A, insulin, BMP2 and WNT5A on ST2 cells.  

(A) Cell numbers after WNT3A (W) or vehicle (V) treatment for 24 hours.  

(B) Cell cycle profiling after 6 or 24 hours of treatment. A representative profile after 6 hours of 

treatment is shown to the right.  

(C) Glucose consumption induced by insulin versus WNT3A after 24 hours of treatment.  

(D) Induction of glucose consumption by WNT3A or insulin after 24 hours in 

the absence of serum.  

(E‐F) Effect of WNT5A (100 ng/ml) or BMP2 (300 ng/ml) on glucose 

consumption after 24 hours.  

(G) Expression of Ibsp in ST2 cells assayed by qPCR following 

incubation in osteogenic medium (OM) for indicated times. Fold change over cells in OM for 1 

day after normalized to 18S RNA.  

(H) Effect of WNT3A on 24‐hour glucose consumption by ST2 cells after incubation in OM for 

indicated days.  

(I) Effect of WNT5A on lactate production after 24 hours of treatment. (J) Effect of WNT5A on 

P‐MARCKS and PAKT (S473) after 1‐hour treatment in the absence of serum following 12‐hour 

serum starvation. Phospho‐protein levels normalized to respective total protein. *: n=3, p<0.05. 

Error bars: STDEV. 

 

 
 
 
 
 
 
 
 



83 
 

Figure S2. Effects of WNT3A on metabolic regulators in ST2 cells.  
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Figure S2. Effects of WNT3A on metabolic regulators in ST2 cells.  

(A‐C) Quantification of Western blots from independent experiments following WNT3A (W) or 

vehicle (V) treatment for indicated duration. P‐S6 and P‐AKT (S473) normalized to respective 

total protein levels; all other proteins normalized to β‐actin.  

(D) Western blot of glycolytic 

enzymes after WNT3A treatment for indicated time after 24‐hr serum starvation. Protein levels 

normalized to β‐ACTIN. “0” treatment cells exposed to vehicle for 30 mins.  

(E, F) qPCR analyses of mRNA following 6 (E) or 24 (F) hours of treatment. Fold change 

calculated between WNT3A (W) and vehicle (V) treatments after expression level first 

normalized to respective 18S rRNA. Bar graphs: n=3, *: p<0.05, error bar = STDEV. 
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Figure S3. Confirmation of the role of LRP5, LRP6 and β‐catenin by a second shRNA 

construct.  

 

 

 

(A) Effect of LRP6 or β‐catenin knockdown on WNT3A‐induced glucose consumption. (B) 

Effect of LRP5 knockdown on WNT3A‐induced glucose consumption. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



86 
 

Figure S4. Role of mTOR and AKT signaling in WNT3A‐induced glucose consumption. 
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Figure S4. Role of mTOR and AKT signaling in WNT3A‐induced glucose consumption. 
 
(A) shRNA knockdown of RICTOR assayed by Western blot.  

(B) Effect of Rictor knockdown on ECAR after 6 hours of WNT3A or vehicle treatment.  

(C‐E) Effect of a second Rictor shRNA on RICTOR levels (C), WNT3A‐induced glucose 

consumption (D), mTOR signaling and glycolytic enzymes (E). (F, G) Effect of mTOR 

inhibitors on WNT3A‐induced mTOR signaling (F) and glucose consumption (G) after 24 hours 

of treatment.  

(H) Effect of different concentrations of MK2206 on WNT3A‐induced glucose consumption.  

(I) Effect of MK2206 on cell numbers. (J) Knockdown of RAPTOR assayed by Western blot. 

Bar graphs: n=3, *: p<0.05, error bar = STDEV. 
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Figure S5. Role of RAC1 in WNT‐induced mTOR signaling and glycolysis.  
 

 
 
(A) Knockdown of Rac1 assayed by qPCR with 18S RNA as normalizer. (B‐D) Effect of a 

second Rac1 shRNA on Rac1 mRNA (B), WNT3A‐induced glucose consumption (C), mTOR 

signaling and glycolytic enzymes (D). (E) Confocal microscopy of RAC1 immunofluorescence. 

ST2 cells were infected overnight with retrovirus expressing either GFP (Ctrl) or WNT10B. Bar 

graphs: n=3, *: p<0.05, error bar = STDEV. 
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Figure S6. Metabolic regulation of osteoblast differentiation in ST2 cells.  
 

 
 
(A) Cell numbers after 4 days of WNT3A treatment in media containing 5 mM or 1 mM glucose.  

(B) Lactate levels after 24 hours of WNT3A or vehicle treatment.  

(C) Effect of glucose concentration on BMP2‐induced expression of osteoblast differentiation 

markers assayed by qPCR.  

(D) Effect of Torin1 on osteoblast differentiation markers after 4 days of WNT3A 

treatment, assayed by qPCR.  

(E) Effect of LDHA or PDK1 knockdown on WNT3A‐induced Alpl expression as determined by 

qPCR.  

(F) Effect of LDHA knockdown on BMP2‐induced osteoblast differentiation as determined by 

qPCR. All qPCR data normalized to 18S RNA 

before calculation of fold changes. Bar graphs: n=3, *: p<0.05, error bar = STDEV 
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Figure S7. Analyses of bone phenotype of Osx‐Cre;Lrp5f/f mice at ten weeks of age. 
 

 
 

(A) Representative 3‐D reconstruction of trabecular bone in proximal tibia by μCT.  

(B) Quantification of trabecular bone parameters in proximal tibia by μCT. Data from male 

littermates. Ctrl: Osx‐Cre; CKO: Osx‐Cre;Lrp5f/f . Bar graphs: n=3, *: p<0.05, error bar = 

STDEV. 
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1. Abstract 

WNT signaling has emerged as a major mechanism stimulating bone formation, but the 

downstream signaling mechanism is not fully understood. We have previously shown that WNT 

signaling stimulates lactate-producing glycolysis in the presence of oxygen (aerobic glycolysis), 

but the effect of WNT on other metabolic fates of glucose is unknown. Moreover, the role of 

aerobic glycolysis in bone formation has not been examined in vivo. Here, by tracking the 

production of CO2 from glucose position-specifically labeled with radioactive 14C, we found that 

WNT3A suppressed the contribution of glucose to both TCA cycle and pentose phosphate 

pathway in vitro. Pharmacological enhancement of pyruvate entering the TCA cycle attenuated 

the high-bone mass phenotype caused by hyperactive WNT signaling in the mouse. In addition, 

genetic deletion of LDHA from osteoblast-lineage cells suppressed normal postnatal bone 

accrual due to reduced osteoblast number and function. These results supports the model that 

aerobic glycolysis induced by WNT or other physiologic signals enhances bone anabolism.  
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2. Introduction 

WNTs are a large family of glycoproteins that activate both β-catenin-dependent and -

independent intracellular pathways and are involved in bone formation. The first evidence for the 

role of WNT signaling in bone formation came from human diseases associated with mutations 

in the co-receptor Lrp5. Loss- and gain-of-function mutations in Lrp5 are linked to low and high 

bone mass diseases, respectively (Babij et al., 2003; Gong et al., 2001). These phenotypes were 

confirmed by mouse genetic studies and further supported by evidence revealing the significance 

of WNT signaling at different stages of osteoblast differentiation. However, the discrepancy 

between the osteoblast phenotypes obtained by alterations of Lrp5 and β-catenin postnatally 

(Lrp5 mutations are associated with osteoblast defects, while β-catenin mutations mostly effect 

osteoclasts) suggests that there might be β-catenin-independent WNT pathways also important 

for osteoblast differentiation and function (Cui et al., 2011; Gilbert, 2000).   

We have shown that WNT signaling increases glucose utilization and directs the usage of 

glucose towards aerobic glycolysis; this process was regulated by a signaling cascade dependent 

on Lrp5-Rac1-mTORC2 and independent of β-catenin (Esen et al., 2013). The increase in 

aerobic glycolysis was accompanied by the enhanced expression of glycolytic enzymes, 

including lactate dehydrogenase A (LDHA), which converts pyruvate to lactate, and pyruvate 

dehydrogenase 1 (PDK1) that suppresses pyruvate from entering the TCA cycle by inactivating 

the pyruvate dehydrogenase complex. These enzymes were also increased in mice with Lrp5 

gain-of-function mutation (thereafter Lrp5 HBM), but suppressed in animals lacking Lrp5 (Esen 

et al., 2013). However, the contribution of aerobic glycolysis to bone formation has not been 

explored in vivo.   
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Although the previous study detailed that WNT3A increased glucose utilization and 

lactate production, it did not examine the other metabolic fates of glucose. These other fates 

include oxidation in TCA cycle, oxidation via Pentose Phosphate Pathway (PPP) and fueling into 

hexosamine biosynthetic pathway (HBP) (Bouche et al., 2004; Teo et al., 2010). Early studies 

have established that carbons at specific positions of the glucose molecule are released as CO2 

through the oxidative branch of PPP, the decarboxylation of pyruvate to acetyl-coA at the entry 

of TCA cycle, or the subsequent rounds of TCA cycle. This knowledge has allowed one to track 

the various metabolic fates of glucose through positive-specific labeling with radioactive 14C 

(Reitzer et al., 1979).  

Lactate dehydrogenase (LDH) is a tetrameric enzyme consisting of subunits A, B or C 

expressed from different genes. LDH catalyzes the conversion of pyruvate to lactate in the 

cytoplasm and replenishes NAD+, which is an important oxidizing molecule necessary for the 

continuation of glycolysis. Different homo and hetero combinations of A and B subunits 

constitute 5 different enzyme forms LDH1-5, which are expressed ubiquitously. On the other 

hand, the C subunit is specific to the testis and sperms (Kopperschlager and Kirchberger, 1996). 

The A-subunit of the LDH enzyme, LDHA, is increased in many cancer cells (Goldman et al., 

1964). Knocking down LDHA in cancer cells was shown to switch the glucose flux towards 

TCA cycle and reduced tumor formation, indicating that LDHA is not only a hallmark of altered 

metabolism but also a key checkpoint to control glycolytic flux (Fantin et al., 2006; Le et al., 

2010). We previously showed that LDHA was enhanced by WNT3A and this enhancement was 

important for WNT3A-induced osteoblast differentiation in vitro. However, the role of LDHA in 

bone formation has never been explored in vivo. 
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In this study, we have investigated the effect of WNT3A on other cellular glucose fates. 

We have also manipulated the metabolic glucose flux in vivo either by genetically removing 

LDHA or inhibiting PDKs with dichloroacetate (DCA). The results have revealed an important 

role for glycolysis in bone formation in vivo.   

 

3. Results 

3.1. WNT3A suppresses glucose oxidation in PPP and TCA cycle 

To have a better understanding of the effect of WNT signaling on glucose metabolism, 

we examined changes in metabolites in response to WNT3A. We performed an unbiased 

metabolomics study in ST2 cells, a mouse bone marrow stromal cell line that undergo osteoblast 

differentiation (Tu et al., 2007) and metabolic reprogramming (Esen et al., 2013) in response to 

WNT signaling. We discovered that 24 hours of WNT3a treatment significantly suppressed the 

intracellular levels of ribose-5 phosphate as well as ribulose / xylulose-5-phosphate, all of which 

are intermediates in PPP (Figure 1). Since this result only showed the steady state for the 

intermediates, we decided to examine the flux of glucose towards PPP.  For this, we used 

glucose specifically labeled at C1 ([14C1]-Glucose) or C6 ([14C6]-Glucose). C1 in glucose is 

expected to release as CO2 through either PPP or after the 2nd cycle following entry of pyruvate 

to the TCA cycle, whereas C6 is only released as CO2 from the latter (Gilbert, 2000) (Figure 2). 

We treated ST2 cells with WNT3A or vehicle together with one of the labeled glucose in a 

sealed flask designed to trap CO2 produced by the cells (Figure 3). We then assessed the 

radioactivity via a scintillation counter. The labeling index was calculated by normalizing the 

radioactive CO2 detected as disintegration per minute (DPM) with the total (labeled and 

unlabeled) glucose uptake in the same experiment and the total cell number in a parallel 



102 

 

experiment. Relative flux through PPP was calculated as the difference of 14C1-C6 CO2, 

normalized to the total glucose uptake and cell number. We found that 14C1 labeling index was 

reduced with WNT3A treatment, while 14C6 labeling index was not significantly different. 

Importantly, the relative PPP flux in the WNT3A-treated samples was suppressed (Figure 4A). 

Thus, WNT3A suppresses glucose contribution to PPP.  

