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Chapter 1

Introduction

For many years, mathematicians have exploited the deep connections between operator the-

ory and function theory to obtain results in both areas. In particular, operator-theoretic

techniques and results have been quite useful in proving results about functions and func-

tion spaces. For example, mathematicians have made interpolation problems – specifically,

the Pick problem – more tractable by rewriting the problem in terms of multiplier algebras

of Hilbert function spaces. Furthermore, many results about analytic functions on the unit

disk have been generalized to functions on the bidisk or polydisk by way of operator-based

representations of key function spaces. Results about function spaces also have implications

for the analysis and characterization of certain classes of operators. For instance, many

spectral properties of a contractive operator on a Hilbert space can be obtained by studying

a related shift-invariant subspace of a vector-valued Hardy space [47].

This thesis concerns two distinct problems appearing in this overlap between operator

theory and function theory. Chapter 2, called Fundamental Agler Decompositions, addresses

the first problem, and Chapter 3, called Differentiating Matrix Functions, addresses the

second problem. These chapters are self-contained and possess their own comprehensive

introductions, which include discussions of relevant definitions, associated developments,

and related literature and summaries of the main results. Most results in Fundamental
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Agler Decompositions have been published in [20] and the results in Differentiating Matrix

Functions have been published in [21]. For the ease of the reader, we include brief discussions

here as well.

In Fundamental Agler Decompositions, we discuss results motivated by the Pick Interpo-

lation problem on the bidisk, denoted D2. The two-variable Pick problem asks:

Given points λ1, . . . , λn ∈ D2 and µ1, . . . , µn ∈ D when is there a holomorphic φ : D2 → D

with φ(λi) = µi for 1 ≤ i ≤ n?

The answer rests on a representation formula of J. Agler from [2], who showed that for each

holomorphic φ : D2 → D, there are positive kernels K1, K2 : D2 × D2 → C satisfying

1− φ(z)φ(w) = (1− z1w̄1)K2(z, w) + (1− z2w̄2)K1(z, w) ∀ z, w ∈ D2.

This representation using kernels (K1, K2) is called an Agler decomposition of φ and has been

used to generalize many results about bounded analytic functions on the disk to bounded

analytic functions on the bidisk.

Agler’s original proof of the existence of such (K1, K2) was nonconstructive, and the

structure of such decompositions and their associated Hilbert spaces remained mysterious

for many years. In Fundamental Agler Decompositions, we introduce specific shift-invariant

subspaces of the Hardy space on the bidisk and use them to give an elementary proof of

the existence of Agler decompositions, which is constructive for inner functions. These

shift-invariant subspaces are actually specific cases of Hilbert spaces that can be defined

from Agler decompositions, and we analyze the properties of these Hilbert spaces. We then

restrict attention to rational inner functions and show that these shift-invariant subspaces

simplify the current theory surrounding Agler decompositions of rational inner functions.

The chapter ends with an application of the analysis, which yields a characterization of

stable polynomials on the polydisk.
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In Differentiating Matrix Functions, we discuss results motivated by the study of one-

variable matrix functions, specifically functions F : Cn×n → Cn×n. Such matrix functions are

defined using real-valued functions and appear frequently in both science and engineering

models, especially those involving systems of linear differential equations. Matrix functions

also play a key role in spectral theory; for instance, the matrix sign function provides insight

into the location of the eigenvalues of a given matrix [30]. Derivatives of such matrix functions

are also quite important. They both provide ways of measuring the sensitivity of a matrix

solution to changes in input data and provide simple characterizations of monotone and

convex matrix functions [30, 19].

We begin the analysis by generalizing the construction of one-variable matrix functions to

d-variable matrix functions, which are defined on the set of d-tuples of pairwise-commuting

n × n self-adjoint matrices, denoted CSdn. We focus on differentiability properties of such

matrix functions. First, we analyze the geometry of CSdn and conclude that a suitable

notion of differentiability for functions on this space is differentiation along curves. We then

analyze the properties of differentiable curves in CSdn. Our main results show that an m-

times continuously differentiable real-valued function defined on Rd can be used to define

a d-variable matrix-valued function that can be m-times continuously differentiated along

Cm curves in CSdn. The chapter also includes formulas for the derivatives and ends with

a discussion of how these derivatives imply characterizations of d-variable monotone and

convex matrix functions.
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Chapter 2

Fundamental Agler Decompositions

2.1 Introduction

Solving an interpolation problem involves constructing a function using a set of data points

so that the function possesses additional desired properties. The work in this chapter is mo-

tivated by the two-variable generalization of a one-variable interpolation problem, called the

Pick problem. The characterization of the two-variable Pick problem’s solvability is related

to a particular decomposition of two-variable holomorphic functions. This decomposition

and associated objects play an important role in two-variable, analytic function theory.

In this introductory section, we discuss the one-variable Pick Interpolation problem, its

two-variable generalization, and the associated theory of reproducing kernel Hilbert spaces.

We also discuss realization formulas motivated by the Pick problem and along the way,

introduce other important definitions and known results. The introduction ends with a

summary of the results appearing in this chapter.

2.1.1 Pick Interpolation on the Disk and Bidisk

Recall that the unit disk D is the set {z ∈ C : |z| < 1} and the torus T is the set {z ∈ C :

|z| = 1}. In 1916, Pick considered the following interpolation problem on D:
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Pick’s Interpolation Question: Given points λ1, . . . , λn ∈ D and µ1, . . . , µn ∈ D, when

is there a holomorphic φ : D→ D such that φ(λi) = µi for i = 1, . . . , n?

The answer to this question requires the following definition:

Definition 2.1.1. Let Ω ⊆ Cd. Then, a function K : Ω× Ω→ C is called a positive kernel

on Ω if for all finite sets {λ1, . . . , λm} ⊆ Ω, the matrix

(
K(λi, λj)

)m
i,j=1

is positive semidefinite. A positive kernel is called holomorphic if it is holomorphic in the

first variable and conjugate-holomorphic in the second variable.

Using the language of positive kernels, we can now state:

Pick’s Interpolation Answer: A holomorphic interpolating function φ : D→ D exists

if and only if there is a positive kernel K : {1, . . . , n} × {1, . . . , n} → C such that

1− µiµ̄j = (1− λiλ̄j)K(i, j) ∀ i, j ∈ {1, . . . , n}. (2.1.1)

It is not hard to show that Pick’s condition (2.1.1) is necessary. However, the proof does

require knowledge about the basic theory of reproducing kernel Hilbert spaces and their

multipliers. Since this theory is key in later sections, we introduce it now and then show

that Pick’s condition is necessary. First, consider the following definitions:

Definition 2.1.2. A reproducing kernel Hilbert space H on Ω ⊆ Cd is a Hilbert space of

functions f : Ω→ C such that for each w ∈ Ω, point evaluation at w is a continuous linear

functional. Thus, for each w ∈ Ω, there is an element Kw ∈ H such that

〈f,Kw〉H = f(w) ∀ f ∈ H.

5



It makes sense to define K(z, w) := Kw(z) and regard K as a function on Ω× Ω. Such a K

is a positive kernel, and the space H with reproducing kernel K is denoted H(K). If H(K)

is a space of holomorphic functions, then K is a holomorphic kernel.

The following well-known result, which appears as Theorem 2.23 in [4], shows that repro-

ducing kernel Hilbert spaces can be uniquely identified with positive kernels. This result was

originally proven for Hilbert spaces H such that evaluation at each point in Ω is a nonzero

continuous linear functional and kernels K such that K(z, z) > 0 for all z ∈ Ω. Nevertheless,

the arguments still hold for our more general setting.

Theorem 2.1.3. Given a positive kernel K on Ω, there is a unique reproducing kernel Hilbert

space H(K) on Ω with reproducing kernel K.

Several facts about the Hilbert space H(K) are quite important. Define L to be the set of

finite linear combinations of functions of the form K(·, w), where w is any fixed point in Ω.

Then L is dense in H(K). Moreover, the inner product of H(K) is defined by

〈 K(·, w), K(·, z) 〉H(K) := K(z, w)

on {K(·, w)}w∈Ω and extends to L by linearity. Basically, H(K) is the completion of L with

respect to this inner product. The following property follows from Parseval’s identity and

appears as Proposition 2.18 in [4]:

Theorem 2.1.4. Let H(K) be a reproducing kernel Hilbert space on Ω and let {fi}i∈I be an

orthonormal basis for H(K). Then

K(z, w) =
∑
i∈I

fi(z)fi(w).

Several later proofs will require information about multipliers and hence, the following defi-

nition is included for clarity:

6



Definition 2.1.5. A function ψ on Ω is a multiplier of a Hilbert space H of functions on Ω

if for all f ∈ H, the function ψf ∈ H as well. Denote the operator of multiplication by ψ

on H by Mψ. If H = H(K), then the closed graph theorem implies that Mψ is bounded; the

resultant operator norm is denoted by ‖Mψ‖H.

The following well-known result characterizes the multipliers of reproducing kernel Hilbert

spaces and is a special case of Theorem 2.3.9 in [10]:

Theorem 2.1.6. Let H(K) be a reproducing kernel Hilbert space on Ω, and let ψ be a

function on Ω. Then, Mψ is a bounded linear operator on H(K) with ‖Mψ‖H(K) ≤ b if and

only if (
b2 − ψ(z)ψ(w)

)
K(z, w) is a positive kernel on Ω.

To illustrate these objects and obtain definitions needed to show Pick’s condition (2.1.1) is

necessary, consider the following reproducing kernel Hilbert space and its multipliers.

Example 2.1.7. The Hardy space on D, denoted H2(D), is the space of holomorphic func-

tions defined on D satisfying

‖f‖H2 := lim
r↗1

(
1

2π

∫ 2π

0

|f(reiθ)|2dθ
) 1

2

<∞. (2.1.2)

Write f(z) =
∑
anz

n using its power series expansion at zero. Then, the H2 norm can be

equivalently expressed as

‖f‖H2 =

(
∞∑
n=0

|an|2
) 1

2

.

It is well-known that H2(D) is actually a Hilbert space with inner product

〈f, g〉H2 := lim
r↗1

1

2π

∫ 2π

0

f(reiθ)g(reiθ) dθ =
∞∑
n=0

anb̄n,

where g(z) =
∑
bnz

n. The Cauchy integral formula shows that H2(D) is actually a repro-
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ducing kernel Hilbert space with reproducing kernel K given by

K(z, w) =
1

1− zw̄
∀ z, w ∈ D.

Now, let H∞(D) be the Banach space of bounded holomorphic functions on D with norm

‖φ‖∞ := sup
z∈D
|φ(z)|.

Using (2.1.2), it is easy to see that each φ ∈ H∞(D) is a multiplier of H2(D) and

‖Mφ‖H2 ≤ ‖φ‖∞. (2.1.3)

It is not hard to show that equality occurs in (2.1.3). For the proof, see page 10 of [4].

Necessity of Pick’s Condition (2.1.1): Given these definitions and well-known results,

the necessity of Pick’s condition is basically immediate. To see why, assume there is an

interpolating function φ : D → D with φ(λi) = µi for i = 1, . . . , n. Then, the function φ is

a multiplier of the Hardy space with multiplier norm ‖Mφ‖H2 ≤ 1. It follows immediately

from Theorem 2.1.6 that the function K : D× D→ C defined by

K(z, w) :=
1− φ(z)φ(w)

1− zw̄
(2.1.4)

is a positive kernel. Restricting (2.1.4) to the set {λ1, . . . , λn} gives precisely (2.1.1).

Now, consider the situation in several variables. Recall that the polydisk Dd is the set

{(z1, . . . , zd) : z1, . . . , zd ∈ D} and the d-torus Td is the set {(z1, . . . , zd) : z1, . . . , zd ∈ T}.

The bidisk D2 is particularly interesting because in 1989, J. Agler generalized Pick’s result

to the bidisk. Specifically in [1], he proved:

Theorem 2.1.8. Pick Interpolation on the Bidisk. Let λ1, . . . , λn ∈ D2 and µ1, . . . , µn ∈

8



D, where each λi = (λi1, λ
i
2). Then, there is a holomorphic φ : D2 → D with

φ(λi) = µi ∀ i ∈ {1, . . . , n}

if and only if there are positive kernels K1, K2 : {1, . . . , n} × {1, . . . , n} → C such that

1− µiµ̄j = (1− λi1λ̄
j
1)K2(i, j) + (1− λi2λ̄

j
2)K1(i, j) ∀ i, j ∈ {1, . . . , n}. (2.1.5)

Unlike the one-variable case, the necessity of (2.1.5) does not follow immediately from the

theory of reproducing kernel Hilbert spaces. Rather, this is the context of the Agler decom-

position theorem. Specifically in [2], Agler proved the following theorem:

Theorem 2.1.9. Agler Decomposition Theorem. Let φ : D2 → D be holomorphic.

Then, there are positive holomorphic kernels K1, K2 : D2 × D2 → C such that

1− φ(z)φ(w) = (1− z1w̄1)K2(z, w) + (1− z2w̄2)K1(z, w) ∀ z, w ∈ D2. (2.1.6)

The terms in Theorem 2.1.9 are important enough to warrant their own definition.

Definition 2.1.10. Let φ : D2 → D be holomorphic. Then, (2.1.6) is called an Agler

decomposition of φ, and the kernels (K1, K2) are called Agler kernels of φ. To make future

calculations easier, the ordering of the kernels in (2.1.6) is opposite of the order that typically

appears in the literature.

This definition extends to holomorphic φ : Dd → D. Specifically, assume there exist d

positive holomorphic kernels K1, . . . , Kd : Dd × Dd → C such that

1− φ(z)φ(w) = (1− z1w̄1)K1(z, w) + · · ·+ (1− zdw̄d)Kd(z, w) ∀ z, w ∈ Dd. (2.1.7)

Then (2.1.7) is called an Agler decomposition of φ, and the kernels (K1, . . . , Kd) are called

Agler kernels of φ.

9



2.1.2 Associated Results, History, and Literature

Agler’s proof of the existence of Agler kernels in [2] used a nonconstructive separation argu-

ment. This argument hinged on the fact that holomorphic φ : D2 → D satisfy von Neumann’s

inequality, defined as follows:

Definition 2.1.11. A holomorphic function φ : Dd → D satisfies von Neumann’s inequality

if for all d-tuples of commuting contractions (T1, . . . , Td) on any Hilbert spaceH, the operator

φ(T1, . . . , Td) is also a contraction on H, i.e.

‖φ(T1, . . . , Td)‖H ≤ 1.

It was pointed out in [23] – and details also appear in [5] using [31] – that functions on

the polydisk Dd possess an Agler decomposition as in (2.1.7) if and only if they satisfy von

Neumann’s inequality. In [2], Agler also showed that holomorphic functions on the polydisk

Dd possess Agler decompositions if and only if they have a coisometric transfer function

realization, defined as follows:

Definition 2.1.12. A holomorphic φ : Dd → D has a coisometric transfer function re-

alization if there is a Hilbert space M = M1 ⊕ · · · ⊕ Md and a coisometric operator

U : C⊕M→ C⊕M such that if we define the operators

Ez := z1IM1 + · · ·+ zdIMd
∀ z = (z1, . . . , zd) ∈ Dd,

where each IMr is the identity on Mr and write U in block form as follows:

U =

 A B

C D

 :

 C

M

→
 C

M

 , (2.1.8)

10



then:

φ(z) = A+BEz (IM −DEz)−1C for z ∈ Dd.

This realization formula has proven quite useful in analytic function theory on the bidisk

and polydisk. Still, the associated Hilbert space M is a bit mysterious and shedding light

on the structure of M may open doors to additional applications. Further, as implied by

Theorem 2.1.14 below, the study of Agler kernels of φ is closely related to the study of M.

Remark 2.1.13. To see the connection between Agler kernels and coisometric transfer

function realizations, assume (K1, K2) are Agler kernels of φ. Then we can define an isometry

V : C⊕H(K1)⊕H(K2)⊕H → C⊕H(K1)⊕H(K2)⊕H,

where H is an arbitrary Hilbert space. To obtain V , first define it by

V


1

w̄2K1(·, w)

w̄1K2(·, w)

 =


φ(w)

K1(·, w)

K2(·, w)

 for each w ∈ D2

and extend it by linearity. Then V is isometric on the initial domain and can be extended

to an isometry on H(K1) ⊕ H(K2); this last extension might require the addition of an

arbitrary infinite dimensional Hilbert space H. If we set U := V ∗ and write U in block form

as in (2.1.8), then φ(z) = A+BEz (IM −DEz)−1C for z ∈ Dd.

Combining these results, which are mostly due to J. Agler, yields the following theorem:

Theorem 2.1.14. Let φ : Dd → D be holomorphic. Then, the following are equivalent:

(1) φ has an Agler decomposition with Agler kernels given by (K1, . . . , Kd).

11



(2) φ has a coisometric transfer function realization on Dd with the associated Hilbert space

M given by:

M = H(K1)⊕ · · · ⊕ H(Kd)⊕H,

where H is an arbitrary and often unnecessary infinite-dimensional Hilbert space.

(3) φ satisfies von Neumann’s inequality.

The importance of these classes of functions motivates the following definition:

Definition 2.1.15. The set of holomorphic functions φ : Dd → D is called the Schur class

on Dd and is denoted S(Dd). If φ ∈ S(Dd), then φ is called a Schur function. It was shown

by N. Th. Varopoloulos, M. Crabb, and A. Davis in [58, 25] that for d ≥ 3, only a strict

subset of functions in S(Dd) possess Agler decompositions. This subset of functions is called

the Schur-Agler class on Dd.

Since Agler’s seminal work, there has been much interest in both analyzing Agler decompo-

sitions on the bidisk as in [16, 24, 42, 38] and better understanding the Schur-Agler class on

the polydisk as in [12, 14, 15, 41, 43]. Researchers have also used these Agler kernels and real-

ization formulas to solve function theory questions with operator theory techniques and as a

method to craft analytic functions with desired properties as in [3, 5, 6, 9, 17, 37, 39, 46]. Nev-

ertheless, many properties of Agler kernels and their associated reproducing kernel Hilbert

spaces have remained fairly mysterious.

2.1.3 Basic Definitions and Summary of Main Results

In this chapter, we study the structure and origin of Agler kernels on the bidisk using the

theory of reproducing kernel Hilbert spaces. Specifically, for Agler kernels (K1, K2) of a

Schur function φ, we analyze the Hilbert spaces H(K1) and H(K2). We also consider the
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positive holomorphic kernel

Kφ(z, w) :=
1− φ(z)φ(w)

(1− z1w̄1)(1− z2w̄2)
∀ z, w ∈ D2. (2.1.9)

The Hilbert space with the reproducing kernel Kφ is denoted Hφ. For every φ ∈ S(D2),

the space Hφ is contained in the two-variable Hardy space H2(D2), which will be defined

momentarily. The Hardy spaces on both the bidisk and polydisk play an important role

throughout this chapter and can be defined in a way analogous to the one-variable case.

Specifically:

Definition 2.1.16. The Hardy space on the polydisk Dd, denoted H2(Dd), is the space of

holomorphic functions defined on Dd satisfying

‖f‖H2 := lim
r↗1

(
1

(2π)d

∫ 2π

0

· · ·
∫ 2π

0

|f(reiθ1 , . . . , reiθd)|2dθ1 . . . dθd

) 1
2

<∞. (2.1.10)

Then, H2(Dd) is a Hilbert space, and its inner product is the obvious generalization of

H2(D)’s inner product. Write f(z) =
∑

n∈Nd anz
n using its power series expansion at zero

with mutli-index notation, i.e. n = (n1, . . . , nd) and zn = zn1
1 · · · z

nd
d . Then ‖f‖2

H2 =
∑
|an|2.

As before, H2(Dd) is a reproducing kernel Hilbert space with kernel K given by

K(z, w) =
1∏d

i=1(1− ziw̄i)
∀ z, w ∈ Dd.

If H∞(Dd) is the Banach space of bounded holomorphic functions on Dd with norm ‖φ‖∞ :=

supz∈Dd |φ(z)|, then each φ ∈ H∞(Dd) is a multiplier of H2(Dd) and ‖Mφ‖H2 = ‖φ‖∞.

Both the general theory and the results proved in this chapter are especially nice for inner

functions, defined as follows:
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Definition 2.1.17. A function φ ∈ S(Dd) is inner if its radial boundary values satisfy

lim
r↗1

∣∣φ(reiθ1 , . . . , reiθd)∣∣ =
∣∣φ(eiθ1 , . . . , eiθd)∣∣ = 1 a.e. on Td.

Inner functions play a primary role in the study of Agler kernels because if φ is inner, then

Hφ has a nice structure; it is equal isometrically to H2(D2) 	 φH2(D2). Moreover, inner

functions are in some sense quite general because they are locally, uniformly dense in S(Dd).

The follow result of Rudin appears as Theorem 5.5.1 in [53]:

Theorem 2.1.18. Every φ ∈ S(Dd) is a limit (uniformly on compact subsets of Dd) of a

sequence of inner functions on Dd that are continuous on Dd.

Summary of Results

Given those definitions, we can now discuss the main results of the chapter. Most of the

results concern properties of Agler decompositions of Schur functions on the bidisk. Here is

a summary of the main results by section:

Section 2.2

In Section 2.2, we consider inner φ and introduce fundamental shift-invariant subspaces ofHφ

and hence, of H2(D2). These subspaces are special cases of spaces that appear naturally in

the theory of scattering systems and scattering-minimal unitary colligations; such subspaces

are discussed extensively by Ball-Sadosky-Vinnikov in [16]. Specifically, for r = 1, 2, we

let Zr denote the coordinate function Zr(z1, z2) = zr. We then let Smax1 denote the largest

subspace in Hφ invariant under multiplication by Z1 and let Smin2 = Hφ 	 Smax1 . We define

Smax2 and Smin1 analogously.

We show that these subspaces yield an elementary proof of the Agler decomposition the-

orem, which is constructive for inner functions. The result is implied by analyses in [16], and

related arguments appear in a recent paper by Grinshpan-Kaliuzhnyi-Verbovetskyi-Vinnikov-
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Woerdeman in [28], who prove a generalization of the Agler decomposition theorem. Their

arguments use the theory of scattering systems and shift-invariant subspaces of scattering

subspaces. This proof is independently interesting and important because it removes the need

for scattering systems and provides concrete decompositions. We also develop a uniqueness

criterion for Agler decompositions of inner functions and show that non-extreme functions

never have unique Agler decompositions. We end with an algorithm for constructing Agler

decompositions for particularly well-behaved polynomials.

Section 2.3

In Section 2.3, we observe that the spaces Smaxr and Sminr are special cases of more general

objects. Specifically, if φ ∈ S(D2) with Agler kernels (K1, K2), we define the following Hilbert

spaces:

SKr := H
(
Kr(z, w)

1− zrw̄r

)
,

for r = 1, 2. It is not hard to show that for any inner φ ∈ S(D2), the spaces Smaxr and Sminr

satisfy backward-shift invariant properties, and Sminr is in some sense a minimal SKr space. In

Propositions 2.3.4 and 2.3.7, we show that these properties extend to general SKr spaces. In

particular, we prove that for general φ, the associated SKr spaces also possess backward-shift

invariant properties and contain minimal sets. In Theorem 2.3.10, we characterize the Schur

functions φ possessing Agler kernels arising from orthogonal decompositions of Hφ.

Section 2.4

In Section 2.4, we use the subspaces Smaxr to examine Agler decompositions of rational inner

functions. Let φ ∈ S(D2) be rational inner, and let the degree of φ in the variable zr be kr

for r = 1, 2. We denote this by deg φ = (k1, k2) and degr φ = kr. It is known that for all
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Agler kernels (K1, K2) of φ, each H(Kr) is finite dimensional. Specifically,

dim(H(K1)) ≤ k2(k1 + 1) and dim(H(K2)) ≤ k1(k2 + 1).

The finiteness condition was proved by Cole and Wermer in [24], and the specific dimension

bounds were found by Knese in [41]. We provide a simple short proof using Smax1 and Smax2 .

We then consider rational inner functions φ continuous on D2. In Proposition 2.4.6, we

consider and slightly extend analyses from [16] about the Hilbert spaces Smaxr and Hφ asso-

ciated to φ. We use those results to show that such φ have unique Agler decompositions if

and only if they are functions of one variable. This result was originally proven by Knese

in [40] using alternate methods. In Proposition 2.4.8, we show that this property does not

extend to all rational inner functions and construct rational inner functions of arbitrarily

high degree with unique Agler decompositions.

Section 2.5

In the concluding section, we provide an application of the analysis of Hφ in Proposition

2.4.6. Specifically, recall that a polynomial in d variables is called stable if it has no zeros on

Dd. We first generalize Proposition 2.4.6 to the polydisk in Proposition 2.5.1. We then use it

to generalize a result of Knese in [38] characterizing stable polynomials on D2 to polynomials

on Dd.
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2.2 The Agler Decomposition Theorem

In this section, we consider the origins of Agler decompositions for Schur functions on the

bidisk. In Subsection 2.2.1, we introduce necessary notation and additional definitions. In

Subsection 2.2.2, we consider inner φ and introduce the subspaces Smaxr and Sminr , which

will be used to construct Agler decompositions. Then in Subsection 2.2.3, we provide an

elementary proof of the Agler decomposition theorem, which is explicitly constructive for

inner functions. We also discuss several related results about the uniqueness of Agler decom-

positions. Lastly in Subsection 2.2.4, we present an algorithm for constructing Agler kernels

of particularly well-behaved polynomials.

2.2.1 Notation and Definitions

For clarity, we include the following well-known definition:

Definition 2.2.1. The space L2(Td) is the space of a.e. defined, Lebesgue-measurable

functions on Td satisfying

‖f‖L2 :=

(
1

(2π)d

∫ 2π

0

· · ·
∫ 2π

0

|f(eiθ1 , . . . , eiθd)|2 dθ1 . . . dθd

) 1
2

<∞.

