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ABSTRACT OF DISSERTATION 

Molecular genetic analysis of non-catalytic RNA polymerase IV and V  

subunits in Arabidopsis 
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Ek Han Tan 

Doctor of Philosophy in Molecular Genetics and Genomics 

Washington University in St. Louis, 2011 

Professor Craig S. Pikaard, Ph.D., co-Chair 

Professor Doug L. Chalker, Ph.D., co-Chair 

 

 Among eukaryotes, plants have the distinction of encoding multisubunit RNA 

polymerases used exclusively for RNA directed DNA Methylation (RdDM) in addition to 

Pol I, II, and III. In Arabidopsis thaliana, Pol IV is required for the biogenesis of 24nt 

siRNAs whereas Pol V transcription is needed for cytosine methylation of the DNA 

sequences corresponding to these siRNAs. The ancestry of Pol IV and V can be traced 

back to Pol II, and Pol II, IV and V still utilize multiple non-catalytic subunits encoded 

by the same genes. Genetic analysis of non-catalytic subunits that are highly similar 

reveals that these subunits are not necessarily redundant. For instance, NRPB9b but not 

its 97% similar paralog, NRPB9a is required for RdDM. Likewise, Pol IV and Pol V-

specific 7th largest subunits are very similar yet have different involvements in RdDM. In 

some of the non-catalytic subunit mutants of Pol IV, 24nt siRNA accumulation is not 

dramatically reduced, yet RNA silencing is disrupted. This contrasts with Pol IV catalytic 

subunit mutants in which siRNA biogenesis and RdDM are coordinately disrupted. Taken 
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together, these results suggest that Pol IV might possess functions in RdDM that are in 

addition to, and separable from siRNA biogenesis. Differences in Pol V subunit 

composition based on the use of alternative non-catalytic subunit variants might also have 

functional consequences for RdDM. The evidence suggests that alternative non-catalytic 

subunits in Pol IV and V are likely to influence interactions with other proteins needed 

for RdDM.  
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i. 

PROLOGUE 

 

 The genomes of prokarya, archaea and eukarya are transcribed by structurally 

conserved, DNA dependent RNA polymerase complexes. In concordance with the central 

dogma, transcription of DNA into RNA is catalyzed by these RNA polymerases (Pol II in 

eukaryotes), allowing for the translation of the resulting messenger RNA into protein. 

While prokaryotes and archaea use a single RNA polymerase for all transcriptional 

activities, eukaryotes use three functionally divergent RNA polymerases: Pol I, II and III, 

transcripts from two of which don’t make proteins (Pol I and III).  

A pivotal shift from the dogmatic views on RNAs was sparked by the discovery 

of RNA interference, a method of gene silencing mediated by short, 20-40 nucleotide 

small RNA species. Since then, many analogous small RNA pathways, which are very 

diverse in eukaryotes, have been characterized. Among the most astounding discoveries 

is that plants encode dedicated RNA silencing RNA polymerases in addition to RNA 

polymerase I, II and III. In Arabidopsis, two additional RNA polymerases, Pol IV and Pol 

V are involved in a silencing pathway known as RNA directed DNA methylation, where 

24nt siRNAs produced by Pol IV are targeted for de novo DNA methylation through Pol 

V. 

At the molecular level, epigenetic phenomena associated with small RNAs 

include de novo DNA methylation and targeting of repressive histone modifications. I 

will begin this introduction with a broad survey of RNA silencing pathways, followed by 

closer look at DNA methylation before reviewing current views on the plant-specific 

RNA polymerases, Pol IV and Pol V.  
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ii. 

GLOSSARY OF TERMS 

Adapted from (Pikaard, Haag et al. 2008) and updated to reflect recent advances. 
 
AGO: ARGONAUTE, proteins in this family bind to small RNAs, including 
siRNAs and miRNAs, and are capable of cleaving RNAs complementary to the 
small RNAs, a process known as slicing. 
 
AGO1: ARGONAUTE1, binds primarily 21nt microRNAs and is involved in post-
transcriptional gene silencing 
 
AGO4: ARGONAUTE4, binds primarily 24nt heterochromatic siRNAs and is involved 
in RNA directed DNA methylation 
 
CLSY1: CLASSY1, a putative chromatin remodeling protein involved in RNA-directed 
DNA methylation. 
 
CMT3: CHROMOMETHYLASE3, a plant specific de novo DNA methyltransferase 
cooperates with histone methyltransferase KYP to maintain CHG methylation. 
 
CTD: C-terminal domain, of Pol II, Pol IV and Pol V largest subunits. 
 
DCL: DICER-LIKE enzyme, family of RNAse III domain-containing endoribonucleases 
that process hairpin RNA or double-stranded RNA into duplexes of 20-26nt. 
 
DCL1: Arabidopsis DICER-LIKE 1, required primarily for miRNA biogenesis. 
 
DCL2: Arabidopsis DICER-LIKE 2, generates 22-nt siRNAs. 
 
DCL3: Arabidopsis DICER-LIKE 3, generates 24-nt siRNAs. 
 
DCL4: Arabidopsis DICER-LIKE 4, generates 21-nt siRNAs. 
 
DDM1: DEFICIENT IN DNA METHYLATION1, a SWI/SNF chromatin remodeler 
required for global maintenance of CG and CHG methylation. 
 
DME: DEMETER, maternally expressed DNA glycosylase/lyase required for active 
DNA demethylation in the central cell, resulting in maternal-specific gene expression. 
 
DML: DEMETER-Like, DNA glycosylases involved in DNA methylation. Family 
includes ROS1, DML2 and DML3. 
 
DMS3: A SMC-hinge domain protein required for RdDM and Pol V dependent 
transcription. 
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DNA: Deoxyribonucleic acid. 
 
DNA methylation (m5C): Cytosine with a covalently attached methyl group at the 5 
position. 
 
DNMT1: DNA Methyltransferase 1, mammalian CG methyltransferase. 
 
DNMT3a/3b: DNA Methyltransferase 3a and 3b, mammalian de novo 
methyltransferases. 
 
DNMT3L: Catalytically inactive de novo methyltransferase, but heterodimerizes with 
DNMT3 for enhanced activity. 
 
DRD1: DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1, a putative 
chromatin remodeling protein involved in RNA-directed DNA methylation. 
 
DRM2: DOMAINS REARRANGED METHYLYTRANSFERASE 2, the primary 
de novo DNA methyltransferase in Arabidopsis, related to mammalian DNMT3a/b. 
 
DRM3: DOMAINS REARRANGED METHYLTRANSFERASE 3, catalytically 
inactive paralog of DRM2, related to mammalian DNMT3L. 
 
dsRNA: Double-stranded RNA. 
 
HDA6: Histone Deacetylase 6, a histone deacetylase required for transcriptional gene 
silencing of many loci. 
 
HEN1: HUA ENHANCER 1; methylates the 2’ hydroxyl groups of siRNA and 
miRNA 3’-terminal nucleotides. 
 
hmC: hydroxylmethylcytosine, oxidized form of methylcytosine. 
 
HST1: HASTY1, an exportin 5 homolog implicated in nuclear export of miRNAs. 
 
HYL1: HYPONASTIC LEAVES 1, a dsRNA-binding protein that interacts with 
DCL1. 
 
IDN2: also known as RDM12. An SGS3-like coiled-coil protein involved in RdDM and 
displays dsRNA binding in vitro. 
 
KTF1: SPT5-like protein with that interacts with AGO4 and Pol V for RdDM. 
 
KYP: KRYPTONITE, histone H3K9 methyltransferase, works with CMT3 in a feed 
forward loop coupling CHG methylation with H3K9 methylation. 
   



5 
 

l-siRNA: long siRNA of around 40nt, as opposed to the predominant 21–24nt size 
range. 
 
MBD: Methyl-CpG-Binding Domain protein, binds 5-methylcytosine residues. 
 
MET1: Methytransferase1, the major CG maintenance DNA methyltransferase in plants. 
 
miRNA: microRNA, small RNAs transcribed from dedicated genes, mediate 
mRNA cleavage or translational arrest. 
 
nat-siRNA: siRNA derived from natural antisense transcripts derived from 
adjacent genes. 
 
NOR: Nucleolus organizer region. 
 
NRPB9b: Ninth largest subunit shared by Pol II, IV and V, required for RdDM. 
 
NRPD4: Fourth largest subunit shared by Pol IV and V, required for RdDM. 
 
NRPD7: Seventh largest subunit of Pol IV, not required for RdDM, may be substituted 
by NRPE7. 
 
NRPE7: Seventh largest subunit shared by Pol IV and V, required for RdDM. 
 
Pol I: DNA-DEPENDENT RNA POLYMERASE I, synthesizes the precursor for the 
three largest rRNAs. 
 
Pol II: DNA-DEPENDENT RNA POLYMERASE II, transcribes most protein-coding 
genes, encoded by mRNAs as well as miRNAs. 
 
Pol III: DNA-DEPENDENT RNA POLYMERASE III, mostly transcribes 5S rRNA 
genes and tRNA genes. 
 
Pol IV: nuclear RNA polymerase IV, includes the NRPD1 and NRPD2/E2 catalytic 
subunits. 
 
Pol V: nuclear RNA polymerase V, includes the NRPE1 and NRPD2/E2 catalytic 
subunits. 
 
RdDM: RNA-directed DNA methylation, one of several gene silencing pathways 
in the nucleus. 
 
RDM1: Methylcytosine binding protein that forms a complex with DRD1 and DMS3 and 
is required to generate Pol-dependent transcripts. 
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RDM4: also known as DMS4, an IWR1-like protein that interacts with Pol II and Pol V, 
and required for RdDM. 
 
RDR2: RNA-DEPENDENT RNA POLYMERASE 2, required for the biogenesis 
of 24-nt siRNAs that mediate RNA-directed DNA methylation in Arabidopsis 
 
RDR6: RNA-DEPENDENT RNA POLYMERASE 6, involved in the ta-siRNA, 
nat-siRNA and l-siRNA, transgene and anti-viral silencing, and long-distance spread of 
RNA silencing pathways. 
 
RISC: RNA-induced silencing complex, includes an ARGONAUTE protein association 
with an siRNA (siRISC) or miRNA (miRISC). 
 
RNA: Ribonucleic acid. 
 
RNAP: DNA-dependent RNA polymerase. 
 
RNP: ribonucleoprotein, a complex of RNA and proteins. 
 
ROS1: Repressor of silencing 1, DNA glycosylase for active DNA demethylation. 
 
ROS3: Repressor of silencing 3, RRM domain protein required for active DNA 
demethylation. 
 
rRNA: ribososomal RNA, four different rRNAs are present in ribosomes. 
 
SDE3: SILENCING DEFECTIVE 3, a putative RNA helicase. 
 
SGS3: SUPPRESSOR OF GENE SILENCING 3, a putative coiled-coil protein. 
 
siRNA: small interfering RNA. 
 
Spt5:  A subunit of a yeast elongation complex, conserved in archaea and similar to 
NusG in bacteria. 

SUVH: SET-domain containing proteins, H3K9 methyltransferases. 
 
TFIIS:  Transcription factor IIS, a Pol II elongation factor.  
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iii. 

THE WORLD OF RNA SILENCING 

 

 When dsRNA was first demonstrated to induce sequence specific gene silencing 

in Caenorhabditis elegans and plants (Fire, Xu et al. 1998; Timmons and Fire 1998; 

Waterhouse, Graham et al. 1998), this breakthrough postulated that dsRNA could 

potentially be the source of a gene silencing mechanism based on the Watson-Crick base 

pairing of homologous nucleic acid sequences, a mechanism know as RNA interference 

(RNAi) (Hannon 2002). This discovery led a link between RNAi and the generation of 

20-40nt small RNAs, which were discovered in plants and found to be present in diverse 

organisms including unicellular ciliates, fungi and animals (Hamilton and Baulcombe 

1999; Carthew 2001; Hamilton, Voinnet et al. 2002; Mochizuki, Fine et al. 2002; 

Martienssen 2003; Pal-Bhadra, Leibovitch et al. 2004). Since RNA silencing is 

widespread, it is proposed to be an ancient mechanism used by eukaryotes for genome 

defense against viruses and virus derived repeats but has since become important for 

other aspects of gene regulation and nuclear organization (Tijsterman, Ketting et al. 2002; 

Beisel and Paro 2011). RNA silencing is able to operate at both transcriptional and post-

transcriptional levels, preventing the detrimental expression of transposable elements that 

are abundant in eukaryotic genomes (Slotkin and Martienssen 2007). In plants, Pol IV 

and V activities cooperate to generate 24nt siRNAs that guide de novo DNA methylation 

and heterochromatic silencing of transposons and other repeats (Pikaard, Haag et al. 

2008; Matzke, Kanno et al. 2009; Lahmy, Bies-Etheve et al. 2010).  
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Recently, small RNAs from clustered, regularly interspaced short palindromic 

repeat (CRISPR) loci in diverse species of bacteria and archaea have been described with 

some provocative parallels to RNAi in eukaryotes (Jore, Brouns et al. 2011). CRISPR 

small RNAs (crRNAs) are used to target the destruction of invading viruses and DNA 

elements via a multimeric protein complex known as Cascade (Brouns, Jore et al. 2008; 

van der Oost and Brouns 2009; Deltcheva, Chylinski et al. 2011; Jore, Lundgren et al. 

2011). Bioinformatic studies have indicated that CRISPR loci are widespread, and are 

predicted from about 90% of sequenced archaeal species and 40% of bacterial species 

(Grissa, Vergnaud et al. 2008; Marraffini and Sontheimer 2010). In light of this finding, 

the world of RNA silencing may not be restricted eukaryotes, but maybe common to all 

three kingdoms (Karginov and Hannon 2010; Marraffini and Sontheimer 2010).  

In this section, I review the fundamentals of RNAi in the context of eukaryotic 

RNA silencing pathways, focusing on the unique adaptations that are employed by 

different eukaryotes and important findings in different organisms. Nucleolar dominance 

will be given some focus, due to my involvement in experiments exploring this 

phenomenon, as well as small RNA pathways that involve Pol IV and V in Arabidopsis, 

which is the main focus of this thesis. 

 

Epigenetic Phenomena 

In most cases, the unconventional manifestations of epigenetic traits become 

associated with ‘phenomena’ because they cannot be explained by Mendel’s rules and 

can sometimes be sporadic in nature. Epigenetic phenomena can be described in the 

broadest sense as alternative, heritable state of gene expression or molecular function that 



9 
 

can be inherited from the same DNA sequences. Random X-chromosome inactivation in 

female eutherian mammals (illustrated by the coat color of calico cats), DNA elimination 

in ciliates, paramutation, nucleolar dominance and position effect variegation (PEV) in 

flies are a few examples of epigenetic phenomena. The examples given here have RNA 

silencing components which are attributed to their phenomenology, but other forms of 

inheritance that are not RNA-mediated exist as well. For instance, prions are 

proteinaceous agents that can propogate as alternative protein conformers (Tuite and 

Serio 2010) and the cortical inheritance of ciliary patterns in ciliates is a form of 

epigenetic inheritance not occurring at the level of nucleic acids (Beisson and Sonneborn 

1965; Beisson 2008). 

Our understanding of modern epigenetic regulation stems from studying 

epigenetic phenomena which has led to major discoveries of genes that regulate the 

nuclear genome structurally and transcriptionally (Taverna, Li et al. 2007;Henikoff 

1990).  

 

Chromatin dynamics 

 The basic unit of eukaryotic chromatin is a nucleosome, which is approximately 

147bp of DNA wrapped around a histone octamer (two molecules each of histones H2A, 

H2B, H3 and H4). Nucleosomes can be packed into higher order structures that are 

essential for both gene regulation and chromosome function (Luger, Mader et al. 1997; 

Richmond and Davey 2003). The term epigenetic is often used to describe chromatin 

modifications, which are post-transcriptional modifications of histone tails that include 

methylation, acetylation, ubiquitination, sumoylation and phosphorylation (Bestor, 
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Chandler et al. 1994; Taverna, Li et al. 2007; Marmorstein and Trievel 2009). In addition 

to promoter regulatory sequences and cognate transcription factors, RNA polymerase 

transcription is controlled by alternate states of chromatin modification. A large number 

of specialized enzymes catalyze histone modifications, and small RNAs can guide these 

epigenetic marks to specific target sequences (Stevenson and Jarvis 2003). Long non-

coding RNAs are also emerging as being important for establishing silent chromatin, 

providing a platform for recruitment of chromatin modifying enzymes (Hannon, Rivas et 

al. 2006; Tsai, Manor et al. 2010). Finally, specific H2A and H3 protein variants can be 

incorporated into chromatin, adding to the complexity of epigenetic regulation 

(Banaszynski, Allis et al. 2010).  

Actively transcribed chromatin or euchromatin is typically marked by H3K4 

methylation at promoter regions and histone hyperacetylation (Fuchs, Demidov et al. 

2006). On the other hand, condensed, silent chromatin (heterochromatin) is not 

permissive for RNA polymerase II transcription (Richards and Elgin 2002; Elgin and 

Grewal 2003) and H3K9 and H3K27 methylation (mono-, di- or tri-methylation) are 

conserved hallmarks of heterochromatin.  

Two modes silencing are involved in heterochromatin formation; the first 

involves H3K9 methylation and often coincides with the presence of heterochromatin 

protein 1, HP1 (James and Elgin 1986; Eissenberg and Elgin 2000; Pal-Bhadra, 

Leibovitch et al. 2004; Wang, Fischle et al. 2004). Heterochromatin associated with 

H3K9 methylation and HP1 often involves the RNAi machinery and is associated with 

regions that are depleted in protein-coding genes, but enriched in repetitive sequences; 

examples include transposable elements, pericentromeric regions and telomeres 
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(Richards and Elgin 2002). DNA methylation in plants and mammals is typically 

associated with methylated H3K9-associated heterochromatin as well (Ooi, O'Donnell et 

al. 2009; He, Chen et al. 2011).  

The second mode of silencing, not involving HP1, involves Polycomb group 

(PcG) proteins (Schwartz and Pirrotta 2007), H3K27 methylation and long non-coding 

RNA scaffolds (Beisel and Paro 2011). Plant ATXR5/ATXR6 proteins have recently 

been implicated in H3K27 methylation, and they are involved in silencing 

heterochromatic regions without any dependence on either DNA methylation or H3K9 

methylation (Jacob, Feng et al. 2009; Jacob, Stroud et al. 2010).  

Chromatin-modifying enzymes can be divided conceptually into readers, writers 

and erasers, which work together to regulate gene expression via the hypothesized 

“histone code” (Jenuwein and Allis 2001). For example, histone acetyltransferases 

(HATs) transfer acetyl groups to lysine tails of histones, thereby “writing” a code 

corresponding to a euchromatic state. This state is “read” by bromodomain proteins that 

recognize acetylated lysine tails in histones. However, the euchromatic state can be 

“erased” by histone deacetylases (HDACs), which remove acetyl groups from histones.  

The reversible nature of histone modifications is an important feature of 

chromatin dynamics, involving numerous enzymes that perform specific histone 

modifications to modulate chromain states (Agger, Christensen et al. 2008; Cloos, 

Christensen et al. 2008; Atanassov, Koutelou et al. 2010). Addition and removal of these 

epigenetic marks is especially important in the germline where gametes must acquire 

appropriate epigenetic marks to ensure proper development of the zygote (Feng, Cokus et 

al. 2010; Feng, Jacobsen et al. 2010; He, Chen et al. 2011). After fertilization, a condition 
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which is quite prevalent in undifferentiated cells is chromatin bivalency, where both 

active and repressive modifications occur simultaneously (Bernstein, Mikkelsen et al. 

2006). Chromatin is truly a crucial component of eukaryotic cells, for packaging large 

eukaryotic genomes and relaying important epigenetic information while doing so, as an 

extension of the DNA sequence. 

 

Nucleolar dominance 

 Heterochromatin formation is central to the epigenetic phenomenon known as 

nucleolar dominance, in which one of the two sets of ribosomal RNA genes in a hybrid is 

selectively expressed (Pikaard 2000). Nucleolar dominance is widespread, and has been 

shown to occur in hybrids of plants, flies, mammals, amphibians and invertebrates 

(Pikaard 1999; Preuss and Pikaard 2007; Tucker, Vitins et al. 2010). The study of 

nucleolar dominance may inform our understanding of interspecies reproductive barriers 

in plants where connections to small RNAs are just beginning to emerge (Ha, Lu et al. 

2009; Martienssen 2010). The selective nature of nucleolar dominance, whereby the 

ribosomal RNA (rRNA) genes from one species are always dominantly expressed over 

the other is in contrast to the random nature of X-chromosome inactivation in somatic 

cells of female mammals (Pikaard 2000).  

The 40-45S large ribosomal RNA genes are essential genes that arranged in 

tandem arrays of hundreds to thousands of copies (Moss and Stefanovsky 2002). The 

transcription of 45S rRNA genes by Pol I forms the nucleolus, a distinct nuclear 

compartment which is the site of ribosomal assembly, synthesis and maturation (Grummt 

2003). Hence, the term nucleolus organizing region (NOR), coined by Barbara 



13 
 

McClintock, describes the chromosomal locations where rRNA genes are tandemly 

arrayed (McClintock 1934; Dimario 2004). 

 Arabidopsis suecica is an allotetraploid hybrid of Arabidopsis arenosa and 

Arabidopsis thaliana that exhibits nucleolar dominance. In A. suecica, the A. arenosa-

derived rRNA genes are expressed while the A. thaliana-derived rRNA genes are 

silenced (Preuss and Pikaard 2007). Polymorphisms in rRNA genes of the two species 

may provide a way to distinguish the NORs in A. suecica but other unknown loci cannot 

be ruled out (Lewis and Pikaard 2001; Pikaard, Preuss et al. 2005). The establishment of 

nucleolar dominance is developmentally regulated. NORs derived from A. arenosa and A. 

thaliana are both expressed during germination, but A. thaliana-derived NORs are 

subjected to selective silencing as the seedling matures (Pontes, Lawrence et al. 2007). 

Repressive chromatin states are important for nucleolar dominance because treatment of 

A. suecica with histone deacetylase inhibitors or DNA methyltransferase inhibitors 

disrupts the silencing of the A. thaliana-derived genes that are usually silent in the hybrid 

(Chen and Pikaard 1997). Studies of the epigenetic regulation of Pol I in vivo, as afforded 

by the A. suecica system, has revealed a genetic basis for roles of histone deacetylation 

and DNA methylation in plant rRNA gene regulation (McStay 2006; McStay and 

Grummt 2008). 

 The switch between on and off states for rRNA genes in A. suecica requires the 

histone deacetylase, HDA6 (Lawrence and Pikaard 2004; Earley, Lawrence et al. 2006). 

When HDA6 is knocked down in the A. suecica, the association of A. thaliana-derived 

genes with heterochromatic histone modifications are lost and these genes are associated 

instead with active histone modifications typical of active genes, along with DNA 
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hypomethylation (Lawrence, Earley et al. 2004; Probst, Fagard et al. 2004). The enzyme 

that is involved in directing DNA methylation on A. thaliana-derived NORs in A. suecica 

in order to establish nucleolar dominance is DRM2, the de novo DNA methyltransferase 

that is involved in the heterochromatic 24nt siRNA pathway (Preuss, Costa-Nunes et al. 

2008). The methylcytosine binding proteins MBD6 and MBD10 are also implicated in 

enforcing the repressive effects of DNA methylation (Preuss, Costa-Nunes et al. 2008). 

The evidence that siRNAs can target rRNA genes for DNA methylation comes from the 

knockdown of DCL3 and RDR2 (the Dicer and RNA dependent RNA polymerases in the 

24nt siRNA pathway), which causes the loss of nucleolar dominance as well as reduced 

levels of 24nt siRNAs from A. thaliana-derived 45S rRNAs and reduced DNA 

methylation (Finigan and Martienssen 2008; Preuss, Costa-Nunes et al. 2008). This 

provides a connection between RNA directed DNA methylation and rRNA gene 

silencing although Pol IV and V have not been demonstrated to be involved (Tucker, 

Vitins et al. 2010). New findings include the involvement of SUVH5 and SUVH6 genes 

in establishing nucleolar dominance; these are H3K9 methyltransferases (Pontvianne and 

Pikaard, unpublished; Pontvianne, Blevins et al. 2010; Rajakumara, Law et al. 2011). 

Currently, evidence is still lacking for genes that might be involved in activating rRNA 

genes that have been silenced, but candidates include DNA glycosylases and associated 

activities involved in active DNA demethylation (Appendix A). 

 

Basis of RNAi 

 Three families of proteins are important for generating and binding small RNAs. 

The first is a family of RNAseIII nucleases that include Dicers and Drosha (Bernstein, 
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Caudy et al. 2001; Lee, Nakahara et al. 2004; Pham, Pellino et al. 2004). In the next 

category are dsRNA binding proteins such Loquacious, R2D2, RDE-4 and DRBs which 

partner with Dicer enzymes to cleave long dsRNAs into 20-30nt fragments (Tabara, Yigit 

et al. 2002; Denli, Tops et al. 2004; Forstemann, Tomari et al. 2005; Hiraguri, Itoh et al. 

2005). Last but not least, is the Argonaute (AGO) family of proteins that contain PAZ 

and Piwi domains which bind small RNAs and direct cleavage of target RNAs 

respectively (Morel, Godon et al. 2002; Liu, Carmell et al. 2004; Baumberger and 

Baulcombe 2005). Small RNA pathways in eukaryotes can be quite extensive, and many 

pathways have been described since RNAi was first described over ten years ago 

(Chapman and Carrington 2007; Hutvagner and Simard 2008; Ghildiyal and Zamore 

2009; Czech and Hannon 2011).    

  

Triggering RNAi 

 When RNAi was first discovered, relatively few dsRNA molecules were found to 

be capable of inducing RNAi in C. elegans, suggesting that there is an amplification 

mechanism at work (Fire, Xu et al. 1998). Several years prior, plant biologists had 

observed that transgenes inserted in the genome in complex repeated or inverted arrays 

could induce gene silencing in what was called co-suppression (Jorgensen 1990; Napoli, 

Lemieux et al. 1990; Jorgensen, Cluster et al. 1996). Similar findings were also reported 

in fungi, flies, worms and mammals (Fire, Albertson et al. 1991; Romano and Macino 

1992; Pal-Bhadra, Bhadra et al. 1997; Dernburg, Zalevsky et al. 2000). Subsequently, an 

RNA-dependent RNA polymerase (RDR) mechanism was suggested to amplify abberant 

RNAs (Dalmay, Hamilton et al. 2000) and RDR activity had been experimentally verified 
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for an RDR protein in tomato (Schiebel, Pelissier et al. 1998). Similar RDR proteins were 

identified in genetic screens in worms, plants and fungi (Cogoni and Macino 1999; 

Dalmay, Hamilton et al. 2000; Mourrain, Beclin et al. 2000; Smardon, Spoerke et al. 

2000) but homologs have not been identified in flies or mammals. 

 RNA produced by DNA-dependent RNA polymerases has been implicated as a 

source of dsRNA upon transcription of inverted repeat loci, resulting in both sense and 

sense anti-sense transcripts. In fission yeast, Pol II transcrips are acted upon by the RDC 

complex (which contains the RNA-dependent RNA polymerase Rdp1), generating 

dsRNAs that are diced to generate siRNAs involved in silencing centromeric repeats 

(Grewal and Elgin 2007; Grewal 2010). There are six RDR proteins in Arabidopsis, two 

of which are well characterized and important for amplification steps in RNA silencing 

pathways involved in transcriptional or post-transcriptional silencing (Wassenegger and 

Krczal 2006).   

 

Slicing and dicing 

 siRNA involvement in RNAi was discovered in plants where complementary 

small RNAs were observed to correlate with post-transcriptional silencing (Hamilton and 

Baulcombe 1999). Biogenesis of siRNAs was then shown to be due to the action of Dicer 

endonucleases which are found in most model systems other than budding yeast 

(Elbashir, Harborth et al. 2001; Elbashir, Lendeckel et al. 2001; Elbashir, Martinez et al. 

2001). RNase III-like Dicer activity was first purified from fly lysates and shown to be 

effective for RNAi in vitro (Bernstein, Caudy et al. 2001; Hammond, Caudy et al. 2001). 

A mechanistic link between microRNAs and siRNAs began to emerge when researchers 
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realized that both are generated by Dicer proteins (Grishok, Pasquinelli et al. 2001; 

Hutvagner, McLachlan et al. 2001).  

Argonaute proteins had already been implicated in development in worms and 

plants, but the purification of RNA-induced silencing complexes (RISC) provided clear 

evidence that Argonaute proteins are key components as the engines of small RNA 

delivery in RNAi (Rivas, Tolia et al. 2005) (Jacobsen, Running et al. 1999; Tabara, 

Sarkissian et al. 1999). Most organisms other than fission yeast make use of multiple 

Argonaute family proteins, which include AGOs from the PIWI clade (which are missing 

in plants) (Chapman and Carrington 2007; Ghildiyal and Zamore 2009; Czech and 

Hannon 2011). 

 Arabidopsis encodes four Dicer (DCL) proteins and ten Argonaute (AGO) 

proteins (Liu, Feng et al. 2009; Mallory and Vaucheret 2010). The DCL proteins have a 

rather complicated relationship but can be distinguished by their size classes and 

precursor processing (Blevins, Rajeswaran et al. 2006; Margis, Fusaro et al. 2006; 

Chapman and Carrington 2007). DCL1 is required for the accumulation of 21nt miRNAs 

(Schauer, Jacobsen et al. 2002). DCL2, DCL3 and DCL4 overlap in their functions to 

some extent, but DCL3 produces 24nt siRNAs and is the primary Dicer protein that 

cleaves the products produced by the combined actions of Pol IV and RDR2 (Kasschau, 

Fahlgren et al. 2007). DCL2 products are 22nt and DCL4 generates 21nt tasiRNAs and 

21nt siRNAs from inverted repeat loci (Xie, Allen et al. 2005). All four DCL proteins are 

involved during defense against viral attacks and act preferentially on different dsRNA 

substrates in a hierarchical manner (Blevins, Rajeswaran et al. 2006; Deleris, Gallego-

Bartolome et al. 2006). 
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Of the 10 Arabidopsis AGO proteins, only five have been extensively studied; 

AGO1, AGO4, AGO6, AGO7 and AGO9 (Vaucheret 2008). The AGO proteins bind the 

small, predominantly 21, 22 or 24nt siRNA pools, depending on 5’ end sequence as well 

as sequence siRNA length (Mi, Cai et al. 2008). AGO1 mostly associates with miRNAs 

(Bohmert, Camus et al. 1998; Baumberger and Baulcombe 2005), AGO7 with tasiRNAs 

(Adenot, Elmayan et al. 2006) and AGO4/AGO6/AGO9 with 24nt siRNAs (Zilberman, 

Cao et al. 2003; Zilberman, Cao et al. 2004; Havecker, Wallbridge et al. 2010). The 

AGO/siRNA RISC are then targeted to the nucleic acid sequences complementary to the 

associated siRNAs or to interacting proteins with GW repeats, via the AGO PIWI 

domain. Subsequent transcriptional or post-transcriptional silencing is brought about by 

these interactions. 

 

Pol IV and V specific pathways 

 Mutants in catalytic subunits of Pol IV and Pol V were first studied as a result of 

forward and reverse genetic screens (Herr, Jensen et al. 2005; Kanno, Huettel et al. 2005; 

Onodera, Haag et al. 2005). Forward genetic screens were designed to find mutants that 

cause the de-repression of a silenced transgene. One of the mutants from one of the 

screens, sde4 (silencing defect 4) was later identified as NRPD1 (at the time named 

NRPD1a), the largest subunit of Pol IV (Herr, Jensen et al. 2005). Two other mutants 

identified in a different laboratory, drd2 and drd3, turned out to be NRPD2a (the gene 

encoding the 2nd largest subunit of Pol IV and V) and NRPE1 (NRPD1b at the time), the 

largest subunit of Pol V (Kanno, Huettel et al. 2005). A reverse genetic approach in the 

Pikaard lab characterized the mutants of the largest and 2nd largest subunits of Pol IV/V 
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and revealed their partnership (Onodera, Haag et al. 2005). Production of 24nt siRNAs is 

wholly dependent on Pol IV activity. Deep sequencing of small RNA libraries generated 

from the nrpd1 and nrpe1 mutants confirmed that about 94% of Arabidopsis siRNAs are 

dependent on Pol IV, but and not Pol V (Zhang, Henderson et al. 2007; Mosher, Schwach 

et al. 2008).  

The forward genetic screens that identified Pol IV and V catalytic subunits were 

based on the de-repression of silenced transgenes, illustrating the role of Pol IV and V in 

silencing exogenous DNA sequences. It was already known that a pathway exists for 

small RNA-mediated methylation of complementary DNA in Arabidopsis requiring de 

novo DNA methylation via DRM2, thus Pol IV and V were found to be components of 

this pathway (Zilberman, Cao et al. 2004). Plants methylate cytosines in symmetric CG 

and CHG (where H stands for A, C or T) contexts as well as in asymmetric CHH 

contexts. DRM2 is able to initiate methylation in all of these sequence contexts but is the 

only enzyme implicated in methylating CHH sites (Cao and Jacobsen 2002; Cao and 

Jacobsen 2002; Cao, Aufsatz et al. 2003). The loss of 24nt siRNA from the NRPD1 and 

NRPD2 mutants along, with other mutants of this RNA directed DNA (RdDM) 

methylation pathway, causes the loss of CHH methylation. 

 

RNA directed DNA Methylation (RdDM) 

The RNA directed DNA methylation (RdDM) pathway is thought to be triggered 

by Pol IV. The Pol IV transcripts are amplified by the RNA dependent RNA polymerase, 

RDR2, in a process which might be a coupled with Pol IV transcription because RDR2 

co-immunoprecipitates with Pol IV (Haag and Pikaard, unpublished), with the 
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cooperation of a putative chromatin remodeler CLASSY1 (Figure 1a) (Smith, Pontes et 

al. 2007). The dsRNA products of RDR2 are diced by DCL3 to generate 24nt siRNAs in 

a Cajal body-like siRNA/miRNA processing center in the nucleolus (Li, Pontes et al. 

2006; Pontes, Li et al. 2006). HEN1 methylation of the 24nt siRNAs at the 2’-OH 

positions of their 3’ end stabilizes the 24nt siRNAs, which are loaded into AGO4, or its 

surrogate AGO6 and AGO9 (Havecker, Wallbridge et al. 2010).  

AGO4-siRNAs complexes are then recruited to complementary genomic loci and 

direct DNA methylation and heterochromatin modifications at the ‘effector step’ of 

RdDM in a series of events that remain poorly understood (Figure 1b) (Li, Yang et al. 

2005; Li, Pontes et al. 2006; Qi, He et al. 2006; Zheng, Zhu et al. 2007). Transcription by 

Pol V produces nascent RNAs to which 24nt siRNAs bind in the mechanism by which 

AGO4 is recruited in this pathway (Wierzbicki, Haag et al. 2008). A chromatin 

remodeling complex, known as DDR, which contains the SMC hinge domain protein 

DMS3, a SWI2/SNF2-family protein, DRD1 and a novel methylcytosine binding protein, 

RDM1 is required for Pol V-specific transcription. Moreover, components of the DDR 

complex co-purify with Pol V (Wierzbicki, Haag et al. 2008; Law, Ausin et al. 2010). An 

SGS3-like coiled-coil RNA helicase protein, IDN2 might mediate the AGO4 interaction 

with nascent Pol V transcripts (Ausin, Mockler et al. 2009). AGO4 can also interact with 

an WG Ago-hook containing protein, known as KTF1 or SPT5-LIKE, due to its 

homology to the yeast SPT5 transcription elongation factor (Bies-Etheve, Pontier et al. 

2009; He, Hsu et al. 2009; He, Hsu et al. 2009; Kanno, Bucher et al. 2010). However, 

KTF1 does not appear to facilitate Pol V transcription (He, Hsu et al. 2009) but its RNA 

binding activity and AGO4 interaction may help recruit AGO4 to Pol V transcripts. An 
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IWR1-like transcription regulator, RDM4 (also known as DMS4), is able influence the 

effector steps leading to DNA methylation, but unlike the DDR complex, RDM4 is not 

required for Pol V transcription (He, Hsu et al. 2009; Kanno, Bucher et al. 2010). AGO4 

RISC complexes associate with Pol V transcription complexes, recruit DRM2, the de 

novo DNA methyltransferase, to methylate complementary DNA sequences. Because 

RDM1 interacts with both AGO4 and DRM2, it is presumably important for this process 

(Wierzbicki, Ream et al. 2009; Henderson, Deleris et al. 2010).  

The mode of action for DRM2 and DRM3 will be discussed in the next section of 

the introduction, as well as the activities of DNA glycosylases ROS1 and ROS3, a novel 

RNA binding protein involved in DNA demethylation along with ROS1.   
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Figure 1 The RNA-directed DNA methylation and demethylation pathways 

(A) Pol II is occluded from silenced promoters via HDA6-mediated histone deacetylation and DNA 

methylation. However, at these loci, Pol IV produces single stranded RNA for production of 

dsRNA by RDR2, with the help of CLSY. The dsRNAs are diced by DCL3, HEN1 methylates 

these siRNA duplexes, while AGO4 preferentially bind a single stranded 24nt siRNAs.  

(B) Based on sequence complementarity, 24nt siRNA-containing AGO4 RISC complexes are 

recruited to Pol V transcript scaffolds, possibly in cooperation with KTF1 and IDN2. The DRD1, 

DMS3 and RDM1 (DDR) complex assists Pol V transcription, along with RDM4.  DDR-assisted 

Pol V transcription and 24nt siRNA-associated AGO4 RISC complexes direct DNA methylation 

to target locus by the de novo DNA methyltransferase DRM2, which may partner with DRM3 for 

enhanced activity. 

(C)  ROS1 DNA glycosylase cuts methylated DNA, allowing its repair using unmethylated cytosines. 

The RNA binding protein ROS3 helps ROS1 find its sites.  
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Intersection between RdDM and HDA6 

 Mutations of HDA6, which encodes an RPD3-like histone deacetylase, disrupts 

silencing of transgene promoters and 45S rRNA genes (Aufsatz, Mette et al. 2002; 

Probst, Fagard et al. 2004; Earley, Lawrence et al. 2006; He, Hsu et al. 2009; Earley, 

Pontvianne et al. 2010). HDA6 is important for rRNA gene regulation in allotetraploid A. 

suecica plants in nucleolar dominance (discussed prior in that section), but HDA6 

appears to regulate non-hybrid rRNA genes in non-hybrid  A. thaliana as well, where it 

prevents spurious transcription of the 45S rRNA gene arrays by Pol II (Earley, Lawrence 

et al. 2006; Earley, Pontvianne et al. 2010). HDA6 is a key factor required for 

transcriptional gene silencing of many transposable elements, but it is not universally 

required to silence RdDM targets (Blevins and Pikaard, unpublished). Double mutants of 

hda6 with either Pol IV and V catalytic subunits or with drm2 exhibit pleitropic SDC-

overexpression associated with loss of cytosine methylation in tandem arrays upstream of 

the SDC-promoter and resulting in a dwarf phenotype (Henderson and Jacobsen 2008). 

SDC encodes an F-Box protein and represents a class of genes that are regulated by 

siRNAs, CHG methylation, H3K9 methylation and histone deacetylation via HDA6 

(Blevins and Pikaard, unpublished and (Henderson and Jacobsen 2008)).  

 

Flowering time 

Pol IV, Pol V and the RdDM pathway are involved in control of flowering time, 

and flowering time genes such as FWA and FLC are targets of siRNA directed silencing 

(Swiezewski, Crevillen et al. 2007). Mutants of Pol IV and V are significantly delayed in 

flowering compared to wildtype when grown under short day conditions, as are other 
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mutants in the RdDM pathway, including rdr2, dcl3, ago4 and drm2 (Chan, Zilberman et 

al. 2004; Onodera, Haag et al. 2005; Haag, Pontes et al. 2009). Two flowering time 

regulators FCA and FPA have been implicated as components of the RdDM pathway, 

and they could be involved in directing the establishment of silencing at genes controlling 

flowering time (Baurle, Smith et al. 2007).  

  

Abiotic and biotic stress response 

Stress inducible siRNA production is an important aspect of plant biology. Two 

classes of stress-related responses in plants are the production of abiotic and the biotic 

stress-inducible siRNAs, which are derived from convergently transcribed gene pairs. 

Abiotic stress siRNAs are often referred to as natural antisense siRNAs (natsiRNAs) (Xie 

and Qi 2008). Pol IV components are required for the biogenesis of these biotic and 

abiotic natsiRNAs but components of the miRNA pathway are involved as well (Borsani, 

Zhu et al. 2005) (Katiyar-Agarwal, Morgan et al. 2006). Pathogen-inducible siRNAs 

have been recently described and require both Pol IV and Pol V for the production of a 

novel class of 39-41nt long siRNAs (lsiRNA). These lsiRNAs cause the downregulation 

of a negative regulator of plant defense response gene (Katiyar-Agarwal, Gao et al. 

2007), allowing for the defense response to proceed. 

 

Spreading of silencing 

Spreading of silencing signals occur in plants and involves Pol IV, but not Pol V 

components, reinforcing the role of Pol IV in the biogenesis of siRNAs that act as mobile 

signals (Brosnan, Mitter et al. 2007; Pikaard, Haag et al. 2008; Daxinger, Kanno et al. 
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2009). The mobilization of cell-to-cell siRNA signals is an important aspect of siRNA 

silencing and has been observed in plants and worms, both of which make use of RDR 

proteins for RNAi (Voinnet 2005). Using next generation sequencing, mobile 24nt 

signals have been found, and can direct RNA directed DNA across a graft junction in 

tissues defective for RdDM. These grafting experiments were also able to track 

movement of 24nt siRNAs from the shoots to the roots of mutants that are incapable of 

producing 24nt siRNAs (Martienssen 2010; Molnar, Melnyk et al. 2010; Molnar, Melnyk 

et al. 2011). 21nt and 22nt siRNAs are also capable of movement, and can direct RNA 

silencing (Dunoyer, Brosnan et al. 2010; Dunoyer, Schott et al. 2010). 

  

Maternal imprinting of siRNA loci 

The expression of 24nt siRNAs in the early endosperm has been found to be of 

maternal chromosome, and requires Pol IV (Mosher, Melnyk et al. 2009). In pollen, 21nt 

siRNAs are generated by the vegetative cell and silence corresponding loci in sperm cells 

(Slotkin, Vaughn et al. 2009). These forms of imprinting in plants involving siRNAs and 

that target transposable elements, could be part of a self, non-self recognition program 

initiated in the germline (Martienssen 2010). The biological role of these processes in 

plants are still not well understood but it is reminiscent of hybrid dysgenesis in flies, 

where piRNAs loading in fly egg cells results in sterility when the egg cells are fertilized 

by a paternal genome containing transposable elements that were not in the maternal 

genome (Brennecke, Aravin et al. 2007; Brennecke, Malone et al. 2008).  
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Paramutation 

In maize, a role for Pol IV and Pol V has been found in paramutation, where 

meiotically heritable expression states can be inherited in trans, on homologous DNA 

sequences based on the chromatin states of the paramutation allele. The maize homolog 

of NRPD1 (largest subunit of Pol IV) as well as a gene encoding an NRPD2/E2-like 

protein (one of three putative second largest subunits of Pol IV and/or V in maize) are 

required for paramutation (Erhard, Stonaker et al. 2009; Sidorenko, Dorweiler et al. 

2009). Other RdDM proteins required for paramutation in maize include homologs of 

RDR2 and DRD1 (Alleman, Sidorenko et al. 2006; McGinnis, Springer et al. 2006; Hale, 

Stonaker et al. 2007). Affinity purification and high resolution mass spectrometry 

analyses of the RNA polymerase complex captured via the MOP2/RMR7, an NRPD2/E2-

like protein required for paramutation (Sidorenko, Dorweiler et al. 2009) shows that it is 

an NRPE2 subunit of Pol V (Haag et al, unpublished collaboration of the Chandler and 

Pikaard labs). The involvement Pol IV and Pol V in maize paramutation suggests that a 

similar Pol IV and Pol V-mediated RdDM mechanisms are at work in other plant species 

(Pikaard and Tucker 2009). 
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iv. 

DNA METHYLATION LANDSCAPES 

  

DNA methylation was recognized early in vertebrates as an important epigenetic 

modifier, especially after a developmentally important methyl-C binding protein, MeCP2, 

was discovered (Bird 1986; Ng and Bird 1999). This covalent modification on DNA is 

mostly limited to cytosine residues in eukaryotes (Bird 1992; Jacobsen 1999) but in 

bacteria and archaea, both cytosine and adenine nucleosides can be methylated, and are 

used extensively as a mark of self-DNA for genome defense, replication and DNA repair 

(Wion and Casadesus 2006). The study of eukaryotic epigenomes shows that although 

DNA methylation patterns can be variable, the correlation between promoter DNA 

methylation and gene silencing generally holds true (Suzuki and Bird 2008). However, 

gene body hypermethylation has been linked to gene activity in animals and plants, 

showing that DNA methylation may not just be associated with silencing (Cokus, Feng et 

al. 2008; Lister, O'Malley et al. 2008; Zemach, McDaniel et al. 2010). Some eukaryotes, 

such as the yeast and C. elegans have lost DNA methylation and the associated 

methyltransferase enzymes altogether, but the presence of DNA methylation in a wide 

range of invertebrates, vertebrates and plant species suggests that the loss of DNA 

methylation machineries may have been a recent evolutionary adaptation (Suzuki and 

Bird 2008). Plants utilize DNA methylation ubiquitously and share the mammalian DNA 

methylation machinery plus additional plant-specific enzymes (Meyer 2010). The 

discovery of the siRNA directed de novo DNA methylation pathway and the link 

between DNA methylation and RNA polymerases IV and V in plants illustrates the 
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importance of DNA methylation in plant biology (Pikaard, Haag et al. 2008; Pikaard and 

Tucker 2009). 

There has been an impetus in mammalian DNA methylation research to elucidate 

the role of  hydroxymethyl-cytosine (hmC), which is just beginning to emerge as a major 

epigenetic modification in pluripotent stem cells and is used extensively in early 

development (Ficz, Branco et al. 2011; Williams, Christensen et al. 2011; Wossidlo, 

Nakamura et al. 2011; Wu, D'Alessio et al. 2011). The TET family of proteins are 

responsible for the oxidation of  methylcytosine to produce hydroxymethyl-cytosine, 

which is more stable (Jin, Kadam et al. 2010). The hmC residue has been found to be 

involved in activating genes as well as repressing developmentally regulated genes (Ficz, 

Branco et al. 2011). Very recently, the hmC modification has also been found to be a 

target for active DNA demethylation (Guo, Su et al. 2011). The conversion of m5C to 

hm5C shows that epigenetic regulation of DNA is far more complex than initially 

thought.  It remains to be shown if hmC modifications are involved in epigenetic 

regulation in other organisms.   

 

DNA methyltransferases 

 DNA methyltransferases are conserved proteins found in all three kingdoms 

(Bestor and Verdine 1994). The catalytic domains of DNA methyltransferases are 

conserved from bacteria to eukaryotes (Goll and Bestor 2005), as are the mechanisms 

involved in the catalysis. DNA methyltransferase biochemistry revolves around an 

invariant cysteine amino acid that is found within a hyperconserved PCG motif of these 

enzymes (Bestor and Verdine 1994). DNA methylation catalysis also involves the 
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dramatic eversion (flipping out) of the target cytosine from the DNA strand, first 

observed in the crystal structure of the HhaI methyltransferase (Klimasauskas, Kumar et 

al. 1994; Horton, Ratner et al. 2004).  

Two main classes of DNA methyltransferase (DNMT) exist in eukaryotes: 

maintenance and de novo methyltransferases (He, Chen et al. 2011). The 

semiconservative mode of DNA replication is utilized by maintenance DNMTs to target 

symmetric CGs that are hemimethylated, via association with m5C-binding proteins 

VIM1 (in plants) and UHRF (in animals) (Bostick, Kim et al. 2007; Woo, Dittmer et al. 

2008). The DNMT1 maintenance DNA methyltransferase has been found to interact with 

the G9a H3K9 histone methyltransferase, and is loaded along with PCNA during 

replication in human cell-lines (Esteve, Chin et al. 2006). The second class of de novo 

methyltransferase is represented by the Dnmt3-family in animals, but a plant specific 

Chromo-methylase, CMT3 also possesses de novo methyltransferase activity, in addition 

to DRM2. De novo methylation is an important aspect of genome defense in plants and 

animals as it allows re-establishment of silencing that can be lost during replication. In 

plants, de novo methylation is required for the of non-CG methylation (Feng, Cokus et al. 

2010).    

 Accessory proteins in the MBD family that bind methylated DNA also play 

important roles in DNA methylation dynamics (Jorgensen and Bird 2002). MeCP2 was 

one of the earliest methylcytosine binding protein isolated. MeCP2 plays important roles 

in transcriptional repression and mutations in MeCP2 can lead to neurological Rett 

syndrome (Nan, Cross et al. 1998). Methylcytosine binding proteins MBD6 and MBD10 

in Arabidopsis has been implicated in recognizing DRM2 methylation patterns in order to 
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selectively silence a specific class of rRNA genes in nucleolar dominance (Preuss, Costa-

Nunes et al. 2008; Costa-Nunes, Pontes et al. 2010). The RNA directed DNA methylation 

pathway also makes use of a novel methylcytosine binding protein called RDM1 in a Pol 

V dependent fashion (Gao, Liu et al. 2010; Law, Ausin et al. 2010). Methylcytosine 

binding proteins are able to act as adapters for m5C marks and guide other chromatin 

modifying enzymes that do not typically have specificities toward m5C. 

 

Maintenance methylation 

 The mammalian maintenance methyltransferase DNMT1 is an essential gene 

whose absence causes defects in imprinting and differentiation (Howell, Bestor et al. 

2001; Grohmann, Spada et al. 2005; Damelin and Bestor 2007; Ooi and Bestor 2008). 

The recent crystal structure of DNMT1 in complex with hemimethylated DNA illustrates 

beautifully the manner in which this enzyme is able to direct selective methylation on 

hemimethylated DNA, including autoinhibitory mechanism to prevent abberant 

methylation of unmethylated DNA (Song, Rechkoblit et al. 2011).   

The Arabidopsis homolog of DNMT1 is MET1 (Kankel, Ramsey et al. 2003). 

Transgenerational effects deduced from hypomorphic alleles of met1 in Arabidopsis 

suggest that faithful reestablishment of CG methylation in plants is dependent on MET1 

activity (Mathieu, Reinders et al. 2007 ). DNA methylation pattern maintenance also 

requires the protein DDM1, a SWI2/SNF2 chromatin remodeler whose loss of function 

causes pervasive cytosine methylation deficient phenotypes (Kakutani, Jeddeloh et al. 

1995). The recovery of genome-wide methylation upon restoration of DDM1 activity can 
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occur at loci subject to RdDM, involving Pol IV and V, but loci that do not produce 

siRNAs are not re-methylated (Teixeira, Heredia et al. 2009).  

 

De novo methylation 

 Transposable elements and DNA repeats pose a threat to the genome and are 

often targeted for silencing by de novo DNA methylation. The plant RNA directed DNA 

methylation pathway involving Pol IV and V has been described in the preceding section, 

so the discussion here will mainly be on the de novo DNMTs. Most animal species that 

encode DNMT1 also encode the de novo DNMT3 DNA methyltransferases (Goll and 

Bestor 2005). DNMT3a and DNMT3b represent the catalytic class of these mammalian 

methyltransferases whereas DNMT3L has a mutation in the active site that renders the 

enzyme catalytically inactive (Aapola, Kawasaki et al. 2000). However, the interaction 

between DNMT3L and either catalytic DNMT3 enhances the activity of the DNMT3a/b 

in de novo DNA methylation (Ooi, Qiu et al. 2007; Zhang, Jurkowska et al. 2010; Van 

Emburgh and Robertson 2011). De novo DNA methylation involving piRNAs targeting 

transposable elements in the germline has been reported, suggesting a similarity between 

animal and plant RNA directed de novo methylation pathways (Aravin, Sachidanandam 

et al. 2008; Saito and Siomi 2010; Siomi, Sato et al. 2011).  

 The plant DOMAINS REARRANGED METHYLTRANSFERASE2 (DRM2) 

protein is the primary de novo DNA methyltransferase, and is related to the mammalian 

DNMT3’s although the active site domains for DRM2 are arranged in a different order, 

as the name suggests (Ashapkin, Kutueva et al. 2002; Cao and Jacobsen 2002). The 

active site of DRM2 is crucial for its activity (Appendix A and (Henderson, Deleris et al. 
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2010; Naumann, Daxinger et al. 2011)). The plant specific CHROMOMETHYLASE3, or 

CMT3 is also a de novo cytosine methyltransferase, but this enzyme works in tandem 

with a H3K9 methyltransferase KRYPTONITE (KYP or SUVH4) in a self-reinforcing 

mechanism by which CHG methylation and H3K9me reinforce one another in plants 

(Lindroth, Cao et al. 2001; Cao and Jacobsen 2002; Jackson, Lindroth et al. 2002; Cao, 

Aufsatz et al. 2003). The DRM3 gene encodes a catalytically inactive DRM-like protein 

in Arabidopsis, similar to DNMT3L mammals. A mechanistic connection between 

DRM2 and DRM3 has recently been demonstrated, illustrating the similarities between 

mammalian DNMT3a/DNMT3L and plant DRM2/DRM3 in de novo DNA methylation 

(Henderson, Deleris et al. 2010).  

 

Reversing DNA methylation 

 Active DNA demethylation is involved in plant and animal development (Ooi and 

Bestor 2008; Wu and Zhang 2010). Plants utilize a conserved family of bifunctional 

DNA glycosylase/lyase enzymes which cleave at methylated cytosines, triggering base-

excision repair, allowing the incorporation of unmethylated nucleosides at the site of 

cleavage (Gehring, Reik et al. 2009). The active DNA demethylation mechanism is  less 

established in animals, but DNA demethylation is thought to be carried out by base-

excision repair machinery initated by the AID/Apobec deaminases that convert 

methylated cytosines to thymines, triggering the G/T mismatch repair pathway (Morgan, 

Dean et al. 2004; Boland and Christman 2008). 

 The best characterized DNA demethylation pathway is the one carried out by the 

plant DEMETER (DME) glycosylase, an essential gene that is required for maternal 
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imprinting in the central cell of the ovule (Choi, Gehring et al. 2002; Kinoshita, Miura et 

al. 2004). Many targets for DME have been identified, including polycomb genes such as 

FWA, MEDEA and FIS2 (Gehring, Huh et al. 2006; Takeda and Paszkowski 2006; Bauer 

and Fischer 2011). The ground state of these imprinted genes are “off”/methylated and 

DME demethylation in the maternal germline causes maternal expression of these genes 

in the female gametophyte and endosperm prior to fertilization (Kinoshita, Miura et al. 