Since the glucose flux to PPP was suppressed by WNT3A, we wanted to determine if 

glucose metabolism via the TCA cycle was affected. We used the same experimental set-up with 

radioactively labeled glucose 14C [3, 4] to determine the relative amount of glucose entering the 

TCA cycle via decarboxylation of pyruvate to acetyl-CoA, as carbons at 3 and 4 positions are 

only released as CO2 during this conversion (Figure 2). We calculated the relative TCA 

contribution index by normalizing the CO2 radioactivity level to the total glucose uptake and the 

total cell number in each culture at the end of 24 hours treatment. We detected a suppression of 

glucose contribution to TCA cycle (Figure 4B). We previously showed that WNT3A did not 

change mitochondrial oxygen consumption at 24 hours (Esen et al., 2013). The reduced 

contribution of glucose to TCA cycle suggests that cellular respiration may be fueled by other 

nutrient sources. Indeed, we observed that WNT3A increased glutamine uptake and its 

conversion to citrate at 24 hours; the later change was determined by mass isotopomer 

distribution analyses with stable-isotopically labeled glutamine (data not shown). The reason 

why WNT3A treatment changes the carbon source for the TCA cycle from glucose to glutamine 

remains to be investigated. Overall, WNT3A diverts glucose away from the TCA cycle by 

repressing oxidation of pyruvate to acetyl-coA. 
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3.2. LDHA is required for bone formation 

Our results so far, together with our previous studies, have established that WNT3A 

enhances glucose contribution to lactate production via enhanced glycolysis while suppressing 

the contribution to PPP and TCA cycle. We then examined the effect of enhanced glycolysis in 

vivo. We have shown that WNT3A acutely increased LDHA in ST2 cells. To suppress glycolysis, 

we decided to remove Ldha in osteoblast progenitor cells. We used an allele from Eucomm 

referred to as “promoterless knockout first cassette”. This allele contains a lacz-neo cassette 

flanked by FRT sites within the 2nd intron of the Ldha gene, which results a null allele. 

Following the 2nd FRT site, there is a loxP insertion before and after exon 3. We first crossed this 

mice with Rosa26; Flippase mice to create the floxed allele (Figure 5). Later, by using Cre-LoxP 

system, we removed Ldha from osteoblast progenitors by using Osx-Cre. We used heterozygous 

animals with the genotype Osx-Cre; Ldha flox/+ and Osx-Cre;Ldha -/+ as a control and have not 

observed a difference between the two genotypes (thereafter control animals). We used Osx-

Cre;Ldha flox/flox and Osx-Cre;ldha flox/- as mutants and both had comparable bone phenotypes 

(thereafter Osx-Ldha). More importantly, vivaCT analysis at the proximal tibia indicated that 

Osx-Ldha animals had reduced bone mass at trabecular region at both 1 month of age (Figure 6); 

this phenotype persisted at 2 months as analyzed by conventional µCT (Figure 7). Osx-Ldha 

animals were smaller at 1 month of age, but the size difference was mostly diminished by 2 

months (Figure 8A-B). In this study we have not pursued the size difference, but focused on the 

bone phenotype. Overall, our data demonstrate that LDHA is required for proper trabecular bone 

formation in vivo.   

We next explored the Osx-Ldha phenotype to determine whether the reduced bone mass 

was a result of attenuated bone formation or increased bone resorption. Histologic sections 
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confirmed the reduced bone mass. Static histomorphometry analyses confirmed the reduced bone 

mass and indicated a lower osteoblast number per bone surface (Figure 9A-B). On the other hand, 

serum CTX level (an indicator of osteoclast activity) did not change (Figure 10). Thus, LDHA is 

a critical regulator of osteoblast number without affecting osteoclast function.  

We then examined the osteoblast activity by performing dynamic histomorphometry on 

the periosteal surface of tibias. We found that mineral apposition rate (MAR), mineralized 

surface per bone surface (MS/BS) and bone formation rate (BFR/BS) were all reduced in the 

mutant over the control (Figure 11). Thus, LDHA regulates not only the total number of 

osteoblasts but also the osteoblast activity.  

  To characterize the effect of Ldha removal specifically on postnatal bone accrual and to 

avoid body size-related complications, we took advantage of the fact that Osx-Cre can be 

suppressed by doxycycline (dox). We raised the Osx-Ldha mice on dox from conception until 

one month of age, then withdrew dox and analyzed the bones at 2 months. Removal of Ldha via 

dox withdrawal from 1 through 2 month of age did not affect body weight (Figure 12), but 

caused a slight by statistically significant reduction in trabecular bone mass in both males and 

females (Figure13). This result suggests that LDHA plays a role in postnatal bone accrual.  

Having determined that perturbation of glycolysis via removal of LDHA suppresses 

normal bone formation; we next seek to understand the role of increased glycolysis in 

pathological bone formation caused by hyperactive WNT signaling. Specifically, we treated 

Lrp5 HBM mice with dichloroacetate (DCA) that inhibits PDK activity to stimulate entry of 

pyruvate into TCA cycle. We have previously detected an increase in PDK1 protein levels in the 

bones of Lrp5 HBM animals (Esen et al., 2013). We treated 3-weeks-old Lrp5 HBM mice with 

DCA for 5 weeks. MicroCT analysis showed that at the beginning of the treatment Lrp5 HBM 
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mice already manifested a higher trabecular bone mass compared to the littermate wild-type 

controls (Figure 14). Importantly, DCA significantly reduced bone mass (BV/TV) in the Lrp5 

HBM mice (Figure 15A-B). The decrease in bone mass was further confirmed by histology 

(Figure 15C). On the other hand, DCA had no discernible effect on bone mass in the wild-type 

mice (data not shown). Thus, the increased aerobic glycolysis contributes to the exuberant bone 

formation caused by hyperactive WNT signaling.    

 
4. Discussion 
 

In this study, we show that WNT signaling suppresses glucose oxidation through either 

PPP or TCA cycle. This finding further supports the model that WNT signaling reprograms 

glucose metabolism towards lactate-producing glycolysis. Functionally, we show that LDHA is 

required for optimal bone formation in postnatal mice. Moreover, we have demonstrated that the 

high-bone mass phenotype in Lrp5 HBM mice is partially reversed by enhancing glucose entry 

to TCA cycle. Overall, increased aerobic glycolysis seems to be necessary for osteoblast 

differentiation and function.  

We show that WNT3A suppresses the contribution of glucose to PPP. This result is 

unexpected since PPP provides the ribose necessary for nucleotide production and is expected to 

be active in anabolic reactions. It remains to be investigated why WNT signaling reduces PPP 

and whether this suppression is a driver for differentiation.  

In addition to PPP, WNT3A suppresses glucose oxidation in the TCA cycle. Our finding 

is consistent with the previous reports that lactate is the major end product of glucose during 

osteoblast differentiation (Cohn and Forscher, 1962). Despite the reduced glucose contribution to 

the TCA cycle, mitochondrial oxygen consumption or the cellular ATP level was not changed 

after 24 hours of WNT3a treatment (Esen et al., 2013). These results suggest that WNT-
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stimulated cells utilize alternative fuels for TCA metabolism. Our other parallel studies support 

that glutamine may be the primary fuel source when the cells are stimulated with WNT3A. 

Glutamine is the most prominent anaplerotic carbon source for most of cancer cells 

(DeBerardinis et al., 2007; Portais et al., 1996). It remains to be investigated why WNT3A 

treated cells switch the TCA fuel source from glucose to glutamine, and how this switch 

regulates osteoblast differentiation.  

In the metabolomics studies, we also detected a lower level of N-acetyl-glucosamine 6-

phoshate in WNT3A treated samples (Figure 16). This metabolite is an intermediate of the HBP 

that produces the end product UDP-N-acetyl glucosamine, a necessary substrate for 

glycosylation. Glycosylation can regulate protein function (Teo et al., 2010). However, the 

steady state of the intermediates cannot distinguish whether increased utilization or reduced 

production was responsible for the lower level in response to WNT3A. We were not able to 

perform similar flux analysis due to technical limitations since there is not a decarboxylation step 

in this biosynthesis pathway. Considering the smaller contribution of cellular glucose to HPP, we 

have not further characterized HBP in this study. Further research is required to characterize the 

effect of WNT signaling on glucose metabolism through the Hexosamine pathway.   

Removal of LDHA in osteoblast progenitor cells showed an osteopenic phenotype. At the 

cellular level, LDHA is required for proper osteoblast function and number. A decrease in 

osteoblast number can be due to reduced differentiation from progenitor cells, increased 

apoptosis or accelerated transition of osteoblasts to osteocytes. These potential mechanisms have 

not been explored in this study. 

We showed that WNT increased LDHA levels both in vitro and in vivo. Due to the 

technical limitations we were unable to examine the energetics in LDHA knockout cells in vivo. 
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We expect that LDHA deletion reduced glycolysis and possibly enhanced TCA metabolism of 

glucose. Future development of techniques that allows for studies of energy metabolism in vivo 

is critical to understand the metabolic requirements of osteoblasts.   

LDHA is a part of LDH enzymes that can consist of A and B subunits. There might be 

functional redundancy between LDHA and LDHB that would result in a lack of complete 

suppression on LDH activity even when Ldha is completely removed. Assessing LDH enzymatic 

activity in LDHA knockout osteoblasts will provide insights to this possibility. Moreover, given 

the fact that we used Ldha heterozygous animals as controls, we might be underestimating the 

mutant phenotype. Thus, potential redundancy with Ldhb or Ldha haploinsufficiency could have 

masked the full extent of the effect of blocking pyruvate-to-lactate conversion in this study.  

 

5. Experimental Procedures 

5.1. Mouse Strains 

LRP5A214V/+, referred as Lrp5 HBM, (Cui et al., 2011; Holmen et al., 2004) and Osx-Cre 

was previously described (Rodda and McMahon, 2006). Ldha mouse strain was from Eucomm; 

knockout first cassette was crossed with R26;Flippase mice from Jackson Laboratories.   

 

5.2. Analyses of skeleton 

µCT analyses were performed with Scanco µCT 40 (Scanco Medical AG) according. 

Quantification of the trabecular bone in the tibia was performed with 100 µCT slices, total of 1.6 

mm right below the growth plate. For paraffin sections, bones were fixed in 10% buffered 

formalin overnight at room temperature on a rocking platform. After fixation, tissue was washed 

with PBS and decalcified in 14% EDTA with daily change of solution for 2 weeks. At the end of 
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decalcification, bones were processed for paraffin embedding and then sectioned at 6 µm 

thickness. Sections were used for H&E and TRAP staining following the standard protocols. For 

dynamic histomorphometry, mice were injected intraperitoneally with calcein (20 mg/kg, Sigma, 

St. Louis, MO) at 6 and 2 days before sacrifice, and bones were fixed in 70% ethanol and 

embedded in methyl-methacrylate for plastic sections. Both static and dynamic 

histomorphometry were performed with the commercial software Bioquant II. 

Viva-CT analysis was performed with anesthetized mice using xyline/ketamine mixture. 

Analyses of the scanned bones were done similar to microCT scans.  

For serum-based biochemical assays, mice were first fasted for 6 hours and then get 

anesthetized by using xyline/ketamine mix before blood collection. Blood was incubated at room 

temperature for 30 mins, spinned down for 5 minutes and then serum was collected. Serum 

CTX-I assay was performed using the RatLaps ELISA kit (Immunodiagnostic Systems, Ltd.). 

 

5.3. Doxycycline treatment 

1 month mice were exposed to doxycycline (Sigma, St. Louis) for one month. 

Doxycycline was administered through drinking water containing 2% sucrose. 50 mg/L dox was 

used. 

 

5.4. CO2 trap experiments 

ST2 cells were plated in flasks at a concentration of 40x104/flasks and treated with 

WNT3A (100ng/ml) along with either 1µ1 Ci/ml glucose [1-C14], glucose [3, 4-C14] or glucose 

[6-C14] and tube was inserted into the flask and the system is sealed for 24 hours. At the end of 

24 hours, 2.5 ml 2.5N H2SO4 was injected into the flask to gas the CO2, and 1 ml NaOH is 
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injected into the tube. After overnight incubation, liquid in the tube is mixed with scintillation 

mixture and read in the scintillation counter. A parallel experiment was conducted with the same 

treatment for cell counting. Labeling index is calculated by normalizing the dpm (disintegration 

per minute) value by total glucose consumed and by cell number. For glucose consumption, 

either an aliquot of the medium is used before injecting H2SO4, or parallel plates are used. Flux 

through PPP was calculated by subtracting glucose [6-C14] from glucose [1-C14] and same 

normalization was performed.  