Write f(z) ∼
∑

n∈Zd f̂(n)zn using its Fourier series with mutli-index notation, i.e. n =

(n1, . . . , nd) and zn = zn1
1 · · · z

nd
d . Then ‖f‖2

L2 =
∑

n∈Zd |f̂(n)|2. Moreover, L2(Td) is a Hilbert

space with inner product given by

〈f, g〉L2 :=
1

2π

∫ 2π

0

· · ·
∫ 2π

0

f(eiθ1 , . . . , eiθd)g(eiθ1 , . . . , eiθd) dθ1 . . . dθd =
∑
n∈Zd

f̂(n)ĝ(n),

Let L∞(Td) denote the Banach space of bounded a.e.-defined, Lebesgue-measurable functions

on Td with norm defined by ‖φ‖∞ := ess sup φ. Then each φ ∈ L∞(Td) is a multiplier of

L2(Td) and ‖Mφ‖L2 ≤ ‖φ‖∞.
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In this section, we deal exclusively with the bidisk and so denote H∞(D2), H2(D2), L∞(T2),

and L2(T2) by H∞, H2, L∞, and L2. By a subspace of a Hilbert space H, we mean a linear

subspace. Given such a subspace U of H, we let U denote the closure of U in H. Then, U is

a Hilbert space that inherits the inner product of H. We also let PV denote the projection

operator onto a closed subspace V of H. For r = 1, 2, let zr denote the rth component of

the independent variable z and Zr denote the coordinate function defined by Zr(z1, z2) = zr.

Moreover, let Xr denotes the backward shift operator on H2 in the zr coordinate. Specifically

X1 and X2 are defined by

(X1g)(z) :=
g(z)− g(0, z2)

z1

and (X2g)(z) :=
g(z)− g(z1, 0)

z2

for each g ∈ H2. Let each Xm
r g denote the function obtained by applying the backward shift

operator m times to g. Define the following closed subspaces of L2:

L2
∗− :=

{
f ∈ L2 : f̂(n1, n2) = 0 for n2 ≥ 0

}
,

L2
−∗ :=

{
f ∈ L2 : f̂(n1, n2) = 0 for n1 ≥ 0

}
,

L2
+− :=

{
f ∈ L2 : f̂(n1, n2) = 0 for n1 < 0 or n2 ≥ 0

}
,

L2
−+ :=

{
f ∈ L2 : f̂(n1, n2) = 0 for n1 ≥ 0 or n2 < 0

}
,

L2
−− :=

{
f ∈ L2 : f̂(n1, n2) = 0 for n1 ≥ 0 or n2 ≥ 0

}
.

We will often treat H2 as a closed subspace of L2 in the usual way. In particular, each

function f ∈ H2 is associated to the L2 function whose Fourier coefficients equal the Taylor

coefficients of f around zero. For details, see [53]. This associated L2 function is also denoted

by f . Then H2 can be viewed as the space of functions:

{
f ∈ L2 : f̂(n1, n2) = 0 for n1 < 0 or n2 < 0

}
⊂ L2. (2.2.1)
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This identification is equivalent to associating a function in H2 with its a.e.-defined radial

boundary value function on T2. For n1, n2 ∈ N and f ∈ H2, let f̂(n1, n2) denote both the

Taylor coefficient of f and the Fourier coefficient of the associated L2 function f .

2.2.2 Important Hilbert Spaces

In this subsection, we analyze the mathematical objects key in proving the Agler decom-

position theorem. However, before considering the important Hilbert spaces, we need one

additional result about reproducing kernel Hilbert spaces, which appears as Theorem 5 in

[18].

Theorem 2.2.2. Let H(K1) and H(K2) be reproducing kernel Hilbert spaces on Ω. Then

K := K1 + K2 is a positive kernel on Ω and the Hilbert space H(K) is precisely the vector

space of functions H(K1) +H(K2) equipped with the norm

‖f‖2
H(K) := min

f=f1+f2

f1∈H(K1), f2∈H(K2)

‖f1‖2
H(K1) + ‖f2‖2

H(K2) ∀ f ∈ H(K1) +H(K2).

We first examine the structure of the space Hφ when φ is inner.

Remark 2.2.3. Structure of Hφ. Let φ ∈ S(D2) be inner, and recall that Hφ is the

Hilbert space with reproducing kernel given by (2.1.9). First consider its complementary

subspace defined by

φH2 := H

(
φ(z)φ(w)

(1− z1w̄1)(1− z2w̄2)

)
.

Recall that the set of linear combinations of its kernel functions

L :=

{
L∑
l=1

cl
φ(z)φ(wl)

(1− z1w̄l1)(1− z2w̄l2)
: L ∈ N, each l ∈ C, and wl = (wl1, w

l
2) ∈ D2

}

is dense in φH2. Using the integral form of the H2 norm and the definition of the inner
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product on reproducing kernel Hilbert spaces, one can easily show that

‖f‖φH2 = ‖f‖H2 ∀ f ∈ L.

It follows that φH2 is a closed subspace of H2. An examination of the linear combinations

of kernel functions of Hφ and φH2 also implies that Hφ ⊥ φH2 in the H2 inner product.

Thus, Hφ ⊆ H2	φH2. Moreover, Theorem 2.2.2 implies that H2 = Hφ +φH2 which means

(H2 	 φH2) ⊆ Hφ. Thus, Hφ is a closed subspace of H2 and H2 = Hφ ⊕ φH2. Moreover,

multiplication by φ is isometric on H2 and unitary on L2. We can use that fact to obtain

the following sequence, which results in a useful, alternate definition of Hφ:

Hφ = H2 	 φH2

= H2 ∩ (φH2)⊥

= H2 ∩ φ[L2 	H2]

=
{
φf ∈ H2 : f ∈ L2

∗− ⊕ L2
−+

}
. (2.2.2)

Now we define the primary subspaces of interest, which will be used to construct Agler

decompositions.

Definition 2.2.4. Maximal and Minimal Shift-Invariant Subspaces. Let φ ∈ S(D2)

be inner. Define Smax1 to be the largest subspace in Hφ invariant under MZ1 , i.e. invariant

under multiplication by the coordinate function Z1. Lemma 2.2.5 shows such a subspace

must exist. It is immediate that Smax1 is a closed subspace of Hφ and hence, of H2. Define

Smin2 := Hφ 	 Smax1 , and define Smax2 and Smin1 analogously.

Lemma 2.2.5. Let φ ∈ S(D2) be inner. Then there exists a maximal MZ1-invariant subspace

Smax1 of Hφ such that if S1 is also an MZ1-invariant subspace of Hφ, then S1 ⊆ Smax1 .

Proof. The proof is an easy application of Zorn’s Lemma. Let L denote the set of MZ1-
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invariant subspaces of Hφ partially ordered by set inclusion. Assume

S1 ⊆ S2 ⊆ S3 ⊆ · · · ⊆ Sn ⊆ . . .

is a totally ordered chain in L. Now set S = ∪∞n=1Sn. Then S is an MZ1-invariant subspace

of Hφ, and each Sn ⊆ S. Thus, S is an upper bound of the totally ordered chain. By Zorn’s

Lemma, L has a maximal element, which we denote Smax1 . Assume S1 is any other MZ1

invariant subspace of Hφ. Then, the set S = S1 + Smax1 is also an MZ1-invariant subspace.

If S1 6⊆ Smax1 , then Smax1 ( S, which contradicts the fact that Smax1 is maximal. Thus,

S1 ⊆ Smax1 .

In Remark 2.2.3, we identified the space Hφ of functions on D2 with the following space of

L2 functions {
φf ∈ H2 : f ∈ L2

∗− ⊕ L2
−+

}
. (2.2.3)

Other closed subspaces of H2 such as Smaxr and Sminr can also be identified with closed

subspaces of L2 by associating the H2 functions with their radial boundary value functions.

In particular, each Smaxr can be viewed as the maximal subspace of (2.2.3) invariant under

MZr . Moreover, establishing MZr -invariance of a subspace of H2 is equivalent to establishing

MZr -invariance of the associated subspace of L2. The following lemma characterizes the Smaxr

and Sminr spaces as subspaces of L2 and establishes the MZr -invariance of each Sminr . This

lemma is a special case of results that appear in Theorem 5.5 and Proposition 5.11 of Ball-

Sadosky-Vinnikov in [16]. We include simple proofs. Some of the arguments originate in

[16], while others are our own.

Lemma 2.2.6. Let φ ∈ S(D2) be inner. Then

Smax1 = H2 ∩ φL2
∗− Smin1 = PH2φL2

+−

Smax2 = H2 ∩ φL2
−∗ Smin2 = PH2φL2

−+,
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and Smaxr and Sminr are invariant under MZr for r = 1, 2.

Proof. We prove the results for Smax1 and Smin2 . By definition,

Smax1 =
{
f ∈ Hφ : Zk

1 f ∈ Hφ, ∀ k ∈ N
}
.

Let S1 denote the set H2∩φL2
∗−. By the characterization of Hφ in (2.2.3), S1 is a subspace of

Hφ. Since Z1S1 ⊆ S1, we have S1 ⊆ Smax1 . Now assume g ∈ Smax1 . Then g ∈ Hφ, and (2.2.3)

implies that g = φf, for f ∈ L2
∗−⊕L2

−+. Proceeding towards a contradiction, assume g 6∈ S1.

Then there is some (n1, n2) ∈ Z2 such that f̂(n1, n2) 6= 0 and n2 ≥ 0. The characterization

of Hφ in (2.2.3) implies that

Z
|n1|
1 g 6∈ Hφ,

which contradicts the definition of Smax1 . Thus, Smax1 = H2 ∩ φL2
∗− and so Smax1 is precisely

the space of L2 functions orthogonal to the closure of

(L2 	H2) + φ(H2 ⊕ L2
−+)

in L2. Then we can calculate

Smin2 := Hφ 	 Smax1

= PHφ
[
(Smax1 )⊥

]
= PHφ

[
(L2 	H2) + φ(H2 ⊕ L2

−+)
]

= PHφφL
2
−+

= PH2φL2
−+,

where the last equality follows because φL2
−+ ⊥ φH2. Now, define the set

L := {f ∈ L2
−+ : f̂(n1, n2) = 0 for all but finitely many n1}.
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Then, L is dense in L2
−+. Define V = PH2φL, and let f ∈ L. Then, there is some M ∈ N

such that we can write f(z) =
∑M

m=1 fm(z2)z−m1 a.e. on T2, where each fm ∈ L2(T) and

satisfies

fm(z2) ∼
∞∑
n=0

f̂(−m,n)zn2 .

Then, PH2(φf) =
∑M

m=1 PH2(φfmZ
−m
1 ). By explicit calculation of Fourier coefficients, one

can obtain

PH2

(
φfmZ

−m
1

)
(z) ∼

∑
j,k≥0

φ̂fm(j +m, k)zj1z
k
2 .

Viewing PH2

(
φfmZ

−m
1

)
as a holomorphic function on D2 and analyzing Taylor coefficients

shows:

PH2

(
φfmZ

−m
1

)
(z) = (Xm

1 φfm)(z) = (Xm
1 φ)(z)fm(z2),

for z ∈ D2, where X1 denotes the backward shift operator on H2 in the z1 coordinate. By

examining PH2φf , it is immediate that:

V ⊆
{ M∑
m=1

(
Xm

1 φ
)
(z)fm(z2) : M ∈ N, fm ∈ H2(D)

}
. (2.2.4)

By selecting specific f ∈ L and doing analogous calculations, containment in the other

direction is basically immediate. Thus, as a space of holomorphic functions, V equals the

set in (2.2.4). This characterization implies V is invariant under MZ2 . As

Smin2 = PH2φL2
−+ = PH2φL = V ,

Smin2 must be invariant under MZ2 . The results for Smax2 and Smin1 follow by symmetry.
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2.2.3 Proof of the Existence of Agler Decompositions

In this subsection, we provide an elementary proof of the Agler decomposition theorem. Be-

fore proceeding, we need several additional results about reproducing kernel Hilbert spaces.

This first result appears in [18] as Theorem 11.

Theorem 2.2.7. Let M be a closed subspace of a reproducing kernel Hilbert space H(K) on

Ω. Then M is a reproducing kernel Hilbert space on Ω with reproducing kernel

LM(z, w) := PM
[
K(·, w)

]
(z) ∀ z, w ∈ Ω,

where PM denotes the orthogonal projection onto M .

The following result appears as Theorem 2.3.13 in [10]:

Theorem 2.2.8. Let H(K1) and H(K2) be reproducing kernel Hilbert spaces on Ω. Then

H(K1) is contained in H(K2) if and only if there is some constant b > 0 such that difference

K2(z, w)− 1

b2
K1(z, w) (2.2.5)

is a positive kernel on Ω. Moreover, (2.2.5) holds for b = 1 if and only if the containment is

contractive.

We can now prove the Agler decomposition theorem using the subspaces from the previous

subsection. J. Agler first proved this result as Theorem 2.6 in [2].

Theorem 2.2.9. Agler Decomposition Theorem. Let φ ∈ S(D2). Then there are

positive holomorphic kernels K1, K2 : D2 × D2 → C satisfying

1− φ(z)φ(w) = (1− z1w̄1)K2(z, w) + (1− z2w̄2)K1(z, w) ∀ z, w ∈ D2.

Proof. Let φ ∈ S(D2) be inner, and let S1 and S2 denote the subspaces Smax1 and Smin2 from

Lemma 2.2.6. Since S1 and S2 are closed subspaces of Hφ, it follows from Theorem 2.2.7
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that they are reproducing kernel Hilbert spaces that inherit the Hφ inner product and have

reproducing kernels given by

LSr(z, w) := PSr

[
1− φ(·)φ(w)

(1− · w̄1)(1− · w̄2)

]
(z) ∀ z, w ∈ D2

and for r = 1, 2. By Lemma 2.2.6, each Sr is invariant under MZr . As each Sr inherits the

Hφ norm and Hφ inherits the H2 norm, we have ‖MZr‖Sr = 1. Theorem 2.1.6 implies

Kr(z, w) := (1− zrw̄r)LSr(z, w)

is a positive kernel on D2 for r = 1, 2. As the Sr are Hilbert spaces of holomorphic functions,

it follows that the Kr are holomorphic kernels. Since Hφ = S1 ⊕ S2, we have

1− φ(z)φ(w)

(1− z1w̄1)(1− z2w̄2)
= LS1(z, w) + LS2(z, w)

=
K1(z, w)

1− z1w̄1

+
K2(z, w)

1− z2w̄2

. (2.2.6)

Rearranging terms shows that (K1, K2) are Agler kernels of φ.

Now, let φ ∈ S(D2) be arbitrary. Then, Theorem 2.1.18 gives a sequence of inner functions

{φn} converging locally, uniformly to φ. Let {Kn
1 } and {Kn

2 } denote the sequences of Agler

kernels for the {φn} that are guaranteed by our previous arguments. Basic manipulations of

(2.2.6) show that

1− φn(z)φn(w)

(1− z1w̄1)(1− z2w̄2)
−Kn

r (z, w)

is a positive kernel for r = 1, 2 and n ∈ N. Thus,

1

(1− z1w̄1)(1− z2w̄2)
−Kn

r (z, w) (2.2.7)
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is also a positive kernel and so Theorem 2.2.8 implies that each H(Kn
r ) ⊆ H2 contractively.

Now the Cauchy-Schwarz inequality coupled with (2.2.7) restricted to the set {(z, w) ∈ D2 :

z = w} can be used to show that

|Kn
r (z, w)|2 ≤ |Kn

r (z, z)||Kn
r (w,w)| ≤ 1

(1− |z1|2)(1− |z2|2)

1

(1− |w1|2)(1− |w2|2)
,

for all z, w ∈ D2 and n ∈ N. Since the sequences {Kn
r } are locally, uniformly bounded,

they form a normal family. By Montel’s theorem, there is a subsequence {φnk} such that

the associated kernel subsequences {Knk
1 } and {Knk

2 } converge locally uniformly to positive

holomorphic kernels K1 and K2 satisfying

1− φ(z)φ(w) = (1− z1w̄1)K2(z, w) + (1− z2w̄2)K1(z, w),

for all z, w ∈ D2.

The previous proof is particularly nice because it does not use von Neumann’s inequality.

Then we can deduce von Neumann’s inequality on D2 as a corollary of Theorem 2.2.9 using

the arguments appearing in Theorem 1.2 of [23] or in [5], which relies on results from [31].

Corollary 2.2.10. von Neumann’s Inequality. Let φ ∈ S(D2), and let (T1, T2) be any

pair of commuting contractions on a Hilbert space H. Then, φ(T1, T2) is also a contraction

on H.

The proof of Theorem 2.2.9 provides simple Agler kernels for inner functions. For ease of

notation, positive kernels K(z, w) on D2 × D2 will be denoted by simply K.

Remark 2.2.11. Let φ ∈ S(D2) be inner. By the arguments in the proof of Theorem 2.2.9,

there are positive holomorphic kernels on D2, now denoted Kmax
r and Kmin

r , such that

Smaxr = H
(

Kmax
r

1− zrw̄r

)
and Sminr = H

(
Kmin
r

1− zrw̄r

)
, (2.2.8)
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for r = 1, 2. Moreover, (Kmax
1 , Kmin

2 ) and (Kmin
1 , Kmax

2 ) are pairs of Agler kernels of φ.

This proof of Theorem 2.2.9 provides insight into the uniqueness of Agler decompositions

for inner functions. The following result generalizes part of Theorem 5.10 in [16].

Theorem 2.2.12. Let φ ∈ S(D2) be inner. Then φ has a unique Agler decomposition if and

only if

φL2
−− ∩H2 = {0}.

Proof. Using the definitions of Smaxr and Sminr and their characterizations in Lemma 2.2.6,

it is easy to show that each Sminr is a closed subspace of Smaxr and

Smax1 	 Smin1 = Smax2 	 Smin2 = φL2
−− ∩H2. (2.2.9)

(⇒) Assume φ has a unique Agler decomposition. By Remark 2.2.11, this implies

(Kmax
1 , Kmin

2 ) = (Kmin
1 , Kmax

2 ).

By the representations of Smaxr and Sminr in Remark 2.2.11, we must have Smaxr = Sminr .

Using (2.2.9), this implies φL2
−− ∩H2 = {0}.

(⇐) Assume φL2
−− ∩H2 = {0}. Then it follows from (2.2.9) that each Smaxr = Sminr and so

each Kmax
r = Kmin

r . In particular, (Kmin
1 , Kmin

2 ) is a pair of Agler kernels of φ. Let (L1, L2)

be any pair of Agler kernels of φ. By Theorem 2.1.6 and the maximality of Smaxr established

in Lemma 2.2.5,

H

(
Lr(z, w)

1− zrw̄r

)
⊆ Smaxr

for r = 1, 2. In particular, for each fixed w ∈ D2 and r = 1, 2, the functions

Kmin
r (·, w)

1− Zrw̄r
,
Lr(·, w)

1− Zrw̄r
∈ Smaxr = Sminr .
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By the definition of Agler kernels, we have

1− φ(z)φ(w)

(1− z1w̄1)(1− z2w̄2)
=
L1(z, w)

1− z1w̄1

+
L2(z, w)

1− z2w̄2

=
Kmin

1 (z, w)

1− z1w̄1

+
Kmin

2 (z, w)

1− z2w̄2

. (2.2.10)

As Smin1 ⊥ Smin2 in Hφ, the decomposition in (2.2.10) is unique for each fixed w ∈ D2. It

follows that for r = 1, 2,

Lr(·, w)

1− Zrw̄r
=
Kmin
r (·, w)

1− Zrw̄r
∀ w ∈ D2.

Then L1 = Kmin
1 and L2 = Kmin

2 , and since (L1, L2) were arbitrary, φ has a unique Agler

decomposition.

We also observe that certain functions have extremely non-unique Agler decompositions.

Recall that a function φ is an extreme point of S(D2) if and only if there is no f ∈ S(D2)

such that φ± f ∈ S(D2).

Theorem 2.2.13. If φ ∈ S(D2) is not an extreme point of S(D2), then φ does not have a

unique Agler decomposition.

Proof. Assume φ is not extreme. Then, there is some f ∈ S(D2) such that φ ± f ∈ S(D2)

and so there are pairs of Agler kernels (K1, K2) and (L1, L2) satisfying

1− (φ+ f)(z)(φ+ f)(w) = (1− z1w̄1)K2 + (1− z2w̄2)K1, (2.2.11)

1− (φ− f)(z)(φ− f)(w) = (1− z1w̄1)L2 + (1− z2w̄2)L1, (2.2.12)

where Lr and Kr are functions of z, w ∈ D2. Adding (2.2.11) and (2.2.12) and dividing the
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resultant equation by 2 yields

1− φ(z)φ(w)− f(z)f(w) = (1− z1w̄1)K2+L2

2
+ (1− z2w̄2)K1+L1

2
,

which implies

1− φ(z)φ(w) =(1− z1w̄1)

(
K2 + L2

2
+ t

f(z)f(w)

1− z1w̄1

)

+ (1− z2w̄2)

(
K1 + L1

2
+ (1− t)f(z)f(w)

1− z2w̄2

)
,

for any t ∈ [0, 1]. Hence, φ has infinitely many pairs of Agler kernels.

2.2.4 Construction of Polynomial Agler Decompositions

In this subsection, we give an algebraic algorithm for constructing Agler decompositions for

a special class of polynomials.The algorithm is motivated by the arguments appearing in the

proof of Theorem 2.2.13. Specifically, let

p(z) =
M∑
m=0

N∑
n=0

amnz
m
1 z

n
2

be any polynomial such that p ∈ S(D2) and

‖p‖∞ =
M∑
m=0

N∑
n=0

|amn|. (2.2.13)

We will describe how to construct Agler kernels of such polynomials. We first reduce the

problem to a simpler situation:

Remark 2.2.14. A Simple Reduction. Let p ∈ S(D2) satisfy (2.2.13). Then by the
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maximum modulus principle, there is some τ = (τ1, τ2) ∈ T2 such that

|p(τ)| =

∣∣∣∣∣
M∑
m=0

N∑
n=0

amnτ
m
1 τ

n
2

∣∣∣∣∣ =
M∑
m=0

N∑
n=0

|amn|,

which implies that there is some µ ∈ T such that

p(τ) = µ

M∑
m=0

N∑
n=0

|amn|.

Define q(z) := 1
µ
p(τz), and write

q(z) =
M∑
m=0

N∑
n=0

bmnz
m
1 z

n
2 .

Working through the definitions makes it clear that

q(1, 1) =
M∑
m=0

N∑
n=0

bmn =
M∑
m=0

N∑
n=0

|amn| =
M∑
m=0

N∑
n=0

|bmn|.

Thus, each bmn is real and nonnegative. Now assume that (K1, K2) are Agler kernels of q.

Then, since

1− p(z)p(w) = 1− q( z
τ
)q(w

τ
) = (1− z1w̄1)K2( z

τ
, w
τ

) + (1− z2w̄2)K1( z
τ
, w
τ

),

the kernels (K1( z
τ
, w
τ

), K2( z
τ
, w
τ

)) are Agler kernels of p. Thus, when constructing Agler kernels

of such polynomials, we can assume the polynomial’s coefficients are real and nonnegative.

Before considering the general algorithm for constructing Agler kernels, we address the cases

where the polynomial has only one or two terms. We omit the proofs of the following lemmas

because they are simple algebraic calculations.
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Lemma 2.2.15. Monomial Case. Let p(z) = azn1 z
m
2 ∈ S(D2) with a ≥ 0. Define

K2(z, w) := a2

m−1∑
k=0

zk1 w̄
k
1 +

1− a2

1− z1w̄1

and K1(z, w) := a2zm1 w̄
m
1

n−1∑
k=0

zk2 w̄
k
2 .

Then, (K1, K2) are Agler kernels of p.

Lemma 2.2.16. Binomial Case. Let p(z) = azj1z
l
2 + bzm1 z

n
2 ∈ S(D2) with a, b ≥ 0. Define

K2(z, w) :=
ab(zj1z

l
2 − zm1 zn2 )(wj1w

l
2 − wm1 wn2 )

1− z1w̄1

+ (a2 + ab)

j−1∑
k=0

zk1 w̄
k
1 + (b2 + ab)

m−1∑
k=0

zk1 w̄
k
1

K1(z, w) := (a2 + ab)zj1w̄
j
1

l−1∑
k=0

zk2 w̄
k
2 + (b2 + ab)zm1 w̄

m
1

n−1∑
k=0

zk2 w̄
k
2 +

1− a2 − b2 − 2ab

1− z2w̄2

.

Then, (K1, K2) are Agler kernels of p.

Remark 2.2.17. Another Simple Reduction. Let L ≥ 3 and let p ∈ S(D2) be a

polynomial with L terms and with nonnegative, real coefficients. In this remark, we show

how to construct Agler kernels of p using known Agler kernels of two polynomials q1, q2,

where q1, q2 ∈ S(D2) are polynomials with L-1 terms and nonnegative, real coefficients.

To begin, write p(z) = p1(z) + p2(z), where p1(z) = azj1z
l
2 + bzm1 z

n
2 + czs1z

t
2 has precisely

three terms, satisfies c ≥ a and c ≥ b, and does not contain any terms of the same degree in

each variable as p2. Now define:

q(z) := −azj1zl2 + bzm1 z
n
2 + (a− b)zs1zt2

q1(z) := p(z) + q(z) = 2bzj1z
n
2 + (a− b+ c)zs1z

t
2 + p2(z)

q2(z) := p(z)− q(z) = 2azm1 z
n
2 + (b− a+ c)zs1z

t
2 + p2(z).