2004; Huh, Bauer et al. 2008). The tissue specific expression of DME is unique. Other 

DME-Like (DML) glycosylases have been identified in plants, including ROS1, DML2 

and DML3 (Gong, Morales-Ruiz et al. 2002). Active DNA demethylation is thought to 

play a crucial role in maintaining the right balance of DNA methylation densities in 

Arabidopsis (Kapoor, Agius et al. 2005; Agius, Kapoor et al. 2006; Morales-Ruiz, 

Ortega-Galisteo et al. 2006). Analysis of the ros1 dml2 dml3 triple mutant methylome 

reveals their role in pruning DNA methylation throughout the Arabidopsis epigenome 

(Penterman, Uzawa et al. 2007; Penterman, Zilberman et al. 2007). All four DME family 

proteins have in vitro activity towards methylated DNA templates (Morales-Ruiz, 

Ortega-Galisteo et al. 2006; Ortega-Galisteo, Morales-Ruiz et al. 2008; Ponferrada-

Marin, Martinez-Macias et al. 2010).  

ROS3, a novel protein with RNA recognition motifs (Zheng, Pontes et al. 2008) 

was identified to be a DNA demethylation factor in the same screen that identified the 

DNA glycosylase ROS1. In ros3 mutants, ROS1 localization and gene expression levels 

are reduced, suggesting that ROS3 may function upstream of ROS1, whereas ROS3 

localization was not affected in the ros1 mutant (Zheng, Pontes et al. 2008). This result 
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lends some support to a model whereby ROS3 targets ROS1 to sites matching RNA 

sequences bound by ROS3 (Figure 1c)(Chinnusamy and Zhu 2009; Zhu 2009).   

    Within the DNA methylation field, there are still many mysteries to decipher 

from the distinct roles of DNA methylation in gene silencing and gene activity, to the role 

of hydroxymethylated cytosine modifications. Current bisulphite sequencing technologies 

do not discriminated between methylated versus hydroxymethylated cytosines and MBD 

proteins do not bind hmC modifications on DNA (Ndlovu, Denis et al. 2011). New 

methodologies will need to be developed based on antibodies that recognize mCs versus 

hmCs. The increasing evidence for active DNA demethylation means that DNA 

methylomes are not static, but is amenable to the needs of the organism (Figure 1 and 

(Zhu 2009; Chen and Riggs 2011)). As such, current methylome mapping reflects only a 

steady-state of methylation and demethylation. 
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v. 

RNA POLYMERASE IV AND V 

 

 Transcription of DNA into RNA is facilitated by evolutionarily conserved 

multisubunit DNA dependent RNA polymerases (RNAPs). The crystal structure of yeast 

Pol II has been solved and has provided a basis for the universal conservation of RNAPs 

between bacteria and prokaryotes. Coupled with the elucidation of Arabidopsis Pol IV 

and V subunit compositions, a spate of structural and genetic studies from archaea has 

bridged our understanding of RNAPs. 

 

RNA polymerases in the three kingdoms of life 

 Prokaryotes encode the simplest multisubunit RNA polymerase composed of five 

core subunits (Yura and Ishihama 1979). Archaea on the other hand, has subunit 

compositions that are more akin to eukaryotic Pol II – consisting of ten to eleven subunits 

(Kaine, Mehr et al. 1994; Wang, Jones et al. 1998). Eukaryotic RNA polymerase II has a 

twelve subunit structure, while Pol I has fourteen and Pol III has seventeen (Archambault 

and Friesen 1993).  

The functional diversification of eukaryotic RNA polymerases I, II and III is 

limited to the eukaryotic kingdom, as prokaryotes and archaea utilize one RNAP. Pol I is 

a specialist in transcribing large 40-45S ribosomal RNA (rRNA) precursor genes from a 

cytologically relevant chromosome structure known as the NOR (nucleolus organizer 

region) and the transcriptional activity of Pol I is coincident with nucleolus formation 

(Moss and Stefanovsky 2002; Grummt 2003). Pol II’s main functions include the 
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transcription of messenger RNAs (mRNAs), some small nuclear RNAs (snRNAs) and 

microRNAs (miRNAs) (Woychik and Hampsey 2002). The 5S rRNAs, tRNAs and some 

snRNAs are transcribed by Pol III (Henry, Ford et al. 1998; Hernandez 2001). Plants are 

unique in encoding Pol II-related atypical RNA polymerases that are exclusively used for 

RNA silencing (Onodera, Haag et al. 2005). Molecular genetic analyses Pol IV and V 

catalytic mutants have revealed most of what we know about the functions of Pol IV and 

V but the functions of the remaining ten non-catalytic subunits is less clear, and these 

non-catalytic subunits are the focus of my thesis. 

  

Structural  conservation  

Prokaryotic multisubunit RNA polymerases are the simplest RNAPs, as 

exemplified by the crystal structure of Thermus aquaticus polymerase, which is 

composed of five core subunits; the β’, β, ω and two α subunits (Zhang, Campbell et al. 

1999). The largest and second largest subunits, β’ and β respectively, interact to form the 

catalytic center, the α homodimer playing roles in assembly, along with the ω subunit 

(Minakhin, Nechaev et al. 2001). The resulting crabclaw structure is preserved in all 

RNA polymerases. Within the crabclaw structure is the site where duplex DNA is 

projected into the catalytic center of the polymerase along the floor of the polymerase 

(Cramer, Armache et al. 2008; Werner 2008). The DNA duplex is bound by a DNA 

binding channel and the template DNA eventually encounters the wall of the polymerase, 

where it is deflected at right angle to the exit channel (Gnatt, Cramer et al. 2001; Gnatt 

2002). The elongating RNA/DNA hybrid is perpendicularly oriented relative to 

downstream duplex DNA and secured by the clamp, another conserved structural element 
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(Werner and Grohmann 2011). Bacterial polymerases lack the polymerase stalk, which in 

Archaea and eukaryotes are formed by two subunits interact extensively with the 

extruded RNA chain (Hirtreiter, Grohmann et al. 2010).  

The subunits of RNA polymerases from bacteria, archaea and eukaryotes are 

presented in Figure 2. The equivalent subunits are arranged in order of the bacterial 

homologs. Also note the re-naming of archaeal subunits (RPO stands for 

RNA Polymerase) to reflect a unified numbering system based on yeast subunits (Werner 

2007; Werner 2008; Werner and Grohmann 2011). Archaeal RPO1 and RPO2 subunits 

are sometimes encoded by two genes in archaea but are unified here for clarity (Werner 

and Grohmann 2011). The A, B, C, D and E designation proceeding the “RP” (RNA 

Polymerase) or “NRP” (Nuclear RNA Polymerase) for plants reflects Pol I, II, III, IV and 

V respectively (Ream, Haag et al. 2009). Subunits for Pol I and III are omitted, but the 

Arabidopsis subunit compositions for these polymerases have also been elucidated and 

are found to have subunits homologous to those in the yeast (Ream and Pikaard, 

unpublished and (Werner, Thuriaux et al. 2009)). 
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Figure 2 Subunit compositions of DNA-dependent RNA polymerases 

The table shows the subunits of bacterial, archaeal RNA polymerase (RNAP) subunits and the homologous 

yeast Pol II (Sc RNAPII) and Arabidopsis Pol II, IV and V (At RNAPII, At RNAPIV, At RNAPV) 

subunits. At subunits encoded by the same genes are only named once for clarity. *RPO8 and RPO13 are 

found in some, but not all archaeal species.  

 

Although the crystal structure of an archaeal polymerase was solve after the yeast 

Pol II structure, the degree of similarity was already apparent between archaeal 

polymerases and Pol II from the sequence alignments of DNA dependent RNA 

polymerases (Kaine, Mehr et al. 1994). The functional classes for RNA polymerase core 

subunits are conserved in archaea, bacteria and eukaryotes. The β’ and β subunits (largest 

and second largest subunits) that form the Mg2+-binding active site, bridge and trigger 

helix, DNA and DNA/RNA binding sites, secondary NTP entry site and loop/switch 

region are conserved in terms of structure and multiple sequence homologies. The Pol IV 

and V catalytic subunits contain all the conserved features and require the Metal A and B 
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Mg2+-binding sites if the active site for RNA directed DNA methylation (RdDM) (Haag, 

Pontes et al. 2009). The α homodimer (3rd and 11th largest subunits) assembly platform 

subunits that initiate subunit assembly are also conserved. In eukaryotes and archaea, 

these subunits associate with the 10th and 12th largest subunits as well. An auxiliary 

subunit that is homologous to ω; this 6th largest subunit is involved in basic promoter-

associated activities.  

The 4th and 7th largest subunits form a stalk of the polymerase in archaeal and 

eukaryotic lineages (Figure 3). RPB9 is purely an eukaryotic subunit which is encoded by 

unique genes for Pol I, II and III (Chapter two). The 8th largest and 13th largest subunits 

of archaea are only found in some species (Kwapisz, Beckouet et al. 2008).    
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Figure 3 Cartoon of yeast Pol II and subunits 

The 12 subunits of yeast RNA polymerase II are named below their associated shape and color on the left. 

Duplex DNA is colored white, nascent RNA is red, and these form the depicted transcription bubble, with 

arrows indicating the direction of the incoming and outgoing DNA duplex. 

 

Evolution of RNA polymerases 

 Based on the structural conservation and the molecular mechanisms that all RNA 

polymerases have in common, recent review articles has postulated the hypothesis that 

the last universal common ancestor (LUCA) of prokarya, archaea and eukarya had a 

RNA polymerase that resembles the extant bacterial RNA polymerase because it 

represents the most simple but fully functional complex (Grohmann and Werner 2011; 

Werner and Grohmann 2011). This is indeed, the most parsimonious hypothesis and 

Werner et al went on to suggest the ‘elongation first hypothesis’ owing to the only 
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universally conserved transcription factor; NusG, in bacteria and SPT5, in archaea and 

eukaryotes (Greenblatt, Nodwell et al. 1993; Zhou, Kuo et al. 2009; Hirtreiter, Damsma 

et al. 2010). The additional RNA silencing polymerases from plants, Pol IV and V, do not 

deviate from this hypothesis as they are descendants from the plant Pol II enzyme (Luo 

and Hall 2007; Tucker, Reece et al. 2011). Interestingly, an SPT5-like protein named 

KTF1 with WG AGO-hook motifs is important for RdDM (refer to preceeding section on 

RdDM) (Bies-Etheve, Pontier et al. 2009; He, Hsu et al. 2009; Wang and Dennis 2009). 

Although this elongation factor does not appear to be associated with Pol IV, association 

of an SPT5-like protein with Pol V is intriguing in light of this elongation first 

hypothesis.   

  

Beyond RNA polymerase I, II and III  

 A paradox of transcriptional silencing via small RNAs is the generation of small 

RNAs from these condensed, supposedly transcriptionally silent domains (Grewal and 

Elgin 2007). The best studied pathway is currently from fission yeast, where Pol II is 

important for the maintenance of the centromeric repeats, including the formation of the 

precursor siRNAs and scaffold transcripts to which they bind (Djupedal, Portoso et al. 

2005; Schramke, Sheedy et al. 2005). There is evidence that microRNA biogenesis 

evolved along with Pol II transcription and the splicing machinery (miRtrons, for 

instance) (Kim, Han et al. 2009; Allen and Howell 2010). The discovery of Pol IV and V 

as dedicated RNA polymerases for silencing transgenes, repetitive DNA and transposable 

elements via the 24nt siRNA directed DNA methylation pathway suggests that RNA 
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polymerases are able to transcribe silent DNA, creating a feedback loop that reinforces 

the effects of transcriptional gene silencing (Beisel and Paro 2011). 

 In 2005, three papers announced the functions of Pol IV and V (Pol IVa and IVb 

as they were known then) as atypical polymerases involved in RNA silencing (Herr, 

Jensen et al. 2005; Kanno, Huettel et al. 2005; Onodera, Haag et al. 2005). It wasn’t until 

2009 that the full composition of Pol IV and V were elucidated (Ream, Haag et al. 2009). 

Other clues for a connection between Pol V and Pol II were established by the 

purification of the Pol IVb complex from cauliflower (Huang, Jones et al. 2009), 

identification of the Pol IV and V specific 4th largest subunit in a genetic screen, and a 

report on the the Pol V specific 5th largest subunit (He, Hsu et al. 2009; Lahmy, Pontier et 

al. 2009). However, to appreciate the different subunit compositions and the evolutionary 

history between Pol II, IV and V, the full subunit compositions is required (Ream, Haag 

et al. 2009). 

 

Insights from subunit composition 

 From an evolutionary standpoint, the emergence of  a Pol IV-like largest subunit 

is thought to have occurred in the last common ancestor of land plants and the Charales, a 

complex group of algae known as stoneworts (Luo and Hall 2007). The largest subunit, 

NRPD1 can be detected in Charales, but not the 2nd largest subunit NRPD2 (shared by 

Pol IV and V in Arabidopsis). This suggests that this Pol IV subunit in Charales likely 

pair up with the Pol II 2nd largest subunit NRPB2 and other Pol II subunits. The NRPD1 

subunit was duplicated from the NRPB1 gene, as shown by multiple shared intron/exon 

boundaries (Luo and Hall 2007). The NRPE1 subunit arose by duplication of the NRPD1 



43 
 

gene in angiosperms, and the substitution rates between NRPE1 and NRPD1 suggests 

that they are still evolving rapidly (Luo and Hall 2007), with distinct subunit 

compositions and functions in RdDM as well as other related small RNA pathways in 

Arabidopsis (Pikaard, Haag et al. 2008; Tucker, Reece et al. 2011). In the next section, 

discussions on the known functions of non-catalytic subunits of yeast Pol II and early 

work on non-catalytic subunits of Arabidopsis Pol II, IV and V are presented, along with 

the scope of this thesis. 
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vi. 

SCOPE OF THESIS 

 

Ninth largest subunits 

 An important subunit of eukaryotic RNAP not found in archaea is the 9th largest 

subunit (Figure 2). In yeast, the deletion of this Pol II subunit results in a Δrpb9 strain 

that is sensitive to low and high temperatures (Woychik, Lane et al. 1991). This was the 

first Pol II subunit mutant isolated, providing an opportunity to study RPB9 functions. 

Since RPB9 and RPB5 sit at the jaw domain of the RNA polymerase and are thought to 

interact with the incoming DNA duplex (Cramer, Armache et al. 2008), a myriad of 

interactions have been implicated for RPB9 including associations with general 

transcription factors for initiation (Hull, McKune et al. 1995; Sun, Tessmer et al. 1996; 

Ziegler, Khaperskyy et al. 2003) and transcript elongation (Awrey, Weilbaecher et al. 

1997; Hemming, Jansma et al. 2000); RPB9 also has a role in proofreading to ensure 

transcriptional fidelity in vivo (Nesser, Peterson et al. 2006; Walmacq, Kireeva et al. 

2009). However, in vitro fidelity of Pol II is more dependent on TFIIS than RPB9 

(Koyama, Ito et al. 2007). The TFIIS cleavage factor is a dissociable protein that is able 

to bind along RNAP and extend into the active site for target RNA cleavage when the 

polymerase is stalled or encounters mismatches (Christie, Awrey et al. 1994). A 

homologous factor, TFS, is used by archaea for this function (Hausner, Lange et al. 

2000). The intrinsic cleavage activity of RPB9 is weak compared to the 9th largest 

subunits in Pol I and III, which do not contain TFIIS-like homologs (Ruan, Lehmann et 

al. 2011). In all, this suggests that TFIIS arose as a cleavage factor in the common 
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ancestor of archaea and eukaryotes, whereas the 9th largest subunits came about 

independently in the eukaryotic lineage prior to Pol I, II and III diversification. The 9th 

subunits have homology to TFIIS, so may have evolved by duplication of TFIIS. The Pol 

I and III 9th largest subunits display strong TFIIS-like transcript cleavage activity without 

associated TFIIS. Other activities associated with RPB9 include transcription coupled 

nucleotide excision repair (Li, Ding et al. 2006) and RPB1 degradation in response to UV 

damage (Chen, Ruggiero et al. 2007). 

 There are two identifiable NRPB9 subunit genes in Arabidopsis, NRPB9a and 

NRPB9b. Pol II and V can associate with either NRPB9a or NRPB9b, as shown by mass 

spectrometry studies, whereas Pol IV only associates with NRPB9b. Although NRPB9a 

and NRPB9b are 93% identical in amino acid sequence, they play discrete roles in the 

RNA directed DNA methylation pathway.  

Chapter two will explore the various functions of the 9th largest subunits from the 

Pol II, IV and V polymerases in Arabidopsis. 

  

Fourth largest and seventh largest subunits 

Like the viability of the Δrpb9 deletion in yeast, Δrpb4 is also viable although a 

double mutant of Δrpb9 Δrpb4 is lethal (Woychik and Young 1989; Woychik, Lane et al. 

1991; Maillet, Buhler et al. 1999). The deletion of RPB7 is not tolerated in yeast 

(McKune, Richards et al. 1993). The RPB4/RPB7 heterodimer makes up the stalk of the 

polymerase adjacent to the RNA exit channel (Figure 3 and (Bushnell and Kornberg 

2003)). The architecture of this substructure is also apparent in the Rpo4/Rpo7 

(previously RpoE/ RpoF) stalk observed the archaea crystal structure (Hirata, Klein et al. 
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2008). The dissociability of this subcomplex has been shown in yeast, but archaeal and 

plant 4/7 subcomplexes might be more stably associated (Choder 2004; Armache, 

Mitterweger et al. 2005; Grohmann, Hirtreiter et al. 2009). 

The purification of yeast Pol II complexes from Δrpb4 strains showed 

concomitant loss of RPB7 from the complex (Edwards, Kane et al. 1991) while the 

overexpression of RPB7 suppresses the Δrpb4 phenotypes, which indicates a distinct role 

for RPB7 (Sheffer, Varon et al. 1999). RPB6 is involved in anchoring the 4/7 

subcomplex to the polymerase, in close agreement with structural studies (Gnatt, Cramer 

et al. 2001; Tan, Prysak et al. 2003; Armache, Mitterweger et al. 2005; Sampath, 

Balakrishnan et al. 2008). 

 Based on Δrpb4 studies, RPB4 has been found to be involved in promoter 

dependent transcription (Edwards, Kane et al. 1991; Orlicky, Tran et al. 2001; Hirtreiter, 

Grohmann et al. 2010) involving TFIIF (Chung, Craighead et al. 2003). FRET studies 

have also shown that nascent RNA comes into close proximity to the 4/7 subcomplex in 

both yeast and archaea (Chen, Chang et al. 2009; Grohmann, Klose et al. 2010). The 

main RNA interaction interface is thought to be RPB7 (Meka, Werner et al. 2005; Ujvari 

and Luse 2006). The close association of RPB4 and RPB7 throughout the transcription 

cycle is also supported by their interaction with RPB1 CTD factors (Kimura, Suzuki et al. 

2002; Mitsuzawa, Kanda et al. 2003). Genomewide profiling using affinity tagged-RPB4 

shows no difference in occupancy of RPB4 relative to the profile of a tagged catalytic 

subunit of Pol II (Jasiak, Hartmann et al. 2008; Runner, Podolny et al. 2008). 

 A potential role for RPB4/RPB7 in the cytoplasm during stress is something quite 

unusual for subunits of nuclear RNA polymerases (Farago, Nahari et al. 2003; Goler-
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Baron, Selitrennik et al. 2008). RPB4 and RPB7 localize to P-bodies and stimulate the 

de-adenylation of mRNAs (Lotan, Bar-On et al. 2005; Lotan, Goler-Baron et al. 2007). 

Nucleocytoplasmic shuttling of RPB4/RPB7 is dependent on transcription and suggests 

regulatory roles for RNA polymerase subunits, beyond the nuclear compartment 

(Selitrennik, Duek et al. 2006).  

 The NRPB4/NRPB7 subunits of Arabidopsis Pol II have previously been 

described as AtRPB19.5 ad AtRPB15.9 respectively and the two proteins form a soluble, 

heterodimeric complex in renaturation experiments (Larkin and Guilfoyle 1998). 

Purification of the Pol II complex from Arabidopsis suggests that the NRPB4 and 

NRPB7 might be associated stably (do not dissociate) with the core complex, similar to 

the archaeal polymerase (Ulmasov and Guilfoyle 1992). A forward genetic screen 

identified an atypical NRPB4-like subunit in RNA directed DNA methylation (He, Hsu et 

al. 2009) and this subunit was later determined by proteomic means to be NRPD4 and is 

shared between Pol IV and V (Ream, Haag et al. 2009). Pol II NRPB4 and NRPB7 

subunits do not associate with Pol IV and V.  Instead, Pol IV and V share a 4th largest 

subunit NRPD4/E4, as noted earlier. Pol V associates only with NRPE7 while Pol IV 

associates primarily with NRPD7, with some interaction with NRPE7 peptides, at lower 

frequency (Table 1 and (Ream, Haag et al. 2009)). Phylogenetic studies show that the 7th 

largest subunits of Pol IV and V diverged from NRPB7 via a cDNA retrotranposition, 

which occurred prior in an ancestor of moss and higher plants. The 4th largest subunits of 

Pol IV and V can be found beginning with the angiosperm lineage (Tucker, Reece et al. 

2011).  
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Chapter three explores the roles of the 4th and 7th largest subunits of Pol II, IV and 

V and hints at their specialized functions in RNA directed DNA methylation as well as 

other transcriptional processes. 

 

Other non-catalytic subunits 

 Other subunits that are shared between Pol II, IV and V are the 3rd largest, 6th 

largest and 8th largest subunits (each of which have two isoforms encoded by different 

genes). The 5th largest subunits are particularly interesting in that Pol V encodes a 

specialized NRPE5 subunit (Huang, Jones et al. 2009; Lahmy, Pontier et al. 2009; Ream, 

Haag et al. 2009) while Pol I, II, III and V utilizes the same NRPB5 subunit. The same 

NRPB5 subunit is also used by Pol I and III in Arabidopsis (Ream and Pikaard, 

unpublished (Saez-Vasquez and Pikaard 1997; Larkin, Hagen et al. 1999)). The 

evolutionary history of NRPE5 is similar to that of NRPD4, being found only in 

angiosperms and not found in the moss genome.  

Preliminary results on the 6th largest subunit usage in Pol IV and V are discussed 

in Chapter four. 

  

Pol V biochemistry and C-terminal domain 

 Biochemical purification of bacterial RNA polymerases, yeast Pol II and archaeal 

polymerases (Valenzuela, Bell et al. 1978; Zhang, Campbell et al. 1999; Werner and 

Weinzierl 2002) have been seminal steps for the deep biochemical understanding of each 

polymerase. The purification of Arabidopsis Pol IV and V is a worthy challenge for 

researchers. In vitro activity for both Pol IV and Pol V isolated from affinity-
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immunoprecipitated complexes with a RNA/DNA hybrid template has now been shown 

in the Pikaard lab (Haag and Pikaard, unpublished). The series of non-catalytic subunit 

mutants that have been isolated in chapters two, three and four can be used to test 

biochemical properties of Pol IV and V to see if their biochemical activities are affected 

in these mutants. The Pol V largest subunit, NRPE1 has an extended C-terminal domain 

which is required for Pol V activity in vivo (Appendix C).  

Chapter four also provides a framework for a forward genetic screen to isolate 

interactors with this important domain in Pol V. 

 

 

  

  



50 
 

vii. 

REFERENCES CITED 

 

Aapola, U., K. Kawasaki, et al. (2000). "Isolation and initial characterization of a novel 
zinc finger gene, DNMT3L, on 21q22.3, related to the cytosine-5-
methyltransferase 3 gene family." Genomics 65(3): 293-298. 

Adenot, X., T. Elmayan, et al. (2006). "DRB4-dependent TAS3 trans-acting siRNAs 
control leaf morphology through AGO7." Curr Biol 16(9): 927-932. 

Agger, K., J. Christensen, et al. (2008). "The emerging functions of histone 
demethylases." Curr Opin Genet Dev 18(2): 159-168. 

Agius, F., A. Kapoor, et al. (2006). "Role of the Arabidopsis DNA glycosylase/lyase 
ROS1 in active DNA demethylation." Proc Natl Acad Sci U S A 103(31): 11796-
11801. 

Alleman, M., L. Sidorenko, et al. (2006). "An RNA-dependent RNA polymerase is 
required for paramutation in maize." Nature 442(7100): 295-298. 

Allen, E. and M. D. Howell (2010). "miRNAs in the biogenesis of trans-acting siRNAs in 
higher plants." Semin Cell Dev Biol 21(8): 798-804. 

Aravin, A. A., R. Sachidanandam, et al. (2008). "A piRNA pathway primed by individual 
transposons is linked to de novo DNA methylation in mice." Mol Cell 31(6): 785-
799. 

Archambault, J. and J. D. Friesen (1993). "Genetics of eukaryotic RNA polymerases I, II, 
and III." Microbiol Rev 57(3): 703-724. 

Armache, K. J., S. Mitterweger, et al. (2005). "Structures of complete RNA polymerase II 
and its subcomplex, Rpb4/7." J Biol Chem 280(8): 7131-7134. 

Ashapkin, V. V., L. I. Kutueva, et al. (2002). "The gene for domains rearranged 
methyltransferase (DRM2) in Arabidopsis thaliana plants is methylated at both 
cytosine and adenine residues." FEBS Lett 532(3): 367-372. 

Atanassov, B. S., E. Koutelou, et al. (2010). "The role of deubiquitinating enzymes in 
chromatin regulation." FEBS Lett. 

Aufsatz, W., M. F. Mette, et al. (2002). "HDA6, a putative histone deacetylase needed to 
enhance DNA methylation induced by double-stranded RNA." EMBO J 21(24): 
6832-6841. 

Ausin, I., T. C. Mockler, et al. (2009). "IDN1 and IDN2 are required for de novo DNA 
methylation in Arabidopsis thaliana." Nat Struct Mol Biol 16(12): 1325-1327. 

Awrey, D. E., R. G. Weilbaecher, et al. (1997). "Transcription elongation through DNA 
arrest sites. A multistep process involving both RNA polymerase II subunit RPB9 
and TFIIS." J Biol Chem 272(23): 14747-14754. 

Banaszynski, L. A., C. D. Allis, et al. (2010). "Histone variants in metazoan 
development." Dev Cell 19(5): 662-674. 

Bauer, M. J. and R. L. Fischer (2011). "Genome demethylation and imprinting in the 
endosperm." Curr Opin Plant Biol. 

Baumberger, N. and D. C. Baulcombe (2005). "Arabidopsis ARGONAUTE1 is an RNA 
Slicer that selectively recruits microRNAs and short interfering RNAs." Proc Natl 
Acad Sci U S A 102(33): 11928-11933. 



51 
 

Baurle, I., L. Smith, et al. (2007). "Widespread role for the flowering-time regulators 
FCA and FPA in RNA-mediated chromatin silencing." Science 318(5847): 109-
112. 

Beisel, C. and R. Paro (2011). "Silencing chromatin: comparing modes and 
mechanisms." Nat Rev Genet 12(2): 123-135. 

Beisson, J. (2008). "Preformed cell structure and cell heredity." Prion 2(1): 1-8. 
Beisson, J. and T. M. Sonneborn (1965). "Cytoplasmic Inheritance of the Organization of 

the Cell Cortex in Paramecium Aurelia." Proc Natl Acad Sci U S A 53: 275-282. 
Bernstein, B. E., T. S. Mikkelsen, et al. (2006). "A bivalent chromatin structure marks 

key developmental genes in embryonic stem cells." Cell 125(2): 315-326. 
Bernstein, E., A. A. Caudy, et al. (2001). "Role for a bidentate ribonuclease in the 

initiation step of RNA interference." Nature 409(6818): 363-366. 
Bestor, T. H., V. L. Chandler, et al. (1994). "Epigenetic effects in eukaryotic gene 

expression." Dev Genet 15(6): 458-462. 
Bestor, T. H. and G. L. Verdine (1994). "DNA methyltransferases." Curr Opin Cell Biol 

6(3): 380-389. 
Bies-Etheve, N., D. Pontier, et al. (2009). "RNA-directed DNA methylation requires an 

AGO4-interacting member of the SPT5 elongation factor family." EMBO Rep 
10(6): 649-654. 

Bird, A. (1992). "The essentials of DNA methylation." Cell 70(1): 5-8. 
Bird, A. P. (1986). "CpG-rich islands and the function of DNA methylation." Nature 

321(6067): 209-213. 
Blevins, T., R. Rajeswaran, et al. (2006). "Four plant Dicers mediate viral small RNA 

biogenesis and DNA virus induced silencing." Nucleic Acids Res 34(21): 6233-
6246. 

Bohmert, K., I. Camus, et al. (1998). "AGO1 defines a novel locus of Arabidopsis 
controlling leaf development." EMBO J 17(1): 170-180. 

Boland, M. J. and J. K. Christman (2008). "Characterization of Dnmt3b:thymine-DNA 
glycosylase interaction and stimulation of thymine glycosylase-mediated repair by 
DNA methyltransferase(s) and RNA." J Mol Biol 379(3): 492-504. 

Borsani, O., J. Zhu, et al. (2005). "Endogenous siRNAs derived from a pair of natural cis-
antisense transcripts regulate salt tolerance in Arabidopsis." Cell 123(7): 1279-
1291. 

Bostick, M., J. K. Kim, et al. (2007). "UHRF1 plays a role in maintaining DNA 
methylation in mammalian cells." Science 317(5845): 1760-1764. 

Brennecke, J., A. A. Aravin, et al. (2007). "Discrete small RNA-generating loci as master 
regulators of transposon activity in Drosophila." Cell 128(6): 1089-1103. 

Brennecke, J., C. D. Malone, et al. (2008). "An epigenetic role for maternally inherited 
piRNAs in transposon silencing." Science 322(5906): 1387-1392. 

Brosnan, C. A., N. Mitter, et al. (2007). "Nuclear gene silencing directs reception of long-
distance mRNA silencing in Arabidopsis." Proc Natl Acad Sci U S A 104(37): 
14741-14746. 

Brouns, S. J., M. M. Jore, et al. (2008). "Small CRISPR RNAs guide antiviral defense in 
prokaryotes." Science 321(5891): 960-964. 



52 
 

Bushnell, D. A. and R. D. Kornberg (2003). "Complete, 12-subunit RNA polymerase II 
at 4.1-A resolution: implications for the initiation of transcription." Proc Natl 
Acad Sci U S A 100(12): 6969-6973. 

Cao, X., W. Aufsatz, et al. (2003). "Role of the DRM and CMT3 methyltransferases in 
RNA-directed DNA methylation." Curr Biol 13(24): 2212-2217. 

Cao, X. and S. E. Jacobsen (2002). "Locus-specific control of asymmetric and CpNpG 
methylation by the DRM and CMT3 methyltransferase genes." Proc Natl Acad 
Sci U S A 99 Suppl 4: 16491-16498. 

Cao, X. and S. E. Jacobsen (2002). "Role of the arabidopsis DRM methyltransferases in 
de novo DNA methylation and gene silencing." Curr Biol 12(13): 1138-1144. 

Carthew, R. W. (2001). "Gene silencing by double-stranded RNA." Curr Opin Cell Biol 
13(2): 244-248. 

Cerutti, H. and J. A. Casas-Mollano (2006). "On the origin and functions of RNA-
mediated silencing: from protists to man." Curr Genet 50(2): 81-99. 

Chan, S. W., D. Zilberman, et al. (2004). "RNA silencing genes control de novo DNA 
methylation." Science 303(5662): 1336. 

Chapman, E. J. and J. C. Carrington (2007). "Specialization and evolution of endogenous 
small RNA pathways." Nat Rev Genet 8(11): 884-896. 

Chen, C. Y., C. C. Chang, et al. (2009). "Mapping RNA exit channel on transcribing 
RNA polymerase II by FRET analysis." Proc Natl Acad Sci U S A 106(1): 127-
132. 

Chen, X., C. Ruggiero, et al. (2007). "Yeast Rpb9 plays an important role in 
ubiquitylation and degradation of Rpb1 in response to UV-induced DNA 
damage." Mol Cell Biol 27(13): 4617-4625. 

Chen, Z. J. and C. S. Pikaard (1997). "Epigenetic silencing of RNA polymerase I 
transcription: a role for DNA methylation and histone modification in nucleolar 
dominance." Genes Dev 11(16): 2124-2136. 

Chen, Z. X. and A. D. Riggs (2011). "DNA methylation and demethylation in 
mammals." J Biol Chem. 

Chinnusamy, V. and J. K. Zhu (2009). "RNA-directed DNA methylation and 
demethylation in plants." Sci China C Life Sci 52(4): 331-343. 

Choder, M. (2004). "Rpb4 and Rpb7: subunits of RNA polymerase II and 
beyond." Trends Biochem Sci 29(12): 674-681. 

Choi, Y., M. Gehring, et al. (2002). "DEMETER, a DNA glycosylase domain protein, is 
required for endosperm gene imprinting and seed viability in arabidopsis." Cell 
110(1): 33-42. 

Christie, K. R., D. E. Awrey, et al. (1994). "Purified yeast RNA polymerase II reads 
through intrinsic blocks to elongation in response to the yeast TFIIS analogue, 
P37." J Biol Chem 269(2): 936-943. 

Chung, W. H., J. L. Craighead, et al. (2003). "RNA polymerase II/TFIIF structure and 
conserved organization of the initiation complex." Mol Cell 12(4): 1003-1013. 

Cloos, P. A., J. Christensen, et al. (2008). "Erasing the methyl mark: histone 
demethylases at the center of cellular differentiation and disease." Genes Dev 
22(9): 1115-1140. 



53 
 

Cogoni, C. and G. Macino (1999). "Gene silencing in Neurospora crassa requires a 
protein homologous to RNA-dependent RNA polymerase." Nature 399(6732): 
166-169. 

Cokus, S. J., S. Feng, et al. (2008). "Shotgun bisulphite sequencing of the Arabidopsis 
genome reveals DNA methylation patterning." Nature 452(7184): 215-219. 

Costa-Nunes, P., O. Pontes, et al. (2010). "Extra views on RNA-dependent DNA 
methylation and MBD6-dependent heterochromatin formation in nucleolar 
dominance." Nucleus 1(3): 254-259. 

Cramer, P., K. J. Armache, et al. (2008). "Structure of eukaryotic RNA 
polymerases." Annu Rev Biophys 37: 337-352. 

Czech, B. and G. J. Hannon (2011). "Small RNA sorting: matchmaking for 
Argonautes." Nat Rev Genet 12(1): 19-31. 

Dalmay, T., A. Hamilton, et al. (2000). "An RNA-dependent RNA polymerase gene in 
Arabidopsis is required for posttranscriptional gene silencing mediated by a 
transgene but not by a virus." Cell 101(5): 543-553. 

Damelin, M. and T. H. Bestor (2007). "Biological functions of DNA methyltransferase 1 
require its methyltransferase activity." Mol Cell Biol 27(11): 3891-3899. 

Daxinger, L., T. Kanno, et al. (2009). "A stepwise pathway for biogenesis of 24-nt 
secondary siRNAs and spreading of DNA methylation." EMBO J 28(1): 48-57. 

Deleris, A., J. Gallego-Bartolome, et al. (2006). "Hierarchical action and inhibition of 
plant Dicer-like proteins in antiviral defense." Science 313(5783): 68-71. 

Deltcheva, E., K. Chylinski, et al. (2011). "CRISPR RNA maturation by trans-encoded 
small RNA and host factor RNase III." Nature 471(7340): 602-607. 

Denli, A. M., B. B. Tops, et al. (2004). "Processing of primary microRNAs by the 
Microprocessor complex." Nature 432(7014): 231-235. 

Dernburg, A. F., J. Zalevsky, et al. (2000). "Transgene-mediated cosuppression in the C. 
elegans germ line." Genes Dev 14(13): 1578-1583. 

Dimario, P. J. (2004). "Cell and molecular biology of nucleolar assembly and 
disassembly." Int Rev Cytol 239: 99-178. 

Djupedal, I., M. Portoso, et al. (2005). "RNA Pol II subunit Rpb7 promotes centromeric 
transcription and RNAi-directed chromatin silencing." Genes Dev 19(19): 2301-
2306. 

Dunoyer, P., C. A. Brosnan, et al. (2010). "An endogenous, systemic RNAi pathway in 
plants." EMBO J 29(10): 1699-1712. 

Dunoyer, P., G. Schott, et al. (2010). "Small RNA duplexes function as mobile silencing 
signals between plant cells." Science 328(5980): 912-916. 

Earley, K., R. J. Lawrence, et al. (2006). "Erasure of histone acetylation by Arabidopsis 
HDA6 mediates large-scale gene silencing in nucleolar dominance." Genes Dev 
20(10): 1283-1293. 

Earley, K. W., F. Pontvianne, et al. (2010). "Mechanisms of HDA6-mediated rRNA gene 
silencing: suppression of intergenic Pol II transcription and differential effects on 
maintenance versus siRNA-directed cytosine methylation." Genes Dev 24(11): 
1119-1132. 

Edwards, A. M., C. M. Kane, et al. (1991). "Two dissociable subunits of yeast RNA 
polymerase II stimulate the initiation of transcription at a promoter in vitro." J 
Biol Chem 266(1): 71-75. 



54 
 

Eissenberg, J. C. and S. C. Elgin (2000). "The HP1 protein family: getting a grip on 
chromatin." Curr Opin Genet Dev 10(2): 204-210. 

Elbashir, S. M., J. Harborth, et al. (2001). "Duplexes of 21-nucleotide RNAs mediate 
RNA interference in cultured mammalian cells." Nature 411(6836): 494-498. 

Elbashir, S. M., W. Lendeckel, et al. (2001). "RNA interference is mediated by 21- and 
22-nucleotide RNAs." Genes Dev 15(2): 188-200. 

Elbashir, S. M., J. Martinez, et al. (2001). "Functional anatomy of siRNAs for mediating 
efficient RNAi in Drosophila melanogaster embryo lysate." EMBO J 20(23): 
6877-6888. 

Elgin, S. C. and S. I. Grewal (2003). "Heterochromatin: silence is golden." Curr Biol 
13(23): R895-898. 

Erhard, K. F., Jr., J. L. Stonaker, et al. (2009). "RNA polymerase IV functions in 
paramutation in Zea mays." Science 323(5918): 1201-1205. 

Esteve, P. O., H. G. Chin, et al. (2006). "Direct interaction between DNMT1 and G9a 
coordinates DNA and histone methylation during replication." Genes Dev 20(22): 
3089-3103. 

Farago, M., T. Nahari, et al. (2003). "Rpb4p, a subunit of RNA polymerase II, mediates 
mRNA export during stress." Mol Biol Cell 14(7): 2744-2755. 

Feng, S., S. J. Cokus, et al. (2010). "Conservation and divergence of methylation 
patterning in plants and animals." Proc Natl Acad Sci U S A 107(19): 8689-8694. 

Feng, S., S. E. Jacobsen, et al. (2010). "Epigenetic reprogramming in plant and animal 
development." Science 330(6004): 622-627. 

Ficz, G., M. R. Branco, et al. (2011). "Dynamic regulation of 5-hydroxymethylcytosine 
in mouse ES cells and during differentiation." Nature. 

Finigan, P. and R. A. Martienssen (2008). "Nucleolar dominance and DNA methylation 
directed by small interfering RNA." Mol Cell 32(6): 753-754. 

Fire, A., D. Albertson, et al. (1991). "Production of antisense RNA leads to effective and 
specific inhibition of gene expression in C. elegans muscle." Development 
113(2): 503-514. 

Fire, A., S. Xu, et al. (1998). "Potent and specific genetic interference by double-stranded 
RNA in Caenorhabditis elegans." Nature 391(6669): 806-811. 

Forstemann, K., Y. Tomari, et al. (2005). "Normal microRNA maturation and germ-line 
stem cell maintenance requires Loquacious, a double-stranded RNA-binding 
domain protein." PLoS Biol 3(7): e236. 

Fuchs, J., D. Demidov, et al. (2006). "Chromosomal histone modification patterns--from 
conservation to diversity." Trends Plant Sci 11(4): 199-208. 

Gao, Z., H. L. Liu, et al. (2010). "An RNA polymerase II- and AGO4-associated protein 
acts in RNA-directed DNA methylation." Nature 465(7294): 106-109. 

Gehring, M., J. H. Huh, et al. (2006). "DEMETER DNA glycosylase establishes MEDEA 
polycomb gene self-imprinting by allele-specific demethylation." Cell 124(3): 
495-506. 

Gehring, M., W. Reik, et al. (2009). "DNA demethylation by DNA repair." Trends Genet 
25(2): 82-90. 

Ghildiyal, M. and P. D. Zamore (2009). "Small silencing RNAs: an expanding 
universe." Nat Rev Genet 10(2): 94-108. 



55 
 

Gnatt, A. (2002). "Elongation by RNA polymerase II: structure-function 
relationship." Biochim Biophys Acta 1577(2): 175-190. 

Gnatt, A. L., P. Cramer, et al. (2001). "Structural basis of transcription: an RNA 
polymerase II elongation complex at 3.3 A resolution." Science 292(5523): 1876-
1882. 

Goler-Baron, V., M. Selitrennik, et al. (2008). "Transcription in the nucleus and mRNA 
decay in the cytoplasm are coupled processes." Genes Dev 22(15): 2022-2027. 

Goll, M. G. and T. H. Bestor (2005). "Eukaryotic cytosine methyltransferases." Annu 
Rev Biochem 74: 481-514. 

Gong, Z., T. Morales-Ruiz, et al. (2002). "ROS1, a repressor of transcriptional gene 
silencing in Arabidopsis, encodes a DNA glycosylase/lyase." Cell 111(6): 803-
814. 

Greenblatt, J., J. R. Nodwell, et al. (1993). "Transcriptional antitermination." Nature 
364(6436): 401-406. 

Grewal, S. I. (2010). "RNAi-dependent formation of heterochromatin and its diverse 
functions." Curr Opin Genet Dev 20(2): 134-141. 

Grewal, S. I. and S. C. Elgin (2007). "Transcription and RNA interference in the 
formation of heterochromatin." Nature 447(7143): 399-406. 

Grishok, A., A. E. Pasquinelli, et al. (2001). "Genes and mechanisms related to RNA 
interference regulate expression of the small temporal RNAs that control C. 
elegans developmental timing." Cell 106(1): 23-34. 

Grissa, I., G. Vergnaud, et al. (2008). "CRISPRcompar: a website to compare clustered 
regularly interspaced short palindromic repeats." Nucleic Acids Res 36(Web 
Server issue): W145-148. 

Grohmann, D., A. Hirtreiter, et al. (2009). "RNAP subunits F/E (RPB4/7) are stably 
associated with archaeal RNA polymerase: using fluorescence anisotropy to 
monitor RNAP assembly in vitro." Biochem J 421(3): 339-343. 

Grohmann, D., D. Klose, et al. (2010). "RNA-binding to archaeal RNA polymerase 
subunits F/E: a DEER and FRET study." J Am Chem Soc 132(17): 5954-5955. 

Grohmann, D. and F. Werner (2010). "Hold on!: RNA polymerase interactions with the 
nascent RNA modulate transcription elongation and termination." RNA Biol 7(3): 
310-315. 

Grohmann, D. and F. Werner (2011). "Cycling through transcription with the RNA 
polymerase F/E (RPB4/7) complex: structure, function and evolution of archaeal 
RNA polymerase." Res Microbiol 162(1): 10-18. 

Grohmann, M., F. Spada, et al. (2005). "Restricted mobility of Dnmt1 in preimplantation 
embryos: implications for epigenetic reprogramming." BMC Dev Biol 5: 18. 

Grummt, I. (2003). "Life on a planet of its own: regulation of RNA polymerase I 
transcription in the nucleolus." Genes Dev 17(14): 1691-1702. 

Guo, J. U., Y. Su, et al. (2011). "Hydroxylation of 5-Methylcytosine by TET1 Promotes 
Active DNA Demethylation in the Adult Brain." Cell. 

Ha, M., J. Lu, et al. (2009). "Small RNAs serve as a genetic buffer against genomic shock 
in Arabidopsis interspecific hybrids and allopolyploids." Proc Natl Acad Sci U S 
A 106(42): 17835-17840. 



56 
 

Haag, J. R., O. Pontes, et al. (2009). "Metal A and metal B sites of nuclear RNA 
polymerases Pol IV and Pol V are required for siRNA-dependent DNA 
methylation and gene silencing." PLoS One 4(1): e4110. 

Hale, C. J., J. L. Stonaker, et al. (2007). "A novel Snf2 protein maintains trans-
generational regulatory states established by paramutation in maize." PLoS Biol 
5(10): e275. 

Hamilton, A., O. Voinnet, et al. (2002). "Two classes of short interfering RNA in RNA 
silencing." EMBO J 21(17): 4671-4679. 

Hamilton, A. J. and D. C. Baulcombe (1999). "A species of small antisense RNA in 
posttranscriptional gene silencing in plants." Science 286(5441): 950-952. 

Hammond, S. M., A. A. Caudy, et al. (2001). "Post-transcriptional gene silencing by 
double-stranded RNA." Nat Rev Genet 2(2): 110-119. 

Hannon, G. J. (2002). "RNA interference." Nature 418(6894): 244-251. 
Hannon, G. J., F. V. Rivas, et al. (2006). "The expanding universe of noncoding 

RNAs." Cold Spring Harb Symp Quant Biol 71: 551-564. 
Hausner, W., U. Lange, et al. (2000). "Transcription factor S, a cleavage induction factor 

of the archaeal RNA polymerase." J Biol Chem 275(17): 12393-12399. 
Havecker, E. R., L. M. Wallbridge, et al. (2010). "The Arabidopsis RNA-directed DNA 

methylation argonautes functionally diverge based on their expression and 
interaction with target loci." Plant Cell 22(2): 321-334. 

He, X. J., T. Chen, et al. (2011). "Regulation and function of DNA methylation in plants 
and animals." Cell Res 21(3): 442-465. 

He, X. J., Y. F. Hsu, et al. (2009). "NRPD4, a protein related to the RPB4 subunit of 
RNA polymerase II, is a component of RNA polymerases IV and V and is 
required for RNA-directed DNA methylation." Genes Dev 23(3): 318-330. 

He, X. J., Y. F. Hsu, et al. (2009). "A conserved transcriptional regulator is required for 
RNA-directed DNA methylation and plant development." Genes Dev 23(23): 
2717-2722. 

He, X. J., Y. F. Hsu, et al. (2009). "An effector of RNA-directed DNA methylation in 
arabidopsis is an ARGONAUTE 4- and RNA-binding protein." Cell 137(3): 498-
508. 

Hemming, S. A., D. B. Jansma, et al. (2000). "RNA polymerase II subunit Rpb9 regulates 
transcription elongation in vivo." J Biol Chem 275(45): 35506-35511. 

Henderson, I. R., A. Deleris, et al. (2010). "The de novo cytosine methyltransferase 
DRM2 requires intact UBA domains and a catalytically mutated paralog DRM3 
during RNA-directed DNA methylation in Arabidopsis thaliana." PLoS Genet 
6(10): e1001182. 

Henderson, I. R. and S. E. Jacobsen (2008). "Tandem repeats upstream of the 
Arabidopsis endogene SDC recruit non-CG DNA methylation and initiate siRNA 
spreading." Genes Dev 22(12): 1597-1606. 

Henikoff, S. (1990). "Position-effect variegation after 60 years." Trends Genet 6(12): 
422-426. 

Henry, R. W., E. Ford, et al. (1998). "Crossing the line between RNA polymerases: 
transcription of human snRNA genes by RNA polymerases II and III." Cold 
Spring Harb Symp Quant Biol 63: 111-120. 



57 
 

Hernandez, N. (2001). "Small nuclear RNA genes: a model system to study fundamental 
mechanisms of transcription." J Biol Chem 276(29): 26733-26736. 

Herr, A. J., M. B. Jensen, et al. (2005). "RNA polymerase IV directs silencing of 
endogenous DNA." Science 308(5718): 118-120. 

Hiraguri, A., R. Itoh, et al. (2005). "Specific interactions between Dicer-like proteins and 
HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana." Plant Mol 
Biol 57(2): 173-188. 

Hirata, A., B. J. Klein, et al. (2008). "The X-ray crystal structure of RNA polymerase 
from Archaea." Nature 451(7180): 851-854. 

Hirtreiter, A., G. E. Damsma, et al. (2010). "Spt4/5 stimulates transcription elongation 
through the RNA polymerase clamp coiled-coil motif." Nucleic Acids Res 38(12): 
4040-4051. 

Hirtreiter, A., D. Grohmann, et al. (2010). "Molecular mechanisms of RNA polymerase--
the F/E (RPB4/7) complex is required for high processivity in vitro." Nucleic 
Acids Res 38(2): 585-596. 

Horton, J. R., G. Ratner, et al. (2004). "Caught in the act: visualization of an intermediate 
in the DNA base-flipping pathway induced by HhaI methyltransferase." Nucleic 
Acids Res 32(13): 3877-3886. 

Howell, C. Y., T. H. Bestor, et al. (2001). "Genomic imprinting disrupted by a maternal 
effect mutation in the Dnmt1 gene." Cell 104(6): 829-838. 

Huang, L., A. M. Jones, et al. (2009). "An atypical RNA polymerase involved in RNA 
silencing shares small subunits with RNA polymerase II." Nat Struct Mol Biol 
16(1): 91-93. 

Huh, J. H., M. J. Bauer, et al. (2008). "Cellular programming of plant gene 
imprinting." Cell 132(5): 735-744. 

Hull, M. W., K. McKune, et al. (1995). "RNA polymerase II subunit RPB9 is required for 
accurate start site selection." Genes Dev 9(4): 481-490. 

Hutvagner, G., J. McLachlan, et al. (2001). "A cellular function for the RNA-interference 
enzyme Dicer in the maturation of the let-7 small temporal RNA." Science 
293(5531): 834-838. 

Hutvagner, G. and M. J. Simard (2008). "Argonaute proteins: key players in RNA 
silencing." Nat Rev Mol Cell Biol 9(1): 22-32. 

Jackson, J. P., A. M. Lindroth, et al. (2002). "Control of CpNpG DNA methylation by the 
KRYPTONITE histone H3 methyltransferase." Nature 416(6880): 556-560. 

Jacob, Y., S. Feng, et al. (2009). "ATXR5 and ATXR6 are H3K27 
monomethyltransferases required for chromatin structure and gene silencing." Nat 
Struct Mol Biol 16(7): 763-768. 

Jacob, Y., H. Stroud, et al. (2010). "Regulation of heterochromatic DNA replication by 
histone H3 lysine 27 methyltransferases." Nature 466(7309): 987-991. 

Jacobsen, S. E. (1999). "Gene silencing: Maintaining methylation patterns." Curr Biol 
9(16): R617-619. 

Jacobsen, S. E., M. P. Running, et al. (1999). "Disruption of an RNA helicase/RNAse III 
gene in Arabidopsis causes unregulated cell division in floral 
meristems." Development 126(23): 5231-5243. 



58 
 

James, T. C. and S. C. Elgin (1986). "Identification of a nonhistone chromosomal protein 
associated with heterochromatin in Drosophila melanogaster and its gene." Mol 
Cell Biol 6(11): 3862-3872. 

Jasiak, A. J., H. Hartmann, et al. (2008). "Genome-associated RNA polymerase II 
includes the dissociable Rpb4/7 subcomplex." J Biol Chem 283(39): 26423-
26427. 

Jenuwein, T. and C. D. Allis (2001). "Translating the histone code." Science 293(5532): 
1074-1080. 

Jin, S. G., S. Kadam, et al. (2010). "Examination of the specificity of DNA methylation 
profiling techniques towards 5-methylcytosine and 5-
hydroxymethylcytosine." Nucleic Acids Res 38(11): e125. 

Jore, M. M., S. J. Brouns, et al. (2011). "RNA in Defense: CRISPRs Protect Prokaryotes 
against Mobile Genetic Elements." Cold Spring Harb Perspect Biol. 

Jore, M. M., M. Lundgren, et al. (2011). "Structural basis for CRISPR RNA-guided DNA 
recognition by Cascade." Nat Struct Mol Biol. 

Jorgensen, H. F. and A. Bird (2002). "MeCP2 and other methyl-CpG binding 
proteins." Ment Retard Dev Disabil Res Rev 8(2): 87-93. 

Jorgensen, R. (1990). "Altered gene expression in plants due to trans interactions between 
homologous genes." Trends Biotechnol 8(12): 340-344. 

Jorgensen, R. A., P. D. Cluster, et al. (1996). "Chalcone synthase cosuppression 
phenotypes in petunia flowers: comparison of sense vs. antisense constructs and 
single-copy vs. complex T-DNA sequences." Plant Mol Biol 31(5): 957-973. 

Kaine, B. P., I. J. Mehr, et al. (1994). "The sequence, and its evolutionary implications, of 
a Thermococcus celer protein associated with transcription." Proc Natl Acad Sci 
U S A 91(9): 3854-3856. 

Kakutani, T., J. A. Jeddeloh, et al. (1995). "Characterization of an Arabidopsis thaliana 
DNA hypomethylation mutant." Nucleic Acids Res 23(1): 130-137. 

Kankel, M. W., D. E. Ramsey, et al. (2003). "Arabidopsis MET1 cytosine 
methyltransferase mutants." Genetics 163(3): 1109-1122. 

Kanno, T., E. Bucher, et al. (2010). "RNA-directed DNA methylation and plant 
development require an IWR1-type transcription factor." EMBO Rep 11(1): 65-
71. 

Kanno, T., B. Huettel, et al. (2005). "Atypical RNA polymerase subunits required for 
RNA-directed DNA methylation." Nat Genet 37(7): 761-765. 

Kapoor, A., F. Agius, et al. (2005). "Preventing transcriptional gene silencing by active 
DNA demethylation." FEBS Lett 579(26): 5889-5898. 

Karginov, F. V. and G. J. Hannon (2010). "The CRISPR system: small RNA-guided 
defense in bacteria and archaea." Mol Cell 37(1): 7-19. 

Kasschau, K. D., N. Fahlgren, et al. (2007). "Genome-wide profiling and analysis of 
Arabidopsis siRNAs." PLoS Biol 5(3): e57. 

Katiyar-Agarwal, S., S. Gao, et al. (2007). "A novel class of bacteria-induced small 
RNAs in Arabidopsis." Genes Dev 21(23): 3123-3134. 

Katiyar-Agarwal, S., R. Morgan, et al. (2006). "A pathogen-inducible endogenous siRNA 
in plant immunity." Proc Natl Acad Sci U S A 103(47): 18002-18007. 

Kim, V. N., J. Han, et al. (2009). "Biogenesis of small RNAs in animals." Nat Rev Mol 
Cell Biol 10(2): 126-139. 



59 
 

Kimura, M., H. Suzuki, et al. (2002). "Formation of a carboxy-terminal domain 
phosphatase (Fcp1)/TFIIF/RNA polymerase II (pol II) complex in 
Schizosaccharomyces pombe involves direct interaction between Fcp1 and the 
Rpb4 subunit of pol II." Mol Cell Biol 22(5): 1577-1588. 

Kinoshita, T., A. Miura, et al. (2004). "One-way control of FWA imprinting in 
Arabidopsis endosperm by DNA methylation." Science 303(5657): 521-523. 

Klimasauskas, S., S. Kumar, et al. (1994). "HhaI methyltransferase flips its target base 
out of the DNA helix." Cell 76(2): 357-369. 

Koyama, H., T. Ito, et al. (2007). "Stimulation of RNA polymerase II transcript cleavage 
activity contributes to maintain transcriptional fidelity in yeast." Genes Cells 
12(5): 547-559. 

Kwapisz, M., F. Beckouet, et al. (2008). "Early evolution of eukaryotic DNA-dependent 
RNA polymerases." Trends Genet 24(5): 211-215. 