 

5.5. Metabolomics Studies 

ST2 cells were plated on 15-cm plates. Next day, the medium was changed to custom 

made α-MEM media supplemented with 5 mM glucose, 2 mM glutamine and 50 ng/ml of 

recombinant WNT3a or vehicle for 24 hours. Cells were washed with cold PBS at the end of 

incubation and were harvested by scraping and centrifugation. The cell pellets were frozen on 

dry ice and shipped to Metabolon, Inc for analyses (Durham, NC) on dry ice. Four or five 

biological replicates (each approximately 8x106 cells) were prepared for each condition.   

Samples were run on GC/MS and LC/MS/MS by Metabolon pipeline. A total of 208 metabolites 

were detected. The relative abundance of each metabolite was normalized to protein content. 

Student t-test was applied to identify biochemical that differed significantly between the groups. 

5.5. DCA Treatment 

DCA was dissolved in autoclaved water at 2 gr/L concentration and the pH was adjusted 

to ~ 7.2.  

 

  



110 

 

6. Figures 

Figure 1. WNT3A Decreases Metabolites in Pentose Phosphate Pathway 

 

Relative abundance of intracellular ribose 5-phosphate (A) and ribulose 5 phosphate/xylulose 5-

phosphate (B) after 24 hours of 50 ng/ml WNT3A treatment.  N: 5, V: vehicle, W3A: WNT3A. 
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Figure 2. Schematic Representation of the Fates of Carbons 1, 3/4 and 6 on Glucose 

 

(A) Carbon 1 (red circle) of glucose is released as CO2 at the step where glucose-6-phosphate is 

diverted to PPP. Carbon 1 also gets integrated in one of the central carbons in oxaloacetate. It 

later gets released after 3rd round of TCA cycle. Carbon 6 (red) is only released after the 3rd 

round of TCA cycle.  

(B) Carbons 3 and 4 (blue) are only released when pyruvate is oxidized to acetyl-coA. PPP: 

pentose phosphate pathway 
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Figure 3. Schematic Representation of the CO2-trap Design 

 

Cells are cultured in flasks sealed with stoppers with a tube containing holes inserted into the 

flasks during 24 hours of treatment. Treatment includes vehicle (V), WNT3A (W3A) together 

with radioactively labeled glucose. H2SO4 is injected to the cells at the end of treatment to gas 

the CO2 that is trapped in the tube with NaOH. 
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Figure 4. WNT3A Represses Glucose Contribution to TCA Cycle and PPP 

 

(A) CO2 trapped during 24 hours of 50ng/ml WNT3A treatment with either 14C6-glucose or 14C1-

glucose. CO2 trapped from [14C6 ], [14C1], and [14C6 -14C1] was normalized to total glucose uptake 

and cell number.  

(B) CO2 trapped during 24 hours of 50ng/ml WNT3A treatment with glucose-14C [3,4]. DPM 

(disintegration per minute) counts were normalized to total glucose uptake and cell number.  
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Figure 5. Schematic Representation of Genetic Crosses to Get Osteoblast Specific Ldha 

Deletion 

 

Knockout first allele crossed with Rosa26; Flippase mice to get floxed allele that is later crossed 

with Osx-Cre mice.    
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Figure 6. Osx-Ldha Mice have Lower Trabecular Bone at 1 Month of Age 

 

Proximal tibia from control and mutant (Osx-Ldha) mice was scanned with vivaCT at 1 month of 

age. 50 slides right under the growth plate (total of 0.8 mM) were analyzed and 3D images from 

the top and side views were prepared with Scanco Medical software. BV: bone volume; TV: 

tissue volume.  
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Figure 7. Osx-Ldha Mice have Reduced Trabecular Bone at 2 Months of Age 

 

Proximal tibias harvested from control and Osx-Ldha mice were scanned with Scanco µCT 40. 

100 slides under the growth plate, with a total of 1.6 mM, were analyzed and 3D structures were 

prepared with Scanco Medical software. BV: bone volume; TV: tissue volume. Tb. N: trabecular 

number; Tb. Th: trabecular thickness; Tb. Sp: trabecular spacing. 
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Figure 8. Body Weight of Control and Osx-Ldha Mice at 1 Month and 2 Months of Age 

 

(A-B) Body weight (gr) of control and mutant (Osx-Ldha) animals at 1 month (A) and 2 months 

(B) of age.  
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Figure 9. Histology of Control and Osx-Ldha Animals 

  

(A) 4x and 20x images of histological sections from control and Osx-Ldha animals at 2 months 

of age.  

(B) Osteoblast number (Ob. N) per bone surface (BS) from experimental animals. Bioquant II is 

used for counting the cells.  
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Figure 10. Osteoclast Activity does not Change in Osx-Ldha Mice 

 

Serum was prepared from control and mutant (Osx-Cre) animals at 2 month of age after 6 hours 

of fasting. Serum CTX-I (ng/ml) is an indicator of osteoclast activity.  
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Figure 11. There is Reduced Osteoblast Activity in Osx-Ldha Animals 

 

(A) Representative images of calcein double labeling in tibias of control and Osx-Ldha animals 

at endosteal region at 2 months of age.  

(B) Bone formation parameters from endosteum at midshaft of tibias. MS/BS: mineralized 

surface/ bone surface; MAR: mineral apposition rate; BFR/BS: bone formation rate/bone surface.  
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Figure 12. Postnatal Ldha Removal does not Cause Size Defect 

 

Osx-Ldha male mice were either kept on dox (doxycycline) all the time or were kept on dox 

from conception until 1 month of age. In the second group, dox was removed from 1 month to 2 

months of age and animals in both groups were weighted at 2 months. 
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Figure 13. Postnatal Removal of Ldha Causes Trabecular Bone Loss 

 

(A-B) Osx-Ldha mice were raised on doxycycline (dox) until one month of age, later half of the 

animals are removed from dox. Bone volume/tissue volume (BV/TV) from males (A) and 

females (B).  

 

Figure 14. Increased BV/TV in Lrp5 HBM Animals at 3 Weeks 

 

MicroCT analysis of tibias harvested from 3 weeks of wild type (WT) or Lrp5 HBM animals. 

100 slices right under the growth plate is analyzed. Bone volume /tissue volume (BV/TV).  
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Figure 15. DCA Attenuates the High Bone Mass Phenotype in Lrp5 HBM Mice 

 

(A) Representative 3D images from Lrp5 HBM control and Dichloroacetate (DCA) treated 

animals. 100 slides under the growth plate from tibias were analyzed.  

(B) Bone volume/Tissue volume (BV/TV) from both groups.  

(C) Representative histological sections from control and DCA treated Lrp5 HBM/+ mice. 
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Figure 16. Hexosamine Biosynthesis Intermediate is reduced in WNT3A (50ng/ml) Treated 

Samples 

 

Relative abundance of intracellular N-acetyl glucosamine-6-phosphate in 24 hours treated 

control (V) and WNT3A (50ng/ml) samples. N=5 for control and N=4 for WNT3A. 
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Intermittent PTH promotes bone anabolism 

by stimulating glycolysis via IGF-SGK1 

signaling 
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1. Abstract 

Teriparatide, a recombinant peptide corresponding to amino acids 1-34 of human 

parathyroid hormone (PTH), has been an effective bone anabolic drug in the clinic. However, it 

is not well understood how PTH signaling stimulates bone formation. Although multiple 

downstream effectors and crosstalk with different pathways have been uncovered, there remains 

uncertainty regarding the importance of these effectors in mediating the anabolic effects of PTH 

on bone. Here we have investigated a potential role of cellular glucose metabolism in PTH 

function. Using both MC3T3-E1 cells and primary calvarial cells, we showed that PTH enhanced 

glucose uptake and induced aerobic glycolysis while reducing the contribution of glucose to 

TCA cycle. These changes in glucose metabolism were mediated through a cAMP-IGF-PI3K-

SGK1 signaling cascade. Moreover, in the mouse, pharmacological enhancement of pyruvate 

entering the TCA cycle suppressed the bone anabolic effect by PTH. Thus, stimulation of 

glycolysis via IGF signaling may be an important mechanism mediating the anabolic effect of 

intermittent PTH.   
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2. Introduction 

PTH, a hormone secreted by parathyroid glands, plays a central role in calcium and 

phosphate metabolism. Calcium homeostasis is crucial for mineralization of newly formed bone 

among other processes. To maintain calcium homeostasis, PTH increases osteoclast activity to 

mobilize calcium from bone; it also promotes intestinal absorption and renal reabsorption of 

calcium. Patients with primary hyperparathyroidism experience bone loss due to enhanced bone 

resorption. Although continuously elevated PTH levels as in the case of hyperparathyroidism 

drive bone remodeling toward bone resorption, intermittent PTH (iPTH) treatment drive bone 

remodeling toward bone formation. Thus, depending on the duration and pattern of the elevation, 

increased PTH levels can lead to either bone anabolism or catabolism (Frolik et al., 2003; 

Kousteni and Bilezikian, 2008; Kraenzlin and Meier, 2011). 

Daily injections of both the full length PTH (1-84) and the fragment of PTH (1-34), 

which is known as teriparatide, increase bone mass and reduce fractures in osteoporotic patients 

(Hodsman et al., 2005). The anabolic effect of PTH administration has been studied in mice and 

rats extensively. Although less studied, intermittent administration of parathyroid hormone 

related protein (PTHrP) peptide 1–36, a fragment of the other principal ligand of the PTH 

receptor, is also an anabolic agent (Horwitz et al., 2003).  

The primary target of PTH is osteoblasts. PTH stimulates bone formation on the surface 

of cancellous and cortical bone, and increases the trabecular connectivity and improves the 

microarchitecture of the skeleton. Based on the histological studies, the increase in bone 

formation in response to PTH is mostly due to increased osteoblast numbers (Arlot et al., 2005; 

Dobnig and Turner, 1997). Different mechanisms have been proposed for the increase in 

osteoblast number, these including increased osteoblast differentiation via suppression of cell 
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replication (Pettway et al., 2005), attenuation of osteoblast apoptosis (Bellido et al., 2003; Jilka 

et al., 2009), and activation of quiescent lining cells (Dobnig and Turner, 1995; Kim et al., 

2012). The relative contribution of each proposed mechanism has been controversial, depending 

on the site studied, duration of iPTH administration and the model used (Jilka, 2007; Kousteni 

and Bilezikian, 2008). iPTH also indirectly stimulates the development and activation of 

osteoclasts through regulation of the pro-osteoclastogenic receptor activator of nuclear factor 

kappa-B ligand (RANKL) and the anti-osteoclastogenic osteoprotegerin, both expressed by 

osteoblasts (Huang et al., 2004). There is evidence that osteoclasts might contribute to the ana-

bolic action of PTH either by releasing stored growth factors from the bone matrix (IGFs, BMPs, 

TGF-β) or via factors secreted by osteoclasts (Martin and Sims, 2005). The anabolic function of 

iPTH treatment is suggested to be bi-phasic. In the early phase, PTH stimulates bone modeling 

(bone formation in new space) whereas extended PTH administration stimulates bone 

remodeling by enhancing both osteoblasts and osteoclasts with a positive balance towards bone 

formation (Dobnig et al., 2005; Hodsman and Steer, 1993; Lindsay et al., 2006).  

The actions of PTH and PTHrP are mediated by a G protein coupled receptor, referred to 

as PTH receptor 1 (PTHR1) (Potts, 2005). Activation of PTH1R initiates several parallel 

signaling pathways. One of them is Gαs-mediated activation of adenylyl cyclase, which 

stimulates cAMP production, and subsequently activates protein kinase A (PKA). PKA then 

phosphorylates and activates CREB that translocates to the nucleus and binds the cAMP 

responsive elements (CRE). PTHR1 also stimulates Gαq-mediated activation of protein kinase C 

(PKC). In addition, PTH activates extracellular regulated kinase (ERK) signaling through both 

conventional G-protein dependent pathway and G-protein independent pathway via β-arrestins 

(Gesty-Palmer et al., 2006). By the use of different PTH fragments differentially activating the 
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various pathways, cAMP/PKA is proposed to be the main signaling cascade important for bone 

anabolism. For example, daily injections of PTH (1–31), which only activates cAMP production, 

produced an equivalent anabolic effect in rats compared to PTH (1-34), the teriparatide 

(Whitfield et al., 1996). On the other hand, PTH (3–38), which activates PKC but not cAMP 

production, did not cause an anabolic effect (Armamento-Villareal et al., 1997). Another PTH 

analog, D-Trp12, Tyr34-PTH (7–34) referred as PTH-βarr that selectively activates β-arrestin 

pathway, enhances trabecular but not cortical bone formation (Gesty-Palmer et al., 2009). Mice 

lacking β -arrestin2 have an altered anabolic response to PTH, but do not completely lose the 

response (Ferrari et al., 2005; Yang et al., 2007). Overall, PTH increases several signaling 

cascades, cAMP/PKA being the most characterized and prominent pathway for the bone 

anabolic function of PTH.  