Then p± q ∈ S(D2) and as in the proof of Theorem 2.2.13, it follows that

1− p(z)p(w) =
1

2

(
1− q1(z)q1(w)

)
+

1

2

(
1− q2(z)q2(w)

)
+ q(z)q(w).
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Then, if (M1,M2) and (L1, L2) are Agler kernels of q1 and q2 respectively then

K2(z, w) :=
1

2

(
M2(z, w) + L2(z, w)

)
and K1(z, w) :=

1

2

(
M1(z, w) + L1(z, w)

)
+
q(z)q(w)

1− z2w̄2

are Agler kernels of p.

The following result is immediate:

Theorem 2.2.18. Let p ∈ S(D2) be a polynomial satisfying (2.2.13) with precisely L terms.

If L = 1, one can obtain Agler kernels of φ by reducing to the case where p has a positive

coefficient and applying Lemma 2.2.15. If L ≥ 2, one can obtain Agler kernels of p using

the following steps:

1. Using the arguments in Remark 2.2.14, reduce p to a polynomial p′ with L terms and

nonnegative, real coefficients.

2. Using the arguments in Remark 2.2.17 L-2 times, reduce the construction of Agler

kernels of p′ to the construction of Agler kernels of 2L−2 binomials {q1, . . . , q2L−2}.

3. Using Lemma 2.2.16, obtain Agler kernels of {q1, . . . , q2L−2}. Working backwards, use

these to construct Agler kernels of p′ and then p.

To illustrate this method, let’s consider the following simple example:

Example 2.2.19. Let p(z) = 1
3
+ 1

6
z2

2 + 1
2
z2

1z2. It is clear that p ∈ S(D2) and satisfies (2.2.13).

Since p already has positive coefficients, we can proceed to Step 2 of the algorithm. As p has

only three terms, we will only use the reduction argument from Remark 2.2.17 once. Define

q(z) := −1
3

+ 1
6
z2

2 + 1
6
z2

1z2.

q1(z) := p(z) + q(z) = 1
3
z2

2 + 2
3
z2

1z2.

q2(z) := p(z)− q(z) = 2
3

+ 1
3
z2

1z2.
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Using Lemma 2.2.16, we obtain the following Agler kernels (M1,M2) for q1 :

M2(z, w) =
2
9
(z2

2 − z2
1z2)(w̄2

2 − w̄2
1w̄2)

1− z1w̄1

+ 2
3

(
1 + z1w̄1

)
M1(z, w) = 1

3

(
1 + z2w̄2

)
+ 2

3
z2

1w̄
2
1.

Similarly, we obtain the following Agler kernels (L1, L2) for q2 :

L2(z, w) =
2
9
(1− z2

1z2)(1− w̄2
1w̄2)

1− z1w̄1

+ 1
3

(
1 + z1w̄1

)
L1(z, w) = 1

3
z2

1w̄
2
1.

Then as in Remark 2.2.17,

1− p(z)p(w) =
1

2

(
1− q1(z)q1(w)

)
+

1

2

(
1− q2(z)q2(w)

)
+ q(z)q(w).

This implies that we have the following Agler kernels of p:

K2(z, w) = 1
2

(
M2(z, w) + L2(z, w)

)

=
1
9
(z2

2 − z2
1z2)(w̄2

2 − w̄2
1w̄2)

1− z1w̄1

+
1
9
(1− z2

1z2)(1− w̄2
1w̄2)

1− z1w̄1

+ 1
2

(
1 + z1w̄1

)
,

K1(z, w) = 1
2

(
M1(z, w) + L1(z, w)

)
+
q(z)q(w)

1− z2w̄2

= 1
6

(
1 + z2w̄2

)
+ 1

2
z2

1w̄
2
1 +

(−1
3

+ 1
6
z2

2 + 1
6
z2

1z2)(−1
3

+ 1
6
w̄2

2 + 1
6
w̄2

1w̄2)

1− z2w̄2

,

as desired.
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2.3 The Structure of Agler Spaces

In the previous section, we showed that for φ inner, the subspaces Smaxr and Sminr of Hφ yield

simple Agler decompositions. In this section, we first introduce natural analogues of these

spaces for general Schur functions. As before, we often denote kernels defined on the bidisk

simply by K instead of by K(z, w).

Definition 2.3.1. Let φ ∈ S(D2), and let (K1, K2) denote a pair of Agler kernels of φ.

Define the Hilbert spaces

SK1 := H
(

K1

1− z1w̄1

)
and SK2 := H

(
K2

1− z2w̄2

)
.

We call SK1 and SK2 Agler spaces of φ. By definition, (K1, K2) satisfy

1− φ(z)φ(w) = (1− z1w̄1)K2 + (1− z2w̄2)K1, (2.3.1)

which immediately implies

1− φ(z)φ(w)

(1− z1w̄1)(1− z2w̄2)
=

K1

1− z1w̄1

+
K2

1− z2w̄2

.

Arithmetic and an application of Theorem 2.2.8 can be used to show that SK1 , SK2 , H(K1),

and H(K2) are all contractively contained in Hφ and H2. Moreover, it follows from Theorem

2.1.6 that each Sr is invariant under MZr , and ‖MZr‖Sr ≤ 1 for r = 1, 2.

In this section, we use the Smaxr and Sminr spaces to analyze the properties of Agler spaces.

Specifically, in Subsection 2.3.1, we consider two properties of Smaxr and Sminr and show that

they hold for general Agler spaces as well. In Subsection 2.3.2, we use those two properties to

characterize the Schur functions which have Agler decompositions arising from an orthogonal

decomposition of Hφ.
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2.3.1 Two Properties of Agler Spaces

By Remark 2.2.11, Smaxr and Sminr are special cases of the SKr spaces. We will show that two

properties of Smaxr and Sminr extend to general Agler spaces. First, recall that Xr denotes

the backward shift operator in the zr coordinate for r = 1, 2. Specifically X1 and X2 are

defined by

(X1g)(z) =
g(z)− g(0, z2)

z1

and (X2g)(z) =
g(z)− g(z1, 0)

z2

for g ∈ H2. We will use the following result of Alpay-Bolotnikov-Dijksma-Sadosky, which

appears as Theorem 2.5 in [11]:

Theorem 2.3.2. Let φ ∈ S(D2). Then Hφ is invariant under each Xr and

‖X1f‖2
Hφ ≤ ‖f‖

2
Hφ − ‖f(0, z2)‖2

H2

‖X2f‖2
Hφ ≤ ‖f‖

2
Hφ − ‖f(z1, 0)‖2

H2 ∀ f ∈ Hφ.

Observe the following fact:

Lemma 2.3.3. Let φ ∈ S(D2) be inner. Then, Smax1 and Smin1 are invariant under X2, and

Smax2 and Smin2 are invariant under X1.

Proof. It follows from the arguments in Lemma 2.2.6 that

Smax1 =
{
f ∈ Hφ : Zk

1 f ∈ Hφ, ∀ k ∈ N
}

(2.3.2)

Smin1 = closH2

{ M∑
m=1

(
Xm

2 φ
)
(z)fm(z1) : M ∈ N, fm ∈ H2(D)

}
, (2.3.3)

where closH2 indicates that we are taking the closure of the set in H2(D2). It follows from

(2.3.2) and the X2-invariance of Hφ that Smax1 is invariant under X2. In particular, if

f ∈ Smax1 , then X2f ∈ Smax1 because

zk1 (X2f)(z) =
(
X2Z

k
1 f
)
(z) ∈ Hφ ∀ k ∈ N.

35



It is clear from (2.3.3) and the fact that X2 is a contraction on H2 that Smin1 is invariant

under X2. The result follows for Smax2 and Smin2 by symmetry.

We will show that the properties listed in Lemma 2.3.3 also hold for general Agler spaces.

First, for r = 1, 2, let H2
r denote the space H2(D) with independent variable zr. Specifically,

we have

H2
r = H

(
1

1− zrw̄r

)
.

Proposition 2.3.4. Let φ ∈ S(D2) and let (K1, K2) be Agler kernels of φ. Then SK1 is

invariant under X2, and SK2 is invariant under X1. Moreover, for all f ∈ SK2 and g ∈ SK1 ,

‖X1f‖2
SK2
≤ ‖f‖2

SK2
− ‖f(0, z2)‖2

H2 ,

‖X2g‖2
SK1
≤ ‖g‖2

SK1
− ‖g(z1, 0)‖2

H2 .

Proof. Let (K1, K2) be a pair of Agler kernels of φ. Solving (2.3.1) for K1 yields

K1 =
1 + z1w̄1K2

1− z2w̄2

− φ(z)φ(w) +K2

1− z2w̄2

. (2.3.4)

Since the left-hand-side of (2.3.4) is a positive kernel, it follows from Theorem 2.2.8 that

H

(
φ(z)φ(w) +K2

1− z2w̄2

)
⊆ H

(
1 + z1w̄1K2

1− z2w̄2

)
, (2.3.5)

and the embedding operator is a contraction. Now, consider the vector space of functions

Z1S
K
2 := {Z1f : f ∈ SK2 }.

We can define the following inner product on Z1S
K
2 :

〈Z1g1, Z1g2〉Z1SK2
:= 〈g1, g2〉SK2 ,
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for Z1g1, Z1g2 ∈ Z1S
K
2 . It is easy to show that Z1S

K
2 is complete with respect to this inner

product. Specifically, if {Z1gm} is Cauchy in Z1S
K
2 , then {gm} is Cauchy in SK2 and thus,

converges to some g ∈ SK2 . Then Z1g ∈ Z1S
K
2 and {Z1gm} converges to Z1g. Now, fix w ∈ D2.

Then, Z1w̄1K2(·,w)
1−Z2w̄2

∈ Z1S
K
2 and

〈
Z1g,

Z1w̄1K2(·, w)

1− Z2w̄2

〉
Z1SK2

=
〈
g,
w̄1K2(·, w)

1− Z2w̄2

〉
SK2

= w1g(w),

for all Z1g ∈ Z1S
K
2 . Thus, by definition, Z1S

K
2 with this inner product is the following

reproducing kernel Hilbert space:

H
(
z1w̄1K2

1− z2w̄2

)
.

Now, let f ∈ SK2 . By Theorem 2.2.2,

f ∈ H

(
φ(z)φ(w) +K2

1− z2w̄2

)
.

Then, (2.3.5) paired with Theorem 2.2.2 guarantees that we can write

f(z) = f1(z2) + z1f2(z),

for f1 ∈ H2
2 and f2 ∈ SK2 . Now, observe that f1 ∈ H2

2 and Z1f2 ∈ Z1H
2. Since H2

2 ⊥ Z1H
2 in

H2, there is a unique f1 and Z1f2 from those two sets satisfying f = f1 +Z1f2. In particular,

we must have

f1(z2) = f(0, z2) and f2(z) = (X1f)(z).

Thus, X1f ∈ SK2 and so SK2 is invariant under the backward shift X1. Now, as the con-

tainment in (2.3.5) is contractive and the decomposition of f into f1 and Z1f2 is unique, it
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follows from Theorem 2.2.2 that for f ∈ SK2 ,

‖f‖2
SK2
≥ ‖f‖2

H
(
φ(z)φ(w)+K2

1−z2w̄2

)
≥ ‖f‖2

H
(

1+z1w̄1K2
1−z2w̄2

)
= ‖f1‖2

H2 + ‖Z1f2‖2
Z1SK2

= ‖f1‖2
H2 + ‖f2‖2

SK2

= ‖f(0, z2)‖2
H2 + ‖X1f‖2

SK2
,

which establishes the norm inequality. Analogous arguments give the result for SK1 .

Now, we establish another property of the Smaxr and Sminr spaces. The remark below is a

special case of part of Theorem 5.5 in Ball-Sadosky-Vinnikov in [16]. We include a simple

proof.

Remark 2.3.5. Minimality of Smin1 and Smin2 . Let φ ∈ S(D2) be inner and assume there

is an orthogonal decomposition Hφ = S1⊕S2, with ZrSr ⊆ Sr for r = 1, 2. Then, Sminr ⊆ Sr.

To see this, let f ∈ Smin1 and write f = f1 + f2 where fr ∈ Sr. By the maximality of Smax2

established in Lemma 2.2.5, we have f2 ∈ Smax2 , which implies f ⊥ f2. By assumption,

f1 ⊥ f2, so that

‖f2‖2
φ = 〈f2, f1 + f2〉φ = 〈f2, f〉φ = 0.

Thus, f = f1 ∈ S1, which implies Smin1 ⊆ S1. Similarly, Smin2 ⊆ S2.

When φ is a general Schur function, there are similar minimal sets. But, before considering

those sets, we need a bit of notation.

Definition 2.3.6. For r = 1, 2 and a holomorphic function ψ on D2, define the set

ψH2
r :=

{
ψg : g ∈ H2

r

}
.
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In analogous way to the proof of Proposition 2.3.4, one can show that the set ψH2
r contains

the same functions as the reproducing kernel Hilbert space given by:

H

(
ψ(z)ψ(w)

1− zrw̄r

)
.

Now, we can state the following result:

Proposition 2.3.7. Let φ ∈ S(D2), and let (K1, K2) be Agler kernels of φ. Then the

following set containments hold:

(X1φ)H2
2 ⊆ SK2 and (X2φ)H2

1 ⊆ SK1 .

Proof. Recall from the proof of Proposition 2.3.4 that

H

(
φ(z)φ(w) +K2

1− z2w̄2

)
⊆ H

(
1 + z1w̄1K2

1− z2w̄2

)
,

and the embedding operator is a contraction. Then by Theorem 2.2.2 and Definition 2.3.6,

we have the following set relationships:

φH2
2 = H

(
φ(z)φ(w)

1− z2w̄2

)
⊆ H

(
1 + z1w̄1K2

1− z2w̄2

)
.

Let g ∈ H2
2 , so that f := φg ∈ φH2

2 . As in the proof of Proposition 2.3.4, we can write

f(z) = f1(z2) + z1f2(z),

for f1 ∈ H2
2 and f2 ∈ SK2 . As before, the properties of H2 imply that f1 must equal f(0, z2)

and f2 must equal X1f . Thus, X1f ∈ SK2 . Since

(
X1f

)
(z) =

(
X1φ

)
(z)g(z2),
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the inclusion (X1φ)H2
2 ⊆ SK2 follows. Analogous arguments give the result for SK1 .

Remark 2.3.8. The arguments in Propositions 2.3.4 and 2.3.7 generalize to the case where φ

is in the Schur-Agler class of Dd. Specifically given positive holomorphic kernels (K1, . . . , Kd)

such that

1− φ(z)φ(w) = (1− z1w̄1)K1 + · · ·+ (1− zdw̄d)Kd,

and r ∈ {1, . . . , d}, and similar arguments can be used to show that

(1) H

(
Kr(z, w)∏

j 6=r(1− zjw̄j)

)
is invariant under Xr.

(2) Xrf ∈ H

(
Kr(z, w)∏

j 6=r(1− zjw̄j)

)
for all f ∈ H

(
φ(z)φ(w)∏
j 6=r(1− zjw̄j)

)
.

These results look slightly different from Propositions 2.3.4 and 2.3.7 because on Dd, it makes

sense to number the kernels differently.

2.3.2 Agler Spaces via Orthogonal Decompositions

Recall that the Agler decompositions constructed in Section 2.2 for inner functions were

obtained via an orthogonal decomposition

Hφ = S1 ⊕ S2,

where ZrSr ⊆ Sr and ‖MZr‖Sr ≤ 1 for r = 1, 2. It thus makes sense to ask:

“For which Schur functions φ does there exist such an orthogonal decomposition of Hφ?”

Such orthogonal decompositions will yield Agler decompositions as in the proof of Theorem

2.2.9. The previous propositions allow us to characterize the Schur functions with such

decompositions. We first use those propositions to generalize the minimal sets Sminr as

follows:
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Definition 2.3.9. General Minimal Sets. Let φ ∈ S(D2) and define

V1 :=
{ M∑
m=1

(Xm
2 φ)(z)fm(z1) : M ∈ N, fm ∈ H2(D)

}
, (2.3.6)

V2 :=
{ M∑
m=1

(Xm
1 φ)(z)fm(z2) : M ∈ N, fm ∈ H2(D)

}
, (2.3.7)

and define the closed subspaces Smin1 := closHφV1 and Smin2 := closHφV2. It follows from

the proof of Lemma 2.2.6 that for φ inner, this definition of Sminr agrees with the one given

in Section 2.2. Then, Propositions 2.3.4 and 2.3.7 imply that each Vr ⊆ SKr for any Agler

spaces (SK1 , S
K
2 ) of φ.

Now, we can characterize the Schur functions with the desired orthogonal decompositions of

Hφ as follows:

Theorem 2.3.10. Let φ ∈ S(D2). Then Hφ has an orthogonal decomposition

Hφ = S1 ⊕ S2,

into closed subspaces S1 and S2 such that ZrSr ⊆ Sr and ‖MZr‖Sr ≤ 1 for r = 1, 2 if and

only if Smin1 ⊥ Smin2 in Hφ.

Proof. (⇒) Assume such an orthogonal decomposition of Hφ exists. Then by arguments

identical to those in the proof of Theorem 2.2.9, there are positive holomorphic kernels K1

and K2 such that

Sr = H

(
Kr(z, w)

1− zrw̄r

)
,

for r = 1, 2. Now since Hφ = S1 ⊕ S2, we have

1− φ(z)φ(w)

(1− z1w̄1)(1− z2w̄2)
=
K1(z, w)

1− z1w̄1

+
K2(z, w)

1− z2w̄2

.

Thus, (K1, K2) are Agler kernels of φ, and Propositions 2.3.4 and 2.3.7 imply that each
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Vr ⊆ Sr. As each Sr is closed in Hφ, it is clear that Sminr ⊆ Sr. Since S1 ⊥ S2 in Hφ, we

obtain Smin1 ⊥ Smin2 in Hφ.

(⇐) Assume Smin1 ⊥ Smin2 . Define Smax2 := Hφ 	 Smin1 . We will show Smin1 ⊕ Smax2 gives the

desired orthogonal decomposition of Hφ. First, for a fixed w ∈ D2, write the kernel Kφ(z, w)

from (2.1.9) as Kφ,w(z). Then Kφ,w(z) ∈ Hφ and applying the backward shift X1 to Kφ,w

yields:

(X1Kφ,w)(z) = w̄1Kφ,w(z)− φ(w)
(X1φ)(z)

1− z2w̄2

.

Now we can calculate the adjoint of X1 in Hφ, which we denote by X∗1 . Let f ∈ Hφ and

w ∈ D2. Then

(X∗1f)(w) = 〈X∗1f,Kφ,w〉Hφ

= 〈f,X1Kφ,w〉Hφ

= 〈f, w̄1Kφ,w − φ(w) X1φ
1−Z2w̄2

〉Hφ

= w1f(w)− 〈f, X1φ
1−Z2w̄2

〉Hφφ(w).

Similarly, we have

(X∗2f)(w) = w2f(w)− 〈f, X2φ
1−Z1w̄1

〉Hφφ(w).

Observe that

X2φ

1− Z1w̄1

∈ Smin1 and
X1φ

1− Z2w̄2

∈ Smin2 ,

for each w ∈ D2. Then, for f ∈ Smin1 and g ∈ Smax2 , the orthogonality assumptions imply
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that

(X∗1f)(z) = z1f(z), (2.3.8)

(X∗2g)(z) = z2g(z). (2.3.9)

Now, we will show that the desired properties hold for Smin1 . First let f ∈ V1. Then Z1f ∈ V1.

As Smin1 is a closed subspace of Hφ, we can use (2.3.8) and Theorem 2.3.2 to calculate

‖Z1f‖Smin1
= ‖Z1f‖Hφ

= ‖X∗1f‖Hφ

≤ ‖X1‖Hφ‖f‖Hφ

≤ ‖f‖Smin1
.

Now, let f ∈ Smin1 . Then there is a sequence {fn} ⊆ V that converges to f in Hφ. Then, as

{Z1fn} satisfies

‖Z1fn − Z1fm‖Smin1
≤ ‖fn − fm‖Smin1

,

for m,n ∈ N, the sequence {Z1fn} is Cauchy in Smin1 . Thus, {Z1fn} converges in Smin1 and

in H2, since Smin1 is contained contractively in H2. As the limit in H2 must be Z1f , the

sequence converges to Z1f in Smin1 as well, and

‖Z1f‖Smin1
= lim

n→∞
‖Z1fn‖Smin1

≤ lim
n→∞

‖fn‖Smin1
= ‖f‖Smin1

.

Thus, Z1S
min
1 ⊆ Smin1 , and ‖MZ1‖Smin1

≤ 1.

Now, consider Smax2 . Let g ∈ Smax2 . By the formula for X∗2 , we know Z2g = X∗2g ∈ Hφ. Let

f(z) =
M∑
m=1

(Xm
2 φ)(z)fm(z1)
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be an arbitrary element in V1. It is clear that X2f ∈ V1 ⊆ Smin1 as well. Then, as g ⊥ Smin1

in Hφ, we can calculate

〈Z2g, f〉Hφ = 〈X∗2g, f〉Hφ

= 〈g,X2f〉Hφ

= 0.

As f was arbitrary, Z2g ⊥ V1. Since V1 is dense in Smin1 , it follows that Z2g ⊥ Smin1 , and so

Z2g ∈ Smax2 . Thus, Smax2 is invariant under MZ2 , and for g ∈ Smax2 , we have

‖Z2g‖Smax2
= ‖X∗2g‖Hφ

≤ ‖X2‖Hφ‖g‖Hφ

≤ ‖g‖Smax2
.

Thus, ‖MZ2‖Smax2
≤ 1 and as Z2S

max
2 ⊆ Smax2 , the theorem is proved.

We will provide several examples to illustrate both the uses and limitations of Theorem

2.3.10, but first we need an alternate definition of Hφ. If A : H1 → H2 is a bounded linear

operator between two Hilbert spaces, let M(A) denote the range of A with inner product

defined by

〈Ax,Ay〉M(A) = 〈x, y〉H1 ,

for all x, y ∈ H1 orthogonal to the kernel of A. It is well-known and discussed at length in

[55] that if φ ∈ S(D), then

H

(
1− φ(z)φ(w)

1− zw̄

)
=M

(
(1− TφTφ̄)

1
2

)
,

where Tφ := PH2Mφ is the Toeplitz operator with symbol φ. The analysis generalizes imme-
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diately for φ ∈ S(D2). In particular,

Hφ =M
(
(1− TφTφ̄)

1
2

)
,

where Tφ := PH2Mφ is the Toeplitz operator with symbol φ. Now define Hφ̄ to be M
(
(1 −

Tφ̄Tφ)
1
2

)
, and observe that Hφ̄ is trivial for φ inner. Moreover, it follows from (I-8) in [55]

that f ∈ Hφ if and only if Tφ̄f ∈ Hφ̄, and for all f, g ∈ Hφ,

〈f, g〉Hφ = 〈f, g〉H2 + 〈Tφ̄f, Tφ̄g〉Hφ̄ .

If φ ∈ S(D2) is inner, Tφ̄f ≡ 0 for each f ∈ Hφ.

Example 2.3.11. Let φ be inner and consider ψ := tφ, where 0 < t < 1. Then, the V1 and

V2 spaces for φ and ψ are identical, so there is no confusion if we just refer to them as V1

and V2. Let fr ∈ Vr for r = 1, 2. As Tφ̄fr = 0, we have Tψ̄fr = 0 for each r. Since φ is inner,

V1 ⊥ V2 in Hφ and so

〈f1, f2〉H2 = 〈f1, f2〉Hφ = 0,

which immediately implies

〈f1, f2〉Hψ = 〈f1, f2〉H2 + 〈Tψ̄f1, Tψ̄f2〉Hψ̄ = 0.

Since V1 ⊥ V2 in Hψ, we get Smin1 ⊥ Smin2 in Hψ. Theorem 2.3.10 then implies that there is

an orthogonal decomposition of Hψ yielding an Agler decomposition of ψ.

As demonstrated by the following function, not all examples arise from inner functions or

one-variable functions.

45



Example 2.3.12. Consider φ(z) = 1
2
(z1 + z1z2). Then, we can calculate

V1 = {z1f(z1) : f ∈ H2(D)}

V2 = {(1 + z2)f(z2) : f ∈ H2(D)}.

Moreover, for every f2 ∈ V2, we have

Tφ̄f2 = PH2

(
1
2
z̄1(1 + z̄2)f2(z2)

)
= 0.

As V1 ⊥ V2 in H2, for any f1 ∈ V1, f2 ∈ V2, we have

〈f1, f2〉Hφ = 〈f1, f2〉H2 + 〈Tφ̄f1, Tφ̄f2〉Hφ̄ = 0.

Thus, V1 ⊥ V2 in Hφ and so Smin1 ⊥ Smin2 in Hφ. This same argument holds for any φ such

that V1 ⊥ V2 in H2, and Tφ̄Vr = {0} for r = 1 or r = 2.

It is also quite easy to find functions for which the assumptions of Theorem 2.3.10 fail.

Example 2.3.13. Set φ(z) = 1
2
(z1 + z2). Then, for r = 1, 2, the set Vr contains precisely the

functions in H2
r . As 1 ∈ V1∩V2, we cannot have V1 ⊥ V2 in Hφ. Thus, there is no orthogonal

decomposition of Hφ that yields Agler kernels.
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2.4 Agler Decompositions of Rational Inner Functions

In this section, we restrict attention to rational inner functions. We use the framework of

the maximal and minimal subspaces Smaxr and Sminr to simplify the known theory of Agler

kernels for rational inner functions. In particular, we use the subspaces to obtain simple

proofs for several known, important results.

In Subsection 2.4.1, we let (K1, K2) be Agler kernels of φ and provide a new proof

showing that H(K1) and H(K2) have finite dimensions with bounds dependent on deg φ.

In Subsection 2.4.2, we consider the uniqueness of Agler decompositions for rational inner

functions. In particular, we provide a new proof of the fact that rational inner φ continuous

on D2 have unique Agler kernels if and only if they are functions of one variable. We also

obtain several new results in Propositions 2.4.6 and 2.4.8.