Lahmy, S., N. Bies-Etheve, et al. (2010). "Plant-specific multisubunit RNA polymerase 
in gene silencing." Epigenetics 5(1): 4-8. 

Lahmy, S., D. Pontier, et al. (2009). "PolV(PolIVb) function in RNA-directed DNA 
methylation requires the conserved active site and an additional plant-specific 
subunit." Proc Natl Acad Sci U S A 106(3): 941-946. 

Larkin, R. M. and T. J. Guilfoyle (1998). "Two small subunits in Arabidopsis RNA 
polymerase II are related to yeast RPB4 and RPB7 and interact with one 
another." J Biol Chem 273(10): 5631-5637. 

Larkin, R. M., G. Hagen, et al. (1999). "Arabidopsis thaliana RNA polymerase II 
subunits related to yeast and human RPB5." Gene 231(1-2): 41-47. 

Law, J. A., I. Ausin, et al. (2010). "A protein complex required for polymerase V 
transcripts and RNA- directed DNA methylation in Arabidopsis." Curr Biol 
20(10): 951-956. 

Lawrence, R. J., K. Earley, et al. (2004). "A concerted DNA methylation/histone 
methylation switch regulates rRNA gene dosage control and nucleolar 
dominance." Mol Cell 13(4): 599-609. 

Lawrence, R. J. and C. S. Pikaard (2004). "Chromatin turn ons and turn offs of ribosomal 
RNA genes." Cell Cycle 3(7): 880-883. 

Lee, Y. S., K. Nakahara, et al. (2004). "Distinct roles for Drosophila Dicer-1 and Dicer-2 
in the siRNA/miRNA silencing pathways." Cell 117(1): 69-81. 

Lewis, M. S. and C. S. Pikaard (2001). "Restricted chromosomal silencing in nucleolar 
dominance." Proc Natl Acad Sci U S A 98(25): 14536-14540. 

Li, C. F., O. Pontes, et al. (2006). "An ARGONAUTE4-containing nuclear processing 
center colocalized with Cajal bodies in Arabidopsis thaliana." Cell 126(1): 93-
106. 

Li, J., Z. Yang, et al. (2005). "Methylation protects miRNAs and siRNAs from a 3'-end 
uridylation activity in Arabidopsis." Curr Biol 15(16): 1501-1507. 

Li, S., B. Ding, et al. (2006). "Evidence that the transcription elongation function of Rpb9 
is involved in transcription-coupled DNA repair in Saccharomyces 
cerevisiae." Mol Cell Biol 26(24): 9430-9441. 

Lindroth, A. M., X. Cao, et al. (2001). "Requirement of CHROMOMETHYLASE3 for 
maintenance of CpXpG methylation." Science 292(5524): 2077-2080. 



60 
 

Lister, R., R. C. O'Malley, et al. (2008). "Highly integrated single-base resolution maps 
of the epigenome in Arabidopsis." Cell 133(3): 523-536. 

Liu, J., M. A. Carmell, et al. (2004). "Argonaute2 is the catalytic engine of mammalian 
RNAi." Science 305(5689): 1437-1441. 

Liu, Q., Y. Feng, et al. (2009). "Dicer-like (DCL) proteins in plants." Funct Integr 
Genomics 9(3): 277-286. 

Lotan, R., V. G. Bar-On, et al. (2005). "The RNA polymerase II subunit Rpb4p mediates 
decay of a specific class of mRNAs." Genes Dev 19(24): 3004-3016. 

Lotan, R., V. Goler-Baron, et al. (2007). "The Rpb7p subunit of yeast RNA polymerase II 
plays roles in the two major cytoplasmic mRNA decay mechanisms." J Cell Biol 
178(7): 1133-1143. 

Luger, K., A. W. Mader, et al. (1997). "Crystal structure of the nucleosome core particle 
at 2.8 A resolution." Nature 389(6648): 251-260. 

Luo, J. and B. D. Hall (2007). "A multistep process gave rise to RNA polymerase IV of 
land plants." J Mol Evol 64(1): 101-112. 

Maillet, I., J. M. Buhler, et al. (1999). "Rpb4p is necessary for RNA polymerase II 
activity at high temperature." J Biol Chem 274(32): 22586-22590. 

Makarova, K. S., Y. I. Wolf, et al. (2009). "Prokaryotic homologs of Argonaute proteins 
are predicted to function as key components of a novel system of defense against 
mobile genetic elements." Biol Direct 4: 29. 

Mallory, A. and H. Vaucheret (2010). "Form, function, and regulation of ARGONAUTE 
proteins." Plant Cell 22(12): 3879-3889. 

Margis, R., A. F. Fusaro, et al. (2006). "The evolution and diversification of Dicers in 
plants." FEBS Lett 580(10): 2442-2450. 

Marmorstein, R. and R. C. Trievel (2009). "Histone modifying enzymes: structures, 
mechanisms, and specificities." Biochim Biophys Acta 1789(1): 58-68. 

Marraffini, L. A. and E. J. Sontheimer (2010). "CRISPR interference: RNA-directed 
adaptive immunity in bacteria and archaea." Nat Rev Genet 11(3): 181-190. 

Martienssen, R. (2010). "Molecular biology. Small RNA makes its move." Science 
328(5980): 834-835. 

Martienssen, R. A. (2003). "Maintenance of heterochromatin by RNA interference of 
tandem repeats." Nat Genet 35(3): 213-214. 

Martienssen, R. A. (2010). "Heterochromatin, small RNA and post-fertilization 
dysgenesis in allopolyploid and interploid hybrids of Arabidopsis." New Phytol 
186(1): 46-53. 

Mathieu, O., J. Reinders, et al. (2007). "Transgenerational stability of the Arabidopsis 
epigenome is coordinated by CG methylation." Cell 130(5): 851-862. 

Matzke, M., T. Kanno, et al. (2009). "RNA-mediated chromatin-based silencing in 
plants." Curr Opin Cell Biol 21(3): 367-376. 

McClintock, B. (1934). "The relation of a particular chromosomal element to the 
development of the nucleoli in Zea mays." Cell and Tissue Research 21(2): 294-
326. 

McGinnis, K. M., C. Springer, et al. (2006). "Transcriptionally silenced transgenes in 
maize are activated by three mutations defective in paramutation." Genetics 
173(3): 1637-1647. 



61 
 

McKune, K., K. L. Richards, et al. (1993). "RPB7, one of two dissociable subunits of 
yeast RNA polymerase II, is essential for cell viability." Yeast 9(3): 295-299. 

McStay, B. (2006). "Nucleolar dominance: a model for rRNA gene silencing." Genes 
Dev 20(10): 1207-1214. 

McStay, B. and I. Grummt (2008). "The epigenetics of rRNA genes: from molecular to 
chromosome biology." Annu Rev Cell Dev Biol 24: 131-157. 

Meka, H., F. Werner, et al. (2005). "Crystal structure and RNA binding of the Rpb4/Rpb7 
subunits of human RNA polymerase II." Nucleic Acids Res 33(19): 6435-6444. 

Meyer, P. (2010). "DNA methylation systems and targets in plants." FEBS Lett. 
Mi, S., T. Cai, et al. (2008). "Sorting of small RNAs into Arabidopsis argonaute 

complexes is directed by the 5' terminal nucleotide." Cell 133(1): 116-127. 
Minakhin, L., S. Nechaev, et al. (2001). "Recombinant Thermus aquaticus RNA 

polymerase, a new tool for structure-based analysis of transcription." J Bacteriol 
183(1): 71-76. 

Mitsuzawa, H., E. Kanda, et al. (2003). "Rpb7 subunit of RNA polymerase II interacts 
with an RNA-binding protein involved in processing of transcripts." Nucleic 
Acids Res 31(16): 4696-4701. 

Mochizuki, K., N. A. Fine, et al. (2002). "Analysis of a piwi-related gene implicates 
small RNAs in genome rearrangement in tetrahymena." Cell 110(6): 689-699. 

Molnar, A., C. Melnyk, et al. (2011). "Silencing signals in plants: a long journey for 
small RNAs." Genome Biol 12(1): 215. 

Molnar, A., C. W. Melnyk, et al. (2010). "Small silencing RNAs in plants are mobile and 
direct epigenetic modification in recipient cells." Science 328(5980): 872-875. 

Morales-Ruiz, T., A. P. Ortega-Galisteo, et al. (2006). "DEMETER and REPRESSOR 
OF SILENCING 1 encode 5-methylcytosine DNA glycosylases." Proc Natl Acad 
Sci U S A 103(18): 6853-6858. 

Morel, J. B., C. Godon, et al. (2002). "Fertile hypomorphic ARGONAUTE (ago1) 
mutants impaired in post-transcriptional gene silencing and virus 
resistance." Plant Cell 14(3): 629-639. 

Morgan, H. D., W. Dean, et al. (2004). "Activation-induced cytidine deaminase 
deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: 
implications for epigenetic reprogramming." J Biol Chem 279(50): 52353-52360. 

Mosher, R. A., C. W. Melnyk, et al. (2009). "Uniparental expression of PolIV-dependent 
siRNAs in developing endosperm of Arabidopsis." Nature 460(7252): 283-286. 

Mosher, R. A., F. Schwach, et al. (2008). "PolIVb influences RNA-directed DNA 
methylation independently of its role in siRNA biogenesis." Proc Natl Acad Sci U 
S A 105(8): 3145-3150. 

Moss, T. and V. Y. Stefanovsky (2002). "At the center of eukaryotic life." Cell 109(5): 
545-548. 

Mourrain, P., C. Beclin, et al. (2000). "Arabidopsis SGS2 and SGS3 genes are required 
for posttranscriptional gene silencing and natural virus resistance." Cell 101(5): 
533-542. 

Nan, X., S. Cross, et al. (1998). "Gene silencing by methyl-CpG-binding 
proteins." Novartis Found Symp 214: 6-16; discussion 16-21, 46-50. 



62 
 

Napoli, C., C. Lemieux, et al. (1990). "Introduction of a Chimeric Chalcone Synthase 
Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in 
trans." Plant Cell 2(4): 279-289. 

Naumann, U., L. Daxinger, et al. (2011). "Genetic Evidence That DNA 
Methyltransferase DRM2 Has a Direct Catalytic Role in RNA-Directed DNA 
Methylation in Arabidopsis thaliana." Genetics 187(3): 977-979. 

Ndlovu, M. N., H. Denis, et al. (2011). "Exposing the DNA methylome iceberg." Trends 
Biochem Sci. 

Nesser, N. K., D. O. Peterson, et al. (2006). "RNA polymerase II subunit Rpb9 is 
important for transcriptional fidelity in vivo." Proc Natl Acad Sci U S A 103(9): 
3268-3273. 

Ng, H. H. and A. Bird (1999). "DNA methylation and chromatin modification." Curr 
Opin Genet Dev 9(2): 158-163. 

Onodera, Y., J. R. Haag, et al. (2005). "Plant nuclear RNA polymerase IV mediates 
siRNA and DNA methylation-dependent heterochromatin formation." Cell 
120(5): 613-622. 

Onodera, Y., K. Nakagawa, et al. (2008). "Sex-biased lethality or transmission of 
defective transcription machinery in Arabidopsis." Genetics 180(1): 207-218. 

Ooi, S. K. and T. H. Bestor (2008). "The colorful history of active DNA 
demethylation." Cell 133(7): 1145-1148. 

Ooi, S. K. and T. H. Bestor (2008). "Cytosine methylation: remaining faithful." Curr Biol 
18(4): R174-176. 

Ooi, S. K., A. H. O'Donnell, et al. (2009). "Mammalian cytosine methylation at a 
glance." J Cell Sci 122(Pt 16): 2787-2791. 

Ooi, S. K., C. Qiu, et al. (2007). "DNMT3L connects unmethylated lysine 4 of histone 
H3 to de novo methylation of DNA." Nature 448(7154): 714-717. 

Orlicky, S. M., P. T. Tran, et al. (2001). "Dissociable Rpb4-Rpb7 subassembly of rna 
polymerase II binds to single-strand nucleic acid and mediates a post-recruitment 
step in transcription initiation." J Biol Chem 276(13): 10097-10102. 

Ortega-Galisteo, A. P., T. Morales-Ruiz, et al. (2008). "Arabidopsis DEMETER-LIKE 
proteins DML2 and DML3 are required for appropriate distribution of DNA 
methylation marks." Plant Mol Biol 67(6): 671-681. 

Pal-Bhadra, M., U. Bhadra, et al. (1997). "Cosuppression in Drosophila: gene silencing of 
Alcohol dehydrogenase by white-Adh transgenes is Polycomb dependent." Cell 
90(3): 479-490. 

Pal-Bhadra, M., B. A. Leibovitch, et al. (2004). "Heterochromatic silencing and HP1 
localization in Drosophila are dependent on the RNAi machinery." Science 
303(5658): 669-672. 

Penterman, J., R. Uzawa, et al. (2007). "Genetic interactions between DNA 
demethylation and methylation in Arabidopsis." Plant Physiol 145(4): 1549-1557. 

Penterman, J., D. Zilberman, et al. (2007). "DNA demethylation in the Arabidopsis 
genome." Proc Natl Acad Sci U S A 104(16): 6752-6757. 

Pham, J. W., J. L. Pellino, et al. (2004). "A Dicer-2-dependent 80s complex cleaves 
targeted mRNAs during RNAi in Drosophila." Cell 117(1): 83-94. 

Pikaard, C. S. (1999). "Nucleolar dominance and silencing of transcription." Trends Plant 
Sci 4(12): 478-483. 



63 
 

Pikaard, C. S. (2000). "The epigenetics of nucleolar dominance." Trends Genet 16(11): 
495-500. 

Pikaard, C. S. (2000). "Nucleolar dominance: uniparental gene silencing on a multi-
megabase scale in genetic hybrids." Plant Mol Biol 43(2-3): 163-177. 

Pikaard, C. S., J. R. Haag, et al. (2008). "Roles of RNA polymerase IV in gene 
silencing." Trends Plant Sci 13(7): 390-397. 

Pikaard, C. S., S. Preuss, et al. (2005). "Detecting differential expression of parental or 
progenitor alleles in genetic hybrids and allopolyploids." Methods Enzymol 395: 
554-569. 

Pikaard, C. S. and S. Tucker (2009). "RNA-silencing enzymes Pol IV and Pol V in 
maize: more than one flavor?" PLoS Genet 5(11): e1000736. 

Ponferrada-Marin, M. I., M. I. Martinez-Macias, et al. (2010). "Methylation-independent 
DNA binding modulates specificity of Repressor of Silencing 1 (ROS1) and 
facilitates demethylation in long substrates." J Biol Chem 285(30): 23032-23039. 

Pontes, O., R. J. Lawrence, et al. (2007). "Postembryonic establishment of megabase-
scale gene silencing in nucleolar dominance." PLoS One 2(11): e1157. 

Pontes, O., C. F. Li, et al. (2006). "The Arabidopsis chromatin-modifying nuclear siRNA 
pathway involves a nucleolar RNA processing center." Cell 126(1): 79-92. 

Pontvianne, F., T. Blevins, et al. (2010). "Arabidopsis Histone Lysine 
Methyltransferases." Adv Bot Res 53: 1-22. 

Preuss, S. and C. S. Pikaard (2007). "rRNA gene silencing and nucleolar dominance: 
insights into a chromosome-scale epigenetic on/off switch." Biochim Biophys 
Acta 1769(5-6): 383-392. 

Preuss, S. B., P. Costa-Nunes, et al. (2008). "Multimegabase silencing in nucleolar 
dominance involves siRNA-directed DNA methylation and specific 
methylcytosine-binding proteins." Mol Cell 32(5): 673-684. 

Probst, A. V., M. Fagard, et al. (2004). "Arabidopsis histone deacetylase HDA6 is 
required for maintenance of transcriptional gene silencing and determines nuclear 
organization of rDNA repeats." Plant Cell 16(4): 1021-1034. 

Qi, Y., X. He, et al. (2006). "Distinct catalytic and non-catalytic roles of ARGONAUTE4 
in RNA-directed DNA methylation." Nature 443(7114): 1008-1012. 

Rajakumara, E., J. A. Law, et al. (2011). "A dual flip-out mechanism for 5mC 
recognition by the Arabidopsis SUVH5 SRA domain and its impact on DNA 
methylation and H3K9 dimethylation in vivo." Genes Dev 25(2): 137-152. 

Ream, T. S., J. R. Haag, et al. (2009). "Subunit compositions of the RNA-silencing 
enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA 
polymerase II." Mol Cell 33(2): 192-203. 

Richards, E. J. and S. C. Elgin (2002). "Epigenetic codes for heterochromatin formation 
and silencing: rounding up the usual suspects." Cell 108(4): 489-500. 

Richmond, T. J. and C. A. Davey (2003). "The structure of DNA in the nucleosome 
core." Nature 423(6936): 145-150. 

Rivas, F. V., N. H. Tolia, et al. (2005). "Purified Argonaute2 and an siRNA form 
recombinant human RISC." Nat Struct Mol Biol 12(4): 340-349. 

Romano, N. and G. Macino (1992). "Quelling: transient inactivation of gene expression 
in Neurospora crassa by transformation with homologous sequences." Mol 
Microbiol 6(22): 3343-3353. 



64 
 

Ruan, W., E. Lehmann, et al. (2011). "Evolution of two modes of intrinsic RNA 
polymerase transcript cleavage." J Biol Chem. 

Runner, V. M., V. Podolny, et al. (2008). "The Rpb4 subunit of RNA polymerase II 
contributes to cotranscriptional recruitment of 3' processing factors." Mol Cell 
Biol 28(6): 1883-1891. 

Saez-Vasquez, J. and C. S. Pikaard (1997). "Extensive purification of a putative RNA 
polymerase I holoenzyme from plants that accurately initiates rRNA gene 
transcription in vitro." Proc Natl Acad Sci U S A 94(22): 11869-11874. 

Saito, K. and M. C. Siomi (2010). "Small RNA-mediated quiescence of transposable 
elements in animals." Dev Cell 19(5): 687-697. 

Sampath, V., B. Balakrishnan, et al. (2008). "Unstructured N terminus of the RNA 
polymerase II subunit Rpb4 contributes to the interaction of Rpb4.Rpb7 
subcomplex with the core RNA polymerase II of Saccharomyces cerevisiae." J 
Biol Chem 283(7): 3923-3931. 

Schauer, S. E., S. E. Jacobsen, et al. (2002). "DICER-LIKE1: blind men and elephants in 
Arabidopsis development." Trends Plant Sci 7(11): 487-491. 

Schiebel, W., T. Pelissier, et al. (1998). "Isolation of an RNA-directed RNA polymerase-
specific cDNA clone from tomato." Plant Cell 10(12): 2087-2101. 

Schramke, V., D. M. Sheedy, et al. (2005). "RNA-interference-directed chromatin 
modification coupled to RNA polymerase II transcription." Nature 435(7046): 
1275-1279. 

Schwartz, Y. B. and V. Pirrotta (2007). "Polycomb silencing mechanisms and the 
management of genomic programmes." Nat Rev Genet 8(1): 9-22. 

Selitrennik, M., L. Duek, et al. (2006). "Nucleocytoplasmic shuttling of the Rpb4p and 
Rpb7p subunits of Saccharomyces cerevisiae RNA polymerase II by two 
pathways." Eukaryot Cell 5(12): 2092-2103. 

Sheffer, A., M. Varon, et al. (1999). "Rpb7 can interact with RNA polymerase II and 
support transcription during some stresses independently of Rpb4." Mol Cell Biol 
19(4): 2672-2680. 

Sidorenko, L., J. E. Dorweiler, et al. (2009). "A dominant mutation in mediator of 
paramutation2, one of three second-largest subunits of a plant-specific RNA 
polymerase, disrupts multiple siRNA silencing processes." PLoS Genet 5(11): 
e1000725. 

Siomi, M. C., K. Sato, et al. (2011). "PIWI-interacting small RNAs: the vanguard of 
genome defence." Nat Rev Mol Cell Biol 12(4): 246-258. 

Slotkin, R. K. and R. Martienssen (2007). "Transposable elements and the epigenetic 
regulation of the genome." Nat Rev Genet 8(4): 272-285. 

Slotkin, R. K., M. Vaughn, et al. (2009). "Epigenetic reprogramming and small RNA 
silencing of transposable elements in pollen." Cell 136(3): 461-472. 

Smardon, A., J. M. Spoerke, et al. (2000). "EGO-1 is related to RNA-directed RNA 
polymerase and functions in germ-line development and RNA interference in C. 
elegans." Curr Biol 10(4): 169-178. 

Smith, L. M., O. Pontes, et al. (2007). "An SNF2 protein associated with nuclear RNA 
silencing and the spread of a silencing signal between cells in Arabidopsis." Plant 
Cell 19(5): 1507-1521. 



65 
 

Song, J., O. Rechkoblit, et al. (2011). "Structure of DNMT1-DNA complex reveals a role 
for autoinhibition in maintenance DNA methylation." Science 331(6020): 1036-
1040. 

Stevenson, D. S. and P. Jarvis (2003). "Chromatin silencing: RNA in the driving 
seat." Curr Biol 13(1): R13-15. 

Sun, Z. W., A. Tessmer, et al. (1996). "Functional interaction between TFIIB and the 
Rpb9 (Ssu73) subunit of RNA polymerase II in Saccharomyces 
cerevisiae." Nucleic Acids Res 24(13): 2560-2566. 

Suzuki, M. M. and A. Bird (2008). "DNA methylation landscapes: provocative insights 
from epigenomics." Nat Rev Genet 9(6): 465-476. 

Swiezewski, S., P. Crevillen, et al. (2007). "Small RNA-mediated chromatin silencing 
directed to the 3' region of the Arabidopsis gene encoding the developmental 
regulator, FLC." Proc Natl Acad Sci U S A 104(9): 3633-3638. 

Tabara, H., M. Sarkissian, et al. (1999). "The rde-1 gene, RNA interference, and 
transposon silencing in C. elegans." Cell 99(2): 123-132. 

Tabara, H., E. Yigit, et al. (2002). "The dsRNA binding protein RDE-4 interacts with 
RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans." Cell 
109(7): 861-871. 

Takeda, S. and J. Paszkowski (2006). "DNA methylation and epigenetic inheritance 
during plant gametogenesis." Chromosoma 115(1): 27-35. 

Tan, Q., M. H. Prysak, et al. (2003). "Loss of the Rpb4/Rpb7 subcomplex in a mutant 
form of the Rpb6 subunit shared by RNA polymerases I, II, and III." Mol Cell 
Biol 23(9): 3329-3338. 

Taverna, S. D., H. Li, et al. (2007). "How chromatin-binding modules interpret histone 
modifications: lessons from professional pocket pickers." Nat Struct Mol Biol 
14(11): 1025-1040. 

Teixeira, F. K., F. Heredia, et al. (2009). "A role for RNAi in the selective correction of 
DNA methylation defects." Science 323(5921): 1600-1604. 

Tijsterman, M., R. F. Ketting, et al. (2002). "The genetics of RNA silencing." Annu Rev 
Genet 36: 489-519. 

Timmons, L. and A. Fire (1998). "Specific interference by ingested dsRNA." Nature 
395(6705): 854. 

Tsai, M. C., O. Manor, et al. (2010). "Long noncoding RNA as modular scaffold of 
histone modification complexes." Science 329(5992): 689-693. 

Tucker, S., A. Vitins, et al. (2010). "Nucleolar dominance and ribosomal RNA gene 
silencing." Curr Opin Cell Biol 22(3): 351-356. 

Tucker, S. L., J. Reece, et al. (2011). "Evolutionary History of Plant Multisubunit RNA 
Polymerases IV and V: Subunit Origins via Genome-Wide and Segmental Gene 
Duplications, Retrotransposition, and Lineage-Specific 
Subfunctionalization." Cold Spring Harb Symp Quant Biol. 

Tuite, M. F. and T. R. Serio (2010). "The prion hypothesis: from biological anomaly to 
basic regulatory mechanism." Nat Rev Mol Cell Biol 11(12): 823-833. 

Ujvari, A. and D. S. Luse (2006). "RNA emerging from the active site of RNA 
polymerase II interacts with the Rpb7 subunit." Nat Struct Mol Biol 13(1): 49-54. 

Ulmasov, T. and T. J. Guilfoyle (1992). "Sequence of the fifth largest subunit of RNA 
polymerase II from plants." J Biol Chem 267(32): 23165-23169. 



66 
 

Valenzuela, P., G. I. Bell, et al. (1978). "Isolation and assay of eukaryotic DNA-
dependent RNA polymerases." Methods Cell Biol 19: 1-26. 

van der Oost, J. and S. J. Brouns (2009). "RNAi: prokaryotes get in on the act." Cell 
139(5): 863-865. 

Van Emburgh, B. O. and K. D. Robertson (2011). "Modulation of Dnmt3b function in 
vitro by interactions with Dnmt3L, Dnmt3a and Dnmt3b splice variants." Nucleic 
Acids Res. 

Vaucheret, H. (2008). "Plant ARGONAUTES." Trends Plant Sci 13(7): 350-358. 
Voinnet, O. (2005). "Non-cell autonomous RNA silencing." FEBS Lett 579(26): 5858-

5871. 
Walmacq, C., M. L. Kireeva, et al. (2009). "Rpb9 subunit controls transcription fidelity 

by delaying NTP sequestration in RNA polymerase II." J Biol Chem 284(29): 
19601-19612. 

Wang, B., D. N. Jones, et al. (1998). "High-resolution structure of an archaeal zinc ribbon 
defines a general architectural motif in eukaryotic RNA polymerases." Structure 
6(5): 555-569. 

Wang, M. B. and E. S. Dennis (2009). "SPT5-like, a new component in plant 
RdDM." EMBO Rep 10(6): 573-575. 

Wang, Y., W. Fischle, et al. (2004). "Beyond the double helix: writing and reading the 
histone code." Novartis Found Symp 259: 3-17; discussion 17-21, 163-169. 

Wassenegger, M. and G. Krczal (2006). "Nomenclature and functions of RNA-directed 
RNA polymerases." Trends Plant Sci 11(3): 142-151. 

Waterhouse, P. M., M. W. Graham, et al. (1998). "Virus resistance and gene silencing in 
plants can be induced by simultaneous expression of sense and antisense 
RNA." Proc Natl Acad Sci U S A 95(23): 13959-13964. 

Werner, F. (2007). "Structure and function of archaeal RNA polymerases." Mol 
Microbiol 65(6): 1395-1404. 

Werner, F. (2008). "Structural evolution of multisubunit RNA polymerases." Trends 
Microbiol 16(6): 247-250. 

Werner, F. and D. Grohmann (2011). "Evolution of multisubunit RNA polymerases in 
the three domains of life." Nat Rev Microbiol 9(2): 85-98. 

Werner, F. and R. O. Weinzierl (2002). "A recombinant RNA polymerase II-like enzyme 
capable of promoter-specific transcription." Mol Cell 10(3): 635-646. 

Werner, M., P. Thuriaux, et al. (2009). "Structure-function analysis of RNA polymerases 
I and III." Curr Opin Struct Biol 19(6): 740-745. 

Wierzbicki, A. T., J. R. Haag, et al. (2008). "Noncoding transcription by RNA 
polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and 
adjacent genes." Cell 135(4): 635-648. 

Wierzbicki, A. T., T. S. Ream, et al. (2009). "RNA polymerase V transcription guides 
ARGONAUTE4 to chromatin." Nat Genet 41(5): 630-634. 

Williams, K., J. Christensen, et al. (2011). "TET1 and hydroxymethylcytosine in 
transcription and DNA methylation fidelity." Nature. 

Wion, D. and J. Casadesus (2006). "N6-methyl-adenine: an epigenetic signal for DNA-
protein interactions." Nat Rev Microbiol 4(3): 183-192. 



67 
 

Woo, H. R., T. A. Dittmer, et al. (2008). "Three SRA-domain methylcytosine-binding 
proteins cooperate to maintain global CpG methylation and epigenetic silencing in 
Arabidopsis." PLoS Genet 4(8): e1000156. 

Wossidlo, M., T. Nakamura, et al. (2011). "5-Hydroxymethylcytosine in the mammalian 
zygote is linked with epigenetic reprogramming." Nat Commun 2: 241. 

Woychik, N. A. and M. Hampsey (2002). "The RNA polymerase II machinery: structure 
illuminates function." Cell 108(4): 453-463. 

Woychik, N. A., W. S. Lane, et al. (1991). "Yeast RNA polymerase II subunit RPB9 is 
essential for growth at temperature extremes." J Biol Chem 266(28): 19053-
19055. 

Woychik, N. A. and R. A. Young (1989). "RNA polymerase II subunit RPB4 is essential 
for high- and low-temperature yeast cell growth." Mol Cell Biol 9(7): 2854-2859. 

Wu, H., A. C. D'Alessio, et al. (2011). "Dual functions of Tet1 in transcriptional 
regulation in mouse embryonic stem cells." Nature. 

Wu, S. C. and Y. Zhang (2010). "Active DNA demethylation: many roads lead to 
Rome." Nat Rev Mol Cell Biol 11(9): 607-620. 

Xie, Z., E. Allen, et al. (2005). "DICER-LIKE 4 functions in trans-acting small 
interfering RNA biogenesis and vegetative phase change in Arabidopsis 
thaliana." Proc Natl Acad Sci U S A 102(36): 12984-12989. 

Xie, Z. and X. Qi (2008). "Diverse small RNA-directed silencing pathways in 
plants." Biochim Biophys Acta 1779(11): 720-724. 

Yura, T. and A. Ishihama (1979). "Genetics of bacterial RNA polymerases." Annu Rev 
Genet 13: 59-97. 

Zemach, A., I. E. McDaniel, et al. (2010). "Genome-wide evolutionary analysis of 
eukaryotic DNA methylation." Science 328(5980): 916-919. 

Zhang, G., E. A. Campbell, et al. (1999). "Crystal structure of Thermus aquaticus core 
RNA polymerase at 3.3 A resolution." Cell 98(6): 811-824. 

Zhang, X., I. R. Henderson, et al. (2007). "Role of RNA polymerase IV in plant small 
RNA metabolism." Proc Natl Acad Sci U S A 104(11): 4536-4541. 

Zhang, Y., R. Jurkowska, et al. (2010). "Chromatin methylation activity of Dnmt3a and 
Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 
tail." Nucleic Acids Res 38(13): 4246-4253. 

Zheng, X., O. Pontes, et al. (2008). "ROS3 is an RNA-binding protein required for DNA 
demethylation in Arabidopsis." Nature 455(7217): 1259-1262. 

Zheng, X., J. Zhu, et al. (2007). "Role of Arabidopsis AGO6 in siRNA accumulation, 
DNA methylation and transcriptional gene silencing." EMBO J 26(6): 1691-1701. 

Zhou, K., W. H. Kuo, et al. (2009). "Control of transcriptional elongation and 
cotranscriptional histone modification by the yeast BUR kinase substrate 
Spt5." Proc Natl Acad Sci U S A 106(17): 6956-6961. 

Zhu, J. K. (2009). "Active DNA demethylation mediated by DNA glycosylases." Annu 
Rev Genet 43: 143-166. 

Ziegler, L. M., D. A. Khaperskyy, et al. (2003). "Yeast RNA polymerase II lacking the 
Rpb9 subunit is impaired for interaction with transcription factor IIF." J Biol 
Chem 278(49): 48950-48956. 

Zilberman, D., X. Cao, et al. (2003). "ARGONAUTE4 control of locus-specific siRNA 
accumulation and DNA and histone methylation." Science 299(5607): 716-719. 



68 
 

Zilberman, D., X. Cao, et al. (2004). "Role of Arabidopsis ARGONAUTE4 in RNA-
directed DNA methylation triggered by inverted repeats." Curr Biol 14(13): 1214-
1220. 

 
 



69 
 

 

 

 

 

 

 

 

 

 

CHAPTER 2 

 

ARABIDOPSIS RNA POLYMERASE V SUBTYPES HAVING ALTERNATIVE 

NINTH SUBUNITS DIFFER IN RNA DIRECTED DNA METHYLATION ACTIVITY 

  



70 
 

Arabidopsis RNA Polymerase V subtypes having alternative ninth subunits differ in 

RNA-directed DNA methylation activity 

Ek Han Tan1,2, Todd Blevins1, Thomas S. Ream3, Craig S. Pikaard1* 

 

1Department of Biology and Department of Molecular and Cellular Biochemistry, 

Indiana University, Bloomington, Indiana 47405 

2Division of Biology and Biomedical Sciences, Washington University in St Louis, St 

Louis, Missouri 63110 

3Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 

 

* To whom correspondence should be addressed 

 

 

Email addresses: 

EHT: ehtan@wustl.edu 

CSP: pikaard@indiana.edu 

TB: toddblev@indiana.edu 

TSR: tream@wisc.edu 

 

 

** In submission to Genes and Development  



71 
 

Abstract 

Multisubunit RNA polymerases IV and V (Pol IV and Pol V) evolved as specialized 

forms of Pol II that mediate RNA silencing in plants. Arabidopsis Pols II, IV and V 

associate with alternative ninth subunits that are 93% identical. These alternative 

subunits, NRPB9a and NRPB9b, are redundant for Pol II-dependent viability but not 

RNA-directed DNA methylation (RdDM), which is abrogated in nrpb9b, but not nrpb9a, 

mutants. Pol IV-dependent siRNA biogenesis and silencing is unaffected in nrpb9b 

mutants but silencing requiring Pol V is disrupted, indicating that the NRPB9b-

containing Pol V subtype is specifically required for RdDM at these loci.  

 

Introduction 

Eukaryotes decode their genomes utilizing three essential nuclear DNA-

dependent RNA polymerases, abbreviated as Pol I, Pol II and Pol III (Cramer et al. 2008; 

Werner et al. 2009). In plants, two additional multisubunit RNA polymerases, Pol IV and 

Pol V are nonessential for viability but play key roles in the silencing of endogenous 

DNA repeats and transposable elements via RNA-directed DNA methylation, a process 

in which 24nt short interfering RNAs (siRNAs) specify the cytosine methylation of 

complementary DNA sequences (Herr et al. 2005; Kanno et al. 2005; Onodera et al. 

2005; Pontier et al. 2005). Genetic and cytological evidence indicate that Pol IV acts 

early in the pathway, generating primary RNA transcripts that serve as templates for 

RNA-DEPENDENT RNA POLYMERASE 2. Resulting double-stranded RNAs are 

diced into siRNA duplexes by DICER-LIKE 3 (DCL3) and 24 nt single-stranded siRNAs 

are then loaded into an Argonaute protein, primarily AGO4.  Independent of siRNA 
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biogenesis, Pol V generates transcripts at most loci that are subject to RdDM. AGO4 

binds to these RNAs, presumably guided by siRNA base-pairing to the Pol V transcripts 

as well as by interactions with the C-terminal domain of the Pol V largest subunit. In 

subsequent steps that are not well understood, chromatin modifying activities are 

recruited, resulting in de novo cytosine methylation and the establishment of repressive 

histone modifications. 

Subunit compositions of affinity-purified Pols II, IV and V of Arabidopsis 

thaliana, determined by mass spectrometry, show that each enzyme has 12 subunits, 

seven of which are encoded by the same genes. The largest subunit is unique in all three 

enzymes and the second-largest subunit of Pol II is distinct from the corresponding 

subunit of Pols IV or V, the latter two of which are encoded by the same gene. Together, 

the largest and second-largest subunits form the template channel and the catalytic center 

for RNA synthesis. The ten non-catalytic subunits play roles in the assembly or 

stabilization of the catalytic subunits and/or the interaction with regulators of 

transcription initiation, elongation or transcript processing.  

In yeast, the twelve Pol II subunits are encoded by single genes, ten of which are 

essential. The exceptions are rpb9 and rpb4 deletion strains, which are viable, but 

temperature-sensitive (Woychik et al. 1991; Maillet et al. 1999). Deletion of both RPB4 

and RPB9 is synthetically lethal (Li and Smerdon 2002). RPB4, together with RPB7, 

forms a sub-complex implicated in multiple steps of RNA elongation, termination and 

processing. RPB9 is implicated in multiple aspects of transcription including including 

transcription initiation, via interactions with general transcription factors (Hull et al. 

1995; Sun et al. 1996), transcript elongation and processivity (Awrey et al. 1997; 
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Hemming et al. 2000) and transcript cleavage upon misincorporation of improperly 

template nucleotides (Nesser et al. 2006; Walmacq et al. 2009). In vitro experiments have 

shown that RPB9 possesses weak intrinsic RNA cleavage activity that is stimulated in 

association with transcription factor TFIIS, a protein with which RPB9 shares sequence 

similarity (Koyama et al. 2007). RPB9 has also been found to be involved in 

transcription-coupled nucleotide excision repair of DNA (Li et al. 2006) and in the 

degradation of the Pol II largest subunit, RPB1 in response to UV damage (Chen et al. 

2007).  Collectively, these studies implicate RPB9 in multiple important pathways 

despite the viability of rpb9 deletion mutants under laboratory conditions.   

Arabidopsis thaliana expresses two genes homologous to yeast RPB9. The 

encoded proteins, NRPB9a and NRPB9b differ at only eight out of 114 amino acid 

positions. Both NRPB9 variants are detected by mass spectrometry in affinity purified 

samples of RNA polymerases II, IV or V that are free of cross-contamination with each 

other or other RNA polymerases. Likewise, all three polymerase make use of highly 

similar variants for the third, sixth, or eighth subunits.  The simplest hypothesis is that 

alternative variants for these subunits are functionally redundant. In keeping with this 

expectation, we show that nrpd9a or nrpb9b single mutants are viable, but the double 

mutant is embryo lethal, indicating that either NRPB9a or NRPB9b is sufficient for 

viability, attributable to their redundant functions in the context of Pol II.  Surprisingly, 

NRPB9a and NRPB9b are not redundant with respect to RNA-directed DNA methylation 

(RdDM) and gene silencing; whereas nrpb9b mutants are disrupted in RdDM, nrpb9a 

mutants have no mutant phenotype. We show that accumulation of 24 nt siRNAs is 

unaffected in nrpb9b, suggesting that Pol IV transcription of siRNA precursor transcripts 
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is not impaired. Likewise, analysis of a locus (MRD1) at which silencing and RdDM is 

dependent only on Pol IV, and not on Pol V, shows that silencing and RdDM is 

unaffected in nrpb9b mutants. However, at several well-studied loci whose silencing 

involves RNA-directed DNA methylation (RdDM) orchestrated by both Pol IV and Pol 

V, nrpb9b mutants show a loss of RdDM. Collectively, our results indicate that the use of 

alternative ninth subunits has functional consequences for Pol V activity, with the 

NRPB9b-containing Pol V subtype being specifically required for silencing at many, if 

not all, loci. Because Pol V transcripts are still detected in nrpb9b mutants, we propose 

that NRPB9b is not required for Pol V transcription but mediates interactions with 

proteins responsible for silencing at transcribed loci. 

  

Materials and Methods 

Plant materials 

nrpb9a-1 (Salk_032670) and nrpb9b-1 (Salk_031043) mutants bearing T-DNA insertions 

in the coding regions were obtained from the Arabidopsis Biological Resource Center, 

Ohio State University. Plants were grown on soil using a 18 hour light, 6 hour dark 

regimen. Genotyping involved PCR using primers flanking the insertion sites 

(Salk032670_LP: 5’cagacaaagaacagtgtcattcc, Salk032670_RP: 5’ttctggaattgcacctctctg, 

Salk031043_LP: 5’gatataaaggtgcatggggatatgc, Salk031043_RP: 

5’taaactcattaaattatcattccttgg) or the T-DNA left border ( LBa1: tggttcacgtagtgggccatcg).  

 

RT-PCR assays 

Total RNA was isolated using Trizol (Invitrogen). Reverse transcription was performed 
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on 100 ng of RQ1 DNAse (Promega)-treated RNA using SuperScriptIII (Invitrogen) and 

gene specific primers in order to generate cDNAs. PCR was performed using HotStart 

Taq (Fermentas). Primers for soloLTR, ATSN1 and Actin were previously described 

(Wierzbicki et al. 2008). Primers for NRPB9a and NRPB9b transcripts were: 9a_5’UTR: 

gtgattcagttttggttttggaacctaa, 9b_5’UTR: gtgaaatcaaagaagcattcaaaagctc, 9aRev: 

ttctctccagcgatgaccac and 9bRev: ttctctccaacggtgactacagtt. 

 

DNA methylation assays 

DNA was extracted using a Nucleon PhytoPure Genomic Extraction Kit (GE Healthcare). 

1ug DNA was subjected to restriction endonuclease digestion, electrophoresis on a 0.9% 

TAE gel and Southern blot hybridization using a 5S rRNA gene probe as described in 

(Blevins et al. 2009). For methylation-sensitive PCR, 1 ug DNA were digested overnight 

with the appropriate restriction enzyme (New England Biolabs) and 50 ng of DNA was 

then used in PCR reactions using primers that span the predicted methylation sites, using 

GoTaq Green polymerase (Fermentas) (Wierzbicki et al. 2008). 

 

Small RNA Northern blots 

Total RNA was fractionated using an RNeasy Kit (Qiagen) as described in (Blevins 

2010). 4ug of low molecular weight RNA was subjected to electrophoresis on a 12% 

denaturing polyacrylamide gel and transferred onto Hybond membranes (GE Healthcare). 

Prehybridization and hybridization in PerfectHyb buffer (Sigma) was performed at 37°C. 

DNA oligonucleotides that were 32P end-labeled using T4 Polynucleotide Kinase (New 

England Biolabs) and used for blot hybridizations were  siR1003: 
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atgccaagtttggcctcacggtct, soloLTR: tgtcattatccatcattcatctctatccataag and miR160: 

tggcatacagggagccaggca. 

 

Cloning and complementation 

A genomic clone for NRPB9b, including the promoter region, was obtained by PCR 

amplification of A. thaliana genomic DNA using PFU Ultra DNA polymerase 

(Stratagene), and primers: 9bPromF: caccgcacttcaacaacccaattaca and 9bRev: 

ttctctccaacggtgactacagtt. PCR products were captured in the pENTR D/TOPO 

(Invitrogen) entry vector and recombined into pEARLEYGATE 302 using LR CLonase 

II (Invitrogen) thereby adding a C-terminal FLAG epitope tag in place of the stop codon  

(Earley et al. 2006). The resulting construct was transformed into nrpb9b-1 homozygous 

mutant plants using the floral dip method for Agrobacterium-mediated gene transfer.  
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Results and Discussion 

RPB9 diversity and  

The RPB9 subunit of Pol II is encoded by a single-copy gene in yeast and 

metazoans but has multiple paralogs in plants. For instance, Populus trichocarpa (poplar) 

and Arabidopsis thaliana have two RPB9 variants in the Pol II clade and maize and rice 

have three identifiable RPB9-like genes (Figure 1; Figure S1). RPA12 and RPC11 are the 

RPB9-homologous subunits of Pol I and Pol III respectively, and these proteins in plants, 

yeast and vertebrates group together in clades distinct from the Pol II/IV/V RPB9 family.  

Arabidopsis NRPB9a (At3g16980) and NRPB9b (At4g16265) share similar 

intron/exon structures (Figure 2a) but differ in their promoter and intron sequences. T-

DNA insertion alleles of NRPB9a and NRPB9b, designated nrpb9a-1 (Salk_032670) and 

nrpb9b-1 (Salk_031043), are disrupted within introns 2 or 1, respectively (Figure 2a). 

Genotyping of progeny bearing insertion alleles revealed that homozygous nrpb9a-1 or 

nrpb9b-1 mutants are each viable. NRPB9a and NRPB9b are expressed at similar levels 

in wild-type plants (both in flowers and leaves) but their transcripts are not detected in 

nrpb9a-1 or nrpb9b-1 mutants suggesting that these are null mutants (Figure 2b). [where 

are the primer pairs? Add to figure part a] 

Whereas nrpb9a-1 mutants are indistinguishable from wild-type plants (ecotype 

Col-0), leaves of nrpb9b-1 are more ovate, have shorter petioles and display less 

downward edge curling (Figure 2c). These morphological differences are most likely due 

to altered Pol II transcription profiles given that null mutants for the catalytic largest 

subunits of Pol IV or Pol V (nrpd1-3 or nrpe1-11, respectively) do not display 

morphological phenotypes. Moreover, the nrpb9b-1 mutant phenotype persists in nrpb9b-
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1 nrpd1-3 or nrpb9b-1 nrpe1-11 double mutants (data not shown) ruling out a positive 

role for Pol IV or Pol V-dependent pathways in the phenotype. 

 

NRPB9a and NRPB9b are redundant for viability 

We crossed nrpb9a-1 and nrpb9b-1 plants to generate F1 plants that were 

heterozygous at each locus and then examined their progeny in subsequent generations 

following self-fertilization. In siliques of plants homozygous for nrpb9a-1 and 

heterozygous for nrpb9b-1, in which 25% of the seeds are expected to be homozygous 

double mutants, 30 % (55/181 analyzed) of the seeds were arrested in development and 

70% developed properly (indicated by red and blue arrows, respectively, in Figure 2d). 

Similar results were obtained for the progeny of plants homozygous for nrpb9b-1 but 

heterozygous for nrpb9a-1. Differential Interference Contrast microscopy revealed that in 

undeveloped seeds, embryos failed to develop past the globular stage (Figure 2d).  

Upon sowing the seeds of plants homozygous for nrpb9a-1 and heterozygous for 

nrpb9b-or vice versa, and genotyping their progeny, no nrpb9a-1 nrpb9b-1 double 

mutants were identified, but all other expected genotypes were detected (Figure 2e). We 

previously demonstrated that null mutants for catalytic subunits of Pol I, II or III are 

lethal, whereas equivalent Pol IV or V mutations are not lethal. Therefore, we interpret 

the results of Figures 2d and 2e to indicate that NRPB9a and NRPB9b are redundant with 

respect to RNA polymerase II functions that are essential for viability, such that either 

gene is sufficient for embryonic and post-embryonic development but the double mutant 

results in embryo lethality. However, the NRPB9a and NRPB9b genes must not be 
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completely redundant with regard to Pol II functions, as evident from the distinctive leaf 

morphology phenotypes observed only in nrpb9b mutants.  

 

Transmission of nrpb9a-1 and nrpb9b-1 mutations via male or female gametophytes  

Among the progeny of a heterozygote carrying a recessive allele of an essential 

gene, heterozygotes should outnumber homozygotes 2:1. However, among 129 

genotyped progeny of a plant homozygous for nrpb9a-1 and heterozygous for nrpb9b-1, 

69 were found to be heterozygous for nprb9b-1 and 60 were wild-type for NRPB9b 

(Figure 2e). Likewise, among the progeny of a plant homozygous for nrpb9b-1 and 

heterozygous for nrpb9a-1, 61 plants were homozygous for nrpb9a and 68 were 

homozygous wild-type (Figure 2e). The nearly 1:1 ratio of heterozygotes to homozygotes 

suggested a defect in the transmission of nrpb9a-1and nrpb9b-1 alleles through the 

haploid male or female gametophyes, or both, such that fewer heterozygotes than 

expected are recovered. To test this hypothesis, reciprocal crosses were performed 

between wild-type plants and plants homozygous for nrpb9a-1 but heterozygous for 

nrpb9b-1 or plants homozygous for nrpb9b-1 but heterozygous for nrpb9a-1. Genotyping 

of resulting F1 progeny showed reduced transmission of the mutant alleles through both 

the female and male gametophytes (Figure S2). Interestingly, this allele transmission 

behavior differs from that of null alleles for catalytic subunits of Pols I, II and III which 

cannot be maternally transmitted because the female gametophyte fails to develop to 

maturity, and thus egg cells are never fertilized. The fact that nrpb9a nrpb9b double 

mutants are transmitted maternally, albeit at reduced frequency, indicates that a 

functional ninth subunit is not required for Pol II functions necessary for development of 



80 
 

the haploid, 8-celled female gametophyte, unlike the catalytic subunits.  Instead, NRPB9 

is not essential until early embryogenesis. Therefore, we conclude that the ninth subunit 

of Pol II is partially dispensable for viability in plants, at least for gametophyte viability, 

in keeping with the viability of rpb9 deletion strains of yeast.  

 

NRPB9b is required for RNA silencing 

Pol IV and Pol V are required for the silencing retrotransposons and other 

genomic repeats. For example, soloLTR and AtSN1 retroelement expression is 

undetectable in wild-type plants (Col-0) using an RT-PCR assay (Figure 3A), but readily 

detected in nrpd1-3 or nrpe1-11   mutants defective for the largest subunits of Pol IV or 

Pol V, respectively, in agreement with prior studies (Onodera et al. 2005; Huettel et al. 

2006). In nrpb9a-1 mutants, soloLTR and AtSN1 elements remain silenced, as in 

wildtype (Figure 3A). By contrast, these elements are transcriptionally active in nrpb9b-1 

mutants, showing that NRPB9a and NRPB9b are not redundant with respect to 

transposon silencing. (Figure 3A).  

Retrotransposon silencing is correlated with cytosine hypermethylation. For 

instance, AluI sites within soloLTR elements and HaeIII sites within AtSN1 elements are 

subject to Pol IV and Pol V-dependent RdDM.  As a result, these sites are resistant to 

AluI or HaeIII digestion in wild-type plants such that PCR using primers that flank the 

restriction sites yields a product of the expected size (Figure 3B). By contrast, in Pol IV 

or Pol V catalytic mutants (nrpd1-3 or nrpe1-11), loss of methylation allows the enzymes 

to cleave, such that PCR amplification fails (Figure 3B). Using this technique, we detect 
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wild-type levels of cytosine methylation at AtSN1 and soloLTR loci in nrpb9a-1 mutants, 

but in nrpb9b-1 mutants, methylation is lost (Figure 3B). 

 To determine if repeated genes, as well as transposons, lose DNA methylation, 

the methylation states of 5S rRNA gene repeats were also assayed. Southern blotting 

using genomic DNA digested with methylation sensitive restriction enzymes, followed 

by hybridization to a 5S gene probe were performed. Methylated DNA is resistant to 

digestion such that bands at the top of the gel represent 5S gene repeats that are more 

methylated than bands at the bottom of the gel, corresponding to 5S genes that have been 

digested. Using HpaII, which assays for symmetric CG methylation, the Southern blot 

shows that CG methylation is reduced in the Pol IV and V catalytic mutants, nrpd1-3 and 

nrpe1-11, resulting in more bands at the bottom of the gel (Figure 3c). However, CG 

methylation of 5S genes does not change dramatically upon mutation of the nrpb9a-1 or 

nrpb9b-1 non-catalytic subunits. Repeating the Southern blot assay for asymmetric CHH 

methylation using HaeIII shows reduced methylation in nrpd1-3, nrpe1-1 and nrpb9b-1. 

These data show that CHH cytosine methylation is impaired in nrpb9b-1, as in mutants of 

Pol IV and V, whereas mutants of nrpb9a-1 have no effect, suggesting that NRPB9b, but 

not NRPB9a, is required for RdDM. 

 Pol IV and V have different roles in siRNA biogenesis; Pol IV is required for the 

biogenesis of 24nt heterochromatic siRNAs, whereas Pol V is not required for the 

generation of these siRNAs at most loci. However, 24nt siRNA levels are reduced at 

some loci in Pol V largest subunit mutants (Herr et al. 2005; Kanno et al. 2005; Onodera 

et al. 2005). To assay the abundance of small RNAs, small RNA blots were performed to 

compare a panel of Pol IV and V subunit mutants (Figure 3d). As expected, small RNAs 
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corresponding to 5S rRNA gene clusters (siR1003) are completely lost in nrpd1-3 

mutants but are present, albeit at substantially reduced levels in nrpe1-11 (Onodera et al. 

2005). Interestingly, siR1003 accumulation in nrpb9a-1 and nrpb9b-1 occur similar to 

wildtype levels, despite the apparent loss of CHH DNA methylation at 5S genes in 

nrpb9b-1. Likewise, 24nt siRNAs from soloLTR accumulate to the same levels in Col-0, 

nrpb9a-1 and nrpb9b-1 despite losses of DNA methylation and silencing of this locus in 

nrpb9b-1. 

 

Complementation of nrpb9b-1 

Using a transgene containing a genomic clone of NRPB9b, transcribed from its 

native promoter, the mutant phenotypes of nrpb9b-1 can be rescued. Figure S3a shows 

four independent transgenic lines that appear wildtype, as opposed to the displaying ovate 

leaves of the nrpb9b-1 mutant. The transcription of the NRPB9b gene is also restored in 

mutant lines expressing the NRPB9b transgene, as shown using RT-PCR (Figure S3b). 

The reestablishment of ATSN1 and soloLTR element silencing is also observed in the 

complemented lines, as in wildtype plants (Figure S3b). Likewise, asymmetric DNA 

methylation patterns are restored at the AtSN1 and soloLTR loci as shown using the 

HaeIII and AluI methylation sensitive PCR assay (Figure S3c). Collectively, these assays 

indicate that the mutant phenotypes observed in nrpb9b-1 are due to the loss of NRPB9b 

and not due to a second mutation elsewhere in the genome. 

 

NRPB9b is not required for Pol IV-mediated silencing and Pol V-dependent transcription 
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Next, we tested the specificity of 9th subunit usage by Pol IV using a novel site, 

MRD1 that is silenced specifically by Pol IV and do not require Pol V involvement. 

MRD1 is not expressed in wildtype (Col-0) and the nrpe1-11 Pol V catalytic subunit 

mutant, but is highly expressed in the Pol IV catalytic subunit mutant nrpd1-3 (Figure 

4a). The nrpb9a-1 and nrpb9b-1 mutants do not express MRD1, suggesting that the 

RdDM defects seen in nrpb9b-1 is not Pol IV-specific. Compared to the expression of 

soloLTR and AtSN1 retroelements, which is derepressed in either nrpd1-3 or nrpe1-11, 

loss of retroelement silencing is observed in nrpb9b-1as reported earlier. Taken together 

with the MRD1 expression, which is not affected in in nrpb9b-1, the NRPB9b subunit 

most likely a crucial RdDM component of Pol V and not Pol IV (Figure 4a). 

Pol V has recently been shown to produce intergenic transcripts that recruit 

AGO4 to target DNA methylation (Wierzbicki et al. 2008; Wierzbicki et al. 2009). In the 

nrpb9a-1 and nrpb9b-1 mutants, Pol V-dependent transcription of IGN5 is not lost while 

IGN5 transcription is lost in the catalytic nrpe1-11 mutant of Pol V largest subunit 

(Figure 4b). Pol V associates with NRPB9a or NRPB9b from mass spectrometry analysis 

(Ream et al. 2009), and is likely able to transcribe non-coding RNA at these loci with 

either of the two 9th subunits.  

The observations that 24nt siRNA biogenesis and Pol IV-specific silencing of 

MRD1 are not affected in the nrpb9b-1 mutant suggests that the RdDM defects are not 

likely due to defects in Pol IV. The transcription of IGN5 in both nrpb9a-1 as well as 

nrpb9b-1 mutants shows that non-coding Pol V transcription can be made by NRPB9a- 

or NRPB9b-associated Pol V. Therefore, the defects in establishing RdDM in nrpb9b-1 
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points to a distinct role of NRPB9b-associated Pol V in the recruitment of effector step 

proteins.  