IGF signaling is required for the anabolic effect of iPTH. PTH stimulates the synthesis of 

IGF-I in rat and mouse osteoblasts in vitro (Linkhart and Mohan, 1989; McCarthy et al., 1989; 

Verheijen and Defize, 1995). IGF1 inhibition with a neutralizing antibody prevented the PTH-

induced collagen synthesis (Canalis et al., 1989), alkaline phosphatase (ALP) activity and the 

expression of osteocalcin mRNA (Ishizuya et al., 1997). In rats, iPTH increased IGF-I mRNA 

levels more than 2-fold (Watson et al., 1995). IGF1 knockout mice failed to increase bone 

anabolism in response to iPTH (Bikle et al., 2002; Miyakoshi et al., 2001). More importantly, 

osteoblast-specific deletion of IGF1 receptor (IGF1R) ablated PTH-induced bone formation in 

the mouse (Wang et al., 2007). In patients, 12 to 24 months of teriparatide treatment increase 

IGF-II expression on periosteal surfaces (Ma et al., 2006). Thus, IGF level is increased by PTH 

and IGF signaling is tightly linked with the anabolic function of PTH.   
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PTH has also been shown to cross talk with WNT signaling, an established pathway that 

regulates osteoblast differentiation and function. Based on mRNA micro-array data, PTH 

regulates the expression of WNT signaling components both in vitro and in vivo, mostly through 

cAMP/PKA (Kulkarni et al., 2005; Li et al., 2007; Qin et al., 2003). More strikingly, 

PTH increases protein levels of β-catenin, a key transducer of WNT signaling, in a manner 

dependent on both PKA and PKC (Tobimatsu et al., 2006). Knocking down β-catenin attenuates 

PTH-induced osteoblast differentiation in vitro (Tian et al., 2011). PTH was shown to stabilize β-

catenin through inactivation of GSK-3β in a PKA/cAMP dependent manner (Suzuki et al., 2008). 

PTH can also regulate WNT signaling through regulation of WNT antagonists, as PTH inhibits 

DKK1 (Kulkarni et al., 2005) and SOST (Keller and Kneissel, 2005), both of which interfere 

with WNT interaction with the co-receptors LRP5/6. Moreover, PTH1R has been shown to 

dimerize with LRP6 to activate WNT/β-catenin signaling (Wan et al., 2008). More recently, 

PTH1R was demonstrated to directly interact with disheveled proteins, the intracellular adaptor 

proteins important for WNT-β-catenin signaling (Romero et al., 2010). However, PTH is still 

able to enhance bone formation either in the presence of Dkk1 overexpression (Yao et al., 2011), 

or in the absence of SOST (Kramer et al., 2010), suggesting that PTH can induce bone anabolism 

independent of WNT signaling. 

PTH can alter cellular glucose metabolism. PTH induces glucose uptake in rat 

osteoblastic cells (PyMS) (Zoidis et al., 2011). In early studies, PTH was shown to alter cellular 

metabolism towards generating more lactate. Metaphyseal bone prepared from PTH injected 

mice (Borle et al., 1960), or PTH treated calvarial cells (Neuman et al., 1978; Rodan et al., 1978) 

exhibited more active lactate production than the controls even in aerobic condition. However, 
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the relevance of these metabolic alterations in the context of bone anabolism has remained 

unknown.  

We recently showed that enhanced aerobic glycolysis is critical for WNT3A induced 

osteoblast differentiation (Esen et al., 2013). In light of this work, here we investigate the 

potential role of metabolic alterations for the anabolic effect of PTH. In MC3T3-E1 cells and 

neonatal calvarial cells, we showed that PTH enhances glucose uptake, induces aerobic 

glycolysis, activates pentose phosphate pathway but reduces contribution of glucose to TCA 

cycle. PTH-induced glucose utilization required IGF-PI3K-SGK1 signaling. In the mouse, co-

administration of PTH and a chemical that promotes pyruvate entering the TCA cycle impaired 

the bone anabolic effect by PTH alone. Thus, changes in cellular glucose metabolism may be an 

important mechanism mediating the anabolic effect of intermittent PTH.   

 

3. Results 

3.1 PTH Enhances Aerobic Glycolysis 

To uncover a potential link between the PTH and cellular metabolism, we investigated 

the effect of PTH on glucose consumption in preosteoblastic MC3T3-E1 cells. Direct 

measurements of glucose in the culture media indicated that PTH significantly increased glucose 

consumption after 48 hours of treatment in a dose-dependent manner (Figure 1A, B). A similar 

effect was observed with PTHrP (Figure S1). Importantly, primary cultures of calvarial 

osteoblastic cells from neonatal mice also increased glucose consumption in response to PTH 

(Figure 1C). Moreover, cells treated with PTH for 24 or 48 hours exhibited a progressive 

increase in the rate of glucose uptake (Figure 1D). In contrast, PTH treatment did not alter total 

cellular protein content in MC3T3-E1 cells after 48 hours (Fig S2). Stimulation of glucose 
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consumption by PTH did not require serum (Fig S3). Thus, PTH increases glucose utilization in 

both primary and cell culture systems.  

We then examined the metabolic changes in response to PTH. We first monitored 

metabolic activities with the Seahorse extracellular flux analyzer. PTH treatment noticeably 

enhanced both oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) after 

24 hours of treatment (Figure 2A).  Quantification of oxygen consumption in response to the 

various mitochondria stressors revealed an increase in all parameters of mitochondrial activity in 

the PTH-treated cells (Figure 2B). Similarly, the extracellular acidification rate (ECAR), likely 

driven by lactate production, was higher in the PTH-treated cells both under the basal condition 

and in response to the mitochondria stress tests (Figure 2C, D). Consistent with the ECAR data, 

lactate concentration in the medium increased significantly by PTH treatment in both MC3T3 

and calvarial cells after 48 hours (Figure 2E, F). Thus, PTH enhances both mitochondrial 

respiration and lactate production. 

We then looked into molecular changes that could lead to metabolic changes in response 

to PTH. One-hour treatment of MC3T3 cells with PTH or PTHrP increased Hexokinase II (HK2, 

phosphorylating glucose at the very first and rate-limiting step of glucose catabolism), lactate 

dehydrogenase A (LDHA, catalyzing the conversion of pyruvate to lactate), and pyruvate 

dehydrogenase kinase 1 (PDK1, inactivating the pyruvate dehydrogenase complex to suppress 

pyruvate from entering the TCA cycle) (Figure 3A, left). These enzymes remained elevated after 

48 hours of PTH treatment in MC3T3 cells (Figure, 3A, right). Similarly, PTH increased the 

levels of these enzymes in calvarial cells after 24 hours of treatment (Figure 3B). Importantly, 

intraperitoneal injection of PTH increased the enzymes in bone protein extracts within 6 hours in 

a dose-dependent manner (Figure 3C and S4A); the enzymes remained upregulated for at least 
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12 hours in vivo (Figure S4B). Therefore, PTH stimulates critical glucose metabolism enzymes 

both in in vivo and in vitro models.  

To begin to address the role of the metabolic enzymes in regulating glucose metabolism, 

we performed functional studies with LDHA. We knocked down LDHA in MC3T3 cells by 

using shRNA that was followed by 48 hours PTH treatment. LDHA knockdown cells did not 

increase glucose consumption in response to PTH, while controls infected by lentivirus with GFP 

targeting shRNA responded as expected (Figure 3D). We also prepared calvarial cells from Ldha 

f/f animals. Similarly, removing LDHA from calvarial cells by infecting with adenovirus 

expressing Cre recombinase blunts the effect of PTH on glucose consumption (Figure 3E). Thus, 

upregulation of LDHA is an important step for PTH-induced glucose consumption.  

 

3.2 PTH Suppresses Glucose Oxidation in TCA cycle but Stimulates PPP  

PTH has been shown to have a more robust effect on differentiated MC3T3 cells 

(McCauley et al., 1996; Schiller et al., 1999). To take advantage of this feature, we performed 

subsequent PTH experiments with MC3T3 cells that underwent differentiation in an osteogenic 

medium containing ascorbic acid and β-glycerol phosphate for three days. We confirmed that the 

cells exhibited an increase in the osteoblast marker Alkaline Phosphates (AP) together with a 

slight change in the levels of PTH1R (Figure S5). Differentiated MC3T3 cells significantly 

increased glucose utilization and lactate production as early as 6 hours of treatment, which was 

consistent with increased phosphorylation of IGF1R at 1 hr and 6 hrs of PTH treatment (Figure 

4A-C). To gain further insights about the fate of glucose, we examined the contribution of 

glucose towards TCA cycle. To this end, we used a glucose tracer radioactively labeled at carbon 

positions 3 and 4 (14C [3, 4]-glucose) to determine the relative amount of glucose entering the 
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TCA cycle, by tracking the amount of radioactive CO2 produced during the conversion of 

pyruvate to acetyl-CoA (Figure S6, S7). We calculated the relative TCA contribution index by 

normalizing the CO2 radioactivity level to the total glucose uptake and the total cell number in 

each culture. We found that 24 hours of PTH treatment reduced the glucose contribution to TCA 

by ~70% (Figure 4E), even though it increased glucose consumption and lactate production by 

~40% and ~60 % respectively (Figure S8). We next examined the flux of glucose towards 

pentose phosphate pathway (PPP) using glucose specifically labeled at C1 ([14C1]-Glc) or C6 

([14C6]-Glc). C1 in glucose is expected to release as CO2 through either PPP or after the 3rd cycle 

after pyruvate enters the TCA cycle, whereas C6 is only released as CO2 from the latter (Figure 

S7). We found that CO2 released from C6, after normalization to total glucose consumption and 

cell number, was reduced in the PTH-treated group (Figure 4F). This could be due to simply 

reduced contribution of glucose towards TCA cycle, which is consistent with the previous data 

(Figure 4E); or due to exit of TCA cycle intermediates in the first two cycles before the release 

of C6- CO2. Since the reduction of C [3, 4] and C6 release is comparable, the former possibility is 

more likely to happen. The flux through PPP, calculated as the difference of C1-C6 CO2, was 

elevated in the PTH-treated cells. Thus, PTH enhances PPP and lactate-producing glycolysis 

while suppressing contribution of glucose to TCA cycle.  

 

3.3 PTH Regulates Glycolysis through IGF Signaling 

We next investigated the potential involvement of WNT and IGF signaling in PTH 

induced metabolic alterations. Neither DKK1 nor Frizzled-8 Fc Chimera blocked augmented 

glucose utilization (Figure 5A), and the effect of PTH and WNT3A was additive (Figure 5B), 

indicating that PTH regulates glucose metabolism independent of WNT signaling. We then 
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tested the involvement of IGF in the PTH-driven metabolic changes. In keeping with previous 

findings, PTH increased mRNA levels of Igf1, Igf2 and Igfbp5 by 6 hours of treatment (Figure 

5C). Furthermore, intraperitoneal injection of PTH enhanced the phosphorylation of IGF1R, 

readout of IGF signaling, in mice that was detected in bone extracts after 6 hours (Figure 5D).   

Importantly, inhibition of IGF signaling with two different inhibitors blocked PTH-induced 

glucose consumption, phosphorylation of IGF1 receptor (IGF1R), as well as LDHA and HK2 

induction (Figure 5E and S9). We also confirmed that inhibition of IGF1R suppressed PTH-

induced glucose utilization by the differentiated MC3T3 cells (Figure 4D). To further test the 

function of IGF1R, we genetically deleted Igf1R in primary calvarial cells in vitro by infecting 

Igf1R f/f cells with an adenovirus expressing Cre. Removal of IGF1R completely abolished the 

PTH-induced increase in glucose consumption (Figure 5F). Finally, IGF1 can replace PTH to 

increase glucose consumption and lactate production in both MC3T3 and calvarial cells (Figure 

4G, H).  In summary, IGF signaling is required for the PTH-induced glucose consumption and 

enzyme up-regulation. 