Before beginning, let us review the structure of rational inner functions on the bidisk.

Definition 2.4.1. A set X ⊆ Cd is called determining for an algebraic set A ⊆ Cd if f ≡ 0

whenever f is holomorphic on A and f |X∩A = 0. A d-variable polynomial p is called atoral

if Td is not determining for any of the irreducible components of the zero set of p.

For more information about determining sets and atoral polynomials see [7]. Now, we es-

tablish notation and characterize the rational inner functions on D2.

Definition 2.4.2. Let p be a polynomial on C2. Assume the degree of p in the zr variable

is jr for r = 1, 2. Then we write deg p = (j1, j2) and degr p = jr for r = 1, 2. We also define

the polynomial’s reflection p̃ as

p̃(z) := zj11 z
j2
2 p
(

1
z̄

)
.

Remark 2.4.3. Let φ ∈ S(D2) be rational inner. By the atoral-toral factorization of Agler-

McCarthy-Stankus in [7], there are functions m and p, which are unique up to multiplication
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by unimodular constants, such that

φ(z) = m(z)
p̃(z)

p(z)
, (2.4.1)

where m is a monomial and p is an atoral polynomial with no zeros in D2 and finitely many

zeros on T2. Then, deg φ = (k1, k2), where kr = degrm + degr p for r = 1, 2. Also, every

function of the form (2.4.1) is rational inner.

2.4.1 Dimension Bounds for Associated Hilbert Spaces

In this subsection, we provide a simple proof of a known result about the dimensions ofH(K1)

and H(K2) when φ is rational inner. The finiteness result was proved by Cole-Wermer as

Corollary 2.2 in [24], the specific dimension bounds were shown by Knese in Theorem 2.10

of [41]. In [16], Ball-Sadosky-Vinnikov gave an alternate proof of the Cole-Wermer result for

a subset of the Agler kernels of φ. We use the Smaxr subspaces to provide a very simple proof

of the Cole-Wermer result, which is distinct from the arguments in [16].

Recall that Smaxr can be viewed equivalently as a space of holomorphic functions on D2

contained in H2 and a space of L2 functions contained in (2.2.1). Then the following result

about Smaxr for r = 1, 2 can be viewed as both a statement about the analytic functions and

a statement about their radial boundary value functions.

Lemma 2.4.4. Let φ ∈ S(D2) be rational inner with representation (2.4.1). Then

Smax1 ⊆
{
f
p
∈ H2 : f ∈ H2 and f̂(n1, n2) = 0 for n2 ≥ k2

}
,

Smax2 ⊆
{
f
p
∈ H2 : f ∈ H2 and f̂(n1, n2) = 0 for n1 ≥ k1

}
.

Proof. Let g ∈ Smax1 . By Lemma 2.2.6, there is an h ∈ L2
∗− such that g = φh = mp̃

p
h, by

representation (2.4.1). Then

mp̃h = pg ∈ H2.
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Since h ∈ L2
∗− and deg2(mp̃) = k2, if we set f := mp̃h, it follows immediately from the

definition of Fourier coefficients that f̂(n1, n2) = 0 whenever n2 ≥ k2. The result follows

similarly for Smax2 .

Now we provide a simple proof of the Cole-Wermer result. In the following proof, we index

Taylor coefficients by m,n instead of n1, n2 to simplify notation.

Theorem 2.4.5. Let φ ∈ S(D2) be rational inner with representation (2.4.1), and let

(K1, K2) be Agler kernels of φ. Then,

dim(H(K1)) ≤ k2(k1 + 1) and dim(H(K2)) ≤ k1(k2 + 1).

Setting m1 := dim(H(K1)) and m2 := dim(H(K2)), we can write

K1(z, w) =
1

p(z)p(w)

m1∑
i=1

qi(z)qi(w) and K2(z, w) =
1

p(z)p(w)

m2∑
j=1

rj(z)rj(w),

for polynomials {qi} with deg qi ≤ (k1, k2 − 1) for 1 ≤ i ≤ m1, and polynomials {rj} with

deg rj ≤ (k1 − 1, k2) for 1 ≤ j ≤ m2.

Proof. Let φ be rational inner, and let (K1, K2) be Agler kernels of φ. Fix w ∈ D2. Then for

r = 1, 2, the function Kr(·, w) ∈ H(Kr). Moreover, since

Kr(z, w)

1− zrw̄r
−Kr(z, w) =

zrw̄rKr(z, w)

1− zrw̄r

is a positive kernel, Theorem 2.2.8 implies Kr(·, w) ∈ SKr . By the maximality of Smaxr , it
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then follows that Kr(·, w) ∈ Smaxr . By Lemma 2.4.4, we can write

K1(z, w) =
1

p(z)

∑
m≥0

0≤n<k2

amn(w)zm1 z
n
2 , (2.4.2)

K2(z, w) =
1

p(z)

∑
0≤m<k1
n≥0

bmn(w)zm1 z
n
2 , (2.4.3)

for z ∈ D2 and coefficients amn(w) and bmn(w) in l2(N2). Now, substituting (2.4.1), (2.4.2),

and (2.4.3) into

1− φ(z)φ(w) = (1− z1w̄1)K2(z, w) + (1− z2w̄2)K1(z, w),

and canceling the denominator p(z) yields:

p(z)− φ(w)(mp̃)(z)

= (1− z1w̄1)
∑

0≤m<k1
n≥0

bmn(w)zm1 z
n
2 + (1− z2w̄2)

∑
m≥0

0≤n<k2

amn(w)zm1 z
n
2 .

Algebraic manipulation implies that

∑
0≤m<k1
n≥0

bmn(w)zm1 z
n
2 =

−1

(1− z1w̄1)

(
(1− z2w̄2)

∑
m≥0

0≤n<k2

amn(w)zm1 z
n
2 − p(z) + φ(w)(mp̃)(z)

)
.

Since the right-hand-side of the above equation has no term with a power of z2 larger than

k2, we can conclude:

K2(z, w) =
1

p(z)

∑
0≤m<k1
0≤n≤k2

bmn(w)zm1 z
n
2 .
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Similar arguments imply

K1(z, w) =
1

p(z)

∑
0≤m≤k1
0≤n<k2

amn(w)zm1 z
n
2 .

Recall that the linear span of the set of functions {K1(·, w)}w∈D2 is dense in H(K1). Fix

g ∈ H(K1), and let {fn/p} be a sequence with elements in the linear span of {K1(·, w)}w∈D2

that converges to g. Then for each n, deg fn ≤ (k1, k2 − 1). As H(K1) is contractively

contained in H2, we know {fn/p} also converges to g in H2. Since

‖fn − pg‖H2 ≤ ‖p‖∞‖fn/p− g‖H2 ,

{fn} converges to gp in H2. Then, deg gp ≤ (k1, k2− 1). If we set f = gp, then g = f/p, and

it follows that

H(K1) ⊆
{
f
p

: f(z) =
∑

0≤m≤k1
0≤n<k2

cmnz
m
1 z

n
2

}
, and dim(H(K1)) ≤ k2(k1 + 1).

Let m1 = dim(H(K1)), and let {fi}m1
i=1 be an orthonormal basis for H(K1). For each i, we

have fi = qi
p
, where deg qi ≤ (k1, k2 − 1). By Theorem 2.1.4,

K1(z, w) =
1

p(z)p(w)

m1∑
i=1

qi(z)qi(w).

An analogous argument gives the result for H(K2).

Given a rational inner φ with deg φ = (k1, k2), one can actually choose (K1, K2) so that

dim(H(K1)) = k2 and dim(H(K2)) = k1. Such decompositions are discussed by Kummert

in [45] and Knese in [40].
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2.4.2 Uniqueness of Agler Decompositions

In this subsection, we examine when rational inner functions have unique pairs of Agler

kernels. We first restrict attention to rational inner functions continuous on D2. We will

need the following results about Smax1 and Smax2 , which are proven by Ball-Sadosky-Vinnikov

in Proposition 6.9 of [16]. Here, we also consider a related result for Hφ, which simplifies the

proofs for Smax1 and Smax2 .

Proposition 2.4.6. Let φ ∈ S(D2) be rational inner and continuous on D2 with represen-

tation (2.4.1). Then

Hφ =
{
f
p

: f ∈ H2 and f̂(n1, n2) = 0 if n1 ≥ k1 and n2 ≥ k2

}
Smax1 =

{
f
p

: f ∈ H2 and f̂(n1, n2) = 0 if n2 ≥ k2

}
Smax2 =

{
f
p

: f ∈ H2 and f̂(n1, n2) = 0 if n1 ≥ k1

}
.

Proof. Because φ is continuous on D2, the polynomial p from representation (2.4.1) has no

zeros on D2. It follows that p, 1
p
∈ H∞(D2) and so, 1

p
H2 = H2. Now, set

q(z) := p
(

1
z̄

)
.

By the related properties of p, it is clear that q, 1
q
∈ L∞(T2) and so, these functions multiply

L2 into L2. Let f ∈ H2 and g ∈ L2 	H2. As q ≡ p̄ on T2, we have

〈qg, f〉L2 = 〈g, pf〉L2 = 0,

〈1
q
g, f〉L2 = 〈g, 1

p
f〉L2 = 0.

Then, it is immediate that

q[L2 	H2] ⊆ L2 	H2 and 1
q
[L2 	H2] ⊆ L2 	H2.
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Thus, q[L2 	H2] = L2 	H2. By the characterization of Hφ in Remark 2.2.3, we have

Hφ = φ[L2 	H2] ∩H2

=
[
mp̃
p

[L2 	H2] ∩ 1
p
H2
]

= 1
p

[
mp̃[L2	2] ∩H2

]
= 1

p

[
Zk1

1 Z
k2
2 q[L

2 	H2] ∩H2
]

= 1
p

[
Zk1

1 Z
k2
2 [L2 	H2] ∩H2

]
=
{
f
p

: f ∈ H2 and f̂(n1, n2) = 0 if n1 ≥ k1 and n2 ≥ k2

}
,

as desired. We now prove the result for Smax1 . Set

S1 :=
{
f
p

: f ∈ H2 and f̂(n1, n2) = 0 if n2 ≥ k2

}
.

From Lemma 2.4.4, we know Smax1 ⊆ S1. Moreover, S1 is invariant under MZ1 and by the

characterization of Hφ, we have S1 ⊆ Hφ. By the maximality of Smax1 , we have S1 ⊆ Smax1

and so, the two sets are equal. The result follows similarly for Smax2 .

Now we can characterize when such rational inner functions have unique Agler decompo-

sitions. The following corollary follows from Theorem 2.2.12 and was originally proved by

Knese as Corollary 1.16 in [40].

Corollary 2.4.7. Let φ ∈ S(D2) be rational inner and continuous on D2 with representation

(2.4.1). Then φ has a unique Agler decomposition if and only if φ is a function of one

variable.

Proof. By Proposition 2.4.6,

Smax1 ∩ Smax2 =
{
f
p

: f ∈ H2 and f̂(n1, n2) = 0 if n1 ≥ k1 or n2 ≥ k2

}
. (2.4.4)
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As Smax1 ∩ Smax2 = H2 ∩ φL2
−−, it follows from Theorem 2.2.12 that φ has a unique Agler

decomposition if and only if (2.4.4) = {0}, which occurs if and only if k1 or k2 is zero.

Corollary 2.4.7 does not hold for general rational inner functions. Rather, we can construct

rational inner functions with arbitrarily high degree and unique Agler decompositions.

Proposition 2.4.8. Let (k1, k2) ∈ N2. Then there exists a rational inner function φ such

that deg φ = (k1, k2), and φ has a unique Agler decomposition.

Proof. Let (k1, k2) ∈ N2. By Theorem 2.2.12, an inner function φ has a unique Agler de-

composition if and only if H2 ∩ φL2
−− = {0}. Let p be an atoral polynomial with deg p =

(k1, k2) and with no zeros on D2. Then, φ = p̃
p

is rational inner with deg φ = (k1, k2). As

Smax1 ∩ Smax2 = H2 ∩ φL2
−−, we can use Lemma 2.4.4 to conclude that

H2 ∩ φL2
−− ⊆

{
q
p
∈ H2 : q ∈ H2 and q̂(n1, n2) = 0 if n1 ≥ k1 or n2 ≥ k2

}
. (2.4.5)

Let L denote the set on the right-hand-side of (2.4.5). We will construct a φ such that L is

trivial. Let p be an atoral polynomial with deg p = (k1, k2) and with zeros at the following

kth1 and kth2 roots of unity:

(
e

2πik
k1 , e

2πij
k2

)
, (2.4.6)

where 1 ≤ k ≤ k1, 1 ≤ j ≤ k2. Using the power series representation of p centered at each

root of unity, one can use basic estimates to show

1
|p|2 is not integrable near each

(
e

2πik
k1 , e

2πij
k2

)
.
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By symmetry, it actually suffices to consider the situation at the point (1, 1). First, write

p(z) =
∑

m+n≥1
0≤m≤k1
0≤n≤k2

cmn(1− z1)m(1− z2)n,

for some constants cmn. Then, near (1, 1), we have

∣∣p(eiθ1 , eiθ2)
∣∣2 ≤ c1

(∣∣1− eiθ1∣∣2 +
∣∣1− eiθ2∣∣2)

= c1

(
(1− cos θ1)2 + sin2 θ1 + (1− cos θ1)2 + sin2 θ2

)
≤ c2

(
θ2

1 + θ2
2

)
,

for some positive real constants c1 and c2. Therefore, for some fixed ε > 0, there is a positive

constant C such that

∫ ε

−ε

∫ ε

−ε

1

|p(eiθ1 , eiθ2)|2
dθ1dθ2 ≥ C

∫ ε

−ε

∫ ε

−ε

1

θ2
1 + θ2

2

dθ1dθ2,

which diverges. Therefore, if there is a function q with q
p
∈ H2, then q vanishes at each root

of unity in (2.4.6). To be explicit, we will take p(z) = 3 − zk1
1 − zk2

2 − zk1
1 z

k2
2 and consider

φ = p̃
p
. Observe that if q

p
∈ L, then q is a polynomial with degr q < kr for r = 1, 2. We can

write

q(z) =
∑

0≤m<k1
0≤n<k2

amnz
m
1 z

n
2 , where q

(
e

2πik
k1 , e

2πij
k2

)
= 0,

for all k, j with 1 ≤ k ≤ k1 and 1 ≤ j ≤ k2. We will show that such a q must be identically

zero. For each k, where 1 ≤ k ≤ k1, define

qk(z2) := q
(
e

2πik
k1 , z2

)
=

∑
0≤n<k2

( ∑
0≤m<k1

amne
2πikm
k1

)
zn2 .
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As deg qk ≤ k2 − 1 and qk has k2 zeros, qk ≡ 0. That implies

∑
0≤m<k1

amne
2πikm
k1 = 0, (2.4.7)

for all k and n with 1 ≤ k ≤ k1, 0 ≤ n ≤ k2 − 1. Fix n with 0 ≤ n ≤ k2 − 1. It follows from

(2.4.7) that we have the following matrix equation:



1 e
2πi
k1 · · ·

(
e

2πi
k1

)k1−1

1 e
4πi
k1 · · ·

(
e

4πi
k1

)k1−1

...
...

...

1 e
2k1πi
k1 · · ·

(
e

2k1πi
k1

)k1−1


·



a0n

a1n

...

a(k1−1)n


=



0

0

...

0


.

Observe that the matrix is a Vandermonde matrix. It then has determinant given by

∏
1≤s<t≤k1

(
e

2πis
k1 − e

2πit
k1

)
6= 0.

As the matrix is nonsingular, each amn = 0, and so q ≡ 0. Thus,

φ(z) =
p̃(z)

p(z)
=

3zk1
1 z

k2
2 − zk1

1 − zk2
2 − 1

3− zk1
1 − zk2

2 − zk1
1 z

k2
2

has a trivial L set. Thus, H2 ∩ φL2
−− = {0}, and φ has a unique Agler decomposition.
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2.5 Application: Characterizing Stable Polynomials

In this section, we generalize some of the analysis from Section 2.4 to the polydisk Dd and

use it to obtain a result about stable polynomials. First, let d ≥ 2 and let φ be rational

inner on Dd with deg φ = (k1, . . . , kd). Again by the analysis of Agler-McCarthy-Stankus in

[7], φ has an almost unique representation as

φ(z) = m(z)
p̃(z)

p(z)
, (2.5.1)

for a monomial m and an atoral polynomial p with no zeros on Dd, such that degr φ =

degrm + degr p for each r. Moreover, any function of the form (2.5.1) is rational inner. We

also define the reproducing kernel Hilbert space

Hφ := H

(
1− φ(z)φ(w)∏d
i=1(1− ziw̄i)

)
.

For a fixed d, we define the notation H2 := H2(Dd) and L2 := L2(Td). Then, as in the

two-variable case, Hφ = φ(L2 	 H2) ∩ H2. The arguments in Proposition 2.4.6 generalize

immediately to yield the following result:

Proposition 2.5.1. Let φ ∈ S(Dd) be rational inner and continuous on Dd with deg φ =

(k1, . . . , kd) and representation (2.5.1). Then

Hφ = 1
p

[
Zk1

1 · · ·Z
kd
d

[
L2 	H2

]
∩H2

]
.

A polynomial p in d complex variables is called stable if p has no zeros on Dd. We can

now generalize a result of Knese [38, Theorem 1.1] about stable polynomials in two complex

variables to polynomials in d complex variables and simultaneously, provide a simple proof

of the original result.

Theorem 2.5.2. Let p be a non-constant polynomial in d complex variables. Then p is
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stable if and only if there is a constant c > 0 such that for all z ∈ Dd,

|p(z)|d − |p̃(z)|d ≥ c

d∏
i=1

(
1− |zi|2

)
. (2.5.2)

Proof. (⇒) Assume p is a non-constant stable polynomial in d complex variables. Then, p

is immediately atoral since p has no zeros on Dd. Thus, the function φ := p̃
p

is inner and

continuous on Dd. By Proposition 2.5.1,

Hφ = 1
p

[
Zk1

1 · · ·Z
kd
d

[
L2 	H2

]
∩H2

]
.

It is immediate that 1
p
∈ Hφ, and by Theorem 2.2.8, there is a constant c1 > 0 such that

1− φ(z)φ(w)∏d
i=1(1− ziw̄i)

− c1

p(z)p(w)
(2.5.3)

is a positive kernel. Setting w = z in (2.5.3) gives

1− |φ(z)|2∏d
i=1(1− |zi|2)

− c1

|p(z)|2
≥ 0,

and rearranging terms yields

|p(z)|2 − |p̃(z)|2 ≥ c1

d∏
i=1

(
1− |zi|2

)
.

As p has no zeros on Dd and since p, p̃ are clearly bounded on Dd, there is a constant c2 > 0

such that

|p(z)| − |p̃(z)| ≥ c1
1

|p(z)|+ |p̃(z)|

d∏
i=1

(
1− |zi|2

)
≥ c2

d∏
i=1

(
1− |zi|2

)
.
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Again, as p does not vanish on Dd, there is a constant c3 > 0 such that

|p(z)|d − |p̃(z)|d =
(
|p(z)| − |p̃(z)|

)( d∑
j=1

|p(z)|j−1|p̃(z)|d−j
)

≥
(
|p(z)| − |p̃(z)|

)
|p(z)|d−1

≥ c3

(
|p(z)| − |p̃(z)|

)
≥ c

d∏
i=1

(
1− |zi|2

)
,

where c = c2c3 > 0.

(⇐) Assume p satisfies equation (2.5.2). Proceeding towards a contradiction, assume p has

a zero on ∂Dd. Since p̃/p is bounded, p̃ must have a zero at the same point. Without loss

of generality, we can assume the zero occurs at a point (τ1, . . . , τd) ∈ Dn1 × Tn2 , where

n1 + n2 = d. Assume n2 < d. As p(rτ1, . . . , rτd) = O(1− r) and p̃(rτ1, . . . , rτd) = O(1− r),

it is immediate that

|p(rτ1, . . . , rτd)|d − |p̃(rτ1, . . . , rτd)|d = O(1− r)d. (2.5.4)

Combining (2.5.2) and (3.5.2) and using the fact that n2 < d, we obtain a contradiction as

r ↗ 1.

Assume n2 = d. For some constant a, we have p(rτ1, . . . , rτd) = a(1− r) +O(1− r)2, and

p̃(rτ1, . . . , rτd) = rk1+···+kdτ k1
1 · · · τ

kd
d p̄(

τ1
r
, . . . , τd

r
)

= rk1+···+kdτ k1
1 · · · τ

kd
d

[
ā(1− 1

r
) +O(1− r)2

]
.
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Using our equations for p(rτ1, . . . , rτd) and p̃(rτ1, . . . , rτd), we have

|p(rτ1, . . ., rτd)|d − |p̃(rτ1, . . . , rτd)|d

=
∣∣a(1− r) +O(1− r)2

∣∣d − rd(k1+···+kd)
∣∣ā(1− 1

r
) +O(1− r)2

∣∣d
= |a|d(1− r)d

[
1− rd(k1+···+kd−1)

]
+O(1− r)d+1

= O(1− r)d+1. (2.5.5)

Combining (2.5.2) and (2.5.5), we get a contradiction as r ↗ 1.
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Chapter 3

Differentiating Matrix Functions

3.1 Introduction

Over the last century, one-variable matrix functions F : Mn(C) → Mn(C), have played

important roles in many areas of mathematics and engineering. For example, matrix func-

tions such as eA, log(A) and A
1
2 are key in solving both systems of differential equations

and nonlinear matrix equations [30]. Matrix functions also have applications in diverse ar-

eas including control theory, theoretical particle physics, and Markov models [30, 57, 44].

Sometimes, the definition of a matrix function can be extended to yield an operator function

defined on well-behaved linear operators of a given Hilbert space. Such operator functions

play a primary role in spectral theory and are closely related to deep results such as the

spectral mapping theorem [27].

Derivatives of one-variable matrix functions are also quite important. If a matrix function

F (A) provides the solution to a modeling problem, an immediate question is: How sensitive

is this solution to perturbations in the input data? Such questions are typically answered

using condition numbers, which are calculated using the matrix function’s derivative [30].

Derivatives are also used to obtain tractable characterizations of monotone and convex ma-

trix functions; understanding such classes of functions is quite valuable because they have
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immediate applications to electrical networking theory and small particle physics [13, 19, 60].

In this chapter, we consider questions motivated by the study of such one-variable matrix

functions, which are generally defined using real-valued functions. Specifically, if f is a real-

valued function defined on R, then there is a canonical way to use f to define a matrix-valued

function F on the space of n× n self-adjoint matrices. This construction can sometimes be

extended to general n × n matrices, but in this chapter, we restrict attention to the self-

adjoint case. In particular, let S be an n × n self-adjoint matrix diagonalized by a unitary

U as follows

S = U


x1

. . .

xn

U∗.

Then, the eigenvalues {x1, . . . , xn} of S are real and it makes sense to define:

F (S) := U


f(x1)

. . .

f(xn)

U∗.

One question of interest is:

Which properties of the original function f are inherited by the matrix function F?

In this chapter, we generalize this matrix function construction to multivariate functions

and consider whether differentiability properties of the original function pass to the matrix

function. In this introduction, we introduce basic definitions and notation, discuss the

question of interest, review the related literature, and end with a summary of the main

ideas and results in this chapter.
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3.1.1 Basic Definitions

Let us first establish the mathematical objects of interest.

Definition 3.1.1. Multivariate Matrix Functions. Let f be a real-valued function

defined on an open set Ω ⊆ Rd. Then f induces a matrix-valued function F on the space

of d-tuples of n × n pairwise-commuting self-adjoint matrices with joint spectrum in Ω.

Specifically, let S = (S1, ..., Sd) be such a d-tuple and let U be a unitary matrix diagonalizing

S as follows:

Sr = U


xr1

. . .

xrn

U∗, (3.1.1)

for 1 ≤ r ≤ d. Denote the joint spectrum of S, also called the set of joint eigenvalues of S,

by σ(S) :=
{
xi = (x1

i , ..., x
d
i ) : 1 ≤ i ≤ n

}
and define

F (S) := U


f(x1)

. . .

f(xn)

 U∗. (3.1.2)

It is easy to see that F (S) is independent of the unitary U chosen to diagonalize S. For

clarity, we require some additional notation. In particular, the space of d-tuples of pairwise-

commuting n × n self-adjoint matrices with joint spectrum in Ω ( Rd is denoted CSdn(Ω).

If Ω = Rd, the matrix space is denoted CSdn. For d > 1, the space of d-tuples of n × n

self-adjoint matrices is denoted Sdn and for d = 1, is denoted Sn. The set of n×n self-adjoint

matrices with spectrum in Ω ( R is denoted Sn(Ω).

3.1.2 The Question of Interest

In this chapter, we will answer the question:
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Do the differentiability properties of the original function f pass to the matrix function F?

This question sounds deceptively simple, but even for a one-variable function, it is nontrivial.

To see one complication, let f ∈ C1(R,R) and consider the simple case of differentiating the

associated matrix function F along a C1 curve S(t) of n × n self-adjoint matrices. At

first glance, it seems reasonable to write S(t) = U(t)D(t)U∗(t), for U(t) unitary and D(t)

diagonal. Then F (S(t)) = U(t)F (D(t))U∗(t), and we can differentiate using the product

rule.

However, there is no guarantee that we can decompose S(t) into its eigenvector and

eigenvalue matrices so that the eigenvectors are even continuous. In particular, eigenvector

behavior at points where distinct eigenvalues coalesce can be unpredictable.

Example 3.1.2. To illustrate, consider the following example of Rellich from [51]:

S(t) = e−
1
t2


cos
(

2
t

)
sin
(

2
t

)

sin
(

2
t

)
− cos

(
2
t

)
 for t 6= 0, and S(0) = 0.