 

Discussion 

 In this report, we provided evidence that NRPB9a and NRPB9b are redundant 

with respect to Pol II functions, but not redundant with respect to RNA silencing 

involving NRPB9b-associated Pol V. We deduce that Pol II does not appear to 

discriminate between NRPB9a or NRPB9b for mRNA synthesis, and either protein is 

sufficient for viability, whereas the double mutant is lethal.  However, the altered leaf 

morphology in nrpb9b-1 suggests that the two variant forms of NRPB9 are not fully 

redundant, as other Pol IV and V subunit mutants do not exhibit any morphological 

phenotypes, suggesting that any phenotypes observed are due to Pol II dysfunction 

(Onodera et al. 2005; He et al. 2009; Ream et al. 2009).  

We observe that the transmission of the doubly mutant nrpb9a-1 nrpb9b-1 

gametes occur at much at much lower frequencies in the male than the female. This 

observation is in contrast to mutant alleles for Pol I, II or III essential subunits, which 

show zero transmission through the ovules due to female gametophyte lethality prior to 

fertilization (Onodera et al. 2008). In contrast, the doubly mutant nrpb9a-1 nrpb9b-1 

gametophytes develop and fertilization occurs, but the embryos fail to develop fully. The 

male gametophytes of Pol I, II or III catalytic subunit mutants are viable but mutant 

alleles have reduced transmission rates due to the failure of pollen tubes to reach the most 

distant ovules. The nrpb9a-1 nrpb9b-1 double mutant pollen may have similarly reduced 

vigor (Onodera et al. 2008). The fact that NRPB9a and NRPB9b are not as essential as 
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Pol I, II or III catalytic subunits for female gametophyte development suggests that they 

may be partially dispensable for Pol II function, similar to yeast (Woychik et al. 1991; 

Onodera et al. 2008). In fact, as we have observed, the homozygous nrpb9a-1 nrpb9b-1 

double mutant embryos are able to develop up to the globular stage before development 

stops, which is not a feature of the null mutants of Pol I, II or III subunits. Instead, the 

NRPB9 null mutants phenocopy hypomorphic, but not null, mutants of Pol II catalytic 

catalytic subunits (Onodera et al. 2008).   

Comparing 5S rRNA array methylation at symmetric CG dinucleotides exposes a 

clear role for Pol IV and V catalytic subunits in maintaining CG methylation at these loci. 

However, in mutant non-catalytic subunits of Pol IV and V, CG methylation is not lost as 

dramatically as catalytic subunit mutants. Pol IV dependent siRNA accumulation is not 

affected in either nrpb9a-1 or nrpb9b-1 mutants and suggests that either NRPB9a- or 

NRPB9b-associated Pol IV are functional in terms of producing precursor siRNA 

transcripts. Likewise, Pol V catalytic subunit mutant siRNA accumulation is reduced, yet 

nrpb9b-1 does not appear to have similar defects to nrpe1-11. So, the RdDM defects in 

nrpb9b-1 appear to uncouple siRNA biogenesis from other functions of Pol IV or Pol V. 

Other non-catalytic subunit mutants such as nrpd4/e4 and nrpe5 also disrupt silencing 

without abolishing or severely reducing siRNA biogenesis (He et al. 2009; Ream et al. 

2009). Collectively, these results suggest that non-catalytic subunits may be dispensable 

for Pol IV or V transcription, but essential for interactions with chromatin modifying 

activities that interact with Pol V to bring about silencing. 
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NRPB9a and NRPB9b differences are mapped to surface residues 

How do the different amino acid sequences between NRPB9a and NRPB9b 

translate to their functional architecture? Alignment of the amino acid sequences of 

NRPB9a and NRPB9b shows that the two proteins are very similar (Figure 7a). Only 8 

out of the 114 amino acids are different between NRPB9a and NRPB9b, which are 93% 

identical and 97% similar overall.  Based on a multiple alignment with yeast RPB9, the 

eight amino acid residues that are different on NRPB9a and NRPB9b can be 

superimposed on the RPB9 subunit from the PDB:1Y1W crystal structure, which is a 12 

subunit Pol II elongation complex from yeast (Kettenberger et al. 2004). Amino acids 

highlighted in red correspond to orthologous amino acids that differ between NRPB9a 

and NRPB9b (Figure 7b).  

RPB9 has two zinc finger domains referred to as Zn1 and Zn2, in the N-terminal 

and C-terminal domain. These Zn fingers are separated by a linker region. The Zn2 

domain shares some homology with the zinc finger domain of TFIIS and is thought to 

facilitate efficient transcription elongation in concert with TFIIS (Hemming and Edwards 

2000). The 9th largest subunits from Pol I and III possess stronger intrinsic transcript 

cleavage activities, compared to RPB9 from Pol II and are not dependent on TFIIS (Ruan 

et al. 2011). RPB9 is thought to have lost this intrinsic cleavage capability in the Zn2 

region in order to mediate other Pol II-specific functions, such as promoter gene 

regulation, 3'-processing of RNAs and transcription termination (Ruan et al. 2011). It is 

intriguing that the majority of the amino acid differences between NRPB9a and NPRB9b 

appear to be within the Zn2 domain, in particular amino acids 77, 82 and 109. We are 

currently developing tools to test if these amino acids confer functional differences 
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between NRPB9a and NRPB9b with regards to RdDM. In addition, the general 

differences between NRPB9a and NRPB9b appear to be among the amino acids that are 

exposed on the outer surface of the protein. We speculate that amino acid differences 

between NRPB9a and NRPB9b mediate different interactions with other proteins. 

Affinity purification of the DDR complex, consisting of DRD1, DMS3 and a 

novel methyl-DNA binding protein RDM1, resulted in the co-purification of Pol V that 

contains NRPB9a, but not NRPB9b (Kanno et al. 2004; Kanno et al. 2008; Gao et al. 

2010; Law et al. 2010). Therefore, it is possible that although Pol V can associate with 

both NRPB9a and NRPB9b, perhaps only the NRPB9b-associated form functions in 

RNA-directed DNA methylation. 

Based on our observations, we conclude that only one form of Pol V is functional 

for RdDM, the NRPB9b-associated form. The role of NRPB9a and NRPB9b are 

redundant in terms of Pol IV because siRNA accumulation and the silencing of a Pol IV-

specific locus were not affected. The fact that silencing is disrupted in nrpb9b-1 and has 

no consequence on Pol V-dependent transcription supports the hypothesis that Pol V 

functions in RNA silencing include events that are separable from non-coding RNA 

transcription. 
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Figures legends 

Figure 1 Phylogenetic tree of Pol I, II, III, IV and V subunits homologous to the 9th 

largest subunit of yeast RNA polymerases II, RPB9 

Proteins homologous to yeast RPA12 (Pol I), RPB9 (Pol II) and RPC11 (Pol III) in 

human, fly, zebrafish, Chlamydomonas, Arabidopsis, poplar, maize and rice were 

subjected to multiple alignment using MUSCLE (Edgar 2004) under standard parameters 

and imported into Geneious 5.3.6 (http://www.geneious.com/) to display the phylogenetic 

tree shown here. Bootstrap values are indicated at each branchpoint. Most organisms 

encode single genes for Pol I, II and III 9th largest subunits. However, the RPB9 subunit 

of Pol II is represented by multiple genes in plant species. The 9th largest subunits from 

Pol I, II and III form distinct clades, with the 9th largest subunits that are associated with 

Pol IV and V also associating with Pol II. The aligned amino acid sequences can be 

found in Figure S1.  

 

Figure 2 Single mutants of nrpb9a-1 and nrpb9b-1 are viable but the double mutant is 

lethal 

(A)  Positions of the T-DNA insertions in the nrpb9a-1 and nprb9b-1 alleles are 

indicated with a triangle. Filled boxes are exons and lines represent introns. 

(B)  Homozygous recessive mutants of nrpb9a-1 and nrpb9b-1 are viable. nrpb9b-1 

mutant plants exhibit altered morphological phenotypes, including leaves that 

have shorter petioles, are more ovate in shape and have less edge curling 

compared to nrpb9a-1 or wildtype plants (ecotype Col-0). 
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(C)  Seeds developing in a silique in which 25% of embryos should be nrpb9a-1 

nrpb9b-1 double mutants. The parent plant genotype was homozygous for 

nrpb9a-1 and heterozygous for nrpb9b-1. Blue arrows point to fully developed 

seeds with properly developed cotyledons. Red arrows point to embryos that are 

arrested at the globular stage and are presumed to be the nrpb9a-1 nrpb9b-1 

double mutants that do not survive to yield viable progeny. 

(D)  Homozygous nrpb9a-1 nrpb9b-1 double mutants are not recovered among the 

progeny of plants that are homozygous for the nrpb9a-1 or nrpb9b-1 alleles and 

heterozygous for the other allele. Heterozygotes are also under-represented, 

suggesting reduced transmission of mutant alleles via the male or female 

gametophytes that are doubly mutant. 

 

Figure 3 The nrpb9b-1 mutant is defective in RNA silencing and DNA methylation 

(A)  Semi quantitative RT-PCR analysis of soloLTR and AtSN1 retroelement 

expression in wildtype (Col-0) and Pol IV and V mutants. Catalytic subunits of 

Pol IV and V, nrpd1-3 and nrpe1-11 show expression of soloLTR and AtSN1 

elements, as does nrpb9b-1. However, in nrpb9a-1 both soloLTR and AtSN1 

retorelements remain silenced, as in wild-type plants. 

(B)  Retrotransposon methylation was assayed by PCR using genomic DNA after 

digestion with methylation sensitive restriction enzymes. Decreased asymmetric 

CHH methylation in nrpd1-3, nrpe1-11, and nrpb9b-1 at soloLTR and AtSN1 loci 

prevents PCR amplification. Methylation of these retroelements in nrpb9a-1 is 

similar to wildtype (Col-0). A control locus, At2g19920, lacks HaeIII sites. The 
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cartoon below shows relative restriction enzyme sites on the amplicon, indicated 

by two inward-facing arrows. 

(C)  Southern blot analysis of the 5S rRNA gene array from genomic DNA digested 

with methylation sensitive enzymes HpaII (CG sites) or HaeIII (CHH sites). Loss 

of CG methylation is indicated by higher mobility bands at the bottom of the gel, 

as observed in nrpd1-3 and nrpe1-11, which are the catalytic subunit mutants of 

Pol IV and V. The nrpb9a-1 and nrpb9b-1 mutants do not show the same degree 

of CG methylation loss compared to Pol IV and V catalytic nrpd1-3 and nrpe1-11 

mutants. CHH methylation assayed using HaeIII is also significantly reduced in 

nrpd1-3, nrpe1-1  and nrpb9b-1 subunit mutants, except for nrpb9a-1 which 

exhibits wildtype (Col-0) methylation patterns.  

(D)  Small RNA abundance in Pol IV and V mutants are assayed using RNA blots. 

The Pol IV largest subunit mutant, nrpd1-3 has complete loss of siR1003 and 

soloLTR 24nt siRNAs. The Pol V largest subunit mutant, nrpe1-11 has significant 

loss of siR1003 siRNAs, whereas the nrpb9a-1 and nrpb9b-1 mutants do not 

show significant changes in siR1003 or soloLTR 24nt siRNA abundance. The 

microRNA miR160, which is not affected by Pol IV and V mutants, serves as a 

loading control. 

 

Figure 4 NRPB9b is not required for Pol V-dependent transcription and Pol IV-mediated 

silencing 

(A)  MRD1 transcription assayed using RT-PCR shows no expression in wildtype 

(Col-0) and the nrpe1-11 catalytic Pol V mutant. MRD1 is overexpressed in 
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nrpd1-3, when Pol IV is catalytically inactive. The nrpb9a-1 and nrpb9b-1 

mutants do not express MRD1. Retroelements soloLTR and AtSN1 are usually 

silent in wildtype (Col-0) and derepressed by either Pol IV or Pol V subunit 

mutations including nrpd1-3, nrpe1-11 and nrpb9b-1. 

(B)  RT-PCR analysis of the Pol V-dependent IGN5 non-coding RNA shows 

expression in wildtype (Col-0) and nrpd1-3 but not nrpe1-11 as expected. The 

IGN5 transcripts are present in nrpb9a-1 and nrpb9b-1 homozygous mutants. 

 

Figure 5 Amino acid sequence differences between NRPB9a and NRPB9b and their 

predicted positions on the crystal structure of yeast RPB9 

(A)  Aligned NRPB9a and NRPB9b protein sequences, with their specific amino acid 

differences highlighted. The two proteins are 93% identical and 97% similar.  

(B)  The eight amino acid differences between NRPB9a and NRPB9b are mapped 

onto RPB9 (in green), in a space-filling rendering of the yeast Pol II crystal 

structure, PDB:1Y1W, using PyMOL (Version 1.2r1, http://www.pymol.org/). 

The red amino acids highlighted are positions corresponding to the eight amino 

acids that are different between NRPB9a and NRPB9b, numbered according to 

their amino acid positions in NRPB9a and NRPB9b. The RPB1 subunit is shown 

in grey, RPB2 in blue, RPB5 in gold and the DNA duplex in pink.  

 

Figure S1 MUSCLE sequence alignment for the phylogenetic tree of RNAP 9th largest 

subunits shown in Figure 1 
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The three classes of the 9th largest subunits of Pol I, II and III are indicated. The RPB 

variants present in Pol IV or V are part of the Pol II clade. 

 

 

Figure S2 Test cross for nrpb9a-1 nrpb9b-1 double mutant allele  transmission 

Test crosses performed to measure the transmission of nrpb9a-1 nrpb9b-1 double mutant 

alelle through female or male gametophytes. Transmission of doubly homozygous 

nrpb9a-1 nrpb9b-1 gametes are reduced via the female or male (pollen donor), below the 

expected frequency. 

 

Figure S3 Complementation of the nrpb9b-1 mutant 

(A)  A transgene containing genomic NRPB9b under control of its native promoter 

rescues nrpb9b-1 and restores the morphological phenotype to wild-type. 

(B)  In nrpb9b-1 lines expressing the NRPB9b transgene, silencing of AtSN1 and 

soloLTR retrotransposons are re-established. 

(C)  The NRPB9b transgene also restores asymmetric DNA methylation patterns of 

soloLTR and AtSN1 in the nrpb9b-1 genetic background. 
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GENETIC ANALYSIS OF ARABIDOPSIS 4TH AND 7TH LARGEST SUBUNITS OF 
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anticipate being able to characterize this double mutant for studies alongside nrpd4/e4, 

nrpd7-1 and nrpe7-1 single mutants as well as the nrpd4/e4-2 nrpd7-1 and nrpd7-1 

nrpe7-1 double mutants.    



106 
 

Genetic analysis of Arabidopsis 4th and 7th largest subunits of Pol II, IV and V: 

discrete roles for Pol IV and V-specific variants in RNA silencing 

Ek Han Tan1,2, Thomas S. Ream3, Jeremy R. Haag1, Todd Blevins1, Craig S. Pikaard1* 

 

1Department of Biology and Department of Molecular and Cellular Biochemistry, 

Indiana University, Bloomington, Indiana 47405 

2Division of Biology and Biomedical Sciences, Washington University in St Louis, St 

Louis, Missouri 63110 

3Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 

 

* To whom correspondence should be addressed 

 

Email addresses: 

EHT: ehtan@wustl.edu 

CSP: pikaard@indiana.edu 

TSR: tream@wisc.edu 

JRH: haagj@indiana.edu 

TB: toddblev@indiana.edu 

 

Running title: RNA silencing via the 4th and 7th largest subunits of Pol IV and V 

 

**Manuscript in early preparation**  



107 
 

Abstract 

The orthologous 4th and 7th largest subunits of RNA polymerases I, II and III, are 

heterodimeric complexes that form a stalk-like structure adjacent to the RNA exit 

channel. In addition to the 4/7 subunits specific to Pol I, II and III, Arabidopsis thaliana 

also encodes 4/7 subunits that are unique to the RNA silencing enzymes, Pol IV and V. 

Pol IV and V evolved as specialized forms of Pol II, but the canonical Pol II specific 

NRPB4 (At5g09920) and NRPB7 (At5g59180) subunits do not associate with Pol IV or 

Pol V. Instead, the 4th largest subunit of Pol IV and V is encoded by the same gene, 

NRPD4/NRPE4 (At4g15950). Two distinct 7th largest subunits, NRPD7 (At3g22900) and 

NRPE7 (At4g14660) associate with Pol IV or V, but not with Pol II. As in yeast, a 

mutant defective for the 4th largest subunit of Pol II, nrpb4-1, is viable in Arabidopsis and 

this mutation does not affect RNA directed DNA methylation (RdDM). In contrast, the 

nrpd4/e4-2 mutants show a loss of RNA silencing akin to catalytic subunit mutants of Pol 

IV and V. Interestingly, Pol IV nrpd7-1 mutants do not exhibit RdDM defects whereas 

Pol V nrpe7-1 mutants are deficient for RNA silencing. Collectively, the results suggest 

that the 4/7 subcomplex of Pol V is essential for RNA silencing but may be less critical 

for Pol IV functions. 
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Introduction 

 The 4th and 7th largest subunits of yeast RNA polymerase II heterodimerize to 

form a subcomplex that protrudes from the enzyme core as a stalk (Bushnell and 

Kornberg 2003). A paralagous 4/7 substructure is also apparent in the structures of Pol I 

and III (Werner, Thuriaux et al. 2009) and is also formed by the orthologous F/E 

(Rpo4/Rpo7) subcomplex in archaeal polymerases (Hirata, Klein et al. 2008; Werner and 

Grohmann 2011). Research on yeast RPB4/RPB7 and the archaeal F/E subcomplex has 

revealed diverse and extensive roles for these subunits in various transcriptional 

processes from transcriptional initiation to mRNA decay (Choder 2004; Hirtreiter, 

Grohmann et al. 2010).  

The 4th largest subunit of RNA Polymerase II in yeast was first described as a 

dispensable Pol II subunit because the deletion of the gene RPB4 results in slow growth 

and is sensitive to low and high temperatures, but is not lethal (Woychik and Young 

1989; Maillet, Buhler et al. 1999). In contrast, the deletion of RPB7 is lethal in yeast 

(McKune, Richards et al. 1993). Purified Pol II from Δrpb4 strains lacks the RPB7 

subunit (Edwards, Kane et al. 1991), providing evidence that RPB4 is required for stable 

association with RPB7 in Pol II, consistent with crystal structures that show extensive 

RPB4/RPB7 contact with Pol II (Jensen, Meredith et al. 1998; Meka, Werner et al. 

2005);(Kettenberger, Armache et al. 2004). Overexpression of RPB7 alleviates the 

temperature sensitive growth defects seen in Δrpb4 strains and suggests that RPB7 can 

associate with Pol II in the absence of RPB4, albeit inefficiently (Sheffer, Varon et al. 

1999; Tan, Li et al. 2000).  
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Promoter dependent transcription requires the interaction of RPB4 with different 

transcription factors (Edwards, Kane et al. 1991; Orlicky, Tran et al. 2001; Hirtreiter, 

Grohmann et al. 2010), including the transcription initiation factor, TFIIF (Chung, 

Craighead et al. 2003). Evidence that the 4/7 complex interacts with nascent RNA comes 

from Fluorescence Resonance Energy Transfer (FRET) studies, in which nascent RNAs 

labeled with donor dyes are able to come into close enough proximity to acceptor dyes on 

the 4/7 subcomplex to induce FRET, both in yeast and archaea (Chen, Chang et al. 2009; 

Grohmann, Klose et al. 2010). Mutagenesis studies have implicated RPB7 as the main 

RNA interacting protein of the 4/7 subcomplex (Meka, Werner et al. 2005; Ujvari and 

Luse 2006).  

Genomewide profiling using RPB4 shows that RPB4 occupancy is similar to 

other polymerase subunits (Jasiak, Hartmann et al. 2008; Runner, Podolny et al. 2008), 

suggesting that the RPB4/RPB7 subcomplex does not dissociate during transcription. 

However, dissociability of the RPB4/RPB7 subcomplex from the rest of the enzyme can 

occur during Pol II purification from yeast and the 4/7 subcomplex is detectable in the 

cytoplasm during stress apart from the other ten subunits, an unexpected behavior for 

subunits of a nuclear RNA polymerase (Farago, Nahari et al. 2003). Recently, 

RPB4/RPB7 has been reported to play a role in mRNA decay in the cytoplasm (Goler-

Baron, Selitrennik et al. 2008). The dissociability of the 4/7 subcomplex has only been 

observed in yeast, and the purification of archaeal and plant polymerase complexes show 

that the interaction between the core complexes and their respective 4/7 subcomplexes 

are stable (Larkin, Hagen et al. 1999; Grohmann, Hirtreiter et al. 2009). Therefore, it is 

not clear if the 4/7 subcomplex traffics with mRNAs in systems other than yeast. 
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The RPB4 and RPB7 subunits of Arabidopsis Pol II have previously been 

described as AtRPB19.5 ad AtRPB15.9, respectively (Larkin and Guilfoyle 1998) and  

form a heterodimer. The RPB7 subunit of Arabidopsis Pol II is encoded by the NRPB7 

gene (At5g15980) and contains 6 exons and 5 introns. Three intronless RPB7-like genes 

also exist, two of which, NRPD7 (At3g22900) and NRPE7 (At4g14660), associate with 

Pol IV or Pol V, as shown by mass spectrometry analyses of affinity purified Pol II, IV or 

V. A third intronless RPB7 homolog, At4g14520, is similar to NRPD7 and NRPE7 but 

has not been identified in association with any polymerases thus far (Ream, Haag et al. 

2009; Tucker, Reece et al. 2011;Ream and Pikaard, unpublished). Although NRPD7 is 

only detected in Pol IV, and not Pol V, NRPE7 peptides are found associated with Pol IV 

at low frequency, suggesting that this protein can sometimes substitute for NRPD7 in the 

context of Pol IV. Pol V exclusively makes use of NRPE7 as its 7th largest subunit 

(Ream, Haag et al. 2009).  

Evidence for a role of RPB7 in small RNA-induced silencing in S. pombe 

includes the role of RPB7 in precursor siRNA biogenesis (Djupedal, Kos-Braun et al. 

2009). In Arabidopsis, a forward genetic screen for players in the RNA directed DNA 

methylation (RdDM) pathway identified NRPD4 (At4g15950), a paralog of NRPB4 (He, 

Hsu et al. 2009).  

Using a reverse genetic approach, we tested 4th and 7th largest subunit mutants for 

viability and defects in RNA directed DNA methylation. We report that a null mutant of 

Pol II’s 4th largest subunit, nrpb4-1 is viable, similar to findings in yeast. Homozygous 

mutants for the 7th largest subunits of Pol IV and V are also viable. Interestingly, nrpe7-1 
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but not nrpd7-1 is required for RNA silencing, as is the mutant of the binding partner for 

both of these proteins nrpd4/e4-2.   
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Materials and Methods 

Plant materials 

T-DNA insertion alleles nrpb4-1, nrpd/e4-2, nrpd7-1 and nrpe7-1 were genotyped using 

primers listed in Table S1. Seed stocks for these lines were ordered from the Arabidopsis 

Biological Resource Center (Ohio State University), with the exception of nrpe7-1, 

which was generously provided by the Martienssen lab (Cold Spring Harbor Lab).  

 

RT-PCR and DNA methylation sensitive PCR assays 

Assays for detecting AtSN1 and soloLTR retrotransposon expression and DNA 

methylation were previously described in (Wierzbicki, Haag et al. 2008). Total RNA 

isolated using Trizol (Invitrogen) was DNase treated with RQ1 DNase (Promega), then 

subjected to reverse transcription using gene specific primers and Superscript III 

(Invitrogen), followed by PCR using Hotstart Taq (Fermentas). Methylation sensitive 

PCR assays were performed using 50ng of genomic DNA that had been digested 

overnight using restriction enzymes (New England Biolabs) as indicated in the figure 

legends. 

 

Small RNA blot hybridization 

Total RNAs were fractionated into high and low molecular weight RNAs using the 

method described in (Blevins 2010). 6μg of low molecular weight RNA was loaded on 

each lane and subjected to electrophoresis on a denaturing 12% acrylamide gel, 
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transferred to Hybond membrane (GE Healthcare) and hybridized to DNA oligos end-

labelled using T4 Polynucleotide Kinase (New England Biolabs) and γ32P-ATP at 37°C. 

The blots were exposed for 24-48 hours to a phosphorimaging screen and imaged on 

Typhoon 9400 (GE Healthcare) phosphorimager. 

  

Protein immunoprecipitation 

4g of leaf tissue was ground in liquid nitrogen and resuspended in 15ml of extraction 

buffer, following the protocol in (Baumberger and Baulcombe 2005). 50ul anti-FLAG 

resin (Sigma Aldrich) was incubated with 15ml of the leaf extract for 6-8 hours. The 

immunoprecipitated FLAG-tagged proteins were eluted using 50ul of 2X SDS-loading 

buffer at 95°C and run on 4-20% SDS polyacrylamide gels (Lonza), then transferred onto 

PVDF membranes (Milipore). An anti-FLAG-HRP antibody (Sigma Aldrich) was used 

for western blotting.    

 

Pol II activity assays 

The promoter independent RNA polymerase assay was performed as described in (Saez-

Vasquez, Albert et al. 2003). Sheared salmon sperm DNA was incubated with FLAG-

immunoprecipitated proteins (described above) along with α-labelled 32P-CTP and 

unlabelled ATP, UTP and GTP. The transcription reactions were blotted on Whatman 

paper (3M), washed and assayed for radioactive CTP incorporation using a scintillation 

counter.  
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Results and discussion 

Pol II 4th largest subunit mutant 

Determination of the subunit compositions of Pol II, IV and V in Arabidopsis 

revealed that the 4th and 7th largest subunits utilized by Pol II are distinct from the 

orthologous subunits of Pol IV and V. We identified T-DNA insertional lines that knock-

out each of these subunits and subjected these lines to further analyses. The T-DNA 

insertion positions in the 4th largest subunit genes are shown in Figure 1a and the 7th 

largest subunit insertion alleles are diagrammed in Figure 1b.  

The Arabidopsis NRPB4 gene is non-essential, as homozygous nrpb4-1 mutants 

are viable. Using a native antibody specific for NRPB4, a band of the predicted size is 

detected upon immunoblotting wildtype but not nrpb4-1 protein extracts, suggesting that 

nrpb4-1 is a null allele (Figure S1).  The homozygous nrpb4-1 plants are small, have 

curled leaves but are fertile (Figure 1c). The floral organs from nrpb4-1 also have defects, 

usually harboring five petals or more, as opposed to the usual four (Figure 1c). 

 

Complementation of nrpb4-1 rescues Pol II activity 

Expression of an N-terminally FLAG-tagged cDNA of NRPB4 transgene in 

nrpb4-1 mutants complements the mutation (Figure 2a). The complemented nrpb4-1 

plants have wildtype morphology and the FLAG-tagged NRPB4 protein can be detected 

by western blot analysis with an anti-FLAG antibody (Figure 2b). Pol II can be 

immunoprecipitated via the FLAG:NRPB4 subunit using anti-FLAG resin (Figure 2c), as 
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shown by the ability of the complex to carry out promoter-independent transcription on 

sheared DNA templates in an alpha-amanitin dependent fashion (Figure 2d).  

 

 Pol IV and Pol IV 4th and 7th largest subunit mutants 

The nrpd4/e4-2 allele has been previously described (He, Hsu et al. 2009). Unlike 

nrpb4-1 plants, nrpd4/e4-2 mutants have wildtype morphology (Figure 1c). A nrpb4-1 

nrpd/e4-2 double mutant was generated and this double mutant is also viable, exhibiting 

phenotypes similar to the nrpb4-1 single mutant.   

The nrpd7-1 and nrpe7-1 result from T-DNA insertions into the intronless 

NRPD7 or NRPE7 genes (Figure 1b).  Homozygous mutants of nrpd4/e4-2, nrpd7-1 or 

nrpe7-1 do not have any morphological phenotypes, and resemble wildtype plants 

(Figure 1d). However, a double mutant of nrpd/e4-2 nrpd7-1 is smaller than the single 

mutants, revealing a synthetic phenotype in the absence of both activites, which 

presumably form a subcomplex of Pol IV (Figure 1d). This synthetic phenotype is also 

exhibited by plants that are homozygous for nrpd4/e4-2 and heterozygous for nrpd7-1 

(Figure S2).  

 

NRPD4/E4 and NRPE7 are required for RNA silencing 

AtSN1 and soloLTR are retrotransposons that are silenced by RNA directed DNA 

methylation (RdDM). Mutations of proteins involved in RdDM, such as the catalytic 

subunit mutants of Pol IV and V, result in the accumulation of transcripts from AtSN1 
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and soloLTR retroelements. Homozygous single mutants for nrpd/e4-2, nrpd7-1 and 

nrpe7-1 were subjected to RT-PCR to test for AtSN1 and soloLTR expression (Figure 3a). 

The nrpd/e4-2 mutant shows high levels of expression of the retroelements, similar to the 

nrpb9b-1 mutant. The nrpe7-1 but not nrpd7-1 mutants also shows defects in silencing. 

DNA methylation of AtSN1 at asymmetric CHH sites is lost in nrpd/e4-2 and nrpe7-1, 

concomitant with the derepression of this retrotransposon (Figure 3b).  

The biogenesis of 24nt siRNAs depends on transcription by Pol IV, as the 

complete loss of 24nt siRNAs occurs  in the catalytic subunit mutants of Pol IV (Herr, 

Jensen et al. 2005; Onodera, Haag et al. 2005; Mosher, Schwach et al. 2008). Because 

NRPD7 is the only non-catalytic subunit that is unique to Pol IV (Ream, Haag et al. 

2009), we sought to determine the accumulation of Pol IV-dependent siRNAs in the 

nrpd7-1 mutant. A small RNA blot with the 4th and 7th largest subunit mutants was 

probed for siR1003, and shows that nrpd7-1 and nrpe7-1 plants still accumulate siRNAs 

(Figure 3c), unlike nrpd1-3 mutant plants. The Pol V catalytic mutant nrpe1-11 

accumulates siRNAs at very low levels, as do nrpd4/e4-2 mutants. The results here show 

that Pol IV-dependent siRNA biogenesis do not require the NRPD7 subunit, although the 

substitution of NRPE7 might be possible when NRPD7 is mutated. The siRNA 

accumulation profile of nrpe7-1 also does not fit with Pol V catalytic subunit mutants, 

suggesting that the NRPE7 subunit may have a different function in RdDM that is not 

dependent on Pol V activity, similar to the findings reported on NRPB9b in Chapter two 

of this thesis. 
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Discussion 

We attribute the nrpb4-1 morphological phenotypes to Pol II dysregulation, since 

it is a Pol II specific subunit and has no RdDM defects. In yeast, Δrpb4 mutants are slow-

growing and stop growing at high or low temperatures (Woychik and Young 1989). A 

loss of function mutant allele of the 2nd largest subunit of Pol II, nrpb2-3, also exhibits 

pleiotropic leaf phenotypes (Zheng, Wang et al. 2009), but not the floral defects apparent 

in nrpb4-1 plants. This is the first evidence for a subunit of RNA polymerase II being 

implicated in flower development (Krizek and Fletcher 2005). The rescue of leaf and 

floral phenotypes by an NRPB4 transgene in nrpb4-1 suggests that the nrpb4-1 

phenotypes are due to the lack of a 4th subunit in Pol II, resulting in the misregulation or 

developmental genes, and not due to a second mutation elsewhere. Future studies will 

examine the activity of Pol II from this mutant, using the promoter independent 

transcriptional assay. We expect that the activity of Pol II isolated from nrpb4-1 will be 

lower than in wildtype. 

The synthetic phenotype observed in the homozygous nrpd4/e4-2 nrpd7-1 double 

mutants and the discovery that the same synthetic phenotype occurs in the nrpd4/e4-2 

homozygous nrpd7-1 heterozygous mutant suggests that NRPD7 is haplo-insufficient 

without NRPD4. In an effort to confirm the synthetic phenotypes, the nrpd7-1 allele is 

currently being introgressed into nrpd4/e4-3 mutant plants bearing an independent null 

allele of NRPD4/E4. If similar synthetic phenotypes are replicated in the nrpd4/e4-3 

nrpd7-1 double mutant, we can be confident that the synthetic phenotype observed is not 

due to a second site mutation from the nrpd4/e4-2 and nrpd7-1 cross. Because single 

nrpd4/e4-2 and nrpd7-1 mutants look like wildtype plants, the phenotypic nrpd4/e4-2 
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nrpd7-1 double mutants and haplo-insufficiency displayed by heterozygous nrpd7-1 in a 

homozygous nrpd4/e4-2 mutant suggests that there might be a gain of function for Pol IV 

activity as opposed to a loss of function. This also suggests a novel role for the nrpd7-1 

allele outside of Pol IV activity for siRNA biogenesis and RdDM.  
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Figures Legends 

Figure 1 Pol II, IV and V 4th and 7th largest subunit mutants 

(A)  T-DNA insertion alleles of nrpb4-1 and nrpd4/e4-2. T-DNA insertions within 

exons in the coding region are shown as an open triangle. 

(B)  T-DNA insertion alleles of nrpd7-1 and nrpe7-1 with T-DNA insertions within 

the coding region of the single exon genes shown as an open triangle. NRPB7 and 

At4g14520 gene structures are also represented here for comparison. 

(C)  The nrpb4-1 mutant phenotypes include small stature, curled leaves and floral 

defects, whereas nrpd4/e4-2 resembles a wildtype plant. 

(D)  Comparison of nrpd4/e4-2 and nrpd7-1 single mutants to pleiotropic nrpd4/e4-2 

nrpd7-1 double mutants. All plants shown are the same age.  

 

Figure 2 A NRPB4 transgene rescues the nrpb4-1 null mutants 

(A)  Complementation of nrpb4-1 can be rescued by a transgene expressing a FLAG-

tagged cDNA copy of NRPB4. Individual transformants display wildtype 

morphologies, unlike the nrpb4-1 mutants. 

(B)  Immunoprecipitation of FLAG:NRPB4 show expression of FLAG-tagged 

NRPB4 in nrpb4-1. 

(C)  Immunoprecipitation of FLAG-tagged NRPB2 and NRPB4, detected with an 

anti-FLAG antibody. 

(D)  Scintillation counts for radioactive CTP incorporation from a promoter 

independent Pol II activity assay. 
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Figure 3 RNA silencing defects in nrpd4/e4-2 and nrpe7-1 but not nrpd7-1 mutants 

(A)  Comparison of various non-catalytic subunit mutants of Pol IV and V for 

retrotranspon reactivation. AtSN1 and soloLTR expression was monitored by RT-

PCR with Actin2 acting as the loading control. Mutants that show expression of 

retrolements include nrpb9b-1, nrpd4/e4-2 and nrpe7-1, but not nrpd7-1. Col-0 

ecotype is the wildtype control for nrpb9b-1, nrpd4/e4-2 and nrpd7-1 whereas 

Ler is the wildtype control for nrpe7-1. 

(B)  AtSN1 methylation levels in various mutants assayed using methylation sensitive 

PCR. CHH methylation is decreased in nrpb9b-1, nrpd4/e4-2 and nrpe7-1 but not 

nrpd7-1. 

(C)  Small RNA accumulation in Pol IV and V mutants. siR1003 24nt siRNAs are not 

detected in nrpd1-3 and are depleted in nrpe1-11 and nrpd4/e4-2, compared to 

wildtype. The control locus is miR160a, which is 21nt and not dependent on Pol 

IV and V. (Note: the intensity of miR160a that is slightly less in the wildtype 

control, Col-0, suggests that this is underloaded on this blot) 

 

Figure S1 NRPB4 is not detected in the nrpb4-1 null mutant 

Western blot analysis on crude protein extracts of wildtype (Col-0), nrpb4-1 and nrpb4-1 

rescued by a FLAG:NRPB4 transgene using a native anti-NRPB4 antibody. A band of 

predicted size for NRPB4 is detected in the wildtype but not in nrpb4-1, while transgene 

expressing FLAG:NRPB4 is detected as larger band due to the epitope tag. Ponceau S 

staining is shown as loading control. 
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Figure S2 Haplo-insufficiency phenotypes associated with homozygous nrpd/e4-2 lines 

segregating the nrpd7-1 mutation 

Comparison of morphological phenotypes from wildtype (Col-0), nrpd4/e4-2, nrpd7-1 

and the nrpd4/e4-2 nrpd7-1 double mutants. The nrpd4/e4-2 nrpd7-1 double mutants 

have small stature and are identifiable at 50% frequency in a segregating population from 

a homozygous nrpd7-1 and heterozygous nrpd4/e4-2 plant. In contrast, all the progeny of 

a homozygous nrpd4/e4-2 and heterozygous nrpd7-1 plant look like nrpd4/e4-2 nrpd7-1 

double mutants. 

   

Table S1 Primers used for genotyping 

The T-DNA insertion alleles associated with the 4th and 7th largest subunit mutants used 

in this study. Primers used for genotyping are listed here. 
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i. 

CLOSING REMARKS 

 

My studies that are not part of the main thesis chapters, have explored two areas 

related to the role of DNA methylation in gene silencing. First, site-directed mutagenesis 

of the de novo DNA methyltransferase DRM2 in plants indicates that DRM2 is an 

enzymatically active enzyme that is dependent on an invariant catalytic cysteine. This 

activity is required at the terminal DNA methylation step for the 24nt siRNA directed 

silencing pathway (Appendix A). In addition, my work in allotetraploid Arabidopsis 

suecica, suggests that DNA demethylation achieved by over-expressing DNA 

glycosylases or their regulators can prevent the establishment of nucleolar dominance 

(Appendix A).  

For the bulk of my thesis, I have extensively explored the roles of non-catalytic 

subunits of Pol II, IV and V and their involvement in RNA directed DNA methylation. In 

particular, the 9th largest subunits of Pol II, IV and V are very similar genes that were 

initially thought to be functionally redundant, but my work here shows a clear functional 

distinction between the subunits in RNA silencing (Chapter two). Next, I showed a 

difference in NRPD7 and NRPE7 usage for RdDM, which are distinct genes from the Pol 

II 7th largest subunit. Furthermore, genetic analysis shows that like yeast, the 4th largest 

subunit of Pol II in Arabidopsis is a dispensable subunit for viability (Chapter three). 

Additional studies on the 3rd largest subunits are underway at the time of this writing. In 

the proceeding section, I will show that the two 6th largest subunits in Arabidopsis may 

be redundant for maintaining DNA methylation via the Pol IV and V pathways. These 
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analyses of non-catalytic subunits presented here suggest that Pol II, IV and V functions 

can be dissected to some extent by mutations in catalytic versus non-catalytic subunits. 

Roles for these highly simiar, paralogous subunits in RNA silencing is particularly 

intriguing and deserving of further study.   
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ii. 

RNA POLYMERASE II, IV AND V SUBUNITS: A NON-CATALYTIC 

PERSPECTIVE 

 

Outlook on subunits isolated so far 

 

Figure 1 List of known Pol IV and Pol V mutants 

The alleles used in this thesis in shaded in green. Most of homozygous single mutants of Pol IV and V 

subunits are viable, except for 11th and 12th largest subunits, which are lethal. Double mutants generated in 

this thesis are shaded in blue, “wt” denotes that the double mutants look like a wildtype plant. 

 

 Based on the subunit compositions of Pol II, IV and V determined by mass 

spectrometry following affinity purification of the enzymes (Ream, Haag et al. 2009), a 

collection of subunit mutants was obtained and characterized (Figure 1). Homozygous 

mutants used in this study are shaded in green. In addition, double mutants were also 

generated in this study, shaded in blue, with a focus mainly on the jaw and clamp domain 

subunits (9th and 5th) and the 4/7 stalk subcomplex subunits (4th and 7th). Characterization 
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of the single as well as double mutants is still incomplete, but some insight has been 

gained from study of the 9th largest subunits (Chapter two) as well as the 4th and 7th 

subunits (Chapter three). Homozygous single mutants from the 8th and 10th largest 

subunits have not been isolated, although the T-DNA insertion alleles have been 

obtained. We anticipate isolating the full collection of the double mutants soon, and a few 

directed experiments examining small RNA accumulation will be the main focus once the 

double mutants are available.  
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Figure 2 siRNA accumulation, DNA methylation and retrotranspon expression profiles 

in Pol IV and V mutants 

The wildtype (Col-0) is included as a reference point. The ‘+’ sign is used to indicate positive levels of a 

siR1003, DNA methylation or RNA expression, and ‘-’ sign is used to denote decreased or absence of the 

signal. 

 The phenotypes of individual subunit mutants are variable, and are often not 

reported accurately unless a comparison is made between all the other catalytic and non-

catalytic subunit mutants in the Pol IV and V pathway. An attempt to illustrate the way 

each individual mutant subunit affects RNA directed DNA methylation (RdDM) in terms 

of siRNA accumulation, DNA methylation and retroelement expression is shown in 

Figure 2.  

The catalytic subunits of Pol IV and V, nrpd1-3, nrpd2a-2 and nrpe1-11 have 

reliable phenotypes with respect to siRNA accumulation, DNA methylation and 

retrotransposon reactivation. The only subunit that comes close to phenocopying the 

siRNA, DNA methylation and retrotransposon expression phenotypes of the catalytic 
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subunits is nrpd4/e4-2. Phylogenetic studies have suggested that NRPD2 and NRPD4 

subunits arose in a common ancestor of all angiosperms, as they are present in monocots 

and dicots, but not in bryophytes (Luo and Hall 2007; Tucker, Reece et al. 2011). 

Compared to NRPB2 and NRPB4 of Pol II, NRPD2/E2 and NRPD4/E4 are also quite 

different, as the form a distinct Pol IV/V clade clearly distinguishable from the Pol II 

subunits in phylogenetic studies (Luo and Hall 2007; Tucker, Reece et al. 2011). The 

‘uniqueness’ of the NRPD4/E4 subunit in Pol IV and V might reflect its essential role in 

RdDM in partnership with the catalytic subunits of Pol IV and V. 

The nrpe5-1, nrpe7-1 and nrpb9b-1 mutants also share very similar phenotypic 

profiles (Figure 2), although 24nt siRNA accumulation in nrpe5-1 is slightly defective 

compared to nrpe7-1 or nrpb9b-1 which accumulate siRNAs at close to wildtype levels. 

NRPE5 and NRPE7 are Pol V specific subunits, so it stands to reason that these subunits 

have similar profiles and the loss of the individual subunits have similar effects on Pol V. 

Double mutants (Figure 1) will be important to analyze to determine if there are additive 

effects. For instance, the double mutants of nrpe5-1 nrpb9b-1 should result in Pol V 

complexes that, if stable, are devoid of the clamp and jaw domains, and the 

characterization of these double mutant’s RdDM profile may inform our understanding of 

Pol V architecture as it relates to RNA silencing. 
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Disentangling the functional identity of paralogous non-catalytic subunits subunits 

of Pol II, III, IV and V   

 

The 3rd largest subunits of Pol II, IV and V 

Arabidopsis thaliana has two genes that are homologous to yeast RPB3. NRPB3a 

(At2g15430) is associated with Pol II, IV and V whereas NRPE3b (At2g15400) 

associates primarily with pol V (Ream, Haag et al. 2009). NRPB3a and NRPE3b are very 

tightly linked, separated only by two other genes on the same chromosome arm, and are 

88% identical and 94% similar. The T-DNA insertional mutant for nrpb3b-1 is viable and 

preliminary assays have been conducted to characterize this mutant, but we are currently 

awaiting the availability of T-DNA alleles for nrpb3a for a complete analysis. 

  

The two sixth largest subunits of Pol II, III, IV and V 

The two sixth largest subunit NRPB6a (At5g51940) and NRPB6b (At2g04630) 

are shared by Pol II, III, IV and V in Arabidopsis (Ream, Haag et al. 2009). Surprisingly, 

we have not found NRPB6a or NRPB6b peptides in affinity purified Pol I (Ream and 

Pikaard, unpublished). This is a deviation from yeast and human, in which RPB6 

associates with Pol I, II and III (Woychik, Liao et al. 1990). The 6th largest subunit is the 

eukaryotic homolog of the bacterial ω subunit, and in bacteria and yeast, plays a role in 

RNA polymerase assembly (Minakhin, Bhagat et al. 2001).  RPB6 in yeast is a crucial 

interactor with the RPB4/RPB7 subcomplex, providing the essential interaction site 

between the 10 subunit core polymerase and the 4/7 subcomplex. A single Q100R point 

mutation in RPB6 is able to abrogate the 4/7 subcomplex association with the core 
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polymerase in yeast (Tan, Prysak et al. 2003). For this reason, the NRPB6 variant 

mutants might be of interest for functions that involve the 4/7 subcomplexes of Pol IV 

and V (Chapter three). Homozygous nrpb6a-1 and nrpb6b-1 single mutants exhibit 

decreased DNA methylation at AtSN1 (Figure 4) but have no phenotypic abnormalities. 

Double mutants are currently being isolated but there is a possibility that the double 

mutant is lethal, since these are subunits that are shared between other essential RNA 

polymerases. The more sensitive RT-PCR assay for detection of retrotransposon 

expression should be conducted see if these mutants have defects in RNA silencing. 

 

  



140 
 

A forward genetic screen to identify intragenenic and extragenic factors involved in 

NRPE1 C-terminal domain functions in RNA-directed DNA methylation 

 

 The largest subunit of Pol V, encoded by the NRPE1 gene, has an extended C-

terminal domain consisting of various identifiable motifs. Deletion and overexpression 

assays, done with Pikaard lab member Jeremy Haag, show that multiple subdomains of 

the CTD have functions relevant to RNA directed DNA methylation (RdDM) (Appendix 

C). The overexpression of just the NRPE1-CTD (E1C) in wildtype plants has a dominant 

suppressor effect on RdDM, disrupting 24nt siRNA biogenesis, RNA silencing and DNA 

methylation: very similar to a catalytic subunit mutant of Pol IV or V, and most like 

nrpd2/e2 mutants which is essentially a Pol IV/V double mutant. 

 It should be possible to take advantage of the dominant suppressor effect for a 

forward genetic screen to look for suppressors of the E1C dominant negative phenotype, 

thereby identifying intragenic and extragenic factors that are important for CTD 

functions. Postdoc Todd Blevins in the Pikaard lab has observed that double mutants 

between hda6 with Pol IV or V catalytic mutants exhibit phenotypes that are reminiscent 

of a drm1 drm2 cmt3 mutant (Figure 4) (Henderson and Jacobsen 2008). This phenotype, 

where the plants are dwarfed and exhibit curled leaves, is due to the overexpression of an 

endogenous F-box containing protein known as SDC due to a the loss of RNA silencing 

of repetitive elements in the SDC gene promoter (Henderson and Jacobsen 2008). The 

silencing of SDC requires two out of three of the following components: assymetric 

methylation via 24nt siRNAs (Henderson and Jacobsen 2008), CHG methylation via 

CMT3/KRYPTONITE (Henderson and Jacobsen 2008) and histone deacetylation via 
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HDA6 (Blevins and Pikaard, unpublished). Because the dominant suppressor phenotypes 

of E1C phenocopies defects in siRNA directed CHH methylation (Appendix C), we 

tested whether E1C overexpression could participate in SDC misregulation in cooperation 

with hda6, cmt3 or kyp mutants. Transformation of the EIC overexpressor transgene 

constructs into mutants of axe1-5, cmt3 or kyp-6 shows that it does (Figure 5).  

 In transformants that are dwarfed and have curled leaves, the SDC gene is 

overexpressed compared to a wildtype transformed lines (Figure 6). I propose an EMS 

forward genetic screen using plants overexpressing E1C in the Col-0 ecotype cmt3 

mutant background to isolate suppressors of the SDC phenotype. The SDC phenotype is 

robust when E1C is overexpressed in cmt3 and these plants are fertile. Moreover, there 

are Ler lines (a different A. thaliana strain) that have the cmt3 mutation such that 

outcrossing mutants recovered in the Col-0 genetic background to Ler cmt3 will speed up 

the mapping of mutant loci in the mapping population, using bulk segregant analysis and 

deep sequencing to identify the suppressor loci (Lukowitz, Gillmor et al. 2000). 

 This genetic approach was conceived by Todd Blevins and me. Currently, a 

graduate student is assisting us with the initial preparation leading up to EMS 

mutagenesis. Controls to eliminate false positives include an sdc-1 mutant line that has 

also been transformed with the same E1C overexpression construct. This line will be used 

for crosses when complementation groups are assigned, ruling out mutations in the SDC 

genes and allowing for the discovery of novel mutations.   
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Figures and figure legends 

 

 

 

 

 

Figure 3 CHH DNA methylation of AtSN1 assayed using methylation sensitive PCR  

Robust PCR signal from AtSN1 in the wildtype (Col-0) after digestion with HaeIII, while decreased CHH 

methylation fom this locus results in no amplification from nrpd1-3, nrpe1-11, nrpd4/e4-2 and nrpe7-1. 

CHH methylation in nrpb6a-1 and nrpb6b-1 are decreased compared to wildtype. 
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Figure 4 Plants showing wildtype (Col-0) leaf phenotypes or curled leaves in mutants 

such as drm1 drm2 cmt3 (*Figure is from (Henderson and Jacobsen 2008)) 

At the top panel, single mutants of drm2, cmt3, nrpd2a and kyp have leaves that are wildtype (Col-0). 

Bottom panel shows mutant combinations that causes curling leaves, due to SDC-overexpression. 
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Figure 5 Phenotypes of Pol V largest subunit CTD (E1C) overexpression in wildtype 

(Col-0), hda6 or mutants defective in CHG methylation 

Wildtype (Col-0) overexpressing E1C have flat, wildtype leaves whereas hda6, cmt3 and kyp mutants 

overexpressing E1C look like SDC-overexpressing mutants, with curled, downward facing leaves. 
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Figure 6 RT-PCR of SDC expression in the mutant lines overexpressing EIC 

Overexpression of EIC in wildtype (Col-0) alone does not cause SDC overexpression, compared to the 

drm1 drm2 cmt3 triple mutant shown on the far right. SDC overexpression is observed when EIC is 

overexpressed in hda6 (axe1-5), cmt3 and kyp mutants. Asterisk denote low SDC overexpression, and these 

plants do not have the curled leaf phenotypes.  
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APPENDIX A 

 

DNA METHYLATION AND DEMETHYLATION IN ARABIDOPSIS 
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ii. 

DRM2 ACTIVE SITE REQUIREMENTS FOR DE NOVO DNA METHYLATION 

 

 Post replicative de novo DNA methylation is of great interest in both the 

mammalian and plant fields as the deposition of DNA methylation is important for 

silencing repetitive DNA and for epigenetic reprogramming during development (Aravin 

and Hannon 2008; Law and Jacobsen 2010). The plant de novo methyltransferase, 

DOMAINS REARRANGED METHYLTRANSFERASE2 (DRM2) is the enzyme that is 

responsible for DNA methylation for RNA directed silencing, as shown by both forward 

and reverse genetic screens. (Cao and Jacobsen 2002; Henderson, Deleris et al. 2010; 

Naumann, Daxinger et al. 2011).  

The conserved domains of DRM2, as its name suggests, are rearranged compared 

to other DNA methyltransferases from bacteria and mammals, but DRM2 still retains all 

the necessary motifs for catalysis (Henderson and Jacobsen 2007). The N-terminal region 

of DRM2 includes ubiquitin binding domains (UBA) which are unique features of plant 

DRM proteins. These UBA domains were recently reported to be essential for DRM2 

catalysis in vivo (Henderson, Deleris et al. 2010). 

Active DNA methyltransferases have invariant PCG amino acids, in motif IV, 

that are used for catalysis. The thiol group on the cysteine residue covalently attaches to 

the cytosine base, producing an intermediate which allows the transfer of the methyl 

group of Ado-Met to the cytosine (Goll and Bestor 2005). The P586 residue of the PCG 

motif in DRM2 has been reported to be important based on a mutation at this position 

isolated in a forward genetic screen (Naumann, Daxinger et al. 2011), and a reverse 
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genetic approach showed that mutating C587 to an alanine abrogates DRM2 function in 

vivo (Henderson, Deleris et al. 2010).  

Prior to the publications mentioned above (Naumann, Daxinger et al. 

2011;Henderson, Deleris et al. 2010), I had generated drm1/2 mutant lines expressing 

wildtype DRM2 transgenes and mutant DRM2 transgenes, in which the invariant Cysteine 

at position 587 was mutated to serine (Figure 1a). Expression of wildtype DRM2 in the 

null drm1/2 mutant background is able to rescue RdDM deficiencies in drm1/2 mutants, 

restoring retroelement silencing, whereas expression of the C587S DRM2 mutant does 

not rescue the drm1/2 mutants (Figure 1b). Likewise, DNA methylation is restored in 

drm1/2 plants expressing wildtype DRM2, but is not restored when the C587S DRM2 is 

expressed (Figure 1c). Protein expression of both wildtype and C587S DRM2 can be 

detected by on immunoblots, which suggests that the C587S mutation on DRM2 does not 

affect expression, but is enzymatically inactive (Figure 1d). These results concur with the 

findings of the other groups (Naumann, Daxinger et al. 2011; Henderson, Deleris et al. 

2010), but the C597S mutation reported here is novel. 

Chromatin IP (ChIP) was performed to determine if loss of RNA silencing in 

drm1/2 mutants can be correlated to the loss of heterochromatin modifications at the 

target loci (Figure 2). The housekeeping gene, Actin, is used as a control for active 

chromatin modifications assayed using an antibody against acetylated histone H3 

(AcH3). In all samples tested, Actin is enriched in the AcH3 IPs. In the wildtype (WS) 

background, retroelements (AtSN1 and IG/LINE) and DRM2 targets (IGN5, SDC, G755 

and 480), are primarily associated with H3K9me2 and not with AcH3, consistent with 

their silenced state. The drm1/2 mutant rescued with wildtype DRM2 has the same 
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patterns seen wildtype plants. However, drm1/2 and drm1/2 C857S DRM2 mutants have 

increased AcH3 at retroelements and DRM2-target genes, as a consequence of the loss of 

RNA silencing in drm1/2 mutants. Attempts to ChIP wildtype DRM2 or C587S DRM2 to 

the target loci was unsuccessful (Figure 2). It is also possible that the interaction of 

DRM2 could be mediated by DRM3, an enzymatically inactive DRM  protein which is 

missing the catalytic motif IV domains, but has recently been shown to mediate DNA 

methylation by DRM2 (Henderson, Deleris et al. 2010). The DRM2/DRM3 interaction is 

reminiscent of the Dnmt3/Dnmt3L interaction that is crucial for the de novo activity of 

mammalian de novo methyltransferase (Jia, Jurkowska et al. 2007). Cross-linking using 

formaldehyde might not preserve this DRM2/DRM3 interaction due to their large sizes 

and as a result, an IP via the FLAG-tag on DRM2 alone is not able to preserve this 

interaction.  

In an attempt to study in vitro biochemical activity of DRM2, I designed an assay 

using short dsDNA oligos that would detect DNA methylation by virtue of the resistance 

of the methylated DNA to methylation sensitive restriction endonucleases (Figure 3b). 

The DNA sequence used is from the AtSN1 retroelement which is a major target of 

DRM2 (Figure 3a). Using HaeIII Methyltransferase as a positive control, the dsDNA 

oligo can be methylated, conferring resistance to the HaeIII restriction endonuclease, 

which is methylation sensitive (Figure 3c). This reaction is dependent on S-adenosyl-

methionine (SAM) co-factor, which is used by both bacterial and mammalian DNA 

methyltransferase for catalysis. This in vitro DNA methylation assay was conducted 

using DRM2:FLAG immunoprecipitated using anti-FLAG resin from plant extracts as 

well as purified HIS:DRM2 which was recombinantly produced in E. coli. However, no 
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SAM-dependent DNA methylation activity was detected in both these experiments 

(Figure 3c). Presumably, other proteins or chromatin templates are needed for DRM2 

activity. 