  

3.4 PTH-IGF Signaling Activates SGK1 through PI3K to Regulate Metabolism 

We then investigated the signal transduction mechanism downstream of IGF signaling. 

IGF1 signaling is known to activate PI3K (phosphatidylinositol 3-kinase). Inhibition of PI3K 

with LY294002 partially suppressed PTH-induced glucose consumption at 5-10 μM, and 

completely abolished it at 25-100 μM (Figure 6A).  It is noteworthy that PI3K inhibition blocked 

basal glucose metabolism at all concentrations (Figure 6A). The drug also suppressed PDK1 and 

HK2 levels (Figure 6C). On the other hand, specific inhibition of p110β-specific PI3K activation 

with TGX-221 did not significantly affect PTH-induced glucose consumption even though it 
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suppressed basal-level P-AKT S473 (Figure 6B). Because PTH induced P-AKT both in vivo and 

in vitro (Figure 5D) (Figure 6E), we tested the role of AKT by inhibiting its activity with 

MK2206 in MC3T3 cells. MK2206 greatly suppressed AKT phosphorylation but did not impair 

PTH-induced glucose consumption (Figure 6G). Thus, PTH regulates glucose metabolism 

independent of AKT activation. 

We next explored the potential role of SGK1 in PTH-stimulated glucose metabolism.  

PTH treatment increased phosphorylation of NDRG1, a target of Serum- and glucocorticoid-

inducible kinase 1 (SGK1) (Garcia-Martinez and Alessi, 2008) both in vivo, in calvarial cells and 

in MC3T3 cells (Figure 5D, 6E and 6F). Previous studies have established that the activation of 

SGK1 is dependent on the activation of PI3K (Park et al., 1999). This was confirmed by our 

finding that LY 294002 but not TGX-221 abolished P-NDRG1 (Figure 6D). Inhibition of SGK1 

with two different inhibitors each abolished glucose consumption, LDHA upregulation and 

lactate production (Figure 6H). Furthermore, SGK1 inhibition suppressed PTH-induced ECAR 

or OCAR both at the basal condition and in the presence of various mitochondria stressors, 

whereas AKT inhibition had little or no effect (Figure 6I). Thus, PTH alters cellular metabolism 

through a PI3K-IGF-SGK1 dependent signaling cascade. 

 

3.5 PTH Regulates Glucose Metabolism through a cAMP-dependent Mechanism 

Our results so far have established that PTH reprograms glucose metabolism through Igf-

Sgk1 signaling. We next investigated the upstream signaling mechanism leading to IGF-SGK1 

activation. PTH activates three main signaling cascades that are cAMP/PKA, PLC/PKC, and 

ERK. To distinguish which signaling pathway is more important for PTH to activate SGK1 and 

glucose metabolism, we assessed the effect of different PTH fragments known to activate 
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differentially the various intracellular signaling cascades (Armamento-Villareal et al., 1997; 

Whitfield et al., 1996). PTH (1-31), mostly activating cAMP/PKA, enhanced glucose 

consumption and activated SGK1, with potency similar to that of teriparatide (Figure 7A, B). In 

contrast, PTH (3-34), activating mostly PKC, only modestly stimulated glucose consumption at 

the higher concentration (Figure 7A), and did not enhance SGK1 activity even at the higher 

concentration (Figure 7B). To test whether cAMP was sufficient to cause the metabolic changes, 

we used Forskolin to activate adenylyl cyclase. Forskolin stimulated glucose consumption 

potently (Figure 7C); this result is consistent with the literature demonstrating that Forskolin can 

increase IGF1 production (McCarthy et al., 1990). More importantly, we were able to block the 

Forskolin effect with an IGF1R inhibitor (Figure 7D). Interestingly however, the PKA inhibitor 

H-89 had no effect on PTH-induced glucose consumption or SGK1 activation, even though it 

blocked β-catenin accumulation (Figure 7E). H89 also had minimal effects on PTH-induced 

expression of Igf1 and igfbp5 mRNA (Figure 7F). Unexpectedly, H-89 at higher concentrations 

increased basal glucose consumption (Figure S10).  Inhibition of the PKC pathway with either 

the PLC inhibitor U73112 or PKC inhibitor ro-318220 had no effect on glucose metabolism 

(Figure S11).  Finally, inhibition of ERK pathway with two different inhibitions, PD98059 and 

U0126, did not impair PTH-induced glucose consumption (Figure S12 A, B). Overall, PTH 

enhances glucose metabolism through a cAMP-dependent but PKA-independent mechanism. 

 

3.6 Metabolic Regulation Contributes to the Anabolic Effect of iPTH in vivo 

We finally examined the role of metabolic alterations in PTH-induced bone formation in 

vivo. We showed in vitro that PTH enhanced glucose utilization while suppressing glucose entry 

to TCA cycle. To investigate the importance of this metabolic switch, we decided to use 
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dichloroacetate (DCA) that represses the activity of PDKs, thus enhancing glucose metabolism 

via the TCA cycle. As expected, DCA prevented PTH-induced glucose utilization in both 

undifferentiated and differentiated MC3T3 cells (Figure 8A). We administered PTH 

intermittently to 3-month-old BL6 male mice for one month with or without DCA co-treatment.  

PTH did not alter body weight whereas DCA caused a slight but statistical significant decrease in 

body weight (Figure 8B). PTH increased serum lactate levels, but the effect was abolished by co-

administration of DCA, even though DCA alone did not affect serum lactate levels (Figure 8C).  

As expected, PTH alone increased proximal tibial trabecular BV/TV as determined by microCT 

analyses; this was coupled with a statistically significant increase in trabecular thickness (table 1) 

(Figure 8D). Importantly, co-administration of DCA attenuated the PTH-induced increase in 

BV/TV (Figure 8D) (table 1). The effect of PTH on cortical bone, although relatively mild in 

comparison, was also suppressed by DCA (table 2). Histology confirmed that PTH alone 

increased trabecular bone mass but the effect was suppressed by DCA (Figure 8E). Thus, 

suppressing the glucose oxidation in TCA cycle is critical for the anabolic role of PTH. 

We next investigated the underlying cellular basis for the DCA-mediated suppression of 

PTH effect. Histomorphometry showed a higher osteoblast number per bone surface in PTH-

treated over control mice, and that the increase was reduced by DCA co-administration (Figure 

8F-left). Dynamic histomorphometry revealed that mineral apposition rate (MAR) and bone 

formation rate (BFR/BS) were increased by PTH, but were suppressed by DCA co-

administration (Figure 8H, I). PTH alone or together with DCA did not cause a significant 

change in osteoclast number per bone surface (Figure 8F-right). However, PTH alone increased 

the serum level of CTX-I (a degradation product of type I collagen used as an indicator of total 

osteoclast activity), and DCA co-treatment did not significantly affect the PTH effect (Figure 
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8G). Overall, PTH-induced glucose metabolism is required for enhances osteoblast number and 

function.  

 

4. Discussion 

Here we have provided evidence that PTH stimulates bone anabolism in part through 

reprogramming of cellular glucose metabolism. Specifically, PTH treatment increases overall 

glucose consumption and lactate-producing glycolysis. PTH also enhances glucose metabolism 

through PPP, but suppresses mitochondrial metabolism of glucose despite increased 

mitochondrial respiration. The metabolic regulation by PTH appears to be indirect as it is 

mediated through upregulation of Igfs that in turn activates SGK1 to stimulate glycolysis and 

mitochondrial respiration (Figure S13 for proposed model). Functionally, reversing the PTH-

induced metabolic reprogramming with DCA suppressed the bone anabolic effect of PTH.  

The present study improves our understanding of signaling cascades downstream of PTH. 

Here we showed that PTH regulates SGK1 through a cAMP-IGF1-PI3K dependent pathway. 

SGK1 can be phosphorylated by the phosphoinositide-dependent protein kinase (PDK1) at Thr256 

in the activation loop following the priming phosphorylation at Ser422 by mTORC2 (Tessier and 

Woodgett, 2006). In our experiments, PI3K inhibitor completely blocked glucose uptake and 

SGK1 activation in response to PTH.  However, phosphorylation of AKT at Ser473, another 

target for mTORC2, did not correlate with SGK1 activation (Figure 4C, S14 A). Thus, PTH 

seems to activate SGK1 without stimulating the overall activity of mTORC2. The role of SGK1 

in bone and its contribution for the bone anabolic effect of PTH in vivo remains to be 

investigated.  
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DCA alone did not have any effect on the bone parameters we looked at as well as 

osteoblast, osteoclast numbers or activities. This might be explained by couple theories; under 

basal conditions PDK activities might be so low that inhibiting further would not have a 

phenotype. On the other hand, PTH treatment increases PDK levels so that suppressing PDK 

activities by DCA has a robust effect. Pyruvate dehydrogenase complex (PDC), which controls 

pyruvate oxidation, is regulated not only by PDKs but also by pyruvate dehydrogenase 

phosphatases that catalyze the dephosphorylation and activation of the complex. It is also 

possible that PTH might reduce phosphatases making PDC activity more prone to changes in 

PDK1 activity. Further studies are required to answer these questions.  

The importance of increased mitochondrial respiration and capacity in response to PTH 

remains to be investigated further. The suppression of glucose flux towards TCA cycle suggests 

an increase in mitochondrial metabolism from other nutrient sources. The fact that SGK1 

inhibition blocks mitochondrial parameters suggests a central role for SGK1 in metabolic 

regulation in general besides PTH-induced glycolysis. 

Establishing an in vitro culture system mimicking the bone anabolic effect of PTH in vivo 

has been a roadblock to studying the mechanism of PTH action. It is difficult to discriminate 

between anabolic and catabolic actions of PTH in vitro. We mostly focused on 24 to 48 hours of 

treatments in undifferentiated MC3T3 cells, or 6 to 24 hours treatment in differentiated MC3T3 

cells, because at those time points we observed the most striking effects on glucose uptake, 

glycolysis and mitochondrial respiration. One concern is that PTH has a short life in the 

circulation in vivo while it stays stable up to 72 hours in vitro. However, the activation of 

downstream signaling cascades in the samples prepared from 48 hours of in vitro PTH treatment 

were comparable with samples prepared 6 hours after one time PTH injection in vivo. During 
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PTH treatment, downstream signaling pathways have been regulated temporally (Fig S14B). 

Moreover, differentiated MC3T3 cells reprogrammed their glucose metabolism more acutely and 

robustly. Further research is needed to define the changes in the signaling pathways in response 

to PTH at different stages and its relationship with the metabolic regulation to better understand 

this process. 

The current finding that PTH regulates cellular metabolism may have implications to 

understanding the association of metabolic disorders with PTH elevation. Hyperparathyroidism 

has long been linked with a high frequency of glucose intolerance and type 2 diabetes mellitus 

(DM) (Taylor, 1991; Werner et al., 1974) as well as cardiovascular abnormalities (Valdemarsson 

et al., 1998).  

On the other hand, intermittent PTH treatment only showed an adverse effect on glucose 

tolerance acutely and this effect was diminished after chronic administration (Anastasilakis et al., 

2007). It is critical to assess the effect of PTH on different tissues to understand the systemic 

responses. Overall, our study describes PTH induced metabolic alterations in which glucose 

utilization is increased and used through glycolysis and PPP over oxidative phosphorylation 

despite the abundance of oxygen. More importantly, these alterations are critical for the anabolic 

effect of PTH. 

 

5. Experimental Procedures 

5.1 Mouse Strains 

C57BL/6J mice from Jackson Laboratory were used for PTH injections. LDHA strain 

was from Eucomm and IGF1R floxed mice (B6;129-Igf1rtm2Arge/J) was from Jackson 

Laboratories.  
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5.2 Analyses of Postnatal Skeleton 

µCT analyses were performed with Scanco µCT 40 (Scanco Medical AG) according. 

Quantification of the trabecular bone in the tibia was performed with 35 µCT slices, total of 0.56 

mm right below the growth plate. For cortical bone, 50 slices from midshalf were analyzed.  

For paraffin sections, bones were fixed in 10% buffered formalin overnight at room 

temperature on a rocking platform. After fixation, tissue was washed with PBS and decalcified in 

14% EDTA with daily change of solution for 2 weeks. At the end of decalcification, bones were 

processed for paraffin embedding and then sectioned at 6 µm thickness. Sections were used for 

H&E and TRAP staining following the standard protocols. For dynamic histomorphometry, mice 

were injected intraperitoneally with calcein (20 mg/kg, Sigma, St. Louis, MO) at 10 and 2 days 

before sacrifice, and bones were fixed in 70% ethanol and embedded in methyl-methacrylate for 

plastic sections. Both static and dynamic histomorphometry were performed with the commercial 

software Bioquant II. 