For t 6= 0, the eigenvalues of S(t) are ± e−
1
t2 and their associated eigenvectors are


cos
(

1
t

)

sin(1
t
)

 and


sin(1

t
)

− cos(1
t
)

 ,

and there is a singularity in the eigenvectors at t = 0. Thus, even an infinitely differentiable

curve can have singularities in its eigenvectors.
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3.1.3 Relevant Literature and History

The differentiability of matrix functions defined from one-variable functions is discussed

frequently in the literature. For examples, see [19, 26, 32]. The most comprehensive result

is by A.L. Brown and H.L. Vasudeva in [22], who proved that an m-times continuously

differentiable real-valued function induces an m-times continuously Fréchet differentiable

matrix-valued function.

A one-variable function also induces an operator function defined on the set of bounded

self-adjoint operators on any separable, infinite-dimensional Hilbert space. There is some

subtlety in the differentiability question because in this situation, a C1 function does not

always induce a C1 operator-valued function. In [48], V.V. Peller showed that if the operator

function is continuously differentiable, then the original function belongs locally to the Besov

space B1
11(R). A survey of such necessary and sufficient conditions for differentiability is

provided in [49].

It should be noted that there is an alternate approach for inducing a matrix function

from a multivariate function; the d matrices S1, ..., Sd are viewed as operators on Hilbert

spaces H1, ..., Hd and F (S) is viewed as an operator on H1⊗ ...⊗Hd. Brown and Vasudeva

generalized their one-variable differentiability result to these matrix functions in [22].

3.1.4 Summary of Main Results

In this chapter, we focus on matrix functions defined as in (3.1.2).

Section 3.2

In Section 3.2, we analyze the geometry of CSdn and conclude that a suitable notion of dif-

ferentiability for functions on this space is differentiation along curves. If we fix S in CSdn,

Theorem 3.2.5 characterizes the directions ∆ in Sdn such that there is a C1 curve S(t) in

CSdn with S(0) = S and S ′(0) = ∆. In Theorem 3.2.8, we show that the joint eigenvalues of
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locally Lipschitz curves in CSdn can be represented by locally Lipschitz functions.

Section 3.3

In Section 3.3, we examine the differentiability properties of the induced matrix functions.

Specifically, in Theorem 3.3.2, we show that a C1 function always induces a matrix func-

tion that can be differentiated along C1 curves in CSdn. We then calculate a formula for the

derivative of a matrix function along curves and in Theorem 3.3.8, prove that the formula is

continuous.

Section 3.4

In Section 3.4, we consider higher-order differentiation. With additional domain restrictions,

in Theorem 3.4.2, we show that a real-valued Cm function induces a matrix function that

can be m-times continuously differentiated along Cm curves. We also calculate a formula for

the derivatives and in Theorem 3.4.7, show the derivatives are continuous.

Section 3.5

In Section 3.5, we highlight several applications of the differentiability results. In particular,

we discuss how the derivatives of matrix functions play a role in the characterization of

monotone and convex matrix functions.
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3.2 The Geometry of CSdn

In this section, we examine the structure of the space CSdn with the goal of determining

which concepts of differentiation are most appropriate for functions defined on CSdn. In

Subsection 3.2.1, we first study the basic properties of CSdn and show that CSdn is a stratified

space. In Subsection 3.2.2 we characterize the C1 curves in CSdn; this characterization implies

that the differential map associated to the stratification of CSdn into smooth submanifolds

of Rm is only defined on a subset of the vectors tangent to CSdn. Thus, we primarily study

differentiation along curves. In Subsection 3.2.3, we show that locally Lipschitz curves in

CSdn have joint eigenvalues given by locally Lipschitz functions.

3.2.1 Basic Properties of CSd
n

To begin, observe that CSdn is not even a linear space; if A and B are pairwise-commuting

d-tuples, the sum A+B need not pairwise commute. Thus, neither the Fréchet nor Gâteaux

derivatives can be defined for functions on CSdn because both require the function to be

defined on linear sets around each point.

Now, let us impose the following norm on CSdn :

Definition 3.2.1. Let S = (S1, ..., Sd) be in CSdn (or Sdn) and let xi = (x1
i , ..., x

d
i ) be in σ(S).

Define

‖S‖ := max
1≤r≤d

‖Sr‖ and ‖xi‖ := max
1≤r≤d

|xri |, (3.2.1)

where ‖Sr‖ is the usual operator norm.

Recall that each S ∈ Sn is uniquely determined by its upper triangular part, which has n2

degrees of freedom. Then we can define a bijective map J : Sn → Rn2
by

J
(
S
)n
i,j=1

:=
(
S11, . . . , Snn,

(
Re(Sij), Im(Sij)

)
j>i

)
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where this is interpreted as an n2-tuple. By this identification, CSdn can be viewed as a

subset of Rm, where m = dn2, and inherits the following nom:

‖S‖2
Rm :=

d∑
r=1

∑
j≥i

∣∣Srij|2 ∀ S ∈ CSdn. (3.2.2)

Using basic facts about self-adjoint matrices, it is easy to show that the norm on CSdn defined

by (3.2.2) and the norm defined in (3.2.1) are equivalent norms. Moreover, in both of these

norms, CSdn is a closed subset of Sdn or equivalently, of Rm.

Remark 3.2.2. Recall that CSdn is precisely the set of elements S ∈ Sdn with

[Sr, Ss] = SrSs − SsSr = 0 ∀ 1 ≤ r, s ≤ d.

Thus, CSdn is the zero set of the polynomials associated with d(d − 1)/2 commutator oper-

ations and so is a real algebraic variety. These polynomials are defined on exactly m = dn2

real variables.

A result by Whitney in [59] and discussed by Kaloshin in [33] says every algebraic variety

defined by polynomials on m real variables can be decomposed into smooth submanifolds

of Rm that fit together ‘regularly’ and whose tangent spaces fit together ‘regularly.’ For a

manifold N , let TN denote the tangent space of N and let TSN denote the tangent space

based at a point S in N . Let X be a closed subset of Rm. Before further discussing Whitney’s

result, we need the following definition:

Definition 3.2.3. A stratification of X is a locally finite partition Z of X into locally closed

pieces {Mα} such that

1. Each piece Mα ∈ Z is a smooth submanifold of Rm.

2. (Condition of frontier) If Mα ∩Mβ 6= ∅ for pieces Mα, Mβ, then Mα ⊂Mβ.
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Example 3.2.4. Consider CS2
2 , the space of pairs of self-adjoint, commuting 2×2 matrices.

In the following definitions, a, b, c, d ∈ R. Define

M1 :=


U

 a 0

0 b

U∗, U

 c 0

0 d

U∗

 : U is 2× 2 unitary, a 6= b, c 6= d

 ,

M2 :=



 a 0

0 a

 , U

 c 0

0 d

U∗

 : U is 2× 2 unitary, c 6= d

 ,

M3 :=


U

 a 0

0 b

U∗,

 c 0

0 c


 : U is 2× 2 unitary, a 6= b

 ,

M4 :=



 a 0

0 a

 ,

 c 0

0 c



 .

It is easy to see that CS2
2 = ∪Mi and each Mi is locally closed. With some work, one can

show each Mi is a smooth submanifold of R8. As this example clearly satisfies the condition

of frontier, this partition {Mi} is a stratification of CS2
2 . As in this example, one should

generally expect a stratification of CSdn to be related to the number and multiplicity of the

repeated eigenvalues of the elements of CSdn.

Whitney’s result says CSdn has a specific decomposition Z into smooth submanifolds of Rm

where m = dn2, called a Whitney stratification. This stratification has further regularity

involving the tangent spaces of the pieces of Z. As we do not need those details here, they

are omitted. The interested reader should see [33] or [50] for the specifics. We let {Mα}

denote the pieces of Z and define the tangent space TCSdn := ∪TMα. Given a function

F : CSdn → Sn, one type of derivative is a map DF : TCSdn → TSn such that

DF |TMα : TMα → TSn

is the usual differential map for each manifold Mα. In Theorem 3.3.12, we analyze such
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maps. However, these differential maps cannot be easily generalized to analyze higher-order

differentiation. Furthermore, for each S ∈ CSdn and piece Mα containing S, the tangent

space TSMα might only contain a subset of the vectors tangent to CSdn at S. Example 3.2.6

will show that strict containment often occurs.

3.2.2 Continuously Differentiable Curves in CSd
n

To retain information about all tangent vectors, we mostly study differentiation along dif-

ferentiable curves. In this section, we determine which ∆ ∈ Sdn are vectors tangent to CSdn

at a given point S. Specifically, for any ∆ ∈ Sdn and S ∈ CSdn, we ask

Is there a C1 curve S(t) in CSdn with S(0) = S and S ′(0) = ∆?

For an element S ∈ CSdn with distinct joint eigenvalues, Agler, McCarthy, and Young in [8]

gave necessary and sufficient conditions on S and ∆ for such a C1 curve to exist. We extend

their result to an arbitrary element S but first need additional notation. Fix S ∈ CSdn and

∆ ∈ Sdn. Let U be a unitary matrix diagonalizing each component of S such that the repeated

joint eigenvalues of S appear consecutively. Numbering the xi’s appropriately, define

Dr := U∗SrU =


xr1

. . .

xrn

 , (3.2.3)

for each 1 ≤ r ≤ d. Then, for each r, define the two matrices

Γr := U∗∆rU

Γ̃rij :=

 Γrij if xi = xj

0 otherwise.
(3.2.4)
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Then Γ̃r is a block diagonal matrix. Each block corresponds to a distinct joint eigenvalue of

S and has dimension equal to the multiplicity of that eigenvalue. We now characterize the

differentiable curves in CSdn as follows:

Theorem 3.2.5. Let S ∈ CSdn and ∆ ∈ Sdn. Then there exists a C1 curve S(t) in CSdn with

S(0) = S and S ′(0) = ∆ if and only if for all 1 ≤ s, r ≤ d,

[Dr,Γs] = [Ds,Γr] and
[
Γ̃r, Γ̃s

]
= 0.

Proof. (⇒) Assume S(t) is a C1 curve in CSdn with S(0) = S and S ′(0) = ∆. Define

R(t) := U∗S(t)U,

where U diagonalizes S as in (3.2.3). Then R(t) is a C1 curve in CSdn with R(0) = D and

R′(0) = Γ. We will first prove that

[Dr,Γs] = [Ds,Γr] and [Γr,Γs]ij = 0,

for all pairs 1 ≤ r, s ≤ d and (i, j) such that xi = xj. We will use those results to conclude

[
Γ̃r, Γ̃s

]
= 0,

for each pair 1 ≤ r, s ≤ d. Since R(t) is C1 in a neighborhood of t = 0, we can write

Rr(t) = Dr + Γrt+ hr(t),

for each 1 ≤ r ≤ d, where |hr(t)ij| = o(|t|) for 1 ≤ i, j ≤ n. For each pair r and s, the
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pairwise-commutativity of R(t) implies

0 = [Rr(t), Rs(t)]

= [Dr + Γrt+ hr(t), Ds + Γst+ hs(t)]

=
(
[Dr, hs(t)] + [hr(t), Ds] + [hr(t), hs(t)]

)
+
(
[Dr,Γs] + [Γr, Ds] + [Γr, hs(t)] + [hr(t),Γs]

)
t

+ [Γr,Γs]t2, (3.2.5)

where the term [Dr, Ds] was omitted because it vanishes. Fix t 6= 0 and divide each term in

(3.2.5) by t. Letting t tend towards zero yields

0 = [Dr,Γs]− [Ds,Γr]. (3.2.6)

Choose i and j such that xi = xj. Then, the ijth entry of (3.2.5) reduces to

0 = [hr(t), hs(t)]ij + ( [Γr, hs(t)]ij − [Γs, hr(t)]ij ) t+ [Γr,Γs]ijt
2.

Fix t 6= 0 and divide both sides by t2. Letting t tend towards zero yields

0 = [Γr,Γs]ij, (3.2.7)

as desired. Now, fix r and s with 1 ≤ r, s ≤ d. Recall that Γ̃r and Γ̃s are block diagonal

matrices with blocks corresponding to the distinct joint eigenvalues of S; specifically, Γ̃rij =

Γ̃sij = 0 whenever xi 6= xj. It follows that Γ̃rΓ̃s and Γ̃sΓ̃r are also such block diagonal matrices.

Thus, if i and j are such that xi 6= xj,

[
Γ̃r, Γ̃s

]
ij

=
(

Γ̃rΓ̃s − Γ̃sΓ̃r
)
ij

= 0.
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Now, fix i and j such that xi = xj. By the definition of Γ̃,

[
Γ̃r, Γ̃s

]
ij

=
n∑
k=1

Γ̃rikΓ̃
s
kj − Γ̃sikΓ̃

r
kj

=
∑

{k:xk=xi}

ΓrikΓ
s
kj − ΓsikΓ

r
kj

= [Γr,Γs]ij −
∑

{k:xk 6=xi}

ΓrikΓ
s
kj − ΓsikΓ

r
kj

= −
∑

{k:xk 6=xi}

ΓrikΓ
s
kj − ΓsikΓ

r
kj,

where the last equality uses (3.2.7). Thus, it suffices to show that if xk 6= xi,

ΓrikΓ
s
kj − ΓsikΓ

r
kj = 0.

Assume xk 6= xi, and fix q with xqk 6= xqi . Apply (3.2.6) to pairs r, q and s, q to get

[Dq,Γr] = [Dr,Γq] and [Dq,Γs] = [Ds,Γq].

Restricting to the ikth and kjth entries of the previous two equations yields

Γrik(x
q
i − x

q
k) = Γqik(x

r
i − xrk),

Γrkj(x
q
k − x

q
j) = Γqkj(x

r
k − xrj),

Γsik(x
q
i − x

q
k) = Γqik(x

s
i − xsk),

Γskj(x
q
k − x

q
j) = Γqkj(x

s
k − xsj).

Since xi = xj and xqk 6= xqi , we can replace all the xj’s with xi’s in the above set of equations

and solve for the Γr and Γs entries. Using these relations gives

ΓrikΓ
s
kj − ΓsikΓ

r
kj =

Γqik(x
r
i − xrk)Γ

q
kj(x

s
i − xsk)

(xqi − x
q
k)

2
−

Γqik(x
s
i − xsk)Γ

q
kj(x

r
i − xrk)

(xqi − x
q
k)

2
= 0,
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as desired. Thus, [Γ̃r, Γ̃s] = 0.

(⇐) Fix S in CSdn and ∆ in Sdn and let U, D, Γ, and Γ̃ be as in the discussion preceding

Theorem 3.2.5. Assume

[Dr,Γs] = [Ds,Γr] and
[
Γ̃r, Γ̃s

]
= 0, (3.2.8)

for 1 ≤ r, s ≤ d. Define a skew-Hermitian matrix Y as follows:

Yij :=


Γqij

xqj−x
q
i

if xi 6= xj

0 otherwise,

where q is chosen so that xqi − x
q
j 6= 0. Observe that Y is independent of q because the ijth

entry of the first equation in (3.2.8) is

Γsij(x
r
i − xrj) = Γrij(x

s
i − xsj).

Now, define the curve S(t) by

Sr(t) := UeY t
[
Dr + tΓ̃r

]
e−Y tU∗,

for each 1 ≤ r ≤ d. Then, S(t) is continuously differentiable. Because Y is skew-Hermitian,

eY t is unitary. Since Dr and Γ̃r are self-adjoint, S(t) is in Sdn. By a simple calculation using

(3.2.8),

[Sr(t), Ss(t)] = 0,

for each pair 1 ≤ r, s ≤ d. Thus, S(t) is in CSdn. By definition, S(0) = S. For each r,

(Sr)′(t) = U
(
Y eY t

[
Dr + tΓ̃r

]
e−Y t + eY t

[
Γ̃r
]
e−Y t − eY t

[
Dr + tΓ̃r

]
Y e−Y t

)
U∗,
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so that

(Sr)′(0) = U
(

[Y,Dr] + Γ̃r
)
U∗ = ∆r.

Thus, S ′(0) = ∆, and S(t) is the desired curve.

Observe that by the construction in Theorem 3.2.5, if there is a C1 curve S(t) in CSdn with

S(0) = S and S ′(0) = ∆, there is actually a smooth curve R(t) in CSdn with R(0) = S and

R′(0) = ∆.

Example 3.2.6. Let I ∈ CSdn be the identity element. By Theorem 3.2.5, there is a smooth

curve S(t) in CSdn with

S(0) = I and S ′(0) = ∆ if and only if ∆ ∈ CSdn.

Thus, the set of vectors tangent to CSdn at I is CSdn. However, for a Whitney stratification of

CSdn and piece Mα containing I, the tangent space TIMα is linear. Since CSdn is not linear,

TIMα is a strict subset of the set of tangent vectors at I.

The conditions of Theorem 3.2.5 actually imply that if S ∈ CSdn has any repeated joint

eigenvalues, the set of vectors tangent to CSdn at S is not a linear set. Then, for any Whitney

stratification of CSdn and piece Mα containing S, the tangent space TSMα is a strict subset

of the vectors tangent to CSdn at S. We will thus focus on differentiation along curves rather

than differential maps.

3.2.3 Joint Eigenvalues of Curves in CSd
n

Let S(t) be a differentiable curve in CSdn and let F be a matrix function on CSdn induced

from a real-valued function f . Understanding differentiation of F (S(t)) requires additional

information about F (S(t)). By definition, F (S(t)) is obtained by applying the original

function f to the joint eigenvalues of S(t). Thus, the behavior of the joint eigenvalues of

curves in CSdn is of immediate importance.
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If S(t) is a continuous curve in Sn, a result by Rellich from [51, 52] states that the

eigenvalues of S(t) can be represented by n continuous functions. A proof is given by Kato

in [36, pg 107-10]. With some modifications, the arguments show that the eigenvalues of a

locally Lipschitz curve in Sn can be represented by locally Lipschitz functions. For clarity,

we include the following definition:

Definition 3.2.7. Let X be a metric space and let I be an interval in R. A function

g : I → X is Lipschitz with constant C if

‖g(t1)− g(t2)‖X ≤ C|t1 − t2| ∀ t1, t2 ∈ I.

Similarly, a function g : I → X is locally Lipschitz if for every t0 ∈ I, there is a constant C0

and neighborhood N0 ⊆ I of t0 such that

‖g(t1)− g(t2)‖X ≤ C0|t1 − t2| ∀ t1, t2 ∈ N0.

If g is locally Lipschitz on I, the local compactness of R implies that g is actually Lipschitz

on any bounded interval J , with J̄ ⊂ I.

Then, the one-variable results generalize as follows:

Theorem 3.2.8. Let S(t) be a locally Lipschitz curve in CSdn defined on an open interval

I. Then, there exist locally Lipschitz functions x1(t), . . . , xn(t) : I → Rd such that σ(S(t)) =

{xi(t) : 1 ≤ i ≤ n} .

Theorem 3.2.8 is an immediate consequence of Lemmas 3.2.11 and 3.2.14, which are proved

below. Their proofs are technical but semi-straightforward modifications of the one-variable

case. For the ease of the reader, we include the proofs below. The proofs require the following

definition:

Definition 3.2.9. An unordered n-d tuple is an unordered tuple of n vectors, each with d
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components. If G and H are two unordered n-d tuples given by

G =




x1
1

...

xd1

 , . . . ,


x1
n

...

xdn


 and H =




y1
1

...

yd1

 , . . . ,


y1
n

...

ydn


 ,

the distance between G and H is defined by

‖G−H‖n−d := min

(
max
1≤i≤n

‖xi − yi‖
)
,

where the minimum is taking over all reorderings of the vectors in G and

‖xi − yi‖ = max
1≤r≤d

|xri − yri | ∀ 1 ≤ i ≤ n.

It is not difficult to see that this operation gives a metric on the set of unordered n-d tuples.

Remark 3.2.10. Let S ∈ CSdn. Then, the set of joint eigenvalues of S is an unordered n-d

tuple. If S(t) is a locally Lipschitz curve in CSdn defined on an open interval I, then Theorem

3.2.8 provides a specific ordering of the joint eigenvalues of S(t) at each t ∈ I. This ordering

may differ from the one in (3.2.3), where repeated joint eigenvalues appear consecutively.

If we require that eigenvalues be ordered as in (3.2.3), Lemma 3.2.11 implies that the joint

spectrum of S(t) is at least locally Lipschitz in the unordered n-d tuple metric.

Lemma 3.2.11. Let S(t) be a locally Lipschitz curve in CSdn defined on an open interval I.

Then, the joint spectrum of S(t) is locally Lipschitz as an unordered n-d tuple.

Proof. Let J be a bounded interval with J̄ ⊂ I. Then, there is a constant C > 0 such that

‖Sr(t1)− Sr(t2)‖ ≤ ‖S(t1)− S(t2)‖ ≤ C|t1 − t2| ∀ 1 ≤ r ≤ d and t1, t2 ∈ J̄ . (3.2.9)

To prove the lemma, it is sufficient to show that the joint spectrum σ(S(t)) is Lipschitz on
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J as an unordered n-d tuple with Lipschitz constant 2C. This proof has two main steps:

1. Show that for each fixed t1 ∈ J , there is an interval Jt1 ⊆ J such that

‖σ(S(t1))− σ(S(t2))‖n−d ≤ 2C|t1 − t2| ∀ t2 ∈ Jt1 . (3.2.10)

2. Use (3.2.10) to show that

‖σ(S(t1))− σ(S(t2))‖n−d ≤ 2C|t1 − t2| ∀ t1, t2 ∈ J.

Step 1.

Fix t1 ∈ J. Let {xi = (x1
i , . . . , x

d
i ) : 1 ≤ i ≤ n} denote the joint spectrum of S(t1). For each

t2 ∈ J, set δt2 := 2C|t1 − t2|. For each 1 ≤ i ≤ n and 1 ≤ r ≤ d, let ∂D(xri , δt2) be the

circle centered at xri with radius δt2 . Shrink J to an interval Jt1 containing t1 such that the

following hold for all t2 ∈ Jt1 , all 1 ≤ i ≤ n, and all 1 ≤ r ≤ d:

(1) xri is the only eigenvalue of Sr(t1) inside ∂D(xri , δt2) up to multiplicity.

(2) For each ζ ∈ ∂D(xri , δt2), the following holds: min
1≤j≤n

|xrj − ζ| = |xri − ζ| = δt2 .

(3) If xi 6= xj, then δt2 <
1
2
‖xi − xj‖.

Now, fix t2 ∈ Jt1 with t2 6= t1. The immediate goal is to find an interval J2 ⊆ Jt1 containing t1

and t2 such that for each r, the operator (Sr(t)−ζI
)−1

exists for each t ∈ J2, ζ ∈ ∂D(xri , δt2),

and 1 ≤ i ≤ n. By (2), each operator (Sr(t1)− ζI)−1 exists and

∥∥(Sr(t1)− ζI
)−1∥∥ = max

1≤j≤n

1

|ζ − xrj |
=

1

δt2
.

Then, a simple calculation gives

Sr(t)− ζI =
[
I −

(
Sr(t1)− Sr(t)

)(
Sr(t1)− ζI

)−1
] (
Sr(t1)− ζI

)
.
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It follows that (Sr(t)−ζI)−1 will exist if
(
Sr(t1)−ζI

)−1[
I−
(
Sr(t1)−Sr(t)

)(
Sr(t1)−ζI

)−1]−1

exists. Thus, a sufficient condition for (Sr(t)− ζI)−1 to exist is for

∥∥(Sr(t1)− Sr(t)
)(
Sr(t1)− ζI

)−1∥∥ < 1.

By (3.2.9), the following holds for t ∈ J

∥∥(Sr(t1)− Sr(t)
)(
Sr(t1)− ζI

)−1∥∥ ≤ ∥∥Sr(t1)− Sr(t)
∥∥∥∥(Sr(t1)− ζI

)−1∥∥
≤ C|t− t1|

δt2

=
|t− t1|

2|t2 − t1|
. (3.2.11)

It is clear that there is some interval J2 ⊆ Jt1 containing t1 and t2 with |t− t1| < 2|t2 − t1|

for each t ∈ J2. Then for each 1 ≤ i ≤ n and and 1 ≤ r ≤ d, the operator (Sr(t) − ζI)−1

exists for ζ ∈ ∂D(xri , δt2) and t ∈ J2. Thus, each operator:

P r
i (t) :=

1

2πi

∫
∂D(xri ,δt2 )

(
Sr(t)− ζI

)−1
dζ

exists and is easily shown to be continuous on J2 using the relationship

(
Sr(t∗)− ζI

)−1 −
(
Sr(t)− ζI

)−1
=
(
Sr(t)− ζI

)−1(
Sr(t)− Sr(t∗)

)(
Sr(t∗)− ζI

)−1
,

which holds as long as ζ is in the resolvent sets of both Sr(t) and Sr(t∗). A classical result

from perturbation theory, which first appeared in [34, 35, 56], states that P r
i (t) is the total

eigenprojection associated with the eigenvalues of Sr(t) enclosed by ∂D(xri , δt2). For each i,

define

Pi(t) := P 1
i (t) · · ·P d

i (t).

Then for each fixed i, the operator Pi(t) is the total eigenprojection of the joint eigenvalues of
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S(t) enclosed by ∂D(x1
i , δt2)× · · · × ∂D(xdi , δt2) and is continuous on J2. Thus, Rank Pi(t) is

the number of joint eigenvalues of S(t) enclosed by ∂D(x1
i , δt2)× · · · × ∂D(xdi , δt2) including

multiplicity. Since Pi(t) is idempotent, Rank Pi(t) = Trace Pi(t), which is continuous on

J2. Let mi denote the multiplicity of the eigenvalue xi. Then by (1), Rank Pi(t1) = mi.