The mechanistic details of RNA directed DNA methylation is still not clearly 

defined. For instance, the current model proposes the targeting by 24nt siRNA of AGO4 

to Pol V transcription sites, leading to subsequent of de novo DNA methylation. 

However, how DRM2 methylation is recruited and methylation accomplished remains a 

mystery.   
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Figure and figure legends 

 

Figure 1 Characterization of a C587S active site mutation in DRM2 

(A)  Mutagenesis of the invariant Cysteine amino acid at position 587 to Serine in DRM2 is shown in 

the sequence alignment. DNA methyltransferase active site motif is from (Goll and Bestor 2005). 

(B) RT-PCR assays of DRM2-dependent RdDM targets AtSN1, IG/LINE, SDC and G755 performed 

in the mutants of DRM2 and drm1/2 expressing wildtype DRM2 or mutant C587S DRM2 

transgenes. 

(C)  Assay for assymetric DNA methylation of DRM2 target loci, using HaeIII restriction digests, 

followed by PCR in mutants of DRM2 and drm1/2 expressing wildtype DRM2 or mutant C587S 

DRM2 transgenes. The control locus contain no HaeIII restriction sites. 

(D)  Western blot using an anti-FLAG antibody to detect protein expression of FLAG-tagged wildtype 

DRM2 or mutant C587S DRM2 transgenes in drm1/2 mutants and wildtype (WS). 

 



153 
 

 

 

Figure 2 Chromatin IP of drm1/2 mutants complemented with either wildtype DRM2 or 

C587S DRM2 

Chromatin isolated from wildtype (WS), drm1/2, drm1/2 expressing the FLAG-tagged wildtype DRM2 or 

FLAG-tagged mutant C587S DRM2 were immunoprecipitated with antibodies against H3K9me2, 

acetylated histone H3 or FLAG. PCR was performed from purified DNA obtained from Chromatin IPs, 

using primers to various targets of RdDM or Actin. 
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Figure 3 In vitro methylation assay using HaeIII and DRM2 DNA methyltransferases 

(A)  Sequence of the DNA oligo used for the in vitro methylation assay, with HaeIII sites marked 

(B)  Scheme for in vitro assay – Enzyme is incubated with or without the S-adenosyl-methionine 

(SAM) co-factor, digested with the HaeIII restriction enzyme overnight (O/N) and the oligos are 

electrophoretically separated on a 3% agarose gel 

(C)  Visualizing the dsDNA oligo on an Ethidium Bromide stained gel. Methylation by the HaeIII 

methylase prevents HaeIII restriction digest when SAM is present. DRM2 proteins do not 

methylated the dsDNA oligo. 
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ii. 

OVEREXPRESSION OF ROS3, AN RNA BINDING PROTEIN INVOLVED IN DNA 
DEMETHYLATION, DISRUPTS UNIPARENTAL rRNA GENE SILENCING IN 

ARABIDOPSIS SUECICA 
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Abstract 

In plants, a class of DNA glycosylases related to the embryonic imprinting 

demethylase, DEMETER orchestrates the removal of methylated cytosines across the 

genome. The activity of the DEMETER and the DEMETER-Like glycosylases; ROS1, 

DML2 and DML3 are thought to counteract the effects of RNA directed DNA 

methylation, allowing for epigenomic plasticity. An RNA binding protein, ROS3 has also 

been implicated in the DNA demethylation pathway and the targeting of ROS1 to sites of 

action. Using nucleolar dominance in Arabidopsis suecica as a model system, we find 

that the overexpression of ROS3, DML2 or DML3 is capable of disrupting the 

developmentally-regulated establishment of silencing of the Arabidopsis thaliana-derived 

rRNA genes. The spacer promoter regions in the intergenic spacers of the Arabidopsis 

thaliana-derived rRNA genes were found to be demethylated when ROS3 was 

overexpressed. The ability of ROS3, DML2 and DML3 overexpression to demethylate 

rRNA genes, combined with their partial localization in the nucleolus may play a role in 

reversing or preventing the silencing of rRNA genes by epigenetic mechanisms involving 

cytosine methylation.     



159 
 

Introduction 

Nucleolar dominance is occurs in interspecific hybrids and describes an 

epigenetic phenomena in which ribosomal RNA (rRNA) genes from one parent are 

selectively silenced, a phenomena demonstrated in flies, frogs, animals, plants and other 

eukaryotes (Chen and Pikaard 1997; Pikaard 2000; Pikaard 2000; Preuss and Pikaard 

2007; Tucker, Vitins et al. 2010). This phenomenon is well characterized in Arabidopsis 

suecica, an allotetraploid hybrid of Arabidopsis arenosa and Arabidopsis thaliana in 

which the rRNA genes derived from Arabidopsis thaliana are developmentally silenced 

and are transcriptionally inactive in mature plants (Pontes, Lawrence et al. 2007). 

Arabidopsis suecica is amenable to targeted gene knockdown by RNAi-inducing 

transgenes introduced into the genome via Agrobacterium assisted transformation 

(Lawrence and Pikaard 2003). This has led to identification of activities required for 

nucleolar dominance including the histone deacetylase, HDA6 and HDT1, which are 

involved in the repression of inactive rRNA genes (Earley, Lawrence et al. 2006; Earley, 

Pontvianne et al. 2010). Players in the facultative heterochromatic 24nt siRNA pathway 

in plants, chiefly the de novo DNA methyltransferase DRM2, RDR2 and DCL3 are also 

involved in maintaining rRNA gene silencing in A. suecica (Preuss, Costa-Nunes et al. 

2008).   

The methylation of symmetric cytosines in the CG dinucleotide context is a 

common feature in eukaryotic genomes and is often associated with gene repression (Bird 

1986). After replication, maintenance DNA methytransferases (DNMT1 in mammals, 

MET1 in plants) recognize hemimethylated CG sites and direct the deposition of a 

methyl group on the unmethylated CG (Yoder, Soman et al. 1997; Kankel, Ramsey et al. 
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2003; Song, Rechkoblit et al. 2011). Plants also have robust DNA methylation 

machineries to methylate DNA in CHG (H standing for either C, A or T) and CHH 

contexts (Wassenegger and Pelissier 1998), accomplished by the CMT3 and DRM2 de 

novo DNA methyltransferases (Lindroth, Cao et al. 2001; Cao and Jacobsen 2002; Cao 

and Jacobsen 2002; Cao, Aufsatz et al. 2003). RNAi-mediated knockdown of DRM2 but 

not MET1 or CMT3 in Arabidopsis suecica results in the loss of nucleolar dominance, 

indicating that DRM2 is the key methyltransferase required to establish nucleolar 

dominance (Preuss, Costa-Nunes et al. 2008).  

The Demeter (DME) DNA glycosylase/lyase is an enzyme that actively removes 

methylated cytosines in the central cell and endosperm of the developing embryo, 

specifically demethylating the maternal allele of the Medea gene and facilitating its 

expression (Choi, Gehring et al. 2002). DME-Like DNA glycosylases that include 

DML2, DML3 and Repressor of Silencing 1 (ROS1) are not similarly implicated in 

imprinting mechanisms but are expressed throughout the life cycle of the plants in order 

to maintain a balanced methylome (Gong, Morales-Ruiz et al. 2002; Agius, Kapoor et al. 

2006; Penterman, Uzawa et al. 2007; Penterman, Zilberman et al. 2007). These enzymes 

have been shown biochemically to cleave methylated DNA substrates in vitro (Morales-

Ruiz, Ortega-Galisteo et al. 2006; Ortega-Galisteo, Morales-Ruiz et al. 2008) and are 

thought to recruit DNA repair machinery for the substitution of unmethylated cytosines 

for methylcytosine (Gehring, Reik et al. 2009). A recent discovery in the field of DNA 

demethylation hints at an RNA component in active DNA demethylation. Specifically, 

Repressor of Silencing 3 (ROS3), a gene identified in the same genetic screen that 

identified the DNA glycosylase ROS1, contains an RRM domain, RNA binding motif 
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that binds small RNAs in vitro and in vivo (Zheng, Pontes et al. 2008), suggesting that 

small RNAs may guide ROS3 to sites of demethylation.  

Localization of ROS1 and ROS3 indicate their presence in the nucleolar 

compartment as well as the nucleus (Zheng, Pontes et al. 2008), very much like the 

localization of Histone Deacetylase6 (HDA6) localization (Earley, Lawrence et al. 2006), 

which is involved in maintaining nucleolar dominance. In this report, we show that active 

DNA demethylation via overexpression of DNA gylcosylases DML2 and DML3 can 

prevent the establishment of nucleolar dominance in Arabidopsis suecica. ROS3 

overexpression also disrupts nucleolar dominance but surprisingly, the overexpression of 

ROS1 does not abrogate silencing of Arabidopsis thaliana NORs. We discuss some 

possible roles for ROS3 and ROS1 based on our current understanding of these two 

enzymes and bring to light some effects of DNA demethylation on Pol I transcription.   
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Materials and Methods 

Cloning and generation of transgenic plants 

The pENTR clone containing the ROS3 cDNA was obtained from Prof. Jian Kang Zhu. 

PCR amplification of of ROS1, DML2 and DML3 was performed using primers listed in 

Table S1, using reverse transcribed total RNA from wildtype Arabidopsis thaliana (Col-0 

ecotype). Full length cDNA PCR products were introduced into pENTR D-TOPO 

(Invitrogen) and recombined into pEARLEYGATE 202, 104 or 103 (Earley, Haag et al. 

2006) using LR Clonase II (Invitrogen). Clones were verified by sequencing before 

transforming into Agrobacterium tumefaciens GV3101. Stable transformation of 

Arabidopsis suecica LC1 was performed as previously described (Lawrence and Pikaard 

2003). 

 

RT-PCR assays 

Detection of A. arenosa and A. thaliana rRNA transcripts from A. suecica was performed 

using RT-PCR, followed by restriction digestion, to differentiate the polymorphism 

between the two species in the ITS1 region (Lewis and Pikaard 2001), an assay referred 

to as ITS1 CAPS (cleaved amplified polymorphic sequence). The primers used to detect 

overexpression of ROS1, ROS3, DML2 and DML3 are provided in Table S1. Briefly, 

1μg of total RNA was treated with RQ1 DNAse (Promega) before being reversed 

transcribed with random d(N)6 primers using Superscript III (Invitrogen) reverse 

transcriptase. ITS1 PCR was performed on 10ng of reverse transcribed RNA followed by 
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overnight digestion with HhaI restriction endonuclease (New England Biolabs) and 

separated on a 2.5% gel by electrophoresis.  

 

Bisulphite sequencing 

Bisulphite sequencing of the spacer promoter regions as well as the gene promoter 

regions of A.thaliana rRNA genes in A. suecica was performed using primers and the 

protocol described in (Preuss, Costa-Nunes et al. 2008). The resultant clones were 

analyzed using the Cymate program (Hetzl, Foerster et al. 2007). The outputs from 

Cymate were parsed using a custom Perl script that collates the methylation frequency on 

each methylcytosine site. These frequency were then plotted in Microsoft Excel. The 

number of clones used: gene promoter (n=30 per genotype), spacer promoter (n=20 per 

genotype)  
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Results 

Localization of ROS1 and ROS3 in Arabidopsis suecica 

Stably transformed A. suecica harboring transgenes expressing YFP:ROS1 and 

ROS3:GFP show that ROS1 and ROS3 are nuclear localized, based on their detection 

usin fluorescence microscopy of root tip cells (Figure 1). Discrete speckles and nucleolar 

localization is observed as well, in agreement with ROS1 and ROS3 localization patterns 

describe previously in A. thaliana (Zheng, Pontes et al. 2008).  

 

ROS3 overexpression disrupts nucleolar dominance 

RT-PCR using the ITS1 CAPS assay (Lewis and Pikaard 2001) on A.thaliana, A. 

suecica and A. arenosa show that in A. suecica, only the A. arenosa rRNA genes are 

expressed, as the A. thaliana specific band at around 250bp is not detected. However, in 

A. suecica expressing the 35S::FLAG::ROS3 transgene, A. thaliana rRNA genes are 

expressed in A. suecica, which we interpret as the failure to establish nucleolar 

dominance during development (Figure 2a). The overexpression of just the ROS3 RNA-

binding motif (ROS3-RRM) does not affect nucleolar dominance (Figure S1). 

 

DML2 and DML3, but not ROS1, overexpression also disrupts nucleolar dominance 

Ectopic overexpression of DNA glycosylases DML2 and DML3 also prevents A. 

thaliana-derived rRNA gene repression in A. suecica (Figure 1a). However, nucleolar 

dominance is not disrupted in A. suecica when ROS1 is overexpressed (Figure 1b).  
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Demethylation of the intergenic spacer promoter region of A. thaliana-derived rRNA 

genes in A. suecica 

Using bisulphite sequencing, the cytosine methylation positions in the intergenic 

spacer as well as gene promoter regions of Arabidopsis thaliana-derived rRNA genes in 

A. suecica were determined. Genomic DNA was isolated from a line overexpressing 

ROS3, which is disrupted in nucleolar dominance, and compared to wildtype A. suecica 

(LC1). At the intergenic spacer promoter, DNA methylation is reduced in the line 

overexpressing ROS3 compared to wildtype (Figure 3a), while at the gene promoter 

region assayed here, there was no difference (Figure 3b). The total methylation in the 

intergenic spacer promoter was reduced about 50% (Figure 3c) between the ROS3 

overexpressing line compared to wildtype, while the total methylation at the gene 

promoter regions were unchanged (Figure 3d).  
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Discussion 

Active DNA demethylation has important developmental functions in both plants 

and mammals (Feng, Jacobsen et al. 2010). Plant DNA glycosylases such as DME, 

ROS1, DML2 and DML3 can recognize methylated cytosine and cleave the 

phosphodiester bond, which recruits base excision repair machinery to the site, replacing 

the methlyated cytosine with an unmethylated cytosine (Morales-Ruiz, Ortega-Galisteo et 

al. 2006; Ortega-Galisteo, Morales-Ruiz et al. 2008). Overexpression of DME has been 

shown to demethylate some of its target genes (Ohr, Bui et al. 2007), so we sought to 

determine if ROS1 and ROS3 are able to target rRNA genes, since they are localized to 

the nucleolus. At the same time, DML2 and DML3 were also tested to determine their 

overexpression phenotypes. 

We show that ROS3 but not ROS1 causes a failure in establishing nucleolar 

dominance when overexpressed. DML2 and DML3 overexpression also prevents 

nucleolar dominance establishment, suggesting that ROS3, DML2 and DML3 may play 

roles in the epigenetic regulation of rRNA genes (Figure 4). The regulation of ribosomal 

RNA genes is thought to involve as an on/off switch (Lawrence, Earley et al. 2004; 

Lawrence and Pikaard 2004) in which concerted changes in DNA methylation and 

chromatin modifications occur. The ectopic expression of ROS3, DML2 and DML3 can 

prevent the establishment of DNA methylation on the A. thaliana-derived rRNA in A. 

suecica, presumably preventing the establishment of heterochromatic histone 

modifications and silencing. 

 One of the caveats of these experiments is that loss of nucleolar dominance is 

caused by virtue of the overexpression of DNA demethylase machinery, which may 
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reflect a gain of function phenotype not necessarily reflecting the true in vivo regulatory 

process. When ROS3, DML2 and DML3 were knocked down using artificial 

microRNAs, nucleolar dominance establishment was normal in all cases. Unregulated 

methylation and silencing of all rRNA genes would be lethal. Therefore, if ROS3, DML2 

and DML3 play roles in regulating the number of active rRNA genes by balancing de 

novo methylation with demethylation, other mechanisms must exist to prevent runaway 

methylation and rRNA silencing in their absence. 
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Figure legends 

Figure 1 Nuclear localization of YFP::ROS1 and ROS3::GFP in Arabidopsis suecica 

(A) ROS1-YFP localizes to the nucleus in stably transformed YFP::ROS1 A. suecica. 

(B) ROS3-GFP is similarly localized to the nucleus from stably transformed 

ROS3:GFP plants. 

 

Figure 2 Overexpression of ROS3, DML2 and DML3 but not ROS1 disrupts nucleolar 

dominance 

(A)  RT-PCR on individual plants transformed with the transgene containing ROS3 

cDNA driven by the strong 35S promoter, show a loss in nucleolar dominance in 

four to five T1 plants, where the A.thaliana specific band at around 250bp are 

expressed compared to the A. suecica (LC1) wildtype controls. The 

overexpression of the DEMETER-Like (DML) proteins DML2 and DML3 also 

results in the derepression of the silent A. thaliana rRNA genes in all independent 

transgenic A. suecica lines. 

(B)  ROS1 overexpression from an N-terminally FLAG tagged construct or N-

terminally YFP -agged construct does not disrupt nucleolar dominance. 

(C)  Phylogenetic tree generated using a multiple alignment of protein sequences from 

Demeter (DME), ROS1, DML2 and DML3. DML2 and DML3 group together but 

ROS1 and Demeter (DME) are grouped separately. 
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Figure 3 Reduced methylation of A. thaliana rRNA intergenic spacer sequences in A. 

suecica overexpressing ROS3  

(A)  The methylation of the spacer promoter, located upstream of the transcription 

start site, and within in the intergenic spacer of A. thaliana rRNA genes, is 

demethylated between -70 and +90, relative to the spacer promter transcription 

start site, defined as +1, in A. suecica overexpressing ROS3 compared to 

wildtype. 

(B)  The methylation of the A. thaliana rRNA gene promoter, between -400 and +1, is 

not affected when ROS3 is overexpressed in A. suecica, compared to wildtype 

plants. 

(C) Bar graphs show that the total methylation in the intergenic spacer promoter in 

plants overexpressing ROS3 is reduced by at least 50% from all the sites assayed. 

Mostly CG and CHH sites are effected. 

(D) Bar graphs show that total methylation is unchanged in plants overexpressing 

ROS3 compared to wildtype in the gene promoter. 

 

Figure 4 A model for ribosomal RNA gene regulation  

Concerted changes in chromatin modifications and DNA methylation result in a proposed 

on/off switch regulating rRNA genes in plants. To date, knockdown screens in 

Arabidopsis suecica have highlighted repressive chromatin modifications that maintain 

the silencing of Arabidopsis thaliana rRNA genes. Here, we report that ROS3, an RNA 

binding protein implicated in DNA demethylation, can function to positively influence 

rRNA gene expression, while the DNA demethylation activity from DML2 and DML3 
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activity can also prevent the establishment of silencing on A. thaliana rRNA genes in A. 

suecica.   

 

Figure S1 Overexpression of the RRM domain of ROS3 alone does not disrupt nucleolar 

dominance 

RT-PCR using the ITS1 CAPS assay shows that nucleolar dominance is not affected 

when just the RRM domain of ROS3 is overexpressed.  

 

Table S1 Primers used for cloning and RT-PCR assays 
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Primers used for cloning full length cDNAs 
ROS1 Fwd CACCATGGAGAAACAGAGGAGAGAAG 
ROS1 Rev  TTAGGCGAGGTTAGCTTGTTGTC 
DML2 Fwd CACCATGGAAGTGGAAGGTGAAGTG 
DML2 Rev TCATTCCTCTGTCTTCTCTTTAGTTCTG 
DML3 Fwd CACCATGTTGACAGATGGTTCACAACAC 
DML3 Rev CTATATATCATCATCACTCATAAACTTTGGCC 

  Primers used for RT-PCR 
ROS13F TGGAAGGGATCCGTCGTGGATTCT 
ROS13R CCCGCGACTCTTGATTGTTTCAGCAACTT 
DML2F ACCCGGAGAGTACCATTCAGACAC 
DML2R TCAGGAGGAACATGTGTTAGCCACTCTAA 
DML3F GCCAAATCGCAAGAAGGTAAGGA 
DML3R GACGTTGCTGTAGATATGAC 
ROS3 Fwd CACCATGGAGGAAAAAAGCAGCGG 
ROS3 RRM Rev TCATCTCGCTTTAAGCGAGCTAG 

 

Table S1 
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APPENDIX B 

 

GENOMIC IMPRINTING OF POL IV-DEPENDENT SIRNAS IS REGULATED BY A 

NOVEL MECHANISM 
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Abstract 

Background   

Small RNAs generated by RNA polymerase IV (Pol IV) are the most abundant 

class of small RNAs in flowering plants. In Arabidopsis thaliana Pol IV-dependent short 

interfering (p4-si)RNAs are imprinted and accumulate specifically from maternal 

chromosomes in the endosperm of developing seeds. Imprinted expression of protein-

coding genes is controlled by differential DNA or histone methylation placed in gametes. 

To identify factors required for imprinting of p4-siRNAs we analyzed a series of 

candidate mutations, including those required for genomic imprinting of protein-coding 

genes. 

Results  

Paternal alleles of imprinted genes are marked by DNA or histone methylation 

placed by DNA METHYLTRANSFERASE 1 or the Polycomb Repressive Complex 2. 

Here we demonstrate that repression of paternal p4-siRNA expression is not controlled 

by either of these mechanisms. Similarly, loss of several chromatin modification 

enzymes, including a histone acetyltransferase, a histone methyltransferase, and two 

nucleosome remodeling proteins, does not affect imprinting of p4-siRNAs. Maternal 

alleles of all known imprinted genes are hypomethylated by DEMETER DNA 

glycosylase, yet uniparental expression of p4-siRNAs occurs irrespective of 

demethylation by DEMETER or related glycosylases. 

Conclusions  

Imprinted expression of p4-siRNAs from thousands of genomic loci indicates that 

maternal and paternal epigenetic modifications are widespread. Here we demonstrate that 
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differential DNA methylation, although present at many p4-siRNA loci, is not 

responsible for uniparental expression of p4-siRNAs. We further show that several 

chromatin modifications associated with epigenetic silencing are not required for 

genomic imprinting of p4-siRNAs. These data indicate that there are multiple layers of 

parent-of-origin epigenetic marks – differential DNA methylation triggering imprinted 

expression of genes, and an unknown epigenetic modification activating imprinted 

expression of p4-siRNAs. 
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Background 

Mendelian laws of inheritance state that a genetic element behaves identically when 

transmitted through maternal or paternal gametes. Genetic elements that break this law by 

exhibiting preferential or exclusive expression when inherited from one parent are 

genomically imprinted. Genomic imprinting is well described only in placental mammals 

and flowering plants, although a number of parent-of-origin-dependent effects are 

observed in other organisms [1-5]. 

Flowering plants are characterized by double fertilization, whereby two identical 

haploid sperm cells in the pollen grain fertilize two cells in the female gametophyte. 

Fertilization of the haploid egg cell generates the diploid embryo while fertilization of the 

diploid central cell generates the triploid endosperm. The endosperm is functionally 

analogous to mammalian placenta, acting as a conduit between maternal somatic tissues 

and the growing embryo but not contributing genetically to the next generation. 

Endosperm makes up the bulk of grains such as rice, wheat, and maize, making it a 

critical tissue for human nutrition. With a single exception in maize [6], all characterized 

imprinted genes in plants display uniparental expression specifically in the endosperm 

and some imprinted genes affect the growth and development of this tissue [7, 8]. 

Each imprinted gene is associated with a region of differential parental methylation, 

with maternal alleles always hypomethylated regardless of which allele is expressed. In 

Arabidopsis thaliana differential methylation is established by the opposing actions of 

DNA METHYLTRANSFERASE 1 (MET1) in the paternal gametophyte and the DNA 

glycosylase DEMETER (DME) in the central cell of the female gametophyte [9, 10]. 

Loss of paternal DNA methylation through mutation of MET1 causes expression of the 
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normally silent paternal copies of FLOWERING WAGENINGEN (FWA), 

FERTILIZATION INDEPENDENT ENDOPSERM 2 (FIS2), and MATERNALLY 

EXPRESSED PAB C-TERMINAL (MPC), and reduces expression of the paternal-specific 

imprinted gene PHERES (PHE) [11-14]. Similarly, loss of DME activity inhibits the 

maternal expression of at least FIS2 and MPC [13, 15], and ectopic expression of DME 

outside of the central cell is sufficient to induce expression of another maternal-specific 

gene, MEDEA (MEA) [16]. These observations demonstrate the importance of DNA 

methylation patterns in the expression of imprinted genes.  

It is estimated that approximately 50 genes in Arabidopsis are imprinted [17]. In 

contrast, thousands of intergenic regions producing RNA Polymerase IV-dependent small 

interfering (p4-si) RNAs are imprinted and maternally expressed in the endosperm [18]. 

Many p4-siRNAs are produced from transposable elements, but others coincide with 

imprinted genes such as FWA, MPC, and MEA [19, 20]. Recent genome-wide analyses of 

DNA methylation in the endosperm further support a connection between p4-siRNA 

expression and imprinting of genes. Maternal chromosomes are extensively demethylated 

by DME at regions of p4-siRNA production [17, 21], indicating that p4-siRNAs and 

imprinted genes may be coordinately regulated by DME and MET1. 

To examine the mechanism of p4-siRNA imprinting we investigated the genetic 

requirements for maternal expression and paternal silencing of p4-siRNAs. Here we show 

that differential DNA methylation does not explain uniparental expression of p4-siRNAs; 

neither do various histone modifications, including Histone H3 Lysine 27 methylation 

(H3K27me), establish maternal-specific expression of p4-siRNAs. Furthermore,  
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demethylation of maternal chromosomes by DME is dispensable for p4-siRNA 

expression in the endosperm. 

 

Results 

Loss of DNA methylation does not effect uniparental p4-siRNA expression in endosperm 

It was previously reported that loss of DNA METHYLTRANSFERASE 1 (MET1) 

did not alter maternal-specific expression of p4-siRNAs in Arabidopsis endosperm [18]. 

MET1 is the primary methyltransferase in Arabidopsis and is responsible for 

maintenance of CG dinucleotide methylation [22]. Methylation at CHG sites (where H is 

A, T, or C) is performed by CHROMOMETHYLTRANSFERASE 3 (CMT3) and 

asymmetric methylation (at CHH sites) is placed by DOMAINS REARRANGED 

METHYLTRANFERASES (DRM1 and DRM2) [22]. To determine if non-CG DNA 

methylation represses paternal p4-siRNA alleles or induces expression of maternal 

alleles, crosses were generated between cmt3 or drm mutants and wild-type plants of a 

differing ecotype. RNA was extracted from crossed fruits at 5 days after fertilization 

when p4-siRNA levels are highest, and allele-specific northern blots were performed to 

determine the parental origin of p4-siRNAs at locus 08002 (figure 1). Demethylation of 

the pollen donor did not induce p4-siRNA production paternally, indicating that CHG 

and CHH methylation do not repress paternal expression of p4-siRNAs. In reciprocal 

crosses, no change in p4-siRNA expression was detected, indicating that non-CG 

methylation does not promote p4-siRNA expression maternally. To determine if CHG 

and CHH methylation might act redundantly to repress expression, as occurs at 

SUPPRESSOR OF drm1 drm2 cmt3 [23], the drm1 drm2 cmt3 triple mutant (ddc) was 
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also used as maternal or paternal parent in inter-ecotype crosses. Maternal-specific 

expression was maintained even when the pollen donor lacked both CHG and CHH 

methylation (figure1). Although the possibility exists that MET1 acts redundantly with 

either CMT3 or DRM proteins when establishing uniparental DNA methylation at p4-

siRNA loci, these result indicate that differential DNA methylation is not responsible for 

genetic imprinting of p4-siRNAs. 

 

Various chromatin modifications do not affect p4-siRNA expression 

The imprinted gene MEDEA (MEA) is a notable exception in Arabidopsis in that 

paternal expression is not repressed by MET1-mediated DNA methylation, but rather by 

histone H3 lysine 27 methylation (H3K27me) placed by the Polycomb Repressive 

Complex 2 (PRC2). Loss of PRC2 in the pollen donor triggers biparental expression of 

MEA in developing seeds [12]. To investigate the role of PRC2 in uniparental expression 

of p4-siRNAs, we performed crosses as above with the PRC2 mutation fertilization 

independent endosperm (fie). FIE is the only Extra Sex Combs homolog in Arabidopsis 

and this mutation lacks all potential PRC2 complexes [7]. When the fie allele is 

transmitted through pollen (from a heterozygous pollen donor) paternal MEA 

accumulates in the developing seeds [12]. However, biparental expression of p4-siRNAs 

was not detected when this mutation was present in the paternal lineage (figure 2). 

To determine if other chromatin modifications might repress expression of p4-

siRNAs from paternal chromosomes in the endosperm, several candidate genes were 

tested as above. HISTONE DEACETYLASE 6 (HDA6) is associated with silencing of 

transposable elements [24] and rDNA repeats [25, 26]. KRYPTONITE (KYP) encodes a 
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histone methyltransferase that catalyzes dimethylation at lysine 9 of histone H3 

(H3K9me), the canonical mark of silent chromatin [27]. DECREASED DNA 

METHYLATION 1 (DDM1) and MORPHEUS’ MOLECULE 1 (MOM1) have similarity 

to SWI2/SNF2 ATPases and encode presumed nucleosome remodeling proteins. 

Mutations in DDM1 eliminate DNA methylation and transcriptional silencing from 

transposable elements [24, 28], while loss of MOM1 causes transcriptional reactivation of 

transgenes and repeated sequences without changes in DNA methylation [29, 30]. Loss of 

these factors did not alter the uniparental expression of p4-siRNAs in the endosperm 

(figure 2). Notably, these factors also were not required maternally for expression of p4-

siRNAs. 

 

Ectopic expression of DME or other family members does not induce p4-siRNA 

expression 

Loci generating p4-siRNAs are extensively demethylated by DME in the central 

cell, leading to differential methylation in endosperm [17, 21]. Demethylation by DME is 

required for expression of MEA, FWA, and FIS2 [10, 11, 15], and partially required for 

expression of MPC [13]. DME expression is also sufficient for expression of at least 

MEA, as ectopic expression of DME in vegetative tissue triggers MEA accumulation [16]. 

DME is part of a small family of glycosylases in Arabidopsis including REPRESSOR OF 

SILENCING (ROS1), a protein implicated in maintaining the expression of transgenes 

[31], and two related proteins, DEMETER-LIKE 2 (DML2) AND DEMETER-LIKE 3 

(DML3) [32].   

To determine if demethylation by DME or its relatives is involved in maternal 
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expression of p4-siRNAs, we first assayed p4-siRNA expression in transgenic lines 

overexpressing each glycosylase behind the nearly constitutive 35S promoter (figure 3, 

figure S1) [16, 33]. Independent transgenic lines did not display ectopic expression of 

type I p4-siRNAs, which are normally restricted to endosperm, nor did they enhance 

expression of type II p4-siRNAs, which accumulate vegetatively [18]. These observations 

indicate that demethylation by DME or its relatives are not sufficient to trigger p4-siRNA 

accumulation.  

To determine if demethylation acts in conjunction with endosperm-specific factors 

to trigger expression of p4-siRNAs, DME family overexpression lines were crossed to 

wild-type plants of a different ecotype and parental origin of p4-siRNAs was determined 

at 5 days after fertilization. If demethylation is required for expression, crosses generated 

with the transgenic lines as pollen donors should result in biallelic expression of p4-

siRNAs. Instead, strict maternal-specific expression was detected for all crosses (figure 

4), indicating that ectopic demethylation of the paternal genome by overexpression of 

DME family glycosylases does not induce paternal accumulation of p4-siRNAs. 

 

DME demethylation is not required for p4-siRNA expression 

To further assess the role of DME in accumulation of p4-siRNAs, we assayed p4-

siRNA expression in dme mutant endosperm, which is not demethylated at p4-siRNA 

loci [17, 21]. In dme-2 heterozygotes, seeds inheriting a maternal dme allele abort early in 

development while seeds inheriting a maternal DME allele develop normally. To 

determine if DME is required for normal accumulation of p4-siRNAs from maternal 

chromosomes, aborted and developed seeds were dissected from heterozygous dme-2 
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self-fertilized siliques during mid-embryo development (10-12 days post-fertilization). 

Unexpectedly, p4-siRNA accumulation in dme seeds was higher than in wild-type 

siblings (figure 5). To determine if this was due to lack of demethylation by DME or due 

to the developmental arrest of mutant seeds during an earlier period of high p4-siRNA 

accumulation, wild-type and dme seeds from the same developmental stage were 

analyzed. When transmitted maternally the weaker dme-1 allele does not always trigger 

seed abortion, making homozygous mutant lines possible. Developing siliques from dme-

1 and wild type were collected at 5 days post anthesis and p4-siRNA accumulation was 

assayed (figure 5). dme-1 siliques display slightly elevated expression of p4-siRNAs, 

however this may be due to over-proliferation of endosperm in the mutant compared to 

wild type. These results indicate that DME does not promote p4-siRNA production from 

maternal chromosomes in the endosperm. 

 

Discussion 

Differential methylation of maternal and paternal DNA is extensive in the 

endosperm of Arabidopsis, primarily due to DEMETER-mediated demethylation of 

transposable elements in the central cell [17, 21]. Many transposable elements produce 

p4-siRNAs, leading to the hypothesis that demethylation of these elements in the 

endosperm causes production of p4-siRNAs [21]. However, we show that loss of DNA 

methylation is insufficient for paternal p4-siRNA expression (figure 1), and loss of 

maternal DNA demethylation does not eliminate p4-siRNA expression (figure 5). We 

also demonstrate that several known histone modifications, including H3K27 and H3K9 

methylation, are dispensable for p4-siRNA expression (figure 2). These data indicate that 
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there is an additional uniparental chromatin signal controlling p4-siRNA expression. 

Evidence indicates that this unknown mark is established by p4-siRNAs before 

fertilization because p4-siRNA expression in the female gametophyte is required for p4-

siRNA expression in the developing endosperm [18].  

Although there is significant overlap between regions of DME demethylation and 

p4-siRNA expression [17, 21], we have shown that DME demethylation is not required 

for p4-siRNA expression. Furthermore, p4-siRNA expression in the female gametophyte 

is not required for DME activity because none of the mutations that lack p4-siRNAs 

exhibit the developmental phenotypes associated with loss of DME activity (seed 

abortion and endosperm overgrowth). These data lead to the conclusion that many 

genomic regions, especially transposable elements, independently attract both Pol IV and 

DME. FWA is imprinted in Arabidopsis halleri, most likely through the action of DME at 

a SINE element, and yet A. halleri FWA lacks the tandem repeats that are required for p4-

siRNA expression in A. thaliana [19, 34]. A. halleri FWA might therefore be an example 

of a genomic region that has recruited DME but not Pol IV. It is possible that DME and 

Pol IV have overlapping but independent roles in establishing parent-of-origin chromatin 

signatures exist across the Arabidopsis genome.  

Parent-of-origin chromatin signals might be more prevalent than previously 

thought. Although imprinted expression of endogenous protein-coding genes has only 

been described in placental mammals and flowering plants, parent-of-origin phenomena 

exist throughout the animal kingdom. Some transgenes in the nematode Caenohabditis 

elegans and the zebrafish Danio rerio are imprinted [1, 5], and Drosophila melanogaster 

transgenes inserted near regions of heterochromatin or within the Y chromosome are also 
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imprinted [2, 35]. Parent-of-origin effects are not limited to uniparental gene expression. 

The first published case of parental “imprints” is Sciarid flies, where paternal 

chromosomes are eliminated from specific cell lineages [3, 36]. In coccid insects the 

entire paternal genome is either heterochromatinized or eliminated from somatic tissues 

[4], while in C. elegans the X chromosome adopts specific histone modifications 

depending on the parent of origin [37]. It seems likely that parent-of-origin chromatin 

signatures are widespread throughout sexual eukaryotes, and it will be interesting to 

discover what role small RNA-directed chromatin modification might play in establishing 

or responding to these signals. 

 

Conclusions 

Here we demonstrate that known modifiers of genomic imprinting, including DNA 

and histone methylation, do not affect the uniparental expression of p4-siRNAs in 

Arabidopsis endosperm. In particular, the DNA demethylase DME, which acts at many 

p4-siRNA loci, is not required for p4-siRNA expression. We therefore propose a novel 

mechanism controls genetic imprinting of p4-siRNAs, perhaps by establishing a genome-

wide parent-of-origin chromatin signature. 

 

Methods 

Plant growth conditions and genotypes 

All plants were grown under standard conditions including 16 hours of light each 

day. Mutant alleles were as follows. Columbia ecotype: met1-1 [38], drm 1-2 

(SALK_031705) [39], drm2-2 (SALK_150863) [39], cmt3-11 (SALK_148381) [39], 
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hda6-9 (E. Havecker, C. Melnyk, and D. Baulcombe, unpublished allele), ddm1-2 [40], 

mom1-2 (SALK_141293) [29], and fie (GABI 362D08); Landsberg erecta ecotype: cmt3-

7 [41], and kyp-2 [27]; Wassilewskijia ecotype: drm1-1 [42] and drm2-1 [42]. The dme-1 

and dme-2 mutations were isolated in Columbia and backcrossed to Landsberg erecta 

[16]. The drm1 drm2 double mutant contained drm1-1 and drm2-1; the ddc triple mutant 

contained drm1-2, drm2-2, and cmt3-11. Wassilewskijia and C24 contain the Columbia-0 

allele at locus 08002 (figure S2). 

To eliminate possible self-fertilization, crosses were performed 24 hours after 

manual emasculation of immature flowers. For each cross, six to ten siliques were 

collected 5 days after fertilization. To determine the effect of the loss-of-function dme-2 

allele, dme-2 heterozygotes were allowed to self-fertilize. The resulting seeds were 

dissected 10-12 days after fertilization and divided into DME+ and dme- based on 

development of the embryo. For analysis of the weaker dme-1 allele, flowers were 

inspected daily and marked upon anthesis. Siliques were collected 5 days after anthesis.  

 

Generation of transgenic lines 

Total RNA was extracted from wild type Col-0 leaf tissue using Trizol (Invitrogen) 

and 1ug RNA was subjected to RQ1 DNAse (Promega) digestion for 30 minutes. First 

strand cDNA synthesis using Random Primers (Invitrogen) was performed using 

Superscript III (Invitrogen). Full length ROS1, DML2 and DML3 cDNAs were PCR 

amplified using Pfu Ultra (Stratagene) after reverse transcription. Individual PCR 

products were introduced into pENTR D-TOPO (Invitrogen) and the resulting entry 

vectors were recombined into pEARLEYGATE 202 (Earley, Haag et al. 2006) using LR 
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Clonase (Invitrogen). Agrobacterium-assisted transformations of the overexpression 

constructs into wildtype Col-0 plants were performed via floral dip (Clough and Bent 

1998). Overexpression of DME-family glycosylases was verified with qRT-PCR (figure 

S1). 

 Primer sets used for cloning ROS1, DML2 and DML3 are as follows: ROS1 Fwd – 

CACCATGGAGAAACAGAGGAGAGAAG, ROS1 Rev – 

TTAGGCGAGGTTAGCTTGTTGTC; DML2 Fwd – 

CACCATGGAAGTGGAAGGTGAAGTG, DML2 Rev – 

TCATTCCTCTGTCTTCTCTTTAGTTCTG; DML3 Fwd – 

CACCATGTTGACAGATGGTTCACAACAC, DML3 Rev – 

CTATATATCATCATCACTCATAAACTTTGGCC.  

 

RNA extraction and northern hybridizations 

RNA was extracted from leaves using TRI® Reagent (Sigma-Aldrich) according to 

the manufacturer’s protocol. RNA from crossed siliques or dissected seeds was extracted 

as follows: 5-6 siliques were frozen in liquid nitrogen and ground to a fine powder. 500 

µL of room temperature extraction buffer (100 mM glycine pH 9.5, 10 mM EDTA, 100 

mM NaCl, 2% SDS) was added and once thawed, samples were further homogenized and 

placed on ice. Lysates were extracted once with cold Tris-saturated phenol (pH 8.0), 

twice with cold 25:24:1 Tris-saturated phenol:chloroform:isoamyl alcohol, and once with 

cold 24:1 chloroform:isoamyl alcohol before precipitation with sodium acetate and 

ethanol. 

Small RNA was enriched from 30-50 µg total RNA with mirVana miRNA isolation 
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columns (Ambion) according to the manufacturer’s protocol. Small RNAs were resolved 

on a 7M urea/1X TBE/15% acrylamide gel (19:1 acrylamide:bisacrylamide) and 

transferred to Hybond N+ membrane (GE/Amersham). Membranes were UV-crosslinked 

before pre-hybridization in UltraHyb Oligo buffer (Ambion). Oligonucleotides were 

labeled with [γ-32P]-ATP and T4 polynucleotide kinase and purified over an illustra 

MicroSpin G-25 column (GE/Amersham). After overnight hybridization with labeled 

oligonucleotides in UltraHyb Oligo buffer membranes were washed twice in 2X SSC, 

0.1% SDS. Hybridization and washing was at 35° C. Membranes were exposed to 

phosphor-storage screens for detection of siRNAs.  

Probe sequences are as follows (underlined bases are LNA): tRNAmet 

TCGAACTCTCGACCTCAGGAT; 08002.L1 CCCATGGTCTCAAACACATCCTCG; 

08002.Ler TCAAGTGAATCTTTAGCGTATGCT; 08002.Col 

AGTGAATCTAGAGATTTAGCGTAT; 00687 GTTCCTCGTTCTACCCTCATACCT; 

02815 CCATGTCATTCCACCCATCAAAAG; siRNA02 

GTTGACCAGTCCGCCAGCCGAT; AtRep2 

GCGGGACGGGTTTGGCAGGACGTTACTTAAT; Simplehat 

TGGGTTACCCATTTTGACACCCCTA; siRNA1003 

ATGCCAAGTTTGGCCTCACGGTCT. All experiments were replicated with 

independent biological samples. 
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Figure legends  

Figure 1. Loss of methylation does not induce biparental p4-siRNA production in 

endosperm.  

Small RNAs were isolated from inter-ecotype crosses between wild type and DNA 

methyltransferase mutants at 5 days after fertilization; maternal parent is listed first for all 

crosses. Parental origin of small RNA was determined with allele-specific small RNA 

probes (08002.Col and 08002.Ler). 08002.L1 hybridizes to small RNAs from both alleles 

and is a control for small RNA production at this locus; tRNAmet is a loading control. 

Small RNAs were detected specifically from maternal alleles in crosses between the 

wild-type ecotypes Columbia-0 (Col) and Landsberg erecta (Ler). Demethylation of the 

paternal genome through the mutations dna methyltransferase 1 (met1), 

chromomethyltranserase 3 (cmt3), and domains rearranged methyltransferases 2 and 3 

(drm) was not sufficient to trigger accumulation of paternal p4-siRNAs. Furthermore, 

loss of all non-CG methylation in the triple mutant drm1 drm2 cmt3 (ddc) was 

insufficient to trigger paternal p4-siRNA accumulation.  

 

Figure 2. Assorted chromatin modifications are not required for imprinted p4-

siRNA production in endosperm.  

Small RNAs were isolated from inter-ecotype crosses between wild type and a 

histone modification mutant and parental origin of small RNA was determined as 

described in figure 1. Accumulation of p4-siRNAs from paternal chromosomes was not 

induced when the Polycomb Repressive Complex 2 mutant fertilization independent 

endosperm (fie) was transmitted paternally. Likewise, mutations in histone deacetylase 6 
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(hda6), the H3K9 methyltransferase kryptonite (kyp), and the nucleosome remodeling 

proteins decreased dna methylation 1 (ddm1) and morpheus’ molecule 1 (mom1) did not 

affect uniparental expression of p4-siRNAs. 

 

Figure 3. DEMETER family glycosylases are insufficient to induce vegetative 

expression of p4-siRNAs.  

Ectopic expression of the DEMETER glycosylase behind the strong, nearly 

constitutive 35S promoter (35S::DME) does not cause ectopic accumulation of type I p4-

siRNAs (00687, 02815, 08002, and siRNA 02) in leaves, nor does it alter expression of 

type II p4-siRNAs (AtRep2, Simplehat, and siRNA1003) in leaves. Similarly, 

overexpression of the related glycosylases REPRESSOR OF SILENCING (35S::ROS1), 

DEMETER-LIKE 2 (35S::DML2), or DEMETER-LIKE 3 (35S::DML3) has no affect on 

p4-siRNA expression. Two independent transgenic lines were assayed for each 

overexpression construct. 35S::ROS1 lines are in the C24 background [33]; all other lines 

are in the Col background [16]. 

 

Figure 4. DEMETER family glycosylases do not trigger paternal expression of p4-

siRNAs.  

Small RNAs were isolated from inter-ecotype crosses between wild type and 

transgenic lines and parental origin of small RNA was determined as described in figure 

1. Expression of the DEMETER glycosylase in the male gametophyte from the strong, 

nearly constitutive 35S promoter (35S::DME) does not trigger paternal expression of p4-

siRNAs in endosperm. Similarly, overexpression of the related glycosylases 
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REPRESSOR OF SILENCING (35S::ROS1), DEMETER-LIKE 2 (35S::DML2), or 

DEMETER-LIKE 3 (35S::DML3) does not affect imprinted p4-siRNA expression in 

endosperm. Two independent transgenic lines were assayed for each overexpression 

construct. 35S::ROS1 lines are in the C24 background [33]; all other lines are in the Col 

background [16]. 

 

Figure 5. p4-siRNA expression in endosperm does not require DEMETER 

demethylation.  

Left side: Developing (WT) or arrested (dme-) seeds were dissected from self-

fertilized dme-2 heterozygous fruits 10-12 days after fertilization and small RNAs were 

extracted. DME-deficient seeds express p4-siRNAs at levels higher than wild type, 

perhaps due to arrest at an earlier developmental stage or due to endosperm overgrowth. 

Right side: RNA was extracted from wild type and dme-1 homozygous fruits at 5 days 

after anthesis and small RNAs were extracted. Mutant seeds accumulate p4-siRNAs 

slightly higher than wild type seeds, perhaps due to endosperm overgrowth in mutant 

seeds. 

 

Supplemental Figure 1. Characterization of DEMETER family overexpression lines. 

Transgenic lines expressing the four members of the DEMETER family behind the 

nearly constitutive 35S promoter were assayed for transcript accumulation in leaves by 

quantitiative reverse transcription-PCR. Overexpression of REPRESSOR OF 

SILENCING (ROS1) is in the C24 ecotype [33]; all other constructs are in Columbia 

(Col-0) [16]. All graphs are mean values for 3 biological replicates. 35S::DME and 
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35S::ROS1 lines are homozygous; 35S::DML2 and 35S::DML3 are pooled samples of 

homozygous and hemizygous individuals. Overexpression of DEMETER (DME) is weak, 

but sufficient to induce expression of MEDEA (MEA) in leaves (pink bars). 

 

Supplemental Figure 2. The 08002 polymorphism in various Arabidopsis ecotypes. 

The p4-siRNA locus 08002 contains a six nucleotide indel between Arabidopsis 

ecotypes Columbia (Col) and Landsberg erecta (Ler). This polymorphism is the basis of 

the allele-specific probes 08002.Col and 08002.Ler (hybridizing to the region in bold 

type). To determine if these probes would also bind siRNAs from other ecotypes, the 

08002 region from Wassilewskijia (WS) and C24 was sequenced. These ecotypes are 

(Col)-like for the indel, but they also differ from Col at a single nucleotide (in red). 

However, this SNP does not appear to affect hybridization of the Col probe to C24 and 

WS siRNAs. 
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APPENDIX C 

 

FUNCTIONAL ANALYSIS OF NRPD1 AND NRPE1 C-TERMINAL DOMAINS 

REQUIRED FOR RNA DIRECTED DNA METHYLATION 
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Abstract 
 
 Plant-specific RNA Polymerases IV and V are specialized forms of RNA 

Polymerase II and are involved in the RNA-directed DNA methylation (RdDM) pathway.  

The Pol IV and Pol V largest subunits, NRPD1 and NRPE1, respectively, retain the 

conserved DNA-dependent RNA polymerase domains A to H present in all multisubunit 

RNA polymerases, but lack the C-terminal heptad repeats of the Pol II largest subunit.  

Instead, Arabidopsis NRPD1 and NRPE1 contain unique C-terminal extensions with 

domains that are conserved to varying degrees among diverse plant species.  

Complementation assays indicate that the Defective Chloroplast and Leaves-like (DeCL-

like) domain is required for full function of both NRPD1 and NRPE1.  The QS-rich 

domain and the ten 16 aa repeats present in the NRPE1 CTD are dispensable for function, 

as are the majority of WG motifs implicated in AGO4 interactions.  Over-expression of 

the NRPE1 CTD domains in wild type plants has a gain-of-function phenotype resulting 

in dominant suppression of RdDM.   

(157 words) 
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Introduction 

 DNA-dependent RNA Polymerases (DdRPs) catalyze the production of RNA 

from a DNA template.  Bacterial DdRP complexes have 5 core subunits, whereas 

eukaryotic DdRP complexes are more complex, with 12 to 17 core subunits.  Pol I 

transcribes 45S rRNA, Pol II transcribes mRNA as well as most micro RNA precursors, 

and Pol III transcribes 5S rRNA and tRNAs (Grummt, 2003; Schramm and Hernandez, 

2002; Woychik and Hampsey, 2002).  Plants are unique in that they encode two 

additional DdRP complexes named Pol IV and Pol V that produce noncoding RNAs 

(Matzke et al., 2009).   

 Pol IV and Pol V are members of the RNA-directed DNA methylation (RdDM) 

pathway, which is important for the silencing of retrotransposons and endogenous 

repeats.  Pol IV transcripts are precursors for small RNA biogenesis in a process that 

requires RNA-DEPENDENT RNA POLYMERASE2 (RDR2) and DICER-LIKE3 

(DCL3) (Herr et al., 2005; Onodera et al., 2005; Pontes et al., 2006) (Chapter 5).  The 

siRNAs associate with ARGONAUTE4 (AGO4) in a RNA-induced silencing complex 

(RISC) that is required for DNA methylation and the generation of secondary siRNAs at 

some loci (Qi et al., 2006).  Pol V transcripts are hypothesized to help recruit the 

silencing machinery to specific chromosomal loci for DNA methylation and chromatin 

modifications by serving as siRNA interaction scaffolds (Wierzbicki et al., 2008; 

Wierzbicki et al., 2009).  

 The Pol II largest subunit, Rpb1, or NRPB1 in plants, contains the DdRP 

conserved domains A-H that are conserved in all multisubunit RNA polymerase largest 

subunits from bacteria to eukaryotes followed by a unique C-terminal domain (CTD) 
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extension (Jokerst et al., 1989).  The Rpb1 CTD is composed of a heptad repeat whose 

consensus sequence is YSPTSPS (Allison et al., 1985).  This sequence is conserved 

among the Pol II largest subunits of animals, plants and fungi (Stiller and Hall, 2002).  

The heptad repeats are a target of post-transcriptional modifications and protein-protein 

interactions that control Pol II initiation, elongation, termination and pre-mRNA splicing 

events (Cho et al., 1997; Cramer et al., 1997; Ho et al., 1998; Liao et al., 1991; 

McCracken et al., 1997; Nonet and Young, 1989; Otero et al., 1999; Riedl and Egly, 

2000; Yamamoto et al., 2001).  The total number of heptad repeats varies by species, as 

does the minimum number of heptad repeats required for viability (Corden, 1990).  The 

plant-specific Pol IV and Pol V largest subunits, NRPD1 and NRPE1, respectively, are 

evolved from Pol II NRPB1 (Luo and Hall, 2007).  They contain the core DdRP 

conserved domains but lack the Pol II heptad repeats at their C-termini.  Arabidopsis 

thaliana NRPD1 has a CTD of 179 amino acids (aa) whereas the NRPE1 is ~370 aa, 

twice the length of the CTD of the Arabidopsis Pol II largest subunit, NRPB1.   

 The DeCL-like domain is plant-specific and has no known function.  The 

Arabidopsis thaliana genome encodes five Defective Chloroplast and Leaves-like 

(DeCL-like) domain-containing proteins, including NRPD1 and NRPE1.  AtDCL 

(At1g45230) is required for chloroplast rRNA processing and correct ribosome assembly 

(Bellaoui and Gruissem, 2004; Bellaoui et al., 2003; Keddie et al., 1996).  DOMINO1 

(At5g62440) is an embryo-defective mutant that is nuclear localized and proposed to be 

involved in a process essential for nuclear and nucleolar functions (Lahmy et al., 2004).  

At3g46630 remains uncharacterized but is predicted to localize to the mitochondria 

(Lahmy et al., 2004).   
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 N-terminal of the NRPE1 DeCL domain is a region consisting of ten imperfect 16 

amino acid repeats (aa 1451-1651) rich in WG motifs that also occur flanking the repeats 

(El-Shami et al., 2007; Pontier et al., 2005).  WG motifs have been implicated in the 

binding of Argonaute proteins (El-Shami et al., 2007; Takimoto et al., 2009; Till et al., 

2007) and in vitro and in vivo experiments suggest that AGO4 can interact with the 

NRPE1 CTD via these WG motifs (El-Shami et al., 2007; He et al., 2009; Li et al., 2006).  

 At its extreme C-terminus, Arabidopsis NRPE1 contains a glutamine-serine rich 

(QS-rich) domain (aa 1851-1976).  Spinacia oleracea has a short proline-serine rich (PS-

rich) domain at this location rather than a QS-rich domain (Pontier et al., 2005).  

 To address the requirements of the NRPD1 and NRPE1 C-terminal domains for 

Pol IV and Pol V in vivo function, we generated a series of deletion constructs and 

assayed whether or not they were capable of complementing nrpd1 and nrpe1 mutants 

defective for DNA methylation, small RNA accumulation or transcriptional silencing.  

My analysis reveals that the DeCL-like domains of NRPD1 and NRPE1 are required for 

full activity.  The NRPE1 QS-rich domain is dispensable, as is the domain consisting of 

the ten 16 aa repeats.  Contrary to a previously published report, the NRPE1 WG motifs 

are not fully required for Pol V activity, as deletion mutants are capable of partial 

complementation.  Over-expression of the NRPE1 CTD leads to dominant suppression of 

the RdDM pathway in transformed wild type plants.  Collectively, these genetic studies 

show that the NRPD1 and NRPE1 CTDs play an important role in Pol IV and Pol V 

function. 

 

Results 
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NRPD1 and NRPE1 CTDs have conserved domains among diverse plant species 

 Predicted full-length NRPD1 and NRPE1 sequences from diverse plant species 

were analyzed to determine the extent of CTD conservation.  The DeCL-like domain is 

detected by the presence of the DFSYRK consensus sequence (Bellaoui and Gruissem, 

2004; Bellaoui et al., 2003) and is present in all NRPD1 and NRPE1 proteins, with the 

exception of the NRPD1 and one of two NRPE1 proteins in Physcomitrella patens 

(Figure S1, S2 and S3).  In the context of NRPE1, the DeCL-like domain is typically C-

terminal of the 16 aa repeats and WG motifs.  The NRPE1 16 aa repeats are imperfect 

and vary in number and length in different species (Figures S1 and S2).  While the WG 

motifs are often embedded in the repeat sequence, exceptions do occur such as the 

Physcomitrella patens, Vitis vinifera, Oryza sativa and Zea mays NRPE1 proteins 

(Figures S1 and S2).  The number of WG motifs and whether they are predominantly 

present as WG, GW, GWG or WGW motifs varies by species (Figures S1 and S2).  The 

QS- and PS-rich domains appear unique to Arabidopsis and spinach, respectively, as no 

equivalent domains were detected in NRPE1 of other plants (Figures S1 and S2).   