For serum-based biochemical assays, mice were first fasted for 6 hours and then get 

anesthetized by using xyline/ketamine mix before blood collection. Blood was incubated at room 

temperature for 30 mins, spinned down for 5 minutes and then serum was collected. Serum 

CTX-I assay was performed using the RatLaps ELISA kit (Immunodiagnostic Systems, Ltd.). 

Serum lactate was measured using Lactate assay kit from Eton Biosciences.  

 

5.3 Calvarial Osteoblast Culture 

Calvarial cells were prepared as explained in chapter 2. Briefly, frontal and parietal bones 

(FPN) are dissected out from newly born mice (0-5 days) and incubated with collagenase for 
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digestion. Cells were strained through 70µM filters and plated in culture medium (alpha MEM 

with 20% FBS and 1% Pen Strep) 

 

5.4 Western blot 

Western blots were done as explained in chapter 2 

  

5.5 Quantitative PCR 

RNeasy kit (Qiagen) was used for RNA extraction. RNase-free DNase kit (Qiagen) was 

used following manufacturer’s instructions. RNA, cDNA preparation Real Time PCR was done 

as discussed in chapter 2. The primer sequences are as follows:  

18S F    CGGCTACCACATCCAAGGAA 

18S R   GCTGGAATTACCGCGGCT 

Ldha F: TGGAAGACAAACTCAAGGGCGAGA 

Ldha R: TGACCAGCTTGGAGTTCGCAGTTA 

Igf1 F CTGGACCAGAGACCCTTTGC 

Igf1 R GGACGGGGACTTCTGAGTCTT 

Igf2 F CCGTGGGCAAGTTCTTCCAATATG 

Igf2 R ACGATGACGTTTGGCCTCTCTGAA 

Igfbp5 F TGGTGTGTGGACAAGTACGGAATG 

Igfbp5 R ACTCAACGTTACTGCTGTCGAAGG 
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5.6 Cell Culture, Glucose and Lactate Measurements 

For routine cultures, MC3T3 E1 subclone 4 cells were grown in ascorbic acid free -

MEM medium (Gibco a10490-01) and switched to complete  -MEM (Gibco, cat#12561) during 

treatments, both of which supplemented with 10% heat inactivated FBS (Gibco) and Pen Strep 

(Gibco, cat#14140).  

PTH (1-34), PTH (3-34) and PTH (1-31) are obtained from Bachem Biosciences. All 

PTH fragments were dissolved in a solution containing 0.9% NaCI, 0.1% BSA, 0.001 N HCI 

mixed in sterile water. This solution is used as vehicle control in all the PTH administrations.  

Recombinant mouse Dkk1 (R&D systems) and Recombinant Mouse Frizzled-8 Fc Chimera 

(R&D systems) was used at 500ng/ml and cells were pretreated with Dkk1 for 30 minutes before 

the addition of PTH.   

Glucose and lactate measurements were done as discussed in chapter 2.  

Osteogenic media (Mineralization media): alpha MEM with 10% FBS , 1% Pen Strep, 

100 nM Dexamethasone, 50 µg/ml Ascorbic Acid and 10 mM β-glycerol phosphate.  

 

5.7 2-NBDG Uptake Experiments 

MC3T3 cells were plated in 96-well clear bottom culture plates the day before each experiment.  

The cells were stimulated with PTH for the indicated time. After treatments cells were switched 

to fresh medium containing 100 M 2-NBDG for 30 minutes, and then prepared for fluorescence 

reading following the manufacturer’s instructions (Glucose Uptake Cell-based Assay Kit, 

Cayman Chemical). 2-NBDG uptake was measured at 485/535nm (excitation/emission) using a 

plate reader (BioTek model SAMLFTA, Gen5 software).  Fluorescence intensity was normalized 

to the protein content in each well.  
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5.8 OCR and ECAR measurements with Seahorse Cellular Flux assays 

The day before the experiment cells were plated at 5,000 cells/well density in XF96 

plates after coating the plates with cell-tak (BD Biosciences).  The next day, the cells were 

treated with 500 ng/ml PTH for 24 hours with or without inhibitors (2 uM for Sgk I inhibitor and 

0.5 uM for Akt inhibitor, then switched to XF Assay Medium Modified DMEM and further 

incubated in CO2-free incubator for 1 hour. Oligomycin (ATP synthase inhibitor), FCCP 

(carbonyl cyanide p-trifluoromethoxyphenylhydrazone, proton ionophore), antimycin A 

(complex III inhibitor) and rotenone (complex I inhibitor) (Seahorse Stress Kit) were prepared in 

XF assay medium with final concentration of 5 uM for oligomycin and 1 uM for the rest and 

were injected during the measurements. At the end of the assays, protein concentrations were 

measured for normalization. OCR and ECAR were measured simultaneously. Mitochondrial 

parameters are calculated as follows: basal respiration is the difference in OCR before treatment 

of mitochondrial inhibitors and after antimycin A/rotenone treatment; spare respiratory capacity 

is difference in OCR following treatment of FCCP and basal respiration; oxidative ATP turnover 

is the difference in OCR following oligomycin treatment and before FCCP treatment; maximal 

respiratory capacity is the difference in OCR after FCCP and before antimycin A/rotenone).   

 

5.9 shRNA knockdown and adenovirus infection 

Lentiviral shRNA targeting vectors were purchased from Genome Center at Washington 

University. Targeting sequences are as follows:   

Gfp TGACCCTGAAGTTCATCTGCA, 

Ldha CGTGAACATCTTCAAGTTCAT 

Lentivirus was prepared as discussed in chapter 2. 



148 
 

Adenovirus targeting Gfp (adGfp) and Cre (adCre) were bought from University of Iowa. 

Sub confluent calvarial cells were infected with adGfp or adCre at 50 MOI (multiplicity of 

infection) in 2% serum containing medium overnight. The medium was changed to 10% serum 

containing medium next day and PTH treatment started after 72 hours.  

 

5.10 In vivo PTH Injections 

3 months old male C57BL/6J mice were injected intraperitoneally with either 80 µg/kg 

PTH (1-34) or the vehicle control 5 days a week for 1 month. Half of the vehicle and PTH 

treated animals were fed with 2 g/L DCA containing water. DCA was dissolved in sterile water 

pH was adjusted around 7.2. 

For in vivo signaling studies, PTH (1-34) or vehicle was injected intraperitoneally at the 

indicated concentration and the bones were harvested 6 or 12 hours after injection. Bone protein 

extracts were prepared from femurs and tibias of postnatal mice. The muscle was cleaned out 

carefully, the ends of the bones were surgically removed, and the bone marrow was discarded by 

centrifugation. The bones were chapped and rinsed twice with cold PBS. Flash-frozen bones 

were powerized by using. The bone power was incubated with 150 µl RIPA buffer containing 

proteinase and phophatase inhibitors on ice for 45 minutes, centrifuged down and the supernatant 

was collected for Western analysis. 

 

5.11 Antibodies  

Antibodies for p-Akt(S473)(9271), Akt (9272), -actin (4970)) p-NDRG1-Thr346 

(3217S), LDHA (2012), p-IGFIR (3024) are from cell signaling technologies. Hk2 (sc-6521), -

tubulin (sc-8035) antibodies are from Santa Cruz Biotechnology.  Pdk1 (KAP-pk112) antibody is 
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from Assay Designs. HRP-conjugated anti-rabbit secondary antibody is from GE healthcare 

(NA934V), HRP-conjugated anti-mouse (sc-2005) and anti-goat (sc-2352) secondary antibodies 

are from Santa Cruz Biotechnology.  

 

5.12 CO2 trap experiments 

MC3T3 cells were plated in flasks at a concentration of 40x104/flasks and treated with 

mineralization medium for 3 days. At the end of 3 days the cells are treated with PTH along with 

either 1µ1 Ci/ml glucose [1-C14], glucose [3, 4-C14] or glucose [6-C14] and tube was inserted 

into the flask and the system is sealed for 24 hours. At the end of 24 hours, 2.5 ml 2.5 H2SO4 was 

injected into the flask to gas the CO2, and 1 ml NaOH is injected into the tube. After overnight 

incubation, liquid in the tube is mixed with scintillation mixture and read in the scintillation 

counter. A parallel experiment was conducted with the same treatment for cell counting. 

Labeling index is calculated by normalizing the dpm (disintegration per minute) value by 

glucose consumed and by cell number. For glucose consumption, either an aliquot of the medium 

is used before injecting H2SO4, or parallel plates are used. Flux through PPP was calculated by 

subtracting glucose [6-C14] from glucose [1-C14]. 
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6. Figures 

Figure 1. PTH Increases Glucose Utilization in Cell Culture 

 

 

(A) Increase in glucose consumption (mg) by PTH compared to vehicle (V) for indicated times 

in MC3T3-E1 cells.  

(B) Concentration dependent increase in glucose consumption in response to PTH (mg 

glucose/mg protein) after 48 hours. 

(C) Glucose consumption (mg glucose/mg protein) in neonatal calvarial cells after 24 hours. 

(D) Glucose uptake using 2-NBDG following PTH treatment for indicated times, shown as % 

increase [(PTH-v)/v*100] 
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Figure 2. PTH Increases both Oxygen Consumption and Glycolysis 

 

 

 



152 
 

Figure 2. PTH Increases both Oxygen Consumption and Glycolysis 

(A) Oxygen consumption rate (OCR) and after 24 hours of PTH or vehicle (V) treatment. 

(B) Basal respiration, oxidative ATP turnover, maximum respiratory capacity and spare capacity 

after 24 hours of PTH or vehicle (V) treatment. 

(C-D) Extracellular acidification rate (ECAR) after 24 hours of PTH or vehicle (V) treatment 

under basal condition or following Oligomycin, FCCP or Rotenone/Antimycin A injection. 

(E) Relative lactate level in the medium after 48 hours of vehicle (V) or PTH treatment. 

(F) Lactate concentration (mM lactate/ 100 µg protein) in medium after 24 hours PTH treatment 

in neonatal calvarial cells.  
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Figure 3. PTH Increases Glycolytic Enzymes both in vitro and in vivo 

 

(A) 1 hour PTH (250 ng/ml) or PTHrP (250 ng/ml) treatment; 48 hours of PTH treatment. 

B) 24 hours of PTH treatment in calvarial cells.  

(C) Bone extracts from BL6 mice prepared 6 hours after PTH injection. 

(D, E) Glucose consumption in response to PTH after LDHA knockdown using shRNA in 

MC3T3 cells (D) or deleting LDHA from calvarial cells prepared from Ldha f/f mice (E). 
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Figure 4. PTH Suppresses Glucose Oxidation in TCA cycle but Stimulates PPP 

 

(A, B) MC3T3 cells differentiated for 3 days in osteogenic medium before PTH treatment for 6 

or 24 hours and assayed for glucose consumption (mg glucose/mg protein) (A) and lactate 

production (PTH-Vehicle/Vehicle*100) (B). 

(C) Activation of IGF and SGK signaling after 1 and 6 hours of PTH treatment following 3 days 

osteogenic medium treatment in MC3T3 cells.  

(D) Effect of IGF1R Inhibitor I (50ng/ml) on glucose consumption (mg glucose/mg protein) in 

differentiated MC3T3 cells. 

(E-F-G) Differentiated MC3T3 cells are treated with 500ng/ml PTH along with [14C3,4]-Glucose,  

[14C1]-Glucose or [14C6]-Glucose for 24 hours. Labeling index for trapped CO2  

from [14C3,4]-Glucose (E) [14C6]-Glucose (F), [14C1]-Glucose- [14C6]-Glucose (G) are shown. 
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Figure 5. PTH Increase Glucose Consumption through IGF Signaling Independent of WNT 

Pathway 
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Figure 5 (CONT). PTH Increase Glucose Consumption through IGF Signaling Independent of 

WNT Pathway 

 

(A) Glucose consumption (mg glucose/mg protein) after 48 hours of PTH treatment in the 

presence of 500ng/ml DKK1 or 500 ng/ml Frizzled-8 Fc Chimera. 

(B) Glucose consumption after 48 hours of PTH and WNT3A (50ng/ml) treatments individually 

or together.  

(C) mRNA levels of Igf1, Igf2 and Igfbp5 normalized to 18S relative to controls following 6 

hours of PTH treatment in MC3T3 cells.  

(D) Bone extracts prepared 6 hours after IP PTH injection in males. 