By continuity, Rank P (t2) = mi as well. Thus, S(t2) has mi joint eigenvalues, denoted

yk = (y1
k, . . . , y

d
k) for 1 ≤ k ≤ mi, enclosed by ∂D(x1

i , δt2)× · · · × ∂D(xdi , δt2). Thus

‖xi − yk‖ = max
1≤r≤d

|xri − yrk| < δt2 = 2C |t1 − t2| ∀ 1 ≤ k ≤ mi. (3.2.12)

Moreover, by (3), we can actually pair each distinct xi ∈ σ(S(t1)) with a set Li of mi joint

eigenvalues of S(t2), such that the Li sets are disjoint and (3.2.12) holds for each i. Then

‖σ(S(t1))− σ(S(t2))‖n−d < 2C |t1 − t2|. (3.2.13)

As t2 ∈ Jt1 was arbitrary, (3.2.13) holds for each t2 ∈ Jt1 . As t1 was arbitrary, for each t1 ∈ J

there is an interval Jt1 , which can be shrunk to be centered at t1, such that (3.2.13) holds

for each t2 ∈ Jt1 .

Step 2.

Now, proceed to Step 2 and fix t1, t2 ∈ J. Without loss of generality, assume t1 < t2. Then

[t1, t2] is a compact set in J and hence can be covered by a finite set of open intervals

{Ja1 , . . . , JaK} with each ak ∈ [t1, t2] and

‖σ(S(ak))− σ(S(t))‖n−d < 2C |ak − t| ∀ t ∈ Jak and 1 ≤ k ≤ K. (3.2.14)

Moreover, we can assume each Jak is centered at ak and t1 ≤ a1 < a2 < · · · < aK ≤ t2.

Now Lemma 3.2.12 can be used to obtain a subset of of those intervals, denoted {Jbm}Mm=1,

covering [t1, t2] such that t1 ≤ b1 < b2 < · · · < bM ≤ t1, each Jbm ∩ [t1, t2] is not contained

80



in a union of other intervals, and each Jbm intersects precisely Jbm−1 and Jbm+1 , as long as

those two intervals are defined. Those conditions imply that t1 ∈ Jb1 and t2 ∈ JbM . Using

the properties of the {Jbm} intervals, choose points t(m−1)m ∈ Jbm−1 ∩ Jbm for m = 2, . . . ,M

such that

t1 ≤ b1 < t12 < b2 < t23 < · · · < bM−1 < t(M−1)M < bM ≤ t2.

Note that the intersections Jbm−1 ∩ Jbm cannot be nonempty because {Jbm}Mm=1 is an open

cover of [t1, t2]. The intersection properties of the {Jbm} also imply that t(m−1)m can always

be chosen to satisfy bm−1 < t(m−1)m < bm. Now using property (3.2.14) and the triangle

inequality, we can calculate:

‖σ(S(t1))− σ(S(t2))‖n−d ≤ ‖σ(S(t1))− σ(S(b1))‖n−d + ‖σ(S(b1))− σ(S(t12))‖n−d

+
M−1∑
m=2

(
‖σ(S(t(m−1)m))− σ(S(bm))‖n−d + ‖σ(S(bm))− σ(S(tm(m+1)))‖n−d

)
+ ‖σ(S(t(M−1)M))− σ(S(bM))‖n−d + ‖σ(S(bM))− σ(S(t2))‖n−d

≤ 2C|t1 − b1|+ 2C|b1 − t12|+ 2C
M−1∑
m=2

(
|t(m−1)m − bm|+ |bm − tm(m+1)|

)
+ 2C|t(M−1)M − bM |+ 2C|bM − t2|

= 2C|t1 − t2|,

as desired. Thus, σ(S(t)) is Lipschitz as an unordered n-d tuple on J with constant 2C.

Since J was an arbitrary interval with J̄ ⊂ I, σ(S(t)) is locally Lipschitz on I.

The proof of Lemma 3.2.11 required the following result about interval coverings:

Lemma 3.2.12. Let I be a finite interval and let {Jak}Kk=1 be a finite set of open intervals

covering I such that each Jak is centered at a point ak ∈ I and a1 < a2 < · · · < aK . Then,

there is a subset {b1, . . . , bM} ⊆ {a1, . . . , aK} such that:

(1) {Jbm}Mm=1 covers I.
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(2) The centers are increasing: b1 < b2 < · · · < bM .

(3) For each 1 ≤ m ≤M , the interval Jbm∩I is not contained in a union of other intervals

and it intersects precisely Jbm−1 and Jbm+1 , as long as those two intervals are defined.

Proof. The proof is by induction on K, the number of intervals in the original cover. Consider

the base case K = 1. If Ja1 covers I, define b1 := a1. Then {b1} trivially satisfies (1)-(3).

Proceeding via induction, assume the result holds for all finite intervals and coverings with

K intervals. Let I be a finite interval and let {Jak}K+1
k=1 be a covering of I by open intervals

Jak centered at ak with a1 < · · · < aK+1. Without loss of generality, assume I = (c, d).

Identical arguments handle the case where I has closed endpoints. Define I ′ := (c, d∗) to be

the largest interval beginning at c and contained in I and ∪Kk=1Jak . It is possible that I ′ = ∅.

By the inductive hypothesis, there is some subset {b1, . . . , bM} ⊆ {a1, . . . , aK} satisfying

(1)-(3) on I ′. If d∗ = d, this set also satisfies (1)-(3) on I. Now, assume d∗ < d. Since (c, d∗)

is the largest interval in I beginning at c and covered by ∪Kk=1Jak , there must be a gap in

the the covering after d∗. Since {Jak}K+1
k=1 cover I, the interval JaK+1

begins before d∗, say at

d∗ − ε. There must also be some Jaj centered at aj ≤ aK+1 containing (s, d) for some s ∈ I.

Since JaK+1
extends at least as far left as Jaj and their centers satisfy aj ≤ aK+1, it follows

that Jaj ⊆ JaK+1
. Thus, (d∗ − ε, d) ⊂ JaK+1

, which implies that {Jbm}Mm=1 ∪ JaK+1
covers I.

Now, let N be the smallest integer such that JaK+1
∩ JbN 6= ∅. Consider the set

{b1, . . . , bN , aK+1} ⊆ {a1, . . . , aK+1} and define bN+1 := aK+1. It is easy to show that

{b1, . . . , bN+1} satisfies (1)-(3) on I. Specifically, by property (3) of the inductive hypothe-

sis, if tN is the endpoint of JbN , then (c, tN) ⊆ ∪Nm=1Jbm . That implies {Jbm}N+1
m=1 covers I.

Property (2) is clear and property (3) follows from the inductive hypothesis and the way we

selected N .

Now, before proving the second lemma needed for Theorem 3.2.8, we require an auxiliary

lemma. This lemma establishes the analogous global Lipschitz result. In Lemma 3.2.14, we

relax to the desired locally Lipschitz conditions.
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Lemma 3.2.13. Let I be an open interval and for each t ∈ I, let G(t) be an unordered n-d

tuple of real numbers. If G(t) is Lipschitz with constant C as an unordered n-d tuple, then

there exist functions x1(t), . . . , xn(t) : I → Rd such that each xi(t) is Lipschitz with constant

C and the functions satisfy G(t) = {xi(t) : 1 ≤ i ≤ n} .

Proof. Auxillary Property:

Before proving the main result, we show that if I1 and I2 are subintervals of I with I1∩I2 6= ∅

and the Lipschitz result holds for I1 and I2, then it holds for I3 = I1 ∪ I2. Without loss of

generality, we can assume neither interval is contained in the other and that I1 lies to the

left of I2. Assume the result holds on I1 and I2. Let {x1
i (t)} and {x2

i (t)} be the respective

representations of G(t) on I1 and I2 that are Lipschitz with constant C. Choose t0 ∈ I1∩ I2.

After a suitable reordering of {x2
i (t)}, we have x1

i (t0) = x2
i (t0) for 1 ≤ i ≤ n. Define

x3
i (t) =

 x1
i (t) t ≤ t0

x2
i (t) t ≥ t0

for i = 1, . . . , n. Then, {x3
i (t)} is a representation of G(t) by Lipschitz functions on I3 with

constant C. To see this, fix t1, t2 ∈ I and i with 1 ≤ i ≤ n. The Lipschitz inequality for xi(t)

is immediate if t1, t2 ≤ t0 or t1, t2 ≥ t0. Similarly, if t1 ≤ t0 ≤ t2 or t2 ≤ t0 ≤ t1, then

∥∥x3
i (t1)− x3

i (t2)
∥∥ < ∥∥x3

i (t1)− x3
i (t0)

∥∥+
∥∥x3

i (t0)− x3
i (t2)

∥∥
< C

(
|t1 − t0|+ |t0 − t2|

)
= C|t1 − t2|.

Main Result:

Now, we prove the main result. It follows by induction on n, the number of vectors of G(t).

The n = 1 case is immediate because if G(t) has only one vector x1(t), the Lipschitz property

of G(t) implies:

‖x1(t1)− x1(t2)‖ = ‖G(t1)−G(t2)‖1−d < C|t1 − t2| ∀ t1, t2 ∈ I.
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Proceeding via induction, assume the result holds for all m < n and all intervals I ′ ⊆ I.

Define the set:

F :=
{
t ∈ I : G(t) consists of n identical vectors

}
and define O := I \ F. Then, the continuity of G(t) as an unordered n-d tuple implies that

F is locally closed in I and O is open. Fix t0 ∈ O. Since the n vectors of G(t0) are not all

identical, we can write G(t0) as two separate tuples: G1(t0) of n1 vectors, denoted x1, . . . xn1 ,

and G2(t0) of n2 vectors, denoted xn1+1, . . . xn. Here, ‘separate’ means that no vector in one

tuple appears in the other tuple, so that there is some δ > 0 with ‖xi − xj‖ > δ for i ≤ n1

and j > n1. Since G(t) is Lipschitz with constant C, we can define:

G1(t) :=
{
n1 vectors y1, . . . , yn1 of G(t) s.t. min

reorderings
of the y′is

(
max

1≤i≤n1

‖yi − xi‖
)
≤ C|t− t0|

}
,

for each t ∈ I. Since G1(t0) and G2(t0) are separated by δ, there is an interval I0 centered

at t0 such that for t ∈ I0, G1(t) is uniquely determined. Then for t ∈ I0, define G2(t) :=

G(t) \ G1(t). By shrinking I0 around t0 if necessary and using the Lipschitz property of

G(t), one can show G1(t) and G2(t) are Lipschitz as unordered n1-d and n2-d tuples with

constant C on I0. By the inductive hypothesis, there are functions {x1(t), . . . , xn1(t)} and

{xn1+1(t), . . . , xn(t)} that satisfy

‖xi(t1)− xi(t2)‖ < C|t1 − t2| ∀ t1, t2 ∈ I0 and 1 ≤ i ≤ n,

and represent G1(t) and G2(t) in I0. Thus, these n functions represent G(t) in I0.

Since O is open in I, it consists of at most countably many disjoint open subintervals

I1, I2, . . . , etc. Since each point in O is contained in an interval where the result holds,

the Auxilliary Property implies that the result holds on each compact subset of each Ik. To

obtain the result on each Ik, the Lipschitz functions on compact subsets of Ik need to be

glued together properly. This is easy but technical. Such a gluing is constructed in the proof
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of Lemma 3.2.14 and we refer the interested reader to that proof. It this situation, unlike in

Lemma 3.2.14, the Lipschitz constant does not change.

Now, the result holds on each disjoint subinterval Ik of O. Let {xki (t)} be the n functions

representing G(t) on Ik for k = 1, 2, . . . , etc. For t ∈ F , G(t) consists of n identical vectors,

which we call x(t). For i with 1 ≤ i ≤ n, define the function xi(t) on I as follows:

xi(t) =

 xki (t) t ∈ Ik k = 1, 2, . . .

x(t) t ∈ F.

These n functions represent G(t) on I. To see that these functions are Lipschitz with constant

C, first observe that if t1 ∈ F , then for each t2 ∈ I,

‖xi(t1)− xi(t2)‖ ≤ max
1≤j≤n

‖xi(t1)− xj(t2)‖ = ‖G(t1)−G(t2)‖ < C|t1 − t2| ∀ 1 ≤ i ≤ n.

Similarly, if t1 ∈ Ik, then for each t2 ∈ Ik,

‖xi(t1)− xi(t2)‖ < C|t1 − t2| ∀ 1 ≤ i ≤ n.

This shows that ∀ t1 ∈ I, there is an open interval It1 containing t1 such that for each i,

‖xi(t1)− xi(t2)‖ < C|t1 − t2| ∀ t2 ∈ It1 . (3.2.15)

We are now in precisely the same situation that we encountered in Step 2 of the proof of

Lemma 3.2.11. Using identical arguments involving (3.2.15) and Lemma 3.2.12, one can

show that for 1 ≤ i ≤ n and any fixed t1, t2 ∈ I

‖xi(t1)− xi(t2)‖ < C|t1 − t2|,

as desired.

85



Now we relax the global Lipschitz assumption to the desired locally Lipschitz assumption:

Lemma 3.2.14. Let I be an open interval and for each t ∈ I, let G(t) be an unordered n-d

tuple of real numbers. If G(t) is locally Lipschitz as an unordered n-d tuple, then there exist

locally Lipschitz functions x1(t), . . . , xn(t) : I → Rd such that G(t) = {xi(t) : 1 ≤ i ≤ n} .

Proof. Assume I = (a, b), for a, b ∈ R. The cases a = −∞ and b = ∞ can be handled with

straightforward modifications of these arguments. By composing G(t) with a dilation, we

can also assume a+ 1 ≤ b− 1, which implies [a+ 1, b− 1] ⊂ I. Define the intervals:

Ik :=
[
a+ 1

k
, b− 1

k

]
⊆ I ∀ m ∈ N \ {0}.

Since G(t) is locally Lipschitz on I, G(t) is Lipschitz on every compact subset of I and

in particular, on each Ik. By Lemma 3.2.13, there are Lipschitz functions {xki (t)} that

represent G(t) on each Ik with Lipschitz constant Mk. Now, we glue these functions together

in a nice way to obtain locally Lipschitz functions {yi(t)} that represent G(t) on I. First,

we recursively define Lipschitz functions {yki (t)} on Ik with Lipschitz constant Ck. For the

initial case k = 2 and for 1 ≤ i ≤ n, define

y2
i (t) := x2

i (t) ∀ t ∈ I2,

and set C2 := M2. For k ≥ 3, choose points ak and bk such that

ak ∈
(
a+ 1

k−1
, a+ 1

k−2

)
and bk ∈

(
b− 1

k−2
, b− 1

k−1

)
.

For r = 1, 2, let {xkri (t)} denote the functions {xki (t)} renumbered to ensure

xk1
i (ak) = yk−1

i (ak) and xk2
i (bk) = yk−1

i (bk).
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Then for k ≥ 3 and 1 ≤ i ≤ n, define Ck := max(Mk, Ck−1) and

yki (t) :=


xk1
i (t) t ∈ (a+ 1

k
, ak]

yk−1
i (t) t ∈ [ ak, bk ]

xk2
i (t) t ∈ [bk, b− 1

k
).

Induction implies that each yki (t) is Lipschitz on Ik with constant Ck. The base case k = 2

follows from the assumptions about x2
i (t). Proceeding by induction, assume the functions

{yki (t)} are Lipschitz with constant Ck. Then, the definition of yk+1
i (t) makes it clear then

each yk+1
i (t) is Lipschitz with constant Ck+1 := max(Mk+1, Ck) on Ik+1. Now for 1 ≤ i ≤ n,

define

yi(t) := lim
k→∞

yki (t).

To see that each yi(t) is well-defined, fix any t0 ∈ I. Then t0 ∈ IK for some K ≥ 2. By

definition,

aK+2 ∈
(
a+ 1

K+1
, a+ 1

K

)
and bK+2 ∈

(
b− 1

K
, b− 1

K+1

)
.

In particular,

t0 ∈
(
aK+2, bK+2

)
⊆
(
ak, bk

)
, ∀ k ≥ K + 2.

Then, there is a neighborhood N0 of t0 such that N0 ⊆ (ak, bk) for each k ≥ K + 2. Then

for each i and t ∈ N0,

lim
k→∞

yki (t) = yK+1
i (t).

Therefore, each yi(t) is well-defined on N0 and is Lipschitz there with constant CK+1, and

{yi(t)} represents G(t) on N0. Since t0 was arbitrary, this shows that each yi(t) is well-defined

and locally Lipschitz on I.
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3.3 Derivatives of Matrix Functions

Recall that every real-valued function defined on an open set Ω ⊆ Rd induces a matrix

function defined on CSdn(Ω) as in (3.1.2). It is clear that some properties of the original

function pass to the matrix function. For example, we have:

Remark 3.3.1. Continuity. If the original function f is continuous, the matrix function

F is as well. Specifically, Horn and Johnson proved in [32, pg 387-9] that a one-variable

polynomial induces a continuous matrix polynomial. Their arguments generalize easily to

multivariate polynomials. Since every continuous function on a compact set can be ap-

proximated uniformly by polynomials, it is immediate that matrix functions induced by

continuous functions are continuous.

In this section, we consider differentiability and prove:

Theorem 3.3.2. Let S(t) be a C1 curve in CSdn defined on an open interval I, and let Ω be

an open set in Rd with σ(S(t)) ⊂ Ω. If f ∈ C1(Ω,R), then

(1) d
dt
F (S(t))|t=t∗ exists for all t∗ ∈ I.

(2) If T (t) is any other C1 curve in CSdn with σ(T (t)) ⊂ Ω, T (0) = S(t∗), and T ′(0) =

S ′(t∗), then

d
dt
F (T (t))|t=0 = d

dt
F (S(t))|t=t∗ .

In Subsection 3.3.1, we restrict attention to analytic functions and their induced matrix

functions. After establishing derivative results for those functions, we consider general matrix

functions. Specifically, in Subsection 3.3.2, we prove Theorem 3.3.2, obtain a formula for

the derivative d
dt
F (S(t))|t=t∗ , and show the derivative is continuous as a function of t∗. In

Subsection 3.3.3, we define a related differential map on the Whitney stratification of CSdn

and show that this map is also continuous.
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3.3.1 Derivatives of Analytic Matrix Functions

Before proving Theorem 3.3.2, we assume f is real-analytic and prove Proposition 3.3.4. See

[32] for the one-variable case. We first need some notation.

Definition 3.3.3. An open set Ω ⊆ Rd is called a rectangle if Ω = I1 × ... × Id or more

specifically,

Ω =
{

(x1, ..., xd) : xr ∈ Ir ∀ 1 ≤ r ≤ d
}
,

where each Ir is an open interval in R. An open set Ω̃ ⊆ Cd is called a complex rectangle if

Ω̃ = (I1 + iJ1)× ...× (Id + iJd) or specifically,

Ω̃ =
{

(x1 + iy1, ..., xd + iyd) : xr ∈ Ir, yr ∈ Jr ∀ 1 ≤ r ≤ d
}
,

where for each r, Ir and Jr are open intervals in R.

Proposition 3.3.4. Let S(t) be a C1 curve in CSdn defined on an open interval I. Let Ω be

a rectangle in Rd with σ(S(t)) ⊂ Ω. If f is a real-analytic function on Ω, then

d
dt
F (S(t))|t=t∗ exists and is continuous as a function of t∗ on I.

The proof of Proposition 3.3.4 requires the following two lemmas.

Lemma 3.3.5. Let Ω be a rectangle in Rd and let S be in CSdn with σ(S) ⊂ Ω. Each real-

analytic function on Ω can be extended to an analytic function defined on a complex rectangle

Ω̃ such that σ(S) is in Ω̃.

Proof. The proof follows from basic properties of analytic functions. We only consider d = 1;

the proof for higher dimensions uses the same arguments but requires more complicated

notation. Since d = 1, Ω is an interval. Let E be a precompact interval with E ⊂ Ω and

σ(S) ⊂ E. For each x ∈ Ω, the basic properties of analytic functions imply that f extends
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to an analytic function defined on an open rectangle Ix + iJx centered at x. Since each Jx is

centered at zero, for each pair Jx and Jy, either:

Jx ⊆ Jy or Jy ⊆ Jx.

This gives an ordering on the Jx intervals defined by Jx ≤ Jy if Jx ⊆ Jy. Because E is

compact, it is covered by a finite number of intervals {Ix1 , . . . IxM} . Define:

JE = min
1≤m≤M

Jxm .

By construction, f extends to an analytic function defined on Ω̃ := E+iJE, where σ(S) ⊂ Ω̃.

Notice that Ω̃ will not contain Ω.

Lemma 3.3.6. Let Ω̃ be a complex rectangle in Cd and let S be in CSdn with σ(S) ⊂ Ω̃. If

f is an analytic function on Ω̃, then

F (S) =
1

(2πi)d

∫
Cd
...

∫
C1

f(ζ1, ..., ζd)(ζ1I − S1)−1...(ζdI − Sd)−1 dζ1...dζd,

where each Cr is a simple closed rectifiable curve strictly containing σ(Sr), and C1×...×Cd ⊂

Ω̃.

Proof. Horn and Johnson prove the formula for a one-variable function in [32]. Their proof

generalizes as follows. Since S ∈ CSdn, there is a unitary matrix U that diagonalizes S as in

(3.1.1). It follows immediately that:

(ζrI − Sr)−1 = U Diag

(
1

ζr − xr1
, . . . ,

1

ζr − xrn

)
U∗ ∀ 1 ≤ r ≤ d, (3.3.1)

where the ‘Diag’ notation means the diagonal matrix with the given values along its diagonal.

For 1 ≤ r ≤ d, let Cr be any simple closed rectifiable curve strictly containing σ(Sr) such

that C1× ...×Cd ⊂ Ω̃. Let Int(Cr) denote the interior of each Cr curve. Since Ω̃ is a complex
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rectangle, it follows that Int(C1) × · · · × Int(Cd) ⊂ Ω̃ as well. The multivariable Cauchy

integral formula and (3.3.1) can then be used to obtain the following sequence of equalities:

1

(2πi)d

∫
Cd
. . .

∫
C1

f(ζ1, . . . , ζd)(ζ1I − S1)−1 . . . (ζdI − Sd)−1 dζ1 . . . dζd

= U

(
1

(2πi)d

∫
Cd
. . .

∫
C1

Diag

(
f(ζ1, . . . , ζd)

Πd
r=1(ζr − xr1)

, . . . ,
f(ζ1, . . . , ζd)

Πd
r=1(ζr − xrn)

)
dζ1 . . . dζd

)
U∗

= U Diag
(
f(x1

1, . . . , x
d
1), . . . , f(x1

n, . . . , x
d
n)
)
U∗

= F (S),

which gives the desired formula.

Now we can prove Proposition 3.3.4 as follows:

Proof. For ease of notation, assume d = 2. With more complicated notation, the same

arguments work in higher dimensions. For r = 1, 2, define

Rr(t) := (ζrI − Sr(t))−1,

where ζr is in the resolvent set of Sr(t). Fix t0 ∈ I and using Lemma 3.3.5, extend f to

an analytic function on a complex rectangle Ω̃ containing σ(S(t0)). Choose simple closed

rectifiable curves C1 and C2 such that C1×C2 ⊂ Ω̃ and Cr strictly encloses the eigenvalues

of Sr(t0). By Theorem 3.2.8, the joint eigenvalues of S(t) are continuous and so, Cr strictly

encloses the eigenvalues of Sr(t) for t close to t0 and r = 1, 2. Thus, Lemma 3.3.6 implies:

F (S(t)) =
1

(2πi)2

∫
C2

∫
C1

f(ζ1, ζ2) R1(t) R2(t) dζ1dζ2,
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for t sufficiently close to t0. For t1, t2 near t0, we also have

Rr(t1)−Rr(t2) = Rr(t1) (Sr(t1)− Sr(t2))Rr(t2), (3.3.2)

which implies Rr(t) is differentiable near t0 and direct calculation gives

d
dt
Rr(t)|t=t∗ = Rr(t∗)(Sr)′(t∗)Rr(t∗),

for r = 1, 2 and t∗ near t0. It can be easily shown that, for t∗ sufficiently close to t0, we can

interchange integration and differentiation to yield

d
dt
F (S(t))|t=t∗ =

1

(2πi)2

∫
C2

∫
C1

f(ζ1, ζ2) d
dt

(
R1(t)R2(t)

)
|t=t∗ dζ1dζ2

=
1

(2πi)2

∫
C2

∫
C1

f(ζ1, ζ2)

(
R1(t∗)(S1)′(t∗)R1(t∗)R2(t∗)

+R1(t∗)R2(t∗)(S2)′(t∗)R2(t∗)

)
dζ1dζ2. (3.3.3)

Observe that each (Sr)′(t) is continuous in t and by (3.3.2), each Rr(t) is continuous in t

near t0, uniformly in ζ for ζ ∈ C1×C2. Thus, as f(ζ1, ζ2) is uniformly bounded on C1×C2,

we can conclude d
dt
F (S(t))|t=t∗ is continuous for t∗ near t0.

3.3.2 Derivatives of General Matrix Functions

In this section, we prove Theorem 3.3.2, obtain a formula for the derivative of an induced

matrix function along a curve S(t), and show that such derivatives are continuous. We begin

with the proof of Theorem 3.3.2:

Proof. Observe that the theorem holds for polynomials: (1) follows from Proposition 3.3.4,

92



and (2) follows from the formula in (3.3.3). Fix t∗ ∈ I. Let f ∈ C1(Ω,R) and and let p

be a polynomial that agrees with f to first order on σ(S(t∗)). By Theorem 3.2.8, there are

locally Lipschitz maps xi(t) := (x1
i (t), ..., x

d
i (t)), for 1 ≤ i ≤ n, representing σ(S(t)) on I.