 

NRPE1 C-terminal domain deletions 

 The Arabidopsis NRPE1 CTD can be divided into four domains: a linker region 

that connects the CTD to the DdRP core, the 16 aa repeat and WG motif-containing 

domain, the DeCL-like domain and the QS-rich domain.  To test for NRPE1 CTD 

functions, a series of six C-terminal deletion constructs and a full-length control construct 

were transformed into the nrpe1 mutant to assay for complementation (Figure 1A).  Each 

of the HA-tagged transgenes is expressed and encodes a protein of the predicted 
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molecular mass (Figure 1B).  NRPE2 co-immunoprecipitates with all of the NRPE1 CTD 

deletion constructs, even when the entire CTD is deleted, suggesting that the CTD is not 

required for Pol V subunit assembly (Figure 1B).  NRPE1 is typically detected on 

immunoblots as a doublet regardless of whether the native protein or C-terminal FLAG 

or HA epitope tagged proteins are detected (Pontes et al., 2006; Pontier et al., 2005; 

Ream et al., 2009).  This banding pattern is observed in each of the C-terminal deletion 

constructs except for the full CTD deletion construct.   

 

The NRPE1 DeCL-like domain is required for in vivo complementation 

 It has previously been determined that Pol IV and Pol V are required for DNA 

methylation and silencing of the AtSN1 retrotransposon locus (Herr et al., 2005; Kanno et 

al., 2005; Onodera et al., 2005; Pontier et al., 2005).  DNA methylation at the AtSN1 

locus was analyzed by chop-PCR using the methylation sensitive HaeIII restriction 

enzyme (Figure 1C).  If the HaeIII restriction sites in the AtSN1 locus are methylated, 

DNA digestion will not occur and a PCR product will be obtained.  If any of the HaeIII 

restriction sites are unmethylated, the DNA will be digested and PCR amplification of the 

region will fail.  PCR amplification of the region was successful in the NRPE1 full-length 

and NRPE1 ∆1851-1976 (QS-rich deletion) lines indicating these constructs successfully 

complement the nrpe1 mutant and facilitate the methylation of the HaeIII sites.  The 

NRPE1 ∆1736-1976 protein (DeCL-like and QS-rich domain deletions) and remaining 

CTD deletions in the series fail to rescue AtSN1 DNA methylation; a PCR product was 

not obtained, indicating that one or more HaeIII sites was susceptible to digestion.  RT-

PCR analysis demonstrates AtSN1 transcript repression in the NRPE1 full-length and 
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NRPE1 ∆1851-1976 lines and a failure to repress in the NRPE1 ∆1736-1976 and 

remaining CTD deletions (Figure 1C).  DNA methylation analysis at the 5S rDNA loci 

supports these results as Southern blot analysis of HaeIII and HpaII genomic DNA 

reveals that only the NRPE1 full-length and NRPE1 ∆1851-1976 lines complement the 

DNA methylation defect of the nrpe1 mutant (Figure 1D). 

 While NRPE1 is not absolutely required for the biogenesis of all siRNAs, nrpe1 

mutants do affect the accumulation of some siRNAs (Mosher et al., 2008).  Small RNA 

Northern blot analysis of AtCopia, 45S rRNA and AtSN1 sequences demonstrates the 

QS-rich domain is dispensable for complementation but that the DeCL-like domain is 

required for wild-type levels of siRNA accumulation to occur (Figure 1E). 

 

NRPD1 DeCL-like domain deletion 

 The Arabidopsis NRPD1 CTD is composed of a DeCL-like domain and a small 

linker region that connects it to the DdRP core structure.  A NRPD1 DeCL-like deletion 

construct, NRPD1 ∆1337-1453, as well as the previously published NRPD1 full-length 

control were transformed into the nrpd1 mutant to determine if the NRPD1 DeCL-like 

domain is required for in vivo complementation (Figure 2A).  The two FLAG-tagged 

NRPD1 constructs are both expressed at the protein level, and NRPD2 and RDR2 both 

co-immunoprecipitate with WT or ∆CTD proteins at equivalent levels (Figure 2B).  

These results suggest the NRPD1 DeCL-like domain is not required for Pol IV complex 

assembly or for mediation of the Pol IV-RDR2 interaction (Chapter 5). 
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The NRPD1 DeCL-like domain is required for siRNA biogenesis and transcript 

silencing but not DNA methylation 

 At AtSN1, the NRPD1 DeCL deletion mutant, NRPD1 ∆1337-1453, restores 

DNA methylation to the same levels as the NRPD1 full-length transgene (Figure 2C).  

Similar results were observed at the 5S rDNA loci by Southern blot analysis of HaeIII 

and HpaII digested DNA (Figure 2D).   

 In contrast to the NRPD1 DeCL domain being dispensable for the restoration of 

DNA methylation, small RNA Northern blot analysis reveals that the NRPD1 DeCL-like 

domain is required for the wild-type accumulation of AtCopia, 45S and AtSN1 siRNAs 

(Figure 2E).  Consistent with the failure to produce Pol IV-dependent siRNAs, it is found 

that the NRPD1 DeCL-like domain is required for suppression of AtSN1 and solo LTR 

transcripts (Figure 2F). 

 

NRPE1 CTD repeats are dispensable for in vivo complementation 

 Given the functional requirement for the NRPE1 DeCL-like domain, we were 

unable to conclude the significance of domains N-terminal to this domain using the C-

terminal deletion series studied in Figure 1.  To address the requirement for sequence 

elements between the NRPE1 DdRP core and the DeCL-like domain, three additional 

transgene deletion constructs were engineered and transformed into the nrpe1 mutant for 

in vivo complementation assays (Figure 3A).  NRPE1 ∆1251-1426 contains a deletion in 

the linker region and deletes 3 of 18 WG motifs; NRPE1 ∆1426-1651 deletes the ten 16 

aa repeats and 13 of the 18 WG motifs, and NRPE1 ∆1251-1651 deletes both regions and 

16 of the 18 WG motifs. 
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 The three NRPE1 internal CTD deletion lines were analyzed for rescue of DNA 

methylation at the 5S rDNA loci by Southern blot analysis of HaeIII and HpaII digested 

genomic DNA (Figure 3B).  Deletion of the linker region (NRPE1 ∆1251-1426) or the 

ten 16 aa repeats (NRPE1 ∆1426-1651) resulted in full rescue of the nrpe1 mutant.  Only 

when these two regions were deleted together (NRPE1 ∆1251-1651) was there a failure 

to fully complement, although DNA methylation levels are still increased relative to the 

nrpe1 mutant.  DNA methylation at AtSN1 was also assayed by chop-PCR and similar 

results were observed with DNA methylation fully restored with the NRPE1 ∆1251-1426 

and NRPE1 ∆1426-1651 transgenes and only partially with the NRPE1 ∆1251-1651 

transgene (Figure 3C). 

 In agreement with the AtSN1 DNA methylation status, AtSN1 transcription 

detected by RT-PCR demonstrates that only the NRPE1 ∆1251-1651 transgenic line 

continues to express AtSN1 transcripts, though below nrpe1 mutant levels (Figure 3D).  

Unexpectedly, there are no observable defects in siRNA accumulation in any of the three 

deletion lines (Figure 3E). 

 

The NRPE1 WG motifs are important but not required for NRPE1 function 

 It has previously been published that the NRPE1 WG motifs are required for in 

vivo complementation of 5S rDNA and AtSN1 DNA methylation states in the nrpe1-11 

background (El-Shami et al., 2007).  The NRPE1 transgene used in the study, NRPE1 

∆SD, had two deletions spanning aa 1411 to 1707 and aa 1875 to 1976.  The transgene 

therefore deleted all ten 16 aa repeats, 16 of the 18 WG motifs and the QS-rich domain 

(Figure 4A). 
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 Three independent NRPE1 ∆SD lines were compared side-by-side with the 

NRPE1 ∆1251-1426, NRPE1 ∆1426-1651, NRPE1 ∆1251-1651 and NRPE1 ∆1251-1976 

deletion lines.  Contrary to the published results (El-Shami et al., 2007), the NRPE1 ∆SD 

line does partially rescue DNA methylation at the AtSN1 (Figure 4B) and 5S rDNA loci 

(Figure 4C). NRPE1 ∆SD DNA methylation levels are roughly equivalent to the NRPE1 

∆1251-1651 transgenic line.  The two do not display full complementation but they do 

facilitate significantly more DNA methylation than the nrpe1 mutant.  Transcription from 

the AtSN1 and solo LTR loci in NRPE1 ∆SD and NRPE1 ∆1251-1651 lines is partially 

suppressed (Figure 4D) in agreement with the DNA methylation results, showing 

increased methylation at these loci.  Thus, the WG motifs may be important, but they are 

not required for NRPE1 to complement an nrpe1 mutant.   

 

Over-expression of the NRPE1 C-terminal domains dominantly suppresses the 

RdDM pathway 

 Having analyzed loss-of-function phenotypes with CTD deletions in the NRPD1 

and NRPE1 proteins, we next tested for gain-of-function phenotypes.  If the CTDs are a 

platform for protein-protein interactions, over-expression may titrate away silencing 

factors required for RdDM function.  A YFP over-expression vector encoding NRPE1 aa 

1234-1842, referred to as YFP-CTD (Figure 5A), was transformed into wild type 

Arabidopsis plants.  In whole mounted Arabidopsis roots, the protein signal is detected 

throughout the nucleoplasm, with little to no cytoplasmic localization detected (Figure 

5B).  AtSN1 DNA methylation, in ten of twelve independent transgenic lines, is reduced 

compared to wild type plants (Figure 5C) demonstrating that the transgene is capable of 
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dominant suppression of RdDM.  AtSN1 transcription is correspondingly activated in the 

lines that have reduced DNA methylation (Figure 5D).  Lack of transgene RNA 

expression in line 182 (Figure 5D) explains why there is no dominant suppression 

phenotype in this plant.  Because the transgene is expressed in line 172, a post-

transcriptional gene silencing mechanism or mutation that prevents the protein from 

being translated or functioning properly may explain the lack of a dominant negative 

phenotype in this plant.  Similar to nrpe1 mutants, AtCopia, 45S and AtSN1 siRNA 

accumulation is reduced in the YFP-CTD transgenic lines (Figure 5E) and these plants 

also display delayed flowering (Figure S4) similar to nrpe1 mutants.   

 In an attempt to narrow down the region(s) capable of inducing dominant 

suppression of RdDM, three additional NRPE1 constructs were cloned, spanning aa 

1426-1651, aa 1426-1851 and aa 1851-1977, in addition to the NRPD1 DeCL domain, aa 

1337-1453 (Figure 5A).  These cDNAs were recombined into over-expression vectors 

that add an N-terminal FLAG tag and transformed into wild type Arabidopsis plants.  

Protein blot analysis of immunoprecipitated protein samples confirmed expression of all 

the transgenes (Figure 5F).  

 Six independent lines for each transgene were analyzed for dominant suppression 

of the RdDM pathway.  DNA methylation at the AtSN1 locus was only marginally 

affected in three of the NRPD1 aa1337-1453 lines (Figure 5G).  In contrast, multiple 

individuals for each of the three NRPE1 CTD over-expression constructs demonstrated 

significantly reduced AtSN1 DNA methylation (Figure 5G).  Corresponding with the 

DNA methylation results, transcription of AtSN1 and solo LTR retroelements was 

activated in the NRPE1 CTD over-expression lines (Figure 5H).  Weak expression of 
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AtSN1 is detected in several of the NRPD1 aa1337-1453 transgenic lines, although solo 

LTR expression does not appear to be activated (Figure 5H). 

 

Discussion 

 Our results show that the DeCL-like domain is required in vivo for both Pol IV 

and Pol V function.  NRPE1 is completely dependent upon this domain for function in 

the RdDM pathway, while NRPD1 requires the domain for complementation of siRNA 

biogenesis and suppression of retroelement transcription.  Interestingly, DNA 

methylation is rescued despite deletion of the NRPD1 DeCL-like domain.  Over-

expression of the NRPD1 DeCL-like domain led to only subtle dominant negative DNA 

methylation defects, although release of transcriptional silencing was more pronounced, 

in agreement with the complementation assay results.  In addition, the NRPD1 aa 1337-

1453 lines displayed leaf curling and smaller plant size (Figure S5) similar to some of the 

reported phenotypes of plants over-expressing a plastid DeCL-like domain-containing 

protein, AtDCL (Bellaoui and Gruissem, 2004).  The RdDM-defective phenotypes 

observed in the NRPD1 DeCL-like domain over-expression lines might be due to 

dominant-negative crosstalk with the three other DeCL-like domain containing proteins 

in Arabidopsis since nrpd1 and nrpe1 mutants lack these morphological phenotypes. 

 The QS-rich domain and ten 16 aa repeats in the NRPE1 CTD are not required for 

complementation of an nrpe1 mutant, but each domain is sufficient to trigger dominant 

suppression of RdDM when over-expressed.  The plants have no apparent morphological 

defects (data not shown).  We suggest that the over-expressed domains either titrate away 

interacting proteins from the endogenous NRPE1 protein or in some other way interfere 
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with the function of the RdDM pathway.  In agreement with this idea is the observation 

the YFP-tagged NRPE1 CTD localizes to the nucleus where other members of the RdDM 

pathway localize (Pontes et al., 2006).  Interestingly, YFP-CTD was never observed in 

the nucleolus-associated Cajal body where siRNA biogenesis and processing are believed 

to occur (Li et al., 2006; Pontes et al., 2006), unlike the full-length NRPE1, suggesting 

the DdRP core is required for NRPE1 to localize here. 

 The NRPD1 ∆1337-1453 and NRPE1 ∆1251-1651 phenotypes are noteworthy 

since there is a breakdown in correlation between DNA methylation and siRNA 

production.  In the case of NRPD1 ∆1337-1453, DNA methylation is rescued despite the 

failure to restore siRNA production, and in the case of NRPE1 ∆1251-1651, siRNA 

production is rescued despite the failure to restore DNA methylation.  Neither restores 

retroelement transcript suppression.  These results suggest siRNA production and DNA 

methylation are unable to establish a transcriptionally silenced state independent of one 

another.  Building upon this idea, there may be two parallel pathways in plants that 

converge on the same target that are both required for the establishment of silencing.  

Perhaps DNA methylation provides an independent check on the siRNA-mediated 

silencing pathway in plants, and vice versa.  At the very least, the results imply that Pol 

V-directed DNA methylation is important for transcriptional silencing but not Pol V-

derived siRNAs and that Pol IV-derived siRNAs are important for transcriptional 

silencing but not Pol IV-directed DNA methylation. 

 In disagreement with a previously published report (El-Shami et al., 2007), the 

majority of NRPE1 WG motifs can be deleted and still largely complement the nrpe1 

mutant (Figure 4).  This suggests that the WG motifs are important but not required for 
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Pol V function.  Reports of in vitro interaction between bacterially expressed NRPE1 

CTD protein and AGO4 in plant extracts (El-Shami et al., 2007; He et al., 2009; Li et al., 

2006) have been confirmed (Figure S6) and demonstrate that AGO4 is capable of binding 

NRPE1 aa 1426-1651 but not a NRPE1 CTD construct that lacks this region.  However, 

if NRPE1 and AGO4 do directly interact via the WG motifs in vivo, this interaction is not 

required for the RdDM pathway to function because the NRPE1 ∆1426-1651 line fully 

complements the nrpe1 mutant.  It must be stated that despite repeated efforts, the 

reported in vivo interaction between NRPE1 and AGO4 (Li et al., 2006) cannot be 

confirmed despite numerous co-IP approaches (Figure S7) and mass spec analysis of both 

NRPE1 and AGO4 purified samples (Haag, Ream, Pikaard, EMSL, unpublished).  Thus, 

if NRPE1 and AGO4 do interact in vivo, it is possibly a weak or transient interaction 

mediated by AGO4 binding of Pol V transcripts (Wierzbicki et al., 2009) with the WG 

motifs acting to help stabilize the interaction. 

 While the NRPD1 and NRPE1 CTDs have little resemblance to the CTD of 

NRPB1, the Pol IV and Pol V complexes are evolutionarily derived from Pol II (Luo and 

Hall, 2007; Ream et al., 2009) and like Pol II, Pol IV and Pol V require distinct C-

terminal domains for proper function.  It is likely that the unique roles of these related 

polymerases arise from differential use of Pol II-derived small subunits (Ream et al., 

2009) and their unique CTD architectures.  Whether the CTDs play a role in regulating 

Pol IV and Pol V transcription or post-transcriptionally process Pol IV and Pol V 

transcripts is still an open question.  The NRPD1 and NRPE1 CTDs are likely to be 

involved in protein-protein interactions and may be the target of post-translational 

modifications, like the NRPB1 CTD.  Evidence for alternative splicing or post-
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translational modification of the NRPE1 CTD is hinted at by the observation that the 

NRPE1 doublet pattern is lost when the full CTD is deleted (Figure 1B) and the over-

expressed NRPE1 QS-rich domain migrates much larger than the predicted 14kD size 

(Figure 5F).  Proteomic analyses to identify protein-protein interactions and post-

translational modifications in the NRPD1 and NRPE1 CTDs are currently underway. 

 

Materials and Methods 

Plant materials.  Arabidopsis thaliana mutant lines nrpd1-3, nrpd2 (nrpd2a-2, nrpd2b-

1) and nrpe1-11 have been described previously (Onodera et al., 2005; Pontier et al., 

2005), as have transgenic lines NRPD1-FLAG (nrpd1-3) and NRPD1DDD-AAA-FLAG 

(nrpd1-3) (Haag et al., 2009; Pontes et al., 2006).  The NRPE1 ∆SD-FLAG (nrpe1-11) 

transgenic line was kindly provided by Thierry Lagrange.  

 

Cloning, vectors and transgenic lines.  The pENTR-NRPE1 full-length genomic 

sequence with its endogenous promoter (Pontes et al., 2006) was recombined into 

pEarleyGate301 (Earley et al., 2006) using LR Clonase (Invitrogen) in order to add a C-

terminal HA epitope tag in lieu of the normal stop codon.  C-terminal domain deletions 

were obtained by using pENTR-NRPD1 and pENTR-NRPE1 full-length genomic clones 

with endogenous promoters (Pontes et al., 2006) as the DNA template and reverse 

primers that truncated the 3’ end (Table S1).  Pfu Ultra (Stratagene) was used to amplify 

the sequences.  The PCR products were gel purified and cloned into pENTR-TOPO S/D 

(Invitrogen) before being recombined into pEarleyGate 301 (NRPE1 C-terminal 

truncations with HA epitope) or pEarleyGate302 (NRPD1 C-terminal truncation with 
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FLAG epitope).  Internal C-terminal domain deletions were obtained by the SLIM 

method (Chiu et al., 2004) using the pENTR-NRPE1 full-length genomic clone as the 

DNA template and the appropriate primers (Table S1).  Constructs were recombined into 

pEarleyGate301.  CTD over-expression lines were generated by cloning NRPD1 and 

NRPE1 cDNA sequences (Table S1) and recombining into pEarleyGate104 (35S 

promoter with N-terminal YFP fusion) or pEarleyGate202 (35S promoter with N-

terminal FLAG epitope).  pEarleyGate plasmids in Agrobacterium tumefaciens strain 

GV3101 were used to transform Arabidopsis thaliana (Col-0) plants by the floral dip 

method (Bechtold and Pelletier, 1998) as modified by Clough and Bent (Clough and 

Bent, 1998).   The NRPD1 and NRPE1 genomic clones were transformed into nrpd1-3 

and nrpe1-11, respectively, while the over-expressed cDNA clones were transformed into 

wild type plants.  T1 seeds were sown on soil and transformants were selected by 

spraying 2-week old seedlings with BASTA herbicide. NRPE1 ∆SD-FLAG 

transformants were selected as described previously (El-Shami et al., 2007). 

 

DNA methylation analysis.  Southern blot analysis of HaeIII and HpaII digested DNA 

at the 5S rDNA locus was performed as in (Haag et al., 2009).  The AtSN1 DNA 

methylation assay involving PCR amplification of undigested or HaeIII-digested 

genomic DNA was performed as previously described (Herr et al., 2005). 

 

RNA analysis. Small RNA was isolated and analyzed as previously described (Haag et 

al., 2009).  RT-PCR was performed as previously described (Haag et al., 2009) using 

primers in Table S1.   
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Antibodies.  Affinity purified anti-NRPD2 and anti-RDR2 have been described 

previously (Haag et al., 2009; Onodera et al., 2005).  Anti-FLAG M2-HRP and anti-HA 

are commercially available (Sigma). 

  

Immunoprecipitation and immunoblotting.  Frozen leaf tissue (4.0g) was ground in 

mortar and pestle and protein extracted as in (Pontes et al., 2006).  Supernatant was 

incubated with 35uL anti-FLAG-M2 or anti-HA resin (Sigma) for 3 hours at 4 °C on a 

rotating mixer.  Resin was washed two times with extraction buffer supplemented with 

0.5% NP-40.  Washed immunoprecipitates were eluted from the resin with two bed 

volumes of 2x SDS sample buffer and boiled 5 min.  Protein samples were run on Tris-

glycine gels by SDS-PAGE and transferred to nitrocellulose or PVDF membrane.  

Antibodies were diluted in TBST + 5% (w/v) nonfat dried milk (Schnucks) as follows: 

1:500 NRPD2, 1:250 anti-RDR2, 1:3,000 anti-HA and 1:2,000 anti-FLAG-HRP.  1:5,000 

to 1:10,000 anti-rabbit-HRP (Amersham) was used as secondary antibody.  ECL Plus 

(GE Healthcare) was used for chemiluminescent detection of proteins.  Membranes were 

stripped with 1% SDS, 25 mM glycine, pH 2.0 and re-equilibrated with TBST prior to 

subsequent blocking and immunoblotting. 

 

Whole mount localization.  Whole roots were fixed in 4% formaldehyde in PBS, pH 7.4 

for 20 min at room temperature and washed in 1X PBS, pH 7.4 at room temperature. 

Nuclei were stained with 2.5 ug/ml propidium iodide (Invitrogen) and observed with 

Leica SP2 confocal microscope using 488 nm and 561 nm laser lines. 
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Figure Legends 

 

Figure 1. The NRPE1 DeCL-like domain is required for nrpe1 in vivo 

complementation.  (A) Genomic HA-epitope tagged NRPE1 C-terminal domain deletion 

series transformed into nrpe1-11 mutant background.  Black colored regions denoted 

with a “∆” represent deletions.  (B) Western blot analysis of HA-immunoprecipitated 

NRPE1 proteins from whole plant extracts and co-immunoprecipitated NRPE2. (C) 

Agarose gel results of chop-PCR DNA methylation assay and transcript expression at the 

AtSN1 retroelement. (D) 5S rDNA methylation analysis by Southern blot of HaeIII and 

HpaII digested genomic DNA. (E) Northern blot analysis of AtCopia, 45S rRNA, 

miR171 and AtSN1 small RNAs with images of ethidium bromide (EtBr) stained gels 

below.   

 

Figure 2. The NRPD1 DeCL-like domain is required for nrpd1 in vivo 

complementation. (A) Genomic FLAG-epitope tagged NRPD1 C-terminal domain 

deletion transformed into nrpd1-3 mutant background. Black colored regions denoted 

with a “∆” represent deletions. (B) Western blot analysis of FLAG-immunoprecipitated 

NRPD1 proteins from whole plant extracts with co-immunoprecipitated RDR2 and 

NRPD2. (C) AtSN1 chop-PCR DNA methylation assay. (D) 5S rDNA methylation 

analysis by Southern blot of HaeIII and HpaII digested genomic DNA. (E) Northern blot 

analysis of AtCopia, 45S rRNA, miR171 and AtSN1 small RNAs with images of 

ethidium bromide (EtBr) stained gels below. (F) RT-PCR analysis of AtSN1 and solo LTR 

transcription with GAPA and no RT controls. 
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Figure 3. The NRPE1 repetitive elements and majority of WG motifs are not 

required for nrpe1 complementation. (A) Genomic HA-epitope tagged NRPD1 CTD 

internal deletion series transformed into nrpe1-11 mutant background. Black colored 

regions denoted with a “∆” represent deletions. (B) 5S rDNA methylation analysis by 

Southern blot of HaeIII and HpaII digested genomic DNA. (C) AtSN1 chop-PCR DNA 

methylation assay. (D) RT-PCR analysis of AtSN1 transcription with actin and no RT 

controls. (E) Northern blot analysis of 5S rRNA, AtCopia, 45S rRNA and miR163 small 

RNAs with image of ethidium bromide (EtBr) stained gel below.   

 

Figure 4. The NRPE1 WG motifs are important but not required for nrpe1 in vivo 

complementation. (A) Genomic HA-epitope tagged NRPD1 CTD internal deletion series 

transformed into nrpe1-11 mutant background. Black colored regions denoted with a “∆” 

represent deletions. (B) AtSN1 chop-PCR DNA methylation assay. (C) 5S rDNA 

methylation analysis by Southern blot of HaeIII and HpaII digested genomic DNA. 

(D) RT-PCR analysis of AtSN1 and solo LTR transcription with GAPA and no RT 

controls. 

 

Figure 5. Over-expression of the NRPE1 CTD dominantly suppresses the RdDM 

pathway. (A) 35S promoter driven N-terminally tagged cDNA constructs transformed 

into wild type Arabidopsis thaliana. (B) Whole mount localization of YFP-CTD in 

Arabidopsis root with enlargements of a single nucleus showing YFP signal, propidium 

iodide (PI) signal for stained DNA, and overlayed images. (C) AtSN1 chop-PCR DNA 

methylation assay with YFP-CTD transformants. (D) RT-PCR analysis of YFP-CTD 
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transgene and AtSN1 transcription with actin and no RT controls. (E) Northern blot 

analysis of AtCopia, 45S rRNA, miR171 and AtSN1 small RNAs with images of 

ethidium bromide (EtBr) stained gels below. (F) Western blot analysis of 

immunoprecipitated over-expressed FLAG epitope tagged NRPE1 and NRPD1 CTD 

protein domains.  An arrow denotes predicted full-length proteins. (G) AtSN1 chop-PCR 

DNA methylation assay of over-expressed CTD domains. (H) RT-PCR analysis of AtSN1 

and solo LTR transcription with GAPA and no RT controls in over-expressed CTD 

transformants. 
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Supplemental Data 

Supplemental Methods 

Sequence analysis.  Full-length NRPD1 and NRPE1 protein sequences were obtained 

from NCBI GenBank and the publicly available genome sequencing efforts of JGI 

(http://www.jgi.doe.gov/).  When necessary, cDNA predictions were made using 

FGENESH+ (http://www.softberry.com).  Repeat elements were identified with 

XSTREAM (http://jimcooperlab.mcdb.ucsb.edu/xstream/) and by manual analysis.   

 

In vitro co-immunoprecipitation.  NRPE1 cDNA constructs were recombined into 

pDEST17 (N-terminal GST fusion construct for bacterial expression) and expressed in 

the BL21.AI strain.  A single colony of each construct was inoculated in 5 mL 1xLB (50 

ug/mL Carb) and incubated overnight at 37 degrees C.  Overnight culture was then used 

to inoculate fresh 1xLB (50 ug/mL Carb) and samples were incubated at 37 degrees C to 

an OD600 of 0.4.  Expression was induced with the addition of L-Arabinose to 0.2% final 

concentration and incubated another 3 hours at 37 degrees C.  Bacteria were pelleted and 

washed once with 1x Binding Buffer.  The pellet was resuspended in 1x Binding Buffer 

and lysed by sonicating a total of 1 min at Duty Cycle 40% and Output 1.5 in a Branson 

Sonifier.  Samples were centrifuged at 10,000 x g for 15 min at 4 degrees C.  The soluble 

fraction was retained and GST-tagged recombinant protein purified with glutathione resin 

(Amersham).   

 MYC-AGO4 protein extract was isolated from 4.0 g of inflorescence tissue by 

grinding under liquid nitrogen in a mortar and pestle and resuspending in 14 mL 

Baumberger buffer.  Extract was filtered through two layers of Miracloth and centrifuged 
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15 min at 11,500 rpm.  Supernatant (300 uL) was added to the washed gluthathione resin 

with bound GST recombinant proteins and the volume was brought up to 1 mL with 

Baumberger buffer and incubated for 3 hrs at 4 degrees C.  The glutathione resin was 

washed 5 times for 2 min each with 1 mL Baumberger Wash Buffer and pelleted by 

centrifugation at 200 rpm for 2 min.  Protein was eluted from the resin by adding 50 uL 

2x SDS loading buffer and incubating at 95 degrees C for 5 min. 

 Samples were split and run on 4-12% Novex gels.  One sample set was 

Coomassie stained while the other was transferred to PVDF membrane for Western blot 

analysis. 

 

In vivo co-immunoprecipitation using native antibodies.  All steps were performed at 

4 degrees C unless otherwise stated.  Frozen inflorescence tissue (0.7 g) was ground in 

liquid nitrogen and homogenized with 2 mL extraction buffer (50mM Tris-HCl [pH 7.5], 

150 mM NaCl, 5 mM MgCl2, 10% glycerol, 0.1% NP-40) containing 2 mM DTT, 1 mM 

PMSF, and 1/100 plant protease inhibitor cocktail (Sigma) [Li et al, 2006].  Sample was 

transferred to a 2.0 mL microcentrifuge tube and centrifuged twice at 13,000 rpm for 5 

min.  Samples were precleared with 20 uL Protein A agarose beads (Pierce) for 30 min.  

The samples were then incubated with 1:250 anti-NRPE1 or 1:250 anti-AGO4 for 3 hrs.  

Protein complexes were captured with 60 uL Protein A agarose beads (Pierce) for 2 hrs 

and then washed five times with extraction buffer.  Samples were boiled in SDS loading 

buffer and run on a 7.5% Tris-glycine gel followed by transfer to PVDF membrane.  

Western blot was performed with 1:5000 anti-Myc monoclonal antibody (Upstate) O/N at 

4C followed by anti-mouse-HRP and ECL Plus detection.  
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In vivo co-immunoprecipitation analysis comparing the extraction buffers from [Li et al, 

2006] and [Baumberger et al, 2005] was performed as above, except one set of samples 

was incubated with anti-FLAG agarose beads and the other with anti-cMyc agarose beads 

(Sigma) for 4 hrs at 4 degrees C.  The Protein A preclearing step was skipped.   
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Figure S1.  
 

 
 
Comparison of NRPD1 and NRPE1 C-terminal domain architectures among diverse plant 
species. Domain features of illustrated full-length protein predictions are based on 
sequence analysis presented in Figures S2 and S3. The Arabidopsis lyrata, 
Physcomitrella patens, Selaginella moellendorffii, Populus trichocarpa, Vitis vinifera, 
Sorghum bicolor, Brachypodium distachyon and Glycine max NRPD1 and NRPE1 
sequences were produced by the US Department of Energy Joint Genome Institute, 
http://www.jgi.doe.gov/ and are provided for use in this publication only. Zea mays 
NRPE1 was kindly provided by Lyudmila Sidorenko (Chandler lab). The Brachypodium 
distachyon sequences were identified by Tom Ream in the Pikaard lab. Remaining 
sequences have previously been published or are available from NCBI GenBank.
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Figure S2. Predicted NRPE1 protein sequences among diverse plant species with key 
domain features denoted to the right-hand side.  The Metal A motif is in black bold type; 
the conserved DdRP H domain is underlined in bold; WG/GW/WGW/GWG motifs are in 
bold; repeat elements are underlined with solid and dotted lines; the DeCL signature 
motif is in bold blue type.  
 
 
>Arabidopsis_thaliana_NRPE1 (At2g40030) 
MEEESTSEILDGEIVGITFALASHHEICIQSISESAINHPSQLTNAFLGLPLEFGKCESCGATEPDKCEGH
FGYIQLPVPIYHPAHVNELKQMLSLLCLKCLKIKKAKGTSGGLADRLLGVCCEEASQISIKDRASDGASYL
ELKLPSRSRLQPGCWNFLERYGYRYGSDYTRPLLAREVKEILRRIPEESRKKLTAKGHIPQEGYILEYLPV
PPNCLSVPEASDGFSTMSVDPSRIELKDVLKKVIAIKSSRSGETNFESHKAEASEMFRVVDTYLQVRGTAK
AARNIDMRYGVSKISDSSSSKAWTEKMRTLFIRKGSGFSSRSVITGDAYRHVNEVGIPIEIAQRITFEERV
SVHNRGYLQKLVDDKLCLSYTQGSTTYSLRDGSKGHTELKPGQVVHRRVMDGDVVFINRPPTTHKHSLQAL
RVYVHEDNTVKINPLMCSPLSADFDGDCVHLFYPQSLSAKAEVMELFSVEKQLLSSHTGQLILQMGSDSLL
SLRVMLERVFLDKATAQQLAMYGSLSLPPPALRKSSKSGPAWTVFQILQLAFPERLSCKGDRFLVDGSDLL
KFDFGVDAMGSIINEIVTSIFLEKGPKETLGFFDSLQPLLMESLFAEGFSLSLEDLSMSRADMDVIHNLII
REISPMVSRLRLSYRDELQLENSIHKVKEVAANFMLKSYSIRNLIDIKSNSAITKLVQQTGFLGLQLSDKK
KFYTKTLVEDMAIFCKRKYGRISSSGDFGIVKGCFFHGLDPYEEMAHSIAAREVIVRSSRGLAEPGTLFKN
LMAVLRDIVITNDGTVRNTCSNSVIQFKYGVDSERGHQGLFEAGEPVGVLAATAMSNPAYKAVLDSSPNSN
SSWELMKEVLLCKVNFQNTTNDRRVILYLNECHCGKRFCQENAACTVRNKLNKVSLKDTAVEFLVEYRKQP
TISEIFGIDSCLHGHIHLNKTLLQDWNISMQDIHQKCEDVINSLGQKKKKKATDDFKRTSLSVSECCSFRD
PCGSKGSDMPCLTFSYNATDPDLERTLDVLCNTVYPVLLEIVIKGDSRICSANIIWNSSDMTTWIRNRHAS
RRGEWVLDVTVEKSAVKQSGDAWRVVIDSCLSVLHLIDTKRSIPYSVKQVQELLGLSCAFEQAVQRLSASV
RMVSKGVLKEHIILLANNMTCSGTMLGFNSGGYKALTRSLNIKAPFTEATLIAPRKCFEKAAEKCHTDSLS
TVVGSCSWGKRVDVGTGSQFELLWNQKETGLDDKEETDVYSFLQMVISTTNADAFVSSPGFDVTEEEMAEW
AESPERDSALGEPKFEDSADFQNLHDEGKPSGANWEKSSSWDNGCSGGSEWGVSKSTGGEANPESNWEKTT
NVEKEDAWSSWNTRKDAQESSKSDSGGAWGIKTKDADADTTPNWETSPAPKDSIVPENNEPTSDVWGHKSV
SDKSWDKKNWGTESAPAAWGSTDAAVWGSSDKKNSETESDAAAWGSRDKNNSDVGSGAGVLGPWNKKSSET
ESNGATWGSSDKTKSGAAAWNSWDKKNIETDSEPAAWGSQGKKNSETESGPAAWGAWDKKKSETEPGPAGW
GMGDKKNSETELGPAAMGNWDKKKSDTKSGPAAWGSTDAAAWGSSDKNNSETESDAAAWGSRNKKTSEIES
GAGAWGSWGQPSPTAEDKDTNEDDRNPWVSLKETKSREKDDKERSQWGNPAKKFPSSGGWSNGGGADWKGN
RNHTPRPPRSEDNLAPMFTATRQRLDSFTSEEQELLSDVEPVMRTLRKIMHPSAYPDGDPISDDDKTFVLE
KILNFHPQKETKLGSGVDFITVDKHTIFSDSRCFFVVSTDGAKQDFSYRKSLNNYLMKKYPDRAEEFIDKY
FTKPRPSGNRDRNNQDATPPGEEQSQPPNQSIGNGGDDFQTQTQSQSPSQTRAQSPSQAQAQSPSQTQSQS
QSQSQSQSQSQSQSQSQSQSQSQSQSQSQSPSQTQTQSPSQTQAQAQSPSSQSPSQTQT 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Metal A 

DeCL 

(10) 16 aa 
repeats & 
(18) WG 
motifs 

H 

QS-rich 
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>Physcomitrella_patens_NRPE1-1 
MQVMEAAAWRQPSQAPTADLVGLQIGLATTSEILGHSVIESRSKDTLISLVDPRLGLPAEDERCATCGGTN
YDECTGHFAHVKLTQPIFHPNYIRCVQRVLQKICLACGVPKVKKMKSFSEEAANLKQNFRDIDSEDVGGNG
EHPVLLEADAIEKDADDVVILLSSDEEEYPRDILRVVPSGPMDFLIRSTNESAIADLPQLKSYKSKSKAHA
NGFSHVDVTRKSTRKSSSKKSSSTQNPVKIYKGTPAGLDVLNADTLRTAEPLDTNTCPYCSPGYPDYRHIL
VKILPVKGRKKNDVSQIILLEVQGSDKGEKFLLPHDFWSFIKGAAYPENEEVPKSHVLSPLEALSILKKIS
DTAIGKLGMNGLVARPEGLIMKCVPIPPNCTRTTDYKYVSNTTAVRFGTDRVTRTLQNLVNEIGRIQRTRT
GKIMKRGQRDEVKVLQVLTAEYLREKGAPKAVPGKEPLKKDRNGRFTKQDDHRWTKDWISQNYLGKGGNYT
ARAVVAGDPSLAIETIGVPLEIAQKLTVPERATKWNRSKLQEYVDRTQMLQQGSGKPGATRIVRNEEAFQV
WANSTHTVQIGDVIHRNIQDGDFVYVNRPPSVHKHSLMALKVQVHYGLVLTINPLVCPPFNADFDGDIFHV
FIPQSLQAIAELEHLMAVPQQIISDHGGQPLLGLTQDTLLAAYLLTSSKLLVDKAGMDQLCLWALKQPPDA
AIVKSPKGGPFWTGEQIFGLTLPTDLQVGAPHEEVFIEGGEVIRWSNGAKSLRKDSEGIAAALCVQLGPVA
LVNYLNTATGLLHAWLQMHGFSTGLADFQVTSNSADRQKMLKSIFEDYYQKSIQESCDSVRILDAKVQAMG
QEVISSPDHLTRNINFLEQAAQQTFRNRESEVESIVMKYAARDNGLLMMVRSGSKGSRGKLLQQIAGMGLQ
LYKGQHLLPFSGSRRSSMSNSSELDWWEDKGLVRSSLVDGLNPSELFNHVIADRTVILRKHVEVVQPGTLF
KSLMLFLRDLHVMYDGSVRNQCGKNIVQFCYGGAIGVLKRSIPKERLSRSQFEVVNPATPIVTWEEDDLKR
WPLSILAGEPVGVLAATAISQPAYELMLDAPCLNGPFKPRPLELVQETLYPRAKSVLKPIDRTAIIRLVNC
PCTQPLCLERRVLAVQAHLKKISLKAIAESCAVEFWNMENFEVAGPSGEALRMGSPWLGHIKLSLNLMKQL
QVDVELMVERLRQRFSGIIKNPKKHPMGQIFFCVSYNCGISNGLCLHFSPKLPNKMQNQRNDEIYNTALLA
LLLKIRGTIISGLLDCTVKGDERIESVIIVSEDPSRTTWHRGLTCNQELEEELVLEVVVSPTKSKSKRGDA
WASVKQACLPLMHMVDWNRSMPYSIQEIRHALGVEASYQMISQRLGLVLDKTAPHTRSVHVKLVADMMTFS
GDANGFNFSGFQDMNKSTGISAPFTEASFQKPIKTLMDAAGRGATDSVESVLASCVWGKEAPLGTGSNFEL
FWQPSKDQSRLAASRKAEKDVHMIWKDLHEKCISDKVLPPSPPPSLPGLPTLPDGDVDLDDGAGFSPLHAS
NDAADDTWGSPHRNNGGDGVAWGDSPVVRDDDGGWGAVGKGNDSNEVDGYDQDNSTGASKELSGWSKPASE
RSGWGSMSDKEGSSRNAWDDFGKEDRHEGWGDGATEPINEGGWGSLNNEEGTTSGAKCSSDWGTNAVQEIG
DGGWDAVSIEVPEGDGWDSLKVPQTENAEVGSSEHADRSYGPGADGVSQEGQFRARGEESRRGGRPWTSRD
RRRWRGRGSFGKDRGSSGRMSPGNRQNSGTISRQEQTPWVQGSTKADAWAKHAWASFGSSQGEVQAGGDGW
DAVLPDNCGASNRAHSTYPIAGSMPPTSRQDEVEPECKDIDDLVKSMRRILFNPRNELGGRLSDEDDELVQ
TVLAYHPKLSEKAGCGTAYIKVDRSAGFVNNRCFWLVRTDGSEIDFSFHKCLKEKVAREFPSFLDRYDDVY
QAHKRPFPTANFEENKSAAQGNIDAGPSAAHLLEDMPIDHEDLDARPAAAHLPEGIPIDQEDLDAQPAVAH
LSEDTPIDQENLDAQPAANSISVDTHFDQQEDIDTQTGQESAPSIGVSSATKLICKKLTEPVHEHQDTSGP
H 

 
>Physcomitrella_patens_NRPE1-2 (phya_79970) 
MQIKSEDWTWTPGNVPIPPPPSAEIVGLQFGLTTANEINRARDTLSSLIDPRLGLPAENERCATCSGTNIN
ECTGHFGHLKLTQPIFHPHHVRLLQQVLSKICLACGSLKGKKKALAILKKIPEGAIGKLGMNRLVARPEGL
IMKCVLIPPNCTRTTDYKHVNNTTAVRFGTDNVTRTLQKLVAEIVHIRKTRAGKATNRTQRDESTKLQILT
AEYLREKGAPKAVPGKEPLKRDRNGRVTKQDYHRWTKEWLSQNVLGKSGNFTAKAVLAGDPFLGIEQIGIP
WLIAQKLTLPERASQWNHTKLQEYVNVSQKLQQESENTAHATRVERNEVVYQVLSKTSLKVQIGDIVHRHI
QDGDYVYVNRPPSVHRHSLVALKVHIHHQPTITVNPLICPPFSADFDGDIFHIFAPQSLQAIAELDQLMAV
KQQVISEHGGQPLLELTQSQSLIAFNVLNQNDTLLAAHLLTSKKLFLDKATMDQLCLWASKKPPEAAILKS
PKGGPFWTGEQVFALTLPEDFELGAPQEEVFIQGGEIIRWRNGTKLLRKGNDSVAAALCVQLGPVALVDYL
NTATGVLHTWLQVQGFSTGLTDFQVTPNRTKRQEMLKSILEESFLKSIQESCDFVRILDAKVQALDSDENP
SPESLTKNIRFLEQVAREIFQKRRSEAGRIVAKYAEQRNSLLMMVESGSKGSMEKLLQQIAGMGLQLYKGQ
HLLSYSSSRRPAMTYSSQLDWWEDMGLVRSSLVDGLKANELFRHVIADRTGILRKHVEVVQPGTLFKALMF
FLRDLHIMYDGSVRSQCSKNLIQFCYGGARGSLIPRKPTEETLAWEEDDHRRWPLSVLAGEPVGVLAAAAI
SQPAYELMLDAPSLNGPFKPRPLNLIQRLSTTWRFAHETLYPREKSSLKPTDRCVVLRLVHCECTESLCLE
RRVLEVQAHLKRINLRMMAESVAVEYWNMEDSRAAGPSGDLVRLGSPWLGHINLSQDAMKQCEVNVEDIVK
RLCQKFSQTAGYVLKKNKMGQIFFCHRIQETIIPGLLDCTMKGDERIETVRVVCEGPASTTWHRRFAHCTG
NLDEELVLEVYVSPSSSKSRGMAWASVKQACVSLKDLVDWNRSMPYSIQEIRCSLGIEVAYQIVVQTAPHT
HFVHVKLVAEMMTFSGDAIGFTFSGFKDMNRSISVSAPFSEASFQASAQPIRTLLGAAGRGATDSVEGVMT
NCIWGKEAPLGTGGNFGLFWQKPKAIKSFLCCVVKQRFTNICLLIGSHLQKFIVFYALMVLVLFDLKQVPL
IFQGIQRFGASKEAVKDVHTILKDLEDECIPDRFISSMPTLLPPHLHILPEGNLEFDDGAGFSPQRVSDCN
EGLDDRNHGNSSVDDQRGVSDTAVDGNVPIDWIKEEIYQNSDIKPDEELGAWQPTSYQGGGWDDIDTVPGL
RSLDNVSSDATGFKCYDTSKNSKNEEVVMVETTGMFGSINWGTNCIQDIGSDGGWDVPSSEVATGGSWDFL
DKKCQNDSSGCCGSKHLDHKHGSSGKSILLQERQFTAHEALDQDPAK 

H  
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repeats 

(11) WG 
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>Spinacia_oleracea_NRPE1 
RYVPVPPNCLSVPDISDGVSVMSSDLCSAMLKKVLRQIEVIRSSRSGEPNFESHEVEANDLQVAVSQYLQV
RGTGKAARAADNRYGVSKEGNNSSKAWVEKMRTLFISKGSGFSSRSVITGDAYRAVNEVGVPCEIAQKMTF
EERVNVHNIQYLQGLVDKNLCLTFRDGLSTYSLREGSKGHTFLRLGQMVHRRIMDGDIVFINRPPTTHKHS
LQALRVYIHDDHVVKINPLMCGPLAADFDGDCVHLFYPQSLSARAEVLELFSVEKQLLSSHSGNLNLQLST
DSLLSLKTMFEVYFLDRASANQLAMYASSLLPSPALWKACSSNAKKKKAHSSGPRWTAQQVLQTALPSHFE
CHGDRLLIHDSEILKLDFNRDIVASVISDVLTSLFFNKSPKDALDFFDSLQPLLMENLFSEGFSVSLHDFF
FPKSELQNIQRNIQDLSPLLLQLRSSFNELVQVQFENHIREFKSPVGNFILISSALGSMIDSRSDSAIDKI
VQQIGFLGLQLSDRRKFYSRGLVEDVASLFHQKYPFADVYPSEEFGFVSRCFFHGLDPYEEIVHSIATREV
IVRSSKGLAEPGTLFKNLMAVLRDVVICYDGTVRNISSNSVIQFEYGVGGMQSQNLFPAGDPVGVLAATAM
SNPAYKAVLDSSPNSNSSWDMMKEILFCRANFRNDINDRRVILYLNDCCCGRKYCQENASCLVKNHLKKVS
LRDAAIELAIEYKRPKLEPESCEIDAGLVGHIHLNSGLLKASGIGMHDILQKCEEQVNLLRKKKKYGYHFK
RILLSVSDCCFFNHSDSKWTDMPCLKFFWQDMTDTDLERTKHIMADMICPVLLDTIIKGDPRISTVNIIWI
NPGTTTWVQSPCSSTKGELAVEVALEKEAVRLTGDAWRIVLDCCLPVFHLIDTRRSIPYAIKQIQDLFGIS
CAFDQAVQRLSTSVTMVTKGVLKEHLLLLASSMTCAGNLVGFNTSGIKALCRALNVQVPFTEATLYTPRKC
FERASEKCHVDTLASIVGSCSWGKRVSIGTGAKFDLLWETKEIEMADKPTDVYNFLHLVSSANEEEVDSGG
LGEDIESFEKDVYMEPALSPEQENKAVFEETLEIGVDSDITGADESSWDAFPSSGTGWNANKIDTGSGSAE
GGWSSWGSKKDQANPEDSSKTGGWSSGGSKQKPQPEDSSKSGGWDASKSWGGSNQGDPSPVWGQPVKATND
ISIENDHGSGSAEGGGWANSGMKKDLSKQENSSTAGGWDASKSWSGSKPKDPSSAWGAGKKTDDNNGWKKS
DSKKDLASGSVEDGGCSGWGPKKDLLQPEDSAGENGWGASKSKSKEPSSAWGKPAQETDNIGWKKNNPQRD
SENLEGTSGWNDKLQKENKSFSKQSQPASSKDWDSTGNITAGSTGFGVEKGNEKPWDVASNVSVKKSTWGQ
TGGNSWKKNEQDEKDGDPQGLPWGKSHKSSDSWTSGQGNQHPVSQGVSEKQGTLSSWGQPRDSSQKNNNEN
GVSSNFNRQGAGKSWDSKKKESNVQSSWAQQGDSTWKDSKEARSSVKANNSTNSGGWSTGKALVDGVSSSW
GSQKEDRPQPKSNDRSVGDGNFDKDAKEEGLSSWDAKKVERKTQSSWGQPSESKNSAQSSADHWGSDKSNQ
PGKSSGWGSEDTNAGKDSEKQDSWGKSNVSTWKKESGEKLHGSDDSQSPWGQPGGSGWNKKQPEGGRGWGS
SNTGEWKSRKNQNQNQNQNQNRPPRGPNDDSPRVALTATRKRMDEFPTEEKDVLSEVESLMQSIRRIMHQS
GCVDGEPLLPDDQTYLIDNILNYHPDKAAKIGAGVDFITVKKHSNFQESRCFYVVSTDGKDTDFSYIKCIE
TFVKGKYPSVAESFTSKYFRRSQRPQPASPSPASPSPTSPSPASPSPAPPNPTPPT 
 
>Populus_trichocarpa_NRPE1 
CTASISDCPISHSSQLTNPFLGLPLEFGKCESCGTSEPGKCEGHFGFIHLPIPIYHPSHISELKRMLSLIC
LKCLKLKRNKIQIKSNGVAERLLSCCEECAQISIREVKNTDGACFLELKLPSRSRLRDGCWNFLERYGFRY
GDDFTRPLLPCEVMQILKRIPAETRKKLSGKGYFPQDGYILQQLPVPPNCLSVPVVSDGITVMSSDLSISM
LKKVLKQAEVIRSSRSGAPNFDAHKDEATSLQSMVDQYLQVRGTTKTSRDVDTRYGVKKESSESTTKAWLE
KMRTLFIRKGSGFSSRSVITGDAYTLVNQVGIPYEIAQRITFEERVSVHNMRYLQELVDNKLCLTYKDGSS
TYSLREGSKGHTFLRPGQVVHRRIMDGDIVFINRPPTTHKHSLQALSVYVHDDHAVKINPLICGPLSADFD
GDCVHLFYPQSLAAKAEVLELFSVEKQLLSSHSGNLNLQLTTDSLLSLKMMFKACFLGKSAAQQLAMFISP
YLPQPALLKVNCFFPHWTAHQILQMALPACFNCSGERFLIINSNFLKVDFNRDVVASVINEILISMFFEKG
SGAVLKFFNSLQPMLMENLFSEGFSVSLEDFSISRAVKQRIPESFKAISPLLCNLRSTFNELVELQVENHI
RDVKQPVREFILTSSALGYLIDSKSDAAVTKVVQQIGFLGLQVSDRGKLYSKTLVEDLASHFLSKYPANLF
DYPSAQYGLIQNSFFHGLDAYEEMAHSISTREVIVRSSRGLSEPGTLFKNLMAILRDVVICYDGTVRNVSS
NSIIQFEYGVKVGTESQSLFPAGEPVGVLAATAMSNPAYKAVLDSTPSSNCSWDMMKEILLCKVGFKNDLA
DRRVILYLNDCGCGRNYCQERAAYLVKNHLEKVSLKDIAKCFMIEYKSQQIPESFGSDAGLVGHVHLDKRK
LQDLNITAQVILEKCQETVNTFRKKKKVGNLFKKTILLVSESCSFQQCIDESPCLMFFWQGADDVHLERTS
NILADMICPVLLETIIKGDHRISCANIIWATPETNTWIRNPSRTQKGELALDIVLEKSVVKKSGDAWRIVL
DSCLPVLHLINTTRSIPYAIKQVQELLGVSCAFDTAVQRLSKSVTMVAKGVLKEHLILLGNSMTCAGSLIG
FYTGGYKTLSRSLDIQVPFTEATLFTPRKCFEKAAEKCHTDSLSSIVASCAWGKHVTVGTGSHFDVLWDTK
EACLNPEGSMDVYSFLNMVRSTAGGEESVTACLGAEVDDLMLEDEDWNLSPEHNSSSDKPTFEDSAEFQDF
LGNQPAESNWEKISSLKDRSRSSGNWDVDKNDGAVKEKPWSLGMNTAEANDVASSGWDTAAARTTNNSWNS
ENNVAQSNSFSGWATKKPEPHNGFATKVQEEPTTSNDWDAGAAWGRKDRDNKFAETNASKSWWGKVTDGDE
SGQNKSKNKRPEDQDVGTHGWDDKMSQDQSISGWASKTTQEATTESLGWDSKGNSNPGDAACGWKAASTWG
AENTDGDKLWGKEVSSNQADTASGWGKPKSPEISLGWGSTKESVKSDRGWGVSSSGGGRDKKTENQSLAGQ
GKESGGWGNKVTSNQADTASGWGKPKSSENSQGWGLSKESGKEVHEWGVPNSAGGNGSETNNNNENQSLVE
QGKESGWDNKASSNQEGTASGWGKPKSPALSEGWGSPREPVKAVHGWGVPNSGGGNDWKNKRNRPSKPHED
LNASGIFTTTRQRLDVFTSQEQDILSDIEPLMLSIRRIMHQTGYNDGDPLSADDQSYVLDNVFHYHPDKAV
KMGAGIDHVTVSRHSNFQESRCFYIVSTDGCKQDFSYRKCLENFIKGKYPDLADEFIA 
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>Vitis_vinifera_NRPE1 
MEEDSSTILDGEISGIRFGLATRQEICIASVSDCPISHASQLTNPFLGLPLEFGKCESCGTAEPGQCEGHF
GYIELPIPIYHPGHVSELKRMLSLLCLKCLKIRKSKVTNNGITEQLLAPCCQDSPQVSVREFRPTEGACFL
ELKIPSRSRPKDGFWDFLARYGYRYGHNLSRILLPSEVMEILRRIPEDTRKKLVRKGYFPQDGYILQYLPV
PPNCLSVPDISDGVSIMSSDLSVSMLKKVLKQIEVIKGSRSGEPNFESHKIEANNLQSSIEQYLEVRGTAK
TSRSLDTRFGSSKEPNESSTKAWLEKMRTLFIRKGSGFSSRSVITGDAYKRVNEIGLPFEIAQRITFEERV
NVHNMKHLQNLVDEKLCLTYRDGLSTYSLREGSKGHTFLRPGQVVHRRIMDGDIVFINRPPTTHKHSLQAL
SVYVHDDHTVKINPLICGPLSADFDGDCVHLFYPQSLGAKAEVLELFSVEKQLLSSHSGNLNLQLATDSLL
SLKVLFERYFLNKAAAQQLVMFVSMSLPRPALLKSPCSGPCWTALQILQTALPSYFDCIGERHWISKSAIL
KVDYNRDVLQSLVNEIVTSIFSEKGPNEVLKFFDSLQPLLMENLFSEGFSVSLEDFSIPSEVTQNIQKNVE
DISSLLYNLRSMYNELLQLQAENHLRLTKVPVANFILNSSALGNLIDSKSDSAINKVVQQIGFLGQQLSEK
GKFYSRTLVEGMAYLFKSKYPFHGADYPSGEFGLIRSCFFHGLDPYEEMVHSISTREIIVRSSRGLSEPGT
LFKNLMAILRDVVICYDGTVRNVCSNSIIQFEYGVKARTKPQHFFPAGEPVGVLAATAMSNPAYKAVLDSS
PSSNSSWELMKEILLCQVNFKNDLIDRRVILYLNDCDCGRKYCRENAAYLVKNQLKKASLKDTAVEFMIEY
VKQHAVSGSSEPGTGLVGHIHLNKLLLQDLNVSMQEVCQKCEETINSFRKKKNVGPFFKKIILSFRECCTF
QHSCQSKGSDMPCLLFFWQGNRDDNLEQILHILAHKICPVLLQTIIKGDSRVCTVNIIWISPDTTTWIRNP
CKSRKGELALDIVLEKAAVKQRGDAWRIVLDACLPVLHLIDTRRSIPYAIKQVQELLGISCAFDQAVQRLS
KSVTMVAKGVLKEHLILLANSMTCAGNLIGFNSGGYKALSRALNLQVPFTEATLFTPRKCFEKASEKCHTD
SLSSIVASCSWGKHVTVGTGSRFDVLWDTKEIGPAQDGGIDIYSFLHLVRSGSYGKEPDTACLGAEVEDLI
LEDENLELGMSPEHSSNFEKPVFEDSAEFQNTWENHVPGSGGDWAVNQNKETTASTLKPSAWSSWGTDKVT
MKDTFSTREPDESSRSAGWDDKGTWGTDKAQNTAFRRTHEDSPRSSGRDETFRDGRPQFASSAWGKKIDEA
DKTGWNKNDGKPQMDKLRESYDWDCKVAQEKTTQSTYGGISSTTGDWKKNELQMEVVQHDESPVNEHSWDA
NLPEDPLAQATTSVGWDSSTGKDWTKRKLQSPSEQQRDPAIKSWSSSHNVMKEQSNQPASTHGWDSPGAKG
WNDVEEQSQWNQRGSAVKNDQSESSHGWGPSNEQNQLPSSQGWGSPNAGAGHESETQSQWGQPSGKKSRPE
GSRGWGSNNTEWKNKKNRPNKPQGPLNDDYSAGGIFTATRQRVDIFTSEEQDILLDVEPIMQSIRRIMHQA
GYNDGDPLSADDQSYILDKVFNNHPDKAVKMGTGIDYVMVSRHSSFLESRCFYVVSTDGHKEDFSYRKCLE
NFIKEKYPDNAETFIGKYFRRPRAGGNRERSVIPEDGGNREQSVVPEETGSENRQ 
 