(E) The effect of inhibiting IGF1R by using 100 nM Linsitinib (IGF1R IN. 1) on glucose 

consumption (mg glucose/mg protein) and glycolytic enzymes. 

(F) Effect of genetic removal of Igf1R from calvarial cells on glucose consumption by adenoviral 

infection of shGFP or shCRE. 

(G-H) Effect of IGF1 (500ng/ml) on (G) glucose consumption (mg glucose/mg protein) or 

lactate production (mM lactate/ 100µg protein) (H) in MC3T3 cells or in calvarial cells. 
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Figure 6. PTH Regulates Glucose Metabolism through a PI3K-SGK1 Dependent Signaling 

Cascade 
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Figure 6 (CONT). PTH Regulates Glucose Metabolism through a PI3K-SGK1 Dependent 

Signaling Cascade 
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Figure 6. PTH Regulates Glucose Metabolism through a PI3K-SGK1 Dependent Signaling 

Cascade 

(A-B) Effect of the pan-PI3K inhibitor LY294002 (A) or p110β-specific PI3K inhibitor TGX-

221 (B) on glucose consumption.  

(C) Effect of 100µM LY294002 on glycolytic enzymes. 

(D) Effect of 100µM LY294002 and 64 µM TGX-221 on SGK1 activation examined by NDRG1 

phosphorylation.  

(E) Phosphorylation of AKT (s473) and the SGK1 target NDRG1 by 24 hours PTH treatment in 

calvarial cells. 

(F) Effect of IGF1R inhibitor (100nM IGF1R In. I) on downstream PTH targets. MC3T3 cells 

are treated with vehicle or PTH for 48 hours either with or without IGF1R inhibitor I. 

(G) Glucose consumption in the presence of 0.5 μM AKT inhibitor MK2206 along with PTH 

treatment.  

(H) Effect of inhibition of SGK1 by either GSK 650394 (SGK inhibitor I) or EMD638683 (SGK 

inhibitor II) on PTH-induced glucose consumption, LDHA and lactate production. 

(I-J) Effect of 2 μM SGK In. I or 0.5 μM Akt inhibitor MK2206 on PTH-stimulated ECAR (I) 

and OCR (J). 
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Figure 7. cAMP Dependent Pathway is more Important Regulating PTH-induced Glucose 

Metabolism 
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Figure 7. cAMP Dependent Pathway is more Important Regulating PTH-induced Glucose 

Metabolism 

(A, B) Glucose consumption (A), activation of SGK1 pathway and upregulation of HK2 (B) in 

response to PTH (1-34), PTH (1-31) and PTH (3-34) at indicated concentrations. 

(C) Effect of 6 μM Forskolin on glucose consumption (mg glucose/mg protein). 

(D) Effect of IGF1R In. I on Forskolin induced glucose consumption (mg glucose/mg protein). 

(E) Effect of 200 nM H-89 on SGK1 activation, HK2 and β-catenin upregulation and glucose 

consumption in response to 48 hours of PTH treatment. 

(F) Effect of 10 μM H-89 on Igfbp5 and Igf1 mRNA upregulation by PTH. 
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Figure 8. Glucose Flux through Aerobic Glycolysis is Important for the Anabolic Effect of iPTH 

in vivo  
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Figure 8 (CONT). Glucose Flux through Aerobic Glycolysis is Important for the Anabolic 

Effect of iPTH in vivo  
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Figure 8. Glucose Flux through Aerobic Glycolysis is Important for the Anabolic Effect of iPTH 

in vivo  

(A) Effect of DCA treatment in glucose consumption in both differentiated and undifferentiated 

MC3T3 cells in response to 48 hours of PTH treatment. 

(B) Serum lactate levels (mM) in 4 months of BL6 mice administered vehicle (V), iPTH, V+ 

DCA or iPTH+DCA for 1 month. 

(C) Effect of iPTH and DCA on body weight (gr) at the end of 1 month administration.  

(D)  µCT 3D reconstruction of 35 tibial trabecular sections right under the growth plate.  

(E) 10X and 40X images from H&E stained sections from the proximal tibias. 

(F) Histomorphometric parameters of osteoblasts and osteoclasts on tibial sections. #OB/mm: 

number of osteoblasts normalized to trabecular bone perimeter; #Oc/mm: osteoclast number 

normalized to trabecular bone perimeter. Analysis is done using Bioquan II. 

(G) Serum CTX-I (ng/ml) levels. 

(H) Representative images of calcein double labeling in tibias of vehicle (V), iPTH, V+ DCA 

and iPTH+DCA treated animals from endosteum. 

(I-J) Dynamic histomorphometry parameters from endosteal and trabecular region of tibias. 

MAR: mineral apposite rate; BFR/BS: bone formation rate. 
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7. Supplemental Figures  

Figure S1. PTHrP Increases Glucose Consumption 

 

Increase in glucose consumption (mg glucose/mg protein) by PTHrP (250ng/ml) after 48 hours 

treatment in MC3T3-E1 cells.  

 

Figure S2. Protein Concentration after 48 hours PTH Treatment 

 

Protein concentration (mg) after 48 hours PTH treatment in MC3T3-E1 cells. 
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Figure S3. PTH Increases Glucose Consumption in the Absence of Serum 

 

 

Increase in glucose consumption (mg glucose/mg protein) by PTH after 48 hours in the presence 

and absence of serum. 
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Figure S4. Bone Extracts Prepared 6 or 12 hours after PTH Injections 

 

Male BL6 mice were injected with PTH (200 µg/kg) and bones are harvested at the indicated 

hours. Bone extracts prepared from tibias and femurs.  
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Figure S5. 3 Days Osteogenic Medium Treatment (Min M) Increased AP mRNA levels 

 

The effect of osteogenic medium treatment in MC3T3 cells. Expression of osteoblast markers 

was determined by qPCR. Fold changes between treated and control cells were calculated after 

normalization to 18S RNA.  

 

Figure S6. Representative Illustration of the Experimental Set-up for the CO2 trap 

 

 

 Cells are treated with PTH along with the radioactively labeled glucose in a sealed flask. There 

is a tube with the holes inserted into the flask. At the end of the control or PTH treatment along 

with radioactively labeled glucose, H2SO4 is injected into the flask; NaOH is injected into the 

tube. 
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Figure S7. Schematic Representation of the fates of Carbons 1, 3/4 and 6 on Glucose 

 

(A) Carbon 1 (red circle) of glucose is released as CO2 at the step where glucose-6-phosphate is 

diverted to PPP. Carbon 1 also gets integrated in one of the central carbons in oxaloacetate after 

the first cycle. It later gets released after 3rd round of TCA cycle. Carbon 6 (red) is only released 

after the 3rd round of TCA cycle.  

(B) Carbons 3 and 4 (blue) are only released when pyruvate is oxidized to acetyl-coA. 
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Figure S8. PTH increase Glucose Consumption and Lactate Production  

 

Differentiated MC3T3 cells are treated with PTH along with glucose 14C [3, 4] for CO2 trap 

experiments. In the same experiment glucose uptake and lactate production were significantly 

upregulated. 

 

Figure S9. Effect of IGF1R Inhibitor-II on Glucose Consumption 

 

IGF1R inhibitor II (Picropodophyllotoxin) blocked glucose consumption in response to 48 hours 

of PTH treatment. 
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Figure S10. Effect of H-89 on Glucose Consumption  

 

Glucose consumption (mg glucose/mg protein) from MC3T3 cells treated with PTH and 

different concentrations of PKA inhibitor H-89 for 48 hours. 

 

 

Figure S11. PLC/PKC Pathway is not a Major Player for PTH Induced Glucose Consumption 

 

(A) Glucose consumption and western blot analysis after 48 hours of PTH treatment with or 

without 4 µM PLC inhibitor u73112. 

(B) Glucose consumption after 48 hours of PTH treatment with 2.5 µM PKC inhibitor ro-318220. 
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Figure S12. MAPK/ERK Pathway is not involved in PTH Induced Glucose Utilization 

 

(A) Western blots of p-ERK in bone protein extracts from PTH or vehicle injected mice after 6 

hours.   

(B) Effect of Erk inhibitors PD98059 and U0126 on glucose consumption. 
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Figure S13. Proposed Model for the PTH Action on Glucose Metabolism 

 

PTH binds to its receptor, PTH1R that leads to activation of adenylate cyclase that produces 

cAMP. By increasing cAMP, PTH stimulates the transcription of IGF1. IGF1 then activates 

PI3K, which then activates SGK1. By signaling through cAMP/IGF/P13K/SGK1, PTH increases 

glucose consumption, increases glucose oxidation in PPP, increases lactate-production and 

reduces contribution of glucose to TCA cycle.   
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Figure S14. Temporal Activation of Downstream Targets in Response to PTH 

 

(A) Western blots from 1 or 6 hours vehicle (V) or PTH treatment in differentiated MC3T3 cells. 

(B) Western blots from MC3T3 cells treated with PTH for different time intervals and harvested 

at the same time.  
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8. Tables 

Table 1. µCT Results of Proximal Tibia from indicated treatment groups. 

Group BV/TV Tb N* Tb Th* Tb Sp* 
 %                

  t-test 
1/mm                
 t-test 

mm                  
 t-test 

mm                   
t-test 

V 27.16+/-3.8   
p1:0.0004  

 

5.17 +/- 0.5   
p1:0.056 

0.07+/-0.0062  
p1:0.0214 

0.2+- 0.034    
p1:0.064 

PTH 37.52+/-0.065 
p2:0.0076 

5.59+/-0.36   
p2:0.0076 

0.081+/-0.0077 p2: 
0.094 

0.17+/-0.016  
p2:0.043 

DCA 24.88+/-0.078 
p3:0.042 

5.23+/-0.4   
p3:0.78 

0.067+/-0.01  
p3:0.1654 

0.19+/-0.017 
p3:0.050 

PTH 
+DCA 

30.12+/-0.037 
P4:0.16 

4.9+/- 0.38 
P4:0.067 

0.075+/-0.0045 
P4:0.122 

0.19+/- 0.17 
P4:0.39 

 

BV: bone volume; TV; total volume; Tb. N*: trabecular number; Tb. Th*: trabecular thickness; 

Tb. Sp*: trabecular spacing; data obtained from 35 of 16-mm slices right below growth plate, n = 

10 for each group. P1: p between V vs PTH; P2: p between PTH vs PTH+DCA; P3: p between V 

vs DCA; P4: p between DCA vs PTH+DCA. V: vehicle 

 

Table 2. µCT Result of Cortical Bone at Tibial Midshaft from indicated treatment groups. 

 

Group BV TV BV/TV Cortical Th* 
 Mm                 t-

test 
1/mm                t-
test 

mm                  t-
test 

mm                  t-
test 

V 0.74 +/-9.133 
 

1.1 +/- 0.19  0.65+/-0.015   0.25+- 0.009     

PTH 0.80 +/-0.078  
p1:0.48 

1.13+/-0.0087   
p1:0.798 

0.70+/-0.0052 
p1: 0.0086 

0.27+/-0.006  
p1:0.09 

DCA 0.71 +/-0.13 1.057+/-0.185 0.67+/-0.019   0.26+/-0.02 
PTH 
+DCA 

0.78 +/-0.14  
p2:0.29 

1.17+/-0.19       
p2:0.19 

0.65+/-0.029    
P2:0.12 

0.26+/- 0.017 
P2:0.99 

BV: bone volume; TV; total volume; Cortical. Th*: cortical thickness; data obtained from 50 of 

16-mm slices at midshaft, n = 5 for each group. P1: p between V vs PTH; P2: p between DCA vs 

PTH+DCA. 
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Many investigators have studied the metabolic characteristics of bone in 1960s by 

analyzing bone slices and using crude isolation methods. Those studies demonstrated that bone 

cells consume a large amount of glucose, producing lactate as the major end product, but 

consume oxygen at very low levels even in aerobic conditions (Borle et al., 1960a; Cohn and 

Forscher, 1962; Peck et al., 1964). The earlier studies also found that bone cells secrete citrate 

bone (Dixon and Perkins, 1952). However, the identity of lactate and citrate-producing cells in 

the bone was not defined clearly. PTH was shown to enhance both lactate and citrate production 

in bone slices and calvarial cells (Borle et al., 1960b; Laskin and Engel, 1960). Initially, it was 

proposed that increased lactic acid and citrate production could trigger Ca2+ mobilization from 

bone. Upon the disproval of this hypothesis, metabolic features of bone have lost attention from 

investigators. It was only recently demonstrated that citrate binds to hydroxyapatite and is 

important for the mechanical properties of the bone (Hu et al., 2010; Kenny et al., 1959; Taylor, 

1960). However, the field still lacks any in-depth studies in several areas: 1) a global view of 

cellular metabolism in bone cells; 2) the importance of increased aerobic glycolysis for bone 

formation; 3) the mechanism underlying metabolic changes in bone cells; 4) other hormones and 

growth factors, in addition to PTH, that can regulate cellular metabolism. 