For t sufficiently close to t∗, we can use the multivariate mean value theorem to conclude

‖(F − P )(S(t))‖ = max
i
|(f − p)(xi(t))|

= max
i
|(f − p)(xi(t))− (f − p)(xi(t∗))

∣∣
= max

i

∣∣∇(f − p)(x∗i (t)) · (xi(t)− xi(t∗))
∣∣

≤ max
i

d∑
r=1

∣∣( ∂f
∂xr
− ∂p

∂xr

)
(x∗i (t))

∣∣∣∣xri (t)− xri (t∗)∣∣, (3.3.4)

where x∗i (t) is on the line connecting xi(t) and xi(t
∗) in Rd and is obtained from the multi-

variate mean value theorem. The theorem can be applied because by continuity, there is a

convex set U ⊆ Ω such that xi(t
∗), xi(t) ∈ U, for t sufficiently close to t∗. As f and p agree

to first order on σ(S(t∗)) and the xi(t) are locally Lipschitz, (3.3.4) implies

‖(F − P )(S(t))‖ = o(|t− t∗|).

Hence, as F (S(t∗)) = P (S(t∗)), we have:

∥∥∥F (S(t))− F (S(t∗))

t− t∗
− P (S(t))− P (S(t∗))

t− t∗
∥∥∥→ 0,

as t→ t∗. Therefore,

d
dt
F (S(t))|t=t∗ exists and equals d

dt
P (S(t))|t=t∗ .

93



Applying the same argument to F (T (t)) at t = 0 gives

d
dt
F (T (t))|t=0 exists and equals d

dt
P (T (t))|t=0.

As (2) holds for P (t), we must have d
dt
F (T (t))|t=0 = d

dt
F (S(t))|t=t∗ .

In the following proposition, we calculate an explicit formula for the derivative.

Proposition 3.3.7. Let S(t) be a C1 curve in CSdn defined on an open interval I, and let

t∗ ∈ I. Let Ω be an open set in Rd with σ(S(t)) ⊂ Ω and let f ∈ C1(Ω,R). Then,

d
dt
F (S(t))|t=t∗ = U

( d∑
r=1

Γ̃r ∂F
∂xr

(D) + [Y, F (D)]

)
U∗,

where U diagonalizes S(t∗) as in (3.2.3), ∂F
∂xr

(D) is defined in (3.3.6), and the other matrices

are as follows:

Dr := U∗Sr(t∗)U Γr := U∗(Sr)′(t∗)U

Γ̃rij :=

 Γrij if xi = xj

0 otherwise
Yij :=


Γqij

xqj−x
q
i

if xi 6= xj

0 otherwise,

where the joint eigenvalues of S(t∗) are given by
{
xi = (x1

i , ..., x
d
i ) : 1 ≤ i ≤ n

}
and each q is

chosen so xqj − x
q
i 6= 0.

Proof. Let t∗ ∈ I and define the C1 curve T (t) by

T r(t) := U eY t
[
Dr + tΓ̃r

]
e−Y t U∗,

for 1 ≤ r ≤ d. Then, T (t) is the curve defined in the proof of Theorem 3.2.5 for S := S(t∗)

and ∆ := S ′(t∗). It is immediate that T (t) ⊂ CSdn, T (0) = S(t∗), and T ′(0) = S ′(t∗). By

restricting the domain of T (t) to a neighborhood of t = 0, we can assume σ(T (t)) ⊂ Ω. By
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Theorem 3.3.2, it now suffices to calculate d
dt
F (T (t))|t=0. The first step is to diagonalize each

Dr + tΓ̃r. Let p be the number of distinct joint eigenvalues of S(t∗). By definition,

Γ̃r =


Γr1

. . .

Γrp

 ,

for 1 ≤ r ≤ d, where each Γrl is a kl× kl self-adjoint matrix corresponding to a distinct joint

eigenvalue of S with multiplicity kl. It follows from Theorem 3.2.5 that

[
Γ̃r, Γ̃s

]
= 0, which implies:

[
Γrl ,Γ

s
l

]
= 0,

for 1 ≤ r, s ≤ d and 1 ≤ l ≤ p. Thus, for each l, there is a kl × kl unitary matrix Vl such

that Vl diagonalizes Γrl for each 1 ≤ r ≤ d. Let V be the n × n block diagonal matrix with

blocks given by V1, ..., Vp. Then, V is a unitary matrix that diagonalizes each Γ̃r. By the

diagonalization in (3.2.3), the joint eigenvalues of D are positioned so that

Dr =


cr1Ik1

. . .

crpIkp

 , (3.3.5)

for 1 ≤ r ≤ d, where Ikl is the kl × kl identity matrix and each crl is a constant. Equation

(3.3.5) shows that V and V ∗ will commute with Dr. Define the diagonal matrix

Λr := V ∗Γ̃rV,

for 1 ≤ r ≤ d and rewrite T (t) as follows:

T r(t) = UeY tV
(
Dr + tΛr

)
V ∗e−Y tU∗,
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for 1 ≤ r ≤ d. Directly calculate F (T (t)) and d
dt
F (T (t))|t=0 as follows:

F (T (t)) = UeY tV F
(
D1 + tΛ1, ..., Dd + tΛd

)
V ∗e−Y tU∗

= UeY tV

(
F (D) + t

d∑
r=1

Λr ∂F
∂xr

(D) + o(|t|)
)
V ∗e−Y tU∗,

where ∂F
∂xr

(D) is defined by

∂F
∂xr

(D) :=


∂f
∂xr

(x1)

. . .

∂f
∂xr

(xn)

 , (3.3.6)

for 1 ≤ r ≤ d and the first-order approximation of F follows from the first-order approxima-

tion of f. Differentiating F (T (t)) and setting t = 0 gives

d
dt
F (T (t))|t=0 = U

( d∑
r=1

V Λr ∂F
∂xr

(D)V ∗ + [Y, V F (D)V ∗]
)
U∗

= U
( d∑
r=1

Γ̃r ∂F
∂xr

(D) + [Y, F (D)]
)
U∗,

where V and V ∗ commute with F (D) and each ∂F
∂xr

(D) because those matrices have decom-

positions akin to that of Dr in (3.3.5).

We now prove that the derivative calculated in Proposition 3.3.7 is continuous in t∗.

Theorem 3.3.8. Let S(t) be a C1 curve in CSdn defined on an open interval I. Let Ω be an

open set in Rd with σ(S(t)) ⊂ Ω. If f ∈ C1(Ω,R), then

d
dt
F (S(t))|t=t∗ is continuous as a function of t∗on I.

For the proof, we will require the following lemma:
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Lemma 3.3.9. Let S(t) be a C1 curve in CSdn defined on an open interval I. Let Ω be an

open, convex set in Rd with σ(S(t)) ⊂ Ω. Fix t0 ∈ I. Then there is a neighborhood I0 ⊆ I of

t0, a constant C, and a convex, bounded open set E with Ē ⊂ Ω such that

‖ d
dt
F (S(t))|t=t∗‖ ≤ C max

1≤s≤d;x∈Ē

∣∣ ∂f
∂xs

(x)
∣∣,

for all f ∈ C1(Ω,R) and t∗ ∈ I0.

Proof. Let t0 ∈ I and fix a bounded interval I0 around t0 with Ī0 ⊂ I. By Theorem 3.2.8, the

joint eigenvalues of S(t) can be represented by continuous functions xi(t) = (x1
i (t), . . . , x

d
i (t))

for 1 ≤ i ≤ n on I. Thus, there exists an open bounded convex set E ⊂ Rd such that Ē ⊂ Ω

and for each t∗ ∈ I0, the joint spectrum σ(S(t∗)) = {xi(t∗) : 1 ≤ i ≤ n} ⊂ E. Fix t∗ ∈ I0

and f ∈ C1(Ω,R). Then by Proposition 3.3.7,

d
dt
F (S(t))|t=t∗ = U

( d∑
r=1

Γ̃r ∂F
∂xr

(D) + [Y, F (D)]
)
U∗, (3.3.7)

where U, Dr, Γ̃r, and Y are functions of t∗ defined in Proposition 3.3.7, and the joint

eigenvalues of S(t∗) are denoted by xi, for 1 ≤ i ≤ n. Observe that the matrix in (3.3.7) can

be rewritten as

[ d∑
r=1

Γ̃r ∂F
∂xr

(D) + [Y, F (D)]

]
ij

=


∑d

r=1 Γrij
∂f
∂xr

(xi) if xi = xj

Γqij
f(xi)−f(xj)

xqi−x
q
j

if xi 6= xj,

(3.3.8)

where q is such that xqi 6= xqj , and Γqij/(x
q
i − x

q
j) is the same for any q with xqi 6= xqj . Recall

that for a given n× n self-adjoint matrix A and an n× n unitary matrix U ,

max
ij
|(UAU∗)ij| ≤ n‖UAU∗‖ = n‖A‖ ≤ n2 max

ij
|Aij|. (3.3.9)
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It is immediate from (3.3.7), (3.3.8), and (3.3.9) that

∣∣∣∣ d
dt
F (S(t))

∣∣
t=t∗

∣∣∣∣ ≤ nmax

∣∣∣∣ d∑
r=1

Γrij
∂f
∂xr

(xi)

∣∣∣∣+ nmax

∣∣∣∣Γqij f(xi)− f(xj)

xqi − x
q
j

∣∣∣∣, (3.3.10)

where the first maximum is taken over (i, j) with xi = xj, the second maximum is taken over

(i, j) with xi 6= xj, and q is such that xqi 6= xqj . Fix (i, j) with xi 6= xj. Since f ∈ C1(E,R)

and E is convex, the multivariate mean value theorem can be applied as follows:

∣∣f(xi)− f(xj)
∣∣ =

∣∣∇f(x∗) · (xi − xj)
∣∣

≤ max
s;x∈Ē

∣∣ ∂f
∂xs

(x)
∣∣ d∑
r=1

∣∣xri − xrj∣∣, (3.3.11)

where x∗ is on the line in E connecting xi and xj. If xqi 6= xqj , then for each r with xri 6= xrj ,

Γqij
xri − xrj
xqi − x

q
j

= Γrij.

It follows from (3.3.11) that, for each (i, j, q) with xqi 6= xqj ,

∣∣∣∣Γqij f(xi)− f(xj)

xqi − x
q
j

∣∣∣∣ ≤ ∣∣∣∣ Γqij
xqi−x

q
j

∣∣∣∣max
s;x∈Ē

∣∣ ∂f
∂xs

(x)
∣∣ d∑
r=1

∣∣xri − xrj∣∣
≤ max

s;x∈Ē

∣∣ ∂f
∂xs

(x)
∣∣ d∑
r=1

∣∣Γrij∣∣
≤ dn2 max

s;x∈Ē

∣∣ ∂f
∂xs

(x)
∣∣max
i,j,r

∣∣(Sr)′(t∗)ij∣∣, (3.3.12)

where we used (3.3.9). Likewise,

∣∣ d∑
r=1

Γrij
∂f
∂xr

(xi)
∣∣ ≤ dn2 max

s;x∈Ē

∣∣ ∂f
∂xs

(x)
∣∣max
i,j,r

∣∣(Sr)′(t∗)ij∣∣. (3.3.13)

Let M be a constant bounding each |(Sr)′(t∗)ij| on Ī0 and let C = 2dn3M. Substituting
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(3.3.12) and (3.3.13) into (3.3.10) gives

∣∣∣∣ d
dt
F (S(t))

∣∣
t=t∗

∣∣∣∣ ≤ 2dn3 max
s;x∈Ē

∣∣ ∂f
∂xs

(x)
∣∣max
i,j,r

∣∣(Sr)′(t∗)ij∣∣ ≤ C max
s;x∈Ē

∣∣ ∂f
∂xs

(x)
∣∣, (3.3.14)

for all t∗ in I0.

To prove Theorem 3.3.8, we need the following generalization of the Stone-Weierstrass The-

orem, which is proved on page 55 of [29]:

Lemma 3.3.10. Stone-Weierstrass Generalization. Let Ω ⊆ Rd be an open set and

let f ∈ Cm(Ω,R). Let K ⊂ Ω be compact. Then there exists a sequence {φk} of real-analytic

functions on Rd such that

∣∣∣φk(x)− f(x)
∣∣∣ < 1

k
and

∣∣∣( ∂l1 ···∂lN
(∂xr1 )l1 ···(∂xrN )lN

φk

)
(x)−

(
∂l1 ···∂lN

(∂xr1 )l1 ···(∂xrN )lN
f
)

(x)
∣∣∣ < 1

k
,

for all k ∈ N \ {0}, x ∈ K, 1 ≤ l1 + · · ·+ lN ≤M, and 1 ≤ r1, . . . , rN ≤ d.

Now we can prove Theorem 3.3.8:

Proof. First assume Ω is convex. Let t0 ∈ I. Let I0 be the interval around t0 and E be the

convex, bounded open set given in Lemma 3.3.9. Since f is a C1 function and Ē is compact,

Lemma 3.3.10 guarantees a sequence {φk} of functions analytic on Rd such that

|φk(x)− f(x)| < 1
k

and
∣∣∂φk
∂xr

(x)− ∂f
∂xr

(x)
∣∣ < 1

k
,

for all k ∈ N \ {0}, x ∈ Ē, and 1 ≤ r ≤ d. Lemma 3.3.9 guarantees that for each t∗ ∈ I0,

∣∣∣∣ d
dt

Φk(S(t))
∣∣
t=t∗
− d

dt
F (S(t))

∣∣
t=t∗

∣∣∣∣ =
∣∣∣∣ d
dt

(Φk − F )(S(t))
∣∣
t=t∗

∣∣∣∣
≤ C max

1≤s≤d; x∈Ē

∣∣∂(φk−f)
∂xs

(x)
∣∣

≤ C
k
,
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where C is a constant given in Lemma 3.3.9. This implies

{
d
dt

Φk(S(t))
∣∣
t=t∗

}
converges uniformly to d

dt
F (S(t))

∣∣
t=t∗

on I0.

By Proposition 3.3.4, each d
dt

Φk(S(t))|t=t∗ is continuous on I. Since the uniform limit of

continuous functions is continuous, d
dt
F (S(t))|t=t∗ is continuous on I0. Since t0 ∈ I was

arbitrary, the result follows.

Now, let Ω ⊆ Rd be an arbitrary open set. Fix t0 ∈ I and let I0 be a bounded open

interval of t0 with Ī0 ⊂ I. Let E ⊂ Rd be a bounded open set such that Ē ⊂ Ω and

σ(S(t∗)) ⊂ E for all t∗ ∈ I0. Let O be an open set and K be a compact set such that

Ē ⊂ O ⊂ K ⊂ Ω and define a C∞ bump function b(x) on Rd such that

b(x) :=

 1 if x ∈ Ē

0 if x ∈ Oc.

Now define g ∈ C1(Rd,R) by

g(x) :=

 b(x)f(x) if x ∈ Ω

0 if x ∈ Ωc.

It is clear that g is C1 on Ω. To see that g is C1 on Ωc, observe that g ≡ 0 on Kc, which is an

open set containing Ωc. As Rd is convex, it follows from the previous result that d
dt
G(S(t))|t=t∗

is continuous on I0. Since f ≡ g on Ē, it follows from the formula in Proposition 3.3.7 that

d
dt
F (S(t))|t=t∗ = d

dt
G(S(t))|t=t∗

for all t∗ ∈ I0, and thus, is continuous in I0. Since t0 ∈ I was arbitrary, the result follows.
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3.3.3 Differential Maps of Matrix Functions

Recall that CSdn can be viewed as a closed subset of Rm for m = dn2, and possesses a

Whitney stratification with pieces {Mα} that are smooth submanifolds of Rm. Let Ω be

an open set in Rd and let f ∈ C1(Ω,R). Let V be an open set in CSdn such that for all

S ∈ V, σ(S) ⊂ Ω. Then, each Mα∩V can be viewed as a smooth submanifold of Rm. Define

TV := ∪T (Mα ∩ V ). Then, F (S) exists for all S ∈ V, and we can use the derivative results

to define a differential map DF : TV → TSn :

Definition 3.3.11. Fix an element in TV, which will consist of an S ∈ V and ∆ ∈ TSMα,

where Mα is the piece containing S. Let S(t) be a smooth curve in Mα such that S(0) = S

and S ′(0) = ∆. Define

DF (S,∆) :=

(
F (S), d

dt
F (S(t))|t=0

)
=

(
F (S), U

( d∑
r=1

Γ̃r ∂F
∂xr

(D) + [Y, F (D)]
)
U∗
)
,

where U, D, Γ̃r, Y , and ∂F
∂xr

(D) are defined using S and ∆ as in Proposition 3.3.7, and set

‖DF (S,∆)‖ = max
(
‖F (S)‖, ‖ d

dt
F (S(t))|t=0‖

)
.

It is easy to see that the map is well-defined and that the second component of DF (S, ·)

is linear in ∆, for ∆ ∈ TSMα. Specifically, assume ∆1, ∆2, and ∆1 + ∆2 ∈ TSMα. Then

there exist C1 curves, S1(t), S2(t), S12(t) ⊂ CSdn satisfying S1(0) = S2(0) = S12(0) = S and

S ′1(0) = ∆1, S ′2(0) = ∆2, and S ′12(0) = ∆1 + ∆2. Then, the formula for derivatives along

curves implies

d
dt
F (S1(t))|t=0 + d

dt
F (S2(t))|t=0 = d

dt
F (S12(t))|t=0.

In the following theorem, let S be in a piece Mα and let R be in a piece Mβ of a Whitney

stratification of CSdn.

Theorem 3.3.12. Let Ω be an open set in Rd and V be an open set in CSdn with σ(S) ⊂ Ω
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for all S ∈ V. If f ∈ C1(Ω,R), then

DF : TV → TSn is continuous.

Specifically, if S ∈ V with ∆ ∈ TSMα, then given ε > 0, there exist δ1, δ2 > 0 such that if

R ∈ V with Λ ∈ TRMβ, ‖S −R‖ < δ1, and ‖∆− Λ‖ < δ2, then

‖DF (S,∆)−DF (R,Λ)‖ < ε.

Proof. First, let d = 2 and let f be a real-analytic function defined on a rectangle Ω ⊆ R2.

The argument for higher dimensions is similar but requires more complicated notation. Fix

S ∈ V so that σ(S) ⊂ Ω, and extend f to be analytic on a complex rectangle Ω̃ with

σ(S) ⊂ Ω̃. Then, (3.3.3) implies that for all R = (R1, R2) ∈ V sufficiently close to S and

Λ = (Λ1,Λ2) ∈ TRMβ, the second component of DF (R,Λ) equals:

1

(2πi)2

∫
C2

∫
C1

f(ζ1, ζ2)

(
(ζ1I −R1)−1Λ1(ζ1I −R1)−1(ζ2I −R2)−1

+ (ζ1I −R1)−1(ζ2I −R2)−1Λ2(ζ2I −R2)−1

)
dζ1dζ2,

where each Cr is a simple closed rectifiable curve strictly containing σ(Sr) and C1 × C2 ⊂

Ω̃. This equation, coupled with the fact that the matrix function F defined using f is a

continuous matrix function, immediately implies the continuity conclusion for F .

Now, assume Ω ⊆ Rd is convex. Let E be a bounded, convex set with Ē ⊆ Ω and

σ(S) ⊂ E. Then (3.3.14) and the arguments used to obtain it imply that for R with σ(R) ⊂ E

and Λ ∈ TRMβ :

‖DG(R,Λ)‖ ≤ max

(
max
x∈Ē
|g(x)|, 2dn3 max

1≤s≤d
x∈Ē

∣∣ ∂g
∂xs

(x)
∣∣ max

1≤i,j≤n
1≤r≤d

∣∣Λr
ij

∣∣). (3.3.15)
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for every g ∈ C1(Ω,R). Fix a particular f ∈ C1(Ω,R). As in the proof of Theorem 3.3.8,

we can approximate f uniformly to first order on Ē by a sequence {φk} of real-analytic

functions on Rd. Observe that

‖DF (S,∆)−DF (R,Λ)‖ ≤ ‖DF (S,∆)−DΦk(S,∆)‖+ ‖DΦk(S,∆)−DΦk(R,Λ)‖

+ ‖DΦk(R,Λ)−DF (R,Λ)‖.

Using (3.3.15) and the continuity result for each Φk, we can obtain the continuity result

for F . To relax the convexity condition, use arguments identical to those in the proof of

Theorem 3.3.8.
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3.4 Higher-Order Derivatives of Matrix Functions

We now consider higher-order differentiation and for ease of notation, discuss only two-

variable functions. In this section, we show that a matrix function also inherits higher-order

derivatives from the original real-valued function. Specifically, in Subsection 3.4.1 we obtain

higher-order derivative results for matrix functions induced from analytic functions. In

Subsection 3.4.2, we show that a Cm function always induces a matrix function that can be

m-times continuously differentiated along Cm curves and obtain formulas for the derivatives.

We first clarify some notation. In earlier sections, (ζ1, ..., ζd) referred to a point in Cd. In

this section, (ζ1, ζ2) denotes a point in C2. Previously, S(t) and T (t) denoted two separate

curves in CSdn. Now, S(t) and T (t) denote the two components of a single curve in CS2
n. Let

(S(t), T (t)) be a Cm curve in CS2
n defined on an interval I. If m ≥ 1, the curve is locally

Lipschitz. By Theorem 3.2.8, for 1 ≤ s ≤ n, there are locally Lipschitz curves

(xs(t), ys(t)) (3.4.1)

defined on I representing the joint eigenvalues of (S(t), T (t)). Let U(t) be a unitary matrix

diagonalizing (S(t), T (t)) so that the joint eigenvalues are ordered as in (3.4.1). To simplify

notation, we write (S(t), T (t)) as (S, T ). For l ∈ N with 1 ≤ l ≤ m, define

Sl := S(l)(t) and T l := T (l)(t) (3.4.2)

and the set of pairs of index tuples

Il := {(i1, ..., ik) ∪ (ik+1, ..., ij) : i1 + ...+ ij = l, iq ∈ N, iq 6= 0, for 1 ≤ q ≤ j} .

For example, I2 = {(2)∪ ∅, (1, 1)∪ ∅, (1)∪ (1), ∅ ∪ (1, 1), ∅ ∪ (2)}. For notational ease, for
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1 ≤ s ≤ n, define

U := U(t),

xs := xs(t),

ys := ys(t).

For some formulas, we will conjugate the derivatives in (3.4.2) by U∗ and so define

Γl := U∗SlU and ∆l := U∗T lU,

for 1 ≤ l ≤ m. We will use the integral formula given in Lemma 3.3.6 and simplify it by

defining

R1 := (ζ1I − S(t))−1 and R2 := (ζ2I − T (t))−1,

where ζ1 and ζ2 are in the resolvent sets of S(t) and T (t) respectively. Now, let J1 and J2 be

open intervals in R and let f be an element of Cm(J1 × J2,R). Fix j and k in N such that

k ≤ j ≤ m. Fix k + 1 points x1, ..., xk+1 in J1 and j − k + 1 points y1, ..., yj−k+1 in J2. Then

f [k,j−k](x1, ..., xk+1; y1, ..., yj−k+1)

denotes the divided difference of f taken in the first variable k times and the second variable

j − k times, evaluated at the given points. For clarity, we include the following definition:

Definition 3.4.1. Divided Differences. Let J1 and J2 be open intervals in R, and let

f ∈ Cm(J1 × J2,R). The divided differences of f , which are denoted f [k,j−k], can be defined

whenever j, k ∈ N with k ≤ j ≤ m. First, fix x1, x2 ∈ J1 and y1, y2 ∈ J2. Define

f(x, y1)[1,0](x1, x2) = f [1,0](x1, x2; y1) :=


f(x1,y1)−f(x2,y1)

x1−x2
x1 6= x2

fx(x1, y1) x1 = x2,
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and similarly define f [0,1](x1; y1, y2) = f(x1, y)[0,1](y1, y2). Higher-order divided differences

are defined inductively using the formula:

f [k+1,j−k](x1, .., xk+2; y1, .., yj−k+1) :=
(
f [k,j−k](x1, .., xk, x; y1, .., yj−k+1)

)[1,0]
(xk+1, xk+2)

f [k,j−k+1](x1, .., xk+1; y1, .., yj−k+2) :=
(
f [k,j−k](x1, .., xk+1, x; y1, .., yj−k, y)

)[0,1]
(yj−k+1, yj−k+2)

This definition is well-defined because the order in which divided differences are taken in

each variable does not change the value of the final divided difference. One-variable divided

differences appear frequently in the literature. For an overview, see [26, 54]. In these books,

integral and summation formulas for one-variable divided differences f [k](x1, . . . , xk+1) are

proved. The formulas generalize immediately to two variables and imply the following facts:

(1) Fix j, k ∈ N with k ≤ j ≤ m. Then, the function f [k,j−k](x1, ..., xk+1; y1, ..., yj−k+1)

exists and is continuous in the variables x1, ..., xk+1, y1, ..., yj−k+1 on Jk+1
1 × J j−k+1

2 .

(2) Fix j, k ∈ N with k ≤ j ≤ m. Fix k + 1 points x1, ..., xk+1 in J1 and j − k + 1 points

y1, ..., yj−k+1 in J2. Then, the value of f [k,j−k](x1, ..., xk+1; y1, ..., yj−k+1) is independent

of the order of the xq’s and yr’s.

(3) Fix j, k ∈ N with k ≤ j ≤ m. Fix k + 1 points x1, ..., xk+1 in J1 and j − k + 1 points

y1, ..., yj−k+1 in J2. Then, the value of f [k,j−k](x1, ..., xk+1; y1, ..., yj−k+1) depends only

on the partial derivatives of f up to order k in the first variable and j−k in the second

variable evaluated on the set {(xq, yr) : 1 ≤ q ≤ k + 1, 1 ≤ r ≤ j − k + 1}.