>Oryza_sativa_J_NRPE1-1 (OsJ_05410) 
MEEDQSAIPVAEGAIKSIKLSLSTEDEIRTYSINDCPVTHPSQLGNPFLGLPLETGKCESCGASENGKCEG
HFGYIELPVPIYHPCHVTELRQILNVVCLKCLRVKKGKVKQTEGKDNTSALSCYYCRDLPALSLKEIKTAD
GAFRLELKMPPRKFMTEGSWNFLDKYGFHHGGTSHCRTLLPEEALNILKKIPEETKRKLAARGYIAQSGYV
MKYLPVPPNCLYIPEFTDGQSIMSYDISISLLKKVLQKIEQIKKSRAGSPNFESHEVESCDLQLSIAQYIH
LRGTTRGPQDNTKRFAISTDPSALSTKQWLEKMRTLFISKGSGFSSRSVLTGDPYIGVDVIGLPSEVAKRI
TFEEQVTDINLNRLQEIVDKGLCLTYRDGQATYAITVGSKGHTTLKVGQTISRRIVDGDVVFLNRPPSTHK
HSLQAFRVYVHEDHTVKINPLICAPFAADFDGDCVHIYYPQSLAAKAEALELFSVEKQLTSSHSGKVNLQL
VSDSLLALKHMSSRTMLSKEAANQLAMLVTCSLPDPAVIKSKPYWTISQIVQGALPKALTSQGDKHVVRDS
TIIKLDLDKESVQTSFSDLVYSTLSVKGPGEALQFLNVLQPLLMELILLDGFSVSLQDFNVPKVLLEEAQK
NIEKQSLILEQSRFAENQVVEMRVDNNLKDIKQQISDFVVKRSHLGLLIDPKSDSSVSKVVQQLGFVGLQL
YREGKFYSRRLVEDCYYTFVNKHPAVREEHSPEAYGLVRSSYFHGLNPYEELVHAISTREAIVRSSRGLTE
PGTLFKNLMALLRDVVICYDGTVRNVCSKSIIQLNYTEDDALDFPSAIGPGEPVGVLAATAISNPAYKAVL
DASQSNNTSWERMKEILQTTSRYKNDMKDRKVILFLNDCSCAKKFCKEKAAIAVQGCLRRITLEDCATDIC
IEDGNWAAPAGFQHPVPPPQCKILPVPIPIPAHGSVKFPPVPIPAPEHLKYNIHVVRYQKQIGLDGTSEAA
PALVGHIHLDRAHLERINISTEDILQKCQEVSGKYGKKKGHLSNLFKNITFSTCDCLFTQKLVDGKLPKLP
CLQFFVSDNMIVSESVERAVSVLADSLCGVLLNTIIKGDPRIQEAKIVWVGSDATSWVKNTQKASKGEPAV
EIIVEEEEALHIGDAWRTTMDACIPVLNLIDIRRSIPYGIQQVRELLGISCAFDQVVQRLSTTVRMVAKDV
LKDHLVLVANSMTFTGNLNGFNNAGYKATFRSLKVQVPFTESTLITPMKCFEKAAEKCHSDSLGCVVSSCS
WGKHAASGTGSSFQILWNESQLKSNKEYGDGLYDYLALVRTDEEKARYTFFDDVDYLAEENEADVCLSPEL
DGTIGQPIFDDNLEEQDVQNNSSWDNGTTTNASWEQNGSAGNDSDKWGGWNDAAAGADTGVTKPANQGNSC
WDVPATVEKSSSDWGGWGTEKAKEKEKISEEPAQHDAWSVQGPKRATDGGASWKKQSSTQNDGNSWKENKG
RGSNGGSWEKDNAQKGSWGRGNDEAENNNDVQNKSWETVAADAHASTEKSWGNVTASPSDNAWSAAPVSQG
NGSSDTKQSDSWDGWKSAGVDKAINKDKESLGNVPASPSFSAWNASPVSQGNERSDAKQSDSWDGWKSAGV
DKAINKDKESLGNVPASPSFSAWNAAPVSQGNERLDAKQSDSWDGWKSAGVDDSVKDKESWGNVPASPSDS
AWNAAPVSQGNESSDAKQSDSWDGWKSAGVDASTNKDKESWGNVPASPSDSAWNAAPVSQGDDVWNSAEAN
ESRNKDWKSDGWGARGGNWRGQRNNPGRPPRKPDGRGLPRRPDERGPPRRHFDLTAEEEKILGEIEPTVLS
IRKIFRESIDSIKLSPEDEKFIKENVLEHHPEKQSKVSGEIDHIMVDKHQVFQDSRCLFVVSSDGTRSDFS
YLKCMENFVRKTYPEHGDSFCKKYFKRRRDQPPAADGGTAPGTPAGATQSTAVDTQEGTSQQTQPDIATAP
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H 
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AATQQETLQDTPAPPADDGLLGKGPSPSD 
 
>Oryza_sativa_J_NRPE1-2 (OsJ_04874) 
MEGHPDPTSAATAMIPEASIRRINLSITSNEEILKAQPVNELEKPIPITHQSQLLNNPYLGLPLQVGSCQS
CGSNAIEECEGHFRFIELPMPIFHPSHVTELSQILNLICLRCLKIKNRKELPPLCVAEVKKSNGARGLELR
APIKKELEEGFWSFLDQFGSCTRGTSHCRPLLPEEVQNIIKKIPEETRRWLSVRGYIPQDGFILSYLCVPP
NCLRVSNVLDGNTFSCSGTSTNLLRKALRKIQQIRGSRIGSSNIQVDQVADDLQVDVANYINLGGTTKGHG
DDTFTSQPTAMQWKQKMKTLFISKSSSFSSRGVITGDPYIGLNVVGVPEEVAKRMSVEEKVTDHNIAQLQD
MMNKGLCLTYTDANSITYSLDAGKDNPNKKHTILKVGEIVNRRVFDGDIVFLNRPPSTDKHSVEAFYVQVH
NDHTIKINPLICDPLGADFDGDCVQIFYPRSLSARAEAKELYTVDKQLVSSHNGKLNFQFKNDFSLALKIM
CGREYSEREANQITNAMFSSGMYPQKPLIGGPYWTFPQILETTKSNAITLADHLDRESVGALATGTTISSI
LSTKGPREATEFLNLLQPLLMESLLIDCFSINLGDFTVPSPILEAIQNNPLELNKYREPIMDFITHSSAIG
LLVDPKSDSNMNKVVEQLGFLGPQLQHNGRLYSSRLVEDCLSKSLHRCCGSTNCCNPLEEYGTVRSSIYHG
LNPYEALLHSICEREKIMRASKGLVEPGSLFKNMMSRLRDVTACYDGSIRTSSGNLVLQFGSRDASNCVTP
GDPVGILAATAVANAAYKAVLAPNQNNIISWDSMKEVLLTRASTKADANHRKVILYLNQCSCENECMERAL
TIRACLRRIKLEDCTTEISIKYQQQATQAAHHLVGHIHLDKKQLNQIETIMDSVLHKCQETFRNNIKKKGS
MREILKTVTFISSTSLCDQHTDDDKKFQVSCLQFFLPGSITKNISESTERVIDFMTNAIFPIILDTVIKGD
PRVEEANLVRIEPESTFWVQSSGAEQKGEAALEITVEEAAAAESGNAWGVAMNACIPVMDLIDTTRSMPYD
IQQVRQYLSKSVGMITKSVLQEHLTTVASSMTCTGDLHGFNNSGYKATCQSLKVQAPFMEATLSRSIQCFE
KAAAKAYSDQLGNVVSACSWGNNAEIGTGSAFEILWNDENMSSSKSILGGYGLYDFLEAVETTGATKDKAI
VPHNYCLYDVDCIPEDKVCLEENNQITWTDKPKAEFLMESEGRRAGMHSTGQKHPRKPNWHEGNTKSSPNS
TAVEFTGQVFQRRQLKTKSNWNSDATQQDDKPSWYSSNSAGTQNFTIAGSSRPGEWNRKNNNRGQGGGREV
WKSEGPHRGGSSSNRNQGGGRAVWKSEASHRGSGNNRNRGGGRAVWKSEASRRGGSMRQVASCAFTPVEQQ
IFEQIEPITKNVKRIIRESRDGIKLPPDDEKFIVTNVLMYHPERKKKIAGNGNYITVDRHQVFHGSRCLYV
MSSDGSRKDFSYKKCLENYIRAQYPDAADSFCRKYFK  
 
>Oryza_sativa_I_NRPE1-1 (OsI_05888) 
MEEDQSAIPVAEGAIKSIKLSLSTEDEIRTYSINDCPVTHPSQLGNPFLGLPLETGKCESCGASENGKCEG
HFGYIELPVPIYHPCHVTELRQILNVVCLKCLRVKKGKVKQTEGKDNTSALSCYYCRDLPALSLKEIKTAD
GAFRLELKMPPRKFMTEGSWNFLDKYGFHHGGTSHCRTLLPEEALNILKKIPEETKRKLAARGYIAQSGYV
MKYLPVPPNCLYIPEFTDGQSIMSYDISISLLKKVLQKIEQIKKSRAGSPNFESHEVESCDLQLSIAQYIH
LRGTTRGPQDNTKRFAISTDPSALSTKQWLEKMRTLFISKGSGFSSRSVLTGDPYIGVDVIGLPSEVAKRI
TFEEQVTDINLNRLQEIVDKGLCLTYRDGQATYAITVGSKGHTTLKVGQTISRRIVDGDVVFLNRPPSTHK
HSLQAFRVYVHEDHTVKINPLICAPFAADFDGDCVHIYYPQSLAAKAEALELFSVEKQLTSSHSGKVNLQL
VSDSLLALKHMSSRTMLSKEAANQLAMLVTCSLPDPAVIKSKPYWTISQIVQGALPKALTSQGDKHVVRDS
TIIKLDLDKESVQTSFSDLVYSTLSVKGPGEALQFLNVLQPLLMELILLDGFSVSLQDFNVPKVLLEEAQK
NIEKQSLILEQSRFAENQVVEMRVDNNLKDIKQQISDFVVKRSHLGLLIDPKSDSSVSKVVQQLGFVGLQL
YREGKFYSRRLVEDCYYTFVNKHPAVREEHSPEAYGLVRSSYFHGLNPYEELVHAISTREAIVRSSRGLTE
PGTLFKNLMALLRDVVICYDGTVRNVCSKSIIQLNYTEDDALDFPSAIGPGEPVGVLAATAISNPAYKAVL
DASQSNNTSWERMKEILQTTSRYKNDMKDRKVILFLNDCSCAKKFCKEKAAIAVQGCLRRITLEDCATDIC
IEYQKQIGLDGTSEAAPALVGHIHLDRAHLERINISTEDILQKCQEVSGKYGKKKGHLSDPRIQEAKIVWV
GSDATSWVKNTQKASKGEPAVEIIVEEEEALHIGDAWRTTMDACIPVLNLIDIRRSIPYGIQQVRELLGIS
CAFDQVVQRLSTTVRMVAKDVLKDHLVLVANSMTFTGNLNGFNNAGYKATFRSLKVQVPFTESTLITPMKC
FEKAAEKCHSDSLGCVVSSCSWGKHAASGTGSSFQILWNESQLKSNKEYGDGLYDYLALVRTDEEKARYTF
FDDVDYLAEENEADVCLSPELDGTIGQPIFDDNLEEQDVQNNSSWDNGTTTNASWEQNGSAGNDSDKWGGW
NDAAAGADTGVTKPANQGNSCWDVPATVEKSSSDWGGWGTEKAKEKEKISEEPAQHDAWSVQGPKRATDGG
ASWKKQSSTQNDGNSWKENKGRGSNGGSWEKDNAQKGSWGRGNDEAENNNDVQNKSWETVAADAHASTEKS
WGNVTASPSDNAWSAAPVSQGNGSSDTKQSDSWDGWKSAGVDKAINKDKESLGNVPASPSFSAWNASPVSQ
GNERSDAKQSDSWDGWKSAGVDKAINKDKESLGNVPASPSFSAWNAAPVSQGNERLDAKQSDSWDGWKSAG
VDDSVKDKESWGNVPASPSDSAWNAAPVSQGNESSDAKQSDSWDGWKSAGVDASTNKDKESWGNVPASPSD
SAWNAAPVSQGDDVWNSAEANESRNKDWKSDGWGARGGNWRGQRNNPAEEEKILGEIETTVLSIRKIFRES
IDSIKLSPEDEKFIKENVLEHHPEKQSKVSGEIDHIMVDKHQVFQDSRCLFVVSSDGTRSDFSYLKCMENF
VRKTYPEHGDSFCKKYFKRRRDQPPAADGGTAPGTPAGATQSTAVDTQEGTSQQTQPDIATAPAATQQETL
QDTPAPPADDGLLGKGPSPSD 
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>Oryza_sativa_I_NRPE1-2 (OsI_05331) 
MGFSPAISLRNLSMVALRIWESGTTVYIAAAAVPGAKLVLVLILTAGRPFFLTHLYMRYSRTEMEGHPDPT
SAATAMIPEASIRRINLSITSNEEILKAQPVNELEKPIPITHQSQLLNNPYLGLPLQVGDAIEECEGHFGF
IELPMPIFHPSHVTELSQILNLICLRCLKIKNRKVQNIIKKIPEETRRWLSVRGYIPQDGFILSYLCVPPN
CLRVSNVLDGNTFSCSGTSTNLLRKALRKIQQIRGSRIGSSNIQVDQVADDLQVDVANYINLGGTTKGHGD
DTFTSQPTAMQWKQKMKTLFISKSSSFSSRGVITGDPYIGLNVVGVPEEVAKRMSVEEKVTDHNIAQLQDM
MNKGLCLTYTDANSITYSLDAGKDNPNKKHTILKVGEIVNRRVFDGDIVFLNRPPSTDKHSVEAFYVQVHN
DHTIKINPLICDPLGADFDDDCVQIFYPRSLSARAEAKELYTVDKQLVSSHNGKLNFQFKNDFSLALKIMC
GREYSEREANQITNAMFSSGMYPQKPLIGGPYWTFPQILETTKSNAITLADHLDRESVGALATGTTISSIL
STKGPREATEFLNLLQPLLMESLLIDGFSINLGDFTVPSPILEAIQNNPLELNKYREPIMDFITHSSAIGL
LVDPKSDSNMNKVVEQLGFLGPQLQHNGRLYSSRLVEDCLSKSLHRCCGSTNCCNPLEEHGTVRSSIYHGL
NPYEALLHSICEREKIMRASKGLVEPGSLFKNMMSRLRDVTACYDGSIRTSSGNLVLQFGSRDASNCVTPG
DPVGILAATAVANAAYKAVLAPNQNNIISWDSMKEVLLTRASTKADANHRKVILYLNQCSCENECMERALT
IRACLRRIKLEDCTTEISINTSLCDQHTDDDQEFRVSCLQFFLPASITKNISESTERVIDFMTNAIFPIIL
DTVIKGDPRVEEANLVRIEPESTFWVQSSGAEQKGEVALEITVEKAAAAESGNAWGVAMDACIPVMDLIDT
TRSMPYDIQQVRQYLSKSVGMITKSVLQEHLTTVASSMTCTGDLHGFNNSGYKATCQSLKVQAPFMEATLS
RSIQCFEKAAAKAYSDQLGNVVSACSWGNNTEIGTGSAFEILWNDENMSSSKSILGGYGLYDFLEAVETTG
ATKDKAIVPHNYCLYDVDCIPEDKVCLEENNQITWTDKPKAEFLMESEGRRAGMHSTGQKHPRKPNWHEGN
TKSSPNSTAVEFTGQVFQRRQLKTKSNWNSDATQQDDKKPSWYSSNSAGTQNFTIAGSSRPGEWNRKNNNR
GQGGGRAVWKSEGPHRGGSSSNRNQGGGRAVWKSEASHRGSSNNRNRGGGRAVWKSEASRRGGSMRQVASC
AFTPVEQQIFEQIEPITKNVKRIIRESRDGIKLPPDGEKFIVTNVLMYHPERKKKIAGNGNYITVDRHQVF
HGSRCLYVMSSDGSRKDFSYKKCLENYIRAQYPDAADSFCRKYFK 
 
>Zea_mays_NRPE1 
MEEDHSVILISEGAIKSIKLSLSTGEEICTYSINECPVTHPSQLGNPFLGLPLEAGKCESCGASENDKCEG
HFGYIELPVPIYHPCHVTELRQLLSLICLKCLRIKKGKDIPALSLKEIKTTDGAIRLELRAPHNKHMTERS
WNFLDKYGFHHGGCSHHRTLLPEEALNILKKVPDDTRRKLAARGYIVQTGYVMKYLPVPPNCLYIPEFTDG
QSIMSYDISIALLKKVLQKIEQIKRSRSGSPNFESHDAESCDLQLAIGQYIRLRGTTRGPQDNTKRFTVGS
ADSAALSTKQWLEKMRTLFISKGSGFSSRSVLTGDPYIGLGVVGLPSEVAKRMTFEEQVTDININRLQDVV
DKGLCLTYRDGQATYAITVGSKGYTTLKVGQTISRRIVDGDVVFLNRPPSTHKHSLQAFYAYVHDDHTVKI
NPLMCGPFSADFDGDCVHIYYPQSLAAKAEALELFSVERQLISSHSGKVNLQLGNDSLVAMKAMSHTTMLH
KELANQLAMFVPFSLLAPAVIKPVPSWTISQIVQGAFPANLTCQGDTHLVRDSTIIRLDLGKESVQDSFPD
LVSSILREKGPKEALQFLNVLEPLLMEFLLLDGLSISLRDFNVPKALLEEAQKDIRNQSLILEQSRCSTSQ
FVEFRVENNLKNVKQQISDSVGKFSDLGLLIDPKKEASMSKVVQQVGFVGLQLYREGKLYSRRLVEDCFTN
FVNKHLAIGDEYPPEAYGLVQSSYFHGLNPYEELIHAISTREAMIRSSRGLSEPGTLFKNLMAILRDVVIC
YDGTVRNICSNSIIQLKYGEDDETDSSSVVPPGEPVGVLAATAISNPAYKAVLDSSQSNNASWESMKEILQ
TRTSYKNDVKDRKVVLFLNDCSCAKKFCKERAALAVQSCLKRVTLGDCATDICIEHQKQINLDGTSEAAPT
LVGHIHLDKGHLERINISTQDILQKCQEMPIDGKLHKVPCVQFAFSDDIVLSESIERAVNVIADSVCSVLL
DTIIKGDPRIQAAKVIWVESDAASWVKHTRKVSKGESALEIIVEKDDAVSNGDAWRTAIDACLPVLNLIDT
RRSIPYGIQQVRELIGISCAFDQVVQRLSTTVKMVNKGVLKDHLILVANSMTCTGNLIGFNIAGYKATFRS
LKVQVPFTESTLFTPMKCFEKAAEKCDSDSLGCVVSSSAWGKHAAVGTGSSFQILWNENQVCLSYQPELIA
YISLYQTDYMFLDDVDYLVEENAADDMCLSPEPDGTLGKPTFEDNFEEQNIQKGSSWEIGITTNSSWEQNA
SVANDSGDWGGWSSGGGAAAKPADQDNSWEVHAKVQDNSTTDWGGWSVEKPTGEATVSGEPAETDTWADKG
AKMESDAGDGNWEKSSTPEASKKNDSSENTWDKRKGDGGDGAWGNRSDDGHGNWEHPSNWNGQSLDVDQDT
WGNARGKKKADGNYCQWEEQPSNYKQKKTNADHDSSYNNVMPSSEIAWNAGDGTGRPNAKSNAESSWGEED
KMESDDHPKVPKESDTWNTGRSNESPWDNTDALQDSWVKSAARNNNTQDGSWDKVVSMKDLDSLQDSWSKA
TIQTNDAQNDSWDNVAKNAPDSAAEDSWGAATPAETTDSGNKEWKSDGWGAKSGNWSSQRNNPGRPPRRPD
ERGPPPPRQRFELTVAEKNILLEVEPIKLRVRSIFREACDGVRLNPEDEKFILEKVLEHHPEKQSKVSGEI
DYLTVNKHQTFQDTRCFFVVSTDGSQADFSYLKCLENFVRKSYTEDADTFCMKYLRPPETEQGTPPAPQAE
VPQETWGSPAVPLEGGTHIAGPDSTGDAVILGEQHDLTPASPAVAPQVASEPDTTDGTGLLGKAPQADWGP
RFDAD 
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>Solanum_lycopersicum_NRPE1 (DQ020653) - incomplete N- and C-termini 
DFDGDCVHLFYPQSLSAKAEVLELFAVGKQLLSSHTGNFNSQLATDSLLSLKLMFSHYFFDKAAAQQLAMF
LPMALPDSAVVDVRKSGAMWTTLQILGAALPDGFDSCGETHTIGKSQFLGIDYHRDLISSILNDVITSIYF
MKGPNDVLKFFNSLQPLLMENLCTEGFSISLRDFYMTKAVRDGIQERIQCMSKLLHHLRSSYNESVEVQLE
HHLRNEKLPVIDFVLKSSGMGVLIDSKSESAFNKVVQQIGFLGLQISDRGKFYXXTLVHDMAQLFQKKYPS
VGTNPSEEFGLVRSCLFYGLDPYQGMIHSISSREVIVRSTRGLTEPGTLFXNLMAILRDVVICYDGTVRNV
SSNSIIQFEYGSSGGSNLPSEFCAGDPVGVLAATAMSNPAYKAXLDSSPSSNSSWEMMKEILLCGVSFKND
VSDRRVILYLNDCGCRRGYCREKAAYVVKNHLSKVCLKDAADEFLIEYAGRQAGYENSETGTGLIGHIRLN
QGQLENLGISVLEVHERCQENISSFRXKKKIGNLFKRIVLSVSEFCSFCHNSGSKCLNAPCLRFSWPDASD
DHLERVSHILADMIXPILLDTVIKGDPRVSSANIAWISPDTMSWIRSPSKSQRGELALDIVLEKEAVKXRG
DAWRXLMDSCLPVIHLIDTTRSIPYAIKQVQELIGISCAFEQAVXRLSTSVTMVTKGVLKDHLVLLANSMT
CAGNLVGFNAGGIKALSRSLNVQIPFTEATLFTPRKCFERAAEKCHVDSLSSIVASCSWGKHVAVGTGSRF
EVLLNTRNVEWNIPDTRDVYSFLHLVRNTSAQEVEGTSCLGAEIDELEEDEDMGLYLSPNRDSGSEMPTFE
DRAEFDYNENLDEGKPSGSAWEEASSGSVKSGGSWDMAGKTQNGAEEGVNQSDSWSSWGKKVDEPENNRQQ
SGSGEQSGSWSPWGRRWKKMVVLGDEPKQLNSESSWGKAPNGGGLGSATAEGNRRLDQSVNDWSSSVSRDG
QYKKWWLEFFKRWWLELSGGWQWKNNRPARSADDSNRGGHFTATRQKIDLFTAEEQEIISDVDPIMLKVKS
DPLSADDQSYIIDTVLNYHPDKAVKMGAGLDYITVSKHTNFQDTRCFYVVSTDGAKQELAAV  
 
>Glycine_max_NRPE1-1 (Glyma15g37710) 
MEDNPPSSVLDGTVVGIKFGMATRQEICTASISDSSISHASQLSNPFLGLPLEFGRCESCGTSEVGKCEGH
FGYIELPIPIYHPSHISDLKRMLSMVCLNCLKLRKTKLPASSSGLAQRLISPCCQEDKAALVSIREVKTSD
GACYLALKVSKSKMQNGFWSFLEKYGYRYGGDHTRALLPCEAMEIIKRIPIETKKKLAGKGYFPQDGYVLK
YLPVPPNCLSVPEVSDGVSVMSSDPSITILRKLLRKVEIIKSSRSGEPNFESHHVEANDLQSVVDQYFQIR
GTSKPARDIETHFGVNKELTASSTKAWLEKMRTLFIRKGSGFSSRNVITGDCYKRINEVGIPVEVAQRITF
EERVNIHNIRYLQKLVDEHLCLTYKEGGSTYSLREGSKGHIYLKPGQIVHRRIMDGDIVFINRPPTTHKHS
LQALYVYIHEDHTVKINPLICGPLGADFDGDCVHLFYPQSLAAKAEVVELFSVENQLLSSHSGNLNLQLST
DSLLSLKMLVKRCFFDRAAANQLAMFILLPLPRPALLKASSGDACWTSIQILQCALPLGFDCTGGRYLIRQ
SEILEFEFSRDVLPATVNEIAASVFFGKGPKEALNFFDVLQPFLMESLFAEGFSVSLEEFSISRAIKRIIR
KSIGKVSSLLYQLRSLYNELVAQQLEKHIRDVELPIINFALKSTKLGDLIDSKSKSAIDKVVQQIGFLGQQ
LFDRGRFYSKGLVDDVASHFHAKCCYDGDGYPSAEYGLLKGCFFNGLDPYEEMVHSISTREIMVRSSRGLS
EPGTLFKNLMAILRDVVICYDGTVRNICSNSIIQFEYGIQAGDKSEHLFPAGEPVGVLAATAMSNPAYKAV
LDASPSSNSSWELMKEILLCKVNFRNELVDRRVILYLNDCDCGGSYCRENAAYSVKDQLRKVSLKDAAVEF
IIEYQQQRTQKENSETDVGLVGHIYLDEMMLEELKISMAYVFDKCHERLKSFSQKKKKKMTLFLSYLIVRG
TVKCSIFVVSRIQDLYFIDHEYCTWKTMVFLSVSETIKNEIFPGLFMTISYLLFFTIPTESCSSSHPAAPC
LTFWLKNYDSDLDNAVKVLAEKICPVLFKTIIQGDPRISSASIIWVSPDTNTWVRNPYKSSNGELALDIIL
EKEAVKQSGDAWRVVLDACLPVLHLIDTRRSIPYAIKQIQELLGISCTFDQAIQRVAASVKMVAKGVLREH
LILLASSMTCGGNLVGFNIGGYKALSRQLNIQVPFTDATLFTPKKCFERAAEKCHTDSLSSIVASCSWGKH
VAVGTGSKFDVVWDANEIKSNEIEGMDVYSFLHMVKSFTNGEEETDACLGEDIDDLLEEEYMDLGMSPQHN
SGFEAVFEENPEVLNGSTSNGWDVSSNQGESKTNEWSGWASSNKAEIKDGRSEIAPKNSWGKTVNQEDSSK
SNPWSTSTIADQTKTKSNEWSAWGSNKSEIPVGWASSNKTEIKDGRSETAQENSWGKTVNQEDSSKSNAWN
TSTTVDHANTKSNEWSAWGSNQSEIPAGGSKAVQEDSWGSSKWKADVAQEDNSRLGAWDANAADQTKSSEW
SGWGKKKDVTQEDNSRLGAWDANAADQTKSRDWSGWGKKKDITQEDNSRLGAWDANAADQTKSSEWSGWGK
KKDQIRQNLMNGQVGERRKKLPKKTIPGLVLGMQIQQIRQNLMNEDQTKSNEWSGWGKKKDVTQEDNSRLG
AWDANAADQTKSNEWSDWGKKKEVTQEDNVQDSWGSGKRKDKVTQEDNSGSGGWGANRTDLAKSKSSEWSS
WGKNKSEIPAGGSENVQNDSWGSGKLEDDTQKENSGSAWVRNKAETIDGGSEKPQEDAWNSGNWKAESKVG
NASWGKPKSSESQAWDSHNQSNQNSSSQGWESHIASANSESEKGFQWGKQGRDSFKKNRFEGSQGRGSNAG
DWKNRNRPPRAPGQRLDIYSSGEQDVLKDIEPIMQSIRRIMQQQGYNDGDPLAAEDQLFVLENVFEHHPDK
ETKMGTGIDYVMVNKHSSFQESRCFYVVCKDGESKDFSYRKCLANYISKKYPDLAESFLGKYFRKPRARGD
QTATPGRDEAATPGEQTATPGRDEAATPAEQISTPTPMETNE* 
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>Glycine_max_NRPE1-2 (Glyma13g26690) 
MEIIKRIPIETKKKLAGKGFFPQDGYVLKYLPVPPNCLSVPEVSDGASVMSSDPSMTILRKLLRKVEIIKS
SRSGEPNFESHHVEANDLQSVVDQYFQIRGTSKPARDIETHFGVNKELTASSTKAWLEKMRTLFIRKGSGF
SSRNVITGDCYKRINEVGIPVEVAQRITFEERVNIHNIRYLQKLVDEHLCLTYKEGVSTYSLREGSKGHIY
LKPGQIVHRRIMDGDIVFINRPPTTHKHSLQALYVYIHEDHTVKINPLICGPLGADFDGDCVHLFYPQSLA
AKAEVVELFAVENQLLSSHSGNLNLQLSTDSLLALKMLVKRCFLGRAAANQLAMFLLLPLPRPALLKASSD
DACWTSIQILQGALPMGFDCTGGRYLIRQSEILEFDFSRDALPATINEIAASIFFGKGPMEALKFFDVLQP
FLMESLFAEGFSVSLEEFSISRAIKRIIRRSIGKASSLLYQLRSLYNELVAQQLEKHIQDVELPIINFALK
STKLGDLIDSKSKSTIDKVVQQVGFLGQQLFDRGRFYSKGLVDDVASHFHAKCCYDGDGYPSAEYGLLKGC
FFNGLDPYEEMVHSISTREIMVRSSRGLSEPGTLFKNLMAILRDVVICYDGTVRNICSNSIIQFEYGIQAG
DKTEHLFPAGEPVGVLAATAMSNPAYKAVLDASPNSNSSWELMKEILLCKVNFRNEPVDRRVILYLNDCDC
GGSCCRENAAYSVKNQLRKVSLKNAAVEFIIEYQQQRTQKENSETDAGLVGHIYLDEMMLEELKISMANVF
EKCLERLKSFSRKKKARQSFLIIRGTVNESCSSSHPAAPCLTFWLKNHDSDLDNAVKVLSENICPVLFETI
IKGDPRISSASIIWVSPDTNTWVRNPYKSSNGELALDIVLEEEAVKQSGDAWRIVLDSCLPVLHLIDTRRS
IPYAIKQIQELLGISCTFDQAIQRVAASVKMVAKGVLREHLILLASSMTCGGNLVGFNTGGYKALSRQLNI
QVPFTDATLFTPKKCFERAAEKCHTDSLSSIVASCSWGKHVAVGTGSKFDIVWDSSEVFDNTDLILDLIRI
GIKSNEIEGMDVYSFLHMVKSVTNGEEETDACLGEDIDDLLEEEYMDLGMSPQHNSGFEAVFEENPEVLNG
STSNGWDVSSNQTQSKTNEWSGWASSNKDGRSETAQENSWGKTVNQEDSSKSNAWNTSTTADQTKTKSNEW
SDWGSNKSEIPAGGSKAVQEDSSKSNAWNTSTTSNQTKTKSKEWSAWGSNKSEIPACGSKAVQEDSSKSNT
WNTSTTADQTKTKSNEWSAWGSNKSEIPAGGSKAVQEDSSKSNAWNRSTTADQTKTKSNEWSAWGSNKSEI
PAGGSKAVQEDSSKSNAWNTSTTADQTKTKSNEWSAWGSNKSEIPAGGSKAVQEDSSKAWNTSTTADQTKT
KSNEWSARVSNKSEIPAGGSKAVQEDSWGSSKWKADVAQEDNSRLGAWDANAADQTKSNEWSGWGKKKDVT
QEDNVQHSWGSGKRKDKVTQEDNSGSGDWGANRTDLAITKSSEWSSWGKNKTEIPAGGSANVQNDSWGLGK
LNDTQKDNSGCGAWGENSGSAWPQEDAWNSGNWKAESKVGNTTWGKPKSSESHAWDSHNQSNQNSSSQGWE
SHIASANSENEKGFQWGKGRDSNRPPRAPGQRLDIYSSEEQDVLKDIEPIMQSIRRIMQQQGYSDGDPLAA
EDQLFVLENVFEHHPDKETKMGAGIDYVMVNKHSSFQESRCFYVVCKDGQSKDFSYRKCLANYISKKYPDL
AESFLGKYFRKPRARGDQTATLGGDQTATPAQDEAATSGPGQRQE* 
 
>Brachypodium_distachatyon_NRPE1 (Bradi4g45070 and Bradi4g45060) 
MEEDQSAVLVAEGAIKSIKLSLSTEDEILTYSINDCPVTHPSQLGNPFLGLPLETGKCESCGASENGKCEG
HFGYIELPVPIYHPCHVSELRQLLSLVCLKCLRIKKGKAKQSNGKENVSVTACSYCRDVPALSLKEVKTAD
GAFRLELRAPPRRLMKDSSWNFLDKYGFHHGGASHFRTLLPEEALNILKKIPDDTRKKLAARGYIAQSGYV
MKYLPVPPNCLYIPEFTDGQSIMSYDISISLLKKILHRIEQIKKSRAGTPNFESHEAESSDLQISIAQYIH
LRGTTKGPQDTKRFTISTDSSHLSTKQWLEKMRTLFISKGSGFSSRSVLTGDPYIGVDVVGLPSEVAKRIT
FEEQVTDINIKRLQEVVDKGLCLTYRDGQTTYAITVGSKGYTTLKVGQTISRRIVDGDVVFLNRPPSTHKH
SLQAFYVYIHDDHTVKINPLICSPLAADFDGDCVHIYYPQSLAAKAEALELFSVEKQLTNSHNGKVNLQLS
NDSLLALKHMSSRTVLSKESANQLAMLLSFSLPDPAVVKLKPCWTITQIIQGALPAALTCEGGRFLVKDST
VIKLDLAKESVQASFSDLVSSILCVKGPGGALQFLNALQPLLMEYLLLDGFSVSLQDFNVPKVLLEEVHKS
IQEQSLVLEQSRCSKSQFVEMRVDNNLKDVKQQISDFVVESSHLGLLIDPKSEPSMSKVVQQLGFVGLQLY
REGKFYSSRLVEDCFSSFVDKHPPIVGNQHPPEAYGLVQNSYFHGLNPYEELVHSISTREAIVRSSRGLTE
PGTLFKNLMAILRDVVICYDGTVRNICSNSIMQLKYNEDDATDIPSALTPGEPVGVLAATAISNPAYKAVL
DASQSNNTSWASMKEILQTKVSYKNDTNDRKVILFLNDCSCPKKFCKEKAAIAVQNRLKRVTLEDCATDIC
IEYHKQILDGSSEATPALVGHIHLEKARLDMINVSTEDILQKCQEVSLKHGKKKGHLGHLFKKITFSTCDC
SFTQKPMIDGKLPKVPCLQFSFSEDIPMLSESVERAVSVLANSLCDVLLDTIIKGDPRIQEAKIMWVGSDA
QSWVKNTRKVSKGEPTVEIVVEKNEASKQGDAWRIAMDACIPVIDLIDTRRSIPYGIQQVRELLGISCSFD
QIVQRLSTTMKTVAKGILKDHLILVANSMTCTGNLYGFNTGGYRATFRALKVQVPFTESTLFTPMKCFEKA
AEKCHSDALGCVVSSCSWGKHAALGTGSSFQILWNENQLKSNKEYGDGLYDFLAMVRTDQEKARYTFLDDV
DYLVEDNAMDDICLSPELNGTHGVPTFEDNFEHQDTQNGNSWENGTKANASWEQNASAGNDSDNWGGWSNA
AAAADTGAAKPADQGNSSWDVPATAENDSTDWGGWGNEKAKDNRTVSTEPAELDTWSDRGAKKGTDGGGGS
WGKQTNTCEDSGTNLERNSWAKRPSSPSLSTWAKKNSDGGDGTWDKQANSCKKNVEQDSWKNMPVSPARNA
WNKKESSRGDATWEMRASTLEEKKTSESNEGSWEKSNAQKDSWGNTQHGSSDKMAVKDNDMQQDPWGHIAT
QNINAQDDLWGSVAAKAQTSTAENTDAQDDSWGAVAAKAQTSTAQESWGNVAASPSDNAWKAPPISQTSAA
EHTDAHNDSWGIVAAKAQTSTAQQESWGNATASPSDNAWNAAPMDLDAKQPGSWDGWSSALAEDSNKADDS
SNKNKGWKSDGWGAKGNRRDQRDNPSMPPMRPDERPPRPRFEVPAEAKKILREIEPIVSMVRKIFRESCDG
VRLPLEDEKFIKESILEHHPEKERKVPGEIDHIMVNKHHIFQESRCFYVVLADGTHTDFSYNKCMDNYVRK
TYTDAAEHADLVSQMYFKKRDRDRAAAVDGGSTPANASQSTQVMETSQDEAPQEAQPETCVATQEETRVSP
QETPAATTQQEETENNPDSASEADYHSASEAGLPEGV 
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>Sorghum_bicolor_NRPE1 (Sb03g046922) 
MEDDDPAAAGLTVPEAFIRRVKLSVTSNQEIVSTSPLFPSQDPIPITHCSQLQDNPSLGLPLQDGSTCESC
GATQLDKCDGHFGFIKLPEPIYHPSHIAELGKILNLVCLRCLRLKKPKKVTGKESRFTSCSYCQELSPLCV
SQVKKSNGARSLELKLPLKQEVADGFWSFLDQFGFHTSGTSHRRPLHPKEVQDIMKKITEKTRARLAARGY
NLQDGFVMDNMSIPPNCLQISNMLDENTEMCPPTSKGLLHKVLRTIEQIESLNISHPNIEARELGADDLQV
AVADYMNMGGAAKVSQHVTFTRQPAPKQWHKKMKTLFLSKSSSYTCRAVITGDPYIGLDVVGVPDEIARRM
SVQECVTNYNIARLQDMMNKGLCLTYTDLNTNTYDLDGKKGNKKCIMLRVGETVDRRVLDGDLVFLNKPPS
TDMHSIQALYVHVHDDHTIKINPLICGPLEADFDGDCVHIFFPRSVLARVEAAELFAVEKQLLNSHNAKLN
FQIKNDYLLALRIMCDRSYSKEKANQIAMFSSGMIPPCNPWTICDRWTIPQILQTTDALRIVPSHPNTVGA
SVTAIITSTLSEKGPREAIKLINLLQPLLMESLLMDGFSISLKDLDGQSAMQKANQSISLEIDKFSKSIVD
FIANSSALGLLVDPKNDSALMNLVEQVGFLGYQLQSTDRLYSNNLVEDCYNFLEKRSGSTKCYDPPKGHDF
VTSSFYNGLNPYEELLHSISVREKIERSSSKGLAEAGNLFKNMMAMLRDVTVCYDGTMRTSYNNSIVQFDS
TNVSSSLTPGDSIGILAATVFANAAYKAVLVPNQKNMTSWDSMKEVLLTNACSKTGTIDQKAILYLNKCFC
GLKFCSELAAHRVQSCLKRIKLEYCAIEVSIKYQQEATQAAQCLVGHIHLDKEQLNWMEITMGNILQTCQK
NVNKHVMKNRQLMQILKTTEIISSEYCLCGQDIGDERALQVSCLQCFIHASTTTVQPESNVIQMMTNTIFP
ILLDTVIKGDPQVQEAKLIWVEPKLTRWVKNSSAEQKGELAVEITVEKIAAAENGGTWGVVMDACVPVMDL
IDTTRSAPCNIQEVQKVFGISSVFDRVVQFLMFCPPLGSFFQHLSKAVGMVTKSVLMEHLITVASSMTCTG
SLHGFNRSGSKATFQSLKVQAPFTEATLSRPMQCFRKSAEKVDSDQLDSVVSTCSWGNHAAIGTGSAFKIH
WNDENQSASNEILREYNLYDFLEAVGRIGATEQKTDAPHSLCLYDVGQLPEDEVQEDEVVCFGGTSPISWT
DKPKGDSLLHDFMGRAGMWSTVQKHQEMQNKTKWNSASTRGQNKRQFTGQVYARKQPKHSWSQAATHQNNK
LSWCGENVAGAQDFANAESSKGGWNRKNSGFGRGGHRGGGRGMAFANAESSSSGGWNRKNSGFGRGGRRGG
GRGMWKSEGSHRGGSNSTNWRAQNNNSARQCGISYSFTPVEQQIYTQVEPIIKNVKRIIRESRDGMKLSQD
DEMFIMNKILMYHPEKEKKMAGQGNYIMVNKHQTFPSSRCLYVASSDGSSSDFSYKKCLENFIRIHYPHAA
ESFCRKYFK 
 
>Arabidopsis_lyrata_NRPE1 (483042) 
MEEESSSEILEGEIVGIKFALATHHEICIASISGSAINHPSQLTNSFLGLPLEFGKCESCGATEPDKCEGH
FGYIQLPVPIYHPAHVNELKQMLSLLCLKCLKIKKAKSTSGGLADRLLGVCCEEASQISIRDRASDGASYL
ELKLPSRSRLQAGCWNFLERYGYRYGSDYTRPLLAREVKEILRRIPEETRKKLTAKGHIPQEGYILEYLPV
PPNCLSVPDVSDGYSSMSVDPSRIELKDVLKKVIAIKSSRSGETNFESHKAEANDMFRVVDTYLQVRGTAK
AARNIDMRYGVSKISDSSSSKAWTQKMRTLFIRKGSGFSSRSVITGDAYRHVNEVGIPIEIAQRITFEERV
SVHNIGYLQKLVDDKLCLSYTQGSTTYSLRDGSKGHTVLKPGQVVHRRVIDGDVVFINRPPTTHKHSLQAL
RVYVHEDNTVKINPLMCSPLSADFDGDCVHLFYPQSLSAKAEVMELFSVEKQLLSSHTGQLILQMGCDSLL
SLRVMLEGVFLDKATAQQLAMYGSLTLPPPALRKSSKSGPAWTVFQILQLAFPERLSCKGDRFMVDGSDLL
KFDFGVDAMASIINEIVTSIFLEKGPKETLGFFDSLQPLLMESLFAEGFSVSLEDLSMSRADMDVIHNLII
REISPMVSRLRLSYRDELQLENSLHKVKEVAANFMLKSYSMRNLIDIKSNSAITKLVQQTGFLGLQLSDKK
KFYTKTLVEDMALFCKRKYGRISSSGDFGIVKGCFFHGLDPYEEMAHSIAAREVIVRSSRGLAEPGTLFKN
LMAVLRDIVITNDGTVRNTCSNSVVQFTYGVDSERGHQGLFEAGEPVGVLAATAMSNPAYKAVLDSTANSN
SSWEQMKEVLLCKVNFQNTTNDRRVILYLNECHCGKRFCQENAAYTVRNKLKKVSLKDTAVEFLVEYRKQQ
TISEIFGIDSCLHGHIHLDKTLLQDWNISMQDILQKCEDVINSLGQKKKKKATDDFKRTSLSVSECCSFQD
PCGRKDSDMPCLMFSYSATDPDLERTLDVLCNTIYPVLLETVIKGDPRICSANIIWNSSDMTTWIRNCHAS
RRGEWVLDVTVEKSAVKQSGDAWRVVIDACLSVLHLIDTKRSIPYSIKQVQELLGLSCAFEQAVQRLSASV
RMVSKGVLKEHIILLANNMTCSGNMLGFNSGGYKALTRSLNIKAPFTEATLITPRRCFEKAAEKCHTDSLS
TVVGSCSWGKRVDVGTGSQFELLWNQKETGLDDKEETDVYSFLQMVRSTTNADAYVSSPGFDVTEEEMAEW
AESPERDSALGEPKFEDSAEFQNLHDEGKPSESNWEKSSSWDNGCSGGSEWGVSKNTGGEANPESNWEKTT
NVEKEDAWSSWNTKKDAQESSKSDSGVAWGLKTKDDDADTTPNWETRPAQTDSIVPENNEPTSDVWGHKSG
SDKSWDKKNGGTESAPAAWGSTDAAVWGSSDKKNSETESDAAAWGSRDKKNSEVGSGAGVLGPWNKKSSKT
ESDGATWGSSDKTKSGAAAWSSWDKKNMETDSEPAAWGSQSKNKPETESGPSTWGAWDTKKSETESGPAGW
GIVDKKNSETESGPAAMGNWDKKKSNTESGPAAWGSTDAAVWGFSDKNNSETESDAAAWGSRDKKTSETES
GAAAWGSWGQPTPTAANEDANEDDENPWVSLKETKSRDKDDKERIQWGNPAKKFPSSGGWSNGGGADWKGK
RNHTPRPPRSEDNLAPMFTATRQRLDSFTSEEQELLSDVEPVMRTLRKIMHPSAYPDGDPISDDDKTFVLE
KILNFHPQKETKLGSGVDFITVDKHTIFSDSRCFFVVSTDGAKQDFSYRKSLNNYLMMKYPDRAEEFIDKY
FTKPRPSGNRDRNNQDATPPGEEQSQPPTQSIGNGGDDFNTQTQSPSQTQAQAQAQAQAQSPSQTQTQSPS
PSQTQTQSPSQTQAQAQSPSQSPSQTQTYS 
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Figure S3. Predicted NRPD1 protein sequences among diverse plant species with key 
domain features denoted to the right-hand side.  The Metal A motif is in black bold type; 
the NRPD1 signature motif (Erhard et al, 2009) in the DdRP G domain is underlined; the 
conserved DdRP H domain is underlined in bold; the DeCL signature motif is in blue 
bold type. 
 