In this thesis study, I further characterized the alterations of cellular metabolism during 

osteoblast differentiation and tested the functional importance of these alterations. More 

specifically, I first showed that both WNT and PTH stimulated glucose utilization and lactate-

producing glycolysis. Moreover, contribution of glucose to TCA cycle was decreased in both 

conditions. PTH and WNT utilized different intracellular signaling cascades for these metabolic 

alterations. Second, I demonstrated that decreased glucose entry to TCA cycle was important for 
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both WNT and PTH stimulated bone formation in vivo. Finally, I showed that genetic deletion of 

LDHA from osteoblast-lineage cells suppressed normal postnatal bone accrual due to reduced 

osteoblast number and function. Overall, this thesis indicates that osteoblast differentiation 

concurs with changes in cellular metabolism in response to anabolic signals, and that such 

metabolic changes are necessary for the differentiation process.  

  Both WNT3A and PTH alter cellular metabolism, but their effects are not identical. For 

instance, WNT3A suppresses glucose flux to PPP, whereas PTH enhances it. WNT3A does not 

change oxygen consumption rate, but PTH enhances it. However, these differences could be due 

to the different cellular contexts as WNT3a was tested in the mesenchymal progenitor ST2 cells 

whereas PTH in the preosteoblast MC3T3 cells. Regardless of the differences, pharmacological 

enhancement of glucose contribution to TCA cycle attenuated bone formation stimulated by 

either PTH or WNT. Hence, I propose that repressed glucose oxidation in TCA cycle is a key 

metabolic alteration. Moreover, the drastic effect of LDHA ablation on osteoblast number and 

function suggests that lactate-producing glycolysis is indispensable for osteoblast differentiation 

and activity. Examining if PTH or WNT can still induce bone formation in LDHA knockout 

animals will provide more insights on the importance of pyruvate-to-lactate conversion for bone 

anabolism. Overall, switching glucose usage from TCA cycle to lactate production is a critical 

event for bone formation. 

PTH and WNT employ different mechanisms to increase glucose consumption. WNT 

induced metabolic changes through direct activation of mTORC2-AKT signaling, whereas PTH 

reprogrammed metabolism indirectly through IGF signaling that was independent of AKT, but 

dependent on SGK1. SGK1 and AKT are closely related members of the AGC kinase family 

with both overlapping and non-overlapping functions (Palmada et al., 2006; Wang et al., 1999). 
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Since PTH targets more committed cells in the osteoblast lineage compared to WNT, there might 

be stage-specific intracellular cascades for altering cellular metabolism. In the future, either 

genetic or pharmacological inhibition of AKT or SGK in the presence of WNT or PTH 

hyperactivation in vivo will provide insights about the functional relevance of either kinase in 

bone anabolism. 

Both WNT and PTH stimulate critical enzymes involved in glucose metabolism. For this 

stimulation, WNT signals through LRP5-Rac1-mTORC2-AKT, whereas PTH functions through 

cAMP-IGF1-SGK1 signaling. However, how the metabolic enzymes are regulated by AKT or 

SGK1 is not known. Some of the enzymes that we studied have post-translational modifications. 

For example, PDK1 (Tessier and Woodgett, 2006), Hexokinase II (Tatsumi et al., 2007) and 

LDHA (Fan et al., 2011) are all phosphorylated at tyrosine residues. However, both AKT and 

SGK1 are serine/threonine kinases with no known downstream tyrosine-kinase targets. In 

addition to phosphorylation, LDHA can undergo acetylation that leads to its degradation (Zhao et 

al., 2013). Since both WNT3A and PTH reduce the glucose derived pyruvate oxidation to acetyl-

coA, there might be less overall protein acetylation but this possibility has not been explored. In 

brief, post-translation modifications downstream of AKT and SGK might be a mechanism for the 

changes of the enzyme levels. 

It is still not understood why directing glucose from TCA cycle to lactate-producing 

glycolysis is important for osteoblast biology. Below I discuss how altering cellular metabolism 

can potentially affect cell function and fate in four different sections.  
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1. Metabolites as Substrates for Post-translational Modification 

Altered cytosolic metabolites can affect protein function via post-translational 

modifications. For instance, acetyl-coA provides acetyl group for protein acetylation, which can 

both activate or repress protein function. As discussed above, reduced pyruvate oxidation to 

acetyl-coA via WNT and PTH can result a reduced pool of substrate available for the 

acetyltransferases. Therefore, it is important to assess total acetyl-coA levels after PTH and 

WNT3A treatments.  

TCA cycle intermediate, α-ketoglutarate (α-KG), is used as a co-substrate for 

dioxygenases including prolyl hydroxylase enzymes (PHDs). PHDs catalyze the post-

translational modification mediating the degradation of Hypoxia-inducible factor alpha (HIFα) 

and can be inhibited by succinate or fumarate (King et al., 2006). Stabilization of HIF1α 

regulates bone formation. Thus, via effects on TCA cycle, PTH and WNT3A can change the 

cytosolic α-KG pool required for dioxygenases, which can be critical for osteoblast 

differentiation and function.  

Metabolites can also be used as co-substrates for epigenetic modifications. For instance, 

α-KG is required for the JmjC domain-containing histone demethylases and the TET (ten-eleven 

translocation) family of DNA hydroxylases (Tahiliani et al., 2009; Tsukada et al., 2006).  

Knocking down JmJc3 in vitro suppressed osteoblast differentiation through increasing 

H3K27me3 on the Runx2 and Osx promoters (Yang et al., 2013). Thus, alterations of 

cytoplasmic metabolites via PTH or WNT3A can possibly control gene expression via epigenetic 

changes. 

HBP intermediates were reduced after WNT3A treatment, although it is not clear at 

present whether Wnt3a suppressed glucose entry to HBP. Although HBP consumes the lowest 
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percentage of glucose in the cell, it generates substrates for glycosylation. Many proteins 

including some transcription factors undergo glycosylation that regulates their function (Comer 

and Hart, 2000; Wells et al., 2001). By generating substrates for glycosylation, HBP can affect 

the activity of critical transcription factors. With the availability of more specific antibodies 

detecting glycosylated proteins, the effect of PTH and WNT3A on protein glycosylation and its 

effect on osteoblasts can be examined. 

 

2. Lactate as a Signaling Molecule and pH Regulator 

WNT and PTH increase lactate level in the serum in mice and in the culture medium in 

vitro, indicating that not only the production but also the secretion of lactate is increased. Lactate 

is capable of entering cells via monocarboxylate transporters (MCT) and can work as a signaling 

compound (Philp et al., 2005). Addition of lactate to cultured fibroblasts significantly increases 

their collagen (Klein et al., 2001) and upregulates vascular endothelial growth factor (VEGF) 

synthesis (Constant et al., 2000). Detailed examination of MCT expression in different cell types 

in bone together with functional studies of MCT can test whether lactate is a signaling molecule 

in bone. Moreover, lactate secreted out of the cell can modify the pH of the bone matrix. The 

acidity of the microenvironment might be important for osteoblast differentiation. Investigation 

of the osteoblast microenvironment in vivo with pH sensitive probes is important to examine this 

possibility. Overall, secreted lactate may affect osteoblast differentiation either via direct 

signaling or indirectly through changing the microenvironment.  

 

3. Redirection of Carbon Source in Osteoblasts 
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Osteoblasts are known to secrete citrate that binds to hydroxyapatite nanocrystals and is 

important for the mechanical properties of bone. Citrate producing cells usually rely on 

glycolysis to compensate for ATP loss due to exit of carbons from TCA cycle, and to generate 

more pyruvate available for acetyl-CoA production. The best-characterized citrate-secreting cells 

are the prostate gland cells, in which exit of citrate out of the TCA cycle is partially due to the 

inhibition of aconitase via increased zinc metabolism. Interestingly, zinc is abundant in bone 

(Alhava et al., 1977) and mice lacking a zinc transporter, ZNT5, manifest poor growth and 

decreased bone density due to impairment of osteoblast maturation (Inoue et al., 2002).  

Moreover, during in vitro osteoblast differentiation from human mesenchymal stem cell, zinc 

accumulation as well as ZIP1 zinc transporter expression is upregulated. Overexpressing ZIP1 

enhances the osteogenic differentiation (Tang et al., 2006). The primary role of the zinc in bone 

is to enhance ALP activity, but it has never been investigated whether increased zinc uptake is 

also important for enhancing citrate production (Tsuzuike et al., 1993) in osteoblast. In summary, 

osteoblasts might go through changes in Zn metabolism analogous to that in prostate cells in 

response to anabolic stimulation. Detailed investigation is required to determine whether citrate-

production is coupled with lactate-producing glycolysis during bone anabolism. 

Suppressed glucose utilization in response to WNT3A in ST2 cells is coupled with 

increased glutamine entry to TCA cycle. It was reported that glutamine (Brown et al., 2011) and 

glutamate (Lin et al., 2008) are necessary for bone matrix mineralization and osteoblast 

differentiation, respectively. Therefore, glutamine is another necessary carbon and energy source 

for osteoblasts.  

The previous literature and our findings support a model that osteoblasts reprogram the 

carbon and energy source during differentiation in response to anabolic signals. In a nutshell, 
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glucose is mainly used for lactate-producing glycolysis with a small contribution to TCA cycle 

whereas citrate exits the cycle to be secreted out of the cell. Since osteoblast differentiation 

requires high amounts of ATP due to the energy cost of protein synthesis, other energy sources 

such as extracellular glutamine appears to be necessary for generating ATP. Detailed tracer 

experiments are required to examine the source of secreted citrate, and to find other potential 

energy sources for TCA metabolism. Moreover, how different anabolic signals alter carbon and 

energy sources and whether such alterations are functionally relevant, need to be further 

investigated.  

 

4. NAD/NADH Redox Balance for Osteoblast Differentiation 

In this thesis, I have not examined the cellular NAD+/NADH changes in response to PTH 

or WNT3A. However, intracellular NAD+ levels can be critical for osteoblast differentiation. The 

expression of Nampt, the NAD+ biosynthetic enzyme, increases during osteogenic differentiation 

in preosteoblast MC3T3-E1 cells (Li et al., 2013). NAD+ dependent lysine deacetylase, Sirt1, 

accelerates osteoblast differentiation from MSCs in vitro (Backesjo et al., 2006), while 

preventing adipocyte differentiation (Picard et al., 2004). It is noteworthy that NAD+ is 

regenerated via the reaction catalyzed by LDHA in the cytoplasm. It is possible that anabolic 

signals increase cytosolic NAD+ pool via aerobic glycolysis that will in turn enhance osteoblast 

differentiation.  

Bisphosphonates (BPs) are often used for treating bone diseases such as osteoporosis, 

Paget’s disease and fibrous dysplasia. BPs inhibit bone resorption, hence preserving bone mass. 

Although the therapeutic effects of BPs are believed to depend on osteoclasts, there is increasing 

evidence that osteoblasts might be a target as well. It is noteworthy that BPs have direct effect on 



190 

 

cellular metabolism. Several decades ago, BPs were demonstrated to inhibit glucose uptake and 

lactate production and enhance citrate oxidation in calvarial cells (Fast et al., 1978). Further 

investigation is required to understand the role of metabolic alterations in the action of BPs, as 

metabolic regulation might be an integral part of the negative effect of BPs on osteoblasts. If 

confirmed, such effects may help to explain the long-standing clinical observation that BPs 

suppresses bone formation.   

This thesis reveals that osteoblast differentiation concurs with a unique metabolic switch 

in response to two anabolic signals, WNT and PTH. This metabolic switch is a required feature 

of differentiation. Understanding how metabolism influence gene expression will bring new 

insights to our understanding of osteoblast differentiation. A recent study shows that 

differentiating osteoblasts increase both glycolysis and oxidative phosphorylation; mature 

osteoblasts rely mostly on glycolysis, indicating stage-specific metabolic needs (Guntur et al., 

2014). Metabolomics together with flux analysis can be used to reveal how different 

developmental signals affect metabolic pathways in a stage dependent manner. Moreover, 

investigating metabolic control of osteoblast differentiation might help to understand the link 

between osteoporosis and diabetes.   
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