Finally, let � denote the Schur or Hadamard product of two matrices. In this section, we

prove the following differentiability result:

Theorem 3.4.2. Let J1 and J2 be open intervals in R, and let f ∈ Cm(J1 × J2,R). Let

(S, T ) be a Cm curve in CS2
n defined on an open interval I with joint eigenvalues in J1×J2.
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For 1 ≤ l ≤ m and t∗ ∈ I, dl

dtl
F (S, T )|t=t∗ exists and

dl

dtl
F (S, T )

∣∣
t=t∗

= U

(∑
Il

n∑
s2,..,sj=1

l!

i1! · · · ij!
[
f [k,j−k](xs1 , .., xsk+1

; ysk+1
, .., ysj+1

)
]n
s1,sj+1=1

�
[
Γi1s1s2 ...Γ

ik
sksk+1

∆ik+1
sk+1sk+2

...∆ij
sjsj+1

]n
s1,sj+1=1

)
U∗,

(3.4.3)

where the U , U∗, Γi, ∆j, xq and yr are evaluated at t∗.

Notice that the derivative formula in Theorem 3.4.2 requires f to be defined on pairs (xq, yr)

for 1 ≤ r, q ≤ n, rather than just at the joint eigenvalues (xq, yq) of (S, T ). This condition

was not needed in Theorem 3.3.2.

3.4.1 Higher-Order Derivatives of Analytic Matrix Functions

Before proving Theorem 3.4.2, we consider the case where f is real-analytic and show:

Proposition 3.4.3. Let J1 and J2 be open intervals in R, and let f be real-analytic on

J1 × J2. Fix m ∈ N and let (S, T ) be a Cm curve in CS2
n defined on an open interval I with

joint eigenvalues in J1 × J2. Then dm

dtm
F (S, T ) exists, has the form in Theorem 3.4.2, and

dm

dtm
F (S, T )|t=t∗ is continuous as a function of t∗ on I.

The proof of Proposition 3.4.3 requires the following two technical lemmas:

Lemma 3.4.4. Let (S, T ) be a Cm curve in CS2
n defined on an open interval I. Let t∗ ∈ I,

and let ζ1 and ζ2 be in the resolvent sets of S(t∗) and T (t∗) respectively. Then

dl

dtl

(
R1R2

)∣∣∣
t=t∗

=
∑
Il

l!

i1! · · · ij!
R1S

i1R1...S
ikR1R2T

ik+1R2...T
ijR2, (3.4.4)

for 1 ≤ l ≤ m, where each R1, R2, S
r, and T q is evaluated at t∗.
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Proof. The result follows via induction on l. Recall from Proposition 3.3.4 that:

d

dt
R1 = R1S

1R1 and
d

dt
R2 = R2T

1R2.

Now consider the base case l = 1. Direct calculation yields:

d

dt

(
R1R2

)
=

d

dt
(R1)R2 +R1

d

dt
(R2)

= R1S
1R1R2 +R1R2T

1R2,

which shows (3.4.4) holds for the case l = 1, since I1 = {(1)∪∅, ∅∪(1)}. Now assume (3.4.4)

is true for l − 1. Then:

dl

dtl
(
R1R2

)
=

d

dt

∑
I(l−1)

(l − 1)!

i1! · · · ij!
R1S

i1R1 . . . S
ikR1R2T

ik+1R2 . . . T
ijR2



=
∑
I(l−1)

(l − 1)!

i1! · · · ij!
d

dt

(
R1S

i1R1 . . . S
ikR1R2T

ik+1R2 . . . T
ijR2

)
. (3.4.5)

Take the derivative of each term in (3.4.5) using the product rule. Recall that taking the

derivative of an R1 or R2 term introduces an R1S
1R1 or R2T

1R2 into the product and taking

the derivative of an Siq or T iq yields an Siq+1 or T iq+1. Thus, it is clear that (3.4.5) will be

a sum of the form:

∑
Il

C
(
(i1, . . . , ik) ∪ (ik+1, . . . , ij)

)
R1S

i1R1 . . . S
ikR1R2T

ik+1R2 . . . T
ijR2.

To calculate a formula for the coefficients, fix an an element (i1, . . . , ik) ∪ (ik+1, . . . , ij) in Il

and consider the associated product:

R1S
i1R1 . . . S

ikR1R2T
ik+1R2 . . . T

ijR2. (3.4.6)
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To see which terms in (3.4.5) will have (3.4.6) in their derivative, consider q with 1 ≤ q ≤

k ≤ j and define the following element in Il−1 :

Tq :=

 (i1, . . . , iq−1, iq+1, . . . , ik) ∪ (ik+1, . . . , ij) if iq = 1

(i1, . . . , iq−1, iq − 1, iq+1, . . . , ik) ∪ (ik+1, . . . , ij) if iq > 1.

Analogous Tq elements in Il−1 can be defined for q with 1 ≤ k ≤ q ≤ j. It is easily to

see that for each q, the term in (3.4.5) associated with the element Tq will have (3.4.6) in

its derivative. Moreover, since taking the derivative of a term in (3.4.5) raises the index

associated with exactly one S or T term by 1, those are the only products in (3.4.5) with

(3.4.6) in their derivatives. Thus, summing the constants associated with each Tq term will

yield C((i1, . . . , ik) ∪ (ik+1, . . . , ij)). Specifically:

C
(
(i1, . . . , ik) ∪ (ik+1, . . . , ij)

)
=

j∑
q=1

C(Tq)

=

j∑
q=1

(l − 1)!

i1! · · · (iq − 1)! · · · ij!

= (l − 1)!

j∑
q=1

iq
i1! · · · ij!

=
(l − 1)!

i1! · · · ij!

j∑
q=1

iq

=
l!

i1! · · · ij!
.

Therefore,

dl

dtl
(
R1R2

)
=
∑
Il

l!

i1! · · · ij!
R1S

i1R1 . . . S
ikR1R2T

ik+1R2 . . . T
ijR2,

as desired.

Lemma 3.4.5. Let J1 and J2 be open intervals in R, and let f be real-analytic on J1 × J2.
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Let j ≥ k ∈ N. Choose k + 1 points x1, ..., xk+1 ∈ J1 and j − k + 1 points y1, ..., yj−k+1 ∈ J2.

Extend f to be analytic on a complex rectangle Ω̃ ⊂ C2 such that each (xq, yr) ∈ Ω̃. Then

f [k,j−k](x1, ..., xk+1; y1, ..., yj−k+1) exists and

f [k,j−k](x1, .., xk+1; y1, .., yj−k+1) =
1

(2πi)2

∫
C2

∫
C1

f(ζ1, ζ2)∏k+1
q=1(ζ1 − xq)

∏j−k+1
r=1 (ζ2 − yr)

dζ1dζ2,

where C1 and C2 are simple closed rectifiable curves strictly enclosing the points x1, ..., xk+1

and y1, ..., yj−k+1 respectively, such that C1 × C2 ⊂ Ω̃.

Proof. Since f is analytic, the divided difference f [k,j−k] exists. For a one-variable function,

this formula is proven in [26] on page 2. The two-variable analogue follows from the one-

variable case. The definition of the divided difference operator coupled with the one-variable

result yields:

f [k,j−k](x1, . . . , xk+1; y1, . . . , yj−k+1) =
(
f [k,0](x1, . . . , xk+1; y)

)[j−k]
(y1, . . . , yj−k+1)

=
1

2πi

∫
C2

f [k,0](x1, . . . , xk+1; ζ2)∏j−k+1
r=1 (ζ2 − yr)

dζ2

=
1

(2πi)2

∫
C2

∫
C1

f(ζ1, ζ2)∏k+1
q=1(ζ1 − xq)

∏j−k+1
r=1 (ζ2 − yr)

dζ1dζ2,

as desired.

Using these lemmas, we can now prove Proposition 3.4.3:

Proof. Fix t∗ ∈ I, and extend f to an analytic function defined on a complex rectangle

Ω̃ containing the joint eigenvalues of
(
S(t∗), T (t∗)

)
. Choose simple closed rectifiable curves

C1 and C2 strictly containing the eigenvalues of S(t∗) and T (t∗) respectively, such that
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C1 × C2 ⊂ Ω̃. From Lemma 3.3.6,

F (S, T ) =
1

(2πi)2

∫
C2

∫
C1

f(ζ1, ζ2) R1R2 dζ1dζ2,

for all t sufficiently close to t∗. As in Proposition 3.3.4, we can interchange differentiation

and integration and then use Lemma 3.4.4 to obtain:

dm

dtm
F (S, T ) =

1

(2πi)2

∫
C2

∫
C1

f(ζ1, ζ2)
dm

dtm
(
R1R2

)
dζ1dζ2

=
1

(2πi)2

∫
C2

∫
C1

f(ζ1, ζ2)

(∑
Im

m!

i1! · · · ij!
R1S

i1R1 . . . S
ikR1R2T

ik+1R2 . . . T
ijR2

)
dζ1dζ2.

(3.4.7)

As in Proposition 3.3.4, this formula immediately implies that the derivatives are continuous

as functions of t∗. Now we simplify (3.4.7). An easy calculation gives:

R1 = U

(
n∑
s=1

Es
ζ1 − xs

)
U∗ and R2 = U

(
n∑
s=1

Es
ζ2 − ys

)
U∗, (3.4.8)

where Es is the matrix with 1 in the ssth entry and zeros elsewhere. Recall the definitions of

Γl and ∆l for 1 ≤ l ≤ m. Now, substituting (3.4.8) for each R1 and R2 in (3.4.7) and using

Lemma 3.4.5 yields:

dm

dtm
F (S, T ) =

1

(2πi)2

∫
C2

∫
C1

f(ζ1, ζ2) U

·
(∑

Im

n∑
s1..sj+1=1

m!

i1! · · ij!
Es1Γi1Es2 . . ΓikEsk+1

∆ik+1Esk+2
. . ∆ijEsj+1∏k+1

q=1 (ζ1 − xsq)
∏j+1

r=k+1 (ζ2 − ysr)

)
U∗ dζ1dζ2
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= U

(∑
Im

n∑
s1..sj+1=1

m!

i1! · · · ij!
Es1Γi1Es2 . . .Γ

ikEsk+1
∆ik+1Esk+2

. . .∆ijEsj+1

· 1

(2πi)2

∫
C2

∫
C1

f(ζ1, ζ2)∏k+1
q=1 (ζ1 − xsq)

∏j+1
r=k+1 (ζ2 − ysr)

dζ1dζ2

)
U∗

= U

(∑
Im

n∑
s1..sj+1=1

m!

i1! · · · ij!
Es1Γi1Es2 . . .Γ

ikEsk+1
∆ik+1Esk+2

. . .∆ijEsj+1

· f [k,j−k]
(
xs1 , . . . , xsk+1

; ysk+1
, . . . , ysj+1

))
U∗.

Direct calculation using the definition of the Es matrices gives:

[Es1Γi1Es2 . . .Γ
ikEsk+1

∆ik+1Esk+2
. . .∆ijEsj+1

]qr

=


Γi1s1s2 . . .Γ

ik
sksk+1

∆
ik+1
sk+1sk+2 . . .∆

ij
sjsj+1 if q = s1 and r = sj+1

0 otherwise.

Hence, the (s1sj+1)th entry is a product of entries of Γ and ∆ matrices and the other entries

are zero. Thus,

dm

dtm
F (S, T ) = U

(∑
Im

n∑
s1..sj+1=1

m!

i1! · · · ij!
Es1Γi1Es2 . . .Γ

ikEsk+1
∆ik+1Esk+2

. . .∆ijEsj+1

· f [k,j−k]
(
xs1 , . . . , xsk+1

; ysk+1
, . . . , ysj+1

))
U∗

= U

(∑
Im

n∑
s2..sj=1

m!

i1! · · · ij!
[
f [k,j−k](xs1 , . . . , xsk+1

; ysk+1
, . . . , ysj+1

)
]n
s1,sj+1=1

�
[
Γi1s1s2 . . .Γ

ik
sksk+1

∆ik+1
sk+1sk+2

. . .∆ij
sjsj+1

]n
s1,sj+1=1

)
U∗,

for all t in I sufficiently close to t∗.
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3.4.2 Higher-Order Derivatives of General Matrix Functions

To prove the general derivative result, we need the following technical lemma:

Lemma 3.4.6. Let J1 and J2 be open intervals in R and let f ∈ Cm(J1×J2,R). Let k, j ∈ N

such that 0 ≤ k ≤ j < m. Then,

f [k,j−k](x1, . . . , xk+1; y1, . . . , yj−k+1)

is a continuously differentiable function defined on Jk+1
1 × J j−k+1

2 .

Proof. First, the definition of the divided difference operator implies that f [k,j−k] is well-

defined and continuous on Jk+1
1 × J j−k+1

2 . Now, fix q ∈ N such that 1 ≤ q ≤ k + 1 and

calculate the partial derivative of f [k,j−k] with respect to the variable xq. It follows from the

properties of the divided difference operator that:

∂

∂xq
f [k,j−k](x1, . . . , xk+1; y1, . . . , yj−k+1)

= lim
h→0

f [k,j−k](x1, .., xq + h, .., xk+1; y1, .., yj−k+1)− f [k,j−k](x1, .., xq, .., xk+1; y1, .., yj−k+1)

h

= lim
h→0

f [k+1,j−k](x1, . . . , xq + h, xq, . . . , xk+1; y1, . . . , yj−k+1)

= f [k+1,j−k](x1, . . . , xq, xq, . . . , xk+1; y1, . . . , yj−k+1). (3.4.9)

Likewise, given r ∈ N with 1 ≤ r ≤ j − k + 1, direct calculation gives:

∂

∂yr
f [k,j−k](x1, . . . , xk+1; y1, . . . , yj−k+1) =f [k,j−k+1](x1, . . . , xk+1; y1, . . . , yr, yr, . . . yj−k+1).

(3.4.10)

Because j + 1 ≤ m, the divided differences f [k+1,j−k], and f [k,j−k+1] are continuous in each
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variable. Thus, the derivative formulas (3.4.9) and (3.4.10) are continuous as well.

We are now in a position to prove Theorem 3.4.2:

Proof. The arguments in this proof are very similar to those in Theorem 3.3.2. For the

interested reader, we include the details.

First, Proposition 3.4.3 established the result for analytic functions. For an arbitrary

Cm function f , the result follows via induction on l. Fix t∗ ∈ I. Let p be a polynomial

defined on R2 such that p and its partial derivatives to mth order agree with f at the points

(xq(t
∗), yr(t

∗)) for 1 ≤ q, r ≤ n. This implies:

p[k,j−k](xs1 , . . . , xsk+1
; ysk+1

, . . . , ysj+1
)|t=t∗ = f [k,j−k](xs1 , . . . , xsk+1

; ysk+1
, . . . , ysj+1

)|t=t∗ ,

for k, j ∈ N with 0 ≤ k ≤ j ≤ m and 1 ≤ s1, . . . , sj+1 ≤ n. Thus, the right-hand-side of

(3.4.3) evaluated at t∗ is the same for f and p. The proof of Theorem 3.3.2 immediately

implies that:

d
dt
F (S, T )|t=t∗ exists and equals d

dt
P (S, T )|t=t∗ .

Since (3.4.3) is true for p, it also holds for f when l = 1 and t = t∗. Since t∗ is arbitrary, the

result follows for the base case l = 1.

Proceeding by induction, assume the result holds for l − 1. Fix t∗ ∈ I and define p as

before. It follows that

dl−1

dtl−1F (S, T )|t=t∗ exists and equals dl−1

dtl−1P (S, T )|t=t∗ .

We will show:

dl

dtl
F (S, T )|t=t∗ exists and equals dl

dtl
P (S, T )|t=t∗ .

Let I∗ be a precompact neighborhood of t∗ with I∗ ⊂ I. For t ∈ I∗, we use the inductive

114



hypothesis and (3.4.3) to obtain:

∣∣∣∣ dl−1

dtl−1F (S, T )− dl−1

dtl−1P (S, T )
∣∣∣∣ ≤ C max

∣∣(f − p)[k,j−k](xs1 , . . . , xsk+1
; ysk+1

, . . . , ysj+1
)
∣∣,

(3.4.11)

where the maximum is taken over j, k ∈ N with 0 ≤ k ≤ j ≤ l − 1 and the set

{s1, . . . , sj+1 : 1 ≤ s1, . . . , sj+1 ≤ n} The constant C depends on n and the values of (S, T )

and their derivatives to (l − 1)th order on I∗. By Lemma 3.4.6, the function:

(f − p)[k,j−k](x1, . . . , xk+1; y1, . . . , yj−k+1)

is continuously differentiable. For t near t∗, the multivariable mean value theorem can then

be used to conclude that:

∣∣∣∣ dl−1

dtl−1F (S, T )− dl−1

dtl−1P (S, T )
∣∣∣∣ ≤ C max

(∣∣(f − p)[k,j−k](xs1 , . . . , xsk+1
; ysk+1

, . . . , ysj+1
)

− (f − p)[k,j−k](xs1 , . . . , xsk+1
; ysk+1

, . . . , ysj+1
)|t=t∗

∣∣)

≤ C max

( k+1∑
q=1

∣∣∂(f−p)[k,j−k]

∂xq
(x∗s1 , . . . , x

∗
sk+1

; y∗sk+1
, . . . , y∗sj+1

)
∣∣ · ∣∣xsq − xsq(t∗)∣∣

+

j−k+1∑
r=1

∣∣∂(f−p)[k,j−k]

∂yr
(x∗s1 , . . . , x

∗
sk+1

; y∗sk+1
, . . . , y∗sj+1

)
∣∣ · ∣∣ysr+k − ysr+k(t∗)∣∣), (3.4.12)

where (x∗s1 , . . . , x
∗
sk+1

; y∗sk+1
, . . . , y∗sj+1

) is on the line in Jk+1
1 × J j−k+1

2 connecting the points:

(xs1 , . . . , xsk+1
, ysk+1

, . . . , ysj+1
) and (xs1 , . . . , xsk+1

, ysk+1
, . . . , ysj+1

)|t=t∗ .

Recall that the functions xsq and ysr are locally Lipschitz. Furthermore, the derivative
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formulas in Lemma 3.4.6 and our assumptions about p imply that the functions

∂(f−p)[k,j−k]

∂xq
and ∂(f−p)[k,j−k]

∂yr

are continuous and equal zero at (xs1 , . . . , xsk+1
, ysk+1

, . . . ysj+1
)|t=t∗ . Thus, (3.4.12) implies:

∣∣∣∣ dl−1

dtl−1F (S, T )− dl−1

dtl−1P (S, T )
∣∣∣∣ = o( |t− t∗| ).

It follows immediately that:

∣∣∣∣∣∣∣∣ dl−1

dtl−1F (S, T )− dl−1

dtl−1F (S, T )|t=t∗
t− t∗

−
dl−1

dtl−1P (S, T )− dl−1

dtl−1P (S, T )|t=t∗
t− t∗

∣∣∣∣∣∣∣∣→ 0 when t→ t∗.

Thus:

dl

dtl
F (S, T )|t=t∗ exists and equals dl

dtl
P (S, T )|t=t∗ .

Because t∗ was arbitrary, the result holds all t ∈ I.

We now show that the formula in Theorem 3.4.2 is continuous.

Theorem 3.4.7. Let J1 and J2 be open intervals in R and f ∈ Cm(J1 × J2,R). Let (S, T )

be a Cm curve in CS2
n defined on an open interval I with joint eigenvalues in J1 × J2. Then

for all l ∈ N with 1 ≤ l ≤ m,

dl

dtl
F (S, T )|t=t∗ is continuous as a function of t∗ on I.

For the proof, we require the following lemma. The result is well-known for one-variable

functions, and Brown and Vasudeva prove this two-variable analogue in [22]. For clarity, we

include the proof.

Lemma 3.4.8. Let J1 and J2 be open intervals in R, and let f ∈ Cm(J1 × J2,R). Choose

j, k ∈ N with k ≤ j ≤ m. Let x1, ..., xk+1 ∈ J1 and y1, ..., yj−k+1 ∈ J2, and choose closed
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subintervals J̃1 and J̃2 containing the x and y points respectively. Then, there exists (x∗, y∗) ∈

J̃1 × J̃2 with

f [k,j−k](x1, ..., xk+1; y1, ..., yj−k+1) =
f (k,j−k)(x∗, y∗)

k!(j − k)!
.

Proof. This follows from the analogous one-variable result, which is proved in [26]. Using

that result, there exists x∗ ∈ J̃1 and y∗ ∈ J̃2 such that:

f [k,j−k](x1, . . . , xk+1; y1, . . . , yj−k+1) = (f [k,0](x1, . . . , xk+1; y))[j−k](y1, . . . , yj−k+1)

= 1
(j−k)!

∂j−k

∂yj−k
f [k,0](x1, . . . , xk+1; y)

∣∣
y=y∗

= 1
(j−k)!

(
∂j−kf
∂yj−k

∣∣∣
y=y∗

)[k]

(x1, . . . , xk+1)

= 1
(j−k)!

1
k!

∂k

∂xk

(
∂j−kf
∂yj−k

∣∣∣
y=y∗

)∣∣∣
x=x∗

= f (k,j−k)(x∗,y∗)
k!(j−k)!

,

which follows because the divided difference operator in the first variable commutes with the

partial derivative taken in the second variable.

Now we can prove Theorem 3.4.7:

Proof. For l < m, the result follows from Theorem 3.4.2, which implies that dl

dtl
F (S, T ) is

differentiable and hence, continuous.

For l = m, fix t0 ∈ I and let I0 be a precompact neighborhood of t0 with Ī0 ⊂ I. Let

J̃1 and J̃2 be closed, bounded subintervals of J1 and J2 so that the joint eigenvalues of

(S(t∗), T (t∗)) are in J := J̃1 × J̃2 for t∗ ∈ I0. Using Theorem 3.4.2 and Lemma 3.4.8, for

t∗ ∈ I0, we have:

∣∣∣∣ dl
dtl
G(S, T )|t=t∗

∣∣∣∣ ≤ C1 max
1≤k≤j≤m

1≤s1..sj+1≤n

|g[k,j−k](xs1 , . . . , xsk+1
; ysk+1

, . . . , ysj+1
)|t=t∗|

≤ C max
1≤k≤j≤m

(x,y)∈J

|g(k,j−k)(x, y)|, (3.4.13)
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where g ∈ Cm(J1 × J2,R) is arbitrary, and C is a constant depending on n and the values

of (S, T ) and their derivatives to mth order on I0. Now, let f ∈ Cm(J1,×J2,R). As in the

proof of Theorem 3.3.8, use Lemma 3.3.10 to approximate f to mth order uniformly on J by

analytic functions {φr} and use (3.4.13) to show

{ dm
dtm

Φr(S, T )|t=t∗} converges uniformly to dm

dtm
F (S, T )|t=t∗

for t∗ in a neighborhood of t0. Now, the desired result follows from the continuity part of

Proposition 3.4.3.
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3.5 Application: Monotone and Convex Multivariate

Matrix Functions

The formulas in Proposition 3.3.7 and Theorem 3.4.2 can be used to analyze monotonicity

and convexity of matrix functions defined from real-valued functions.

Definition 3.5.1. Let Ω ⊆ R be open, and let f ∈ C1(Ω,R). Then, the induced matrix-

valued function F : Sn(Ω)→ Sn is called n-matrix monotone on Ω if

F (A) ≤ F (B) whenever A ≤ B, ∀ A,B ∈ Sn(Ω).

If Ω is connected, an equivalent condition is

d
dt
F (S(t))|t=t∗ ≥ 0 whenever S ′(t∗) ≥ 0, ∀ C1 curves S(t) ⊂ Sn(Ω). (3.5.1)

The local monotonicity condition in (3.5.1) extends immediately to multivariate matrix func-

tions; the only adjustment is that S(t) is in CSdn. However, in several variables, it is not

known whether the global and local monotonicity conditions are equivalent.

In [8], Agler, McCarthy, and Young characterized locally matrix monotone functions on

CSdn using a special case of Theorem 3.3.2 and Proposition 3.3.7. Specifically, they had to

assume that S(t) had distinct joint eigenvalues at each t. Our results in Section 3.3 extend

the derivative formula to general C1 curves in CSdn and show that the resultant derivative

formula is continuous.

Definition 3.5.2. Let Ω ⊆ R be open, and let f ∈ C1(Ω,R). Then, the induced matrix-

valued function F : Sn(Ω)→ Sn is called n-matrix convex on Ω if

F (λA+ (1− λ)B) ≤ λF (A) + (1− λ)F (B) ∀ A,B ∈ Sn(Ω) and λ ∈ [0, 1]. (3.5.2)
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This condition extends to multivariate matrix functions with an additional restriction on the

pairs A,B in CSdn(Ω); we also require λA + (1 − λ)B ∈ CSdn(Ω) for λ ∈ (0, 1). Given such

A,B, define the curve S(t) on [0, 1] by

Sr(t) := tAr + (1− t)Br, (3.5.3)

for 1 ≤ r ≤ d. If F is twice continuously differentiable along C2 curves, it can be shown that

the multivariate generalization of (3.5.2) is equivalent to

d2

dt2
F (S(t))|t=t∗ ≥ 0

for all S(t) as in (3.5.3) and t∗ ∈ (0, 1).

For d = 2, Theorem 3.4.2 tells us that, up to conjugation by a unitary matrix U diagonalizing

S(t∗),

[
d2

dt2
F (S(t))|t=t∗

]
ij

= 2
n∑
k=1

f [2,0](xi, xk, xj; yj)ΓikΓkj + f [1,1](xi, xk; yk, yj)Γik∆kj

+ f [0,2](xi; yi, yk, yj)∆ik∆kj, (3.5.4)

where {(xi, yi) : 1 ≤ i ≤ n} are the joint eigenvalues of t∗A + (1 − t∗)B ordered as in the

diagonalization given by U, and

Γ := U∗
(
A1 −B1

)
U and ∆ := U∗

(
A2 −B2

)
U.

Theorem 3.2.5 can be used to obtain that (xi − xj)∆ij = (yi − yj)Γij for 1 ≤ i, j ≤ n, which

further simplifies (3.5.4). It then seems possible that characterizing the positivity of (3.5.4)

would give a useful characterization of convex matrix functions on CS2
n.
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