>Arabidopsis_thaliana_NRPD1 (At1g63020) 
MEDDCEELQVPVGTLTSIGFSISNNNDRDKMSVLEVEAPNQVTDSRLGLPNPDSVCRTCGSKDRKVCEGHF
GVINFAYSIINPYFLKEVAALLNKICPGCKYIRKKQFQITEDQPERCRYCTLNTGYPLMKFRVTTKEVFRR
SGIVVEVNEESLMKLKKRGVLTLPPDYWSFLPQDSNIDESCLKPTRRIITHAQVYALLLGIDQRLIKKDIP
MFNSLGLTSFPVTPNGYRVTEIVHQFNGARLIFDERTRIYKKLVGFEGNTLELSSRVMECMQYSRLFSETV
SSSKDSANPYQKKSDTPKLCGLRFMKDVLLGKRSDHTFRTVVVGDPSLKLNEIGIPESIAKRLQVSEHLNQ
CNKERLVTSFVPTLLDNKEMHVRRGDRLVAIQVNDLQTGDKIFRSLMDGDTVLMNRPPSIHQHSLIAMTVR
ILPTTSVVSLNPICCLPFRGDFDGDCLHGYVPQSIQAKVELDELVALDKQLINRQNGRNLLSLGQDSLTAA
YLVNVEKNCYLNRAQMQQLQMYCPFQLPPPAIIKASPSSTEPQWTGMQLFGMLFPPGFDYTYPLNNVVVSN
GELLSFSEGSAWLRDGEGNFIERLLKHDKGKVLDIIYSAQEMLSQWLLMRGLSVSLADLYLSSDLQSRKNL
TEEISYGLREAEQVCNKQQLMVESWRDFLAVNGEDKEEDSVSDLARFCYERQKSATLSELAVSAFKDAYRD
VQALAYRYGDQSNSFLIMSKAGSKGNIGKLVQHSMCIGLQNSAVSLSFGFPRELTCAAWNDPNSPLRGAKG
KDSTTTESYVPYGVIENSFLTGLNPLESFVHSVTSRDSSFSGNADLPGTLSRRLMFFMRDIYAAYDGTVRN
SFGNQLVQFTYETDGPVEDITGEALGSLSACALSEAAYSALDQPISLLETSPLLNLKNVLECGSKKGQREQ
TMSLYLSEYLSKKKHGFEYGSLEIKNHLEKLSFSEIVSTSMIIFSPSSNTKVPLSPWVCHFHISEKVLKRK
QLSAESVVSSLNEQYKSRNRELKLDIVDLDIQNTNHCSSDDQAMKDDNVCITVTVVEASKHSVLELDAIRL
VLIPFLLDSPVKGDQGIKKVNILWTDRPKAPKRNGNHLAGELYLKVTMYGDRGKRNCWTALLETCLPIMDM
IDWGRSHPDNIRQCCSVYGIDAGRSIFVANLESAVSDTGKEILREHLLLVADSLSVTGEFVALNAKGWSKQ
RQVESTPAPFTQACFSSPSQCFLKAAKEGVRDDLQGSIDALAWGKVPGFGTGDQFEIIISPKVHGFTTPVD
VYDLLSSTKTMRRTNSAPKSDKATVQPFGLLHSAFLKDIKVLDGKGIPMSLLRTIFTWKNIELLSQSLKRI
LHSYEINELLNERDEGLVKMVLQLHPNSVEKIGPGVKGIRVAKSKHGDSCCFEVVRIDGTFEDFSYHKCVL
GATKIIAPKKMNFYKSKYLKNGTLESGGFSENP 
 
 
>Physcomitrella_patens_NRPD1 (phya_90112)(complete?) 
MELQDPEAGEAPLAEVMGIQFGILSAKDIVTLSVFEREHSIITAKDLWDSRLGIYNLPGNNNHCQTCGARK
ASDCDGHFGHITLPMPIYHPLHIYFLKKLLNQICLVCKRFKEKVFTLTSYFNSPLQYSSESSDDGKACKWC
GVNNSYETIEMKASVKEGKLPLDYWNFVCGNPERAYNILQSLSKKVIQKLGMDEYVARPEALILHFVPVPP
SGSRITEVDFGSSLPRTHMVGGRRFRFDKQHKLLQRLSFEVKRLQSLRTGMPDWATTKNEVMELQLLASSY
LTGSKWEHGLNPKAYDAVVKSDVQKSDRYMKGHILAKTNNSSARMIVVGDPSIKIEEILLPVFLVEQLTIP
EKVTAFNIERLQRYVDNGPYADLPGRDRVRLHSRLKRMVVEIGDTVHRHIKDGDLVIVNRPPSLTKHAIMA
MEVRLHHSCSLAINPLICAPFQADFDGDCMHLFVPQTSEAHAEAHELLKVSNQLINPQGGQSNSALTEDSR
LGAYLMTSSCIFLNKMEVSQLSTSSLVSLPIPAILKSPNKREPLWTGQQLYSTILPEGICYKVTDKKFSTD
VERGILISNGELLVCNGNSNWLGDAFDALTAVIHTSQGPAAALVYLNRAQELANLFLRDRGFSVGLQDFQL
SRDRSQLLRRRLEEVSIGNREALFRTLLMDEHVQREELNKNPASKRGLTAETECIKSKGLYLGATGIVKQV
EALDKVAVDRFQTKFRESTKRLAKDYCKRMNPLLVMINAGSKGSMSKLVQQTISVGLQLFKGEHLLPLNVP
DFCQKQLTDVSTLRATDFLQFERRVPSANLSGYWESRGIITSSYLDGLSPLQFFIHTLSSRYGIMRSKVEE
PNLLLKRLLLFLRNLYVEYDGSVRSLEGQQIVQFKYGRYIEGQRGAITTLEGPKIWCEAGEPVGILAATAI
TEPAYQLKLDSPHNVGAKAIGPLDLINETLSPSNPLKLIDRRVLLRFPLALKSRRHGQENGAMRILQHLKP
VSLSMVATTTMIEYRKAQTVVGEHGRSSPWVGHIRLGVVKLKIYQLLVADLVGSLETQYTNCKFASSHSCQ
FGSSGVTQEQPNPCIHFFVDDSTLVATLDDKEYDEVLSNSLEVMKNVILPILLRTPIKGDARIESVNLLWE
DMEWNPRCTKYLSSKKPCKNGTGELVLEVTVKKECCKSRGKAWKIVTESCLPIMQLLDWQRCTPYSIQELN
HVFGLEAAKGVLLQRLELAIAGMGKPVNLEHLELIADTMVTSGKVSGASLSGYKDLCKTISRSAPFSTAAF
LNPKNSFVVAGRHGISETMEGALSSSVWGKAPSLGTGSNFEFFWQAKAREREVCNIREGFDIHEYLAKLNS
SALKPCEGVPVPQHHNESQCVSTTMIQGHCDMVMSPDDFKLKQTNDELEIHLRSKEDFPQVGNHNGVLKQQ
ASSPTHISHPPVTDPIRTEGAVTSRSEACEDSSSFHTPNETLELTRQDSSNSSPCSSFRKDLFPTPVLHDD
SEGDETSGIV 
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>Populus_trichocarpa_NRPD1 
CSTCGSRDLKSCEGHFGVINFPYTIVHPYFLSEVVQILNKICPGCKSIRLAKATELITKENPQRKGCKYCA
GNSLGWYPPMKFKVSSKEIFRKTAIIAEIRETLSKKPQKGFKKILAADYWDIFPKDEQEEEEETNAKPNRR
VLSHSQVRHMLKDVDPNFIKLSILKTDTIFLNCFPVTPNSHRVTEVTHAFSNGQRLIFDERTRAYKKMVDF
RGVANTLSFHVMDCLKTSKLNPDKSGNIDPWTAQPKKSNDYVNNASGLRWIKDVVLGKRNDHSFRMVIVGD
PHLQLHEIGIPCHIAERLQISESLTAWNWEKLNACFEKSRFEKGDMHVRREGNLVRVRHMKELRLGDIIYR
PLNDGDTVLINRPPSIHQHSLIALSVKVLPVPSVLAINPLCCPPFRADFDGDCLHGYVPQSVDTRVELTEL
VSLDKQLTNWQSGRNLLSLSQDSLTAAHLVLEDDVFLSSFELQQLQMFRPERFLLPAVKAPSANALVWTGK
QLISMLLPVGFDHDFPSCNVCIRDGDLVSSEGSFWLWDTDGNLFQSLVKHCHGQVLDFLYAAQRVLCEWLS
MRGLSVSLSDLYLCPDSNSRKNMMDEIWYGLQDADYACNLKHLMVDSCRDFLTGNNEEDQCNVERLRFLSG
CSEEDYCVMAFDGERLCYEKQRSAALSQSSVDAFRLVFRDIQSLVYKYASQDNSFLAMFKAGSKGNLLKLV
QHSMCLGLQHALASLSFRIPHQLSCAGWNKQKADDATESAKRYIPHAVVEGSFLSGLNPIECFVHSVTSRD
SSFSDNADLPGTLFRRMMFFMRDLHGAYDGTVRNAYGNQLVQFSYNIDDMDPSGSVDEINNSDGIAGRPVG
PLAACAISEAAYSALDQPISLLEKSPLLNLKNVLECGLKRNSAHQTMSLFLSEKLGRQRHGFEYAALEVQN
HLERLLFSDIVSFVRIIFSPQSDGRMHFSPWVCHFHVYKWYILHKVFFSFQEIVKKRSLKVHYIIDALEKQ
CKSKTRFPKVQITSRYALWFLLNTHQIRDWRTIYADTWKEKKETFCITVTIVETSKNEFIELETIQDLMIP
FLLETVIKGFMEIQKVDILWNDKPKIPKSHNRLRGELFLRVHMSRGSDKTRLWNQLMDDCLSIMDLIDWAR
SHPDNIHECCLAYGIDAGWKFFLNNLQSAMSDVGKTVLPEHLLLVANCLSVTGEFVGLNAKGLKRQREHAS
VSTPFVQACFSNPGDCFIRAAKAGVVDDLQGSIDALAWGKVPAIGTGQFDIVYSGKGLEFSKPVDVYNLLG
SQMISTEQNTEFGVLDAQIYKSDKCGAQFLHKFGGCGPKGFKVKEGIPRSFLRRLLTYDDIQRMSYTVRKI
LNKYSVDQQLNESDKSVLMMTLYFHPRRDEKIGIGAKDIKVINHPEYQDTRCFSLVRTDGTIEDFSYRKCL
HNALEIIAPQRAKRYCEKYLTSKVSATDNSG 
 
 
>Vitis_vinifera_NRPD1 
MDNDFLEEQQVPSGLLIGIKFDVSTEEDMGADSGSRRLRSKGCKYCAANSNDWYPTMKFKVSSKDLFRKTA
IIVEMNEKLPKKLQKKSFRPVLPLDYWDFIPKDPQQEENCLNPNRRVLSHAQVHYLLKDIDPGFIKEFVSR
MDSFFLNCLPVTPNNHRVTEITHALSNGQTLIFDQHSRAYKKLVDFRGTANELSCRVLDCLKTSKLRSEKS
TSKDSASKMSGLKWIKEVLLGKRTNHSFRMIVVGDPKLRLSEIGIPCHIAEELLISEHLNSWNWEKVTNGC
NLRLLEKGQTYVRRKGTLAPVRRMNDFQAGDIIYRPLTDGDIVLINRPPSIHQHSVIALSVKVLPLNSVVS
INPLCCSPFRGDFDGDCLHGYIPQSVDSRVELSELVALNRQLINRQSGRNLLSLSQDSLSAAHLVMEDGVL
LNLFQMQQLEMFCPYQLQSPAIIKAPLLDTQVWTGKQLFSMLLPPGFNYVFPLNGVRISDGELISSSDGSA
WLRDIDGNLFSSLVKDCQGKALDFLYAAQEVLCEWLSMRGLSVSLSDIYLSSDSISRKNMIDEVFCGLLVA
EQTCHFKQLLVDSSQNFLIGSGENNQNGVVPDVQSLWYERQGSAALCQSSVCAFKQKFRDIQNLVYQYANK
DNSLLAMLKAGSKGNLLKLVQQGLCLGLQHSLVPLSFKIPHQLSCAAWNKQKVPGLIQNDTSEYAESYIPY
AVVENSFLMGLNPLECFVHSVTSRDSSFSDNADLPGTLTRRLMFFMRDLYIAYDGTVRNAYGNQLVQFSYN
IEHTSTPSDGINEDTCAYDMGGQPVGSISACAISEAAYSALDQPISLLEPSPLLNLKRVLECGLRKSTADR
TVSLFLSKKLEKRKHGFEYGALEVKNHLEKLLFSDIVSTVMIVFSPQNGSKTHFSPWVCHFHVCEEIAKKR
SLKPHSIIDALYMKCNSARAESKINLPDLQITSNGRDCFVDMEKEDSDCFCITVSIVNSKKSCIQLDTVRD
LVIPFLLGAVWVIPSSIKDAILSWHGLLDVKKVDILWNDNPDSDVLKSSSGRLYLRVYVSGDCGKKNFWGV
LMDACLQIMDMIDWERSHPDNIHDIFVVYGIDAGWKYFLNSLKSAISDIGKTVLPEHLLLVASCLSATGEF
VGLNAKGMARQKELTSISSPFMQGCFSSPGSCFIKAGKRAVADNLHGSLDALAWGKIPSVGSGGHFDILYS
AKGHELARPEDIYKLLGSQTSCHEQNLKVKVPITCYQTTTKCGAQLVYANGDSASKGCKSLEKISKSVLRS
FLSLNDIQKLSRRLKFILQKYPINHQLSEIDKTTLMMALYFHPRRDEKIGPGAQNIKVRYHSKYHNTRCFS
LVRTDGTEEDFSYHKCVHGALEIIDPRRARSYQSRWLPYSEV 
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>Oryza_sativa_J_NRPD1-1 (OsJ_15844) 
MLLEPELSPGSLGTRTRGEGWMEEPSLEVNNPVAELNAIKFSLMTSSDMEKLSSATIIEMCDVTNAKLGLP
NGAPQCATCGSRSIRDCDGKKKLTGKLLGHFGVIKLAATVHNSYFIEEVVQLLNQICPGCLTLKQNGDTKK
ADGTTIQGTCKYCSKDGSKLYPSIIFKMLTSPRVTLSRSKLHRNTSVMDKMSIIAEVAGGVAHKSKNKAPH
ETLPQDFWDFIPDDNQPPIFNVTKKILSPYQVFHMLKKLDPELINQDDRTKAYKRMVDLYSKKSDDESSAS
TDTYGTKWLKDIILSKRSDNAFRSIMVGDPKINLNEIGIPMGLALNLVVSEQVSSYNFETINLKCNLHLLT
KEVLLVRRNGNLIFVRKANQLEIGDIAYRLLQDGDLVLVNRPPSVHQHSLIALSAKLLSTQSAVSINPLCC
DPFKGDFDGDCLHGYIPQCLQSRIELEELVGLSGQLLNQQDGRSLVSLTHDSLAAAHQLTNADVFLEKAEF
QQLQMLSSSISLTPMPSVFKSTNSQGPLWTGKQLFGMLLPYGMNISFDQKLHIKDSEVLTCSSGSFWLQNN
TSSLFSVMFKEYGCKALEFLSSTQDVLCEFLTMWGLSVSLSDLYLFSDHYSRRKLSEEVHLALDEAEEAFQ
IKQILLNSVSIPNLKYYDGGDDRSNTDEQSGFTQVSLPIIRSSMTSFKSVFNDLLKMVQQYVSKDNSMMTM
INSGSKGSVLKFVQQTACVGLQLPASKFPFRIPSQLSCVSWNRHKSLNCEITDGTSECVGGQDMYAVVRNS
FLDGLNPLECLLHAISGRANFFSENADVPGTLTRKLMYHLRDTYVAYDGTVRSSYGQQIVRFSYDTADGMY
SDHDLEGEPGAPVGSWAACSISEAAYGALDHPVNSLEDSPLMNLQEVLKCHKGTNSLDHTGLLFLSKHLRK
YRYGFEYASLEVKDHLERVDFSDMVDTVIILYGGSDMQKTKGNPWITHFHLNQETMKIKRLGLEFIVREII
DQYNTLRKQLNNAIPSVSISNSETLHLKMENKSGKLGKNLGTGNECVKNQTCCVTMVVQVEINSMSQLDVI
KERVIPSILATLLKGFLEFKNVKVQCQEDNELVLKVGMSEHCKSGKFWATLQNACIPIMELIDWERSRPER
VYDNFCSYGIDSAWKFFVESLRSTTDAIGRNIHRQHLLVVADCLSRPAHSFINAAKRDSVDNLSGTLDAIA
WGKEPCAGSSGPFKILYSGKSHETKQNEHIYDFLHNPEVQALEKNVMDTYRKRTEKTSKRRSALNSEGNAT
INGGAISFNQKFLNAKVGIWENIIDMRTSLQNMLREYTLNEVVTEQDKSCLMEALKFHPRGYDKIGVGIRE
IKIGVNPGHPSSRCFIVLRNDDTTADFSYNNRFPCRYLHSELPEAPPERLRPSHRPSAAACGGGGGGNCVV
SSTREKPCKFFLSGDCRYGDECRCYLHAGSINDGFSLLTPLRGHQKEPLLFVGIPDAVKIWDTGAEMSLSE
PTGEYMHWRLAMGCSSLQCNYTSLGCYGKLETGSLAVTYTHNEDHGALALAGMQDAQLNPILLWSTNYNIV
HLYELPSMEEQVRKAVFLNRETFGSQFALAISRIPYSVVEEYTSTGLEELFADVGTWKKQN 
 
 
>Oryza_sativa_J_NRPD1-2 (OsJ_30285) 
MAGGVREGREIEMAPRRATILLGRIGMEEPSLEVKMPEADLKAVKFSLMTSSDMEKLSSASIIEMCDVTNA
KLGLPNGAPQCATCGSQSVRDCDGHFGVIKLAATVHNPCIEEVVQLLNQICPGCLTLKQNGDTKKTDGTTI
QTTCKYCSKDGAKLYPSVIFKMLTSPRVTLSRSKLHRNTSVMDKISIIAEVAGGVTHNSKNKAPHETLPQD
FWDFVPDDNQPPQSNVAKKILSPYQVFHMLKNLDPELINQLYSRKSDGEDPTSPDTYGTKWLKDIILSKRS
DNAFRSIMVGDPKINLNEIGIPTDLALNLVVSEQVSFYNFETINLKCNLHLLTKEVLLVRRNGKLIFVRKA
NKLEIGDIAYRLLQDGDLVLVNRPPSVHQHSLIALSAKLLPIQSAVAINPLCCDPFKGDFDGDCLHGYVPQ
TLQSRVELDGLVSLSGQMLNAQDGRSLVSLTHDSLAAAHQLTSADVFLQKAEFQQLQLLCSSISPTPEPSV
VKSANFQGSLWTGKQLFGMLLPSGMNISFDQKLHIKDSEVLTCSSGSFWLQNNTSSVFSVMFKEYGSKALE
FLSSTQDVLCEFLTMKGLSVSLSDFYLFSDHYSRKKLSEEIHLALDEAEEAFQIKQILLNTVSIPNLKHYD
GPDNLSNSHGQSDFTQVSLPIIKSSITGFKSVFNDLLKMVLQHVSKDNSMMAMINSGSKGSVLKFVQQTAC
VGLQLPASTFPFRIPSELSCVSWNRQKSLNCEITNNTSECMAGQNMYAVIRNSFLDGLNPLECLLHAISGR
ANFFSENADVPGTLTRKLMYHLRDTYVAYDGTVRSSYGRQIVQFSYDTADGMNNDHDLEGEPGAPVGSWAA
CSISEAAYGALDHPVNALEDSPLMNLQEVLKCHKGTKSAVHTGLLFLSKYLKKYRYGFEYASLEVKDHLER
VDFSDLVDTETMKIKRLRLGFIVRELIDQYNALRKKLNNMIPSVCISYSKCSVGNECVKNRSCCVTMVAQV
ESNSTSQLDIIKERVIPSILATLLKGFLEFENVKVECQQDSELVVKVGMSEHCKTGKFWATLQNACIPIME
LIDWERSRPERVYDIFCSYGIDSAWKYFVESLRSTTDAIGRNIHRQHLLVVADCLSISGQFHGLSSQGLKQ
QRAWLSISSPFSEACFSRPAYSFINAAKRDSVDNLSGALDAIAWGKEPCAGTSGPFKVLYSGKSQKTKQNK
NIYDFLHNPEVQALEKNFMDTYKQRTEKPSKQRSAFSSKGNATINGGTISVNQKFLDSKVGIWENIIDMRT
CLQNMLREYTLNEVVTEQDKSCLIEALKFHPRGYDKIGVGIREIKIGVNPGHPNSRCFIVQRSDDTSADFS
YNKCVLGAANSISPELGSYIEKILSNRAIRPHQL  
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>Oryza_sativa_I_NRPD1 (OSIGBa0147H17.3) 
MEEPSLEVNNPVAELNAIKFSLMTSSDMEKLSSATIIEMCDVTNAKLGLPNGAPQCATCGSRSIRDCDGHF
GVIKLAATVHNSYFIEEVVQLLNQICPGCLTLKQNGDTKKADGTTIQGTCKYCSKDGSKLYPSIIFKMLTS
PRVTLSRSKLHRNTSVMDKMSIIAEVAGGVAHKSKNKAPHETLPQDFWDFIPDDNQPPIFNVTKKILSPYQ
VFHMLKKLDPELINQVTRRRELLFLSCLPVTPNCHRVAEMPYGHSDGPRLAFDDRTKAYKRMVDLYSKKSD
DESSASTDTYGIKWLKDIILSKRSDNAFRSIMVGDPKINLNEIGIPMGLALNLVVSEQVSSYNFETINLKC
NLHLLTKEVLLVRRNGNLIFVRKANQLEIGDIAYRLLQDGDLVLVNRPPSVHQHSLIALSAKLLSTQSAVS
INPLCCDPFKGDFDGDCLHGYIPQCLQSRIELEELVSLSGQLLNQQDGRSLVSLTHDSLAAAHQLTNADVF
LEKAEFQQLQMLSSSISLTPMPSVFKSTNSQGPLWTGKQLFGMLLPYGMNISFDQKLHIKDSEVLTCSSGS
FWLQNNTSSLFSVMFKEYGCKALEFLSSTQDVLCEFLTMWGLSVSLSDLYLFSDHYSRRKLSEEVHLALDE
AEEAFQIKQILLNSVSIPNLKYYDGGDDRSNTDEQSGFTQVSLPIIRSSMTSFKSVFNDLLKMVQQYVSKD
NSMMTMINSGSKGSVLKFVQQTACVGLQLPASKFPFRIPSQLSCVSWNRHKSLNCEITDGTSECVGGQDMY
AVIRNSFLDGLNPLECLLHAISGRANFFSENADVPGTLTRKLMYHLRDTYVAYDGTVRSSYGQQIVRFSYD
TADGMYSDHDLEGEPVAPVGSWAACSISEAAYGALDHPVNSLEDSPLMNLQEVLKCHKGTNSLDHTGLLFL
SKHLRKYRYGFEYASLEVKDHLERVDFSDMVDTETMKIKRLGLEFIVREIIDQYNTLRKQLNNAIPSVSIS
NSKCSVGNECVKNQTCCVSMVVQVEINSMSQLDVIKERVIPSILATLLKGFLEFKNVKVQCQEDNELVLKV
GMSEHCKSGKFWATLQNACIPIMELIDWERSRPERVYDNFCSYGIDSAWKFFVESLRSTTDAIGRNIHRQH
LLVVADCLSVSGQFHGLSSQGLKQQRTWLSISSPFSEACFSRPAHSFINAAKRDSVDNLSGTLDAIASDMV
DKEPCTGSSGPFKILYSGKSHETKQNEHIYDFLHNPEVQALEKNVMDTYRKRTEKTSKRRSALNSEGNATI
NGGAISFNQKFLNSKVGIWENIIDMRTSLQNMLREYTLNEVVTEQDKSCLIEALKFHPRGYDKIGVGIREI
KIGVNPGHPSSRCFIVLRNDDTTADFSYNKCVLGAANSISPELGSYIENRRSNRAVRPHQL 
 
 
>Solanum_lycopersicum_NRPD1 (DQ020654) - incomplete N-terminus 
FRTVVVGDPNIELGEIGIPCXXAENLHMAETLSLRNWERMTDLCDLMILQRGGILVRRNGVLVRISVMDGL
QKGDIIHRPLVDGDVVMINRPPSIHQHSLIALSVRILPINSVLSINPLVCSPFRGDFDGDCLHGYIPQSID
STIELSELVALKQQLLDGQNGQNLLSLSHDSLTAAHLILEPGVFLDRFQMQQLQMFCPRQLGMTAIVKAPP
GNICYWTGKQLFSLLLPSDLEYVFPSNGVCISEGEIVTSSGGSSWLRDASDNLFYSLVKHNGGDTLDLLYA
AQTVLCEWLSMRGLSVSLSDLYISADSYSRENMIDEVCSGLQEAERLSYIQLLMIKYNKDFLSGNLEESKN
SMGFDFEFMSIMQQKSASLSQASASAFKKVFRDIQNLVYNYASNDNSLLAMLKAGSKGNLLKLVQHNMCLG
LQQSLVPVSFRMPRQLSCDAWNNHKSHLVIEKPHKVPECPGSYIPSAVVKSSFLAGLNPLECFVHSLTTRD
SSFSGHADVSGTLNRKLMFFMRDLYVGYDGTVRNAYGNQIVQFSYYEAEQIASTKVTGEALESHNHAIGGH
PVGSLAACAISEAAYCALDQPVSALESSPLLNLKKILESGAGSRTGEKTASMFLSKRLGRWAHGFEYGALE
VKGHLERLLLSEVVSTVMICFSPETRKSTHNCPWVCHFHIDKENVKTRRLKLRSVLDALNMRYRAATTKAG
NDLPNLHITCKDCSVAEVQKEKSEICITVSVVETSKDPSSLLDTLRDVVIPFLLETVIKGFSAFKKVDILW
KELPSPSKSSRGPTGELYLQVFMSESCDRIKFWNALVDSCLQIRDLIDWERSYPDDVHDLTVAYGIDVAWE
YFLCKLHSAVSETGKKILPEHLVLAADSLTTTGEFVPLSAKGLTLQRKAAGVVSPFMQACFTNPGDSFVRA
AKMGLSDDLQGSLESLAWGKTPSIGTGSSFDIMYSGKGYELAEQINVYTLLRNLVTVDTPNVKVTLGKDGG
MDGMSLVRRLDRLDDLDKKSCKSELSFTKLRSYFSFNDIKKLSQSLKQMLSKYDIGRELNEADKCLAMMAL
QFHPRRNEKIGKGAPKEIKIGYHQEFEGSRCFMVVRSDDTVEDFSYRKCMQHALELIAPQKAKTSRWLNGA
SA 
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>Ricinus_communis_NRPD1 (RCOM_1683300) 
MEADLFEERQQLPSALLTAITFGVSTEAEKEKLSVLTIDTVSEVTDSKLGLPNPTNQCSTCGSKDLKSCEG
HFGVIKFPFTILHPYYLSEVVRILNQVCPKCKSIRKESKVRCLNHLNPKLPVLLILLCWYPAMKFSVSSEE
IFRKNVIIAKFSERPTNKSQKRGFKKKLAADYWDIIPKDEQQEENITRPNQRVLSHAQVIHLLENIDPNFI
RKFVLKRDSIFLNCFSVTPNCHRVTEVTHAFSNGQRLVFDDRTRAYKKMVDFRGIAKELSFRVLDCLKTSK
INPDKSVNNDDYMALQRKMNDSSSSSSGLRWIKDVVLGKRNDNSFRMVVVGDPNIKFSEIGIPCPIAERLQ
ISEHLTTWNWDKLNTCCEVRLLEKGDMHVRREGKLVRVRRTKELRIGDIIYRPLNDGDTVLINRPPSIHQH
SLIALSVKVLPATSVLAINPLICAPFRGDFDGDCLHGYVPQSVDTRVELRELVALDKQLINVQNGRNLLSF
SQDSLVAAHLVMEDGVLLSLQQMQQLQMFCPHQLFSPAVRKAPSLNGCAWTGKQLISMLLPRGFDHECPSS
DVYIRDGELISSEGSFWLRDTDGNLFQSLIKQCQDQVLDFLYIAQEVLCEWLSMRGLSVSLSDLYLCPDSD
SRENMMDEVLFGLQDAKGTCNMKQFMVDSCRDFLASIDEDEQYSVNFDVEHLCHEKQRSAALSQASVDAFK
HVFRDIQTLGYKYASKDNALMAMFKSGSKGNLLKVVQHSMCLGLQHSLVPLSFRMPLQLSCDAWNKQKAEN
AVECARSYIPSAVVEGCFLTGLNPLECFVHSVTSRESSFSDNADLPGTLTRRLMFFMRDVHAAYDGSVRSA
YGNQLIQFSYNIDEGRSAETYGTAKIVDNYDGMAGKPVGSLAACSISEAAYSALDQPISLLEKSPLLNLKN
VLECGLKKSNAHKSMSLFLSEKLGRRRHGFEYGALKVQDHLERLLFSDIVSVSRIIFSSQSESKTCFSPWV
CHFHVYKEIMKKRNLNVDSIINILNGRCKSNTNLPNVQISCKSCSIADNHREKEETLCITVTIVERSKNSS
TRLATIQDLMIPFLLETVLKGLMEINKVDILWKDWPRISKTHNQPYGELYLRVSMSADSEKTRLWNLLMDY
CLPIMDMIDWTCSRPDNVRDFSLAYGIDAGWKFFLQRLESAISDVGKSVLPEHMLLVANCLSVTGEFVGLN
AKGWKRQREDASVSSPFVQACFSSPGNCFIKAAKAGVKDDLQGSLDALAWGKVPSVGTGQFDIVYSGKVKL
LLFLLVKRVKLKTPPSFVVLTVFLETPLINLLVWYSVDQQLNEADKCTLTMALYFHPRKEEKIGSGFKDIK
VVKHPEYQDSRCFSLVRSDGTIEDFSYRKCVYGALEIIAPHKARSQIEFFQNSDVVAIIGRITYKLFVGQS
EVKELPWEVVHACGLGKHSNRVISMLCYVQGSCKVDLALCNGLGRRLALVTANRA 
 
 
>Zea_mays_NRPD1 
MELHREPPEAILNAIKFDLMTSTDMEKLSSMSIIEVSDVTSPKLGLPNGSLQCETCGSQRGRDCDGHFGVT
KLAATVHNPYFIDDVVHFLNRICPGCLSPREGIDTKRLEREKVQATCKYCSKDGSKLYPSIVFKTLSSPRV
LLFKSKLHRNASVMERISIVAEAADRMPNRSKGKGSLEGLPLDFWDFVPSENKQVQSNMTKIILSPYQVFY
MLKKSDPELIKQFVSRRELLFLSCLPVTPNCHRVVEIGYGLPDGRLTFDDRTKAYKRMVDVSRRIDDYRQH
PHFSVLASSLVSSRVSECLKSSKLYSKKADGETSTDTYGMKWLKDVVLSKRSDNVFRSIMVGDPKIKLWEI
GIPEDLSSSLVVSEHVSSYNFQSTNLKCNLHLLAKQELFIRRNGKLMFLRKADQLEIGDIAYRPLQDGDII
LINRPPSVHQHSLIALSAKILPIHSVVSINPLCCTPFAGDFDGDCLHGYIPQSIRSRVELEELVSLHNQLL
NMQDGRNLVSLTHDSLAAAHLLTSTDVFLKKSELQQLQMLCLSVSTPAPAVIKSMNFQGSLWTGKQLFSML
LPSGMNFSCDTELHIMDSEVLTCSLGSSWLQNNTSGLFSVMFKQYGCKALDFLSSAQEVLCEFLTMRGLSV
SLSDLYMFSDHYSRRKLAEGVKLALYEAEEAFRVKKILLDPINIPVLKCHDETEDVTYRQSDCIQSNPSVI
RSSIMAFKDVFRDLLKMVQQHVSNDNSMMVMINAGSKGSMLKYAQQTACIGLQLPASKFPFRIPSQLSCIS
WNGQKSLNYEAESTSERVGGQNLYAVIKNSFIEGLNPLECLLHAISGRANFFSENADVPGTLTRKLMYHLR
DIHVAYDGTVRSSYGQQIVQFSYDSVDDLVDKLGAPVGCRAACSISEAAYGALEHPVNGLEDSPLMNLQEV
FKCHKATNSGDHIGLLFLSRHLKKYRYGLEYASLEVKNHLERVNFSDLVETIMIIYDGHDKIRNEGMWTTH
FHINKAMMKKKRLGLRFVVDELAKEYDTTRDQLNNAIPSIRISRRKCLVGDEGVKSSSCCIAVVAHAERNS
ISQLDTIKTRVIPSILDTLLKGFLEFKDVEIQCPHDGELLVKVCMSEHCKGGRFWPTLQNACIPVMELIDW
ELSQPSNVSDIFCSYGIDSAWKYFVESLKSATTDTGRNIRREHLLVIADSLSVTGQFHALSSQGLKQQRTR
LSISSPFSEACFSRPAQSFINAAKQCSVDNLCGSLDAVAWGKEPFNGTSGPFEIMHSGKPHEPEQNESIYD
FLCSSKVRNFEKNHLDTRRQSTENASICRLACKSSKGSTTVNGVAITIDQDFLHAKVSIWDNIIDMRTSLQ
NMLREYPLNGYVAEPDKSQLIEALKFHSRGAEKIGVGVREIKIGLNPSHPGTRCFILLRNDDTTEDFSYHK 
CVQGAADSISPQLGSYLKKLYYRA 
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>Glycine_max_NRPD1 (Glyma11g02920) 
MENIAVLEINAAGQVTGSSLGFPNASDECATCGSKDKRFCEGHFGVIKFPTPILHPYFMSEIAHILNKICP
VCKSIRHKSKVIYLLLVPNTGILSFYELASMDFIITCFLPPIYSSIVFLQGVRLIYGTKRSNDCNYCSAYP
SMKFRVSSNDLFRRTAIIVEVKASKKTLGTEIPADYWNFIPCDAQQEENYVNRRVLSPAQVLNLLNGVDPD
FIEKYIPRKNLLYLNCFPVTPNCHRVTEVPYAISIFNIIIFINCHMGTPNELSSRVLDCLRISKARCSAVL
AFRLCFSFDEMQLNPDKTPNSIFADIQQRKIGENACNSSGLRWIKDVVLGKRNDSSLRTVVVGDPDLELSE
VGIPCHIAESLQVSEYVNRQNREKLLYCCELRLLEKGKIDVCRNGSKVHLYKKEDLQIGDKIYRPLADGDK
VLINRPPSIHQHSMIALTVRVLPISSVVCINPLCCSPLRGDFDGDCLHGYIPQSVTARIELNELVALDRQL
INGQSGRNLLSLSQDSLTAAYLLMEDGVLLNVYQMQQLQMLSISDKRLIPPAVVKAPSSNSSLWSGKQIFS
MLLPYDFDYSFPSDGVVVSDGELVSSSEASGWLRDSDYNVFQSLVEHYQGKTLNFLYTAQKVLCEWLSMTG
FSVSLSDLYLSSDSYARKNMIEEIFYGLQDAEQAYKYLLLSVKRQLMLLGKFFAIFKAGSKGNLLKLVQHS
MCLGMQNSLVRLSYRLPRHLSYVFCSFLTGLNPLECFVHSVTNRDSSFSDHADLPGTLTRRLMFFMRDLHD
AYDGTVRNLYGNQLIQFSYDIEEDSSCDKGFQEYAIGGEPVGAISACAISEAAYSALGQPVSLLETSPLLN
LKNVLECGSRKRNGDQTVSLFLSEKLGKQRHGFEYAALEVKNYLERLLFSNIVSTVMIIFTPHDGSSQEKY
SPWVCHFHLDKEIVTRRKLKVHSIIDSLYQRYYSQRKDSKVCFTNLKISSNILRFSHHHEFLYCSLGFLDV
KKVDVLWNNQSKVKNSCNGFSGELYLRVTLSSEGSRGRFWGVLLNLCHKIMHIIDWTRSHPDNINHFSSAY
GIDAGWQYFFNVCMIKNFPSFNPGSCFIKAAKSGVTDNLQGSLDALAWGNCLSMGTSGMFDIIYSEKYFSP
CNAHDKCYTGLFLTIDTTSFPYLLIYRKEVDKNSISCYSKNHETTFCPRYKVAKSGNVYELLEASFDKPNN
KAGTHLHKYSSDKCGSEFRHKNGYALKEGKQWKTILRNFVTYCWKVVFVIMPCNEFMLLCLLGKYYSQLGS
RVVNFVLRMDFSRKYSIDELLSESDRSTMLRVLNFHPRKSEKFGIGPQDIKVGWHPKYKDSRCFHIVRIDG
TVEDFSYRKCILGALDIVDPKKSKIQEKKWSGHGNT* 
 
 
>Selaginella_moellendorffii_NRPD1 (Smo:441655) 
MASSKRRSSHRDRALEEATGTLIALDFRPLTSEEIIRASVYEVKTVRALQNNRFGLPNLSDCCTSCGAKRT
DASNSACPGHSGHIELPVLVYHWDRISALEAILNRVCLHCYSFKHKGRKKELRTLSSLEQVASGVDAHQAD
IGAVPNGARAPEAEENPGKCTGPAAAVKKIFKKVGTANVPALLLEIDGKVRREDIPPGFQSLILKDEMTPQ
WRSKMLDPNQVLRILKCLPQETIDKLRDEKLPSIPAEDYFIKSLPVPPNWMRYSTNEFYFQDKTTKNLKHL
LTKIKSIVYTRDEDKISLLTEQKVMEIQAAATQCIRANPLYGNVSDEDPRYGNVSDESKPLSGLHFLRSLT
GKYCGSSARAVVIGDPALKLEEIGISARIAAGLVVLETVTSSNIIFLQSYAYNNPGLKVVRGGEVCTARSC
KKLQVGDVIHRSLKDGDQVFVNRPPTFHKHALIGLKSKVIRNNVFAVNPLICPPLFADFDGDTLALYLPQS
LQVRAEVAELVALPKQLVSSQGGQSIIGLTQDALLGAHLMTRKNVFLDKLDMDQLRMWCPSAEVPVPAIVK
SPRKSPLWTGQQLFQMTLPTTFDWESDDGGLIIRQGEILRTSDKSSAWLGKDGLMTTICRRYGPDRALEHL
DIAQGIAVDWISERGFSVGLCDFYMAADAVSRRKLEEETLCAVEEAKISSLAHQIVSDPRFQVNSVSRPRC
NSWNERVQPVTSVNEATQQAAISAFQSTMKAFERTIEEHVRENSRENSLLRMVEANSKGSFSKMMQQGGCL
GLQLRQGEFVYHRVKSLFPRAVENESRGYLTSSELWKSMGLVESSFLDGLDPREFFIHSLSSRKGNDGSQQ
RCASFFRFLMSYMKDIRVEYDNTIRSTHGGHIFQFSYGATAEPGEPVGLLAGTAVIEPVYDQVMSSSPQAS
TMLKTLQNILFSNSFKDIDRCVTLKLQKLPVQPEWIALQVQDFLKPVTIGMLASKIWIEYSPCSEVGGQKK
RVPWIGCFQLRAEAMERCSLNIDTIVCHLRKLLPTSLDDPDAFIQGLHFFSRDVEVLCFFPITSSVSNYDS
KQIHKHMIGTMFGNLLQVVVKGCPRGIEFVNVKWEDELCIEVAFLSRTRGVPWTHALEACGSISHLVDWQK
STPLSIQEVHVAFGIEAAYQYLLEKLKEFTKGSGVLRKPWKNIDANESGYEAFVKNLSGCSPLAFAMGKSP
GGVFEAAAMNREVDYLAGANELAFCGKSPSLGTGANIELFFKEDKGPVSRFPDFESLVFSRRVVDDTVSAT
LSAKDREIVWARIDQRSQKLHDILRKSLTGTPVSAANEAVILDTLKYHPMMDSKVGCGVRHIRVDNHHSFG
GRCFHIVRLDGSVEDFSYHKCLLERIKGNTVLVQRYKKKFMGGKNGRKEEVPVEIFSQKNDTGRMYDKKTH
GFLLVENHFVPVKTLKKT* 
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>Sorghum_bicolor_NRPD1 (Sb06g025933) 
MELHRELPEATLNAIKFDLMTSTDMEKLSSMSVIEVSDVTSPKLGLPNASPQCETCGSKSGRDCDGHFGVT
KLAATVHNPYFIDDVVHFLNQICPGCLSPREGINMKKDGSKLYPSVIFKTLSSPRVLLSKSKLHRSPSVME
RISIVAEAAERVSNRSKGKGLLEGLPQDYWDFVPSENKQVQSNMTKIILSPYQVFHMLKKSDPELIKQFVS
RRELLFLSCLPVTPNCHRVVEIGYGLSDGRVTFLYSKKTYGETSTDPSGMKWLKDAVLSKRSDNAFRSTMV
GDPKIKLWEIGIPEDLASNLVVSDHVNSYNFENINLKCNLHLLTKEELFIRRNGKLMFLRKADQLEIGDIA
YRPLQDGDLILINRPPSVHQHSLIAFSAKILPIHSVVSINPLCCTPFLGDFDGDYGRSLVSLTHDSLAAAH
LLTSTDVFLKKSEFQQLQMLCLSVLTPVPAVIKSMNFQGSRWTGKQLFSMLLPSGMKFSCDRMLHILNGEV
LTCSLGSSWLQNNTSGLFSVMFKQYGCKALDFLSSAQEVLCEFLTMRGLSVSLSDMFSDHYSRRKLTEGVK
LALDEAEEAFRIKQILLDPINIPVLKCQDETEDVTYRQSDCIQNNPSVIRSSIMAFKDVFSDLLKMVQQHV
SNDNSMMVMINAGSKGSMLKYAQQTACVGLQLPASKFPFRVPSQLSCIRWNRQKSLNYEAEGTNERVGGQN
LYAVIRNSFIEGLNPLECLLHAISGRANFFSENADVPGTLTRKLMYHLRDIHVAYDGTVRSSYGQQIVQFS
YDSADDPVDKLGAPVGCWAACSISEAAYGALEHPVNGLEDSPLMNLQEVFKCHKATNSGDHIGLLFLSRHL
KKYRYGLEYASLEVKNHLEQVNFSDLVETIMIMLEMMKKKRLGLRFVIEELTKEYNATRDQLKNAIPSICI
SRRKCVVGDEGVKISACCIAVVALAEPNSMSQLDTIKKRVIPIILDTLLKGFLEFKDVEIQCQHDGELLVK
VCMSHHCKGGRFWATLQNACIPVMELIDWELSRPSNVADIFCSYGIDSAWKYFVESLKSATTDIGRNIRRE
HLLVIADSMSVTGQFHAISSHGLKQQRTRLSISSPFSEACFSRPAQSFIDAAKQCSVDNLCGSLDAIAWGK
EPFNGTSGPFEIMHSGKPHEPEQDESIYDFLRSPKVQNVEKNHLDTRRQSTENASICRLACKSKGSATVNG
VAITSDQDFLHAKVSIWDNIIDMRASLQNMLREYPLNGYVMEPDKSKLIEALKFHPRGAEKIGVGVREIKV
GLNPNHPGTRCFILLRNDDTTEDFSYHKCVHGAANSISPQLGSYLKKLYHRA 
 
 
>Brachypodium_distachyon_NRPD1 (Bradi2g34870 and Bradi2g34880) 
MVRSLLSVIREVTQGSEHSPTKEVQNTGELEKGGVSLPRPAVHLPLLVQGVRAPPRRSSDMSEWTDGPNNE
MDVPMAELKALKFDLLSSADIETLSSANIIEASDVTSAKLGLPNAAPQCVTCGSQNVRDCDGHSGVIKLPA
TVYSPYFLEQLVQFLNQICPGCWTPKQNRDTKRSDAATIQEPCKYCSKDGLYPSVIFKVLTSPRITLSKSK
LQRNTSVMDKVSVTAEVINMSKNKSSLEVLPHDYWNFVPHNQPPQPNTTKILLSPYQVFHILKQVDLELIT
KFAPRRELLFLSCLPVTPNRHRVAEMPYRFSDGPSLAYICMLYSKKTDKESSTDSYGTSVKKNDSYGTKWL
KDAILSKRSDYAFRSIMVGDPKIRLHEIGIPMDLADLFVPEHVSIYNFKSINLKCNLHLLAKELLIARRNG
KLIYVRKENQLEIGDIVYRPLQDGDLILVNRPPSVHQHSLIALSAKLLPVQSVVAINPLNCAPLSGDFDGD
CLHGYVPQSIGSRVELGELVSLSHQLLNMQDGRSLVSLTHDSLAAAHLLTSSGVLLNKTEFQQLQMLCVSL
SPTPVPSVIKSINPQGPLWTGKQLFGMLLPSGMNFSPDPKLHIKDSEVLACSGGSFWLQNNTSGLFSVLFK
QYGGEALEFLSSAQDMLCEFLTMRGLSVSLSDIYLFSDHYSRRKFAEEVNLALDEAEEAFRVTQILLSPNF
IPHLKCYDDCDDLSDSYEQSDFVQSNLPIIKSSIMAFKSVFSDLLKMVQQHTPKDNSMMAMINAGSKGSML
KFVQQAACVGLQLPAGKFPFRIPSELTCASWNRHKSLDCDISEGARKRLGGQNSHAVIRNSFIEGLNPLEC
LLHSISGRANFFSENADVPGTLTKNLMYHLRDIYVAYDGTVRSSYGQQIVQFTYDTAEDIYTDCGQEGEFG
APVGSWAACSISEAAYGALDHPVNVIEDSPLMNLQEVLKCQKGTNSLDHFGLLFLSKNLKKYRYGFEYASL
YVQNYLEPMDFSELVNTVMIQYDGGGVQKTKGSPWITHFHISKEMMKRKRLGLRLLVEDLTEHYNAKRDQL
NNVIPKVYISKCKCSDDDDCINNQTCCITVVAQDESNSTSTSQLDDLKKRAIPVLLATPVKGFLEFKDVEI
QCQRDNELVVKVNMSKHCKSGIFWTTLKKACIGIMGLIDWERSRPGSVYDIFCPCGIDSAWKYFVESLRSK
TDDIGRNIHREHLLVVADTLSVSGQFHGLSSQGLKQQRTQLSTSSPFSEACFSRPADTFIKAAKQCSVDNL
CGNIDALAWGKEPPAGTSGPFKIMYAGKPHEPVQNENIYGFLHNPEVWGPEKNHMETDSTRTKNASERWSS
GNATFNGGTISVEQNYLGAKVGVWDSIIDMRTCLQNMLREYQLDEYVVELDKSRVIEALRFHPRGREKIGV
GIRDIKIGQHPSHPGTRCFILVRNDDTTEDVSYKKCVQGAADSISPQLGSHMEKILQTRSFCRDSWR 
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>Arabidopsis_lyrata_NRPD1 (924683) 
MEDDCEELQVPVGTLTSIGFSISNNTDRDTMSVIKVEAPNQVTDSRLGLPNPDSICKTCGSKDRKVCEGHF
GVINFQYSIINPYFLKEIAALLNKICPGCKYIRKKQFQITEDQPERCRYCTSNTGYPLMKFRVTTKEVFRR
SGIVVEVNEESLMKLKKRGVLALPPDYWSFVPQDSNIDESCLKPTRRILTHAQVYALLSGIDQRLIKKDIP
MFDSLALTSFPVTPNGYRVTEIVHQFNGARLVFDERTRIYRKLVGFEGNTLELSSRVIECMQYSRLFSENV
SSSQDSANPYQKKSDTPKLCGLRFMKDVLLGKRSDHTFRTVVVGDPSLKLHEIGIPERIAKRLQVSEHLNN
WNNERLVTFCSPNLFDNKEVHVRRGDRLVAIRVSDLQTGDKIFRNLMDGDTVLMNRPPSIHQHSLIAMTVR
VLPTTSVVSLNPICCLPFRGDFDGDCLHGYVPQSIQAKVELDELVALDKQLINRQNGRNLLSLGQDSLTAA
YLVNVEKNCYLNRAQMQQLQMYCPFQLPPPAIIKASPSSTEPQWTGMQLFGMLFPPGFDYTYPLNDVVVSN
GELLSFSEGSAWLRDGEGNFIQGLIKHDKRKVLDIIYSAQEMLSQWLLMRGLSVSLADLYLSSDPQSRKNL
TEEISYGLREAEQVCNKQQLMVESWRDFLAVNGEDEGEDSVARDLARFCYERQKSATLSKIAVSAFKDAYR
DVQALAYRYGEQSNSFLIMSKAGSKGNIGKLVQHSMCIGLQNSAVSLSYGFPRELTCASWNDPNSPLRGAK
GEDSTATESYVPYGVIENSFLTGLNPLESFVHSVTSRDSSFSGNADLPGTLSRRLMFFMRDIYAAYDGTVR
NSFGNQLVQFTYETDGPVEDITGEALGSLSACALSEAAYSALDQPISLLETSPLLNLKNVLECGSKKGQRE
QTMTLYLSETLSKKKHGFEYGSLEIKNHLEKLSFSEIVSTSMIIFSPSTNTKVPLSPWVCHFHISEKVLKR
KQLNVESVVSSLNEQYKSRNRELKLDIVDLDIQSTNHCSSDDKAMKDDSFCITVTVIEASKHSVLELDAIR
LVLIPFLLDSPVKGSQEIKKVDILWTDRPKAPKRNGDHLAGELYLRVTMYGDRGKRNCWTALLETCLPIMD
MIDWSRSHPDNIRQCCSVYGIDAGRSIFVANLESAVSDTGKTILKEHLLLVADSLSVTGEFVALNAKGWSK
QRQVESTPAPFTQACFSSPSQCFLKAAKEGVRDDLQGSIDALAWGKVPGFGTGDQFEIIISPKVHGFTTPV
NVYDLLSSTPPKTNSAPKSDKVTVQPFDLLGTAFLKGIKVLDGKGISMSRLRTIFTWENIEKLSQSLKRIL
TSYEINDPLNGRDEELVMMVLHLHPNSADKIGPGLKGIRVAKSKHGDSRCFEVVRIDGTFEDFSYHKCVLG
ATKIIAPKKVNLYKSKYLKNGTHQPGRLSENPQTVK 
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Figure S4. Flowering time experiment with Arabidopsis plants grown under short-day 
conditions (8 hrs light/16 hrs dark) and randomly rotated every 4 to 6 days.  Rosette leaf 
number was counted when the bolt reached 5 cm in height.   
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Figure S5. Visible phenotypes observed among wild type Arabidopsis plants transformed 
with pEarleyGate202-NRPD1 aa1337-1453 (Line #258, T2 generation).  Plants display a 
range of smaller statures and curled rosette leaves.  The survival rate was lower than that 
of other CTD over-expressed domains transformed and planted side-by-side.  This rate 
was not quantified but it took three flats of planted seed to obtain (9) T1 individuals after 
BASTA selection (~0.5 to 1.0 mL seed planted per flat) compared to the typical single 
flat that results in at least (30) BASTA survivors. 
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Figure S6.  AGO4 in vitro interaction with the NRPE1 CTD. (A) Bacterially expressed 
N-terminal GST tagged constructs used for the in vitro protein-protein interaction 
experiment. Total protein extract from MYC-AGO4 expressing plants was incubated 
with GST-tagged proteins bound to glutathione resin.  The resin was washed and bound 
proteins analyzed by Western blot. (B) AGO4 Western was performed using the anti-
cMyc, clone 9E10. (C) Rubsico Western to demonstrate adequate resin washing. (D) 
Coomassie stained gel of the eluted bound protein fractions demonstrating roughly equal 
protein inputs.   
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Figure S7. Failure to verify reported NRPE1-AGO4 interaction in vivo.  (A) Western 
blot analysis showing lack of co-immunoprecipitation between NRPE1 and AGO4 using 
native antibodies.  Wild type, nrpe1-11 and ago4-1 total protein extract controls 
demonstrate the specificity of these antibodies.  (B) A transgenic line bearing both MYC-
AGO4 and NRPE1-FLAG genomic constructs was generated by crossing lines from Li et 
al (2006) and Pontes et al (2006).  The possibility exists that the NRPE1-AGO4 
interaction is sensitive to buffer conditions so a side-by-side comparison was performed 
with the extraction buffer and techniques used in the originating report (Li et al, 2006) 
and the buffer and techniques typically used in the Pikaard lab (Baumberger et al, 2005 
with modifications in this manuscript).  Reciprocal co-IPs were performed with FLAG 
and cMyc resin under both conditions.  Interaction between NRPE1 and AGO4 was not 
observed in either immunoprecipitate with either buffer.  (C) Western blot analysis 
showing non-specific IP of MYC-AGO4 with anti-FLAG resin from whole plant extract.  
This is the only case where an apparent interaction was observed between NRPE1 and 
AGO4.  The result cannot be trusted, though, since the control sample showed 
immunoprecipitation of MYC-AGO4 with the anti-FLAG resin. 
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Table S1. Primers used in this study. 
 
Target Primer Sequence (5’ to 3’) Application 
NRPD1 
Δ1337-1453 

NRPD1-F 
NRPD1 d1337-R 

CAC CGG TGT CTC ACA TTC CAA AGT CCC C 
CCA TGT AAA GAT CGT TCT AAG CAG TGA CAT AGG AAT 

Generate genomic NRPD1 Δ1337-1453 clone; 
deletes DeCL domain 

NRPE1 
Δ1251-1976 

NRPE1-F 
NRPE1 d1251-R 

CAC CGC GTA CTA CAA ACG GAA ACG GTC A 
GAT AAA GAA GAA ACA GAT GTG TAC AGC TTC CTT 

Generate genomic NRPE1 Δ1251-1976 clone; 
deletes entire CTD 

NRPE1 
Δ1426-1976 

NRPE1-F 
NRPE1 d1426-R 

CAC CGC GTA CTA CAA ACG GAA ACG GTC A 
CCA CGA TTT GTC TGA AAC AGA TTT GTG TCC 

Generate genomic NRPE1 Δ1426-1976 clone; 
deletes all repeats, DeCL and QS-rich domains 

NRPE1 
Δ1566-1976 

NRPE1-F 
NRPE1 d1566-R 

CAC CGC GTA CTA CAA ACG GAA ACG GTC A 
CCC CAT ACC CCA ACC AGC AGG 

Generate genomic NRPE1 Δ1566-1976 clone; 
deletes 4 repeats, DeCL and QS-rich domains 

NRPE1 
Δ1651-1976 

NRPE1-F 
NRPE1 d1651-R 

CAC CGC GTA CTA CAA ACG GAA ACG GTC A 
GTC TTC TGC AGT GGG ACT TGG C 

Generate genomic NRPE1 Δ1651-1976 clone; 
last repeat at C-terminus; deletes DeCL and 
QS-rich domains 

NRPE1 
Δ1736-1976 

NRPE1-F 
NRPE1 d1736-R 

CAC CGC GTA CTA CAA ACG GAA ACG GTC A 
CTC AGA GGT GAA TGA GTC CAA GCG 

Generate genomic NRPE1 Δ1736-1976 clone; 
deletes DeCL and QS-rich domains 

NRPE1 
Δ1851-1976 

NRPE1-F 
NRPE1 d1851-R 

CAC CGC GTA CTA CAA ACG GAA ACG GTC A 
GAA TTC ATT GAC AAG TAC TTT ACG AAA CCT 

Generate genomic NRPE1 Δ1851-1976 clone; 
deletes QS-rich domain 

NRPE1 
Δ1251-1426 

d1251-1426 mut-F 
d1251-1426-F 
d1251-1426 mut-R 
d1251-1426-R 

GTG TAC AGC TTC CTT GAC AAA AAG AAC TGG GGA ACT GAA TCA GC 
GAC AAA AAG AAC TGG GGA ACT GAA TCA GC 
AAG GAA GCT GTA CAC ATC TGT TTC TTC TTT ATC ATC TAG ACC AGT CTG C 
ATC TGT TTC TTC TTT ATC ATC TAG ACC AGT CTG C 

Generate genomic NRPE1 Δ1251-1426 clone 
using SLIM strategy (Chiu et al., 2004); 
deletes linker between domain H and CTD 
internal repeats 

NRPE1 
Δ1251-1651 

d1251-1651 mut-F 
d1251-1651-F 
d1251-1651 mut-R 
d1251-1651-R 

GTG TAC AGC TTC CTT AAG GAT ACC AAT GAG GAT GAT AGA AAT CCG TG 
AAG GAT ACC AAT GAG GAT GAT AGA AAT CCG TG 
AAG GAA GCT GTA CAC ATC TGT TTC TTC TTT ATC ATC TAG ACC AGT CTG C 
ATC TGT TTC TTC TTT ATC ATC TAG ACC AGT CTG C 

Generate genomic NRPE1 Δ1251-1651 clone 
using SLIM strategy (Chiu et al., 2004); 
deletes linker and CTD internal repeats 

NRPE1 
Δ1426-1651 

d1426-1651-F 
d1426-1651-R 

GTT TCA GAC AAA TCG TGG AAG GAT ACC AAT GAG 
CTC ATT GGT ATC CTT CCA CGA TTT GTC TGA AAC 

Generate genomic NRPE1 Δ1426-1651 clone 
using Stratagene strategy; deletes CTD repeats 

NRPE1 
aa1234-1842 

NRPE1 1234-F 
NRPE1 1842-R 

CAC CAA AGA GAC TGG TCT AGA TGA TAA AGA AGA AAC AGA TG 
TTA GAA TTC TTC AGC ACG GTC AGG GT 

cDNA clone of NRPE1 CTD (-QS domain) 
used for bacterial expression and transgenics 

NRPE1 
aa1426-1651 

NRPE1 1426-F 
NRPE1 1651-R 

CAC CAT GTG GGA CAA AAA GAA CTG GGG AAC TG 
TCA GTC TTC TGC AGT GGG ACT TGG C 

cDNA clone of NRPE1 repeats used for 
bacterial expression and transgenics 

NRPE1 
aa1426-1851 

NRPE1 1426-F 
NRPE1 1851-R 

CAC CAT GTG GGA CAA AAA GAA CTG GGG AAC TG 
TCA AGG TTT CGT AAA GTA CTT GTC AAT GAA TTC 

cDNA clone of NRPE1 repeats and DeCL 
used for transgenics 

NRPE1 
aa1851-1977 

NRPE1 1851-F 
NRPE1 1977-R 

CAC CAT GCC TCG GCC TAG CGG AAA CAG 
TTA TGT CTG CGT CTG GGA CGG 

cDNA clone of NRPE QS-rich domain used 
for bacterial expression and transgenics 

NRPD1 
aa1337-1453 

NRPD1 1337-F 
NRPD1 1453-R 

CAC CAA AAA CAT CGA GTT GCT TTC CCA GTC ATT G 
TCA CGG GTT TTC GGA GAA ACC AC 

cDNA clone of NRPD1 DeCL domain used 
for transgenics 

NRPE1 
aa1251-1425 
, 1652-1977 

NRPE1 1251-F 
NRPE1 1977-R 

CAC CCT TCA AAT GGT CAT ATC CAC GAC AAA CGC 
TTA TGT CTG CGT CTG GGA CGG 

cDNA clone of NRPE1 repeat internal deletion 
used for bacterial expression; cloned from 
NRPE1 Δ1426-1651-HA total RNA 
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Table S1. Primers used in this study (continued). 
 
AtSN1 AtSN1-F 

AtSN1-R 
AGG ATT TAT TTC AAT CCA CGA ACC T 
CGA CTC CCA TAA GTA ACG AGT TG 

Chop-PCR (Herr et al., 2005) 

At2g19920 AtSN1 control-F 
AtSN1 control-R 

CTC TGG GTT ACC TTT CAG GAA TCA G 
CTA AAT TGA AGA GCT TAC CTG CTT G 

Chop-PCR control (Herr et al., 2005) 

AtSN1 AtSN1 RT-F 
AtSN1 RT-R 

ACC AAC GTG CTG TTG GCC CAG TGG TAA ATC 
AAA ATA AGT GGT GGT TGT ACA AGC 

RT-PCR (Herr et al., 2005) 

solo LTR solo LTR-F 
solo LTR-R 

ATC AAT TAT TAT GTC ATG TTA AAA CCG ATT G 
TGT TTC GAG TTT TAT TCT CTC TAG TCT TCA TT 

RT-PCR (Wierzbicki et al., 2008) 

Actin Actin-F 
Actin-R 

TCA TAC TAG TCT CGA GAG ATG ACT CAG ATC ATG TTT GAG 
TCA TTC TAG AGG CGC GCC ACA ATT TCC CGT TCT GCG GTA G 

RT-PCR (Herr et al., 2005) 

GAPA GAPA-F 
GAPA-R 

GGT AGG ATC GGG AGG AAC 
GAT AAC CTT CTT GGC ACC AG 

RT-PCR, glyceraldehyde 3-phosphate 
dehydrogenase A (Kanno et al., 2005) 
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PH.D. ABSTRACT 

Among eukaryotes, plants have the distinction of encoding multisubunit RNA polymerases used exclusively for 

RNA directed DNA Methylation (RdDM) in addition to Pol I, II, and III. In Arabidopsis thaliana, Pol IV is required 

for the biogenesis of 24nt siRNAs whereas Pol V transcription is needed for cytosine methylation of the DNA 

sequences corresponding to these siRNAs. The ancestry of Pol IV and V can be traced back to Pol II, and the 

extant Pol II, IV and V still share multiple non-catalytic subunits encoded by the same genes. Genetic analysis of 

non-catalytic subunits that are highly similar reveals that these subunits are not necessarily redundant. For 

instance, NRPB9b but not its 97% similar paralog, NRPB9a is required for RdDM. Likewise, Pol IV and Pol V-

specific 7th largest subunits are very similar yet have different involvements in RdDM. In some of the non-catalytic 

subunit mutants of Pol IV, 24nt siRNA accumulation is not dramatically reduced, yet RNA silencing is disrupted. 

This contrasts with Pol IV catalytic subunit mutants in which siRNA biogenesis and RdDM are coordinately 

disrupted. Taken together, these results suggest that Pol IV might possess functions in RdDM that are in addition 

to, and separable from siRNA biogenesis. Differences in Pol V subunit composition based on the use of non-

catalytic subunit variants might also have functional consequences for RdDM. The evidence we have suggests that 

alternative non-catalytic subunits in Pol IV and V are likely to influence interactions with other proteins for RdDM.  
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